


Lecture Notes in Artificial Intelligence 5808
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science



João Gama Vítor Santos Costa
Alípio Mário Jorge
Pavel B. Brazdil (Eds.)

Discovery Science

12th International Conference, DS 2009
Porto, Portugal, October 3-5, 2009
Proceedings

13



Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

João Gama
LIAAD-INESC Porto L.A./Faculty of Economics, University of Porto, Portugal
E-mail: jgama@fep.up.pt

Vítor Santos Costa
CRACS-INESC Porto L.A./Faculty of Science, University of Porto, Portugal
E-mail: vsc@dcc.up.pt

Alípio Mário Jorge
LIAAD-INESC Porto L.A./Faculty of Science, University of Porto, Portugal
E-mail: amjorge@fep.up.pt

Pavel B. Brazdil
LIAAD-INESC Porto L.A./Faculty of Economics, University of Porto, Portugal
E-mail: pbrazdil@liaad.up.pt

Library of Congress Control Number: 2009935064

CR Subject Classification (1998): I.2, I.2.4, I.2.6, K.3.1, H.5, H.2.8, J.1, J.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-04746-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04746-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12761876 06/3180 5 4 3 2 1 0



Preface

We are pleased to present the proceedings of the 12th International Conference
on Discovery Science (DS 2009), held in Porto, Portugal, October 3–5, 2009.
DS 2009 was collocated with ALT 2009, the 20th International Conference on
Algorithmic Learning Theory, continuing the successful DS conference series. DS
2009 provided an open forum for intensive discussions and the exchange of new
ideas among researchers working in the area of discovery science. The scope of
the conference included the development and analysis of methods for automatic
scientific knowledge discovery, machine learning, intelligent data analysis, and
theory of learning, as well as their applications. We were honored to have a very
strong program. Acceptance for the conference proceedings was very competi-
tive. There were 92 papers submitted, with the authors coming from roughly 20
different countries. All papers were reviewed by three senior researchers followed
by an extensive discussion. The program committee decided to accept 23 long
papers (an acceptance rate of 25%) and 12 regular papers. The overall accep-
tance rate was 38%. The contributed papers cover a wide range of topics, from
discovery in general to data mining in particular.

In addition to the technical papers, we were delighted to have five prestigious
invited speakers and two tutorials. Fernando Pereira, University of Pennsyl-
vania, USA, presented new fundamental questions that should be investigated
in natural language processing in web mining. Hector Geffner, from Pompeu
Fabra University, Spain, discussed learning methods for solving complete plan-
ning domains. Jiawei Han, University of Illinois at Urbana-Champain, USA,
presented the challenges in learning from massive links in heterogeneous infor-
mation networks. Sanjoy Dasgupta, University of California, USA, discussed the
cost-benefit tradeoff in active learning. Yishay Mansour, Tel Aviv University,
Israel, discussed issues in generalization across domains, a very significant chal-
lenge for many machine learning applications. The tutorial presented by Concha
Bielza and Pedro Larrañaga, Universidad Politécnica de Madrid, Spain, focused
on issues in a topic that will influence science and technology for the next decade:
computational intelligence for neuroscience. The tutorial presented by Howard
Hamilton and Fabrice Guillet concentrated on the never-ending problem of inter-
estingness measures for data mining systems and systems designed to simulate
or automate scientific processes that commonly face the problem of determining
when a result is interesting.

We wish to express our gratitude to all authors of submitted papers, the pro-
gram committee for their effort in reviewing, discussing, and commenting on the
submitted papers, the members of the Discovery Science Steering Committee and
especially its Chair, Einoshin Suzuki, the program chairs of ALT 2009, Sandra
Zilles and Gábor Lugosi, for their efficient collaboration, and Frank Holzwarth
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from Springer for his efficient support with the Springer Conference Management
System.

We gratefully acknowledge the work of the Publicity Chair, Pedro Pereira
Rodrigues, and all those who collaborated in the local organization: Carlos Fer-
reira, Raquel Sebastião, Marcos Domingos, Rita Ribeiro, Orlando Oashi, and
Nuno Escudeiro. Vı́tor Morais was invaluable in helping us navigate the Confer-
ence Management System.

We acknowledge the collaboration of the Department of Computer Science,
Faculty of Science, University of Porto, where the event took place; the Faculty
of Economics, University of Porto; and INESC-Porto LA. We would like to ex-
press a word of gratitude for the financial support given by the University of
Porto, the Fundação para a Ciência e Tecnologia, the Artificial Intelligence and
Decision Support Laboratory (LIAAD), the Center for Research in Advanced
Computer Systems (CRACS), SAS, and the Portuguese Artificial Intelligence
Society (APPIA). We also extend our gratitude to Yahoo! Research Barcelona,
sponsor of the Carl Smith Award for the best student paper.

October 2009 João Gama
Vı́tor Santos Costa

Aĺıpio Jorge
Pavel Brazdil
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Inference and Learning in Planning
(Extended Abstract)

Hector Geffner

ICREA & Universitat Pompeu Fabra

C/Roc Boronat 138, E-08018 Barcelona, Spain

hector.geffner@upf.edu

http://www.tecn.upf.es/~hgeffner

Abstract. Planning is concerned with the development of solvers for a

wide range of models where actions must be selected for achieving goals.

In these models, actions may be deterministic or not, and full or partial

sensing may be available. In the last few years, significant progress has

been made, resulting in algorithms that can produce plans effectively in a

variety of settings. These developments have to do with the formulation

and use of general inference techniques and transformations. In this in-

vited talk, I’ll review the inference techniques used for solving individual

planning instances from scratch, and discuss the use of learning methods

and transformations for obtaining more general solutions.

1 Introduction

The problem of creating agents that can decide what to do on their own has been
at the center of AI research since its beginnings. One of the first AI programs to
tackle this problem, back in the 50’s, was the General Problem Solver (GPS) that
selects actions for reducing a difference between the current state and a desired
target state [1]. Ever since then, this problem has been tackled in a number of
ways in many areas of AI, and in particular in the area of Planning.

The problem of selecting actions for achieving goals, however, even in its
most basic version – deterministic actions and complete information – is com-
putationally intractable [2]. Under these assumptions, the problem of finding
a plan becomes the well-known problem of finding a path in a directed graph
whose nodes, that represent the possible states of the system, are exponential in
the number of problem variables.

Until the middle 90’s in fact, no planner or program of any sort could syn-
thesize plans for large problems in an effective manner from a description of
the actions and goals. In recent years, however, the situation has changed: in
the presence of deterministic actions and full knowledge about the initial situa-
tion, classical planning algorithms can find plans quickly even in large problems
with hundred of variables and actions [3,4]. This is the result of new ideas, like
the automatic derivation of heuristic functions [5,6], and a established empirical
methodology featuring benchmarks, comparisons, and competitions. Moreover,

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.tecn.upf.es/~ hgeffner


2 H. Geffner

many of these planners are action selection mechanisms that can commit to the
next action to do in real-time without having to construct a full plan first [7].

These developments, however, while crucial, do not suffice for producing au-
tonomous agents that can decide by themselves what to do in environments
where the two assumptions above (deterministic actions, complete information)
do not apply. The more general problem of selecting actions in uncertain, dy-
namic and/or partially known environments arises in a number of contexts (a
rover in Mars, a character in a video-game, a robot in a health-care facility, a
softbot in the web, etc.), and has been tackled through a number of different
methodologies:

1. programming-based: where the desired behavior is encoded explicitly by a
human programmer in a suitable high-level language,

2. learning-based: where the desired behavior is learned automatically from
trial-and-error experience or information provided by a teacher, or

3. model-based: where the desidered behavior is inferred automatically from a
suitable description of the actions, sensors, and goals.

None of these approaches, however, or a combination of them, has resulted yet
in a solid methodology for building agents that can display a robust and flexible
behavior in real time in partially known environments. Programming agents by
hand puts all the burden in the programmer that cannot anticipate all possi-
ble contingencies, leading to systems that are brittle. Learning methods such as
reinforcement learning [8], are restricted in scope and do not deal with the prob-
lem of incomplete state information. Finally, traditional model-based methods,
when applied to models that are more realistic than the ones underlying classical
planning, have difficulties scaling up.

Planning in Artificial Intelligence represents the model-based approach to au-
tonomous behavior: a planner is a solver that accepts a model of the actions, sen-
sors, and goals, and produces a controller that determines the actions to do given
the observations gathered (Fig. 1). Planners come in a great variety, depending
on the types of models they target. Classical planners address deterministic state
models with full information about the initial situation [9]; conformant planners
address state models with non-deterministic actions and incomplete information
about the initial state [10,11], POMDP planners address stochastic state model
with partial observability [12], and so on.

In all cases, the models of the environment considered in planning are in-
tractable in the worst case, meaning that brute force methods do not scale up.
Domain-independent planning approaches aimed at solving these planning mod-
els effectively must thus recognize and exploit the structure of the individual

Goals
Sensors
Actions

SOLVER Agent Controller World
Action

Observation

Fig. 1. Model-based approach to intelligent behavior: the next action to do is deter-

mined by a controller derived from a model of the actions, sensors, and goals
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problems that are given. The key to exploiting this structure is inference, as in
other AI models such as Constraint Satisfaction Problems and Bayesian Net-
works [13,14]. In the paper, we will go over the inference techniques that have
been found computationally useful in planning research and identify areas where
they could benefit from learning techniques as well. In this sense, planners solve
problems from scratch by combining search and inference, and do not get any
better as more instances from a given domain are solved. Learning should thus
help planners to automatically extract domain knowledge that could be used
to solve other domain instances more effectively, and in principle, without any
search at all.

The paper is organized as follows. We consider the model, language, and
inference techniques developed for classical planning, conformant planning, and
planning with sensing, in that order. We focus on inference techniques of two
types: heuristic functions and transformations. We then consider the use and role
of inductive learning methods in planning, in particular, when plan strategies
for a whole domain, and not for a single domain instance, are required.

2 Classical Planning

Classical planning is concerned with the selection of actions in environments that
are deterministic and whose initial state is fully known. The model underlying
classical planning can be described as a state space containing

– a finite and discrete set of states S,
– a known initial state s0 ∈ S,
– a set SG ⊆ S of goal states,
– actions A(s) ⊆ A applicable in each s ∈ S,
– a deterministic transition function s′ = f(a, s) for a ∈ A(s), and
– uniform action costs c(a, s) equal to 1.

A solution or plan in this model is a sequence of actions a0, . . . , an that generates
a state sequence s0, s1, . . . , sn+1 such that ai is applicable in the state si and
results in the state si+1 = f(ai, si), the last of which is a goal state.

The cost of a plan is the sum of the action costs, which in this setting, cor-
responds to plan length. A plan is optimal it is has minimum cost, and the cost
of a problem is the cost of an optimal plan.

Domain-independent classical planners accept a compact description of the
above models, and automatically produce a plan (an optimal plan if the planner
is optimal). This problem is intractable in the worst case, yet currently large clas-
sical problems can be solved using heuristic functions derived from the problem
encodings.

A simple but still common language for encoding classical planning problems
is Strips [9]. A problem in Strips is a tuple P = 〈F,O, I,G〉 where

– F stands for set of all atoms (boolean vars),
– O stands for set of all operators (actions),
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– I ⊆ F stands for the initial situation, and
– G ⊆ F stands for the goal situation.

The actions o ∈ O are represented by three sets of atoms from F called the
Add, Delete, and Precondition lists, denoted as Add(o), Del(o), Pre(o). The
first, describes the atoms that the action o makes true, the second, the atoms
that o makes false, and the third, the atoms that must be true for the action o
to be applicable.

A Strips problem P = 〈F,O, I,G〉 encodes the state model S(P ) where

– the states s ∈ S are collections of atoms from F ,
– the initial state s0 is I,
– the goal states s are those for which G ⊆ s,
– the actions a in A(s) are the ones in O such that Prec(a) ⊆ s, and
– the next state is s′ = f(a, s) = (s \Del(a)) ∪Add(a).

All areas in Planning, and in particular Classical Planning, have become quite
empirical in recent years, with competitions held every two years [15], and hun-
dreds of benchmark problems available in PDDL, a standard syntax for planning
that extends Strips [16].

The classical planners that scale up best can solve large problems with hun-
dreds of fluents and actions [17,18]. These planners do not compute optimal
solutions and cast the planning problem P as an heuristic search problem over
the state space S(P ) that defines a directed graph whose nodes are the states,
whose initial node is the initial state, and whose target nodes are the states
where the goals are true [19]. This graph is never made explicit as it contains a
number of states that is exponential in the number of fluents of P , but can be
searched quite efficiently with current heuristics.

Heuristic functions h(s) provide an estimate of the cost to reach the goal from
any state s, and are derived automatically from a relaxation (simplification) of
the problem P [20]. The relaxation most commonly used in planning, called
the delete-relaxation and denoted as P+, is obtained by removing the delete
lists from the actions in P . While finding the optimal solution to the relaxation
P+ is still NP-hard, finding just one solution is easy and can be done in low
polynomial time.

The additive heuristic, for example, estimates the cost h(p; s) of achieving the
atoms p from s through the equations [19]:

h(p; s) =
{

0 if p ∈ s
h(ap; s) otherwise

where ap is a best support for p in s defined as

ap = argmina∈O(p)h(a; s)

O(p) is the set of actions that add p in P , and h(a; s) is

h(a; s) = cost(a) +
∑

q∈Pre(a)

h(q; s) .
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The cost of achieving the goal G from s is then defined as

hadd(s) =
∑
p∈G

h(p; s) .

The heuristic hadd is not admissible (it’s not a lower bound) but is informative
and its computation involves the solution of a shortest-path problem in atom
space as opposed to state space. A plan π+(s) for the relaxation P+ can be
obtained from the heuristic hadd(s) by simply collecting the best supports recur-
sively backwards from the goal [21]. This is actually the technique used in the
state-of-the-art planner LAMA [18], winner of the 2008 International Planning
Competition [15], that defines the heuristic h(s) as the cost of this ‘relaxed plan’,
and uses it in problems where action costs are not uniform. The search algorithm
in LAMA is (greedy) best first search with the evaluation function f(s) = h(s)
and two open lists rather one, for giving precedence to the actions applicable in
the state s that are most relevant to the goal according to π+(s); the so-called
helpful actions [7].

3 Incomplete Information

The good news about classical planning is that it works: large problems can
be solved quite fast, and the sheer size of a problem is not an obstacle to its
solution. The bad news is that the assumptions underlying classical planning
are too restrictive. We address now the problems that arise from the presence of
uncertainty in the initial situation. The resulting problems are called conformant
as they have the same form as classical plans, namely plain action sequences,
but they must work for each of the initial states that are possible.

An example that illustrates the difficulties that arise from the presence of
incomplete information in the initial situation is shown in Fig. 2. It displays a
robot that must move from an uncertain initial location I, shown in gray, to
the target cell G that must be reached with certainty. The robot can move one
cell at a time, without leaving the grid: moves that would leave the agent out
of the grid have no effects. The problem is very much like a classical planning

G
I

Fig. 2. A problem involving incomplete information: a robot must move from an un-

certain initial location I shown in gray, to the target cell G with certainy. For this, it

must locate itself into a corner and then head to G.
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problem except for the uncertain initial situation I. The solutions to the problem,
however, are quite different. Indeed, the best conformant plan for the problem
must move the robot to a corner first, and then head with certainty to the target
G. For example, for being certain that the robot is at the left lower corner of the
grid, the robot can move left three times, and down three times. Notice that this
is the opposite of reasoning by cases; indeed, the best action to do from each
of the possible initial locations is not to move left or right, but up or right. Yet
such moves would not help the robot reach the goal with certainty.

The model for the conformant planning problem is the model for classical
planning but with the initial state s0 replaced by a non-empty set S0 of possible
initial states. The Strips syntax for the problem P = 〈F,O, I,G〉 is also extended
to let I stand for a set of clauses and not just a set of atoms, and O to include
actions with effects L, positive or negative, that are conditional on a set of
literals L1, . . . , Ln, written as L1, . . . , Ln → L, where each Li and L are positive
or negative literals.

Conformant planning problems are no longer path-finding problems over a
directed graph whose nodes are the states of the problem, but rather path-finding
problems over a directed graph whose nodes are sets of states, also called belief
states [22]. Belief states express the states of the world that are deemed possible
to the agent. Thus, while in classical planning, the size of the (state) space to
search is exponential in the number of variables in the problem; in conformant
planning, the size of the (belief) space to search is exponential in the number
of states. Indeed, conformant planning is harder than classical planning, as even
the verification of conformant plans is NP-hard [23].

Conformant planners such as Contingent-FF, MBP, and POND [24,25,26],
address the search in belief space using suitable belief representations such as
OBDDs, that do not necessarily blow up with the number of states deemed pos-
sible, and heuristics that can guide the search for the target beliefs. Another
approach that has been pursued recently, that turned out to be the most com-
petitive in the 2006 Int. Planning Competition, is to automatically transform
the conformant problems P into classical problems K(P ) that are solved by
off-the-shelf classical planners.

The translation K(P ) = KT,M (P ) of a conformant problem P involves two
parameters: a set of tags T and a set of merges M [27]. A tag t is a set (conjunc-
tion) of literals in P whose status in the initial situation I is not known, and a
merge m ∈M is a collection of tags t1, . . . , tn that stands for the DNF formula
t1 ∨ · · · ∨ tn. Tags are assumed to represent consistent assumptions about I, i.e.
I 	|= ¬t, and merges represent disjunctions of assumptions that follow from I;
i.e. I |= t1 ∨ · · · ∨ tn.

The fluents in KT,M (P ), for the conformant problem P = 〈F,O, I,G〉 are of
the form KL/t for each L ∈ F and t ∈ T , meaning that “it is known that if t
is true in the initial situation, L is true”. In addition, KT,M (P ) includes extra
actions, called merge actions, that allow the derivation of a literal KL (i.e. KL/t
with the “empty tag”, expressing that L is known unconditionally) when KL/t′

has been obtained for each tag t′ in a merge m ∈M for L.
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Formally, for a conformant problem P = 〈F ,O,I,G〉, the translation defines
the classical problem KT,M (P ) = 〈F ′,O′,I ′,G′〉 where

F ′ ={KL/t,K¬L/t | L ∈ F}
I ′ ={KL/t | if I |= t ⊃ L}
G′ ={KL | L ∈ G}
O′ ={a : KC/t→ KL/t, a : ¬K¬C/t→ ¬K¬L/t

| a : C → L in P} ∪ {
∧
t∈m

KL/t→ KL | m ∈ML}

with t ranging over T and with the preconditions of the actions a in KT,M (P )
including the literal KL if the preconditions of a in P include the literal L.

When C = L1, . . . , Ln, the expressions KC/t and ¬K¬C/t are abbreviations
for KL1/t, . . . ,KLn/t and ¬K¬L1/t, . . . ,¬K¬Ln/t respectively. A rule a : C →
L in P gets mapped into “support rules” a : KC/t → KL/t and “cancellation
rules” a : ¬K¬C/t → ¬K¬L/t; the former “adds” KL/t when the condition
C is known in t, the latter undercut the persistence of K¬L/t except when (a
literal in) C is known to be false in t.

The translation KT,M (P ) is sound, meaning that the classical plans that solve
KT,M (P ) yield valid conformant plans for P that can be obtained by just drop-
ping the merge actions. On the other hand, the complexity and completeness
of the translation depend on the choice of tags T and merges M . The Ki(P )
translation, where i is a non-negative integer, is a special case of the KT,M (P )
translation where the tags t are restricted to contain at most i literals. Ki(P )
is exponential in i and complete for problems with conformant width less than
or equal to i. The planner T0 feeds the K1(P ) translation into the classical FF
planner [7] and was the winning entry in the Conformant Track of the 2006 IPC
[28].

4 Sensing and Finite-State Controllers

Most often problems that involve uncertainty in the initial state of the environ-
ment or in the action effects, also involve some type of feedback or sensors that
provide partial state information. As an illustration of a problem of this type,
consider the simple grid shown on the left of Fig. 3, where an agent starting in
some cell between A and B, mut move to B, and then to A. In this problem,
while the exact initial location of the agent is not known, it is assumed that the
marks A and B are observable.

The solutions to problems involving observations can be expressed in many
forms: as contingent plans [24], as policies mapping beliefs into actions [12], and
as finite-state controllers. A finite-state controller that solves the problem above
is shown on the right of Fig. 3. An arrow qi → qj between one controller state qi

and another (or the same) controller state qi labeled with a pair O/a means to
do action a and switch to state qj , when o is observed in the state qi. Starting in
the controller state q0, the controller shown tells the agent to move right until
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A B
q0

A/Right
-/Right

q1
B/Left

-/Left

Fig. 3. Left: A problem where an agent, initially between A and B, must move to B
and then back to A. Right: A finite-state controller that solves the problem.

observing B, and then to move left until observing A or B (the observation ’-’
means no observation).

Finite-state controllers such as the one displayed above have two features that
make them more appealing than contingent plans and POMDP policies: they are
often very compact, and they often quite general too. Indeed, the problem above
can be changed in a number of ways and the controller shown would still work.
For example, the size of the grid can be changed from 1× 5 to 1× n, the agent
can be placed initially anywhere in the grid (except at B), and the actions can
be made non-deterministic by the addition of ’noise’. This generality is well
beyond the power of contingent plans or exact POMDP policies that are tied
to a particular state space. For these reasons, finite-state controllers are widely
used in practice, from controlling non-playing characters in video-games [29] to
mobile robots [30,31]. Memoryless controllers or policies [32] are widely used
as well, and they are nothing but finite-state controllers with a single state.
The additional states provide finite-state controllers with memory that allows
different actions to be taken given the same observation.

The benefits of finite-state controllers, however, come at a price: unlike con-
tingent trees and POMDP policies, they are usually not derived automatically
from a model but are written by hand; a task that is not trivial even in the
simplest cases. There have been attempts for deriving finite-state controllers for
POMDPs with a given number of states [33,34,35], but the problem can be solved
approximately only, with no correctness guarantees.

Recently, we have extended the translation-based approach to conformant
planning presented above [27], to derive finite-state controllers [36]. For this,
the control problem P is defined in terms of a conformant problem with no
preconditions, extended with a set O of observable fluents. The solution to the
problem P is defined in terms of finite state controllers CN with a given number
N of controller states. This rules out sequential plans as possible solutions, as
they would involve a number of controller states equal to the number of time
steps in the plan.

The controller CN is a set of tuples t = 〈i, o, a, k〉 that tell the agent to do a
and switch to state qk when the observation is o and the controller state is qi. The
key result is that a finite-state controller CN that solves P can be obtained from
the classical plans of a classical problem PN obtained by a suitable translation
from P , O, and N . The key idea in the translation is to replace each action a in
P by an action a(t), for each t = 〈i, o, a, k〉, so that the effects C → C′ of a in
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q0

TB/Up
-B/Up

TC/Right

q1
-C/Down

TB/Right

-B/Down

Fig. 4. Left: Problem where visual-marker (circle on the lower left) must be moved on

top of a green block. The observations are whether the cell currently marked contains

a green block (G), a non-green block (B), or neither (C); and whether this cell is at the

level of the table (T) or not (–). Right: Finite-state controller that solves the problem

for any number and arrangement of blocks.

P become effects qi, o, C → ¬qi, qk, C
′ of a(t) in PN . That is, the effects of the

action a are made conditional on the observation o and state qi in the actions
a(t) where t = 〈i, o, a, k〉.

Fig. 4 shows a more challenging problem solved in this way, resulting in a
very compact and general controller. In the problem, shown on the left, a visual-
marker (a circle on the lower left) must be moved on top of a green block . The
observations are whether the cell currently marked contains a green block (G),
a non-green block (B), or neither (C); and whether this cell is at the level of the
table (T) or not (’-’). The visual marker can be moved one cell at a time in the
four directions. This is a problem à la Chapman or Ballard, that have advocated
the use of deictic representations of this sort [37,38]. The finite-state controller
that results for this problem is shown on the right. Interestingly, it is a very
compact and general controller: it involves two states only and can be used to
solve the same problem for any number and arrangement of blocks. See [36] for
details.

5 Learning and Generalized Policies

We illustrated above that it is possible to obtain from a concrete problem P , a
finite-state controller that not only solves P but many variations too, including
changes in the initial situation and action effects, and changes in the number of
objects and size of the state space. This generalization does not follow from an
inductive approach over many problem instances, but from a deductive approach
over a single instance upon which the solution is guaranteed to be correct. The
generalization is achieved from a change in the representation of the solution:
while solutions to P that take the form of contingent plans or POMDP policies
would not generalize to problems that involve a different state space, solutions
that are expressed as compact finite-state controllers, often do. In principle, these
techniques can be used to derive finite-state controllers for solving any instance
of a given domain such as Blocks. Such general strategies exist; indeed, one such
strategy for Blocks is to put all blocks on the table, and then build the desired
towers in order, from the bottom up. Of course, this strategy is not optimal, and
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indeed no compact optimal strategy for Blocks exists. Yet, the approach pre-
sented above does not handle problems of this type. For this, first, observations
must be defined on fluents that are not primitive in the problem, and which thus,
must be conveniently discovered, like the fluent above, the transitive closure of
the on predicate, that comes very handy in Blocks. Second, the resulting pool of
observable fluents becomes then too large, so that the resulting translation PN

into a classical planning problem cannot even be constructed; the translation
is indeed exponential in the number of observables. Interestingly, inductive ap-
proaches have been shown to be able to generate general strategies for domains
like Blocks [39], and moreover, some of these inductive approaches do not require
any background knowledge and work just with the definition of the planning do-
main and a small set of solved instances [40,41]. A interesting challenge for the
future is the combination of inductive and deductive approaches for the deriva-
tion of general policies able to solve any instance of a given planning domain
without search. From the discussion above, it seems that inductive methods are
good for selecting informative features, while deductive methods are good for
assembling these features into correct general policies. In this sense, planning
appears to be an ideally rich application domain where learning adequate rep-
resentations appears to be possible and critical for achieving both efficiency and
generality.
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Abstract. Knowledge is power but for interrelated data, knowledge is

often hidden in massive links in heterogeneous information networks. We

explore the power of links at mining heterogeneous information networks

with several interesting tasks, including link-based object distinction, ve-

racity analysis, multidimensional online analytical processing of hetero-

geneous information networks, and rank-based clustering. Some recent

results of our research that explore the crucial information hidden in links

will be introduced, including (1) Distinct for object distinction analysis,

(2) TruthFinder for veracity analysis, (3) Infonet-OLAP for online analyt-

ical processing of information networks, and (4) RankClus for integrated

ranking-based clustering. We also discuss some of our on-going studies

in this direction.

1 Introduction

Social, natural, and information systems usually consist of a large number of
interacting, multi-typed components. Examples of such systems include com-
munication and computer systems, the World-Wide Web, biological networks,
transportation systems, epidemic networks, criminal rings, and hidden terrorist
networks. All the above systems share an important common feature: they are
networked systems, i.e., individual agents or components interact with a spe-
cific set of components, forming large, interconnected, and heterogeneous (i.e.,
multi-typed) networks. Without loss of generality, we call such interconnected,
multi-typed networks or systems as heterogeneous information networks.
Clearly, heterogeneous information networks are ubiquitous and form a critical
component of modern information infrastructure.

Despite their prevalence in our world, we have only recently recognized the im-
portance of studying information networks as a whole. Hidden in these networks
are the answers to important questions. For example, is there a collaborated plot
behind a network intrusion, and how can we identify its source in communica-
tion networks? How can a company derive a complete view of its products at
the retail level from interlinked social communities? These questions are highly
relevant to a new class of analytical applications that query and mine massive
information networks for pattern and knowledge discovery, data and informa-
tion integration, veracity analysis and deep understanding of the principles of
information networks.

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 13–30, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Searching for information and knowledge inside networks, particularly large
networks with thousands of nodes is a complex and time-consuming task. Unfor-
tunately, the lack of a general analytical and access platform makes sensible nav-
igation and human comprehension virtually impossible in large-scale networks.
Fortunately, information networks contains massive nodes and links associated
with various kinds of information. Knowledge about such networks is often hid-
den in massive links in heterogeneous information networks but can be uncovered
by the development of sophisticated knowledge discovery mechanisms.

In this paper, we outline some of our recent studies that explore the power
of links at mining heterogeneous information networks, including link-based ob-
ject distinction, veracity analysis, multidimensional online analytical processing
of heterogeneous information networks, and rank-based clustering. Such studies
show that powerful data mining mechanisms can be used for analysis and explo-
ration of large-scale information networks and systematic development of such
network mining methods is an important task in future research.

The remaining of the paper is organized as follows. Section 2 introduces ob-
ject distinction analysis, Section 3 on veracity analysis, Section 4 on OLAP
information networks, and Section 5 on integrated ranking-based clustering. We
summarize our study in Section 6.

2 Distinguishing Objects with Identical Names by
Information Network Analysis

People retrieve information from different databases on the Web, such as DBLP,
Amazon shopping, and AllMusic. One disturbing problem is that different ob-
jects may share identical names. For example, there are 72 songs and 3 albums
named “Forgotten” in allmusic.com; and there are over 200 papers in DBLP
written by at least 14 different Wei Wang’s. Users are often unable to distin-
guish them, because the same object may appear in very different contexts, and
there is often limited and noisy information associated with each appearance.

The task of distinguishing objects with identical names is called object distinc-
tion analysis. Given a database and a set of references in it referring to multiple
objects with identical names, the task is to split the references into clusters, so
that each cluster corresponds to one real object. This task is the opposite of
a popular problem called reference reconciliation (or record linkage, duplicate
detection), which aims at merging records with different contents referring to
the same object, such as two citations referring to the same paper. There have
been many approaches developed for record linkage analysis [2], which usually
use some efficient techniques [4] to find candidates of duplicate records (e.g.,
pairs of objects with similar names), and then check duplication for each pair of
candidates. Different approaches are used to reconcile each candidate pair, such
as probabilistic models of attribute values and textual similarities [2].

Compared with record linkage, objection distinction is a very different prob-
lem. First, because the references have identical names, textual similarity is
useless. Second, each reference is usually associated with limited information,
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and thus it is difficult to make good judgement based on it. Third and most
importantly, because different references to the same object appear in different
contexts, they seldom share common or similar attribute values. Most record
linkage approaches are based on the assumption that duplicate records should
have equal or similar values, and thus cannot be used on this problem.

Although the references are associated with limited and possibly inconsistent
information, the linkages among references and other objects still provide cru-
cial information for grouping references. For example, in a publication database,
different references to authors are connected in numerous ways through authors,
conferences and citations. References to the same author are often linked in cer-
tain ways, such as through their coauthors, coauthors of coauthors, and citations.
These linkages provide important information, and a comprehensive analysis on
them may likely disclose the identities of objects.

We developed a methodology called Distinct [11] that can distinguish object
identities by fusing different types of linkages with differentiating weights, and us-
ing a combination of distinct similarity measures to assess the value of each link-
age. Because the linkage information is usually sparse and intertwined, Distinct
combines two approaches for measuring similarities between records in a relational
database: (i) set resemblance between the neighbor tuples of two records (the neigh-
bor tuples of a record are the tuples linked with it); and (ii) random walk proba-
bility between two records in the graph of relational data. These two approaches
are complementary: one uses the neighborhood information, and the other uses
connection strength of linkages. Moreover, since there are many types of linkages
among references, each following a join path in the database schema, and differ-
ent types of linkages have very different semantic meanings and different levels
of importance, Distinct uses support vector machines (SVM) to learn a model for
weighing different types of linkages. When grouping references, the references to
the same object can be merged and considered as a whole. Distinct uses agglom-
erative hierarchical clustering, which repeatedly merges the most similar pairs of
clusters. It combines average-link (average similarity between all objects in two
clusters) and collective similarity (considering each cluster as a single object) to
measure the similarity between two clusters, which is less vulnerable to noise.

Distinct uses supervised learning to determine the pertinence of each join
path and assign a weight to it. In order to do this, a training set is needed that
contains equivalent references as positive examples and distinct references as
negative ones. Instead of manually creating a training set which requires much
labor and expert knowledge, Distinct constructs the training set automatically,
based on the observation that the majority of entities have distinct names in
most applications. Take the problem of distinguishing persons as an example. A
person’s name consists of the first and last names. If a name contains a rather
rare first name and a rather rare last name, this name is very likely to be unique.
We can find many such names in a database and use them to construct training
sets. A pair of references to an object with a unique name can be used as a
positive example, and a pair of references to two different objects can be used
as a negative example.
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1997VLDBWei Wang, Jiong
Yang, Richard Muntz

1997VLDBWei Wang, Jiong
Yang, Richard Muntz

2004ICDMJinze Liu, Wei Wang 2004ICDMJinze Liu, Wei Wang

2002SIGMODHaixun Wang, Wei Wang, 
Jiong Yang, Philip S. Yu

2002SIGMODHaixun Wang, Wei Wang, 
Jiong Yang, Philip S. Yu

2003CSBJiong Yang, Hwanjo Yu, 
Wei Wang, Jiawei Han

2003CSBJiong Yang, Hwanjo Yu, 
Wei Wang, Jiawei Han

2004KDDJiong Yang, Jinze Liu, Wei Wang 2004KDDJiong Yang, Jinze Liu, Wei Wang

2004VLDBWei Wang, Haifeng Jiang, 
Hongjun Lu, Jeffrey Yu

2004VLDBWei Wang, Haifeng Jiang, 
Hongjun Lu, Jeffrey Yu

2005ICDEHongjun Lu, Yidong Yuan, 
Wei Wang, Xuemin Lin

2005ICDEHongjun Lu, Yidong Yuan, 
Wei Wang, Xuemin Lin

2005ADMAWei Wang, Xuemin Lin 2005ADMAWei Wang, Xuemin Lin

2005ICDMHaixun Wang, Wei Wang, 
Baile Shi, Peng Wang

2005ICDMHaixun Wang, Wei Wang, 
Baile Shi, Peng Wang

2004KDDYongtai Zhu, Wei Wang, Jian
Pei, Baile Shi, Chen Wang

2004KDDYongtai Zhu, Wei Wang, Jian
Pei, Baile Shi, Chen Wang

2003WWWAidong Zhang, Yuqing
Song, Wei Wang

2003WWWAidong Zhang, Yuqing
Song, Wei Wang

2002CIKMWei Wang, Jian
Pei, Jiawei Han

2002CIKMWei Wang, Jian
Pei, Jiawei Han

2005ICDEJian Pei, Daxin Jiang, 
Aidong Zhang

2005ICDEJian Pei, Daxin Jiang, 
Aidong Zhang

2001ICDMJian Pei, Jiawei Han, 
Hongjun Lu, et al.

2001ICDMJian Pei, Jiawei Han, 
Hongjun Lu, et al.

(1) Wei Wang at UNC (2) Wei Wang at UNSW, Australia
(3) Wei Wang at Fudan Univ., China (4) Wei Wang at SUNY Buffalo

(1)

(3)

(2)

(4)

Fig. 1. Papers by four different Wei Wang’s

Example 1: Distinguishing people or objects with identical names.
There are more than 200 papers in DBLP written by at least 14 different Wei
Wang’s, each having at least two papers. A mini example is shown in Fig. 1,
which contains some papers by four different Wei Wang’s and the linkages among
them. Users are often unable to distinguish them, because the same person or
object may appear in very different contexts, and there is often limited and noisy
information associated with each appearance.

We report our empirical study on testing the effectiveness of the proposed
approach. Distinct is tested on the DBLP database. First, authors with no more
than 2 papers are removed, and there are 127,124 authors left. There are about
616K papers and 1.29M references to authors in Publish relation (authorship).
In DBLP we focus on distinguishing references to authors with identical names.

We first build a training set using the method illustrated above, which contains
1000positive and 1000 negative examples. Then SVM with linear kernel is applied.
We measure the performance of Distinct by precision, recall, and f -measure. Sup-
pose the standard set of clusters is C∗, and the set of clusters by Distinct is C. Let
TP (true positive) be the number of pairs of references that are in the same cluster
in both C∗ and C. Let FP (false positive) be the number of pairs of references in
the same cluster in C but not in C∗, and FN (false negative) be the number of
pairs of references in the same cluster in C∗ but not in C.

precision =
TP

TP + FP
, recall =

TP

TP + FN
.

f -measure is the harmonic mean of precision and recall.
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Table 1. Names corresponding to multiple authors

Name #author #ref Name #author #ref

Hui Fang 3 9 Bing Liu 6 89

Ajay Gupta 4 16 Jim Smith 3 19

Joseph Hellerstein 2 151 Lei Wang 13 55

Rakesh Kumar 2 36 Wei Wang 14 141

Michael Wagner 5 29 Bin Yu 5 44

Table 2. Accuracy for distinguishing references

Name precision recall f-measure
Hui Fang 1.0 1.0 1.0

Ajay Gupta 1.0 1.0 1.0

Joseph Hellerstein 1.0 0.810 0.895

Rakesh Kumar 1.0 1.0 1.0

Michael Wagner 1.0 0.395 0.566

Bing Liu 1.0 0.825 0.904

Jim Smith 0.888 0.926 0.906

Lei Wang 0.920 0.932 0.926

Wei Wang 0.855 0.814 0.834

Bin Yu 1.0 0.658 0.794

average 0.966 0.836 0.883

UNC-CH 
(57)

Fudan U, China
(31)

UNSW, Australia
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SUNY 
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(5)   

Beijing 
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(3)
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Singapore

(5)
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China

(5)

Zhejiang U
China

(3)

Najing Normal
China

(3)

Ningbo Tech
China

(2)

Purdue
(2)

Beijing U Com
China
(2)

Chongqing U
China

(2)

SUNY
Binghamton

(2)

5

6

2

Fig. 2. Groups of references of “Wei Wang”

We test Distinct on real names in DBLP that correspond to multiple authors.
10 such names are shown in Table 1, together with the number of authors and
number of references. For each name, we manually divide the references into
groups according to the authors’ identities, which are determined by the authors’
home pages or affiliations shown on the papers.
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We use Distinct to distinguish references to each name, with min-sim set to
0.0005. Table 2 shows the performance of Distinct for each name. In general, Dis-
tinct successfully group references with high accuracy. There is no false positive
in 7 out of 10 cases, and the average recall is 83.6%. In some cases references
to one author are divided into multiple groups. For example, 18 references to
“Michael Wagner” in Australia are divided into two groups, which leads to low
recall.

We visualize the results about “Wei Wang” in Fig. 2. References corresponding
to each author are shown in a gray box, together with his/her current affiliation
and number of references. The arrows and small blocks indicate the mistakes
made by Distinct. It can be seen that in general Distinct does a very good job
in distinguishing references, although it makes some mistakes because of the
linkages between references to different authors.

3 Truth Discovery with Multiple Conflicting Information
Providers

Information networks nowadays are fed with tremendous amounts of data from
numerous information sources. These sources may provide conflicting informa-
tion about the same entity, and pieces of information on the web could be already
outdated when being read. This problem will only go worse since more informa-
tion will be available on the web, and such conflicting information could become
norm instead of exception. Therefore, it is necessary to provide trustable anal-
ysis of the truthfulness of information from multiple information providers and
automatically identify the correct information. Such truth validation analysis is
called veracity analysis.

Example 2. Veracity analysis on the authors of books provided by on-
line bookstores. People retrieve all kinds of information from the web everyday.
When shopping online, people find product specifications and sales information
from various web sites like Amazon.com or ShopZilla.com. When looking for in-
teresting DVDs, they get information and read movie reviews on web sites such as
NetFlix.com or IMDB.com. Almost for any kind of products, there exist hundred
of sale agents and information providers, if not more. Is the information provided
on the Web always trustable? Unfortunately, the answer is negative. There is no
guarantee for the correctness of information on the web. Even worse, different
web information providers often present conflicting information. For example,
we have found that there are multiple versions for the sets of authors of the
same book, titled “Rapid Contextual Design” (ISBN: 0123540518), provided by
different online bookstores, as shown in Table 3. From the image of the book
cover, one can see that A1 Books provides the most accurate information. On the
other hand, the information from Powell’s books is incomplete, and that from
Lakeside books is incorrect.

To analyze such a problem, the data sets can be viewed as a heterogeneous in-
formation network, consisting of three types of objects: (i) information providers
(e.g., online bookstores), (ii) objects (e.g., books), and (iii) stated facts about
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Fig. 3. A network snapshot of information providers, objects, and stated facts

Table 3. Conflicting information about book authors

Web site Authors

A1 Books Karen Holtzblatt, Jessamyn Burns Wendell, Shelley Wood

Powell’s books Holtzblatt, Karen

Cornwall books Holtzblatt-Karen, Wendell-Jessamyn Burns, Wood

Mellon’s books Wendell, Jessamyn

Lakeside books WENDELL, JESSAMYNHOLTZBLATT, KARENWOOD, SHELLEY

Blackwell online Wendell, Jessamyn, Holtzblatt, Karen, Wood, Shelley

Barnes & Noble Karen Holtzblatt, Jessamyn Wendell, Shelley Wood

the object (i.e., claimed set of authors). One such mini-example is shown in Fig-
ure 3, which contains five stated facts about two objects provided by four web
sites. Each web site provides at most one fact for an object.

There have been many studies on ranking web pages according to authority
(or popularity) based on hyperlinks, such as Authority-Hub analysis [7], and
PageRank [8]. However, top-ranked web sites may not be the most accurate
ones. For example, according to our experiments the bookstores ranked on the
very top ones by Google (which are Barnes & Noble and Powell’s books) contain
more errors on book author information than some small bookstores (e.g., A1
Books) that provide more accurate information.

The problem of discovery of trustable information based on those provided mul-
tiple information providers is called the veracity analysis problem. It can be stated
as follows: Given a large amount of conflicting information about many objects,
which is provided by multiple web sites (or other types of information providers),
veracity analysis is to discover the true fact about each object. Here the word “fact”
is used to represent something that is claimed as a fact by some web site, and such
a fact can be either true or false. Notice that here we only investigate the facts
that are either the properties of objects (e.g., weights of laptop computers), or the
relationships between two objects (e.g., authors of books).

Our solution is a TruthFinder framework [12], that finds confidently the true
facts and trustworthy web sites. The method examines the relationships between
information providers and the information they provided, with the following two
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major heuristics: (1) an assertion that several information providers agree on is
usually more trustable than that only one provider suggests; and (2) an informa-
tion provider is trustworthy if it provides many pieces of true information, and a
piece of information is likely to be true if it is provided by many trustworthy web
sites. The method links three types of information: (i) the information providers,
(ii) stated facts on different entities, and (iii) the corresponding entities, into a
heterogeneous information network, and performs an in-depth information net-
work analysis. It starts with no bias on a particular piece of information, but
uses the above heuristics to derive initial weights on the trustworthiness of the
stated facts and information providers. Then it consolidates the trustworthiness
by an iterative enhancement process with weight-propagation and consolidation
across this information network. The process is similar to the page ranking pro-
cess proposed in the PageRank and HITS algorithms [1,7] but the weight to be
iteratively revised is the trustworthiness probability rather than authority score.
We tested TruthFinder on the book author information provided by book sellers
on the Web. The method successfully finds facts about who are the true set of
authors and who are the trustable information providers.

Table 4 shows the accuracy of TruthFinder in comparison with that of Vot-
ing and Barnes & Noble on determining the authors for 100 randomly selected
books, where Voting is a simple voting among multiple information providers,
i.e., considering the fact provided by a majority of web sites as the true fact.
The result shows that TruthFinder achieves high accuracy at finding trustable
information.

The TruthFinder methodology, though interesting, has two disadvantages: (1)
it takes only one version of truth, and does not recognize there could be multiple
versions of truth: the judgement of an event or an opinion could be rather different
from people to people, e.g., the view on a candidate in an election could be rather
different but could be clustered into two to three views; and (2) it does not
consider truth may have timeliness: e.g., a player could win first but then lose,
and depending on when the news was delivered, you may get rather different
results.

Our on-going research is to overcome these two limitations and perform ve-
racity analysis in information networks. First, we assume that there are multiple

Table 4. Performance comparison on a set of books among three methods: Voting,

TruthFinder, and Barnes & Noble

Type of error Voting TruthFinder Barnes & Noble

correct 71 85 64

miss author(s) 12 2 4

incomplete names 18 5 6

wrong first/middle names 1 1 3

has redundant names 0 2 23

add incorrect names 1 5 5

no information 0 0 2
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versions of truth, each associated with one cluster of information providers. Sec-
ond, we adopt the model of timeliness of truth, i.e., truth may change with time in
a dynamic, interconnected world. Moreover, we take higher priority on the most
recent claim as the up-to-date truth. However, there are still information providers
that deliver false information.Based on these assumptions, we are building a multi-
version truth model using an integrated link analysis, information aggregation,
and clustering, and consolidate the trustworthiness by an iterative enhancement
process with weight-propagation across this information network.

4 On-Line Analytical Processing (OLAP) of
Heterogeneous Information Networks

In relational database and data warehouse systems, On-Line Analytical Process-
ing (OLAP) has become a powerful component in multidimensional data analy-
sis. By constructing data cubes [5] over the underlying data and providing easy
navigation, OLAP gives users the capability of interactive, multi-dimensional
and multi-level analysis over a vast amount of data, with a wide variety of
views. Certainly, for more complicated information network data, such capa-
bility is greatly needed. “Can we OLAP information networks?” In our recent
study [3], we address this problem and aim for developing effective and scal-
able methods for on-line multidimensional analysis of heterogeneous information
networks.

There are four major research challenges in Information Network OLAP (i.e.,
Infonet-OLAP): (1) multi-dimensionality: each node/link in a network contains
valuable, multi-typed, and multidimensional information, such as multi-level
concepts/abstraction, textual contents, spatiotemporal information, and other
properties; (2) scalability: information networks are often very large with mil-
lions of nodes and edges; (3) flexibility: for the same set of data, different users/
applications may like to view and analyze the network dramatically differently,
which may lead to the efficient formation and exploration of very different in-
formation networks; and (4) quality: information networks may contain noisy,
inconsistent, and inter-dependent data.

The concept of Infonet-OLAP can be briefly introduced using bibliographic
networks extracted from the DBLP website (http://dblp.uni-trier.de). DBLP is
an online bibliographic database for computer science conference proceedings
and journals, indexing more than one million publications and more than 10,000
proceedings and journals. Each entry at DBLP contains (at least) the following
pieces of information, P : (〈A1, . . . , Ak〉, T, V, Y ), indicating that paper P is
coauthored by k researchers, A1, . . . , Ak, with title T , and published at venue V
in year Y . This entry consists of multidimensional information: Authors, Title,
Venue, and Time, which can be viewed at multiple levels of abstraction and
in a multi-dimensional space. For example, an author could be a junior author
vs. a senior one; a prolific one vs. a nonproductive one; and a venue can be
viewed similarly, such as a database venue vs. an AI one, a long-history one vs.
a new one, and a highly reputed one vs. a low quality one. One also could apply
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a concept hierarchy to grouping papers according to their contents. Entries in
such a database form a gigantic information network. Moreover, by linking with
ACM Digital Library, Citeseer, and Google Scholar, citation information can be
integrated as well.

This bibliographic network contains huge amounts of rich, heterogeneous, mul-
tidimensional, and temporal information. Users may like to view and analyze the
network from different angles, which may lead to the “formation” of different
network views, e.g., coauthor network, conference network, citation network, and
author-theme network. Moreover, some may want to examine a network includ-
ing only the selected research themes (e.g., data mining); whereas others may
want to analyze hot topics in highly regarded (i.e., highly ranked) conferences.
Furthermore, some may like to roll-up authors to find how junior and senior re-
searchers collaborate; whereas others would like to see the evolution of a theme.
Clearly, different applications may require the extraction and analysis of mul-
tiple, different information networks involving time-variant, multidimensional,
heterogeneous entities. A single, homogeneous, static network view cannot sat-
isfy such flexible needs. The focus of Infonet-OLAP is to provide a general OLAP
platform, rather than developing yet another specific network mining algorithm
or theory.

Let us examine dimensions at first. Actually, there are two types of dimen-
sions in Infonet-OLAP. The first one, called informational dimension (or Info-
Dim, for short), utilizes informational attributes attached at the whole snapshot
level. Suppose the following concept hierarchies are associated with venue and
time:
• venue: conference → area → all,
• time: year → decade → all ;

The role of these two dimensions is to organize snapshots into groups based on
different perspectives, e.g., (db-conf, 2004) and (sigmod, all-years), where each
of these groups corresponds to a “cell” in the OLAP terminology. They control
what snapshots are to be looked at, without touching the inside of any single
snapshot.

Figure 4 shows such an example where the roll-up is first performed on
the dimension venue to db-conf in individual year (i.e.., merging the graphs
of 〈SIGMOD, 2004〉, . . . , 〈V LDB, 2004〉 to 〈db-conf, 2004〉) and then on the
dimension time to 〈db-conf, all-years〉.

Second, for the subset of snapshots within each cell, one can summarize them
by computing a measure as we did in traditional OLAP. In the Infonet-OLAP
context, this gives rise to an aggregated graph. For example, a summary network
displaying total collaboration frequencies can be achieved by overlaying all snap-
shots together and summing up the respective edge weights, so that each link
now indicates two persons’ collaboration activities in the DB conferences of 2004
or during the whole history of SIGMOD.

The second type of dimension, called topological dimension (or Topo-Dim for
short), is provided to operate on nodes and edges within individual
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Fig. 4. An I-OLAP Scenario on the DBLP network

networks. Take the DBLP database for instance, suppose the following concept
hierarchy
• authorID : individual → department → institution → all

is associated with the node attribute authorID, then it can be used to group
authors from the same institution into a “generalized” node, and a new net-
work thus formed will depict interactions among these groups as a whole, which
summarizes the original network and hides specific details.

Figure 5 shows such an example on DBLP where the roll-up is performed
on the dimension authorID to the level institution, which merge all persons in
the same institution as one node and constructing a new summary graph at
the institution level. In the “generalized network”, an edge between Stanford
and University of Wisconsin will aggregate all collaboration frequencies incurred
between Stanford authors and Wisconsin authors. Notice that a roll-up from
the individual level to the institution level is achieved by consolidating multiple
nodes into one, which shrinks the original network.
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Fig. 5. A T-OLAP Scenario on the DBLP network

The OLAP semantics accomplished through Info-Dims and Topo-Dims are
rather different. The first is called informational OLAP (abbr. I-OLAP), and
the second topological OLAP (abbr. T-OLAP). For roll-up in I-OLAP, the char-
acterizing feature is that, snapshots are just different observations of the same
underlying network, and thus when they are all grouped into one cell in the
cube, it is like overlaying multiple pieces of information, without changing the
objects whose interactions are being looked at.

For roll-up in T-OLAP, we are no longer grouping snapshots, and the reorgani-
zation switches to happen inside individual networks. Here, merging is performed
internally which “zooms out” the user’s focus to a “generalized” set of objects,
and a new information network formed by such shrinking might greatly alter the
original network’s topological structure.

As to measures, in traditional OLAP, a measure is calculated by aggregating
all the data tuples whose dimensions are of the same values (based on concept hi-
erarchies, such values could range from the finest un-generalized ones to “all/*”,
which form a multi-level cuboid lattice); casting this to our scenario here:

First, in infonetOLAP, the aggregation of graphs should also take the form of
a graph, i.e., an aggregated graph. In this sense, graph can be viewed as a special
existence, which plays a dual role: as a data source and as an aggregated measure.
Of course, other measures that are not graphs, such as node count, average
degree, diameter, etc., can also be calculated; however, we do not explicitly
include such non-graph measures in our model, but instead treat them as derived
from corresponding graph measures.

Second, due to the different semantics of I-OLAP and T-OLAP, aggregating
data with identical Info-Dim values groups information among the snapshots,
whereas aggregating data with identical Topo-Dim values groups topological
elements inside individual networks. As a result, we will give a separate measure
definition for each case in below.

A general framework of Infonet-OLAP is presented in [3], however, a systematic
study on flexible and efficient implementation of different OALP operations on
information networks is still an interesting issue for future research.
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5 RankClus: Integrated Ranking-Based Clustering

Besides applying some typical knowledge discovery functions, some process may
involve induction on the entire or a substantial portion of the information net-
works. For example, in order to partition an interconnected, heterogeneous infor-
mation network into a set of clusters and rank the nodes in each cluster, we have
recently develop a RankClus framework [9], which integrates clustering and rank-
ing together to effectively cluster information networks into multiple groups and
rank nodes in each group based on certain nice properties (such as authority).
Interestingly, such clustering-ranking can be performed based on the links only,
even without using the citation information nor the keyword/text information
contained in the conferences and/or publication titles. We outline the method
in more detail below.

InDBLP,by examining authors, researchpapers,andconferences, one cangroup
conferences in the same fields together to form conference clusters, group authors
based on their publication venues into author clusters and in themeantime rank au-
thors and conferences based on their corresponding authorities. Such an integrated
clustering and ranking framework would be an ideal feed for Infonet-OLAP.

Ranking and clustering can provide overall views on information network data,
and each has been a hot topic by itself. However, in a large information network,
ranking objects globally without considering the clusters they belong to often
leads to dumb results, e.g., ranking authors/papers in database/data mining
(DB/DM) and hardware/computer architcture (HW/CA) conferences together,
as shown in Figure 6(a), may not make much sense. Similarly, presenting a huge
cluster with numerous entities without distinction is dull as well. Therefore,
we propose an integrated approach, called RankClus, to perform ranking and
clustering together. Figure 6(b) shows that RankClus can generate meaningful
clusters and rankings, even at the expert level, without referring to any citation
or content information in DBLP. These clustering and ranking results could be
potential input to Infonet-OLAP for effective data mining. RankClus also shows
the importance of developing a general Infonet-OLAP framework that allows users
to explore interactively with underlying networks for subtle knowledge discovery.
An isolated clustering or ranking algorithm is often not enough for such tasks.

According to RankClus, we view the DBLP network as a bi-type information
network with conferences as one type and authors as the other. Given two types
of object sets X and Y , where X = {x1, x2, . . . , xm}, and Y = {y1, y2, . . . , yn},
graph G = 〈V,E〉 is called a bi-type information network on types X and Y , if
V (G) = X ∪ Y and E(G) = {〈oi, oj〉}, where oi, oj ∈ X ∪ Y .

Let W(m+n)×(m+n) = {woioj} be the adjacency matrix of links, where woioj

equals to the weight of link 〈oi, oj〉, which is the number of observations of
the link, we thus use G = 〈{X ∪ Y },W 〉 to denote this bi-type information
network. In the following, we use X and Y denoting both the object set and
their type name. For convenience, we decompose the link matrix into four blocks,

W =
(

WXX WXY

WY X WY Y

)
, each denoting a sub-network of objects between types of

the subscripts.
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Rank Conf. Rank Authors

1 DAC 1 Alberto L. Sangiovanni-Vincentelli

2 ICCAD 2 Robert K. Brayton

3 DATE 3 Massoud Pedram

4 ISLPED 4 Miodrag Potkonjak

5 VTS 5 Andrew B. Kahng

6 CODES 6 Kwang-Ting Cheng

7 ISCA 7 Lawrence T. Pileggi

8 VLDB 8 David Blaauw

9 SIGMOD 9 Jason Cong

10 ICDE 10 D. F. Wong

(a) Top-10 ranked conf’s/authors in the mixed conf. set

Rank Conf. Rank Authors

1 VLDB 1 H. V. Jagadish

2 SIGMOD 2 Surajit Chaudhuri

3 ICDE 3 Divesh Srivastava

4 PODS 4 Michael Stonebraker

5 KDD 5 Hector Garcia-Molina

6 CIKM 6 Jeffrey F. Naughton

7 ICDM 7 David J. DeWitt

8 PAKDD 8 Jiawei Han

9 ICDT 9 Rakesh Agrawal

10 PKDD 10 Raghu Ramakrishnan

(b) Top-10 ranked conf’s/authors in DB/DM set

Fig. 6. RankClus Performs High-Quality Clustering and Ranking Together

Given a bi-type network G = 〈{X ∪ Y },W 〉, if a function f : G → (rX , rY )
gives rank score for each object in type X or type Y , where

∑
x∈X rX(x) = 1

and
∑

y∈Y rY (y) = 1. We call f a ranking function on network G. Similarly, we
can define conditional rank and within-cluster rank, as follows. Given target type
X , and a cluster X ′ ⊆ X , sub-network G′ = 〈{X ′∪Y },W ′〉 is defined as a vertex
induced graph of G by a vertex subset X ′ ∪Y . Conditional rank over Y , denoted
as rY |X′ , and within-cluster rank over X ′, denoted as rX′|X′ , are defined by the
ranking function f on the sub-network G′: (rX′|X′ , rY |X′) = f(G′). Conditional
rank over X , denoted as rX|X′ , is defined as the propagation score of rY |X′ over
network G:

rX|X′(x) =

∑n
j=1 WXY (x, j)rY |X′(j)∑m

i=1

∑n
j=1 WXY (i, j)rY |X′(j)

. (1)

Given a bi-type network G = 〈{X∪Y },W 〉, the target type X , and K, a specified
number of clusters, our goal is to generate K clusters {Xk}, k = 1, 2, . . . ,K on
X , as well as the within-cluster rank for type X and conditional rank for type
Y to each cluster, i.e., rX|Xk

and rY |Xk
, k = 1, 2, . . . ,K.

In order to generate effective clusters based on authoritative ranking, we need to
specify a few rules based on prior knowledge. For example, for the DBLP network,
we have the following three empirical rules that will affect our clustering results.
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Rule 1: Highly ranked authors publish many papers in highly ranked conferences.
According to this rule, each author’s score is determined by the number of

papers and their publication forums, i.e., rY (j) =
∑m

i=1 WY X(j, i)rX(i). This
implies when author j publishes more papers, there are more nonzero and high
weighted WY X(j, i), and when the author publishes papers in a higher ranked
conference i, which means a higher rX(i), the score of author j will be higher.
At the end of each step, rY (j) is normalized by rY (j) ← rY (j)∑n

j′=1 rY (j′) .

Rule 2: Highly ranked conferences attract many papers from many highly ranked
authors.

According to this rule, the score of each conference is determined by the quan-
tity and quality of papers in the conference, which is measured by their authors’
ranking scores, i.e., rX(i) =

∑n
j=1 WXY (i, j)rY (j). This implies when there are

more papers appearing in conference i, there are more non-zero and high weighted
WXY (i, j); and if the papers are published by higher ranked author j, the rank
score for j, which is rY (j), is higher, and thus the higher score the conference i

will get.The score vector is then normalized by rX(i) ← rX(i)∑m
i′=1 rX(i′) . Notice that

the normalization will not change the ranking position of an object, but it gives
a relative importance score to each object. When considering the co-author infor-
mation, the scoring function can be further refined by the third heuristic:

Rule 3: Highly ranked authors usually co-author with many authors or many highly
ranked authors.

Based on this rule, we can revise the above two equations as

rY (i) = α

m∑
j=1

WY X(i, j)rX(j) + (1− α)
n∑

j=1

WY Y (i, j)rY (j). (2)

where α ∈ [0, 1] is a weighting coefficient, which could be learned by a training
set.

Notice such rules should be worked out by experts based on their research
experience in a specific field. For example, in PubMed domain, people may em-
phasize more on journal publications than conference ones. Also, subtlety exists
in certain rules. For example, for Rule 1, a conference/journal will not be re-
puted if it attracts papers only from a tiny group of “prolific” authors because
this tiny group may set up its own venue and publish many papers only there.
They could be “prolific” but few other prolific authors would like to join. Thus
neither the venue nor the authors can be “reputed” according to the rule.

Traditional graph clustering methods usually tackle one network only during
a clustering process. In contrast, with Rule 3, RankClus is able to combine two
information networks, i.e., author-conference bipartite network and co-author
network, together for better clustering and ranking.

Putting these rules together, RankClus first randomly generates an initial clus-
tering for target objects. It then performs the following three steps repeatedly
until the clustering does not change significantly: (1) rank each cluster, by cal-
culating conditional rank for types Y and X and within-cluster rank for type



28 J. Han

0 20 40 60 80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

DB/DM Authors                                                   HW/CA Authors

R
an

kn
g 

S
co

re
 fo

r 
A

ut
ho

rs

 

 
Author Rank on DB/DM
Author Rank on HW/CA

(a) Authors’ Rank Distribution on Different Clusters

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Component Coefficient for DB/DM

C
om

po
ne

nt
 C

oe
ffi

ci
en

t f
or

 H
W

/C
A

DB/DM Conf.

HW/CA Conf.

(b) Two Component Coefficients of Conferences

Fig. 7. Effectiveness of RankClus at Clustering and Ranking of the DBLP Data

X ; (2) estimate coefficients in the mixture model component; and (3) adjust
membership in clusters.

Our implementation and testing of the RankClus method have demonstrated
the high promise of this approach. For processing efficiency, it is an order of
magnitude faster than the well-cited SimRank algorithm [6] because SimRank
has to calculate the pairwise similarity between every two objects of the same
type, whereas RankClus uses conditional ranking as the measure of clusters, and
only need to calculate the distances between each object and the cluster center.
For effectiveness, Figure 7(a) shows that conditional rank can be used as cluster
features: DB/DM authors rank high with respect to DB/DM conferences, but
rank extremely low with respect to HW/CA conferences. Figure 7(b) is the
scatter plot for each conference’s two component coefficients. The figure shows
that component coefficients can be effectively used as object attributes: the two
kinds of conferences are separated clearly under the new attributes.

Our on-going work is to extend the RankClus framework from the follow-
ing three perspectives: (1) The patterns described above are mined without
using citation or title information. By adding title, citation, and/or abstract
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information, one can uncover the network structure at rather deep levels of re-
search topic hierarchies. These hierarchies will provide additional dimensions to
Infonet-OLAP and enhance discovery-driven OLAP. (2) Infonet-OLAP also intro-
duces new challenges to RankClus. There could be multiple information networks
available. For instance, we could add author-article network and citation net-
work into the above example for better ranking. In our current implementation,
RankClus can only integrate two networks together. Our recent study extends
this framework into NetClus star-network schema [10], and subsequent studies
will accommodate multiple networks, multiple hierarchies and constraints in the
RankClus framework. (3) To facilitate easy exploration (drill-down and roll-up)
of clustering results in information networks with different granularity, it is pre-
ferred to have clustering consistent across different levels of abstraction. The
principles of such clustering design will be examined for a collection of multi-
resolution information networks.

6 Conclusions

In this paper, we have outlined our new research progress on mining knowledge
from heterogeneous information networks. We show that heterogeneous informa-
tion networks are ubiquitous and with broad applications. Moreover, knowledge
is often hidden in massive links in heterogeneous information networks, and thus
it is necessary to perform a systematic study on how ro explore the power of
links at mining heterogeneous information networks. We presented in several
interesting link-mining tasks, including link-based object distinction, veracity
analysis, multidimensional online analytical processing of heterogeneous infor-
mation networks, and rank-based clustering. We show some interesting results
of our recent research that explore the crucial information hidden in links will be
introduced, including four new methods: (1) Distinct for object distinction anal-
ysis, (2) TruthFinder for veracity analysis, (3) Infonet-OLAP for online analytical
processing of information networks, and (4) RankClus for integrated ranking-
based clustering. We also show that mining heterogeneous information networks
is an exciting research frontier and there is much space to be explored in future
research.
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Learning on the Web
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It is commonplace to say that the Web has changed everything. Machine learning
researchers often say that their projects and results respond to that change with
better methods for finding and organizing Web information. However, not much
of the theory, or even the current practice, of machine learning take the Web
seriously. We continue to devote much effort to refining supervised learning, but
the Web reality is that labeled data is hard to obtain, while unlabeled data is
inexhaustible. We cling to the iid assumption, while all the Web data generation
processes drift rapidly and involve many hidden correlations. Many of our theory
and algorithms assume data representations of fixed dimension, while in fact the
dimensionality of data, for example the number of distinct words in text, grows
with data size. While there has been much work recently on learning with sparse
representations, the actual patterns of sparsity on the Web are not paid much
attention. Those patterns might be very relevant to the communication costs
of distributed learning algorithms, which are necessary at Web scale, but little
work has been done on this.

Nevertheless, practical machine learning is thriving on the Web. Statistical
machine translation has developed non-parametric algorithms that learn how
to translate by mining the ever-growing volume of source documents and their
translations that are created on the Web. Unsupervised learning methods infer
useful latent semantic structure from the statistics of term co-occurrences in
Web documents. Image search achieves improved ranking by learning from user
responses to search results. In all those cases, Web scale demanded distributed
algorithms.

I will review some of those practical successes to try to convince you that
they are not just engineering feats, but also rich sources of new fundamental
questions that we should be investigating.
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Abstract. Domain adaptation is a fundamental learning problem where

one wishes to use labeled data from one or several source domains to

learn a hypothesis performing well on a different, yet related, domain for

which no labeled data is available. This generalization across domains is

a very significant challenge for many machine learning applications and

arises in a variety of natural settings, including NLP tasks (document

classification, sentiment analysis, etc.), speech recognition (speakers and

noise or environment adaptation) and face recognition (different lighting

conditions, different population composition).

The learning theory community has only recently started to analyze

domain adaptation problems. In the talk, I will overview some recent

theoretical models and results regarding domain adaptation.

This talk is based on joint works with Mehryar Mohri and Afshin

Rostamizadeh.

1 Introduction

It is almost standard in machine learning to assume that the training and test
instances are drawn from the same distribution. This assumption is explicit in
the standard PAC model [19] and other theoretical models of learning, and it is a
natural assumption since when the training and test distributions substantially
differ there can be no hope for generalization. However, in practice, there are
several crucial scenarios where the two distributions are similar but not identical,
and therefore effective learning is potentially possible. This is the motivation for
domain adaptation.

The problem of domain adaptation arises in a variety of applications in natu-
ral language processing [6,3,9,4,5], speech processing [11,7,16,18,8,17], computer
vision [15], and many other areas. Quite often, little or no labeled data is avail-
able from the target domain, but labeled data from a source domain somewhat
similar to the target as well as large amounts of unlabeled data from the target
domain are at one’s disposal. The domain adaptation problem then consists of
leveraging the source labeled and target unlabeled data to derive a hypothesis
performing well on the target domain.

The first theoretical analysis of the domain adaptation problem was presented
by [1], who gave VC-dimension-based generalization bounds for adaptation in

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 32–34, 2009.
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classification tasks. Perhaps, the most significant contribution of that work was
the definition and application of a distance between distributions, the dA dis-
tance, that is particularly relevant to the problem of domain adaptation and
which can be estimated from finite samples for a finite VC dimension, as previ-
ously shown by [10]. This work was later extended by [2] who also gave a bound
on the error rate of a hypothesis derived from a weighted combination of the
source data sets for the specific case of empirical risk minimization. More re-
fined generalization bounds which apply to more general tasks, including regres-
sion and general loss functions appear in [12]. From an algorithmic perspective,
it is natural to re-weight the empirical distribution to better reflect the target
distribution; efficient algorithms for this re-weighting task were given in [12].

A more complex variant of this problem arises in sentiment analysis and other
text classification tasks where the learner receives information from several do-
main sources that he can combine to make predictions about a target domain.
As an example, often appraisal information about a relatively small number of
domains such as movies, books, restaurants, or music may be available, but little
or none is accessible for more difficult domains such as travel. This is known as
the multiple source adaptation problem. Instances of this problem can be found
in a variety of other natural language and image processing tasks.

The problem of adaptation with multiple sources was introduced and analyzed
[13,14]. The problem is formalized as follows. For each source domain i∈ [1, k],
the learner receives the distribution of the input points Qi, as well as a hypoth-
esis hi with loss at most ε on that source. The task consists of combining the k
hypotheses hi, i∈ [1, k], to derive a hypothesis h with a loss as small as possible
with respect to the target distribution P . Unfortunately, a simple convex com-
bination of the k source hypotheses hi can perform very poorly; for example,
there are cases where any such convex combination would incur a classification
error of a half, even when each source hypothesis hi makes no error on its do-
main Qi (see [13]). In contrast, distribution weighted combinations of the source
hypotheses, which are combinations of source hypotheses weighted by the source
distributions, perform very well. In [13] it was shown that, remarkably, for any
fixed target function, there exists a distribution weighted combination of the
source hypotheses whose loss is at most ε with respect to any mixture P of the k
source distributions Qi. For the case that the target distribution P is arbitrary,
generalization bounds, based on Rényi divergence between the sources and the
target distributions, were derived in [14].
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5. Daumé III, H., Marcu, D.: Domain adaptation for statistical classifiers. Journal of

Artificial Intelligence Research 26, 101–126 (2006)

6. Dredze, M., Blitzer, J., Talukdar, P.P., Ganchev, K., Graca, J., Pereira, F.: Frus-

tratingly Hard Domain Adaptation for Parsing. In: CoNLL 2007 (2007)

7. Gauvain, J.-L., Chin-Hui: Maximum a posteriori estimation for multivariate gaus-

sian mixture observations of markov chains. IEEE Transactions on Speech and

Audio Processing 2(2), 291–298 (1994)

8. Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge

(1998)

9. Jiang, J., Zhai, C.: Instance Weighting for Domain Adaptation in NLP. In: Pro-

ceedings of ACL 2007 (2007)

10. Kifer, D., Ben-David, S., Gehrke, J.: Detecting change in data streams. In: Pro-

ceedings of the 30th International Conference on Very Large Data Bases (2004)

11. Legetter, C.J., Woodland, P.C.: Maximum likelihood linear regression for speaker

adaptation of continuous density hidden markov models. In: Computer Speech and

Language, pp. 171–185 (1995)

12. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: Learning bounds

and algorithms. In: COLT (2009)

13. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation with multiple

sources. In: Proceedings of NIPS 2008 (2008)

14. Mansour, Y., Mohri, M., Rostamizadeh, A.: Multiple source adaptation and the
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The Two Faces of Active Learning

Sanjoy Dasgupta

University of California, San Diego

The active learning model is motivated by scenarios in which it is easy to amass
vast quantities of unlabeled data (images and videos off the web, speech signals
from microphone recordings, and so on) but costly to obtain their labels. Like
supervised learning, the goal is ultimately to learn a classifier. But like unsuper-
vised learning, the data come unlabeled. More precisely, the labels are hidden,
and each of them can be revealed only at a cost. The idea is to query the labels
of just a few points that are especially informative about the decision bound-
ary, and thereby to obtain an accurate classifier at significantly lower cost than
regular supervised learning.

There are two distinct narratives for explaining when active learning is helpful.
The first has to do with efficient search through the hypothesis space: perhaps
one can always explicitly select query points whose labels will significantly shrink
the set of plausible classifiers (those roughly consistent with the labels seen so
far)? The second argument for active learning has to do with exploiting cluster
structure in data. Suppose, for instance, that the unlabeled points form five
nice clusters; with luck, these clusters will be pure and only five labels will be
necessary!

Both these scenarios are hopelessly optimistic. But I will show that they each
motivate realistic models that can effectively be exploited by active learning
algorithms. These algorithms have provable label complexity bounds that are in
some cases exponentially lower than for supervised learning. I will also present
experiments with these algorithms, to illustrate their behavior and get a sense
of the gulf that still exists between the theory and practice of active learning.

This is joint work with Alina Beygelzimer, Daniel Hsu, John Langford, and
Claire Monteleoni.
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Abstract. Within-network regression addresses the task of regression in

partially labeled networked data where labels are sparse and continuous.

Data for inference consist of entities associated with nodes for which

labels are known and interlinked with nodes for which labels must be

estimated. The premise of this work is that many networked datasets

are characterized by a form of autocorrelation where values of the re-

sponse variable in a node depend on values of the predictor variables of

interlinked nodes. This autocorrelation is a violation of the independence

assumption of observation. To overcome to this problem, the lagged pre-

dictor variables are added to the regression model. We investigate a com-

putational solution for this problem in the transductive setting, which

asks for predicting the response values only for unlabeled nodes of the

network. The neighborhood relation is computed on the basis of the

node links. We propose a regression inference procedure that is based

on a co-training approach according to separate model trees are learned

from both attribute values of labeled nodes and attribute values aggre-

gated in the neighborhood of labeled nodes, respectively. Each model

tree is used to label the unlabeled nodes for the other during an iter-

ative learning process. The set of labeled data is changed by including

labels which are estimated as confident. The confidence estimate is based

on the influence of the predicted labels on known labels of interlinked

nodes. Experiments with sparsely labeled networked data show that the

proposed method improves traditional model tree induction.

1 Introduction

A data network (also called networked data) consists of entities, generally of
the same type such as web-pages or telephone accounts, which are associated
with the nodes of the network and which are interlinked with other nodes via
various explicit relations (or edges) such as hyperlinks between web-pages or
people calling each other. Over the past few years data networks such as sensor
networks, communication networks, financial transaction networks and social
networks have become ubiquitous in everyday life. This ubiquity of data net-
works motivates the recent focus of research in data mining to extend traditional
inference techniques in order to learn in data networks.
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Several issues challenge the task of learning in network data, the most impor-
tant being the consideration of various forms of autocorrelation which may affect
data networks. Different definitions of autocorrelation are in use depending on
the field of study which is being considered and not all of them are equivalent.
Here autocorrelation is defined as the property that a value observed at a node
depends on the values observed at neighboring nodes in the network. Autocorre-
lation has been justified in several ways, such as Tobler’s first law of geography
[20] and the homophily’s principle [14], according to the specific application
domain.

The major difficulty due to the autocorrelation is that the independence as-
sumptions, which typically underlies machine learning methods, are no longer
valid. For example, the violation of the instance independence has been identi-
fied as the main responsible of poor performance of traditional machine learning
methods [16]. To remedy the negative effects of the violation of independence
assumptions, autocorrelation has to be explicitly accommodated in the learned
models.

In predictive models, where response variables depend on both predictor vari-
ables and an error term, autocorrelation can be expressed in three different ways,
by correlating: 1) the error terms of neighboring nodes; 2) the response variables
of neighboring nodes; 3) the response variable with the predictor variables of
neighboring nodes. In spatial data analysis, these three types of predictive mod-
els are respectively known as spatial error models, spatial lag models and spatial
cross-regressive models [18]. As observed in [2], the first two types of models
are global in scope, in the sense that an error term or a dependent variable
at a location (node of a network) has a spillover effect on all other locations,
while cross-regressive models are local in scope, since the effects are confined
to the neighbors of each observation. In spatial data analysis, cross-regressive
models make more sense from a theoretical point of view [1] and present the
additional advantage of being easier to use. In this paper we face the problem of
learning predictive (regression) models in data networks and we deal with the
autocorrelation issue by considering cross-regressive models.

The consideration of partially labeled data networks, where labeled entities
are possibly interlinked to unlabeled entities and vice-versa, adds a further degree
of complexity, since it is difficult to separate data into training and test sets. In-
deed, labeled data would serve as training data and subsequently as background
knowledge necessary for labeling entities in the test set. This consideration mo-
tivates the investigation of the learning problem in a setting different from the
classical inductive one, where the prediction model is built by considering only
a finite set of labeled data (training set) and it is then used to make predic-
tion on any possible instance. In this work, we consider the transductive setting
[21], where both labeled and unlabeled data are used to build the model and
predictions are confined to unlabeled data available when learning starts. More
precisely, the idea behind transductive inference (or transduction) is to analyze
both the labeled data L and the unlabeled data U to build a model which predicts
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(exlusively) data in U as accurately as possible. Therefore, in the transductive
setting, difficulties due to the separation of training and test set are overcome.

The data mining task considered in this work is transductive within-network
regression, which is a variant of the classification task recently investigated in
[11] for categorical labels. Given a fully described network (nodes and edges) for
which continuous labels are provided for only some of the nodes, the goal is to
determine labels of the rest of the nodes in the network. We propose a learning
algorithm, named ITL (Iterative Transductive Learner), which capitalizes on the
strengths of both model tree induction and transductive learning to effectively
solve the given problem when labels of data networks are originally sparse and
possibly scarce. The specific contributions of this work are highlighted as follows:

1. The combination of iterative transductive learning with the co-training
paradigm in order to both generate cross-regressive models and bootstrap
from a small set of labeled training data via a large set of unlabeled data.

2. Prediction of continuous labels is based on model trees [3], which do not
impose any a priori global structure (e.g., linear) of the regression surface.
Model trees are build on two views of data, as required by the co-training
paradigm. Each model tree labels the unlabeled data for the other during
the learning process.

3. The use of co-training paradigm allows us to learn two different model trees:
a model tree that identifies the correlation between the label of an entity
and the attribute values of the same entity and a model tree that identifies
the correlation between the label of an entity and the attribute values in the
neighborhood of the entity. Each model tree labels the unlabeled data for
the other during the learning process.

4. We present some procedures to estimate the confidence of predicted label(s)
through consulting the influence of the labeling of unlabeled entities in a
model tree based re-prediction of the labeled entities which are interlinked
to the unlabeled one(s).

5. We demonstrate that our approach is robust to both sparse labeling and
low label consistency, performing well consistently across a range of data
network where traditional model tree induction fails.

The rest of the paper is organized as follows. In Section 2, we review related
work. We present the formal definition of the task in Section 3 and our proposed
method in Section 4. Section 5 describes the experimental methodology and
results. Finally, Section 6 concludes the work.

2 Related Work

Regression inference in data network is still a challenging issue in machine learn-
ing and data mining. Due to the recent efforts of various researchers, numerous
algorithms have been designed for modeling a partially labeled network and pro-
viding estimates of unknown labels associated with nodes. Anyway, at the best
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of our knowledge, these algorithms address the prediction problem only in the
classification case, that is, when labels are categorical.

Currently, the main research in this area is in the thrust of network learning
and graph mining. Network learning assumes that data for inference are already
in the form of a network and exploits the structure of the network to allow
the collective inference. Collective inference allows to infer various interrelated
values simultaneously. It is used in network learning since it permits to estimate
neighboring labels which influence one another [12,9,19]. Since exact inference is
known to be an NP-hard problem and there is no guarantee that data network
satisfy the conditions that make exact inference tractable for collective learning,
most of the research in collective learning has been devoted to the development
of approximate inference algorithms.

Some of the popular approximate inference algorithms are the iterative in-
ference, the Gibbs sampling, the loopy belief propagation and the mean-field
relaxation labeling. An outline of strengths and weakness of these algorithms is
reported in [19]. In general, one of the major advantages of collective learning
lies in its powerful ability to learn various kinds of dependency structures (posi-
tive vs. negative autocorrelation, different degrees of correlation and so on) [10].
However, as pointed out in [15], when the labeled data is very sparse, the per-
formance of collective classification might be largely degraded due to the lack
of sufficient neighbors. This is overcome by incorporating informative “ghost
edges” into the networks to deal with sparsity issues [13,15].

Interestingly learning problems similar to the tasks addressed in network
learning have been recently addressed outside the areas of network learning and
graph mining. This second area of work has not been cast as a network learning
problem, but rather in the area of semi-supervised learning in a transductive
setting [21] where a corpus of data without links is given. The basic idea is to
connect data into a weighted network by adding edges (in various ways) based
on the similarity between entities and to estimate a function on the graph which
guarantees the consistency with the label information and the smoothness over
the whole graph [23]. The constraint on smoothness implicitly assumes positive
autocorrelation in the graph, that is, nearby nodes tend to share the same class
labels (i.e., homophily).

A prominent achievement in semi-supervised learning is represented by the
co-training paradigm [4] where independent views, i.e., distinct sets of attributes,
of labeled and unlabeled data are available for deriving separate learners. Predic-
tions of each learner of unlabeled data are then used to augment the training set
of the other within an iterative learning process. Co-training is already used to
design regression algorithms in semi-supervised learning. Brefeld et al. [5] use co-
training to formulate a semi-supervised least square regression algorithm, where
co-training is casted as a regularized risk minimization problem in Hilbert spaces.
Several data views are obtained for learning from different instance descriptions,
views, and/or different kernel functions. Zhou and Li [22] apply co-training to
learn k-NN regression by adopting a single attribute set but considering distinct
distance measures for the two hypotheses.
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3 Problem Definition and Notations

A network is a set of entities connected by edges. Each entity is called node of
the network. A number (which is usually taken to be positive) called weight is
associated with each edge. In a general formulation, a network can be represented
as a (weighted) graph that is a set of nodes and a ternary relation which represent
both the edges between nodes and the weight associated to each edge. Formally,

Definition 1 (Data Network). A data network N is a pair (V,E), where:

1. V is a set of nodes, and
2. E is a set of weighted edges between nodes, that is,

E = {〈u, v, w〉|u, v ∈ V,w ∈ R
+}.

In this work, each node of the network is associated with a data observation
(x, y) ∈ X× Y . X is a feature space spanned by m predictor variables Xi with
i = 1, . . . ,m while Y is the possibly unknown response variable (or label) with
a range in R. Additionally, labels are typically sparse in the network, that is,
nodes for which labels are known may be interlinked with nodes for which labels
must be estimated. In several real cases, labels are also scarce since the manual
annotation of large data sets can be very costly. In this data context, the prob-
lem of regression consists in predicting the labels of unlabeled nodes as accurate
as possible. The regression problem is formulated in network learning as follows.

Given:

1. the labeled node set L ⊂ X× Y ;
2. the projection of the unlabeled (working) node set U = V − L on X;
3. the ternary relation E ⊂ V × V × R

+;
4. the neighborhood function ηE : V −→ 2V ×R

+
such that:

ηE(u) = {(v1, w1), . . . , (vk, wk)} with (u, vi, wi) ∈ E, i = 1 . . . k

Find an estimate Ŷ for the unknown value of response variable Y for each node
u ∈ U such that ŷu is as accurate as possible.

An algorithmic solution to this problem is reported in the next Section. The
learner receives full information (including labels) on the nodes of L and partial
information (without labels) on the nodes of U as well as weighted edges in E and
is asked to predict the labels of the nodes of U . The algorithm is formulated in the
original distributional-free transductive setting [21] and requires that both L and
U are sampled from the node set V without replacement. This means that, unlike
the standard inductive setting, the nodes in the labeled (and unlabeled) set are
supposed to be mutually dependent based on the existence of a link (transitively)
connecting them. Vapnik introduced an alternative transductive setting which
is distributional, since both T and W are assumed to be drawn independently
and identically from some unknown distribution. As shown in [21](Theorem 8.1),
error bounds for learning algorithms in the distribution-free setting apply to the
more popular distributional transductive setting. This justifies our focus on the
distributional-free setting.
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Algorithm 1. Top-level description of the Iterative Transductive Learner in
Co-training style.

1: ITL(L, U, E)

2: Input
3: the labeled node set L ⊂ X× Y ;

4: the projection of the unlabeled node set U = V − L on X;

5: the ternary relation E ⊂ V × V × R
+;

6: Output
7: an estimate of unknown labels of nodes in U ;

8: begin
9: L← laggedPredictorVariables(L, V, E); U ← laggedPredictorVariables(U, V, E);

10: L0 ← L; U0 ← U ; L1 ← L; U1 ← U ;

11: i← 1;

12: repeat
13: change← false;

14: t0 ←learn(L0); t1 ←learn(L1);

15: P0 ←predictConfidentLabels(t0, U0, L0, E); P1 ←predictConfidentLabels(t1, U1, L1, E);

16: if P0 �= � or P1 �= � then
17: change← true;

18: for e ∈ P0 do
19: L1 ← L1 ∪ {〈instance(e, U1), ŷe〉}; U1 ← U1−{instance(e, U1)};
20: end for
21: for e ∈ P1 do
22: L0 ← L0 ∪ {〈instance(e, U0), ŷe〉}; U0 ← U0−{instance(e, U0)};
23: end for
24: end if
25: until not(+ + i ≥ MAX ITERS AND change);
26: U ←label(t0, L, U, t1, L, U);

27: end

4 The Algorithm

The Iterative Transductive Learner (ITL) addresses the problem of predicting
the unknown continuous labels of nodes which are distributed in a sparsely
labeled network. ITL iteratively induces two distinct model trees in a co-training
style. Labels predicted from one model tree which are estimated as confident
extend the labeled set to be used by the other model tree learner for the next
iteration of the learning process. The model trees which are induced in the last
iteration of ITL are used to predict the unknown network labels. Details on the
learning in co-training style, the evaluation of the confidence of predicted labels
and the labeling of unlabeled nodes are reported in the next subsections.

4.1 Iterative Learning in Co-training Style

The top level description of ITL is reported in Algorithm 1. Let N(V,E) be
the sparsely labeled network whose unknown labels have to be predicted, ITL
takes as input: the attribute-value observations (with labels) associated with
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the labeled node set L ⊂ V , the attribute-value observations (without labels)
associated with the unlabeled node set U ⊂ V (U = V −L), and the relation E,
and predicts the unknown labels for the nodes of U . ITL is iterative and keeps
with the main idea of co-training by inducing at each iteration, two distinct
regression models from different views of the attribute-value data associated
with the node set. The former is a regression model which includes the predictor
variables measured at the currently labeled nodes of the network, the latter is
a cross-regressive model which includes the lagged predictor variables measured
in the neighborhood of the nodes.

In Algorithm 1, the function laggedPredictorV ariables() is in charge of con-
structing L (U) that is the lagged view of the data associated with the node
set L (U). This lagged view of a dataset is obtained by projecting data over the
lagged predictor variables in place of the original predictor variables. Formally,

Definition 2 (Lagged variable). Let N = (V,E) be a network and X be a
variable that is measured at the nodes of V . For each node u ∈ V , the lagged
variable X is assigned with the aggregate of the values which are measured for
X at nodes falling in the neighborhood ηE(u).

In particular, by considering the case that Xi is continuous, then,

xiu =

∑
(v,w)∈ηE(u)

(xiv × w)∑
(v,w)∈ηE(u)

w
, i = 1 . . .m. (1)

Further extension of ITL would allow to deal with discrete predictor variables.
By initially assigning L0 = L,U0 = U,L1 = L and U1 = U , ITL learns

the regression model t0 from L0 and the regression model t1 from L1 (see the
function learn() in Algorithm 1). The basic learner employed to induce both
t0 and t1 is the model tree learner presented in [3]. The choice of a model tree
learner is motivated by the capability of model trees of do not imposing any a-
priory defined global form of regression surface, but assuming a functional form
at local level. t0 and t1 are then used to predict the unknown labels (ŷ) of the
nodes falling in U0 and U1, respectively.

Labels which are confidently predicted (see function predictConfidentLabels()
in Algorithm 1) are assigned to the corresponding nodes in U1 (U0). New labeled
nodes are then moved from U1 to L1 (U0 to L0). The function instance() is in
charge of passing from the original data view to the lagged data view of a node, and
vice-versa. In particular, if u belongs to L (U), instance(u, L) (instance(u, U))
returns u in L (U). Similarly, if u belongs to L (U), instance(u, L) (instance(u, U))
returns the corresponding u in L (U).

The learning process stops when the maximum number of learning itera-
tions, MAX ITERS, is reached, or there is no unlabeled node which is con-
fidently moved from the unlabeled set to the labeled set. Model trees which
are learned in the last iteration of the learning process are used to definitely
label working observations (see function label() in Algorithm 1). Details of
predictConfidentLabels() and label() are provided in the next subsections.
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Algorithm 2. Predict and estimate confidence of labels according to Single
Label Confidence Estimate.
1: determineConfidentlyLabeledNodes(Ui, Li, E, ti)=⇒ Pi

2: Input
3: the node set Ui ⊂ X× Y and the node set Li ⊂ X× Y ;

4: the ternary relation E ⊂ Ui ∪ Li × Ui ∪ Li × R
+;

5: the model tree ti induced from Li;

6: Output
7: Pi ⊆ Ui such that Pi includes only the nodes of Ui whose predicted labels are

estimated as confident;

8: begin
9: Pi ← �;

10: for u in Ui do
11: ŷu ←response(ti, u);

12: t′i ←learn(Li ∪ {〈u, ŷu〉});
13: pos← 0; neg ← 0;

14: for v in ηE(u)|Li do
15: if (yv-response(t′i, v))2-(yv-response(ti, v))2 ≥ 0 then
16: pos← pos + 1;

17: else
18: neg ← neg + 1;

19: end if
20: end for
21: if pos ≥ neg then
22: Pi ← Pi ∪ {〈u, ŷu〉};
23: end if
24: end for
25: end

4.2 Evaluating the Confidence of Predicted Labels

A model tree is used to predict the unknown labels in the network. The confi-
dence of each estimated label is evaluated in order to identify the most confident
labels. Intuitively, confident labels are with the following property. The error
performed by a model tree in re-predicting the labeled node set should decrease
the most if the most confidently labeled nodes are utilized in the learning pro-
cess. According to this property, we have designed two alternative mechanisms,
named Single Label Confidence Evaluation (SLCE) and Multi Label Confidence
Evaluation (MLCE), which provide an estimate of the confidence of the labels
which are predicted in ITL.

Single Label Confidence Evaluation

The SLCE estimates the confidence of predicted labels one by one (see Algorithm
2). The confidence is estimated by a model tree that is learned from a training
set consisting of the nodes which are currently labeled in the network and the
unlabeled node whose predicted label has to be estimated. The confidence of



44 A. Appice, M. Ceci, and D. Malerba

this label corresponds to the confidence of this model tree in re-predicting the
labeled nodes which are interlinked (as neighbors) to the unlabeled one.
Formally, let:

1. ti (with i = 0, 1) be the model tree induced from the labeled node set Li,
2. u ∈ Ui be a node falling in the unlabeled set Ui (with i = 0, 1),
3. ŷu the label predicted from ti for u,
4. ηE(u)|Li = {v ∈ Li|(u, v, w) ∈ E} be the set of labeled nodes v which are

neighbors of u in Li according to E, and
5. t′i (with i = 0, 1) be the model tree induced from Li ∪ {〈u, ŷu〉},

the confidence of ŷu is evaluated according to the influence of ŷu on the known
labels of nodes falling in ηE(u)|Li . In particular, for each v ∈ ηE(u)|Li , εv is the
result of subtracting the squared error performed by t′i in determining the label
of v from the squared error performed by ti in determining the label of v,

εv = (yv − response(t′i, v))
2 − (yv − response(ti, v))2 (2)

with yv be the response that originally labels v in Li at the current iteration of
ITL. The function response(ti, v) returns the label predicted for v by ti, while
response(t′i, v) returns the label predicted for v by t′i, respectively.
By defining:

Pos = |{v ∈ ηE(u)|Li |εv ≥ 0}| Neg = |{v ∈ ηE(u)|Li |εv < 0}|, (3)

with | · | the cardinality of a set ·, the label ŷv is estimated as confident if
Pos ≥ Neg, un-confident otherwise.

Multi Label Confidence Evaluation

The MLCE firstly groups unlabeled nodes of the network in possibly overlapping
clusters and then estimates the confidence of the entire cluster of predicted
labels, cluster by cluster (see Algorithm 3). For each labeled node v ∈ Li, a
cluster, ηE(v)|Ui is constructed by including the unlabeled neighbors of v which
are determined in Ui according to E. By using ti to assign a label to the nodes
falling ηE(v)|Ui , the labeled node set ̂ηE(v)|Ui is constructed from ηE(v)|Ui (see
function assignLabel() in Algorithm 3), as follows:

̂ηE(v)|Ui = {〈u, response(ti, u)〉|u ∈ ηE(v)|Ui} (4)

where response(ti, u) is the label predicted for u by ti. Let t′i be the model
tree induced from Li ∪ ̂ηE(v)|Ui ), predicted labels of ̂ηE(v)|Ui are estimated as
confident iff:

(yv − response(t′i, v))
2 − (yv − response(ti, v))2 ≥ 0, (5)

un-confident, otherwise.
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Algorithm 3. Predict and estimate confidence of labels according to Multi
Label Confidence Estimate.
1: determineConfidentlyLabeledNodes(Ui, Li, E, ti)=⇒ Pi

2: Input
3: the node set Ui ⊂ X× Y and the node set Li ⊂ X× Y ;

4: the ternary relation E ⊂ Ui ∪ Li × Ui ∪ Li × R
+;

5: the model tree ti induced from Li;

6: Output
7: Pi ⊆ Ui such that Pi includes only the nodes of Ui whose predicted labels are

estimated as confident;

8: begin
9: Pi ← �;

10: for v in Li do

11: ̂ηE(v)|Ui ←assignLabel(Ti, ηE(v)|Ui);

12: t′i ←learn(Li ∪ ̂ηE(v)|Ui);

13: if (response(t′i, v)-y(v))2-(response(ti, v)-y(v))2 ≥ 0 then

14: Pi ← Pi ∪ ̂ηE(v)|Ui ;

15: end if
16: end for
17: end

4.3 Predicting the Unlabeled Nodes in the Network

Model trees t0 and t1 which are learned in the last iteration of ITL are used to
predict the final labels Ŷ to be associated with originally unlabeled nodes of U .
Let u ∈ U be the lagged data view of the unlabeled node u ∈ U , then:

ŷu =
ω0 × response(t0, u) + ω1 × response(t1, u)

ω0 + ω1
with u ∈ U. (6)

where ω0 and ω1 are computed on the basis of the mean square error (mse) of
each model tree on the original labeled set (L and L, respectively). Details are
provided in Algorithm 4.

5 Experiments

We demonstrate that ITL is robust to both sparse labeling and low label consis-
tency and it improves traditional model tree induction across a range of several
geographical data networks.

Dataset Description

GASD (USA Geographical Analysis Spatial Dataset) [17] contains 3,107 ob-
servations on USA county votes cast in 1980 presidential election. Specifically,
it contains the total number of votes cast in the 1980 presidential election per
county (response attribute), the population in each county of 18 years of age
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Algorithm 4. Assigning a final label to the unlabeled nodes of the network.
1: label(t0, L, U, t1, L, U)

2: Input
3: the model tree t0 induced on the feature space X;

4: the set L ⊆ X× Y ;

5: the unlabeled set U ⊆ X;

6: the model tree induced on the feature space X;

7: the labeled set L ⊆ X× Y ;

8: the unlabeled set U ⊆ X;

9: Output
10: U ′ = {〈u, ŷu〉|u ∈ U, ŷu is the final label predicted for u} ;

11: begin
12: U ← �;

13: m0 ← mse(t0, L); m1 ← mse( t1, L);

14: if m0 > m1 then
15: ω0 ← 1; ω1 ← m0/m1;

16: else
17: ω0 ← m1/m0; ω1 ← 1;

18: end if
19: for u ∈ U do
20: u← instance(u, U); ŷu ← response(t0,u)×ω0+response(t1,u)×ω1

ω0+ω1
;

21: U ′ ← U ∪ {〈u, ŷu〉};
22: end for
23: end

or older, the population in each county with a 12th grade or higher education,
the number of owner-occupied housing units, the aggregate income, the XCoord
and YCoord spatial coordinates of the county. Forest Fires is public available
for research at UCI Machine Learning Repository1. The details are described
in [7]. It collects 512 forest fire observations from the Montesinho natural park
in the northeast region of Portugal. The data, collected from January 2000 to
December 2003, include the burned area of the forest in ha2 (response vari-
able), the Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC),
the Drought Code (DC), the Initial Spread Index (ISI), the temperature in Cel-
sius degrees, the relative humidity, the wind speed in km/h, the outside rain
in mm/m2, the XCoord and YCoord spatial coordinates within the Montesinho
park map. NWE (North-West England ) contains census data collected in the
European project SPIN!3. Data are census data concerning North West England
area that is decomposed into censual sections or wards for a total of 1011 wards.
Census data provided by 1998 Census is available at ward level. We consider
percentage of mortality (response variable) and measures of deprivation level in
the ward according to index scores such as, Jarman Underprivileged Area Score,
Townsend score, Carstairs score and the Department of the Environments Index,
1 http://archive.ics.uci.edu/ml/
2 1ha/100 = 100 m2.
3 http://www.ais. fraunhofer.de/KD/SPIN/project.html
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the XCoord and YCoord spatial coordinates of the ward centroid. By removing
observations including null values, only 979 observations are used in this ex-
periments. Finally, Sigmea-Real [8] collects 817 measurements of the rate of
herbicide resistance of two lines of plants (response variables), that is, the trans-
genic male-fertile (MF) and the non-transgenic male-sterile (MS) line of oilseed
rape. Predictor variables of this study are the cardinal direction and distance
from the center of the donor field, the visual angle between the sampling plot
and the donor field, and the shortest distance between the plot and the nearest
edge of the donor field, the XCoord and YCoord spatial coordinates of the plant.

Experimental Setting

Each geo-referenced dataset D is mapped into a data network N = (V,E) that
includes a node u ∈ V for each observation (x1, . . . , xn, y, xCoord, yCoord) ∈ D
and associates u with (x1, . . . , xn, y). Let u and v be two distinct nodes in V ,
there is an edge from u to v labeled with w in N (i.e., (u, v, w) ∈ E) iff v is
one of the k nearest neighbors of u. The Euclidean distance is computed to
determine neighbors. Notice that the neighboring relation defined above is not
necessarily symmetric, v may be a k nearest neighbor of u, but not necessarily
vice-versa. Additionally, u is a neighbor of u. In this paper, several data networks
are constructed from the same dataset by varying k = 5, 10, 15. They are denoted
as N5, N10 and N15. In each data network, the weight w is defined according to
a continuous function of Euclidean distance [6] as follows:

w = e
− dist(u,v)2

b2u with bu = max
v∈k−nearestNeighbors(u,V )

dist(u, v), (7)

If u and v are associated with observations taken at the same geographical
site, the weighting of observations collected at this site would be unity. The
weighting of other observations will decrease according to a Gaussian curve as
the Euclidean distance between u and v increases.

For each data network, experiments are performed in order to: 1) validate
the actual advantage of the iterative transductive learner over the basic model
tree learner in labeling the unlabeled nodes of a sparsely and scarcely labeled
network (ITL vs t0 and ITL vs t1), 2) evaluate the advantages of a co-training
implementation in the transductive learning (ITL vs ITL*), and 3) compare
performance of SLCE and MLCE in estimating the confidence of labels (SLCE
vs MLCE). t0 (t1) denotes the model tree which is induced from the original set
of labeled data by considering the predictor variables (lagged predictor variables)
only, ITL* is the iterative transductive learner without co-training, that is, no
lagged view of data is considered in the learning process, ITL is the iterative
transductive learner with co-training.

The empirical comparison is based on the mean square error (MSE) that is
estimated according to a K-fold cross validation. K is set to 10 in experiments
performed with GASD dataset, and K = 5 in experiments performed with For-
est Fires, NWE and Sigmea Real. For each trial, algorithms to be compared are



48 A. Appice, M. Ceci, and D. Malerba

trained on a single fold and tested on the hold-out K - 1 folds, which form the
working set. The comparative statistics is computed by averaging the MSE error
over the K-folds (Avg.MSE). It is noteworthy that, unlike the standard cross-
validation approach, here only one fold is used for the training set. In this way
we can simulate datasets with a small percentage of labeled cases (the training
set) and a large percentage of unlabeled data (the working set), which is the
usual situation for a transductive learning. ITL is run with MAX ITERS = 5.

Results

The Avg. MSE performed by both the transductive learner and the inductive
learner is reported in Table 1. Results suggest several conclusions. First, they
confirm that ITL performs generally better than the basic model tree learners
(ITL improves both t0 and t1 in accuracy) by profitably employing a kind of
iterative learning to bootstrap from a small set of labeled training data via a
large set of unlabeled data. The exception is represented by Sigmea Real (MF)
that is the only dataset where the baseline inductive learner t0 always outper-
forms ITL. Our justification is that the worse performance of ITL may depend
on the fact that this dataset exhibits about 65% of observations which are la-
beled as zero which leads to a degradation of both predictive capability of the
learner that operates with the aggregate data view in the co-training and capa-
bility of identifying confident labels. This is confirmed by the fact accuracy of

Table 1. Avg.MSE: Inductive learners (t0 and t1) vs. iterative transductive learner

without co-training (ITL*) and with co-training (ITL)

Avg.MSE
N5 N10 N15

SLCE MLCE SLCE MLCE SLCE MLCE

GASD

t0 0.15174 0.15174 0.15174 0.15174 0.15174 0.15174

t1 0.15879 0.15879 0.17453 0.17453 0.17419 0.17419

ITL* 0.13582 0.13239 0.13643 0.13387 0.13606 0.13468

ITL 0.13006 0.12965 0.13156 0.13162 0.13387 0.13128

Forest Fires

t0 81.16599 81.16599 81.16599 81.16599 81.16599 81.16599

t1 64.68706 64.68706 64.71256 64.71257 64.80331 64.80332

ITL* 81.45897 82.33336 81.04362 74.48984 81.30787 80.89551

ITL 64.44121 63.88140 64.73077 64.28176 63.92594 64.41118

NWE

t0 0.00255 0.00255 0.00255 0.00255 0.00255 0.00255

t1 0.00250 0.00250 0.00252 0.00252 0.00256 0.00256

ITL* 0.00253 0.00252 0.00254 0.00258 0.00252 0.00253

ITL 0.00245 0.00244 0.00248 0.00248 0.00247 0.00248

SigmeaReal (MF)

t0 2.35395 2.35395 2.35395 2.35395 2.35395 2.35395

t1 2.57045 2.57045 2.51061 2.51061 2.51991 2.51991

ITL* 2.36944 2.36336 2.36579 2.35532 2.37024 2.35966

ITL 2.44036 2.43278 2.40851 2.42544 2.46547 2.43397

SigmeaReal(MS)

t0 5.87855 5.87855 5.87855 5.87855 5.87855 5.87855

t1 5.80157 5.80157 6.12569 6.12569 6.08601 6.08601

ITL* 5.87364 5.87389 5.87374 5.87781 5.87346 5.87340

ITL 5.75021 5.61658 5.85322 5.85275 5.74338 5.87403
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cross-regressive model tree t1 is significantly worse than the accuracy of the
classical model tree t0. Second, the co-training improves the accuracy of the it-
erative transductive learner (ITL vs ITL*) by combining cross-regressive models
with traditional regression models. Finally, the comparison between MLCE and
SLCE suggests that the accuracy of ITL is improved by the use of MLCE when
the data network includes nodes with a low number of neighbors (k = 5), while
the accuracy of ITL is generally improved by the use of SLCE when the data
network includes nodes with higher number of neighbors (k = 15).

6 Conclusions

In this paper we investigate the task of regression in labeled networked data
where labels are sparse and continuous. We assume that data present a form
of autocorrelation where the value of the response variable in a node depends
on the values of the predictor variables of interlinked nodes. For this reason, we
consider the contribution of lagged predictor variables in the regression model.
We investigate a computational solution in the transductive setting, which asks
for predicting the response values only for unlabelled nodes of the network. The
neighborhood relation used in the transductive setting is computed on the basis
of the node links. The solution is based on co-training, since separate model trees
are learned from attribute values of labeled nodes and attribute values aggre-
gated in the neighborhood of labeled nodes, respectively. Two distinct procedures
have been proposed to evaluate confidence of the predicted labels. Experiments
with several sparsely labeled networked data are performed. Results show that
the proposed method improves accuracy of traditional model tree induction.
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A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 502–509. Springer, Heidelberg

(2007)

4. Blum, A., Mitchell, T.M.: Combining labeled and unlabeled data with co-training.

In: COLT, pp. 92–100 (1998)



50 A. Appice, M. Ceci, and D. Malerba
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Abstract. We present a novel approach to discovering small groups of

anomalously similar pieces of free text.

The UK’s National Reporting and Learning System (NRLS) contains

free text and categorical variables describing several million patient safety

incidents that have occurred in the National Health Service. The groups of

interest represent previously unknown incident types. The task is particu-

larly challenging because the free text descriptions are of random lengths,

from very short to quite extensive, and include arbitrary abbreviations and

misspellings, as well as technical medical terms. Incidents of the same type

may also be described in various different ways.

The aim of the analysis is to produce a global, numerical model of the

text, such that the relative positions of the incidents in the model space

reflect their meanings. A high dimensional vector space model of the text

passages is produced; TF-IDF term weighting is applied, reflecting the

differing importance of particular words to a description’s meaning. The

dimensionality of the model space is reduced, using principal component

and linear discriminant analysis. The supervised analysis uses categorical

variables from the NRLS, and allows incidents of similar meaning to be

positioned close to one another in the model space. Anomaly detection

tools are then used to find small groups of descriptions that are more

similar than one would expect. The results are evaluated by having the

groups assessed qualitatively by domain experts to see whether they are

of substantive interest.

1 Introduction

The UK’s National Patient Safety Agency, or NPSA, has collected data that
describe more than three million patient safety incidents, where a patient safety
incident is defined as ‘an unintended or unexpected incident that could have or
did lead to harm to patients receiving National Health Service (NHS) care’.

The incidents are extremely varied in nature, ranging from the common and
mundane to the very rare and unusual. Common incident types include events
such as patient falls, errors made when giving medication and injuries to women
during childbirth. Some of the less common incident types will already be well
known to the medical profession: for example, some patients have an allergy
to latex, and therefore latex gloves cannot be worn during operations on these
patients. Other types of incidents are less well known, and have only come to
light because of qualitative analysis of the NRLS. This analysis has allowed the

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 51–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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NPSA to issue alerts, such as [6] for example, which contains guidance on vinca
alkaloids.

The size of the dataset means that it is not possible to examine each entry
manually to try to find these previously unknown incident types. The problem
therefore lends itself to the use of data mining techniques.

In this paper we present a method that discovers these groups of interest semi-
automatically. We model the data numerically and use an anomaly detection
algorithm to find unexpected local clusters of similar objects. These clusters
represent the groups of interest.

2 Data

The data are stored in the National Reporting and Learning System (NRLS).
Each National Health Service (NHS) Trust in England and Wales is required
to have its own incident reporting system; the NRLS is an amalgamation of the
Trusts’ data. The Trusts have different incident reporting systems, and therefore
the mapping between the Trusts’ variables and the variables in the NRLS is quite
complex: this leads to some NRLS variables being only sparsely populated.

The NRLS has 73 variables, most of which are categorical: there are various
incident type variables, details of the patients’ ages, the severity of the incident,
and so on.

The data are generally entered by medical professionals, most commonly doc-
tors and nurses, although midwives, ambulance drivers and other health pro-
fessionals also enter data. It is possible for patients and other members of the
public to enter data, but this is much less common. The data are often written
on paper forms which are transferred to the computer systems later by clerical
staff, which can reduce the quality of the NRLS data.

One of the variables is quite different from the others, as it allows the person
entering the data to write a free text description of the incident. This is poten-
tially a very rich source of information and is the focus of the work we present
here. There are, however, particular difficulties associated with the analysis of
text, both in general, and associated with this dataset in particular.

Whilst the free text is potentially very informative, problems arise because of
the freedom that the staff have when entering the data, because of the range of
knowledge and experience of the staff concerned, and the time they have available
to write the entries. The free text data are of extremely variable quality, as can
be seen in Table 1. The lengths of the incident descriptions vary from a single
word to several long paragraphs; this includes descriptions that are simply an
entry such as ‘xxxx’. Other descriptions are one or two words long and are not
particular informative: ‘patient fell’ is a common entry.

Spelling mistakes are very common, both those due to misconceptions of the
correct spelling, e.g. ‘recieve’ instead of ‘receive’, but also because of typograph-
ical errors. The staff entering the data use many abbreviations, e.g., ‘pt’ for
‘patient’ or ‘?’ for ‘possible’. The NHS is one the world’s largest bureaucra-
cies, and has developed its own terms and conventions: the incident descriptions
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Table 1. Free Text Examples

Patient waited 48 hours or more, for surgery. 5 days

wait. #NOF.

- Enucleation of odontogenic keralocyst in maxilla

right. - Carnoy’s solution placed in cyst cavity on

ribbon gauze and irrigated. - swollen upper and lower

lip right + ? small chemical burn lower lip. Seen by

Professor.

At the start of a cardiothoracic case before

anaesthetising a patient with Dr [Staff Name]

for a large cardiac case I rang blood bank to

order four units of blood for our patient . I

spoke to a lady on the phone whose name I did

not take . I explained that we were about to

start the case in theatre and she told me that

she would ring theatre 7 when the blood was

ready and we would send somebody to get it from

the fridge in blood bank . When the patient went

onto cardiopulmonary bypass she needed blood

fairly quickly when blood bank was rang then

nobody there was aware of the request and the

patient had to be given type specific blood as

no cross matched had taken place as requested .

Overcapacity - total number of babies on the unit

35 , capacity is 30 . Delivery suite aware that

NNU is closed . .

Overcapacity - total number of babies on the unit

31 , capacity is 30 . .

Pt given 2mg Lorazepam via wrong route - oral route

instead of IM . .

Pt found on floor .

Fall.

doHover(this);” onMouseOut=”doUnHover(this);”

0065956 : b Number b/span, normal time

allocated to block the list ( 1 - 1 1 / 2 hours )

was exceeded , there by emergency list was delayed .

Other specialties were updated though unhappy , i.e

. orthopaedics postponing a case .

Result not reported . - Test=GQIB . [Person name]

entered result in APEX on 26 / 04 / 05 as this was

POSITIVE raised to level Q to go to the MEDQ .

This sample was not picked up on weekly WFE as it

is written in AI test . Also WFE on Sp . Rec . do

not include lefel Q. Also report would not print .

Referred to [Person name 2] .
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include many acronyms and initialisms as well as conventions like writing ‘RIP’
for ‘death’ or ‘dead’.

The quality of the grammar is also variable, and the use of cases is unpre-
dictable: some entries are all in capitals, whilst others are all in lower case.

3 Model

The difficulty of the problem will be apparent from the description of the data.
This section describes our modelling approach.

One way to try to find small groups of potential interest is to use anomaly
detection algorithms. These algorithms find groups of points that have density
that is higher than would be expected given the background density. However,
to do this we need to place the incident descriptions into an appropriate model
space. In the following sections we develop a global, numerical model of the text.
The relative positions of the incident descriptions in the model space reflect as
closely as possible the meanings of the descriptions rather than simply which
words appear in them.

3.1 Vector Space Model

The basic model that we produce for the text is the well known vector space
model. Each incident description is represented by a vector of length equal to the
size of the overall vocabulary used in all of the incident descriptions. We have
been provided with samples of 25,000 incidents by the NPSA; our samples have
vocabularies of between 19,000 and 28,000 ‘words’. We remove all symbols other
than the letters ‘a’ to ‘z’, converting any upper case letters to lower case. Each
token is therefore a sequence of one or more letters. Variations such as ‘Patient’,
‘patient’ and ‘PATIENT’ are represented by a single token.

The basic datasets are therefore matrices of size 25,000 x c.20,000, or alter-
natively, the incidents are represented as points in a c.20,000 dimensional space.
Each entry in the matrix is the number of times that a particular word appears
in an incident description.

The vector space model is quick and straightforward to calculate, but there
are several disadvantages. One is that any information contained in the word
ordering is lost. Natural language involves interactions between words: there
is a difference in meaning between ‘patient fall’ and ‘patient did not fall’ that
would not be captured well by the vector space model (particularly given the
term weighting described in Section 3.2). The vector space model does not
take into account the similarities in meaning between different words: ‘fall’ and
‘fell’ have the same root, but would be treated as separate variables in the
vector space model. Nevertheless, we use the vector space model as the ba-
sis for our analysis, noting that more elaborate versions could lead to superior
performance.
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3.2 Term Weighting

In a piece of text such as ‘patient fell on the floor’, it is clear that certain words
carry more of the meaning of the sentence than others. These words should
therefore be weighted more highly than less interesting words such as ‘the’. We
adopt the commonly used TF-IDF term weighting scheme, as described in [5].
The terms are weighted according to the frequency of their appearance in a
particular description, and their rarity over the whole sample. If the original
vector space matrix is X, with i descriptions and j variables, the TF weighted
matrix XTF will have entries,

xTF,i,j =
xi,j

xi,•

i.e., the TF matrix is the original matrix with each entry divided by the sum of
its row. This means that each document carries the same weight, regardless of
its length.

The IDF, or inverse document frequency, reflects the rarity of a word’s ap-
pearance. The IDF is a vector yIDF, of length j, with

yIDF,j =
1∑

i Ixi,j �=0

where I is an indicator variable which takes a value of unity if a particular word
appears at least once in a description. The yIDF vector is normalised. In the
literature [4], the normalisation function used is generally the logarithm, but
in our work we have found that the square root produces superior results (see
Section 5.1).

Each column of the XTF matrix is multiplied by the square root of its corre-
sponding yIDF value, to form the final TF-IDF weighted vector space matrix.

3.3 High Dimensionality and Dimensionality Reduction

We now have a 25,000 x c.20,000 termweighted data matrix. One approach
would be to analyse this dataset immediately to find anomalously dense local
clusters of incident descriptions. However, high dimensional spaces behave rather
differently from lower dimensional spaces. This issue is described in depth in [2],
but in short, as dimensionality increases, the relative contrast,

C =
dorig,max − dorig,min

dorig,min
→ 0

where dorig,max is the maximum distance between any point and the origin, and
dorig,min is the minimum distance between any point and the origin. This effect
means that in high dimensional spaces it is difficult to discriminate between
nearest and furthest neighbours, and it is not possible to calculate a meaningful
measure of the local density of points. It is therefore not possible to find groups
of potential interest using anomaly detection algorithms without carrying out
some sort of dimensionality reduction.
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The dimensionality reduction must reduce the model space sufficiently that
problems caused by high dimensionality are avoided but not so much that there is
not enough information in the positions of the data points to reflect the meaning
of the incident descriptions. In general, the dimensionality reduction aims to
rotate the original model space in such a way that all the information is retained,
but that it is described by far fewer dimensions than the original model space.
The other, uninformative, dimensions can be discarded.

Unsupervised Methods. Unsupervised methods such as principal component
analysis rotate the data based on the inherent properties of the data. In the case
of principal components, the model space is rotated such that the dimensions
explain the variation in the data in descending order, subject to the constraint
that the variables must be orthogonal. The dimensions that explain relatively
little of the variance can then be removed.

The disadvantage of using an unsupervised method for dimensionality reduc-
tion is that although combinations of highly weighted words that appear together
frequently will be found, there is no information by which the model space can
be rotated so that incident descriptions that mean the same thing but that use
different words will be in adjacent parts of the model space.

Even so, principal component analysis has a role to play in the dimensionality
reduction. It has been noted in [4] that dimensionality reduction of vector space
models using principal component analysis actually improves the performance of
some information retrieval systems. It might be expected that removing informa-
tion would impair performance, but it appears that using principal component
analysis can improve the model by removing noise, possibly by finding com-
binations of words that represent commonly used, meaningful constructions in
English, whilst removing combinations of words that appear together by chance
and that might produce spurious results in an information retrieval system. We
therefore reduce the dimensionality using principal component analysis before
using a supervised method.

Table 2. Categorical Variables

Variable Examples Number of

Categories

Location, Level 1 General/Acute Hospital 12

Mental Health Unit

Location, Level 2 Dental Surgery 26

Outpatient Department

Incident Category Medical Device 16

Level 1 Patient Accident

Incident Category Diagnosis - Wrong 87

Level 2 Slips, Trips, Falls

Specialty, Level 1 Surgical Specialty 16

Mental Health

Specialty, Level 2 Gastroenterology 83

Haematology
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Supervised Methods. Supervised methods such as linear discriminant anal-
ysis use external information related to the data; the rotation is carried out to
optimise some relationship between the data and this information. For example,
for linear discriminant analysis each data point is assigned a class; the model
space is then rotated such that a measure of the separation of classes is max-
imised, again preserving orthogonality between the dimensions. The dimensions
that do not separate the classes well can be discarded.

In order to carry out supervised dimensionality reduction, it is necessary for
the incident descriptions to be classified into categories; these categories must
reflect the meaning of the descriptions. We tried this but found that it is very
arduous to do manually, so it is fortunate that each of the incident descriptions
has been classified by the person entering the data. Six incident type variables
have been used to calculate linear discriminants; they are described in Table 2,
with examples of the entries for each variable.

3.4 Final Model

We start with a 25,000 x c.20,000 termweighted matrix. In order to make the
calculation of principal components feasible within a reasonable time-frame, and
to fit in with constraints on computing power, the dataset is reduced to 5,000
dimensions. Slightly counter-intuitively we select the 5,000 variables with the
lowest values of IDF, i.e., the 5,000 most common words. Although rarer words
are proportionately more interesting than more common words, most of the
meaning of the descriptions is carried by the 5,000 most common words. There is
also the potential advantage that many of the least common ‘words’ are spelling
mistakes, and these will be removed by this variable selection. Of course, in the
case where rare words discriminate between interesting groups and the remainder
of the data, these groups will not be identified by our analysis.

Principal components are calculated. The first 2,000 principal components
are retained, and this dataset is used to calculate linear discriminants, using
the six different categorical variables described in Table 2. The first 15 linear
discriminants are selected as the final model for analysis using anomaly detection
tools, unless there are fewer than 16 classes for the categorical variable that is
being used, in which case all of the linear discriminants are used. The final
datasets are therefore generally 25,000 x 15 matrices.

4 Anomaly Detection

We use an anomaly detection tool called PEAKER, which is described in depth
in [1] and [7].

We calculate a relatively simple measure of the density at each point x,

f̂(x) = f̂(x;K) =

⎡⎣ 1
K

∑
i∈{N}

d(x,xi)

⎤⎦−1
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where
{N} = {x : x ∈ N(x;K)}

i.e., N is the set of K nearest neighbours to x. The smoothing of the density
estimate can be varied by increasing or decreasing the value of K. Any measure of
distance can be used to calculate d(x,xi): the Euclidean or Manhattan distance
metrics are two well-known options (the choice of distance metric has an effect
on the relative contrast described in Section 3.3)

The PEAKER algorithm is based on the concept of peaks, defined as points
with a higher density estimate than a number of their nearest neighbours. A
point is defined as a peak with M(xi) = m iff

f̂(xi) > f̂(xj), ∀xj ∈ Nm(xi)

and

f̂(xi) ≤ f̂(x(m+1))

where Nm is the set of m nearest neighbours to xi, and x(k) is the kth nearest
neighbour to xi. The value (m + 1) therefore describes the size of the group.
The group of potential interest which will be returned to us by the algorithm
comprises the peak, xi and its m nearest neighbours, Nm(xi).

Minimum and maximum values of M are set. Values of mmin = 5 and mmax

= 99 were set following discussions with the NPSA about appropriate group
sizes.

For samples of 25,000 incidents, around 150 to 250 peaks are generally iden-
tified, although for one sample 850 were found.

5 Assessing Results

Given the nature of the problem, the results must be assessed qualitatively; this
presents some challenges. The results are only useful if they allow the NPSA to
create advice and instructions to send to Trusts. However, the NPSA has only
limited resources to assess the results; furthermore, they will be discouraged
if the results turn out to be predominantly or uniformly incoherent or unin-
teresting, and there is a risk that they would abandon a type of analysis that
is experimental and unfamiliar to them. We therefore need to ensure that the
results that they are presented with are limited in quantity and of a certain
quality.

We have more time available than the NPSA to assess the quality of the results
and filter out uninteresting groups. However, we have much less knowledge of the
subject matter, and can only use our general knowledge and common sense. This
will limit the quality of our filtering process. In addition, due to the number of
different parameters that can be varied in modelling the data, we cannot possibly
assess the results for all of the combinations manually; we therefore need to find
a quantitative measure that we can calculate and assess quickly, which acts as a
proxy for the quality of the peaks.
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These issues are likely to be encountered in most data mining projects, where
the results can only be assessed subjectively by the third party who owns the
data, but who may have only a limited amount of time to assess the results, and
may not in fact know a priori what information they are expecting or hoping
for from the data.

Our process for assessing the data has three stages. Firstly, given that there
are many different parameter combinations that can be used in the model build-
ing process, the volume of results produced is very large. A quantitative proxy
measure of model quality is used to find the combination of parameters that pro-
duces a model of the text that most closely reflects the meaning of the incident
descriptions.

The number of groups produced by PEAKER for these parameter combina-
tions is still too great for them to be sent to the NPSA. The results are assessed
qualitatively, and those groups that are clearly incoherent or uninteresting are
discarded. This filtering method is the second stage in the process.

Finally, groups that appear to be of potential interest can be passed to the
NPSA for a final assessment. The NPSA’s medical experts examine the groups:
if they find any of the groups to be interesting, the NPSA will be able to draft
advice and instructions to NHS Trusts.

5.1 Proxy Measure

The proxy measure is based on the following assumption. If PEAKER can be
used to identify known groups of incidents from within a larger random sample
of incidents, this provides evidence that the model is of a higher quality than
one where the known groups cannot be found, i.e., that incident descriptions
that mean the same thing but that use different vocabulary should be in close
proximity in the model space.

Specifically, what was done was to take a random sample of 3,000 incidents
from the low dimensional representation of the 25,000 incident dataset. The
positions in the model space were then calculated for seven known groups. These
groups are described in Table 3.

The groups were provided by the NPSA, who had found them during man-
ual analysis of the NRLS. The final datasets were therefore low dimensional
representations of 3,419 incidents. PEAKER was used to find groups of

Table 3. Known Groups of Incidents

Type Of Incident Code Size

Anaesthetics An 100

Chest drains Ch 7

Latex Lt 7

Methotrexate Mt 5

Obstetrics Ob 100

Self harm Sl 100

Sexual safety Sx 100
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potential interest in these datasets. We defined a known group as being found if
the following conditions were met:

– A group was identified that contained at least six incidents
– At least 50% of the incidents in the identified group came from the known

group
– There were more incidents in the identified group from that known group

than any other known group

These ad-hoc conditions appear to produce satisfactory results. We used the proxy
method to compare the large volumes of results using different parameter settings.
These include, for example, models calculated using different types of supervised
dimensionality reduction, or anomaly detection using different values of the K pa-
rameter in PEAKER. Table 4 shows the results using two different normalising
functions to calculate the IDF term weighting. The upper half of the table shows
whether the known groups can be found (denoted by a tick), using the square root
as the normalising function (see Section 3.2). The lower half of the table shows the
results for the logarithm. It can be seen, for example, that the known groups in-
volving latex, obstetrics, self harm and sexual safety were found using the square
root for normalisation and variable 6 for dimensionality reduction. These results
may be compared with those for normalisation using the logarithm (and variable
6 for dimensionality reduction), where no known groups were found.

5.2 Manual Assessment

Once these optimal parameter settings had been found, analysis was carried out
on six datasets that are known to be of particular interest to the NPSA. These
are:-

– Medical Devices (Med)
– Surgical Speciality (Sur)
– Treatment Procedure (Tre)
– Diagnostic Services (Dia)
– Accident and Emergency (AE)
– Incidents Involving Death or Severe Harm (DS)

The analysis proceeded as previously, with a low dimensional numerical repre-
sentation of the text calculated and PEAKER used to find groups of potential
interest. We then placed the groups into four broad categories, to reduce to a
reasonable number the groups that are passed to the NPSA, and to create a
numerical measure of the quality of the results. These are:

– A : coherent, and using varying vocabulary
– B : coherent, potentially interesting but using similar vocabulary
– C : coherent, but already known and using similar vocabulary
– D : incoherent
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Table 4. Comparison Of Normalisation Functions Using Proxy Measure

Variable
Groups

An Ch Lt Mt Ob Sl Sx

√

1 ✖ ✖ ✖ ✖ ✔ ✖ ✔

2 ✖ ✖ ✔ ✖ ✖ ✖ ✔

3 ✖ ✖ ✔ ✖ ✔ ✔ ✔

4 ✖ ✖ ✖ ✖ ✖ ✖ ✔

5 ✖ ✖ ✔ ✖ ✔ ✖ ✔

6 ✖ ✖ ✔ ✖ ✔ ✔ ✔

Log

1 ✖ ✖ ✖ ✖ ✖ ✖ ✖

2 ✖ ✖ ✖ ✖ ✖ ✖ ✖

3 ✖ ✖ ✖ ✖ ✖ ✔ ✔

4 ✖ ✖ ✖ ✖ ✔ ✔ ✔

5 ✖ ✖ ✖ ✖ ✖ ✖ ✖

6 ✖ ✖ ✖ ✖ ✖ ✖ ✖

Table 5. Numbers Of Incidents Filtered Into Each Category By Manual Assessment

Category Variable
Datasets

Med Sur Tre Dia AE DS

A

1 8 0 28 58 1 17

2 52 24 14 35 7 36

3 X 97 X 71 106 64

4 48 109 70 139 152 89

5 66 X 42 X X 57

6 70 39 83 81 X 65

B

1 0 0 0 0 0 0

2 0 0 0 3 0 0

3 X 0 X 6 0 0

4 0 0 4 2 0 0

5 0 X 0 X X 0

6 0 0 0 0 X 0

C

1 8 65 58 102 20 12

2 14 85 76 77 31 18

3 X 180 X 130 111 53

4 13 162 83 181 75 66

5 19 X 90 X X 32

6 7 113 83 111 X 29

D

1 134 204 141 125 171 121

2 25 72 54 94 85 56

3 X 13 X 15 12 28

4 802 48 45 21 42 54

5 36 X 49 X X 52

6 67 56 39 95 X 84
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Coherence was assessed subjectively: the descriptions in a group must describe
roughly the same type of incident. Clearly we do not understand some of the
medical terminology, so in the case of any doubt over the general meaning of
the description (which is actually relatively rare) we erred towards placing the
groups into the highest plausible group.

‘Using the same vocabulary’ means that the groups used either identical or
very similar language in their incident descriptions, e.g., a group of 20 incidents
with ‘patient fell’ as their description, or a group of 15 incidents all using a Trust’s
proforma description of a breach of EU blood transfusion guidelines. These types
of incident descriptions are deemed to be less interesting than those that use
varied vocabulary. The numbers of groups placed into each category for each of
the datasets are as shown in Table 5 (where an ‘X’ is shown, all of the incidents
in the sample are classified into the same class). For example, for the Medical
Devices dataset, using categorical variable 6 (see Table 2) to calculate linear
discriminants, 70 groups were coherent and used varying vocabulary, whilst 67
were clearly incoherent.

Looking at Table 5, we can see that some of the datasets produce results of far
higher quality than others. For example, the model produced using categorical
variable 1 for the Accident and Emergency dataset contains only one coherent,
potentially interesting group; using categorical variable 2 only produces seven of
these groups. The number of incoherent groups found for these models are 171
and 85 respectively. However for medical devices using categorical variable 2, 52
out of 91 (57%) of the groups found are coherent and potentially interesting.

The results of Tables 4 and 5 show some similarity: for example the models
based on categorical variable 1 produce lower quality results than those based
on categorical variable 3. This similarity between the results is reassuring as
it provides us with evidence that the assumption that we made for the proxy
measure is correct; i.e., that the number of known groups found is related to the
overall quality of the model.

An example of one of the groups found in the Surgical Specialty sample is
shown in Table 6. This group is a set of incidents where a problem with a lack of
notes has had an effect on a medical procedure. It can be seen that the incidents
have similar meaning, but for example, the second incident does not include the
word ‘notes’ (‘noted’ is an entirely separate variable), and the descriptions use
different words to refer to the medical procedures: ‘surgery’, ‘theatre’, ‘surery’,
‘endoscopic procedure’ and so on.

Many of the other groups that are found using our analysis are similar, in
that the incident descriptions comprising the groups mean similar things, but
use different language to describe them. We have therefore achieved one of the
major aims of our project, which is to produce a global, numerical model of the
free text incident descriptions, such that text that means the same thing but
uses different vocabulary will be in the same part of the low dimensional space.

We have also developed a method by which manageable quantities of high
quality information can be passed to the NPSA, but where we can also examine
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Table 6. Group Of Incidents Identified From Surgical Specialty Sample

Patient coming for surgery 2 / 2 / 06 .

Notes missing . Rang 4987 , last dept to

have notes . Notes had been sent in post

31 / 1 / 06 , didn’t get to Eye Unit until

late afternoon 2 / 2 / 06 . Patient surgery

cancelled for 2 / 2 / 06 , no notes .

2 different case sheet numbers for patients

with same name and same consultant . Wrong

number on list for patient in theatre .

Problem noted when getting blood .

Pt planned to go on trauma list , all prepared

as per protocol . Pt notes had been requested

but not available for anaesthetist . Admissions

and medical records aware of urgency for notes .

Theatre cancelled in view of medical history

and no notes available .

Patient taken to theatre for surery on morning

list . ODP noticed that another patient labels

were enclosed in the notes .

Patient admitted for surgery 10 / 8 / 06 ,

preassessed at Hartlepool , notes were then put

in for transfer and booked to ward 28 , notes

never arrived , unable to find them anywhere ,

patient surgery cancelled .

Above patient arrived on unit for an endoscopic

procedure . When checking notes it was found

that the patient had been sent to us with another

patients notes . Ward informed and correct notes

brought down .

Notes and theatre list for tomorrows list sent

from SJUH . On checking list and notes the name

and unit number on list did not match one of the

sets of notes . On further investigation the name

and procedure on the list were correct but the unit

number and date of birth were for another patient .

The notes sent were for this patient but were not

for the named patient on the list and needed a

different procedure .

many different types of models using various parameter combinations, in order
to optimise our results.

5.3 NPSA Assessment

The groups placed into category A were then sent to the NPSA. Medical experts
examined and commented on each of the groups. Two examples are:
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– ‘all patient to patient aggression’
– ‘falls - might be clever little sub-theme of falls out of doors’

This process took several days, and was followed by meetings with the experts.
Their feedback is encouraging: around 80% of the groups were found to be coher-
ent, and represent information that had already been extracted from the NRLS
by the NPSA. The reviewers state that it would be unlikely that novel group of
incidents would be discovered in our samples. This is partly because relatively
few truly novel incidents are present in the NRLS, and partly because similar
samples from the same areas of the NHS had already been analysed manually.
However, some of our groups would not have been known about before the man-
ual analysis work, suggesting that the algorithm would be useful for analysing
less well known groups of incidents.

The algorithm is also good at breaking the samples down into themes: the
groups describe the main themes found in previous manual thematic analysis of
similar data samples. It is possible that our algorithm could be used to avoid
much of the laborious manual work involved in this analysis.

Following this pilot study, the NPSA is considering ways in which the algo-
rithm could be used in its everyday work.

6 Discussion and Future Work

We have developed a model that will allow groups of free text descriptions that
mean the same thing but use different vocabulary to be found using an anomaly
detection algorithm. It appears that using a relatively simple model without
sophisticated natural language processing can produce high quality results.

The use of categorical variables to calculate linear discriminants takes advan-
tage of the fact that large numbers of people have entered the data. For example,
if it is assumed that it takes 30 seconds to categorise an incident into the six
categorical variables described in Table 2, it would take 210 hours of (tedious)
work to replicate this information for a sample of 25,000 incidents. However, this
information is not ideal for our purposes: the categories tend to be more general
than the groups that we are looking for, and groups of interest can cut across
locations or specialties. The use of categorical variables to calculate linear dis-
criminants is merely one way to calculate a mapping from the high dimensional
vector space model to a lower dimensional representation.

Work that we are carrying out at present aims to produce a low dimensional
representation for a training set that reflects the meaning of the incidents, based
on elicited information; an optimal mapping between the high and low dimen-
sional spaces can then be calculated and applied to a larger sample. To create
the low dimensional representation of the training set we present trios of inci-
dent descriptions to a user, who chooses the incident that is the most dissimilar
of the three. This process is carried out repeatedly, until sufficient information
has been obtained. This information can be used to create a distance matrix be-
tween incidents, which can be used to create the low dimensional representation.
Alternatively, trios of individual words can be used to create an ontology.
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There are many other variations that could be examined: we could use natural
language processing techniques to create a more sophisticated model of the text.
For example, tagging the words with their parts of speech would disambiguate
between homonyms. Given the variable quality of the data, pre-processing using
a spellchecking algorithm might improve the data. There are many types of
supervised dimensionality reduction, or we could even discard the vector space
model and devise an entirely new basic model.
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Abstract. Certification and quality assessment are crucial issues within

the wine industry. Currently, wine quality is mostly assessed by physico-

chemical (e.g alcohol levels) and sensory (e.g. human expert evaluation)

tests. In this paper, we propose a data mining approach to predict wine

preferences that is based on easily available analytical tests at the certifi-

cation step. A large dataset is considered with white vinho verde samples

from the Minho region of Portugal. Wine quality is modeled under a re-

gression approach, which preserves the order of the grades. Explanatory

knowledge is given in terms of a sensitivity analysis, which measures the

response changes when a given input variable is varied through its do-

main. Three regression techniques were applied, under a computationally

efficient procedure that performs simultaneous variable and model selec-

tion and that is guided by the sensitivity analysis. The support vector

machine achieved promising results, outperforming the multiple regres-

sion and neural network methods. Such model is useful for understand-

ing how physicochemical tests affect the sensory preferences. Moreover,

it can support the wine expert evaluations and ultimately improve the

production.

Keywords: OrdinalRegression,SensitivityAnalysis, SensoryPreferences,

Support Vector Machines, Variable and Model Selection, Wine Science.

1 Introduction

Nowadays wine is increasingly enjoyed by a wider range of consumers. In partic-
ular, Portugal is a top ten wine exporting country and exports of its vinho verde
wine (from the northwest region) have increased by 36% from 1997 to 2007 [7].
To support this growth, the industry is investing in new technologies for both
wine making and selling processes. Wine certification and quality assessment are
key elements within this context. Certification prevents the illegal adulteration
of wines (to safeguard human health) and assures quality for the wine market.
Quality evaluation is often part of the certification process and can be used to
improve wine making (by identifying the most influential factors) and to stratify
wines such as premium brands (useful for setting prices).

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 66–79, 2009.
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Wine certification is often assessed by physicochemical and sensory tests [9].
Physicochemical laboratory tests routinely used to characterize wine include
determination of density, alcohol or pH values, while sensory tests rely mainly
on human experts. It should be stressed that taste is the least understood of
the human senses [20], thus wine classification is a difficult task. Moreover, the
relationships between the physicochemical and sensory analysis are complex and
still not fully understood [16].

On the other hand, advances in information technologies have made it possible
to collect, store and process massive, often highly complex datasets. All this data
hold valuable information such as trends and patterns, which can be used to im-
prove decision making and optimize chances of success [23]. Data mining (DM)
techniques [26] aim at extracting high-level knowledge from raw data. There
are several DM algorithms, each one with its own advantages. When modeling
continuous data, the linear/multiple regression (MR) is the classic approach.
Neural networks (NNs) have become increasingly used since the introduction
of the backpropagation algorithm [19]. More recently, support vector machines
(SVMs) have also been proposed [3]. Due to their higher flexibility and nonlin-
ear learning capabilities, both NNs and SVMs are gaining an attention within
the DM field, often attaining high predictive performances [13]. SVMs present
theoretical advantages over NNs, such as the absence of local minima in the
learning phase. When applying these methods, performance highly depends on
a correct variable and model selection, since simple models may fail in mapping
the underlying concept and too complex ones tend to overfit the data [13][12].

The use of decision support systems by the wine industry is mainly focused
on the wine production phase [10]. Despite the potential of DM techniques to
predict wine quality based on physicochemical data, their use is rather scarce
and mostly considers small datasets. For example, in 1991 the famous “Wine”
dataset was donated into the UCI repository [2]. The data contain 178 examples
with measurements of 13 chemical constituents (e.g. alcohol, Mg) and the goal
is to classify three cultivars from Italy. This dataset is very easy to discriminate
and has been mainly used as a benchmark for new DM classifiers. In 1997 [22],
a NN fed with 15 input variables (e.g. Zn and Mg levels) was used to predict six
geographic wine origins. The data included 170 samples from Germany and a
100% predictive rate was reported. In 2001 [24], NNs were used to classify three
sensory attributes (e.g. sweetness) of Californian wine, based on grape maturity
levels and chemical analysis (e.g. titrable acidity). Only 36 examples were used
and a 6% error was achieved. More recently, mineral characterization (e.g. Zn
and Mg) was used to discriminate 54 samples into two red wine classes [17]. A
probabilistic NN was adopted, attaining 95% accuracy. As a powerful learning
tool, SVM has outperformed NN in several applications, such as predicting meat
preferences [6]. Yet, in the field of wine quality only one application has been
reported, where spectral measurements from 147 bottles were successfully used
to predict 3 categories of rice wine age [27].

In this paper, we present a real-world application, where wine taste preferences
are modeled by DM algorithms that use analytical data that are easily available
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at the certification step. In contrast with previous studies, a large dataset is con-
sidered with a total of 4898 samples. Wine quality is modeled under a regression
approach that preserves the order of the grades. Explanatory knowledge is given
by a sensitivity analysis, which measures how the responses are affected when a
given input is varied through its domain [14][6]. Variable and model selection are
performed simultaneously, in a process that is guided by the sensitivity analysis.
Also, we propose a parsimony search method to select the best NN and SVM
parameters with a low computational effort. Finally, we show the impact of the
obtained models in the wine domain.

2 Materials and Methods

2.1 Wine Data

This study will consider vinho verde, a unique product from the Minho (north-
west) region of Portugal. Medium in alcohol, is it particularly appreciated due
to its freshness (specially in the summer). This wine accounts for 15% of the to-
tal Portuguese production [7], and around 10% is exported, mostly white wine.
In this work, we will analyze this common variant from the demarcated region
of vinho verde. The data were collected from May/2004 to February/2007 us-
ing only protected designation of origin samples that were tested at the official
certification entity (CVRVV). The CVRVV is an inter-professional organization
with the goal of improving the quality and marketing of vinho verde. The data
were recorded by a computerized system (iLab), which automatically manages
the process of wine sample testing from producer requests to laboratory and
sensory analysis. Each entry denotes a given test (analytical or sensory) and the
final database was exported into a single sheet (.csv).

During the preprocessing stage, the database was transformed in order to
include a distinct wine sample (with all tests) per row. To avoid discarding
examples, only the most common physicochemical tests were selected. Table 1
presents the physicochemical statistics per dataset. Regarding the preferences,
each sample was evaluated by a minimum of three sensory assessors (using blind
tastes), which graded the wine in a scale that ranges from 0 (very bad) to 10
(excellent). The final sensory score is given by the median of these evaluations.
Fig. 1 plots the histograms of the target variable, denoting a typical normal
shape distribution (i.e. with more normal grades that extreme ones).

2.2 Data Mining Approach and Evaluation

We will adopt a regression approach, which preserves the order of the preferences.
For instance, if the true grade is 3, then a model that predicts 4 is better than one
that predicts 7. A regression dataset D is made up of k ∈ {1, ..., N} examples,
each mapping an input vector with I input variables (xk

1 , . . . , x
k
I ) to a given target

yk. The regression performance is commonly measured by an error metric, such
as the mean absolute deviation (MAD) [26]:

MAD =
∑N

i=1 |yi − ŷi|/N (1)
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Table 1. The physicochemical data statistics

Attribute (units) Min Max Mean

fixed acidity (g(tartaric acid)/dm3) 3.8 14.2 6.9

volatile acidity (g(acetic acid)/dm3) 0.1 1.1 0.3

citric acid (g/dm3) 0.0 1.0 0.3

residual sugar (g/dm3) 0.6 65.8 6.4

chlorides (g(sodium chloride)/dm3) 0.01 0.35 0.05

free sulfur dioxide (mg/dm3) 2 260 35

total sulfur dioxide (mg/dm3) 9 260 138

density (g/cm3) 0.987 1.039 0.994

pH 2.7 3.8 3.1

sulphates (g(potassium sulphate)/dm3) 0.2 1.1 0.5

alcohol (% vol.) 8.0 14.2 10.4
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Fig. 1. The histogram for the white wine preferences

where ŷk is the predicted value for the k input pattern. The regression error
characteristic (REC) curve [1] is also used to compare regression models, with
the ideal model presenting an area of 1.0. The curve plots the absolute error
tolerance T (x-axis), versus the percentage of points correctly predicted (the
accuracy) within the tolerance (y-axis).

The confusion matrix is often used for classification analysis, where a C ×
C matrix (C is the number of classes) is created by matching the predicted
values (in columns) with the desired classes (in rows). For an ordered output,
the predicted class is given by pi = yi, if |yi − ŷi| ≤ T , else pi = y′i, where
y′i denotes the closest class to ŷi, given that y′i 	= yi. From the matrix, several
metrics can be used to access the overall classification performance, such as the
accuracy and precision (i.e. the predicted column accuracies) [26].

The holdout validation is often used to estimate the generalization capability
of a model. This method randomly partitions the data into training and test
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subsets. The former subset is used to fit the model (typically with 2/3 of the
data), while the latter (with the remaining 1/3) is used to compute the estimate.
A more robust estimation procedure is the k-fold cross-validation [8], where the
data is divided into k partitions of equal size. One subset is tested each time
and the remaining data are used for fitting the model. The process is repeated
sequentially until all subsets have been tested. Therefore, under this scheme, all
data are used for training and testing. However, this method requires around k
times more computation, since k models are fitted. The validation method will
be applied several runs and statistical confidence will be given by the t-student
test at the 95% confidence level [11].

2.3 Data Mining Methods

We will adopt the most common NN type, the multilayer perceptron, where
neurons are grouped into layers and connected by feedforward links (Fig. 2).
Supervised learning is achieved by an iterative adjustment of the network con-
nection weights, called the training procedure, in order to minimize an error
function. For regression tasks, this NN architecture is often based on one hidden
layer of H hidden nodes with a logistic activation and one output node with a
linear function [13]:

ŷ = wo,0 +
o−1∑

j=I+1

1

1 + exp(−
∑I

i=1 xiwj,i − wj,0)
· wo,i (2)

where wi,j denotes the weight of the connection from node j to i and o the output
node. The performance is sensitive to the topology choice (H). A NN with H = 0
is equivalent to the MR model. By increasing H , more complex mappings can be
performed, yet an excess value of H will overfit the data, leading to generalization
loss. A computationally efficient method to set H is to search through the range
{0, 1, 2, 3, . . . , Hmax} (i.e. from the simplest NN to more complex ones). For each
H value, a NN is trained and its generalization estimate is measured (e.g. over
a validation sample). The process is stopped when the generalization decreases
or when H reaches the maximum value (Hmax).

In SVM regression [21], the input x ∈ �I is transformed into a high m-
dimensional feature space, by using a nonlinear mapping (φ) that does not need
to be explicitly known but that depends of a kernel function (K). The aim of a
SVM is to find the best linear separating hyperplane in the feature space:

ŷ = w0 +
m∑

i=1

wiφi(x) (3)

To select the best hyperplane, the ε-insensitive loss function is often used [21].
This function sets an insensitive tube around the residuals and the tiny errors
within the tube are discarded (Fig. 2).

We will adopt the popular gaussian kernel, which presents less parameters
than other kernels (e.g. polynomial) [25]: K(x, x′) = exp(−γ||x − x′||2), γ > 0.
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Fig. 2. Example of a multilayer perceptron with 3 inputs, 2 hidden nodes and one

output (left) and a linear SVM regression (right, adapted from [21])

Under this setup, the SVM performance is affected by three parameters: γ, ε and
C (a trade-off between fitting the errors and the flatness of the mapping). To
reduce the search space, the first two values will be set using the heuristics [4]:
C = 3 (for a standardized output) and ε = σ̂/

√
N , where σ̂ = 1.5/N×

∑N
i=1(yi−

ŷi)2 and ŷ is the value predicted by a 3-nearest neighbor algorithm. The kernel
parameter (γ) produces the highest impact in the SVM performance, with values
that are too large or too small leading to poor predictions. A practical method
to set γ is to start the search from one of the extremes and then search towards
the middle of the range while the predictive estimate increases [25].

2.4 Input Relevance and Variable/Model Selection

Sensitivity analysis [14] is a simple procedure that is applied after the training
phase and analyzes the model responses when the inputs are changed. Origi-
nally proposed for NNs, this sensitivity method can also be applied to other
algorithms, such as SVM [6]. Let ŷaj denote the output obtained by holding all
input variables at their average values except xa, which varies through its entire
range with j ∈ {1, . . . , L} levels. If a given input variable (xa ∈ {x1, . . . , xI}) is
relevant then it should produce a high variance (Va). Thus, its relative impor-
tance (Ra) can be given by:

Va =
∑L

j=1 (ŷaj − ŷaj)2/(L− 1)
Ra = Va/

∑I
i=1 Vi × 100 (%)

(4)

The Ra values will be used to measure the relevance of the inputs. For a more
detailed input influence analysis, in this work we propose the Variable Effect
Characteristic (VEC) curve. For a given a attribute, the VEC plots the xaj

values (x-axis) versus the ŷaj predictions (y-axis) (see Section 3.3).
The sensitivity analysis will be also used to discard irrelevant inputs, guiding

the variable selection algorithm. We will adopt a backward selection scheme,
which starts with all variables and iteratively deletes one input until a stopping
criterion is met [12]. The difference, when compared to the standard backward
selection, is that we guide the variable deletion (at each step) by the sensitivity
analysis, in a variant that allows a reduction of the computational effort by a
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factor of I and that in [14] has outperformed other methods (e.g. backward
and genetic algorithms). Similarly to [28], the variable and model selection will
be performed simultaneously, i.e. in each backward iteration several models are
searched, with the one that presents the best generalization estimate selected.
For a given DM method, the overall procedure is:

1. Start with all F = {x1, . . . , xI} input variables.
2. If there is a hyperparameter P ∈ {P1, . . . , Pk} to tune (e.g. NN or SVM),

start with P1 and go through the remaining range until the generalization
estimate decreases. Compute the generalization estimate of the model by
using an internal validation method. For instance, if the holdout method is
used, the available data are further split into training (to fit the model) and
validation sets (to get the predictive estimate).

3. After fitting the model, compute the relative importances (Ri) of all xi ∈ F
variables and delete from F the least relevant input. Go to step 4 if the
stopping criterion is met, otherwise return to step 2.

4. Select the best F (and P in case of NN or SVM) values, i.e., the input vari-
ables and model that provide the best predictive estimates. Finally, retrain
this configuration with all available data.

3 Empirical Results

3.1 Experimental Setup

All experiments reported in this work were written in R [18] and conducted in
a Linux server, with an Intel dual core processor. R is an open source, multiple
platform (e.g. Windows, Linux) and high-level matrix programming language
for statistical and data analysis. In particular, we adopted the RMiner [5], a
library for the R tool that facilitates the use of DM techniques in classification
and regression tasks.

Before fitting the models, the data was first standardized to a zero mean
and one standard deviation [13]. RMiner uses the efficient BFGS algorithm to
train the NNs (nnet R package), while the SVM fit is based on the Sequential
Minimal Optimization implementation provided by LIBSVM (kernlab package).
The the hyperparameters (H and γ) will be set using the procedure described
in the previous section and with the search ranges of H ∈ {0, 1, . . . , 11} [28] and
γ ∈ {23, 21, . . . , 2−15} [25]. While the maximum number of searches is 12/10, in
practice the parsimony approach (step 2 of Section 2.4) will reduce this number
substantially.

Regarding the variable selection, we set the estimation metric to the MAD
value (Eq. 1), as advised in [25]. To reduce the computational effort, we adopted
the simpler 2/3 and 1/3 holdout split as the internal validation method. The sen-
sitivity analysis parameter was set to L = 6, i.e. xa ∈ {−1.0,−0.6, . . . , 1.0} for a
standardized input. As a reasonable balance between the pressure towards simpler
models and the increase of computational search, the stopping criterion was set to
2 iterations without any improvement or when only one input is available.
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3.2 Predictive Knowledge

To evaluate the selected models, we adopted 20 runs of the more robust 5-fold
cross-validation, in a total of 20×5=100 experiments for each tested configu-
ration. The results are summarized in Table 2. The test set errors are shown
in terms of the mean and 95% confidence intervals. Three metrics are present:
MAD, the classification accuracy for different tolerances (i.e. T = 0.25, 0.5 and
1.0) and Kappa (T = 0.5). The selected models are described in terms of the
average number of inputs (I) and hyperparameter value (H or γ). The last row
shows the total computational time required in seconds.

For all error metrics, the SVM is the best choice. The differences are higher for
small tolerances (e.g. for T = 0.25, the SVM accuracy is almost two times better
when compared to other methods). This effect is clearly visible when plotting the
full REC curves (Fig. 3). The Kappa statistic [26] measures the accuracy when
compared with a random classifier (which presents a Kappa value of 0%). The
higher the statistic, the more accurate the result. The most practical tolerance
values are T = 0.5 and T = 1.0. The former tolerance rounds the regression
response into the nearest class, while the latter accepts a response that is correct
within one of the two closest classes (e.g. a 3.1 value can be interpreted as grade
3 or 4 but not 2 or 5). For T = 0.5, the SVM accuracy improvement is 11.7
pp (19.9 pp for Kappa). The NN model slightly outperforms the MR results.
Regarding the variable selection, the average number of deleted inputs ranges
from 1.0 to 1.7, showing that most of the physicochemical tests used are relevant.
In terms of computational effort, the SVM is the most expensive method.

A detailed analysis of the SVM classification results is presented by the aver-
age confusion matrix for T = 0.5 (Table 3). To simplify the visualization, the 3
and 9 grade predictions were omitted, since these were always empty. Most of the
values are close to the diagonals (in bold), denoting a good fit by the model. The
true predictive accuracy for each class is given by the precision metric (e.g. for
the grade 4, precisionT=0.5=18/(18+6+4)=64.3%). This statistic is important
in practice, since in a real deployment setting the actual values are unknown and
all predictions within a given column would be treated the same. For a tolerance

Table 2. The wine modeling results (test set errors and selected models; best values

are in bold; underline denotes a statistical significance when compared with MR and

NN)

MR NN SVM

MAD 0.59±0.00 0.58±0.00 0.45±0.00

AccuracyT=0.25 (%) 25.6±0.1 26.5±0.3 50.2±1.1

AccuracyT=0.50 (%) 51.7±0.1 52.6±0.3 64.3±0.4

AccuracyT=1.00 (%) 84.3±0.1 84.7±0.1 86.8±0.2

KappaT=0.5 (%) 20.9±0.1 23.5±0.6 43.4±0.4

Inputs (I) 9.6 9.3 10.0

Model – H = 2.1 γ = 20.7

Time (s) 551 1339 34644
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Fig. 3. The average test set REC curves (SVM – solid line, NN - gray line and MR –

dashed line)

Table 3. The average confusion matrix (T = 0.5) and precision values (T = 0.5 and

1.0) for the SVM model (bold denotes accurate predictions)

Actual White wine predictions
Class 4 5 6 7 8

3 0 3 17 1 0

4 18 53 91 1 0

5 6 832 598 21 0

6 4 241 1806 144 3

7 0 20 418 436 6

8 0 2 71 45 58
9 0 0 2 2 0

PrecisionT=0.5 64.3% 72.3% 60.1% 67.1% 86.6%

PrecisionT=1.0 89.7% 93.4% 82.0% 90.1% 96.2%

of 0.5, the accuracies are 60.1/64.3% for classes 6 and 4, 67.1/72.3% for grades
7 and 5, and a surprising 86.6% for the class 8 (the exception are the 3 and
9 extremes with 0%, not shown in the table). When the tolerance is increased
(T = 1.0), high accuracies are obtained, ranging from 82.0 to 96.2%.

3.3 Explanatory Knowledge

The relative importances of the SVM input variables, given in terms of the mean
and 95% confidence intervals of the Ra values, are shown in Fig. 4. It should be
noted that the whole 11 inputs are shown, since in each simulation different sets
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Fig. 4. The relative input importances for the SVM model (in %; bars denote the

average value while the whiskers show the 95% confidence intervals)

of variables can be selected. A more detailed analysis will be given to sixth most
relevant analytical tests (Fig. 5). For a given input, each plot shows the histogram
(frequency values are shown at the right of the y-axis) and the VEC curves (ŷaj

values, shown at the left of the y-axis) when the analytical test values (x-axis)
are changed through their domain. For a given test, we built a VEC curve with
L = 6 points (the sensitivity levels). Since 100 experiments we performed, we
performed a vertical averaging (with the respective 95% confidence intervals) of
the 100 curves.

In several cases, the obtained results confirm the oenological theory. For in-
stance, an increase in the alcohol (the most relevant factor) tends to result in
a higher quality wine. Fig. 5 shows that this is true between the range from
9 to 13 % (which is related to most samples). In addition, the volatile acidity
has a negative impact within the range that corresponds to the majority of the
examples. This outcome was expected, since acetic acid is the key ingredient
in vinegar. Moreover, residual sugar levels are important in white wine, where
the equilibrium between the freshness and sweet taste is more appreciated. The
most intriguing result is the high importance of sulphates, ranked second. Oeno-
logically this result could be very interesting. An increase in sulphates might be
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(in bars) for the SVM model and the sixth most relevant physicochemical tests



Using DM for Wine Quality Assessment 77

related to the fermenting nutrition, which is very important to improve the wine
aroma, in an effect that occurs within the range 0.4 to 0.7 that contains most of
the samples.

4 Conclusions

Due to the increase in the interest in wine, companies are investing in new tech-
nologies to improve their production and selling processes. Quality certification
is a crucial step for both processes and is currently dependent on wine tasting by
human experts. This work aims at the prediction of wine preferences from objec-
tive analytical tests that are available at the certification step. A large dataset
(with 4898 entries) was considered, including white vinho verde samples from
the northwest region of Portugal. This case study was addressed by a regression
tasks, where wine preference is modeled in a continuous scale, from 0 (very bad)
to 10 (excellent). This approach preserves the order of the classes, allowing the
evaluation of distinct accuracies, according to the degree of error tolerance (T )
that is accepted.

Due to advances in the data mining (DM) field, it is possible to extract knowl-
edge from raw data. Indeed, powerful techniques such as neural networks (NNs)
and more recently support vector machines (SVMs) are emerging. While being
more flexible models (i.e. no a priori restriction is imposed), the performance de-
pends on a correct setting of hyperparameters (e.g. SVM kernel parameter) and
the input variables used by the model. In this study, we present an integrated
and computationally efficient approach that simultaneously addresses both is-
sues. Sensitivity analysis is used to extract knowledge from the NN/SVM models,
given in terms of the effect on the responses when one input is varied, leading
to the proposed Variable Effect Characteristic (VEC) curves, and relative im-
portance of the inputs (measured by the variance of the response changes). The
the variable selection is guided by sensitivity analysis and the model selection is
based on parsimony search that starts from a reasonable value and is stopped
when the generalization estimate decreases.

Encouraging results were achieved, with the SVM model providing the best
performances, outperforming the NN and MR techniques. The overall accura-
cies are 64.3% (T = 0.5) and 86.8% (T = 1.0). It should be noted that the
datasets contain six/seven classes (from 3 to 8/9) and these accuracies are much
better than the ones expected by a random classifier. While requiring more com-
putation, the SVM fitting can still be achieved within a reasonable time with
current processors. For example, one run of the 5-fold cross-validation testing
takes around 26 minutes.

The result of this research is relevant to the wine science domain, helping
in the understanding of how physicochemical characterization affects the final
quality. In addition, this work can have an impact in the wine industry. At
the certification phase and by Portuguese law, the sensory analysis has to be
performed by human tasters. Yet, the evaluations are based in the experience and
knowledge of the experts, which are prone to subjective factors. The proposed
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data-driven approach is based on objective tests and thus it can be integrated
into a decision support system, aiding the speed and quality of the oenologist
performance. For instance, the expert could repeat the tasting only if her/his
grade is far from the one predicted by the DM model. In effect, within this
domain the T = 1.0 distance is accepted as a good quality control process and, as
shown in this study, high accuracies were achieved for this tolerance. The model
could also be used to improve the training of oenology students. Furthermore,
the relative importance of the inputs brought interesting insights regarding the
impact of the analytical tests. Since some variables can be controlled in the
production process this information can be used to improve the wine quality. For
instance, alcohol concentration can be increased or decreased by monitoring the
grape sugar concentration prior to the harvest. Also, the residual sugar in wine
could be raised by suspending the sugar fermentation carried out by yeasts. In
future work, we intend to model preferences from niche and/or profitable markets
(e.g. for a particular country by providing free wine tastings at supermarkets),
aiming at the design of brands that match these market needs. We will also test
other DM algorithms that specifically build rankers, such as regression trees [15].

References

1. Bi, J., Bennett, K.: Regression Error Characteristic curves. In: Proceedings of 20th

Int. Conf. on Machine Learning (ICML), Washington DC, USA (2003)

2. Blake, C., Merz, C.: UCI Repository of Machine Learning Databases (1998)

3. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classi-

fiers. In: COLT 1992: Proceedings of the Fifth Annual Workshop on Computational

Learning Theory, pp. 144–152. ACM Press, New York (1992)

4. Cherkassy, V., Ma, Y.: Practical Selection of SVM Parameters and Noise Estima-

tion for SVM Regression. Neural Networks 17(1), 113–126 (2004)

5. Cortez, P.: RMiner: Data Mining with Neural Networks and Support Vector Ma-

chines using R. In: Rajesh, R. (ed.) Introduction to Advanced Scientific Softwares

and Toolboxes (in press)

6. Cortez, P., Portelinha, M., Rodrigues, S., Cadavez, V., Teixeira, A.: Lamb Meat

Quality Assessment by Support Vector Machines. Neural Processing Letters 24(1),

41–51 (2006)

7. CVRVV. Portuguese Wine - Vinho Verde. Comissão de Viticultura da Região dos

Vinhos Verdes (CVRVV) (July 2008), http://www.vinhoverde.pt

8. Dietterich, T.: Approximate Statistical Tests for Comparing Supervised Classifica-

tion Learning Algorithms. Neural Computation 10(7), 1895–1923 (1998)

9. Ebeler, S.: Linking flavour chemistry to sensory analysis of wine. In: Flavor Chem-

istry - Thirty Years of Progress, pp. 409–422. Kluwer Academic Publishers, Dor-

drecht (1999)

10. Ferrer, J., MacCawley, A., Maturana, S., Toloza, S., Vera, J.: An optimization

approach for scheduling wine grape harvest operations. Production Economics,

pp. 985–999 (2008)

11. Flexer, A.: Statistical evaluation of neural networks experiments: Minimum re-

quirements and current practice. In: Proceedings of the 13th European Meeting on

Cybernetics and Systems Research, Vienna, Austria, vol. 2, pp. 1005–1008 (1996)

http://www.vinhoverde.pt


Using DM for Wine Quality Assessment 79

12. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal

of Machine Learning Research 3, 1157–1182 (2003)

13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. Springer, NY (2001)

14. Kewley, R., Embrechts, M., Breneman, C.: Data Strip Mining for the Virtual De-

sign of Pharmaceuticals with Neural Networks. IEEE Transactions on Neural Net-

works 11(3), 668–679 (2000)

15. Kramer, S., Widmer, G., Pfahringer, B., De Groeve, M.: Prediction of Ordinal

Classes Using Regression Trees. Fundamenta Informaticae 47(1), 1–13 (2001)

16. Legin, A., Rudnitskaya, A., Luvova, L., Vlasov, Y., Natale, C., D’Amico, A.: Eval-

uation of Italian wine by the electronic tongue: recognition, quantitative analysis

and correlation with human sensory perception. Analytica Chimica Acta, 33–34

(2003)
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Abstract. Multiple-instance learning (MIL) is a generalization of the

supervised learning problem where each training observation is a labeled

bag of unlabeled instances. Several supervised learning algorithms have

been successfully adapted for the multiple-instance learning settings. We

explore the adaptation of the Naive Bayes (NB) classifier and the utiliza-

tion of its sufficient statistics for developing novel multiple-instance learn-

ing methods. Specifically, we introduce MICCLLR (multiple-instance

class conditional log likelihood ratio), a method for mapping each bag of

instances as a single meta-instance using class conditional log likelihood

ratio statistics such that any supervised base classifier can be applied

to the meta-data. The results of our experiments with MICCLLR using

different base classifiers suggest that no single base classifier consistently

outperforms other base classifiers on all data sets. We show that a sub-

stantial improvement in performance is obtained using an ensemble of

MICCLLR classifiers trained using different base learners. We also show

that an extra gain in classification accuracy is obtained by applying Ad-

aBoost.M1 to weak MICCLLR classifiers. Overall, our results suggest

that the predictive performance of the three proposed variants of MIC-

CLLR are competitive to some of the state-of-the-art MIL methods.

Keywords: multiple-instance learning, image retrieval, drug activity

prediction, ensemble of multiple-instance learning classifiers, boosted

multiple-instance learning.

1 Introduction

Dietterich et al. [1] introduced the multiple-instance learning (MIL) problem
motivated by his work on classifying aromatic molecules according to whether
or not they are ”musky”. In this classification task, each molecule can adopt
multiple shapes as a consequence of rotation of some internal bonds. Dietterich
et al. [1] suggested representing each molecule by multiple conformations (in-
stances) representing possible shapes or conformations that the molecule can
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assume. The multiple conformations yield a multiset (bag) of instances (where
each instance corresponds to a conformation) and the task of the classifier is
to assign a class label to such a bag. Dietterich’s proposed solution to the MIL
problem is based on the standard multiple-instance assumption, that all the in-
stances in a bag, in order for it be labeled negative, must contain no positively
labeled instance, and a positive bag must have at least one positive instance.
The resulting classification task finds application in drug discovery [1], identify-
ing Thioredoxin-fold proteins [2], content-based image retrieval (CBIR) [3,4,5],
and computer aided diagnosis (CAD) [6].

Several approaches to MIL have been investigated in the literature including a
MIL variant of the backpropagation algorithm [7], variants of the k-nearest neigh-
bor (k-NN) algorithm [8], the Diverse Density (DD) method [9] and EM-DD [10]
which improves on DD by using Expectation Maximization (EM), DD-SVM [11]
which trains a support vector machine (SVM) classifier in a feature space con-
structed from a mapping defined by the local maximizers and minimizers of the
DD function, and MI logistic regression (MILR) [12]. Most of these methods search
for a single instance contributing the positive bag label. Alternatively, a number
of MIL methods [13,14,15] have a generalized view of the MIL problem where all
the instances in a bag are assumed to participate in determining the bag label.

Two basic approaches for solving the MIL problem have been proposed in the
literature: i) adapting supervised learning algorithms for MIL settings. Zhou [16]
showed that standard single-instance supervised algorithms can be adapted for
MI learning by shifting their focuses from discrimination on the instances to the
discrimination on the bags. Many MIL methods can be viewed as single-instance
learning methods adapted for the MIL settings. For example, MI-SVM [17],
Citation-kNN [8], DD [9], and RBF-MIP [18]; ii) adapting MIL representation
for supervised algorithms. The basic idea is to convert each bag of instances
into a single feature vector such that supervised classifiers can be trained to
discriminate between positive and negative bags by discriminating between their
corresponding feature vectors. Several techniques for mapping bags into single
feature vectors are discussed in the next section.

Naive Bayes (NB) has proven effective in many practical applications, includ-
ing text classification, medical diagnosis, and systems performance management
[19,20,21]. In this work, we showed that NB classifier can be adapted for MIL
setting. However, this adaptation imposes strong and unrealistic independence
assumptions (instances within a bag are independent given the bag label and
instance attributes are independent given the label of the instance). Alterna-
tively, we propose MICCLLR, a generalized MIL algorithm that uses the class
conditional log likelihood ratio statistics to map each bag into a single meta-
instance. MICCLLR allows for any supervised learning algorithm to be the base
classifier for classifying the meta-instance data. Our results evaluating MIC-
CLLR using different base classifiers suggest that no single base classifier consis-
tently outperforms other base classifiers on all data sets. Consequently, we show
that a substantial improvement in performance is obtained using an ensemble
of MICCLLR classifiers trained using different base learners. Additional gain in
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classification accuracy is obtained by applying AdaBoost.M1 [22] to weak MIC-
CLLR learners. Overall, our results suggest that the predictive performance of
the three proposed variants of MICCLLR are competitive to some of the state-
of-the-art MIL methods on five widely used MIL data sets for drug activity
prediction [1] and image retrieval [17] domains.

The rest of this paper is organized as follows: Section 2 summarizes the for-
mulations of the MIL problem and overviews a number of related MIL methods
that follow the same approach of adapting MIL representation for single-instance
learning algorithms. Section 3 introduces our method. Section 4 gives our exper-
imental results. Section 5 concludes with a brief summary and discussion.

2 Preliminaries

2.1 Multiple-Instance Learning Problem

In the standard (single-instance) supervised classifier learning scenario, each in-
stance (input to the classifier) is typically represented by an ordered tuple of at-
tribute values. The instance space I = D1×D2× ...×Dn where Di is the domain
of the ith attribute. The output of the classifier is a class label drawn from a set C
of mutually exclusive classes. A training example is a labeled instance in the form
〈Xi, c(Xi)〉 where Xi ∈ I and c : I → C is unknown function that assigns to an
instance Xi its corresponding class label c(Xi). For simplicity we consider only the
binary classification problem in which C = {−1, 1}. Given a collection of training
examples,E = {〈X1, c(X1)〉, 〈X2, c(X2)〉, ..., 〈Xn, c(Xn)〉}, the goal of the (single-
instance) learner is to learn a function c∗ that approximates c as well as possible.

In the multiple-instance supervised classifier learning scenario, the goal is to
train a (multiple-instance) classifier to label a bag of instances. Under standard
MIL assumption, a bag is labeled negative if and only if all of its instances are
negatively labeled and a bag is labeled positive if at least one of its instances
is labeled positive. More precisely, Let Bi denotes the ith bag in a set of bags
B. Let Xij ∈ I denotes the jth instance in the bag Bi and Xijk be the value
of the kth feature in the instance Xij . The set of MI training examples, EMI ,
is a collection of ordered pairs 〈Bi, f(Bi)〉 where f is unknown function that
assigns to each bag Bi a class label f(Bi) ∈ {−1, 1}. Under the standard MIL
assumption [1], f(Bi) = −1 iff ∀Xij∈Bic(Xij) = −1; and f(Bi) = 1 iff ∃Xij∈Bi ,
such that c(Xij) = 1. Given EMI , a collection of MI training examples, the goal
of the multiple-instance learner is to learn a good approximation function of f .
It should be noted that the function f is defined in terms of a function c : I → C.
However, learning c from the MI training data is challenging since we have labels
only associated with bags and we do not have labels for each instance.

A generalization of the MIL problem has been considered by Weidmann et al.
[13] and Tao et al. [14]. In this setting, all the bag instances contribute the label
assigned to the bag and negative bags may contain some positive instances.
Instead of a single concept, the generalized MIL problem considers a set of
underlying concepts and requires a positive bag to have a certain number of
instances in each of them.
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2.2 Adapting MI Representation for Single-Instance Learning
Algorithms

A number of existing methods for solving the MIL are based on the idea of
adapting the MI representation for single-instance learning algorithms. Gartner
et al. [23] mapped each bag into a single meta-instance using an aggregation
function (e.g. mean, median, minimum, maximum, etc.) applied to each instance
attribute. The resulting labeled meta-instances data set is then used to train an
SVM classifier. Weidmann et al. [13] proposed a two-level classifier (TLC) trained
from the data at two different levels of abstraction. The first classifier is trained
from the MI data at the instance level by assigning the label of each bag to its
instances and assigning a weight to each instance such that bags of different size
will end up with the same weight. Then, the trained classifier is used to map
MI data into a set of meta-instances and a second level supervised classifier is
trained. In their experiments, Weidmann et al, [13] used a pruned decision tree
and a Logit-boosted decision stumps (DS)[24] with 10 boosting iterations as the
first and second level classifier, respectively.

Chen et al. [11] mapped each bag into a meta-instance in a feature space
defined by a set of instance prototypes. An instance prototype is an instance
that is close as possible to at least one instance in each positive bag and as far
as possible from instances in negative bags. The algorithm, named DD-SVM,
proceeds in two steps. First a collection of instance prototypes are learned such
that each prototype is a local maximizer of the DD function. Second, each bag
is mapped into a feature vector where the ith feature is defined by the minimum
distance between the ith prototype and each instance in the bag. Finally, a
standard SVM classifier is trained in the new feature space.

Recently, Chen et al. [15] proposed multiple-instance learning via embedded
instance selection (MILES) which can be viewed as a variant of DD-SVM where
the new feature space is defined by the set of all training instances instead of
the set of prototypes used with DD-SVM. This feature mapping often provides a
large number of irrelevant features. Therefore, 1-norm SVM is applied to select
important features and construct classifiers simultaneously.

Zhou and Zhang [25] proposed constructive clustering-based ensemble (CCE)
method where all the training instances are clustered into d groups. Then, each
bag is mapped into a d binary vector, where the value of the ith feature is set
to one if the concerned bag has instances falling into the ith group and zero
otherwise. The above procedure is repeated for different values of d. For each
value of d, a meta-instance representation of each bag is generated and an SVM
classifier is trained. All the classifiers are then combined in an ensemble for
prediction.

3 The Algorithm

We motivate our method by first introducing MI Naive Bayes (MINB), an adap-
tation of Naive Bayes (NB) classifier to MIL settings. The NB classification rule
is defined by Eq. 1, where Pr(cj) is the a priori probability of class cj and
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Pr(ak|cj) is the probability that the kth attribute of the instance X takes the
value ak given the class cj .

c(X) = arg max
cj∈C

Pr(cj)
n∏

k=1

Pr(ak|cj) (1)

These probabilities, which completely specify a NB classifier, can be estimated
from the training data using standard probability estimation methods based on
relative frequencies of the corresponding classes and attribute value and class
label cooccurrences observed in the data [20]. These relative frequencies summa-
rize all the information relevant for constructing a NB classifier from a training
data set, and hence constitute sufficient statistics for NB Classifier.

When the class labels are binary, that is, C = {−1, 1}, the NB classifier can
be viewed as a linear discriminant by considering the logarithm of posterior odds
as defined by Equations 2 and 3.

φ(X) = ln
Pr(c = 1)
Pr(c = −1)

+ ln
Pr(a1|c = 1)
Pr(a1|c = −1)

+ . . . + ln
Pr(an|c = 1)
Pr(an|c = −1)

(2)

c(X) =
{

1 , φ(X) > 0
−1 , otherwise

(3)

Similarly, given unlabeled bag Bi with mi instances, MINB assigns a label to Bi

as follows:

c(Bi) = arg max
cj∈C

Pr(cj |Bi)

= arg max
cj∈C

Pr(Bi|cj)Pr(cj)

= arg max
cj∈C

Pr(Xi1, Xi2, . . . , Ximi |cj)Pr(cj)

= arg max
cj∈C

Pr(cj)
∏mi

l=1 Pr(Xil|cj)

(4)

The prior probabilities of labels, Pr(cj), can be easily estimated by counting
the number of negative and positive bags. Recalling that instances within a bag
are not labeled, estimating Pr(Xil|cj) is not trivial. In order to approximate
Pr(Xil|cj), we first need to assign a label to each instance. Then, assuming
independence between attributes given the instance class dramatically simplifies
the computation of Pr(Xil|cj). That is, Pr(Xil|cj) =

∏
k Pr(Xilk|cj). Following

the approach in [13], we construct a single instance training data set from the
set of all instances contained in all bags, labeled with their bag’s class label.
Instances in a bag Bi are assigned a weight equal 1

|Bi| .
N
M , where N =

∑m
i |Bi|

and M denotes the number of bags in the training data set.
Based on these assumptions, the MINB classification rule can be defined as in

Eq. 5, where Xilk = ak denotes the value of the kth attribute in the lth instance
in bag Bi with mi instances where each instance is represented by an ordered
tuple of n attribute values.
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c(Bi) = arg max
cj∈C

Pr(cj)
mi∏
l=1

n∏
k=1

Pr(Xilk|cj) (5)

Alternatively, we can rewrite the MINB classifier as a linear discriminant:

φ(Bi) = ln
Pr(c = 1)
Pr(c = −1)

+ ln
Pr(X11|c = 1)
Pr(Xi1|c = −1)

+ . . . + ln
Pr(Ximi |c = 1)
Pr(Ximi |c = −1)

(6)

c(Bi) =
{

1 , φ(Bi) > 0
−1 , otherwise

(7)

Unfortunately, MINB has strong independence assumptions and its observed
cross-validation performance on Musk data sets [1] is not competitive with the
performance of the state-of-the art MIL methods (See Table 1). Instead of adapt-
ing NB for MIL setting, we propose to use NB to map the MI representation
into a single meta-instance representation such that any standard supervised
classification algorithm is applicable.

We now proceed to describe, MICCLLR, a MIL algorithm that uses class
conditional log likelihood ratio (CCLLR) statistics estimated from the MI train-
ing data to map each bag into a single meta-instance. The pseudo code for
MICCLLR is described in Algorithm 1. The input to the algorithm is a set of
binary labeled bags EMI and a base learner h. First, MICCLLR assigns the
label of each bag to its instances and associate a weight with each instance to
compensate for the fact that different bags may be of different sizes (i.e, differ-
ent number of instances). Second, MICCLLR estimates the probability of each
possible value for each attribute given the instance label. Under Naive Bayes
assumption, the posterior probability of each attribute is independent of other
attributes given the instance label. Therefore, the posterior probability of each
attribute can be easily estimated from the training data using standard prob-
ability methods based on relative frequencies of each attribute value and class
label occurrences observed in the labeled training instances [20]. Third, the algo-
rithm uses the collected statistics to map each bag into a single meta-instance.
Let Bi = {Xi1, . . . , Ximi} be a bag of mi instances. Each instance is represented
by an ordered tuple of n attribute values. We define a function s that maps Bi

into a single meta-instance of n real value attributes as; s(Bi) = {s1, s2, . . . , sn}
where each meta-instance attribute is computed using Eq. 8.

sq =
1
mi

ln

mi∑
l=1

Pr(Xilq = aq|c = 1)
Pr(Xilq = aq)|c = −1)

(8)

Once bags in a multiple-instance data set have been transformed into meta-
instances, the base learner h is trained on the transformed data set of labeled
meta-instances. During the classification phase, each bag to be classified is first
transformed into a meta-instance in a similar fashion before being fed to the
base classifier h.
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Algorithm 1. Training MICCLLR
1: Input : EMI = {〈B1, y1〉, . . . 〈Bm, ym〉} set of training bags and h base learner

2: Use EMI to construct the collection of all instances EAV by labeling each instance

with its bag’s class label and assign to instances in a bag Bi a weight equal to
1

|Bi|
. N
M

, where N =
∑

i |Bi| and M denotes the number of bags in the training

data set.

3: Estimate the posterior probabilities of each attribute, Pr(aq|cj), from EAV .

4: Convert each bag in EMI to a single meta-instance {s1, s2, ..., sn} using Eq. 8.

5: Train the base learner h using the meta-instance data.

4 Experiments and Results

In our experiments, we implemented MINB and MICCLLR using Java and
WEKA API [26]. The rest of classification algorithms considered in our ex-
periments were used as implemented in WEKA. The default parameters for all
WEKA classifiers were used unless otherwise specified. As a measure of the pre-
dictive performance of the MIL algorithms, we used the classification accuracy
obtained by averaging the results of 10 different runs of 10-fold cross-validation
tests. We conducted our experiments using five widely used MIL data sets from
drug activity prediction [1] and content-based image retrieval (CBIR) [17] ap-
plication domains.

Recently, Demšar [27] has suggested that non-parametric tests should be pre-
ferred over parametric tests for comparing machine learning algorithms because
the non-parametric tests, unlike parametric tests, do not assume normal distri-
bution of the samples (e.g., the data sets). Demšar suggested a three-step proce-
dure for performing multiple hypothesis comparisons using non-parametric tests.
Unfortunately, this procedure can not be applied to our experimental results be-
cause it requires the number of data sets to be greater than 10 and the number
of methods to be greater than 5 [27]. However, as noted by Demšar [27], the
average ranks by themselves provide a reasonably fair comparison of classifiers.
Hence, the classifiers being compared are ranked on the basis of their observed
performance on each data set. Then, the average rank of each classifier on all
data sets is used to compare the overall performance of different MIL methods.

4.1 Comparison of Base Learners for MICCLLR

As mentioned above, MICCLLR uses class conditional log likelihood ratio statis-
tics collected from the training data for mapping each bag of instances into a
single-meta instance such any supervised base classifier becomes applicable. In
our experiments, we evaluated MICLLR using a representative set of base clas-
sifiers. Specifically, we used Logistic Regression (LR) [28], C4.5 [29], Alternating
Decision Trees (ADTree) [30], and 2-norm SVM (SMO) [31] classifiers SVML,
SVMP, and SVMR evaluated using three kernels (linear, puk [32], and radial-bias
function (RBF) kernel) (respectively) as base classifiers for MICCLLR. Table 1
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Table 1. Comparisons of prediction accuracy of MINB with five MICCLLR classifiers

evaluated using different base learners on Musk and CBIR data sets. Last row is the

performance of an ensemble of the five MICCLLR classifiers constructed using WEKA’s

Vote method. For each data set, the rank of each classifier is shown in parentheses.

Last column is the average performance and rank for each method over the five data

sets.

Method musk1 musk2 elephant fox tiger avg.

MINB 77.06(8) 77.90(6) 81.70(1.5) 56.80(3) 72.00(6) 72.75(4.9)

LR 80.86(7) 85.28(2) 74.35(6.5) 55.8(5) 67.45(8) 72.75(5.7)

J48 87.71(3) 72.05(8) 74.35(6.5) 60.25(1) 73.2(5) 73.51(4.7)

ADTree 84.89(5) 75.35(7) 75.05(5) 59.25(2) 76.85(3) 74.28(4.4)

SVML 86.02(4) 82.20(3) 80.65(3) 52.10(7) 79.10(1) 76.01(3.6)

SVMP 88.39(2) 81.55(4) 75.90(4) 55.00(6) 76.50(4) 75.47(4)

SVMP 82.40(6) 80.53(5) 70.10(8) 50.25(8) 70.25(7) 70.71(6.8)

Vote 91.64(1) 86.12(1) 81.70(1.5) 56.15(4) 78.50(2) 78.82(1.9)

compares the classification accuracy of MINB and six MICCLLR classifiers eval-
uated using different base learners on Musk and CBIR data sets. Interestingly,
MICCLLR classifiers with SVML, SVMP, ADTree, and J48 as base learners have
better average ranks than MINB. The results also suggest that MICCLLR per-
formance seems to be sensitive to the choice of the base classifier. However, none
of the base classifiers produces a MICCLLR classifier with consistently superior
performance on the five data sets. An ensemble of the five reported MICCLLR
classifiers developed using WEKA implementation of majority voting, Vote clas-
sifier, outperforms any individual classifier on three out of five data sets. The
ensemble of MICCLLR classifiers has the best average rank (1.6) followed by
MICCLLR classifier using SVML and SVMP with average ranks 3.2 and 3.6, re-
spectively. The predictive performance of the ensemble of MICCLLR classifiers,
MICCLLR_Vote, could be further improved by: i) adding more MICCLLR classi-
fiers utilizing other base learners to the ensemble; ii) using more sophisticated
methods for constructing the ensemble (e.g., stacking [33]).

4.2 Boosting Weak MICCLLR Classifiers

Several methods for adapting boosting algorithms for the MIL settings have
been proposed in the literature [34,35,36,37]. Xu and Frank [36] have noted
that supervised learning boosting algorithms (e.g., AdaBoost.M1 [22]) can be
applied directly to weak MIL learners. However, they did not compare their
proposed MI boosting method with this basic approach. Here, we explored the
utility of directly applying AdaBoost.M1 to MICCLLR and MIWrapper [38]
weak learners. We compared the performance of the two MIL boosting algorithms
implemented in WEKA, MIBoost [36] and MIOpimalBall [35], with AdaBoosted
MICCLLR and MIWrapper classifiers. For MIOptimalBall, the weak learner
constructs a ball such that at least one instance from each positive bag is included
in the ball and all negative instances lie outside the ball. For MIBoost, we used
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Table 2. Comparisons of classification accuracy of two MIBoosting algorithms (MIOp-

timalBall and MIBoost) with boosted MIWrapper and boosted MICCLLR. For MIOp-

timallBall the weak learner is a ball while for other methods C4.5 and DS were used

as weak learners.

Data MIOptimalBall MIBoost boosted MIWrapper boosted MICCLLR

C4.5 DS C4.5 DS C4.5 DS

musk1 70.37(7) 84.07(3) 76.98(6) 85.53(2) 78.13(5) 88.57(1) 82.49(4)

musk2 80.80(2) 80.55(3) 74.68(6) 81.61(1) 72.53(7) 79.18(4) 78.03(5)

elephant 72.00(7) 82.05(3) 81.65(4) 86.15(1) 80.75(5) 82.8(2) 78.5(6)

fox 54.60(7) 64.85(1) 62.95(2) 62.8(3) 62.65(4) 62.15(5) 58.8(6)

tiger 65.15(7) 78.95(6) 80.25(4) 81.2(3) 79.25(5) 82.5(1) 81.6(2)

Avg. 68.58(6) 78.09(3.2) 75.3(4.4) 79.46(2) 74.66(5.2) 79.04(2.6) 75.88(4.6)

decision stumps (DS) [24] and C4.5 as the week learners with 25 iterations. For
AdaBoost.M1, MICCLLR and MIWrapper weak learners were obtained using
DS and C4.5 as the base classifiers and the number of boosting iterations was
set to 25.

Table 2 shows that boosted MIWrapper and boosted MICCLLR with C4.5
have the best average ranks of 2 and 2.6, respectively. The results show that
boosted MIWrapper and boosted MICCLLR classifiers are competitive with
(if not outperforming) the two MIL boosting methods, MIOptimalBall and
MIBoost. Interestingly, we observed that MIBoost, boosted MIWrapper, and
boosted MICCLLR with C4.5 as the weak learner generally outperform their
counterpart classifiers with DS as the weak learner. Among the classifiers us-
ing C4.5 as the weak learner, boosted MIWrapper has the best average rank
while boosted MICCLLR has the best average rank if we limit our comparison
to methods with DS as the weak learner.

4.3 Comparison of MICCLLR to Other MIL Methods

The classification accuracy of the best performing three MICCLLR classifiers,
MICCLLR with SVM base learner trained using linear kernel (MICCLLR_SVML),
ensemble of MICCLLR classifiers (MICCLLR_Vote), and boosted MICCLLR_C4.5
was compared to existing MIL with reported performance on the five data
sets considered in this study (See Table 3). The average ranks for the three
MICCLLR classifiers are boosted MICCLLR_C4.5 (4), MICCLLR_Vote (5.4), and
MICCLLR_SVML (8.4). Hence, boosted MICCLLR_C4.5 improves the predictive
performance over the majority vote ensemble of MICCLLR classifiers and the
single MICCLLR classifier with SVM as the base learner. The results suggest
that boosted MICCLLR_C4.5 is also competitive in performance with the state-
of-the-art MIL methods on Musk and CBIR data sets. The best performing
three methods, as measured by the average rank of the classifier, are CH-FD [6],
RW-SVM [39], and boosted MICCLLR_C4.5 with average ranks 3.4, 3.6, and 4,
respectively.
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Table 3. Comparison of the classification accuracy of three MICCLLR classifiers with

different MIL methods on Musk and CBIR data sets

Method musk1 musk2 elephant fox tiger avg.

EM-DD [17] 84.50(9) 84.90(6) 78.30(10) 56.10(9) 72.10(10) 75.18(8.8)

mi-SVM [17] 87.40(7) 83.60(8) 82.20(4) 58.20(6) 78.9(8) 78.06(6.6)

MI-SVM [17] 77.90(10) 84.30(7) 81.40(7) 59.40(4) 84.00(1) 77.40(5.8)

MICA [40] 88.40(5) 90.50(1) 80.50(9) 58.70(5) 82.60(2) 80.14(4.4)

CH-FD [6] 88.80(3) 85.70(5) 82.40(3) 60.40(2) 82.20(4) 79.90(3.4)

I-DD [41] 90.80(2) 86.40(3) 81.50(6) 57.30(7) 80.70(5) 79.34(4.6)

RW-SVM [39] 87.60(6) 87.10(2) 83.30(1) 60.00(3) 79.50(6) 79.50(3.6)

MICCLLR_SVML 86.02(8) 82.20(9) 80.65(8) 52.10(10) 79.10(7) 76.01(8.4)

MICCLLR_Vote 91.64(1) 86.12(4) 81.70(5) 56.15(8) 78.50(9) 78.82(5.4)

boosted MICCLLR_C4.5 88.57(4) 79.18(10) 82.80(2) 62.15(1) 82.50(3) 79.04(4.0)

5 Conclusions

We introduced MINB, an adaptation of Naive Bayes for the MIL settings. We
showed that the proposed MINB algorithm imposes strong and unrealistic in-
dependence assumptions (instances within a bag are independent given the bag
label and instance attributes are independent given the label of the instance). We
empirically showed that class conditional log likelihood ratio statistics estimated
from the training data provide useful single feature representation of bags that
allows the applicability of standard supervised learning methods (base learners)
for predicting labels of MIL bags given their single feature vector representation
as an input. The performance of our proposed method, MICCLLR, has been
evaluated using different base learners. Moreover, we empirically showed that
further improvements in MICCLLR performance is obtained using ensemble of
MICCLLR classifiers utilizing different base learners. Finally, we demonstrated
that an additional gain in classification accuracy is obtained when AdaBoost.M1
is applied directly to weak MIL learner derived from MIWrapper and MICCLLR
using C4.5 as the base learner. Our results suggest that integrating AdaBoost.M1
with MIWrapper and MICCLLR weak learners is a promising approach for de-
veloping MIL methods with improved prediction performance.
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Abstract. In this paper we rule out output polynomial listing algorithms for
the general problem of discovering theories for a conjunction of monotone and
anti-monotone constraints as well as for the particular subproblem in which all
constraints are frequency-based. For the general problem we prove a concrete ex-
ponential lower time bound that holds for any correct algorithm and even in cases
in which the size of the theory as well as the only previous bound are constant. For
the case of frequency-based constraints our result holds unless P = NP. These
findings motivate further research to identify tractable subproblems and justify
approaches with exponential worst case complexity.

1 Introduction

Many problems in knowledge discovery in databases can be formulated as theory ex-
traction task, i.e., as the problem of extracting all sentences of a pattern language that
satisfy some interestingness constraints relative to a database [11]. Many instances of
this problem have been considered in literature and examples include subgroup discov-
ery, finding consistent hypotheses, finding minimal keys, as well as different pattern
mining problems such as frequent set or subgraph mining. Most research in the area
of theory extraction has considered a single, either monotone or anti-monotone, con-
straint such as frequency in a database. Motivated by important real-world applications
such as drug discovery, however, more complex interestingness constraints recently be-
came relevant [4,17]. An often considered case is theory extraction for conjunctions of
monotone and anti-monotone constraints. Practical approaches to this problem include
the levelwise version space algorithm [18], DualMiner [6], ExAMiner [2], ExAnte [3],
and BifoldLeap [8].

In contrast to this considerable number of algorithmic contributions, the problem’s
computational complexity has, so far, only received little attention. Negative complex-
ity results are important as guidance for the development of new theory extraction al-
gorithms and to provide a theoretical justification for the absence of good worst-case
guarantees of existing approaches. Bucila et al. [6] have shown that the number of con-
straint evaluations needed by any correct general algorithm is lower bounded by the
size of the border intersection, i.e., all patterns that are contained in the theory of one
constraint as well as in the border of the other. As this quantity can grow exponentially
with the problem size and with the size of the theory, this implies that there is no cor-
rect general algorithm with runtime polynomial in the input and output. These results
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do, however, not exclude a correct general algorithm with runtime polynomial in the
input, output, and the size of the border intersection. Yet, no such algorithm is known1,
leaving a large gap between the runtime of the practical algorithms and the theoretical
lower bound. The first contribution of this paper is to significantly reduce this gap for
the case of general algorithms. We construct instances of this problem for which both,
the size of the theory and the size of the border intersection, are constant. Yet, we show
that no correct general algorithm can extract the theory for these instances with a num-
ber of constraint evaluations bound by a polynomial in the input. While this reduces the
gap between theory and practice for the general problem, there might still be tractable
subclasses of the general problem. In particular, specialized algorithms may be more
efficient by exploiting the structure of the subclass they consider.

The most commonly used constraints in knowledge discovery are frequency-based,
i.e., patterns are required to either be frequent or infrequent with respect to the database.
Such constraints are important for instance in the case that the extracted theories are in-
put to learning algorithms as defining the feature set (see, e.g., [20]), as they generalize
the problem of consistent hypothesis enumeration for which efficient algorithms are
known [16], and as they can be used for explanatory data mining [18]. Despite the im-
portance of such constraints, the complexity of theory extraction for conjunctions of
frequency and infrequency constraints has not been investigated. However, it can be
shown that this problem is strictly easier than the general problem and hence negative
results do not carry over. This observation highlights yet another gap in the complexity
analysis of constraint-based theory extraction. The second contribution of this paper is
to close this gap by a hardness result. In particular, we proof that there is no algorithm
extracting all itemsets frequent (with an arbitrary threshold) in one database but not fre-
quent (with another arbitrary threshold) in another database in time polynomial in the
input and the output, unless P = NP.

In contrast to some other complexity results in pattern mining that rule out effi-
cient algorithms for optimization or counting variants for specific pattern classes (e.g.,
[22,23]), we directly focus on the primary data mining task, which is listing all patterns
of interest. For listing problems that involve a potentially exponential number of result
patterns one usually aims for algorithms having a good time complexity per pattern or
at least a polynomial time complexity in the combined size of the input and the output,
i.e., an output polynomial algorithm. Thus, instead of NP-hardness or #P-hardness re-
sults, which only rule out (input) polynomial algorithms for listing, we are interested in
statements with negative implications for output polynomial listing.

2 Preliminaries

This section recalls the basic definition of data mining as theory extraction, frequent set
mining, as well as listing algorithms and their notions of efficiency.

Theory Extraction The general formulation of theory extraction can for instance be
found in [11]. In this work we use the following conventions: (i) we only consider finite

1 This statement refers to the general case. Note that there are theoretically efficient algorithms
for instance for the special case of string patterns (see, e.g., [9]).
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Fig. 1. illustration of Example 1

theory extraction problems that in addition are representable as sets, and (ii) we do not
explicitly formalize the connection of constraints to a given input database. One can
think of this connection as “encapsulated” in the constraints (see the definitions of the
constraints frq and ifr in the paragraph about frequent set mining below as an example).
This allows us to proceed with simplified definitions. The pattern language is always
the power set P(E) of some finite ground set E, and without losing generality we
assume that E = {1, . . . , n} for some positive integer n. A constraint is then a boolean
function q : P(E) → {0, 1} and the theory of q, denoted as Th(q), is the set of all
elements of P(E) that satisfy q, i.e., Th(q) = {F ⊆ E : q(F ) = 1}. A constraint
q is called anti-monotone if F ′ ⊆ F ⊆ E and q(F ) = 1 together imply q(F ′) = 1.
Similar, q is called monotone if F ′ ⊆ F ⊆ E and q(F ′) = 1 together imply q(F ) = 1.
The positive border of q, denoted Bd+(q), is the family of maximal and minimal sets
of Th(q), i.e., Bd+(q) = Up+(q) ∪ Lw+(q) with

Up+(q) = {F ∈ P(E) : q(F ) = 1 ∧ ∀e ∈ E \ F, q(F ∪ {e}) = 0}
Lw+(q) = {F ∈ P(E) \ {∅} : q(F ) = 1 ∧ ∀e ∈ F, q(F \ {e}) = 0} .

Conversely, the negative border of q, denoted Bd−(q), is the family of maximal and
minimal sets of P(E) \ Th(q), i.e., Bd−(q) = Up−(q) ∪ Lw−(q) with

Up−(q) = {F ∈ P(E) : q(F ) = 0 ∧ ∀e ∈ F, q(F \ {e}) = 1}
Lw−(q) = {F ∈ P(E) \ {E} : q(F ) = 0 ∧ ∀e ∈ E \ F, q(F ∪ {e}) = 1} .

The border of q is then defined as Bd(q) = Bd+(q)∪Bd−(q). Note that in contrast to the
definitions of [11] and [6] our notion of border is similar for anti-monotone and mono-
tone constraints as well as for constraints that do not satisfy any monotonicity condition.
It is, however, equivalent to the traditional definition for the cases of anti-monotone and
monotone constraints. For conjunctions c = p ∧ q of a monotone constraint p and an
anti-monotone constraints q, the positive border Bd+(c) concisely represents the theory
of c because for all F ⊆ E it holds that

F ∈ Th(c) ⇐⇒ (∃L ∈ Lw+(c), L ⊆ F ) ∧ (∃U ∈ Up+(c), U ⊆ F ) .
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Frequent Set Mining. A dataset over items E is a finite multiset D containing subsets
of E, i.e., D ⊆ P(E) is a set with associated multiplicities λ : D → N. The elements
ofD are usually called transactions. The cardinality of a submultisetD′ ⊆ D is defined
as |D′| =

∑
D∈D′ λ(D). Let F ⊆ E be a set of items and t ∈ N a frequency threshold.

The support set of F in a datasetD, denoted asD[F ], is the submultiset ofD containing
all transactions that are a superset of F , i.e., D[F ] = {D ∈ D : D ⊇ F}. The set F
is called t-frequent in D if |D[F ]| ≥ t, and it is called t-infrequent in D if it is not
t-frequent in D. Clearly, the constraints frqD,t, ifrD,t : P(E) → {0, 1} defined by

frqD,t(F ) = 1 iff F is t-frequent in D
ifrD,t(F ) = 1 iff F is t-infrequent in D

are anti-monotone respectively monotone. As the size of a datasetD we regard the sum
of its transaction sizes, i.e., size(D) =

∑
D∈D λ(D) |D|, corresponding to an incidence

list representation of D.

Listing Algorithms. A listing problem can be formalized as follows: given an instance
x ∈ X where X is the set of all problem instances, list some associated finite set S(x).
Naturally, we say that an algorithm A is a listing algorithm for that problem (solves
the associated listing problem) if for all x ∈ X the algorithm’s outputA(x) is equal to
S(x). Two important notions of efficiency for listing algorithms are:

– output polynomial time, i.e., there is a polynomial p such that for all x ∈ X the
number of computational steps that A performs on input x, denoted as timeA(x),
is bounded by p(size(x) + |S(x)|),

– polynomial delay, i.e., there is a polynomial p such that for all inputs x ∈ X the
number of computational steps that A performs before printing the first element,
after printing the last element, and between printing two consecutive elements is
bounded by p(size(x)).

Clearly, polynomial delay is a strictly stronger condition than output polynomial time.
For instance dfs-algorithms for frequent set mining like Fpgrowth [12] run with polyno-
mial delay, while bfs-algorithms like Apriori [1] run in output polynomial time but do
not guarantee polynomial delay. We note that there are also other notions of efficiency
for listing algorithms—in particular incremental polynomial time [13] and cumulative
polynomial delay [10]—both of which are stronger than output polynomial time but
weaker than polynomial delay.

For theory extraction algorithms that expect constraints as input we are also inter-
ested in the communication complexity, denoted as commA(n), i.e., the maximum
number of evaluations of the constraints that A performs when given an input of size
n. Clearly, the communication complexity is a lower bound to an algorithm’s time
complexity. Moreover, for many tasks in data mining and database system the com-
munication complexity is the actual quantity of interest because the cost of constraint
evaluations dominates the running time.

We close this section with an example illustrating some of the introduced notions.
Figure 2 depicts the involved theories.
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Example 1. Consider the datasets D1 and D2 over items E = {1, . . . , 4} given by

D1 = {123, 234, 1234}
D2 = {124, 134, 234, 234}

with the constraints p = frqD1,2 and q = ifrD2,2. The resulting positive and negative
borders are Bd+(q) = {12, 13}, Bd−(q) = {14, 234}, Bd+(p) = {123, 234}, and
Bd−(p) = {14}. The theory of the conjunction Th(p∧q) is {12, 13, 123}. Consequently,
an output polynomial theory extraction algorithm with respect to a polynomial p would
terminate after a number of steps not greater than

p(size(D1,D2) + |Th(p ∧ q)|) = p(22 + 3) .

3 General Problem Lower Bound

In this section we prove an exponential lower bound on the worst-case number of con-
straint evaluations, i.e., the communication complexity, that is needed to solve the gen-
eral conjunctive constraint problem:

Problem 1 (LIST-CONJUNCTIVE-THEORY). Given a finite set E with an anti-monotone
constraint p and a monotone constraint q each defined on P(E), list Th(p ∧ q).

More specifically, we consider only deterministic algorithms for that problem, i.e., those
whose behavior is completely specified by the sequence of queries and their corre-
sponding evaluations. Moreover, we are aiming for a lower bound that also holds when
Problem 1 is restricted to instances that satisfy

k ≥ |Th(p ∧ q)| and (1)

k′ ≥ |Th(p) ∩ Bd(q)|+ |Th(q) ∩ Bd(p)| (2)

for some constants k, k′. An exponential lower bound that holds for the thus defined
subproblem would rule out algorithms having a communication complexity that is poly-
nomially bounded in the right-hand side of Equations 1 and 2, respectively. For Condi-
tion 1 this is motivated by the fact that the communication complexity of an algorithm
is a lower bound to its time complexity, and consequently this would also rule out an
output polynomial algorithm for Problem 1. For Condition 2 this is motivated by the
fact that complexity result and algorithm of [6] leave it open whether Problem 1 can be
solved efficiently in the right-hand side of (2).

The idea of the proof is simple: we consider an algorithm that does not meet the
lower bound and then construct two problem instances that have a different theory but
“cannot be distinguished” by the algorithm. Consequently, it has to output an incorrect
theory for at least one of the two problem instances.

A first approach for such a construction could be the following. For a ground set
E = {1, . . . , n} with an even n consider the constraints

q(F ) = 1 iff |F | ≤ n/2− 1
p(F ) = 1 iff |F | ≥ n/2 + 1 .
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Fig. 2. construction used in proof of Theorem 1

Then, for any algorithm A invoking less than
(

n
n/2

)
queries there is a subset S ⊆ E

of size n/2 that A neither queries by p nor by q. With this we can construct a second
problem instance

p′(F ) = 1 iff p(F ) ∨ (F = S)
q′(F ) = 1 iff q(F ) ∨ (F = S) .

As the only set in which the two instances differ is not queried by A, the algorithm’s
behavior and in particular its output must be identical in both cases. But

Th(p ∧ q) = {} 	= {S} = Th(p′ ∧ q′)

as required to show that A is incorrect.
The problem with the construction above is that the attained lower bound on the com-

munication complexity is equal to the border intersection, i.e.,
(

n
n/2

)
. Thereby it does

not rule out an algorithm that lists Th(p∧q) efficiently in that quantity. For that purpose
problem instances are needed that have small—ideally constant— border intersections
while they retain the property of proving the incorrectness ofA.

For that reason we modify the construction such that not only one but three levels
of the first problem instance are left unoccupied. The resulting theories then have an
empty border intersection but, in turn, this requires the addition of more than one set to
Th(p′) and Th(q′) as to not violate the monotonicity requirements. The formal theorem
statement and proof are given below. Figure 3 illustrates the construction.

Theorem 1. Let A be a deterministic algorithm that correctly solves
LIST-CONJUNCTIVE-THEORY. Then for problem instances with |E| = n > 4 it holds
for the communication complexity ofA that

commA(n) ≥ 2n/4 .
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This lower bound even holds when the problem is further restricted to instances satis-
fying

1 ≥ |Th(p ∧ q)| and (3)

1 ≥ |Th(p) ∩ Bd(q)|+ |Th(q) ∩ Bd(p)| . (4)

Proof. Assume for a contradiction that there is a deterministic algorithm A that cor-
rectly solves the restricted problem defined by Equations 3 and 4 such that the worst-
case number of constraint queries satisfies

commA(n) < 2n/4 <

(
n/2
n/4

)
We show thatA is incorrect by constructing two inputs such thatA fails to compute the
correct theory for at least one of them.

Without loss of generality assume that n is divisible by 4. Then consider the “uni-
form” predicates p and q defined on the power set P(E) of the ground set E =
{1, . . . , n} by

q(F ) = 1 iff |F | ≤ n/2− 2
p(F ) = 1 iff |F | ≥ n/2 + 2 .

Clearly p is anti-monotone and q is monotone. Moreover, their borders are simply

Bd(p) = {F ⊆ E : |F | ∈ {n/2− 1, n/2− 2}}
Bd(q) = {F ⊆ E : |F | ∈ {n/2 + 1, n/2 + 2}}

and in particular the theory of their conjunction is empty, i.e., Th(p ∧ q) = ∅. Thus,
these predicates satisfy Equations 3 and 4.

Next, we construct k =
(n/2
n/4

)
subsets of cardinality n/2 having a pairwise symmetric

difference of at least 4. Such a family of subsets is for instance given by the family S
defined by

S = {F ∪ F− : F ⊆ {2, 4, . . . , n}, |F | = n/4}
where F− denotes the set {e− 1 : e ∈ F}. Note that we have |S| = k and for distinct
sets S, S′ ∈ S it holds for their symmetric difference that |SΔS′| ≥ 4 as desired. Then
let {S1, . . . , Sk} = S be some ordering of S. For each Si we define the family of its
immediate predecessors respectively immediate successors as follows:

Li = {Si \ {s} : s ∈ Si}
Ui = {Si ∪ {e} : e ∈ E \ Si} .

Let Li ∈ Li and Lj ∈ Lj with i 	= j. Then

|LiΔLj | ≥ |SiΔSj | − 2 ≥ 2 .

This implies Li 	= Lj and consequentlyLi∩Lj = ∅. Similar we know that the families
Ui are pairwise disjoint and, consequently, that the combined families

Ci = {Si} ∪ Li ∪ Ui
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do not intersect. As there are k > commA(n) such families and the algorithm A in-
vokes the membership oracles only commA(n) times, it follows then that there is an
index l ∈ {1, . . . , k} such that A does not access any element of the family Cl.

We use this family Cl to construct a second problem instance p′, q′ with the same
ground set E that forA “cannot distinguish” from the first one.

p′(F ) = 1 iff p(F ) ∨ (F ∈ {Sl} ∪ Ll)
q′(F ) = 1 iff q(F ) ∨ (F ∈ {Sl} ∪ Ul) .

Observe that p′ is anti-monotone: Sl is the only element of Th(p′) with cardinality
n/2 and all of its n/2 − 1 subsets are in Ll ⊂ Th(p′). Moreover all subsets F ⊆ E
of cardinality n/2 − 2 and less are in Th(p) ⊂ Th(p′). The anti-monotonicity of p′

follows, and, similar, one can check that q′ is monotone.
Moreover, it is straightforward to check that Sl is the only element of P(E) \ Bd(p)

respectively P(E) \Bd(q) that satisfies the defining formula of being a border element
of p′ respectively q′. It follows that Bd(p′) = {Sl}∪B1 and Bd(q′) = {Sl}∪B2, where
B1 contains only elements of cardinality less than n/2, and B2 contains only elements
of cardinality greater than n/2. Consequently,

Bd(p′) ∩ Th(q′) = Bd(q′) ∩ Th(p′) = Th(p′ ∧ q′) = {Sl}

and in particular p′, q′ is an instance of the restricted problem defined by Equations 3
and 4.

Let A1(F1), . . . , Av(Fv) be the sequence of queries performed by A on the first
instance defined by p and q. That is, Ai(Fi) is either p(Fi) or q(Fi) for some Fi ∈
P(E) \ Cl for every i = 1, . . . , v. Since A is deterministic, Fi 	∈ Cl, and p(F ) = p′(F )
and q(F ) = q′(F ) for every F ∈ P(E) \ Cl, A will perform the same sequence of
queries for the second instance defined by p′ and q′ and generate the same output. But
this implies that A is incorrect on at least one of the two instances, as their results are
distinct, i.e.,

Th(p ∧ q) = {} 	= {Sl} = Th(p′ ∧ q′) .

As desired this theorem rules out not only an output polynomial algorithm for Prob-
lem 1, i.e., one that lists the result with a communication complexity polynomial in
|Th(p ∧ q)|, but also an algorithm with a communication complexity that is polynomial
in the border intersection (Equation 2). Moreover, since we have chosen the constants
k of Equation 1 to be 1, it follows that the lower bound also applies to the problem of
constructing and sampling one element of Th(p ∧ q). Similar, the theorem rules out ef-
ficient algorithms for listing any non-empty subset or a polynomially bounded superset
of the theory.

Finally, as we restricted ourselves to pattern languages representable as sets, we note
that the concrete exponential lower bound is not caused by non-uniformity of the pattern
language but by its size alone.

4 Frequent and Infrequent Sets

Next, we leave the general theory extraction problem and turn to the subproblem of
anti-monotone and monotone constraints that are frequency-induced. More specifically,
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the problem is to list sets that are frequent in one dataset while they are infrequent in
another or formally:

Problem 2 (LIST-FREQUENCY-THEORY). Given two datasets D1,D2 over common el-
ements E and frequency thresholds t1, t2 ∈ N, list the family F of all sets F ⊆ E that
are t1-frequent in D1 and t2-infrequent in D2.

This is a variant of the problem of listing emerging patterns [7] that fits into the de-
scription of LIST-CONJUNCTIVE-THEORY: implicitly the task of Problem 2 is to list the
conjunctive theory Th(frqD1,t1

∧ ifrD2,t2) of the anti-monotone frequency constraint
frqD1,t1

and the monotone infrequency constraint ifrD2,t2 . Thus, Problem 2 is a sub-
problem of Problem 1.

For this concrete task, however, we are interested in ruling out efficient algorithm that
may exploit the structure of frqD1,t1

and ifrD2,t2 , i.e., algorithms that directly access the
underlying datasets D1 and D2. Showing intractability for this problem, hence, means
to rule out algorithms that have an output polynomial time complexity with respect to
the combined input size size(D1,D2) = size(D1) + size(D2).

It was shown in [21] that there are anti-monotone families that cannot be concisely
represented as the family of frequent sets of some dataset. Consequently, Problem 2 is
strictly easier than Problem 1. Still, as we will show below, there is no efficient, i.e.,
output polynomial time, listing algorithm for that task. In order to achieve this result,
we first prove a stronger claim, namely the NP-hardness of deciding the existence of a
set that satisfies the constraints. Hardness of efficient listing follows then as a corollary
among other related hardness results.

The idea of the construction is that an infrequency constraint can be used to encode a
minimum size constraint. In addition the proof builds on the NP-hardness of the prob-
lem FREQUENT-SET [11], i.e., given a datasetD, a frequency threshold t, and a positive
integer k, decide whether there is a t-frequent set of size k in D.

Theorem 2. The following problem is NP-complete:
Given an instance of Problem 2, decide whether the result set F is non-empty.

Proof. Elements of F can serve as polynomial time checkable certificates for yes-
instances. This shows membership in NP.

For the hardness we give a polynomial reduction from FREQUENT-SET. Given an
instance of this problem, i.e., a datasetD over E, a frequency threshold t, and a positive
integer k, we define a second dataset D′ over E by

D′ = {E \ {e} : e ∈ E}

with simple multiplicities λ ≡ 1. Since any element of E is contained in all but one
element of D′ and |D′| = |E| it holds that for all F ⊆ E that |D′[F ]| = |E| − |F |.
With this we can deduce:

F is (|E| − k + 1)-infrequent in D′ ⇔|D′[F ]| ≤ |E| − k

⇔|E| − |F | ≤ |E| − k

⇔|F | ≥ k .
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Thus, for D1 = D and D2 = D′ as constructed above and t1 = t and t2 = |V | − k + 1
it holds for the resulting solution F of Problem 2 that F 	= ∅ if and only if D contains
a t-frequent set of size k. Since the above construction can be performed in polynomial
time, we have a polynomial reduction as required. ��

Theorem 2 directly implies the hardness of several related problems, namely of con-
structing an element of F , sampling from F according to any distribution, as well as
listing F with polynomial delay. The last statement follows because a polynomial delay
algorithm for listing F does after a time bounded polynomially in size(D1,D2) either
lists an element of F in case F 	= ∅ or terminates otherwise.

For ruling out output polynomial listing one can use the following idea: if the number
of steps of an output polynomial algorithm exceeds some input polynomial threshold
then the algorithm has to produce at least one element. This is exploited in the proof of
Corollary 3 below.

Corollary 3 There is no output polynomial listing algorithm for LIST-FREQUENCY-
THEORY (unless P = NP).

Proof. Assume there is an algorithm A and a (without loss of generality) monotone
polynomial p such thatA lists F in time p(size(D1,D2)+ |F|). Then one can construct
another algorithm A′ that decides whether F is empty in polynomial time. The claim
then follows from Theorem 2. The construction of A′ is as follows: Simulate A for
t = p(size(D1,D2)) steps. If A has not stopped after t steps then

p(size(D1,D2)) < # stepsA performs on inputD1,D2

≤ p(size(D1,D2) + |F|) .

By monotonicity of p this implies 0 < |F|, i.e., F is non-empty. If A terminates after
t or less steps then the length of the output F is bounded by t and can be examined
explicitly in that time to decide whether F is empty.

Note that for the reasoning in the proof of Corollary 3 the statement of Theorem 2 is
in fact stronger than required: It would have been sufficient to know that it is NP-hard
to decide whether |F| ≤ k where k is polynomially bounded in size(D1,D2). We call
a construction that uses this idea a polynomially cardinality reduction, as it reduces
an NP-hard decision to the question of whether the size of some set is smaller than
or equal to some polynomial threshold. In fact, the construction in [5] used to prove
intractability of listing all maximal frequent sets as well as the one in [14] to prove
hardness of listing all bases of an independence system both can be regarded as such a
polynomially cardinality reduction.

5 Conclusion

Summary In this paper we investigated the complexity of listing the theory of con-
straints that are formed as the conjunction of anti-monotone and monotone constraints.
We showed that no general output polynomial algorithm for that task exists, justifying
the exponential behavior of systems that operate on such a general level. In particular
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we gave a lower bound that is exponential even in cases when the only known prior
bound is constant. Then, we showed that listing all patterns that are frequent in one
database and infrequent in another database cannot be done efficiently. It is important
to emphasize that our proofs also rule out efficient algorithms listing any non-empty
subset or any small superset of the interesting patterns for the considered tasks. Similar,
our theorems imply hardness of the corresponding construction and sampling problems.

Discussion and Related Work. The lower bound for the LIST-CONJUNCTIVE-THEORY

problem stands in line with the already mentioned complexity result of Bucila et al. [6]
for the same problem and the results of Mannila and Toivonen [15], which says that
the communication complexity of listing Th(p) for a monotone constraint p is lower
bounded by Bd(p). All these results have in common that they do not require any com-
plexity assumption such as P 	= NP. This is due to the restricted computational model
they are based on.

In contrast, the intractability result of Section 4 for LIST-FREQUENCY-THEORY re-
quires the assumption that P 	= NP. This is similar to the result Boros et al. [5] that
rules out output polynomial time algorithms for the task of listing the maximal frequent
sets for a given dataset (the minimal infrequent sets can at least be listed in output
quasi-polynomial time). A noteworthy difference between maximal frequent sets and
LIST-FREQUENCY-THEORY is that for the first problem the construction problem is in
P while it is NP-hard for the latter problem.

Although the proof of Theorem 2 did not use a reduction to the problem of listing
all maximal frequent sets, the intractability of that problem might suggest that there
is connection between the complexity of listing the border of the involved theories to
listing their intersection, i.e., the theory of the conjunction. But at least in one direction,
namely from the tractability of the border enumeration to the tractability of the con-
junction theory such an implication does not hold. As example consider the following
result.

Theorem 4. Let G = (V,E) be an undirected graph. Define the constraints p and q on
P(E) as follows:

p(F ) = 1 iff ∀v ∈ V,
∣∣δ(V,F )(v)

∣∣ ≤ 2
q(F ) = 1 iff (V, F ) is connected ,

where δ(V,F )(v) denotes the set of edges that are incident to v in the graph (V, F ).
Then Bd+(p), Bd+(q), Bd−(p), and Bd−(q) can each be listed with polynomial delay

given an input graph G. But it is NP-hard to decide whether Th(p ∧ q) = ∅, and
consequently Th(p ∧ q) cannot be listed in output polynomial time (unless P = NP).

The hardness follows because Th(p∧q) is the family of edgesets that form Hamiltonian
paths and cycles in G. The complete proof can be found in the appendix.

Future Work. In the light of the results presented in this paper there are several im-
portant directions for future work on the efficiency of theory extraction methods. On
the one hand it is important to identify classes of constraints that allow for efficient
algorithms. A natural candidate here may be convex constraints as they are a subset of
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the conjunctions of monotone and anti-monotone constraints. On the other hand it is
important to investigate the complexity of alternative algorithms and try to devise e.g.,
randomized listing algorithms and/or try to find fixed-parameter tractable subclasses.
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A Proofs

In this section we prove Theorem 4. This involves two positive listing results that may
be interesting in their own right. In order to formulate these proofs some more graph
terminology is needed.

Let G = (V,E) be an (undirected) graph. The set of edges incident to a vertex v
is denoted δ(v). The maximum vertex degree of G, max{|δ(v)| : v ∈ V } is denoted
Δ(G). For a set of vertices X ⊆ V we mean by its neighbors Γ (X) =

⋃
{Γ (x) : x ∈

X} \ X and by its incident edges δ(X) = {(v, w) ∈ E : v ∈ X,w 	∈ X}, i.e., the
cut induced by X . In the context of more than one graph we use an index to clarify the
above notations, e.g., δG(v). A subgraph of G is a pair (V ′, E′) with V ′ ⊆ V , E′ ⊆ E
and e ⊆ V ′ for all e ∈ E′. A component of G is a maximal connected subgraph. We
denote the subgraph induced by a set U ⊆ V as G[U ] = (U,E∩(2U )). For convenience
we often identify a component C with the set of vertices U inducing it (G[U ] = C). If
G[V \ {v}] has more components than G then v is called an articulation.

Proof (of Theorem 4). Anti-monotonicity of p respectively monotonicity of q are clear.
The family Bd−(q) contains the complements of the minimal cuts of G and can be listed
with polynomial delay (Lemma 5) and Bd+(q) contains the spanning trees of G, which
can also be listed with polynomial delay with the algorithm from [19]. Polynomial
delay for Bd+(p) follows from Lemma 6 with k = 2. This also holds for Bd−(p),
which contains exactly the subsets of {e ∈ E : v ∈ e} with cardinality 3 for all vertices
v ∈ V .

Lemma 5 For all graphs G = (V,E), the set of minimal cuts of G can be listed with
delay O(|V |3|E|).

Proof. As the set of minimal cuts of a graph is the union of the minimal cuts of its
components, we can wlog assume that G is connected. Moreover, a cut δ(X) is minimal
if and only if each part of its inducing bipartition X and V \X is connected. Thus, the
task is equivalent to the enumeration of a subset F ′ of the set system

F = {X ⊆ V : G[X ] connected and G[V \X ] connected }

with the property that for all X ∈ F exactly either X ∈ F ′ or (V \X) ∈ F ′. For that
we construct a polynomial mapping ρ : F → P(F) such that all X ∈ F can be reached
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from ∅ by applying ρ at most |X | times. Formally this means that for all X ∈ F there
is an i ≤ |X | with X ∈ ρi(∅) where ρi is defined recursively by ρ1(X) = ρ(X) and
ρi(X) =

⋃
{ρ(Y ) : Y ∈ ρi−1(X)}. For X ⊆ V inducing a minimal cut and v ∈ Γ (X)

define
ρX(v) = {V \ C : C a component of G[V \ (X ∪ {v})]}

and based on that ρ(X) =
⋃

v∈Γ (X) ρX(v). Note that if v is no articulation in G[V \X ]
then X ∪ {v} is the only element of ρX(v). It is easy to check that ρ(X) ⊆ F for all
X ∈ F .

We now show that ρ can be used to generateF completely. Let X,Y ∈ F with X ⊂
Y . Since Y is connected, there is a y ∈ Γ (X)∩Y . Since V \Y is also connected, there is
a componentC of G[V \(X∪{y})] such that V \Y ⊆ C. But then Y ⊇ (V \C) ∈ ρ(X)
implying that for all X,Y ∈ F with X ⊂ Y there is an X ′ ∈ ρ(X) with X ′ ∈ F and
X ⊂ X ′ ⊆ Y . It follows by induction that all elements of F get visited by a depth-first-
search traversal of the directed enumeration graph T = (F , {(X,X ′) : X ′ ∈ ρ(X)})
starting in ∅. To distinguish between the vertices of T and the underlying graph G we
subsequently call the vertices of T ‘nodes’.

It remains to show that this search can be implemented in such a way that it visits
a node corresponding to a new minimal cut (or terminates) with polynomial delay. An
X ∈ F can have at most |V | neighbors in G and for every neighbor v ∈ Γ (X) the
complement graph G[V \ (X ∪ {v})] can at most have |V | components. It follows that
|ρ(X)| ≤ |V |2 and each element of ρ(X) can trivially be found within polynomial
time. In particular depth-first-search can encounter not more than |V |2 already visited
children in a given node before it tracks back. Moreover, it can track back at most |V |
times, because Y ⊃ X for all Y ∈ ρ(X) and X ∈ F . It follows that depth-first-search
finds a new node or terminates after O(t|V |3) where t is the time needed to check
whether some node has already been visited.

So the remaining problems are to check in polynomial time whether an X ⊆ V has
already been visited and to avoid double enumeration of δ(X) = δ(V \X). Both can
be taken care of by storing δ(X) for each node X using a string representation induced
by some fixed order of the edges E. Storing all enumerated edge sets in a prefix tree it
is possible to check whether an F ⊆ E has already been visited in time O(|F |). ��

Lemma 6 For all graphs G = (V,E) and all positive integers k ≤ Δ(G), the family
of all maximal edge sets with degree bounded by k, i.e., the maximal elements of F =
{F ⊆ E : Δ(V, F ) ≤ k}, can be listed with delay O(k4|E|3).

Proof. Just as for Lemma 5 we prove the theorem by constructing a polynomially
bounded operator ρ and use it for depth-first-search. Let F ∈ maxF be a maximal
degree bounded edge set. For e ∈ E \ F define

DF,e = min{F ′ ∈ P(F ) : (F \ F ′) ∪ {e} ∈ F}

the family of all minimal sets of edges one has to delete from F such that it can be
legally augmented with e. Note that (F \F ′)∪{e} is in general not a maximal element of
F for F ′ ∈ DF,e. Denote the family of all maximal extensions of an X ∈ F by B(X) =
{B ∈ maxF : B ⊃ X}. With this we can define ρF (e) =

⋃
F ′∈DF,e

B((F \F ′)∪{e})
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the family of all maximal extensions of (F \ F ′) ∪ {e} for all deletions F ′ ∈ DF,e and
finally the mapping ρ : maxF → P(maxF) by ρ : F →

⋃
e∈E\F ρF (e) .

Now we show that for any two distinct elements X,Y of maxF , Y can be reached
from X by applying ρ at most |E| times. Let e ∈ Y \X . Then, for v ∈ e and |δ(v)∩(X∪
{e})| > k there must be an edge fv ∈ (δ(v)∩X)\Y . Hence, F ′ = {fv : v ∈ e} ∈ DX,e

and F ′ ∩ Y = ∅. This implies for the symmetric difference XΔY :

|Y Δ((X \ F ′) ∪ {e})| = |Y ΔX | − (|F ′|+ 1) . (5)

Furthermore, for each element of F ′ the edge set (X \ F ′) ∪ {e} has at most one
unsaturated vertex, i.e., one to which an edge can be added without leaving F . So for
an B ∈ maxF with B ⊃ (X \ F ′) ∪ {e} we have

|B \ ((X \ F ′) ∪ {e})| ≤ |F ′| . (6)

(5) and (6) together imply that

|Y ΔB| ≤ |Y Δ((X \ F ′) ∪ {e})|+ |B \ ((X \ F ′) ∪ {e})|
≤ |Y ΔX | − 1 < |Y ΔX | .

Since B ∈ ρX(e), we conclude that for all X,Y ∈ maxF with X 	= Y there is an
element X ′ ∈ ρ(X) with |X ′ΔY | < |XΔY |.

Let F ∈ maxF and e ∈ E \ F . Since (V, F ∪ {e}) has at most two vertices with
degree greater than k, all deletions F ′ ∈ DF,e also have at most two elements. Equation
(6) implies the same for {B ∈ maxF : B ⊇ (F \ F ′) ∪ {e}}. These two elements can
be chosen from at most k edges. Hence, it holds for |ρ(F )| that

|ρ(F )| ≤ |E| max
e∈E, F ′∈DF,e

|DF,e| |B((F \ F ′) ∪ {e})| ≤ k4 |E| .

Again, it is no problem to enumerate the elements of ρ(F ) with polynomial delay and ρ
can be computed in time polynomial in the size of G. Using the same techniques as in
the proof of Lemma 5 a depth-first-search traversal of maxF using ρ can be performed.
This time we can start in any one element X ∈ maxF . Such an element can be obtained
from the empty set by greedy augmentations. A prefix tree look-up can be performed in
O(|E|) and the maximal recursion depth is maxY ∈maxF |XΔY | = O(|E|). ��
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Abstract. The goal of the VegOut tool is to provide accurate early warning 
drought prediction. VegOut integrates climate, oceanic, and satellite-based 
vegetation indicators to identify historical patterns between drought and vegeta-
tion conditions indices and predict future vegetation conditions based on these 
patterns at multiple time steps (2, 4 and 6-week outlooks). This paper evaluates 
different sets of data mining techniques and various climatic indices for provid-
ing the improved prediction accuracy to the VegOut tool.  
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1   Introduction 

The Vegetation Outlook (VegOut) tool, introduced by Tadesse and Wardlow in [1], 
provides a spatio-temporal prediction outlook of general vegetation conditions using a 
regression tree data mining technique.  VegOut integrates climate, oceanic, and satel-
lite-based vegetation indicators and general biophysical characteristics of the envi-
ronment to identify historical patterns between drought intensity and vegetation con-
ditions and to predict future vegetation conditions based on these patterns at multiple 
time steps. Cross-validation (withholding years) revealed that the seasonal VegOut 
model had relatively high prediction accuracy across the growing season.   

Presently, the VegOut tool uses the rule-based regression tree algorithm, Cubist 
[2], to predict satellite-observed seasonal greenness (SSG) at 2-, 4- and 6-weeks out 
during the growing season in fifteen Midwest and Great Plains states.  The VegOut 
models are applied to geospatial data to produce vegetation condition maps [1].  Even 
though this approach had relatively high prediction accuracy, no alternative modeling 
methods have been investigated for use in the VegOut tool.  This paper examines 
which climatic index gives the best prediction, as well as the prediction accuracy of 
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several data mining algorithms compared with the current regression tree-based 
model used in VegOut for various temporal prediction periods.  The goal is to select 
the algorithm that generalizes well, has the best prediction accuracy for this problem 
domain, and is able to run in real-time.   

2   The Algorithm Selection Problem  

The algorithm selection problem introduced by Rice [3] in 1976 seeks to answer the 
question: Which algorithm is likely to perform best for my problem?  Although some 
algorithms are better than others on average, there is rarely a best algorithm for a 
given problem. By far, the most common approach to algorithm selection has been to 
measure different algorithms’ performance on a given problem, and then to use the 
algorithm that has the best predictive value [4]. This is the planned approach for the 
VegOut domain. 

There are four essential components of the algorithm selection model [3]: 
1. The problem space P which represents the set of instances of a problem class; 
2. The feature space F which contains measurable characteristics of the instances 

generated by a computational feature extraction process applied to P; 
3. The algorithm space A which is the set of all considered algorithms for tack-

ling the problem; and 
4. The performance space Y which represents the mapping of each algorithm to a 

set of performance metrics. 

The algorithm selection problem can be formally stated as follows [3]: 
For a given problem instance x ∈  P, with features f(x) ∈  F, find the selec-
tion mapping S(f(x)) into algorithm space A, such that the selected algorithm 
α ∈ A maximizes the performance mapping y(α(x)) ∈ Y.  

2.1   Problem Space Definition  

For the VegOut tool, the goal is to predict the general vegetation condition and pro-
vide accurate early warning in drought years. Drought is responsible for major crop 
and other agricultural losses in the U.S. each year. Recent extended periods of 
drought in the U.S. emphasized this vulnerability of the agricultural sector and the 
need for a more proactive, risk management approach to drought-induced water 
shortages that negatively affect vegetation conditions [5]. Preparedness and mitigation 
reduces drought vulnerability and its devastating impacts. A critical component of 
planning for drought is the provision of timely and reliable information that aids deci-
sion makers at all levels in making critical management decisions [6].  

Predicting drought and its impact on vegetation is challenging because there is in-
evitable uncertainty in predicting precipitation. Moreover, even if it is possible to get 
accurate forecasts, the complex spatial and temporal relationships between climate 
and vegetation makes the prediction of vegetation condition difficult [1]. Recent im-
provements in meteorological observations and forecasts have greatly enhanced the 
capability to monitor vegetation conditions [7]. In addition, remote sensing  
observations from satellite-based platforms provide spatially continuous and repeat 
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measurements of general vegetation conditions over large areas where no weather 
observing stations are present. Satellite observations have proven useful over the past 
two decades for monitoring vegetation conditions at regional to global scales [8]. 
Most remote sensing studies have analyzed normalized difference vegetation index 
(NDVI) data, which provides a multi-spectral-based measure (combined spectral data 
from the visible red and near infrared wavelength regions) of plant vigor and general 
vegetation condition. Even though this information is valuable for monitoring the 
vegetation condition, drought-affected areas cannot be distinguished from locations 
affected by other environmental stressors (e.g., pest infestation) solely from satellite-
based observations [1]. 

2.2   Feature Space Definition 

As discussed in [4], features must be chosen so that the varying complexities of the 
problem instances are exposed, any known structural properties of the problems are 
captured, and any known advantages and limitations of the different algorithms are 
related to features. Clearly, it is not straightforward to design suitable features for a 
given problem domain. Rice [3] concludes that “the determination of the proper 
nonlinear form is still somewhat of an art and there is no algorithm for making the 
choice”.   

For the VegOut feature space, recent studies that investigated ocean-atmosphere 
relationships found significant improvements in seasonal climate predictions (e.g., 
precipitation and temperature) with the inclusion of oceanic indicators [9]. The 
integration of climate, satellite, and ocean data, with other biophysical information 
such as available soil water capacity, ecoregion, and land cover type holds consid-
erable potential for enhancing our drought monitoring and prediction capabilities 
[1]. The feature space used in this study is the same as that used in the initial Ve-
gOut study. 

 
Selected Weather Stations. More than 3000 weather stations were available for the 
15 states to build the historical database. However, only 1402 stations were selected 
to be used in the VegOut model, as shown in Figure 1. Stations that did not have a 
long historical climate records (i.e., > 30 years of precipitation data and > 20 years of 
temperature data), incomplete data record (< 10% missing observations over the his-
torical record), or were not currently in operation were excluded. Stations that were 
predominately surrounded by either an urban area or water (i.e., > 50% of the sur-
rounding 3 km x 3 km area) were also eliminated because they would not be represen-
tative of vegetation conditions. For VegOut model development, a training database 
was built to extract historical climate and satellite information, as well as the bio-
physical parameters (considered static over the 18-year record) at the 1402 weather 
station locations across the 15-state study area. 
 
Climate-based Data. Two commonly used climate-based drought indices, the Palmer 
Drought Severity Index (PDSI) [10][11] and the Standardized Precipitation Index 
(SPI) [12], were used to represent the climatic variability that affects the vegetation  
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Fig. 1. Land cover and the 1402 weather station locations for the 15-state study area 

 
 condition in the VegOut models. The SPI is based on precipitation data and has the 
flexibility to detect both short- and long-term drought. The PDSI is calculated from a 
soil water balance model that considers precipitation, temperature, and available soil 
water capacity observations at the station for VegOut model development. The his-
torical time series of bi-weekly climate (i.e. SPI and PDSI) values for each of the 
1402 stations was then  generated for an 18-year period from (1989 to 2006).  

For this study,  one goal was to decide  which  climate-based  index  to  use  for 
the VegOut model.  We experimented with 19 different indices: 1 week SPI, 2 week 
SPI, 4 week SPI, 8 week SPI, 12 week SPI, 16 week SPI, 20 week SPI, 24  
week SPI, 28 week SPI, 32 week SPI, 36 week SPI, 40 week SPI, 44 week SPI, 48 
week SPI, 52 week SPI, 1 week PDSI, 2 week PDSI, 1 week PalmerZ and 2 week 
PalmerZ. 

 
Satellite Data. The Standardized Seasonal Greenness (SSG) metric, which represents 
the general condition of vegetation, was calculated from 1-km2 resolution NDVI data 
over the study area. The SSG is calculated from the Seasonal Greenness (SG) meas-
ure, which represents the accumulated NDVI through time from the start of the grow-
ing season (as defined from satellite) [13]. From the SG data, the SSG is calculated at 
2-week time steps throughout the growing season using a standardization formula 
(i.e., the current SG minus the average SG divided by the standard deviation). Since 
the satellite data are in gridded, raster format, they require a geographic summariza-
tion of each variable across a window of grid cells (or pixels) that surrounded each 
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station’s location. A 3-by-3 window centered on the station’s location was  
implemented for this study whereby the mean of the 9 grid cells values was calculated 
for continuous variables. 

 
The Oceanic Indices. Eight oceanic indices are integrated into the predictions to 
account for the temporal and spatial relationships between ocean-atmosphere dynam-
ics and climate-vegetation interactions (i.e., teleconnection patterns) that have been 
observed over the central United States ([14,15,and 16]). The indices include the 
Southern Oscillation Index (SOI), Multivariate El Niño and Southern Oscillation 
Index (MEI), Pacific Decadal Oscillation (PDO), Atlantic Multi-decadal Oscillation 
(AMO), Pacific-North American index (PNA), North Atlantic Oscillation index 
(NAO), Madden-Julian Oscillation (MJO), and Sea Surface Temperature anomalies 
(SST). For each oceanic index, the same value for a given bi-week was assigned to all 
stations. Furthermore, for oceanic indices reported on a monthly time step, the same 
monthly value was assigned to all bi-weeks where the majority of the 14-day win-
dows occurred in that specific month.  
 
Biophysical Data. The biophysical parameters used in this study included land cover 
type, available soil water capacity, percent of irrigated land and ecosystem type. The 
dominant (or majority) value within a 9-km2 window (i.e., 3-by-3 window of 1km 
pixels) surrounding each weather station was calculated from the 1-km2 images for 
each biophysical variable and used for VegOut model development. 

For the dynamic climate, oceanic (2-week values extrapolated from monthly data), 
and satellite variables (the bi-weekly historical records from 1989 to 2006); and sin-
gle, static values for the biophysical variables were extracted for each weather station 
and organized into a database which would be used in the analysis. 

 
Seasonal Periods. The VegOut product is generated bi-weekly from the start of the 
growing season. However, as in [1], only 3 VegOut models developed for spring 
(April to June), mid-summer (Jun to August), and fall (August to October) dates were 
presented to illustrate the seasonal predictive ability of the VegOut approach across 
the growing season. The biweekly periods selected to test the VegOut models were 
Period 10 (the first two weeks of May), Period 15 (the last two weeks of July), and 
Period 17 (the last 2 weeks of August) representing the spring, mid-summer and fall 
season, respectively.  

2.3   Algorithmic Space Definition 

For the VegOut algorithmic space, recent studies have shown that data mining tech-
niques are an effective means to integrate this diverse collection of data sets and to 
identify hidden and complex spatio-temporal patterns within the data that are related 
to drought [7].   

Due to the need in the problem space for drought experts to be able to examine the 
model and study the parameters used in determining the predicted value, only “white 
box” methods were used.  White box methods include decision trees, rules and regres-
sion algorithms, as the user can examine the formulas in these models.  (As a side 
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note, we did compare these results with a few “black box” methods, such as  
multilayer perceptron (a neural network), to see if we were losing any prediction 
value, and found the neural network results to be both slower and less accurate.)   

Because of the need for predicting numerical values, rather than predicting a classi-
fication label, only methods that can handle numerical prediction were used. 

Additionally, recent algorithmic comparisons across problem sets indicate that 
combinations of algorithms are likely to increase prediction accuracy over a single 
model.  These combined methods share the disadvantage of being difficult to analyze:  
they can comprise dozens or even hundreds of individual models, and although they 
perform well it is not easy to understand in intuitive terms what factors are contribut-
ing to the improved decisions [17].  Because of our problem domain’s need to  
examine the model, we will examine a few combinations of algorithms that have 
comprehensible models. 

The data mining methods used in this study were linear regression, least median 
square regression, M5P model tree, M5P rules, support vector machines, bagging with 
linear regression, bagging with least median square, and bagging with M5P.  The data 
mining methods used were all part of the Waikato Environment for Knowledge 
Analysis (Weka) workbench.  The descriptions of the Weka algorithms are based on 
the documentation of the Weka system [17].  

 
Linear Regression.  This is the traditional linear regression statistical model.  The 
Weka version uses the Akaike criterion for model selection, and is able to deal with 
weighted instances. 

 
Least Median Square Regression.  This is a least median squared linear regression 
algorithm that utilizes the existing Weka linear regression class to form predictions. 
The least squared regression functions are generated from random subsamples of the 
data. The least squared regression with the lowest median squared error is chosen as 
the final model. The basis of the algorithm is from Rousseeuw and Leroy [18]. 

 
M5P Model Tree. Model trees have a conventional decision tree structure but use 
linear functions at the leaves instead of discrete class labels. The original algorithm 
M5 was invented by Quinlan [19] and Wang and Witten [20] made improvements 
called M5' (referred to as M5P in Weka). 
 
M5 Rules/Cubist. Cubist is a commercially available rule-based regression tree 
method [2]. The technique is generally referred to as regression tree modeling. In 
Weka, the non-commercial version of Cubist is the M5P Rules algorithm.  

The M5 rules algorithm generates a decision list for regression problems using 
separate-and-conquer [21]. A separate and conquer technique identifies a rule that 
covers instances in the class (and excludes ones not in the class), separates them out, 
and continues on those that are left. The M5 algorithm combines regression trees and 
classification to make Model Trees (MT)s. The input space is partitioned into subsets 
based on entropy measures, and a regression equation is then fit to each subset.  Each 
leaf in the decision tree is a multivariate regression model. Linear models that are 
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collections of rules, each of which is associated with a linear expression for comput-
ing a target value, are generated.  

The continuous splitting often results in a too complex tree that needs to be 
pruned (reduced) to a simpler tree to improve the generalization capacity. Finally, 
the value predicted by the model at the appropriate leaf is adjusted by the smooth-
ing operation to reflect the predicted values at the nodes along the path from the 
root to that leaf. 

The overall global model, which is the collection of these linear (and locally accu-
rate) models, brings the required non-linearity in dealing with the problem. The dif-
ference from pure linear regression is that the necessary (sub)optimal splitting of 
input space is performed automatically. Model Trees can learn efficiently and can 
tackle tasks with high dimensionality which can be up to hundreds of attributes. The 
resulting MTs are transparent and simple – this makes them potentially more success-
ful in the eyes of decision makers. The disadvantage, as with any rule-based  
algorithm, is that it tends to over-fit the training data and does not generalize well to 
independent test sets, particularly on noisy data. 

 
Bagging. Bagging is an ensemble method that averages the prediction of a group of 
the same type of models to reduce variance and improve overall prediction accuracy 
[22].  For each model in the ensemble, bagging simulates the process of getting fresh 
new data by randomly deleting some instances and replicating others.  Once the indi-
vidual models have finished, the prediction for each model receives equal weight and 
an average prediction is computed. It can be shown theoretically that averaging over 
multiple models built from independent training sets always reduces the expected 
value of the mean-squared error, which is the key indicator of the quality of the pre-
diction of a model [17].  For our experiments, bagging was used with linear regres-
sion, least median square, and the M5P model tree.   

Because bagging averages the prediction of the same type of models, the resulting 
model is still a comprehensible model, which is a requirement for the VegOut prob-
lem domain.  Bagging is also quite efficient and generalizes well. 

 
Support Vector Machine Regression. SVMreg implements the support vector ma-
chine for regression. Support vector machines (SVMs) are a set of related supervised 
learning methods used for classification and regression. Viewing input data as two 
sets of vectors in an n-dimensional space, an SVM will construct a separating hyper-
plane in that space, one which maximizes the margin between the two data sets. To 
calculate the margin, two parallel hyperplanes are constructed, one on each side of the 
separating hyperplane, which are "pushed up against" the two data sets. Intuitively, a 
good separation is achieved by the hyperplane that has the largest distance to the 
neighboring data points of both classes, since in general the larger the margin the 
better the generalization error of the classifier. The parameters can be learned using 
various algorithms. The algorithm is selected by setting the RegOptimizer. The most 
popular algorithm (RegSMOImproved) is due to Shevade, et al, [23] and used as the 
default RegOptimizer. 

The advantage of SVM regression models are their excellent overall prediction ac-
curacy.  However, this algorithm has extremely slow training times.  It took almost a 
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week to run each SVM experiment.  Thus, it was not included in the results section, as 
the speed performance is not acceptable for use with the VegOut model, which is 
intended to be an operational tool. 

2.4   Performance Space 

For our experiments on the VegOut problem, we used the Mean Absolute Difference 
(MAE) as the performance metric. Due to the yearly variations that occur in weather 
data, instead of using cross validation for testing, we held out one year’s worth of data 
at a time (a total of 16 hold out year iterations were used in this study).   For each 
year, we built the model without that year’s data, and then tested the model using that 
year’s data.  The MAE was then averaged over all of the years. 

3   Results/Discussion 

The first set of comprehensive experiments we conducted was used to determine 
which climate-based index to use in the VegOut tool.  For these experiments, we 
predict the SSG for the two-week time periods 10, 15 and 17 (i.e., 7 to 20 May, 14 to 
29 Jul and 27 Aug to 9 Sept) using a 2, 4 and 6-week prediction outlook with one 
previous time period data for the data described above. We compared the average 
MAE for each of the 19 climate-based indices by averaging the algorithmic results for 
each climatic index.  A second set of experiments was conducted to determine which 
algorithm had the best overall prediction accuracy.  Finally, we compared the results 
from these experiments with the earlier results in [1]. 

3.1   Feature Selection Results 

One goal of this study was to decide which climate-based index to use for the Ve-
gOut model. Table 1 shows the results from the experimentation over the climatic 
indices for the 2-week outlook.  This table shows the average MAE and the 99% 
confidence interval for the average MAE.  Confidence interval values are used 
instead of p-values (which were used in [1]), since they provide a plausible range 
for the true value of the population mean, whereas p-values do not. The difference 
between the results in this paper and those reported in [1] is that the results in [1] 
use 2000 as the test year, whereas the results in this paper are the overall average 
from holding out each year individually.  These averages are shown instead of an 
individual year, to examine how well these algorithms and climatic indices general-
ize to unknown data. 

As shown in Table 1, for the 2-week outlook, the 8 week SPI gave the best overall 
average MAE on the periods 10 and 15 data whereas the 4 week SPI gave the best 
overall average MAE on the period 17 data. Also shown in Table 1, the 4 week SPI 
gave the best overall average MAE on the period 17 data for the 2-week outlook.   

The results support our expectation that a short prediction outlook favors shorter 
climatic indices, because the shorter climatic indices incorporate smaller variations in 
weather, such as a two-week rainy period or a two-week drought, than the longer 
climatic indices.   
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Table 1. Average results over all algorithms by climatic index using a 2-week outlook 

Climatic Period 10 Period 15 Period 17 

Index Avg MAE 99% CI Avg MAE 99% CI Avg MAE 99% CI 

1wkSPI 29.69 0.46 11.38 2.13 9.60 0.69 

2wkSPI 29.38 0.57 11.33 2.18 9.37 0.60 

4wkSPI 29.75 0.39 11.35 2.24 9.06 0.48 

8wkSPI 29.20 0.42 10.44 0.35 9.26 0.63 

12wkSPI 29.51 0.29 10.55 0.42 9.31 0.60 

16wkSPI 29.50 0.24 10.55 0.41 9.46 0.64 

20wkSPI 29.49 0.28 10.58 0.40 9.47 0.64 

24wkSPI 29.47 0.21 10.58 0.41 9.58 0.69 

28wkSPI 29.97 0.44 10.55 0.36 9.58 0.68 

32wkSPI 29.73 0.27 10.57 0.36 9.56 0.66 

36wkSPI 29.80 0.40 10.54 0.38 9.56 0.66 

40wkSPI 29.91 0.79 10.63 0.41 9.57 0.70 

44wkSPI 29.54 0.54 10.60 0.40 9.58 0.70 

48wkSPI 29.70 0.74 10.61 0.39 9.56 0.69 

52wkSPI 29.58 0.62 10.61 0.40 9.61 0.69 

2wkPDSI 29.65 0.66 10.54 0.39 9.44 0.62 

1wkPDSI 29.69 0.63 10.59 0.41 9.44 0.65 

1wkPalmerZ 29.62 0.41 10.52 0.38 9.64 0.71 

2wkPalmerZ 29.44 0.51 10.46 0.36 9.46 0.64 

AVERAGE 29.61 0.47 10.68 0.67 9.48 0.65 

RANGE 0.77 0.59 0.95 1.89 0.58 0.23 
 
 

Similar to [1], the prediction accuracy was slightly lower for the spring phase com-
pared with the mid-summer (peak growing season) and late summer (senescence) 
periods of the growing seasons. This was expected, as spring vegetation is much more 
variable than mid and late summer vegetation.  A late frost can delay the green-up 
process, while an early warm-up with above average rainfall can speed-up the green-
up process.   

Even though the 4 week and 8 week SPI indices gave the best results over all the 
time periods tested for the 2-week outlook, the variability between the results from 
the different precipitation indices was not statistically significant.  The range of the 
average MAE was only 0.77 for period 10, .95 for period 15, and .58 for period 17.  
The range of the 99% confidence intervals was quite small for these results, with a 
range of .59 for period 10, 1.89 for period 15, and .23 for period 17.  Individual 99% 
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confidence interval values were also quite small, indicating that the true means for 
these experiments are likely to be close to the reported values. 

For the 4-week outlook (not shown), the 28 week SPI gave the best average MAE 
over all the algorithms on the period 10 data (76.16) and period 17 data (84.66), while 
the 36week SPI gave the best average MAE on the period 15 data (77.12).  For the 6-
week outlook (also not shown), the 20 week SPI gave the best overall average MAE 
over all of the algorithms on the period 15 data (79.77), while the 24 week SPI gave 
the best overall average MAE on the period 17 data (82.30).  These results support 
our expectation that a longer prediction outlook favors longer climatic indices.  

Note that the prediction accuracy decreased as the prediction period increased from 
two to four or six weeks, similar to the results in [1].   

The variability between the results obtained from different precipitation indices us-
ing the same algorithm for the 4-week outlook was slightly greater than the variability 
in 2-week outlook results, with a range of the average MAE of 7.62 on the spring 
phase data, 15.38 on the mid-summer data, and 5.50 on the late summer data, but was 
still not statistically significant.  The variability in the 6-week outlook results was also 
insignificant, but larger than the variability in the 2-week outlook results. 

Both the decrease in prediction accuracy and the increase in variability in results 
for the 4-and 6-week outlooks compared with the 2-week outlook are reasonable, 
since it is harder to predict vegetation conditions four and six weeks in the future than 
two weeks.  Increasing the length of time between the current time period and the 
predicted time period allows for greater differences in weather conditions.  Four 
weeks is a large timeframe when predicting vegetation conditions.  The weather can 
range from four weeks without any significant rainfall to four weeks with extremely 
high rainfall amounts.  Interestingly, the results from the 6-week outlook were similar 
to the results from the 4-week outlook, and in the case of period 17, the 6-week out-
look prediction accuracy was slightly better than the 4-week outlook over the same 
algorithms. 

Using t-tests, we tested for differences between the average MAEs for each cli-
matic index, using period 10, 15, and 17 data and at the 2-, 4- and 6-week outlooks.  
We found no statistical significant difference in these mean values at the α=.01 level, 
for any climatic index, during any period, with any outlook.  This indicates that any of 
the climatic indices could be used with the VegOut tool while compromising little 
prediction accuracy. Even so, we would still like to determine the best climatic index 
feature to select for use in the VegOut tool. The 28 week SPI had the lowest overall 
average MAE of 56.58 with an averaged 99% confidence interval of 4.75, and would 
make a good choice for the climatic index feature to use for the VegOut model. The 
24 week SPI had an overall average MAE of 56.79 and an averaged 99% confidence 
interval of 4.05, making its range of values for the average MAE smaller than that of 
the 28 week SPI values.  Either of these climatic indices would make a good choice.   

3.2   Algorithm Selection Results 

The second goal of this study was to decide which algorithm to use for the VegOut 
model. Table 2 shows the results when averaging the MAE over all climatic indices 
by algorithm, using the 2-, 4-, and 6-week outlooks for periods 10, 15 and 17.  



 Algorithm and Feature Selection for VegOut: A Vegetation Condition Prediction Tool 117 

 

Table 2.  Average MAE results over all climatic indices by algorithm 

Period 10 Period 15 Period 17 
Algorithm 

2 wk 4 wk 2 wk 4 wk 6 wk 2 wk 4 wk 6 wk 
Linear 

Regression 29.01 79.66 10.87 86.76 95.51 9.53 97.76 93.08 

LeastMedSq 29.00 77.91 10.58 85.56 90.39 9.58 94.06 90.73 

M5Rules 30.04 83.25 11.07 90.47 84.87 10.47 85.50 84.74 

M5P 30.11 82.67 11.04 78.26 88.93 10.46 81.98 85.71 

Bagging 29.71 76.71 10.11 72.57 73.02 8.77 82.51 77.94 

AVERAGE 29.57 80.04 10.73 82.73 86.54 9.76 88.36 86.44 

RANGE 1.11 6.54 0.96 17.9 22.49 1.70 15.78 15.14 
 
 

No experiments were conducted for predicting period 10 with a six week outlook.  
Period 10 is the time period from 7 to 20 May, when the vegetation is just starting to 
green up.  For the 15 states used in these experiments, there is little vegetation four 
weeks prior to period 10, and almost no vegetation six weeks prior to period 10, espe-
cially on agricultural land. 

As shown in Table 2, the bagging1 algorithm gave the best overall average MAE 
on most experiments, including the 4-week outlook for period 10, the 2-, 4- and 6-
week outlook for period 15 data, and the 2- and 6-week outlook for the period 17 
data, when averaged over all of the climatic indices.   

The variability in these algorithms’ means on the 2-week outlook over the precipi-
tation indices was quite small for all three periods, and not statistically significant. For 
the 4-week outlook on periods 15 and17 data, we found statistically meaningful dif-
ferences from the bagging, M5P and M5Rules algorithms’ means, for the linear re-
gression and least median square algorithms using a t-test, with α=.05. We also found 
statistically meaningful differences from the bagging mean, for the linear regression, 
least median square, M5Rules, and M5P algorithms for the 6-week outlook on period 
15 data and for the linear regression, least median square, and M5P algorithms on the 
period 17 data. 

Bagging is the only algorithm from the algorithms we experimented with that had 
the statistically lowest average MAE value in all experiments. As stated earlier, we 
used the bagging algorithm with three base algorithms: linear regression, least median 
square, and M5P.  However, since the speed of the bagging with linear regression is 
the fastest and the comprehension of linear regression is quite good, bagging with 
linear regression would probably be the best overall choice of algorithm for VegOut.  

When comparing the averages between the results obtained from the different algo-
rithms over the precipitation indices, with the results obtained from the different  
climatic indices over the various algorithms, there was great statistical significance 

                                                           
1 Bagging was used independently with three algorithms: Linear Regression, Least Median 

Square, and M5P.  Similar results were found for all three bagging approaches. 



118 S. Harms, T. Tadesse, and B. Wardlow 

 

between the algorithms, and no statistical significance between the climatic indices. 
This suggests that it is more important to choose the most appropriate algorithm than 
to have the best precipitation index in the feature set.  

3.3   Comparison with Earlier Results 

A third goal of this study was to compare the results from these experiments with the 
earlier results for the VegOut model. Table 3 shows the best algorithm and climatic 
index for each period-outlook combination. Table 3 also shows the average Mean 
Absolute Difference (MAD) expressed in SSG data units, for comparison with the 
results in [1], as well as the level at which these experimental results were statically 
significantly better than the results in [1].   

Table 3. Best results over all precipitation indices and seven different algorithms for periods 
10, 15, and 17 

 
Period 

 
Outlook

 
Best 

 
Test Results  

Results 
from [1]  

 
Significant 

  Classifier  Climatic 
Index 

Avg 
MAE 

MAD MAD level 

10 2 week LeastMedSq 8 week SPI 28.48 0.05 0.16 α=.01 
 4 week Bagging 20 week SPI 73.95 0.12 0.23 α=.01 

15 2 week Bagging 8 week SPI 10.01 0.02 0.09 α=.01 
 4 week Bagging 36 week SPI 70.32 0.11 0.14 α=.10 
 6 week Bagging 28 week SPI 71.43 0.11 0.18 α=.01 

17 2 week Bagging 4 week SPI 8.53 0.01 0.07 α=.01 
 4 week M5Rules 32 week SPI 76.77 0.12 0.11 -- 
 6 week Bagging 40 week SPI 76.00 0.12 0.15 -- 

 
 

The MAD results improved over the results in [1], particularly for the 2-week out-
looks, the 4-week outlook on period ten, and slightly on the 4- and 6-week outlooks for 
periods 15 and 17. As shown in Table 3, most of these results were significantly better 
than the earlier results at the α=.01 level.  Only two of these results were not signifi-
cantly better than the earlier results (period 17 with 4- and 6-week outlooks), but those 
results were statistically equivalent to the earlier results.  These results again support 
that algorithm selection is important to improving VegOut prediction capability. 

4   Future Work 

The prediction accuracy of all 4- and 6-week prediction outlooks needs further ex-
amination.  When looking at Table 3, the best average MAE of 70.32, using a 4-week 
outlook to predict period 15, is poor compared to the 2-week prediction outlook aver-
age MAE of 8.12. In fact, all of the 4- and 6-week prediction outlook results could be 
improved.  Models need to be investigated to see if more accurate prediction on  
the longer outlooks can be achieved.  This is critical for allowing practitioners to 
make more accurate decisions, such as irrigation quotas and water releases from  
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dams – decisions that must be made several weeks in advance. Ensembles besides 
bagging need to be explored to see if they could be used to improve prediction accu-
racy without compromising the ability for practitioners to comprehend the model. 
New inputs, such as sun spot data, need to be investigated for inclusion in the VegOut 
model for improving overall prediction accuracy.  Finally, VegOut currently is fo-
cused on 2-, 4- and 6-week outlooks in fifteen U.S. states in the Midwest and Great 
Plains regions, but expansion to other areas of the U.S. is planned in the near future. 

5   Conclusion 

As with any scientific discovery model, it is important to evaluate the algorithm and 
features selected for use with the VegOut drought monitoring tool.  The current ver-
sion of the VegOut tool uses the rule-based regression tree algorithm, Cubist.  This 
study experimented with several data mining algorithms, as well as various climatic 
indices for the purpose of improving the overall accuracy of the VegOut prediction at 
the 2-, 4-, and 6-week outlooks. 

Overall, the 28-week SPI climatic index had the lowest overall average MAE of all 
the climatic indices, for each of the time periods in the experiments and all of the 
prediction outlooks, and would likely make a good choice for the climatic index fea-
ture to use for the VegOut model. However, since the variability between the various 
precipitation indices for any of the algorithms was not statistically significant, any of 
the precipitation indices could be chosen for the VegOut application without com-
promising much prediction accuracy.   

Overall, the bagging algorithm produced the lowest overall average MAE for the 
time periods and prediction outlooks studied.  The variability between the various 
algorithms was statistically significant.  The bagging algorithm was the only algo-
rithm that had the smallest average MAE over all of the experiments and should be 
used for this application. 

The best results from these experiments compared well with the best results from 
the experiments in earlier studies.  In fact, these results were either statistically 
equivalent or statistically better than the earlier results. 

The experimental results from this study support the results from [1] that the use of 
data mining in monitoring drought and its impact on vegetation conditions ahead of 
time over large geographic areas is possible. Further progress and improvements to 
VegOut are expected in the future as the research initiatives outlined in section 4 are 
undertaken. 
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Abstract. The problem of extracting meaningful patterns from time changing 
data streams is of increasing importance for the machine learning and data min-
ing communities. We present an algorithm which is able to learn regression 
trees from fast and unbounded data streams in the presence of concept drifts. To 
our best knowledge there is no other algorithm for incremental learning regres-
sion trees equipped with change detection abilities. The FIRT-DD algorithm has 
mechanisms for drift detection and model adaptation, which enable to maintain 
accurate and updated regression models at any time. The drift detection mecha-
nism is based on sequential statistical tests that track the evolution of the local 
error, at each node of the tree, and inform the learning process for the detected 
changes. As a response to a local drift, the algorithm is able to adapt the model 
only locally, avoiding the necessity of a global model adaptation. The adapta-
tion strategy consists of building a new tree whenever a change is suspected in 
the region and replacing the old ones when the new trees become more accu-
rate. This enables smooth and granular adaptation of the global model. The re-
sults from the empirical evaluation performed over several different types of 
drift show that the algorithm has good capability of consistent detection and 
proper adaptation to concept drifts. 

Keywords: data stream, regression trees, concept drift, change detection, 
stream data mining. 

1   Introduction 

Our environment is naturally dynamic, constantly changing in time. Huge amounts of 
data are being constantly generated by various dynamic systems or applications. Real-
time surveillance systems, telecommunication systems, sensor networks and other 
dynamic environments are such examples. Learning algorithms that model the under-
lying processes must be able to track this behavior and adapt the decision models 
accordingly. The problem takes the form of changes in the target function or the data 
distribution over time, and is known as concept drift. Examples of real world prob-
lems where drift detection is relevant include user modeling, real-time monitoring 
industrial processes, fault detection, fraud detection, spam, safety of complex systems, 
and many others [1]. In all these dynamic processes, the new concepts replace the old 
concepts, while the interest of the final user is always to have available model that 
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will describe or accurately predict the state of the underlying process at every time. 
Therefore, the importance of drift detection when learning from data streams is evi-
dent and must be taken into consideration. Most machine-learning algorithms, includ-
ing the FIMT algorithm [2] make an assumption that the training data is generated by 
a single concept from a stationary distribution, and are designed for static environ-
ments. However, when learning from data streams dynamic distributions are rule and 
not an exception. To meet the challenges posed by the dynamic environment, they 
must be able to detect changes and react properly on time. This is the challenge we 
address in this work: how to embed change detection mechanisms inside a regression 
tree learning algorithm and adapt the model properly. 

Having in mind the importance of the concept drifting problem when learning 
from data streams, we have studied the effect of local and global drift over the accu-
racy and the structure of the learned regression tree. We propose the FIRT-DD (Fast 
and Incremental Regression Tree with Drift Detection) algorithm which is able to 
learn regression trees from possibly unbounded, high-speed and time-changing data 
streams. FIRT-DD algorithm has mechanisms for drift detection and model adapta-
tion, which enable to maintain an accurate and updated model at any time. The drift 
detection mechanism is consisted of distributed statistical tests that track the evolution 
of the error at every region of the instance space, and inform the algorithm about 
significant changes that have affected the learned model locally or globally. If the 
drift is local (affects only some regions of the instance space) the algorithm will be 
able to localize the change and update only those parts of the model that cover the 
influenced regions.  

The paper is organized as follows. In the next section we present the related work 
in the field of drift detection when learning in dynamic environments. Section 3 de-
scribes our new algorithm FIRT-DD. Section 4 describes the experimental evaluation 
and presents a discussion of the obtained results. We conclude in section 5 and give 
further directions. 

2   Learning with Drift Detection 

The nature of change is diverse. Changes may occur in the context of learning, due to 
changes in hidden variables or in the intrinsic properties of the observed variables. 
Often these changes make the model built on old data inconsistent with the new data, 
and regular updating of the model is necessary. In this work we look for changes in 
the joint probability P(X, Y), in particular for changes in the Y values given the at-
tribute values X, that is P(Y|X). This is usually called concept drift. There are two 
types of drift that are commonly distinguished in the literature: abrupt (sudden, instan-
taneous) and gradual concept drift. We can also make a distinction between local and 
global drift. The local type of drift affects only some parts of the instance space, while 
global concept drift affects the whole instance space. Hidden changes in the joint 
probability may also cause a change in the underlying data distribution, which is usu-
ally referred to as virtual concept drift (sampling shift). A good review of the types of 
concept drift and the existing approaches to the problem is given in [3, 4]. We distin-
guish three main approaches for dealing with concept drift: 
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1. Methods based on data management. These include weighting of examples, or 
example selection using time-windows with fixed or adaptive size. Relevant work 
is [5]. 

2. Methods that explicitly detect a change point or a small window where change 
occurs. They may follow two different approaches: (1) monitoring the evolution of 
some drift indicators [4], or (2) monitoring the data distribution over two different 
time-windows. Examples of the former are the FLORA family of algorithms [6], 
and the works of Klinkenberg presented in [7, 8]. Examples of the latter are the al-
gorithms presented in [9, 10].  

3. Methods based on managing ensembles of decision models. The key idea is to 
maintain several different decision models that correspond to different data distri-
butions and manage an ensemble of decision models according to the changes in 
the performance. All ensemble based methods use some criteria to dynamically de-
lete, reactivate or create new ensemble members, which are normally based on the 
model’s consistency with the current data [3]. Such examples are [11, 12]. 

The adaptation strategies are usually divided on blind and informed methods. The 
latter adapt the model without any explicit detection of changes. These are usually 
used with the data management methods (time-windows). The former methods adapt 
the model only after a change has been explicitly detected. These are usually used 
with the drift detection methods and decision model management methods.  

The motivation of our approach is behind the advantages of explicit detection and 
informed adaptation methods, because they include information about process dynam-
ics: meaningful description of the change and quantification of the changes. Another 
important aspect of drift management methods that we adopt and stress is the ability 
to detect local drift influence and adapt only parts of the learned decision model. In 
the case of local concept drift, many global models are discarded simply because their 
accuracy on the current data chunks falls, although they could be good experts for the 
stable parts of the instance space. Therefore, the ability to incrementally update local 
parts of the model when required is very important. Example of a system that pos-
sesses this capability is the CVFDT system [13]. CVFDT algorithm performs regular 
periodic validation of its splitting decisions by maintaining the necessary statistics at 
each node over a window of examples. Every time a split is discovered as invalid it 
starts growing new decision tree rooted at the corresponding node. The new sub-trees 
grown in parallel are aimed to replace the old ones since they are generated using data 
which corresponds to the now concepts. To smooth the process of adaptation, CVFDT 
keeps the old tree rooted at the influenced node until one of the new ones becomes 
more accurate. Maintaining the necessary counts for class distributions at each node 
requires significant amount of additional memory and computations, especially when 
the tree becomes large. We address this problem with the utilization of a light weight 
detection units positioned in each node of the tree, which evaluate the goodness of the 
split continuously for every region of the space using only few incrementally main-
tained variables. This approach does not require significant additional amount of 
memory or time and is therefore suitable for the streaming scenario, while at the same 
time enables drift localization.  
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3   The FIRT-DD Algorithm 

The FIRT-DD algorithm is an adaptation of the FIMT algorithm [2] to dynamic envi-
ronments and time-changing distributions. FIMT is an incremental any-time algo-
rithm for learning model trees from data streams. FIMT builds trees following the 
top-down approach where each splitting decision is based on a set of examples corre-
sponding to a certain time period or a sequence of the data stream. Decisions made in 
upper nodes of the tree are therefore based on older examples, while the leaves re-
ceive the most current set of examples. Each node has a prediction obtained during its 
growing phase. The FIMT algorithm can guarantee high asymptotic similarity of the 
incrementally learned tree to the one learned in a batch manner if provided with 
enough data. This is done by determining a bound on the probability of selecting the 
best splitting attribute. The probability bound provides statistical support and there-
fore stability to the splitting decision as long as the distribution of the data is station-
ary. However, when the distribution is not stationary and the data contains concept 
drifts, some of the splits become invalid. We approach this problem using statistical 
process control methodologies for change detection, which are particularly suitable 
for data streams. Statistical process control (SPC) methodologies [14] are capable to 
handle large volume of data and have been widely used to monitor, control and im-
prove industrial processes quality. In recent years some SPC techniques were devel-
oped to accommodate auto-correlated data, such as process residual charts. 

3.1   A Fully Distributed Change Detection Method Based on Statistical Tests 

Although the regression tree is a global model it can be decomposed according to the 
partitions of the instance space obtained with the recursive splitting. Namely, each 
node with the sub-tree below covers a region (a hyper-rectangle) of the instance 
space. The root node covers the whole space, while the descendant nodes cover sub-
spaces of the space covered by their parent node. When a concept drift occurs locally 
in some parts of the instance space, it is much less costly to make adaptations only to 
the models that correspond to that region of the instance space. The perception of the 
possible advantages of localization of drift has led us to the idea of a fully distributed 
change detection system.  

In order to detect where in the instance space drift has occurred, we bound each 
node of the tree with a change detection unit. The change detection units bounded 
with each node perform local, simultaneous and separate monitoring of every region 
of the instance space. If a change has been detected, it suggests that the instance space 
to which the node belongs has been influenced by a concept drift. The adaptation will 
be made only at that sub-tree of the regression tree. This strategy has a major advan-
tage over global change detection methods, because the costs of updating the decision 
model are significantly lower. Further, it can detect and adapt to changes in different 
parts of the instance space at the same time, which speeds up the adaptation process.  

The change detection units are designed following the approach of monitoring the 
evolution of one or several concept drift indicators. The authors in [8] describe as 
common indicators: performance measures, properties of the decision model, and 
properties of the data. In the current implementation of our algorithm, we use the 
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absolute loss as performance measure1. When a change occurred in the target concept 
the actual model does not correspond to the current status of nature and the absolute 
loss will increase. This observation suggests a simple method to detect changes: 
monitor the evolution of the loss. The absolute loss at each node is the absolute value 
of the difference between the prediction (i.e. average of the target variable) from the 
period the node was a leaf and the prediction now. If it starts increasing it may be a 
sign of change in the examples’ distribution or in the target concept. To confidently 
tell that there is a significant increase of the error which is due to a concept drift, we 
propose continuous performing statistical tests at every internal node of the tree. The 
test would monitor the absolute loss at the node, tracking major statistical increase 
which will be a sure sign that a change occurred. The alarm of the statistical test will 
trigger mechanisms for adaptation of the model.  

In this work, we have considered two methods for monitoring the evolution of the 
loss. We have studied the CUSUM algorithm [15] and Page-Hinkley method [16], 
both from the same author. The CUSUM charts were proposed by Page [15] to detect 
small to moderate shifts in the process mean. Since we are only interested in detecting 
increases of the error the CUSUM algorithm is suitable to use. However, when com-
pared with the second option, the Page-Hinkley (PH) test [16], the results attested 
stability and more consistent detection in favor of the PH test. Therefore in the fol-
lowing sections we have only analyzed and evaluated the second option. The PH test 
is a sequential adaptation of the detection of an abrupt change in the average of a 
Gaussian signal [1]. This test considers two variables: a cumulative variable mT, and 
its minimum value MT. The first variable mT is defined as the cumulated difference 
between the observed values and their mean till the current moment, where T is the 
number of all examples seen so far and xt is the variable’s value at time t:  
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Its minimum value after seeing T examples is computed using the following formula:  

min{ , 1... }
T T

M m t T= = . (3) 

At every moment the PH test monitors the difference between the minimum MT 

and mT : 
T T T

PH m M= − . When this difference is greater than a given threshold (λ) it 
alarms a change in the distribution (i.e. PHT > λ). The threshold parameter λ depends 
on the admissible false alarm rate. Increasing λ will entail fewer false alarms, but 
might miss some changes. The parameter α corresponds to the magnitude of changes 
that are allowed.  

                                                           
1 Other measures like square loss could be used. For the purposes of change detection both 

metrics provide similar results. 
, 
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Each example from the data stream is traversing the tree until reaching one of the 
leaves where the necessary statistic for building the tree is maintained. On its path 
from the root till the leaf it will traverse several internal nodes, each of them bounded 
with a drift detection unit which continuously performs the PH test, monitoring the 
evolution of the absolute loss after every consecutive example passing through the 
node. When the difference between the observed absolute loss and its average is in-
creasing fast and continuously, eventually exceeding a user predefined limit (λ), we 
can confidently conclude that the predictions used in the computation of the absolute 
loss are continuously and significantly wrong. This is an indication of a non-valid 
split at the corresponding node.  

The computation of the absolute loss can be done using the prediction from the 
node where the PH test is performed or from the parent of the leaf node where the 
example will fall (the leaf node is not used because it is still in its growing phase). As 
a consequence of this we will consider two methods for change detection and local-
ization. The prediction (whether it is from the node where the PH test is or from the 
parent node of the leaf) can be: 1) the mean of y-values of the examples seen at that 
node during its growing phase or; 2) the perceptron’s output for a given example 
which is trained incrementally at the node. Preliminary experiments have shown that 
the detection of the changes is more consistent and more reliable when using the first 
option, that is the average of y values. If the loss is computed using the prediction 
from the current node the computation can be performed while the example is passing 
the node on its path to the leaf. Therefore, the loss will be monitored first at the root 
node and after at its descendant nodes. Because the direction of monitoring the loss is 
from the top towards the “bottom” of the tree, this method will be referred to as Top-
Down (TD) method. If the loss is computed using the prediction from the parent of 
the leaf node, the example must first reach the leaf and then the computed difference 
at the leaf will be back-propagated towards the root node. While back-propagating the 
loss (using the same path the example reached the leaf) the PH tests located in the 
internal nodes will monitor the evolution. This reversed monitoring gives the name of 
the second method for change detection which will be referred to as Bottom-Up (BU) 
method. The idea for the BU method came from the following observation: with the 
TD method the loss is being monitored from the root towards the leaves, starting with 
the whole instance space and moving towards smaller sub-regions. While moving 
towards the leaves, predictions in the internal nodes become more accurate which 
reduces the probability of false alarms. This was additionally confirmed with the 
empirical evaluation: most of the false alarms were triggered at the root node and its 
immediate descendants. Besides this, the predictions from the leaves which are more 
precise than those at the internal nodes (as a consequence of splitting) emphasize the 
loss in case of drift. Therefore, using them in the process of change detection would 
shorten the delays and reduce the number of false alarms. However, there is one nega-
tive side of this approach, and it concerns the problem of gradual and slow concept 
drift. Namely, the tree grows in parallel with the process of monitoring the loss. If 
drift is present, consecutive splitting enables new and better predictions according to 
the new concepts, which would disable proper change detections. The slower the drift 
is the probability of non-detection gets higher.  
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3.2   Adapting to Concept Drift 

The natural way of responding to concept drift for the incremental algorithm (if no 
adaptation strategy is employed) would be to grow and append new sub-trees to the 
old structure, which would eventually give correct predictions. Although the predic-
tions might be good, the structure of the whole tree would be completely wrong and 
misleading. Therefore, proper adaptation of the structure is necessary. The FIRT-DD 
without the change detection abilities is the incremental algorithm FIRT [2]. For 
comparison FIRT is also used in the evaluation and is referred to as “No detection”. 

Our adaptation mechanism falls in the group of informed adaptation methods: me-
thods that modify the decision model only after a change was detected. Common 
adaptation to concept drift is forgetting the outdated and un-appropriate models, and 
re-learning new ones that will reflect the current concept. The most straightforward 
adaptation strategy consists of pruning the sub-models that correspond to the parts of 
the instance space influenced by the drift. If the change is properly detected the cur-
rent model will be most consistent with the data and the concept which is being mod-
eled. Depending on whether the TD or the BU detection method is used, in the em-
pirical evaluation this strategy will be referred to as “TD Prune” and “BU Prune” 
correspondingly. However when the change has been detected relatively high in the 
tree, pruning the sub-tree will decrease significantly the number of predicting nodes – 
leaves which will lead to unavoidable drastic short-time degradation in accuracy. In 
these circumstances, an outdated sub-tree may still be better than a single leaf. Instead 
of pruning when a change is detected we can start building an alternate tree (a new 
tree) from the examples that will reach the node. A similar strategy is used in CVFDT 
[13] where on one node can be grown several alternate trees at the same time. 

This is the general idea of the adaptation method proposed in the FIRT-DD algo-
rithm. When a change is detected the change detection unit will trigger the adaptation 
mechanism for the node where the drift was detected. The node will be marked for re-
growing and new memory will be allocated for maintaining the necessary statistic 
used for growing a leaf. Examples which will traverse a marked node will be used for 
updating its statistic, as well as the statistic at the leaf node where they will eventually 
fall. The regrowing process will initiate a new alternate tree rooted at the node which 
will grow in parallel with the old one. Every example that will reach a node with an 
alternate tree will be used for growing both of the trees. The nodes in the alternate tree 
won’t perform change detection till the moment when the new tree will replace the 
old one. The old tree will be kept and grown in parallel until the new alternate tree 
becomes more accurate.  

However, if the detected change was a false alarm or the alternate tree cannot 
achieve better accuracy, replacing the old tree might never happen. If the alternate 
tree shows slow progress or starts to degrade in performance this should be consid-
ered as a sign that growing should be stopped and the alternate tree should be re-
moved. In order to prevent reactions to false alarms the node monitors the evolution 
of the alternate tree and compares its accuracy with the accuracy of the original sub-
tree. This is performed by monitoring the average difference in accuracy with every 
example reaching the node. The process of monitoring the average difference starts 
after the node has received twice of the growing process chunk size (e.g. 400 exam-
ples) of examples, which should be enough to determine the first split and to grow an 



128 E. Ikonomovska et al. 

 

alternate tree with at least three nodes. When this number is reached the nodes starts 
to maintain the mean squared error for the old and the alternate tree simultaneously. 
On a user predetermined evaluation interval (e.g. 5000 examples) the difference of the 
mean squared error between the old and the new tree is evaluated, and if it is positive 
and at least 10% greater than the MSE of the old tree the new alternate tree will re-
place the old one. The old tree will be removed, or as an alternative it can be stored 
for possible reuse in case of reoccurring concepts. If the MSE difference does not 
fulfill the previous conditions its average is incrementally updated. Additionally in the 
evaluation process a separate parameter can be used to specify a time period which 
determines how much time a tree is allowed to grow in order to become more accu-
rate than the old one. When the time period for growing an alternate tree has passed or 
the average of the difference started to increase instead to decrease, the alternate tree 
will be removed from the node together with the maintained statistic and the memory 
will be correspondingly released. In order to prevent from premature discarding of the 
alternate tree the average of the MSE difference is being evaluated only after several 
evaluation intervals have passed. The strategy of growing alternate trees will be re-
ferred to as “TD AltTree” and “BU AltTree” depending on which change detection 
method is used (TD/BU). 

4   Experimental Evaluation 

To provide empirical support to FIRT-DD we have performed an evaluation over 
several versions of an artificial “benchmark” dataset (simulating several different 
types of drift) and over a real-world dataset from the DataExpo09 [18] competition. 
Using artificial datasets allows us to control relevant parameters and to empirically 
evaluate the drift detection and adaptation mechanisms. The real-problem dataset 
enables us to evaluate the merit of the method for real-life problems. Empirical evalu-
ation showed that the FIRT-DD algorithm possesses satisfactory capability of detec-
tion and adaptation to changes and is able to maintain an accurate and well structured 
decision model. 

4.1   Experimental Setup and Metrics 

In the typical streaming scenario data comes in sequential order, reflecting the current 
state of the physical process that generates the examples. Traditional evaluation 
methodologies common for static distributions are not adequate for the streaming 
setting because they don’t take into consideration the importance of the order of ex-
amples (i.e. their dependency on the time factor), as well as the evolution of the 
model in time. One convenient methodology is to use the predictive sequential or 
prequential error which can be computed as a cumulative sum of a loss function (er-
ror obtained after every consecutive example) typical for the regression domain (mean 
squared or root relative mean squared error). The prequential approach uses all the 
available data for training and testing, and draws a pessimistic learning curve that 
traces the evolution of the error. Its main disadvantage is that it accumulates the errors 
from the first examples of the data stream and therefore hinders precise on-line 
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evaluation of real performances. Current improvements cannot be easily seen due to 
past degradation in accuracy accumulated in the prequential error.  

More adequate methodology in evaluating the performance of an incremental algo-
rithm is to use an “exponential decay”/”fading factor” evaluation or a sliding window 
evaluation. Using the “exponential decay”/”fading factor” method we can diminish 
the influence of earlier errors by multiplying the cumulated loss with an e-δt function 
of the time t or a fading factor (constant value less than one, e.g. 0.99) before sum-
ming the most current error. This method requires setting only the parameter δ or the 
fading factor, but since it still includes all the previous information of the error it 
gives slightly smoothed learning curve. With the sliding window method for evalua-
tion we can obtain detailed and precise evaluation over the whole period of train-
ing/learning without the influence of earlier errors. With this method we evaluate the 
model over a test set determined by a window of examples which the algorithm has 
not used for training. The window of examples manipulates the data like a FIFO 
(first-in-first-out) queue. The examples which have been used for testing are given to 
the algorithm one by one for the purpose of training. The size of the sliding window 
determines the level of aggregation and it can be adjusted to the quantity a user is 
willing to have. The sliding step determines the level of details or the smoothness of 
the learning curve and can be also adjusted. Using the sliding window test set we 
measure accuracy in terms of the mean squared error (MSE) or root relative squared 
error (RRSE) and the current dimensions of the learned model.  

We have performed a sensitivity analysis on the values of the parameters α and λ 
which resulted in the pairs of values (0.1, 200), (0.05, 500) and (0.01, 1000), corre-
spondingly. Smaller values for α would increase the sensibility, while smaller values 
for λ would shorten the delays in the change detection. However, we should have in 
mind that smaller λ values increase the probability of detecting false alarms. In the 
empirical evaluation we have used α = 0.05 and λ = 500 for all the simulations of drift 
over the Fried artificial dataset. 

4.2   The Datasets 

For simulation of the different types of drift we have used the Fried dataset used by 
Friedman in [18]. This is an artificial dataset containing 10 continuous predictor at-
tributes with independent values uniformly distributed in the interval [0, 1]. From 
those 10 predictor attributes only five attributes are relevant, while the rest are redun-
dant. The original function for computing the predicted variable y is: 

 
y = 10sin(πx1x2) + 20(x3 - 0.5)2 + 10x4 + 5x5 + σ(0, 1), 

 
where σ(0,1) is a random number generated from a normal distribution with mean 0 
and variance 1. The second dataset used is from the Data Expo competition [18] and 
contains large amount of records containing flight arrival and departure details for all 
commercial flights within the USA, from October 1987 to April 2008. This is a large 
dataset since there are nearly 120 million records. The Depdelay dataset we have used 
in the evaluation contains around 14 million records starting from January 2006 to 
April 2008. The dataset is cleaned and records are sorted according to the departure 
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date (year, month, day) and time (converted in seconds). The target variable is the 
departure delay in seconds. 

4.3   Results over Artificial Datasets 

Using the artificial dataset we performed a set of controlled experiments. We have 
studied several scenarios related with different types of change:  

1. Local abrupt drift. The first type of simulated drift is local and abrupt. We have 
introduced concept drift in two distinct regions of the instance space. The first re-
gion where the drift occurs is defined by the inequalities: x2 < 0.3 and x3 < 0.3 and 
x4 > 0.7 and x5 < 0.3. The second region is defined by: x2 > 0.7 and x3 > 0.7 and x4 
< 0.3 and x5 > 0.7. We have introduced three points of abrupt concept drift in the 
dataset, the first one at one quarter of examples, the second one at one half of ex-
amples and the third at three quarters of examples. For all the examples falling in 
the first region (x2 < 0.3 and x3 < 0.3 and x4 > 0.7 and x5 < 0.3) the new function for 
computing the predicted variable y is: y = 10x1x2 + 20(x3 - 0.5) + 10x4 + 5x5 + σ(0, 
1). For the second region (x2 > 0.7 and x3 > 0.7 and x4 < 0.3 and x5 > 0.7) the new 
function for computing the predicted variable y is: y = 10cos(x1x2) + 20(x3 - 0.5) + 
ex4 + 5x5

2 + σ(0, 1). At every consecutive change the region of drift is expanded. 
This is done by reducing one of the inequalities at a time. More precisely, at the 
second point of change the first inequality x2 < 0.3 (x2 > 0.7) is removed, while at 
the third point of change two of the inequalities are removed: x2 < 0.3 and x3 < 0.3 
(x2 > 0.7 and x3 > 0.7). 

2. Global abrupt drift. The second type of simulated drift is global and abrupt. The 
concept drift is performed with a change in the original function over the whole in-
stance space, which is consisted of misplacing the variables from their original po-
sition. We have introduced two points of concept drift, first at one half of examples 
when the function for computing the predicted variable becomes: y = 10sin(πx4x5) 
+ 20(x2 - 0.5)2 + 10x1 + 5x3 + σ(0,1), and the second point at three quarters of ex-
amples, when the old function is returned (reoccurrence). 

3. Global gradual drift. The third type of simulated drift is global and gradual. The 
gradual concept drift is initiated the first time at one half of examples. Starting 
from this point examples from the new concept: y = 10sin(πx4x5) + 20(x2 - 0.5)2 + 
10x1 + 5x3 + σ(0,1) are being gradually introduced among the examples from the 
first concept. On every 1000 examples the probability of generating an example us-
ing the new function is incremented. This way after 100000 examples only the new 
concept is present. At three quarters of examples a second gradual concept drift is 
initiated on the same way. The new concept function is: y = 10sin(πx2x5) + 20(x4 - 
0.5)2 + 10x3 + 5x1 + σ(0,1). Examples from the new concept will gradually replace 
the ones from the last concept like before. The gradual drift ends again after 
100000 examples. From this point only the last concept is present in the data. 
 

The first part of the experimental evaluation was focused on analyzing and comparing 
the effectiveness of the change detection methods proposed. The comparison was 
performed only over the artificial datasets (each with size of 1 million examples) 
because the drift is known and controllable and because they enable precise meas-
urement of delays, false alarms and miss detections. The Table 1 presents the  
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averaged results over 10 experiments for each of the artificial datasets. We have 
measured the number of false alarms for each point of drift, the Page-Hinkley test 
delay (number of examples monitored by the PH test before the detection) and the 
global delay (number of examples processed in the tree from the point of the concept 
drift till the moment of the detection). The delay of the Page-Hinkley test measures 
how fast the algorithm will be able to start the adaptation strategy at the local level, 
while the global delay measures how fast the change was detected globally. The 
“Num. of change” column specifies the number of the change point. 

Table 1. Averaged results from the evaluation of change detection over 10 experiments  

  Top – Down (TD) Bottom – Up (BU) 

Data set 
Num. of 
change 

FA's 
PH test 
delay 

Global 
delay 

FA's 
PH test 
delay 

Global 
delay 

1 0.5 1896.8 5111.7 0 698.6 14799.8 
2 1.7 1128.2 2551.1 0 494.1 3928.6 

Local abrupt 
drift 

3 0.8 3107.1 5734.5 0 461.1 5502.4 
1 1.5 284.5 1325.7 0 260.4 260.4 Global 

abrupt drift 2 0 492.2 3586.3 0 319.9 319.9 
1 1 2619.7 16692.9 0 1094.2 14726.3 Global  

gradual drift 2 2.8 4377.5 10846.5 0 644.7 11838.2 
No drift 0 0.9 - - 0 - - 

 
Results in Table 1 show in general that the TD method for change detection trig-

gers significant number of false alarms as compared with the BU method (which 
never detects false alarms). Both of the methods detect all the simulated changes for 
all the types of drift. The detailed analysis for the Local abrupt drift dataset has 
shown that most of the false alarms with TD were triggered at the root node. The true 
positives with TD are also detected higher in the tree, while with the BU method 
changes are detected typically in lower nodes, but precisely at the lowest node whose 
region is closest to the region with local drift. On this way the BU method performs 
most precise localization of the drift. With the TD method the global delay for the 
first and the second point of drift is smaller (because changes are detected higher), but 
with the BU method the PH test delays are much smaller. This enables faster local 
adaptation. The analysis from Table 1 over the Global abrupt drift dataset has shown 
clear advantage of the BU method over the TD method. The BU method does not 
detect false alarms, and both of the delays are smaller especially the global delay. 
With BU changes are detected first at the root node (which covers the whole region 
where the global drift occurs) and only after in the nodes below. This is not the case 
with the TD method when changes are detected first in the lower nodes and after at 
their parents (moving towards to root). False alarms are triggered usually for the root 
node. For the Global gradual drift dataset the detailed analysis showed that with both 
of the methods changes were detected similarly, starting at the lower parts of the tree 
and moving towards the root. The main difference is that the BU method detects 
changes significantly faster, having smaller delays. However, once a change is de-
tected at the highest point, the adaptation strategy (Prune or AltTree) prevents from 
detecting more changes, although the drift might still be present and increasing. The 
fast detection of the drift in this case is a disadvantage for the BU method, rather than 
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an advantage. The TD method whose delays are bigger detects changes during the 
whole period of gradual increase of the drift. This enables to perform the adaptation 
right on time when all of the examples belong to the new concept. The last dataset is 
the original Fried dataset without any drift. From the table it can be noted again that 
the BU method doesn’t trigger false alarms, while the TD method detected at least 
one in nine of ten generations of the same dataset. 

Table 2. Performance results over the last 10000 examples of the data stream averaged over 10 
experiments for each type of simulated drift 

  Top – Down (TD) Bottom – Up (BU) 
Data set Measures No detection Prune AltTrees Prune AltTrees 

MSE/Std. dev. 4.947±0.14 6.768±0.13 3.82±0.08 4.969±0.1 3.696±0.08 
RRSE 0.4114 0.4845 0.363 0.4149 0.3571 

Local abrupt 
drift 

Growing nodes 1292.8 145.5 818.7 220.1 817.3 
MSE/Std. dev. 5.496±0.11 4.758±0.09 4.664±0.09 4.459±0.08 4.465±0.08 

RRSE 0.46 0.4364 0.4316 0.4221 0.4223 
Global 

abrupt drift 
Growing nodes 977.8 195.4 310.1 229.7 228.8 
MSE/Std. dev. 16.629±0.32 4.682±0.08 3.85±0.07 5.149±0.11 7.461±0.16 
RRSE 0.7284 0.3917 0.3541 0.4081 0.4892 

Global  
gradual drift 

Growing nodes 963.4 125.8 180.4 179.6 178.5 

 
In Table 2 are given performance results over the last 10000 examples. Results in 

this table enable to evaluate the adaptation of model for the different types of drift, 
when learning has ended. For the Local abrupt drift dataset it is evident that the BU 
Prune strategy gives better results than the TD Prune strategy. This is easy to explain 
having in mind the comments from the last paragraph. Namely, in the case of TD de-
tection much bigger portions of the tree are pruned than necessary because the drift is 
detected inadequately higher. The tree ends up smaller and even has lower accuracy as 
compared to the tree grown without change detection. The BU method performs pre-
cise drift localization, which enables pruning just the right parts of the tree and there-
fore achieving the same performance results as the “No detection” strategy but with a 
significantly lower number of rules. With the AltTree adaptation strategy reacting to 
false alarms is avoided. According to that performance results for TD AltTree are 
much better and even similar with the BU AltTree. For the Global abrupt drift dataset 
in general the BU approach gives slightly better results. It is interesting to notice that 
both of the adaptation strategies are equally good. Since drift is global they perform the 
same thing, regrowing the whole tree using examples from the new concept. However, 
the TD approach is not very adequate because the change is not detected first at the 
root node but somewhere lower. Because of that, neither of the adaptation strategies 
will enable proper correction of structure, although accuracy might still be good. The 
“No detection” strategy gives the worst results. For the Global gradual drift dataset the 
performance results are in favor of the TD method. Trees obtained are smaller and with 
better accuracy because of the on-time adaptation. 

On Fig. 2 are given the learning curves obtained with the sliding window 
evaluation only for the Local abrupt drift and the Global gradual drift datasets due to  
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Fig. 1. Local abrupt and global abrupt/gradual drift simulation over Fried dataset using sliding 
window evaluation over a window of size 10000 and sliding step 1000 examples 

lack of space. On the top left figure are evident many peaks corresponding to drastic 
degradation in accuracy when pruning huge parts of the tree or as a reaction false 
alarms (before the first point of drift). On the top right figure are shown the effects of 
smooth adaptation using the AltTree strategy. Obtained trees are smaller and 
continuously more accurate. Similar conclusions can also be obtained from the lower 
figures, but here more interesting is the advantage of the TD method, which is 
especially evident for the second point of drift. Comments on this type of drift are 
given below Table 1, but the general conclusion is that the tree obtained using the BU 
method shows worst results mainly because it has been grown during the presence of 
the two different concepts. Therefore, many of its splitting decisions are invalid. 

4.4   Results over a Real-World Dataset 

The Depdelay dataset represents a highly variable concept which depends on many 
time-changing variables. Performance results in Table 3 were obtained using the slid-
ing window validation over the last 100000 examples. The results show significant 
improvement of the accuracy when change detection and adaptation is performed. 
The size of the model is also substantially smaller (in an order of magnitude). Stan-
dard deviation of the error for TD/BU methods is bigger compared to the “No detec-
tion” situation, but detailed results show that this is due to a sudden increase over the 
last 100000 examples (3 to 7 times). This can be seen on Fig.3. Both TD/BU AltTrees 
methods perform continuously better compared the “No detection” situation. 
[[ 
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Table 3. Performance results over the last 100000 examples of the Depdelay dataset 

  Top – Down (TD) Bottom – Up (BU) 
Measures No detection Prune AltTrees Prune AltTrees 

MSE/Std. dev. 738.995±13.6 175.877±26.11 150.072±21.63 181.884±23.54 136.35±20.06 
  RRSE 0.396951 0.200305 0.185353 0.20379 0.181785 
Growing nodes 4531 121 365 103 309  

.  

Fig. 2. Departure delays dataset 

On Fig. 3 it can be also seen that when growing alternate trees the accuracy of the 
model is stable, persistent and continuously better than the accuracy of the model 
when no drift detection is performed. This is the evidence that data contains drifts and 
that the FIRT-DD algorithm is able to detect and adapt the model properly. 

5   Conclusion 

This paper presents a new algorithm for learning regression trees from time-changing 
data streams. To our best knowledge, FIRT-DD is the first algorithm for inducing 
regression trees for time-changing data streams. It is equipped with drift detection 
mechanism that exploits the structure of the regression tree. It is based on change-
detection units installed in each internal node that monitor the growing process. The 
tree structure is being monitored at every moment and every part of the instance 
space. The change-detection units use only small constant amount of memory per 
node and small, constant amount of time for each example. FIRT-DD algorithm is 
able to cope with different types of drift including: abrupt or gradual, and local or 
global concept drift. It effectively maintains its model up-to-date with the continuous 
flow of data even when concept drifts occur. The algorithm enables local adaptation 
when required, reducing the costs of updating the whole decision model and perform-
ing faster and better adaptation to the changes in data. Using an adaptation strategy 
based on growing alternate trees FIRT-DD avoids short-term significant performance 
degradation adapting the model smoothly. The model maintained with the FIRT-DD 
algorithm continuously exhibits better accuracy than the model grown without any 
change detection and proper adaptation. Preliminary application of FIRT-DD to a 
real-world domain shows promising results. Our future work will be focused on im-
plementing these ideas in the domain of classification trees. 
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Abstract. In this paper, first we introduce a bipartite episode of the

form A �→ B for two sets A and B of events, which means that every

event of A is followed by every event of B. Then, we present an algorithm

that finds all frequent bipartite episodes from an input sequence without

duplication in O(|Σ| · N) time per an episode and in O(|Σ|2n) space,

where Σ is an alphabet, N is total input size of S , and n is the length of

S. Finally, we give experimental results on artificial and real sequences

to evaluate the efficiency of the algorithm.

1 Introduction

It is one of the important tasks in data mining to discover frequent patterns
from time-related data. For such a task, Mannila et al. [10] have introduced
episode mining to discover frequent episodes in an event sequence. Here, an
episode is formulated as an acyclic labeled digraphs in which labels correspond
to events and arcs represent a temporal precedent-subsequent relation in an event
sequence. Then, the episode is a richer representation of temporal relationship
than a subsequence, which represents just a linearly ordered relation in sequential
pattern mining (cf., [3,12]). Furthermore, since the frequency of the episode is
formulated by a window that is a subsequence of an event sequence under a fixed
time span, the episode mining is more appropriate than the sequential pattern
mining when considering the time span.

For subclasses of episodes [8,9,5,10], a number of efficient algorithms have
been developed so far (in Fig. 1). Mannila et al. [10] presented efficient mining
algorithm for subclasses of episodes, called parallel episodes and serial episodes
Mannila et al. [10] have designed an algorithm to construct general class of
episodes from serial and parallel episodes, which is general but inefficient. On
the other hand, in order to capture the direct relationship between premises

� This work is partially supported by Grand-in-Aid for JSPS Fellows (20·3406).

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 136–151, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Examples of subclasses of episode. serial episode (Mannila et al. [10]), parallel

episode (Mannila et al. [10]), sectorial episode (Katoh et al. [8]), bipartite episode (this

paper), diamond episode (Katoh et al. [9]), and elliptic episode (Katoh et al. [5]).

and consequences, Katoh et al. have introduced sectorial episodes [8], diamond
episodes [9], and elliptic episodes [5]. Both episodes have the special events, a
source as a premise and a sink as a consequence. In particular, from bacterial
culture data [5,9], they have succeeded to find frequent diamond and elliptic
episodes concerned with the replacement of bacteria and the changes for drug
resistance from the medical viewpoint. Here, the source and the sink are set to
the bacteria and another bacteria for the former episodes, and the sensitivity of
antibiotic and the resistant of the same antibiotic for the latter episodes.

On the other hand, since both diamond and elliptic episodes have just a single
source and a single sink, it is insufficient to represent the relationship including
plural premises and plural consequences that simultaneously occur, for example,
the replacement of the families of bacteria or the changes for the families of drug
resistance. As the simplest forms of episodes to represent such a relationship, in
this paper, we newly introduce bipartite episodes of the form A →B, where A and
B are sets of events. The bipartite episode A →B means that every event of A is
followed by every event of B, so A and B are regarded as the sets of sources and
sinks, respectively, and the graph representation of it forms a directed bipartite
graph from A to B.

By paying our attention to enumeration methods, Katoh et al. [5,9] have de-
signed so called level-wise algorithms for enumerating all of the frequent diamond
or elliptic episodes, based on the frequent itemset mining algorithm Apriori-

Tid [1]. While the level-wise algorithms are sufficient to find frequent episodes
efficiently in practice, it is difficult to give theoretical guarantee of the efficiency.
Recently, in order to give such theoretical guarantee, Katoh et al. [7] have de-
veloped the enumeration algorithm for frequent diamond episodes in polynomial
delay and in polynomial space, based on depth-first search.

In this paper, we design the algorithm Bipar to enumerate frequent bipartite
episodes efficiently based on depth-first search. Then, it finds all of the frequent
bipartite episodes in an input sequence S without duplication in O(|Σ|N) time
per an episode and in O(|Σ|2n) space, where |Σ|, n, and N are an alphabet size,
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the length of S, and the total size of S, respectively. Hence, we can enumerate
frequent bipartite episodes in polynomial delay and in polynomial space. We
also give the incremental computation for occurrences, and practical speed-up
by dynamic programming and prefix-based classes.

This paper is organized as follows. In Section 2, we introduce bipartite episodes
and other notions necessary to the later discussion. In Section 3, we discuss
several properties of bipartite episodes. In Section 4, we present the algorithm
Bipar and show its correctness and complexity. In Section 5, we give some
experimental results from randomly generated event sequences to evaluate the
practical performance of the algorithms. In Section 6, we conclude this paper
and discuss the future works.

2 Preliminaries

In this section, we introduce the frequent episode mining problem and the related
notions necessary to later discussion. We denote the sets of all integers and all
natural numbers by Z and N, respectively. For a set S, we denote the cardinality
of S by |S|. A digraph is a graph with directed edges (arcs). A directed acyclic
graph (dag, for short) is a digraph without cycles.

2.1 An Input Event Sequence and Its Windows

Let Σ = {1, . . . ,m} (m ≥ 1) be a finite alphabet with the total order ≤ over
N. Each element e ∈ Σ is called an event1. Let null be the special, smallest
event, called the null event , such that a < null for all a ∈ Σ. Then, we define
max ∅ = null. An input event sequence (input sequence, for short) S on Σ is a
finite sequence 〈S1, . . . , Sn〉 ∈ (2Σ)∗ of events (n ≥ 0), where Si ⊆ Σ is called
the i-th event set for every 1 ≤ i ≤ n. For any i < 0 or i > n, we define Si = ∅.
Then, we define n the length of S by |S| = n and define the total size of S by
||S|| =

∑n
i=1 |Si|. Clearly, ||S|| = O(|Σ|n), but the converse is not always true,

that is, O(||S||) 	= |Σ|n.

2.2 Episodes

Mannila et al. [10] defined an episode as a partially ordered set of labeled nodes.

Definition 1 (Mannila et al. [10]). A labeled acyclic digraph X = (V,E, g)
is an episode over Σ where V is a set of nodes, E ⊆ V × V is a set of arcs and
g : V → Σ is a mapping associating each vertices with an event.

An episode is an acyclic digraph in the above definition, while it is define as a par-
tial order in Mannila et al. [10]. It is not hard to see that two definitions are essen-
tially same each other. For an arc set E on a vertex set V , let E+ be the transitive
closure of E such that E+ = { (u, v) | there is some directed path from u to v }.
1 Mannila et al. [10] originally referred to each element e ∈ Σ itself as an event type

and an occurrence of e as an event . However, we simply call both of them as events.
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Fig. 2. (Left) An input sequence S = (S1, . . . , S6) of length n = 6 over Σ = {a, b, c}
and their k-windows. (Right) Serial episode X = a �→ b and a bipartite episode Y =

({a, b, c} �→{b, c}). In the sequence S , we indicate an occurrence (embedding) of Y in

the second window W2 in circles and arrows. See Example 1 and 2 for details.

Definition 2 (embedding). For episodes Xi = (Vi, Ei, gi) (i = 1, 2), X1 is
embedded in X2, denoted by X1 � X2, if there exists some mapping f : V1 → V2

such that (i) f preserves vertex labels, i.e., for all v ∈ V1, g1(v) = g2(f(v)),
and (ii) f preserves precedence relation, i.e., for all u, v ∈ V with u 	= v, if
(u, v) ∈ E1 then (f(u), f(v)) ∈ (E2)+. The mapping f is called an embedding
from X1 to X2.

Given an input sequence S = 〈S1, . . . , Sn〉 ∈ (2Σ)∗, an window in S is a con-
tiguous subsequence W = 〈Si · · ·Si+k−1〉 ∈ (2Σ)∗ of S for some i, where k ≥ 0
is the width of W .

Definition 3 (occurrence for an episode). An episode X = (V,E, g) occurs
in an window W = 〈S1 · · ·Sk〉 ∈ (2Σ)∗, denoted by X � W , if there exists
some mapping h : V → {1, . . . , k} such that (i) h preserves vertex labels, i.e.,
for all v ∈ V , g(v) ∈ Sh(x), and (ii) h preserves precedence relation, i.e., for all
u, v ∈ V with u 	= v, if (u, v) ∈ E then h(u) < h(v). The mapping h in the above
definition is called an embedding of X into W .

An window width is a fixed positive integer 1 ≤ k ≤ n. For any −k + 1 ≤ i ≤ n,
we say that an episode X occurs at position i in S if X � Wi, where Wi =
〈Si, . . . , Si+k−1〉 is the i-th window of width k in S. Then, we call i an occurrence
or label of X in S. In what follows, we denote the i-th window Wi by WS,k

i . Let
WS,k = { i | −k+1 ≤ i ≤} be the domain of occurrences. For an episode X , we
define the occurrence list for X in S by WS,k(X) = {−k+1 ≤ i ≤ n |X �Wi },
the set of occurrences of X in an input S.

Example 1. Consider an alphabet Σ = {a, b, c} and an input event sequence
S = 〈{a, b}, {b}, {a, c}, {a, c}, {a, b, c}, {a, b, c}〉 in Figure 2. Then, if the window
width k is 4, has nine 4-windows from W−2 to W6 for all −2 ≤ i ≤ 6, i.e.,
WS,5 = {Wi | − 2 ≤ i ≤ 6 }.

Let C be a subclass of episodes, S be an input sequence, and k ≥ 1 a window
width. Let X ∈ C be an episode in the class C. The frequency of X in S is defined
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by the number of k-windows freqS,k(X) = |WS,k(X)| = O(n). A minimum
frequency threshold is any positive integer σ ≥ 1. Without loss of generality, we
can assume that σ ≤ |WS,k| for the length n of S. Then, the episode X is σ-
frequent in S if freqS,k(X) ≥ σ. We denote by FS,k,σ be the set of all σ-frequent
episodes occurring in S. Let C be a subclass of episodes we consider.

Definition 4. Frequent Episode Mining Problem for C:
Given an input sequence S ∈ (2Σ)∗, an window width k ≥ 1, and a minimum
frequency threshold σ ≥ 1, the task is to find all σ-frequent episodes X within
class C that occur in S with window width k without duplicates.

Our goal is to design an efficient algorithm for the frequent episode mining
problem in the framework of enumeration algorithms [2,4]. Let N be the total
input size and M the number of all solutions. An enumeration algorithm A is
of output-polynomial time, if A finds all solutions S ∈ S in total polynomial
time both in N and M . Also A is of polynomial delay, if the delay, which is the
maximum computation time between two consecutive outputs, is bounded by a
polynomial in N alone.

3 Bipartite Episodes

In this section, we introduce the class of bipartite episodes and other notions
and discuss their properties.

3.1 Definition

Definition 5. For m ≥ 1, m-serial episode (or serial episode) over Σ is a se-
quence P = (a1 → · · · → am) of events a1, . . . , am ∈ Σ. This P represents an
episode X = (V,E, g), where V = {v1 . . . vm}, E = {(vi, vi+1) | 1 ≤ i < m}, and
g(i) = ai for every i = 1, . . . ,m.

Definition 6. An episode X = (V,E, g) is a partial bipartite episode (or partial
bi-episode) if the underlying acyclic digraph X is bipartite, i.e., (i) V = V1 ∪ V2

for mutually disjoint sets V1, V2, (ii) for every arc (x, y) ∈ E, (x, y) ∈ V1 × V2.
Then, we call V1 and V2 the source and sink sets.

Definition 7. A bipartite episode (bi-episode, for short) is an episode X =
(V,E, g) that satisfies the following conditions (i) – (iii):

(i) X is a partial bipartite episode with V = V1 ∪ V2.
(ii) X is complete, i.e., E = V1 × V2 holds.
(iii) X is partwise-linear , that is, for every i = 1, 2, the set Vi contains no

distinct vertices with the same labeling by g.

In what follows, we represent a bipartite episode X = (V1 ∪ V2, E, g) by a pair
(A,B) ∈ 2Σ×2Σ of two subsets A,B ⊂ Σ of events, or equivalently, an expression
(A →B), where A = g(V1) and B = g(V2) are the images of V1 and V2 by label
mapping g. We also write (a, b) or (a →b) for a 2-serial episode. In what follows,
then, we define the size of a bipartite episode X by ||X || = |A|+|B| = |V1|+|V2|.
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Example 2. In Figure 2, we show examples of an input event sequence S =
〈{a, b}, {b}, {a, c}, {a, c}, {a, b, c}, {a, b, c}〉 of length n = 6, a serial episode X =
a → b and a bipartite episode Y = ({a, b, c} → {b, c}) on an alphabet of events
Σ = {a, b, c}. Then, the window list for a bipartite episode Y = ({a, b, c} →
{b, c}) is W(Y ) = {W2,W3,W4}.

In what follows, we denote by SEk, SE = ∪k≥1SEk, PE , SEC, BE, DE , and EE ,
respectively, the classes of k-serial, serial, parallel, sectorial, bipartite, diamond,
and elliptic episodes over Σ. For subclasses of episodes, the following inclusion
relation hold: (i) SE2 ⊆ SEC ⊆ BE and (ii) PE ⊆ BE .

3.2 Serial Constructibility

In this section, we introduce properties of bipartite episode that are necessary to
devise an efficient algorithm for the frequent bipartite episode mining problem.
We define the set of all serial episodes embedded in episode X by Ser(X) =
{ S ∈ SE |S � X }. An episode X is said to be serially constructible on Σ if for
any input event sequence S on Σ and for any window W of S, X �W holds iff
for every serial episode S ∈ Ser(X), S �W holds.

Katoh and Hirata [6] gave a necessary and sufficient condition for serially
constructibility, called the parallel-freeness.

Definition 8 (Katoh and Hirata [6]). An episode X = (V,E, g) is parallel-
free if any pair of vertices labeled by the same event are reachable, that is, for
any pair of mutually distinct vertices u, v ∈ V (u 	= v), if g(u) = g(v) then there
exists a directed path from u to v or v to u in X .

Theorem 1 (Katoh and Hirata [6]). Let Σ be any alphabet. X is parallel-free
iff X is serially constructible.

Theorem 2. Let X be partial bi-episode. If X is bipartite then X is parallel-free.

Corollary 1. Any bipartite episode is serially constructible.

Let Xi = (Ai → Bi) be a bipartite episode for every i = 1, 2. We define that
X1 ⊆ X2 if A1 ⊆ A2 and B1 ⊆ B2.

Lemma 1 (anti-monotonicity of frequency). Let σ be any frequency thresh-
old and k ≥ 1 be a window width. Let Xi = (Ai →Bi) (i = 1, 2) be a bipartite
episode. If X1 ⊆ X2 then freqS,k(X1) ≥ freqS,k(X2).

Proof. Let W be any window in S. Suppose that X2 � W . By Corollary 1,
S � W for all serial episodes S ∈ Ser(X2). Since X1 ⊆ X2, we can show that
Ser(X1) ⊆ Ser(X2). For all serial episodes S ∈ Ser(X1), it holds that S � W .
By Corollary 1, X1 �W . From the above, if X2 �W then X1 �W for any W .
Therefore, WS,k(W1) ⊇WS,k(W2). Then, freq(X1) ≥ freq(X2). ��
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Now, we have shown the serial constructibility for bipartite episodes. In the fol-
lowing, however, we further make detailed analysis on the serial constructibility
for bipartite episodes by giving a simpler proof of Corollary 1 that does not use
Theorem 1. For a window W and an event e ∈ Σ, we denote by st(e,W ) and
et(e,W ), respectively, the first and the last positions in W at which e occurs.

Lemma 2 (characterization of the occurrences for a bipartite episode).
Let X = (U, V,A, g) be any bipartite episode and W any window in WS,k. Then,
X �W iff (maxu∈U st(g(u),W )) < (minv∈V et(g(v),W )) holds.

Lemma 3. For any bipartite episode X = (A →B), Ser(X) = A ∪ B ∪ { (a →
b) | (a, b) ∈ A×B }

Theorem 3 (a detailed version of serial construction). Let X be a bi-
partite episode and W = 〈S1, . . . , Sk〉 a window in WS,k. Let, A,B ⊆ Σ be
non-empty sets. Then,

(1) If X = (A →B) then, X �W iff ∀(a, b) ∈ A×B, (a →b) �W .
(2) if X = (A →∅) or X = (∅ →B), X �W iff ∀a ∈ A ∪B, a �W .

We define the merge of two bipartite episodes Xi = (Ai →Bi) (i = 1, 2) by X1 ∪
X2 = (A1 ∪A2 →B1 ∪B2), such that the edge set is the set unions of their edge
sets. The downward closure property for a class C of episodes says that for any
episodes X1, X2 ∈ C, the condition WS,k(X1 ∪X2) = WS,k(X1)

⋂
WS,k(X2)

holds. Unfortunately, the class of bipartite episodes does not satisfy this prop-
erty in general. The next lemma is essential to fast incremental computation of
occurrence lists for the class of bipartite episodes in the next section.

Theorem 4 (downward closure property). Let Xi = (Ai →Bi) (i = 1, 2).
For any input sequence S and any k ≥ 1, if A1 = A2 then WS,k(X1 ∪ X2) =
WS,k(X1)

⋂
WS,k(X2).

4 A Polynomial-Delay and Polynomial-Space Algorithm

4.1 The Outline of the Algorithm

In this section, we present a polynomial-delay and polynomial-space algorithm
Bipar for extracting all frequent bipartite episodes in a given input sequence.
Let S = (S1, . . . , Sn) ∈ (2Σ)∗ be an input sequence of length n and total input
size N = ||S||, k ≥ 1 be the window width, and σ ≥ 1 be the minimum frequency
threshold.

4.2 Enumeration of Bipartite Episodes

The main idea of our algorithm is to enumerate all frequent bipartite episodes
by searching the whole search space from general to specific using depth-first
search. For the search space, we define the parent-child relationships for bipartite
episodes.
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Fig. 3. The parent-child relationships on the alphabet Σ = {a, b, c}, where each white

empty circle indicates the empty set

Definition 9. The bi-episode ⊥ = (∅ → ∅) is the root . Then, the parent of a
non-root bipartite episode X = A →B is defined by

parent(A →B) =
{

(A− {max(A)}) →B (if B = ∅)
A →(B − {max(B)}) (otherwise)

We define the set of all children of X by Children(X) = {Y | parent(Y ) =
X}. Then, we define the family tree for BE by the rooted digraph T (BE) =
(V,E,⊥) with the root ⊥, the vertex set V = (BE), and the edge set E =
{ (X,Y ) |X is the parent of Y , Y 	= ⊥ }. As shown in Fig. 3, we can show that
the family tree T (BE) forms the spanning tree for all bi-episodes of BE.

In Fig. 4, we show the basic version of our polynomial-delay and polynomial-
space algorithm Bipar and its subprocedure FreqBiparRec for extracting fre-
quent bipartite episodes from input sequence S. The algorithm is a backtracking
algorithm that traverses the spanning tree T (BE) based on depth-first search
starting from the root ⊥ using the parent-child relationships over BE.

The subprocedure BiparOcc is a straightforward algorithm that computes
the occurrence list WS,k(X) for bi-episode X by testing the embedding X �
WS,k

i for each position i while scanning the input sequence. Its definition is
omitted here. We can show that BiparOcc computes WS,k(X) from X of size
m = ||X || and an input sequence S of length n in O(|Σ|kmn) time.

Lemma 4. Let S be any input sequence of length n. For any window width
k ≥ 1 and minimum frequency threshold σ ≥ 1, the algorithm Bipar in Fig. 4
with BiparOcc finds all σ-frequent bipartite episodes occurring in S without
duplicates in O(|Σ|4kn) delay and O(|Σ|2 + n) space.



144 T. Katoh, H. Arimura, and K. Hirata

algorithm Bipar(S , k, Σ, σ)

input: input event sequence S = 〈S1, . . . Sn〉 ∈ (2Σ)∗ of length n ≥ 0,

window width k > 0, alphabet of events Σ, the minimum frequency 1 ≤ σ ≤ n + k;

output: the set of all σ-frequent bipartite episodes in S with window width k;

method:

1 ⊥ := (∅ �→∅); // The root bipartite episode ⊥;

2 FreqBiparRec(⊥,S , k, Σ, σ);

procedure FreqBiparRec(X,S , k, Σ, σ)

input: bipartite episode X = (A �→B) and S , k, Σ, and k are same as in Bipar.

output: the set of all σ-frequent bipartite episodes in S that are descendants of X;

method:

1 if ( |WS,k(X)| ≥ σ ) then
2 output X;

3 // Execute in the special case that the right hand side of X is empty.

4 if ( B = ∅ ) then
5 foreach e ∈ Σ such that e > max(A) do
6 // Expand the left hand side.

7 FreqBiparRec(((A ∪ {e}) �→B),S , k, Σ, σ);

8 end if
9 // Execute always.

10 foreach ( e ∈ Σ (e > max(B) ) ) do
11 // Expand the right hand side.

12 FreqBiparRec((A �→ (B ∪ {e})),S , k, Σ, σ);

13 end if

Fig. 4. The main algorithm Bipar and a recursive subprocedure FreqBiparRec for

mining frequent bipartite episodes in a sequence

4.3 Incremental Computation of Occurrences

The algorithm BiparOccInc in Fig.5 computes the occurrence list W =
WS,k(Y ) for the newly created child episode Y = (A → B ∪ {b}) from the
list WS,k(X)) for its parent X = (A →B) by calling the subprocedure Seri-

alOcc. The next lemma is derived from Theorem 3 on the downward closure
property for BE .

Lemma 5 (correctness of BiparOccInc). Let X = (A →B) be a bipartite
episode and e ∈ Σ be an event. Then, we have the next (1) and (2):

(1) If A = ∅ then W(A →(B ∪ {e})) = W(X) ∩W(∅ →{e}).
(2) if A 	= ∅ then W(A →(B ∪ {e})) = W(X) ∩

⋂
a∈A W(a →{e}).

The algorithm BiparOccInc uses the subprocedure SerialOcc for computing
the occurrence list for a 2-serial episode. This algorithm is a modification of
FastSerialOcc for 3-serial episodes in [7] and its definition is omitted here.
We can show that SerialOcc can be implemented to run in O(N) = ||S|| time
in the total input size N = ||S|| regardless window width k.
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procedure BiparOccInc(X, X0, W0, k,S)

input: bipartite episodes X = (A �→ (B0 ∪ {e}) and X0 = (A �→B0) = parent(X),

the occurrence list W0 for X0, window width k > 0

, an input sequence S = 〈S1, . . . Sn〉;
output: the occurrence list W for X;

method:

1 W := W0;

2 if ( A = ∅ ) then W := W∩SerialOcc((∅ �→{e}), k,S);

3 else
4 foreach (a ∈ A) W := W∩SerialOcc((a �→e), k,S);

5 return W ;

Fig. 5. An improved algorithm BiparOccInc for computing the occurrence list of a

bipartite episode

Lemma 6. The algorithm BiparOccInc in Fig.5 computes the new occurrence
list W = WS,k(Y ) for the child episode Y = (A → B ∪ {b}) in O(N |A|) =
O(|Σ|2n) time from a bi-episode X = (A →B), WS,k(X), any event b ∈ Σ, and
k, where n = |S| and N = ||S||.

4.4 Practical Improvement by Dynamic Programming

We can further improve the computation of occurrence list by BiparOccInc

using dynamic programming technique as follows.
During the execution of the algorithm FreqBiparRec the subprocedure Se-

rialOcc for SE are called many times inside BiparOccInc with the same ar-
guments (a →b, k,S) (a, b ∈ Σ). Fig. 6 shows the algorithm LookupSerialOcc

that is a modification version of SerialOcc using dynamic programming. This
algorithm uses a hash table TABLE in Fig. 6 that stores pairs 〈X,W(X)〉 of a
2-serial episode X = (a →b) and its occurrence list W(X).

We modify the main algorithm Bipar and BiparOccInc such that after ini-
tializating the hash table, we call LookupSerialOcc instead of SerialOcc.
This modification does not change the behavior, while it reduces the total num-
ber of the calls for SerialOcc from at most |Σ||F | to at most |Σ|2, where
F ⊆ BE is the set of solutions.

Lemma 7. After initializating the hash table TABLE, the algorithm LookupSe-

rialOcc calls SerialOcc at mostO(|Σ|2) times during the execution of the main
procedure Bipar using O(|Σ|2n) memory.

4.5 Reducing the Number of Scan on the an Input Sequence by
Prefix-Based Classes

We can improve the computation of occurrence list by BiparOccInc using the
idea of prefix-based classes, which is originally invented by Zaki [14,15].
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global variable: a hash table TABLE : Σ2 → 2{−k+1,...,n};

initialization: TABLE := ∅;

procedure LookupSerialOcc(X, k ∈ N,S)

input: serial episode X = (a �→b), window width k > 0,

an input sequence S = 〈S1, . . . Sn〉;
output: the occurrence list W for X;

method:

1 if (TABLE[(a, b)] = UNDEF ) then
2 W :=SerialOcc((a �→b), k,S);

3 TABLE := TABLE ∪ {〈 (a, b),W 〉 };
4 end if
5 return TABLE[(a, b)];

Fig. 6. Practical speed-up for computing occurrence lists of serial episodes using dy-

namic programming

For a bipartite episode P = (A,B), called a common prefix , we define the
prefix-based class related to P by the set of bi-episodes

CP = {X = (A →B ∪ {b}) |P = (A →B), b ∈ Σ,maxB < b }.

In our modified algorithm BiparFast, we enumerate each prefix-based
classes for BE instead of each episode in BE. We start with defining enumer-
ation procedure of bi-episodes using prefix-based classes induced in a new class
of family trees for BE. We define the parent function parent : BE\{⊥} → BE.

Definition 10. For any non-root bipartite episode X = A →B,

parent(A →B) =

⎧⎨⎩
((B − {maxB}) → ∅) if A = ∅, B 	= ∅
((A− {maxA}) → B) if A 	= ∅, |B| = 0 or |B| = 1
(A →(B − {maxB})) if A 	= ∅, |B| ≥ 2

By using the parent function above, we can define the family tree T = (V,E,⊥)
in a similar way as in Section 4.2.

Next, we give a procedure to enumerate all bi-partite episodes based on depth-
first search on T . Starting with ⊥ = (∅, ∅), we enumerate bi-episodes in BE by
the following rules.

Lemma 8. For any bi-episodes X,Y ∈ BE, Y is a child of X if and only if Y is
obtained from X by applying one of the following rules to X. The new occurrence
list W(Y ) is also obtained by the corresponding rule.

(i) If X = (A →∅), then for any e ∈ Σ, Y = (∅ →A) and
W(Y ) = W(X).

(ii) If X = (A →∅), then for any e ∈ Σ, Y = (A∪{e} →∅) and
W(Y ) = W(X) ∩W(e).
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(iii) If X = (A →{b}), then for any e ∈ Σ, Y = (A∪{e} →{b}) and
W(Y ) = W(X) ∩W((e →b)).

(iv) If X = (A →C∪{a}) ∈ CP , then for any Z = (A →C∪{b} ∈ CP such that
a < b, Y = (A →C∪{a, b}), where CP is the unique prefix-based class to
which X belongs, and W(Y ) = W(X) ∩W(Z).

Proof. The statements (i) – (iii) are easily proved by construction of the parents.
In statements (iv), it follows from the condition maxB < a, b and a < b that
the parent for Y is uniquely determined to be X . The proof for the property
W(Y ) = W(X)∩W(Z) follows from Theorem 5 on downward closure property
for BE. ��
By the above lemma, provided that each prefix-based class CP is available, we
do not need to compute the new occurrence lists W(Y ) for each child in the
cases of (i) and (iv). We have to explicitly compute the occurrence lists only for
a single event in case (i) and for a 2-serial episodes in case (iii).

We can apply further improvements to our algorithm BiparFast as shown in
[7]. We can improve the delay of the algorithm BiparFast by the factor of the
height of the search tree T using alternating output technique of [13]. We can
also reduce the space complexity of the algorithm BiparFast from O(|Σ|3n) to
O(|Σ|2n) space by using the diffset technique, of Zaki [15] for itemset mining.

Combining all improvements discussed above, we can modify the basic version
of our backtracking algorithm Bipar. In what follows, we call this modified
algorithm by BiparFast. Now, we have the main theorem of this paper on the
delay and the space complexities of the modified algorithm BiparFast.

Theorem 5. Let S be any input sequence of length n on event alphabet Σ.
For any window width k ≥ 1 and minimum frequency threshold σ ≥ 1, the
algorithm BiparFast can be implemented to find all σ-frequent bipartite episodes
occurring in S without duplicates in O(|Σ|N) delay (time per frequent episode)
and O(|Σ|2n) space, where N = ||S|| is the total size of input.

5 Experimental Results

In this section, we give the experimental results for the following combinations of
the algorithms given in Section 4, by applying to the randomly generated event
sequences and the real event sequence.

Data. As randomly generated data, we adopt an event sequence S=(S1,. . . , Sn)
over an alphabet Σ = {1, . . . , s} from four parameters (n, s, p, r), by generating
each event set Si (i = 1, . . . , n) under the probability P (e ∈ Si) = p(e/s)r for
each e ∈ Σ. On the other hand, as the real event sequence, we adopt bacterial
culture data provided from Osaka Prefectural General Medical Center from 2000
to 2005. In particular, we adopt an event sequence obtained by regarding a
detected bacterium as an event type, fixing the sample of sputum and connecting
data of every patient with same span.

Method. We implemented the following three depth-first search (DFS) algo-
rithms given in Section 4:
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Fig. 7. Running time for the input

length n, where s = 10, p = 0.1, r = 0.0,
k = 10, and σ = 0.1n

Fig. 8. Memory size for the input length

n, where s = 10, p = 0.1, r = 0.0, k = 10,

and σ = 0.1n

Fig. 9. Running time for the number of outputs, where n = 10, 000, s = 10, p = 0.1,
r = 0.0, k = 10, and σ = 0.001n

Basic : the basic DFS algorithm BiparBasic with OiparOcc

in Fig. 4 (sec. 4.1).
Fast : the modified DFS algorithm BiparFast with SerealOcc (sec. 4.5).

FastDP : the modified DFS algorithm BiparFast with LookUpSerealOcc

based on dynamic programming (sec. 4.4).

All experiments were run in a PC (AMD Mobile Athlon64 Processor 3000+,
1.81GHz, 2.00GB memory, Window XP, Visual C++) with window width K ≥ 1
and minimum frequency threshold σ ≥ 1.

Experiment A. Fig. 7 and Fig. 8 show the running time and the size of virtual
memory usage of the algorithms Fast and FastDP for the randomly generated
event sequences from the parameter (10000 ≤ n ≤ 100000, s = 10, p = 0.1, r =
0.0), where k = 10 and σ = 0.1n. Then, both time and space complexity of these
algorithms seem to be linear in the input size and thus expected to scales well
on large datasets. Furthermore, FastDP is five hundred times as faster as Fast.
On the other hand, FastDP tends to occupy more memory than Fast.
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Table 1. Parameter settings for Experiment C, where rand and bact indicates a ran-

domly generated data and a bacterial culture data, respectively. The first, second, third,

and fourth rows show the name of setting, the data, the parameters, and the number

of output episodes, respectively.

exp exp1 exp2 exp3 exp4 exp5 exp6 exp7

type rand rand rand rand rand bact bact

n 1, 000 10, 000 10, 000 1, 000 100, 000 70, 606 70, 606
s 10 10 1, 000 10 10 174 174

p 0.1 0.1 0.1 0.1 0.001
r 0.0 0.0 10.0 0.0 0.0

k 10 10 10 100 1, 000 15 15

σ 0.1n 0.001n 0.25n 0.1n 0.1n 0.01n 1

#outputs 2, 330 334, 461 3, 512 1, 048, 576 1, 780 162 177, 216

Fig. 10. Running time for exp1 to exp7 Fig. 11. Memory size for exp1 to exp7

Experiment B. Fig. 9 shows the running time of the algorithms Fast and
FastDP for the number of outputs for the randomly generated event sequences
from the parameter (n = 10, 000, s = 10, p = 0.1, r = 0.0), where k = 10 and
σ = 0.001n. Then, the slopes are almost constant and thus the delays are just
determined by the input size as indicated by Theorem 5.

Experiment C. Table 1 gives the seven experiments for the algorithms Basic,
Fast, and FastDP under the various parameter settings par1 – par7. The input
data from exp1 to exp5 are randomly generated event sequences with parameters
(n, s, p, r), and ones of exp6 and exp7 are the bacterial culture data.

Fig. 10 and Fig. 11 show the running time and the virtual memory size of
the algorithms. Here, for exp2, exp3, and exp7, we give no results for Basic,
because the running time is over 20, 000 (sec). Then, for exp1, exp4, exp5, and
exp6, Fast and FastDP are faster than Basic. Especially, for exp5, FastDP was
7300 times faster than Basic. On the other hand, Fast and FastDP occupy more
memory space than Basic. From exp1 to exp7, the algorithm FastDP occupy more
memory space than Fast. Then, the algorithm FastDP is the fastest algorithm
except exp3. For exp3 with large alphabet size |Σ| = 1000, FastDP occupies
sixteen (16) times large memory space than Fast, and Fast is faster than FastDP.
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X = {Serratia-marcescens, Staphylococcus-aureus}
�→{yeast, Stenotrophomonas-maltophilia}

Fig. 12. An example of bipartite episode extracted from a bacterial culture data

Fig. 12 shows an example of the bipartite episode X with frequency 21 ex-
tracted from the bacterial culture data for exp7, where an event in type writer
fonts denotes the names of bacteria. This episode represents that the bacteria
of Serratia-marcescens and Staphylococcus-aureus are followed by another
bacteria of yeast and Stenotrophomonas-maltophilia within fifteen days.

6 Conclusion

This paper studied the problem of frequent bipartite episode mining, and pre-
sented an efficient algorithm Bipar that finds all frequent bipartite episodes in
an input sequence in polynomial delay and polynomial space in the input size.
We have further studied several techniques for reducing the time and the space
complexities of the algorithm. Possible future problems are extension of Bipar

for general fragments of DAGs [10,11]. Also, we plan to apply the proposed
algorithm to bacterial culture data [5,9].
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Abstract. Information networks, such as social networks and that ex-

tracted from bibliographic data, are changing dynamically over time. It

is crucial to discover time-evolving communities in dynamic networks. In

this paper, we study the problem of finding time-evolving communities

such that each community freely forms, evolves, and dissolves for any

time period. Although the previous t-partite graph based methods are

quite effective for discovering such communities from large-scale dynamic

networks, they have some weak points such as finding only stable clus-

ters of single path type and not being scalable w.r.t. the time period. We

propose CHRONICLE, an efficient clustering algorithm that discovers

not only clusters of single path type but also clusters of path group type.

In order to find clusters of both types and also control the dynamicity of

clusters, CHRONICLE performs the two-stage density-based clustering,

which performs the 2nd-stage density-based clustering for the t-partite

graph constructed from the 1st-stage density-based clustering result for

each timestamp network. For a given data set, CHRONICLE finds all

clusters in a fixed time by using a fixed amount of memory, regardless of

the number of clusters and the length of clusters. Experimental results

using real data sets show that CHRONICLE finds a wider range of clus-

ters in a shorter time with a much smaller amount of memory than the

previous method.

1 Introduction

Recently, there is an increasing interest to mining dynamics of information net-
works that evolve over time. Examples of dynamic networks include network
traffic data [12], telephone traffic data1, bibliographic data2, dynamic social net-
work data [6,14], and time-series microarray data [16], where a dynamic network
is regarded as a sequence of networks with different timestamps (or temporal
intervals). A cluster in dynamic network data, which is also called a community,
typically represents cohesive subgroup of individuals within a network that per-
sists for a specific time interval [12,14,2]. That is, a community is cohesive both
in a timestamp network and across time. Identifying communities from dynamic
networks has been paid much attention lately as an important research topic.
1 http://reality.media.mit.edu/download.php
2 http://www.informatik.uni-trier.de/∼ley/db

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 152–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Some chronicle patterns of the European historical diagram

In this paper, we study the problem of finding time-evolving communities such
that each community freely forms, evolves, and dissolves for any time period.
Such communities would look like chronicle patterns of a historical diagram.
Figure 1 shows some chronicle patterns of the European historical diagram of
between A.D. 0 and 1,700, where multiple “dynasties” co-existed at the same
period of time or started/ended at different times. Mining chronicle patterns
over dynamic networks would be able to discover some interesting and important
knowledge that could be invisible with the previous clustering methods for static
networks. For example, it could find the evolutionary collaborating groups of
researchers from the DBLP data and identify how they evolve as time goes on.

There have been several approaches for finding communities in dynamic net-
works. First, the concept of evolutionary clustering has been proposed to capture
the evolutionary process of clusters in temporal data. Several evolutionary clus-
tering methods [4,13,10] have been proposed, but they have some drawbacks such
as assuming only a fixed number of communities over time and not being scal-
able with data size. Since the forming of new communities or the dissolving of
existing communities is quite natural and common phenomena in real dynamic
networks [1], and moreover, the size of real dynamic networks tends to be large,
the existing evolutionary clustering methods could not be very useful in real ap-
plications. Second, there have been some methods to detect break points through
clustering [12,6]. For example, GraphScope [12] identifies the change points where
the subgroup structure of hosts (or servers) is largely changed in network commu-
nication data. However, they do not allow arbitrary insertion/deletion of nodes
or arbitrary start/stop of communities over time, which occurs quite often in
real dynamic networks, and thus, they could be less useful for real data. Third,
there have been few studies that discover communities by using t-partite graph
from temporal data [11,2]. They perform clustering for each network, construct
a t-partite graph by connecting between similar local clusters at different times,
and find a sequence of local clusters as a community. Especially, the methods
proposed by Bansal et al. [2] explicitly handles dynamic network data, and the
BFS method among them is known to be the most efficient method. It is scalable
with the number of nodes, finds a variable number of communities with arbitrary
start/stop over time, and allows arbitrary insertion/deletion of nodes.

Although the existing t-partite graph based method, especially the BFS
method is quite effective for discovering clusters from large-scale dynamic net-
works, it has also some weak points: (1) finding only stable clusters of single
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path (i.e., a sequence of local clusters over time); (2) finding a very small number
of clusters (i.e., the most stable top-k clusters); (3) not being scalable w.r.t. the
length of dynamic networks; and (4) using a large amount of memory depending
on its parameters. All these weak points are caused by the fact that the BFS
method is based on a dynamic programming (DP) algorithm. Besides the clusters
of single path type, actually, there are many cohesive clusters of non-single path
type in t-partite graph. Figure 2 shows an example of t-partite graph over three
timestamp networks. Each network has 3∼4 local clusters. The numbers on lines
between T1 and T2 (or T2 and T3) indicate that they have a non-zero similarity.
When k = 1, the BFS method finds a single path cluster c11c21c31 because it has
the strongest similarities between local clusters. However, if some members in
c12 transfer to c24, some members in c13 to c23, and the members in c23 and c24
are merged into c33, then there could be another cluster like (c12c13)(c23c24)c33,
where the similarity between (c12c13) and (c23c24) and the similarity between
(c23c24) and c33 might be very high (i.e., very cohesive) although the similarity
of each single path (e.g., c13c23c33) are not so high. Here, () represents a consol-
idation of multiple local clusters. We call a cluster of this type as a path group
cluster since there are multiple paths over time in the cluster. The BFS cannot
find the clusters of this type.

In this paper, we propose a density-based clustering algorithm, CHRONICLE,
that efficiently discovers both single path clusters and path group clusters. For
finding clusters of both types, CHRONICLE performs the density-based clus-
tering in two stages : the 1st-stage density-based clustering for each timestamp
network and the 2nd-stage density-based clustering for the t-partite graph. In
case of the previous BFS method, it only performs the 1st-stage clustering and
finds single path clusters by using a DP algorithm. A density-based clustering
approach has several advantages such as discovering clusters of arbitrary shape,
handling noise, and being fast. These features allow us to find a wider range of
clusters (i.e., not only single path clusters, but also path group clusters) in an
efficient way. As the length of dynamic networks, the number of clusters, or the
length of cluster (i.e., path length) increases, the running time and the amount
of memory usage of the BFS method largely increase. Using disk for saving

Fig. 2. An example of t-partite graph constructed from a dynamic network
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the amount of memory would cause performance degradation. In contrast, for a
given data set, CHRONICLE finds all clusters in a fixed time by using a fixed
amount of memory, regardless of the number of clusters and the length of clus-
ters. The density parameter ε allows us to control both the number of clusters
and the dynamicity of communities. Here, the dynamicity indicates how much
communities change over time.

Our proposed algorithm, CHRONICLE, has the following key features:

– Discovering a variable number of communities with arbitrary start/stop over
time in dynamic networks

– Finding a wide range (i.e., stable and dynamic) communities of both single
path type and path group type

– Being scalable w.r.t. the length of dynamic networks
– Being fast and using only a small amount of memory irrespective of both the

number of clusters and the length of clusters

The rest of this paper is organized as follows. Section 2 presents the most related
piece of work, the BFS method [2]. Sections 3 presents our CHRONICLE algo-
rithm, and Section 4 the results of experimental evaluation. Finally, Section 5
concludes the study.

2 Related Work

In this section, we briefly explain the BFS method [2]. Given a dynamic network
G = {G1, . . . , Gt}, the BFS method first finds local clusters for each timestamp
network Gi by using the biconnected component algorithm. Actually, bicon-
nected components are not very good clusters for network/graph data. There
are many other better methods using well-known measures such as min-max
cut, normalized cut, modularity, betweenness, and structural similarity. Bansal
et al. mentioned the BFS method used biconnected components as local clusters
for simplicity and fast mining. After clustering for each timestamp network, the
BFS method constructs a t-partite graph by connecting between similar local
clusters at different times. The core and unique part of the BFS method is finding
the most stable top-k clusters of length at least lmin over the t-partite graph.

For finding top-k paths of length lmin, the BFS method needs to maintain up
to lmin heaps of size k for each node cij of the t-partite graph. We denote this
heap as hx

ij (1 ≤ x ≤ lmin), where each hx
ij contains at most k entries. During

scanning each node cij of each partite of the t-partite graph from 1 to t, the BFS
method calculates top-k (or fewer) highest weighting subpaths of length x ending
at cij (1 ≤ x ≤ lmin). This task is easily performed by merging the subpaths in
the heaps of the previous partite, i.e., hx

i′j′ (i′ < i) with the subpaths in the
current heaps, i.e., hx

ij , where ci′j′ and cij are connected in the t-partite graph,
and choosing new top-k subpaths. For finding paths of length greater than lmin,
the BFS method should maintain additional data structure to contain the top
scoring paths of all length greater than lmin for each cij .
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In fact, the BFS method is a modified version of the Viterbi algorithm,
a DP algorithm for finding the most probable state path in Hidden Markov
Model (HMM). The original Viterbi algorithm does not need to maintain heaps
like hx

ij because it finds only the top-1 state path of the same length with a
given sequence. In contrast, the BFS method requires lmin heaps of size k be-
cause it finds the top-k paths of length at least lmin. Although the BFS method
has a strong point that finds the exact top-k paths by using a DP algorithm,
it consumes a large amount of memory due to a lot of heaps, and moreover,
such memory consumption increases as the length of dynamic network nts, the
number of clusters k, or the minimum length of clusters lmin gets larger. The
excessive computation for heaps also incurs an increase of running time. Using
disk swapping might save memory, but it would also cause an additional per-
formance degradation. Besides, the BFS method tends to discover only a small
number of very stable clusters that are hardly changed over time. However, many
applications might need to find not only a small number of stable clusters, but
also a large number of various clusters enough to capture the structure of the
entire dynamic network.

3 Chronicle Algorithm

In this section, we present the three parts of our CHRONICLE algorithm, the
1st-stage clustering, constructing t-partite graph, and the 2nd-stage clustering
in Sections 3.1, 3.2, and 3.3, respectively.

3.1 The 1st-Stage Clustering

In this section, we briefly present the 1st-stage density-based clustering method,
which we denote as CHRONICLE1st, to find all local clusters for each timestamp
network. We define a dynamic network G as a sequence of networks Gi (Vi, Ei),
i.e., G = {G1, . . . , Gt}.

For similarity measure, CHRONICLE1st uses the cosine similarity (or struc-
ture similarity) [9,15], which is one of the well-known measures for network data.
Definitions 1∼2 show the concept of the structural similarity. Intuitively, σ(v, w)
indicates how many nodes v and w share w.r.t. the overall number of their ad-
jacent nodes including themselves. By definition, σ(v, w) becomes non-zero only
if v is directly connected to w with an edge. The value of σ(v, w) is in the range
0.0∼1.0 and especially becomes 1.0 when both v and w are in a clique.

Definition 1. The neighborhood N(v) of a node v ∈ V is defined by N(v) =
{x ∈ V | 〈v, x〉 ∈ E} ∪ {v}.

Definition 2. The structural similarity σ(v, w) of a node pair (v, w) ∈ V × V
is defined by

σ(v, w) =
|N(v) ∩N(w)|√
|N(v)| × |N(w)|

.
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Fig. 3. An example network and four local clusters

CHRONICLE1st is actually equivalent to the SCAN algorithm [15], which is
again basically the same with the original density-based clustering algorithm
DBSCAN [5], but uses the structural similarity as the distance measure between
two nodes instead of Euclidean distance. With the notions of density-based clus-
tering, CHRONICLE1st finds a high density subset of nodes, i.e., a topologically
dense subgraph like a quasi-clique, as a cluster in each Gi. Figure 3 shows an
example network and four local clusters found by CHRONICLE1st over the net-
work. After clustering, there remain some nodes that have relatively low similar-
ity with its adjacent nodes, and thus, do not belong to any cluster. Such nodes
are considered noises by the notions of density-based clustering. We skip the
explanation of how to determine two density parameters μ and ε since it is not
a core part of this paper and there are some methods for it.

3.2 Constructing t-Partite Graph

CHRONICLE constructs a t-partite graph from the 1st-stage clustering result.
This is performed by connecting between two local clusters cij and ci′j′ (i′ < i)
that have a non-zero similarity (or affinity). For a similarity measure, there are
many candidates, and Jaccard coefficient Jaccard(cij , ci′j′) would be a good
candidate. For example, if |cij | = 6, |ci′j′ | = 8, and cij and ci′j′ have four
common nodes, then Jaccard(cij , ci′j′ ) = 4

6+8−4 = 0.4. We might be able to
connect between two local clusters in non-adjacent timestamp networks Gi′ and
Gi (|i′ − i| > 1), where we call g = |i′ − i| as a gap, but we only deal with
the case of g = 1 in this paper due to space limit. Each link between a pair
of nodes of t-partite graph has its own weight based on the similarity between
the corresponding local clusters. Hereafter, we call a connection between two
different partites in the t-partite graph as a link for discriminating it from normal
edges. We also denote the t-partite graph as T .

Besides links, CHRONICLE also connects two local clusters in the same par-
tite that have inter cluster edges (simply, ic-edges) between them. Let νj be
the number of edges with one endpoint in cij and the other endpoint in cij ,
where cij denotes the complement of cij , and let ωj be the number of edges
with both endpoints in cij . We denote the number of edges with one endpoint
in cij and the other endpoint in cij′ as νjj′ and denote νj + ωj = τj , which is
equal to the sum of degrees of nodes in cij . Then, we define a similarity measure
InterEdge(cij , cij′ ) = νjj′

τj+τj′
for two local clusters in the same network. As two

local clusters cij and cij′ are more tightly connected with more ic-edges, the
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value of InterEdge(cij , cij′ ) increases. CHRONICLE uses these ic-edges for the
2nd-stage clustering. In Figure 2, the dashed line between c12 and c13 and that
between c23 and c24 represent ic-edges. We denote the nodes, links, and ic-edges
of T as VT , LT , and ET , respectively.

3.3 The 2nd-Stage Clustering

Similarity measure. In this section, we present the similarity measure for
the 2nd-stage clustering method CHRONICLE2nd. Different from a timestamp
network Gi, the t-partite graph T has weights on each link/ic-edge, and has time
semantics from T1 to Tt. Thus, our similarity measure, general similarity (GS),
for CHRONICLE2nd considers those two features of T .

The key concept of GS is the integration of the structural affinity (SA) and
weight affinity (WA) between two nodes so as to discover both single path clusters
and path group clusters. GS is defined as in Eq. 1. We just use the structural
similarity σ(v, w) as SA(v, w). If we only use SA(v, w) instead of GS as a measure
for T , the clustering result could be awkward. For example, in Figure 2, σ(v, w)
would identify c22c32 as a very strong cluster since σ(c22, c32) = 1 even though
its weight is just 0.4.

GS(v, w) = SA(v, w) ×WA(v, w) (1)

For considering time semantics of t-partite graph, CHRONICLE2nd restricts the
scope of measuring similarity to each bipartite within time interval [i, i + 1].
Figure 4 shows the general case of the relationship between v in Ti and w in
Ti+1 in T . When measuring the similarity between v and w, CHRONICLE2nd

only takes account of nodes and links/ci-edges within time interval [i, i + 1]
except the links within time interval [i − 1, i] and those within time interval
[i + 1, i + 2]. This restriction prevents that the links of such outside timestamps
affect the similarity of v and w, and at the same time, allows CHRONICLE2nd

to find clusters in an on-line fashion, i.e., perform incremental clustering for a
new timestamp network Gt+1. Unless having such restriction, the nodes in two
extreme partites of T , i.e., T1 and Tt would always have some distorted similarity
values due to the imbalanced number of neighborhood nodes.

The sub-similarity measure SA gives a cohesive path group a chance to be
found as a cluster. In Figure 4, every pair of v and w would have zero or more

v w

Ti Ti+1

a c

db

……

Fig. 4. The general case of the relationship between v of Ti and w of Ti+1
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neighborhood nodes. If there is no neighborhood, v and w forms a simplest bi-
clique, and so, the weight itself between v and w determines the overall similarity
between them. However, if there are some neighborhood nodes, we consider that
not only the weights on links or ic-edges, but also the structural cohesion between
them affects the overall similarity. That is, the more common neighborhood
nodes v and w share compared with all their neighborhood nodes, v and w
receive a high score of structural affinity. For example, in Figure 2, four links
of c12c23, c12c24, c13c23, and c13c24 belong to the bi-clique of {c12, c13, c23, c24},
and so, all their structural similarities become 1.0 just like a single path. This is
reasonable since it gives a chance to a group of paths that have weak similarities,
but are highly intertwined, to be found as one strong cluster of path group type.

The sub-similarity measure weight affinity WA considers the weights of links/
ic-edges between v and w including common neighborhood nodes. WA is defined
as in Definitions 3∼4. Intuitively, Φ(v, w) in Definition 3 represents the sum of
weights conveyed from v to w through their common neighborhood nodes. WA
is a weighted combination of a direct affinity between v and w, i.e., φ(v, w), and
a indirect affinity between v and w, i.e., Φ(v, w). This combination indicates the
expected maximum possible affinity between two consolidations of v and w with
their common neighborhood nodes (e.g., affinity between {a, b, v} and {c, d, w}
in Figure 4). The parameter α allows user to control the weights of the direct
and indirect affinities.

Definition 3. Let φ(v, w) be a similarity weight between v and w, and Ω(v, w)
common neighborhood nodes of v and w, i.e., Ω(v, w) = (N(v) ∩N(w)− {v, w}).
The common neighborhood weights Φ(v, w) of between v ∈ Vi and w ∈ Vi+1 is
defined by

Φ(v, w) =
∑

x∈Ω(v,w)

(φ(v, x) + φ(x,w)).

Definition 4. The weight affinity WA(v, w) of a node pair (v, w) ∈ Vi × Vi+1

is defined by

WA(v, w) = α · φ(v, w) + (1− α) · Φ(v, w), for 0 ≤ α ≤ 1.

Finally, CHRONICLE2nd gives a high general similarity GS score to a pair of
nodes whose both SA and WA are high. For example, in Figure 2, SA(c12, c23) =
1 since c12 and c13 are a part of the bi-clique, and, when α = 0.5, WA(c12, c23) =
0.5× 0.6 + 0.5× (0.5 + 0.5) = 0.8. Thus, GS(c12, c23) = 1× 0.8 = 0.8. Likewise,
GS(c12, c24) = 1× 0.85 = 0.85, GS(c13, c23) = 1× 0.9 = 0.9, and GS(c13, c24) =
1× 0.75 = 0.75.

Notions of density-based clustering. We summarize the notions of density-
based clustering using the GS measure for t-partite graph through Definitions
5∼11. The similar notions are used in other density-based clustering methods
such as DBSCAN [5], SCAN [15], and TRACLUS [8] for points, static network,
and trajectory data, respectively. However, different from those methods, our
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notions consider time semantics existing in T . The CHRONICLE2nd using this
notions takes two density parameters, μ and ε, and discovers all subgraphs with
high GS scores as clusters (i.e., communities) on T .

Definition 5. The ε-neighborhood Nε(v) of a node v ∈ VT is defined by Nε(v) =
{x ∈ N(v) | 〈v, x〉 ∈ LT ∧ GS(v, x) ≥ ε}.

Definition 6. A node v ∈ VT is called a core node w.r.t. ε and μ if |Nε(v)| ≥ μ.

We note that CHRONICLE2nd considers only the nodes connected with v not
by ic-edges but by links as the candidates of Nε(v) in order to expand a cluster
in the direction of time. We also note that v ∈ N(v) and GS(v, v) = 1 in
Definition 5, and so, the value of |Nε(v)| is always at least 1 in Definition 6.

Definition 7. A node x ∈ VT is gs-direct reachable from a node v ∈ VT w.r.t.
ε and μ if (1) v is a core node and (2) x ∈ Nε(v).

Definition 8. A node vj ∈ VT is gs-reachable from a node vi ∈ VT w.r.t. ε
and μ if there is a chain of nodes vi, vi+1, . . . , vj−1, vj ∈ VT such that vi+1 is
gs-direct reachable from vi (i < j) w.r.t. ε and μ.

Definition 9. A node v ∈ VT is gs-connected to a node w ∈ VT w.r.t. ε and μ
if there is a node x ∈ VT such that both v and w are gs-reachable from x w.r.t.
ε and μ.

Definition 10. A non-empty subset S ⊆ VT is called a gs-connected cluster
w.r.t. ε and μ if S satisfies the following two conditions:
(1) Connectivity: ∀v, w ∈ S, v is gs-connected to w w.r.t. ε and μ
(2) Maximality: ∀v, w ∈ VT , if v ∈ S and w is gs-reachable from v w.r.t. ε and

μ, then w ∈ S.

We note that the gs-reachability is the transitive closure of direct gs-reachability,
and it is asymmetric. It is only symmetric for a pair of core nodes. However, the
gs-connectivity is a symmetric relation, which is an important property for incre-
mental clustering because it guarantees the consistency of the clustering result
regardless of whether performing batch clustering for the whole T or performing
incremental clustering for every bipartite of T ,i.e., {〈T1, T2〉, . . . , 〈Tt−1, Tt〉}.

Definition 11. Let P be a set of gs-connected clusters found by Definition 10.
A node v ∈ VT is a noise if v is not contained in any cluster of P .

CHRONICLE2nd algorithm. Algorithm 1 outlines the pseudo-code of the
CHRONICLE2nd algorithm for batch clustering. CHRONICLE2nd makes one
scan over a t-partite graph T = 〈VT , LT , ET 〉 and finds a set of gs-connected
clusters CR = {Ci} w.r.t. ε and μ. Since there could exist many small-sized
clusters composed of only two nodes like c22c32 in Figure 2, we set μ = 2 in most
cases for not missing them.
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Algorithm 1. CHRONICLE2nd

Input: (1) t-partite graph T = 〈VT , LT , ET 〉,
(2) Minimum number of nodes μ,

(3) Similarity threshold ε.
Output: Communities CR = {Ci}.
1: CR ← ∅;
2: ∀v ∈ V : v ← UNCLASSIFIED;

3: for each UNCLASSIFIED node v ∈ V do
4: if v is a core node then
5: CR ← CR ∪ findCluster(v);

6: else
7: v ← NON MEMBER;

8: return CR;

Algorithm 2. FindCluster
Input: (1) A core node v,

(2) T , μ, ε.
Output: A gs-connected cluster C.

1: C ← ∅;
2: Q.push(v); // Q is a queue

3: while Q.empty() = false do
4: x← Q.front();
5: R← {y ∈ V | y is direct gs-reachable from x};
6: for each y ∈ R do
7: if y is UNCLASSIFIED then
8: C ← C ∪ {y};
9: Q.push(y);

10: if y is NON MEMBER then
11: C ← C ∪ {y};
12: Q.pop();

13: return C;

For each node of T , there are two kinds of labels: UNCLASSIFIED and
NON MEMBER. At first, all nodes are labeled as UNCLASSIFIED(line 2). If
there is a node that is not classified yet (line 3), CHRONICLE2nd checks whether
the node is a core node (line 4). If the node v is a core node, CHRONICLE2nd

finds a gs-connected cluster containing v and adds the cluster to CR (line 5).
Otherwise, CHRONICLE2nd labels the node as NON MEMBER (line 7). After
finding all clusters, the NON MEMBER nodes can be further classified into out-
liers or hubs by whether the node has edges to only one cluster or multiple
clusters, respectively, although the corresponding codes are not presented in the
algorithm.

Algorithm 2 outlines the pseudo-code of the FindCluster algorithm, a sub-
routine of CHRONICLE2nd. FindCluster finds all nodes that are gs-reachable
from a given seed node v. It starts with inserting v into a queue Q (line 2).
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Then, FindCluster searches those nodes by repeating the following steps until
Q is empty: (1) calculating the direct gs-reachable nodes R from the front node
x of Q; (2) inserting the part of R into Q; and (3) deleting x from Q (lines
3∼5, 9, 12). For each node y of R, FindCluster inserts y into a result cluster C
and a queue Q if y is UNCLASSIFIED(lines 8∼9), or inserts y only into C if
y is NON MEMBER (line 11). Here, that y is NON MEMBER means that y is
visited before and is not a core node.

The time complexity of the CHRONICLE2nd algorithm is O(2 · |LT |+2 · |ET |).
It is because the algorithm visits each node v ∈ VT only once and checks the GS
scores between v and its neighborhood nodes. We note that this complexity is
not affected by the number of clusters or any parameters such as μ, ε, and α.

Example 1. Consider performing CHRONICLE2nd for the t-partite graph in
Figure 2 with the parameter setting of α = 0.5, μ = 2, and ε = 0.7. First, the sin-
gle path of c11c21c31 is easily found as a cluster since those three nodes form a gs-
connected cluster, where they all are core nodes satisfying GS(c11, c21) = 0.9 ≥ ε
and GS(c21, c31) = 1.0 ≥ ε. Next, the path group of (c12c13)(c23c24) is also found
as another cluster since those four nodes form a gs-connected cluster with sat-
isfying GS(c12, c23) = 0.8 ≥ ε, GS(c12, c24) = 0.85 ≥ ε, GS(c13, c23) = 0.9 ≥ ε,
and GS(c13, c24) = 0.75 ≥ ε. The remaining nodes {c22, c32, c33} are identi-
fied as noises due to their low GS scores with their neighborhood. However,
if we loosen the threshold ε to 0.6, the path group of (c12c13)(c23c24)c33 is
found as a cluster instead of (c12c13)(c23c24) because GS(c23, c23) = 0.6 ≥ ε
and GS(c24, c33) = 0.6 ≥ ε. Here, the nodes {c22, c32} are still identified as
noises, which would be found as a cluster when ε decreases into 0.4. �
Online version of CHRONICLE2nd. Although we present CHRONICLE2nd

for batch clustering in Algorithm 1, the online version of CHRONICLE2nd,
i.e., incremental clustering can be easily performed under the same concept.
When a new timestamp network Gt+1 arrives, we perform the 1st-stage clus-
tering CHRONICLE1st for Gt+1, and obtain a new partite of T , i.e., Tt+1 by
calculating links and ic-edges within time interval [t, t + 1]. Then, we perform
CHRONICLE2nd on the bipartite graph {Tt, Tt+1} while maintaining the com-
munity ID of each node in Tt. Since CHRONICLE2nd only takes account of
nodes and links/ci-edges within time interval [i, i + 1] for calculating the sim-
ilarity, and at the same time, the gs-connectivity is a symmetric relation, this
incremental clustering does not hurt the consistency of a new clustering result
compared with the past clustering result for {T1, . . . , Tt}. In Example 1, suppose
that we perform the initial clustering on the first bipartite {T1, T2}, then incre-
mental clustering on the second bipartite {T2, T3} under the parameter setting
of α = 0.5, μ = 2, and ε = 0.6. As a result of the first clustering for {T1, T2},
two clusters c11c21 and (c12c13)(c23c24) are found, which we assign community
ID 1 and 2, respectively. As a result of the second clustering for {T2, T3}, two
clusters c21c23 and (c23c24)c33 are found, and we already know the community
IDs of c21 and (c23c24) are 1 and 2, respectively, and thus, we finally obtain the
same clustering result with that in Example 1 by assigning the community IDs
1 and 2 to c23 and c33, respectively.
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4 Experimental Evaluation

In this section, we evaluate the effectiveness and efficiency of our algorithm
CHRONICLE compared with the previous state-of-art t-partite graph based
method, the BFS method. We describe the experimental data and environment
in Section 4.1, and present the comparison results in Sections 4.2 and 4.3.

4.1 Experimental Setting

We use real dynamic network data set, the DBLP data3. We regard authors
as nodes, co-authorships as edges, and years as timestamps. We extract the
bibliographic information of all journals and conferences of the years from 1993
to 2007 (i.e., 15 years). By filtering authors of low number of publications, we
generate four data sets of 15,000 authors, 30,000 authors, 60,000 authors, and
120,000 authors. We call each data sets as DBLP-15K, DBLP-30K, DBLP-60K,
and DBLP-120K, respectively.

In both the CHRONICLE algorithm and the BFS method, the 1st-stage clus-
tering and the 2nd-stage clustering are independent with each other, and the
key part of them is the 2nd-stage clustering. Since the quality of the 1st-stage
clustering results of the BFS method (i.e., biconnected components) are not as
good as those of CHRONICLE1st, and at the same time, in order to be fair in
our comparison, we use the t-partite graph constructed by CHRONICLE1st as
an input t-partite graph for the BFS method. For all the 1st-stage clustering,
we use μ = 3 and ε = 0.6.

To compare the efficiency, we measure the elapsed time and memory usage of
both CHRONICLE2nd and the BFS method while varying the data size and the
number of timestamps, nts. In case of CHRONICLE2nd, the elapsed time and
memory usage are not affected by the parameters μ, ε or α. On the contrary, in
case of the BFS method, the performance is largely affected by the parameters k
or lmin. Thus, we also measure the elapsed time and memory usage of the BFS
method while varying k and lmin. For CHRONICLE2nd, we set α = 0.5, μ = 2,
and ε = 0.5.

The BFS method and CHRONICLE2nd performs some different mining task
with different purpose for t-partite graph. Moreover, there are no explicit ground
truth answers for communities in the DBLP data. Thus, it is very difficult to
evaluate the effectiveness by using common measures such as precision/recall.
Instead, we measure how many clusters of the BFS method are overlapped with
those of CHRONICLE2nd, i.e., how much the result of CHRONICLE2nd contains
the result of the BFS method. We note that, while the BFS method discovers
the exact top-k clusters based on a DP algorithm, CHRONICLE2nd discovers
less exact but more various clusters, where the variousness is controlled by ε. Let
CRBFS be a set of clusters of the BFS method, and CRcommon a set of clusters
of the BFS method overlapped with those of CHRONICLE2nd. We measure the
ratio between the sizes of two sets, |CRcommon|

|CRBF S| while varying ε and k. In order to

3 http://www.informatik.uni-trier.de/∼ley/db
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show the effectiveness of path group type clusters of CHRONICLE2nd, we also
measure the average similarity of clusters across time by using Jaccard coefficient
for both single path type and path group type while varying ε.

We conduct all the experiments on a Pentium Core2 Duo 2.0GHz PC with
2GBytes of main memory, running on Windows XP. We implement our algo-
rithm andthe BFS method in C++ using Microsoft Visual Studio 2005.

4.2 Results of Efficiency

Figures 5∼7 show the result of efficiency evaluation of the BFS method and
CHRONICLE2nd. In Figure 5, CHRONICLE2nd has the better efficiency than
the BFS method as the number of nodes and the number of timestamps

Fig. 5. Elapsed time of varying nts and the data size (k = 20, lmin = 3)

Fig. 6. Elapsed time of varying k and lmin (data set = DBLP-30K, nts = 10)

Fig. 7. Memory usage of of varying k and lmin (data set = DBLP-30K, nts = 10)
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Fig. 8. The result ratio of
|CRcommon|
|CRBF S | and the average similarity across time of clusters

of CHRONICLE2nd (data set = DBLP-30K, nts = 10)
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(a) An example of author’s community of single path type (Avg. Similarity = 0.691).
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(b) An example of author’s community of path group type (Avg. Similarity = 0.650).

Fig. 9. Examples of author’s communities (data set = DBLP-30K)

increase. Especially, since the BFS method needs to maintain paths of all lengths
greater than lmin, its performance gets much worse as nts gets longer as in Fig-
ure 5(a). In Figure 6, the performance of the BFS method is much more de-
graded as k and lmin increase due to heavy computation for heaps, whereas
that of CHRONICLE2nd is the same regardless of the parameters μ and ε.
In Figure 7, the amount of memory usage of the BFS method also largely in-
creases as k and lmin get larger due to the increased heap usage, whereas that
of CHRONICLE2nd is the same regardless of μ and ε since it uses only two
fixed-size data structures: t-partite graph itself and status list for checking UN-
CLASSIFIED/NON MEMBER.

4.3 Results of Effectiveness

Figure 8(a) shows |CRcommon|
|CRBF S | while varying k of the BFS method and ε of

CHRONICLE2nd. Even though CHRONICLE2nd discovers a wide range clusters
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instead of only the most stable clusters, its clustering result includes a fairly high
percentage (about 0.7∼0.9) of the clustering result of the BFS method at the mod-
erate density threshold ε = 0.5. Thus, a user can obtain the approximated top-k
clusters by sorting the clusters found by CHRONICLE2nd. Figure 8(b) shows that
not only the clusters of single path type but also the clusters of path group type
have a high similarity across time with the similarity becoming stronger as ε in-
creases. This means that the dynamicity of both type clusters is controlled by ε.

Figure 9 shows examples of author’s communities of single path type and path
group type. Our CHRONICLE algorithm finds dynamic communities of single
path type as in Figure 9(a) as well as communities of path group type as in
Figure 9(b), whereas the BFS method cannot find both communities.

5 Conclusions

In this paper, we have proposed a two-stage density-based clustering algorithm,
CHRONICLE, that efficiently discovers time-evolving communities over large-
scale dynamic networks. By performing the density-based clustering in the 2nd-
stage for t-partite graph, CHRONICLE2nd finds both single path clusters and
path group clusters, and at the same time, achieves a very high performance
compared with the previous BFS method. Through extensive experiments over
the DBLP data set, we have shown the effectiveness and efficiency of CHRONI-
CLE, especially, that CHRONICLE2nd is far more scalable than the BFS method
with respect to the length of dynamic network and the parameter values.
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Abstract. Inductive Logic Programming (ILP) systems have been suc-

cessfully applied to solve binary classification problems. It remains an

open question how an accurate solution to a multi-class problem can be

obtained by using a logic based learning method. In this paper we present

a novel logic based approach to solve challenging multi-class classification

problems. Our technique is based on the use of large margin methods in

conjunction with the kernels constructed from first order rules induced

by an ILP system. The proposed approach learns a multi-class classi-

fier by using a divide and conquer reduction strategy that splits multi-

classes into binary groups and solves each individual problem recursively

hence generating an underlying decision list structure. We also study

the well known one-vs-all scheme in conjunction with logic-based kernel

learning. In order to construct a highly informative logical and relational

space we introduce a low dimensional embedding method. The technique

is amenable to skewed/non-skewed class distribution where multi-class

problems such as protein fold recognition are generally characterized by

highly uneven class distribution. We performed a series of experiments

to evaluate the proposed rule selection and multi-class schemes. The

methods were applied to solve challenging problems in computation biol-

ogy and bioinformatics, namely multi-class protein fold recognition and

mutagenicity detection. Experimental comparisons of the performance

of large margin first order decision list based multi-class scheme with

the standard multi-class ILP algorithm and multi-class Support Vector

Machine yielded statistically significant results. The results also demon-

strated a favorable comparison between the performances of decision list

based scheme and one-vs-all strategy.

1 Introduction

The underlying aim of a multi-class approach is to learn a highly accurate
function that categorizes examples into predefined classes. Effective multi-class
techniques are crucial to solving the problems ranging from multiple object recog-
nition to multi-class protein fold recognition.

The two areas of machine learning, namely Inductive Logic Programming
(ILP) and Kernel based methods (KMs) are well known for their distinguishing

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 168–183, 2009.
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features: ILP techniques are characterized by their use of background knowledge
and expressive language formalism whereas strong mathematical foundations
and high generalization ability are remarkable characteristics of KMs. Recently
some logic based techniques (such as Support Vector Inductive Logic Program-
ming (SVILP) [1], kFOIL [2] and RUMBLE [3]) have been designed which use
kernels to solving binary classification problems and performing real-valued pre-
dictions. In this paper we study multi-class classification in the combined ILP
and kernel learning scenario by extending SVILP. We also propose an effective
method to constructing highly informative relational and logical low dimensional
feature space. The method is designed in a way so as a classifier trained in the
feature space is amenable to highly imbalance category distribution. A skewed
class distribution is a common phenomenon in multi-class classification tasks.

SVILP solves binary classification problems in a multi-stage learning process.
In the first stage, a set of all the first order horn clauses (rules), constructed
during the search of the hypothesis space, is obtained from an ILP system. In
the next stages similarity between the examples is computed by the use of novel
kernel function that captures semantic and structural commonalities between
examples. The computed relational and logic based kernel is used in conjunction
with a large margin learning algorithm to induce a binary classifier. In this
way, SVILP performs classification task by training a large margin first order
classifier.

SVILP [1] uses all the clauses with positive compression: an information theo-
retic measure. The number of positively compressed rules can vary from zero to
thousands for the particular task. Furthermore rules with negative compression
can contain crucial information to solving the problem at hand. This scenario
can cause a decrease in generalization performance of the learning machine. In
order to handle such issues we extend SVILP by introducing a novel rule selec-
tion method where the selected rules can have very high information content,
generalization ability and can handle class imbalance problem.

In order to solve multi-class problems we propose a simple but accurate ap-
proach. The method is designed by reducing the multi-class classification task
to binary problems. However our approach is distinguished from the existing
reduction techniques as it learns the hidden structure and characteristics of the
data and hence improves the performance of the classifier. The proposed method
is based on divide-and-conquer strategy and it discriminates different classes by
using an underlying structure based on decision lists. The multi-class problem is
reduced by recursively breaking it down into binary problems where each binary
task is solved by invoking an SVILP machine. At each node of the decision list
the algorithm induces a classifier and updates the training set by removing the
examples of the class chosen at the previous node. A label is assigned to a new
example by traversing the list. We also study the well known one-vs-all scheme
in conjunction with SVILP.

During recent years, a number of multi-class classification method have been
proposed [4,5,6,7,8]. The focus of the methods has been on the construction of
different effective multi-class schemes whereas less attention has been paid to



170 H. Lodhi, S. Muggleton, and M.J.E. Sternberg

manipulating the hidden structures and characteristics of the data by using ex-
pressive representations. In ILP, which is well known for its use of expressive
language formalism, the standard method to solve multi-class problems is based
upon inducing a set of disjunctive rules for each class and a new example is pre-
dicted if it satisfies the conditions of the rules. In the case that multiple classes
are assigned to an example, that is common in ILP, the method is biased to-
wards majority class. Within ILP algorithms, the use of decision lists [9] was
explored by Mooney and Califf [10] for binary concept learning. The method
extended FOIL [11] by incorporating intensional background knowledge and it
is characterized by it’s ability to induce logic programs without explicitly tak-
ing negative examples as input. The logic program generated by the technique
comprised ordered list of clauses (rules). The method was successfully applied
to the complex problem of learning past tense of English verbs.

In order to evaluate the performance of proposed methods, we conducted a
series of experiments. We applied the techniques to solving multi-class protein
fold recognition problem and binary class mutagenicity detection and identifica-
tion task. The results show that the techniques yield substantial and significant
improvements in performance.

2 Multi-class Inductive Logic Programming (MC ILP)

ILP systems have been successfully applied to binary classification tasks in
computational biology, bioinformatics, and chemoinformatics. There are few
ILP systems that can perform multi-class classification tasks [12]. The standard
multi-class logic based method, described below, is biased towards the majority
class. The method is based on learning theories Hj(first order horn clauses) for
each class j. The obtained theories for r classes are merged into a multi-theory H.
For each class the number of correctly classified training examples are recorded.
A class is assigned to a new example if the example satisfies the conditions of the
rules. In the case that an example is predicted to have multiple classes, then the
class with the maximum number of predicted training examples is assigned to
the example. If an example fails to satisfy the conditions of all rules in H, a de-
fault class (majority class) is assigned to it. The method is termed as multi-class
ILP (MC ILP).

3 Support Vector Inductive Logic Programming

Support Vector Inductive Logic Programming [1] is a new machine learning tech-
nique that is at the intersection of Inductive Logic Programming and Support
Vector Machines [13]. SVILP extends ILP with SVMs where the similarity be-
tween the examples is measured by computing an inner product on the subset
of rules induced by an ILP system. It can be viewed as a multi-stage learn-
ing algorithm. The four stages that comprise SVILP learning are described as
follows.
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In the first stage a set of rules H is obtained from an ILP system that takes
relationally encoded examples (positive, negative) and background knowledge
as input. The set, H, comprises all the rules constructed during the search of
the hypothesis space. This stage maps the examples into a logic based relational
space. A first order rule, h ∈ H, can be viewed as a boolean function of the form,
h : D → {0, 1}.

In the next stage a subset H ∈ H is selected by using an information theoretic
measure, namely compression, described below. The stage maps the examples
into another lower dimensional space containing the information relevant to the
task at hand. The compression value of a rule is computed by the expression,
C = PT∗(ps−(ng+cl))

ps , where ps is the number of positive examples correctly
deducible from the rule, ng is the number of negative examples that satisfy the
conditions of the rules, cl is the length of the rule and PT is the total number
of positive examples.

In the third stage a kernel function is defined on the selected set of rules
where rules can be weighted/unweighted. The kernel is based on the idea of
comparing two examples by means of structural and relational features they
contain; the more features in common the more similar they are. The function
is given by the inner product between the mapped examples where the mapping
φ is implied by the set of rules H . The mapping φ for an example d is given by,1

φ : d →
(√

π(h1(d)),
√

π(h2(d)), . . . ,
√

π(ht(d))
)′

, where h1, . . . , ht are rules
and π is the weight assigned to each rule hi. The kernel for examples di and dj

is given by, k(di, dj) = 〈φ(di), φ(dj)〉 =
∑t

l=1

√
π(hl(di))

√
π(hl(dj)). The kernel

specified by an inner product between two mapped examples is a sum over all
the common hypothesized rules. Given that φ maps the data into feature space
spanned by ILP rules, we can construct Gaussian RBF kernels, kRBF (di, dj) =

exp
(

−‖(φ(di)−φ(dj)‖2

2σ 2

)
, where ‖(φ(di)− φ(dj)‖ =

√
k(di, di)− 2k(di, dj) + k(dj , dj).

In the final stage learning is performed by using an SVM in conjunction with
the kernel. SVILP is flexible to construct any kernel in the space spanned by
the rules. However, in the present work we used RBF kernels, kRBF , and linear
kernels, k, in conjunction with an SVILP machine.

We now consider an example that shows how SVILP kernel measures sim-
ilarity between two protein domains, ’d2hbg ’ and ’d1alla ’ which belong to
α structural class and ’Globin-like’ fold (SCOP classification scheme). Figures
1, 3, 2 and 4 show the two domains and their relationally encoded features.
Here predicates ’len’, ’nb alpha’, and ’nb beta’ denote the length of the polypep-
tide chain, number of α-helices and β strands respectively. The other predicates
represent the relationship between the secondary structure elements and their
properties (hydrophobicity, the hydrophobic moment, the length of proline and
etc.). Figure 5 shows a set of induced rules together with their English con-
version. A rule classifies an example positive (1) if it fulfils the conditions of
the rule while an example that fails to satisfy the conditions is classified neg-
ative (0). The set of equally weighted rules maps the two examples as follows:

1 ′ specifies column vector.
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Fig. 1. Protein domain ’d1all ’ Fig. 2. Protein domain ’d2hbg’

dom t(d1alla ).
len(d1alla , 161). nb alpha(d1alla ,7).

nb beta(d1alla ,0). has pro(d1alla h1).

sec struc(d1alla , d1alla h3).

unit t(d1alla h3).

sst(d1alla h3,4,4,a,104,9,h,0.443,3.003,

116.199, [v,t,p,i,e,e,i,g,v]).

unit hmom(d1alla h2, hi).· · ·

Fig. 3. Relationally encoded features of

protein domain. ’d1alla ’.

dom t(d2hbg ).
len(d2hbg , 147). nb alpha(d2hbg ,6).

nb beta(d2hbg ,0).

has pro(d2hbg h5).

sec struc(d2hbg , d2hbg h2).

unit t(d2hbg h2).

sst(d2hbg h2,3,3,blank,40,7,h,0.540,

1.812, 213.564, [q,m,a,a,v,f,g]). · · ·

Fig. 4. Relational encoded features of

protein domain ’d2hbg ’

φ(d1alla ) = φ(d1) =
(
1 × 1 1 × 1 1 × 1

)′
and φ(d2hbg ) = φ(d2) =

(
1 ×

1 0 × 1 1 × 1
)′

. Given that the rules are equally weighted, each entry of the
vector is multiplied by 1. The kernel values between the examples are as follows:
k(d1, d2) = k(d2, d1) = 2, k(d1, d1) = 3 and k(d2, d2) = 2. In the proceed-
ing sections we present rule selection and multi-class classification schemes for
SVILP.

4 Extending Support Vector Inductive Logic
Programming

4.1 Low Dimensional Embedding

As described earlier, an SVILP machine obtains a set H of all the rules, con-
structed during the search of the hypothesis space, from an ILP algorithm. The
number of rules can be very large and the compression value of a rule can be pos-
itive or negative. The wide ranging set H includes rules that are highly relevant
to build a classifier with high generalization ability and rules that are highly ir-
relevant (noise) and can decrease the generalization performance of the classifier.
The irrelevant rules establishe a need to present an effective method to selecting
relevant rules and hence embedding the data into an informative lower dimen-
sional logical space. In [1] data was embedded into a lower dimensional space H ,
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fold(Globinlike,A) ←
adjacent(A,B,C,1,h,h), adjacent(A,C,D,2,h,h), coil(B,C,4).

/*A domain is classified 1 (belongs to Fold ’Globinlike’) if heli-

ces B(at position 1) and C are adjacent, C (at position 2) and

D are adjacent and length of loop connecting B and C is 4.*/

fold(Globinlike,A) ←
adjacent(A,B,C,1,h,h), has pro(C).

/*A domain is classified 1 if helices B(at position 1) and C are

adjacent and C has proline.*/

fold(’Globinlike’,A) ←
adjacent(A,B,C,1,h,h), coil(B,C,4), nb α interval(4=<(A=<8)).

/*A domain is classified 1 if helices B (at position 1) and C are

adjacent, number of α helices are in range [4,8] and length of

loop connecting B and C is 4*/.

Fig. 5. Rules followed by English conversion for Protein domains in Globin-like fold

where H ! H, by selecting all the rules with positive compression values. How-
ever negatively compressed rules can contain highly relevant information such
as structural and relational features that can be crucial to solving the complex
problem at hand. In this section we present a novel method to embed data into
a lower dimensional space with extra information.

The proposed method is based on the construction of feature space by ex-
ploiting the information content and discriminatory power of the rules. The
constructed space is characterized by its amenability to multi-class (/ binary)
classification. We now derive an expression to measure the influence of the rules.
We use P to denote the number of positive example, and N represent number
of negative examples. Similarly, the number of positive examples that fail to
satisfy the conditions of a rule are represented by P−, where N+ shows the
number of negative examples that incorrectly fulfils the conditions of the rule.
The expression is given by

HD = WP ∗ P− + WN ∗N+ (1)

where WP and WN are the weights assigned to P−, and N+ respectively.
The smaller value of HD illustrates the goodness of fit for a rule. The expres-

sion can be viewed as weighted sum of hamming distances between two boolean
vectors. Let ĉP and ĉN denote vectors of positive (1) and negative (0) exam-
ples respectively. We use f̂P to represent vector of the predictions on positive
examples by a rule. Similarly, ˆfN denotes vector of the predictions on nega-
tive examples by the rule. The distance between ĉP and f̂P can be computed
by counting the number of entries which differ in both the vectors. Formally,
HDP (ĉP, f̂P) =

∑P
i=1 |cPi − fPi |.

(
For labels {+1,−1} the distance can be

computed by
∑P

i=1
|cPi

−fPi
|

2

)
. Similarly, HDN (ĉN, ˆfN) =

∑N
i=1 |cNi − fNi|. The

weighted sum of the distances is given by HD = WP ∗ HDP (ĉP, f̂P) + WN ∗
HDN (ĉN, ˆfN). That is like computing the expression HD given in 1.
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We now describe how we utilize the expression 1 to obtain a lower dimensional
logical and relational feature space with extra information. A set of rules, H, is
obtained by an ILP system. In order to measure the score (influence) of rules a
validation set is used. For each rule the values of P− and N+ are counted and
the goodness of fit is measured by expression, HD = WP ∗ P− + WN ∗ N+.
The calculated scores are recorded in a list. Once a list is created, the next step
involves sorting it in ascending order. The first t rules with lowest HD values
are selected.

The idea behind the use of weights in the expression 1 is to give equal im-
portance to all the classes in a dataset that is characterized by uneven class
distribution. We now describe a heuristic method to assign weights. We assume
a scenario where a set of examples belong to two classes (positive, negative) and
the examples belonging to the negative class make the majority class. In this
scenario WP is set to N

P and WN is set to 1. We used this approach to compute
WP and WN for the experiments reported in section 5.

4.2 Multi-Class Classification

We now propose a novel logic based method to solving multi-class classification
problems. We apply inductive learning in which an algorithm is provided with
a set of examples, D, of the form D = {(d1, c1), (d2, c2), . . . , (dn, cn)} where
di are training examples and ci ∈ {1, 2, . . . , r} are classes (labels). The goal of
the classification algorithm is to generate a function f : d → {1, 2, . . . , r} that
assigns a new example d to the class with low error probability.

In order to solve multi-class problems we apply powerful but simple divide
and conquer strategy. The complex multi-class classification task is divided into
binary problems and each problem is solved recursively. The method constructs
a decision list as shown in figure 6. Here each non-leaf node has two children.

DNA 3 −helical(+), EF 
hand−like(−), Globin−

{

}like(−), Interleukin 8(−)

{ hand−like(−), 
Globin−like(−), 
Interleukin 8(−) }

Interleukin 8(−)
Globin−{ like(−), 

}

DNA 3

Globin−

Interleukin 8(−)

hand−like 

−helical 

 EF  EF 

like

Fig. 6. A decision list, learned by the large margin first order rule learner, for multi-

class classification
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Algorithm 1. Support Vector Inductive Logic Programming (DL SVILP) for
multi-class classification
Input: A set of training examples {(d1, c1), (d2, c2), . . . , (dn, cn)}, where di ∈ D and

ci ∈ {1, 2, . . . , r} and a vector index that represents learned structure of the list.

for j = 1 to r − 1 do
/* Select a class p from r classes */

p = index[j]
/* Formulate the binary class problem by assigning label ’1’ to examples of class

p and ’-1’ to examples of remaining classes */

Di = {(d1, c1), (d2, c2), . . . , (dn, cn)}, where di ∈ D and ci ∈ {1,−1}
/* Induce a binary classification function fi by applying SVILP to set Di */

fi : Di → {1,−1}
/* Reduce the size of set Di by removing the examples belonging to class p */

Di+1 = Di \Dp

end for
return fi for i = 1, . . . , r − 1

Classes are represented by non leaf nodes where edges are labeled by the bi-
nary classifier’s output. We term the technique as decision list based SVILP
(DL SVILP). The method is shown as Algorithm 1. The technique reduces
multi-class classification problem to r − 1 binary problems, where r is the total
number of classes. The algorithm can be viewed as comprising r − 1 iterations.
In each iteration a class is selected as the positive class and the remaining classes
are reduced to the negative class. The binary problem is solved by using a large
margin first order rule learner. The training set is updated by removing the ex-
amples of the chosen class. In this way the root node contains all the classes
whereas the node at depth r − 1 contains two classes. The size of the training
set used at depth r− 1 is (much) smaller than the size of the training set for the
root node. DL SVILP assigns a class j to a new example d as follows:

1. Begin at the root node
2. Apply the classifier associated with the node to example d

3. Travel down the edge labeled by the classifier’s output
4. If the edge is labeled positive output the class associated with the leaf. If

the edge is labeled negative repeat steps 2 and 3 until the last positive edge
is reached. Output the label given by the node.

We now describe how the underlying structure of the list is constructed. The
method is dynamic and adaptive to the learning process. At each node the
selection of the positive class is made in way so as the classifier can have high
generalization ability. The method is presented as Algorithm 2. For each class j
a binary class problem is formulated by assigning label ’1’ to examples of chosen
class and ’-1’ to examples of remaining classes. The classifier, induced from
the dataset, is evaluated on a validation set. The performance of the classifier is
measured by the expression 1 and the values are recorded in a list. In short, r one-
vs-all classifiers are trained and a list of scores that represent the performance of
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Algorithm 2. Learning underlying structure for DL SVILP
Input: Training set, d1, d2, . . . , dn, validation set, d′

1, d
′
2, . . . , d

′
s, r classes and a large

margin first order rule learner (such as SVILP)

for j = 1 to r do
/* Formulate the binary class problem by assigning label ’1’ to examples of class

j and ’-1’ to examples of remaining classes */

/* Induce a binary classification function by applying SVILP to training data,

d1, d2, . . . , dn */

/* Apply the learned function to validation set, d′
1, d

′
2, . . . , d

′
s */

/* Measure performance of classifier by using expression 1 */

S[j]′ = WP ∗ P− + WN ∗N+

where P = total number of positive example, N = total number of negative

examples, P− = number of misclassified positive examples, N− = number of

misclassified negative examples, WP = N
P

and WN = 1

index[j]′ = j
end for
/* Sort list S′ in ascending order and reorder list index′ accordingly */

S = sort(S′)

index = reorder(index′)

return index and S

the classifiers, is obtained. Finally the list is sorted and this ranked list defines
the underlying structure.

4.3 One-vs-All

One-vs-all is a well known multi-class classification strategy. The recent research
[7] showed that the solution obtained by the scheme is accurate. We now describe
how we design one-vs-all based SVILP multi-class classifier that we term one-vs-
all Support Vector Inductive Logic Programming (OVA SVILP). We construct
OVA SVILP by learning r binary classifiers by using SVILP. A new example is
classified by applying all the classifiers to it. The example is assigned a label by
the classifier that outputs the largest value(margin).

5 Experiments and Results

We conducted a series of experiments to evaluate the performance of the pro-
posed methods for selecting informative rules and solving multi-class classifica-
tion problems. We applied the methods to complex tasks, such as mutagenicity
detection and protein fold recognition.

For multi-class classification problems we used accuracy and positive predic-
tive value (precision rate) as evaluation measures. Let Pj denote the number of
examples belonging to class j, P =

∑j=k
j=1 Pj represent total number of examples

belonging to k classes, and TPj denote the number of correctly classified exam-
ples belonging to class j. The accuracy for each class j is given by TPj

Pj
whereas
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Table 1. Cross-validated accuracy for mutagenesis

kFOIL nFOIL c-ARMR+SVM RUMBLE PROGOL SVILPC SVILPHD

81.3 75.4 73.9 84.0 78.7 85.6 87.2

the overall accuracy is defined by the expression
∑ j=k

j=1 TPj

P . We used two-sample
t-test to assess the significance of our results. The performance of the methods
was also analyzed in relation to their average positive predictive values (PPVs)
that is given by TPj

TPj+FPj
for each class j. In the expression FPj denotes the

numbers of examples that are incorrectly classified in class j.
In order to construct underlying binary SVILP classifiers we used CProgol5

(PROGOL) [14] and SVMlight [15]. We refer SVILP to SVILPC for compression
based rule selection whereas SVILP is termed as SVILPHD for the proposed
rule selection method. For multi-class classification OVA SVILPC , DL SVILPC ,
OVA SVILPHD, DL SVILPHD represent compression based and HD (hamming
distance) based schemes respectively.

Mutagen Classification. In drug design and development, toxicity classifica-
tion including mutagen detection and identification is a key task. Mutagenic
compounds produce mutations in DNA. In order to validate the use of SVILP
as a binary classifier, we applied the algorithm to the mutagen classification
problem. For comparison with related techniques, we conducted experiments on
a benchmark machine learning dataset, namely mutagenesis [16] that has been
widely used for the evaluation of new techniques [17]. We used regression friendly
subset comprising 188 molecules and atom and bond background information so
that we could compare the performance of SVILP with closely related methods
kFOIL and RUMBLE. 10-fold cross validation was used as experimental method-
ology. At each cross-validation iteration, a classifier was trained on 8 folds, 1 fold
was used as the validation set while the remaining 1 fold comprised the test set.
We tuned the free parameters clause length and noise of PROGOL, the regular-
ization parameter C of SVMs and width parameter γ of RBF kernels by using
the validation set. The set of values for clause length is {2,4}, noise is {5,10,20},
C is {1, 10, 100} and γ is {0.001, 0.01,0.1, 1}. Optimal number of rules were
selected from the set {25, 100, 200, 400}. Table 1 shows the results of kFOIL,
nFOIL, c-ARMR+SVM, PROGOL, SVILPC and SVILPHD. The reported re-
sults of kFOIL, nFOIL, c-ARMR+SVM and RUMBLE appeared in [2] and [3].
The results show that SVILP compares favorably with related approaches. The
results also validate the efficacy of the proposed rule selection methodology.

Protein Fold Classification. The recognition of proteins having similar struc-
ture is a challenging and complex task in computational biology and bioinfor-
matics. It has key importance in studying protein structure and function and can
provide answers to biological problems. In fold recognition, labels are assigned
to proteins from a set of predefined annotations (labels, folds). In this way pro-
tein fold recognition can be viewed as the multi-class classification task where
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Table 2. 5-fold cross-validated over all accuracy (OA) ± standard deviation for protein

fold dataset for MC ILP, OVA SVILPC , OVA SVILPHD, DL SVILPC , DL SVILPHD

and MC SVM. We also report cross-validated accuracy ± standard deviation for 20

folds. The higher values (shown in bold) demonstrate the advantage of the methods.

Fold MC ILP OVA SVILPC OVA SVILPHD DL SVILPC DL SVILPHD MC SVM

α
1 43.3 ± 9.0 76.7 ± 7.7 76.7 ± 7.7 73.3 ± 8.1 66.7 ± 8.6 43.3 ± 9.0

2 28.6 ± 12.1 28.6 ± 12.1 64.3 ± 12.8 21.4 ± 11.0 57.1 ± 13.2 14.3 ± 9.4

3 46.2 ± 13.8 92.3 ± 7.4 69.2 ± 12.8 61.5 ± 13.5 53.9 ± 13.8 53.8 ± 13.8

4 10.0 ± 9.5 10.0 ± 9.5 30.0 ± 14.5 40.0 ± 15.5 30.0 ± 14.5 0.0 ± 0.0

5 40.0 ± 15.5 30.0 ± 14.5 50.0 ± 15.8 40.0 ± 15.5 40.0 ± 15.5 20.0 ± 12.6

OA 36.4 ± 5.5 55.8 ± 5.7 63.6 ± 5.5 53.3 ± 5.7 54.6 ± 5.7 31.2 ± 5.3

β
6 73.3 ± 6.6 88.9 ± 4.7 75.6 ± 6.4 91.1 ± 4.2 88.9 ± 4.7 71.1 ± 6.8

7 57.1 ± 10.8 90.5 ± 6.4 95.2 ± 4.7 95.2 ± 4.7 90.5 ± 6.4 66.7 ± 10.3

8 0.0 ± 0.0 10.0 ± 6.7 15.0 ± 8.0 15.0 ± 8.0 35.0 ± 10.7 15.0 ± 8.0

9 43.8 ± 12.4 68.8 ± 11.6 75.0 ± 10.8 75.0 ± 10.8 75.0 ± 10.8 68.8 ± 11.6

10 64.3 ± 12.8 85.7 ± 9.4 92.9 ± 6.9 71.4 ± 12.1 71.4 ± 12.1 64.3 ± 12.8

OA 52.6 ± 4.6 72.4 ± 4.2 70.7 ± 4.2 74.1 ± 4.1 75.9 ± 4.0 59.5 ± 4.6

α/β
11 85.5 ± 4.8 85.5 ± 4.8 87.3 ± 4.5 67.3 ± 6.3 76.4 ± 5.7 58.2 ± 6.7

12 52.4 ± 10.9 81.0 ± 8.6 61.9 ± 10.6 76.2 ± 9.3 90.5 ± 6.4 28.6 ± 9.9

13 28.6 ± 12.1 35.7 ± 12.8 50.0 ± 13.4 50.0 ± 13.4 50.0 ± 13.4 7.1 ± 6.9

14 7.7 ± 7.4 7.7 ± 7.4 15.4 ± 10.0 30.8 ± 12.8 38.5 ± 13.5 0.0 ± 0.0

15 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 8.3 ± 8.0 8.3 ± 8.0 16.7 ± 10.8

OA 54.8 ± 4.6 60.9 ± 4.6 60.9 ± 4.6 56.5 ± 4.6 64.4 ± 4.5 35.7 ± 4.5

α
+β
16 53.8 ± 9.8 69.2 ± 9.1 73.1 ± 8.7 69.2 ± 9.1 69.2 ± 9.1 23.1 ± 8.3

17 15.4 ± 10.0 30.8 ± 12.8 38.5 ± 13.5 53.9 ± 13.8 53.9 ± 13.8 30.8 ± 12.8

18 7.7 ± 7.4 53.8 ± 13.8 61.5 ± 13.5 46.2 ± 13.8 46.2 ± 13.8 30.8 ± 12.8

19 0.0 ± 0.0 8.3 ± 8.0 8.3 ± 8.0 8.3 ± 8.0 25.0 ± 12.5 25.0 ± 12.5

20 77.8 ± 13.9 77.8 ± 13.9 77.8 ± 13.9 66.7 ± 15.7 66.7 ± 15.7 22.2 ± 13.9

OA 32.9 ± 5.8 50.7 ± 5.7 54.8 ± 5.7 52.1 ± 5.8 54.8 ± 5.6 26.0 ± 5.6

OA 46.2 ± 2.6 61.4 ± 2.5 63.3 ± 2.5 60.4 ± 2.5 64.0 ± 2.5 40.2 ± 2.5

the problem is characterized by highly skewed class distribution. The aim of a
protein fold classification system is to assign proteins to one of many folds with
high accuracy. Machine learning methods have been applied to investigate the
problem. The studies reported in [18,4] applied SVMs [13] to solving multi-class
protein fold classification problem. Chen and Kurgan [19] and Shen and Chou
[20] studied ensemble methods to assign 27 folds, from SCOP, to proteins. [21].

Dataset1. We solved protein fold classification problem by applying the pro-
posed multi-class methods to the dataset presented in [22]. In order to compare the
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Fold #Exm Fold #Exm

α α/β
1 30 11 55

2 14 12 21

3 13 13 14

4 10 14 13

5 10 15 12

β α + β
6 45 16 26

7 21 17 13

8 20 18 13

9 16 19 12

10 14 20 9

Fig. 7. Class distribution for 20

protein folds of dataset1
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Fig. 8. Fold-wise positive predictive values (PPVs)

for MC ILP (MC), OVA SVILPC (OVAC),

OVA SVILPHD (OVAHD), DL SVILPC (DLC),

DL SVILPHD (DLHD) and MC SVM (SVM).

performance of SVILP based multi-class classification schemes with non-SVILP
based methods we used multi-class SVM (MC SVM) and MC ILP. MC SVM was
trained by using SVMlight [15] where the method was presented in [23]. For
MC SVM, we represented protein domains by using non-relational features
namely, total number of residues, α-helices and β-strands. Previous research
demonstrated the effectiveness of these features for protein fold classification task.
For MC ILP and SVILP based techniques we used relational fold discriminatory
features described in [22]. These features are polypeptide chain length, number
of α-helices and β-strands, adjacent secondary structure elements, properties of
the secondary structure such as the hydrophobicity, the hydrophobic moment, the
length of proline (number of proline residues) and the length of the loop.

The dataset comprises 381 protein domains. They belong to 20 folds of SCOP
that have been categorized into 4 structural classes, namely α, β, α/β and
α + β. The indices 1 to 20 shown in Table 2 represent SCOP folds DNA 3-
helical, EF hand-like, Globin-like, 4-Helical cytokines, Lambda repressor, Ig
beta-sandwich, Tryp ser proteases, OB-fold, SH3-like barrel, Lipocalins, α/β
(TIM)-barrel, Rossmann-fold, P-loop, Periplasmic II, α/β-Hydrolases,
Ferredoxin-like, Zincin-like, SH2-like, β-Grasp, and Interleukin respectively. The
dataset is characterized by uneven class distribution as shown in figure 7.

We randomly divided the dataset into 5 equal-sized folds and followed the ex-
perimental methodology as follows. At each cross validation round 3-folds were
used for training the classifiers where the remaining two folds were used as vali-
dation set and test set. The free parameter of SVM MC (C, width of the Gaussian
kernel), SVILP OVAC (C, width of the Gaussian kernel), SVILP OVAHD (num-
ber of rules, C, width of the Gaussian kernel), SVILP DLC (C, width of the
Gaussian kernel), and SVILP DLHD (number of rules, C, width of the Gaussian
kernel) were tuned by using the validation set. Table 2 lists the cross-validated
accuracy for each protein fold for the multi-class classification methods. Overall
accuracy over 20 folds is also given. From the results it is clear the DL SVILPHD
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outperforms all other methods in the study. We first focus on the performance
of SVILP based methods. In order to assess the effect of low dimensional embed-
ding methods (compression based rule selection, HD based rule selection) on the
quality of the trained multi-class classifiers, the performance of DL SVILPHD

was compared with DL SVILPC . DL SVILPHD improved the performance over
DL SVILPC and two sample t-test verified the significance of the gain in accu-
racy (with p ! 0.1). Comparison of the performances of OVA SVILPHD with
OVA SVILPC demonstrated that OVA SVILPHD also yielded substantial (but
not statistically significant) gain in accuracy. In summary, the results validate
the efficacy of HD based rule selection method where the gain in performance
is generally substantial and statistically significant.

We now analyze the performance of large margin first order decision list based
learner, DL SVILPHD, for multi-class classification. Table 2 shows that the accu-
racy values of DL SVILPHD are higher than the other methods. It yielded higher
over all accuracy than OVA SVILPC , OVA SVILPHD and DL SVILPC for folds
of β and α/β structural classes. The significance of the results was checked by
two sample t-test. The classifiers trained by DL SVILPHD are statistically sig-
nificantly better than OVA SVILPC (with p ! 0.1) and DL SVILPC (with
p=0.11). We also compared the performance of DL SVILPHD with MC ILP
and MC SVMs. Table 2 shows the effectiveness of DL SVILPHD where there is
a substantial gain in accuracy values. Again, we used two sample t-test to con-
firm the statistical significance of the results. The performance of DL SVILPHD

is highly significantly better (with p ! 0.001) than the performance of MC ILP
and MC SVM.

The performance of the techniques were also analyzed in terms of average
positive predictive values. The values are depicted in figure 8 for 20 folds. The
figure demonstrates that SVILP based techniques capture structural and rela-
tional similarities between proteins and hence learn accurate classifiers.

Dataset2. We further studied the performance of new logic based multi-class
classification strategy, DL SVILPHD, by conducting experiments on the pro-
tein folds dataset described in [24]. For this set of experiments we only focused
on MC ILP and DL SVILPHD. In the original study protein fold classification
problem was solved by viewing it as a binary problem. The dataset comprises 45
protein folds and 441 protein domains that belong to 4 structural classes. The
background knowledge comprised structural information for each protein do-
main that was derived from known secondary structure and multiple structure
alignment information. We performed experiments by using the train/test split
as described in [24]. As there was no validation set, we, therefore, did not tune
the parameters of DL SVILPHD and MC ILP. Alternatively, we set PROGOL’s
clause length and noise parameters to 10 and 20 respectively. The regularization
parameter C was set to 1. A linear kernel was used and the number of rules for
DL SVILPHD was set to 100. The performance of DL SVILPHD was compared
to MC ILP. Table 9 and figure 10 show the results that confirm the usefulness of
DL SVILPHD to solving multi-class classification problems. For the sake of space
we only report over all accuracy values for α, β, α/β and α+β structural classes.
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Fold MC ILP DL SVILPHD

α 57.78 ± 5.21 62.22 ± 5.11

β 33.64 ± 4.57 45.79 ± 4.82

α/β 56.45 ± 4.45 62.90 ± 4.33

α + β 66.67 ± 5.41 72.62 ± 5.27

All 52.84 ± 2.48 60.25 ± 2.43

Fig. 9. Accuracy ± standard devi-

ation for protein fold dataset for

MC ILP and DL SVILPHD. The

results are averaged over 5 runs of

the techniques.
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The results show that DL SVILPHD yielded higher over all accuracy values for
all the structural classes. According to the two sample t-test, the performance
of DL SVILPHD is statistically significantly (with p ! .01) better than the per-
formance of MC ILP. Figure 10 depicts average positive predictive values for 45
protein folds that also confirm the efficacy of DL SVILPHD to solving protein
fold recognition problem.

6 Conclusion

In this paper we proposed a novel logic based multi-class classification method.
Furthermore we designed an effective low dimensional embedding technique. The
efficacy of the proposed methods was evaluated by applying the techniques to
mutagen detection and identification and multi-class protein fold recognition
problems. The experimental results demonstrated the efficacy of proposed tech-
niques in selecting highly informative rules and producing accurate solutions
to complex (binary) multi-class problems. The method, DL SVILP, captured
structural and relational similarities between examples. The results show that
the proposed approach can provide an effective alternative to solving multi-class
problems.
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Abstract. In this paper, we present some preliminary results indicating

that Complex Network properties may be useful to improve performance

of Active Learning algorithms. In fact, centrality measures derived from

networks generated from the data allow ranking the instances to find out

the best ones to be presented to a human expert for manual classifica-

tion. We discuss how to rank the instances based on the network vertex

properties of closeness and betweenness. Such measures, used in isolation

or combined, enable identifying regions in the data space that character-

ize prototypical or critical examples in terms of the classification task.

Results obtained on different data sets indicate that, as compared to

random selection of training instances, the approach reduces error rate

and variance, as well as the number of instances required to reach rep-

resentatives of all classes.

Keywords: Complex networks, Active learning, Text mining.

1 Introduction

Text Mining [1] addresses the development of techniques and tools to help hu-
mans in tasks that require discriminating potentially useful content from irrele-
vant material. It encompasses a wide range of techniques in information retrieval,
information and topic extraction from texts, automatic text clustering and clas-
sification and also strategies supported by visual interfaces [2]. Yet, identifying
and selecting relevant information in large repositories of textual documents may
still be very difficult, despite the wide availability of text mining techniques.

The problem of automatic text classification requires a set of examples, or
instances from the problem domain. A set of labeled (i.e., already classified)
instances is input to train a classifier algorithm that will (hopefully) be able
to predict the label of new (non-classified) examples, within certain precision.
Obtaining training sets for text classification tasks is particularly critical, as
labeling an even moderately large set of textual documents demands considerable
human effort and time [3].

Active Learning handles this problem departing from the assumption that
even when faced with a reduced training set, a learning algorithm may still
achieve good precision rates as long as training instances are carefully selected [3].
An active learner may pose to an ‘oracle’ (e.g., a human expert) queries relative

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 184–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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to critical examples, such as those located in class borders. This approach is
strongly motivated by the scarcity of labeled instances, particularly severe in
the case of text data.

We present some preliminary results indicating that Complex Network prop-
erties may be useful to improve performance of active learning algorithms. In
fact, centrality measures derived from networks generated from the data allow
ranking the training instances to find out the best examples to be presented to
a human expert for manual classification.

The rest of the paper is organized as follows. In Section 2 we briefly discuss
related work on active learning and also introduce a few concepts in complex net-
works. In Section 3 we describe how to generate a similarity network from exam-
ples on a particular domain – a corpus of scientific papers. We also discuss how
centrality measures obtained from such network derived from a corpus of scien-
tific papers may help to select training instances for a paper classification task.
In Section 4 we evaluate the proposed approach on different data sets, and finally
Section 5 includes some final remarks and a brief comment on further work.

2 Background

2.1 Active Learning

The amount of labeled examples available for training is an important parameter
for inductive learning algorithms. They may adopt a supervised learning process,
if a large enough set of labeled examples exists, or a semi-supervised learning
approach, if otherwise few labeled examples are available. The low number of
training examples poses additional challenges in semi-supervised learning.

A popular algorithm for semi-supervised learning is Co-training [4], which em-
ploys two independent views of data to induce two different hypotheses, adopting
either one or two distinct supervised learning algorithms. The presence of two
views of each example suggests iterative strategies in which models are induced
separately on each view. Then, predictions of one algorithm on new unlabeled
instances are employed to expand the training set of the other.

Labeled examples are hardly available in many practical situations involving
real data. Nonetheless, a classifier may still be trained with the assistance of a
human expert. This is the underlying principle of the active learning paradigm,
which addresses the construction of reduced training sets capable of ensuring
good precision performance [5]. The rationale is to carefully select the training
instances, so that the training set includes those examples that are most likely
to strongly impact classifier precision.

Given a set of non-labeled instances, highly representative examples located
in the decision boundaries are selected and presented to the expert for labeling.
The resulting labeled set is then employed to train the classifier. The problem,
of course, is how to identify the representative examples.

Cohn [5] proposes a statistical approach, considering that three factors affect
classification error: (a) noise, which is inherent to the data and independent of
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the classifier; (b) bias, due to the overall strategy and choices of the induction al-
gorithm; and (c) variance, which measures the variation of the correctness rates
obtained by the induced models. Representativeness of a particular example is
therefore measured by how much it reduces the errors due to bias and classi-
fier variance. The author formulates techniques to select examples that reduce
variance working with Gaussian mixtures and locally weighted regression.

Two strategies may be considered to reduce error due to variance. Committee-
based methods [6] employ different classifiers to predict the class of an example,
querying the expert whenever there is a conflict. Uncertainty-based methods [7]
require expert intervention if the classifier prediction has low confidence.

Addressing the problem of text classification, Tong and Koller [8] introduced
an active learning algorithm with Support Vector Machines. They attempt to
select the instance that comes closest to the hyperplanes separating the data.
Also handling texts, Hoi et al. [9] employ the Fisher information to select a sub-
set of non-labeled examples at each iteration, while reducing redundancy among
selected examples. The Fisher information represents a global uncertainty of each
example in the classification model. The authors report experiments showing
high efficiency in text classification tasks.

We suggest using vertex centrality and community measures from complex net-
works to assist example selection in active learning. The goal is to minimize the
manual classification effort and, simultaneously, improve precision of automatic
classifiers. In the followingwe introduce the relevant concepts in complexnetworks.

2.2 Complex Networks

Complex Networks [10] are large scale graphs that model phenomena described
by a large number of interacting objects. Objects are represented as graph ver-
tices, and relationships are indicated by edges – which may be directed and/or
weighted, depending on the nature of the problem. Objects and relationships are
usually dynamic and determine the network behavior.

Several models of network behavior have been identified and extensively dis-
cussed in the literature – a detailed description and discussion may be found
elsewhere [11]. We shall restrict ourselves to briefly introducing a few properties
of networks and their vertices that are directly related to the approach described
in Section 3.
Vertex Degree: As in ordinary graphs, the degree of a vertex is given by the
number of its adjacent edges.
Connectivity Distribution: Defined as the probability of a randomly selected
vertex having degree k. The connectivity distribution of a network is defined by
a histogram of the degrees of its vertices.
Closeness: Central vertices are strategic elements in network topology. A mea-
sure of centrality referred to as vertex closeness [12] is obtained by computing
the inverse of the average shortest-path length from the vertex to all the other
vertices in the network. The higher its closeness, the closer the vertex is, in
average, to the remaining network vertices.
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Betweenness: This is another centrality measure. Equation 1 describes the
betweenness of a vertex vi, contained in a set of vertices V . amt shortest pathsab

is the number of shortest paths between an arbitrary pair of vertices va e vb

and amt shortest pathsab(i) is the number of such paths that include vertex
vi. A high value of betweenness is typical of vertices that link groups of highly
connected vertices.

bi =
∑

a�=b�=i∈V

amt shortest pathsab(i)
amt shortest pathsab

(1)

Community Structure: Newman [10] defines community structure as a prop-
erty of networks that are organized in groups of vertices that are strongly
connected amongst themselves, (i.e., internally, within the group), and weakly
connected with elements in other (external) groups. This is typical of networks
organized into a modular structure. Several strategies and algorithms have been
proposed to identify community structures in networks. Newman [13], for exam-
ple, introduced an agglomerative hierarchical algorithm that has the advantage
of not requiring the number of communities as an input parameter [13].

3 Centrality Measures in Active Learning

Given an unlabeled data set and a measure of similarity between any two ex-
amples, it is possible to derive a network from the examples. Data examples
are represented as network vertices, which will be connected by edges based on
a certain criterion. In this case, the chosen criterion is a measure of similarity
between the examples represented by the vertices.

The goal is to derive a hierarchical similarity-based network that attempts
to (i) capture the community structure of the data; (ii) prioritize links among
highly similar data instances; and (iii) search for a network with a desired average
degree. The rationale is that instance data similarity structure will be expressed
in the topology of networks constructed employing these criteria. The following
procedure has been adopted to create a hierarchical similarity-based network.

An initial network includes all available examples as vertices, and has no edges,
so that each vertex constitutes a single component. An iterative hierarchical
agglomerative process starts that gradually connects vertex pairs, based on a
given similarity threshold. Assuming the similarity measure takes values in the
range [0, 1], where 1 indicates highly similar examples, the similarity threshold
is initialized with a high value, close to one.

An outer loop (the second While in Algorithm 1) inspects all vertex pairs
whose similarity measure is above the current similarity threshold. It is respon-
sible for identifying the potential edges to be added, i.e., those pairs whose
similarity is above the threshold, and calls an inner loop, shown in Algorithm 2,
to select the vertices or components to be actually joined. The similarity thresh-
old is updated at each external iteration step in order to ensure that only the
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5% most similar vertex pairs still unconnected are considered for potential con-
nection. The whole process stops when all vertices have been connected into a
single component forming a connected network.

Edge inclusion in a component stops when the component reaches a user de-
fined average degree. In the inner loop depicted in Algorithm 2, an edge inclusion
that joins components is performed if (i) the edge will link two highly similar
vertices, and (ii) the two components share a high number of potential edges
(i.e., highly similar vertices). A subset of the potential edges is actually added
at each iteration, until the average degree of each component reaches a desired
(user defined, for each component) value. The edges effectively added are those
that, if included – thus causing their respective components Ci and Cj to be
joined – will maximize the measure given by Equation 2.

interconnectivity(Ci, Cj) =
1

#Ci + #Cj

∑
x∈Ci,y∈Cj ,

∃edge(x,y)

sim(x, y) (2)

In the above equation, Ci and Cj denote components, #C represents the num-
ber of vertices in component C, sim(x, y) denotes the similarity between vertices
x ∈ Ci, y ∈ Cj . The equation is computed for all pairs of components defined
in the current iteration, seeking the set of edges that maximizes its result. This
approach ensures that components resulting from this iteration have maximum
intra-component connectivity and minimum inter-component connectivity.

Algorithm 1. Construction of the Hierarchical Similarity Based Network
Input:

Set of vertices: V = v1,...,vn

Average Degree: averageDegree
Data similarity matrix: similarity

Output:
Network, given by a set of vertices and a set of edges: (V ,E)

Components C ← V
Edges E ← Ø

minSim ← similarity threshold to obtain the 5% most similar pairs of vertices

While (#C > 1)

While (∃ pair (x,y) | similarity(x,y)≥minSim, x∈Ci, Ci∈C, y∈C-Ci)

Components Coalescing(C,E,averageDegree,minSim) % selection of compo-

nents to be joined

minSim ← similarity to add the 5% most similar pairs of vertices

Returns (V ,E)

A characteristic of such a network is that similar examples – typically ex-
pected to be associated to the same class – are likely to define communities.
In other words, they form groups of vertices that are densely connected among
themselves, with few connections to external groups. Thus, one would expect
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Algorithm 2. Components Coalition
Input:

Set of components: C
Set of Edges: E
Average Degree: averageDegree
Similarity Threshold: minSim

Output:
Set of components: C
Set of Edges: E

preSelectedEdges ← Ø

For each component Ci of C
numberOfEdges ← ( averageDegree * #Ci / 2) - #E(Ci)

If (numberOfEdges ≤ 0)

numberOfEdges ← 1)

For all pair(i,j) | i ∈ Ci and j ∈ C - Ci % Edges (i,j) taken from a priority queue

If (similarity(i,j) ≥ minSim)

preSelectedEdges(Ci,Cj)←preSelectedEdges(Ci,Cj) ∪ (i,j)
numberOfEdges−−
If (numberOfEdges == 0)

break
(Ca,Cb) ← max(interconnectivity(Ci,Cj)) % selected components

Ca ← Ca ∪ Cb %join components

E(Ca) ← E(Ca) ∪ E(Cb) ∪ preSelectedEdges(Ca,Cb) %add edges of the joined

components

C ← C - Cb %removes joined component

A ← E - E(Cb) %remove from E edges of the removed component

Returns (C,E)

the community structure of the network to reflect the underlying data similarity
structure. The network would ideally have few connections between vertices in
different communities, and the communities would be formed by groups of sim-
ilar examples likely to belong to the same class. A probabilistic version of this
algorithm has been fully described by Motta et al. [14].

The schema shown in Figure 1 illustrates our working hypothesis, that central-
ity measures bear a strong relation with the role of examples in a classification
process. To illustrate this point, let us consider that two communities have been
identified in a hypothetical network generated by the above process. Notice that:

1. Boundary vertices, located in the borders of the communities, labeled regions
R1 in the figure, typically have low values for closeness, computed for the
vertex relative to its component.

2. Inner vertices, located in the regions labeled R2 in the figure, are those well
identified with a specific community. They typically have high values for
closeness, again computed relative to the vertex component.
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3. Critical vertices, located in the region labeled R3, are those placed across
different communities. They typically have low values for closeness computed
relative to their own community. Moreover, their betweenness values, com-
puted in the context of the network as a whole, are high, as they are elements
linking different communities.

We argue that these regions identified in the above network reflect, to some ex-
tent, the topology of the data examples relative to their possible classes. Thus,
vertex centrality measures help identify the examples representative of the dif-
ferent regions. Hence, by analyzing such measures, or a combination of them,
one may identify the interesting examples in an active learning process.

Boundary vertices correspond to examples that, although not prototypical of a
class, have good chances of being properly classified. Inner vertices correspond
to the prototypical examples that would be easily classified, whereas Critical
vertices are likely to represent the problematic examples, those in the borders
between classes. Thus, we suggest an active learning approach that adopts the
following steps:

1. given the examples, generate the hierarchical similarity-based network;
2. partition this network into communities;
3. compute the closeness for all vertices in each community;
4. compute the betweenness for all vertices in the whole network;
5. rank vertices based on (a combination of) selected centrality measures to

select examples

As we assume that the three types of region identifiable in the network commu-
nities define data set topology, a representative training sample should therefore
include examples taken from the three regions from each major community. As
measures for betweenness and closeness have different ranges, values are nor-
malized in the interval [0,1]. To rank Critical vertices (in regions R3) one may
consider the difference between the normalized measures of betweenness and
closeness. A value closer to 1 is indicative of vertices in the critical region.

We shall first illustrate the approach on a data set of scientific papers. Fig-
ure 2(a) illustrates a similarity network obtained with the above algorithms from
a corpus of nearly 600 papers in the subjects Case-Based Reasoning, Inductive
Logic Programming e Information Retrieval (named corpus CBR-ILP-IR). Ex-
amples have been labeled by a human expert, based on their source vehicle, so
that each subject is taken as a class.

To construct the network, the papers are described by their vector represen-
tation, according to the well known bag-of-words model [15]. A data similarity
matrix has been computed with the cosine distance over the vector space model,
for all document pairs. The average degree threshold has been set to five (see
Section 4 for a discussion on this choice).

In the network graph shown in Figure 2(a) each vertex represents a paper,
whose known class is indicated by the vertex shade. The same figure, in (b),
shows the network after applying the community detection algorithm by New-
man [13], mentioned in Section 2. One observes from the figure that most commu-
nities have a clear predominance of elements from a single class. This suggests
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Fig. 1. Schema illustrating values of centrality measures and their relationship to the

location of examples relative to their possible classes

(a) (b)

Fig. 2. (a) Hierarchical similarity network for the corpus of scientific papers (CBR,

ILP e IR) and (b) communities identified in the network

that the community structure identified by the algorithm, without using any
class information, reflects reasonably well the known class information.

Figure 3 (a) depict information about vertex closeness, computed for the larger
community structure identified in the network. Vertex size maps measure values:
greater values are shown as larger glyphs. As expected, one observes vertices with
lower closeness in the boundary of the community.

Figure 3 (b) shows another community from the network, with vertex shade
mapping the class of the corresponding example. Notice this community includes
a single example from the (CBR) class, shown in black. In the same figure the
10% vertices of this community with higher values computed for betweenness
are shown as larger glyphs. Inspection shows that these higher values are either
in or close to the borders between classes.
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(a) (b)

Fig. 3. (a): vertex size maps the value of vertex closeness, for a particular community.

(b) shows class distribution in another community that has a predominance of two

classes (shown in white and gray). Also in this figure, the larger vertices shown corre-

spond to the 10% vertices from this community with higher values for betweenness.

4 Results

The evaluation process was carried out on 10 data sets from UCI repository
and on the CBR-ILP-IR corpus already mentioned. We conducted two kinds
of experiments on each data set: the first one to verify how many instances
should be labeled in order to ensure the identification of all classes present in
the training data set; and a second to measure the variation of the classifier error
relative to the number of examples selected for labeling.

In both cases, results reported were averaged on 100 runs for data sets with
cardinality lower than 500, and with 30 runs otherwise. Selection of training
instances with the proposed approach was compared with a random selection.
Similar results were obtained with Näıve Bayes and K-Nearest Neighbor (KNN)
(with K = 1) classifiers. Figure 4 shows the classification errors for the KNN
classifier on the CBR-ILP-IR data, considering different policies to select the
training data, as described next.

First, the similarity based network is created for the data set. All networks
were created by setting the desired average degree for the communities equal to
5. Various experiments conducted on these and other data sets have shown that
when lower average degrees (up to 3) are set community structures are not well
defined. By ‘well defined’ we mean communities densely connected internally
and sparsely connect with other communities. On the other hand, when setting
values above 5 the number of edges increased unnecessarily for the purpose of
obtaining clearly defined community structures in the data.

The similarity matrices were computed with the cosine distance for the CBR-
ILP-IR data and with the Euclidean distance for the numerical (normalized) data
sets. The community structure was then extracted from the resulting network
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using the aforementioned Newman´s algorithm. The following procedure has
been adopted to select instances.

Communities are first sorted in decreasing order of their size (number of ver-
tices). Then, the examples in each community are ranked by decreasing values
of their closeness (in the community), and all the network examples are ranked
in decreasing value of their betweenness.

The overall process is conducted by iteratively scanning the ordered list of
communities, selecting one sample from each community at each iteration. Sev-
eral policies may be adopted to select instances, taking examples from the differ-
ent regions (inner, boundary or critical). The following alternative policies have
been considered to create test data sets in this study:

– Policy R1: in forming the test data set, priority is given to instances from the
boundary region. At each iteration, the bottom ranked instance from each
community is selected, i.e., the instance with the lowest closeness;

– Policy R2: priority is given to vertices from the inner region. The top ranked
instance from each community is selected, i.e., the instance with the highest
closeness;

– Policy R3: priority is given to vertices from the critical region. The instance
with the highest critical value is selected from each community, computed
from the difference betweenness− closeness;

– Policy R2 + R3: the test data set is formed selecting vertices based on a
combination of critical and inner regions. At successive iterations, alternate
between selecting from each community an instance from the Inner region
(highest closeness) and an instance from the Critical region (highest critical
value);

In all cases, once an instance is selected for the training data it is removed from
further consideration. The iterative selection process stops when the desired
number of training instances is reached. In these studies, this number has been
set as equal to the number of communities identified in the network. We also
generated training data sets of the corresponding size by selecting instances
randomly and, for comparison purposes, employed a training data set including
100% of the labelled instances.

In all experiments we observed that selection of examples that correspond
to vertices in Inner and Critical regions resulted in greater error reduction in
the classifier output. Considered in isolation, Inner vertices provide the best
examples for error reduction, followed by Critical vertices and then Boundary
vertices.

Notice that policy R3 (selecting from critical region alone) does not produce
good results, although this region is associated with higher classification un-
certainty. In fact, the experiment indicates that the human expert must also
classify some ‘prototypical’ examples (those in region R2). In these experiments
an equal number of elements was selected from each region – we did not inves-
tigate whether assigning more weight to either regions R2 or R3 would improve
the results.
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(a)

(b)

Fig. 4. Comparing different policies to select training instances (average in 100 runs).

(a) Number of examples required to identify all classes and (b) KNN classifier error

for the CBR-ILP-IR corpus, considering examples selected with the proposed approach

under different policies, and at random. For the sake of clarity, variance is represented

in the figure only for the random selection policy (lighter region in the figure) and for

the R2 policy (darker region).

In Figure 4 (a) one observes that the number of examples required to identify
all classes is considerably reduced when examples are selected with either policy
R2 or policy R2 + R3. Figure 4(b) shows the error of the KNN classifier as
the number of labeled examples in the training set increases. The Näıve Bayes
classifier presented a similar behavior. Errors have been computed for training
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Table 1. Comparing the classification errors for different data sets. For each test data

set we inform the number of known examples, the number of classes, the number of

instances desired in the training set, equal to the average number of communities in

each run, and the errors for the different instance selection policies. In the table, results

from the policy that presented the lowest error (ignoring the error obtained with the

training set that includes all examples) are highlighted in bold, whereas the second

lowest error policy results are highlighted in italics.

dataset #instances #classes #labelled R1 R2 R3 R2+R3 random 100%
instances

balance 625 3 14 0.312 0.297 0.311 0.306 0.316 0.223
ecoli 336 8 11 0.327 0.263 0.333 0.29 0.300 0.193
glass 214 7 10 0.345 0.283 0.451 0.361 0.352 0.090

ionosphere 351 2 12 0.276 0.038 0.082 0.025 0.172 0.011
iris 150 3 8 0.199 0.057 0.178 0.111 0.153 0.047

sonar 208 2 11 0.416 0.331 0.382 0.342 0.390 0.136
wdbc 569 2 14 0.155 0.084 0.108 0.094 0.095 0.049
wine 178 3 8 0.234 0.087 0.209 0.091 0.169 0.050
yeast 1484 10 20 0.654 0.577 0.627 0.594 0.590 0.473
zoo 101 7 7 0.288 0.157 0.352 0.210 0.299 0.040

CBR-ILP-IR 574 3 14 0.225 0.103 0.181 0.130 0.182 0.022

sets obtained with each of the above policies, and also a training set consisting
of all known examples.

In Table 1 we synthesize the classification errors obtained for multiple data
sets. Notice that all data sets, except the glass and the yeast, present similar
behavior: the lowest error rates and lowest variances are obtained by selecting
the training instances using policies R2 (inner vertices) and R2 +R3 (inner and
critical vertices).

5 Conclusions and Further Work

We investigate a novel approach to support active learning in classification tasks,
based on properties computed from hierarchical similarity networks derived from
the known data instances. A discussion has been presented on how vertex cen-
trality measures obtained from network communities enable identifying regions
in the data space that characterize critical examples. Such measures may guide
the selection of examples to be presented to a human expert in an active learning
approach for classification tasks.

Results of applying the proposed approach on several data sets have been
presented and discussed, including an illustrative example of its application on a
corpus of scientific papers. These results indicate the potential of this approach
for the problem. As further work, it would be desirable to investigate further the
potential role of these and other network measures, under different classification
algorithms (e.g., Support Vector Machines) and for distinct data set domains.
How different network construction procedures may affect the instance selection
process is also a topic that deserves further investigation.
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Fraunhofer Institute Intelligent Analysis and Information Systems IAIS,

Schloss Birlinghoven, D-53754 Sankt Augustin, Germany

firstname.lastname@iais.fraunhofer.de

Abstract. In this paper we aim at automatically adjusting the difficulty

of computer games by clustering players into different types and super-

vised prediction of the type from short traces of gameplay. An important

ingredient of video games is to challenge players by providing them with

tasks of appropriate and increasing difficulty. How this difficulty should

be chosen and increase over time strongly depends on the ability, ex-

perience, perception and learning curve of each individual player. It is

a subjective parameter that is very difficult to set. Wrong choices can

easily lead to players stopping to play the game as they get bored (if un-

derburdened) or frustrated (if overburdened). An ideal game should be

able to adjust its difficulty dynamically governed by the player’s perfor-

mance. Modern video games utilise a game-testing process to investigate

among other factors the perceived difficulty for a multitude of players.

In this paper, we investigate how machine learning techniques can be

used for automatic difficulty adjustment. Our experiments confirm the

potential of machine learning in this application.

Keywords: clustering, supervised learning, player modeling, difficulty

adjustment.

1 Introduction

We aim at developing games that provide challenges of the “right” difficulty, i.e.,
such that players are stimulated but not overburdened. Naturally, what is the
right difficulty depends on many factors and can not be fixed once and for all
players. For that, we investigate how general machine learning techniques can
be employed to automatically adjust the difficulty of games. A general technique
for this problem has natural applications in the huge markets of computer and
video games but can also be used to improve the learning rates when applied to
serious games.

The traditional way in which games are adjusted to different users is by pro-
viding them with a way of controlling the difficulty level of the game. To this
end, typical levels would be ‘beginner’, ‘medium’, and ‘hard’. Such a strategy
has many problems. On the one hand, if the number of levels is small, it may be
easy to choose the right level but it is unlikely that the difficulty is then set in a
very satisfying way. On the other hand, if the number of levels is large, it is more

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 197–211, 2009.
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likely that a satisfying setting is available but finding it becomes more difficult.
Furthermore, choosing the game setting for each of these levels is a difficult and
time-consuming task.

In this paper we investigate the use of supervised learning for dynamical
difficulty adjustment. Our aim is to devise a difficulty adjustment algorithm that
does not bother the actual players. For that, we assume there is a phase of the
game development in which the game is played and the difficulty is manually
adjusted to be just right. From the data collected in this way, we induce a
difficulty model and build it into the game. The actual players do not notice any
of this and are always challenged at the difficulty that is estimated to be just
right for them.

Our approach to building a difficulty model consists of three steps: (i) cluster
the recorded game traces, (ii) average the supervision over each cluster, and (iii)
learn to predict the right cluster from a short period of gameplay. In order to
validate this approach, we use a leave-one-player-out strategy on data collected
from a simple game and compare our approach to less sophisticated, yet realistic,
baselines. All approaches are chosen such that the players are not bothered. In
particular, we want to compare the performance of dynamic difficulty versus
constant difficulty as well as the performance of cluster prediction versus no-
cluster. Our experimental results confirm that dynamic adjustment and cluster
prediction together outperform the alternatives significantly.

2 Motivation and Context

A game and its player are two interacting entities. A typical player plays to have
fun, while a typical game wants its players to have fun. What constitutes the
fun when playing a game?

One theory is that our brains are physiologically driven by a desire to learn
something new: new skills, new patterns, new ideas [1]. We have an instinct to
play because during our evolution as a species playing generally provided a safe
way of learning new things that were potentially beneficial for our life. Daniel
Cook [3] created a psychological model of a player as an entity that is driven to
learn new skills that are high in perceived value. This drive works because we
are rewarded for each new mastered skill or gained knowledge: The moment of
mastery provides us with the feeling of joy. The games create additional rewards
for their players such as new items available, new areas to explore. At the same
time there are new challenges to overcome, new goals to achieve, and new skills
to learn, which creates a loop of learning-mastery-reward and keeps the player
involved and engaged.

Thus, an important ingredient of the games that are fun to play is providing
the players with the challenges corresponding to their skills. It appears that an in-
herent property of any challenge (and of the learning required to master it) is its
difficulty level. Here the difficulty is a subjective factor that stems from the inter-
action between the player and the challenge. The perceived difficulty is also not a
static property: It changes with the time that the player spends learning a skill.
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To complicate things further, not only the perceived difficulty depends on the
current state of the player’s skills and her learning process, the dependency is
actually bidirectional: The ability to learn the skill and the speed of the learning
process are also controlled by how difficult the player perceives the task. If the bar
is set too high and the task appears too difficult, the player will end up frustrated
and will give up on the process in favour of something more rewarding. Then
again if the challenge turns out to be too easy (meaning that the player already
possesses the skill necessary to deal with it) then there is no learning involved,
which makes the game appear boring.

It becomes obvious that the game should provide the challenges for the player
of the “right” difficulty level: The one that stimulates the learning without push-
ing the players too far or not enough. Ideally then, the difficulty of any particular
instance of the game should be determined by who is playing it at this moment.

Game development process usually includes multiple testing stages, where a
multitude of players is requested to play the game to provide data and feedback.
This data is analysed to tweak the games parameters in an attempt to provide a
fair challenge for as many players as possible. The question we investigate in this
work is how the data from the α/β tests can be used for the intelligent difficulty
settings with the help of machine learning.

We proceed as follows: After reviewing related work in Section 3, we describe
the algorithm for the dynamic difficulty adjustment in general terms in Section
4. In Sections 5 and 6 we present the experimental setup and the results of the
evaluation before concluding in Section 7.

3 Related Work

In the games existing today we can see two general approaches to the question
of difficulty adjustment. The traditional way is to provide a player with a way to
set up the difficulty level for herself. Unfortunately, this method is rarely satis-
factory. For game developers it is not an easy task to map a complex gameworld
into a single parameter. When constructed, such a mapping requires additional
extensive testing, creating time and money costs. Consider also the fact that
generally games require several different skills to play them. The necessity of
going back and forth between the gameplay and the settings when the tasks
become too difficult or too easy disrupts the flow component of the game.

An alternative way is to implement a mechanism for dynamic difficult adjust-
ment (DDA). One quite popular approach to DDA is a so called Rubber Band AI,
which basically means that the player and her opponents are virtually held to-
gether by a rubber band: If the player is “pulling” in one direction (playing better
or worse than her opponents), the rubber band makes sure that her opponents
are “pulled” in the same direction (that is they play better or worse respec-
tively). While the idea that the better you play the harder the game should be is
sound, the implementation of the Rubber Band AI often suffers from disbalance
and exploitability.
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There exist a few games with a well designed DDA mechanism, but all of
them employ heuristics and as such suffer from the typical disadvantages (being
not transferable easily to other games, requiring extensive testing, etc). What we
would like to have instead of heuristics is a universal mechanism for DDA: An
online algorithm that takes as an input (game-specific) ways to modify difficulty
and the current player’s in-game history (actions, performance, reactions, . . . )
and produces as an output an appropriate difficulty modification.

Both artificial intelligence researchers and the game developers community
display an interest in the problem of automatic difficulty scaling. Different ap-
proaches can be seen in the work of R. Hunicke and V. Chapman [9], R. Herbich
and T. Graepel [8], Danzi et al [5], and others. As can be seen from these exam-
ples the problem of dynamic difficulty adjustment in video games was attacked
from different angles, but a unifying approach is still missing.

Let us reiterate that as the perceived difficulty and the preferred difficulty are
subjective parameters, the DDA algorithm should be able to choose the “right”
difficulty level in a comparatively short time for any particular player. It makes
sense, therefore, to conduct the learning in the offline manner and to make use
of the data created during the test phases to construct the player models. These
models can be used afterwards to generalise to the unseen players.

Player modeling in computer games is a relatively new area of interest for
the researchers. Nevertheless, existing work [12,11,2] demonstrates the power of
utilising the player models to create the games or in-game situations of high
interest and satisfaction for the players.

In the following section we present an algorithm that learns a mapping from
different player types to the difficulty adjustments and predicts an appropriate
one given a new player.

4 Algorithm

To simplify the problem we assume that there exists a finite number of types
of players, where by type we mean a certain pattern in behaviour with regard
to challenges. That is certainly true, since we have a finite amount of players
altogether, possibly times a finite amount of challenges, or timesteps in a game.
However, this realistic number is too large to be practical and certainly not
fitting the purpose here. Therefore, we discretize the space of all possible players’
behaviours to get something more manageable. The simplest such discretization
would be into beginners, averagely skilled, and experts (corresponding to easy,
average, and difficult settings).

In our experiments we do not predefine the types, but rather infer them using
the clustering of the collected data. Instead of attempting to create a universal
mechanism for a game to adapt its difficulty to a particular player, we focus
on the question of how a game can adapt to a particular player type given two
sources of information:

1. the data collected from the alpha/beta-testing stages (offline phase);
2. the data collected from the new player (online phase).
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The idea is rather simple. By giving the testers control over the difficulty settings
in the offline phase the game can learn a mapping from the set of types into the
set of difficulty adjustments. In the online phase, given a new player, the game
needs only to determine which type he belongs to and then apply the learned
model. Therefore, the algorithm in general consists of the following steps:

1. Given data about the game instances in the form of time sequences

Tk = ((t1, f1(t1), . . . , fL(t1)), . . . , (tN , f1(tN ), . . . , fL(tN ))),

where ti are the time steps and fi(tj) are the values of corresponding features,
cluster it in such a way that instances exhibiting similar player types are in
the same cluster.

2. Given a new player, decide on which cluster he belongs to and predict the
difficulty adjustment using the corresponding model.

Note that it is desirable to adapt to the new player as quickly as possible. To
this purpose we propose to split the time trace of each game instance into two
parts:

– a prefix, the relatively short beginning that is used for the training of the
predictor in the offline phase and the prediction itself in the online phase;

– a suffix, the rest of the trace that is used for the clustering.

In our experiments we used the K-means algorithm [7] for the clustering step
and an SVM with a gaussian kernel function [4] for the prediction step of the
algorithm outlined above.

We considered the following approaches to model the adjustment curves in
the clusters:

1. The constant model. Given the cluster, this function averages over all in-
stances in the cluster and additionally over the time, resulting in a static
difficulty adjustment.

2. The regression model. Given the cluster, we train the regularised least
squares regression [10] with the gaussian kernel on its instances.

The results stemming from using these models are described in Section 6.

5 Experimental Setup

To test our approach we implemented a rather simple game using the Microsoft
XNA framework1 and one of the tutorials from the XNA Creators Club commu-
nity, namely “Beginner’s Guide to 2D Games”2. The player controls a cannon
that can shoot cannonballs. The gameplay consists of shooting down the alien
spaceships while they are shooting at the cannon (Figure 1). A total of five

1 http://msdn.microsoft.com/en-us/xna/default.aspx
2 http://creators.xna.com/en-GB/

http://msdn.microsoft.com/en-us/xna/default.aspx
http://creators.xna.com/en-GB/
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Fig. 1. A screenshot showing the gameplay

spaceships can be simultaneously on the screen. They appear on the right side
of the game screen and move on a constant height from the right to the left.
The spaceships are generated so that they have a random speed within a specific
δ-interval from a given average speed. Whenever one of the spaceships is shot
down or leaves the game screen, a new one is generated. At the beginning of the
game the player’s cannon has a certain amount of hitpoints, which is reduced by
one every time the cannon is hit. At random timepoints a repair kit appears on
the top of the screen, floats down, and disappears again after a few seconds. If
the player manages to hit the repair kit, the cannon’s hitpoints are increased by
one. The game is over if the hitpoints are reduced to zero or a given time limit
of 100 seconds is up.

Additionally to the controls that allow the player to rotate the cannon and to
shoot, there are also two buttons by pressing which the player can increase or
decrease the difficulty at any point in the game. In the current implementation
the difficulty is controlled by the average speed of the alien ships. For every
destroyed spaceship the player receives a certain amount of score points, which
increases quadratically with the difficulty level. During each game all the infor-
mation concerning the game state (e.g. the amount of hitpoints, the positions of
the aliens, the buttons pressed, etc) is logged together with a timestamp. At the
current state of our work we held one gaming session with 17 participants and
collected the data on how the players behave in the game.

Out of all logged features we restricted our attention to the three: the difficulty
level, the score, and the health, as they seem to represent the most important
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aspects of the player’s state. The log of each game instance k is in fact a time
trace

Tk = ((t1, f1(t1), . . . , fL(t1)), . . . , (tN , f1(tN ), . . . , fL(tN ))),

where t1 = 0, tN ≤ 100, and fi(tj) is the value of a corresponding feature
(Figure 2). Therefore, to model the players we cluster provided by the testers
time sequences.

5.1 Technical Considerations

Several complications arise from the characteristics of the collected data:

1. Irregularity of the time steps. To reduce the computational load the data is
logged only when the game’s or the player’s state changes (in the case of a
simple game used by us it may seem a trivial concern, but this is important to
consider for the complex games). As a result for two different game instances
k and k̂ the time lines will be different:

tik 	= tik̂.

2. Irregularity of the traces’ durations. Since there are two criteria for the end
of the game (health dropped to zero or the time limit of a hundred seconds is
up), the durations of two different game instances k and k̂ can be different:

tN k − tN̂ k̂
	= 0.

The second problem may appear irrelevant, but as described below it needs to
be taken care of in order to create a nice, homogeneous set of data points to
cluster.

To overcome the irregularity of the time steps we will construct a fit for each
trace and then interpolate the data using the fit for every 0.1 of a second to
produce the time sequences with identical time steps:

Tkfitted = ((t1, f1(t1), . . . , fL(t1)), . . . , (tN , f1(tN ), . . . , fL(tN ))),

where t1 = 0, tN ≤ 100, and for each i ∈ [2, N ] ti = ti−1 + 0.1.
Now it becomes clear why we require the time traces to have equal durations.

Since the longest game instances last for a hundred seconds, we need to be able
to sample from all of the interpolated traces in the interval between zero and
a hundred seconds to create a homogeneous data set. If the original trace was
shorter than a hundred seconds, the resulting fitting function wouldn’t necessar-
ily provide us with the meaningful data outside of its duration region. Therefore,
we augment original game traces in such a way that they all last for a hundred
seconds, but the features retain their last achieved values (from the “game over”
state):

Tk = ((t1, f1(t1), . . . , fL(t1)), . . . , (tN , f1(tN ), . . . , fL(tN )),
(tN+1, f1(tN ), . . . , fL(tN )), . . . , (100, f1(tN ), . . . , fL(tN ))).
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(a) Difficulty level.

(b) Health.

(c) Score.

Fig. 2. Game traces from one player. Different colours represent different game in-

stances.
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As mentioned in Section 4, after the augmenting step each time trace is split
into two parts:

Tkpre = ((t1, f1(t1), . . . , fL(t1)), . . . , (tK , f1(tK), . . . , fL(tK))),

Tkpost = ((tK+1, f1(tK+1), . . . , fL(tK+1)), . . . , (tN , f1(tN ), . . . , fL(tN ))),

where tK is a predefined constant, in our experiments set to 30 seconds, that
determines for how long the game observes the player before making a prediction.
The pre parts of the traces are used for training and evaluating the predictor.
The post parts of the traces are used for clustering.

6 Evaluation

To evaluate the performance of the SVM predictor we conduct a kind of ”leave
one out” cross-validation on the data. For each player presented we construct a
following train/test split:

– training set consists of the game instances played by all players except this
one;

– test set consists of all the game instances played by this player.

Constructing the train and test sets in this way models a real-life situation of
adjusting the game to a previously unseen player. As a performance measure
we use the mean absolute difference between the exhibited behaviour in the test
instances and the behaviour described by the model of the predicted cluster.
The mean is calculated over the test instances.

To provide the baselines for the performance evaluation, we construct for each
test instance a sequence of “cheating” predictors: The first (best) one chooses
a cluster that delivers a minimum possible absolute error (that is the difference
between the predicted adjustment curve and the actual difficulty curve exhibited
by this instance); the second best chooses the the cluster with the minimum
possible absolute error from the remaining clusters, and so on. We call these
predictors “cheating” because they have access to the test instances’ data before
they make the prediction. For each “cheating” predictor the error is averaged
over all test instances and the error of the SVM predictor is compared to these
values. As the result we can make some conclusion on which place in the ranking
of the “cheating” predictors the SVM one takes.

Figure 3 illustrates the performance of the SVM predictor and the best and
the worst baselines for a single player and 7 clusters. We can see from the plots
that for each model the SVM predictor displays the performance close to the
best cluster. Figure 4 shows that the performance of the SVM predictor averaged
over all train/test splits demonstrates similar behaviour.

Statistical Tests

To verify our hypotheses, we performed proper statistical tests with the null
hypothesis that the algorithms perform equally well. As suggested recently [6]
we used the Wilcoxon signed ranks test.
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(b) Using the regression model.

Fig. 3. An example of the predictors’ performances for one player
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(b) Using the regression model.

Fig. 4. The predictors’ performance averaged over all train/test splits for 7 clusters
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The Wilcoxon signed ranks test is a nonparametric test to detect shifts in pop-
ulations given a number of paired samples. The underlying idea is that under
the null hypothesis the distribution of differences between the two populations
is symmetric about 0. It proceeds as follows: (i) compute the differences be-
tween the pairs, (ii) determine the ranking of the absolute differences, and (iii)
sum over all ranks with positive and negative difference to obtain W+ and W−,
respectively. The null hypothesis can be rejected if W+ (or min(W+,W−), re-
spectively) is located in the tail of the null distribution which has sufficiently
small probability.

For settings with a reasonably large number of measurements, the distribution
of W+ and W− can be approximated sufficiently well by a normal distribution.
Unless stated otherwise, we consider the 5% significance level (t0 = 1.78).

Dynamic versus Static Difficulty

We first want to confirm the hypothesis that a dynamic difficulty function is more
appropriate than a static one. To eliminate all other influences, we considered
first and foremost only a single cluster. In this case, as expected, the dynamic
adjustment significantly outperforms the static setting (t = 2.67).

We also wanted to compare the performance of dynamic and static difficulty
adjustment for larger numbers of clusters. To again eliminate all other influences,
we considered the best and the worst “cheating” predictor for either strategy.
The t-values for these comparisons are displayed in Table 1.

While varying the amount of clusters from one to fifteen we found out that
dynamic difficulty adjustment (the regression model) always significantly out-
performs the static one (the constant model) for choosing the best cluster. The

Table 1. t-values for comparison of the constant model vs the regression model for the

varying amount of clusters

c best-const vs best-regr worst-const vs worst-regr

1 8.46 8.46

2 6.12 9.77

3 5.39 12.64

4 5.26 11.37

5 4.90 12.62

6 4.77 11.05

7 4.80 10.38

8 4.62 6.83

9 4.61 7.20

10 4.63 4.36

11 4.55 0.71

12 4.68 -0.77

13 4.60 -9.16

14 4.50 -5.54

15 4.57 -13.26
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same effect we can observe for the worst predictor, but only until the amount
of clusters used is greater than ten. For more clusters the static model starts to
outperform the dynamic one, probably due to there being insufficient amount of
instances in some clusters to train a good regression model. Based on these re-
sults in the following we consider only the regression model and vary the amount
of clusters from one to ten.

Right versus Wrong Choice of Cluster

As a sanity check, we next compared the performance of the best choice of a
cluster versus the worst choice of cluster. To this end we found—very much
unsurprisingly—that for any non-trivial number of clusters, the best always sig-
nificantly outperforms the worst.

This means there is indeed room for a learning algorithm to fill. The best we
can hope for is that in some settings the performance of the predicted cluster is
close to, i.e., not significantly worse than, the best predictor while always being
much, i.e., significantly, better than the worst predictor.

One versus Many Types of Players

The last parameter that we need to check before coming to the main part of
the evaluation is the number of clusters. It can easily be understood that the
quality of the best static model improves with the number of clusters while the
quality of the worst degrades even further. Indeed, on our data, having more
clusters was always significantly better than having just a single cluster for the
best predictor using the regression model.

Under the assumption that we do not want to burden the players with choosing
their difficulty, this implies that we do need a clever way to automatically choose
the type of the player. Adjusting the game just to a single type is not sufficient.

Quality of Predicted Clusters

We are now ready to consider the main evaluation of how well the type of the
player can be chosen automatically. As mentioned above the best we can hope
for is that in some settings the performance of the predicted cluster is close to
the best cluster while always being much better than the worst cluster. Another
outcome that could be expected is that performance of the predicted cluster is
far from that of the best cluster as well as from the worst cluster.

To illustrate the quality of the SVM predictor we look at its place in the
ranking of the “cheating” predictors while varying the amount of clusters. The
results of the comparison of the predictors’ performance for the regression model
are shown in Table 2. Each line in the table corresponds to the amount of clusters
specified in the first column. The following columns contain values ‘w’, ‘s’, and
‘b’, where ‘w’ means that the SVM predictor displayed the significantly worse
performance than the corresponding “cheating” predictor, ‘b’ for the significantly
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Table 2. Results of the significance tests for the comparison of performance of the

SVM predictor and “cheating” predictors using the regression model

1 2 3 4 5 6 7 8 9 10

1 s

2 w b

3 w s b

4 w b b b

5 w s b b b

6 w w b b b b

7 w s b b b b b

8 w s b b b b b b

9 w w s b b b b b b

10 w w s b b b b b b b

better performance, and ‘s’ for the the cases where there was no significant
difference. The columns are ordered according to the ranking of the “cheating”
predictors, i.e. 1 stands for the best possible predictor, 2 for the second best,
and so on.

We can observe a steady trend in the SVM predictor’s performance: Even
though it is always (apart from the trivial case of one cluster) significantly worse
than that of the best possible predictor, it is also always significantly better than
that of the most other predictors. In other words, regardless of the amount of
clusters, the SVM predictor always chooses a reasonably good one.

This last investigation confirms our hypothesis that predicting the difficulty-
type for each player based on short periods of gameplay is a viable approach to
taking the burden of choosing the difficulty from the players.

7 Conclusion and Future Work

In this paper we investigated the use of supervised learning for dynamical diffi-
culty adjustment. Our aim was to devise a difficulty adjustment algorithm that
does not bother the actual players. Our approach to building a difficulty model
consists of clustering different types of players, finding a good difficulty adjust-
ment for each cluster, and predicting the cluster for short traces of gameplay.
Our experimental results confirm that dynamic adjustment and cluster predic-
tion together outperform the alternatives significantly.

One parameter left out in our investigation is the length of the prefix that
is used for the prediction. We will investigate its influence on the predictors’
performance in the future work. We also plan to collect and examine more play-
ers’ data to see how transferable our algorithm is to the other games. Another
direction for the future investigation is the comparison of our prediction model
to the other algorithms employed for the time series predictions, such as neural
networks or gaussian processes.
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Abstract. The Anomalous Pattern algorithm is explored as an initial-

ization strategy to the Fuzzy K-Means (FCM), with the sequential ex-

traction of clusters, that simultaneously allows the determination of the

number of clusters. The composed algorithm, Anomalous Pattern Fuzzy

Clustering (AP-FCM), is applied in the segmentation of Sea Surface

Temperature (SST) images for the identification of Coastal Upwelling.

A set of features are constructed from the AP-FCM clustering segmen-

tation taking into account domain knowledge and a threshold procedure

is defined in order to identify the transition cluster whose frontline is au-

tomatically annotated on SST images to separate the upwelling regions

from the background.

Two independent data samples in a total of 61 SST images covering

large diversity of upwelling situations are analysed. Results show that

by tuning the AP-FCM stop conditions it fits a good number of clusters

providing an effective segmentation of the SST images whose spatial

visualization of fuzzy membership closely reproduces the original images.

Comparing the AP-FCM with the FCM using several validation indices

shows the advantage of the AP-FCM avoiding under or over-segmented

images. Quantitative assessment of the segmentations is accomplished

through ROC analysis. Compared to FCM, the number of iterations of

the AP-FCM is significantly decreased.

The automatic annotation of upwelling frontlines from the AP-FCM

segmentation overcomes the subjective visual inspection made by the

Oceanographers.

1 Introduction

In the coastal ocean of Portugal, during the summer, the upward movement
of cool and nutrient rich waters toward the surface of the Ocean, due to the
northern winds, leads to alterations in the distribution of the physical, chemical
and biological properties. These alterations expressed in the movement of sur-
face water masses along the horizontal direction perpendicular to the coast line,
characterizes the coastal upwelling. Remote sensing is a widely applied technique
in the detection of coastal upwelling [1]. Images of the Sea Surface Temperature

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 212–226, 2009.
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(SST) are computed by the Oceanographers and a high resolution color scale
is applied to each image. The color scale has to be manually tuned in order to
get the better contrast definition for a good visualization of the signature of the
phenomena, which is a very time-consuming process. Automatic detection tools
are a demand due to the enormous amount of data daily collected and prepro-
cessed by the Oceanographers, and due to the subjectivity inherent to visual
inspection.

Remote sensing derived data is imprecise in nature due to the intricate inter-
actions controlling its process. In particular, upwelling regions are often char-
acterized by transition zones with smooth thermal boundaries, they correspond
to multi-modal and very irregular histograms, their signatures express strong
morphological variation and, due to the absence of a valid analytical model
for the structures, one is confronted with a ‘semantic-gap’ between the implicit
Oceanographer knowledge and a systematic working definition providing a ‘gold-
standard’ set of images.

Image segmentation is considered one of the most critical steps in image pro-
cessing and fuzzy clustering provides a mechanism to represent and manipulate
uncertainty and ambiguity. With a fuzzy subset each pixel in an image has as-
signed a degree of membership to which it belongs to each region or each bound-
ary [2]. The Fuzzy K-Means clustering (FCM) and its extensions are methods
that have received much attention in image segmentation [3]-[8]. Other fuzzy
segmentation algorithms include fuzzy histogram thresholding [9], fuzzy rule
based approaches [10], and neuro-fuzzy systems including adaptive extensions
with edge detection [11,12]. However, significant fine tunning of parameters in
particular with membership functions, overfitting of cluster prototypes not rep-
resenting any segmented region, and heavy computational complexity should
be avoided in the current application due to the inherent characteristics of the
problem.

Despite the FCM simplicity and its applicability as shown on upwelling de-
tection from SST images [13], fuzzy clustering faces two important issues: (i)
the definition of a strategy for choosing the initial cluster prototypes; and (ii)
determination of a good number of clusters to be found in the grouping of data
[5,14]. In this work, the Iterative Anomalous Pattern (IAP) algorithm [15] is
explored as an initialization strategy to the FCM that simultaneously allows to
determine the number of clusters. The composed algorithm, Anomalous Pat-
tern Fuzzy Clustering (AP-FCM), is applied for an effective segmentation of
the upwelling regions from SST images. Taking into account domain-knowledge
about the upwelling phenomenon and the AP-FCM segmentation results (i.e.
cluster’s information), there have been defined features able to identify the tran-
sition cluster that separates the upwelling regions from the background. From
that, it is introduced an iterative threshold procedure whose threshold values
are established based on an information-gain attribute discretization criterion.

Section 2 introduces the SST data sets and the problem of upwelling visual
identification. Section 3 points out some initialization and validation issues of
the FCM. Section 4 describes the IAP algorithm, its initialization to the FCM,
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leading to the AP-FCM, and a scheme to visualize fuzzy segmented images. In
Section 5 it is described the empirical feature definition process. Section 6 high-
lights the results of the AP-FCM algorithm applied to the segmentation of SST
images, comparing with the FCM ones applying validation indices. Experimen-
tal analysis of the proposed features identifying the cluster of interest for the
automatic annotation of upwelling frontlines are discussed. Concluding remarks
are in Section 7.

2 SST Upwelling Images and Ground-Truth Maps

Two independent data sets with 30 and 31 SST images, representing two distinct
upwelling seasons of the years 1998 and 1999, constitutes our benchmark. Each
SST image, I, is represented by a 500× 500 pixels map with a spatial resolution
of 1.1Km × 1.1Km, with each sea pixel being a temperature in degrees Celsius.
The contiguous white region on the right side of each SST image corresponds to
land, whereas the white pixels in the Ocean region correspond to missing values
during the satellite transmission, normally due to cloud cover.

The upwelling phenomenon ranges, in a direction perpendicular to the coast,
from colder coastal upwelling waters, to warmer offshore upwelling waters, and
the remaining even warmer temperature offshore waters. We are interested to
identify the distinct upwelling regions with focus on the front region roughly
characterized as a “relatively narrow” region with “relatively strong” horizon-
tal thermal gradients, establishing a transition zone between colder coastal and
warmer offshore surface waters.

Figure 1-a), c), e) shows three representative SST images selected from the
benchmark data sample, illustrating the variability of upwelling situations. Specif-
ically: i) SST images with a well characterized upwelling situation in terms of
fairly sharp boundaries between cold and warm surface waters measured by
relatively contrasting thermal gradients and continuity along the cost; ii) SST
images showing distinct upwelling situations related to thermal transition zones
offshore from the North toward the South and with smooth transition zones be-
tween upwelling regions; iii) noisy SST images with clouds, when information to
define the upwelling front lacks.

The only domain knowledge provided by the Oceanographers, assigned to
each SST image, is a color bar annotation (right sides of Figure 1-a),c), e))
corresponding to the color of a relatively strong thermal front that establishes
the transition zone between upwelling regions and offshore non-upwelling waters.
From this information a binary ground-truth map has been constructed for each
SST image, with 1/0 pixel corresponding to an ‘upwelling/non-upwelling’ pixel,
according to the Oceanographers’ annotation. Even though the ground-truth
map is binary constructed, an effective segmentation should comprise more than
three clusters in order to identify the various upwelling regions. These maps
support the assessment evaluation of results of experiments 2 and 3.
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Fig. 1. SST images showing different upwelling situations: a), c), e); corresponding

AP-FCM segmentations into 6, 5, 7 clusters, and fuzzy map visualization: b), d), f)

3 Fuzzy Clustering Initialization and Validation

We focus on two important issues in fuzzy K-means clustering: (i) the definition
of a strategy for choosing the initial cluster prototypes; and (ii) determining a
good number of clusters, K∗, to be found in the grouping of data. Even though
there is no general agreement about a good initialization scheme to the FCM,
it is common practice to choose a random selection because it guarantees the
convergence of the iterative algorithm. To avoid the algorithm to be trapped into
local minima, it is run several times starting from distinct initial seed points, and
choose the partition that corresponds to the minimum value of FCM’s clustering
criterion. Concerning problem (ii), and in order to find the “best” number of
clusters, designated as the clustering validation problem, the FCM algorithm is
run from different number of clusters, ranging from K = Kmin, · · · ,Kmax, which
leads to different partitions. Therefore, it is necessary to quantitatively evaluate
the clustering results, by selecting a validity index, V I, and running a validation
procedure as follows: compute V I for each K-partition, and choose the ‘best”
number of clusters, K∗, as the one that extremises the validity criterion V I.
There is no general agreement on what value to use for Kmax.

Many validity indices have been proposed in the literature [17,18]. We have
selected two well recognized indices, the Fukuyama-Sugeno index, VFS , and the
Xie-Beni index, VXB, both exploring the concepts of compactness and separation
between clusters.

The process of repeatedly initializing the FCM dozens of times and a posteriori
run it for different values of K, select an appropriate validation index (or compare
the results of a collection of indices), is a very time-consuming and tedious
process to arrive at a good (possibly sub-optimal) solution.
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4 Anomalous Pattern Fuzzy K-Means for SST Image
Segmentation

The task of image segmentation can be stated as the partition of an image into a
number of potentially non-overlapping regions, each with distinct properties. In
this work, the FCM algorithm and a proposed extension are applied as segmenta-
tion techniques to partition SST images, based on the temperature value of each
pixel.

Each SST image is converted into a set X = {xi}N
i=1 of N feature vectors

and, by pre-specifying the number of groups, K, the FCM organizes the N pixels
into K homogeneous groups represented as fuzzy sets F = {F1,F2, · · · ,FK},
which constitute a fuzzy K-partition of X . Starting from a set of K random
initial prototypes V 0 =

{
v0

k

}K

k=1
the goal of the FCM is to iteratively improve

a sequence of sets F(1),F(2), · · · ,F(t) (with t the iteration step), of K fuzzy
clusters, until FCM clustering criterion shows no further improvement (see e.g.
Ref. [5] for a detailed description).

4.1 Iterative Anomalous Pattern for Initial Setting of FCM
The Iterative Anomalous Pattern (IAP) algorithm is explored as an initial con-
figuration scheme to the FCM that simultaneously, provides an indicator of the
number of clusters present in data.

The IAP algorithm sequentially extracts clusters from the data set as follows.
Let Y denote the standardized data set, by shifting the origin of the original
data X to the grand mean, x. The feature vector x is taken as the reference
point unvaried all over the sequential process, and take as seed point the data
point that is farthest from the reference point. One crisp cluster, Ct, is iteratively
constructed, defined as the set of points that are closer to the seed point than to
the reference point. After, the cluster seed is substituted by the cluster gravity
center and the procedure is reiterated until it converges. The Anomalous Pattern
procedure is reiterated over the residual data set taken as Y t+1 = Y t − Ct until
any of the following stop conditions is reached: C1) the residual data set, Y t+1, is
empty which means that all the entities had been clustered; C2) the contribution
of the t-th cluster to the data scatter (equation (1)) is too small (i.e. less than
a pre-specified threshold τ); C3) the number of clusters, t, has reached a pre-
specified value Kmax. The algorithm is described next.

Taking Y as the standardized data set, the total scatter of all data points (row-
vectors in the N ×p matrix Y ) is defined as T (Y ) =

∑N
i=1

∑p
h=1 y2

ih. In [15] it is
derived how the total data scatter T (Y ) can be decomposed into an explained
part due to the cluster structure retrieved from data Y and the unexplained part
which corresponds to the K-means clustering criterion to be minimized. From
that, it is defined the relative contribution of each individual cluster, (Ct, vt), to
the data scatter, such as:

W ((Ct,vt)) =
nt

∑p
h=1 v2

th

T (Y )
=

nt

∑p
h=1 v2

th∑N
i=1

∑p
h=1 y2

ih

, (1)

with nt the cardinality of cluster Ct.
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Iterative Anomalous Pattern (IAP) Algorithm

1 Given: τ; Kmax;

2 Set: t = 0, Y t = standardize(X);

3 Repeat

4 t = t + 1;

5 Ct = {};
6 vt = argmaxjd

2(yj ,0) for yj ∈ Y t;

7 Repeat

8 for (yj ∈ Y t)

9 if (d2(yj , vt) < d2(yj ,0) )

10 Ct = Ct ∪ {yj};
11 endif

12 endfor

13 v′
t = vt;

14 vt =

∑
yj∈Ct

yj

|Ct| ;

15 until (vt ≈ v′
t)

16 Y t+1 = Y t − Ct;

17 until (Y t+1 == {} .or. W ((Ct, vt)) ≤ τ .or. t == Kmax)

18 return {v1, v2, · · · , vt};

The IAP algorithm sets the initial prototypes of the FCM and simultaneously,
by tuning the stop conditions C1 or C2, establishes the number of clusters. The
FCM pre-specified number of clusters is fixed as K = t and the set of centroids,
{v1,v2, · · · ,vt} of the IAP, defines the seed prototypes to the FCM algorithm,
i.e. V 0 =

{
v0

k

}K

k=1
= {vk}t

k=1. The composed algorithm is referred to as the
Anomalous Pattern Fuzzy Clustering (AP-FCM).

4.2 Visualization of a Fuzzy Segmented Image

After running the AP-FCM/FCM algorithms, the corresponding fuzzy partition
is defuzzified by assigning to each pixel its maximum grade of membership,
mapping the pixel to the corresponding cluster. The defuzzified fuzzy partition
is mapped onto the spatial grid of the image and visualized on a fuzzy color scale
in accordance with the degrees of membership. This completes the segmentation
process.

According to the thermal gradient spatial orientation of upwelling regions
clusters are ordered according to their prototypes’ value, and assign to each of
them a crisp color label following that order. Then, each pixel is mapped onto
the spacial grid of the image and colored according to its cluster color label
combined with its membership value. Thus, each segmented region is assigned
with a specific color and the corresponding pixels are assigned shade tones of
the color according to their degree of membership in the cluster. Visualization
of the AP-FCM fuzzy segmentation results are shown in Figure 1-b), d), f).
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5 Feature Definition to Annotate Upwelling Fronts

The remaining problem concerns the separation between the objects of inter-
est (i.e. the upwelling regions) and the background (i.e. non-upwelling offshore
waters), from the fuzzy segmented map.

Taking the domain-knowledge of the phenomenon and the segmentation re-
sults (i.e. clusters’ information) we studied which features can be defined from
the clusters in order to identify the ‘transition cluster’ as the cluster that contains
the “relatively narrow” transition zone between upwelling and non-upwelling re-
gions extending offshore no further than a certain limit.

Conform with the characterization of upwelling, its regions correspond to the
first k clusters (k < K), with the last, the ‘transition cluster’, T . Two features
constructed from the fuzzy segmentation results of each SST image are as follows:

– Relative Difference between consecutive clusters prototypes, each one being
the mean temperature of SST fuzzy homogeneous regions:

TDiff(T ) =
vT +1 − vT
|CT |

(1 ≤ T ≤ K − 1),

with |CT | the cardinality of defuzzified cluster CT .
– Relative Cumulative Cardinality of the first T clusters:

CCard(T ) =
∑T

k=1 |Ck|
|I| ,

with |I| the number of pixels with an SST value (excluding NaN’s) for an
SST image I.

The threshold value of each feature, τd and τc, has been established using an
entropy-based attribute discretization procedure [16]. Specifically, let A denote
one of the features, and l one of its value. Given a data sample D (in our
study, the set of segmented maps of the 1998 data set), the threshold value τ
selected is the one that maximizes the information gain resulting from the split
binary partition in D1 and D2, corresponding to the samples of D satisfying the
conditions A < τ and A ≥ τ , respecting the class distribution of the tuples in the
partition. Notice that a binary class-label attribute (upwelling/non-upwelling)
is considered, taken from the ground-truth maps of the SST images. The split
value with the highest information gain is considered the most discriminating
value of the set, and consequently taken as the threshold value.

The extensive analysis of the segmented SST images showed that the tran-
sition cluster, T , is one of the first three clusters (T ≤ 3). Given a segmented
SST image, S(I), its transition cluster is iteratively identified according to the
Transition-Cluster Threshold (TCT) procedure, as follows:

6 Experimental Study

The goal of this study is three-fold. First, the contribution of the determin-
istic IAP algorithm to improve the rate of convergence of the random-based
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Transition-Cluster Threshold (TCT) Procedure

Step 1 Set: τd, τc, by information-gain based attribute discretization;

Set: T = 3;

Step 2 if (TDiff(T ) ≤ τd) then T = T − 1 endif

Step 3 CCard(T ) =
∑T

k=1 |Ck|/ |I |;
Step 4 while (CCard(T ) > τc .and. T > 1)

Step 5 CCard(T ) = CCard(T )− |CT | / |I |
Step 6 T = max(T − 1, 1);

endwhile

Step 7 return T ;

initialization of the FCM is analysed. Second, the AP-FCM algorithm is ex-
plored as a good indicator of the number of clusters able to provide an effective
segmentation of the images concerning the problem at hand. Third, to experi-
mentally analyse the TDiff(T ) and CCard(T ) features constructed from the
APc2-FCM segmentations, and apply the TCT procedure, leading to the recog-
nition of the transition cluster and annotation of its frontline in the SST images,
and accuracy analysis according to the Oceanographers’ visual annotation of
upwelling front.

In the studies, the 1999 data sample is taken for ‘validation’ of the results
obtained with the 1998 data sample. Each data set X corresponds to the set of
500×500 pixels, with xi a temperature value. For a fixed number of clusters, K,
the FCM algorithm is run 10 times, starting from distinct initial configurations.

6.1 Experiment 1

In this set of experiments it is analysed the improvement in convergence of the
FCM when initialized by the IAP algorithm. The range in the number of clusters
has been set between Kmin = 2 and Kmax = 8. For that we compared the
number of iterations for distinct experimental situations of the FCM/AP-FCM:
i) number of iterations of the best partition of the FCM, R∗

FCM ; ii) average
of the number of iterations of the 10 runs of the FCM, RFCM ; iii) number of
iterations of the AP-FCM, RAPc2−FCM , RAPc3−FCM , for the case of the C2 and
C3 stop conditions of the IAP algorithm.

The graphic in Figure 2-a) shows the mean values of those measures over
the whole set of images. Analysis of these values shows that as the number of
clusters increases, the number of iterations of the best run of the FCM, R∗

FCM ,
and the mean of runs, RFCM , is about twice as compared to the FCM runs
of the AP-FCM. By comparing the APc2-FCM and APc3-FCM it can be said
that the stop condition by the cluster’s contribution to the explanation of the
data scatter, provides a slight improvement in convergence when compared to
the pre-specification of the number of clusters. Notice, that this is particularly
relevant for the case where the APc2-FCM leads to K = 6 or K = 7 clusters,
which covers 55/61 of the images. In order to get a global view of the effective
number of iterations taken by each version of the algorithms, the graphic in
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Fig. 2. a) Mean number of iterations, over the whole set of images, for distinct ex-

perimental situations of the FCM/AP-FCM. b) Total number of iterations for distinct

experimental situations of the FCM/AP-FCM.

Figure 2-b) shows the total number of iterations taken by the 10 runs of the
FCM, TRFCM , versus the total number of iterations taken by the AP-FCM,
RAPc2−FCM , RAPc3−FCM . One see that the effective number of runs of the FCM
is 10 times higher than each version of the AP-FCM.

6.2 Experiment 2

A major aspect is the analysis of the effectiveness of the segmentation results
provided by each of the AP-FCM/FCM algorithms. We focus on the AP-FCM
with stop condition C2, in order to analyse its quality as an indicator of the
number of clusters. The APc2-FCM scatter threshold τ parameter has been
experimentally tuned, exclusively through the analysis of resulting segmentations
for the year of 1998, at τ = 10−3.

Figure 1-b), d), f) shows the fuzzy segmentation and corresponding spatial
visualization obtained by the APc2-FCM concerning the corresponding origi-
nal SST images above. The results illustrate the kind of variability on original
SST images and corresponding segmentations the AP-FCM is able to deal with,
leading to partitions with K = 6, K = 5, and K = 7 clusters, respectively.

The result of running the APc2-FCM algorithm over the whole set of images
lead to fuzzy K-partitions with K = 5, 6, 7. This strict interval corresponds to a
good number of clusters for an effective segmentation of the SST images. These
results are validated with the analysis of the APc2-FCM segmentation for the
31 images of 1999, for which threshold value τ was confirmed and result also in
segmentations with K = 5, 6, 7 clusters.

When applying the FCM and corresponding validation procedure setting with
Kmin = 2 to Kmax = 10 and applied the validation indices VFS , VXB, the ob-
tained segmentations are typically under or over-segmented1. The histograms in
1 Other validation indices, like the partition coefficient (PC), the partition entropy

(PE) and Pakhira and co-authors (PBMF) indices [18] have been applied without

success, since the corresponding selected partition always lead to under-segmented

images.
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Fig. 3. Histograms with the absolute frequency of SST images segmented with a given

number of clusters: a) APc2-FCM, b) FCM-VF S, c) FCM-VXB algorithms

Figure 3 show the absolute frequency of SST images with a given number of clus-
ters resulting from their segmentation with the APc2-FCM, FCM-VFS , FCM-
VXB algorithms, respectively, for the two years. The FCM-VFS , FCM-VXB

segmentations for the images of 1999 have less quality than the segmentations of
1998, resulting in more over-segmented images ( FCM-VFS) or under-segmented
images (FCM-VXB), while with the APc2-FCM the differences between the data
sets of 1998 and 1999 don’t have any evident impact on the quality of the
results.

In order to quantitatively evaluate the segmentation results of the APc2-
FCM, FCM-VFS , FCM-VXB, over the two data sets, the corresponding ground-
truth maps were taken. The matching between each fuzzy K-partition from
the APc2-FCM or FCM, and the ground-truth 2-partition is established by
making the correspondence of each fuzzy cluster prototype to the prototype
of the binary partition. The AP-FCM/FCM clusters are then merged in or-
der to obtain a 2-partition to compare against the ground-truth corresponding
one.

Results in terms of sensitivity versus specificity are summarised in the ROC
plots in Figure 4-a)-b) for the years of 1998 and 1999. The analysis shows that for
the year of 1998 33%−43% of the classifications are very close to a perfect classi-
fication whereas for the segmented images of 1999, the corresponding percentage
improves slightly (42%−48%). Even though there is no significant difference be-
tween the results obtained by the APC2-FCM and the FCM-VFS , FCM-VXB,
one can say that the APC2-FCM results are slightly more ‘conservative’ compar-
ing with the FCM ones. That is, the APC2-FCM makes positive classifications
(i.e union of upwelling regions), corresponding to strong evidence with few false
positive errors. On the other hand, the FCM results tend to make more positive
classifications with slightly weaker evidence. The more conservative tendency is
preferable against the more liberal one, since ≈ 76% of pixels in the total anal-
ysed images are negative (i.e. non-upwelling) and so, the performance in the top
left-hand side of the ROC graphic is more interesting.
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Fig. 4. ROC Plot of the classification of each SST segmentation resulting from the

APc2-FCM, FCM-VF S , FCM-VXB , against ground-truth maps, for the two SST data

sets: a) 1998; b) 1999

6.3 Experiment 3

Taking the 30 SST APc2-FCM segmentation results of the year of 1998, the
threshold values of features TDiff and CCard had been experimentally fixed
as τd = 4.5 × 10−5 and τc = 0.52, according to the information-gain based
discretization procedure.

Starting by setting the ‘transition cluster’ at T = 3, the TCT procedure
is applied in order to find the transition cluster and the corresponding external
frontier. Figure 5 a)-b) shows the scatter plots of TDiff(3) feature values, for the
30 SST segmentations, separating between North (a) and South (b). The dash
lines mark the threshold value τd. The upper legend bar indicates the index of the
transition cluster containing the upwelling front, according to the Oceanographer
pre-specified annotation, whereas the lower bar shows the corresponding indices
after applying the TDiff(T ) rule (Step2 of the TCT procedure). Analysis of the

Fig. 5. Scatter plot of the TDiff(3) feature for the 1998 SST images divided in: a)

South and b) North
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Fig. 6. Bar chart of the CCard(T ) constructed feature applied to the North region of

the 1998 SST images

Fig. 7. a), c), e)- AP-FCM segmentations of the original SST images shown in Figure

1; b), d), f) corresponding upwelling frontline annotation over the original SST images

after applying the transition cluster threshold procedure

results show that the TDiff(T ) rule leads to an accuracy of 90% of corrected
transition clusters for the analysed segmentations in the case of South regions
and 53% for the North regions.

In order to increase the accuracy of the results in the North, the CCard(T )
rule (Steps 3-6 of TCT procedure) is applied. The results are presented in the
bar chart of Figure 6 whose vertical bars are divided according to the parcels
of summation CCard(T ), and dash line marks the threshold τc = 0.52. The



224 S. Nascimento and P. Franco

horizontal lower legend bar shows the number of parcels corresponding to the
index of the transition cluster calculated according to the CCard(T ) rule (i.e.
number of fractions totally under τc). After this second stage one gets an increase
to 87% accuracy of T indexes in the North segmented regions of the 1998 data
set. Slightly worse results were obtained, on identifying the transition cluster T
for the segmentations of the 1999 SST images, with accuracies of 84% (South)
and 75% (North).

Finally, the frontline of the transition cluster T is defined by the set of pixels
sharing a 4-neighborhood with its external adjacent cluster. This line, sepa-
rating the upwelling regions from the background, is annotated over the SST
images. Figure 7-b),d),f) illustrate the results for SST images with the upwelling
frontlines determined and annotated according to the TCT procedure from the
AP-FCM segmented results shown in Figure 7-a),c),e).

7 Conclusion and Future Work

The unsupervised fuzzy clustering proposed, AP-FCM, shows to be an effective
approach for the segmentation and annotation of upwelling regions of the two
independent SST image samples analysed in this study. Specifically:

1. The study of the stop condition to achieve a meaningless residual cluster
contribution to the data scatter (APC2-FCM) fits a good number of clusters
for an effective segmentation of the original SST images. The APC2-FCM
prevents under or over-segmentation of the SST images, which is precisely the
situation that occurs when applying the FCM with well-recognized validation
indices, and provides a ‘range of interest’ of the number of clusters for FCM
validation procedure.

2. Result of the unsupervised fuzzy segmentation, the fuzzy membership spa-
tial visualization reproduces the original SST image very closely. Indeed,
it prevents the subjective and labor intensive task of visual inspection by
the Oceanographers to adjust a color scale to enhance the patterns to be
automatically recognized.

3. To access the quality of segmented APC2-FCM, FCM-VFS and FCM-VXB

images, they have been compared with corresponding binary ground-truth
maps. ROC analysis shows that ≈ 41% of the segmented images are very
close to a perfect classification. The APC2-FCM makes positive classifications
(i.e union of upwelling regions) corresponding to strong evidence, making few
false positive errors. This is interesting since the majority of pixels in the
analysed images are negative.

4. The features defined from the AP-FCM segmentation and the threshold
procedure to identify the transition cluster containing the upwelling front
provides a systematic way to annotate the upwelling fronts in the SST images
and overcomes the subjective visual inspection made by the Oceanographers.

5. Compared to FCM the number of iterations of the AP-FCM decreases in the
order of 10 times less.
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The proposed method is part of an interactive system that allows the automatic
recognition and annotation of upwelling regions in SST images. The interest
of such a tool is to provide the Oceanographers a systematic method to con-
struct good working definitions of upwelling, with visualization facilities of fuzzy
clustering results, and to build a data-base of ‘gold-standard’ annotated images.
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Abstract. This paper presents a method which discovers the structure

of given open source programs from their developer mailing lists. Our goal

is to help successive developers understand the structures and the com-

ponents of open source programs even if documents about them are not

provided sufficiently. Our method consists of two phases: (1) producing

a mapping between the source files and the emails, and (2) constructing

a lattice from the produced mapping and then reducing it with a novel

algorithm, called PRUNIA (PRUNing Algorithm Based on Introduced

Attributes), in order to obtain a more compact structure. We performed

experiments with some open source projects which are originally from or

popular in Japan such as Namazu and Ruby. The experimental results

reveal that the extracted structures reflect very well important parts of

the hidden structures of the programs.

Keywords: mailing lists, open source programs, extraction of struc-

tures, concept lattice.

1 Introduction

In open source software development, developer mailing lists, as well as tools
for software configuration management, are essential. However, they are used
independently and have no significant mutual complement. The reason lies in
the fact that there is no helpful method to link them together in order to obtain
a better use of the two. Besides, together with the weak obligation of document-
ing the development process, open source programs are often developed in an
evolutionary approach, which does not strongly require the developers to pro-
duce pre-defined documents before coding. Therefore, the development process
of open source programs is normally not documented. It leads to many difficulties
for successive developers to understand the programs.

Until now, researches analyzing the processes of software development and
software programs go mainly into two streams. The first stream contains re-
searches whose objectives are to extract and to understand the software devel-
opment process [14] by analyzing the documents created by developers. In the
second stream are researches which attempt to reconstruct the structures of the

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 227–241, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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programs [12,7,13], to visualize the evolution of the programs [10], or to extract
other kind of information such as the reusable components [16] and dependency
between components [2] by analyzing the source code archives. We argue that the
former stream can extract topic-oriented development flows but fails to link the
flows with the actual programs. The latter stream can extract syntax structures
of programs but fails to give the structures semantic explanations.

Presuming that no document except the developer mailing lists is available for
an open source program, we propose a method that uses the information from
its developer mailing lists to extract the structure of the program and categorize
the emails in the mailing lists into the components of the extracted structure. It
is also an attempt to link the two research streams addressed above.

The key idea of the proposed method based on our observation that a lot of
useful information about the programs such as the structures of the programs
and the explanations about many parts of the programs hide in the contents of
the emails created by developers during the development process. Moreover, we
noticed that for a collection of source files, if there are many emails mentioning
about them, those source files may constitute a sub-system. In this research, sub-
systems are viewed as relatively independent program components that deliver
some particular functions.

Figure 1(a) illustrates a project consisting of five source files {m1, ...,m5} in
its source code archive and five emails {d1, ..., d5} in its developer mailing list.
The arrow from di to mj represents that di mentions about mj . We assume
that (1) a large number of co-relating emails to a set of modules indicates the
relevance for that set to become a sub-system, and (2) a sub-system can be
included in other larger sub-systems. As a result, as shown in Figure 1(b), the
sets {m2,m3}, {m1,m2,m3}, and {m4,m5} are probably sub-systems because
there are at least one email relating to each of them. In fact, such subsystems
are called formal concepts in Formal Concept Analysis [17,3,4].

This paper is organized as follows. In the next section, some definitions and
the method to extract the relation between emails and modules is explained.
In Section 3, we give a brief introduction to Formal Concept Analysis and then

d1 d4 d5d2

Source files

Emails

d3

m1 m2 m3 m4 m5

m3m2

m1 m4 m5

d1 d2

d3

d4 d5

(a) (b)

Fig. 1. Main idea of the proposed method
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explain our method to extract the program structures. Experimental results are
given in Section 4. Concluding remarks and future plans are presented in the
last section.

2 Mapping Emails and Modules

In this research, an email is assumed to be a datum with two attributes: subject
(the subject of the email) and body (the content in the body of the email). Both
of them are string of characters. A developer mailing lists for a program is a set
of emails and denoted by D = {d1, d2, ..., dD}.

A module refers to a source file in the latest available release. It is viewed
as the smallest unit of the program. A module possesses two attributes: name
(the name of the respective source file), and body (the content of the respective
source file). Both of them are also strings of characters. The set of all modules
is denoted by M = {m1,m2, ...,mM}.

If a part of an email mentions about a module, the email and the module are
said to have relationship. The set of all email-module pairs that have relationship
is denoted by R∗ ⊆ D ×M.

A program structure is a digraph G(C, E) where C ⊆ 2M × 2D. Each element
(s1, s2) of C is called a subsystem of the program. Here, s1 represents the set of
its constitual modules and s2 represents the set of its explanatory emails. The
paths in E represent the super-sub relationship between subsystems.

2.1 Evidences

The objective of this phase is to find the relation set R∗. It begins with finding
the set RS containing all the pairs (di,mj) ∈ D ×M which satisfy one of the
following conditions:

1. The name of mj appears in the subject of di.
2. The name of mj appears in the text area in the body of di.
3. The name of mj appears in the code area in the body of di.
4. A discriminative substring of the body of mj appears in the body of di.

A text area is defined as a continuous sequence of terms that are created and
used by human for exchanging information. Meanwhile, a code area is defined
as continuous sequence of terms which are created by or for computers. This
different dealing is caused by our observation that text areas where module
names appear are often the discussions between developers about the modules.
Whereas, the appearances of module names in code areas could be unintentional
includings when parts of source code are quoted.

If the pair (di,mj) satisfies the k-th condition above, the pair is said to be
supported by Evidence k. Figure 2 illustrates an example of the four kinds of
evidences. The superscripts are added for explanation and they indicate the
kinds of respective evidences. Code areas are bordered by the dashed lines.
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Subject：… xyz.h(1)…

…

while(count<size){

process_data(count);

count++;

}(4)

#include “xyz.h”(3)…

…read_input_html(4)はHTMLを

…..

…xyz.h(2)を修正した…

#xyz.h

int read_input_html {

…

}

…

…

while(temp<size){

process_data(count);

count++;

}

…

…

Email

Module
…

Fig. 2. An example of the four types of evidences

In order to obtain R∗, the set RS is futher filtered as

R∗ = {(di,mj) ∈ RS | conf(di,mj) ≥ 0},

where conf is the confidence degree which incorporates all the four evidences
and will be explained later.

The set DS and MS are defined as the set of emails and modules which have
at least one related module or related email according to RS . Similarly, D∗ and
M∗ are also defined. The following subsumptions hold:

R∗ ⊆ RS ,D∗ ⊆ DS , and M∗ ⊆MS.

2.2 Finding Evidences

Evidence 1, 2 and 3. Depending on the naming convention, the root parts of
the module names can be common keywords or very unique keywords. In order
to avoid inaccurate extraction while not missing related emails, the requirement
of module name with or without extension is decided manually for each project.

The identifying of the first kind of evidence is straight-forward. In Figure 2,
xyz.h(1) is an example of Evidence 1. Relating to identifying Evidence 2, such
as xyz.h(2), and Evidence 3, such as xyz.h(3), we need to separate text areas
and code areas in an email. For this task, we adopt the following method:

– Tokenizing the body of emails into tokens with a part of speech assigned to
each token.

– Sequences of undefined tokens with the lengths exceed a specified threshold
are recognized as code areas. Other parts are recognized as text areas.

Evidence 4. In Figure 2, the two sequences marked with the superscript (4) are
examples of Evidence 4. They are fragments of source code in the body of some
module that appear in the body of the email. For identifying such fragments, we
adopt the following method:
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– Tokenizing the bodies of all modules by using a list of stop words together
with using some matching rules for identifying the phrases that include stop
words such as the comments and the pattern matching phrases.

– Sequences of code tokens t1t2...ts which have the distinctive degree

s∑
k=1

log
| M |

| {mj |tk ∈ Tks(mj)} |

greater than log(| M |) are selected. Here, Tks(mj) is the set of tokens
appearing in the module mj. This distinctive degree is a modification of the
IDF measure for a sequence of terms, indicating the rarity of a sequence
according to a set of modules. The threshold log(| M |) implies that only
the sequences expected to appear in the body of only one module should be
selected.

– Selected sequence is matched with the sequence of token of each module by a
normal exact substring matching algorithm. If there is at least one matching,
the pair of the email and the module is supported by Evidence 4.

2.3 Filtering Relations

The set R∗ is the set of email-module pairs in RS which have the confidence
degrees greater than 0. The confidence degree is defined by

conf(di,mj) = b +
4∑

k=1

ak
ek(di,mj)
#nek

(di)
.

Here, ek(di,mj)= 1 if the k-th evidence found between di and mj , otherwise,
equals to 0. The number of modules supported by the email di by the k-th
evidence is denoted by #nek

(di). This setting is based on our hypothesis that
for an email, with a single type of evidence, the more modules they relate to,
the less reliable the relationship is. This hypothesis will be tested in Section 4.

Besides, a1, a2, a3 and a4 are weight parameters and b is a bias satisfying
0 ≤ a1, a2, a3, a4 ≤ 1 and

∑4
i=1 ai = 1. These parameters are estimated from

some real data.

3 Extracting Structure

We build a concept lattice from the extracted relation between emails and mod-
ules, then we prune it with PRUNIA (PRUNing Algorithm Based on Introduced
Attributes) in order to receive a more compact and suitable structure.

3.1 Formal Concept Analysis

Formal Concept Analysis (FCA), a well-known technique for deriving ontology
from a collection of objects and their attributes, was introduced by Wille [17] and
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then it was intensively researched and currently become an established research
field[3,4]. In FCA, given information is structured into units which represent
formal abstraction of concepts.

A formal context is a triple (O,A, I) consisting of a set of formal objects O,
a set of formal attributes A, and a binary relation I ⊆ O × A which expresses
the possessed attributes of each object in O. A formal concept of (O,A, I) is a
pair (A,B) which satisfies

A ⊆ O, B ⊆ A, A′ = B, and A = B′,

where A′ is the set of attributes possessed by all the objects of A and B′ is the
set of objects possessing all the attributes of B.

The set A is called the extent of the formal concept (A,B), and B is called
its intent. The order between two concepts of a given context is defined by

(A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2(B2 ⊆ B1).

The set B(O,A, I) of all concepts of (O,A, I) with this order is a complete
lattice and called the concept lattice of (O,A, I). In this paper, every element of
B is called possessed attribute of (A,B), while every element of B but not being
possessed by any super-concept of (A,B) is called introduced attribute of (A,B).
The set of introduced attributes is denoted by B̂.

An example of formal context is shown in Figure 4(a) with the objects are
m1,...,m4 and the attributes are d1,...,d12. The concept lattice is shown in Fig-
ure 4(b). The nodes in solid and dashed border are all concepts. If the number
i appears in a concept, the concept possesses the module mi. The possessed
attributes of concepts are shown on the right side, and among them, introduced
attributes are underlined. The straight edges represent the intermediate super-
sub concept relationship. The curve edges are used for other purpose and will
be explained later.

3.2 Extracting Structure

The formal context is chosen as the triple (M∗,D∗,R∗) where M∗, D∗, and R∗

are the sets obtained in the first phase. In this section, a concept is represented
as the triple (A,B, B̂) for our convenience of indicating the set of introduced
attributes of each concept.

In general, the concept lattice is very complex because the number of its con-
cepts is exponential to the number of its objects. In fact, only a small number
of its concepts interest human developers. Therefore, we will remove those con-
cepts that do not fit to become the sub-systems of a program by using the two
following constraints:

1. The number of the possessed attributes is greater than or equals to a thresh-
old σ.

2. The number of the introduced attributes is greater than or equals to a thresh-
old τ .
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Fig. 3. Example with two modules and seven emails

The first constraint reflects the observation addressed in the first chapter. It
is a monotone constraint because for any concept satisfying this constraint, its
sub-concepts also satisfy this constraint. This constraint has been intensively
used in closed frequent itemset mining [9,19]. The second constraint is an en-
hancement for the first constraint because in many cases, even though the first
criterion holds, actually most of those emails are not about the concept but its
super-concepts. Figure 3 illustrates the context table of an example with two
modules and seven emails where there are four emails relating m2 but among
them only d7 does not relate to m1. It implies that m2 depends strongly in
m1 and must not be recognized as a subsytem. Different from the first con-
straint, this constraint is not monotone. In other words, there are cases that a
concept does not satisfy the second constraint even though its super-concepts
satisfy the second constraint. For this reason, an algorithm which simply re-
moves non-satisfying concepts would obtain a structure with many divided com-
ponents.

PRUNIA. Our proposed algorithm, shown in Algorithm 1, removes concepts
which do not satisfy the two constraints explained above, and simultaneously,
connects pairs of concepts that have super-sub concept relationship but being
disconnected because some concepts in the middle have been removed. We in-
troduce the following notations:

– pa: the number of possessed attributes.
– ia: the number of introduced attributes.
– Ci: the set of concepts having exactly i objects.
– c $E d⇔ d can be reached from c by some paths in E .

The inputs are the concept lattice and two parameters σ and τ . For shortening
the term, members of Cστ are called good concepts and the others are called bad
concepts. Moreover, elements of Eστ are called good edges while the others are
called bad edges. Initially, both Cστ and Eστ contain no element. The algorithm
proceeds upwardly, and begins with processing concepts at the first level. Cndc

is the set of good nodes which can be reached from c by only bad edges. Maxc

is the set of elements of Cndc that cannot be reached by good edges from c as
well as from any other element of Cndc. The edges connecting c to all concepts
in Maxc are added to a temporary set Eadd. At the end of each level, concepts
in Cadd are added to Cστ and edges in Eadd are added to Eστ .
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Algorithm 1. PRUNIA
Input: σ, τ , G(C, E)
Output: G(Cστ , Eστ )

Cστ ← ø, Eστ ← ø

h ← the number of objects of the top concept

for i = 1 to h do
Cadd ← ø, Eadd ← ø

for all c ∈ Ci such that pa(c) ≥ σ and ia(c) ≥ τ do
Eadd ← Eadd ∪ {(c, d) ∈ E | d ∈ Cστ}
Cndc ← {d ∈ Cστ | c �E\Eστ d}
Maxc ← {d ∈ Cndc | ¬∃f ∈ (Cndc ∪ {c}) such that f �Eστ d}
Cadd ← Cadd ∪ {c}
Eadd ← Eadd ∪ {(c, d) | d ∈Maxc}

end for
Cστ ← Cστ ∪ Cadd

Eστ ← Eστ ∪ Eadd

end for
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Fig. 4. Example of applying PRUNIA
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Table 1. Summarization of processing at each level

Level Concepts Cnd Max Cadd Eadd

1 {1} ø ø {1} ø

2
{1,2} ø ø {1,2} ({1,2},{1})
{3,4} ø ø {1,2},{3,4} ({1,2},{1})

3 {1,3,4} {1} {1} {1,3,4} ({1,3,4},{3,4}),({1,3,4},{1})
4 {1,2,3,4} {1},{1,2} {1,2} {1,2,3,4} ({1,2,3,4},{1,3,4}),({1,2,3,4},{1,2})

Example. Figure 4 shows an example of applying PRUNIA with the context
table shown in 4(a) and the parameters set to σ = 2 and τ = 2. In Figure 4(b),
good concepts are nodes bordered by solid lines, good edges are those represented
in straight solid lines and the newly added edges are those in curve solid lines.
The processings at each level are summarized in Table 1. For example, at Level
4, concept {1} belongs to the set Cnd{1,2,3,4} but because it is reachable from
{1,2} by good edges, it is excluded from Max{1,2,3,4}. Figure 4(c) shows the
graph obtained after pruning.

Lemma 1. The super-sub concept order is preserved after pruning, that is, for
all c, d ∈ Cστ , if c $E d then c $Eστ d.

Proof. The proof is given in the mathematical induction form.
For all pairs of good concepts at Level 1 and Level 2, if they have super-sub

concept relationship, they must be directly connected by an edge. On the other
hand, all edges which connect pairs of good concepts are added to Eστ . Hence,
the lemma holds at Level 1 and Level 2.

Assume that the lemma holds from Level 1 to Level k. Suppose that c is a
good concept at Level k + 1 and d is one of its good sub-concepts. Consider all
paths of both good and bad edges connecting c and d. If the concept f next
to c is a good concept, there is already a path of good edges connecting f and
d because f is at Level k and according to the assumption. Hence, c and d is
connected by good edges. If the concept next to c is a bad concept, then the
first good concept after c, let say f , in the path must be an element of Cndc.
Moreover, according to the definition of Maxc, f must be the elements of Maxc

or the sub-concept of some concepts in Maxc. Remembering that elements of
Maxc are under or at Level k, hence all super-concepts of d in Maxc are already
connected to d. After adding the edges which connect c to all elements of Maxc,
c and d must be connected.

Lemma 2. PRUNIA produces no new redundant path, that is, for all c, d ∈ Cστ

and (c, d) ∈ Eστ , there is no f ∈ Cστ such that (c, f) ∈ Eστ and f $Eστ d.

Proof. Because the algorithm performs upwardly, there will be no more edges
which connect concepts under the level of c after it reaches to the level of c. On
the other hand, by Lemma 1, f and d are finally connected by good edges so
when the algorithm reaches to c, f and d must be already connected. Hence, d
cannot be element of Maxc. Therefore no edge between c and d is added.
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Table 2. Datasets used for experiments

Project Language Begin Emails Modules

HOS C 2002 1515 186

Namazu C,Perl 1997 9462 164

Ruby C 1997 36399 255

Table 3. Number of extracted pairs

Project
Data Supported Filtered
|D|
|M|

|DS|
|M|

|RS|
|M|

|D∗|
|M|

|R∗|
|M|

HOS 8.2 2.0 7.2 1.7 5.3

Namazu 57.8 15.05 93.3 9.5 33.1

Ruby 142.7 30.1 111.8 25.7 89.8

4 Experimental Results

4.1 Extracting Relation

The method explained in Section 2 is used for extracting the relation between
emails and modules with three Japanese projects HOS [5], Namazu [8] and
Ruby [11]. An outline of these projects is presented in Table 2. Each dataset
consists of a collection of modules with the extension .h and .c (C source files),
.pl and .in (Perl source files) from the latest release at the time and a collec-
tion of emails in Japanese extracted from their developer mailing lists. Relating
to separation of text and code areas, we used Chasen [1] for tokenizing emails
and assigning part-of-speechs. The minimum length for a sequence of undefined
tokens to be recognized as a code area was set to 15, a value chosen from ex-
perience. Relating to identification of Evidence 4, a list of stop words including
line-break, blank, ;, +, -, *, /, {, }, (, ),... was used for tokenizing the bodies of
modules.

We manually annotated 747 email-module pairs (from the supported relation
obtained with Namazu dataset) to be Yes or No according to whether or not
the modules are mentioned in the emails.

In order to evaluate the efficiency of the used classifying function, we per-
formed an experiment using the linear classifier SimpleLogistic on the annotated
data, and compare the obtained results with those of other three non-linear
classifiers, NaiveBayes, J4.8, and MultilayerPerceptron. The tool Weka [18] was
used for the experiment. Input data are provided in two forms: a binary form
where only the binary values of four evidences are taken as attributes, and a
weighted form where attributes are evidences being weighted with the inverse
number of the related modules by different evidences. Our experimental results
show that that all classifiers produce better results when the data are provided
in weighted form. It proves that a classifier, which takes the number of modules
related by emails into account, is more effective than the classifiers of the same
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learning model that do not. Moreover, when data are given in weighted form,
SimpleLogistic outperforms other classifier (1.21% higher than the second). This
result assures that the proposed classifying function is usable. In addition, the
parameters of the linear classifying function, conf , were estimated as

a1 = 0.141, a2 = 0.459, a3 = 0.373, a4 = 0.027, and b = −0.033

when SimpleLogistic builds its classifying model with the full annotated data.
The most powerful evidence is the second evidence. This result agrees with our
anticipation about the different meanings of module names in text areas and
code areas. Surprisingly, the first evidence, the appearance of module names in
the subject of email, is only at the third position. The reason is its recall ratio
is quite small (only account for about 10% of the annotated pairs).

Table 3 shows the relative number of emails in the initial data and the relative
size of email sets and relation sets. We can have some conclusions: (1) approx-
imately, the proposed method can extract about 20% of the emails from the
mailing lists, and (2) over the extracted pairs, on average, each email relates to
about three modules.

4.2 Extracting Structure

For the richness of related emails, we choose Ruby to do the experiment with
the method proposed above. We used Colibri [6], an open source tool developed
by Lindig for constructing concept lattices and computing sets of introduced
attributes. Colibri implements the NextClosure algorithm which was proposed
by Ganter and appeared later in the textbook [4]. The extracted structures are
evaluated with the following three criteria:

1. Module recall ratio: the ratio of the number of modules appearing in the
extracted structure to the number of modules in the concept lattice before
pruning.

2. Email recall ratio: the ratio of the number of emails remaining after pruning
to the number of emails before pruning.

3. Concept recall ratio: the ratio of the number of concepts remaining after
pruning to the number of concepts before pruning.

We performed experiments with many parameter combinations, but because
there is not enough room, only the results obtained with the parameter com-
binations in the range 0 ≤ τ ≤ σ ≤ 10 are provided in Table 4, 5 and 6. The
results of the three recall ratios are shown respectively in the tables. The cell of
the i-th row and the j-th column represents the ratio obtained when σ = j and
τ = i.

As shown in Table 4, when σ and τ increase, the module recall ratio reduces
quite fast. When both τ and σ are set to 10, only about one third of the modules
remains. It implies that only a part of the modules have many emails relating
to them. They are considered as the important modules of the structure.

As shown in Table 5, when σ and τ increase, the email recall ratio also reduces
but the reducing speed is much slower than that of the module recall ratio.
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Table 4. The module recall ratios of Ruby dataset (100%=188 modules)

τ\σ 0 1 2 3 4 5 6 7 8 9 10

0 100 100 87.77 81.91 76.06 70.74 66.49 63.83 61.70 58.51 56.38

1 100 85.11 77.13 70.74 64.89 61.70 60.64 57.98 54.79 53.19

2 73.40 68.09 67.02 62.77 60.64 59.57 57.45 54.26 52.66

3 61.17 61.17 57.45 56.38 54.79 53.19 51.06 49.47

4 52.13 50.00 50.00 49.47 48.94 47.34 46.81

5 46.81 46.81 46.28 45.74 45.21 44.15

6 42.55 42.02 42.02 42.02 40.96

7 39.36 39.36 39.36 39.36

8 37.77 37.77 37.77

9 37.23 37.23

10 37.23

Table 5. The email recall ratios of Ruby dataset (100%=6563 emails)

τ\σ 0 1 2 3 4 5 6 7 8 9 10

0 100 100 93.25 90.26 88.08 86.53 85.08 84.17 83.24 82.2 81.59

1 100 93.25 90.26 88.08 86.53 85.08 84.17 83.24 82.2 81.59

2 87.48 86.26 85.19 84.18 83.24 82.57 81.81 80.91 80.42

3 82.05 81.78 81.26 80.83 80.47 79.92 79.48 79.08

4 79.49 79.25 78.96 78.73 78.45 78.20 77.94

5 77.66 77.43 77.27 77.11 77.04 76.78

6 75.68 75.59 75.59 75.59 75.41

7 74.31 74.31 74.31 74.31

8 73.46 73.46 73.46

9 72.73 72.73

10 72.18

Moreover, when σ and τ become bigger, the reducing speed gets slower and the
email recall ratio seem to converge at some value around 70%. It is because a lot
of emails (about 70%) belong to some concepts whose the numbers of introduced
attributes are larger than 10. For this reason, when σ and τ increase, those emails
still remain in the structures.

The results in Table 6 prove that the number of the concepts were pruned
efficiently. For example, at σ = 10 and τ = 10, only 2.92% (81 concepts) of
the concepts in the initial lattice remain. Moreover, we also can see that for
parameter combinations with similar concept ratios, the one with higher τ value
produces higher module recall ratio and higher email recall ratio. For example,
even though σ=3, τ=3 and σ=9, τ=2 have the same concept ratio, that is 8.16%,
the module recall ratio and the email recall ratio of the latter are higher than
those of the former (61.17% to 54.26% and 82.05% to 80.91% respectively). This
fact proves that by using both constraints, the modules and emails are preserved
better in pruning.
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Table 6. The concept recall ratios of Ruby dataset (100%=2771 concepts)

τ\σ 0 1 2 3 4 5 6 7 8 9 10

0 100 99.96 83.97 61.91 47.22 37.80 31.12 26.97 23.61 21.01 19.03

1 44.26 28.27 22.64 18.84 16.61 14.55 13.39 12.38 11.23 10.61

2 14.58 13.14 11.99 11.05 10.18 9.60 8.99 8.16 7.83

3 8.16 7.94 7.58 7.33 7.11 6.75 6.46 6.25

4 6.14 5.99 5.85 5.74 5.60 5.45 5.34

5 5.05 4.95 4.87 4.80 4.77 4.66

6 4.12 4.08 4.08 4.08 4.01

7 3.57 3.57 3.57 3.57

8 3.29 3.29 3.29

9 3.07 3.07

10 2.92
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Fig. 5. Extracted structure of Ruby with σ = 10, τ = 8

Figure 5 shows an extracted structure for Ruby with the parameters set as
σ = 10 and τ = 8. Each node represents a concept with its possessed modules,
the number of introduced attributes and the number of possessed attributes.
The arrows in dashed lines represent the edges added after pruning. The module
recall ratio is 37.77% (71 modules), the email recall ratio is 73.46% (4821 emails),
and the concept recall ratio is 3.29% (91 concepts). In fact, this structure con-
sists of important modules of Ruby. The concept eval.c, which appears as a
main hub, has as many as 747 emails relating to it, and actually, eval.c deals
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with evaluating expressions of Ruby. This module can be said as the most im-
portant component of Ruby. Furthermore, modules related closely are correctly
grouped. For example, two concepts which have 6 modules, in fact, represent the
kernel subsystems of Ruby. The concept with the four modules io.c, socket.c,
getaddrinfo.c, and rubyio.h deals with the input-output and networking.

5 Concluding Remarks and Future Plans

Our method is an attempt to utilize both types of information: the mailing-
lists and the source code archives in order to extract the structures of open
source programs and categorize the emails in mailing-lists into the extracted
structures. Our method discovers the structure of the program based on the
view of the developers which can be obtained from the mailing-lists. This kind
of structure is distinguished from the structures built from the code, such as the
dependency graphs between source files. The advantage of our method is the
usage of information about related emails of source files. We found that groups
of source files which have large number of related emails are normally essential
components. Therefore, by changing the pruning thresholds, we can extract the
structure with some different degrees of summarization. As a result, it helps the
user to understand the program more easily.

Our method for separating text area and code area is simple and shows good
results when tested with Japanese emails. For emails in English, more sophisti-
cated methods are required to do the separation. The reason is many computer-
used terms are in English and it makes the problem more difficult. Tang et al. [15]
proposed a different method which used pre-defined rules to identify the parts
of source code of some particular programming languages in an email. However,
this method is not suitable for our task because it can only indentify limited
types of codes.

In the future, we would like to continue this research in several directions. The
first direction is to give a stronger background theory to support the proposed
PRUNIA algorithm and compare it with other existing similar algorithms if there
are any. Another direction is to extend our method for extracting the evolution
of software programs from their mailing lists. The time attributes, as well as
all versions of source files will be taken into account in this research. Besides,
automatic selection of parameters is also an interesting research problem.
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Abstract. Community detection has become a very important part in complex 
networks analysis. Authors traditionally test their algorithms on a few real or ar-
tificial networks. Testing on real networks is necessary, but also limited: the 
considered real networks are usually small, the actual underlying communities 
are generally not defined objectively, and it is not possible to control their  
properties. Generating artificial networks makes it possible to overcome these 
limitations. Until recently though, most works used variations of the classic 
Erdős-Rényi random model and consequently suffered from the same flaws, 
generating networks not realistic enough. In this work, we use Lancichinetti et 
al. model, which is able to generate networks with controlled power-law degree 
and community distributions, to test some community detection algorithms. We 
analyze the properties of the generated networks and use the normalized mutual 
information measure to assess the quality of the results and compare the consi-
dered algorithms. 

Keywords: Complex networks, Community detection, Algorithms comparison. 

1   Introduction 

Complex networks are now a popular tool to model a given system, by representing 
its components and their interactions with nodes and links, respectively. This model 
can then be analyzed or visualized thanks to some of the many tools designed for 
graph mining. Complex networks have been used in very different application do-
mains, such as physics, biology, social science or computer networks [1]. 

Among the various approaches used to study complex networks properties, com-
munity detection has become one of the most popular ones. A community, or cluster, 
is generally defined as a subset of nodes densely interconnected relatively to the rest 
of the network [2]. Many different community detection algorithms have been defined 
to identify these subsets. They are generally based on classical clustering principles 
adapted to graphs, using hierarchical or optimization methods. Hierarchical approach-
es divide or merge communities by considering the distance or similarity between 
them, whereas optimization approaches partition the network according to a given 
criterion. 

Authors traditionally test their community detection algorithms on a few real  
[3-11] or artificial [2-6, 10] networks. Limiting these tests to real networks can be 
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considered as an issue for several reasons. First, building such networks is a costly 
and difficult task, and determining reference communities can only be done by ex-
perts. This leads to small networks, where actual communities are not always defined 
objectively, or even known. Second, a complex network is characterized by various 
statistics like its average degree, degree distribution, shortest average path, etc. By 
definition, it is not possible to control these features in a real network. This means the 
algorithm is tested on a very specific and limited set of features. 

Artificial networks seem to overcome these limitations, because it is possible to 
randomly generate many of them, while controlling their properties. All that is 
needed is a generative model able to produce networks with features similar to 
those of real networks. Of course, artificial networks must not be seen as a substi-
tute to real networks, but rather as a complement. In the context of testing commu-
nity detection algorithms, the most popular generative model is the one defined by 
Newman and Girvan [4], which is used in all the works cited above. It is a variation 
of the classic Erdős-Rényi random model [12] (or Poisson random model), and it 
consequently suffers from the same limitation: the generated networks do not show 
a realistic topology [13, 14]. 

Some recent works tried to improve this by defining more realistic models, able to 
mimic some of the real networks features. In this work, we use the model proposed by 
Lancichinetti et al. [14], which is able to generate networks with controlled power-
law degree and community distributions. Our purpose is to generate a set of artificial 
networks with various size and properties, and to use it to test the existing community 
detection algorithms. We use the normalized mutual information measure [15-17] to 
assess the quality of the results and compare the considered algorithms. 

In section 2, we explain what the properties of a complex network are. It is of 
course an open question to decide how a complex network can be described by a few 
features, but we kept only the most widely used ones. In section 3, we focus on the 
community detection task. We first describe its general mechanisms, and the modular-
ity measure, which is used as an optimization criterion in many algorithms. Then, we 
list the algorithms we chose to compare. In section 4, we explain how we generated 
our test set of artificial networks, and we give some explanation about the normalized 
mutual information measure we used to assess the algorithms performance. In section 
5, we present and discuss our results, focusing first on the observed properties of the 
generated networks, and then on the comparison of the algorithms’ performances. 

2   Complex Networks Properties 

Undirected real networks are known to share some common properties. In this sec-
tion, we present the most prominent ones: small-worldness, transitivity, degree-
related properties and community structure. Many other properties can be used to 
describe a network, either by analyzing some measure, like betweenness-centrality 
distribution [18] or network diameter [19], or by counting the number of occurrences 
of a given substructure like motifs in [20]. But their use is not really widespread, and 
we would consequently lack experimental values to exploit them in this work. 
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Small-World. A network is said to have the small-world property if, for a fixed aver-
age degree, the average distance (i.e. the length of the shortest path) between pairs of 
nodes increases logarithmically with the number of nodes  [1]. This property can be 
interpreted as propagation efficiency: spreading on the network remains relatively fast 
even if the network grows.   

Transitivity. The transitivity property is measured by a transitivity coefficient, also 
called clustering coefficient [21]. Different versions of this coefficient exist, but they 
all try to assess the density of triangles in a network. The higher this coefficient, the 
more probable it is to observe a link between two nodes which are both connected to a 
third one. Independently of the considered coefficient version, a real network is sup-
posed to have a higher transitivity than a Poisson random network (such as those 
generated by the Erdős–Rényi model [12]) with the same number of nodes and links, 
by a factor of order  [1]. 

Degree. Networks can also be described according to their degree distribution. In 
most real networks, this distribution follows either a power or an exponential law. In 
other terms, the probability for a node to have a degree  is either ~  or ~ ⁄  [1]. Networks with a power-law degree distribution are the most common. 
They are called scale-free, because their degree distribution does not depend on their 
size (some other properties may, though). Experimental studies showed that the  
coefficient usually ranges from 2 to 3 [1, 19, 22]. It is known that for values of  
smaller than 3.48, there is a high probability the network contains one giant compo-
nent and several small ones (a component is a separated subgraph), or even only one 
component (the network being completely connected) [22]. 

In a real network, the average and maximal degrees generally depend on the num-
ber of nodes it contains. For a scale-free network, it is estimated to be ~  [19, 
22] and ~ ⁄  [1], respectively. 

The degree correlation of a network constitutes another interesting property. The 
question is to know how a node degree is related to its neighbors’. Real networks 
usually show a non-zero degree correlation. If it is positive, the network is said to 
have assortatively mixed degrees, whereas if it is negative, it is disassortatively mixed 
[1]. According to Newman, social networks tend to be assortatively mixed, while 
other kinds of networks are generally disassortatively mixed. Nodes with high degree 
are called hubs, because they have a more central position in the network. 

Community. In this work, our focus is on detecting communities in networks. Of 
course, it is important to note that not all real networks have a community structure. 
According to Newman though, it is a common feature in biological and social networks 
[1]. When the community structure is present, the community size distribution seems  to 
follow a power-law distribution [23] with a parameter  ranging from 1 to 2 [5, 24]. 

3   Community Detection 

Complex networks have been used widely to model real-world systems in many ap-
plication fields. When analyzing a complex network, the problem of identifying its 
communities is universal, and has consequently been raised in many domains, leading 
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to different solutions. Many of them rely on Newman’s modularity to assess the quali-
ty of their results, so we will first introduce this measure. Then, we will present the 
principles of community detection, and give a short description of the algorithms we 
chose to compare. 

3.1   Modularity 

The modularity measure has been presented by Newman and Girvan [2] to assess the 
quality of a network partition. They first define what could be called a community 
contingency matrix, whose elements  represent the fraction of total links from a 
node in community  towards a node in community . The fraction of links inside 
community  is therefore . Moreover, since we are considering undirected net-
works, we have  and the matrix is symmetric. 

Let  and  be the sums over row  and column , respectively. If the network 
has no community structure, or if the considered communities are not defined accor-
dingly to the network structure, then one can suppose the links are randomly distri-
buted. Under this hypothesis, the expected fraction of links inside community  can be 
estimated as the probability for a link to start in community , which is , multiplied 
by the probability to end in community , which is . The matrix being symmetric, 
we have . The modularity measure is defined as the difference be-
tween the observed and expected fractions of links in each community, summed over 
all communities: 

 (1)

When the communities are not better than a random partition, or when the network 
does not exhibit any community structure,  is negative or zero. Its superior limit is 1, 
but it can be approached only if the network has a strong community structure and if 
the communities have been perfectly detected. 

Interestingly enough, the modularity measure is similar to the numerator of chance-
corrected measures used to assess the performance of classic classifiers, such as Co-
hen’s  coefficient [25]. The general formula for these measures is 1⁄ , where  is the observed agreement and  is the expected 
agreement between the classifier results and the classified data. But unlike modulari-
ty, chance corrected measures are normalized by the dividing term 1 , which 
represents a perfect classifier result (reaching a 1 observed agreement). Of course, it 
is not possible to process the corresponding value in the case of modularity, because 
the superior limit for ∑  depends on the community structure of the network, and is 
usually less than one (whereas 1 is an absolute value for classic classifiers).  

The modularity measure is known to have some flaws. For example, it is sensitive 
to community size [26] and it is possible to find partitions of Poisson random net-
works with relatively high modularity values [27] (although they have no community 
strucuture). However, many community detection algorithms use it as an optimization 
criterion, as we will see in the following section. 
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3.2   Algorithms for Community Detection 

It is difficult to categorize the community detection algorithms, but one could group 
them in three different families: hierarchical, optimization, and others.  

Early solutions are based on hierarchical approaches whose result is a tree of com-
munities called dendrogram. Agglomerative approaches starts with as many commun-
ities as nodes, each node having its own community, and iteratively merge these 
communities until only one giant community remains. On the opposite, divisive ap-
proaches start with one community containing all nodes, and iteratively split the 
communities until each node constitute one community. The communities to be 
merged or split are chosen accordingly to some distance or similarity function which 
allows detecting which communities are similar (agglomerative approach) or hetero-
geneous (divisive approach). What distinguishes algorithms in this family is mainly 
the nature of the distance or similarity function. The result being a dendrogram, one 
still needs to find out where to perform a cut in order to get an actual partition. For 
instance, one can compute the modularity at each level, and use the partition with 
maximal modularity. 

The optimization-based approaches use a measure to estimate the quality of a net-
work partition. This measure is, most of the time, Newman’s modularity [2]. The 
general algorithm consists in first processing several partitions of the network (ran-
domly or by following a fitting function) and second keeping the best one according 
to the quality measure. This partition can then be refined in order to get a better quali-
ty. Modularity is a costly measure to process, hence the numerous algorithms defined 
for its optimization [3, 6, 24]. 

The last family contains all the remaining approaches. Some use different prin-
ciples coming from classical clustering like density-based clustering [7]; some are 
agent-based [8]; some allows finding overlapping communities (one node can be a 
part of several communities at once) [28]; some use a latent space approach to process 
the probability for a node to belong to a community [9]. 

This work consists in comparing community detection algorithms on many gener-
ated networks, so we chose to focus first on the following algorithms, which are fast 
and simple.  

Fast Greedy Algorithm. This algorithm was developed by Newman et al. [10, 24]. It 
is modularity-based and uses a hierarchical agglomerative approach. It is called fast 
greedy because thanks to a standard greedy method, it is significantly faster than older 
algorithms. 

Walktrap Algorithm. This algorithm by Pons and Latapy [29] uses a hierarchical 
agglomerative method. Here, the distance between two nodes is defined in terms of 
random walk process. The basic idea is that if two nodes are in the same community, 
the probability to get to a third node  located in the same community through a ran-
dom walk should not be very different for  and . The distance is constructed by 
summing these differences over all nodes, with a correction for degree. 

Eigenvector Algorithm. This algorithm by Newman [30] is modularity-based, and it 
uses an optimization method inspired by graph partitioning techniques. It relies on the 
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eigenvectors of a so-called modularity matrix, instead of the graph Laplacian tradi-
tionally used in graph partitioning. 

Label Propagation Algorithm. This algorithm by Raghavan et al. [11] uses the con-
cept of node neighborhood and the diffusion of information in the network to identify 
communities. Initially, each node is labeled with a unique value. Then an iterative 
process takes place, where each node takes the label which is the most spread in its 
neighborhood. This process goes on until one of several conditions is met, for in-
stance no label change. The resulting communities are defined by the last label values. 

Spinglass Algorithm. This algorithm by Reichardt and Bornholdt [31] is an optimi-
zation method relying on an analogy between the statistical mechanics of complex 
networks and physical spin glass models.  

4   Method 

In order to compare the selected algorithms, we chose to generate a set of artificial 
networks. If we want the results to hold when the algorithms are applied on real net-
works, our artificial networks properties must be the most similar possible to those we 
previously described for real networks. Another important point is the assessment of 
the results quality, which must be reliable in order to compare efficiently the com-
munities detected by the tested algorithms. In this section, we present the model we 
used to generate our test data and the measure we chose to assess the algorithms per-
formance. 

4.1   Network Generation 

In many community detection works [3, 32, 33], artificial community-structured net-
works are generated with models similar to the one defined by Newman and Girvan 
[4, 10]. It relies on the principle of the Erdős-Rényi model [12]: each community 
corresponds to a Poisson random network, with a probability  to have a link be-
tween two of its nodes (an internal link). Another probability  is used to add links 
between nodes from different communities (external links). The probabilities are 
constrained so that  and the average degree  of the resulting network tends 
towards a fixed value.  

This model lacks some of the properties we described earlier: the degree distribu-
tion and the community size distribution do not follow a power-law, and we have no 
information about the other properties. For this reason, we chose to use a more recent 
model defined by Lancichinetti et al. [14] to generate our test set of artificial net-
works. It allows generating random networks with a community structure and a pow-
er-law degree distribution. Moreover, the size of the resulting communities also fol-
lows a power-law distribution.  

This method needs the following compulsory parameters: the number of nodes n, 
the desired average  and maximum  degrees, the exponent  for the degree 
distribution, the exponent  for the community size distribution, and a value  called 
the mixing coefficient. The latter represents the average proportion of links between a 
node and nodes located outside its community, 1  being the proportion of links 
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with nodes located in the same community. This leads to the concepts of internal and 
external degrees, corresponding to the number of links a node has inside and outside 
its community, respectively. For a node of degree , we then have the values 1

 for the internal degree and  for the external degree. Of course, these values 
hold in average, but can only be approximated when considering a given node. Two 
additional parameters, the minimum and maximum community sizes, can also be 
optionally precised. If this is not the case, they are automatically set to values smaller 
than the minimal degree and greater than the maximal degree, respectively. This way, 
every node can fit in a community, whatever its degree. 

The generation is performed in three steps. First, the well-known configuration 
model [34] is used to generate a scale-free network corresponding to the specified  
parameter. Second, the community sizes are drawn in accordance with the  parame-
ter, and each node is randomly affected to a compatible community. Compatible 
means here that the community size must be greater or equal to the node internal 
degree. Some specific mechanisms ensure the convergence of the processing, see [14] 
for more details. Third, some links are rewired in order to respect the mixing coeffi-
cient. For a given node, the total degree is not modified, but the ratio of internal and 
external links is changed so that the resulting proportion gets close to . 

Our goal was to compare the performance of community detection algorithms, so 
we generated networks with parameters consistent with what is observed in real 
community-structured networks. We used the value 1000 for the number of nodes . 
The  and  exponents ranged from 1 to 2 and from 2 to 3, respectively. We used 
values of  in 0.05; 0.95  with a 0.05 step. For each set of parameters, we generated 25 networks in order to deal with possible discrepancies in the networks properties 
due to the random generation. 

In rare occasions, we observed that some parameters can cause several components 
to appear in the same network. Some algorithms like Walktrap cannot be applied on 
such networks, so we decided to randomly connect these components in order to be 
able to apply all the algorithms. 

4.2   Performance Assessment 

As we stated before, the modularity measure is a standard for assessing the quality of 
a network partition. But it was designed to be an approximation of the partition quali-
ty, to guide community detection algorithms when the actual communities are un-
known. The value computed for a given situation depends on both the quality of the 
detected communities and of the nature of the network community structure.  

This dependence to the network structure prevents from using modularity to com-
pare algorithm performances on different networks. Furthermore, we will use artifi-
cial networks, whose communities are known a priori. In this context, modularity is 
not an appropriate measure, because it does not make use of this important informa-
tion. For interpretation purposes, we nevertheless processed the modularity for the 
various tests we performed (several tested algorithms use modularity during their 
processing). 

Instead of modularity, we used the normalized mutual information measure (NMI). 
It was defined in the context of classical clustering to compare two different partitions 
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of one data set [15, 16]. It was shown to be an efficient way to assess the quality of 
estimated network communities by Danon et al. [17]. 

The measure is derived from a confusion matrix whose element  represents the 
number of nodes put in community  by the considered algorithm, whereas they ac-
tually belong to community . This matrix is usually rectangular, because the algo-
rithm does not necessary find the correct number of communities. 2∑ ∑ log ⁄∑ log ⁄ ∑ log ⁄  (2)

If the estimated communities correspond perfectly to reality, the measure takes the 
value 1, whereas it is 0 when the estimated communities are independent from the 
actual ones. 

5   Results and Discussion 

5.1   Generated Networks 

The model from Lancichinetti et al. [14] allows controlling most of the network prop-
erties: number of nodes, degree distribution, maximal and average degrees and com-
munity size distribution. For these properties, we used realistic values in accordance 
with the literature (cf. the Complex Network Properties section). The question is to 
know whether the uncontrolled properties (average distance, transitivity, correlation 
degree), arising from the processing, are realistic too. Furthermore, we would like to 
know if and how changes in the controlled parameters affect the uncontrolled ones. 
This is an important matter, because such a change may influence the algorithms’ 
performances, which could therefore be explained either by a direct or an indirect 
effect. By direct effect, we mean the observed performance modifications are related 
to the changed controlled properties. By indirect effect, we mean they are related to a 
change in some uncontrolled properties, caused itself by the change in controlled 
properties.  

In the following, we will discuss separately the relation between each parameter 
and the uncontrolled properties. The numbers indicated in parenthesis correspond to 
the processed (Pearson’s) correlation values between the considered parameter and 
uncontrolled property, for 1000 nodes networks.  

The variations in the average and maximal degrees have little or no effect on the 
degree correlation and transitivity coefficient ( 0.14 and 0.09, respectively), but 
there is a direct relation with the average distance ( 0.66). Unsurprisingly, it de-
creases dramatically when the average degree increases, certainly due to the rise in the 
number of links.  

The  parameter has little or no effect on the average path length (0.01) and the 
transitivity coefficient (0.05), but it relatively affects the degree correlation (0.37). 
The  parameter controls the homogeneity of the community sizes: when it increases, 
the communities tend to be more uniform in terms of size [14]. Our interpretation is 
that with a small beta, we have many small communities with no hubs, much less 
medium communities with a few hubs, and a few big communities with more hubs.  
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Fig. 1. Influence of the mixing coefficient  on the properties of the generated networks. The 
controlled parameters are , , ,  and . Each point 
corresponds to an average over  generated networks. The dotted and dashed horizontal lines 
represent the expected values for the same properties in networks generated with the configura-
tion model [34] and Poisson model [12], respectively, using similar parameters. 

 
Medium community hubs have less chance to get linked with other hubs, because 
there are only a few hubs in their community, and links between communities are 
rarer, which prevents them to get linked with hubs in other communities. When beta 
increases, this chance also increases because the number of hubs in the same commu-
nity gets larger. 

The  parameter has little or no effect on average distance (0.07) and transitivity 
( 0.06), but it relatively affects the degree correlation ( 0.26). When  increases, 
the network degree distribution becomes more homogeneous, so this is consistent 
with the fact that degree correlation is close to zero in Poisson random networks. 

The most influent parameter is the mixing coefficient , as shown in Fig. 1. The 
computed correlations are not necessarily high, but the plots show a non-linear rela-
tionship between  and all three uncontrolled properties. As shown on the plot, the 
average distance decreases when  increases. However, we performed additional 
measurements on networks with sizes between 100 and 100000 nodes, and observed 
a clear logarithmic relationship between the size and the average distance, which is 
consistent with real networks features. The transitivity is very high for low  values, 
but gets down to the level of Poisson random networks when  reaches 0.7. In the 
same way, for low  values, the degree correlation is relatively high, but quickly 
decreases until  reaches 0.4 or 0.5, and then stays close to zero. Interestingly, 0.5 corresponds to a limit above which the proportion of external links is higher 
than the proportion of internal links. In other terms, when  goes above this limit, the 
communities are not well defined anymore, and we have a scale-free network with no 
community structure. Here, we must recall Lancichinetti et al. method consists in 
using the configuration model to generate a scale-free network, which is then partially 
rewired to create a community structure. For a given node, there are usually many 
more nodes outside than inside its community. Therefore, the higher  and the lesser 
the original network is modified. Put differently: when  grows, the generated net-
works get more similar to scale-free networks generated by the configuration model. 
The configuration model is known to produce networks with no degree correlation 
[35]. Furthermore, Newman [1] showed that when it is used to generate scale-free 
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networks, for 7 3⁄  the transitivity tends toward zero as the number of nodes is 
increasing. Our measures show close to zero degree correlation and transitivity when 

 gets close to 1, which is consistent with the previous remarks. The average distance 
is also close to what is expected from a configuration model-produced network [36]. 
Using smaller  values, i.e. defining more distinct communities, makes all three prop-
erties grow. The effect on degree correlation could be due to the apparition of hub-to-
hub links between communities. The definition of community used here relies on 
stronger inner density, and is therefore related to the concept of transitivity, which 
may explain its increase. The disappearance of shortcut links between the communi-
ties could explain the observed decrease in average distance. 

To conclude these observations, we can state the generated networks show some 
reasonably realistic properties when  is relatively small. However, increasing this 
parameter not only causes communities to become less distinct, but also makes the 
whole network becoming less realistic, its average distance, transitivity and degree 
correlation decreasing rapidly. 

5.2   Algorithms Performance 

The results from the five algorithms are presented in Fig. 2. We can distinguish three 
kinds of results: Spinglass and Walktrap perform generally very well; Label Propaga-
tion also performs well, but is more sensitive to decreases in ; Eigenvector and Fast 
greedy are clearly below the others, especially for networks with high degrees. More 
generally, all the algorithms are sensitive to changes in the average and maximal 
degree, and have better performances when it increases, as Lancichinetti et al. pre-
viously noticed on different algorithms [14]. But this sensibility is not the same for all 
of them, as we can observe different decreases in performance when  is increasing. 
This general sensitivity to  is not surprising, since an increase in  means the com-
munities are vanishing. Spinglass and Walktrap are the most robust, with NMI results 
remaining at 1 until they suddenly drop between 0.6 and 0.8 for the two higher 
values of  and  (last two rows). For the lower degrees values (first row), the 
decrease is more regular and starts from 0.05. 

For Eigenvector and Fast greedy, the performance drop takes place sooner, and is 
almost linear starting from 0.05, with all three tested degree values. Label Propa-
gation behavior is apart: it performs almost as well as Spinglass and Walktrap, but its 
performance drop happens sooner, between 0.5 and 0.6, and is more sudden. 

When observing the joint effect of the mixing coefficient and the average and max-
imum degrees on the performance, it is interesting to observe the reversal taking place 
around 0.75, as illustrated by Fig. 3 for Walktrap and Spinglass. Below this limit, 
the higher the degree and the better the performance. Above this limit, the lower the 
degree and the better the performance. This means high density helps discovering 
community structure when it is strong, whereas it hides it when it is weak. But as we 
stated in the previous section, the generated networks become less realistic when  
increases, so the observed change in performance could actually be caused not direct-
ly by the degree variations, but by consequent decreases in the transitivity or degree 
correlation. 
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Fig. 2. Comparison of the five algorithms results for . On the left column:  and 
, on the right column  and . On the first row  and , on the 

second one  and , and on the third one  and . Each 
point corresponds to an average over  generated networks. 
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Fig. 3. Joint influence of the mixing coefficient  and the average degree  on the perfor-
mance of two algorithms: Walktrap on the left and Spinglass on the right. Each point corres-
ponds to an average over  generated networks, with  and . 

The  and  parameters do not seem to affect any of the algorithms (correlation 
smaller than 0.06 for all five), except for Walktrap, for which it looks like  has an 
effect similar to the degree effect observed before. In other terms, the scale-free prop-
erty makes it easier for Walktrap to discover communities when the community struc-
ture is strong, but makes it more difficult when it is weak. 

6   Conclusion 

In this paper, we compared five different community detection algorithms. We used a 
set of artificial networks generated with the model defined by Lancichinetti et al. [14], 
which allows randomly producing networks with a community structure and power-
law degree and community size distributions. To our knowledge, this type of compar-
ative study was never conducted on such realistic networks before. We used the  
normalized mutual information measure [15-17] to assess the performance of the 
algorithms. Our results show that among the Fast Greedy [10, 24], Walktrap [29], 
Eigenvector [30],  Label Propagation [11] and Spinglass [31] algorithms, Walktrap 
and Spinglass get generally the best results. They succeed in identifying the com-
munities even for high mixing coefficient values. Label Propagation has also excel-
lent results, but its performance drop happens before Spinglass and Walktrap. Fast 
greedy and Eigenvector are clearly outclassed by all three other algorithms.  

After having analyzed the data, we concluded the mixing coefficient and average 
and maximum degrees have a strong joint effect on the algorithms results. A higher 
density tends to improve community finding when the communities are distinct, but 
makes it harder to find them when the community structure is weak. In these algo-
rithms and in the modularity measure, a community is defined as a subset of nodes 
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densely interconnected relatively to the rest of the network. This definition does not 
hold anymore when 0.5, which means above this limit, the network structure 
does not reflect the community structure. In other terms, the information conveyed by 
the network links is not pertinent anymore, and this can explain the observed joint 
effect. Moreover, increases in the mixing coefficient also make the networks  
becoming less realistic, which could as well be a cause for the observed drop in per-
formance. 

Our work can be seen as a first attempt at comparing community detection algo-
rithms, and can be extended in several ways. The generative model we used is more 
realistic than earlier ones, but we observed that increasing the mixing coefficient  
makes the produced networks less realistic (strong decrease in the average distance, 
degree correlation and transitivity). We suppose this is due to the use of the configura-
tion model [34] by Lancichinetti et al. [14] to produce an initial network, which is 
then modified to create the community structure. Maybe this could be corrected by 
using another model instead, such as preferential attachment [37] (or one of its varia-
tions), able to generate networks with more realistic properties. Of course there is no 
certainty about whether or not these properties would resist the modifications per-
formed on the initial network.  

We only considered a few properties to analyze the artificially generated networks, 
and some additional properties, maybe more community-oriented (see [19]) could be 
used to have a more precise idea of their realism. Moreover, real networks properties 
are usually described commonly, but there may be strong differences between the 
various types of real networks such as social networks, biological networks, informa-
tion networks, etc. [1]. In that case, a proper test should compare algorithms on dif-
ferent types of corresponding artificial networks. 

We compared the algorithms on networks containing only 1000 nodes. Real net-
works are generally much bigger, in the order of tens of thousands or millions of 
nodes. For more significance, the algorithms should be tested on this type of net-
works, but this raises two problems: 1) processing community detection on such huge 
networks is significantly more time expensive, and 2) determining realistic average 
and maximal degrees is difficult because of the heterogeneity observed in real net-
works for these properties. The second point is important, since we observed the per-
formance of a given algorithm could vary strongly in function of these sole properties. 
We also limited this comparison to the fastest algorithms, again for computability and 
time reasons. A proper exhaustive test should consider more expensive algorithms 
(see [17, 19]). 

Finally, we sometimes observed extreme disagreements between the final modular-
ity measure processed by the various algorithms and the information measure  
corresponding to their performance. It should be interesting to process the optimal 
modularity over all the tested algorithms and to study how it evolves relatively to the 
networks properties and the measured performances. 
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Panče Panov1, Larisa N. Soldatova2, and Sašo Džeroski1
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Abstract. Motivated by the need for unification of the domain of data

mining and the demand for formalized representation of outcomes of

data mining investigations, we address the task of constructing an ontol-

ogy of data mining. In this paper we present an updated version of the

OntoDM ontology, that is based on a recent proposal of a general frame-

work for data mining and it is aligned with the ontology of biomedical

investigations (OBI) . The ontology aims at describing and formalizing

entities from the domain of data mining and knowledge discovery. It in-

cludes definitions of basic data mining entities (e.g., datatype, dataset,

data mining task, data mining algorithm etc.) and allows extensions with

more complex data mining entities (e.g. constraints, data mining scenar-

ios and data mining experiments). Unlike most existing approaches to

constructing ontologies of data mining, OntoDM is compliant to best

practices in engineering ontologies that describe scientific investigations

(e.g., OBI ) and is a step towards an ontology of data mining investiga-

tions. OntoDM is available at:http://kt.ijs.si/panovp/OntoDM/.

1 Introduction

Traditionally, ontology has been defined as the philosophical study of what ex-
ists: the study of kinds of entities in reality, and the relationships that these
entities bear to one another [21]. In recent years use of term ontology has be-
come prominent in the area of computer science research and the application
of computer science methods in management of scientific and other kinds of in-
formation. In this sense the term ontology has the meaning of a standardized
terminological framework in terms of which the information is organized.

The ontological problem is adopting a set of basic categories of objects, deter-
mining what kinds of entities fall within each of these categories of objects, and
determining what relationships hold within and among different categories in
the ontology. The ontological problem for computer science is identical to many
of the problems in philosophical ontology, and the success of constructing such
an ontology is achievable by applying methods, insights and theories of philo-
sophical ontology. When one sets out to construct an ontology then, what one
is doing is designing a representational artifact that is intended to represent the

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 257–271, 2009.
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universals and relations amongst universals that exist, either in a given domain
of reality (e.g data mining domain) or across such domains.

The engineering of ontologies is still a relatively new research field and some
of the steps in ontology design remain manual and can be considered as an art by
itself. Recently there was a significant progress in automatic ontology learning
[14], application of text mining [17], and ontology mapping [13]. However the
construction of a good quality ontology with the use of automatic and even
semi-automatic techniques still requires manual definition of the key upper level
entities of the domain of interest. Good practices in ontology development are:
following an upper level ontology as a template, the use of formally defined
relations between the entities and not allowing multiple inheritances [25].

In the domain of data mining and knowledge discovery, researchers have tried
to construct ontologies describing data mining entities that were targeted to
solve specific problems. Most of the developments are with the aim of automatic
planning of data mining workflows [1,30,11,8]. Some of the developments are
concerned with description of data mining services on the GRID [6,5].

Current proposals for ontology of data mining are not based on upper level
categories nor have used a predefined set of relations based on a upper level
ontology. Most of the semantic representations for data mining proposed so far
are based on so called light-weight ontologies [15]. Light-weight ontologies are
often shallow, without rigid relations between the defined entities, but they are
relatively easy to develop by semi/automatic methods and they still greatly facil-
itate computer applications. The reason why these type of ontologies are more
frequently developed then heavy-weight ontologies is that process of develop-
ment is more difficult and time consuming. In contrast to many other domains,
data mining requires elaborate inference over its entities, and hence requires
rigid heavy-weight ontologies with the aim of improving the KDD (Knowledge
Discovery in Databases) process and providing support for development of new
data mining approaches and techniques.

While KDD and data mining have enjoyed great popularity and success in
recent years, there is a distinct lack of a generally accepted framework that
would cover and unify the data mining domain. The present lack of such a
framework is perceived as an obstacle to the further development of the field.
In [29], Yang and Wu collected the opinions of a number of outstanding data
mining researchers about the most challenging problems in data mining research.
Among the ten topics considered most important and worthy of further research,
the development of an unifying framework for data mining is listed first. One
step towards developing a general framework for data mining is constructing an
ontology of data mining.

In this paper we propose an extended and updated version of the ontology
of data mining named OntoDM. Our ontology design takes into consideration
the best practices in ontology engineering. We use an upper level ontology BFO
(Basic Formal Ontology)1 to define the upper level classes, the OBO Relational

1 BFO: http://www.ifomis.org/bfo

http://www.ifomis.org/bfo
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Ontology (RO)2 to define the semantics of the relationships between the data
mining entities, and provide is-a completeness and single is-a inheritance for
all DM entities. We also developed our ontology in the most general fashion
in order to be able to represent the complex entities in data mining that are
becoming more and more popular research areas such as mining structured data
and constraint-based mining.

In previous work [16] we presented an initial version of OntoDM sufficient for
the representation of data mining tasks and complex data types. The ontology is
based on the proposal for a general framework for data mining presented in [9].
The initial version of OntoDM was using the philosophy of Ontology of Scientific
Experiments (EXPO) [26] and ontology of biomedical investigations (OBI)3 for
identification and organization of entities in a is-a class hierarchy.

The version described in the current paper has been sufficiently updated in
several ways. First, the structure of the ontology was aligned with the top level
structure of the OBI ontology. This procedure requested revising the represen-
tation of some data mining entities and also introduced new entities in the on-
tology (e.g., the entity data mining algorithm was split into three entities each
capturing different dimension of a description; algorithm specification, algorithm
implementation and algorithm description). Second, we extended the set of re-
lations used in the initial version with relations defined in the OBI ontology in
order to express the relations between informational entities, entities that are
realized in a process and processes. Finally, we extended the OBI classes with
data mining specific classes for describing complex entities (e.g., data mining
scenarios, queries).

The rest of the paper is structured as follows: Section 2 provides the back-
ground for this work. Section 3 presents the ontology design principles and we
provide a detailed description of the alignment with OBI ontology and descrip-
tion of upper level classes and relations. Section 4 presents an example of repre-
sentation of a data mining algorithm in OntoDM based on the alignment with
OBI ontology and Section 5 discusses the representation of complex data mining
entities. In Section 6 we give a roadway for future research and development of
the ontology.

2 Background

2.1 Motivation

The motivation for developing an ontology of data mining is multi-fold. Firstly,
as it was mentioned in the introduction, the area of data mining is developing
rapidly and one of the most challenging problems deals with developing a general
framework for data mining. By developing an ontology of data mining we are
taking one step towards solving this problem. The ontology would define and
formalize what are the basic entities (e.g., dataset, data mining algorithm) in

2 RO: http://www.obofoundry.org/ro/
3 OBI: http://obi-ontology.org/

http://www.obofoundry.org/ro/
http://obi-ontology.org/
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data mining and define the relations between the entities. After the basic entities
are identified and defined, we can build upon them and define more complex
entities (e.g. data mining query, data mining scenario and experiment). All the
defined data mining entities organized in the form of an ontology would be a
backbone of the systems for automated data mining.

Secondly, there exist several proposals for ontologies of data mining but all of
them are light-weight, aimed at covering a particular use-case in data mining,
are of a limited scope and highly use-case dependent. Data mining is a domain
that needs a heavy-weight ontology with a broader scope, where much attention
is paid to the rigorous meaning of each entity, semantically rigorous relations
between entities and compliance to an upper level ontology and the domains of
application (e.g., biology, environmental sciences).

Finally, an ontology of data mining should define what is the minimum in-
formation required for the description of a data mining investigation. Biology
is leading the way in developing standards for recording and representation of
scientific data and biological investigations (e.g., already more than 50 jour-
nals require compliance of papers reporting microarray experiments to the Min-
imum Information About a Microarray Experiment - MIAME standard). The
researchers in the domain of data mining should follow this good practice and the
ontology of data mining would support development of standards for performing
and recording of data mining investigations.

2.2 State-of-the-Art

Formalizing scientific investigations. In recent years, there is an increased
need for formalized representations of the domain of data mining and formal
representation of outcomes of research in general. There exist several formalisms
for describing scientific investigations and outcomes of research. In this part
we will focus on two proposals that are relevant for describing data mining
investigations: Ontology for Biomedical Investigations (OBI) and Ontology of
Scientific Experiments (EXPO).

Ontology of biomedical investigations - OBI. The OBI(http://obi-ontology.
org/) ontology aims to provide a standard for the representation of biologi-
cal and biomedical investigations. OBI is developed through collaboration of
19 biomedical communities (transcriptomics, proteomics, metabolomics, etc.).
They are developing a set of universal terms that are applicable across various
biological and technological domains and domain specific terms relevant only
to a given domain. The ontology supports consistent annotation of biomedical
investigations regardless of particular field of the study. It aims to represent de-
sign of an investigation, the protocols and used instrumentation, used materials,
generated data and type of analysis performed on it.

The OBI ontology employs rigid logic and semantics as it uses an upper level
ontology BFO and the RO relations to define the top classes and a set of re-
lations. OBI defines occurrences (processes) and continuants (materials, instru-
ments, qualities, roles, functions) relevant to biomedical domains. OBI is fully

http://obi-ontology.org/
http://obi-ontology.org/
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compliant with the existing formalisms in biomedical domains. OBI is a part of
OBO Foundry [22] which requires all member ontologies follow the same design
principles, the same set of relations, the same upper ontology, and to define a
single class only once within OBO to facilitate integration and automatic rea-
soning.

The Data Transformation Branch is an OBI branch with the scope of identi-
fying and ontologising entities and relations to describe processes which produce
output data given some input data, and the work done by this branch is related
to the proposal presented in this paper.

Ontology of experiments EXPO and LABORS. The formal definition of exper-
iments for analysis, annotation and sharing of results is a fundamental part of
science practice. A generic ontology of experiments EXPO [26] tries to define
the principal entities for representation of scientific investigations. The EXPO
ontology is of a general value in describing experiments from various areas of
research. This was demonstrated with the use of the ontology for the descrip-
tion of high-energy physics and phylogenetics investigations [26].The ontology
uses a subset of SUMO4 suitable for scientific representations as an upper level
ontology and a minimized set of relations in order to provide compliance with
the existing formalisms. An ontology LABORS is an extension of EXPO for the
description of automated investigations (the Robot Scientist Project 5).

LABORS defines such research units as investigation, study, test, trial, repli-
cate which are required for the description of complex multilayered investigations
carried out by a robot. For example an investigation resulted in a fully auto-
matic discovery of new gene functions consists of >10,000 such research units
[12]. LABORSs logical definions of the research units properties, hypotheses,
results, conclusions and data base of the experimental observations and results
are translated into datalog for the reasoning over all data and metadata.

Ontology of experiment actions - EXACT. An ontology of experiment actions
(EXACT) [24] aims to provide a structured vocabulary of concepts for the
description of protocols in biomedical domains. The main contribution of this
ontology is the formalizing biological laboratory protocols in order to enable re-
peatability and reuse of already published experiment protocols. This work is
related with the descriptions of data mining scenarios and workflows.

Describing data mining entities. Main developments in description of data
mining entities in a form of an ontology are in the area of semi automatic data
mining workflow construction and description of data mining services and re-
sources on the GRID. Other research includes description of machine learning
experiments in context of experiment databases and identification of entities us-
ing collection of data mining literature. We will briefly describe all the mentioned
approaches.

4 SUMO: http://www.ontologyportal.org/
5 http://www.aber.ac.uk/compsci/Research/bio/robotsci/

http://www.ontologyportal.org/
http://www.aber.ac.uk/compsci/Research/bio/robotsci/
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Describing data mining workflows. In [1] the authors propose a prototype of
an Intelligent Discovery Assistant (IDA) which provides users with systematic
enumerations of valid data mining processes (sequences of data mining oper-
ators) and effective rankings of the processes by different criteria, in order to
facilitate the choice of data mining processes to execute to solve a concrete data
mining task. This automated system takes the advantage of an explicit ontology
of data mining operators (algorithms). The ontology that is designed is a light-
weight ontology that contains only a hierarchy of data mining operators divided
into three main classes: preprocessing operators, induction algorithms and post
processing operators. The leaves of the hierarchy are the actual operators. The
ontology does not contain information about the internal structure of the opera-
tors and the taxonomy is produced only according to the role that the operator
has in the knowledge discovery process.

In [11] the authors build upon the work presented in [1] and propose an
intelligent data mining assistant that combines planning and meta-learning for
automatic design of data mining workflows. A knowledge driven planner relies
on a knowledge discovery ontology [1], to determine the valid set of operators
for each step in the workflow. The probabilistic meta-learner is proposed for
selecting the most appropriate operators by using relational similarity measures
and kernel functions based on past data mining experiments.

The work in [30] also addresses the problem of semiautomatic design of work-
flows for complex knowledge discovery tasks. The idea is to automatically pro-
pose workflows for the given type of inputs and required outputs of the discovery
process. This is done by formalizing the notions of a knowledge type and data
mining algorithm in the form of an ontology. The planning algorithm accepts
task descriptions expressed using the vocabulary of the ontology.

Describing data mining services and resources. In [5] the authors introduce an
ontology-based framework for automated construction of complex interactive
data mining workflows as a means of improving productivity of GRID-enabled
data systems. For this purpose they develop a data mining ontology which is
based on concepts from industry standards like: predictive model mark-up lan-
guage (PMML)6, WEKA [28] and Java data mining API.

In the context of GRID programming in [6] the authors propose a design and
implementation of an ontology of data mining. The motivation for building the
ontology comes from the context of the author’s work in Knowledge GRID [7].
The main goals of the ontology are to allow the semantic search of data mining
software and other data mining resources and to assist the user by suggesting the
software to use on the basis of the user’s requirements and needs. The proposed
DAMON (DAta Mining ONtology) ontology is built through a characterization
of available data mining software.

In [8] the authors introduce a semantic based, service oriented framework for
tools sharing and reuse, in order to give support for the semantic enrichment
through semantic annotation of KDD tools and deployment of tools as web

6 http://www.dmg.org/

http://www.dmg.org/
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services. For describing the domain the authors propose an ontology named KD-
DONTO which is developed having in mind the central role of a KDD algorithm
and their composition similar to work in [1,30].

Experiment databases. As data mining and machine learning are experimental
sciences, lot of insight of the performance of a particular algorithm is obtained
by implementing it and studying how it behaves on different datasets. In [2,3] the
authors propose an experimental methodology based on experiment database in
order to allow repeatability of experiments and generalizability of experimental
results in machine learning. In [27] the authors propose an XML based language
for describing classification and regression experiments. In this process the au-
thors identified the main entities for describing a machine learning experiment,
which is the first step towards including the experimental entities in an ontology.

Identification of data mining entities using collections of DM literature. In [18]
the authors survey a large collection of data mining and knowledge discovery
literature in order to identify and classify the data mining entities into high-
level categories using grounded theory approach and validating the classification
using document clustering. As a result of the research study the authors have
identified eight main areas of data mining and knowledge discovery: data mining
tasks, learning methods and tasks, mining complex data, foundations of data
mining, data mining software and systems, high-performance and distributed
data mining, data mining applications and data mining process and project.

3 OntoDM Design and Description

Our ontology of data mining (OntoDM) aims to provide a structured vocabulary
of entities sufficient for the description of data mining scenarios and workflows.
OntoDM aims to follow the OBO Foundry principles7 in ontology engineering
that are widely accepted in the biomedical domains. The main OBO Foundry
principles state that ”the ontology is open and available to be used by all”, ”is
in a common formal language”, ”includes textual definition of all terms”, ”uses
relations which are unambiguously defined”, ”is orthogonal to OBO ontologies”
and ”follows a naming convention” [20]. In this way, OntoDM will be built on
a sound theoretical foundation, will be compliant with other (e.g., biological)
domains and can be widely re-usable. Our ontology intends to be compatible with
other formalisms, to share and reuse already formalized knowledge. OntoDM is
available at: http://kt.ijs.si/panovp/OntoDM/.

OntoDM is expressed in OWL-DL and is being developed using the Pro-
tege ontology editor8. It consists of three main components: classes, a hierarchi-
cal structure (is-a relations) of classes and relations (other than is-a relations)
between instances. All three major components are described in the following
subsections.
7 OBO Foundry: http://ontoworld.org/wiki/OBO_foundry
8 Protege: http://protege.stanford.edu

http://kt.ijs.si/panovp/OntoDM/
http://ontoworld.org/wiki/OBO_foundry
http://protege.stanford.edu
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3.1 Identifying Basic Data Mining Entities

OntoDM is based on the proposal of a general framework for data mining by
Džeroski [9]. From the framework proposal we identified a set of basic entities
of data mining. The basic entities identified are the following (please consult [9]
for a detailed description of the entities):

– dataset, which consists of data items;
– datatype, which can be primitive (nominal, boolean, numeric), or

structured (set, sequence, tree, graph);
– data mining task, which includes predictive modeling, pattern

discovery, clustering and probability distribution estimation;
– generalization, the output of a data mining algorithm, which can be:

predictive model, pattern, clustering, probability distribution;
– data mining algorithm, which solves a data mining task and produces

generalizations from a dataset and includes components of algorithms such
as: distance function, kernel function, refinement operator;

– function, which can be: an aggregation function, prototype function,
evaluation function, cost function etc;

– constraint, which include evaluation and language constraint (hard
constraint, soft constraint, optimization constraint) and

– data mining scenarios, related to queries and inductive queries.

The entities listed above are used to describe different dimensions of data mining.
These are all orthogonal dimensions and different combinations among these
should be facilitated. Through combination of these basic entities, one should be
able to describe most of the diversity present in data mining approaches today.

3.2 Upper Level Concepts

In the initial version of the ontology [16] the structure was grounded by the fol-
lowing upper level classes: <informational entity>, <agregate>, <procedure>,
<process>, <quality>, <representation> and <role>.

In this version of the ontology we mapped the entities more closely to the
structure of the OBI ontology. We use BFO upper level classes to represent en-
tities which exist in the real world (i.e., processes, informational entities created
in human brain), and in addition we use extensions of EXPO <abstract entity>
to represent mathematical entities. Recently, due to the limitations of BFO in
dealing with information, an Information Artifact Ontology (IAO) has been pro-
posed as a spin-off of the OBI project9. Currently IAO is available only in a draft
version, but we have included the most stable and relevant classes into OntoDM.

Figure 1 shows the part of the OntoDM class hierarchy. The OntoDM ontol-
ogy contains 292 classes (including imported upper level classes), and all of the
OntoDM classes are extensions of the upper level classes from BFO, OBI, IAO,
and EXPO.
9 IAO:http://code.google.com/p/information-artifact-ontology/

http://code.google.com/p/information-artifact-ontology/
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Fig. 1. Part of the OntoDM class hirearchy (is-a hirearchy): OntoDM classes are ex-

tensions of BFO, OBI, IAO and EXPO top level classes

3.3 Alignment of OntoDM with OBI

Information content entity. The class <information content entity> was recently
introduced into OBI and denotes all entities that are generically dependent on
some artifact and stand in relation of aboutness to some entity. In the domain of
data mining we have identified and extended the <information content entity>
class with the following sub-classes: <datatype>, <data item> and others. The
class <dataset> is an information content entity that is an aggregate of data
items.

Realizable entity and information entity about a realizable. Realizable entities
include all entities that can be executed (manifested, actualized, realized) in
concrete occurrences (e.g processes). Realizable entities are entities of a type
whose instances are typically such that in the course of their existence they
contain periods of actualization, when they are manifested through processes in
which their bearers participate.

We have identified and extended the class <realizable entity> and its sub-
classes <plan>, <role>, <function> with data mining specific entities. Basic
realizable data mining classes are: <generalization>, <data mining algorithm
implementation>, <constraint>, <mathematical function>, <query>, <data
mining scenario>. Here we just briefly describe <generalization> and <data
mining algorithm implementation>.

The class <generalization> represent entities that are products of a data
mining process (e.g., the application of a data mining algorithm implemen-
tation on a concrete dataset with concrete parameter settings) and includes
entities:<predictive model>, <pattern>, <clustering> and <probability distri-
bution>. These entities are realized in the <generalization interpretation pro-
cess> where an input to a process is a <data item> and the output is a result of
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applying of the generalization to the data item (e.g.,the prediction of a predictive
models).

The class <data mining algorithm implementation> is a subclass of the class
<plan>. It describes a concrete implementation of a <data mining algorithm
specification>, subclass of <plan specification> and is realized though a data
mining process <application of data mining algorithm>.

Information entities that concern a realizable entity include: objective specifi-
cation, plan specification, action specification, etc. A plan specification includes
parts such as: objective specification, action specifications and conditional spec-
ifications. When concretized, it is executed in a process in which the bearer tries
to achieve the objectives, in part by taking the actions specified. An objective
specification describes an intended process endpoint.

We have identified and extended the <information entity about a realizable>
and its subclasses, <objective specification> and <plan specification>, with data
mining specific entities. Basic information entities about a realizable are: <data
mining task>, subclass of <objective specification>, and <data mining algorithm
specification>, which is a subclass of <plan specification>.

Process. Process entities represent occurrences that have a specified beginning
and end. A planned process is the realization of a plan borne by an agent that
initiates this process in order to bring about the objective(s) specified as part
of the plan specification. Process entities have as participants continuants and
can be also performed by an agent. In the case of data mining, processes have
inputs and outputs that can be informational entities and realizable entities.
We have identified and extended the <process> and <planned process> classes
with data mining specific classes. Basic data mining process entities described in
our ontology include: <application of a data mining algorithm implementation>,
<evaluation process>, <distance function calculation> etc.

3.4 Ontological Relations

The consistent use of rigorous definitions to characterize formal relations is a ma-
jor step towards enabling the achievement of interoperability among ontologies
in support of automated reasoning across data derived from multiple domains.
For, if a fruitful exchange of information to be possible between such ontologies
and the data annotated with their terms, each of the system involved must treat
the relations in the same way. A relational expression must always stand for one
and the same relation, even if it is used in multiple ontologies.

The OntoDM ontology includes and different types of formaly defined onto-
logical relations in order to achieve the desired level of expressiveness. The initial
version of the ontology [16] included: fundamental relations (is-a, part-of ), rela-
tions from RO [23] has-participant, has-agent , relations from EXPO/LABORS
[26] (has-representation), relations from EXACT[24](has-information) and rela-
tions from OBI (has-role, has-quality, has-specified-input,has-specified-output).

The fundamental relations is-a and has-part are used to express subsump-
tion and part-whole relationships between entities. The relations has-participant
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and has-agent express the relationship between a process and participants in a
process, that can be passive or active. Other relations, has-specified-input and
has-specified-output, are specific for relating data mining processes with special
types of participants that are inputs and outputs of the data mining process.
These two relations have been recently introduced in the OBI ontology.

The relation between an entity and a dependent continuant is expressed via
the relation bearer-of (defined in the OBI ontology) and this relation is more
general and replaces the relations has-role and has-quality used in the inital
version of the ontology.

For expression of informational properties of entities we are using the re-
lation has-information and for expression of a representational properties of
entities we use the relation has-representation, both defined in the EXAT and
EXPO/LABORS ontologies.

In this version of the ontology we include relations for expressing relationships
between: a process and realizable entity (realizes), a planned process and objec-
tive specification (achieves-planned-objective) and informational entity about a
realizable and a realizable entity (is-concretized-as). These relations are defined
in the OBI ontology.

4 The Example Representation of a Data Mining
Algorithm

In this section we give an example of the representation of a concrete algorithm
using the OntoDM ontology terms (see Figure 2). We describe how to represent
the well known C4.5 algorithm [19] for learning decision tree predictive models
and its concrete implementation in the WEKA data mining system [28].

When describing a data mining algorithm, one has to have in mind three dif-
ferent aspects. First aspect is the data mining algorithm specification, e.g. <c45
algorithm specification>, which is a subclass of the <information entity> class
about a realizable entity that describes declarative aspects of an algorithm, e.g.
has as a part <predictive modeling> information about a data mining task in
hand. The second aspect is the concrete implementation of an algorithm, e.g.
<wekaJ48 algorithm implementation>, which is a realizable entity. The third
aspect is the process aspect where we describe an application of a concrete data
mining algorithm (e.g <application of wekaJ48>) on a dataset under concrete
algorithm parameter settings. It is necessary to have all three aspects represented
separately in the ontology as they have distinctly different nature and this will
facilitate different usage of the ontology. The process aspect can be used for con-
structing data mining workflows and definition of participants of workflows and
its parts; the specification aspect can be used to reason about components of
data mining algorithms; the implementation aspect can be used for search over
implementations of data mining algorithms and to compare various implemen-
tations.
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Fig. 2. Example - representation of a data mining algorithm (weka.J48)
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The relations between the classes representing different aspects of data mining
algorithm are as follows:
<wekaJ48 alg. implementation> is-concretization-of <c45 alg. specification>
<wekaJ48 application > realizes <wekaJ48 alg. implementation>
<wekaJ48 application > achieves planned objective <predictive modeling>

Figure 2 presents the process aspect of a data mining algorithm in more detail.
Each process has defined input and output entities which are linked to the pro-
cess via has-specified-input and has-specified-output relations correspondingly.
An input to an application of data mining algorithm is a dataset and parameter
values and as output we get a generalization (e.g., <decision tree>). A dataset
has as parts data items that are characterized with a datatype (e.g., <tuple of
primitives>). In the case of propositional learning, the datatype of data items is
a tuple of primitive data types (nominal values, numeric values, boolean values).
A generalization entity has also two aspects. One is connected with looking at it
as a data structure and in that case we have a generalization specification (e.g.
<decision tree specification>) and generalization representation (e.g. <decision
tree representation>). Another aspect is the functional aspect, when we apply
a concrete generalization to a new data item (e.g., prediction using a decision
tree). In this case a generalization is realized through a generalization interpreter
process (e.g. <decision tree interpreter process>) where the input to the process
is an unlabeled data item and the output is a labeled data item.

5 Complex Data Mining Entities in OntoDM

Our proposal for an ontology of data mining includes descriptions of basic data
mining entities. These basic entities are to define more complex entities e.g., en-
tities from the area of inductive databases. The concept of an inductive database
[10] employs a database perspective on knowledge discovery, where the knowl-
edge discovery process is composed of query sessions. In this case ordinary queries
can be used to access and manipulate the data, while inductive queries (data
mining queries) can be used to generate (mine), manipulate and apply general-
izations.

Real life applications of data mining typically require interactive sessions and
involve formulation of a complex sequence of inter-related inductive queries,
which we call a KDD scenario [4]. KDD scenarios can be described at differ-
ent level of detail and precision and can serve multiple purposes. At the most
detailed level of description, KDD scenarios can serve to document the exact
sequence of data mining operations undertaken by a human analyst on a specific
task. At higher level of abstraction, the scenarios enable the re-use of already
performed analyses,e.g., on a new dataset of the same type. The explicit stor-
age and manipulation of scenarios would greatly facilitate the KDD process in
whole. Our proposed ontology can be used for formalizing and describing KDD
scenarios at various levels of abstraction.
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6 Conclusion and Further Work

In this paper we present updated and modified version of the OntoDM ontology,
which is based on a recent proposal of a general framework for data mining,
and includes definitions of basic data mining entities and it also allows for the
definition of more complex entities, e.g., constraints in constraint-based data
mining, sets of such constraints (inductive queries) and data mining scenarios
(sequences of inductive queries).

OntoDM is general-purpose and has been designed with as broad as pos-
sible use in mind and can be used to support a number of relevant activi-
ties, such as describing data mining services and resources, data mining ex-
periments/investigations, as well as data mining scenarios/workflows.

The ontology OntoDM as presented here is in its early stages of development
and hence much work remains to be done. We first need to populate the proposed
classes of data mining entities with individuals, identify shortcomings of our
ontology in the process and refine the structure of OntoDM as needed in order
to describe different aspects of data mining.

Formalizing the knowledge about the domain of data mining and building of
a heavy weight ontology of data mining is a time and resource consuming task
and should be a community effort. Our goal is to have a mature ontology of data
mining that is sufficient and expressive enough to describe the current trends in
data mining. This would be also be a helpful step in developing standards for
data mining and would lead towards an ontology of data mining investigations.
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Abstract. Fuel feeding and inhomogeneity of fuel typically cause pro-

cess fluctuations in the circulating fluidized bed (CFB) boilers. If control

systems fail to compensate the fluctuations, the whole plant will suffer

from fluctuations that are reinforced by the closed-loop controls. Accu-

rate estimates of fuel consumption among other factors are needed for

control systems operation. In this paper we address a problem of online

mass flow prediction. Particularly, we consider the problems of (1) con-

structing the ground truth, (2) handling noise and abrupt concept drift,

and (3) learning an accurate predictor. Last but not least we emphasize

the importance of having the domain knowledge concerning the consid-

ered case. We demonstrate the performance of OMPF using real data

sets collected from the experimental CFB boiler.

1 Introduction

Online estimation of fuel consumption in mechanical devices is a challenging
task due to noise, presence of outliers and non-stationarity of the signal. Me-
chanical devices typically are comprised of moving parts. The movements cause
interference in the observed sensor data. The challenge is to filter out the true
signal from the measured noise. In this study we develop a generic approach for
online prediction of the true signal values from the sensor measurements under
concept drift assumption. In particular, we address online mass flow estimation
problem for a circulating fluidized bed (CFB) boiler.

Different amounts of fuel can be added to the boiler at irregular time inter-
vals resulting in sudden drifts in a signal. Since the fuel is added mechanically
(feeding), the start and the end time of this process is not necessarily (as in
our case) available from the sensors as a direct measurement. Hence, in order to
estimate accurately the amount of fuel in the container at each moment in time
the algorithms should be able explicitly or implicitly handle these changes.

There is a lot of work on change detection and outlier detection, see e.g. a
recent review [3]. However, the boiler problem exposes specific combination of
change points and outliers at which existing change detection methods may fail.
Statistical change detection methods, which are based on comparing pieces of raw
data (e.g. [2]) do not take signal trends into account, which contain significant

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 272–286, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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part of discriminatory information in the boiler problem. The noise and outliers
are not normally distributed making it hard to use statistical methods that
assume a particular distribution of the data [1]. Learner based change detection
(e.g. [5]) is not directly suitable for this problem due to the nature of the signal:
noise, trends and specific outliers. Burning and feeding stages, which are observed
in the fuel mass signal, are very different in nature and timing.

We design an online signal prediction method, which takes into account the
properties of mass flow signal (noise, trends, specific outliers, switch between
operational stages). The method is equipped with a tailored change detection,
which is needed to drop out the old signal from the training sample of the
predictor. In this study we take a data mining approach, we use no additional
input data from the boiler except the noisy signal itself.

For evaluation of the performance of signal estimators labeled data is needed.
There is no hard evaluation method for the actual amount of fuel present. It
could be generated by the domain experts. It is difficult to extract the actual
signal, since the data includes the effects of external influencers. In our approach
we use an offline best fit method as internal validation for the estimators.

The rest of the paper is organized as follows. In Section 2 we overview the
problem of a mass flow prediction in CFB boiler. In Section 3 we present our
solution for online mass flow prediction. In Section 4 the experimental evaluation
is presented and the results are discussed. We conclude and point out open
problems in Section 5.

2 Problem Description and Related Work

To better understand and control the operation of CFB boiler it is important
to know how much fuel mass is in the furnaces. Direct measurement is hardly
possible in practice from the technological perspective. Therefore, this is done by
estimating mass flow in the system that is equivalent to predicting the amount
of fuel in the fuel feeding system at each point in time.

We start by briefly explaining how the input signal is generated, discuss the
properties of the data and available solutions.

2.1 The Input Signal

The automatically available mass signal is a noisy estimate of fuel mass at each
operation time point. The mass of the fuel inside the container is measured by
a scale, sampled with a sample rate of 1 Hz.

The boiler is fed with fuel from the fuel container (‘bunker’) as depicted in
Figure 1. The fuel inside the container is mixed using a mixing screw. There
is a feeding screw at the outlet of the container, which transfers the fuel from
the container to the boiler. During the burning stage the mass of fuel inside the
container decreases (reflected by a decreasing amount of fuel in the data signal,
as pointed by arrow (1)). As new fuel is added to the container (the burning
process continues), the fuel feeding stage starts that is reflected by a rapid mass
increase (arrow (2)).



274 I. Žliobaitė, J. Bakker, and M. Pechenizkiy

Fig. 1. The origin of the input signal

There are three main sources of changes in the signal.
First, fuel feeding is a manual and non standardized process, which is not

necessarily smooth, it can have short interruptions (see Figure 2). Each operator
can have different habits. Besides, the feeding speed depends on the type of fuel.

Second, the feeding screw rotation adds noise to the measured signal. Besides,
fuel particle jamming often happens, slowing down the screw for some seconds
and distorting the signal estimate. Therefore, the reported mass inside the con-
tainer is not accurate, the signal contains extreme upward outliers in the original
signal, that can be seen in Figure 3.

Third, there is a low amplitude rather periodic noise, which is caused by the
mechanical rotation of the system parts. These amplitudes may become higher
depending on the burning setup.

2.2 Data Properties

Due to the processes described above, the fuel mass signal has the following
characteristics:

1. There are two types of change points: an abrupt change from burning to
feeding and slower but still abrupt change from feeding to burning.

2. There are asymmetric outliers, oriented upwards. In online settings the out-
liers can be easily mixed with the changes from burning to feeding.

3. There is a symmetric high frequency signal noise.

Non stationarity of a signal can be regarded as a form of concept drift [15,8]. We
focus on analyzing abrupt changes of a signal, which are caused by interchange
of the boiler operation stages (burning and feeding).



OMFP: An Approach for Online Mass Flow Prediction in CFB Boilers 275

Time (s)

M
as

s 
(g

)

Fig. 2. An example of a short burning

within the feeding stage

Time (s)

M
as

s 
(g

)

Fig. 3. Upward outliers due to jamming

of the screw

Algorithmic change detection is not trivial as it might seem from the visual
inspection of the signal. The signal would be elevated if approximated directly
due to the asymmetric nature of the outliers (no opposite negative outliers).

Besides, there are short burning periods within the feeding stages, due to
possible pauses in a feed, which depend on human operator behavior. These
interruptions can vary from 5 to 20 seconds are difficult to identify.

We assume that the mass flow signal has a nonzero second derivative. It
implies that the speed of the mass change depends on the amount of fuel in the
container. The more fuel is in the container, the higher is the acceleration, thus
the more fuel gets into the screw. The weight of the fuel at higher levels of the
tank compresses the fuel in the lower levels and in the screw, the fuel density
is increased. Besides, compression and thus the burning speed depends on the
type and quality of the fuel.

Our ultimate goal is to learn an accurate online prediction of the signal given
that we can (1) catch and handle the changing behavior due to a process change,
and (2) ignore the noisy patterns generated by anomalous behavior or the
influence of moving parts.

2.3 Connection to the Related Work

Data mining approaches can be used to develop better understanding of the
underlying processes in CFB boilers, or learning a model to optimize its effi-
ciency [13]. Fundamental studies develop mathematical models for boiler opera-
tion [12,10,7,14], incorporating operational parameters in the models.

In this study we take a data driven approach for modelling the signal for
online operation using only the historical data. A straightforward approach to
non stationary time series prediction would be SARIMA model [4]. Seasonal pe-
riodicity is expected there, but in case of boiler mass flow prediction fuel feeding
periods are not regular. The patterns might differ in every feeding round as well
as the periods between two feedings. Our preliminary experiments confirmed
that SARIMA indeed did not give satisfactory results.

In our previous work [1], performance of several change detection methods
was compared in terms of detection accuracy and lag. In this study we develop
a tailor made online method for the signal prediction and do a thorough quan-
titative evaluation.
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Our present study differs from the previous works in the following way.

1. A change detection method tailored for trendy noisy drifting time series is
proposed.

2. Experiments with two different fuel types are carried out.
3. Quantitative comparison of the alternative prediction methods is performed.

3 Online Mass Flow Prediction

In this section we present our solution to online mass flow prediction. We start
with setting up a general framework, followed by depicting the base model,
change and outlier detection mechanisms.

3.1 General Framework

Let’s have the original signal X = (x1, x2, . . . , xt, . . . , xn). Having X as input we
want to obtain the actual mass flow signal Y that can be achieved by learning
a functional mapping of noisy sensor measurements to the true actual signal, so
that Y = F(X).

This problem has connection to the problem of concept drift [8,15] that refers
to unforeseen changes over time in the phenomenon of interest. Once a change
in the system stage happens (reasons are described in Section 2) the functional
mapping F might become outdated. The learners capable of handling concept
drift can be classified into proactive (explicitly detecting the change and drop-
ping out the old training sample) or reactive (using forgetting heuristics at each
time step to have the best adapted learner) [9]. The boiler data exhibits abrupt
changes, thus we employ a proactive approach.

The intuition behind the model is the following: at each point in time t we
fit a model F(x), using all or a subset of the historical data X. If a change
is detected, the old portion of the historical data is dropped out. A simplified
estimation procedure is presented in Figure 4, the steps are explained in more
detail in the following subsections.

3.2 Elimination of Outliers

The outliers are asymmetric, they do not have zero mean with respect to the
signal. If not eliminated before fitting the model (step 1 in Figure 4), they can
lead to significant distortion of the prediction, which as a result, will be elevated.

We know that the outliers are oriented upwards. For online detection of the
outliers we check if the difference between the given point and moving average
of the signal exceeds a threshold Trout. We replace the detected outliers with an
average of the two nearest neighbors.

Note that in an online setting the nearest neighbors for calculating moving
average are available only from the past, but not from the future, thus the
detection accuracy is expected to be lower than it would be offline. It is obvious
at the start of a feeding stage, when the distinction between the change and the
outlier can be noted only after some time lag.



OMFP: An Approach for Online Mass Flow Prediction in CFB Boilers 277

Online Mass Flow Prediction (OMFP) for a time point t + 1

input: historical signal X = {x1, . . . , xt}.

1. Eliminate the outliers from X to obtain X∗ = {x1, . . . , x
∗

oi, . . . , x
∗

oj , . . . , xt},

where x∗

oi =
xi−1+xi+1

2
is a replacement for an outlier.

2. Find the last change point c.

3. Learn the model F(x), using {xc, . . . , xt} as a training sample.

4. Cast the prediction ŷt+1 = F(xt+1).

output: ŷt+1.

Fig. 4. Online Mass Flow Prediction
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Fig. 5. Change detection using Lth order signal differences d(L) and moving averages

(MA). The upper (black) line represents the original signal and the lower (blue) is the

differentiated signal. Dashed line (green) is the threshold for a change. Circles indicate

the ground truth change.

3.3 Change Detection

The data exhibits trends, therefore change detection based on comparison of
raw data subsets fails, when applied directly. We are interested in detecting the
feeding stages, which are characterized by a steep increase in the signal value.
An intuitive solution would be to take the first order differences of the signal
d
(1)
t = xt − xt−1 and threshold these values. If d

(1)
t > 0 the system is at feeding

stage, if d
(1)
t < 0 the system is at burning stage.

Unfortunately, due to signal noise, the stages are undistinguishable directly
(see Figure 5a). We can try replacing the original signal with the moving average,
before taking the first order differences, this already gives apparent feed regions,
but that still is noisy (see Figure 5b).

We propose using Lth order differences d
(L)
t = xt − xt−L, applied on moving

averaged signal for detection of stage changes. The more noisy the signal is, the
larger lag is needed. In this case study we use L = 10 (see Figure 5c). Then we
use a threshold Trch to discriminate between feeding and burning stages. We
use a high threshold Trch = 100 to avoid false positives. The values were chosen
based on preliminary experiments with the training set.

Trch for changes is not to be mixed with Trout for outliers. The first is applied
to a differentiated signal, while the second is applied to raw data.
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Change detection might be equipped with a prior probability of switching the
stages, based on the total amount of mass present in the container.

3.4 The Predictor

The functional mapping F (step 3 in Figure 4) is designed as follows.
In Section 2 we assumed that the mass flow signal has a nonzero second

derivative. The true signal in a single stage can be modeled using the following
equation:

yt =
a · t2

2
+v0 ·t+m0+A·sin(ωfeed ·t+αfeed)+B ·sin(ωmix ·t+αmix)+e(t), (1)

where yt denotes the output of the scales at time t, a is acceleration of the
mass change, v0 stands for the speed of the mass change at time t0, m0 is the
initial mass at time t0; A and B, ωfeed and ωmix, αfeed and αmix are amplitude,
frequency and phase of the fluctuations caused by feeding and mixing screws,
respectively; e(t) denotes the random peaked high amplitude noise caused by
the jamming of the fuel particle at time t. We assume t0 was the time of switch
in the feeding/burining stages (change point Xc).

Since we are not interested in estimating the signal generated by the oscilla-
tions of the screw and the noise signal, we make a simplifying assumption that
these parts can be treated as a signal noise. Thus we choose the following model:

ŷt =
a · t2

2
+ v0 · t + m0 + E(t), (2)

where E(t) is the aggregated noise component and the other terms are as in (1).
In our estimator we use a linear regression approach with respect to the second

order polynomial given by (2). The model is inspired by the domain knowledge
of the underlying process in the boiler, therefore seem more reasonable choice
than alternative autoregressive models.

3.5 Learning the Predictor

To learn a regressor, the Vandermonde matrix [6] V, which elements vi,j are
the powers of independent variable x, can be used. In our case the independent
variable is time xi = ti−1 − t0, i = 1, . . . , T , where T denotes the number of
the time steps. If the linear regression is applied for a polynomial of order n
(pn(x) = pnx

n + pn−1x
n−1 + . . . + p1x + p0), V is computed from the observed

time series of the independent variable as follows:

vi,j = xn−j+1
i , i = 1, . . . , T, j = 1, . . . , n + 1, (3)

where i and j run over all time samples and powers, respectively. Provided with
V the problem of polynomial interpolation is solved by solving the system of
linear equations Vp ∼= y with respect to p in the least square sense:

p̂ = argminp

T∑
i=1

(
n+1∑
j=1

Vi,jpn−j+1 − yi)2 (4)
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Here, p = [pn pn−1 . . . p1 p0]T denotes the vector of the coefficients of the
polynomial, and y = [y(x1) y(x2) . . . y(xT )]T = [y1 y2 . . . yT ]T is the time series
of the dependent variable that is indication of the scales. Provided that the n+1
columns of the matrix V are linearly independent, this minimization problem
has a unique solution given by solving the normal equation [11]:

(VTV)p̂ = VTy. (5)

This procedure is used to estimate the mass flow signal between change points.
If the process switches from fuel feeding to fuel burning or the other way around,
a new model is learnt on the new data.

3.6 Constructing the Ground Truth

The mass flow prediction is an unsupervised learning task in a way that the need
for prediction arises from the fact that there is no method to measure the ground
truth. However, to verify the validity of the model we still need a benchmark.

To obtain an approximation to the ground truth we use all the data set at once
offline. We employ similar procedure as presented in Section 3.2. We identify the
outliers by comparing the difference between the signal and the moving average
against a threshold Trout. Then we take a moving average of the modified signal
to obtain an approximation to the ground truth, which we associate as Y.

Next we identify the change points from burning to feeding stage and vice
versa (Cfeed and Cburn). We employ different approach than in the online change
detection. We use ADWIN method [2], which showed to be robust to false posi-
tives in semi-online settings [1]. We do not use it in online settings, because the
lag needed to detect the change after it happened is too large.

Given a sequence of signals, ADWIN checks whether there are statistically
significant differences between the means of each possible split of the sequence.
If statistically significant difference is found, the oldest portion of the data back-
wards from the detected point is dropped and the splitting procedure is repeated
recursively until there are no significant differences in any possible split of the
sequence. More formally, suppose m1 and m2 are the means of the two sub-
sequences as a result of a split. Then the criterion for a change detection is
|m1 −m2| > εcut, where

εcut =

√
1

2m
log

4n
δ

, (6)

here m is the harmonic mean of the windows m = 1
1

n1
+ 1

n2

, n is total size of the

sequence, while n1 and n2 are sizes of the subsequences respectively. Note that
n = n1 +n2. δ ∈ (0, 1) is a hyper-parameter of the model. In our experiments we
used δ = 0.3, n = 200 which were set during the preliminary experiments using
the training data.

ADWIN identifies Cfeed approximately. To get the exact change points we
search for a maximum and minimum of the moving average in the neighborhood
of the points identified by ADWIN. We validate the estimated ground truth by
visual inspection of a domain expert.
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Fig. 6. The three complete data sets A, B, and C used in the experiments

4 Experimental Evaluation

4.1 Data sets

In this study we use three mass signal data sets A,B and C, which are plotted
in Figure 6. The total length of A is different from B and C. A summary of the
data sets is provided in Figure 7. Number of feeds means the number of feeding
stages in the data set.

Data set A is used for training the model and selecting the model parameters.
Data sets B and C are used as testing sets, the model trained on A with the
same set of parameters is applied. Note that the level of noise and outliers in the
data sets are different. B and C represent two fuel tanks, operating in parallel,
therefore there are nearly twice as much of noise sources as in A.

Using training data set A we construct a representation of an average feeding
stage pattern, which is depicted in Figure 8. This pattern is obtained by parti-
tioning the approximated ground truth data into separate feeding sections. Then
the partitions are matched by the change points from burning to feeding and
averaged across.

Name Size Number Fuel

of feeds

A 50 977 24 bio

B 25 197 9 bio

C 25 197 6 coal

Fig. 7. Data sets used

0 100 200 300 400
0.8

1

1.2

1.4

1.6
x 10

4

Time (s)

M
as

s 
(g

)

Fig. 8. An average feeding stage pattern

4.2 Experimental Setup

We conduct numerical experiments to test for prediction accuracy and for change
detection accuracy. We chose moving average prediction as a ‘naive’ method to
compare the performance.

In addition to next step (t + 1) prediction experiments, we conduct a set of
experiments allowing a delay D in predictions. For example, having D = 5 we
would predict (filter) the signal xt, but will have the historical data available up
to time xt+4 inclusive. This gives a smoother moving average (nearest neighbors
from both sides are available) as well as it allows more firm verification of outlier
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Table 1. Mean average prediction accuracies. The best accuracies for each delay are

bold; the best overall accuracy over a single experiment is underlined.

Delay t+1 now t-2 t-4 t-9 t+1 now t-2 t-4 t-9 t+1 now t-2 t-4 t-9

Data A B C

Overall performance

OMFP 34.1 29.4 27.8 27.6 29.0 23.8 20.9 16.6 16.3 31.4 12.9 13.0 10.3 10.1 16.3

MA3 64.0 64.0 66.4 48.5 47.2 46.9 36.3 35.6 35.2

MA5 63.1 51.9 39.9 49.7 45.3 41.7 35.9 33.9 32.5

MA10 59.1 54.8 33.2 58.1 53.7 34.9 39.3 37.2 28.5

win50 53.0 45.0 44.4 44.4 44.4 40.3 34.3 32.0 32.0 32.0 19.7 16.7 15.2 15.2 15.2
all 1271 1269 1267 1265 1261 1313 1310 1308 1306 1301 1022 1021 1019 1019 1016

known 34.8 32.0 30.6 31.3 41.8 50.7 47.9 45.1 44.6 65.5 18.0 16.5 15.7 16.3 22.0

Feeding stages

OMFP 463 325 229 231 321 1531 952 601 682 968 519 334 182 180 325

MA3 308 181 115 733 510 434 260 163 119
MA5 438 294 77 1118 713 359 374 236 105
MA10 781 640 60 2081 1714 171 714 578 61
win50 751 646 577 577 577 1867 1602 1248 1248 1248 860 735 645 645 645

all 1757 1753 1748 1744 1731 3259 3253 3248 3242 3225 2264 2259 2255 2250 2237

known 441 315 236 244 290 1493 924 561 594 752 464 306 249 269 296

Burning stages

OMFP 30.0 28.7 28.5 28.2 28.1 22.1 19.7 16.9 17.2 34.9 10.7 11.4 10.5 11.3 19.1

MA3 60.8 62.4 65.8 48.1 46.9 46.8 35.6 35.0 34.8

MA5 57.7 48.4 39.4 48.3 44.4 41.5 34.5 32.8 32.1

MA10 48.3 45.9 32.8 54.6 50.6 34.9 36.0 34.3 28.3

win50 42.8 37.0 37.1 37.7 39.1 39.4 33.1 32.4 33.3 35.5 15.6 12.9 12.8 13.8 16.3
all 1264 1262 1261 1260 1257 1320 1317 1315 1314 1311 1015 1013 1013 1013 1013

known 29.1 28.0 28.1 29.3 40.7 50.6 47.7 45.7 46.0 69.1 16.2 15.0 15.5 16.9 25.1

and change detection. D is not to be mixed with L, which is a lag used by change
detection method itself (Section 3.3).

We do the following verification: the stage (feeding or burning) is defined to
be consistent if it lasts for not less than D time steps. Say at time t the system
is at burning stage and at time t + 1 we detect the feeding stage. Having a
delay D = 5 we are able to see the next four examples before casting the signal
prediction for time t + 1. Thus we check if the feeding stage sustains at time
t + 2, . . . , t + 5. If positive, we fix the change point, if negative, we cancel the
detected change and treat this as an outlier.

The domain experts suggested that maximum possible delay (D) in prediction
could be 10 sec.

Once a change is detected, old portion of the data is dropped out of the
training sample. We do not start using the 2nd order polynomial model until we
pass 10 samples after the change. For the first 2 samples we use simple moving
average rule: xt+1 = xt + s, where s is a linear intercept term obtained using
an average feeding stage pattern of the training data (A), which is presented in
Figure 8. For burning stage sc = −2 is used, for feeding stage sf = 81. If from
2 to 10 historical data points are available after the change, we fit the 1st order
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polynomial model, since the 2nd order approximation is too noisy with this few
amount of points.

4.3 Prediction Accuracy

The mean absolute errors (MAE) with respect to our approximation to the
ground truth (described in Section 3.6) are listed in Table 1. We present MAE
for the whole data sets and then present MAE’s for feeding and burning stages
separately. Delay t + 1 means prediction of change one second ahead, ‘now’
means real time signal estimation and t − 2, t − 4 and t − 9 means estimation
with respective delay of 2, 4 or 9 seconds.

For online prediction we set the following parameters. For outlier detection a
moving average with a lag of 9 and a threshold Trout = 400 is used. For change
detection a moving average with a lag of 8 and a threshold Trch = 100 was
used. the parameters were obtained from the preliminary experiments with the
training data set A.

‘MA3’, ‘MA5’ and ‘MA10’ stand for simple prediction by moving averages, the
number indicates how many instances are averaged. ‘win50’ uses the 2nd order
prediction model presented in Section 3, but instead of change detection a simple

Table 2. Confusion matrixes of detecting changes to feeding (ϕ) and burning (κ) stages

and outlier detection (o). P - positive, N - negative, T - true, F - false.

Training data set A

ϕ P N κ P N o P N

t+1 T 24 50946 T 12 50934 T 659 49784

F 26 0 F 38 12 F 543 10

now T 24 50946 T 12 50934 T 659 49784

F 26 0 F 38 12 F 543 10

t-2 T 24 50967 T 10 50953 T 659 49783

F 5 0 F 19 14 F 544 10

t-4 T 24 50969 T 10 50955 T 658 49783

F 3 0 F 17 14 F 544 11

t-9 T 24 50972 T 8 50956 T 660 49782

F 0 0 F 16 16 F 545 9

Testing data set B Testing data set C

ϕ P N κ P N o P N ϕ P N κ P N o P N

t+1 T 6 25162 T 2 25158 T 475 24597 T 6 25176 T 2 25172 T 362 24750

F 26 3 F 30 7 F 104 21 F 15 0 F 19 4 F 75 10

now T 6 25162 T 2 25158 T 475 24597 T 6 25176 T 2 25172 T 362 24750

F 26 3 F 30 7 F 104 21 F 15 0 F 19 4 F 75 10

t-2 T 6 25165 T 2 25161 T 477 24597 T 6 25177 T 1 25172 T 364 24750

F 23 3 F 27 7 F 104 19 F 14 0 F 19 5 F 75 8

t-4 T 6 25165 T 2 25161 T 477 24597 T 6 25177 T 1 25172 T 364 24750

F 23 3 F 27 7 F 104 19 F 14 0 F 19 5 F 75 8

t-9 T 6 25183 T 2 25179 T 489 24594 T 6 25191 T 1 25186 T 372 24746

F 5 3 F 9 7 F 107 7 F 0 0 F 5 5 F 79 0
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moving window of the 50 last instances is used for the model training at each
time step. ‘all’ uses the 2nd order prediction model with no change detection at
all, it retrains the model at every time step. Finally we include a benchmark of
the 2nd order model assuming known change points (‘known’). We assume with
this method that the change detection is 100% accurate.

MAE in ‘overall performance’ is rather close to MAE in ‘burning stages’ and
very different from ‘feeding stages’. This is because of uneven distribution of the
stages in the data. ‘Burning stages’ comprise less than 2% of the data.

4.4 Change Detection Accuracy

We report the performance of the change detection in online settings in Table 2.
For each method we present confusion matrixes of detecting sudden changes in
feeding (ϕ) and burning (κ) stages and detecting of outliers (o). For ϕ and κ
we allow 10 sec deviation. If a change is detected within the allowed region it is
considered as identified correctly. We require the outlier detection to be precise.

We visualize change and outlier detection in Figure 9. The solid (blue) lines
represent the true positives (TP) divided by the actual number of changes, the
dashed (red) lines represent the number of false positives (FP) divided by the
actual number of changes. The dotted black lines show the level of true changes
(i. e. 24 change points for data set A, 9 for B, 6 for C).
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Fig. 9. Change detection accuracy as a function of the prediction delay for A (top

row), B (middle row) and C (bottom row) data sets. Solid lines (blue) represent true

positives, dashed lines (red) represent true negatives.
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The number of FP is decreasing along with the increase in allowed prediction
delay. A delay allows to inspect the following signal values after the detected
change and if necessary cancel the alarm within the delay period.

The number of false negatives (FN) is relatively large. However, this does not
mean that the changes from feed to burn were not detected at all. In this setting
it means that they were not detected in time (within 10 sec interval).

4.5 Discussion

OMFP outperforms the competitive methods in terms of overall accuracy. How-
ever, for the feeding stage, simple moving average is the most accurate. Note that
the approximation to the ground truth was constructed using moving averages,
thus it could be expected that moving average performs well in this test setup.

OMFP method performance gets worse having a large delay in predictions.
This is likely due to a fixed number of the nearest neighbors for moving average
calculations, as we are using the same parameter settings for all the experiments.

Degradation of OMFP performance along with the increase in prediction de-
lay also suggests, that there might be more accurate cutting points than just
the change points themselves. Note that having a delay we allow canceling the
detected changes.

In Figure 10 extraction from the prediction outputs is provided. In t + 1
prediction (a) the prediction follows previous points almost as a straight line. It
is reasonable to expect, since in the fitted function 2nd order coefficient is mostly
0. Prediction t − 2 (b) is more curvy than t − 9 (c) likely due to more change
points identified and therefore more cuts in history.
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Overall accuracy indicates that OMFP method is more favorable than moving
average or alternative methods in the burning stage (see Table 1), while in the
feeding stage optimal model selection is yet to be seeked. Separate handling of
prediction in feeding and burning stages might be advantageous.

5 Conclusion

We developed and experimentally evaluated an online method for mass flow
prediction during the boiler operation. We evaluated the performance of the
method on three real data sets, including two distinct fuel types and two distinct
operating stages (single vs multiple fuel).

One of the challenges in this task is coming up with approximation for con-
structing the ground truth for the signal, which we handle by a combination
of moving average and responding for change and outlier points. We use this
approximation to evaluate the performance of the online predictors.

Change detection is sufficiently accurate in transition from the burning to the
feeding stage, where the incline in signal is rather sharp. However, the reverse
detection still has room for improvement.

OMFP method clearly outperforms the competitive methods in terms of over-
all accuracy, while at the feeding stage simple moving average is a more accurate
approach. The results suggest that separate handling of prediction in feeding and
burning stages is needed.

The next steps of the research would be to employ the presented method
in operational settings to see, what is the generalization on unseen cases. In
addition, the effects of the rotation screw on the signal will be explored. Further,
it would be interesting to come up with different models for different fuel types.
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Abstract. Stream clustering algorithms are traditionally designed to

process streams efficiently and to adapt to the evolution of the under-

lying population. This is done without assuming any prior knowledge

about the data. However, in many cases, a certain amount of domain or

background knowledge is available, and instead of simply using it for the

external validation of the clustering results, this knowledge can be used

to guide the clustering process. In non-stream data, domain knowledge

is exploited in the context of semi-supervised clustering.
In this paper, we extend the static semi-supervised learning paradigm

for streams. We present C-DenStream, a density-based clustering algo-

rithm for data streams that includes domain information in the form of

constraints. We also propose a novel method for the use of background

knowledge in data streams. The performance study over a number of

real and synthetic data sets demonstrates the effectiveness and efficiency

of our method. To our knowledge, this is the first approach to include

domain knowledge in clustering for data streams.

1 Introduction

The rapid growth and complexity of information and communication systems
in all areas of society has led to on-line and real-time applications where huge
amounts of evolving data is constantly generated at high speed over time. Data
of this nature, known as data streams [3], pose new challenges for data mining.
There are multiple applications that generate data streams: among others, finan-
cial applications, Web applications, sensor networks, security and performance
control in networks, monitoring environmental sensors, detecting gamma rays
in astrophysics [1,9]. More specific examples are the analysis of 20 million sales
transactions per day of Walmart, the 70 million searches on Google or the 275
million calls at AT&T [15].

In data streams, underlying data distribution does not remain stationary, but
can evolve over time, forcing discovered patterns to be updated. As in the sta-
tionary case, the validity of the patterns is not only determined by statistical
features of the model but by the expert’s perception and expectations regarding
the domain knowledge. Domain information is used to establish the desired cri-
teria for validity, usefulness and success of the models obtained and therefore,

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 287–301, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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effective methods to include domain knowledge during the process of analysis
and construction of the models are required.

Specifically, clustering with constraints or semi-supervised clustering seeks to
alleviate the problem of interpretation and evaluation including domain knowl-
edge within clustering methods allowing practitioners to move from unsupervised
solutions toward semi-supervised solutions [20].

Semi-supervised clustering methods exploit background knowledge to guide
the clustering process. Instance-level constraints are a specific and popular form
of background knowledge: They refer to instances that must belong to the same
cluster (Must-Link constraints) and those that must be assigned to different
clusters (Cannot-Link constraints) [29]. Research into semi-supervised cluster-
ing with instance-level constraints has shown that the selection of the input
constraints has a substantial influence on the quality of the output clustering
model [12].

In this paper we propose the use of semi-supervised approach including do-
main information in order to exploit expert knowledge in the area of density-
based clustering algorithms for data streams. Constraints are a very appropriate
instrument to guide the cluster adaptation and reconstruction process across a
data stream. However, current models of instance-level constraints cannot sup-
port this process, because they mostly refer to specific data records. In this pa-
per, we extend the notion of instance-level constraints from static data to data
streams, focusing on density-based clustering and cluster evolution in streams.
For this reason, we apply this semi-supervised approach to extend the DenStream
algorithm [8]

The rest of the paper is organized as follows: Section 2 presents the main
approaches to semi-supervised clustering with emphasis on those methods pro-
posed for data streams. In Section 3 the DenStream algorithm is presented as it
is the basis of the C-DenStream approach that will be further presented in Sec-
tion 4. Results of the experimentation showing the improvements introduced by
the algorithm presented are shown in Section 5. To end with Section 6 discuses
the presented approach and outlines future work.

2 Related Work

Approaches on clustering with instance-level constraints designed for static data
include partitioning algorithms [29], hierarchical algorithms [11], and density-
based algorithms [27] either can be classified as constraint-based or distance-based
methods.

In the so-called “Constraint-based” approaches, the original objective function
is modified into one that satisfies as many of the constraints as possible [29,5,11].
On the other hand, in “distance-based” approaches, the algorithm is trained on
the data involved in the constraints; thus a new metric is learned and used for
clustering. In the new function, instances associated with a Must-Link constraint
are “pushed closer” to each other, while instances associated with a Cannot-Link
constraint are “pulled away” from each other. This approach is used in [22,30].
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Both approaches deal with constraints in different ways. When constraints
are embedded into the distance function, their violation can be penalized but
not prohibited per se. On the other hand, algorithms that embed constraints in
the objective function may fail to deliver a solution, if they cannot satisfy all
constraints. Hybrid methods have emerged such as [6,7,21] to overcome these
problems.

However, all these methods have been designed for static data. Stream clus-
tering algorithms have concentrated thus far rather on efficient data processing
and model adaptation by: i) processing data in a single pass, ii) deriving mod-
els incrementally, iii) detecting model changes over time, iv) keeping the use of
memory and computing time low, and v) automating the evaluation process.

Stream clustering algorithms may strive for a model that satisfies an overall
optimization criterion and must thus be re-learned as new data arrive. Variations
of K-means or K-medians for streams, as e.g. [19], belong to this category. Other
algorithms build incremental clusters by means of summaries or synopsis and
assigning data points to the locally optimal cluster, as they encounter them:
CluStream [2] which initially defines the use of micro-clusters, and DenStream
[8] belong to this category. TECNO-STREAMS [24], TRAC-STREAMS [23],
and DUCStream [18] are other incremental single-pass algorithms within this
category.

For the exploitation of domain knowledge during stream clustering we have
opted for a single-pass density-based algorithm: in [27] we have shown that a
density-based clustering algorithm for static data lends itself almost naturally
to the incorporation of instance-level constraints. In [27] we have extended DB-
SCAN with constraints. Our new C-DENSTREAM constraint-based stream clus-
tering algorithm is based on the stream clustering variation of DBSCAN, namely
DenStream [8].

3 DenStream - Density-Based Clustering on an Evolving
Data Stream with Noise

DenStream [8] is a density-based clustering solution for data streams, which
extends the micro-cluster concept [2]. Instead of using the number of points that
are in the neighborhood as density concept like DBSCAN [16], micro-cluster
density is based on weighting areas of points in the neighborhood as a result of
an exponential decay function over time. This allows core-micro-clusters as (w,
c, r) to be defined at the time t for a group of close points pi1 , . . . , pin with time
stamps Ti1 , . . . , Tin and μ and ε as DBSCAN parameters:

– w =
∑n

j=1 f(t− Tij ) is the core micro-cluster weight with w ≥ μ.

– c =
∑n

j=1 f(t−Tij
)·pij

w is the core-micro-cluster center.

– r =
∑n

j=1 f(t−Tij
)·dist(pij

,c)

w is the core-micro-cluster radius, with r < epsilon
and dist(pij , c) is the euclidean distance between the point pij and the center
c.
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Given the evolving nature of data streams, new clusters can appear or old in-
stances can become clusters, so DenStream introduces a structure for outliers,
known as potential core-micro-clusters. A potential core-micro-cluster is defined
as (w, CF 1, CF 2) at time point t for a set of close points pi1 , . . . , pin with time
stamps Ti1 , . . . , Tin where:

– w =
∑n

j=1 f(t− Tij ) is the potential core-micro-cluster weight with w > βμ,
where 0 < β < 1 is the parameter to determine the threshold to consider a
micro-cluster as a potential core-micro-cluster or an outlier micro-cluster.

– CF 1 =
∑n

j=1 f(t−Tij)·pij is the linear sum of the weighting of the instances.
– CF 2 =

∑n
j=1 f(t−Tij )·p2

ij
is the sum of the square weighting of the instances.

– In addition, the center of a potential core-micro-cluster is: c = CF 1

w , while

its radius is: r =

√
|CF 2|

w −
(
|CF 1|

w

)2

.

On the other hand, an outlier micro-cluster is defined as CF 1, CF 2, w, t0 at t time
for a set of close points pi1 , . . . , pin with time stamps Ti1 , . . . , Tin where: w and
CF 1 yCF 2 have the same definition as given in potential core-micro-cluster, while
t0 = Ti1 denotes the time of creation used to determine its existence point of time.

DenStream divides the process of clustering into two parts: first, an online
maintenance step of core-micro-clusters is carried out followed by an offline step
generates the final clusters using the clustering algorithm DBSCAN [8].

4 C-DenStream - An Approach to Include Domain
Knowledge in Data Stream Clustering

We propose a clustering algorithm for data streams based on the extension of
DenStream [8], allowing the inclusion of domain information, at the same time
as requirements for data streams algorithms are satisfied. For this purpose, we
extend the notion of the instance-level constraint for data streams. To do this,
we use the concept of constraint between micro-clusters [2], based on the fact
that elements involved in a constraint are generally representative of their local
neighborhood [22].

The ability of DenStream to discover clusters of arbitrary size and shape to-
gether with the fact that it satisfies the requirements of data stream clustering,
made us choose it as the candidate to include constraints. Our approach is based
on the modification of the algorithm in 2 issues: i) adapting the offline step of
DenStream based on DBSCAN to use C-DBSCAN [27] to include the constraints
ii) include constraints in the DenStream phase in which micro-clusters are cre-
ated, removed and maintained.

4.1 From Instance-Level Constraints to Micro-cluster Constraints

The main challenges of using instance-level constraints in the data stream do-
main are related to the use of memory: On the one hand how to generate
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Fig. 1. C-DenStream: Transformation step for micro-cluster-level constraints

instance-level constraints that refer to items arriving at each time stamp, on
the other, how to deal with a constraint stream that can potentially be of the
same magnitude in size as that the one of instances.

Consequently we propose to use a transformation step in which instance-level
constraints are translated into micro-cluster-level constraints using the micro-
cluster membership of each instance. Based on the fact that the local neighbor-
hood is represented by a micro-cluster, we proceed as follows: for each pair of
instances involved in a Must-Link or Cannot-link constraint we produce a con-
straint between the micro-clusters to which they belong. The constraint will have
a weighting depending on the arrival time and the number of instances between
the two micro-clusters. An example of the approach is set out in Figure 1. We
call these constraints “micro-cluster-level constraint” or “micro constraints”. The
main aim behind this transformation step is to minimize the use of memory by
constraints as well as minimizing its complexity by providing an approximate so-
lution. To that end, a matrix is used to store constraints between micro-clusters,
as well as their weighting. As micro constraints are also symmetrical (e.g. if
there is a constraint that links the micro-cluster (A) to the micro-cluster (B),
it also means that the micro-cluster (B) links to the micro-cluster (A)), only a
triangular matrix is required.

Definition 1. Micro-cluster constraint (also referred to as micro constraint).
A micro-cluster constraint regarding mc′ and mc′′, RNM(mc′,′′ mc), at the
time stamp t for a set of instance-level constraint with the same semantic as
{constrainti0, . . . , constraintin}, and with time stamps Ti1, . . . , Tin, is defined
as the tuple {type, weight}, where:

– type, is the level of instances that relates both micro-clusters, namely whether
it is a Cannot-Link or Must-Link constraints.

– weight, is the weight of the relationship between the two micro-clusters de-
pending on the amount of points that belong to this relationship and based
on a decay function, such that: w =

∑n
j=1 f(t− Tij ).

As in [8], a damper window model is considered, where a decay function is used
to define the age of an instance. In this case, the weight of each item of the data
stream decreases exponentially with time t using the decay function f(t) = 2−λṫ,
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con λ > 0. The higher the value of λ, the lesser weight of historical data compared
to recent data. In this way, the total weight of a data stream is constant so that:

W = υ

(
t=tc∑
t=0

2−λṫ

)
=

υ

1− 2λ

where tc is the current time stamp, and υ shows the arrival speed.

4.2 C-DenStream Algorithm

We take into account the original algorithm DenStream, the fade function for
instance-level constraints, and the micro-cluster-level constraint given in Defini-
tion 1, to design an algorithm C-DenStream that includes domain information,
for data stream clustering. The algorithm has been divided into three main steps
(cf. Algorithm 1):

Step 1. Initialization of micro-clusters and micro-cluster-level con-
straints. This process corresponds to the Procedure 2 and it creates and initial-
izes the main structures for micro-clusters and micro-cluster-level constraints.
When running the algorithm, if there are instance-level constraints, they are
used to generate an initial clustering with C-DBSCAN. These clusters are then
transformed into potential-micro-cluster, and initial instance-level constraints to
micro constraints.

Step 2. Online maintenance of micro-clusters and micro constraints.
This second step tracks the evolution of the micro-clusters and micro constraints
in the data stream, capturing the density of the data as they arrive. As in
DenStream, and based on the observation that the new items typically belong
to the potential micro-clusters, the algorithm keeps a complete list of micro-
clusters called outlier micro-cluster to cover the possibility that any of them can
be absorbed by the potential micro-cluster or application of some constraint. To
the same effect, it always stores all micro-constraints for potential micro-cluster
and outlier micro-cluster. As new items and constraints arrive, the weights of the
micro-clusters and micro constraints are updated using their fade function. This
updating does not need to be done constantly according to [8], and it is enough
to do it at Tp time in which a potential micro-cluster can become outlier micro-
cluster. This same interval of time will be used to check the status of the micro
constraints, which will be updated according to changes in the micro-clusters.
There are two choices in updating of micro constraints between micro-clusters
(reflected in Procedure 4), either updating micro-clusters first and then micro
constraints or the other way round updating first the micro-constraints. In our
case, we firstly update the micro-clusters, so that, micro constraints can inherit
the fade mechanisms.

Step 3. Generation of final clusters through C-DBSCAN and micro-
cluster-level constrains. As a final step, and at the request of the user, it is
necessary to generate the final clusters. Although the technique of keeping micro-
cluster structures during the on-line phase allows the notion of local density



C-DenStream: Using Domain Knowledge on a Data Stream 293

to be suitably collected and the changes that occur during the data arrival in
the stream, it is necessary to transfer these data stream structures to a more
appropriate approach, identifying the nature and number of clusters in a more
overall fashion. We use C-DBSCAN in order to generate these final clusters using
the potential micro-cluster and the micro constraints.

Algorithm 1. C-DENSTREAM - A Constrained Density-Based Clustering
Algorithm Over Evolving Data Stream.

Data:

DS, a data stream.

ε, neighborhood radius.

μ, minimum number of points in neighborhood.

β, outlier radius.

λ, decay function.

CO, a stream of instance-level constraints (Must-Link and Cannot-Link)

begin
p-buffer, the set of p-micro-clusters.

o-buffer the set of o-micro-clusters.

CO-MC, constraint matrix between micro-clusters.

1. Setting up micro-clusters and micro constraints.
Using InitPoints and constraints CO from DS:

INICIALIATE(InitPoints, CO).

2. Online step: Maintaining micro-clusters and micro constraints.

Tp =

⌈
1
λ
log(

β μ
β μ − 1

)

⌉
.

Adding new points:
∀p ∈ DS: MERGE(p, p-buffer, o-buffer).
Adding new constraints:
∀co ∈ DS: MERGE-CONSTRAINTS(co, CO).

Updating micro-clusters and micro constraints:
if (t mod Tp = 0) then

UPDATING MICRO-CLUSTERS (p-buffer, o-buffer).
UPDATING MICRO CONSTRAINTS (CO-MC).

end

3. Offline step: generating final clusters.
if user request then

C-DBSCAN (p-buffer, CO-MC ).

end

end

4.3 Strategies for Constraint Arrival in Data Streams

Given the described scenario where data and instance-level constraints arrive
over time, we have identified five cases of constraint arrival with five different
policies and their corresponding actions to manage the micro-cluster-level con-
straints:
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Procedure. INITIALIZE(InitPoints, CO).
Data:

InitPoints, initial set of points.

CO-MC, initial set of constraints.

begin
C-DBSCAN (InitPoints, CO) → clustering {P}.
∀p ∈ {P}:
if (weightε(p) > βμ) then

New micro-cluster Cp in p-micro-cluster with p points in ε
neighborhood.

Add Cp to p-buffer.
else

New micro-cluster Co in o-micro-clusterwith p points in ε neighborhood.

Add Co to o-buffer.

∀ constraint(x,y) ∈ CO : If x ∈ cmcx e y ∈ cmcy

CO-MC[mcx, mcy].type = constraint.
CO-MC[mcx, mcy].weight = tc.

end

Procedure. MERGE MICRO CONSTRAINTS(co, CO-MC).
Data:

co, a instance-level constraint.

CO, a set of micro constraints.

begin
A constraint co(x,y): x ∈ cmcx e y ∈ cmcy.

if (no exists CO-MC[cmcx, cmcy] then
CO-MC[cmcx, cmcy].type = co(x,y).type.
CO-MC[cmcx, cmcy].weight = tc.

else
if (CO-MC[cmcx, cmcy].type = co(x,y).type) then

CO-MC[cmcx, cmcy].weight++.

else
CO-MC[cmcx, cmcy].type = co(x,y).type.
CO-MC[cmcx, cmcy].weight = tc.

end

Procedure. UPDATING MICRO CONSTRAINTS(CO-MC).
Data:

CO-MC, a set of micro constraints.

begin
foreach p-micro-cluster Cp delete ∈ p-buffer do
∀Cq ∈ p-micro-cluster: Remove CO-MC(Cp, Cq).

foreach o-micro-cluster Co delete ∈ o-buffer do
∀Cq ∈ o-micro-cluster: Remove CO-MC(Cp, Cq).

end
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Fig. 2. C-DenStream: Exception for Cannot-Link constraint

1. Some instance-level constraints arrive, after the transformation step in micro
constraints, these are not reflected in the constraint matrix. In this case, the
corresponding entry is initialized with those micro constraints with the value
indicated by the weight function.

2. Some instance-level constraints arrive, after the corresponding transforma-
tion step in micro constraints, these are reflected in the constraint matrix,
and their semantic is satisfied: if the constraint matrix shows a Must-Link
micro constraint, the new constraints are also Must-Link constraints; if the
constraint matrix is a Cannot-Link constraint, the new constraints are also
Cannot-Link constraints. As the semantic relationship in the instance-level
constraints and micro constraints are the same (Must-Link and Must-Link
constraints, or, Cannot-Link and Cannot-Link constraints), the semantic is
maintained, and their weights are updated.

3. Some instance-level constraints arrive, after the transformation step into
micro constraints, these are reflected in the constraint matrix, but their
semantic is not satisfied: if the constraint matrix shows a Must-Link mi-
cro constraint, the new constraints are Cannot-Link constraints; whether
the constraint matrix is a Cannot-Link constraint, the new constraints are
Must-Link constraints. Since the semantic is contradictory (Must-Link and
Cannot-Link constraints, or, Cannot-Link and Must-Link constraints), and
in this case, the domain information is provided by a domain expert, the
constraint matrix is refreshed with the new arrived constraints.

4. There is no new Must-Link or Cannot-Link constraints on arrival. In this
case, the corresponding fade function is applied to the constraint matrix.

5. A Cannot-Link constraint arrives, and the instances involved belong both
to the same micro-cluster. In this case, the micro-cluster has a constraint
that goes against its structure, so we propose to split the micro-cluster and
create two new micro-clusters where the elements are located. An example
of this case is shown in Figure 2 where there is a restriction Cannot-Link in
a micro-cluster.

5 Experimentation and Results

5.1 Datasets

To evaluate the impact of domain information on data streams and how the
proposed algorithm deal with it, some interesting synthetic and real datasets are
used.
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Fig. 3. C-DenStream: Synthetic datasets used for experimentation

On the one hand, the two synthetic datasets, DS1 and DS2, are depicted
in Figure 3. Each of them contains 10,000 points. The objectives pursued with
each dataset are the following: DS1 has four spherical overlapping clusters. For
this case, DenStream performance should deteriorate over time, while the use of
domain information should enable C-DenStream to obtain better results; DS2 is
similar to DS1, but with non-spherical clusters.

On the other hand, we will also use two well-known data streams sets used in
[2,8,17,18], both part of the KDD Cup - International Knowledge Discovery and
Data Mining Tools Competition1:

– KDD Cup’98 Charitable Donation. This dataset (PVA) with 481 attributes
in total was used to predict users that were more likely to donate to charity.
The dataset describes those who have donated or not, over the years to the
PVA.

– KDD Cup’99 Network Intrusion. This data set [28] had the goal to build
a network intrusion detector, capable to distinguish attack, intrusions, and
the rest type of the connections.

In both cases, as in [17,18], we use their continuous attributes for our experi-
ments.

5.2 Evaluation Measurements

We use the Rand Index [26] to compare results against the initial labeled class
within the synthetic and real datasets. The Rand Index computes the similarity
of partitions, having the highest value 1 when the clusters are exactly the same.
Partial results are given as new item arrives in the data stream. Taking into
account that each point is forgotten over time, the results are computed only
taking into account those items that have arrived within a predefined numbers
of windows. Other approaches have shown that the results are insensitive to the
number of windows [8].

1 http://www.kdd.org/kddcup/

http://www.kdd.org/kddcup/
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5.3 Constraint Generation

There are no instance-level constraints related to the datasets described, so we
use available labels for the constraint generation. This approach is typically used
in the static case [21]. There are two possible strategies to feed the clustering
algorithm with constraints, which matches two feasible situations in real systems:

– Feeding the algorithm with constraints each time the final clustering in C-
DenStream is obtained. This strategy simulates an oracle delivering con-
straints at the same time the final clustering is requested. This situation
reflects a specific supervision and not a constant monitoring by the ex-
pert.

– Feeding the algorithm with constraints each time new points arrive to the
data stream. This strategy simulates the existence of an intelligent system
that generates the constraints over time. In this case, constraints are gener-
ated from a 5% to 10% of the size of the window used, following an approach
similar to that used in the classical approach.

5.4 Experimentation

Synthetic datasets. For each of the synthetic datasets DS1, and DS2, with
10,000 points, we simulate data arrival in a data stream using a window Sizewindow =
100 points, which implies a number of windows so that NumWindow = 100 per
window, and where final clustering will be done at every Clusteringfinal = 10
windows. We use the second strategy presented to generate constraints, which
uses 5% of the instances of each window. The implementation of DenStream
used, is in accordance to the specifications of [8], and this is the one that has
been used as a basis for the deployment of C-DenStream. The parameters for
DenStream and C-DenStream, λ (decay factor) and β (outlier threshold), are
0.2 and 0.25, respectively. The parameters for DBSCAN and C-DBSCAN, ε and
μ , are 0.6 and 5, respectively.

Results for DS1 and DS2 datasets are depicted in Figure 4(a) and in Figure
4(b), respectively. The horizontal axis indicates the arrival of the points in the
data stream, showing the final clustering for DenStream and C-DenStream using
the corresponding Rand Index.

Figure 4(a) shows the results for the case of DS1, where there is a cluster
overlap, and where the use of data stream clustering with constraints by C-
DenStream, improves the partial results in each of the milestones. A similar
case can be observed for the DS2 dataset in Figure 4(b). A note on the empirical
comparison: we have included DBSCAN, a non-stream clustering algorithm, as a
performance baseline to ilustrate a default behaviour to compare stream methods
with. For this case, DBSCAN takes the same parameters used for DBSCAN
within DenStream.

The above results show how C-DenStream partially removes the drawbacks
found in DenStream because of the lack of domain information. It is worth
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Fig. 4. C-DenStream: Results for (a) DS1 and (b) DS2

Fig. 5. C-DenStream: Results for KDD CUP’99 Network Intrusion and KDD CUP’98

Charitable Donation



C-DenStream: Using Domain Knowledge on a Data Stream 299

noting the fact that a small amount of domain information in the form of con-
straints, transformed to a micro-level constraints, is enough to get a better per-
formance.

Experiments with datasets from data stream repositories. For each
dataset from the KDD Cup’98 and KDD Cup’99 competition, 65,536 instances
have been used, as in the synthetic datasets, we simulate the data arrival as
a data stream with a window SizeWindow = 100 points, representing a num-
ber of windows so that NumWindow = 655 per window and a final cluster-
ing at Clusteringfinal = 65 windows. The parameters for DenStream and C-
DenStream are chosen to be the same as those adopted in [8]. The second strategy
of generating restrictions has again been used, which uses 5 % of the instances
of each window for the constraint generation for C-DenStream. Figure 5 sets
out the results for the first 10,000 points for each dataset showing again the
improvememts as a result of the domain information use.

Figure 4 and Figure 5 show the performance results of C-DenStream and
DenStream in a fixed small horizon for synthetic and real datasets, and small
amount of constraints. For both, C-DenStream and DenStream, we have used
the same input parameters, λ and β, for C-DBSCAN and DBSCAN. It can be
seen that C-DenStream has a very good clustering quality and outperforms the
results obtained with DenStream, the approach with no background. A few cases
show that the result for C-DenStream and DenStream are similar, this is because
there are sometimes no interpretation problems.

6 Conclusion

Data streams pose new and interesting challenges for data mining systems [4].
Consequently solutions to deal with computational and storage challenges have
appeared. On the one hand, some algorithms address specific computational
requirements, for example, with a single pass in the analysis in order to minimise
the use of memory [13,14,25]; on the other hand some solutions are based on
structures that summarise the properties of different clusters such as micro-
clusters or wavelets [1,8].

The use of domain information as an effective mechanism to deliver results
with the vision and expectations of the experts, has attracted a lot of attention
in data mining. In particular, semi-supervised clustering or clustering with con-
straints [29] uses domain information in the form of instance-level constraints to
improve the clustering results and performance [10].

In this paper we have proposed C-DenStream, a clustering algorithm based
on DenStream for data streams which makes use of domain information. In this
paper we have shown the challenges of using contraints on data streams: an
infinite number of constraints cannot be stored and an effective management
way is needed. Thus we have shown how to transform the succesful approach of
instance-level constraints into micro-cluster-level constraints. Experiments pre-
sented show that results are highly satisfactory.
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Abstract. We address the problem of efficiently discovering the influential nodes
in a social network under the susceptible/infected/susceptible (SIS) model,
a diffusion model where nodes are allowed to be activated multiple times. The
computational complexity drastically increases because of this multiple activa-
tion property. We solve this problem by constructing a layered graph from the
original social network with each layer added on top as the time proceeds, and
applying the bond percolation with pruning and burnout strategies. We experi-
mentally demonstrate that the proposed method gives much better solutions than
the conventional methods that are solely based on the notion of centrality for so-
cial network analysis using two large-scale real-world networks (a blog network
and a wikipedia network). We further show that the computational complexity of
the proposed method is much smaller than the conventional naive probabilistic
simulation method by a theoretical analysis and confirm this by experimentation.
The properties of the influential nodes discovered are substantially different from
those identified by the centrality-based heuristic methods.

1 Introduction

Social networks mediate the spread of various information including topics, ideas and
even (computer) viruses. The proliferation of emails, blogs and social networking ser-
vices (SNS) in the World Wide Web accelerates the creation of large social networks.
Therefore, substantial attention has recently been directed to investigating information
diffusion phenomena in social networks [1,2,3].

Overall, finding influential nodes is one of the most central problems in social net-
work analysis. Thus, developing methods to do this on the basis of information diffu-
sion is an important research issue. Widely-used fundamental probabilistic models of
information diffusion are the independent cascade (IC) model and the linear threshold
(LT) model [4,5]. Researchers investigated the problem of finding a limited number of
influential nodes that are effective for the spread of information under the above mod-
els [4,6]. This combinatorial optimization problem is called the influence maximization

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 302–316, 2009.
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problem. Kempe et al. [4] experimentally showed on large collaboration networks that
the greedy algorithm can give a good approximate solution to this problem, and mathe-
matically proved a performance guarantee of the greedy solution (i.e., the solution ob-
tained by the greedy algorithm). Recently, methods based on bond percolation [6] and
submodularity [7] were proposed for efficiently estimating the greedy solution. The in-
fluence maximization problem has applications in sociology and “viral marketing” [3],
and was also investigated in a different setting (a descriptive probabilistic model of in-
teraction) [8,9]. The problem has recently been extended to influence control problems
such as a contamination minimization problem [10].

The IC model can be identified with the so-called susceptible/infected/recovered
(SIR) model for the spread of a disease [11,5]. In the SIR model, only infected indi-
viduals can infect susceptible individuals, while recovered individuals can neither in-
fect nor be infected. This implies that an individual is never infected with the disease
multiple times. This property holds true for the LT model as well. However, there exist
phenomena for which the property does not hold. For example, consider the follow-
ing propagation phenomenon of a topic in the blogosphere: A blogger who has not yet
posted a message about the topic is interested in the topic by reading the blog of a friend,
and posts a message about it (i.e., becoming infected). Next, the same blogger reads a
new message about the topic posted by some other friend, and may post a message
(i.e., becoming infected) again. Most simply, this phenomenon can be modeled by an
susceptible/infected/susceptible (SIS) model from the epidemiology. Like this example,
there are many examples of information diffusion phenomena for which the SIS model
is more appropriate, including the growth of hyper-link posts among bloggers [2], the
spread of computer viruses without permanent virus-checking programs, and epidemic
disease such as tuberculosis and gonorrhea [11].

We focus on an information diffusion process in a social network G = (V, E) over
a given time span T on the basis of an SIS model. Here, the SIS model is a stochastic
process model, and the influence of a set of nodes H at time-step t, σ(H, t), is defined as
the expected number of infected nodes at time-step t when all the nodes in H are initially
infected at time-step t = 0. We refer to σ as the influence function for the SIS model.
Developing an effective method for estimating σ({v}, t), (v ∈ V , t = 1, . . . , T ) is vital for
various applications. Clearly, in order to extract influential nodes, we must estimate the
value of σ({v}, t) for every node v and time-step t. Thus, we proposed a novel method
based on the bond percolation with an effective pruning strategy to efficiently estimate
{σ({v}, t); v ∈ V , t = 1, . . . , T } for the SIS model in our previous work [12].

In this paper, we consider solving the influence maximization problems on a network
G = (V, E) under the SIS model. Here, unlike the cases of the IC and the LT models,
we define two influence maximization problems, the final-time maximization problem
and the accumulated-time maximization problem, for the SIS model. We introduce the
greedy algorithm for solving the problems according to the work of Kempe et al. [4]
for the IC and the LT models. Now, let us consider the problem of influence maximiza-
tion at the final time step T (i.e., final-time maximization problem) as an example. We
then note that for solving this problem by the greedy algorithm, we need a method for
not only evaluating {σ({v}, T ); v ∈ V}, but also evaluating the marginal influence gains
{σ(H ∪ {v}, T ) − σ(H, T ); v ∈ V \ H} for any non-empty subset H of V . Needless to
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say, we can naively estimate the marginal influence gains for any non-empty subset H
of V by simulating the SIS model1. However, this naive simulation method is overly
inefficient and not practical at all. In this paper, by incorporating the new techniques
(the pruning and the burnout methods) into the bond percolation method, we propose
a method to efficiently estimate the marginal influence gains for any non-empty subset
H of V , and apply it to approximately solve the two influence maximization problems
for the SIS model by the greedy alogrithm. We show that the proposed method is ex-
pected to achieve a large reduction in computational cost by theoretically comparing
computational complexity with other more naive methods. Further, using two large real
networks, we experimentally demonstrate that the proposed method is much more ef-
ficient than the naive greedy method based on the bond percolation method. We also
show that the discovered nodes by the proposed method are substantially different from
and can result in considerable increase in the influence over the conventional methods
that are based on the notion of various centrality measures.

2 Information Diffusion Model

Let G = (V, E) be a directed network, where V and E (⊂ V × V) stand for the sets of all
the nodes and (directed) links, respectively. For any v ∈ V , let Γ(v; G) denote the set of
the child nodes (directed neighbors) of v, that is,

Γ(v; G) = {w ∈ V; (v,w) ∈ E}.

2.1 SIS Model

An SIS model for the spread of a disease is based on the cycle of disease in a host. A per-
son is first susceptible to the disease, and becomes infected with some probability when
the person encounters an infected person. The infected person becomes susceptible to
the disease soon without moving to the immune state. We consider a discrete-time SIS
model for information diffusion on a network. In this context, infected nodes mean that
they have just adopted the information, and we call these infected nodes active nodes.

We define the SIS model for information diffusion on G. In the model, the diffusion
process unfolds in discrete time-steps t ≥ 0, and it is assumed that the state of a node
is either active or inactive. For every link (u, v) ∈ E, we specify a real value pu,v with
0 < pu,v < 1 in advance. Here, pu,v is referred to as the propagation probability through
link (u, v). Given an initial set of active nodes X and a time span T , the diffusion process
proceeds in the following way. Suppose that node u becomes active at time-step t (< T ).
Then, node u attempts to activate every v ∈ Γ(u; G), and succeeds with probability
pu,v. If node u succeeds, then node v will become active at time-step t + 1. If multiple
active nodes attempt to activate node v in time-step t, then their activation attempts
are sequenced in an arbitrary order. On the other hand, node u will become or remain
inactive at time-step t + 1 unless it is activated from an active node in time-step t. The
process terminates if the current time-step reaches the time limit T .

1 Note that the method we proposed in [12] does not perform simulation.
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2.2 Influence Function

For the SIS model on G, we consider a diffusion sample from an initially activated node
set H ⊂ V over time span T . Let S (H, t) denote the set of active nodes at time-step
t. Note that S (H, t) is a random subset of V and S (H, 0) = H. Let σ(H, t) denote the
expected number of |S (H, t)|, where |X| stands for the number of elements in a set X. We
call σ(H, t) the influence of node set H at time-step t. Note that σ is a function defined
on 2|V | × {0, 1, · · · , T }. We call the function σ the influence function for the SIS model
over time span T on network G. In view of more complex social influence, we need to
incorporate a number of social factors with social networks such as rank, prestige and
power. In our approach, we can encode such factors as diffusion probabilities of each
node.

It is important to estimate the influence function σ efficiently. In theory we can sim-
ply estimate σ by the simulations based on the SIS model in the following way. First, a
sufficiently large positive integer M is specified. For each H ⊂ V , the diffusion process
of the SIS model is simulated from the initially activated node set H, and the number
of active nodes at time-step t, |S (H, t)|, is calculated for every t ∈ {0, 1, · · · , T }. Then,
σ(H, t) is estimated as the empirical mean of |S (H, t)|’s that are obtained from M such
simulations. However, this is extremely inefficient, and cannot be practical.

3 Influence Maximization Problem

We mathematically define the influence maximization problems on a network G = (V, E)
under the SIS model. Let K be a positive integer with K < |V |. First, we define the final-
time maximization problem: Find a set H∗K of K nodes to target for initial activation such
that σ(H∗K ; T ) ≥ σ(H; T ) for any set H of k nodes, that is, find

H∗K = arg max
{H⊂V; |H|=K}

σ(H; T ). (1)

Second, we define the accumulated-time maximization problem: Find a set H∗K of K
nodes to target for initial activation such that σ(H∗K ; 1) + · · · + σ(H∗K ; T ) ≥ σ(H; 1) +
· · · + σ(H; T ) for any set H of k nodes, that is, find

H∗K = arg max
{H⊂V; |H|=K}

T∑

t=1

σ(H; t). (2)

The first problem cares only how many nodes are influenced at the time of interest.
For example, in an election campaign it is only those people who are convinced to
vote the candidate at the time of voting that really matter and not those who were con-
vinced during the campaign but changed their mind at the very end. Maximizing the
number of people who actually vote falls in this category. The second problem cares
how many nodes have been influenced throughout the period of interest. For exam-
ple, maximizing the amount of product purchase during a sales campaign falls in this
category.
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4 Proposed Method

Kempe et al. [4] showed the effectiveness of the greedy algorithm for the influence
maximization problem under the IC and LT models. In this section, we introduce the
greedy algorithm for the SIS model, and describe some techniques (the bond percola-
tion method, the pruning method, and the burnout method) for efficiently solving the
influence maximization problem under the greedy algorithm, together with some argu-
ments for evaluating the computational complexity for these methods.

4.1 Greedy Algorithm

We approximately solve the influence maximization problem by the greedy algorithm.
Below we describe this algorithm for the final-time maximization problem:

Greedy algorithm for the final-time maximization problem:
A1. Set H ← ∅.
A2. For k = 1 to K do the following steps:
A2-1. Choose a node vk ∈ V \ H maximizing σ(H ∪ {v}, T ).
A2-2. Set H ← H ∪ {vk}.
A3. Output H.

Here we can easily modify this algorithm for the accumulated-time maximization prob-
lem by replacing stepA2-1 as follows:

Greedy algorithm for the accumulated-time maximization problem:
A1. Set H ← ∅.
A2. For k = 1 to K do the following steps:
A2-1’. Choose a node vk ∈ V \ H maximizing

∑T
t=1 σ(H ∪ {v}, t).

A2-2. Set H ← H ∪ {vk}.
A3. Output H.

Let HK denote the set of K nodes obtained by this algorithm. We refer to HK as the
greedy solution of size K. Then, it is known that

σ(HK , t) ≥
(
1 − 1

e

)
σ(H∗K , t),

that is, the quality guarantee of Hk is assured [4]. Here, H∗k is the exact solution defined
by Equation (1) or (2).

To implement the greedy algorithm, we need a method for estimating all the marginal
influence degrees {σ(H ∪ {v}, t); v ∈ V \ H} of H in step A2-1 or A2-1’ of the algo-
rithm. In the subsequent subsections, we propose a method for efficiently estimating the
influence function σ over time span T for the SIS model on network G.

4.2 Layered Graph

We build a layered graph GT = (VT , ET ) from G in the following way (see Figure 1).
First, for each node v ∈ V and each time-step t ∈ {0, 1, · · · , T }, we generate a copy vt
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t = T (= 2):
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Fig. 1. An example of a layered graph

of v at time-step t. Let Vt denote the set of copies of all v ∈ V at time-step t. We define
VT by VT = V0 ∪ V1 ∪ · · · ∪ VT . In particular, we identify V with V0. Next, for each
link (u, v) ∈ E, we generate T links (ut−1, vt), (t ∈ {1, · · · , T }), in the set of nodes VT .
We set Et = {(ut−1, vt); (u, v) ∈ E}, and define ET by ET = E1 ∪ · · · ∪ ET . Moreover, for
any link (ut−1, vt) of the layered graph GT , we define the occupation probability qut−1,vt

by qut−1,vt = pu,v.
Then, we can easily prove that the SIS model with propagation probabilities {pe; e ∈

E} on G over time span T is equivalent to the bond percolation process (BP) with
occupation probabilities {qe; e ∈ ET } on GT .2 Here, the BP process with occupation
probabilities {qe; e ∈ ET } on GT is the random process in which each link e ∈ ET

is independently declared “occupied” with probability qe. We perform the BP process
on GT , and generate a graph constructed by occupied links, G̃T = (VT , ẼT ). Then, in
terms of information diffusion by the SIS model on G, an occupied link (ut−1, vt) ∈ Et

represents a link (u, v) ∈ E through which the information propagates at time-step t,
and an unoccupied link (ut−1, vt) ∈ Et represents a link (u, v) ∈ E through which the
information does not propagate at time-step t. For any v ∈ V \ H, let F(H ∪ {v}; G̃T )
be the set of all nodes that can be reached from H ∪ {v} ∈ V0 through a path on the
graph G̃T . When we consider a diffusion sample from an initial active node v ∈ V for
the SIS model on G, F(H ∪ {v}; G̃T ) ∩ Vt represents the set of active nodes at time-step
t, S (H ∪ {v}, t).

4.3 Bond Percolation Method

Using the equivalent BP process, we present a method for efficiently estimating influ-
ence function σ. We refer to this method as the BP method. Unlike the naive method,
the BP method simultaneously estimates σ(H ∪ {v}, t) for all v ∈ V \ H. Moreover, the
BP method does not fully perform the BP process, but performs it partially. Note first

2 The SIS model over time span T on G can be exactly mapped onto the IC model on GT [4].
Thus, the result follows from the equivalence of the BP process and the IC model [11,4,6].
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that all the paths from nodes H ∪ {v} (v ∈ V \ H) on the graph G̃T represent a diffusion
sample from the initial active nodes H ∪ {v} for the SIS model on G. Let L′ be the set
of the links in GT that is not in the diffusion sample. For calculating |S (H ∪ {v}, t)|, it
is unnecessary to determine whether the links in L′ are occupied or not. Therefore, the
BP method performs the BP process for only an appropriate set of links in GT . The BP
method estimates σ by the following algorithm:

BP method:
B1. Set σ(H ∪ {v}, t)← 0 for each v ∈ V \ H and t ∈ {1, · · · , T }.
B2. Repeat the following procedure M times:
B2-1. Initialize S (H ∪ {v}, 0) = H ∪ {v} for each v ∈ V \ H, and set A(0) ← V \ H,

A(1)← ∅, · · · , A(T )← ∅.
B2-2. For t = 1 to T do the following steps:
B2-2a. Compute B(t − 1) =

⋃
v∈A(t−1) S (H ∪ {v}, t − 1).

B2-2b. Perform the BP process for the links from B(t−1) in GT , and generate the graph
G̃t constructed by the occupied links.

B2-2c. For each v ∈ A(t − 1), compute S (H ∪ {v}, t) = ⋃w∈S (H∪{v},t−1) Γ(w; G̃t), and set
σ(H∪{v}, t)← σ(H∪{v}, t) + |S (H∪{v}, t)| and A(t)← A(t)∪{v} if S (H∪{v}, t) � ∅.

B3. For each v ∈ V \ H and t ∈ {1, · · · , T }, set σ(H ∪ {v}, t) ← σ(H ∪ {v}, t)/M, and
output σ(H ∪ {v}, t).

Note that A(t) finally becomes the set of information source nodes that have at least an
active node at time-step t, that is, A(t) = {v ∈ V \ H; S (H ∪ {v}, t) � ∅}. Note also that
B(t − 1) is the set of nodes that are activated at time-step t − 1 by some source nodes,
that is, B(t − 1) =

⋃
v∈V S (H ∪ {v}, t − 1).

Now we estimate the computational complexity of the BP method in terms of the
number of the nodes,Na, that are identified in step B2-2a, the number of the coin-flips,
Nb, for the BP process in step B2-2b, and the number of the links,Nc, that are followed
in step B2-2c. Let d(v) be the number of out-links from node v (i.e., out-degree of v)
and d′(v) the average number of occupied out-links from node v after the BP process.
Here we can estimate d′(v) by

∑
w∈Γ(v;G) pv,w. Then, for each time-step t ∈ {1, · · · , T },

we have

Na =
∑

v∈A(t−1)

|S (H∪{v}, t−1)|, Nb =
∑

w∈B(t−1)

d(w), Nc =
∑

v∈A(t−1)

∑

w∈S (H∪{v},t−1)

d′(w) (3)

on average.
In order to compare the computational complexity of the BP method to that of the

naive method, we consider mapping the naive method onto the BP framework, that is,
separating the coin-flip process and the link-following process. We can easily verify
that the following algorithm in the BP framework is equivalent to the naive method:

A method that is equivalent to the naive method:
B1. Set σ(H ∪ {v}, t)← 0 for each v ∈ V \ H and t ∈ {1, · · · , T }.
B2. Repeat the following procedure M times:
B2-1. Initialize S (H ∪ {v}, 0) = H ∪ {v} for each v ∈ V \ H, and set A(0) ← V \ H,

A(1)← ∅, · · · , A(T )← ∅.
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B2-2. For t = 1 to T do the following steps:
B2-2b’. For each v ∈ A(t−1), perform the BP process for the links from S (H∪{v}, t−1)

in GT , and generate the graph G̃t(v) constructed by the occupied links.
B2-2c’. For each v ∈ A(t−1), compute S (H∪{v}; t) =

⋃
w∈S (H∪{v},t−1) Γ(w; G̃t(v)), and set

σ(H∪{v}, t)← σ(H∪{v}, t)+ |S (H∪{v}, t)| and A(t)← A(t)∪{v} if S (H∪{v}, t) � ∅.
B3. For each v ∈ V \ H and t ∈ {1, · · · , T }, set σ(H ∪ {v}, t) ← σ(H ∪ {v}, t)/M, and

output σ(H ∪ {v}, t).
Then, for each t ∈ {1, · · · , T }, the number of coin-flips,Nb′ , in step B2-2b’ is

Nb′ =
∑

v∈A(t−1)

∑

w∈S (H∪{v},t−1)

d(w), (4)

and the number of the links, Nc′ , followed in step B2-2c’ is equal to Nc in the BP
method on average. From equations (3) and (4), we can see thatNb′ is much larger than
Nc′ = Nc, especially for the case where the diffusion probabilities are small. We can
also see thatNb′ is generally much larger than each ofNa andNb in the BP method for
a real social network. In fact, since such a network generally includes large clique-like
subgraphs, there are many nodes w ∈ V such that d(w) � 1, and we can expect that∑

v∈A(t−1) |S (H ∪ {v}, t − 1)| � |⋃v∈A(t−1) S (H ∪ {v}, t − 1)| (= |B(t − 1)|). Therefore, the
BP method is expected to achieve a large reduction in computational cost.

4.4 Pruning Method

In order to further improve the computational efficiency of the BP method, we introduce
a pruning technique and propose a method referred to as the BP with pruning method.
The key idea of the pruning technique is to utilize the following property: Once we have
S (H ∪ {u}, t0) = S (H ∪ {v}, t0) at some time-step t0 on the course of the BP process for
a pair of information source nodes, u and v, then we have S (H ∪ {u}, t) = S (H ∪ {v}, t)
for all t > t0. The BP with pruning method estimates σ by the following algorithm:

BP with pruning method:
B1. Set σ(H ∪ {v}, t)← 0 for each v ∈ V \ H and t ∈ {1, · · · , T }.
B2. Repeat the following procedure M times:
B2-1”. Initialize S (H ∪ {v}; 0) = H ∪ {v} for each v ∈ V \ H, and set A(0) ← V \ H,

A(1)← ∅, · · · , A(T )← ∅, and C(v)← {v} for each v ∈ V \ H.
B2-2. For t = 1 to T do the following steps:
B2-2a. Compute B(t − 1) =

⋃
v∈A(t−1) S (H ∪ {v}, t − 1).

B2-2b. Perform the BP process for the links from B(t−1) in GT , and generate the graph
G̃t constructed by the occupied links.

B2-2c”. For each v ∈ A(t − 1), compute S (H ∪ {v}, t) = ⋃w∈S (H∪{v},t−1) Γ(w; G̃t), set
A(t)← A(t)∪{v} if S (H∪{v}, t) � ∅, and set σ(H∪{u}, t)← σ(H∪{u}, t)+ |S (H∪
{v}, t)| for each u ∈ C(v).

B2-2d. Check whether S (H ∪ {u}, t) = S (H ∪ {v}, t) for u, v ∈ A(t), and set C(v) ←
C(v) ∪ C(u) and A(t)← A(t) \ {u} if S (H ∪ {u}, t) = S (H ∪ {v}, t).

B3. For each v ∈ V \ H and t ∈ {1, · · · , T }, set σ(H ∪ {v}, t) ← σ(H ∪ {v}, t)/M, and
output σ(H ∪ {v}, t).
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Basically, by introducing stepB2-2d and reducing the size of A(t), the proposed method
attempts to improve the computational efficiency in comparison to the original BP
method. For the proposed method, it is important to implement efficiently the equiva-
lence check process in stepB2-2d. In our implementation, we first classify each v ∈ A(t)
according to the value of n = |S (H ∪ {v}, t)|, and then perform the equivalence check
process only for those nodes with the same n value.

4.5 Burnout Method

In order to further improve the computational efficiency of the BP with pruning method,
we additionally introduce a burnout technique and propose a method referred to as
the BP with pruning and burnout method. More specifically, we focus on the fact that
maximizing the marginal influence degree σ(H ∪ {v}, t) with respect to v ∈ V \ H is
equivalent to maximizing the marginal influence gain φH(v, t) = σ(H ∪ {v}, t)−σ(H, t).
Here on the course of the BP process for a newly added information source node v,
maximizing φH(v, t) reduces to maximizing |S (H ∪ {v}, t) \ S (H, t)| on average. The BP
with pruning and burnout method estimates φH by the following algorithm:

BP with pruning and burnout methods:
C1. Set φH(v, t)← 0 for each v ∈ V \ H and t ∈ {1, · · · , T }.
C2. Repeat the following procedure M times:
C2-1. Initialize S (H; 0) = H, and S ({v}; 0) = {v} for each v ∈ V \ H, and set A(0) ←

V \ H, A(1)← ∅, · · · , A(T )← ∅, and C(v)← {v} for each v ∈ V \ H.
C2-2. For t = 1 to T do the following steps:
C2-2a. Compute B(t − 1) =

⋃
v∈A(t−1) S ({v}, t − 1) ∪ S (H, t − 1).

C2-2b. Perform the BP process for the links from B(t−1) in GT , and generate the graph
G̃t constructed by the occupied links.

C2-2c. Compute S (H, t) =
⋃

w∈S (H,t−1) Γ(w; G̃t), and for each v ∈ A(t − 1), compute
S ({v}, t) = ⋃w∈S ({v},t−1) Γ(w; G̃t) \ S (H, t), set A(t) ← A(t) ∪ {v} if S ({v}, t) � ∅, and
set φH({u}, t)← φH({u}, t) + |S ({v}, t)| for each u ∈ C(v).

C2-2d. Check whether S ({u}, t) = S ({v}, t) for u, v ∈ A(t), and set C(v) ← C(v) ∪ C(u)
and A(t)← A(t) \ {u} if S ({u}, t) = S ({v}, t).

C3. For each v ∈ V \ H and t ∈ {1, · · · , T }, set φH({v}, t) ← φH({v}, t)/M, and output
φH({v}, t).

Intuitively, compared with the BP with pruning method, by using the burnout technique,
we can substantially reduce the size of the active node set from S (H ∪ {v}, t) to S ({v}, t)
for each v ∈ V \H and t ∈ {1, · · · , T }. Namely, in terms of computational costs described
by Equation (3), we can expect to obtain smaller numbers for Na and Nc when H � ∅.
However, how effectively the proposed method works will depend on several conditions
such as network structure, time span, values of diffusion probabilities, and so on. We
will do a simple analysis later and experimentally show that it is indeed effective.

5 Experimental Evaluation

In the experiments, we report our evaluation results on the final-time maximization
problem due to the space limitation.
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5.1 Network Data and Settings

In our experiments, we employed two datasets of large real networks used in [10], which
exhibit many of the key features of social networks.

The first one is a trackback network of Japanese blogs. The network data was col-
lected by tracing the trackbacks from one blog in the site “goo (http://blog.goo.ne.jp/)”
in May, 2005. We refer to the network data as the blog network. The blog network was
a strongly-connected bidirectional network, where a link created by a trackback was
regarded as a bidirectional link since blog authors establish mutual communications
by putting trackbacks on each other’s blogs. The blog network had 12, 047 nodes and
79, 920 directed links.

The second one is a network of people that was derived from the “list of people”
within Japanese Wikipedia. We refer to the network data as the Wikipedia network.
The Wikipedia network was also a strongly-connected bidirectional network, and had
9, 481 nodes and 245, 044 directed links.

For the SIS model, we assigned a uniform probability p to the propagation probabil-
ity pu,v for any link (u, v) ∈ E, that is, pu,v = p. According to [4,2], we set the value of
p relatively small. In particular, we set the value of p to a value smaller than 1/d̄, where
d̄ is the mean out-degree of a network. Since the values of d̄ were about 6.63 and 25.85
for the blog and the Wikipedia networks, respectively, the corresponding values of 1/d̄
were about 0.15 and 0.03. We decided to set p = 0.1 for the blog network and p = 0.01
for the Wikipedia network. Also, for the time span T , we set T = 30.

For the bond percolation method, we need to specify the number M of performing
the bond percolation process. According to [12], we set M = 10, 000 for estimating
influence degrees for the blog and Wikipedia networks.

All our experimentation was undertaken on a single PC with an Intel Dual Core Xeon
X5272 3.4GHz processor, with 32GB of memory, running under Linux.

5.2 Comparison Methods

First, we compared the proposed method with three heuristics from social network anal-
ysis with respect to the solution quality. They are based on the notions of “degree cen-
trality”, “closeness centrality”, and “betweenness centrality” that are commonly used as
influence measure in sociology [13]. Here, the betweenness of node v is defined as the
total number of shortest paths between pairs of nodes that pass through v, the closeness
of node v is defined as the reciprocal of the average distance between v and other nodes
in the network, and the degree of node v is defined as the number of links attached to v.
Namely, we employed the methods of choosing nodes in decreasing order of these cen-
tralities. We refer to these methods as the betweenness method, the closeness method,
and the degree method, respectively.

Next, to evaluate the effectiveness of the pruning and the burnout strategies, we com-
pared the proposed method with the naive greedy method based on the BP method with
respect to the processing time. Hereafter, we refer to the naive greedy method based on
the BP method as the BP method for short.
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Fig. 2. Comparison of solution quality for the blog network
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Fig. 3. Comparison of solution quality for the Wikipedia network

5.3 Solution Quality Comparison

We first compared the quality of the solution HK of the proposed method with that
of the betweenness, the closeness, and the degree methods for solving the problem of
the influence maximization at the final time step T . Clearly, the quality of HK can be
evaluated by the influence degree σ(HK , T ). We estimated the value of σ(HK , T ) by
using the bond percolation method with M = 10, 000 according to [12].

Figures 2 and 3 show the influence degree σ(HK , T ) as a function of the number of
initial active nodes K for the blog and the Wikipedia networks, respectively. In the fig-
ures, the circles, triangles, diamonds, and squares indicate the results for the proposed,
the betweenness, the closeness, and the degree methods, respectively. The proposed
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method performs the best for both networks, while the betweenness method follows for
the blog dataset and the degree method follows for the Wikipedeia dataset. Note that
how each of the conventional heuristics performs depends on the characteristics of the
network structure. These results imply that the proposed method works effectively, and
outperforms the conventional heuristics from social network analysis.

It is interesting to note that the k nodes (k = 1, 2, ...,K) that are discovered to be
most influential by the proposed method are substantially different from those that are
found by the conventional centrality-based heuristic methods. For example, the best
node (k = 1) chosen by the proposed method for the blog dataset is ranked 118 for the
betweenness method, 659 for the closeness method and 6 for the degree method, and
the 15th node (k = 15) by the proposed method is ranked 1373, 8848 and 507 for the
corresponding conventional methods, respectively. The best node (k = 1) chosen by the
proposed method for the Wikipedia dataset is ranked 580 for the betweenness method,
2766 for the closeness method and 15 for the degree method, and the 15th node (k = 15)
by the proposed method is ranked 265, 2041, and 21 for the corresponding conventional
methods, respectively. It is hard to find a correlation between these rankings, but for the
smaller k, it appears that degree centrality measure is better than the other centrality
measures, which can be inferred from Figures 2 and 3.

5.4 Processing Time Comparison

Next, we compared the processing time of the proposed method (BP with pruning and
burnout method) with that of the BP method. Let τ(K, T ) denote the processing time of
a method for solving the problem of the influece maximization at the final time step T ,
where K is the number of initial active nodes. Figures 4 and 5 show the processing time
difference Δτ(K, T ) = τ(K, T ) − τ(K − 1, T ) as a function of the number of initial active
nodes K for the blog and the Wikipedia networks, respectively. In these figures, the cir-
cles, and crosses indicate the results for the proposed and the BP methods, respectively.
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Fig. 4. Comparison of processing time for the blog network
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Fig. 5. Comparison of processing time for the Wikipedia network

Note that Δτ(K, T ) decreases as K increases for the proposed method, whereas Δτ(K, T )
increases for the BP method. This means that the difference in the total processing time
becomes increasingly larger as K increases. In case of the blog dataset, the total pro-
cessing time for K = 5 is about 2 hours for the proposed method and 100 hours for the
BP methods. Namely, the proposed method is about 50 times faster than the BP method
for K = 5. The same is true for the Wikipedia dataset. The total processing time for
K = 5 is about 0.5 hours for the proposed method and 9 hours the BP methods, and the
proposed method is about 18 times faster than the BP method for K = 5. These results
confirm that the proposed method is much more efficient than the BP method, and can
be practical.

6 Discussion

The influence function σ(·, T ) is submodular [4]. For solving a combinatorial optimiza-
tion problem of a submodular function f on V by the greedy algorithm, Leskovec et
al. [7] have recently presented a lazy evaluation method that leads to far fewer (ex-
pensive) evaluations of the marginal increments f (H ∪ {v}) − f (H), (v ∈ V \ H) in the
greedy algorithm for H � ∅, and achieved an improvement in speed. Note here that their
method requires evaluating f (v) for all v ∈ V at least. Thus, we can apply their method
to the influence maximization problem for the SIS model, where the influence function
σ(·, T ) is evaluated by simulating the corresponding random process. It is clear that 1)
this method is more efficient than the naive greedy method that does not employ the
BP method and instead evaluates the influence degrees by simulating the diffusion phe-
nomena, and 2) further the both methods become the same for K = 1 and empirically
estimate the influence functionσ(·, T ) by probabilistic simulations. These methods also
require M to be specified in advance as a parameter, where M is the number of simula-
tions. Note that the BP and the simulation methods can estimate influence degreeσ(v, t)
with the same accuracy by using the same value of M (see [12]). Moreover, as shown
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in [12], estimating influence function σ(·, 30) by 10, 000 simulations needed more than
35.8 hours for the blog dataset and 7.6 hours for the Wikipedia dataset, respectively.
However, the proposed method for K = 30 needed less than 7.0 hours for the blog
dataset and 3.2 hours for the Wikipedia dataset, respectively. Therefore, it is clear that
the proposed method can be faster than the method by Leskovec [7] for the influence
maximization problem for the SIS model.

7 Conclusion

Finding influential nodes is one of the most central problems in the field of social net-
work analysis. There are several models that simulate how various things, e.g., news,
rumors, diseases, innovation, ideas, etc. diffuse across the network. One such realis-
tic model is the susceptible/infected/susceptible (SIS) model, an information diffusion
model where nodes are allowed to be activated multiple times. The computational com-
plexity drastically increases because of this multiple activation property, e.g., compared
with the susceptible/infected/recovered (SIR) model where once activated nodes can
never be deactivated/reactivated. We addressed the problem of efficiently discovering
the influential nodes under the SIS model, i.e., estimating the expected number of acti-
vated nodes at time-step t for t = 1, · · · , T starting from an initially activated node set
H ∈ V at time-step t = 0. We solved this problem by constructing a layered graph from
the original social network by adding each layer on top of the existing layers as the time
proceeds, and applying the bond percolation with a pruning strategy. We showed that
the computational complexity of the proposed method is much smaller than the conven-
tional naive probabilistic simulation method by a theoretical analysis. We applied the
proposed method to two different types of influence maximization problem, i.e. discov-
ering the K most influential nodes that together maximize the expected influence degree
at the time of interest or the expected influence degree over the time span of interest.
Both problems are solved by the greedy algorithm taking advantage of the submodu-
larity of the objective function. We confirmed by applying to two real world networks
taken from blog and Wikipedia data that the proposed method can achieve considerable
reduction of computation time without degrading the accuracy compared with the naive
simulation method, and discover nodes that are more influential than the nodes iden-
tified by the conventional methods based on the various centrality measures. Just as a
key task on biology is to find some important groups of genes or proteins by performing
biologically plausible simulations over regulatory networks or metabolic pathways, our
proposed method can be a core technique for the discovery of influential persons over
real social networks, which can contribute to a progress on social science.
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Abstract. Rule learning is known for its descriptive and therefore com-

prehensible classification models which also yield good class predictions.

However, in some application areas, we also need good class probability

estimates. For different classification models, such as decision trees, a

variety of techniques for obtaining good probability estimates have been

proposed and evaluated. However, so far, there has been no systematic

empirical study of how these techniques can be adapted to probabilistic

rules and how these methods affect the probability-based rankings. In

this paper we apply several basic methods for the estimation of class

membership probabilities to classification rules. We also study the effect

of a shrinkage technique for merging the probability estimates of rules

with those of their generalizations.

1 Introduction

The main focus of symbolic learning algorithms such as decision tree and rule
learners is to produce a comprehensible explanation for a class variable. Thus,
they learn concepts in the form of crisp IF-THEN rules. On the other hand,
many practical applications require a finer distinction between examples than is
provided by their predicted class labels. For example, one may want to be able
to provide a confidence score that estimates the certainty of a prediction, to rank
the predictions according to their probability of belonging to a given class, to
make a cost-sensitive prediction, or to combine multiple predictions.

All these problems can be solved straight-forwardly if we can predict a prob-
ability distribution over all classes instead of a single class value. A straight-
forward approach to estimate probability distributions for classification rules is
to compute the fractions of the covered examples for each class. However, this
näıve approach has obvious disadvantages, such as that rules that cover only a
few examples may lead to extreme probability estimates. Thus, the probability
estimates need to be smoothed.

There has been quite some previous work on probability estimation from
decision trees (so-called probability-estimation trees (PETS)). A very simple,
but quite powerful technique for improving class probability estimates is the
use of m-estimates, or their special case, the Laplace-estimates (Cestnik, 1990).
Provost and Domingos (2003) showed that unpruned decision trees with
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Laplace-corrected probability estimates at the leaves produce quite reliable de-
cision tree estimates. Ferri et al. (2003) proposed a recursive computation of
the m-estimate, which uses the probability disctribution at level l as the prior
probabilities for level l + 1. Wang and Zhang (2006) used a general shrinkage
approach, which interpolates the estimated class distribution at the leaf nodes
with the estimates in interior nodes on the path from the root to the leaf.

An interesting observation is that, contrary to classification, class probabil-
ity estimation for decision trees typically works better on unpruned trees than
on pruned trees. The explanation for this is simply that, as all examples in a
leaf receive the same probability estimate, pruned trees provide a much coarser
ranking than unpruned trees. Hüllermeier and Vanderlooy (2009) have provided
a simple but elegant analysis of this phenomenon, which shows that replacing a
leaf with a subtree can only lead to an increase in the area under the ROC curve
(AUC), a commonly used measure for the ranking capabilities of an algorithm.
Of course, this only holds for the AUC estimate on the training data, but it still
may provide a strong indication why unpruned PETs typically also outperform
pruned PETs on the test set.

Despite the amount of work on probability estimation for decision trees, there
has been hardly any systematic work on probability estimation for rule learning.
Despite their obvious similarility, we nevertheless argue that a separate study of
probability estimates for rule learning is necessary.

A key difference is that in the case of decision tree learning, probability es-
timates will not change the prediction for an example, because the predicted
class only depends on the probabilities of a single leaf of the tree, and such local
probability estimates are typically monotone in the sense that they all maintain
the majority class as the class with the maximum probability. In the case of rule
learning, on the other hand, each example may be classified by multiple rules,
which may possibly predict different classes. As many tie breaking strategies de-
pend on the class probabilities, a local change in the class probability of a single
rule may change the global prediction of the rule-based classifier.

Because of these non-local effects, it is not evident that the same methods that
work well for decision tree learning will also work well for rule learning. Indeed,
as we will see in this paper, our conclusions differ from those that have been
drawn from similar experiments in decision tree learning. For example, the above-
mentioned argument that unpruned trees will lead to a better (training-set)
AUC than pruned trees, does not straight-forwardly carry over to rule learning,
because the replacement of a leaf with a subtree is a local operation that only
affects the examples that are covered by this leaf. In rule learning, on the other
hand, each example may be covered by multiple rules, so that the effect of
replacing one rule with multiple, more specific rules is less predictable. Moreover,
each example will be covered by some leaf in a decision tree, whereas each rule
learner needs to induce a separate default rule that covers examples that are
covered by no other rule.

The rest of the paper is organized as follows: In section 2 we briefly describe the
basics of probabilistic rule learning and recapitulate the estimation techniques
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used for rule probabilities. In section 3 we explain our two approaches for the
generation of a probabilistic rule set and describe how it is used for classification.
Our experimental setup and results are analyzed in section 4. In the end we
summarize our conclusions in section 5.

2 Rule Learning and Probability Estimation

This section is divided into two parts. The first one describes briefly the proper-
ties of conjunctive classification rules and of its extension to a probabilistic rule.
In the second part we introduce the probability estimation techniques used in
this paper. These techniques can be divided into basic methods, which can be
used stand-alone for probability estimation, and the meta technique shrinkage,
which can be combined with any of the techniques for probability estimation.

2.1 Probabilistic Rule Learning

In classification rule mining one searches for a set of rules that describes the data
as accurately as possible. As there are many different generation approaches and
types of generated classification rules, we do not go into detail and restrict our-
selves to conjunctive rules. The premise of these rules consists of a conjunction
of number of conditions, and in our case, the conclusion of the rule is a single
class value. So a conjunctive classification rule r has basically the following form:

condition1 ∧ · · · ∧ condition|r| =⇒ class (1)

The size of a rule |r| is the number of its conditions. Each of these conditions
consists of an attribute, an attribute value belonging to its domain and a com-
parison determined by the attribute type. For our purpose, we consider only
nominal and numerical attributes. For nominal attributes, this comparison is a
test of equality, whereas in the case of numerical attributes, the test is either
less (or equal) or greater (or equal). If all conditions are met by an instance, the
instance is covered by the rule (r ⊇ x) and the class value of the rule is predicted
for the instance. Consequently, the rule is called a covering rule for this instance.

This in mind, we can define some statistical values of a data set which are
needed for later definitions. A data set consists of |C| classes and n instances
from which nc belong to the class c respectively (n =

∑|C|
c=1 nc). A rule r covers

nr instances which are distributed over the classes, so that nc
r instances belong

to class c (nr =
∑|C|

c=1 nc
r).

A probabilistic rule is an extension of a classification rule, which does not
only predict a single class value, but a set of class probabilities, which form a
probability distribution over the classes. This probability distribution estimates
all probabilities that a covered instance belongs to any of the class in the data
set, so we get one class probability per class. The example is then classified with
the most probable class. The probability that an instance x covered by rule r
belongs to c can be viewed as a conditional probability Pr(c|r ⊇ x).

In the next section, we discuss some approaches for estimating these class
probabilities.
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2.2 Basic Probability Estimation

In this subsection we will review three basic methods for probability estimation.
Subsequently, in section 2.3, we will describe a technique known as shrinkage,
which is known from various application areas, and show how this technique can
be adapted to probabilistic rule learning.

All of the three basic methods we employed, calculate the relation between the
number of instances covered by the rule nr and the number of instances covered
by the rule but also belong to a specific class nc

r. The differences between the
methods are the minor modifications of the calculation of this relation.

The simplest approach to rule probability estimation directly estimates a class
probability distribution of a rule with the fraction of examples that belong to
each class.

Pr
näıve

(c|r ⊇ x) =
nc

r

nr
(2)

This näıve approach has several well-known disadvantages, most notably that
rules with a low coverage may be lead to extreme probability values. For this
reason, Cestnik (1990) suggested the use of the Laplace- and m-estimates.

The Laplace estimate modifies the above-mentioned relation by adding one
additional instance to the counts nc

r for each class c. Hence the number of covered
instances nr is increased by the number of classes |C|.

Pr
Laplace

(c|r ⊇ x) =
nc

r + 1
nr + |C| (3)

It may be viewed as a trade-off between Prnäıve(c|r ⊇ x) and an a priori proba-
bility of Pr(c) = 1/|C| for each class. Thus, it implicitly assumes a uniform class
distribution.

The m-estimate generalizes this idea by making the dependency on the prior
class distribution explicit, and introducing a parameter m, which allows to trade
off the influence of the a priori probability and Prnäıve.

Pr
m

(c|r ⊇ x) =
nc

r + m · Pr(c)
nr + m

(4)

The m-parameter may be interpreted as a number of examples that are
distributed according to the prior probability, which are added to the class
frequencies nc

r. The prior probability is typically estimated from the data us-
ing Pr(c) = nc/n (but one could, e.g., also use the above-mentioned Laplace-
correction if the class distribution is very skewed). Obviously, the
Laplace-estimate is a special case of the m-estimate with m = |C| and Pr(c) =
1/|C|.

2.3 Shrinkage

Shrinkage is a general framework for smoothing probabilities, which has been suc-
cessfully applied in various research areas.1 Its key idea is to “shrink” probability
1 Shrinkage is, e.g., regularly used in statistical language processing

(Chen and Goodman, 1998; Manning and Schütze, 1999).
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estimates towards the estimates of its generalized rules rk, which cover more ex-
amples. This is quite similar to the idea of the Laplace- and m-estimates, with
two main differences: First, the shrinkage happens not only with respect to the
prior probability (which would correspond to a rule covering all examples) but
interpolates between several different generalizations, and second the weights
for the trade-off are not specified a priori (as with the m-parameter in the m-
estimate) but estimated from the data.

In general, shrinkage estimates the probability Pr(c|r ⊇ x) as follows:

Pr
Shrink

(c|r ⊇ x) =
|r|∑

k=0

wk
c Pr(c|rk) (5)

where wk
c are weights that interpolate between the probability estimates of the

generalized rules rk. In our implementation, we use only generalizations of a rule
that can be obtained by deleting a final sequence of conditions. Thus, for a rule
with length |r|, we obtain |r|+1 generalizations rk, where r0 is the rule covering
all examples, and r|r| = r.

The weights wk
c can be estimated in various ways. We employ a shrinkage

method proposed by Wang and Zhang (2006) which is intended for decision tree
learning but can be straight-forwardly adapted to rule learning. The authors
propose to estimate the weights wk

c with an iterative procedure which averages
the probabilities obtained by removing training examples covered by this rule. In
effect, we obtain two probabilities per rule generalization and class: the removal
of an example of class c leads to a decreased probability Pr−(c|rk ⊇ x), whereas
the removal of an example of a different class results in an increased probability
Pr+(c|rk ⊇ x). Weighting these probabilities with the relative occurrence of
training examples belonging to this class we obtain a smoothed probability

Pr
Smoothed

(c|rk ⊇ x) =
nc

r

nr
· Pr−(c|rk ⊇ x) +

nr − nc
r

nr
· Pr+(c|rk ⊇ x) (6)

Using these smoothed probabilities, this shrinkage method computes the weights
of these nodes in linear time (linear in the number of covered instances) by
normalizing the smoothed probabilities separately for each class.

wk
c =

PrSmoothed(c|rk ⊇ x)∑|r|
i=0 PrSmoothed(c|ri ⊇ x)

(7)

Multiplying the weightswith their correspondingprobabilitywe obtain “shrinked”
class probabilities for the instance.

Note that all instances which are classified by the same rule receive the same
probability distribution. Therefore the probability distribution of each rule can
be calculated in advance.

3 Rule Learning Algorithm

For the rule generation we employed the rule learner Ripper (Cohen, 1995), ar-
guably one of the most accurate rule learning algorithms today. We used Ripper
both in ordered and in unordered mode:
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Ordered Mode: In ordered mode, Ripper learns rules for each class, where the
classes are ordered according to ascending class frequencies. For learning the
rules of class ci, examples of all classes cj with j > i are used as negative
examples. No rules are learned for the last and most frequent class, but a
rule that implies this class is added as the default rule. At classification time,
these rules are meant to be used as a decision list, i.e., the first rule that
fires is used for prediction.

Unordered Mode: In unordered mode, Ripper uses a one-against-all strategy
for learning a rule set, i.e., one set of rules is learned for each class ci,
using all examples of classes cj , j 	= i as negative examples. At prediction
time, all rules that cover an example are considered and the rule with the
maximum probability estimate is used for classifying the example. If no rule
covers the example, it classified by the default rule predicting the majority
class.

We used JRip, the Weka (Witten and Frank, 2005) implementation of Ripper.
Contrary to William Cohen’s original implementation, this re-implementation
does not support the unordered mode, so we had to add a re-implementation of
that mode.2 We also added a few other minor modifications which were needed
for the probability estimation, e.g. the collection of statistical counts of the sub
rules.

In addition, Ripper (and JRip) can turn the incremental reduced error pruning
technique (Fürnkranz and Widmer, 1994; Fürnkranz, 1997) on and off. Note,
however, that with turned off pruning, Ripper still performs pre-pruning using
a minimum description length heuristic (Cohen, 1995). We use Ripper with and
without pruning and in ordered and unordered mode to generate four set of
rules. For each rule set, we employ several different class probability estimation
techniques.

In the test phase, all covering rules are selected for a given test instance. Using
this reduced rule set we determine the most probable rule. For this purpose
we select the most probable class of each rule and use this class value as the
prediction for the given test instance and the class probability for comparison.
Ties are solved by predicting the least represented class. If no covering rules exist
the class probability distribution of the default rule is used.

4 Experimental Setup

We performed our experiments within the WEKA framework (Witten and Frank,
2005). We tried each of the four configuration of Ripper (unordered/ordered and
pruning/no pruning) with 5 different probability estimation techniques, Näıve (la-
beled as Precision), Laplace, and m-estimate with m ∈ {2, 5, 10}, both used as
a stand-alone probability estimate (abbreviated with B) or in combination with

2 Weka supports a general one-against-all procedure that can also be combined with

JRip, but we could not use this because it did not allow us to directly access the

rule probabilities.
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shrinkage (abbreviated with S). As a baseline, we also included the performance
of pruned or unpruned standard JRip accordingly. Our unordered implementa-
tion of JRip using Laplace stand-alone for the probability estimation is compara-
ble to the unordered version of Ripper (Cohen, 1995), which is not implemented
in JRip.

We evaluated these methods on 33 data sets of the UCI repository
(Asuncion and Newman, 2007) which differ in the number of attributes (and
their categories), classes and training instances. As a performance measure, we
used the weighted area under the ROC curve (AUC), as used for probabilistic
decision trees by Provost and Domingos (2003). Its key idea is to extend the
binary AUC to the multi-class case by computing a weighted average the AUCs
of the one-against-all problems Nc, where each class c is paired with all other
classes:

AUC(N) =
∑
c∈C

nc

|N |AUC(Nc) (8)

For the evaluation of the results we used the Friedman test with a post-hoc
Nemenyi test as proposed in (Demsar, 2006). The significance level was set to
5% for both tests. We only discuss summarized results here, detailed results can
be found in the appendix.

4.1 Ordered Rulesets

In the first two test series, we investigated the ordered approach using the stan-
dard JRip approach for the rule generation, both with and without pruning.
The basic probability methods were used standalone (B) or in combination with
shrinkage (S).

The Friedman test showed that in both test series, the employed combinations
of probability estimation techniques showed significant differences. Considering
the CD chart of the first test series (Figure 1), one can identify three groups of
equivalent techniques. Notable is that the two best techniques, the m-Estimate
used stand-alone with m = 2 and m = 5 respectively, belong only to the best
group. These two are the only methods that are significantly better than the two
worst methods, Precision used stand-alone and Laplace combined with shrinkage.

Fig. 1. CD chart for ordered rule sets without pruning
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Fig. 2. CD chart for ordered rule sets with pruning

On the other hand, the näıve approach seems to be a bad choice as both techniques
employing it rank in the lower half. However our benchmark JRip is positioned in
the lower third, which means that the probability estimation techniques clearly
improve over the default decision list approach implemented in JRip.

Comparing the stand-alone techniques with those employing shrinkage one
can see that shrinkage is outperformed by their stand-alone counterparts. Only
precision is an exception as shrinkage yields increased performance in this case.
In the end shrinkage is not a good choice for this scenario.

The CD-chart for ordered rule sets with pruning (Figure 2) features four
groups of equivalent techniques. Notable are the best and the worst group which
overlap only in two techniques, Laplace and Precision used stand-alone. The first
group consists of all stand-alone methods and JRip which dominates the group
strongly covering no shrinkage method. The last group consists of all shrinkage
methods and the overlapping methods Laplace and Precision used stand-alone.
As all stand-alone methods rank before the shrinkage methods, one can conclude
that they outperform the shrinkage methods in this scenario as well. Ripper
performs best in this scenario, but the difference to the stand-alone methods is
not significant.

4.2 Unordered Rule Sets

Test series three and four used the unordered approach employing the modified
JRip which generates rules for each class. Analogous to the previous test se-
ries the basic methods are used as stand-alone methods or in combination with
shrinkage (left and right column respectively). Test series three used no pruning
while test series four did so. The results of the Friedman test showed that the
techniques of test series three and test series four differ significantly.

Regarding the CD chart of test series three (Figure 3), we can identify four
groups of equivalent methods. The first group consists of all stand-alone tech-
niques, except for Precision, and the m-estimates techniques combined with
shrinkage and m = 5 and m = 10, respectively. Whereas the stand-alone meth-
ods dominate this group, m = 2 being the best representative. Apparently these
methods are the best choices for this scenario. The second and third consist
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Fig. 3. CD chart for unordered rule sets without pruning

mostly of techniques employing shrinkage and overlap with the worst group in
only one technique. However our benchmark JRip belongs to the worst group
being the worst choice of this scenario. Additionally the shrinkage methods are
outperformed by their stand-alone counterparts.

The CD chart of test series four (Figure 4) shows similar results. Again four
groups of equivalent techniques groups can be identified. The first group consists
of all stand-alone methods and the m-estimates using shrinkage and m = 5 and
m = 10 respectively. This group is dominated by the m-estimates used stand-
alone with m = 2, m = 5 or m = 10. The shrinkage methods are distributed over
the other groups, again occupying the lower half of the ranking. Our benchmark
JRip is the worst method of this scenario.

4.3 Unpruned vs. Pruned Rule Sets

Rule pruning had mixed results, which are briefly summarized in Table 1. On the
one hand, it improved the results of the unordered approach, on the other hand
it worsened the results of the ordered approach. In any case, in our experiments,
contrary to previous results on PETs, rule pruning was not always a bad choice.
The explanation for this result is that in rule learning, contrary to decision tree
learning, new examples are not necessarily covered by one of the learned rules.
The more specific rules become, the higher is the chance that new examples are
not covered by any of the rules and have to be classified with a default rule. As
these examples will all get the same default probability, this is a bad strategy

Fig. 4. CD chart for unordered rule sets with pruning
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Table 1. Unpruned vs. pruned rule sets: Win/Loss for ordered (top) and unordered

(bottom) rule sets

Jrip Precision Laplace M 2 M 5 M 10

Win 26 23 19 20 19 18 20 19 20 19 20

Loss 7 10 14 13 14 15 13 14 13 14 13

Win 26 21 9 8 8 8 8 8 8 8 6

Loss 7 12 24 25 25 25 25 25 25 25 27

for probability estimation. Note, however, that JRip without pruning, as used
in our experiments, still performs an MDL-based form of pre-pruning. We have
not yet tested a rule learner that performs no pruning at all, but, because of the
above deliberations, we do not expect that this would change the results with
respect to pruning.

5 Conclusions

The most important result of our study is that probability estimation is clearly
an important part of a good rule learning algorithm. The probabilities of rules
induced by JRip can be improved considerably by simple estimation techniques.
In unordered mode, where one rule is generated for each class, JRip is out-
performed in every scenario. On the other hand, in the ordered setting, which
essentially learns decision lists by learning subsequent rules in the context of
previous rules, the results were less convincing, giving a clear indication that
the unordered rule induction mode should be preferred when a probabilistic
classfication is desirable.

Amongst the tested probability estimation techniques, the m-estimate typi-
cally outperformed the other methods. Among the tested values, m = 5 seemed
to yield the best overall results, but the superiority of the m-estimate was not
sensitive to the choice of this parameter. The employed shrinkage method did
in general not improve the simple estimation techniques. It remains to be seen
whether alternative ways of setting the weights could yield superior results.
Rule pruning did not produce the bad results that are known from ranking with
pruned decision trees, presumably because unpruned, overly specific rules will
increase the number of uncovered examples, which in turn leads to bad ranking
of these examples.
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A Detailed Experimental Results (Tables)

Table 2. Weighted AUC results with rules from ordered, unpruned JRip

Name Jrip Precision Laplace M 2 M 5 M 10

B S B S B S B S B S

Anneal .983 .970 .971 .970 .970 .970 .970 .971 .971 .970 .970

Anneal.orig .921 .917 .920 .920 .919 .920 .919 .920 .920 .919 .919

Audiology .863 .845 .843 .832 .836 .840 .844 .839 .841 .831 .832

Autos .904 .907 .901 .900 .891 .907 .902 .904 .902 .903 .898

Balance-scale .823 .801 .812 .821 .812 .820 .811 .821 .812 .821 .815

Breast-cancer .591 .577 .581 .578 .580 .578 .580 .578 .579 .577 .579

Breast-w .928 .930 .929 .935 .930 .935 .931 .935 .932 .935 .933

Colic .736 .739 .741 .747 .746 .748 .746 .748 .745 .748 .746

Credit-a .842 .849 .857 .861 .859 .861 .859 .861 .862 .861 .864

Credit-g .585 .587 .587 .587 .587 .587 .587 .587 .587 .587 .587

Diabetes .642 .654 .656 .655 .656 .655 .656 .655 .656 .655 .655

Glass .806 .803 .795 .790 .787 .794 .797 .793 .799 .792 .795

Heart-c .762 .765 .775 .796 .777 .796 .777 .796 .780 .796 .789

Heart-h .728 .737 .755 .758 .757 .758 .755 .758 .757 .758 .757

Heart-statlog .763 .759 .781 .806 .782 .806 .783 .806 .790 .806 .791

Hepatitis .679 .661 .661 .660 .663 .660 .665 .660 .663 .660 .663

Hypothyroid .971 .973 .974 .974 .974 .974 .974 .974 .974 .973 .974

Ionosphere .884 .885 .897 .903 .900 .903 .899 .903 .900 .903 .902

Iris .957 .889 .876 .889 .878 .889 .878 .889 .878 .889 .878

Kr-vs-kp .993 .994 .994 .995 .994 .995 .994 .995 .994 .995 .994

Labor .812 .800 .810 .794 .810 .793 .806 .793 .795 .793 .783

Lymph .750 .739 .748 .748 .745 .746 .748 .744 .746 .749 .746

Primary-tumor .649 .636 .652 .615 .638 .645 .656 .641 .653 .642 .662

Segment .983 .964 .944 .967 .943 .966 .944 .967 .943 .966 .943

Sick .922 .928 .929 .929 .929 .929 .929 .929 .929 .929 .929

Sonar .774 .771 .779 .784 .778 .783 .778 .783 .779 .783 .781

Soybean .962 .971 .972 .966 .971 .973 .972 .967 .973 .967 .971

Splice .938 .934 .938 .943 .938 .943 .938 .943 .938 .943 .939

Vehicle .772 .799 .811 .811 .816 .812 .813 .811 .816 .812 .819

Vote .952 .954 .950 .955 .949 .955 .949 .955 .952 .953 .956

Vowel .884 .906 .909 .909 .906 .909 .910 .911 .910 .910 .907

Waveform .847 .850 .853 .872 .854 .872 .854 .873 .855 .873 .858

Zoo .916 .899 .916 .902 .897 .908 .900 .907 .895 .899 .890

Average .834 .830 .834 .836 .832 .837 .834 .837 .834 .836 .834

Average Rank 6.79 8.24 6.62 5.11 7.62 4.26 6.03 4.68 5.33 5.53 5.79
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Table 3. Weighted AUC results with rules from ordered, pruned JRip

Name Jrip Precision Laplace M 2 M 5 M 10

B S B S B S B S B S

Anneal .984 .981 .980 .981 .981 .981 .980 .981 .980 .980 .980

Anneal.orig .942 .938 .937 .936 .936 .937 .936 .936 .937 .935 .936

Audiology .907 .865 .854 .810 .776 .852 .840 .839 .826 .834 .801

Autos .850 .833 .836 .821 .829 .829 .830 .823 .830 .821 .819

Balance-scale .852 .812 .810 .815 .810 .815 .810 .816 .811 .816 .811

Breast-cancer .598 .596 .597 .596 .597 .596 .597 .598 .599 .598 .602

Breast-w .973 .965 .956 .965 .956 .964 .956 .964 .957 .961 .957

Colic .823 .801 .808 .804 .815 .809 .815 .813 .815 .816 .816

Credit-a .874 .872 .874 .873 .874 .874 .874 .874 .873 .875 .874

Credit-g .593 .613 .612 .613 .612 .613 .612 .613 .612 .613 .612

Diabetes .739 .734 .736 .734 .736 .734 .736 .734 .736 .734 .736

Glass .803 .814 .810 .822 .825 .820 .818 .820 .817 .820 .812

Heart-c .831 .837 .818 .843 .818 .842 .818 .845 .823 .847 .825

Heart-h .758 .739 .742 .740 .740 .740 .742 .741 .742 .742 .741

Heart-statlog .781 .792 .776 .790 .776 .790 .776 .791 .775 .790 .773

Hepatitis .664 .600 .596 .600 .596 .599 .596 .599 .595 .597 .586

Hypothyroid .988 .990 .990 .990 .990 .990 .990 .990 .990 .990 .990

Ionosphere .900 .904 .909 .907 .909 .908 .909 .910 .910 .910 .909

Iris .974 .888 .889 .890 .891 .890 .891 .890 .891 .890 .891

Kr-vs-kp .995 .994 .993 .994 .993 .994 .993 .994 .994 .994 .994

Labor .779 .782 .755 .782 .761 .781 .764 .768 .759 .746 .745

Lymph .795 .795 .767 .788 .772 .790 .773 .779 .773 .777 .774

Primary-tumor .642 .626 .624 .622 .627 .630 .622 .627 .622 .629 .628

Segment .988 .953 .932 .953 .933 .954 .932 .953 .932 .953 .933

Sick .948 .949 .949 .950 .949 .950 .949 .950 .950 .950 .950

Sonar .759 .740 .734 .742 .737 .743 .737 .746 .740 .744 .744

Soybean .981 .980 .970 .968 .965 .978 .970 .971 .967 .969 .966

Splice .967 .956 .953 .957 .953 .957 .953 .957 .954 .957 .954

Vehicle .855 .843 .839 .844 .843 .844 .842 .843 .843 .842 .844

Vote .942 .949 .947 .949 .947 .949 .947 .949 .947 .949 .947

Vowel .910 .900 .891 .898 .891 .904 .892 .905 .893 .898 .892

Waveform .887 .880 .862 .880 .863 .880 .862 .881 .863 .881 .863

Zoo .925 .889 .909 .887 .895 .895 .902 .895 .901 .889 .893

Average .855 .843 .838 .841 .836 .843 .838 .842 .838 .841 .836

Average Rank 3.52 5.88 7.92 5.98 7.62 4.65 7.06 4.55 6.79 5.29 6.74
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Table 4. Weighted AUC results with rules from unordered, unpruned JRip

Name Jrip Precision Laplace M 2 M 5 M 10

B S B S B S B S B S

Anneal .983 .992 .989 .992 .991 .994 .989 .994 .989 .994 .989

Anneal.orig .921 .987 .984 .990 .983 .993 .984 .993 .984 .993 .984

Audiology .863 .910 .887 .877 .874 .909 .895 .903 .894 .892 .889

Autos .904 .916 .915 .926 .914 .927 .914 .929 .918 .930 .926

Balance-scale .823 .874 .865 .908 .873 .908 .866 .909 .871 .908 .882

Breast-cancer .591 .608 .587 .633 .605 .633 .589 .632 .606 .632 .617

Breast-w .928 .959 .966 .953 .966 .953 .967 .953 .969 .953 .969

Colic .736 .835 .840 .855 .851 .855 .849 .855 .849 .859 .849

Credit-a .842 .890 .909 .913 .911 .913 .911 .913 .914 .913 .917

Credit-g .585 .695 .717 .716 .716 .716 .716 .716 .716 .716 .718

Diabetes .642 .760 .778 .783 .780 .783 .779 .783 .781 .783 .783

Glass .806 .810 .826 .808 .833 .808 .825 .808 .827 .809 .830

Heart-c .762 .790 .813 .861 .827 .861 .823 .861 .831 .861 .844

Heart-h .728 .789 .803 .851 .839 .853 .819 .849 .835 .852 .837

Heart-statlog .763 .788 .811 .845 .805 .841 .805 .841 .820 .841 .829

Hepatitis .679 .774 .817 .799 .819 .802 .821 .802 .817 .802 .816

Hypothyroid .971 .991 .994 .994 .993 .994 .994 .994 .993 .994 .993

Ionosphere .884 .918 .932 .938 .931 .938 .931 .938 .931 .939 .935

Iris .957 .968 .973 .978 .980 .978 .976 .978 .980 .978 .980

Kr-vs-kp .993 .998 .997 .999 .997 .999 .997 .999 .997 .999 .997

Labor .812 .818 .806 .777 .803 .778 .803 .778 .790 .778 .775

Lymph .750 .843 .852 .891 .857 .887 .848 .881 .852 .884 .878

Primary-tumor .649 .682 .707 .671 .690 .693 .712 .694 .711 .691 .711

Segment .983 .991 .989 .997 .990 .997 .989 .997 .990 .997 .990

Sick .922 .958 .979 .981 .984 .982 .979 .982 .980 .982 .980

Sonar .774 .823 .826 .841 .826 .841 .826 .841 .828 .841 .836

Soybean .962 .979 .981 .982 .979 .985 .981 .984 .981 .985 .981

Splice .938 .964 .968 .974 .968 .974 .968 .974 .969 .974 .970

Vehicle .772 .851 .879 .888 .881 .888 .879 .888 .881 .888 .884

Vote .952 .973 .967 .982 .968 .983 .968 .983 .975 .983 .978

Vowel .884 .917 .919 .922 .920 .922 .921 .922 .920 .922 .920

Waveform .847 .872 .890 .902 .890 .902 .890 .902 .890 .902 .893

Zoo .916 .964 .965 .965 .970 .984 .982 .984 .982 .987 .988

Average .834 .875 .883 .891 .885 .893 .885 .893 .887 .893 .890

Average Rank 10.67 8.15 7.45 4.08 6.65 3.58 7.08 3.68 5.88 3.88 4.91
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Table 5. Weighted AUC results with rules from unordered, pruned JRip

Name Jrip Precision Laplace M 2 M 5 M 10

B S B S B S B S B S

Anneal .984 .987 .988 .984 .986 .987 .985 .986 .986 .986 .986

Anneal.orig .942 .990 .983 .985 .980 .989 .983 .988 .982 .984 .982

Audiology .907 .912 .889 .891 .878 .895 .893 .889 .885 .883 .881

Autos .850 .889 .882 .891 .889 .894 .888 .892 .889 .891 .889

Balance-scale .852 .888 .861 .899 .864 .895 .860 .900 .861 .901 .864

Breast-cancer .598 .562 .555 .557 .555 .557 .555 .557 .555 .560 .558

Breast-w .973 .962 .972 .963 .973 .963 .973 .963 .973 .961 .974

Colic .823 .782 .831 .799 .830 .793 .836 .801 .837 .812 .837

Credit-a .874 .876 .878 .877 .877 .877 .878 .879 .879 .881 .879

Credit-g .593 .702 .711 .703 .711 .703 .711 .703 .711 .705 .711

Diabetes .739 .740 .729 .742 .729 .742 .729 .741 .730 .739 .731

Glass .803 .819 .821 .821 .826 .819 .821 .824 .824 .828 .825

Heart-c .831 .827 .816 .827 .804 .829 .816 .828 .810 .830 .807

Heart-h .758 .739 .740 .735 .736 .737 .738 .736 .737 .735 .736

Heart-statlog .781 .806 .815 .816 .813 .816 .812 .823 .819 .824 .827

Hepatitis .664 .766 .790 .769 .793 .771 .790 .764 .795 .768 .789

Hypothyroid .988 .984 .993 .992 .993 .987 .994 .992 .993 .992 .993

Ionosphere .900 .918 .915 .921 .917 .922 .918 .926 .923 .926 .923

Iris .974 .975 .969 .975 .969 .975 .969 .975 .970 .975 .973

Kr-vs-kp .995 .999 .995 .999 .995 .999 .995 .999 .996 .998 .997

Labor .779 .837 .820 .815 .811 .812 .818 .812 .812 .809 .803

Lymph .795 .858 .832 .849 .833 .853 .836 .851 .842 .851 .856

Primary-tumor .642 .703 .701 .679 .694 .709 .704 .710 .706 .708 .707

Segment .988 .991 .989 .995 .990 .995 .990 .995 .990 .995 .990

Sick .948 .949 .934 .948 .938 .948 .935 .948 .937 .948 .937

Sonar .759 .827 .815 .827 .814 .827 .815 .824 .813 .824 .818

Soybean .981 .989 .981 .988 .981 .990 .981 .989 .981 .989 .981

Splice .967 .973 .967 .974 .967 .974 .967 .974 .968 .974 .968

Vehicle .855 .892 .891 .893 .890 .893 .890 .893 .890 .893 .890

Vote .942 .947 .956 .961 .957 .952 .957 .960 .956 .961 .958

Vowel .910 .921 .915 .924 .915 .925 .915 .925 .916 .924 .915

Waveform .887 .897 .877 .899 .878 .898 .877 .899 .878 .900 .880

Zoo .925 .973 .989 .960 .969 .987 .989 .987 .989 .987 .989

Average .855 .875 .873 .874 .871 .876 .873 .877 .874 .877 .874

Average Rank 8.45 5.61 6.95 5.38 7.59 4.67 6.95 4.14 6.23 4.33 5.7
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Abstract. Cost sensitive prediction is a key task in many real world

applications. Most existing research in this area deals with classification

problems. This paper addresses a related regression problem: the pre-

diction of rare extreme values of a continuous variable. These values are

often regarded as outliers and removed from posterior analysis. How-

ever, for many applications (e.g. in finance, meteorology, biology, etc.)

these are the key values that we want to accurately predict. Any learn-

ing method obtains models by optimizing some preference criteria. In

this paper we propose new evaluation criteria that are more adequate

for these applications. We describe a generalization for regression of the

concepts of precision and recall often used in classification. Using these

new evaluation metrics we are able to focus the evaluation of predictive

models on the cases that really matter for these applications. Our exper-

iments indicate the advantages of the use of these new measures when

comparing predictive models in the context of our target applications.

1 Introduction

Several important predictive data mining applications involve handling non-
uniform costs and benefits of the predictions. This is almost always the case
in event-based applications like prediction of ecological or meteorological catas-
trophes, fraud detection, network intrusions, financial forecasting, etc.. Many of
these tasks are particular cases of regression problems where the continuous tar-
get variable values have differentiated importance. Often these prediction tasks
are related to the anticipation of a critical phenomenon that is inherently con-
tinuous and for which an alarm may be triggered by a specific range of values of
a continuous target variable. This type of applications requires techniques that
are able to cope with differentiated costs and benefits of predictions.

In this paper we have as main goal to address a particular and highly relevant
sub-class of non-uniform cost/benefit prediction tasks. These applications asso-
ciate higher cost or benefit with rarity. For these applications the most (and often
solely) important cases are the ones associated with unusual values of the target
variable. We are thus facing a task of predicting outlier values of a continuous
target variable.
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Handling applications with differentiated costs and benefits of predictions is
not new and many cost-sensitive techniques have been proposed in the literature
(e.g. [6,7]). Still, most of these works focus on predictive classification tasks.
For regression the most common setup considers that the cost of predictions is
uniform across the domain of the target variable and solely dependent on the
magnitude of the prediction errors themselves.

Addressing cost-sensitive applications involves two major issues: i) defining
proper evaluation metrics to correctly assert the merits of alternative models
given the application preference biases; and ii) defining learning strategies to bet-
ter tune the models towards these biases. These two issues have been throughly
addressed within classification problems. However, they have been essentially
ignored in research on regression. The goal of this paper is to address the first of
these issues: the selection of proper evaluation metrics. The main contributions
of the paper are: i) increasing the awareness of the research community for these
important tasks and in general to cost-sensitive regression; ii) exposing the risks
of using standard regression evaluation metrics on cost sensitive applications; iii)
proposing a new evaluation framework for the prediction of rare extreme values
of a continuous variable.

2 Problem Statement

In predictive data mining the goal is to learn a model of an unknown function
that maps a set of predictor variables into a target variable. This model is to be
obtained using a training set containing examples of this mapping. The train-
ing data is used to obtain the model parameters that minimise some preference
criterion. The preference criteria that are commonly used in regression are the
mean squared error, MSE = 1

n

∑n
i=1 (yi − ŷi)

2, and the mean absolute devia-
tion, MAD = 1

n

∑n
i=1 |yi − ŷi|. These are average estimators of the true mean

squared and absolute error of the model, respectively.
In this paper we are interested in a particular sub-class of regression problems.

The main particularity of this sub-class of problems lies on their focus on the
predictive performance at rare extreme values of the continuous target variable,
i.e. extreme low and/or high values. Performance on the other more frequent
values is basically irrelevant for the end user of these applications.

We claim that standard error measures, such as MSE and MAD, are not
suitable for these tasks. They take all the prediction errors equally across the
domain of the target variable, assuming that the magnitude of the error is the
decisive factor for the “cost” of a prediction. We argue that while this magnitude
is important it should be weighed by the “relevance” of the values involved in
the prediction.

Let us illustrate our claim by a small example. In Table 1 we present the pre-
dictions of two artificial models (M1 and M2) for a set of 10 hypothetical returns
of some financial asset given in percentage daily variation. For this prediction
problem it is very clear that we want to be particularly accurate at predicting
the large variations (positive or negative) as these are the ones on which we can
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Table 1. The predictions of two artificial models

True −5.29 −2.65 −2.43 −0.20 −0.03 0.03 0.51 1.46 2.53 2.94

M1 −4.40 −2.06 −2.20 0.10 −0.23 −0.27 0.97 2.00 1.86 2.15
M2 −5.09 −2.95 −2.89 0.69 −0.82 0.70 −0.08 0.92 2.83 3.17

earn some money if they are correct. Smaller variations, even if correctly pre-
dicted are most of the times not tradable given the transaction costs. From the
observation of this table, we can say that M1 has more accurate predictions at
smaller returns (in absolute terms), while M2 achieves more accurate predictions
at the larger variations. However, if we calculate the values of both MAD and
MSE of these two models we observe that they are exactly the same, 0.497 and
0.29893, respectively, meaning that these two metrics tag these two models as
having the same performance. The reason for this is that both models obtain
the same total error magnitude value and thus both have same average error.
This is a clearly misleading “conclusion” for this type of applications, as model
M2 is obviously more useful. This small example provides a simple illustration of
the problem of assuming that the error amplitudes cost the same across all the
domain of the target variable (as it is the case of all standard error metrics). For
our target applications this is clearly not the case and, therefore, it is necessary
to have an error metric that is sensitive to where the errors occur within the
range of the target variable, i.e. that copes with differentiated relevance across
the domain of this variable.

Another further problem with standard error metrics, not illustrated in the
above example, is the fact that even though some model may have a clear ad-
vantage on extreme values, given their rarity, this advantage may well be diluted
by its poorer performance on the “irrelevant” (but very frequent) normal values.

3 Existing Approaches to the Problem

3.1 Case Weights

Within the regression learning setup described in Section 2, there are a few alter-
natives to the standard error measures that could be considered more adequated
to our applications. One such alternative is to use case weights. Some learning
algorithms allow the user to attach a weight to each observation of the training
sample. Model parameters can then be obtained by minimizing a criterion that
takes into account these weights. Training cases with a target variable value that
is more “relevant” should have higher weights. In the case of rare extreme values
prediction this would mean to give more weight to the extreme values.

Assuming we can easily obtain the values of these weights this would appar-
ently lead to a proper evaluation of the models’ performance. However, the main
drawback of this approach is that it only sees one side of the problem, the true
values. In effect, this method does not try to avoid (or penalize) the situation
where a “relevant” value is predicted by the model, but the true value is “nor-
mal”. This is a kind of false alarm and would correspond, for instance, to predict
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a high return for some stock that then turns out to have a really irrelevant (very
small) return. This drawback stems from the fact that the weights are dependent
solely on the true value of the cases, yi, instead of being dependent on both yi

and ŷi. Because of this, the above example would have a low penalization (as
the true value is irrelevant), which is contradictory to the application objectives
where we clearly want to avoid these costly mistakes.

3.2 Special-Purpose Loss Functions

Some authors (e.g. [4]) have addressed the issue of differentiated prediction costs
by the use of so-called asymmetric loss functions. Their main goal was to be able
to distinguish two types of errors, and assign costs accordingly, namely, the cost
of under-predictions (ŷ < y) and the cost of over-predictions (ŷ > y). That is the
case of the LINLIN loss function, presented in Equation 1.

LINLIN =

⎧⎨⎩
co|y − ŷ|, if ŷ > y;
0, if ŷ = y;
cu|y − ŷ|, if ŷ < y.

(1)

where co and cu are constants for penalizing over- and under-predictions.
In spite of its use for some type of applications, the LINLIN loss function

is far from being a general cost-sensitive approach for any regression task as it
only distinguishes between two types of differentiated costs: under- and over-
predictions. Moreover, even on these situations it considers all under-(over-)
predictions as equally serious, only looking at the error amplitude as “standard”
error metrics. For instance, in stock market forecasting, predicting a future price
change of −1% for a true value of 1%, has the same error amplitude as predicting
6% for a true value of 8%, and both are under-predictions. Nonetheless, they may
lead to very different trading actions, and thus different costs/benefits.

4 Precision and Recall for Regression

Our target applications are driven by rare events - the occurrence of rare ex-
treme values of a continuous variable. Within research on classification, this type
of event-driven prediction tasks are usually evaluated using the notions of pre-
cision and recall, which are preferred over other alternatives when in presence
of large skew in the class distribution [5]. The main advantage of these statistics
is that they are focused on the performance of the models on the events, com-
pletely ignoring their accurate predictions for the non-event classes. Informally,
precision measures the proportion of events signalled by the model that are real
events. Recall measures the proportion of events occurring in the domain that
are “captured” by the models. There is usually a trade-off between these two
statistics (always outputting an event signal will get you 100% recall but with
a very poor precision as most signals will be wrong), and often the two are put
together in a single weighted score like for instance the F-measure [11]. Con-
ceptually, our proposal in this paper is to provide the equivalents of these two
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statistics for regression problems in order to properly evaluate the performance
of the models on the values that really matter.

4.1 Our Proposal

The standard setup for event-driven classification is to have a so-called “posi-
tive” class that represents the target events while the “negative” class represents
all non-events. Confusion matrices provide a good characterization of the perfor-
mance of a model. The numbers in this matrix can be used to calculate several
statistics among which are precision and recall [8]. Table 2 shows a general confu-
sion matrix for these type of applications. Recall is defined as the ratio TP/POS,
while precision as the ratio TP/PPOS.

Table 2. The 2-classes confusion matrix

Predicted Predicted

Pos Neg

Pos TP FN POS

Neg FP TN NEG

PPOS PNEG

In these classification problems, relevance (importance) is established by
declaring the “target” class. This enumeration strategy is not possible in re-
gression given the infinite domain of the target variable. We propose the use of
a relevance function, φ(), that maps the original domain of the target variable
into a continuous scale of relevance1,

φ(Y ) : ]−∞,∞[→ [0, 1] (2)

This function allows the specification of different degrees of relevance with the
obvious advantages in terms of sensibility of the method with respect to the
different values of the target variable.

We can also describe the strategy followed in classification using this notion
of relevance. In effect, from this perspective it corresponds to specifying the
following relevance function,

φ(Y ) = I(Y = CE) (3)

where I() is the indicator function given 1 if its argument is true and 0 otherwise,
and CE is the label of the class describing the events (i.e. the positive class).

The information on the relevance function is obviously domain-dependent. In
classification this information consists of choosing the positive class. In regression,
given the infinite nature of the domain of the target variable, a real valued func-
tion makes more sense. Specifying such function in an analytical way may not be
1 We use the value of zero for completely irrelevant values, and one for maximally

relevant values.
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always easy for a user. Still, for some applications we can come up with a rea-
sonable automatically generated relevance function. That is the case of our target
applications. In effect, in these domains relevance is associated with rarity and ex-
tremeness of the values. In this context we may say that the relevance function is
the complement of the probability distribution function (pdf ) of the target vari-
able. Box plots provide key information on this pdf in particular regards extreme
values. In effect, they are at the basis of a parametric test for outliers, the box-plot
rule. This test assumes a Gaussian distribution of the variable and tags as outliers
all values above the high adjacent value given by adjH = Q3 +1.5 ·IQR, where Q3

is the third quartile and IQR = Q3 − Q1. Equivalently, all values below the low
adjacent value, adjL = Q1 − 1.5 · IQR, are also tagged as outliers. These values
correspond to rare high (low) extreme values. For our target applications we may
have both types of outliers or only high (low) outliers. Our proposal consists of
using a sigmoid-like relevance function whose shape is a function of these adjacent
values for each of these two “sides” of extremeness. Let us see how we can derive
this function from the training sample we have available for each application.

The relevance function is based in the following sigmoid,

f(Y ) =
1

1 + exp−s·(Y −c)
(4)

where c is the center of the sigmoid and s is the shape of the sigmoid. The values
of these parameters are also dependent on the type of extremes the variable
has (low, high or both types of extremes). For applications with only low or
high extremes the relevance function is defined by a single sigmoid, while for
applications with both types of extremes (like stock market prediction tasks) we
will have two of these sigmoids defining φ(Y ).

The parameter c, the center of the sigmoid, represents the value where φ(Y ) =
0.5. The meaning of c is that of a threshold above which the values of target
variable start to be more relevant. We set the c values of the sigmoids to the
values of the respective adjacent values, i.e. cL = adjL and cH = adjH .

With respect to the parameter s we want to set it in such a way that for the
high extreme values φ(c− c · k) & 0, and for low extremes φ(c+ c · k) & 0, where
k is a kind of decay factor that determines how fast the sigmoid decays to 0. By
selecting a certain precision value Δ (e.g. 1e − 04) and solving the equation in
order to s we get,

s = ± ln(Δ−1 − 1)
|c · k| (5)

where the + signal is used for high extremes, while the − signal is for low
extremes.

In the case of applications with both extremes, each sigmoid is obtained using
the parameter values described above. Figure 1 shows two relevance functions
generated using this method for two types of applications: only with high ex-
tremes ; and with both types of extremes. We provide R code2 that implements
2 Available in http://www.liaad.up.pt/∼ltorgo/DS09 .
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Fig. 1. Two examples of relevance functions generated from box plots

this type of relevance functions that are adequate for applications of predicting
rare extreme values.

Please note that our proposal in no way depends on this illustrative and
heuristic definition of a relevance function. This definition is only of use in cases
where the user does not have a precise notion of relevance/importance of his
application, simply having the “intuition” that relevance is associated with ex-
treme and rare values. In these cases, this heuristic function we have described
may help in defining a relevance function that is required for the application of
our evaluation framework that we now describe.

Recall is informally defined as the proportion of relevant events that are re-
trieved by a model. Having defined events as a function of relevance we can
say that relevant events are those for which φ(Y ) ≥ tE , where tE is a domain-
dependent threshold on relevance. In classification, as relevance is usually a 0/1
function (c.f. Equation 3), this threshold is 1. For regression, this will most
probably be a value near 1, depending on the values we want to consider as the
targets of our prediction task.

We now need to clarify the notion of “events that are retrieved by a model” in
order to fully define recall. In classification this consists of achieving a correct pre-
diction that is asserted by the usual 0/1 loss function, i.e. having L0/1(ŷi, yi) =
0 ⇔ ŷi = yi. In regression loss functions are usually metric with domain [0,∞[.
Imposing that ŷi = yi will be, in most cases, too strict. Generally, we can
say that a prediction is “correct” in regression if L(ŷi, yi) ≤ tL, where tL is
a threshold on the range of the loss function. We may generalize even further
this notion by allowing different degrees of “accuracy” within the interval of
“admissible” errors, i.e. errors that are less than tL. The value of tL is again
domain-dependent.

Having defined the two general concepts involved in the notion of recall we
can now propose a general definition for this statistic that can cope with both
classification and regression tasks,

Recall =

∑
φ(yi)≥tE

α(ŷi, yi) · φ(yi)∑
φ(yi)≥tE

φ(yi)
(6)

where α() is a function that defines the accuracy of a prediction.
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In classification the α() function is defined as follows,

α(ŷi, yi) = I(L0/1(ŷi, yi) = 0) (7)

where L0/1() is a standard 0/1 loss function.
Given the definition of relevance for classification problems we have described

above, and this definition of what is an accurate prediction in classification, it
is easy to see that our proposed definition of Recall reduces to the standard
proportion TP/POS.

For regression we may define α() using a similar indicator function,

α(ŷi, yi) = I(L(ŷi, yi) ≤ tL) (8)

where tL is the above mentioned threshold defining an admissible error within
the domain a metric loss function L() (e.g. the absolute deviation).

Alternatively, we may use a smoother notion of accuracy by using a continuous
function in the interval [0, 1], instead of the 0/1 function of Equation 8. This
allows a more accurate assessment of the quality of the signals of a regression
model. There are many ways of mapping the loss function values in the interval
[0, tL] into a [1, 0] scale. Examples include variations of linear interpolation or the
ramping function. Another alternative is to use a variant of the complementary
error function [1], that has a Gaussian-type shape that we think is more adequate
for our goals,

α(ŷi, yi) = I(L(ŷi, yi) ≤ tL) ·
(

1− exp
−k· (L(ŷi,yi)−tL)2

t2
L

)
(9)

where k is a positive integer that determines the shape of the function. Larger
values lead to steeper decreases.

Precision is the proportion of the events retrieved by a model that are effec-
tive events. We have already seen what is an event in both classification and
regression. The only difference here is that we are talking about “retrieved”
events and not the “real” events (i.e. predictions and not true values). Some of
these correspond to “real” events but others not, and the goal of precision is to
assert this proportion. In classification a retrieved event is a prediction of the
“positive” class. In regression this is a prediction of a value whose relevance is
greater than the user-defined relevance threshold tE . As we have seen, both can
be described by the same condition using the relevance function. In this context,
we propose the following generalized definition of precision,

Precision =

∑
φ(ŷi)≥tE

α(ŷi, yi) · φ(ŷi)∑
φ(ŷi)≥tE

φ(ŷi)
(10)

You may have noticed that the numerators of definitions of Precision and Recall
we are proposing are different (c.f. Equations 6 and 10), which is not in aggrement
with the standard definitions of recall and precision that have in the numerator
the number of true positives (TP ). However, for the settings used in classification
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the numerators of these equations we propose are in effect equal. The α() function
used for classification is a 0/1 function that is 1 if the classification is accurate,
which implies that ŷi = yi. This in turn implies that φ(ŷi) = φ(yi) and thus the
numerators are equal. However, we should remark that this may not be the case
for regression setups where an accurate prediction may not mean that ŷi = yi,
namely if tL > 0.

Precision and recall may be aggregated into composite measures, like for in-
stance the F-measure [11],

F =

(
β2 + 1

)
· Precision · Recall

β2 · Precision + Recall
(11)

where 0 ≤ β ≤ 1, controls the relative importance of recall to precision.
These composite measures have the advantage of facilitating comparisons

among models as they provide a single score.

5 Experimental Analysis

5.1 Artificial Data

On Table 1 we have presented an artificial example on stock returns prediction
with the predictions of two models that, in spite of their clearly different ap-
proach to rare extreme values, had exactly the same score in terms of standard
error metrics like MSE and MAD. Let us examine this example with our new
proposed measures of recall and precision. Let us suppose that we use as thresh-
old for events (tE) a value of relevance greater than 0.75 ,i.e. φ(Y ) ≥ 0.75. We
will use an automatically generated relevance function for extremes (c.f. Equa-
tion 4). The generated function uses a larger sample of values than those shown
on Table 1. Using this sample we estimate adjL = −1.5 and adjH = 1.5. These
values setup the value of the c parameter of the function and together with a
value of k = 0.5 we define our relevance function (c.f. Equation 4). We will also
use the smooth α() function defined in Equation 9 with a threshold for accurate
predictions of half percent return, i.e. tL = 0.5. In this context, we come up with
the results show in Table 3.

These values correspond to a recall of 0.178 for model M1 and of 0.670 for
M2. Precision is of 0.292 for model M1 and of 0.668 for M2. These scores provide
a completely different (and more correct with respect to the preference bias of
this application) perspective on the performance of the models, which according
to both MSE and MAD are equal.

5.2 Predicting Stock Market Returns

In this section we illustrate the use of the proposed precision and recall statis-
tics in the context of the prediction of rare extreme returns of a set of stocks.
The purpose of this study is to illustrate both the “danger” of using standard
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Table 3. Evaluating the two artificial models with the new metrics

True −5.29 −2.65 −2.43 −0.20 −0.03 0.03 0.51 1.46 2.53 2.94
φ(Y ) 1.00 1.00 0.98 0.00 0.00 0.00 0.00 0.01 0.99 1.00

M1 −4.40 −2.06 −2.20 0.10 −0.23 −0.27 0.97 2.00 1.86 2.15

φ(Ŷ1) 1.00 0.63 0.86 0.00 0.00 0.00 0.00 0.50 0.22 0.80

L(Ŷ1, Y ) 0.89 0.59 0.23 0.30 0.20 0.30 0.46 0.54 0.67 0.79

α(Ŷ1, Y ) 0.00 0.00 0.90 0.72 0.94 0.72 0.05 0.00 0.00 0.00

M2 −5.09 −2.95 −2.89 0.69 −0.82 0.70 −0.08 0.92 2.83 3.17

φ(Ŷ2) 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00

L(Ŷ2, Y ) 0.20 0.30 0.46 0.89 0.79 0.67 0.59 0.54 0.30 0.23

α(Ŷ2, Y ) 0.94 0.72 0.05 0.00 0.00 0.00 0.00 0.00 0.72 0.90

regression evaluation statistics in this type of problems, as well as presenting
and measuring the advantages of our proposals.

The Data. The base data we will use in our study are the standard daily
quotes of four companies: International Business Machines (IBM), Coca-Cola
(KO), Boeing (BA) and General Motors (GM). This daily data was obtained
from Yahoo finance3 and it contains the usual quotes and volume information.

Most applications of this type based on daily data focus on predicting the
Adjusted Close prices of the stocks. Namely, a common procedure consists pre-
dicting the h-days returns defined as,

Rh (t) =
Close (t)− Close (t− h)

Close (t− h)
(12)

Using this time series of returns we have defined a prediction task consisting of
trying to predicted the future value of these returns, Rh (t + h), using a set of p
previous values of the time series (usually known as an embed of the time series).
In our experiments we used an embed of 24 days back of the Rh (t) variable. This
modelling task was selected without any particular concern on whether this was
the best setup for predicting future returns. That is not our main goal here.
Our objective is to compare alternative modelling techniques on the same stock
market prediction problems and check the model rankings we obtain when using
both the standard evaluation metrics and our new proposals. Our hypothesis
is that the model rankings obtained with our metrics are “better” from the
perspective of the application objectives, which are being accurate at the rare
extreme returns where profitable trading can take place.

Using this approach we have obtained datasets for the 1-, 3- and 5-days returns
of the four companies used in our study, i.e. 12 regression tasks.

The Experimental Methodology. The used quotes data covers the period
from 1970-01-02 till 2008-07-11, in a total of 9725 daily sessions.

3 http://finance.yahoo.com.

http://finance.yahoo.com
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In order to provide an accurate estimate of the statistics that we will use to
compare our alternative models we have divided the period mentioned above
in two main consecutive time windows. The first spans from the first date till
1990-01-01. The second time window goes from this latter date till 2008-07-11.
The first time window (first 20 years) will be used for obtaining the prediction
models, while the second window (around 18 and a half years) will be used to
evaluate and compare the models.

The Modelling Tools. All tools we have used are available in the (free) R
statistical environment4, which allows easy replication of our results. We have
considered 4 different regression techniques, each with several parameter vari-
ants, in a total of 57 different models being compared for each data set.

Artificial Neural Networks. We have used the neural networks provided by the
nnet package of R. This package has a function to obtain feed-forward neural
networks with one hidden layer using the back-propagation learning algorithm.

Regarding model tuning we have considered 15 alternatives varying the num-
ber of inner nodes (parameter Size) of the hidden layer between 5, 10, 15, 20
and 30, and also the learning rate (parameter Decay) between 0.01, 0.05 and 0.1.

Multivariate adaptive regression splines. The package mda of R has a re-imple-
mentation of MARS [9] done by Trevor Hastie and Robert Tibshirani. We have
used this system in our experiments.

Regarding model tuning we have considered 16 variants formed by different
combinations of the parameter setting the penalty for extra degrees of freedom
(parameter Pen which was used with values 1,2,3,4), and of the parameter spec-
ifying the forward stepwise stopping threshold (parameter Thr that was tried
with values 0.01, 0.005, 0.001 and 0.0005).

Support Vector Machines. Package e1071 of R includes a function implementing
SVMs [10]. This implementation provides an interface to the award-winning
libsvm library by Chang and Lin [3].

We have considered 16 variants of SVMs during our model tuning experiments.
These variants were chosen according to the suggestions given in [10]. They
include different values for the parameter Cost (tried values 400, 500, 600 and
700) and Gamma (tried values 0.01, 0.005, 0.001 and 0.0005). The former is a
constraints violation parameter, while the latter is the radial basis function kernel
parameter.

Random Forests. Package randomForest of R includes a function that imple-
ments random forests [2] based on original Fortran code by L. Breiman and A.
Cutler.

We have considered 10 variants of these models by setting the parameter
ntree, which controls the number of trees in the ensembles, to values from 50
to 500 in steps of 50.

4 http://www.R-project.org

http://www.R-project.org
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The Results. We have obtained the 57 model variants using the experimental
methodology described before on the returns data sets. The main hypothesis that
we are trying to check is that the model rankings obtained by using our proposed
metrics are significantly different from the rankings obtained with standard re-
gression statistics. Moreover, that these rankings obtained with our metrics are
clearly advantageous in terms of the application preference bias, that in this
case is related to having good “signals” of rare and extreme movements of the
markets.

In terms of our evaluation framework we have used the following settings.
We have assumed that, giving the transaction costs, users of these applications
are not willing to trade on returns smaller than 2% (-2%) for buying (selling)
actions. In this context, we have setup the notion of rare extreme values around
these two thresholds. Namely, with respect to the relevance function we have
used as centers of the two sigmoids the values cL = −0.02 and cH = 0.02, while
for the shapes of the sigmoids we have calculated them using Equation 5 with
k = 0.5 and Δ = 1e − 04. In the context of precision and recall we have used
tE = 0.5 (thus any return above 2% or below -2% will be considered an event,
given the definition of the φ() function), and tL = 0.005 (i.e. errors above 0.5%
are not considered, c.f. Equation 9).

The first results we show are designed to test the hypothesis concerning the
different rankings. We have used the MAD statistic as a representative of the
“standard” approaches, and the composite F-measure (with β = 0.5 that gives
twice importance to precision compared to recall, as inaccurate trading signals
may be costly) as representing our proposals. For all 12 experimental setups (4
companies and 3 forecasting scenarios), we have obtained the two model rankings
according to these two statistics. Due to lack of space we can not present all
graphs illustrating these 12 experimental setups5. All setups follow a similar
results trend. We have selected 1 setup that is shown in Figure 2. The figure
has two graphs. The graph on the left shows the scores of the best five models
according to the two statistics. We should remark that for MAD, lower values
are better, contrary to what happens with the F measure. On the X-axis we have
the identifiers (a number from 1 to 57) of the top 5 models according to each
statistic (the 5 on the left according to MAD and the other 5 according to F).
Ideally these two sets of numbers should be different indicating that the best 5
models according to the two statistics are also different. On the graph we plot
the actual values of these 10 models for the two statistics: circles and left Y-scale
for MAD; and triangles and right Y-scale for the F measure. The second graph
presented on the figures shows a global perspective (on all 57 models) of the two
rankings produced by the statistics. On both axis we have the possible ranking
positions (from 1 to 57). The coordinates of each of the 57 dots shown on the
graphs are obtained using the rank position assigned by MAD (X coordinate),
and the corresponding rank position assigned by the F measure (Y coordinate).
If for any of the 57 models both statistics give it the same ranking position, the
respective dot should lie in the dashed diagonal line. The vertical and horizontal

5 All graphs may be obtained at http://www.liaad.up.pt/$\sim$ltorgo/DS09

http://www.liaad.up.pt/$\sim $ltorgo/DS09
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Fig. 2. The results for 3-days returns of Boeing (BA)

dashed lines highlight the results for the top 10 rank positions (left of the vertical
line, and below the horizontal line) according to the two statistics.

Analysing the results in Figure 2, namely the left graph, we observe that the
top 5 models according to the two statistics are completely different. Moreover,
we see that their concrete scores on the statistics are also very different. For
instance the best models according to MAD achieve a much worse score in terms
of F6, when compared to the best 5 models according to this later measure.
In terms of overall ranking we also observe a general tendency for all ranking
positions to be different as most points in the right graph are far from the
diagonal. In particular the top 10 models according to MAD are all below the
45th position in the F ranking. These results clearly indicate that the two metrics
are evaluating very different aspects of the performance of the models.

We have also carried out a formal statistical test of the differences between
the model rankings. On all 12 data sets we have observed some evidence of
disagreement between the rankings, with only 4 lacking proper statistical sig-
nificance. In summary, our experiments have confirmed the hypothesis that the
two considered metrics (MAD and F-measure based on our proposed Recall and
Precision statistics), often obtain significantly different model rankings on this
type of applications. Moreover, we should remark that this experimental setup
is not particularly favorable to our proposals. In effect, we are comparing 57
models that optimize some variant of the squared error. This means that these
models are not particularly focused on predicting rare extreme values. Even on
these conditions we have observed that our proposals are able to detect models
that have some ability at predicting rare extreme values. We can expect that
the differences would be even more marked if among the 57 models we had some

6 Actually, no score at all because they do not produce any event signal, i.e. predictions

with relevance higher than tE, and thus they have no precision score.
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that were particularly competent at predicting rare extremes (e.g. if they were
optimizing our F measure instead of squared errors).

What are the advantages of comparing a set of alternative models using our
proposed metrics in alternative to standard statistics? Or in other words, what
are the costs a user can expect if he uses a measure like MAD to select the
model to apply for trading on stock markets? The results we have shown previ-
ously provided evidence that our metrics rank the 57 models we have considered,
differently. However, do these ranking differences lead to better trading perfor-
mance? In other words if a user uses the best model according to our F-measure,
instead of the best model according to MAD, what does he have to gain or
loose? For each of the 12 experimental setups we have selected the two best
models according to MAD and F, respectively. We have used their respective
predictions of the future returns for the 18 years and have calculated a set of
trading-related statistics. We have assumed that we are going to trade with fu-
tures (thus allowing both short and long positions, i.e. trading when we predict
the market goes down or up, respectively). Moreover, considering trading costs
we only “trade” when a model predicts a future return above (below) 2% (-2%),
i.e. we are going to take these situations as indicators for buying (selling). Under
these conditions each model outputs a set of trading signals (predictions above
0.02 or below -0.02). The predicted signals were then compared to the “true”
signals, i.e. did the prices go up (down) as predicted?

These experiments have confirmed the advantages of our metrics. In effect,
the models “selected” by MAD almost never issue a single signal during the
18 testing years! On the contrary, the models selected using our metrics issue
several trading signals during this period. Still, the accuracy of these signals is
far from ideal as expected. This is expectable because: i) the candidate models
are optimizing squared errors; ii) the information used to obtain the models
(embed of 24 days) is clearly sub-optimal; and iii) predicting stock returns is a
very difficult task!

6 Conclusions

This paper has presented a study on the prediction of rare extreme values of a
continuous target variable that can be regarded as outliers. Our study is focused
on the development of proper evaluation metrics for these tasks, which is a key
step in addressing these problems.

We have described a generalization of the notions of precision and recall for
regression tasks. These intuitive concepts are ideal for addressing our target
problems as they focus the evaluation solely on the important events (the rare
extreme values). Our proposals incorporate the standard definitions used in clas-
sification as particular cases.

We have illustrated the use of these metrics in the context of stock market
forecasting applications. Namely, we have used our metrics to compare a large
set of models in several experimental setups. Our experiments have confirmed
that our evaluation metrics provide a significantly different perspective of the
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performance of the models, when compared to standard evaluation statistics.
Moreover, this perspective is more adjusted to the preference biases of this type
of applications. Our experimental results have also shown the danger of using
standard evaluation metrics in this class of problems.
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Abstract. Given a set of (possibly infinite) sequences, we consider the

problem of detecting events where a subset of the sequences is correlated

for a short period. In other words, we want to find cases where a number

of the sequences output exactly the same substring at the same time.

Such substrings, together with the sequences in which they are contained,

form a local correlation pattern. In practice we only want to find patterns

that are longer than γ and appear in at least σ sequences.

Our main contribution is an algorithm for mining such patterns in

an online case, where the sequences are read in parallel one symbol at a

time (no random access) and the patterns must be reported as soon as

they occur.

We conduct experiments on both artificial and real data. The results

show that the proposed algorithm scales well as the number of sequences

increases. We also conduct a case study using a public EEG dataset.

We show that the local correlation patterns capture essential features

that can be used to automatically distinguish subjects diagnosed with a

genetic predisposition to alcoholism from a control group.

1 Introduction

Multidimensional time series and streams arise in a number of applications, such
as finance (prices of securities at a stock exchange), medicine (multichannel EEG
measurements) or telecommunications systems. Mining patterns in such data is
a well studied topic, see for example [2,8,4,14,7].

In this paper we consider a case where the input consists of a set of sequences
over some finite alphabet that are each read one symbol at a time. We propose
a novel pattern class that represents local correlations among a subset of such
sequences. More specifically, given the sequences, we consider the problem of
finding subsets of sequences that are correlated for short periods of time by
containing the same substring starting at the same position. We call such (subset,
substring) pairs local correlation patterns.

For example, consider six time series that show the daily stock price of six
different companies C1, . . . , C6 over a number of days. We can create a modified
set of time series where we mark for each day only whether the price of the stock
went up, down, or stayed the same when compared to the previous quote. This
gives us six sequences over the alphabet {u, d, s}. Below are the values of these
sequences over a period of seven days:

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 347–361, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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-6 -5 -4 -3 -2 -1 0
C1: u u d u s s d
C2: d u d u s u s
C3: s s u d s d s
C4: u u d d u u d
C5: s u d u s s u
C6: u u d s s d d

The last column, labeled with a 0, indicates the current day, while the column
labeled with a -6 contains values from six days ago. The elements indicated in
bold form a local correlation pattern starting at -5 with companies C1, C2 and
C5 and the substring 〈u, d, u, s〉. Another example is the substring 〈u, u, d〉
that starts at -6 and concerns companies C1, C4 and C6.

In practice we have to be more specific when defining what counts as a local
correlation pattern. Obviously it is possible that we observe temporary corre-
lations in the sequences merely due to random chance, especially if there are
many (e.g. hundreds of) of them. The first criteria we use is the length of the
common substring. The second one is the support, i.e., the set of sequences that
all contain the substring at the given position. That is, we do not expect to see
a large number of sequences behaving in exactly the same way for several time
steps simply by coincidence. More precisely: We say that a string and its support
form a local correlation pattern if the string is longer, and the support is larger
than specified threshold values.

The task is to efficiently find all local correlation patterns given that we obtain
one symbol of each sequence at a time in an “online” fashion. Note that we could
also consider an “offline” version of the problem, where all sequences support
random access. However, this variant is not so interesting as it can be solved
efficiently by existing algorithms. The main contribution of this paper is an
efficient algorithm for the online setting.

Also, the data does not necessarily have to consist of multiple parallel se-
quences for our approach to be of interest. We can construct an input of the
format discussed above from a single (long) string s by letting the suffixes of s
be the individual sequences. That is, the suffix of s starting at position i is the
ith sequence of the input. With this construction we can use our algorithm to
find substrings that occur frequently inside a window of predetermined size in
the string s.

In the experiments we give an example where local correlation patterns are
used to classify EEG measurements. It turns out that a simple nearest mean
classifier using features computed from sets of local correlation patterns can
accurately distinguish subjects diagnosed with a genetic predisposition to alco-
holism from the control group (see Section 4.3). This is quite interesting as we
make no domain specific assumptions about the structure of the streams.

The rest of this paper is structured as follows. We give formal definitions for
the problems of finding local correlation patterns in Section 2. The proposed al-
gorithm for mining local correlation patterns is discussed in Section 3. Empirical
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experiments and their results are described in Section 4. Related work is covered
in Section 5, and Section 6 is a short conclusion.

2 Problem Definition

Let Σ be an alphabet of size |Σ|, and let s be a sequence of symbols from Σ.
Symbols of Σ are denoted with letters a, b, c, . . .. Denote by s(i) the i:th symbol
of s, and by |s| the length of s. Sequences are indexed starting from 1. Let the
pair (i, p) denote a pattern where i is a positive integer and p a string over the
alphabet Σ. We say the sequence s supports the pattern (i, p) if p appears as a
substring in s starting at position i. That is, if we have

s(i + j − 1) = p(j) for all j ∈ {1, . . . , |p|}.

Let D = {s1, . . . , sn} be a set of sequences over Σ that are all of the same length.
Denote by θ(i, p) the set of sequences in D that support the pattern (i, p). The
pattern (i, p) is a local correlation pattern in D given the parameters γ and σ, if
and only if |p| ≥ γ and |θ(i, p)| ≥ σ.

We first briefly consider the problem of finding all local correlation patterns
in a set D that supports random access to the sequences.

Problem 1. lcp-offline: Given D, γ and σ, find all local correlation patterns
in D.

This can be solved using existing string-indexing techniques. We transform the
strings in D by replacing the symbol s(i) with (i, s(i)), that is, we create an
extended alphabet where the positions are encoded in the symbols. Denote the
new set of strings by D′. To solve lcp-offline for D, we simply find all frequent
substrings in D′ that are at least of length γ. This can be done efficiently by
constructing either a suffix tree [13,10,12] or a suffix array [6] over D′.

A more interesting variant of the problem concerns an online setting where
we can only read one symbol from each sequence at every time step. That is, at
time step t, we read the symbol s(t) from each s ∈ D. Moreover, the length of
the sequences may be unbounded.

Problem 2. lcp-online: Given γ, σ, and n sequences that each output one sym-
bol from Σ at each time step, find all local correlation patterns and output them
as soon as they appear.

In practice this definition is somewhat inconvenient, because it is possible that
a local correlation pattern found at step t is only a prefix of a pattern found at
step t + 1. Consider the stock price example in the introduction. If we have set
γ = 3 and σ = 3, we would first output the pattern (2, 〈u d u〉) at step 4, and
the pattern (2, 〈u d u s〉) at step 5. This behavior is clearly undesirable.

To overcome this issue we propose to find only the maximal local correlation
patterns. Let ap and pa denote the sequence p with the symbol a appended to
its beginning and end, respectively. The pattern (i, p) is maximal if there is no
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a ∈ Σ, such that |θ(i, pa)| ≥ σ or |θ(i− 1, ap)| ≥ σ. In other words, the pattern
(i, p) is maximal if it is not the prefix or suffix of another local correlation pattern.

Problem 3. maximal-lcp-online: Given γ, σ, and n sequences that each out-
put one symbol from Σ at each time step, find all maximal local correlation
patterns and output them as soon as they appear.

3 An Algorithm for MAXIMAL-LCP-ONLINE

In this section we describe an algorithm for the maximal-lcp-online problem.
First we give an overview of the algorithm, and subsequently add details that
address some issues with the general approach.

3.1 A General Approach

The algorithm we propose maintains a set of candidate patterns that are prefixes
of strings that may later result in a local correlation pattern with respect to
some of the input sequences. The candidates must all have a support at least
of size σ, but they are in general shorter than γ. Some of the candidates may
be longer than γ, because we want to find maximal local correlation patterns.
The candidates may thus qualify as local correlation patterns themselves, but
before returning them as new patterns, we have to make sure that they can not
be extended without reducing the size of their support below σ. It is easy to
see that the number of candidates is trivially upper bounded by the number of
sequences and the support threshold σ. Given n sequences we can have at most
n/σ candidates at any given time.

Consider the following situation at step t+1. Suppose that p = p(1)p(2) . . . p(k)
is a candidate. That is, there are at least σ sequences that all behave as specified
by p, starting from t−k+1 and ending at t. The length of p may or may not exceed
γ. At time t+1 we must check for all a ∈ Σ what happens with the support of the
extended string pa.

Obviously there are two alternatives. If the support of pa remains above σ it
becomes a candidate itself and we are done. However, if the support of pa drops
below σ we have to form a new candidate, and possibly output p as a maximal
local correlation pattern if |p| ≥ γ. To find the new candidate, note that some
suffix of pa may be the prefix of some other maximal local correlation pattern.
The new candidate is the longest suffix of pa with a support larger than σ. We
may obtain several candidates based on p depending how pa behaves for different
a ∈ Σ.

A high-level description of this idea is given in Algorithm 1. At every step
t > 1 we call LCP0 with the set of candidates Ct−1 obtained in the previous
step. At step 1 we set C1 = {a ∈ Σ : |supp(1, a)| ≥ σ}, that is, every symbol
of the alphabet with a large enough support forms a candidate by itself in the
beginning. The algorithm returns an updated set of candidates Ct and outputs
maximal local correlation patterns if any are found. Note that Algorithm 1 is
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Algorithm 1. LCP0: A high-level algorithm for solving maximal-lcp-online.
1: LCP0(Ct−1, σ, γ, t)
2: Ct ← ∅
3: for p ∈ Ct−1 do
4: extensionFound ← false
5: for a ∈ Σ do
6: if |θ(t− |pa|+ 1, pa)| ≥ σ then
7: Ct ← Ct ∪ {pa}
8: extensionFound ← true
9: else

10: p′ ← longest suffix p̂ of pa, st. |θ(t− |p̂|+ 1, p̂)| ≥ σ
11: Ct ← Ct ∪ {p′}
12: end if
13: end for
14: if extensionFound = false and |p| ≥ γ then
15: output pattern (t− |p|+ 1, p)

16: end if
17: end for
18: return Ct

only meant to illustrate the general approach. It does not specify any details
on how to compute the supports and what parts of the sequences to store for
processing.

3.2 A Detailed Algorithm

Now we address some details that are needed to develop an efficient implemen-
tation of LCP0. Most importantly, we must define what the algorithm has to
keep in memory in order to process the sequences. Of course a trivial implemen-
tation of LCP0 could simply store everything it reads and perform the support
computations on this stored data.

Problems with LCP0. The first problem we address is related to representing
the candidate set. First we observe that Algorithm 1 can do some unnecessary
work on line 11 by adding the same string p′ multiple times as a new candidate
pattern. To see this, note that some candidates will have the same suffix. This
suffix, appended with some a ∈ Σ, can be added multiple times to Ct.

For example, let Σ = {+,−}, and consider the four sequences given on the
left side of Figure 1. Let σ = 2. When we are at step 3 the set of candidates from
the previous step is C2 = {+−,−−}. First LCP0 processes the candidate +−.
It checks the supports of both + − + and + − −, and finds both to be of size
less than σ. The longest suffixes of + − + and + − − with enough support are
−+ and −−, respectively. These are both added to C3. After this the algorithm
processes the second candidate in C2, namely −−. Again it finds that neither
− − + nor − − − have a support large enough, but the suffixes −+ and −−,
both of which were already added to C3 when processing +−, are again found
to have enough support and are added to C3 for a second time.
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Also, it can happen that redundant candidates are added to Ct. These are
strings that are suffixes of some other candidates that are added to Ct as well.
Such a candidate is redundant, because they will be added to C at some later
step anyway. Returning to the example, suppose that in Figure 1 the symbol
appearing in sequence s2 at step 3 is a − instead of a +. The set of candidates
is still C2 = {+−,−−}. This means that when LCP0 extends the 1st candidate
with a −, it finds that +−− has enough support and adds it as a new candidate
to C3. However, when appending a third − to the 2nd candidate, it turns out that
the support of −−− is no longer at least σ. It’s suffix −− has a support of size
3, and will be added as a new candidate, and we end up with C3 = {+−−,−−}.
At step 4 the candidate +−− can not be extended with either + or − without
decreasing the support below σ, but it’s suffix −−, appended with a + has a
large enough support, and −−+ will be added to C4. But this will happen twice,
as −− is the other candidate in C3.

The candidate trie. To avoid finding duplicate or redundant candidates, we
represent C with a trie having symbols of Σ appear as labels of its edges. Let
Tt be the trie that corresponds to the set of candidates Ct. We will denote an
internal node of the trie by N , and a leaf by L. To each node is associated a
symbol a ∈ Σ, denoted sym(N), that is the label of the edge leading to the node.
Let C(N) denote the set of child nodes of the node N .

We construct Tt so that every path starting from its root and ending at a leaf
corresponds to the reversal of one candidate string in Ct. That is, for every p ∈ Ct

of length k, we have in Tt a path starting from the root and ending at a leaf L, so
that the edges on the path are labeled with the symbols p(k), p(k− 1), . . . , p(1).
Moreover, a path in Tt starting from the root and ending at an arbitrary node
N corresponds to the suffix of a candidate, or the common suffix of a number of
candidates.

We also associate to every leaf L of Tt the set of sequences that support the
string defined by the path from the root of Tt to L. Denote this by θ(L). For
example, if L is the node of Tt that is reachable from the root by first following
the edge labeled with a − and then the edge labeled with a +, the set θ(L)
contains the identifiers of all sequences that have the symbol + at position t− 1
and the symbol − at position t. The trie T2 that corresponds to C2 = {+−,−−}
of the previous example is depicted on the right side of Figure 1.

In practice we also need the supports of the suffixes of each candidate. Of
course a suffix of candidate p may be supported by a number of sequences that
do not belong to θ(p). This is illustrated by an example in Figure 2. The trie
on the left shows all possible strings of length 2, together with their supports in
some imaginary data that is not shown. Since ++ and −− are only supported
by one sequence each, we do not consider them frequent with σ = 2. According
to the definition of Tt given above, the leafs corresponding to ++ and −− are
not stored at all. Still it is clear that +, which is a suffix of candidate −+, is
supported by sequences s1, s2 and s5. To represent this in Tt, we include s1 to
the node that corresponds to +, as shown in the final candidate trie on the right
in Fig. 2. We call this the local support of N , denoted θl(N). Given a trie defined
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1 2 3 4

+ −

−

[s1, s2] [s3, s4]

[]
s1: + − − +

s2: + − + −
s3: − − + −
s4: − − − +

Fig. 1. Left: An example data of four sequences (s1, s2, s3 and s4) of length 4 over

Σ = {+,−}. Right: A trie representation of the candidate set C2 = {+−,−−} of the

data on the left.

+

+ −

+ −−

[] []

[s2,s5] [s4,s6] [s3][s1]

+

+ −

−

[s3][s1]

[s2,s5] [s4,s6]

Fig. 2. Left: Trie showing four strings together with their supports. Two of these,

−+ and +−, are frequent at σ = 2 and are hence considered as candidates. Right:

The pruned trie showing only the candidates. Additional identifiers of sequences that

support candidate suffixes (+ and − in this case) are stored in the internal nodes.

in this way we can read the support of a string represented by the internal node
N simply by computing the the union of its local support and the support of its
child nodes. That is, we have

θ(N) =
{
θl(N) ∪

⋃
N ′∈C(N)

θ(N ′)
}
.

Before discussing the algorithm, we make some remarks about the size of Tt. We
already stated that the size of Ct is upper bounded by n/σ. This means that
Tt can have at most n/σ leaf nodes. However, the length of the paths leading
to the leaf nodes from the root of Tt can in theory be unbounded. In practice
we can set an upper bound hmax > γ on the height of Tt. Thus, Tt requires
O(hmaxn/σ) = O(n) space. Another simple but important observation is that
any sequence can support at most one candidate at a time, and thus appears in
at most one support list associated with a leaf node of Tt. If a sequence does
not support a candidate, it supports a suffix, and therefore has to appear in a
local support list associated with some internal node of Tt. As a consequence the
support lists also need O(n) space in total.

Algorithm LCP1. Now, instead of processing the candidates in Ct−1 individu-
ally, we traverse Tt−1 to produce the updated set of candidates Ct, represented by
the trie Tt. This algorithm is given in Algorithm 2. In short, LCP1 updates the
set of candidate patterns by traversing Tt−1 once for each a ∈ Σ starting from
its root node. Each of these traversals, implemented by the PROCESS TRIE
function shown in Algorithm 3, corresponds to appending the symbol a ∈ Σ to
the end of the candidates. PROCESS TRIE returns the root node of an updated
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Algorithm 2
1: LCP1( Tt−1 )

2: Tt ← new trie

3: N ← root of Tt−1

4: for a ∈ Σ do
5: Let S(a, t) be the set of sequences with symbol a at position t.
6: N ′ ← PROCESS TRIE( N , S(a, t) )

7: Add N ′ as a new subtree to root of Tt.

8: end for
9: For all leaves L of Tt−1 that were not extended by PROCESS TRIE above, output

the corresponding local correlation pattern if the path to L is at least of length γ.

10: return Tt

Algorithm 3
1: PROCESS TRIE( N , S )

2: Ñ ← new trie node

3: for Nc ∈ C(N) do
4: N ′

c ← PROCESS TRIE( Nc, S )

5: if |θ(N ′
c)| ≥ σ then

6: C(Ñ)← C(Ñ) ∪N ′
c

7: else
8: θl(Ñ)← θl(Ñ) ∪ θ(N ′

c)

9: end if
10: end for
11: θl(Ñ)← θl(Ñ) ∪ {θl(N) ∩ S}
12: if N is a leaf and |θ(Ñ)| ≥ σ then
13: mark N as extended
14: end if
15: return Ñ

trie that will be added to Tt. Once all symbols in Σ have been considered, we
traverse Tt−1 one more time and output the maximal local correlation patterns.
These can be found at those leaf nodes of Tt−1 that become infrequent for every
a ∈ Σ. More precisely, every leaf L of Tt−1 for which |θ(L) ∩ S(a, t)| < σ for all
a ∈ Σ represents a maximal local correlation pattern.

The actual work of updating the candidate set is carried out in the PRO-
CESS TRIE function shown in Algorithm 3. It will return a new trie rooted at
the node Ñ that initially has no local support or child nodes. First the algorithm
recursively processes the children of the node N . For each child Nc we obtain
the new trie rooted at N ′

c (line 4). This will be added as a child of Ñ (line 6) if
it has a large enough support. Otherwise we only add it’s support to the local
support of Ñ (line 8). On line 11 we update the support of the candidate that
corresponds to node N . Lines 12–14 are needed to find those leaf nodes of Tt−1

that can be returned as local correlation patterns.
Above we argued that the size of a candidate trie T is of order O(n), where n

is the number of sequences. In particular, the number of leafs is upper bounded
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by n and σ. Thus, the trie can be traversed in time O(n) if we consider hmax

a constant. On a first look it would seem that the overall complexity of PRO-
CESS TRIE is higher than this, since on line 11 we compute the intersection of
the local support θl(N) and S. But since each sequence identifier appears only
at one node N (most of them appear at the leafs), the total cost of line 11 over
all recursive calls of PROCESS TRIE is O(n). Also, implementing lines 5 and
8 in time O(1) requires some additional bookkeeping that is not shown in the
pseudo-code of Algorithm 3. Essentially when PROCESS TRIE returns it must
in addition to Ñ also return a list of sequence identifiers that can be found in the
subtrie below Ñ . These lists must be constructed in such a way, that computing
the union on line 8 is simply a matter of concatenation. Here we also use the
property that a sequence identifier can appear in the trie only once.

Hence, the overall complexity of LCP1 is O(|Σ|n), since we must traverse
T once for each a ∈ Σ. Note that simply reading the next symbol from each
sequence is an O(n) operation.

4 Experiments

4.1 Performance of LCP1

In this section we study the behavior of LCP1 with different parameters of the
input. We are interested in how the size (number of nodes) of the candidate trie
T behaves and how the number of found patterns varies for different values of
σ and γ. The implementation used is written in Java, and can be obtained from
the web site of the author1. The experiments are run on a 2.2GHz Intel CPU.

Artificial data. Artificial data is generated using a model with n sequences
that each output a uniformly at random chosen symbol of Σ independent of
each other at every step. We do not plant any patterns into the input, and
hence the test indicates only how the algorithm responses to noise. We let
n ∈ {50, 200, 500, 1000}, σ ∈ {2, 4, 8, 16, 32}, and |Σ| ∈ {2, 4, 8, 16, 32}, and
run LCP1 for 10000 steps with every combination of n, σ, and |Σ|. In each case
we measure the running time and average size of the candidate trie.

Results for both are shown in Table 1. On the left of Table 1 we show the
average number of time steps that LCP1 processes in one second for various pa-
rameter combinations. Clearly the algorithm becomes faster when σ is increased,
since the size of Ti dramatically decreases due to the n/σ upper bound on the
number of candidates. Another observation is that larger alphabets are slower to
process despite the fact that the average size of Ti decreases when |Σ| increases.
This is also obvious, as the complexity of the algorithm is O(|Σ|n), because on
ever step we traverse the trie once for every a ∈ Σ. Finally we note that these
numbers represent idealized conditions, since the input is being generated on
the fly, and thus no data was read from any device, which is bound to be the
bottleneck in many real applications.
1 http://www.cis.hut.fi/aukkonen
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Table 1. Left: Average number of steps processed per second by LCP1 for different

combinations of parameter values with random inputs. Right: Average size of the can-

didate trie with different combinations of parameters for randomly generated inputs.

σ
n |Σ| 2 4 8 16 32

50 2 13661 22471 27777 30959 31347

4 14925 19920 26385 26455 26385

8 13280 18867 19157 19193 19120

16 9442 10893 10905 10869 10881

32 5599 5837 5743 5685 5698

200 2 3367 6906 9469 10952 11918

4 4012 6925 8650 9765 10111

8 3376 5414 6910 6973 7032

16 2461 3996 4196 4206 4171

32 1674 2079 2076 2071 2067

500 2 874 2464 3910 4580 5055

4 1164 2731 3442 3987 4130

8 1033 2122 2525 3003 3012

16 751 1417 1800 1803 1804

32 569 918 936 933 934

1000 2 377 903 1542 1975 2228

4 515 1018 1468 1670 1960

8 476 886 1110 1214 1419

16 373 554 809 845 849

32 249 439 469 469 468

σ
n |Σ| 2 4 8 16 32

50 2 35.6 11.6 4.6 1.8 1.5

4 17.9 5.8 2.6 2.5 2.5

8 11.7 4.7 4.5 4.5 4.5

16 10.4 8.2 8.2 8.2 8.2

32 13.8 13.2 13.3 13.2 13.2

200 2 143.5 47.5 20.0 8.9 3.8

4 72.1 23.7 10.4 4.0 2.5

8 48.6 16.9 5.0 4.5 4.5

16 34.7 9.5 8.5 8.5 8.5

32 25.3 16.5 16.5 16.5 16.5

500 2 359.7 119.6 51.0 23.6 11.3

4 180.4 58.9 27.3 10.7 6.3

8 118.0 39.5 21.2 4.7 4.5

16 98.0 25.7 8.6 8.5 8.5

32 62.8 17.3 16.5 16.5 16.5

1000 2 720.4 240.1 102.5 47.8 23.0

4 360.7 121.9 48.0 26.4 10.5

8 245.8 71.1 36.3 20.4 4.5

16 179.8 78.9 14.3 8.5 8.5

32 155.0 25.5 16.5 16.5 16.5

Table 2. Average size of Ti for different σ in the Dow Jones data (n = 30, |Σ| = 2)

σ 4 6 8 10 12

avg. size of Ti 15.69 9.12 6.39 4.97 4.14

Real data. For this experiment we consider a stock market data2 that contains
the daily opening and closing prices of the Dow Jones 30 index between years
1985 and 2003. The index consists of 30 selected companies. We modify the data
so that each day is labeled with a + if the price of the stock went up or with a −
if the price went down. We recognize that this approach to discretization is not
without problems as the magnitude of the variation is hidden, but for the pur-
poses of demonstration we consider it sufficiently accurate. In real applications
one might think of using a more sophisticated approach to discretizing the data.

First we investigate how the size of the candidate trie behaves in time. We run
our algorithm on the Dow Jones data set again using different values for σ and
γ, and record the size of Tt at every t. The average size of the trie is independent
of γ, and is shown in Table 2 for different values of σ. We can also study the
number of local correlation patterns found. This is shown for the Dow Jones

2 http://lib.stat.cmu.edu/datasets/DJ30-1985-2003.zip (May 15. 2009)
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Table 3. Number of maximal local correlation patterns found in the Dow Jones data

with different combinations of σ and γ

σ = 4 σ = 6 σ = 8 σ = 10 σ = 12

γ = 4 8510 3712 1638 650 286

γ = 6 2970 738 201 56 11

γ = 8 766 119 19 4 0

γ = 10 159 17 0 0 0

γ = 12 35 0 0 0 0

data in Table 3 for different combinations of σ and γ. Obviously the number of
patterns found for small parameter values is orders of magnitude larger than for
larger ones. Increasing γ has a stronger effect.

4.2 Using Local Correlation Patterns to Compare the Sequences

In this section we give an example on how to use local correlation patterns
for comparing the sequences in the input. Consider the Dow Jones data used
in the previous experiment. For each company X , we can look at the set of
patterns that contain the sequence corresponding to X in their support. Denote
this set by P (X). Given a set of patterns, we can describe it by using a feature
vector, where the features are some simple characteristics of the patterns. These
could be the average length of patterns, the average number of alternations
of the symbols in the patterns, the average size of the support, etc. Given all
patterns that are found from the DJ data with σ = 4 and γ = 4, we compute the
aforementioned features based on P (X) for every company X . We obtain a small
data set with one row for each company. Figure 3 shows a scatterplot with the
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Fig. 3. A principal components plot showing ticker symbols of companies in the DJ

data. The data is based on the local correlation patterns. We observe that SBC and

CO are different from the other companies given the set of local correlation patterns

they belong to.
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1st and 2nd principal component of this data on the X and Y-axis, respectively.
Clearly companies with the ticker symbols CO and SBC differ somehow from the
rest. When looking at the actual values of the features, it turns out that these
companies tend to belong to supports of patterns that are longer and contain a
larger number of alternations between the symbols.

4.3 Using Local Correlation Patterns for Classification

In this section we study how local correlation patterns can be used to classify
time series. We use data of EEG measurements made available by Henri Be-
gleiter at the Neurodynamics Laboratory at the State University of New York
Health Center at Brooklyn. The data can be downloaded from the UCI KDD
repository3. Originally the data was used in [15].

The data consists of EEG measurements conducted with a number of subjects
performing object recognition tasks. Part of the subjects had been diagnosed
with a genetic predisposition to alcoholism (group A), while the remaining ones
belong to a control group (group Ā). Our aim in this experiment is to study if
the local correlation patterns differ between the two groups, and if the patterns
can be used to build a classifier for predicting the condition of unseen subjects.
We point out that classification of this particular EEG data has been studied
successfully in existing literature (see e.g. [5]), and we do not claim that the
approach discussed here is superior to existing techniques. The purpose of this
experiment is to study the applicability of local correlation patterns for classifi-
cation in general.

There are 123 subjects in total, each of whom has completed 120 measure-
ments (up to a small number of exceptions). Number of subjects in groups A
and Ā is 77 and 45, respectively. Each measurement contains 256 samples on 64
channels that represent one second of activity in the brain while the subject was
exposed to a visual stimulus. The EEG output consists of floating point values
which we discretize to obtain sequences over the alphabet {−,+}, where a −
(+) means that the measurement value decreased (increased) from the previous
step.

First we compare the sets of patterns found, and see if there is any difference
between the two groups of subjects. To this end we compute the set Pij of local
correlation patterns with different values of σ and γ for every measurement j of
every subject i. Using the patterns in Pij we compute the feature vector fij . The
features we use are the number of patterns in Pij denoted φn, average length
of the patterns in Pij denoted φl, average size of the support of the patterns in
Pij denoted φs, and average number of alternations between a + and − in the
patterns denoted φa. All features are normalized to zero mean and unit variance.

We compare the within group means of each feature in Table 4. There are
a number of things worth noting. First, the average number of patterns (φn)
is larger in group Ā with larger values of σ. Second, the average length of a
pattern (φl) is always larger in group Ā, while the average number of alternations

3 http://kdd.ics.uci.edu/databases/eeg/eeg.html
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Table 4. Group specific means for different features computed from patterns found

in an EEG data set with different values of σ and γ. We observe that the group of

alcoholic subjects differs from the control group in every case.

group σ γ E[φn] E[φs] E[φl] E[φa]

A 6 6 0.20 0.02 -0.15 0.06

Ā 6 6 -0.34 -0.04 0.27 -0.10

A 12 8 -0.17 0.01 -0.15 0.10

Ā 12 8 0.30 -0.01 0.26 -0.18

A 24 6 -0.21 -0.02 -0.14 0.06

Ā 24 6 0.37 0.03 0.24 -0.11

between a + and a − (φa) is always slightly larger in group A. This result
indicates that the sets of patterns found in measurements of alcoholic subjects
differ from the sets of patterns found in measurements of subjects belonging to
the control group.

As a next step we build a simple nearest mean classifier using these features.
Let Atrain and Ātrain be the sets of alcoholic and control subjects used for train-
ing. The training data consists of the feature vectors fij for all j and for all
i ∈ {Atrain∪Ātrain}. First we normalize the features in the training data to zero
mean and unit variance. Then we compute the group specific means E[Atrain]
and E[Ātrain]. A new subject k is classified by considering the feature vectors fkj

separately for each j. The classifier assigns subject k to group A if the number
of vectors fkj that are closer to E[Atrain] is larger than the number of vectors
fkj that are closer to E[Ātrain], and to the class Ā otherwise.

We test the approach using 1-fold cross-validation, i.e., one subject is classified
at a time with a training set that contains all other subjects but not the one we
are classifying. This experiment is repeated using patterns computed with the
same values of σ and γ used above in Table 4. In every case we get the following
confusion matrix:

A Ā
A 77 0
Ā 1 44

All alcoholic subjects are classified correctly, and one control subject is classified
incorrectly to groupA. Moreover, the parameters used when mining the patterns
seem to have a negligible effect on the classifier. This result is not surprising
considering that in [5] it is reported that alcoholic and control subjects differ
significantly in a number of traditional features used in EEG analysis. However,
our experiments show that simple and general, non-application specific features
based on local correlation patterns can also be very effective for classification.

5 Related Work

Mining patterns in streams and time series is a well studied topic. To the best of
our knowledge, the local correlation patterns introduced here have not appeared
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previously in literature. However, methods for mining several other kinds of
patterns from time series and data streams have been proposed.

In [2] an algorithm is presented for finding rules in streams. These are fre-
quently occurring patterns of the form “if A occurs then B occurs within a certain
time”. A related approach is that of finding “motifs” [8], where one seeks parts
of the time series that occur repeatedly. In some applications it is not enough
to have a pattern repeat itself, but it must do so in a certain period. Such pat-
terns are mined for example in [4,14]. Yet another pattern class is defined by
so called surprising patterns [7] that are parts of a stream that are unexpected
given some previously observed history. Another related line of research is about
mining frequent patterns in streams. Examples include frequent itemsets [9,3],
sequential patterns [11], and trees [1].

A common characteristic of these examples is that they are concerned with
finding repeated occurrences of a pattern within a window of the stream. In
this work we want to find simultaneous occurrences of the pattern in multiple
parallel streams.

6 Conclusion

We have introduced local correlation patterns as a method for analyzing multidi-
mensional time series. We model such time series as sets of sequences over some
finite alphabet. A local correlation pattern is defined as a point t in time together
with a string of symbols from the alphabet. The pattern tells that starting from
time t a subset of the sequences all simultaneously output the specified string.
In practice we want to find patterns where the sequence is at least of length γ
and the subset of sequences is of size at least σ. Moreover, we are only interested
in maximal local correlation patterns, i.e., patterns where the sequence is not
the prefix nor suffix of any other local correlation pattern.

We proposed an algorithm that mines maximal local correlation patterns from
a set of sequences in an online setting. The algorithm works by maintaining a
trie of candidate patterns that is updated at every step when new symbols are
read from the sequences. The complexity of our algorithm is O(|Σ|n) for each
timestep, where n is the number of sequences and |Σ| the size of the alphabet.
New patterns are output by the algorithm as soon as they are found.

We conducted experiments that show the algorithm is fast. A simple imple-
mentation running on a regular PC can process up to thousands of steps per
second. Even for small support thresholds and a large number of sequences (say,
n = 1000), the algorithm is capable of processing over a hundred steps per sec-
ond. We also show that the local correlation patterns can be used for classifying
EEG time series. In our experiment a simple nearest mean classifier based on
the patterns had nearly 100 percent accuracy.

A problem with some practical applications is that we cannot assume the se-
quences to be perfectly aligned. In such situations we must allow small variations
in the starting time of the pattern in a sequence. That is, a sequence s would
support the pattern (i, p) if p occurs as a substring in s at the position j = i± δ.
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Another question is how to incorporate wildcards into the pattern string, or how
to allow (a small number of) mismatches in the supporting sequences.
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Abstract. The promotion analysis problem has been proposed in [16],

where ranking-based promotion query processing techniques are studied

to effectively and efficiently promote a given object, such as a product,

by exploring ranked answers. To be more specific, in a multidimensional

data set, our goal is to discover interesting subspaces in which the object

is ranked high. In this paper, we extend the previously proposed promo-

tion cube techniques and develop a cell clustering approach that is able

to further achieve better tradeoff between offline materialization and on-

line query processing. We formally formulate our problem and present

a solution to it. Our empirical evaluation on both synthetic and real

data sets show that the proposed technique can greatly speedup query

processing with respect to baseline implementations.

1 Introduction

The promotion analysis problem [16] aims to search for interesting subspaces
for some user-specified target object such as a person or a product item so
that it can be promoted in the subspaces discovered. Such a function is called
ranking-based promotion query. Given a user-specified object, a promotion query
should return the most interesting subspaces in the multidimensional lattice,
where “interesting” intuitively means that the object is among the top ranked
answers in a particular subspace. It has been shown that many OLAP and
decision support applications can potentially benefit from such a function, as
data analysts may find it useful to explore the search space to promote a target
object. For example, suppose a car model is given as the target object, then
interesting locations may be subsequently discovered such that the car model
is highly ranked in terms of sales or customer review in those locations, which
brings up opportunities for promotion.

To process promotion queries efficiently, however, is a challenging problem.
In this paper, we focus on the offline side of the problem. We extend the previ-
ously studied promotion cube technique [16] and propose a general cell cluster-
ing approach to further achieve better query execution time vs. materialization
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A1 A2 O M

a1
1 a2

2 o1 0.3

a1
1 a2

2 o3 0.2

a1
1 a2

3 o1 0.5

a1
1 a2

3 o3 0.6

a1
1 a2

3 o1 0.8

a1
2 a2

3 o2 0.5

a1
2 a2

2 o3 0.6

a1
2 a2

2 o2 0.3

a1
2 a2

2 o1 0.3

Fig. 1. Multidimensional table

tradeoff. Our observation is that promotion cells can be clustered together in
a coherent representation, while at the online processing step the uninteresting
subspaces can still be effectively pruned out.

Example 1. Before introducing our proposed techniques, let us first examine
a concrete example of promotion analysis. Figure 1 shows an example multidi-
mensional table with two dimensions A1 and A2, each having 2 distinct values.
In addition, the object dimension is represented by O, and the measure dimen-
sion is a numerical dimension represented by M . Each row in this table is called
a base tuple and by enforcing selection conditions over A1 and A2 we can ob-
tain different object subspaces. Figure 2 shows all nine subspaces obtained from
the example multidimensional table. Among these subspaces, the first {∗, ∗} is
a special one called full space. For each of these subspaces, we show its ranked
list of aggregates based on the AV G aggregation. For example, for the subspace
{A1 = a1

1, A2 = ∗}, o1’s AV G can be computed as (0.3 + 0.5 + 0.8)/3 = 0.53.

A straightforward offline method for processing the promotion query is to ma-
terialize all aggregates, e.g., store Table 2 completely (notice that the objects
are shown in the table for reference, but they do not need to be stored). Now,
given a target object, say o3, one can easily locate the most interesting sub-
spaces {a1

2, ∗}, {∗, a2
2}, and {a1

2, a
2
2}, because it is ranked the very first in those

subspaces. Similarly, given the aggregate measure, any other target object can
be processed in the same fashion using these completely precomputed results.

Since there could be a very large number of subspaces as well as objects even
for a moderately large data set, the precompute-all strategy can be very costly
at the offline stage. To this end, a general promotion cube framework has been
proposed as a partial precomputation strategy that avoids such high cost. In a
promotion cube, each promotion cell consists of a set of summary aggregates to
help bound the target object’s rank. However, in most cases it is even unnecessary
to store all promotion cells since object aggregates tend to be similar across
different subspaces. This leads to our proposed clustering approach to further
remove redundancy. After clustering, the number of materialized aggregates can
be largely reduced, while the efficiency of online query execution can still be
guaranteed. Another advantage is that such a clustered cube structure does not
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A1 A2 Ranked list of aggregates

∗ ∗ (o1) 0.48, (o3) 0.47, (o2) 0.4

a1
1 ∗ (o1) 0.53, (o3) 0.4

a1
2 ∗ (o3) 0.6, (o2) 0.4, (o1) 0.3

∗ a2
2 (o3) 0.4, (o1) 0.3, (o2) 0.3,

∗ a2
3 (o1) 0.65, (o3) 0.6, (o2) 0.5

a1
1 a2

2 (o1) 0.3, (o3) 0.2

a1
1 a2

3 (o1) 0.65, (o3) 0.6

a1
2 a2

2 (o3) 0.6, (o1) 0.3, (o2) 0.3

a1
2 a2

3 (o2) 0.5

Fig. 2. Fully precomputed results using AV G aggregation

restrict the capability of promotion analysis in that any promotion query can be
supported for a given type of aggregation. In this paper, we

– extend the promotion cube framework to a cell clustering approach to further
achieve better balance between offline materialization cost and online query
execution cost;

– formally define the promotion cube structure with clustered cells;
– discuss the hardness of the problem and develop a greedy algorithm to per-

form clustering so that the quality of result is guaranteed; and
– conduct empirical evaluation on synthetic as well as real-world data sets to

verify the performance of the cell clustering approach, and show that the
approach is superior to baseline approaches.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 formulates the problem of the paper. In Section 4 we propose
the cell clustering approach based on the promotion cube framework. Section 5
reports experimental results, and finally, Section 6 concludes this work.

2 Related Work

The promotion analysis problem is originally studied in [16], which proposes the
promotion query model and its query processing techniques; also, a statistical
method is discussed to prevent spurious promotion results. Our paper can be
regarded as a follow-up study of it in that the underlying multidimensional data
model as well as the promotion query model remain the same. However, the main
focus of this study is different from the previous work; that is, the major goal
here is to propose a new offline strategy to perform clustering over promotion
cells, while being able to answer online promotion queries on multidimensional
data in an efficient way.

Besides, this work is related to several previous studies on database rank-
ing techniques. The ranking cube method is first studied in [17] for answering
top-k queries which allows users to enforce conditions on database attributes.
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Subsequently, [15] discusses the problem of processing top-k cells from multidi-
mensional group-by’s for different types of measures. Both of the above methods
leverage offline precomputation to achieve better online performance. Moreover,
the threshold algorithms [6] represent yet another family of ranking techniques,
where the objective is to efficiently produce the top answers by aggregating
scores from multiple ranked lists. Other variants of ranking algorithms have also
been studied and applied in a variety of applications including Web-accessible
databases [12], supporting expensive predicates [2], keyword search [10], and vi-
sualization [14]. Unfortunately, none of these techniques can handle our problem.

Various clustering problems are also related to our study. [13] presents the
RankClus method for integrating ranking and clustering such that the results
of both can be mutually enhanced. Earlier papers like [5,18] have discussed
methods for compressing and/or clustering data points to facilitate further data
mining. However, these methods are different from the one in this paper since our
clustered cells are for pruning. In addition, our work shares similar objectives as
some previous clustering algorithms. For example, [3,1,4] propose approximation
algorithms to clustering data points so as to minimize a particular objective
(e.g., the sum of cluster diameters). Our cell clustering problem can fit into their
problem setting but their results are mainly of theoretical interests and may not
scale to large data. There are also other related studies in that multidimensional
analysis is conducted for data mining [11,7], but none of them can be applied
toward our context.

3 Problem Formulation

To ensure that the discussion be self-contained, we present the formulation of the
promotion query problem in this section. Consider a multidimensional table T
consisting of a collection of base tuples. There are three categories of columns: d
categorical dimensions, A1, . . . , Ad, which are called subspace dimensions, a col-
umn O storing objects called object dimension, and a numerical score dimension,
M . We use O to represent also the set of objects. Based on the multidimensional
schema, we call S = {a1, a2, . . . , ad} a subspace, where ai is either a dimension
value of Ai or it is “any” value denoted by “*”. moreover, the set of all subspaces
is denoted by U.

Given an aggregate functionM (e.g., AV G), one can derive for each subspace
the ranked list of objects and their aggregate values.

The promotion analysis problem can be formulated as follows. Given a target
object τ for promotion (τ ∈ O), we let V = {S|τ occurs in subspace S ∧ S ∈
U}, i.e., the set of subspaces where τ occurs. Our goal is to discover the top-k
subspaces in V such that τ is the most highly ranked in these k subspaces, where
k is a user parameter.

Example 2. In the running example shown in Table 1, we can see that A1 and
A2 are the subspace dimensions, O is the object dimension, and M is the score
dimension. Table 2 shows U, i.e., the set of all 9 subspaces. Now suppose the
target object is τ = o3 and the aggregate function is M = AV G. Then |V| = 8
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because o3 has 8 subspaces containing τ ({a1
2, a

2
3} is not in V because o3 does

not appear in it). If k = 3, the top-k subspaces for o3 should be {a1
2, ∗}, {∗, a2

2},
and {a1

2, a
2
2} because o3 is ranked first in all of them but it has lower rank in any

other subspace.

4 The Cell Clustering Approach

To handle the subspace discovery problem efficiently, we propose to study a cell
clustering approach within the promotion cube framework. We present the cube
structure in Section 4.1, followed by a brief description of the complementary
online algorithm in Section 4.2. Section 4.3 discusses an optimization technique
for clustering.

4.1 Promotion Cube with Clustered Cells

To support data analysis for large-scale applications, computing the top-k sub-
spaces from scratch may not be a good solution. On the other extreme, materi-
alizing all cells in a promotion cube may suffer from excessive space requirement
due to a blow-up of the number of subspaces (which can be up to O(

∏d
i=1 |Ai|),

where Ai denotes the cardinality of dimensions Ai). To tackle this problem, we
observe that aggregates in different subspaces tend to be similar, so it would
be wasteful to materialize all cells separately. Thus, we propose a clustering
approach to reduce the space overhead of the promotion cube. This structure
presents a summary of aggregated data and meanwhile is able to facilitate online
exploration.

Given multidimensional table T and aggregate function M, The definition of
the cube structure with clustered cells is as follows.

Definition 1. Given any subspace S ∈ U, a clustered cell, CluCell(S), is de-
fined as a collection of upper and lower bound aggregates; it specifically consists
of 2n values, (c̄1, c1; c̄2, c2; . . . ; c̄n, cn), where c̄1 and c1 (1 ≤ i ≤ n) are the upper
and lower bounds for the

(
(i − 1) · w + 1

)
-th largest object aggregate value in

subspace S. Here n and w are positive integers.
The promotion cube with clustered cells, denoted by CluPromoCube, is de-

fined as a collection of clustered cells in the format (S,CluCell, Sup) for all
subspaces qualifying some minsup threshold; that is, CluPromoCube = {S :
CluCell(S), Sup(S) | Sup(S) > minsup}.

Here Sup(S) refers to how many objects subspace S has. In the above definitions
n and w are user-specified parameters that determine the size of each materi-
alized cell, whereas minsup is another parameter that dictates which cells to
materialize. These parameters are application-dependent. When minsup = 0,
n = |O|, w = 1, and c̄i = ci, the promotion cube would degenerate to fully
precomputing all results since all subspaces and all object aggregate scores are
precomputed. In fact we often have minsup > 0 and n ! |O| (i.e., only a small
fraction of aggregate values will be materialized), and c̄i > ci (i.e., several pro-
motion cells will be clustered together).



Subspace Discovery for Promotion: A Cell Clustering Approach 367

Subspace CluCell(S) Sup(S)

S1 (8.9,8.8; 7.0,6.8; 3.4,3.0; 1.1,0.9; 0.3,0.3) 200

S2 (5.1,5.0; 3.6,3.2; 1.4,1.2; 0.8,0.5; 0.05,0.01) 150

S3 (9.1,8.5; 7.2,6.1; 3.2,2.9; 1.1,1.0; 0.2,0.02) 260

S4 (9.0,8.8; 6.9,6.0; 3.3,3.0; 0.9,0.5; 0.2,0.1) 220

. . . . . . . . .

Fig. 3. An example CluPromoCube with n = 5, w = 10, and minsup=100

Example 3. Figure 3 illustrates an example of clustered cells (not following the
previous examples), where for each subspace passing minsup = 100, a clustered
cell (n = 5, w = 10) is materialized. For instance, subspace S3 contains 2×n =
10 aggregate values, where c̄2 = 7.2, c2 = 6.1 indicate that the (i − 1) · w + 1 =
(2−1) ·10+1 = 11th largest aggregate is no more than 7.2 and no less than 6.1.

4.2 Online Algorithm

Given the offline data structure CluPromoCube, we briefly describe the comple-
mentary online algorithm PromoRank to produce top-k subspaces for any input
τ [16]. Notice that other online algorithms may also work with CluPromoCube
in a similar way but they are beyond the scope of this study. PromoRank first
computes V, the subspaces containing τ along with τ ’s aggregate values. Sec-
ond, a candidate set of subspaces is generated based on CluPromoCube. Third,
the candidate set is aggregated to produce the correct and complete set of top-k
results. This algorithm is depicted in Table 1.

At the beginning, V is obtained and for each S ∈ V, τ ’s aggregate value is com-
puted. For these |V| subspaces, we denote τ ’s aggregates as M1,M2, . . . ,M|V|.
To compute the aggregates, a depth-first enumeration of all τ ’s tuples would be
enough. Then, a candidate subspace set is generated whereas non-candidate sub-
spaces are pruned. The generation of the candidate set requires us to first compute
HRanks (i.e., the highest possible rank) and LRanks (ie, the lower possible rank)
for each subspace Ss (1 ≤ s ≤ |V| and Ss ∈ V) based on CluPromoCube.

When some Ss does not meet the minsup threshold, we cannot derive τ ’s rank
in it since it becomes unbounded (if the final top-k subspaces are also required to
satisfy the minsup condition, Ss can be pruned immediately). Otherwise, given
Ss’s clustered promotion cell CluCell(Ss) = (c̄1, c1; c̄2, c2; . . . ; c̄n, cn), HRank
and LRank can be computed as in the following cases:

– Let i be the smallest value in {1, 2, . . . , n} such that Ms > c̄i, then LRanks =
(i− 1) · w. If such i does not exist, we have LRanks = Sup(Ss);

– Let j be the largest value in {1, 2, . . . , n} such that cj > Ms, then HRanks =
(j − 1) · w + 2. If such j does not exist, we have HRanks = 1.

Note that the above computation assumes that there is no duplicate aggregate
value within any subspace. In the presence of duplicate aggregates, the computa-
tion can be easily extended. Let Rk be the k-th largest LRanks for 1 ≤ s ≤ |V|.



368 T. Wu and J. Han

Table 1. The online processing algorithm

Algorithm 1

(Aggregate V)

1 Compute M1, M2, . . . , M|V|, the aggregate values of τ in each subspace

in V;

(Prune out non-candidate subspaces)

2 for s = 1 → V do compute HRanks and LRanks using

CluPromoCube;
3 Rk ← the k-th largest value among {LRanks|1 ≤ s ≤ |V|};
4 Prune out all subspaces having HRanks > Rk;

(Generate the complete set of results)

5 Call the recursive procedure below on ({∗}, T , 0) to compute τ ’s rank

in each unpruned subspace;

6 Return the top-k subspaces where τ has the highest ranks;

(Below is a recursive procedure on (S, T , d0) )

7 if S is not pruned then compute τ ’s exact rank in S;

8 for d′ ← d0 + 1 to d do
9 Sort T ’s tuples based on d′-th subspace dimension;

10 for each distinct value v ∈ Ad′ do
11 S′ ← S ∪ {d′ : v}; /* next subspace */

12 T ′ ← T ’s tuples having v on Ad′

13 Recursively call (S′, T ′, d′) if S′ contains τ ;

14 end
15 end

Any subspace Ss with HRanks lower than Rk (i.e., HRanks > Rk) must not be
a top-k result and thus can be pruned. As a result, the unpruned subspaces form
the candidate set which must be a superset of the final top-k subspaces. Notice
that if the exact order of the top-k results is not required, one may directly
output the subspaces whose LRank is greater than the k-th highest HRank
without adding them into the candidate set.

Example 4. Given the CluPromoCube in Example 3, Figure 4 illustrates the
computation of HRank andLRank for some τ . For instance, suppose τ ’s aggregate
value for subspace S2 has been computed as M2 = 3.5. Based on the corresponding
clustered cell for S2 in Figure 3, we have that M2 > c̄3, meaning that i = 3 and
LRank2 = (i − 1) · w = 20; also we have HRank2 = (j − 1) · w + 2 = 2 because

Subspace Ms HRank LRank

S1 0.2 42 200

S2 3.5 2 20

S4 5.0 12 20

. . . . . . . . .

Fig. 4. Example HRank and LRank computation based on CluPromoCube
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cj > M2 holds when j = 1. Similarly for S1 and S4 we obtain their HRank and
LRank respectively as shown in the figure. Thus, S1 can be pruned when k = 2
because Rk would be no more than 20 while for S1, its HRank is 42.

Finally, the exact ranks of τ are evaluated for the unpruned subspaces using
a recursive procedure displayed in Table 1 (Lines 7–15). It starts with the full
space and recursively sorts data to generate children subspaces in a depth-first
manner. The multidimensional table T is iteratively sorted according to the d′-
th dimension (Line 9), such that each dimension value extends to a new child
subspace S′ (Line 11). For the current subspace S, if it is in the candidate set, τ ’s
exact rank would be derived by aggregating objects in the input table T (Line 7).
In this way, all subspaces in V can be enumerated. Although the bottleneck of
the online algorithm lies in the recursive procedure, where the worst-case time
complexity could be O(|V| · T ), CluPromoCube is able to help prune many
uninteresting subspaces, thereby bringing down the total online cost. Note that
the size of CluPromoCube would only affect candidate generation and thus the
performance.

4.3 Clustered Cell Generation

We now turn to the generation of clustered cell at the offline stage. Given the
multidimensional table, two parameters n and w, we can generate promotion
cells for all subspaces by aggregating this table and then select n aggregates at
every w-th position. Doing multidimensional aggregation and generating such
selected aggregates for each subspace have been well-studied [7] and thus we do
not provide details here. Our focus is on how to generate clustered cells.

For each subspace, let us call its promotion cell, i.e., the n selected aggre-
gates, an n-dimensional point in the Euclidean space. Therefore, our problem is
to cluster |U| points into a few clusters. For example, given two 5-dimensional
points (5.0, 4.0, 3.0, 2.0, 1.0) and (5.5, 3.6, 3.1, 1.8, 0.05), they can be clustered
into a CluCell, which is (5.5, 5.0; 4.0, 3.6; 3.1, 3.0; 2.0, 1.8; 1.0, 0.05). In principle,
a CluCell can be generated from multiple promotion cells by taking the maxi-
mum and minimum aggregate value at each of the n dimensions. Note that such
a clustering approach does not affect the correctness and completeness of results
by the definition of CluCell. Since clustering two distant points may adversely
affect the online algorithm, we use the following distance function:

Definition 2. Given two n-dimensional points in the Euclidean space, P1 =
(p1

1, p
1
2, . . . , p

1
n) and P2 = (p2

1, p
2
2, . . . , p

2
n), let their distance be the L1-distance:

dist(P1, P2) = ‖P1, P2‖1 =
∑n

i=1 |p1
i − p2

i |. (Euclidean, or L2, distance may be
used alternatively to prevent large variance along different dimensions.)

A typical clustering approach like k-means may fail to yield desired tradeoff
because it would be difficult to specify the number of clusters, and also the
radii of clusters may be affected by outliers. In order to guarantee the quality
of clusters, we transform our clustering problem to the following optimization
problem.
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Definition 3. Given a collection of |U| points in an n-dimensional Euclidean
space (promotion cells), Φ = {P1, P2, . . . , P|U|}, and a user-specified radius r
(≥ 0). A Pi-cluster is defined as {Pj|1 ≤ j ≤ |U|, dist(Pi, Pj) ≤ r}, i.e., all
points with L1-distance to Pi no more than r. The problem asks for the minimum
number of clusters to cover all points in Φ.

Based on the definition, we can see that when r = 0, each cluster contains
identical points while the pruning power would remain exactly the same as the
promotion cube; when r = ∞, all cells are packed into a single cluster, but it
is unlikely to help prune any subspace. We hence recommend to set r to about
a small percentage, such as 10%, of the average gap between the aggregates of
promotion cells. Unfortunately, to solve the cluster selection problem optimally
turns out to be difficult given the following hardness result.

Lemma 1. The cluster selection problem is NP-hard (see Appendix for proof
sketch).

Thus, we resort to a greedy algorithm as follows. First, given the set of points,
compute for each point Pi the Pi-cluster. Second, iteratively select clusters until
all points are covered. At each iteration, greedily select the cluster containing
the maximum number of uncovered points. Finally, output the clusters selected
and generate the corresponding CluPromoCube. This greedy algorithm has a
worst-case time complexity of O(n · |U|2) that is affordable for a large number
of subspaces. After clusters have been selected, CluPromoCube will materialize
their corresponding CluCells by merging the points. Thus, multiple subspaces
can share one clustered cell, instead of storing a promotion cell for each.

5 Experiment

In this section we report our experimental results. First we will introduce our
implementation methodology in Section 4.1. Then, comprehensive experiments
will be conducted on both synthetic data set as well as real-world data set. Our
performance evaluation shows that the clustering approach can achieve an order
of magnitude speedup while using much smaller storage space than a baseline
method does.

5.1 Implementation Methodology

We compare three methods in terms of query execution time and/or materializa-
tion cost. They are: (i) the clustering-based promotion cube strategy denoted by
CluPromoCube; (ii) a naive strategy that fully materializes all results in every
subspace passing a given minsup, which we denote using PrecomputeAll; and
(iii) the OnlineExec method where queries are answered from scratch using the
method described in Section 4.2. Among these three methods, PrecomputeAll
can be regarded as the naive strategy for the materialization cost measure. On
the other hand, OnlineExec can be considered a bottom line implementation for
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Fig. 5. Performance results on the synthetic data set

the query execution time measure as no precomputation is needed. The query
execution time is measured in terms of seconds whereas the materialization cost
is measured in terms of the total number of values materialized.

Our experiments were carried out on PC with a Pentium 3GHz processor, 2GB
of memory, and 160G hard disk drive. The programs for the implementation were
all written in Microsoft Visual C# 2008 in the Windows XP operating system.
All the programs ran in the main memory and we did not count any time for
loading the precomputed files before query processing since these files can be
usually placed in the memory to answer multiple queries.

5.2 Evaluation on Synthetic Data Set

We first produced a synthetic data set using a random data generator. The data
set generated has 1M rows and 8 subspaces dimensions, whose cardinalities
fall in range (1, 35), and the average cardinality is 11. There are 10000 distinct
objects and the score dimension contains real numbers. By default we fix k to
10 and M to SUM . We also fix the minimum support threshold minsup to 2000
to filter out a large number of less interesting subspaces. For CluPromoCube
we let n = 10, w = 50, and r = 20K by default. All performance results are
reported by averaging over 5 random target objects.
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Fig. 6. More performance results on the synthetic data set

We first report the clustering results of CluPromoCube. Figure 5(a) displays
the number of clusters generated when varying r, the radius parameter of the
clustering algorithm. There are nearly 10K subspaces passing minsup in total;
after clustering, however, the number of clustered subspaces dramatically re-
duce by orders of magnitude. For example, when r = 50K, only 239 clusters
are needed to cover all points, which is about 1

40 of the total number of sub-
spaces; when r = 100K, the total number of clusters is only 79. Figure 5(b)
illustrates the actual materialization cost of PrecomputeAll vs. CluPromoCube
at different r values. PrecomputeAll need to materialize more than 35M val-
ues, while CluPromoCube requires less than 130K. Observe that, as opposed
to Figure 5(a), this curve tends to be flat when r is large. For example, the size
at r = 100K is only larger than the size at r = 200K by 3.3% of the latter.
This is because each subspace has an overhead for maintaining a pointer to the
clustered cell that accounts for a fixed amount of materialization cost. The rela-
tion between r and execution time is depicted in Figure 5(c). CluPromoCube is
at least 3.4 times faster than OnlineExec. When decreasing r, CluPromoCube
becomes faster as expected; when r = 1K, CluPromoCube is 5 times faster
than OnlineExec. To justify the execution time gain, Figure 5(d) shows the
unpruned number of subspaces vs. r. It is not surprising to see this curve is
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correlated with the one in Figure 5(c). However, we can see that reducing space
requirement only incurs a small amount of online cost, which verifies the effec-
tiveness of the proposed method.

Now we vary the other parameters. Figure 6(a) shows the execution time vs.
k. For any k ≤ 100, CluPromoCube outperforms OnlineExec by at least 3
times. At k = 1, CluPromoCube is 4.8 times more efficient. Notice that here
CluPromoCube has r = 20K, meaning that its total size is no more than 50K.
When k increases, the execution time also increases because of a weaker threshold
Rk. In Figure 6(b) we show the performance by varying w. Note that varying
w does not change the space requirement of CluPromoCube. We can see that
a larger w leads to more execution time. In particular, the execution time for
w = 5 is more than 2 times faster than the case for w = 100. This is because
when w is larger, the materialized aggregates are widely spread and thus the
bound becomes less tight. Figure 6(c) further shows the performance vs. n. As n
increases, the execution time becomes smaller and smaller. On the other hand,
as shown in Figure 6(d), the clustering becomes “harder” in the sense that more
clusters are needed when the points (promotion cells) are higher-dimensional,
i.e., the average number of subspaces per cluster decreases.

5.3 Evaluation on the DBLP Data Set

In this subsection we evaluate the CluPromoCube approach on the DBLP data
set1. We constructed a fact table containing 1.7M tuples from it. The fact ta-
ble has 6 subspace dimensions including V enue, Y ear and 4 other dimensions
corresponding to 4 research areas. The cardinalities of the 6 dimensions vary
from 50 to more than 100K. There are totally 450K distinct authors considered
as objects, and we set M to COUNT . All results are reported by averaging 5
random authors.

To evaluate the implemented methods, we constructed a CluPromoCube us-
ing minsup = 1000, w = 5, n = 20, and r = 0. Surprisingly, the overall number
of 6847 subspaces can be packed into 4817 clusters even at r = 0 (summarized in
Table 2), meaning that each cluster represents an average of 1.42 completely same
points (or promotion cells). The offline cost for this CluPromoCube amounts to
207,601, only 0.54% of the corresponding PrecomputeAll, which has a material-
ization cost of over 38M . Next, we compare CluPromoCube with OnlineExec

Table 2. Materialization cost of CluPromoCube with different radii r.

CluPromoCube PrecomputeAll

Radius r = 0 r = 0.1 r = 5 r = 10 r = 100 -

Num. of subspaces 6847 6847 6847 6847 6847 -

Num. of clusters 4817 4817 1785 905 505 -

Avg. cluster size 1.42 1.42 3.84 7.57 13.56 -

Materialization cost 207,061 207,061 107,341 59,271 33,226 38,010,069

1 http://www.informatik.uni-trier.de/∼ley/db/
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Fig. 7. Performance results on the DBLP data

in terms of efficiency. Figure 7(a) displays the results when k is varied from 1
to 20. We can see that OnlineExec uses constant time since it is not aware of
the query parameter k, whereas CluPromoCube is faster by over an order of
magnitude when k is not large (e.g., 13 times faster at k = 1). Furthermore,
to justify the efficiency improvement of CluPromoCube, we plot the number of
unpruned candidate subspaces with respect to k in Figure 7(b). We can see that
CluPromoCube need to compute much less candidate subspaces. These results
therefore verify that the CluPromoCube approach not only performs well on
real-world as well as synthetic data set.

To see how the clustering radius would affect CluPromoCube’s online and
offline costs, we vary the parameter r in order to construct different cubes. Table
2 summarizes the clustering results. We set r to 5 values respectively, namely 0,
0.1, 5, 10, and 100, while keeping other parameters fixed. Recall that a larger
value of r would lead to less clusters because each cluster is able to pack more
cells. When r is set to 100, the number of clustered generated in CluPromoCube
is 505, indicating that on average each cluster represents 13.56 subspaces. The
resulting materialization cost is also significantly reduced to only 33,226; in other
words, in this case CluPromoCube incurs only 0.87

1000 of the materialization cost
of PrecomputeAll, or 1

6.2 of that of the CluPromoCube at r = 0. These results
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show that there indeed exists many subspaces sharing very similar aggregates
that can be clustered effectively. Note that if each aggregate value is stored in a
double type using 8 bytes, the CluPromoCube at r = 0 would consume less than
1.6MB space. We thus conclude that even for large data sets it would be feasible
to maintain CluPromoCube completely in memory. It is also worth mentioning
that the greedy clustering algorithm is in fact scalable: the offline construction
time of CluPromoCube for any r on the DBLP data set is within 10 minutes,
so we do not further analyze its complexity empirically.

In Figure 7(c), we graphically present the linear relation between r and the
materialization cost shown in Table 2. We also show in Figure 7(d) the runtime
of CluPromoCube and OnlineExec when varying r. As expected, the result
shows that decreasing the size of CluPromoCube by generating less clusters
would lead to more execution time, due to less effective bounding as explained
earlier. Overall, although there is no universally accepted way to determine the
r parameter, CluPromoCube is often able to achieve satisfactory performance
for a wide range of parameters.

6 Conclusions

In this paper we have studied the promotion analysis problem and extended
the promotion cube framework through a cell clustering approach in order to
achieve better balance between the offline and online processing of promotion
queries. We formally defined the promotion cube augmented with the clustered
cell structure, as well as its complementary online algorithm. We transformed
the cell clustering problem to an optimization problem and formally discussed its
hardness result. A greedy algorithm is developed for generating clustered cells
efficiently. By evaluating our approach against baseline strategies, we verified
that the performance of our cell clustering approach is significantly better on
both synthetic and real data sets. Extensions of this approach to handle other
application domains such as social network analysis will be interesting directions
for future study.
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Appendix

Proof Sketch for Lemma 1 in Section 4.3. We can reduce the NP-hard Minimum

Geometric Disk Cover problem [9,8] to our problem. In an instance of the
former problem, we are given a set of points on a 2d Euclidean plane and a radius
r, and the goal is to compute a subset of points with minimum cardinality such
that every point in the full set can be covered by a disk which centers at some
point in the subset and has radius r. We transform each 2d point (x, y) to a
promotion cell as [x + α, y] in polynomial time, where α is a large constant s.t.
x+α > y always holds. The radius r remains unchanged. We can prove that the
optimal solutions are equal for both problem instances. ��
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Abstract. Group comparison per se is a fundamental task in many sci-

entific endeavours but is also the basis of any classifier. Contrast sets and

emerging patterns contrast between groups of categorical data. Compar-

ing groups of sequence data is a relevant task in many applications. We

define Emerging Sequences (ESs) as subsequences that are frequent in

sequences of one group and less frequent in the sequences of another, and

thus distinguishing or contrasting sequences of different classes. There are

two challenges to distinguish sequence classes: the extraction of ESs is

not trivially efficient and only exact matches of sequences are considered.

In our work we address those problems by a suffix tree-based framework

and a similar matching mechanism. We propose a classifier based on

Emerging Sequences. Evaluating against two learning algorithms based

on frequent subsequences and exact matching subsequences, the exper-

iments on two datasets show that our model outperforms the baseline

approaches by up to 20% in prediction accuracy.
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1 Introduction

Any science inevitably calls for comparison. Group comparison has always been
a scientific endeavour in Statistics [14] and since the early days of Data Mining
such as discriminant rule discovery [7]. Contrast sets [2] and emerging patterns [4]
contrast between groups of categorical data. Comparing groups of sequence data
is a relevant task in many applications, such as comparing amino acid sequences
of two protein families, distinguishing good customers from churning ones in
e-business, or contrasting successful and unsuccessful learners of e-learning en-
vironments, are typical examples where contrasting sequence groups is crucial.

To contrast sequences, a straightforward approach is to extract discriminative
patterns and contrast groups by those patterns. We opt to use subsequences as
discriminative patterns, because they are helpful in classification. Borrowing
an example from [9], the subsequences “having horns”, “faces worship” and
“ornaments price” appear several times in the Book of Revelation, but never in
the Book of Genesis. Biblical scholars might be interested in those subsequences.

However, there are two main challenges to contrast sequence groups using
subsequences. First, the mining of discriminative subsequences is hard. Wang
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et al. proved that the complexity of finding emerging patterns is MAX SNP-
hard [18]. As a more complex pattern, the mining of subsequences cannot be
done in polynomial time. Another problem is during the classification stage:
as subsequences become long, an approximative match is desired instead of an
exact match when subsequences are compared against discriminative patterns.

In this paper, we first define Emerging Sequences (ESs) as subsequences that
are frequent in sequences of one group and less frequent in the sequences of an-
other, and thus distinguishing or contrasting sequences of different classes. Then,
a similar ES-based classification framework is proposed. In this framework, ESs
are mined more efficiently by a suffix tree-based approach; and similar sub-
sequences are also considered in the classification stage. Our proposed similar
ES-based learning model can be divided into four stages:

1. Preprocess the sequence datasets and extract Emerging Sequence candidates.
2. Select the most discriminative Emerging Sequences.
3. Transform the sequences into tokenized transactional datasets.
4. Train the classifier by Emerging Sequences.

To validate our learning model, we perform experiments on two datasets, one
from software engineering and another from bioinformatics. We compare our ap-
proach to two other techniques to illustrate the discriminative power of ESs and
the performance of the similar matching mechanism. The experiments show that
our similar ES-based classification model outperforms the other two approaches
by up to 20% in prediction accuracy. When our algorithm is trained by using
jumping emerging sequences (i.e. subsequences present in a group and totally
absent or negligible in others), the best performance can be achieved.

In the next section, we introduce some terminologies. In Section 3, we de-
scribe the sequence mining algorithm and the feature selection strategy. Section 4
presents the classification based on ESs. We present the prediction performance
of our proposed approach in Section 5. Finally, Section 6 presents our conclu-
sions.

2 Preliminaries

Let I = {i1, i2, . . . , ik} be a set of all items, or the alphabet, a sequence is an
ordered list of items from I. Given a sequence S = 〈s1, s2, . . . , sn〉 and a sequence
T = 〈t1, t2, . . . , tm〉, we say that S is a subsequence of T or T contains S, denoted
as S � T , if there exist integers 1 ≤ j1 < j2 < . . . < jn ≤ m such that s1 = tj1 ,
s2 = tj2 , . . ., sn = tjn .

Definition 1 (Gap Constraint). It is specified by a positive integer g. Given
a sequence S and a subsequence S′ of S, an occurrence of S′ is a sequence of
indices os = {i1, i2, . . . , im}, whose items represent the positions of elements in
S. ∀k ∈ [1,m− 1],if ik+1 − ik ≤ g + 1, we say os fulfills the g-gap constraint.

For instance, if sequence S = 〈B,C,A,B,C〉, and its subsequence S′ = 〈B,C〉.
There are 3 occurrences of S′: {1, 2}, {1, 5}, and {4, 5}. The occurrences of S′

{1, 2} and {4, 5} fulfill the 1-gap constraint (also 0-gap) but {1, 5} does not.
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Definition 2 (Count and Support). Given a sequence dataset D, D consists
of a set of sequences. The count of a sequence α, denoted as count(α,D), is the
number of sequences in D containing α; while the support support(α,D) is the
ratio between its count and the number of sequences in D.

Definition 3 (Emerging Sequences). Given two contrasting sequence classes,
Emerging Sequences (ESs) are subsequences that are frequent in sequences of one
group and less frequent in the sequences of another, and thus distinguishing or con-
trasting sequences of different classes.

Definition 4 (Edit Distance). Edit Distance between two sequences is the
minimum number of operations needed to transform one sequence into the other,
where an operation is an insertion, deletion, or substitution of a single item.

3 Sequence Mining and Feature Selection

In this section, we explain how we first preprocess the datasets and extract the
ESs candidates; then implement a dynamic feature selection to mine the most
discriminative subsequences.

3.1 ES Candidates Mining

To find the Emerging Sequence candidates, the following domain-and-classifier-
independent heuristics are useful for selecting sequences to serve as features [12]:

– Features should be frequent.
– Features should be distinctive of at least one class.

Let Dpos and Dneg to be two classes of sequences; the supports of a ES candidate
α in both classes, denoted as support(α,Dpos) and support(α,Dneg), need to
meet the following conditions:

support(α,Dpos) > θ, support(α,Dneg) ≤ θ

where θ is the minimum support threshold.
As sequence mining is well developed, many existing algorithms, such as

SPADE [19] and PrefixSpan [16] can extract frequent subsequences easily. How-
ever, there are two problems by extracting ESs with those algorithms. One chal-
lenge is the low efficiency: the support thresholds in mining distinguishing pat-
terns need to be lower than those used for mining frequent patterns [4], which
means the minimum support offers very weak pruning power on the large search
spaces [10]. Another problem of previous algorithms is that, items do not have
to be appearing closely with each other in the original sequence, while the gaps
between items are significant in comparing sequences. Hence, we implement a
Generalized Suffix Tree (GST) [6] based algorithm to extract ES candidates.

The advantage of this framework is that ES candidates mining can be done
in linear time. However, only subsequences fulfilling the 0-gap constraint are
mined, i.e. items have to be appearing immediately next to each other in the
original sequence. To handle the low gap constraint subsequences, we propose a
similar matching mechanism; more information is provided in Section 4.2.
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3.2 Feature Selection

After preprocessing, numerous ES candidates are extracted. In this section, we
refine the result and select the most discriminative subsequences as ESs. To
evaluate the discriminative power of subsequences, a similar mechanism with
Contrast Sets [2] is applied. Given two sequence groups Dpos and Dneg, the ES
candidates are ranked by the supports difference:

sup diff = support(α,Dpos)− support(α,Dneg)

The selected features should be representative enough so that every original
sequence can be covered. To avoid numerous ESs, a dynamic feature selection
strategy is adopted [8] (Algorithm 1). For any sequence, only the top-m subse-
quences, based on sup diff , are kept. It guarantees that each sequence can be
represented by at least m ESs (the high-ranked ones) and the database does not
become too large due to the possible sheer number of candidate subsequences.

Input: the sequence dataset D, the sorted set of Emerging Sequence

candidates ESc, the minimum subsequence number m
Output: The set of Emerging Sequences ES
foreach sequence ∈ D do1

count← 0;2

foreach candidate ∈ ESc do3

if candidate  sequence then4

count← count + 1;5

mark the candidate ;6

end7

if count = m then8

break;9

end10

end11

end12

ES ← all marked subsequences in ESc;13

Algorithm 1. Dynamic Feature Selection.

Figure 1 presents the 4 stages of our proposed learning model. The minimum
support θ in Stage 1 is set to 50% as an example. The numbers in the brackets
after ESs are their supports in the positive and the negative class respectively.

4 Transformation and Classification

In this section, the sequence datasets are transformed to transactional datasets
in order to be in a suitable form for learning algorithms. Then, a classification
algorithm trained by ESs is proposed. The transactions are simple sets of tokens
representing ESs. Each ES is represented by a token (i.e. a simple ID) used
within transactions (See Fig 1).
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Fig. 1. Four stages of classification. In Stage 1 and 2, ESs fulfilling 0-gap constraint

are extracted. We transform the sequence dataset to a transactional dataset in Stage

3. The classification is performed in Stage 4.

4.1 Transformation to Transactional Datasets

To transform a sequence using the Emerging Sequence set representation, we
implement a similar matching mechanism. Given a sequence S and an emerging
sequence es of length le, if S contains a subsequence, which is similar with es, the
corresponding transaction should contain the token representing es. To compare
the emerging sequence and the extracted subsequences, we introduce a maximum
difference γ ∈ [0, 1]. If the edit distance between sequences is equal to or lower
than γ × le, we say they are similar.

This strategy can be implemented by dynamic programming algorithms (e.g.
local aligement). We adopt a sliding window algorithm, because the lengths of
ESs are short, and more complicated algorithms are not necessary. Due to the
space limitation, we move this algorithm to a technical report [3].

4.2 Classification

On the classification stage, we implement a Näıve Bayes (NB) classifier based
on ESs. Trained by representative features, NB outperforms other state-of-art
learning algorithms [13].

A NB classifier [11] assumes that all features are independent. Given a se-
quence S and a set of independent subsequences, the sequence S can be repre-
sented by a set of subsequence-value pairs: S = {seq1 = v1, seq2 = v2, ..., seqn =
vn}, where vi is either true or false. When C is the class set, according to the
Bayes rules, the probability that sequence S is in the class c is: p(c|S) = p(S|c)p(c)

p(S) ,
where p(S|c) is the conditional probability of sequence S when class label c is
known, and c ∈ C. Due to the independence of subsequences, p(S|c) can be
rewritten as: p(S|c) =

∏
i p(seqi = vi|c).The class label predicted by NB is:

predict(S) = arg maxc∈Cp(c)×
∏

i

p(seqi = vi|c) (1)
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When features are independent, the NB may not have the best prediction ac-
curacy [17]. Therefore, in the Emerging Sequences Näıve Bayes (es-NB), we do
not assume the independence of features. To convert the original NB to es-NB,
Equation 1 is still used to predict labels, while the feature set is built by ESs.

5 Experimental Results

5.1 Evaluation Methodology

Our proposed similar Emerging Sequence-based algorithm (Similar ES) can be
divided into four stages (See Figure 1):

1. Subsequences fulfilling the support conditions are chosen as candidates.
2. ESs are selected, so each sequence can be covered by the top-m ESs.
3. Transform sequences to transactions by the similar matching mechanism.
4. Train an es-NB classifier.

For comparison, we design two other models, one based on frequencies, where
frequent subsequences in the positive class are considered discriminant (it also
does exact matches), and one identical to our approach but doing exact matches
(Exact ES). The motivation for the frequency-based algorithm is that if we rank
subsequences according to frequency, those discriminative ones usually have high
ranks [15]. We can evaluate the effect of ESs according to the comparison between
this approach and the Exact ESs-based Algorithm. Exact ESs-based Algorithm
is used to test the performance of the similar matching mechanism.

We apply the F-measure to evaluate the prediction performance. The F-
measure is a harmonic average between precision and recall. Finally, we perform
6-fold cross validation, and the average F-measure of the 6 folds is reported.

5.2 Comparisons on Two Types of Datasets

The first type of datasets is the UNIX commands dataset [1], which contains 9
sets of user data. In each experiment, 2 users’ commands are chosen, and the
F-measures and standard deviations are presented in Row 1-3 of Table 1. The
second dataset is the epitope data, which are short linear peptides generated by
cleavage of proteins [5]. To contrast the binding and non-binding peptides, we
perform the test on several groups of data, and the results are presented in Row
4-6 of Table 1. For more characterization about the datasets, please refer to [3].

We observe that, our similar ESs-based algorithm achieves satisfactory ac-
curacies, comparing with the other two simpler approaches. By comparing the
first two approaches (frequent subsequences versus ESs), we find that ESs play
a significant role in classification: the F-measures are improved by up to 15%.
The similar matching mechanism improve the F-measures as well (by up to 5%).
However, its improvement also depends on the datasets. An extreme example is
the result of user 2 and 3 (Row 3), where the last two algorithms have similar
F-measures. The reason for that is that users 2 and 3 have one length-1 ES
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Table 1. Classification performances of three algorithms. Row 1-3: θ = 0.01, γ = 0.1,
Row 4-6: θ = 0.05, γ = 0.2

Datasets Frequency-based Exact ESs-based Similar ESs-based

user 0 and 3 0.891992 ± 0.0280118 0.953464 ± 0.0121005 0.962192 ± 0.00864717
user 0 and 5 0.869967 ± 0.0250203 0.939128 ± 0.0107074 0.940028 ± 0.0118862
user 2 and 3 0.965973 ± 0.0225253 0.984494 ± 0.00798139 0.984516 ± 0.00600006

I-Ek 0.760296 ± 0.0299356 0.859395 ± 0.0237948 0.862556 ± 0.023571
HLA-DQ2 0.661909 ± 0.0620348 0.811726 ± 0.0936836 0.864592 ± 0.0300073
HLA-DQ4 0.712941 ± 0.0581559 0.789487 ± 0.0922259 0.821227 ± 0.055203

Table 2. Classification performances of different minimum supports

θ user 0 and 3 user 7 and 8 user 2 and 7

0.01 0.962192 ± 0.00864717 0.853639 ± 0.0233047 0.969818 ± 0.00861439
0.09 0.920798 ± 0.0184558 0.799181 ± 0.0159464 0.923499 ± 0.0162301
0.17 0.865009 ± 0.0182603 0.718475 ± 0.0192607 0.851387 ± 0.0126434
0.25 0.84761 ± 0.0222 0.629819 ± 0.0100243 0.777707 ± 0.031677
0.33 0.785189 ± 0.0258754 0.573587 ± 0.0102116 0.703857 ± 0.0172083

respectively. When γ is set to 0.1, our framework always seeks exact matching
subsequences, in other words, both approaches become literally identical.

5.3 Performances of Varying Minimum Support

In this sub-section, we test the performance on UNIX command dataset by
varying the minimum support θ. Table 2 presents the results on 3 datasets. With
the increase of θ, the classification accuracy degrades. When θ is set to 0.01, the
Similar ESs-based model achieves the highest accuracy. Given the target group
and the contrasting group, Stage 1 ensures that the ESs candidates hardly appear
in the contrasting group, while Stage 2 selects the high-frequent candidates in
the target group. In other words, the most ESs are frequent in the target group,
while they (almost) cannot be found in the contrasting group. We name this type
of subsequences jumping emerging sequences (JESs). In conclusion, our proposed
algorithm achieves the best performance when the classifier is trained by JESs.

6 Conclusion

In this paper, we define Emerging Sequences (ESs) as subsequences that are
frequent in sequences of one group and less frequent in the sequences of another,
and thus distinguishing or contrasting sequences of different classes. There are
two challenges to distinguish sequence classes: the extraction of ESs is not triv-
ially efficient and only exact matches of sequences are considered. In our work we
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address those problems by a suffix tree-based framework and a similar matching
mechanism. We propose a classifier for sequence data based on ESs.

Evaluating against two learning algorithms based on frequent subsequences
and exact matching subsequences, the experiments on two datasets show that our
similar ESs-based classification model outperforms the baseline approaches by
up to 20% in prediction accuracy. When our algorithm is trained using jumping
emerging sequences, the best performance can be achieved.

References

1. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

2. Bay, S.D., Pazzani, M.J.: Detecting change in categorical data: Mining contrast

sets. In: KDD, pp. 302–306 (1999)
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Abstract. Some challenges in frequent pattern mining from data

streams are the drift of data distribution and the computational effi-

ciency. In this work an additional challenge is considered: data streams

describe complex objects modeled by multiple database relations. A

multi-relational data mining algorithm is proposed to efficiently discover

approximate relational frequent patterns over a sliding time window of

a complex data stream. The effectiveness of the method is proved on

application to the Internet packet stream.

1 Introduction

A data stream is a sequence of time-stamped transactions which arrive on-line,
at consecutive time points. The large volume of data continuously generated in
short time and the change over time of statistical properties of data, make tradi-
tional data mining techniques unsuitable for data streams. The main challenges
are avoiding multiple scans of the entire data sets, optimizing memory usage,
and mining only the most recent patterns. In this work, we consider a further
issue: the stream is a sequence of complex data elements, composed of several ob-
jects of various data types are someway related. For instance, network traffic in
a LAN can be seen as a stream of connections, which have an inherent structure
(e.g., the sequence of packets in the connection). The structure of complex data
elements can be naturally modeled by means of multiple database relations and
foreign key constraints ((multi-)relational representation). Therefore, we face a
problem of relational data stream mining.

The task considered in this paper is frequent pattern mining. The proposed
approach is based on the sliding window model, which completely discard stale
data, thus saving memory storage and facilitating the detection of the distri-
bution drift. This model is common to several algorithms for frequent pattern
mining in data streams [9,11,6,13]. However, all these algorithms work on a single
database relation (propositional representation) and are not able to deal directly
with complex data stored in multiple database relations.

Although it is possible to “propositionalize” relational data, i.e., transform
them into a propositional form by building features which capture relational
properties of data, this transformation can cause information loss.
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Multi-relational data mining (MRDM) algorithms [4], which can navigate the
relational structure in its original format, generate potentially new forms of ev-
idence (relational patterns), which are not readily available in a propositional
representation [5]. Several MRDM systems allow frequent patterns mining. Two
representative examples of the state-of-the-art are WARMR [3] and SPADA [7],
which both represent relational data and domain (or background) knowledge à
la Datalog [2]. However, these systems are not designed to efficiently process
data streams and to capture the possible drift of data distribution.

In this work, we propose a novel MRDM algorithm, called SWARM (Sliding
Window Algorithm for Relational Pattern Mining), which discovers approxi-
mate frequent relational patterns over a sliding time window of a relational data
stream. SWARM is a false positive oriented algorithm, i.e., it does not discover
any false negative frequent pattern. The contributions of SWARM are threefold.
First, the multi-relational approach to complex data stream mining. Second, the
use of the SE-tree to efficiently store and retrieve relational patterns. Third, the
efficient and accurate approximation of the support of the frequent patterns over
the sliding time window.

The paper is organized as follows. Section 2 introduces some preliminary con-
cepts. The algorithm is described in Section 3, while experiments on an Internet
packet stream are reported in Section 4. Finally, conclusions are drawn.

2 Preliminary Concepts and Definitions

In this work, objects stored in distinct relations of a database D play different
roles. We distinguish between the set S of reference (or target) objects, which are
the main subject of analysis, and the sets Rk, 1 ≤ k ≤M , of task-relevant (non-
target) objects, which are related to the former and can contribute to define
the units of analysis. It has been proved that this “individual centered” rep-
resentation has several computational advantages, both theoretical (e.g., PAC-
learnability) and practical (efficient exploration of the search space) [1].

Henceforth, we adopt a logic framework for the representation of units of
analysis, and we categorize predicates into three classes. The unary key predi-
cate identifies the reference objects in S (e.g., connection in Example 1). Binary
structural predicates either relate task-relevant objects (e.g., next) or relate refer-
ence objects with task-relevant objects (e.g., packet) in the same unit of analysis.
Property predicates define the value taken by a property. They can be either bi-
nary, when the attribute represents a property of a single object (e.g., nation
source), or ternary, when the attribute represents a property of a relationship
between two objects (e.g., distance between consecutive packets).

Example 1. A unit of analysis formed by a connection c (reference object) and
a sequence of packets p1, p2, ... (task-relevant objects) is reported below:

connection(c), time(c,12:05), sourceNation(c, japan), ...,packet(c,p1),
time(p1,12:05), number(p1,1), packet(c,p2), time(p2,12:06), number(p2,2),
next(p1,p2), distance(p1,p2,1), packet(c,p2), ...
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A relational pattern is a set of atoms (atomset). An atom is a predicate applied
to a tuple of terms (variables or constants). Variables denote objects in S or
some Rk, while constants denote values of property predicates.

Definition 1 (Relational pattern). A relational pattern P is a set of atoms
p0(t0), {pi(ti1 , ti2)}i=0,...,n, {pj(tj1 , tj2 , tj3)}j=0,...,m

where p0 is the key predicate, pi (i = 0, . . . , n) are either structural predicates or
binary property predicates, pj (j = 0, . . . ,m) are ternary property predicates.

Example 2. A relational pattern is reported below:
“connection(C), packet(C,P), number(P,4), next(P,Q), distance(P,Q,3ms),
number(Q,2), next (Q,R)”.

The support of a relational pattern P , denoted as sup(P |D), is the percentage
of units of analysis in D “covered” (i.e., logically entailed) by P . P is frequent
if sup(P ) is greater than a user-defined threshold σ.

Following the sliding window model, the units of analysis in D depend on a
time-sensitive sliding window.

Definition 2 (Time-sensitive sliding-window). Given a time point p, the
set of units of analysis arriving in the period [t − p + 1, t] forms a slide B. Let
Bi be the i-th slide, the time-sensitive sliding-window Wi associated with Bi is
the set of w consecutive slides from Bi−w+1 to Bi.

The window moves forward by a certain amount of unit of analysis by adding
the new slide (Bi+1) and dropping the expired one (Bi−w+1). The number of
units of analysis that are added to (and removed from) each window is |Bi|. We
assume that a unit of analysis is associated with a timestamp and data elements
forming a single unit of analysis flow in the stream at the same time.

3 The Algorithm

A buffer continuously consumes the stream units of analysis and pours them
slide-by-slide into SWARM system. After a slide goes through SWARM, it is
discarded. SWARM operations consist of discovering relational patterns over a
slide, maintaining relational patterns over a window and approximating frequent
relational patterns over a window. Input parameters are: the minimum support
threshold σ, the maximum support error ε (ε < σ), the period p of a slide, the
number w of slides in a window, and the maximum depth MaxDepth of patterns.

3.1 Relational Pattern Discovery over a Slide

Once a slide flows in the buffer, relational patterns are locally discovered by
exploring the lattice of relational patterns ordered according to a generality order
(≥). This generality order is based on θ-subsumption [10] and is monotonic with
respect to support. The search proceeds in a Set Enumerated tree (SE-tree)
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search framework [12], starting from the most general pattern (the one with
only the key predicate), and iteratively alternating the candidate generation
and candidate evaluation as in the level-wise method [8]. The SE-tree search
framework has several advantages. First, the SE-tree enumerates all possible
patterns by allowing a complete search. Second, it prevents the generation and
evaluation of candidates which are equivalent under θ-subsumption. Third, it
effectively exploits the monotonicity property of ≥ to prune the search space.

A node of the SE-tree is associated with a progressive natural index and it is
represented by the head and the tail. The head of the root is the pattern that
contains only the key predicate. The tail is the ordered set of atoms which may
be appended to the head by the downward refinement operator ρ.

Definition 3 (Downward refinement operator). Let P be a relational pat-
tern. Then ρ(P ) = {P ∪ {p(. . .)}|p is either a structural predicate or a property
predicate that shares at least one argument with one of the atoms in P}.

Let n[head, tail] be a node of the SE-tree and q(. . .) be an atom in tail(n). Then
n has a child nq[head, tail] whose head is defined as follows:

head(nq) = head(n) ∪ q(. . . ). (1)

If q is based on a property predicate, its tail is defined as follows:

tail(nq) = Π>qtail(n) (2)

where Π>qtail(n) is the order set of atoms stored after q in tail(n). Differently,
if q is based on a structural predicate, its tail is defined as follows:

tail(nq) = Π>qtail(n) ∪ {r(. . .)} (3)

where {r(. . .)} is a set of atoms r(. . .). Each r(. . .) is an atom that belongs
to one of the refinement ρ(head(nq)) under the conditions that r(. . .) shares
variables with q(. . .) and r(. . .) is not included in tail(n). When r(. . .) is based
on a structural predicate, one of its arguments must be a new variable.

The monotonicity property of ≥ with respect to support makes the expansion
of infrequent nodes (i.e., nodes whose local support is less than ε) useless. In
addition, we prevent the expansion of nodes at a depth greater than MaxDepth.

3.2 Relational Pattern Maintenance over a Window

Distinct sets of relational patterns are discovered for each slide. The naive solu-
tion is to keep in memory a distinct SE-tree for each slide of the window. This
would lead to enumerate several times relational patterns which are discovered
in distinct slides. To reduce memory usage, a single SE-tree is maintained on
the window. At this aim, each node n of the SE-tree maintains a w sized sliding
vector sv(n), which stores one support for each slide in the window. By default,
the local support values which are stored in sv(n) are set to unknown. According
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to the sliding model when a new slide flows in the buffer, the support vector is
shifted on the left in order to remove the expired support. In this way, only the
last w support values are maintained in the nodes of the SE-tree.

The maintenance of the SE-tree proceeds as follows. When a relational pattern
Pn is discovered over a slide B, we distinguish between two cases, namely, Pn is
enumerated in the SE-tree or not. In the former case, the SE-tree is expanded
with the new node n which enumerates Pn, while in the latter case the node
n already exists in the SE-tree and sv(n) is shifted on the left. In both cases,
the value of support sup(Pn|B) is computed over B and is then stored in the
last position of sv(n). Finally, nodes are pruned when they enumerate relational
patterns which are unknown on each slide of the window.

3.3 Relational Frequent Pattern Approximation over a Window

A relational pattern Pn is identified as approximately frequent over W iff the
approximate support supA(Pn|W ) estimated over W is greater than σ. The ap-
proximate support of Pn is computed on the basis of the local support values
which are stored in sv(n).

supA(Pn|W ) =
w∑

i=1

(sv(n)[i]× |Bi|)/
w∑

i=1

|Bi| (4)

When the local support sv(n)[i] is unknown over a slide Bi, it is estimated
by using the known support of an ancestor of Pn. In particular, the pattern
Qm is found such that Qm is the most specific ancestor of Pn in the SE-tree
with a known support value over Bi. Theoretically, the complete set of at worst
2k − 1 ancestors should be explored, where k denotes the pattern length. This
solution may be impractical for high value of k. To improve efficiency, only the
ancestors along the path from n to the root are truly explored. This way, the
time complexity of this search is O(k).

Since the SE-tree enumerates patterns discovered by using the maximum sup-
port error ε as support threshold, Qm can either be infrequent (sup(Qm|Bi) < ε),
or sub-frequent (ε ≤ sup(Qm|Bi) < σ) or frequent (sup(Qm|Bi) ≥ σ). In the first
case, the support of Qm is used to estimate the support of Pn. In the other two
cases the support of Pn is correctly determined as zero. Indeed, the fact that
a pattern is refined until it is not infrequent, except when ρ refinements of a
pattern have zero valued support over the slide, and the monotonicity property
of ≥ with respect to support, ensure that sup(Pn|Bi) = 0.

4 Experiments

We evaluate SWARM on a real Internet packet stream that was logged by the
firewall of our Department, from June 1st till June 28th, 2004. This stream con-
sists of 380,733 ingoing connections for a total of 651,037 packets. A connection
is described by means of six properties (e.g. service, protocol, ...). A packet is
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described by means of the order of arrival of the packet within the connection.
This order of arrival allows us to represent a relationship of sequentiality between
270,304 pairs of consecutive packets. The time distance between two packets is
a property of each pair of consecutive packets. The stream is segmented in time
slides with a period p and approximate relational frequent patterns are discov-
ered on sliding windows covering w consecutive slides. Experiments are run by
varying p (p = 30, 60 minutes), w (w = 6h/p, 12h/p, 18h/p) and ε (ε = 0.5, 0.7).
σ is set to 0.7 and MaxDepth is set to 8.

Relational patterns discovered by SWARM are compared with relational pat-
terns discovered by a multi-relational implementation that we have done of the
algorithm SW [6]. Initially, we analyze the total number of false positive patterns
which are discovered over the sliding windows of the entire stream. No false neg-
ative pattern is discovered by both SWARM and SW due to the overestimation
of the support. The number of false positive patterns is reported in Table 1.
False positive are those approximate patterns which are not included in the set
of true frequent patterns we have directly discovered over the entire windows.
These results confirm that SWARM discovers a lower number of false positive
than SW by providing a more significant approximation of support when local
support values are unknown. Additionally, the number of false positive patterns
is significantly lower when sub-frequent candidates (ε = 0.5 < σ = 0.7) are lo-
cally generated at slide level. As expected, the number of false positive patterns
increases by enlarging the window size and/or reducing the slide period.

Further considerations are suggested by the analysis of the absolute error
of the approximated support, averaged over the true positive patterns. Only
the sliding windows where the error is greater than zero are plotted in Figure 1.
Due to space limitations, the plot concerns only the parameter setting p = 30, 60
minutes and w = 12h/p, but the considerations we report below can be extended
to other settings we tried. We observe that SWARM always exhibits a lower error
rate than SW. Additionally, the discovery of sub-frequent local patterns (ε < σ)
makes more accurate the approximation of the support.

A different perspective of the results is offered by the comparison of the rela-
tional patterns discovered by both SWARM and SW over the sliding windows that
cover the same portion of the data stream, but are generated with different slide
period. Although the same number of false positive patterns is discovered inde-
pendently from the slide period, some differences are observed in the error rate

Table 1. The total number of false positive patterns discovered on the entire stream:

comparison between SWARM and SW. σ = 0.7

Experimental Setting SWARM σ = 0.7 ε = 0.5 SWARM σ = ε = 0.7 SW

p = 30 min w = 12 1 42 145

p = 30 min w = 24 6 68 203

p = 30 min w = 36 8 42 240

p = 60 min w = 6 0 27 68

p = 60 min w = 12 3 28 104

p = 60 min w = 18 3 23 135
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p = 60 minutes p = 30 minutes

Fig. 1. Average absolute error rate: SWARM with ε = 0.5 and ε = 0.7 vs. SW

w = 6h/p w = 12h/p w = 18h/p

Fig. 2. Average absolute error rate of SWARM (θ = 0.7 and ε = 0.5): p = 60 minutes

vs. p = 30 minutes

Fig. 3. Elapsed time: discovering approximate frequent patterns on a slide-by-slide

basis vs. discovering exact frequent patterns on the entire window

plotted in Figure 2. The general trend is that the error decreases by enlarging the
period of a slide. Few exceptions are observed with greater values of w.

Statistics on the elapsed time are shown in Figure 3. The discovery of ap-
proximate frequent patterns on a slide-by-slide basis is more efficient than the
discovery of exact frequent patterns on the entire window. As expected, elapsed
time decreases by reducing the slide period.

5 Conclusions

We present a novel multi-relational data mining algorithm for approximate fre-
quent relational pattern discovery over sliding time windows of a data stream.
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The algorithm is evaluated in a real Internet packet stream. Experiments prove
that our algorithm is both accurate and efficient. In a future work, we intend
to investigate the quality of the approximation the unknown local support of a
pattern when it is based on all ancestors of the pattern and not only the most
specific ancestor along the path to the top of SE-tree.
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Abstract. Recommender systems are based mainly on collaborative

filtering algorithms, which only use the ratings given by the users to

the products. When context is taken into account, there might be

difficulties when it comes to making recommendations to users who are

placed in a context other than the usual one, since their preferences

will not correlate with the preferences of those in the new context. In

this paper, a hybrid collaborative filtering model is proposed, which

provides recommendations based on the context of the travelling users.

A combination of a user-based collaborative filtering method and a

semantic-based one has been used. Contextual recommendation may be

applied in multiple social networks that are spreading world-wide. The

resulting system has been tested over 11870.com, a good example of a

social network where context is a primary concern.

1 Introduction

This article addresses contextual recommendation, which is a new research area
in the field of recommender systems [1]. Our definition of context is based on
the representational view proposed by Dourish [2]. According to this definition,
the context is presented as a series of attributes representing the features of a
user’s situation. In our case, these attributes were modelled using an ontology.

In particular, this work is devoted to the geographical contextualization of
recommendations, although our system has been built so it can be easyly adapted
to any other definition of context by just adding attributes to the ontology. For
example, supposing that a user has only rated restaurants in her city and wants
to find a restaurant in a city she is visiting, the purpose of our work is to suggest
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an item (the restaurant) based on its compatibility to her profile, but restricting
the results to the new context (the city that she is going to visit).

A recommender system based on user-based or item-based collaborative
filtering [3, 4] only uses the ratings given by the users to the products, making
recommendations from the evaluation of the similarity between the profiles of
different users, i.e. people that tend to rate the same items will have similar
tastes. Therefore, when contextual components are added to the items, it turns
very difficult to find similar user profiles in different contexts. Using the previous
example of the user who only rates restaurants in her city, if that user wanted
to travel abroad, her profile in a user-based collaborative filtering system would
be uncorrelated with the profiles of users in the city she intends to visit.

Recommendation based on geographical context may be applied to multiple
social networks, such as the one chosen to test the results: 11870.com, a
supervised social network where users store and review services they like and
share them with the rest of the network community. Contextualization is vital
to this community, since these networks provide users with recommendations
based on geography, meaning that items rated by users are actual companies or
services in their respective cities.

The rest of the article is organized as follows: In Sect. 2, all the profiles and
concepts used throughout the paper are introduced. In Sect. 3, the core of the
proposed solution is explained. In Sect. 4, an analysis of the solution is performed
providing the results over a controlled and a real-world scenario. Finally related
work and conclusions will be presented in Sect. 5 and 6.

2 Context-Aware Recommendation Framework

In order to develop the proposed recommender system, the User Profile and the
Decontextualized User Profile are introduced.

User Profile

– Let U =
{
u0, u1, u2 . . . u|U|

}
be the set of users within the application. Where |U |

is the total number of users within the application.

– Let P =
{
p0, p1, p2 . . . p|P |

}
be the set of products. Where |P | is the total number

of products of the application.

– Let R be the set of ratings.

– Let UP be the User Profile, a function: U × P −→ R

A matrix will be built in the plane UP where the position (i, j) will be the rating
r ∈ R given by the user ui ∈ U to the product pj ∈ P .

Decontextualized User Profile. Another profile is created using a formal
conceptualization of the domain in which the products are framed. Every product
P in the system will be classified so that a new profile can be built laying a
semantic layer over the preferences of every user, e.g. instead of knowing that
one user likes a specific comic book shop the aim, rather, is to know that she
likes the category of Comic Book Shops. In this study, a taxonomy is used to
classify the products and the profile is built over its categories.
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– Let C =
{
c0, c1, c2 . . . c|C|

}
be the set of all the categories defined in the taxonomy

. Where |C| is the total number of the categories in the taxonomy.

– Let S be the set of scores given to one category. This score will be obtained for

one user using the ratings given to P .

– Let DUP be the Decontextualized User Profile, a function: U × C −→ S

The decontextualization needed in the system is related to the semantic layer
that will be laid upon the set of items over which the recommendation is made.
The UP will be dependant on the context whereas the DUP will be context free
as long as the taxonomy used is correctly designed. A final contextualization
is then needed to adapt the final recommendations to the current context of the
user.

3 Context-Aware Recommendation Process

In this section the core of the solution proposed is explained. The
recommendation process is depicted in Fig. 1. The system comprises the following
blocks:

Collaborative Filtering Recommender System (block 1). This system
carries out the computation of a recommendation list based on the UP.
Collaborative filtering (CF) is the method chosen for recommendations in most
web applications. The broadness and diversity of the products treated by any
application make it very difficult to use typical content-based methods [5].
Recommendations are provided by studying the correlation between users’
ratings. Therefore, the results are content agnostic and independent of the
domain [3, 4]. A basic user-based CF algorithm with Pearson’s correlation [6]
is used to compute the recommendations in this branch of the system.

Semantic Recommender System (block 2). This system carries out the
computation of a second recommendation list using the DUP. The semantic
structure used will be a taxonomy which categorizes all the products in the
system. The user’s taste vector is now the rating for each category, based on the
ratings of the items included in each category, i.e. the DUP . It will consist of

Fig. 1. Overview of the proposed solution
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scores given to categories in the taxonomy C using Ziegler’s method to distribute
the score [7]. Once the DUP is generated, similarities are computed using the
cosine of the angle between the vectors [6]. Then, the users whose profiles are
most closely correlated to the given user will be taken into consideration to
compute recommendations using the relevance formula in [7].

Recommendation List Builder (block 3). This module merges the
recommendation lists provided by both recommender systems. This block is
tuned depending on the accuracy given by each of the branches of the hybrid
system. The accuracy will not only depend on the actual system but also on the
quality of the structures used, i.e. the taxonomy. Ziegler [7] tested the taxonomy-
based CF algorithm using Amazon’s taxonomy and proved that it performed
better than the user-based CF one, hence, in this case, the recommendations
given by the taxonomy-based branch should be prioritized. But there are other
studies which show the opposite behavior [8] and that is the case of the dataset
that we will be using, 11870.com. The tests run proved that the recall [9] is
between 2 and 3 times better with the user-based CF and its precision [9] triples
the case of the taxonomy-based CF algorithm. This is the case that makes the
hybrid system really useful because it makes it possible for us to take advantage
of the diversity introduced by the user-based CF system and also rely on the
taxonomy-based CF algorithm to overcome the sparsity problems [10] [8] or the
uncorrelation between profiles of users in different contexts.

Context Handler (block 4). This module gathers all the contextual
information concerning both the user and each of the recommended items and
processes it according to a context ontology, using a reasoner that also processes
the data contained in a knowledge base according to a set of rules that allow
the generation of context-related entailments. Every time a user asks for a
recommendation, instances representing both her profile and her context are
generated, according to the corresponding descriptions available in the ontology.
These instances are put into the knowledge base. Once a decontextualized
recommendation has been generated, instances representing the context of each
recommended item are also put into the knowledge base. The reasoner can then
build a new list with all the recommended items matching the user’s situation
and attending the imposed rules.

Note that in the aforementioned example of the traveler, most of the products
recommended by block 1 will be filtered out when contextualization is performed.
In this case, block 2 will be the one providing the output to the user.

4 Impact of the Contextual Hybrid System

Two different experiments have been carried out to evaluate the performance
of the proposed hybrid recommender system. The first experiment was done
using a restricted set of users, which is shown in Fig. 2. This experiment
was performed to prove that the hybrid system solves the contextual problems
explained throughout the paper. After that, a second experiment was developed
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using a real social network to test how the hybrid system would perform in a
real-world scenario. In both experiments, only the geographical features of the
context have been considered.

Instead of using precision and recall as metrics for our experiments, we will
count the number of possible recommendations that each branch can provide.
Precision and recall are measured over a test set extracted out of the products
rated by the user [9] and that set would form the perfect recommendation list.
But in the example that we are using, based on geographical contextualization,
the aim is to prove that we are able to provide recommendations anywhere,
specially in a geographical context where the user has never rated a product.
Therefore the recommendations we are looking for will never appear in any test
set chosen.

4.1 Results over a Restricted Dataset

The dataset used for this experiment consists of 10 users in 3 different countries,
rating 17 services that will be classified according to a small taxonomy (left box
of Fig. 2). As we can see in this example, 3 users in Beijing and 4 users in Madrid
are uncorrelated because they do not have any products in common.

This experiment aims to prove that with a hybrid system, we can take
advantage of the basic CF but in the case of non-correlation between users
in context-based recommendations, we are still able to provide an accurate
recommendation, which will satisfy the user’s criteria.

We used a similarity threshold in order to limit the users who could be in
the Top-M of most similar users, given that the DUP could make all users
similar because they all have at least one category (the root one) in common. In
this experiment, the similarity threshold was set very high, to 0.5. Even at this
threshold setting, the main issue was proved.

Fig. 2. Left box: Restricted dataset, UP matrix, taxonomy and classification of the

products. Right box: Recommendations obtained for both systems
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The result of the recommendations obtained for every user in the data set
is shown in the right box of Fig. 2. The user Xiaomei, is not only uncorrelated
using the UP with the rest of users in a different country but also with the
users in the same geographical context. In this extreme situation, the basic CF
algorithm is not able to provide recommendations whereas the taxonomy branch
is. Also we can observe that the basic CF algorithm provides diversity to the first
recommended items (see the user Li). On the other hand, the taxonomy-based
algorithm will be more focused on the semantically related products, especially
at the top of the recommendation list.

4.2 Results over a Social Web: 11870.com

The social network 11870.com has three versions, depending on the language
setting, but is situated mainly in Spain. Therefore, it is important to consider
that 16.12% of the site’s services are set outside of Spain and 3.9% of users
can be considered to originate from other countries because they do not have
any reviews in Spain. These people outside of Spain review an average of 2.61
products or services. This analysis of the data in this social network allows us to
see that this scenario is not as international as it should be to check the proper
use of the hybrid system, but makes a good scenario for testing the performance
with authentic data which is location dependant.

Two different experiments will compare the basic CF algorithm and the
taxonomy-based one. The first will study users within Spain travelling to other
cities in Spain where they do not have any service stored. The second experiment
will do the same but uses data from cities outside of Spain. For these experiments,
the similarity threshold used in the taxonomy branch is 0, 5.

The charts in Fig. 3 show the number of possible recommendations given by
each branch against the number of users taken into account when obtaining the
most similar users to the one getting the recommendation.

The results show that the number of possible recommendations grows as
the Top-M grows, being the taxonomy-based branch the one providing more
recommendations (Fig. 3). This is specially remarkable in the case of cities within
Spain. The reason is that users in the Top-M of the user-based CF system may
have travelled to the city we are considering, but there may also be many similar

Fig. 3. Number of recommendations shown (user-based vs. taxonomy-based CF)
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users in the Top-M of the taxonomy-based CF system who were born in that
city. When a user wants a recommendation when travelling abroad, it might
be more interesting to provide recommendations using the taxonomy branch
because they will fit better with her usual interests.

Both experiments were performed using averages among most populous cities,
first in Spain, then worldwide. In a broader dataset these results will be amplified,
especially if the cities chosen are less important, which would make it more
difficult to correlate in the UP plane.

5 Related Work

Hybrid approaches using content-based and CF recommendations have been
used to solve the sparsity and cold-start problems. Examples of these hybrid
systems are those presented in [10], [8] and [11], but none of these have been
used to contextualize the recommended products.

In contextualizing recommendations, interesting work is being done assuming
that the preferences of one user may vary over time [1] or that the context is not
a fixed set of attributes [12], as according to Dourish’s interactional view [2].

In [1] and [13], a reduction-based approach is presented. Both works propose
that the contextualization should be carried out on the dataset before any
recommendation is generated, in order to achieve a dimensional reduction of
the original space of products.

Finally, [14] and [15] propose a different solution to contextualization, based
on the use of user feedback to produce content-based recommendations from her
interaction with the system.

6 Conclusions

Recommender systems have proven to be a key element of new web applications.
But the internationalization of any social network brings with it new problems
for these systems. A very serious problem appears when the items treated are
context dependant.

In this paper, and as a result of the work done over the social network
11870.com, a novel approach to contextual recommendations is proposed. In
this case, a hybrid two-branch system is introduced. The first branch utilizes a
user-based CF algorithm; the second uses this same algorithm but does so over
a semantic structure, e.g. a taxonomy.

Finally, a semantic context handler has been designed and implemented,
in order to perform context-aware recommendations. The concepts of
descontextualization and contextualization have been discussed in this paper.

The techniques explained above have been proposed as a novel solution for
the social network 11870.com to tackle the problem of non-correlation among
the tastes of users from disparate geographical areas.
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Abstract. We propose a new boosting algorithm based on a linear pro-

gramming formulation. Our algorithm can take advantage of the sparsity

of the solution of the underlying optimization problem. In preliminary

experiments, our algorithm outperforms a state-of-the-art LP solver and

LPBoost especially when the solution is given by a small set of relevant

hypotheses and support vectors.

1 Introduction

Learning of sparse classifiers has been popular these days in Machine Learning
and related fields. For example, in text classification applications, the number
of features is typically more than millions, but only a small fraction of features
are likely to be relevant. In such cases, sparse classifiers are useful not only for
classification but for feature selection.

A major approach for learning sparse classifiers is to formulate problems as �1
soft margin optimization, which learns a linear classifier enlarging the margin by
regularizing �1 norm of the weight vector [12]. Largemargin theory guarantees that
this approach is robust in classification (see, e.g., [12]). Recently, the �1 soft mar-
gin optimization is also applied in learning with “similarity functions” [6,8,1,14].
Since the �1 soft margin optimization is a linear program, standard optimization
methods such as simplex methods or interior point methods can solve the prob-
lem. However, solving the problem directly might need much computation time
even when the number of features or examples goes beyond ten thousands.

LPBoost, proposed by Demiriz et al., is a popular boosting algorithm designed
to solve the soft margin optimization problem [5]. Although its iteration bound
is not known and a worst case lowerbound is exponentially worse than other
boosting algorithms, it is very fast in in most practical cases (earlier results of
LPBoost for hard margin optimization are appeared in [7]). Given m labeled
instances and n hypotheses, consider the m×n matrix in which each component
is uij = yihj(xi) for i = 1, . . . ,m and j = 1, . . . , n. Note that each row or column
corresponds to an example or a hypothesis, respectively. Instead of solving the
soft margin LP problem directly, LPBoost works repeatedly as follows: For each
iteration t, it finds a “good” hypothesis ht w.r.t. the current distribution dt

� Supported by MEXT Grand-in-Aid for Young Scientists (B) 21700171.
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over instances and construct the next distribution dt+1 by solving the reduced
soft margin LP problem restricted to the hypotheses set {h1, . . . , ht}. The final
hypothesis is given by a linear combination of past chosen hypotheses, whose
coefficients are Lagrange multipliers of the reduced problem. In the view point
of the matrix, it generates columns and solve LPs repeatedly. In fact, LPBoost
can be viewed as a LP solver using the column generation approach (e.g., [11]),
which is a classical technique in Optimization literature.

LPBoost, however, does not seem to fully exploit the sparsity of the underlying
problem. In fact, the �1 soft margin optimization problems have two kinds of
sparsity. First sparsity arises in hypotheses. As explained above, only relevant
hypotheses have nonzero coefficients in the optimal solution. The other sparsity
appears in examples. More precisely, only some relevant examples (often called
“support vectors”) affect the optimal solution and the solution does not change
even if other examples are removed.

In this paper, we propose a new boosting algorithm which take advantage of
the sparsity of both hypotheses and examples. Our algorithm, Sparse LPBoost,
takes a “column and row ” generation approach. Sparse LPBoost generates seem-
ingly relevant columns (hypotheses) and rows (examples) and solves the linear
programs repeatedly. We prove that, given precision parameter ε > 0, Sparse
LPBoost outputs the final combined hypothesis with soft margin larger than
γ∗ − ε, where γ∗ is the optimal soft margin. Further, we propose some heuris-
tics for choosing hypotheses and examples to make the algorithm faster. In our
preliminary experiments, Sparse LPBoost solves �1 soft margin problems faster
than the standard LP solver and LPBoost both in artificial and real data. Es-
pecially, for large datasets with ten thousands hypotheses and examples, Sparse
LPBoost runs more than seven times faster than other algorithms.

There are some related researches. Warmuth et al. proposed Entropy Reg-
ularized LPBoost [16], a variant of LPBoost that approximately solves the
soft margin optimization problem. Entropy Regularized LPBoost provably runs
in O(log(m/ν)/ε2) iterations, while a lowerbound of iterations of LPBoost is
Ω(m) [15].

The algorithms proposed by Mangasarian [10] and Sra [13] add a quadratic
term into the linear objective in the original LP problem and solve the modified
quadratic program by Newton methods and Bregman’s method (see, e.g., [3]),
respectively. Their methods, unlike ours, does not take advantage of the sparsity
of the underlying problem.

Bradley and Mangasarian [2] also proposed an algorithm that decomposes the
underlying linear program into smaller ones, which seems similar to our idea. How-
ever, this algorithm only generates columns (hypotheses) as done in LPBoost.

2 Preliminaries

Let X be the domain of interest. Let S = ((x1, y1), . . . , (xm, ym)) be the given
set of m examples, where each xi is in X and each yi is −1 or +1 (i = 1, . . . ,m).
Let H be the set of n hypotheses, where each hypothesis is a function from X
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to [−1,+1]. For any integer k, let Pk be the set of probability simplex, that is,
Pk = {p ∈ [0, 1]k :

∑k
i=1 pi = 1}. The margin of an example (x, y) w.r.t. a

(normalized) hypothesis weighting α ∈ Pn is defined as yi

∑n
j=1 αjhj(xi). Also,

the margin of the set S of examples w.r.t. w ∈ Pn is defined as the minimum
margin of examples in S. The edge of a hypothesis h ∈ H w.r.t. a distribution
d ∈ Pm is defined as

∑m
i=1 yidih(xi). For convenience, we denote γd(h) as the

edge of a hypothesis h w.r.t. a distribution d.

2.1 Linear Programming

A soft margin optimization problem with �1 regularization is formulated as fol-
lows (see, e.g., [5,16]):

max
ρ,α,ξ

ρ− 1
ν

m∑
i=1

ξi (1)

sub.to

yi

∑
j

αjhj(xi) ≥ ρ− ξi (i = 1, . . . ,m),

α ∈ Pn,

min
γ,d

γ (2)

sub.to∑
i

diyihj(xi) ≤ γ (j = 1, . . . , n),

d ≤ 1
ν
1,d ∈ Pm,

where the primal problem is given as (1) and the dual problem is given as (2),
respectively. Let (ρ∗,α∗, ξ) be an optimizer of the primal problem (1) and let
(γ∗,d∗) be an optimizer of the dual problem (2). Then, by the duality of the
linear program, ρ∗ − 1

ν

∑m
i=1 ξ∗i = γ∗. A notable property of the solution is its

sparsity. By KKT conditions, an optimal solution satisfies the following property.

d∗i

⎛⎝yi

∑
j

α∗
jhj(xi)− ρ∗ + ξ∗i

⎞⎠ = 0 (i = 1, . . . ,m).

d∗i ≥ 0, yi

∑
j

α∗
jhj(xi)− ρ∗ + ξ∗i ≥ 0 (i = 1, . . . ,m).

ξ∗i (1/ν − d∗i ) = 0, ξ∗i ≥ 0, d∗i ≤ 1/ν (i = 1, . . . ,m).

This property implies that (i) If yi

∑
j α

∗
jhj(xi) > ρ∗, then d∗i = 0. (ii) If 0 <

d∗i < 1/ν, then yi

∑
j α

∗
jhj(xi) = ρ∗. (iii) If ξ∗i > 0, then d∗i = 1/ν. Especially, an

example (xi, yi) s.t. d∗i 	= 0 is called a “support vector”. Note that the number of
inseparable examples (for which ξ∗i > 0) is at most ν, since, otherwise,

∑
i d

∗
i > 1.

Further, the primal solution has sparsity as well: (iv) If d∗ ·uj < γ∗, then α∗
j = 0.

We call hypothesis hj relevant if α∗
j > 0. So, we can reconstruct an optimal

solution by using only support vectors and relevant hypotheses.

3 Algorithms

In this section, we describe algorithms for solving the problem (2) in details.
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Algorithm 1. LPBoost(S,ε)
1. Let d1 be the uniform distribution over S.

2. For t = 1, . . . ,
(a) Choose a hypothesis ht whose edge w.r.t. dt is more than γt + ε.
(b) If such a hypothesis doe not exist in H, let T = t− 1 and break.

(c) Solve the soft margin optimization problem (2) w.r.t. the restricted hypothesis

set {h1, . . . , ht}. Let (γt+1, dt+1) be a solution.

3. Output f(x) =
∑T

t=1 αtht(x), where each αt (t = 1, . . . , T ) is a Lagrange dual of

the soft margin optimization problem (2).

3.1 LPBoost

First, we review LPBoost [5]. Given the initial distribution d1 which is uniform
over examples, LPBoost works in iterations. At each iteration t, LPBoost choose
a hypothesis ht with edge larger than γt + ε w.r.t. dt, and add a new constraint
d · ut, where ut,i = yiht(xi) for i = 1, . . . ,m to the current optimization prob-
lem and solve the linear program and get dt+1 and γt+1. We summarize the
description of LPBoost in Figure 1.

For completeness, we show a proof that LPBoost can approximately solve the
optimization problem (2).

Theorem 1 LPBoost outputs a hypothesis whose soft margin is at least γ∗− ε.

Proof. By definition of the algorithm, when LPBoost outputs the final hypothe-
sis, it holds that γT ≥ maxh∈H γdT (h)−ε. Further, since dt is a feasible solution
of the dual problem (2), we have maxh∈H γdT (h) ≥ γ∗. Combining these facts,
we obtain γT ≥ γ∗ − ε.

3.2 Our Algorithm

Now we describe our algorithm Sparse LPBoost. Sparse LPBoost is a modifi-
cation of LPBoost. There are two main differences. Fist difference is that the
support of the distribution does not cover the entire set of examples, but cov-
ers the examples which have low margin with respect to the current hypothesis
weighting. The second difference is that Sparse LPBoostcan choose more than
two hypotheses at each iteration. The details of Sparse LPBoost is shown in
Figure 2.

Then we prove the correctness of Sparse LPBoost.

Theorem 2 Sparse LPBoost outputs a hypothesis whose soft margin is at least
γ∗ − ε.

Proof. Let C = S − ST . Since there is no hypothesis whose edge is more than
γT +ε, γT +ε ≥ maxh∈H γdT (h). Further, since dT ∈ P |ST is a feasible solution of
the problem (2) w.r.t. ST , maxh∈H γdT (h) ≥ γ∗, which implies γT ≥ γ∗−ε. Now,
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Algorithm 2. Sparse LPBoost(S,ε)
1. (initialization) Pick up ν examples arbitrarily and put them into S1. Let f1(x) = 0

and let γ1 = 1.

2. For t = 1, . . . ,
(a) Choose a set S′

t of examples with margin w.r.t. ft less than ρt.

(b) If there exists no such S′
t, then let T = t− 1 and break.

(c) Let St+1 = St ∪ S′
t.

(d) For t′ = 1, . . . ,
i. Choose a set H ′

t′ of hypotheses whose edge is larger than γt + ε. Let

Ht = Ht ∪H ′
t′ .

ii. If there exists no such H ′
t′ , then let ft = ft′ , ρt = ρt′ and break.

iii. Solve soft margin LP problem (2) with respect to St and Ht.Let ft′+1(x) =∑
h∈Ht

αhh(x), where each αh is a Lagrange dual of the problem (2), and

ρt′+1 be a solution of the primal problem (1).

3. Output fT (x) =
∑

h∈HT
αhh(x).

consider the distribution d′
T = (dT , 0, . . . , 0) ∈ P |S|, which puts zero weights

on examples in C. Then, it is clear that (γT ,d′
T ) satisfies the KKT conditions

w.r.t. S.

3.3 Heuristics for Choosing Hypotheses and Examples

So far, we have not specified the way of choosing hypotheses or examples. In this
subsection, we consider some heuristics.

Threshold: Choose a hypothesis with edge larger than γ′
t + ε and an example

with margin less than ρt.
Max/min-one: Choose a hypothesis with maximum edge and an example with

minimum margin.
Max/min-exponential: Let Ĥt′ be the set of hypotheses whose edges with

respect to dt′ are more than γ′
t + ε, and let Ŝt be the set of examples whose

margin is less than ρt. Then, choose the top K hypotheses with highest edges
among Ĥt′ and the top L examples with lowest edges among Ŝt, where K is
min{|Ĥt′ |, 2t′} and L is min{|Ŝt|, 2t}.

Let us consider which strategies we should employ. Suppose that ν = 0.2m and
we use a linear programming solver which takes time is mk, where k is a constant.
Note that the value of ν is a reasonable choice since we allow at most 20% of
examples to be misclassified.

If we take Threshold or Max/min-one approach, the computation time of
Sparse LPBoost needs at least

∑ν
t=1 tk >

∫ ν

t=1 tkdt = νk+1−1
k+1 = Ω(mk+1).

On the other hand, suppose we choose Max/min-exponential approach and
the algorithm terminates when the number of chosen examples is cm (0 < c < 1).
Then, the computation time is at most
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	log(cm)
∑
t=1

(ν + 2t)k =
k∑

s=0

(
k

s

)
νs

	log(cm)
∑
t=1

2t(k−s) ≤
k∑

s=0

(
k

s

)
νs(c′m)k−s = O(mk).

Similar arguments hold for choosing hypotheses as well.
Therefore, we conclude that, among these approaches, Max/min-exponential

approach is a more robust choice. So, from later on, we assume that Sparse LP-
Boost uses Max/min-exponential approach. Note that, the advantage of Sparse
LPBoost is its small constant factor.But, even if the improvement is only by a
constant factor, it might still influence the performance significantly.

4 Experiments

We compare LP, LPBoost and Sparse LPBoost for artificial and real datasets.
Our experiments are performed on a workstation with a 8Gb RAM and Xeon
3.8GHz processors. We implemented our experiments with Matlab and CPLEX
11.0, a state-of-the art LP solver.

Our artificial datasets contain from m = 103 to 106 instances in {−1,+1}n.
We fix a linear threshold function f(x) = x1 +x2 + · · ·+xk + b, where x1, . . . , xk

are the first k dimensions of x and b ∈ R is a bias constant. The function f
assigns a label(−1 or +1) of each instance x with the sign of f(x) ∈ −1,+1.
We set n = 100, k = 10 and b = 5. For each data set, we generate instances
randomly so that positive and negative instances are equally likely. Then we add
0% or 5 % random noise on labels.

For each dataset, we prepare n + 1 weak hypotheses. First n hypotheses cor-
respond to the n th dimensions, that is hj(x) = xj for j = 1, . . . , n. The last
hypothesis corresponds to the constant hypothesis which always answers +1. We
set ν = 1 and ν = 0.2m for noise-free datasets and noisy datasets, respectively.
For LPBoost and Sparse LPBoost, we set ε = 0.01.

We summarize the results for noise-free data and noisy data in Table 1. Sparse
LPBoost tend to run faster than others while approximating the solutions well.
Note that, compared to other algorithms, the result of Sparse LPBoost is more
robust with respect to the choice of ν. In addition, one can observe that, for
both noise-free or noisy datasets, Sparse LPBoost picks up fewer examples than
the total size m. As a result, the number of variables in the underlying prob-
lem is reduced, which makes computation faster. Also, as can be seen, Sparse
LPBoost has fewer non-zero dis when setting ν = 1. On the other hand, Sparse
LPBoost’s computation time tends to increase when ν = 0.2m. This is because
the optimal distribution needs at least ν non-zero components.

Then we show experimental results for some real datasets. As real datasets,
we use Reuters-215781 and RCV1 [9]. For Reuters-21578, we use the modified
Apte(“ModApte”) split which contains 10170 news documents labeled with top-
ics. We create a binary classification problem by choosing a major topic “acq” as
positive and regarding other topics as negative. As hypotheses, we prepare about

1 http://www.daviddlewis.com/resources/testcollections/reuters21578
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Table 1. Summary of results for artificial data with n = 100, ν = 1 and 0.2m. For

LPBoost (LPB) and Sparse LPBoost (SLPB), the numbers of chosen hypotheses or

examples are shown in parentheses. LP, LPBoost and Sparse LPBoost obtained the

same objective values γ.

ν = 0 (noise-free) ν = 0.2m (noisy)

m Alg. time(sec.) #(di > 0) #(wj > 0) time(sec.) #(di > 0) #(wj > 0)

103 LP 0.98 96 96 0.46 217 46

LPB 5.46 83 83(84) 6.95 237 65(66)

SLPB 2.38 26(520) 26(98) 4.80 243(655) 79(82)

104 LP 29.66 101 101 7.01 2035 70

LPB 267.85 67 67(67) 21.51 2012 29(29)

SLPB 6.78 25(5250) 25(98) 65.76 2031(6551) 58(58)

105 LP 132.99 101 101 321.54 20046 92

LPB 1843.1 97 97(99) 71.65 200007 11(11)

SLPB 62.89 22(50515) 21(94) 60.51 20006(64810) 11(11)

106 LP 2139.3 101 101 39923 200031 60

LPB 17435 97 97(97) 1179 2000004 11(11)

SLPB 632.29 22(439991) 22(100) 1281.1 200004(648771) 11(11)

Table 2. Summary of results for real datasets. For LPBoost (LPB) and Sparse LP-

Boost (SLPB), the numbers of chosen hypotheses or examples are shown in parentheses.

Reuters-21578 time(sec.) ρ (×10−3) γ (×10−3) #(di > 0) #(wj > 0)

(m=10,170,n=30,839)

LP 381.18 4.8 0.633 2261 463

LPB 804.39 4.8 0.633 2158 452(528)

SLPB 52.16 4.8 0.633 2262(6578) 458(613)

RCV1 time(sec.) ρ (×10−3) γ (×10−3) #(di > 0) #(wj > 0)

(m=20,242,n=47,237)

LP 2298.1 1.9 0.267 8389 639

LPB 2688.1 1.9 0.261 8333 454(465)

SLPB 235.63 1.9 0.262 8335(16445) 480(518)

30, 839 decision stumps corresponding to words. That is, each decision stumps an-
swers +1 if a given text contains the associated word and answers 0, otherwise.

For RCV1 data, we use the data provided by LIBSVM tools [4]. In the data,
we consider binary classification problem by regarding the labels CCAT and
ECAT as positive and labels GCAT and MCAT as negative. Each hypothesis is
associated with a word and there are 47236 hypotheses in total. The output of
hypothesis is given by the tf-idf weighting.

For both datasets, we add the constant hypothesis −1. We set ε = 10−4 as
the precision parameter of LPBoost and Sparse LPBoost. We specify ν = 0.2m
and ν = 0.4m for Reuters-21578 and RCV1, respectively.

The results are summarized in Table 2. Sparse LPBoost runs several times
faster than other algorithms. Like previous results for artificial datasets, Sparse
LPBoost uses fewer examples (as many as about 0.6m to 0.8m). Further, Sparse
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LPBoost seems to take advantage of the sparsity of relevant hypotheses as well.
In both datasets, Sparse LPBoost chooses only about 600 hypotheses among
more than 30, 000 hypotheses.

5 Conclusion

In this paper, we proposed a decomposition algorithm that approximately solves
�1 soft margin optimization problems. Our algorithm performs faster than the
standard LP solver using CPLEX and LPBoost by exploiting the sparsity of the
underlying solution with respect to hypotheses and examples.

One of our future work is to modify Sparse LPBoost so as to have a theoretical
guarantee of iteration bounds. Also, as a practical viewpoint, better heuristics
for choosing hypotheses and examples should be investigated.
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Abstract. The capacity to apply knowledge in a context different than the one 
in which it was learned has become crucial within the area of autonomous 
agents. This paper specifically addresses the issue of transfer of knowledge ac-
quired through online learning in partially observable environments. We inves-
tigate the discovery of relevant abstract concepts which help the transfer of 
knowledge in the context of an environment characterized by its 2D geographi-
cal configuration. The architecture proposed is tested in a simple grid-world  
environment where two agents duel each other. Results show that an agent's 
performances are improved through learning, including when it is tested on a 
map it has not yet seen. 

Keywords: Concept Discovery, Online Learning, Transfer Learning. 

1   Motivation and Related Work 

Learning and transfer of knowledge is a cross-discipline issue for those interested in 
understanding or simulating intelligent behavior. Knowledge transfer opens up the 
possibility of improving both learning speed and global performance of a system on a 
problem close to a known one. It has been addressed in particular by research in cog-
nitive psychology and neuroscience [7]. In Artificial Intelligence, and with the notable 
exception of Case Base Reasoning (CBR), until recently little effort had been put into 
the transfer of learned knowledge. Indeed, the need for an architecture which inte-
grates learning and transfer capacities has become crucial in recent years with the 
development of new application domains using, or open to the use of, autonomous 
systems, such as video games, military simulations or general public robotics.  

Work in the area of strategy games is one concrete example; it has led to tech-
niques which let agents learn strategies through playing [1, 2]. Yet, learned strategies 
are only relevant to the game context in which they have been learned, that is to say a 
scenario, and more pointedly a specific "game map". Hence, each new scenario re-
quires a new phase of learning since previous experience is not put to use. 

To go beyond these limitations, an important part of recent work tackles the learn-
ing and transfer of knowledge problem by means of the Reinforcement Learning (RL) 
framework. To be able to generalize and to use RL in complex worlds, researchers 

                                                           
* Corresponding author. 
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propose reducing the considered state space. Thus, [3] assumes that states of the mod-
eled Markovian Decision Process (MDP) are of few different types (determined a 
priori). With a similar idea, i.e. to generalize across states, Dzeroski & Driessen [4] 
have proposed the Relational Reinforcement Learning approach. This attractive  
combination of RL and Inductive Logic Programming is based upon the relational 
structure of the problem to abstract from the current goal. In the area of Real-Time 
Strategy games (RTS), [5] represents the structure of the problem as a relational MDP 
to tackle the planning problem on different maps. However, the required full descrip-
tion of the state-action space does not allow the use of  these approaches in open or  
complex environments.  

More recently, [6] addresses the transfer problem in RTS proposing an interesting 
architecture where an agent controls from a central point of view all the agents from 
its side using a combination of CBR and RL. Results obtained with this approach 
indicate its ability to reuse learned knowledge when initial positions and/or number of 
units vary. However,  the  fact  that  the game state description on which decisions are 
made is completely unrelated to the context (including  its  topology)  constitutes  a  
major  obstacle  to  more  ambitious transfer. Thus, a map of higher complexity, or a 
complete change of environment will not impact the state description and lead there-
fore to only one high-level description for two distinct situations. As a result, only one 
action will be chosen where two different actions have to be selected. 

The goal of this paper is to present one aspect of our agent architecture that allows 
concept learning, aiming to improve agent performances in the transfer learning task 
in open and/or complex environments. The discovered abstract concepts help the 
transfer of knowledge learned on a given topology to a different one, yet unseen. 
Relevance of a learned concept is evaluated from the standpoint of the agent’s  per-
formances. 

In the following, we describe the proposed architecture and the preliminary evalua-
tion of it in a simple game environment. Finally, we discuss experimental results and 
current limitations of our approach before concluding with some perspectives. 

2   An Architecture for a Cross-Map Transfer 

We consider a representation using the notion of a situated agent. It lets one change  
from a central, globalized point of view, often used in work for strategy games to an  
agent-centered perspective.  

Definition 1 (Situation).  A situation is the world view as perceived by the agent from 
its sensors at a given moment. 
 

A situation is the basic level of information; data obtained from sensors are expressed 
as a set of attribute-value couples. Our first hypothesis is that the elimination of some 
perceived information (out of sensors’ field of view) offers the possibility for  the 
agent's reasoning to be independent of map-specific (x,y) coordinates and of the envi-
ronment's complexity. However, we lose some possibly relevant state information and 
enter the realm of partially observable environments. Thus, if the environment con-
tains multiple agents, they become unobserved and unpredictable; which means that 
the environment is not stationary anymore. These properties are usually working 
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hypotheses in most learning agent frameworks, as they are necessary to guarantee 
convergence with typical learning algorithms. 

2.1   The Duel Example 

Before presenting in detail our architecture, we introduce an example that will be used 
both to illustrate our following explanations as well as a test bed in the experimental 
section. Consider a grid-world type of environment where each location on the grid is 
characterized by its altitude as well as its (x, y) coordinates. The effective field of 
view of an agent evolving on this map takes into account the obstacles present. As a 
consequence, the field of view of an agent located on a high position is better than the 
one of an agent located downhill. 

The chosen scenario consists of a duel between two agents evolving within the 
above grid-world. Each agent’s goal is to become the last survivor. They have availa-
ble a range weapon and have to hit their competitor twice to win. The probability of 
hitting when shooting depends on the shooter-target distance, as well as the angle of 
incidence of the shooting. Thus,  when  two agents are  located  at  different  altitudes,  
the  one positioned higher will have a hit probability much higher than the lower one. 

 

Fig. 1. A simplified version of available rules for a duel 

2.2   Architecture 

Our architecture is based on a perception-action loop involving several components. 
As  shown  in  Figure 2, an agent  has  a memory  to  save  facts,  learned concepts 
and rules about  the environment (Concepts and Environment rules’ Databases). 

Definition 2 (Concept) Let  pre   Action be a rule. 
A concept is a couple <pre, descr> where descr is the agent's representation of the 
precondition pre, learned from its world view (the situations). 

 

Thus, the learning mechanism (Concept Learning), using both supervised and unsu-
pervised methods, continuously extracts patterns from perceived situations and asso-
ciates them to the premise of the agent's actions/decision rules (red process in Fig 2). 
An inference engine (Action Selection) uses the relations between these different 
elements in order to select the actions that can lead the agent toward its current goal. 
The automatic recognition in the current situation of a prior learned pattern (Identifi-
cation) helps reaching better decisions. Thus, learned concepts are used as an inter-
face between the physical sphere and the representation sphere. 
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Fig. 2. General architecture of a learning agent for cross-map transfer 

2.2.1   Learning Phase 
As shown in the duel's rules example, Figure 1, the agent’s internal state is defined by 
one or more variables. An agent's change of internal state corresponds to a change in 
one of its attributes. A change occurs as a consequence of the agent's last action or of 
another agent's one. Without prior knowledge, the learning or discovery of a new 
concept proceeds in three stages: 

1. Save in the Temporary  Situation  Base (TSB)  all  situations  newly encountered  
when  a  change  in  the  agent's  internal  state  occurs.  Each saved situation is as-
sociated to the precondition part of the last action rule used.  

2. Apply  a  learning  algorithm  to  infer  a  pattern  when  the  number  of  situations 
associated with the same precondition is above a threshold N. 

3. Add the resulting couple < precondition, pattern,> into the Concept Base (CB). 

In our duel example, the Shoot action can only be used when an agent perceives its 
enemy.  After a successful shot has killed its enemy, a shooter-agent's final goal is 
reached. This internal state change triggers the learning algorithm. Thus, the current 
situation is associated with the pre-condition see(x,y). After N duels, the agent discov-
ers that being located, for example, at a high point, improves the chances of seeing the 
enemy and therefore of winning. 

Environments in which agents evolve are, just as the real world, stochastic. There  
is  therefore  a  significant  amount  of  noise  in  the  data from  which  we  wish  to 
extract a relevant situation's pattern. To tackle this, our algorithm (below) firstly re-
moves some noise from data using a majority vote process (line 1 to 9). After this 
step, it then infers a pattern among remaining situations using a probabilistic classifi-
cation tree1 based on the C4.5 algorithm. 

                                                           
1 The  classification  tree  was  selected  after  having  tested  a  number  of  learning  algo-

rithms  including Clustering, Boosting on Multi-layer Perceptron, KNN, Kmoy and Support 
Vector Machines. 
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Algorithm 1. Learning a concept related to the final goal 

Once these two stages have been realized, the new association between a pattern 
and a precondition is added to the Concept Base (CB). Finally, the situations asso-
ciated to the precondition of the action having triggered the learning phase are re-
moved from the Temporary Situation Base (TSB). 

2.2.2   Decision Phase 
The inference engine, prolog, is interfaced with the agent’s learning and action mechan-
isms (in Java). At each time step, the situation perceived by the agent updates the set of 
facts available to the inference engine. Prolog then uses its model of the environment and 
known facts so as to ‘prove’ the desired goal and to select the best action. 

During the identification stage, at line 10, the agent considers virtually all the posi-
tions it can perceive in its field of view. The classification tree computes for each  
 

 

Algorithm 2. Decision-Action loop 
 
 



414 C. Herpson and V. Corruble 

 

situation its probability of relevance  to the concept the agent is looking for (where 1 
means certainty and 0 the opposite). To limit the risk of misclassification, only a vir-
tual situation with a confidence value above a threshold β can be selected. 

3   Experimental Evaluation 

In this section, we purpose an empirical evaluation of the learning and transfer capaci-
ty of our architecture. Towards this aim, we set up three maps with different topolo-
gies, sizes and maximum altitudes. Changes of internal states leading to the storing of 
situations and to the learning of a concept are only related to end-game situations. We 
therefore consider that ammunitions are unlimited. Thus, the impact on the perfor-
mances of learning a single concept can be measured. N, the threshold that triggers 
the learning algorithm is set to 20. The β parameter is set to 0,8. η, θ and ε, the differ-
ent parameters in algorithms 1 and 2 are set to 0,1. Performances are evaluated based 
on 2 criteria: The percentage of victories obtained by each agent and the average 
number of time steps needed to end an episode (i.e. when an agent wins) 

The experiment evaluates the ability of  an  agent to transfer  knowledge to a new 
environment. To obtain a baseline, 1000 duels between two random agents are run for 
the three considered environments. Next, one learning agent runs a series of episodes 
against a random one on the learning environment until it learns one concept. Then, 
the learning step is deactivated and we run a series of 1000 episodes opposing a ran-
dom agent and the trained agent on the 3 environments. In the presentation of all 
results, we refer to the two following types of agents:  

- Random : baseline agent, with no knowledge nor learning mechanism.  
- Intel_1 : agent having discovered/learned a concept related to the end goal.  

3.1   Results 

The tree learned in the first experiment (fig. 3 below) shows  that the agent will favor 
situations with a good field of view, or, if the field of view is considered  average,  
situations  where  average  altitude  around  the agent’s location  is lower than its own. 
Thus the learned concept drives the agent to search and follow the map’s ridge paths.  

 

Fig. 3. Tree automatically generated and associated to the see(x,y) precondition. A value above 
0.75 indicates a favorable situation. Dotted lines indicate sub-trees that were manually pruned 
from the figure for better clarity. 
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Fig. 4. graphic (a) represents the percentage of wins  for  agents random (1),   and Intel_1 (2) 
respectively, all against a random agent - graphic (b)  shows the average duration  of  a  duel, in 
step number,  for  the two types of agents  facing a random agent. In each case, results are given 
after 1000 duels.  

The results obtained on the three environments are presented in figure 4. They 
show that the concept learned is sufficiently relevant to improve performance on the 
training environment. Moreover, the results obtained on  the  two  test  environments  
are  even  better  than those  from  the  training environment. 

4   Discussion 

Though our results provide evidence regarding the validity of the principles behind 
our learning architecture for knowledge transfer in partially observable environments, 
significant work remains ahead of us. First of all, the topology plays a large part in 
determining the ability of the agents. Thus, an in-depth study in more various and 
more complex environments has to be done to prove our architecture's robustness 
when scaling up. Next, on this simplified environment, the threshold N necessary to 
be reached by the agent to learn a concept was manually set to 20 episodes. If, com-
pared to the length of the training phase in RL approach, our architecture may offer an 
interesting alternative, significant improvement can be made. A learning grounded on 
an  incremental approach rather than on a discontinuous one could  allow  an  agent  
to adapt  more  quickly to new environments and  new  associated concepts.  

5   Conclusion and Perspectives 

We have proposed a new learning agent architecture based on the discovery of rele-
vant abstract concepts for cross-map transfer without requiring a full description of 
the state-action space. Initial results are encouraging. They show that our architecture 
does lead to a relevant knowledge transfer in stochastic environments regarding topo-
logical information, which proves efficient when the environment changes. Besides 
some  necessary improvements  discussed  in  section  4,  one  short-term  perspective  
is  to  evaluate  the efficiency of our  learning  architecture  facing  the Reinforcement 

(a) (b) 
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Learning  approach. This  experiment  will  allow us  to  compare  both  adaptability  
and  efficiency  of  our approach to the RL-based ones in the transfer context. With  a  
long-term  view,  an  important  perspective  for  this  work  is  to  extend  the archi-
tecture so that the agent no longer needs the environment's rules and is able to discov-
er actions that it is possible to achieve. Thus, our architecture will allow an agent to 
be totally autonomous in a new environment, discovering both available actions and 
related concepts. 
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Abstract. We analyze the dynamics of problem-solving in a framework

which captures two key features of that activity. The first feature is that

problem-solving is a social game where a number of problem-solvers in-

teract, rely on other agents to tackle parts of a problem, and regularly

communicate the outcomes of their investigations. The second feature is

that problem-solving requires a careful control over the set of hypothe-

ses that might be needed at various stages of the investigation for the

problem to be solved; more particularly, that any incorrect hypothesis

be eventually refuted in the face of some evidence: all agents can expect

such evidence to be brought to their knowledge whenever it holds. Our

presentation uses a very general form of logic programs, viewed as sets of

rules that can be activated and fire, depending on what a problem-solver

is willing to explore, what a problem-solver is willing to hypothesize, and

what a problem-solver knows about the problem to be solved in the form

of data or background knowledge.

Our framework supports two fundamental aspects of problem-solving.

The first aspect is that no matter how the work is being distributed

amongst agents, exactly the same knowledge is guaranteed to be discov-

ered eventually. The second aspect is that any group of agents (with at

one end, one agent being in charge of all rules and at another end, one

agent being in charge of one and only one rule) might need to sometimes

put forward some hypotheses to allow for the discovery of a particular

piece of knowledge in finite time.

1 Introduction

The last century has seen the advent of a number of frameworks that place ra-
tionality at the heart of the process of scientific discovery; still none of those
frameworks has endowed epistemology with a definitive mathematical founda-
tion. The seminal research of Herbert Simon on the logical theorist and Mc-
Carthy’s research on commonsense reasoning are two prominent examples of
general attempts at interfacing the thinking of rational agents and the dynam-
ics of scientific discovery, before more specific approaches, tackling more specific
problems, have appeared. Departing more or less from Boole’s framework, a
plethora of logics, mainly developed in the AI community, have grounded vari-
ous rational approaches to problem solving; some of them have been validated

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 417–424, 2009.
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by the implementation of tools, successfully applied to the resolution of a broad
class of problems. Formal Learning Theory, PAC learning and Query learning,
developed around the prominent work of Gold [4], Valiant [8] and Angluin [2],
offer theoretical concepts, rooted in recursion theory, statistics and complexity
theory, to describe the process of data generalization. Induction has been studied
from different angles, in particular by Pierce and Suppes, before the Inductive
Logic Programming community suggested a more practical approach. Numerous
investigations on automatic or semi-automatic scientific discovery have taken
place [5,7,3,1]. Finally, let us mention the more recent work on the relationships
between scientific discovery and game theory; but these pointers do not by far
exhaust the whole body of work on the relationship between rationality and
scientific discovery.

Our approach is based on an extension of Parametric logic [6], a new frame-
work that unifies logic and formal learning theory, developed along three dimen-
sions, two of which are illustrated in this paper.

– The first dimension is formal. It equates logical discovery with theorem prov-
ing, in a logical setting where the work of scientists boils down to inferring
a set of theorems. We consider two binary categories of agents. The first
category opposes independent agents, who work alone, to social agents, who
share the work. The second category opposes theoretical agents, who have
no time nor space restrictions on the inferences they can perform, including
the ability to perform transfinite inferences, to empirical agents, whose in-
ferences must be performed in finite (but unbounded) time with finite (but
unbounded) memory.

– The second dimension is cognitive, and applies to the way theorems can
be derived, based on two key notions: postulates and hypotheses. Postulates
are what agents use when they organize their work; they represent state-
ments whose validity will be assessed “later.” Postulates allow for particular
scheduling or “outsourcing” of the work. Hypotheses are what agents assume
in order to seed or activate a proof. Hypotheses can turn out to be confirmed
or refuted, they can end up being plausible or paradoxical.
The categorization of agents is based on how they deal with postulates and
hypotheses. Theoretical agents do not need hypotheses whereas empirical
agents might. Independent agents might not need postulates whereas social
agents do.

2 The Logical Framework

2.1 An Illustrative Example

Imagine the following game. Countably many copies of every card in a deck of
52 cards are available to a game master. The game master chooses a particular
ω-sequence of cards. For instance, she might choose the sequence consisting of
nothing but the ace of spades. Or she might choose the sequence where the queen
of hearts alternates with the four of spades, starting with the latter. A number of
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players, who do not know which sequence has been chosen by the game master,
can make requests and ask her to reveal the nth card in the sequence, for some
natural number n. The players aim at eventually discovering which sequence of
cards has been chosen by the game master, or to discover some of its properties.

The game illustrates the process of scientific discovery, with the game master
playing the role of Nature, and the players the role of the scientists. A feature of
the game is that unless the game master has explicitly ruled out a large number
of possible sequences, the players usually cannot, at any point in time, know
whether their guesses are correct: they might at best be able to converge in
the limit to correct guesses. We have not precisely defined what a “guess” is.
There has to be a language where some properties of a sequence of cards can be
described, and the expressive power of the language is crucial in circumscribing
what the players can or cannot achieve. Let us refer to such a description as a
theory, in analogy to the work of scientists whose aim is to discover theories that
correctly describe or predict some aspects of the field of study. In this paper, we
will let logic programs play the role of theories.

2.2 Logical Background

N denotes the set of natural numbers and Ord the class of ordinals. We consider
a finite vocabulary V consisting of a constant 0, a unary function symbol s, the
observational predicate symbols, namely, the unary predicate symbols

hearts spades diamonds clubs ace two . . . ten jack queen king

and a number of other predicate symbols. For all nonzero n ∈ N, we denote by n
the term obtained from 0 by n successive applications of s; n will refer to the nth
card. We denote by Prd(V) the set of predicate symbols in V. Given n ∈ N, we
denote by Prd(V, n) the set of members of Prd(V) of arity n. We fix a countably
infinite set of (first-order) variables and a repetition-free enumeration (vi)i∈N of
this set. We need a notation for the set of all possible sequences of cards.

Definition 1. We call possible game any set T of closed atoms such that:

– for all n ∈ N, T contains one and only one member of hearts(n), spades(n),
diamonds(n), clubs(n);

– for all n ∈ N, T contains one and only one member of ace(n), two(n), . . . ,
ten(n), jack(n), queen(n), king(n);

– T contains no other atom.

We consider a notion of logical consequence that is best expressed on the basis
of a forcing relation �, based on both principles that follow.

– The intended interpretations are Herbrand structures : every individual has
a unique name (a numeral); this is because intended interpretations are ω-
sequences of cards—n being the name of the nth card in the sequence.
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– Disjunction and existential quantification are constructive: an agent will de-
rive a disjunction iff she has previously derived one of the disjuncts, and she
will derive an existential sentence iff she has previously derived one of the
closed instances of the sentence’s matrix.

We denote by Lωω(V) the set set sentences, that is, closed first-order formulas
over V. Given two sets S and T of sentences, we write S � T iff S forces all
members of T .

2.3 Logic Programs and Occurrence Markers

A formal logic program provides, for every n ∈ N and ℘ ∈ Prd(V, n), two rules:
one whose head is ℘(v1, . . . , vn), and one whose head is ¬℘(v1, . . . , vn). This is at
no loss of generality since the left hand side of the rules can contain equality and
the intended interpretations are Herbrand. So to define a formal logic program,
we only need the left hand side of both rules associated with a predicate symbol
and its negation. It is convenient, and fully general as well, to assume that all
variables that occur free on the left hand side of a rule also occur on the right
hand side of the rule.

Definition 2. A logic program (over V) is defined as a family of pairs of formu-
las over V indexed by Prd(V), say ((ϕ+

℘ , ϕ−
℘ ))℘∈Prd(V), such that for all n ∈ N

and ℘ ∈ Prd(V, n), fv(ϕ+
℘ ) ∪ fv(ϕ−

℘ ) is included in { v1, . . . , vn }.

An important particular kind of logic program is the folllowing.

Definition 3. Let a logic program P = ((ϕ+
℘ , ϕ−

℘ ))℘∈Prd(V) be given. We say
that P is symmetric iff for all ℘ ∈ Prd(V), ϕ−

℘ = ∼ϕ+
℘ .

To distinguish between agents, we need the key notion of occurrence marker,
which intuitively is a function that selects some occurrences of literals in some
formulas. Let ψ be a nullary predicate symbol or the negation of a nullary pred-
icate symbol. An agent could select an occurrence o of ψ in a formula ϕ because
she wants to (provisionally) assume that ψ is either true or false, at least in the
particular context of ψ occurring in ϕ at occurrence o. We will see that social
agents will make use of the opportunity of assuming that ψ is false, whereas
empirical agents will make use of the opportunity of assuming that ψ is true.
Actually, ψ does not have to be nullary for these ideas to be developed (we will
need more generality anyway), so the definitions that follow deal with arbitrary
literals, not only literals built from a nullary predicate symbol. The underlying
idea is the same, though it was more easily explained under the assumption that
ψ is nullary.

We want to be able to select occurrences of literals in the left hand sides of
the rules of a logic program. This justifies the definition that follows.

Definition 4. Let a logic program P = ((ϕ+
℘ , ϕ−

℘ ))℘∈Prd(V) be given. An occur-
rence marker for P is a sequence of the form ((O+

℘ , O−
℘ ))℘∈Prd(V) where for all

members ℘ of Prd(V), O+
℘ and O−

℘ are sets of occurrences of literals in ϕ+
℘ and

ϕ−
℘ , respectively.
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What we need is to be able to replace some occurrences of literals in some
formulas by some other formulas. Given a formula ϕ and a partial function ρ
from the set of occurrences of literals in ϕ to Lωω(V), we denote by ϕ[ρ] the
result of applying ρ to ϕ. For instance, if ρ is the function that maps the first
occurrence of p in ϕ = p ∧ (q ∨ p) to r ∧ s, then ϕ[ρ] = (r ∧ s) ∧ (q ∨ p).

3 Independent and Social Agents

Let a logic program P and an occurrence marker Ω for P be given. Suppose that
V contains n predicate symbols for some nonzero n ∈ N, so there are 2n rules
in P , n positive rules and n negative rules, say R0, . . .R2n−1. Imagine that for
all m < 2n, Rm is ‘under the responsability’ of some agent Am (a single agent
might be responsible for many rules in P , possibly all of them). Let m < 2n be
given. Some occurrences of literals in Rm might be marked by Ω. Intuitively,
these are the occurrences of literals that Am ‘does not bother to’ or ‘is not
able to’ directly deal with: a marked occurrence of literal in Rm is assumed by
Am to be false unless Am is told otherwise (expectedly by another agent, but
possibly by himself. . . ), for instance because those literals are not under Am’s
responsibility—they are instances of rules whose right hand side are under the
responsibility of other agents. The definitions that follow formalize these ideas.

Definition 5. Let a formula ϕ, a set O of occurrences of literals in ϕ, and a
set E of literals be given. Let ρ be the function from O into Lωω(V) such that
for all o ∈ O, n ∈ N, ℘ ∈ Prd(V, n) and terms t1, . . . , tn,1

ρ(o) =

{∨
{
∧

1≤i≤n ti = t′i | ℘(t′1, . . . , t
′
n) ∈ E } if ℘(t1, . . . , tn) ∈ o,∨

{
∧

1≤i≤n ti = t′i | ¬℘(t′1, . . . , t
′
n) ∈ E } if ¬℘(t1, . . . , tn) ∈ o.

We let (O
Eϕ denote ϕ[ρ].

Definition 6. Let a logic program P = ((ϕ+
℘ , ϕ−

℘ ))℘∈Prd(V), a possible game
T , and an occurrence marker Ω = ((O+

℘ , O−
℘ ))℘∈Prd(V) for P be given. We

inductively define a family ([P , T, Ω ]α)α∈Ord of sets of closed literals as follows.
For all ordinals α, [P , T, Ω ]α is the ⊆-minimal set of literals that contains T
and such that for all n ∈ N, ℘ ∈ Prd(V, n) and closed terms t1, . . . , tn,

– ℘(t1, . . . , tn) ∈ [P , T, Ω ]α iff [P , T, Ω ]α � �O+
℘⋃
β<α[P, T, Ω ]β

ϕ+
℘ [t1/v1, . . . , tn/vn];

– ¬℘(t1, . . . , tn) ∈ [P , T, Ω ]α iff [P , T, Ω ]α ��O−
℘⋃
β<α[ P, T, Ω ]β

ϕ−
℘ [t1/v1, . . . , tn/vn].

We set [P , T, Ω ] =
⋃

α∈Ord[P , T, Ω ]α.

The independent agent does everything by herself; she does not rely on anyone.
If we assume that she works ‘nonstop’ then her behavior is captured by the
empty occurrence marker.
1 In case n = 0, the replacing expression is

∨{∧
∅
}

if ℘ ∈ E, and
∨

∅ if ℘ /∈ E.

Note that
∨{∧

∅
}

is logically equivalent to
∧

∅.
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Definition 7. Let a logic program P = ((ϕ+
℘ , ϕ−

℘ ))℘∈Prd(V) and a possible game
T be given. Let Ω = ((O+

℘ , O−
℘ ))℘∈Prd(V) be the occurrence marker for P such

that for all ℘ ∈ Prd(V), O+
℘ and O−

℘ are empty. We write [P , T ] for [P , T, Ω ].

The next result shows that social agents, irrespective of how their responsibil-
ity has been defined, discover the same information, no less, not more, as the
independent agent.

Proposition 1. For all logic programs P, possible games T and occurrence
markers Ω for P, [P , T, Ω ] = [P , T ].

4 Theoretical and Empirical Agents

In the previous section, we have allowed agents to interact transfinitely many
times: in [P , T, Ω ]α, we allow α to be an infinite ordinal. In this section, we
tackle the following issue: is it possible to derive all derivable information in
finite time, irrespective of how social agents share their work, or of how single
agents organize their work? Obviously, this requires a way of ‘working’ different
to what the concepts that have been defined so far accept. In this section, we
will allow agents to make hypotheses. If an agent can assume that some literals in
the bodies of some rules are true, she might be able to speed up the derivations
she can perform. Such hypotheses should abide stringent conditions. We suggest
that a hypothesis should eventually either be confirmed, that is, proved correct,
or refuted, that is, proved wrong. Let us first precisely define what ‘making a
hypothesis’ means. A pleasant feature of this notion is that it is again based on
the notion of occurrence marker. This time, we use occurrence markers to select
some occurrences of literals on the left hand side of some rules to make them
the targets of some hypotheses.

Definition 8. Let a formula ϕ, a set O of occurrences of literals in ϕ, and a
set E of literals be given. Let ρ be the function from O into the set of formulas
such that for all o ∈ O, n ∈ N, ℘ ∈ Prd(V, n) and terms t1, . . . , tn, ρ(o) is equal
to

∨
{℘(t1, . . . , tn),

∧n
i=1 ti = t′i | ℘(t′1, . . . , t′n) ∈ E } if ℘(t1, . . . , tn) ∈ o, and to∨

{¬℘(t1, . . . , tn),
∧n

i=1 ti = t′i | ¬℘(t′1, . . . , t
′
n) ∈ E } if ¬℘(t1, . . . , tn) ∈ o. We

let �O
Eϕ denote ϕ[ρ].

An agent willing to assume that the literals in E are true provided that they
occur on the left hand side of the rules of a logic program P , as selected by the
occurrence marker Ω for P , essentially decides to work on the basis of the logic
program P +Ω E introduced in the definition that follows.

Definition 9. Let a logic program P and an occurrence marker Ω for P be
given. Write P = ((ϕ+

℘ , ϕ−
℘ ))℘∈Prd(V) and Ω = ((O+

℘ , O−
℘ ))℘∈Prd(V). Given a

set E of literals, the sequence ((�O+
℘

E ϕ+
℘ , �O−

℘

E ϕ−
℘ ))℘∈Prd(V) is denoted P +Ω E.

Our aim is to show that making hypotheses can pay off.
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Definition 10. A logic program P = ((ϕ+
℘ , ϕ−

℘ ))℘∈Prd(V) is acceptable iff the
following holds. Let V∗ be V without the observational predicate symbols.

– For all possible games T , [P , T ] is a complete set of literals.
– The restriction of P to V∗ is symmetric.
– For all ℘ ∈ Prd(V),

• if ℘ is observational then both ϕ+
℘ and ϕ−

℘ are equal to
∨

∅,
• either ℘ is nullary or no quantifier occurs in ϕ+

℘ , and
• all quantified formulas that occur in ϕ+

℘ have one quantifier only.

Here is an example of part of an acceptable logic program.

∀v1 ((hearts(v1) ∨ diamonds(v1)) → red(v1))

∀v1 ((spades(v1) ∨ clubs(v1)) → black(v1))

∀v0 (red(v0) ↔ black(s(v0))) → alternatedColors

(∀v0 red(v0) ∨ ∃v0 (queen(v0) ∧ clubs(v0))) → allRedsOrAQofC

The proposition that follows shows that it is possible to enrich V into a vocabu-
lary V′, transform P into a logic program P ′ over V′, and make some assumptions
such that all possible games T , all members of [P , T ] can be derived after a
finite number of steps. Moreover, P ′ is such that it is safe to make any set of
assumptions; indeed, any set of assumptions that is inconsistent with P ′ and a
possible game will proved inconsistent after finitely many inferences.

Proposition 2. Let V∗ be V without the observational predicate symbols. For
all acceptable logic programs P, there exists a finite set E of nullary predicate
symbols that do not belong to V and there exists a logic program P ′ over V ∪ E
whose restriction to V∗ ∪ E is symmetric such that for all possible games T ,
there exists an occurrence marker Ω for P ′ with the following properties.

– [P , T ] and the restrictions of [P ′, T ] and [P ′ +Ω E, T ] to V are equal;
– for all occurrence markers Ω′ for P ′, [P ′ +Ω E, T ] =

⋃
n∈N

[P ′ +Ω E, T, Ω′ ]n;
– for all possible games T and for all occurrence markers Ω′ and Ω′′ for P ′,

if [P ′ +Ω′′ E, T ] 	= [P ′, T ] then
⋃

n∈N
[P ′ +Ω′′ E, T, Ω′ ]n is inconsistent.

The transformation of P to P ′ amounts to replacing some complex formulas in
the bodies of some rules of P by some new nullary predicate symbols, themselves
defined thanks to a new pair of rules—a form of predicate invention—that can
play the role of hypotheses and enjoy a refutation property. With the previous
example of acceptable logic program, E could consist of two nullary predicate
symbols, say p and q, and P ′ could be defined as

∀v1 ((hearts(v1) ∨ diamonds(v1)) → red(v1))

∀v1 ((spades(v1) ∨ clubs(v1)) → black(v1))

∀v0 (red(v0) ↔ black(s(v0))) → p

p → alternatedColors

∀v0 red(v0) → q

(q ∨ ∃v0 (queen(v0) ∧ clubs(v0))) → allRedsOrAQofC
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An agent would then have four options, depending on whether she would assume
p or q in the bodies of the 4th and 6th rules, respectively. For any possible game
T , one of these options would be appropriate and allow the agent to discover
whether T is a sequence of cards where black and red alternate, or whether T
is a sequence consisting of nothing but red cards, unless it contains a queen of
clubs. Any wrong set of hypotheses would be guaranteed to be eventually refuted
in the limit on the basis of a finite subset of T .

5 Conclusion

We have presented a framework where fundamental questions about the nature
of scientific discovery can be formulated and studied. The basic working hypoth-
esis is that a purely logical approach to scientific discovery and problem solving
is possible, in a way that can shed light on the nature of those activities. We
believe that our approach can address a whole range of questions related to the
nature of scientific discovery or problem solving, always within the boundaries
of a pure logical setting. For instance, Angluin proposes a binary categoriza-
tion of agents, with learners and teachers, and she proves robustness results
about their interaction; how does this categorization translate into our setting?
Starting from a fixed language, we have to a certain extent accounted for pred-
icate invention in the last proposition, allowing agents to make a rational use
of hypotheses expressed in an extension of the original language, but how does
predicate invention relate to postulates? Surely, logic is not an iron collar, but
it can potentially strive far beyond the territories where it has been confined to.
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Abstract. This paper proposes an approach to automating Gene Ontol-

ogy (GO) annotation in the framework of hierarchical classification that

uses known, already annotated functions of the orthologs of a given gene.

The proposed approach exploits such known functions as constraints and

dynamically builds classifiers based on the training data available under

the constraints. In addition, two unsupervised approaches are applied to

complement the classification framework. The validity and effectiveness

of the proposed approach are empirically demonstrated.

Keywords: Gene ontology, String matching, Information retrieval.

1 Introduction

Since the completion of the Human Genome Project, a large number of studies
have been conducted to identify the roles of individual genes, which would help
us understand critical mechanisms of human bodies, such as aging and disorders.
The active research in the domain has been producing numerous publications.
Although they are rich intellectual resources, it is extremely labor-intensive to
collect all the information relevant to a given user information need, such as
“a list of functions of gene X” or “a list of genes having function Y ”, since
such information can be only accessed by extensive reading. To remedy the
problem, numbers of organizations have been working to annotate each gene
of model organisms with controlled vocabularies, called Gene Ontology (GO)
terms, based on the contents of published scientific articles. GO is defined as
a directed acyclic graph (DAG), and organized under three top level nodes:
molecular function (MF), cellular component (CC), and biological process (BP).
Currently, there are nearly 30,000 GO terms in total.

The effort of GO annotation has enabled uniform access to different model
organism databases, including FlyBase, Mouse Genome Database (MGD), and
Saccharomyces Genome Database, by the common vocabularies. However, the
annotation requires trained human experts with extensive domain knowledge.
With limited human resources and the ever-growing literature, it was reported
that it would never be completed at the current rate of production [1].

Motivated by the background, this study proposes an approach to automatic
GO annotation, which exploits the structure of GO and applies hierarchical

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 425–432, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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classification. In addition, we take advantage of orthologous genes and use their
known gene functions as constraints to enable efficient learning. Moreover, we
apply string matching-based and information retrieval model-based approaches
to deal with the case where sufficient training data are not available.

2 Related Work

Due to the large number of genes, gene functions, and scientific articles, manual
GO annotation is inevitably labor-intensive. In addition, because of the highly
specialized contents, it requires skilled professionals with expertise in the domain.
To alleviate the burden, TREC 2004 Genomics Track [2] and BioCreative [3]
targeted automatic GO domain/term annotation.

The Genomics Track attempted to automate the process of assigning the first
level of GO (i.e., MF, CC, BP), called “GO domains”. The participants of the
workshop were given a mouse gene and an article in which the gene appears
and were expected to annotate zero to three GO domains with the gene based
on the contents of the article. For this task, Seki and Mostafa [4] developed
an approach featuring flexible gene mention extraction techniques based on a
synonym dictionary and approximate name match. They used gene-centered
representation by extracting fragments of an article mentioning the target gene
and applied k nearest neighbor (kNN) classifiers with supervised term weighting.

In contrast to the Genomics Track only targeting GO domains, BioCreative
aimed at assigning specific GO terms to human genes. Among others, Ray and
Craven [5] looked at the occurrences of GO terms and their related terms to
assign GO terms. Stoica and Hearst [6] took advantage of orthologs of a given
gene and considered the GO terms already associated with them as candidates.
Orthologs are genes in different species rooted from the same gene of their com-
mon ancestor and often have the same functions. Stoica and Hearst associated
a given human gene with its mouse ortholog, and if the majority of terms con-
sisting of each GO term assigned to the ortholog appeared in a given article,
they assigned the GO term to the human gene. In addition, they used GO term
co-annotation to prevent false positives. Their idea was based on the observa-
tion that there were cases where some GO terms were not usually co-annotated
together to the same gene because annotating them together was illogical. For
instance, “transcription (GO:0006350)” and “extracellular (GO:0005576)” are
not likely to be co-annotated as transcription cannot happen outside of a cell.

Comparing the approaches taken at the Genomics Track and BioCreative,
the participants for the former reported the effectiveness of supervised classifi-
cation techniques. On the other hand, those for the latter mainly adopted string
matching-based approaches. Such different strategies attributed to the fact that
the former considers only three categories (i.e., GO domains), whereas the latter
takes account of nearly 30,000 GO terms; dealing with less and general classes
is more suitable for text categorization in terms of available training data and
overfitting.

This study takes a classification approach to GO annotation by leveraging a
limited amount of training data, where the GO structure and orthologous genes
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are used for guiding efficient classification. In addition, we complementarily use
other unsupervised approaches when there is only insufficient training data so
as to boost the coverage of GO annotation.

3 Proposed Approach

3.1 Overview

Our approach assigns appropriate GO terms for a given pair of gene g and an
article d based on a set of text fragments mentioning g extracted from d. If
there are multiple functions of g reported in d, we assign multiple GO terms
corresponding to them. Roughly, our approach consists of the following steps:
1) Assign GO domains, 2) Obtain GO terms already assigned to the ortholog
of the given gene g, 3) Assign GO terms by hierarchical classification, 4) Assign
GO terms based on unsupervised approaches. Each step is described below.

3.2 Assigning GO Domains

For GO domain annotation, we follow the approach proposed by Seki and Mostafa
[4] who have reported the best performance in the literature. Simply put, for a
given pair of gene g and article d, they first extract paragraphs mentioning g.
Then, from the set of extracted paragraphs, a term vector is constructed to rep-
resent the input pair 〈d, g〉. Based on the representation, they assign GO domains
by a variant of kNN.

3.3 Obtaining GO Terms Annotated with Orthologs

After assigning GO domains, we identify promising GO term candidates in order
to enable both effective and efficient GO term annotation. This study adapts
the approach by Stoica and Hearst [6] using orthologs; That is, we consider
only GO terms already assigned to the ortholog g′ of a given gene g as GO
term candidates. By this constraint, we can drastically reduce the number of
GO terms to be considered from around 30,000 to only dozens at most. For
instance, a mouse gene Sox21 has an ortholog in human genome, called SOX21,
and the human gene has been already annotated with GO terms, including “RNA
polymerase II transcription factor activity (GO:0003702)” and “establishment
or maintenance of chromatin architecture (GO:0006325)”, where the numbers
in the parentheses are corresponding GO codes. Because these two genes are
orthologous and are likely to have the same functions, we can expect higher
precision by focusing only on these GO terms. Of course, it is also possible that
true GO terms are not found in these GO term candidates. We will empirically
investigate how often such cases occur in Section 4.2.

For the sources of the information regarding orthologs and their known gene
functions (GO terms), this study uses two existing databases, MGD and Gene
Ontology Annotation (GOA).
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3.4 GO Term Annotation by Dynamic Hierarchical Classification

Using the GO term candidates obtained through the ortholog of the given gene,
we then assign specific GO terms by taking advantage of the structure of GO.
For the above-mentioned example of Sox21, we consider only the GO terms
already annotated with its ortholog as possible classes and train classifiers for
them. However, as the number of the training instances with the classes (i.e., the
GO terms) is often limited as discussed in Section 2, we enhance the training
data set based on the GO structure. That is, for the candidate GO terms, we
first identify their least common ancestor (LCS) and then train classifiers for
the GO terms immediately under the LCS, where we consider only GO terms
which have any candidates as descendants. For training data, we use not only
the instances having the exact GO terms immediately under the LCS but also
those having more specific GO terms under them. This way, one can use more
training data and diminish the influence of the overfitting problem. Although
this approach is similar to the hierarchical classification approach by McCallum
et al. [7], a difference is that this study does not take into account all the classes
in a given structure but only the limited number of the GO terms associated
with a given gene through its ortholog. Also, training instances are dynamically
harvested at each step of classification based on the GO term candidates, so as
to learn classifiers on the fly.

A more precise algorithm of our dynamic hierarchical classification for GO
term annotation is presented in Fig. 1, where the input is a test instance b, a
set of training instances T , a set of GO term candidates C, and a set of GO
domains assigned as described in Section 3.2; and the output is a set of GO
terms F with which b is annotated. For each GO domain s, we identify GO
term candidates Cs in the GO domain. If the number of the candidates |Cs|
equals 1, we unconditionally add the sole GO term candidate to the output F
considering the fact that the GO domain s is already assigned and the GO term
candidate is the only possible one to assign in the domain s. If |Cs| is greater
than 1, the following steps are carried out. First, we identify a set of GO terms
C′

s immediately under the LCS and then, for each GO term in C′
s, we collect all

the instances having GO terms under it. If the number of training instances for
every GO term in C′

s is greater than a predefined threshold τ , we train classifier
F and set per-class thresholds Θ = θ1, . . . , θ|C′

s| to maximize F1 score for each
class c′i ∈ C′

s using the training instances. If classifier’s output pi for c′i exceeds
the threshold θi, c′i is added to F in the case where c′i is one of the GO term
candidates, or we recursively apply the same procedure using c′i as if it were a
GO domain. If the number of training instances is below the threshold τ for any
c′i, we resort to the unsupervised approaches to avoid the overfitting problem as
described next.

3.5 Unsupervised Approaches to GO Term Annotation

In order to deal with the classes with insufficient training data (less than thresh-
old τ), we make use of a string matching-based approach and an approach using
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1 Input: test instance b, set of training instances T , set of GO term candidates

C, set of predicted GO domains D;

2 Output: set of predicted GO terms F for b;
3 Variables: set of GO terms/domains S, prediction pi ∈ R for a GO term c′i,

threshold τ for training data size;

4 S = D
5 while S is not empty do
6 Take any GO term/domain out from S and set it to s
7 Cs = {c | c ∈ C under s}
8 if |Cs| = 1 then add Cs to F
9 else if |Cs| > 1 then

10 C′
s = {c′ |GO terms immediately below s}

11 for each c′ ∈ C′
s do

12 Tc′ = {t | t ∈ T assigned any GO term under c′}
13 if ∀c′, |T ′

c| > τ then
14 Build a classifier F �→ (p1, . . . , p|C′

s|)

15 Determine per-class thresholds Θ = θ1, . . . , θ|C′
s|

16 for each c′i ∈ C′
s do

17 if pi (predicted by F for b) > θi then
18 if c′i ∈ Cs then add c′i to F
19 else add c′i to S

Fig. 1. Dynamic hierarchical GO term annotation algorithm

an information retrieval model. These approaches were adapted from the related
work in BioCreative and others.

String matching-based approach. Since GO terms are concise descriptions of
gene functions in natural language, if a text contains a certain GO term, the
text may be describing the corresponding gene function. This is not necessarily
the case for general GO terms located at the higher level of the GO tree, such as
“behaviour (GO:0007610)”, but is likely to apply to more specific ones, such as
“regulation of transcription from RNA polymerase II promoter (GO:0006357)”.
In this study, we use the edit distance to deal with some writing variations and
differences. The edit distance basically counts the number of edit operations (i.e.,
insert, delete, and substitution) to convert a string (i.e., GO term) to another
string (i.e., actual expression found in text). Also, to consider the different im-
portance of words, we define different penalty costs for different words based on
document frequencies (DF). We define the DF of a word w as the logarithm of
the total number of GO terms containing w.

Information retrieval model-based approach. Another unsupervised approach
has been proposed by Ruch [8]. We take a similar approach as him and assign
GO terms based on a vector space model. Simply put, this approach measures
the cosine similarity between a GO term and text and assigns the GO term
if the similarity between them exceeds a predefined threshold. Essentially, this
approach is similar to the string matching-based approach above except that
this approach is less restrictive, not considering word orders.
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4 Evaluation

4.1 Experimental Settings

For evaluation, we use the data set provided for the TREC 2004 Genomics Track
supplemented by GO term information. The data set consists of 849 training
instances and 604 test instances, where each instance is a triplet of an article d
represented by PubMed ID, a gene g mentioned in d, and a GO term f which
is reported in d as a function of g. This data set is a subset of MGD, and thus,
only dealing with mouse genes.

As an evaluation metric, we use F1 score for direct comparison with the pre-
vious work, i.e., Genomics Track and BioCreative which used the same metric.
F1 is defined as a harmonic mean of recall (R) and precision (P ). P is defined as
the number of correct GO terms assigned divided by the number of GO terms
assigned, and R is the number of correct GO terms assigned divided by the
number of GO terms in the test data.

The proposed GO term annotation framework is general and by design does
not depend on a particular classifier. Although the following experiments used
kNN as it has been shown effective in the related work [4], it can be easily
replaced with other classifiers.

4.2 Validity of the Use of Orthologs for GO Annotation

As orthologs, we experimentally chose human and rat genes to annotate mouse
genes. Our first experiment examined the validity of the use of those orthologs
for GO term annotation. To be precise, we simply annotated input mouse genes
with all the GO term candidates obtained from their orthologs without classifica-
tion. This experiment reveals the coverage of the GO term candidates obtained
through different species.

When comparing two species, human and rat, the latter works better for all
of recall (0.800), precision (0.045), and F1 (0.086). This is expected, as rat is
genetically closer to mouse than human. Using rat genes, the recall was found
0.800, which means that 80.0% of true GO terms annotated to the test data are
found in the GO terms already assigned to the rat orthologs. Differently put,
this is the upper bound of recall for our framework to look only at GO term
candidates obtained from orthologs. In this study, we focus on the 80.0% and
recovering the remaining 20.0% are left for the future work.

4.3 GO Term Annotation by Hierarchical Classification

Table 1 shows the results for GO term annotation when our proposed approach
(denoted as “Hierarchical”) based on hierarchical classification was applied,
where we used only rat genes as orthologs based on the observation in Sec-
tion 4.2. In addition, the table shows for reference the results reported by Stoica
and Hearst [6] and Chiang and Yu [9] on the BioCreative data set. Also, the re-
sults for standard flat classification without considering GO structure is included
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Table 1. Comparison of the performance of GO term annotation

Approaches Precision Recall F1

Stoica & Hearst [6] 0.168 0.121 0.140

Chiang & Yu [9] 0.332 0.051 0.089

Hierarchical (proposed approach) 0.248 0.210 0.227

Flat 0.041 0.551 0.075

Table 2. Results of GO annotation when hierarchical classification and unsupervised

approaches are combined

Approaches Precision Recall F1

Hierarchical 0.248 0.210 0.227

Hierarchical + Edit 0.238 0.245 0.242

Hierarchical + IR 0.256 0.275 0.265
Hierarchical + Edit + IR 0.236 0.282 0.257

(denoted as “Flat”). Note that “Flat” also looked at only GO term candidates
obtained from orthologs and thus can be used to evaluate the effect of the use
of the GO structure.

Comparing with the results by Stoica and Hearst [6] and Chiang and Yu [9],
our proposed approach obtained the best performance in F1. This result indicates
that, if we can restrict the number of GO terms to be considered, supervised
classification approaches can be effective even for GO term annotation for which
a large number of classes otherwise exist. In addition, we can observe that the flat
classification produced poor performance, which means that it is not sufficient
only to restrict the number of possible classes.

4.4 GO Term Annotation by Unsupervised Approaches

In general, classification performance in precision improves up to some point as
the training data size increases. However, because the GO terms with a large
number of instances are limited, recall inevitably decreases with higher τ , the
threshold for the number of instances. To improve recall, we apply two unsu-
pervised approaches described in Section 3.5 when there are insufficient training
data (less than τ). The results are shown in Table 2, where “Hierarchical” is the
result by hierarchical classification taken from Table 1, “Edit” and “IR” denote
approaches based on string matching and the IR model, respectively.

When Hierarchical is combined with one of Edit and IR, recall improved
to 0.245 (+16.7%) and 0.275 (+31.0%), respectively. This result confirms the
effectiveness of the unsupervised approaches and indicates that they work com-
plementarily with our hierarchical classification approach. Especially, the IR
approach resulted in a significant boost in recall and even improved precision
as compared with Hierarchical alone. In addition, when both Edit and IR are
combined with Hierarchical, recall further improved to 0.282 (+34.3%), which,
however, decreased precision. (It is attributed to the different value of τ used,
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which was chosen to maximize F1 for each configuration.) Focusing on F1, Hier-
archical+IR was the best combination achieving an F1 of 0.265. For comparison,
when only IR without classification was applied for GO term annotation, F1 was
found to be around 0.150 (not shown in the table). This result also confirms that
combining classification and unsupervised approaches is effective for GO term
annotation.

5 Conclusions

This study proposed an approach to GO term annotation using orthologs to
effectively guide hierarchical classification. In addition, two unsupervised ap-
proaches were applied when sufficient training data were not available. From the
experiments on the Genomics Track data, we observed that 1) by using rat genes
as orthologs, up to 80% of correct GO terms can be annotated; 2) using the GO
term candidates obtained from orthologs, our hierarchical classifiers were able
to annotate mouse genes at an F1 of 0.227; and 3) by combining the hierarchical
classification and the IR model-based approach, the performance improved up
to 0.265. For future work, we aim to recover the remaining 20% of true GO
terms not covered by the ortholog-based framework. This could be partly done
by exploiting other homologs, e.g., paralogous and xenologous genes.
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Abstract. We study incremental clustering of objects that grow and

accumulate over time. The objects come from a multi-table stream e.g.

streams of Customer and Transaction. As the Transactions stream ac-

cumulates, the Customers’ profiles grow. First, we use an incremental

propositionalisation to convert the multi-table stream into a single-table

stream upon which we apply clustering. For this purpose, we develop

an online version of K-Means algorithm that can handle these swelling

objects and any new objects that arrive. The algorithm also monitors
the quality of the model and performs re-clustering when it deteriorates.

We evaluate our method on the PKDD Challenge 1999 dataset.

1 Introduction

The rapid developments in hardware technology have enabled generation of mas-
sive information in the financial institutions, scientific laboratories, communica-
tion networks and everyday life. Data is produced continuously and is referred to
as data streams. Such data may contain objects that are also dynamic i.e. grow
over time. Such objects are the result of combining multi-relational data across
several streams, e.g. streams of Customers and Transactions. As transactions
arrive, more information about customers’ preferences and purchases becomes
available. We use the term growing objects for objects that acquire more and
more information and change their definitions over time. By change of definition
we mean that a customer whose bank balance was 10eis now 55e, or he did 10
transactions, now has 55 transactions that arrived in the meanwhile. To perform
stream clustering, we first convert the multi-table stream into a single stream
and then use a stream clustering algorithm to find groups of similar objects.

Most of the clustering algorithms over data streams assume that data stream
is an ordered sequence of data points x1, . . . , xi, . . . xn, read in increasing number
of indices i [1]. Each data point is unique and with a unique identifier. In other
words data streams are assumed to be generated by a dynamic process but
consist of objects that are static themselves.

As explained above the objects may themselves be dynamic. Hence, we pro-
pose a new stream mining framework which assumes a data stream to be gener-
ated by a dynamic process and consist of objects that are dynamic and indepen-
dent of each other. More formally, a data stream contains an infinite sequence of
objects X = 〈x1, . . . xj . . .〉 arriving at timepoints 〈t1, . . . ti, . . .〉. These objects
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arrive as S = 〈x(1,t1), x(2,t1), . . . x(2,ti), x(3,ti), . . .〉 and are read in the increasing
order of indices ti. For any two occurrences x(j,ti), x(j,tk) of xj where ti 	= tk,
x(j,ti) 	= x(j,tk) . For any xj that appears more than once, the one with the higher
t index replaces the old occurrence, i.e. if ti > tk, x(j,ti) replaces x(j,tk).

In this study we concentrate on discovering patterns over objects that change
their definitions with time. We propose a variant of K-Means algorithm, extended
to deal with growing objects and able to incorporate any newer objects as they
arrive. The rest of the paper paper is organized as follows. In Section 2 we discuss
related work. In Section 3 we present the clustering algorithm. Our experimental
findings are reported in Section 4. We conclude with directions for future work.

2 Related Work

Most stream clustering algorithms process and then discard tuples. Bradley et
al identify and store data of interest inside a buffer [2] in a compressed way.
Farnstrom et al points out that compression is an expensive strategy and does
not necessarily improves clustering [3]. Callaghan et al use a buffer to store
points into batches of m points [4]. After clustering, K centres are retained
(with statistics) and buffer is refilled with new points. Guha et al maintain at
each moment the m most recent tuples and K medians that stand for K ×m
tuples seen in the past [1].

Aggarwal et al warn that one pass algorithm over can be dominated out dated
data and say that stream exploration over different time windows can provide
a deeper understanding [5]. Their micro-clustering approach keeps clusters in
multiple snapshots of pyramidal time frame. In all the works, the problem is to
cluster objects that are static and are from one stream. This is different from
the problem we address.

Incremental clustering of the time-series is closest to incremental clustering of
growing objects. Beringer et al present an elaborate method that aims at clus-
tering multiple streams [6]: for each individual stream a window w with m blocks
of v points is defined that stands for the m× v most recent values. Distance is
computed incrementally using Discrete Fourier Transformation before k-means
clustering. It also utilises a fuzzy approach to dynamically update the optimal
number of clusters. The Clustering on Demand (COD) framework clusters mul-
tiple data streams using a single online scan for statistics collection and an offline
step to define clustering structure with adaptive window sizes [7]. In [8] methods
are provided to add and delete static data points. Neither work supports the
growth of dynamic objects, though.

3 Framework

Our method consists of two parts. The first part is an incremental proposition-
alisation algorithm. We briefly describe it here; the complete description is in
[9]. The second part is an incremental clustering algorithm that uses Online
K-Means [6] as basis but can deal with growing and changing objects.
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3.1 Combining Multiple Streams

As discussed earlier (c.f. Section 1), growing objects come from a multiple inter-
related streams that need to be transformed into a single stream. We associate
each stream of data that may be forgotten with a window ; data that may not be
forgotten are kept in a cache.

The incremental propositionalisation begins by specifying target stream T0.
For each stream Tj that is in 1-to-m or m-to-n relationship to T0, each object
x ∈ T0 is associated with the set of matching objects matches(x) ⊂ Tj. The
objects in this set are summarized in a single sub-object. For the summarisation of
the values of each numerical attribute A among the matches(x), four attributes
are generated to accommodate the min, max, count and average of the A values
seen in matches(x). For summarisation of each nominal attribute A, as many
columns(rA) for A are generated as there are distinct values in

⋃
x matches(x)

at t0.
The domain of this nominal attribute A may change when a new value v

arrives at some later timepoint. The value v is either assigned a column that is
lying vacant due to the disappearance of some value v

′
. If no column is vacant,

similar nominal values are clustered into k groups (where k = rA i.e. number of
reserved columns), with values in a cluster sharing one column.

The propositionalisation is done only on the contents of windows and caches.
At timepoint ti, a sliding window contains objects seen since ti−L, where L is
the length of the window and is defined separately for each table. At each time-
point ti, the Cache Update Algorithm [9] calculates statistics for the objects and
retains the ones that are frequently referenced. At timepoint ti, the current con-
tents of T0 in the cache or window of T0 are “propositionalised” to accommodate
the records in the cache or window of each connected stream Tj.

3.2 Stream K-Means for Growing Objects

In the previous section we presented the method for the update and maintenance
of dynamic object streams. In this section we present an incremental version
of K-Means. Our method is inspired by the Online K-Means proposed in [6].
However, there are fundamental differences between the two. We discuss them
at the end of this section, but they can be summarized into saying that the
Online K-Means solves a different problem.

The pseudo-code of the incremental clustering algorithm is shown in (c.f.
Algorithm 1). It starts by initialising k cluster centres (c.f. Line1). Parameter
w denotes the window size; the algorithm considers only objects that are inside
the sliding window. The parameter XB contains the schema, the specification
of the target stream T0 and the size of the cache and windows. It is important
to point here that the schema XB may change as new nominal values show up
and old ones are forgotten. As a result, the schema for the output stream S also
changes.

At timepoint ti data arrives in the streams, is first transformed from multi-
table stream into a single-table stream Si (c.f. Line3). It is important to stress
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here that Cache Update Algorithm in [9] prefers objects referenced frequently
over those that are not: the objects having more references are likely to carry
more information and be more mature or grown. This makes more information
available and is likely to result in better clustering. Objects with fewer are treated
as noise and are kept away until they mature.

Algorithm 1. Incremental
K-Means

Input : XB, k, w

init k centres for model ζ01

for i = 1 to STREAM END do2

Si ← IncProp(XB)3

Wi ← UpdWin(Wi−1,Si, w)4

ζi ← UpdateClu(Wi, ζi−1)5

ρ← JaccardCoeff(ζi,ζi−1)6

if ρ < τ then7

for j = 1→MAX MDL do8

init k centres for ζi9

ζT ←UpdateClu(Wi, ζi)10

ζB ← ζT11

if Q(ζT)>Q(ζB) then12

ζB ← ζT13

ζi ← ζB14

Function UpdateClustering

Input : W, ζ
Output: ζ

j = 01

while j <MAX STEPS ∧ ζ not2

stable do
assign data pts to the clusters3

adjust cluster centres4

Increment(j)5

return ζ6

.

After transformation of the multi-table stream, the algorithm updates window
Wi by replacing outdated objects with new ones (Line4). After the data pre-
processing step, the clustering structure ζi−1(i.e. membership and vectors of the
centroids) from ti−1 is taken as the initialisation for incremental clustering at ti.
After each iteration, the clustering structure ζi at ti is compared with that of
ζi−1 at ti−1 (c.f. Line6). The comparison is done using the Jaccard Co-efficient
[10]. If the calculated value is less than a user defined threshold τ , the current
clustering ζi is discarded and re-clustering is performed over the Wi.

When model a is to be created from scratch i.e. during re-clustering, we create
a set of models C = {ζ1, ζ2 . . . ζq} with different initial centroids. The value of
q = MAX MDL. The quality of each model is evaluated and the best one is chosen.
The sum of squared errors (SSE) or silhouette coefficient if the k is small, can
be used as a measure for quality [10].

As we have already mentioned, our method is similar to Online K-Means
[6]. We would like to point out the differences here. Online K-mean works with
multiple time-series. Where as focus of our method is on clustering of growing
objects that come from a multi-table stream and only the latest version of the
object is considered. Online K-Means only considers flats objects, while our
method allows adding and deleting objects referenced by them. It can also handle
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the addition and deletion of target objects and does so smoothly by preferring
objects that are likely to hold more information over those that do not (c.f.
Section 3.1). Unlike Online K-Means our method does not allow for dynamic
updating of the number of cluster over time. We rely on quality comparison of
the clustering ζi at ti with that of ζi−1 at ti−1.

4 Experiments

In [9], we used two datasets for our evaluation. Here our objective is to study the
performance of our method over dynamic objects, so we use only the Financial
dataset1. Since Financial dataset contains labelled data, we have tested our
strategies against the ground truth. We designed a variety of experiments that
deals with the effect of window size on quality.

C Account
682 (606 & 76)

C District
77

Card
170

Client
827

W Transaction
191,556

W Order
1513

Fig. 1. Evaluation strategies

Table 1. Evaluation strategies

Acronym REF FIN1 FIN2 FIN3

Accounts ∞ 100 200 300

District ∞ 20 40 50

r ∞ 3 3 3

In Fig. 1 we give the statistics of the dataset; the target table is highlighted. We
mark with C each stream associated with a cache, while W stands for window.
Already during the competition, the classes A&C and B&D were merged into
loan-trusted and loan-risk respectively. We do the same.

This dataset puts forwards a difficult learning problem. The class distributions
are not only very skewed to begin with, they also reflect the state of accounts
when they have matured. Class labels become applicable later than when the
objects were introduced. Because of this it is infeasible to propagate labels to the
beginning of time. To exploit them efficiently, we use the last 30 months from
the stream. This chunk of stream is repeated three times.

4.1 Experimental Settings

Our hypothesis is that the amount of information remembered as the multi-
table stream progresses has an impact upon the quality of the clustering results.
The specification of cache size and reserved columns is a ”cache strategy”. The
strategies we used are given in Table 1.

Our reference strategy has unlimited storage and knows the future. Also, the
number of reserved columns is large enough to accommodate all nominal values
that will come in the future. For clustering we used the cosine similarity with
K = 9. With the above strategies we report experiments with two different
settings. In the first one we consider the whole of transaction stream and use
a window size of w = 30. For the second one, we consider transactions from
1 http://lisp.vse.cz/challenge/
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Fig. 2. Entropy for K = 9 and τ = 0.7 (left) w = 30 (right) w = 24

last 30 months only. The window size and value of τ is the varied for this set
of experiments. We used window w = 24, 18 and τ = 0.7, 0.8. As the data is
labelled, we use entropy to evaluate a clustering against explicit class labels [10].

4.2 Experimental Results

Each account arrives with zero transactions and evolves into either ”loan-trusted”
or ”loan-risk” class. To avoid learning our models on data that arrive early but
are not relevant (and would thus blur our results in an undisciplined way), we
have trained a classifier (J4.8 [11]) to identify a subset of predictive attributes
to reduce the noise.

In the left of Figure 2 we show the entropy for each strategy. At the beginning,
as there are less accounts and all belong to the same class, all strategies have an
entropy value of zero. As accounts from the other class arrive, the entropy rises
sharply.

It must be stressed here that accounts are dynamic objects. Initially, as there
is little or no transaction information associated, they are clustered on the basis
of their static properties. As the class labels reflect their final state i.e. after
many transactions have been done, strategies perform poorly.

Around timepoint t10, the entropy of FIN1 (with the smallest cache) starts
dropping. Because of fixed cache size accounts that have more transactions are
preferred. For FIN1 this means that accounts with fewer transactions are not in
the cache. The other strategies have larger caches and also store the accounts
which cannot be easily classified. At timepoints t23 and t30, FIN2 and FIN3
reach their cache limits, respectively. As they keep only mature accounts inside
the cache, their performance improves. From timepoint t32 until t55, the reference
strategy with its infinite cache shows the worst performance. The lesson learned
is that in stream mining it is not always desirable to remember all the data.
For the Financial dataset, oblivion is best: FIN1 that has the smallest cache size
outperforms all other strategies.

The last account arrives at t60. After that existing accounts keep evolving as
new transactions arrive. Since there are no noisy accounts and no information
loss due to memory limitations, the reference strategy outperforms all others.

In the right side of Figure 2, drawn for K = 9, w = 24 and τ = 0.70, we show
the entropy for each cache strategy. Because of the large window size (i.e. from
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Fig. 3. Entropy for K = 9 (left) w = 18, τ = 0.70 (right) w = 24, τ = 0.85

last 30 timepoints), almost all of the available information gets enveloped. As
the transactions accumulate, FIN1 and FIN2 are the first to show improvement.
However, after timepoint t12 they are over taken by the reference. From t1 to t12
about 400 accounts are active. The main advantage that the smaller strategies
draw comes from their ability to prefer objects that have grown substantially and
are likely to carry more information. Due to the richness of information in the
subset of transactions (i.e. last 30 timepoints), almost all of these accounts are
growing simultaneously by the timepoint t15. Therefore the reference strategy
that can cache all objects shows best performance.

By timepoint t30 all accounts mature. As the transactions repeat, the reference
strategy shows a strong periodic behaviour with lowest entropy. FIN2 is the
second most competitive strategy during timepoints t30 . . . t60. FIN1 also has a
periodic behaviour and shows improved performance as the transaction data are
repeated.

In the left side of Figure 3, we show the entropy of cache strategies drawn for
K = 9, w = 18 and τ = 0.70. Till timepoint t18 performance is similar to that
for w = 24. The reference strategy shows best. As the window size is reached at
t18, the reference stabilises and does not show any significant improvement after
that. By timepoint t30 all strategies have somewhat comparable performance.
As the transactions are repeated, the performance of FIN1 starts improving. As
we have pointed out earlier, the cache strategies draw advantage by focussing
on objects that are more mature than others. Because of the smaller window
size, accounts with less transactions and contain less information are dropped.
FIN1 improves its performance by focusing on the accounts that have done more
transactions and shows shows the best performance as the stream gets repeated
over and over.

In the right side of Figure 3, we show the entropy of cache strategies drawn
for K = 9, w = 24 and τ = 0.85. The graph is comparable to Figure 3(right),
however is a bit more fragile because it is re-clusters more due to higher value of
τ = 0.85. The strategies, specially the reference, show slightly better performance
at various timepoint due to stricter threshold.
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5 Conclusion

Our method first transforms a multi-table stream, which contains dynamic ob-
jects, into a single stream. This generated stream is passed to incremental version
of k-means clustering algorithm that can handle objects that grow over time.
The clustering quality is monitored at each timepoint and if it drops below a
certain threshold, re-clustering is performed. To study the performance of our
approach we have designed a reference strategy that knows the future and has
unlimited resources. We have shown that our approach approximates the refer-
ence well and even outperforms it in those cases where oblivion is preferable.
Oblivion, expressed through small cache sizes, means here remembering grown
objects and forgetting those that contain little information. This kind of oblivion
competitive even in the case of periodicity.

As a next step, we want to study the potential of data sampling, investigate
more elaborate caching strategies and minimize the schema size for the incremen-
tal propositionalisation algorithm. We further intend to extend the incremental
clustering algorithm to dynamically update the number of cluster towards values
that ensure a better model.

References

1. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data

streams: Theory and practice. IEEE TKDE 15(3), 515–528 (2003)

2. Bradley, P.S., Fayyad, U.M., Reina, C.: Scaling clustering algorithms to large

databases. In: KDD, pp. 9–15 (1998)

3. Farnstrom, F., Lewis, J., Elkan, C.: Scalability for clustering algorithms revisited.

SIGKDD Explorations 2, 51–57 (2000)

4. Streaming-Data Algorithms for High-Quality Clustering. In: IEEE ICDE (2001)

5. Aggarwal, C., Han, J., Wang, J., Yu, P.: A framework for clustering evolving data

streams. In: Proc. of Int. Conf. on Very Large Data Bases, VLDB 2003 (2003)

6. Beringer, J., Huellermeier, E.: Online clustering of parallel data streams. Data &

Knowledge Engineering 58(2), 180–204 (2006)

7. Dai, B.R., Huang, J.W., Yeh, M.Y., Chen, M.S.: Adaptive clustering for multiple

evolving streams. IEEE TKDE 18(9), 1166–1180 (2006)

8. Elghazel, H., Kheddouci, H., Deslandres, V., Dussauchoy, A.: A partially dynamic

clustering algorithm for data insertion and removal. In: Corruble, V., Takeda, M.,

Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 78–90. Springer, Heidelberg

(2007)

9. Siddiqui, Z.F., Spiliopoulou, M.: Combining multiple interrelated streams for in-

cremental clustering. In: Proceedings of SSDBM 2009 (2009)

10. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Wiley, Chich-

ester (2004)

11. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-

niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)



Finding the k-Most Abnormal Subgraphs from a
Single Graph

JianBin Wang, Bin-Hui Chou, and Einoshin Suzuki�

Department of Informatics, ISEE, Kyushu University, Fukuoka 819-0395, Japan

{jianbin.wang,chou}@i.kyushu-u.ac.jp, suzuki@inf.kyushu-u.ac.jp
http://www.i.kyushu-u.ac.jp/{~suzuki/choue.html, ~suzuki}

Abstract. In this paper, we propose a discord discovery method which

finds the k-most dissimilar subgraphs of size n among the subgraphs

of the same size of an input graph, where the values of k and n are

given by the user. Our algorithm SD3 (Subgraph Discord Detector based

on Dissimilarity) exploits a dynamic index structure and its effective-

ness is demonstrated through experiments using graph data in chemical-

informatics and bioinformatics.

1 Introduction

[1,2] have introduced a new problem of finding the k-most abnormal subse-
quences of size n to other subsequences of the same size from a time series
sequence and proposed efficient solutions. The abnormal subsequences are called
discords and are defined as the subsequences that have the k-largest distances to
the corresponding nearest subsequences among all subsequences of length n in a
given time-series sequence. The discord discovery requires only two parameters,
i.e., k and n, in its definition and models anomalies in various domains.
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Fig. 1. Example of a discord in a chem-

ical graph

2

4

5
6

7

8

9

1

10

11
12

13
14

15

3

Fig. 2. Examples of self-match

In this paper, we tackle a problem of finding the top k-discords which are
defined as the subgraphs that are k-most dissimilar among all subgraphs of
size n from a given graph and propose an efficient solution. Figure 1 shows an
example of a graph and its discord. Since the chemical structure is left-right
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symmetric, the most distinct subgraph of the graph is intuitively considered to
be the pentagon in bold, which matches our definition. The discord can be found
by a brute force search, which is essentially an “all-to-all” comparison. As the
required time-complexity is quadratic to the number of the substructures, this
approach is prohibitive when the number of substructures is huge.

To circumvent the corresponding problem, [1] have proposed two heuristics
and a data structure and have achieved three to four orders of magnitude
speedup. Obviously the sliding window, which is successfully used in [1] for
time series data, is not directly applicable to our problem. Moreover, subgraph
isomorphism is an NP problem, so a cautious implementation is necessary for
an efficient solution. For these problems, we propose an efficient algorithm using
a dynamic index structure.

Few works [3,4,5,6,7] have tackled anomaly detection from graph data. [5]
used the MDL principle and the idea that subgraphs containing many common
substructures are generally less anomalous than subgraphs with few common
substructures. Three algorithms for graph-based anomaly detection were pro-
posed in [3]. Two of them are based on the idea of “cost of transformation”
which is similar to the edit distance, and they use the MDL principle as [5]. The
third algorithm is a probabilistic algorithm. Our method shares the fundamental
motivation but adopts a more intuitive notion of similarity between subgraphs.

Sun et al. [4] focus on anomalous nodes by computing the normality of each
node to the other nodes. [7] discovers unusual links, paths, loops, and significant
nodes. Our method is different from [4,7] as we discover substructures. By using
a matrix which represents the relation between edges and substructures, an
approach called Grafil [8] was proposed for graph similarity filtering. Unlike us,
Grafil is based on the number of selected features contained in the query graph.

2 Discord Discovery Problem from a Single Graph

A graph G is represented by a tuple G =< V,E >, where V is a non-empty
finite set of vertices and its size is defined as the cardinality |V | of V . E is a
set of edges where an edge is a binary relation of an unordered pair of distinct
elements of V . In this paper, a subgraph of a graph is its induced subgraph.

A graph g of size n may be transformed into a string of length (nC2 + n)
called a canonical form, where nC2 represents the binary coefficient. The first
nC2 symbols represent the string obtained by concatenating the upper triangular
elements of the adjacency matrix of the graph when the matrix has been sym-
metrically permuted such that this string becomes the lexicographically smallest
string among the strings obtained from all such permutations [9]. The latter n
elements of the string consist of the attributes of the nodes.

For the definition of the abnormality, we first consider introducing the degree
of similarity between graphs. In [1], the Euclidean distance is used for measuring
the degree of dissimilarity between subsequences of time series data but it can-
not be used for graph data in a straightforward manner. The Hamming distance
between a pair of canonical forms is inadequate due to the permutation of the
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order of the nodes in obtaining a canonical form, which results in counter-
intuitive results. We may transform graphs into vectors in an n-dimensional
space and use the graph edit distance as in [10], but the issue of appropri-
ately selecting prototypes must be resolved. In [11], the metric graph space is
equipped with the Euclidean distance of graphs induced by the Shur-Hadamard
Inner product, which is not intuitive and depends on the weights of attributes.

We define the similarity degree s(g, h) of two graphs g and h as s(g, h) ≡
|c(g, h)|, where c(g, h) represents the maximum common subgraph of g and h.
This similarity degree is considered to be natural as its high value implies that
g and h share a large portion of themselves. To formally define our problem,
we need a degree Δ(g,G,GS) of similarity of a subgraph g of size n in the set
GS of all subgraphs of size n of G. Simply using |c(g, h)| for ∀h ∈ GS, h 	= g
may give counterintuitive results as we show in Figure 2 with k = 1, n = 6. The
pentagon connected with a node may appear abnormal but as the graph contains
3 subgraphs each of which consists of the pentagon and a node, and thus it is not
judged as a discord. To resolve this problem we borrow the concept of self-match
from [1]. Given two subgraphs gi, gj ∈ G, if and only gi and gj share at least one
vertex, we say that gi is a self-match to gj . We define Δ(g,G,GS) ≡ |c(g, h)|
where h ∈ GS and h is not a self-match to g.

Given a graph G, we define the subgraphs g1, g2, . . . , gk which have the k
smallest Δ(gi, G,GS) as the top k discords. Our discord discovery problem is
defined as, given the values for n, k, and a graph data G, to output the top k
discord. The lowest ranked tie-breaks may not be output to keep the number of
discords no more than k.

3 Our Algorithm SD3

3.1 SD3 (Subgraph Discord Detector Based on Dissimilarity)

Given all subgraphs of size n of G, we begin by comparing their subgraphs of
size (n − 1) and eliminating the most similar subgraphs that share at least a
subgraph of size n− 1. If the number of subgraphs which are not eliminated yet
is larger than k, we iterate the same process for the size (n−2), (n−3), . . . until
the number of the remaining candidates is no greater than k. Figure 3 shows
a simple example of five subgraphs g1, g2, . . . , g5 of size seven with k = 1. The
subgraphs in the middle column are their subgraphs of size six. g1 and g2 are
most similar as they share a subgraph of size six and thus they are both marked
as non-candidates, and so g3 does. The graphs in the rightmost column are the
subgraphs of g1, g2, . . . , g5 of size five. Similarly g4 is marked as a non-candidate
and finally g5 is output as the top 1 discord.

The pseudo code of SD3 is shown below. SD3 can be decomposed into two
phases: the first phase lists out the subgraphs of G as their canonical forms,
which are the candidates of the discords. The second phase compares the sub-
graphs of the candidates and finds out the discords by eliminating similar
candidates.
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Fig. 3. An example of finding the most abnormal graph in five subgraphs g1, g2, . . . , g5.

Note that g5 is a clique and thus has only one kind of subgraph for each size

algorithm SD3
INPUT. G: the input graph; n: the size of a discord; k: the maximum
number of discords for output;
OUTPUT. T : the set of top d discords (d ≤ k)

0. Canonical-form-trie C ← empty
1. FOR EACH subgraph gi of G, |gi| = n

A. Transform gi into its canonical-form ci

C. IF ci does not exist in C // index by C
Add ci into C, then add gi as a tag in the tail of ci

Add gi and ci into Table T and ci.status ← candidate;
ELSE

Add gi in the list in the tail of ci which contains its identical subgraph
cj .status ← non-candidate

2. FOR x=n-1 to 3 //because all subgraphs are identical when x = 1 or 2
A. FOR EACH ci ∈ T , ci.status = candidate

a. FOR EACH cj ∈ T , i 	= j
(i). IF subgraph cj is not a self-match to ci AND ∃cip matches with
∃cjq , where |cip| = |cjq | = x, cip is a subgraph of ci, and cjq is
a subgraph of cj

ci.status ← non-candidate; cj .status ← non-candidate;
B. IF the number of candidates in T ≤ k

BREAK;
3. T ′ ← ∅

FOR EACH ci ∈ T
IF ci.status = candidate

T ′ ← T ′ ∪ {ci}
4.Return T ′
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In the first phase we list out all the possible subgraphs which are of size n, then
we transform them into canonical forms in step 1. This approach is similar to [1],
in which time series data are transformed into strings. After the transformation,
we mark the canonical forms which have no duplicate to be candidates, and mark
other canonical forms as non-candidates to make an initial candidate list stored
in a table T . Then in the second phase we keep marking the candidates once we
found that thay have bigger Δ(g,G, T ) as non-candidates, until the number of
candidates in T is no greater than k.

A major difficulty of graph mining comes from the enormous number of sub-
graphs even for a moderate size of graph (e.g., in our experiments, 261073 sub-
graphs of size 9 were found from a graph of size 409). For this problem, we adopt
two strategies, the first one exploits data structures to speed-up the search pro-
cess. The node identifiers recorded in a trie and an adjacency list of the graph
G accelerate the listing in the first phase, and linked lists in ascending order are
used to speed up the non-self-match checking and the duplicate checking. The
second strategy exploits a dynamic index based on the trie data structure. We
mark a subgraph as a candidate only when it has no duplicate.

We use this trie, which is called a canonical form trie, for efficiently judging
whether we already have a subgraph which is transformed into the same canon-
ical form. This trie is also used as an index in the phase 2 for checking whether
the currently processed candidate is a self-match of any member in a specific
non-candidate subgraph. Figure 4 shows an example of the canonical form trie.
The trie contains, from its root to its leaves, the information of edges, the at-
tributes of the nodes, and the subgraphs. The former two of a subgraph is its
canonical form, where 1 and 0 in the edge information represent the existence
and the absence of an edge, respectively. The table T stores the initial candidate
list for further processing in the phase 2. In the table, NC and C represent a
non-candidate and a candidate, respectively. We dynamically update the result
in the table T where we store the current candidates of discord.

Phase 2 starts from step 2. From step 2, we start to sieve the candidates
in T by checking pairs of subgraphs which are not self-match. For eliminating
candidates g ′ from the candidates list in T , we begin by checking the subgraphs
of size x = (n − 1) of each subgraph of size n, then continue this checking in
descending order. Once we found a candidate gi has a subgraph of size x matching
to a subgraph of gj which is a member in T , which means the similarity of this
candidate is Δ(gi, G, T ) = x, then we mark gi and gj non-candidate. In step 2,
the candidate list for each value of x is also output. This intermediate result is
expected to help the user to settle a more appropriate value of k if necessary.
For instance, if no discord is discovered, the user can use the intermediate result
to increase the value of k.

3.2 Examples of Using the Dynamic Index Structure

In the phase 2, the brute force algorithm will perform “all-to-all” comparison
for all subgraphs of G. If the number of the subgraphs is s, the complexity is
O(s2

nC2), which is unacceptable because s is typically huge. We use the trie
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Fig. 5. Example of the updates of the trie and the table in the phase 2

data structure in each phase and the trie in the phase 1 improves the efficiency
of checking whether the current subgraph is already listed out. In the step 1.C
in the pseudo code, if the canonical form is new in the trie, we add it into the
trie and table T and we mark the canonical form as a candidate. Otherwise we
add it into the trie and mark the identical one in T as a non-candidate. Figure
4 shows an example of the trie and the table, where subgraphs g0, g1, g2, g3 are
examined, in the phase 1. In this example, g1 is identical to g0. Consequently,
g0 is marked as a non-candidate in the table and g1 is inserted right after g0 in
the trie.

The trie in the phase 2 is used in cooperation with a table which stores the
candidates list of discords to update the content. In Figure 5, an example is
shown for demonstrating the trie in the step 2, where x = 4. In the first table
of Figure 5, four candidates g1, g6, g7, g8 and four non-candidates g2, g3, g4, g5

are stored in table T and i = 1 (cf. phase 2 in the pseudo code). Here each of
g2, g3, g4, g5, g6 is a self-match to g1 and thus are not considered and it turned
out s(g1, g7) = 4. Therefore, both of g1 and g7 are marked as non-candidates
and we do not need to compare g8 with g1 for round i = 1, since g1 is no longer a
candidate. The second table is processed similarly and it turned out s(g6, g7) = 4
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Fig. 6. Results of comparison to straightforward algorithms

and thus we mark g6 as a non-candidate. In the third table, s(g8, gj) < 4 and
consequently g8 is output as the top 1 discord.

4 Experiments

We perform our experiments on a PC with Vine Linux 4.2, Intel(R) Core(TM)2
Quad CPU Q6600 2.40GHz, 3 GB memory. DNA fragment data was used as the
input graph G. We omitted one particular chemical bond e(164, 165) to mimic a
damage in DNA. The size of G is only 166 but the number of subgraphs is 12036,
which makes this problem relatively challenging. As the DNA data is composed
of 6 kinds of substructures, i.e., Adenine, Thymine, Guanine, Cytosine, 3’end,
and 5’s end, and each of these substructures have at least one duplicate in G, the
subgraph which contains the omitted bond should be found as anomaly. Actually,
this subgraph was detected as the discord with n = 10, k = 1 as expected1.

Using this data, we compare SD3 with two straightforward algorithms. The
first one is identical to SD3 except for a pruning of the canonical form trans-
formation. The other one just performs the quadratic comparison among all
subgraphs. As shown in Figure 6, we tested the cases when the attributes of the
nodes are ignored and considered. A ratio of a straightforward algorithm repre-
sents its computation time divided by that of SD3. A higher ratio represents a
superior performance of SD3 to the corresponding straightforward algorithm. A
dotted box represents the computation time of SD3 in logarithmic scale.

It is obvious that the number of candidates of discords in the former case is
larger than that in the latter case. As shown in the left plot, the two speed-
up methods of SD3 are almost equally effective in the former case while in the
latter case, the acceleration of phase 1 is much more important, which explains
the higher ratios of the straightforward algorithm 1. We can see that SD3 is
about 3 times faster than the two straightforward algorithms when n = 8 and the
1 We applied SD3 to a graph G′ obtained by omitting two more bonds, which are

e(73, 74) and e(106, 107), and G′ is a disconnected graph. As expected, SD3 is still

able to effectively find out the discord.
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attributes of the nodes are considered. It is 4 to 6 times faster when the attributes
of the nodes are ignored, n = 9 or n = 10. In another series of experiments
presented below, SD3 is 4.2 times faster than the first straightforward algorithm
when n = 9.

We also applied SD3 to a fragment of a chemical structure data of a virus
protein. The input graph G is a fragment of a chemical structure data of a
dengue virus protein, where |G| = 409. In G, every 4 to 14 chemical element
consists of biological substructure defined by experts such as LY S,GLN,PRO.
SD3 detects a portion of TRP when n = 9, k = 6 and the attributes of the
nodes are ignored. As there exists only one TRP is G, this result makes sense.
It should be noted that the node number is 2.46 times of the first experiment
while the running time is 37.7 times of the corresponding case. We believe that
this is an excellent result as the number of subgraphs is huge with this G.

In SD3, the canonical transformation, i.e., the phase 1, dominates the compu-
tation time when n is large. It should be noted that each subgraph requires n!
processing for determining its canonical form. In the experiments, we found that
usually over 99% of running time is spent for the transformation of canonical
forms for large n when the attributes of the nodes are ignored. The computation
time is more than one day if the size of discord is over 11 with the DNA fragment
data. Using other definitions of subgraphs and matching is left for future work.
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Abstract. We propose a latent feature extraction method for record

linkage. We first introduce a probabilistic model that generates records

with their latent topics. The proposed generative model is designed to

utilize the co-occurrence among the attributes of the record. Then, we

derive a topic estimation algorithm using the Gibbs sampling technique.

The estimated topics are used to identify records. The proposed algo-

rithm works in an unsupervised way; i.e., we do not need to prepare

labor-intensive training data. We evaluated the proposed model using

bibliographic records and proved that the proposed method tended to

perform better for records with more attributes by utilizing their co-

occurrence.

1 Introduction

Record linkage is an important task in information integration and data mining.
It has a wide range of applications such as citation matching, name disambigua-
tion, and data cleaning. Although a lot of research has been conducted on this
task, it is still a challenging problem due to a variety of discrepancies.

Record similarity plays a very important role in record linkage. It is usually
measured by combining the similarities at the level of attributes of the record.
Researchers have applied machine learning techniques to both the similarity
measurement at the attribute level and the combination of similarities. For ex-
ample, Bilenko et al. [2] proposed a linkage method that uses a learnable string
similarity that is applied to the similarity measurement at the attribute level.
Supervised learning techniques such as support vector machines are frequently
used to combine the similarities at the attribute level.

There are two kinds of similarities at the attribute level: notational and se-
mantic similarities. Attribute values are represented in various ways due to ab-
breviations, acronyms, etc. For example, the ”International Conference on Data
Mining” is usually abbreviated ”ICDM”. To handle this notational similarity,
various kinds of string similarities are used [2,5].

Semantic similarity is also useful for record linkage. For example, ”ICDM” and
”KDD” are similar, but are different conferences. Latent topics are often used in
information retrieval to handle this semantic similarity. For example, the latent
semantic index (LSI) extracts latent topics from documents using singular value

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 449–456, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Table 1. Example of records for authors

Author Name Journal Affiliation Abstract

M. Jordan ACM TKDD A Univ. {linkage, generative model}
M. Jordan IEEE TKDE A Univ. {LDA, EM algorithm}
M. Jordan Physical Review A Univ. {relativity, quantum}
M. Jordan ACM TKDD B Univ. {HCI, user model}

decomposition. The probabilistic latent semantic index (PLSI) has features that
are similar to LSI using a statistical framework. Latent topics usually create low
dimensional feature space, and semantically similar values tend to be mapped
onto neighboring points in the feature space. In this way, latent topics are used
to handle a kind of semantic similarity.

Researchers have mainly been handling the notational similarity in record
linkage. However, some researchers have recently introduced latent topic mod-
els for the record linkage. For example, Bhattacharya and Getoor [1] proposed
a probabilistic model that exploited the co-authorship of papers. Song et al.
[9] introduced a latent topic model that generated both authors and a doc-
ument written by them from a latent topic. Shu et al. [8] proposed a latent
topic model that is similar to Song’s model and applied it to three kinds of
entity resolution problems, namely, the name sharing, name variant, and name
mixing problems. These methods used generative models that are an exten-
sion of the latent Dirichlet allocation (LDA) [3] to exploit the co-occurrence of
multiple entity names or the co-occurrence of entity names and related docu-
ments.

This paper proposes a new latent topic model for record linkage. It is an
extension of the LDA, like many other latent topic models [1,9,8], however, it
focuses on the data in the record structure consisting of multiple attributes and
utilizes the co-occurrence of their attribute values.

2 A Record Model

2.1 Notations

We first define the concepts and notations using the example in Table 1. In
a relational table, one attribute is selected as the target for identification. We
refer to this attribute as a target attribute. In Table 1, “Author Name” is the
target attribute. An attribute that has a single value is called a scalar attribute.
The “Author Name”, “Journal”, and “Affiliation” in Table 1 are examples of
scalar attributes. An attribute that has a text value is called a text attribute.
The “Abstract” in Table 1 is an example of a text attribute. In the proposed
record model, we handle a table consisting of a target attribute, a set of scalar
attributes, and a set of text attributes.

To handle the semantic similarity such that “ACM TKDD” and “IEEE TKDE”
are journals from a similar research field, we introduce a latent topic r̃ for each
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attribute value r. For example, r̃ is “Data Mining” for an attribute value r =
“ACM TKDD”. For a table consisting of a target attribute, n scalar attributes,
and m− n text attributes, we represent a record using

r = (r0, r1, · · · , rn, rn+1, · · · , rm, r̃0, r̃1, · · · , r̃n, r̃n+1, · · · , r̃m) (1)

where ri and r̃i (0 ≤ i ≤ n) stand for the observed attribute value and its corre-
sponding latent topic of the ith scalar attribute, respectively. ri = (ri1, · · · , rili)
and r̃i (n < i ≤ m), on the other hand, denote the bag of words and their
corresponding latent topic of the ith text attributes, respectively. The symbol li
represents the number of words in ri. Although li is a function of a record r, we
omit r to simplify the description.

For the ith attribute, we use Di and D̃i to denote the set of attribute values
and latent topics, respectively. |Di| and |D̃i| denote their cardinality.

2.2 Probabilities of the Record Model

The record model is a probabilistic model that generates a table with a certain
probability. In this section, we introduce three kinds of probability distributions
for defining the probability that a record r is produced by the model.

A target probability, denoted as p(ṽ), is the probability that a topic of the
target attribute is ṽ in D̃0.

The second probability is the conditional probability of a topic of the ith
attribute for a topic of the target attribute. For a topic ṽ in D̃0 and a topic w̃ in
D̃i of the ith attribute, it is denoted as p(w̃ | ṽ). We refer to this probability as a
topic correlation probability. It is introduced to propagate the topic information
among attributes.

The third probability is the conditional probability of an attribute value for
a topic for each attribute. For a topic ṽ in D̃i and an attribute value v in Di, it
is denoted as p(v | ṽ). This probability is referred to as a topic-value probability.

Note that topics are not specific values such as “data mining” but are like
those in the principal components of PCA and the topics of LSI and PLSI.
Actually, we do not need to define specific topics, but only to determine how
many there are.

2.3 A Generative Model

We assume that the three kinds of probabilities introduced in the previous sub-
section are multinomial distributions generated by a Dirichlet distribution. Then,
the generative model consists of two phases, the generation of multinomial dis-
tributions and a set of records.

In the first phase, the model generates the parameters of the target, the topic
correlation, and topic-value probabilities by using the following steps:

1. Choose θ0 ∼ Dir(α0) // target probability
2. For each topic ṽ of the target attribute and each ith attribute (1 ≤ i ≤ m):

(a) Choose θiṽ ∼ Dir(αi) // topic correlation probability
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3. For each ith attribute (0 ≤ i ≤ m): // topic-value probability
(a) For each topic ṽ of the ith attribute:

i. Choose φiṽ ∼ Dir(βi)

where Dir(α) denotes the Dirichlet distribution of the parameter α. The first
step generates the parameters θ0 of a multinomial distribution of the target
probability according to Dir(α0). Similarly, the second and third steps generate
the parameters of the topic correlation and topic-value probabilities for each
attribute, respectively.

In the second phase, the model generates each of the specified number of
records using the multinomial probability distributions generated in the first
phase:

1. Choose a topic r̃0 ∼ Multi(θ0)
2. Choose a value r0 ∼ Multi(φ0r̃0

)
3. For each ith scalar attribute (1 ≤ i ≤ n):

(a) Choose a topic r̃i ∼Multi(θi)
(b) Choose a value ri ∼Multi(φir̃i

)
4. For each ith text attribute (n < i ≤ m):

(a) Choose a topic r̃i ∼Multi(θi)
(b) For each word of the attribute:

i. Choose a word rij ∼Multi(φir̃i
),

where Multi(θ) denotes the multinomial distribution of parameter θ.
We denote the parameters of the Dirichlet distributions as

Λ ≡ {α0, · · · ,αm,β0, · · · ,βm} ,

and the parameters of the multinomial distributions as

Δ ≡ {θ0,Θ1, · · · ,Θm,Φ0, · · · ,Φm} ,

where

Θi = {θiṽ | ṽ ∈ D̃0} for 1 ≤ i ≤ m

Φi = {φiṽ | ṽ ∈ D̃i} for 0 ≤ i ≤ m .

For a topic ṽ (resp. value v), we denote the component for the topic (resp. value)
of the parameters of the Dirichlet (resp. multinomial) distribution α (resp. θ)
as α[ṽ] (resp. θ[v]).

The probability that the record model generates a record r according to Δ is

p(r | Δ) = θ0r̃0

[
m∏

i=1

θir̃0 r̃i

] [
n∏

i=0

φir̃iri

]⎡⎣ m∏
i=n+1

li∏
j=1

φir̃irij

⎤⎦ , (2)

where r is a record represented by Eq. (1).
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3 Parameter Estimation

The proposed algorithm uses the Gibbs sampling technique which is widely used
for the Bayesian parameter estimation of complex statistical models (e.g., [7],
[10]). For each record r and topic r̃i

1 for an ith attribute, let p(ṽ | R−r̃i ;Λ)
denote the posterior probability, i.e., the probability that the topic of the ith
attribute is ṽ when we observe all the records R except for the topic r̃i. In Gibbs
sampling, we repeatedly assign a topic of each attribute of each record based on
the above-mentioned posterior probability distribution until convergence.

We need to estimate three kinds of posterior probability distributions in the
proposed model, one each for the target, scalar, and text attributes. We introduce
three kinds of count functions to derive these posterior probability distributions.
The first function, denoted as C(R;Ti = ṽ), stands for the frequency with which
a topic of the ith attribute is ṽ in R. Let us consider the table R in Table 2.
Then, C(R;T0 = 1) = 1, because only the first record satisfies the condition
T0 = 1.

The second function, denoted as C(R;T0, Ti = ṽ, w̃), stands for the frequency
with which a topic of the target attribute is ṽ and a topic of the ith attribute is
w̃ in a record.

The third function, denoted as C(R;Ti, Vi = ṽ, v), stands for the frequency
with which a topic of the ith attribute is ṽ and the corresponding attribute value
is v. For a text attribute, the same value appears more than once in a record.

Using these functions, the marginal probability of a record set R is given as

p(R;Λ) ≡
∫

p(Δ;Λ)
∏
r∈R

p(r | Δ) dΔ

=
[
D(α0)

∏
ṽ∈D̃0

Γ (C(R;T0 = ṽ) + α0ṽ)
Γ (|R|+

∑
α0)

]
⎡⎣ m∏

i=1

∏
ṽ∈D̃0

D(αi)

∏
w̃∈D̃i

Γ (C(R;T0, Ti = ṽ, w̃) + αiw̃)
Γ (C(R;T0 = ṽ) +

∑
αi)

⎤⎦
⎡⎣ n∏

i=0

∏
ṽ∈D̃i

D(βi)

∏
v∈Di

Γ (C(R;Ti, Vi = ṽ, v) + βiv)
Γ (C(R;Ti = ṽ) +

∑
βi)

⎤⎦
⎡⎣ m∏

i=n+1

∏
ṽ∈D̃i

D(βi)

∏
v∈Di

Γ (C(R;Ti, Vi = ṽ, v) + βiv)
Γ (C(R;Ti = ṽ) +

∑
βi)

⎤⎦ (3)

where D(α) denotes the coefficient of a Dirichlet distribution, i.e., Γ (
∑

v αv)∏
v Γ (αv)

whereas
∑

α is an abbreviation of
∑

v αv.
For a record r in R, let R−r denote the set of records consisting of those ex-

cept for r, i.e., R − {r}. Furthermore, R−rij< denotes the set of records where
rij , · · · , rili are removed from r. For example, for the first record in Table 2, R−r22<

1 Latent topic r̃ij is scalar in case of a text attribute.
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Table 2. A relation

T0 V0 T1 V1 T2 V2

1 1 2 1 1 {2,3}
2 2 1 1 3 {1,3}
2 2 2 1 3 {1,1}

is a table where the first record is replaced with (1, 1, 2, 1, 1, {2}). Then, for each
record r in R and a topic ṽ ∈ D̃0, we can derive Eq. (4) from Eq. (3) denoting the
posterior probability that the topic of target attribute is ṽ:

p(T0 = ṽ | R−r̃0 ;Λ)

∝ C(R−r;T0 = ṽ) + α0ṽ

|R| − 1 +
∑

α0

C(R−r;T0, V0 = ṽ, r0) + β0r0

C(R−r;T0 = ṽ) +
∑

β0
m∏

i=1

C(R−r;T0, Ti = ṽ, r̃i) + αir̃i

C(R−r;T0 = ṽ) +
∑

αi
. (4)

Similarly, for each record r in R and a topic ṽ ∈ D̃i of the ith attribute, Eq. (5)
is the posterior probability that the topic of the ith scalar attribute is ṽ:

p(Ti = ṽ | R−r̃i ;Λ)

∝ C(R−r;T0, Ti = r̃0, ṽ) + αiṽ

C(R−r;T0 = r̃0) +
∑

αi

C(R−r;Ti, Vi = ṽ, ri) + βiri

C(R−r;Ti = ṽ) +
∑

βi

, (5)

whereas Eq. (6) is the posterior probability that the topic of the ith text attribute
is ṽ:

p(Ti = ṽ | R−r̃i ;Λ)

∝ C(R−r;T0, Ti = r̃0, ṽ) + αiṽ

C(R−r;T0 = r̃0) +
∑

αi

li∏
j=1

C(R−rij< ;Ti, Vi = ṽ, rij) + βirij

C(R−rij< ;Ti = ṽ) +
∑

βi

. (6)

Due to space limitations, we omit the derivation.
The estimation algorithm takes parameters Λ, the numbers of topics |D̃0|,

· · · , |D̃m|, and the attribute values of a table R, as inputs. Note that, at this
point, only the attribute values are given and the corresponding topics are esti-
mated in the algorithm. Therefore, the algorithm is unsupervised.

The algorithm first randomly assigns a topic to each attribute value in R and
then modifies the topics according to Eqs. (4), (5), and (6). Reassignment of the
topics is repeated until the posterior probabilities converge.

The output of the algorithm is the assignment of a latent topic to each at-
tribute value. We can estimate the parameters Δ of the record model from these
frequencies.
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Fig. 1. Performance for name disambiguation problem

4 Experimental Results

We applied the record model to the author disambiguation problem [6,4,9] of
the bibliographic database. The problem is identifying the authors appearing in
a dataset. In this experiment, we used a bibliographic database from the digi-
tal library system NII-ELS2. This database contains bibliographic data on the
academic papers published in journals in various research fields, such as natural
sciences, engineering, medical science, social science, economics, and the arts. A
bibliographic record consists of the author’s name, affiliation, title, abstract, and
key words. For a text, we chose important words based on the TFIDF weight
as is usually done in information retrieval and text categorization. As for the
title and abstract, we chose the top 5,000 words as important words. Then, we
removed all the remaining words words from the titles and abstracts. Proper
nouns are important for the affiliation. We chose the top 4,000 words based on
the TFIDF weight for the affiliations. Almost all proper nouns were included in
this word set.

We chose six popular author’s names in the database and retrieved the records
written by an author whose name was included in the six names. We manually
identified authors in the retrieved records and applied the proposed method. We
measured the f-measures using each of the five attributes alone as well as all the
attributes. We also measured the performance of the TFIDF-based clustering
method; i.e., we applied agglomerative single linkage clustering where the doc-
ument and cluster similarity is measured by the cosine similarity weighted by
TFIDF. Figure 1 shows the experimental results for each name. In the graph, the
result for each attribute is labeled with its attribute name. Furthermore, ”all”
and ”TFIDF” show the results obtained by using all the attributes and TFIDF
based clustering, respectively.

First, the proposed method significantly outperformed the TFIDF based
method. This result indicates that the latent topic is a good feature for

2 http://reo.nii.ac.jp/journal/HtmlIndicate/html/index en.html
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identifying records. For this database, “affiliation” and “authors’ name” are use-
ful attributes for the name disambiguation, whereas “title”, “abstract“, and “key
words” are not useful enough. Although for some names the proposed method
using all the attributes degrades the performance compared with the best at-
tribute, it performs very well with the information on the available attributes.

5 Conclusion

We have proposed a generative model for record linkage. The proposed method
converts both scalar and text attributes into topic distributions and exploits
the co-occurrence of multiple attributes. Experimental results showed that the
proposed model outperformed the TFIDF model that directly uses the observed
values. We evaluated the proposed method using only a small dataset. We plan
to evaluate the model using a larger dataset as well as different types of records
We also plan to research how to determine the proper hyper-parameters and
number of topics. The combination of this with supervised techniques is useful
to improve accuracy. This is another research direction we plan to pursue.
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Abstract. In this paper, we describe the application of the Desicion

Tree Boosting (DTB) learning model to spam email filtering.This clas-

sification task implies the learning in a high dimensional feature space.

So, it is an example of how the DTB algorithm performs in such fea-

ture space problems. In [1], it has been shown that hypotheses computed

by the DTB model are more comprehensible that the ones computed

by another ensemble methods. Hence, this paper tries to show that the

DTB algorithm maintains the same comprehensibility of hypothesis in

high dimensional feature space problems while achieving the performance

of other ensemble methods. Four traditional evaluation measures (pre-

cision, recall, F1 and accuracy) have been considered for performance

comparison between DTB and others models usually applied to spam

email filtering. The size of the hypothesis computed by a DTB is smaller

and more comprehensible than the hypothesis computed by Adaboost

and Näıve Bayes.

1 Introduction

The increased availability of documents in digital form and the need to orga-
nize them has promoted the development of a large amount of techniques for
automated text categorization.

Many algorithms for text categorization have been proposed and evaluated in
last years. Some of the top performing techniques are based on decision trees [2],
neural networks [3], nearest neighbor methods [4], Rocchio’s method [5], support
vector machines [6], näıve Bayes [7] and rule-based methods [8].

As a particular instance of the text categorization problem can be seen the
Spam email filtering problem. in which a set of rules is created according to
which messages are categorized as spam or legitimate mail.

During last years the amount of messages flowing throw the email servers has
been increasing, some of them are useless and unwanted.

Automatic spam filtering systems can be done since spam messages can be
identified because of their particular form, which can be found in the header or
body of the messages, and its evaluation can be done by using common measures
of automatic information retrieval (recall, precision, F1 and accuracy).

J. Gama et al. (Eds.): DS 2009, LNAI 5808, pp. 457–464, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Spamassasin [9] is one of the most popular automated filtering approach of
Knowledge engineering to identify spam. It is an intelligent email filter which
uses a diverse range of tests to identify unsolicited bulk email, spam.

The machine learning approach does not require specifying any rules explicitly.
Instead, a set of pre-classified documents (training samples) is needed. A specific
algorithm is then used to learn the classification rules from this data. Moreover,
data mining is useful in discovering the classification rules, that can be used in
software like Spamassasin.

Many data mining and machine learning researchers have worked on spam
detection and filtering: näıve Bayes [7], support vector machine [6], memory
based learning methods [10] and decision tree [11]. A comprehensive review of
recent machine learning approaches to Spam filters was presented in [12].

In recent years, ensemble methods have gained popularity and boosting al-
gorithms occupies special place in the classifier ensemble literature since have
attractive theoretical properties, it has been applied to different domains and has
also been shown to perform well experimentally on standard machine learning
tasks [13], [14] and one of the best performers in spam email filtering [5], [11].

Focusing on comprehensibility without losing too much accuracy has been the
main goal of several developments in machine learning in the last years.

Following this approach, Freund et. al. [15] suggest a new combination of de-
cision trees with boosting called alternating decision trees (ADTrees). However,
unlike decision trees, ADTrees are a scoring classification model that does not
compute disjoint rules to classify a sample. The main difficulty in the application
of ADTrees to text categorization is the high dimensionality of the input feature
space typical for textual data.

Feature selection as a preprocessing step is frequently used in machine learn-
ing, in order to reduce dimensionality according to a certain evaluation criterion
[16], [17]. In recent years data has become increasing in number of instances
and number of features. So, spam filtering is likely to remain an active area of
research in the next years.

In [1], a learning model that explore the area of trade-offs between accuracy
and comprehensibility in ensemble machine learning methods is described using
DTB.

Moreover, this models includes implicitly a feature selection scheme. So, it can
be applied directly to high dimensionality problems like spam email filtering.

In this work, the DTB learning model applied to spam email filtering (Spanish
Spam dataset) is evaluated.

This paper is organized as follows. Section 2 presents the DTB learning model.
Section 3 describes the data collection and experimental results. Conclusions are
given in Section 4.

2 Boosting with Decision Trees

In [18], Kearns et al. examine top-down induction decision tree (TDIDT) learning
algorithms in the model of weak learning [19], that is, like a boosting
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algorithm. They proved that the standard TDIDT algorithms are in fact boost-
ing algorithms.

From this point of view, the class of functions labeling the decision tree nodes
acts as the set of weak hypothesis in the boosting algorithm. Thus, splitting a
leaf in a top-down decision tree is equivalent to adding a new weak hypothesis
in a boosting algorithm. A sample is classified by a decision tree by means of
the vote of functions in the nodes of the tree. Every vote represents a step in a
path from the root node of the tree to a leave of the tree. A sample is classified
with the label of the leave at the end of the path defined by the votes of the
functions in the internal nodes of the tree.

However, Dietterich et al. [20] have shown that top-down decision trees and
Adaboost have qualitatively different behavior. Briefly, they find that although
decision trees and Adaboost are both boosting algorithm, Adaboost creates suc-
cessively “harder” filtered distributions, while decision trees create successively
“easier” ones.

Nonetheless, both approaches could be combined in a learning method that
has the accuracy and stability of boosting algorithms and the comprehensibility
of decision trees hypothesis.

If we assume that the weak hypothesis learner is simple enough, for example
a decision stump, then we could assume that all the weak hypotheses are com-
prehensible and that the difficulty in understanding the final hypothesis lies in
the linear classifier over a space defined by weak learners.

The top-down decision tree can be a good substitute for the linear classifier of
AdaBoost algorithm. It can be regarded as a boosting algorithm and it computes
comprehensible hypotheses.

Thus, we could substitute the linear classifier of AdaBoost with a decision
tree. This proposed approach is shown in algorithm 1. Although this approach
could be seen as a kind of stacking, there are several features that make it
closer to an AdaBoost approach than to the stacking approach described by
Wolpert [21]: stacking approach splits the training dataset into several subsets
each one used to train an independent weak learner, while each weak learner in
AdaBoost is trained with the entire dataset. Moreover, Adaboost modifies the
weight of samples of the learning dataset throughout the learning task. Finally,
the accuracy of each weak learner is used to modify the weight of samples of the
learning dataset in order to train the next weak learner; so each weak learner
is influenced by the accuracy of the previous one, while stacking only considers
the accuracy of the weak learners at the meta learning level.

Moreover, since decision stumps are classifiers that consider only a single
variable of the input space, they are equivalent to the class of single variable
projection functions usually used in the top-down decision tree learners [22]. If
then the linear classifier of AdaBoost over decision stumps is substituted by a
top-down decision tree learner, then the final hypothesis will be compounded by
a tree with a query about a single variable of the input space in the internal
nodes. Thus, this final hypothesis will be equivalent to a decision tree computed
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Algorithm 1. The Decision Tree Boosting algorithm for binary classification
problems returning hfinal : X → Y

Let:

– A training set E of m samples E = {(x1, y1), . . . , (xm, ym)} with xi ∈ X =

{vectors of attribute values} and labels yi ∈ Y = {−1, 1}
– A weak learning algorithm WeakLearner
– T ∈ N specifying number of iterations

1: Compute a set H of T weak hypothesis following steps 1 to 8 of the AdaBoost.M1

algorithm shown in [19]

2: Map every instance of E to the instance space F = {ht(x)|x ∈ X}  Y T :

Ē = {(< h1(xi), . . . , hT (xi) >, yi)|(xi, yi) ∈ E}

3: Let hfinal be the decision tree learned from the training dataset Ē

directly over the input space. However, as it is shown in [1], the mapping of the
input space improves the accuracy and stability of the learned decision tree.

3 Empirical Evaluation

In order to evaluate the DTB algorithm for the anti-spam email filtering problem,
a corpus with spam and legitimated emails messages have been collected. This
corpus has been collected from emails accounts of the Department of Language
and Computer Sciences of the University of Málaga. It consists of 762 messages:
665 of them are legitimate and the remaining 97 are spam. All the messages of
this corpus are written in spanish.

After analyzing all the emails of the corpus, a dictionary with N words/features
has been formed. During preprocessing, HTML tags of the emails and words with
length less than four have been removed from the dictionary.

Every email has been represented as a feature vector including N elements,
and the ith word of the vector is a number variable representing how many times
this word is in this email. So. the feature set of the corpus is a bag-of-words model
which consists in a set of 13252 features.

Several evaluation measures of the DTB, AdaBoost, Näıve Bayes and J48
over this corpus have been computed by means of a ten-fold cross validation.
Let S and L be the number of spam and legitimate messages in the corpus,
respectively; let S+ denote the number of spam messages that are correctly
classified by a system, and S− the number of spam messages misclassified as
legitimate. In the same way, let L+ and L− be the number of legitimate mes-
sages classified by a system as spam and legitimate, respectively. These four val-
ues from a contingency table which summarizes the behaviour of a system. The
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widely-used measures precision (p), recall (f), F1 and accuracy (Acc) are defined
as follows:

p =
S+

S+ + L+
F1 =

2pr
p + r

r =
S+

S+ + S−
Acc =

L− + S+

L + S

Boosting with Decision Trees method has been implemented and integrated into
the Weka software package [23]. In the experiments then we will use the J48
implementation of the C4.5 algorithm as the Top-Down Decision Tree learning
algorithm. Moreover, in order to compare our method with Boosting and Näıve
Bayes, several tests have been carried out using the AdaBoostM1 implementation
of Boosting in Weka and the Näıve Bayes classifier. Finally, the Decision-Stump
learning algorithm of Weka has been taken as the weak learner algorithm.

The AdaBoostM1 learning models have a learning parameter that defines the
number of weak learners computed throughout the learning task. Before compar-
ing the results of these learning models over DTB, we optimized this parameter.
So the results shown in this paper are the most accurate obtained from these
learning algorithms after optimizing this learning parameter. However, this pa-
rameter has not been fully optimized for DTB and only two values for this
parameter (10 and 100 weak learners) have been taken into account in order to
avoid unfair advantage to DTB.

The results of this test and the mean hypothesis size throughout the ten
iterations of this test are shown in table 1.

Näıve Bayes model has a precision and recall statistically significatively (us-
ing the t-test implemented in Weka) lower than the others models. However, the
precision and recall of AdaBoostM1, J48 y DTB are note statistically significa-
tively different. So, the best feature to compare these models is the accuracy.
Table 1 shows that DTB has the same accuracy than Boosting. A t-test has
proven that the difference between them is not statistically significative and it
has shown that they perform better than J48 and Näıve Bayes.

Figure 1 shows the decision tree computed by the DTB learning model. In-
ternal nodes in the tree query the number of times that a work appears in the
email. This tree can be rewrite as a set of 13 disjoint rules. Results in table
1 show that DTB can achieve the same accuracy as Boosting with a size of

Table 1. Average accuracies (Acc.), IR Precision, IR Recall, F1 Measure and Hy-

pothesis size (computed by Weka) of several learning models for the Spanish Spam

dataset

Learning model Accuracy IR Precision IR Recall F1 Measure Hyp. Size

Näıve Bayes 89,55 0,96 0,92 0,94 13252

J48 93,07 0,96 0,96 0,96 34

AdaBoostM1 DS 95,00 0,96 0,99 0,98 200

AdaBoostM1 J48 96,58 0,97 0,98 0,98 6792

DTB DS 95,08 0,96 0,98 0,97 25
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‘‘trouble’’ = 0

| ‘‘clientes’’ = 0

| | ‘‘acción’’ = 0

| | | ‘‘recibir’’ = 0

| | | | ‘‘gmail’’ = 0

| | | | | ‘‘saludos’’ > 0: Legitimate

| | | | | ‘‘saludos’’ = 0

| | | | | | ‘‘somos’’ = 0

| | | | | | | ‘‘http’’ <= 1: Legitimate

| | | | | | | ‘‘http’’ > 1

| | | | | | | | ‘‘list’’ > 0: Legitimate

| | | | | | | | ‘‘list’’ = 0

| | | | | | | | | ‘‘wrote’’ > 0: Legitimate

| | | | | | | | | ‘‘wrote’’ = 0: Spam

| | | | | | ‘‘somos’’ > 0: Spam

| | | | ‘‘gmail’’ > 0

| | | | | ‘‘hola’’ > 0: Legitimate

| | | | | ‘‘hola’’ = 0: Spam

| | | ‘‘recibir’’ > 0

| | | | ‘‘hola’’ > 0: Legitimate

| | | | ‘‘hola’’ = 0: Spam

| | ‘‘acción’’ > 0: Spam

| ‘‘clientes’’ > 0: Spam

‘‘trouble’’ > 0: Spam

Fig. 1. Decision tree computed by the DTB learning model

hypothesis smaller than the size of the hypothesis of Boosting and J48 without
a scoring classification scheme. Of course, the size of the hypothesis of a DTB is
smaller and more comprehensible than the hypothesis of Boosting because the
size of the latter is the number of the weak learners that is greater than 10 at
best and usually greater than 100 weak hypotheses.

Rules in figure 1 show that there are words that clearly identify a email like
spam. For example, “xlientes” and “acción” are not words used usually in mails
written in the Department of Languages and computer Science and they denote
spam. Instead, “saludos” is a word used usually to end a letter and it is not
founded in spam messages.

4 Conclusion

Some of most important anti-spam filters uses a diverse range of tests to identify
unsolicited bulk email. Data mining techniques are useful in discovering these
classification rules, that can be used anti-spam filters.

Comprehensibility of the hypothesis model computed by these data mining
techniques is a criterion that cannot be easily overlooked since knowledge engi-
neers understand and accept it in order to embed it in the anti-spam filter.
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In [1] is shown that the DTB learning model computes human readable and
comprehensible hypothesis. but, it had not been tested in high dimensional fea-
ture space learning tasks like anti-spam filtering. Experimental evaluation carried
out in this paper shows that the DTB algorithm maintains the same comprehen-
sibility of hypothesis in high dimensional feature space problems while achieving
the performance of other ensemble methods using for spam email filtering.

Experiments have shown that the hypothesis size computed by the DTB learn-
ing model is smaller than the size of the hypothesis of J48. Moreover, the accu-
racy of the DTB learning model improves statistically significatively the accuracy
of the J48 and Näıve Bayes. DTB achieves statistically the same accuracy than
learning model like AdaBoost with complex weak learners.

As a future research line, we would like to study the presented techniques in
a larger corpus. Moreover, it could be take into account expressions or combina-
tions of several words instead of simple words as feature space.

Another line for future research is the introduction of misclassification costs
inside the DTB learning algorithm.
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Abstract. We present new decomposition heuristics for finding the opti-

mal solution for the maximum-weight connected graph problem, which is

known to be NP-hard. Previous optimal algorithms for solving the prob-

lem decompose the input graph into subgraphs using heuristics based on

node degree. We propose new heuristics based on betweenness centrality

measures, and show through computational experiments that our new

heuristics tend to reduce the number of subgraphs in the decomposition,

and therefore could lead to the reduction in computational time for find-

ing the optimal solution. The method is further applied to analysis of

biological pathway data.

1 Introduction

The maximum-weight connected graph (MCG) problem is: given an undirected
node-weighted graph G = (V,E) and integer k, find a connected subgraph con-
sisting of k nodes whose sum of weights is the largest of all such subgraphs. The
constrained maximum-weight connected graph (CMCG) problem is the same
as MCG but with a fixed vertex also given in the input, and the problem is
to find the connected subgraph with largest sum of weights that includes this
vertex. These problems were considered in [1,2], for potential applications in
network design problems and facility expansion problems [3], and are known to
be NP-hard [4].

In this paper, we propose a new application of MCG: core source component
discovery in gene networks. One of the most important topics in Systems Biology
is to find the difference between the normal cell and the mutant cell by analyzing
the result of some high throughput experiments, e.g. microarray experiment.
Once the differences (i.e. the set of genes with different expressions) are identified,
the next challenge is to apply some pathway level analysis to identify the source
� Corresponding authors.
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components which are the true cause of the difference observed in the mutant.
This is important since those identified components may be useful for clinical
diagnoses by checking the expressions of the identified source components.

Recently, several pathway databases that includes signal transduction regu-
lations, gene regulations and metabolic reactions are available, e.g. KEGG [5],
Transpath [6], EcoCyc [7] and Reactome [8]. Additionally, many high-throughput
gene expression data are publicly available, e.g. Gene Expression Omnibus [9]
at NCBI. These pathway databases can be considered as directed or undirected
graphs where each node represents a gene. Also, by using the gene expression
data, we can give a weight to each node representing the difference in gene
expression. It is thus natural to assume that a connected subgraph with large
weights would be a good candidate for such source components.

An important aspect in this problem setting is that biologists are not satisfied
with approximate solutions. Finding the optimal solution is very important to
them, since the results will be used for various clinical applications, e.g. choos-
ing the minimal set of marker genes. Therefore, our focus is on methods which
solves the problem optimally. We follow the work by Lee and Dooly [2], which
solves MCG optimally by decomposing the graph of the MCG problem to sev-
eral subgraphs of smaller size. By solving CMCG optimally for the subgraphs,
an optimal solution for MCG can be obtained. However, this decomposition is
not unique, and Lee and Dooly present two heuristics to this end. The main
contribution of this paper is to present new decomposition heuristics based on
betweenness centrality measures of nodes and edges in a graph. Computational
experiments show that the new heuristics reduce the number of CMCG prob-
lems to be solved for a given MCG problem, which could lead to a more efficient
optimal solution to MCG.

2 Preliminaries

We consider undirected graphs with weighted nodes. Let G = (V,E) represent an
undirected graph where V is the set of nodes, and E ⊆ {{x, y} | x, y ∈ V, x 	= y}
is the set of edges. For any node v ∈ V , let deg(v) = |{w | {v, w} ∈ E, v 	= w}|.
For each node v ∈ V , its associated weight is denoted weight(v).

Problem 1 (Maximum-Weighted Connected Graph (MCG)). Given a graph G =
(V,E) with weighted nodes and an integer k, find a subgraph of G with k nodes
that is connected and maximizes the sum of weights of the k nodes.

Problem 2 (Constrained Maximum-Weighted Connected Graph (CMCG)). Given
an undirected graph G = (V,E) with weighted nodes, an integer k, and a node
u ∈ V , find a subgraph of G with k nodes that includes u, is connected, and
maximizes the sum of weights of the k nodes.

Next, we introduce the notion of betweenness centrality in graphs, which we will
use in our algorithms. For a graph G = (V,E) and any node a, b ∈ V , let σab

denote the number of distinct shortest paths between nodes a and b in G. For
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Algorithm 1. Decomposing MCG into CMCG (Lee and Dooly [1,2])
procedure Main(G = (V, E), k) � Solve MCG by Decomposition to CMCG

maxWeight := 0

for i := k to |V | do
if |V̂i| ≥ k then � component is large enough

Solve V ∗
vi

:=CMCG(Gi, k, vi)

if maxWeight <
∑

v∈V ∗
vi

weight(v) then � update best solution

maxWeight :=
∑

v∈V ∗
vi

weight(v)

Vs := V ∗
vi

end if
end if

end for
return maxWeight , Vs � return best score and subgraph

end procedure

any n ∈ V , let σab(n) denote the number of distinct shortest paths between a
and b that go through n. For edge e ∈ E, let σab(e) denote the number of distinct
shortest paths between a and b that contain e.

Definition 1 (Betweenness). The node betweenness NB(G, v) of a node v ∈ V

of a graph G = (V,E), is defined as NB(G, v) =
∑

vi∈V

∑
vj∈V \{vi}

σvivj
(v)

σvivj
. The

edge betweenness EB(G, e) of a node e ∈ E of a graph G = (V,E), is defined as

EB(G, e) =
∑

vi∈V

∑
vj∈V \{vi}

σvivj
(e)

σvivj
.

Intuitively, nodes or edges that have high betweenness are those that appear
frequently in shortest paths between nodes. For example, nodes or edges that
bridge two graphs will have higher betweenness values compared to those inside
the two graphs. It is known that the betweeness of all nodes and edges can be
computed in O(|V | · |E|) time and O(|V |+ |E|) space [10].

3 Algorithm

It was shown by Lee and Dooly [1,2] that any instance of the MCG problem can
be decomposed into multiple CMCG problems, and by combining the optimal
solutions to the decomposed CMCG problem gives an optimal solution to the
MCG problem. Although both MCG and CMCG are known to be NP-hard,
the decomposition helps in speeding up the search for the optimal solution to
the MCG problem, since 1) the solution space of CMCG problems is restricted
compared to MCG, and 2) the graph of the MCG problem is decomposed to
smaller graphs.

Algorithm 1 shows a general method to solve the MCG problem optimally
by solving multiple CMCG problems. The decomposition of a graph G = (V,E)
depends on an ordering on the vertices. We will assume that the ordering on the
vertices of V = {v1, . . . , vn} will be represented by their subscript. Further, let
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Vi = {vj | j ≤ i}, and define V̂i as the connected set of vertices of Vi that includes
vertex vi. Denote by Gi, the subgraph induced by V̂i, that is, Gi = (V̂i, Ei) where
Ei = {{va, vb} ∈ E | va, vb ∈ V̂i}. The algorithm decomposes the MCG problem
to CMCG problems for the graphs Gk = (V̂k, Ek) to Gn = (V̂n, En), where the
constrained vertex for Gi is vertex vi (k ≤ i ≤ n), and if |V̂i| ≥ k.

As noted earlier, the decomposition algorithm depends on an ordering of the
vertices, which has a large effect on the number and size of the CMCG problems
to be solved. Finding the best such ordering that reduces the number of CMCG
problem to be solved is also known to be NP-hard [2].

3.1 ORIGINAL DEGREE and UPDATED DEGREE

For determining the ordering, Lee and Dooly presented two heuristics, ORIGI-
NAL DEGREE and UPDATED DEGREE [2]. Both are essentially greedy algo-
rithms based on local information. In ORIGINAL DEGREE, the node with the
smallest degree is chosen. More precisely, while CMCG calls are not caused (i.e.
|V̂i| < k), nodes with smallest degree are chosen. If adding any node causes a
CMCG call, then, the node that minimizes the size of the graph for which CMCG
is called is chosen. When there are multiple such nodes, the node with small-
est degree is again preferred. UPDATED DEGREE is very similar to ORIG-
INAL DEGREE. The only difference is that in UPDATED DEGREE, rather
than using the degree of the node, the remaining degree of the node is used.
Here, the remaining degree of a node vi is |{{vi, vj} ∈ E | j > i}|, that is, the
number of edges to other vertices that have not been added yet.

3.2 Betweenness Centrality

Next, we describe two new heuristics based on betweenness centrality measures.
For the node betweenness ordering (NB), we determine the order greedily start-
ing from vn, down to v1. For each i = n, . . . , 1, vi is chosen as the node that has
the largest node betweenness in the graph induced by V \ {vj | j > i}. The node
betweenness of the graph is recalculated after each choice of vi.

For the edge betweenness ordering (EB), we also determine the order greedily
starting from vn, down to v1. For each i = n, . . . , 1, vi is chosen as follows:
Let the edge {u, v} be the edge with greatest edge betweenness in the graph
induced by V \ {vj | j > i}. Then, vi = arg maxw∈{u,v}{deg(w)}, that is, the
node with the greater degree. When there are no edges left in the graph induced
by V \ {vj | j > i}, then vi is the node with the largest remaining degree.

Algorithm 2 shows pseudocode for the node betweenness heuristics. The heuris-
tics based on edge betweenness is similar and we omit the pseudocode.

An intuitive rationale behind the heuristics is as follows: As mentioned earlier,
nodes and edges with high centrality are more likely to be those that “bridge”
connected components in the graph. Therefore, if we choose the node ordering
so that the nodes or edges with higher centrality come later, then we may hope
to delay large connected components from being created in Algorithm 1.



Better Decomposition Heuristics for the MCG Using Betweenness Centrality 469

Algorithm 2. Ordering based on Node Betweenness
procedure NodeBetweennessOrdering(G = (V, E))

V ′ := V
for i := |V | downto 1 do

G′ = (V ′, E′) := the subgraph induced by V ′

vi := arg maxv∈v′ {NB(G′, v) }
remove vertex vi from V ′

end for
return (v1, . . . , vn).

end procedure

4 Computational Experiments

4.1 Random Data

We evaluate our heuristics as in [2]. Based on two parameters n, and x, we
generate random graphs with n nodes and x(n − 1) edges for n = 100, 300, 500
and x = 1, 3, 5. The results for decomposing the MCG problem to the generated
graphs with k = 10, 20, 40 are shown in Table 1.

As in the previous paper [2], we compare the number of CMCG problems to
be solved (count) and their average size (size) for 5 heuristics: NB (node be-
tweenness), EB (edge betweenness), Original (ORIGINAL DEGREE), Updated
(UPDATED DEGREE), and Random (random ordering). Each cell in Table 1
for each parameter n, x, k is an average of 10 random graphs.

We can see that the NB heuristics gives the smallest count for almost all pa-
rameter settings. Interestingly, the average CMCG size for the Random heuristics
seems best. However, this is because Random decomposes the MCG problem into
many CMCG problems where some of them can be fairly small, which reduces
the average CMCG size.

4.2 Real Data

Here, we show results of applying our algorithm to real biological data. We
selected the gene expression data of tumors of kidney cancer by Gumz M.L.
et al. [11] in the Gene Expression Omnibus database (GEO) of NCBI [12]. The
data compares the gene expressions between normal kidney tissue and stage
I or II clear cell Renal Cell Carcinoma (cRCC) tumor tissue in human, us-
ing Affymetrix Human Genome U133A microarray platform (data GSE6344 in
GEO1). Genomic profiling of cRCC patients indicated the loss of a negative
regulator of the Wnt pathway, secreted frizzled-related protein 1 (sFRP1). As
the target pathway model, we used Wnt pathway model that is generated by
the method in [13]. The original source of the database is the TRANSPATH
database [6], a manually curated high-quality pathway database.

1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7234

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7234
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Table 1. Comparison of count and size of decomposed CMCG problems on random

graphs with n nodes and x(n− 1) edges. The cell with bold figures is the best count

among the five methods for the same n, x and k parameters. The cell with underline

is the minimum size among the five methods for the same n, x and k parameters.

NB EB Original Updated Random

n x k count size count size count size count size count size

10 11.2 39.76 11.1 39.83 11.0 41.75 11.5 40.90 29.7 47.20

1 20 7.3 58.03 7.9 55.97 8.0 54.04 8.1 55.74 24.7 58.39

40 5.2 65.44 5.4 63.87 5.4 62.37 6.2 62.40 17.9 60.67

10 40.8 68.03 44.1 64.11 42.7 67.35 45.0 65.30 71.8 60.98

100 3 20 36.6 74.36 40.6 68.50 38.5 73.36 42.1 70.39 67.1 64.24

40 33.2 79.09 35.7 74.27 40.0 71.77 41.5 73.50 57.3 70.79

10 55.6 67.00 60.4 61.94 58.4 66.55 61.3 63.73 82.5 58.30

5 20 52.4 69.69 56.3 65.20 55.4 68.14 57.8 67.20 77.2 61.43

40 47.3 74.07 48.3 70.98 55.3 69.29 55.8 69.38 59.7 70.48

10 34.8 99.92 36.9 99.41 36.2 102.90 36.7 102.21 92.5 137.00

1 20 25.8 138.25 26.4 132.42 27.8 132.35 28.4 133.02 80.4 150.31

40 20.3 165.93 21.0 160.62 23.3 160.36 24.1 160.07 73.2 163.33

10 123.7 199.71 130.1 189.76 132.4 190.06 132.9 192.67 221.1 177.95

300 3 20 114.1 214.70 121.9 201.51 124.7 203.81 129.8 198.87 216.3 181.75

40 109.1 225.77 119.2 207.19 120.7 210.91 129.4 204.74 207.6 187.11

10 166.8 198.36 178.3 184.54 175.0 191.12 178.1 190.81 253.8 169.58

5 20 159.3 206.77 172.5 191.73 170.1 198.38 177.6 193.61 248.1 173.33

40 153.6 214.33 167.2 195.08 168.6 199.55 173.6 198.24 240.7 177.78

10 58.8 156.36 61.5 159.18 58.7 165.35 59.3 166.83 158.3 219.29

1 20 42.5 214.92 44.2 210.63 46.0 208.54 48.0 211.34 138.6 246.15

40 34.9 268.47 37.6 256.35 37.8 262.24 41.0 248.42 131.2 259.71

10 209.3 334.77 216.0 321.19 216.9 322.51 228.4 312.82 375.0 292.57

500 3 20 191.9 357.50 201.7 336.71 204.6 338.21 219.0 324.88 363.2 300.71

40 181.5 376.00 195.7 348.19 196.6 350.91 213.8 333.32 356.4 305.06

10 279.2 331.45 293.1 314.64 290.7 320.58 303.2 311.19 424.6 281.88

5 20 266.1 347.80 283.5 323.71 284.2 326.75 299.1 316.61 418.0 285.94

40 258.5 356.87 277.0 327.98 281.5 331.78 293.6 324.14 408.3 290.97

For the Wnt pathway network, we assign to each node (gene), absolute values
of the difference in expression levels between normal tissue and tumor tissue,
observed by the probe of the corresponding gene. In some case, several probes
are mapped to the same gene in the microarray data. For this case, we selected
the maximum value among them: i.e. for each gene, select the value m(p) =
max |n(p) − c(p)| for p ∈ P , where P is the set of probes of the gene, n(p)
and c(p) is the expression of normal cell and tumor expression of the probe p,
respectively.

Nodes in the Wnt pathway network consists of mRNA, Protein and modi-
fied protein and complex proteins. We assigned the value m(p) for mRNA and
protein, the value m(p)/2 for modified protein, and zero for complex proteins.
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Fig. 1. The MCG result for k15 applied to the Wnt pathway. The network contained

all nodes of the MCG for k = 5 and 10. It can be observed that all nodes in the

left-bottom and bottom subnetworks are not selected for the optimal subgraph.

The number of genes contained in this data was 56. The MCG obtained for
k = 15 is shown in Fig. 1. The genes enclosed in squares indicate a solution to
the MCG problem2.

It can be observed that all nodes in the left-bottom and bottom subnetworks
are not included in the optimal subgraph. Thus, we can infer that in cRCC tumor
tissue, the Fz, Wnt and Dvl subnetwork and Frat1 subnetwork have less impact
compared to other subnetworks in Wnt pathway, e.g. beta-catenin subnetwork.

5 Conclusion

In this paper, we introduced new heuristics for the decomposition of the maxi-
mum weighted connected graph problem (MCG) into the constrained maximum
weighted connected graph problem (CMCG). The heuristics are based on be-
tweenness centrality, which express the importance in terms of connectivity of
2 Larger snapshots can be obtained from http://www.csml.org/download/

OptFinder/WntPathway_CMCG15_undirected.png

http://www.csml.org/download/
OptFinder/WntPathway_CMCG15_undirected.png
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the nodes or edges in the graph. Experimental results show that our heuristics
tend to reduce the number of CMCG problems to be solved. Therefore applica-
tion of our heuristics could lead to finding the optimal solution more efficiently.
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