

9 Mathematical Models

The partial model mathematical_model is concerned with the description of ma-
thematical models. Fig. 9.1 gives an overview of the ontology modules of ma-
thematical_model and their interrelations. The main module, mathemati-
cal_model (cf. Sect. 9.1), introduces the basic concepts for mathematical

Fig. 9.1: Overview on partial model mathematical_model

The process_model module is extended on the Application-Oriented Layer: The
ontology module laws (cf. Sect. 9.6) establishes models for a number of physical
laws that are common in the context of chemical engineering (e.g., the law of

duced and described in behavior (Sect. 8.6.1). Property_models (cf. Sect. 9.7)
provides correlations for designated physical quantities, such as vapor pressure cor-
relations or activity coefficient models. Finally, the module process_unit_model

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_9,
© Springer-Verlag Berlin Heidelberg 2010

modeling, including model variables as well as items pertaining to sub-models and
their connections. CapeML (von Wedel 2002) was taken as an important source.
The ontology module equation_system (cf. Sect. 9.2) further specifies the charac-
teristics of the model equations that constitute a mathematical model. Based on
these characteristics, an appropriate numerical solver can be selected, which is the
concern of the ontology module numerical_solution_strategy (cf. Sect. 9.3). The
modules process_model (cf. Sect. 9.5) and cost_model (cf. Sect. 9.4) describe two
particular types of mathematical models: process models model the behavior of
process units (cf. Sect. 8.8) and materials (cf. Sect. 7.1), while cost models predict
the costs (cf. Sect. 8.7.1) of chemical process systems.

energy conservation). Thus, laws may be associated with the phenomena intro-

mathematical_model

mathematical_
model

equation_
system

cost_model

lawsproperty_models process_unit_
model

system

Upper Layer

Conceptual
Layer

Application-Oriented Layer

numerical_
solution_strategyprocess_model

324 Mathematical Models

(cf. Sect. 9.8) establishes customary mathematical models for process units, such
as ideal reactor models or tray-by-tray models for distillation columns.

9.1 Mathematical Model (Ontology module)

9.1.1 High-Level Concepts

Fig. 9.2: Mathematical model, model quantity, and model quantity specification

A mathematical model has a number of properties, the most important of which are
model quantities. As indicated in Fig. 9.2, a model quantity is a subclass of physical
quantity that is linked to the model via the relation hasVariable (a specialization of
hasProperty, cf. upper right corner of Fig. 9.2). Like any physical quantity, a model
quantity has a particular physical dimension and can be either a scalar quantity (cf.
Sect. 5.1.11) or a tensor quantity (cf. Sect. 5.5). The value of a model quantity is
represented by the class model quantity specification; each model quantity has exactly
one model quantity specification.

A model quantity can be one of the following types: a constant, a parameter, a state
variable, or an input variable, depending on the intended specification of its value:
Constants and parameters constitute the fixed set of specified variables. Input va-
riables represent time or spatially dependent inputs, which have to be specified for
dynamic and/or spatially distributed systems. Finally, state variables constitute the
fixed set of unknown variables, which have to be computed by the model. The
model quantity specification indicates the numericalValue (cf. Sect. 5.1.11) of the

hasProperty

hasVariable

system

Mathematical
Model ModelQuantity

PhysicalQuantity

hasVariable hasValue ModelQuantity
Specification

Value

Parameter Constant StateVariable

Model

InputVariable

hasProperty

hasVariable

system

Mathematical
Model ModelQuantity

PhysicalQuantity

hasVariable hasValue ModelQuantity
Specification

Value

Parameter Constant StateVariable

Model

InputVariable

hasProperty

hasVariable

hasProperty

hasVariable

system

Mathematical
Model ModelQuantity

PhysicalQuantity

hasVariable hasValue ModelQuantity
Specification

Value

Parameter Constant StateVariable

Model

InputVariable

A mathematical model is a special type of model (cf. Sect. 5.1.6), which uses
mathematical expressions to describe the behavior of the modeled system, for
example by means of simulation.

Mathematical Model (Ontology module) 325

Fig. 9.3: Assignment of particular model quantity specifications to model quantites

Fig. 9.4: Correspondence between a model quantity and a physical quantity of the
modeled object

9.1.2 Modeling of Decomposition

Like any system, a mathematical model can be decomposed into subsystems, which
are called submodels. The submodel models the same system as its superordinate
mathematical model. Consequently, there is no need to specify the models relation
between submodel and system explicitly. However, such a relation may be indi-
cated if the submodel models a designated subsystem of the overall system.

model quantities. Unlike constants, parameters and input variables may have dif-
ferent model quantity specifications in different simulation runs. If the model
quantity is of type parameter or state variable, the model quantity specification may
indicate their upper limit and lower limit (cf. Fig. 9.3).

A system which is the target of a models relation is classified as a modeled object.
The correspondences between a model quantity and a physical quantity of the modeled
object can be explicitly represented by means of the relation corresponds-ToQuantity
(cf. Fig. 9.4).

ModelQuantity hasValue ModelQuantity
Specification

Parameter

StateVariable

UpperLimit

LowerLimithasValue

hasValue

xsd:any
1numerical

ValueModelQuantity hasValue ModelQuantity
Specification

Parameter

StateVariable

UpperLimit

LowerLimithasValue

hasValue

xsd:any
1numerical

Value

system

ModeledObject
models hasVariable

PhysicalQuantity

isPropertyOf

Mathematical
Model

1

1
1..n

System

ModelQuantity
1..n

Corresponds
ToQuantity

isPropertyOf
system

ModeledObject
models hasVariable

PhysicalQuantity

isPropertyOf

Mathematical
Model

1

1
1..n

System

ModelQuantity
1..n

Corresponds
ToQuantity

isPropertyOf
system

ModeledObject
models hasVariable

PhysicalQuantity

isPropertyOf

Mathematical
Model

1

1
1..n

System

ModelQuantity
1..n

Corresponds
ToQuantity

isPropertyOf

326 Mathematical Models

9.1.3 Modeling of Connectivity

The different submodels of a mathematical model are coupled via their model quanti-
ties as explained in the following.

Fig. 9.5: Variables, ports, couplings

Fig. 9.6 shows exemplarily the definition of a mathematical model M, which consist
of two submodels, M1 and M2. M1 has the model quantities a, b, and c, while M2 has
the model quantities x, y, and z. Model M1 owns the model port P1, which comprises
the quantities b and c. Similarly, the model port P2 of model M2 comprises the

At first, the concept of a model port is introduced. A model port is a special type of
property set, which comprises model quantities that can participate in a connection
with another model. Thus, a model port has the function to identify and to bundle
the “public” variables of a mathematical model.
Next, the concept of a coupling is established. A coupling is a property of the overall
mathematical model, which defines a connection between two of its submodels by
linking their respective model ports96. The coupling implicitly defines equality con-
straints between the model quantities in the two model ports and must be treated as
such (e.g., during a degrees-of-freedom analysis of a complex model). It may be
used to connect mathematical models both ‘horizontally’ (i.e., on the same level of
decomposition) and ‘vertically’ (i.e., across levels of decomposition).
The order of the model quantities within a model port can be specified by a port index,
as shown in Fig. 9.5. The port index is used to identify corresponding model quanti-
ties in a coupling: Two model quantities of different model ports are coupled if and
only if their port indices have the same indexValues. The specification of a port index
may be omitted if the correspondence between model quantities is evident from the
context (e.g., if each of the coupled model ports comprises only a single model quan-
tity, or if corresponding model quantities can be uniquely identified through their
physical dimension.)

96 Please note that this way of modeling does not contradict the principles stated in net-
work_system (cf. Sect. 5.2) since model port and model quantity are subclasses of property and are
not considered as subsystems.

system

Mathematical
Model ModelQuantityhasVariable

hasPort

Coupling

hasCoupling
2

1..n

PropertySet

PortIndex

isOrderedBy
0..n

determines
PositionOf

1

xsd:
positive
Integer

index
Value

ModelPort

Mathematical Model (Ontology module) 327

quantities y and z. P1 and P2 are coupled via the coupling C, which is a property of
the overall model M. The corresponding quantities of the coupling are identified via
their port indices: b and y have the same indexValue and are thus linked by an equal-
ity constraint. The same holds true for quantities c and z.

determines
PositionOf

determines
PositionOf

determines
PositionOf

determines
PositionOf

[MM]
M1

[MQ]
a

[MQ]
b

[MM]
M2

hasVariable

[MP]
P1

[MQ]
x

[MQ]
y

[Coupling]
C

hasVariable

[MP]
P2

[MM]
M

hasCoupling

hasPort

[PF]
i11

[PF]
i21

isOrderedByhasPort

1

[MQ]
c

[PF]
i12

[MQ]
z

index
Value

2

index
Value [PF]

i22

1

index
Value

2

index
Value

Fig. 9.6: Exemplary decomposition of model M into submodels M1 and M2

9.1.4 Usage

The ontology module mathematical_model provides only the basic concepts for
the description of mathematical models. For practical applications, further con-
cepts may be required, which would typically be supplied by additional ontology
modules located on the Application-Oriented Layer. Some possible extensions of
the mathematical_model module are discussed next.
One possible extension would be the introduction of concepts suitable for
representing model equations. Such an extension could be realized easily by reus-
ing the concepts of the mathematical_relation module (cf. Sect. 6.1). However,
such an extension is not required in practice, since specialized representation for-
mats for mathematical equations are available, such as MathML (Ion and Miner
1999), CapeML (von Wedel 2002), or CellML (Lloyd et al. 2004).
Another possible extension would be the definition of different types (i.e., sub-
classes) of model ports. A particular model port type could, for example, prescribe
the number of model quantities comprised in a model port, their types (i.e., constant,
parameter, input variable or state variable), their physical dimensions, etc. Moreover, a
model port type could be further characterized through attributes (e.g., assigning a
direction to a model port, thus turning it into either an inlet port or an outlet port).
That way, standardized model interfaces can be defined – for instance, one may

328 Mathematical Models

define a standard energy port, which contains a single scalar model quantity with the
physical dimension of an energy flow and must furthermore be tagged as an inlet or
outlet port. Such standardization facilitates checking the feasibility of a coupling: A
coupling of two mathematical models will be feasible if their model ports (a) are of the
same type (e.g., energy port) and (b) have matching attributes (e.g., an inlet port can
only be coupled to an outlet port).
In practice, a mathematical model often consists of several interconnected submodels
of the same type – for example, the model of a distillation column contains several
models of distillation column trays. An application-oriented extension of mathe-
matical_model could apply the loop design pattern introduced in the Meta Model
(Sect. 4.5.5) to define such repetitive model structures. An example is given in
Fig. 9.7 and Fig. 9.8.

[MM]
Column
Model

[Mpart]
Vapor

InletPort_i

hasPort

[Coupling]
Vapor

Coupling

[Part]
ReboilerVapor

OutletPort

hasCoupling

[MM]
TrayModel_i

[MM]
Reboiler

Submodel

hasPort

hasPort

[Part]
TraysVapor

InletPort

hasPort

[MPart]
Vapor

OutletPort_i+1

[Coupling]
Vapor

Coupling_i

hasCoupling

[MM]
Trays

Submodel

[MM]
TrayModel_i+1

Fig. 9.7: Specification of the overall model

Fig. 9.7 specifies the overall structure of a Column Model. It consists of a Reboiler
Submodel and a Trays Submodel, which are coupled via a Vapor Coupling (to sim-
plify matters, the liquid phase is not considered in this example). The Trays Sub-
model is defined iteratively (see grey-shaded area in Fig. 9.7). It consists of sever-
al submodels of the same type, which are represented by the individual
TrayModel_i. Each TrayModel_i has a VaporInletPort_i, which is coupled to the Va-
porOutletPort_i+1 of the next TrayModel_i+1. This connectivity statement is in-
cluded in a ForLoop that counts from 1 to 20, as shown in Fig. 9.8, to define a
structure of 20 interconnected tray models. The vapor inlet port of the 20th tray
model corresponds to the previously defined TraysVaporInletPort.

Mathematical Model (Ontology module) 329

[MPart]
Vapor

OutletPort_i

numberOf
Iterations20

hasPort

[Part]
Vapor

InletPort_i
hasPort

[MPart]
Vapor

OutletPort_i+1

hasPort

sameObject

[Part]
Vapor

Coupling_i

[MM]
TrayModel_i+1

sameObject

[MM]
TrayModel_i

statement
For_i

statement
For_iPlus1

statement
For_i

statement
For_i

[MPart]
TraysVapor

InletPort

sameObject
finalStatement

[ForLoop]
ForLoop

Fig. 9.8: Specification of the repetitive submodel structure

9.1.5 Concept Descriptions

Individual concepts of the module mathematical_model are defined below.

Class Descriptions

Constant
A constant is a specific model quantity, the model quantity specification of which has a
constant numericalValue in all simulation runs.

Coupling
A coupling connects two model ports of different submodels, thereby defining equali-
ty constraints between model quantities comprised in the two model ports.

Input variable
Input variables represent time- or space-depenent inputs, which have to be specified
for dynamic and/or spatially distributed systems.

Lower limit
An lower limit is model quantity specification which defines an lower bound for the
numericalValue of a model quantity specification.

Mathematical model
A mathematical model is a model that uses mathematical language to describe the
modeled system.

330 Mathematical Models

Modeled object
A system that is modeled by means of a model is denoted as a modeled object.
Formal definition: A modeled object is a system that isModeledBy a model.

Model port
A model port is a collection of model quantities that can participate in a connection
with another mathematical model. Thus, a model port has the function to identify and
to bundle the “public” variables of a mathematical model. Optionally, a model port
can be ordered by a port index.

Model quantity
A model quantity represents a physical quantity involved in a mathematical model, the
value of which can be either supplied by the modeler or a computed from an eval-
uation of the mathematical model.
Formal definition: A model quantity is either a state variable or a parameter or a con-
stant.

Model quantity specification
A model quantity specification specifies a model quantity in terms of its numerical val-
ue (or limits of its numerical value) and its unit of measurement.

Parameter
A parameter is a specific model quantity (i.e., an input variable), the model quantity
specification of which may take different numericalValue in different simulation
runs.

Port index
A port index orders the model quantities comprised in a model port by assigning each
of them an indexValue. In a coupling, model quantities with the same indexValue are
coupled to each other.

Submodel
A mathematical model can be decomposed into submodels.
Formal definition: A submodel is a direct subsystem of a mathematical model.

State variable
State variables constitute the fixed set of unknown variables which have to be com-
puted by the model.
Its model quantity specification either indicates the upperLimit and lowerLimit of the
model quantity (before solving the model) or its numericalValue (after solving the
model).

Upper limit
An upper limit is a model quantity specification which defines an upper bound for the
numericalValue of a model quantity specification.

Equation System 331

Relation Descriptions

correspondsToQuantity
The relation denotes a one-to-one correspondence between a model quantity and a
physical quantity of the modeled object.

hasCoupling
The relation indicates a coupling between two submodels of a mathematical model.

hasModelPort
The relation identifies the model port of a mathematical model.

hasModelVariable
The relation indicates the model quantities of a mathematical model.

determinesPositionOf
The one-to-one relation between a port index and the corresponding model quantity.

isIndexOf
The relation isIndexOf points from a port index to the associated model port.

isOrderedBy
The relation isOrderedBy points from a model port to its sorting port index.

Attribute Descriptions

indexValue
The attribute indexValue indicates the numerical value of a port index.

9.2 Equation System

The ontology module equation_system provides concepts for the description of the
model equations that constitute a mathematical model. The model equations are not
explicitly represented, only their equation system characteristics are specified.
Moreover, the scope of equation system characteristics is confined to those characte-
ristics that are of relevance for selecting an appropriate solver and/or solution
strategy for the mathematical model (cf. Sect. 9.3).
A mathematical model can be classified according to different criteria including eq-
uation system type, variables type, model representation form, etc. Following the rec-
ommendations for ontology normalization97 given by Rector (2003), equation sys-
tems are classified along a two axes (cf. Fig. 9.9): (1) using the equation system
type as a differentiating criterion and (2) referring to the linearity of mathematical

97 More details on this issue can be found in Sect. 4.2.

332 Mathematical Models

eled as equation system characteristics, which are linked to a mathematical model via
the relation hasCharacteristic (or one of its specializations, cf. upper left corner of
Fig. 9.9). Note that some of the equation system characteristics can only be assigned
to special types of equation systems; for instance, DAE type only applies to differen-
tial algebraic equation systems.

Fig. 9.9: Equation system characteristics

While the meaning of most concepts displayed in Fig. 9.9 should be evident from
their names, the concept of model representation form requires some explanation. A
mathematical model may appear in two representation forms, which are termed
open-form and closed-form.
An open-form model does not provide a solution method to solve its model equa-
tions. A numerical solver needs to be applied to the model to obtain a solution
solving the simulation. Hence, the open-form model must provide all the informa-
tion required by the external numerical algorithm to solve the model. For example,
a model representing a set of algebraic equations may provide equation residuals
and derivatives to a Newton solver. Before an open-form model can be successful-
ly solved, it has to be “squared”, meaning that the number of its unknown va-
riables must be the same as that of its equations. Among all the model quantities of

to be given values (i.e., they need to be assigned a model quantity specification with a
definite numericalValue) before the model can be evaluated (cf. Sect. 9.1). The oth-
er variables are state variables. If there are still more state variables than equations
in a model, it is necessary to assign values to some selected variables (i.e., turn
them into parameters or input variables). Generally, one can freely choose the set of

models, as described in Sect. 4.2.1. The other possible criteria are explicitly mod-

an open-form model, those declared as constants, input variables parameters have , or

hasCharacteristic

hasNumericalStiffness

hasVariablesType

hasModelRepresentationForm

hasDAE_Explicitness

mathematical_model

Mathematical
Model

EquationSystem
Characteristics

hasCharacteristic

ModelRepresentation
Form

VariablesType

LinearityVT

DAE_Type

NumericalStiffness

Differential
Algebraic
Equation
System

OrdinaryDifferential
AlgebraicSystem

PartialDifferential
AlgebraicSystem

Differential
Equation
System

OrdinaryDifferential
EquationSystem

PartialDifferential
EquationSystem

Algebraic
Equation
System

LinearAlgebraic
SystemType

NonlinearAlgebraic
SystemType

ODE_Type

has
Linearity

hasCharacteristic

hasNumericalStiffness

hasVariablesType

hasModelRepresentationForm

hasDAE_ExplicitnesshasCharacteristic

hasNumericalStiffness

hasVariablesType

hasModelRepresentationForm

hasDAE_Explicitness

mathematical_model

Mathematical
Model

EquationSystem
Characteristics

hasCharacteristic

ModelRepresentation
Form

VariablesType

LinearityVT

DAE_Type

NumericalStiffness

Differential
Algebraic
Equation
System

OrdinaryDifferential
AlgebraicSystem

PartialDifferential
AlgebraicSystem

Differential
Equation
System

OrdinaryDifferential
EquationSystem

PartialDifferential
EquationSystem

Algebraic
Equation
System

LinearAlgebraic
SystemType

NonlinearAlgebraic
SystemType

ODE_Type

mathematical_model

Mathematical
Model

EquationSystem
Characteristics

hasCharacteristic

ModelRepresentation
Form

VariablesType

LinearityVT

DAE_Type

NumericalStiffness

Differential
Algebraic
Equation
System

OrdinaryDifferential
AlgebraicSystem

PartialDifferential
AlgebraicSystem

Differential
Algebraic
Equation
System

OrdinaryDifferential
AlgebraicSystem

PartialDifferential
AlgebraicSystem

Differential
Equation
System

OrdinaryDifferential
EquationSystem

PartialDifferential
EquationSystem

Differential
Equation
System

OrdinaryDifferential
EquationSystem

PartialDifferential
EquationSystem

Algebraic
Equation
System

LinearAlgebraic
SystemType

NonlinearAlgebraic
SystemType

Algebraic
Equation
System

LinearAlgebraic
SystemType

NonlinearAlgebraic
SystemType

ODE_Type

has
Linearity

Equation System 333

model variables of an open-form model to be specified, as long as the model re-
mains solvable. The values of the remaining variables can be obtained by solving
the model.
A closed-form model includes an underlying numerical algorithm, which solves its
model equations. Thus, it does not require any external solver for obtaining the

the values of a set of selected unknown variables, the so-called outputs, based on
the given values of the specified variables. In this process, the algorithm of a
closed-form model accepts only a fixed set of input variables, and consequently re-
turns a fixed set of output variables. No choice for specifying additional variables
is available, as in the case of open-form models. Reflected in model quantity types,
constants and parameters constitute the fixed set of specified variables, while the
state variables constitute the fixed set of unknown variables (i.e. output variables).

9.2.1 Usage

9.2.2 Concept Descriptions

Individual concepts of the module equation_system are defined below. For an ex-
tensive description of the introduced individuals, we refer to Morbach et al.
(2008j).

values of its unknown variables. The “execution” of the closed-form model yields

The ontology module equation_system provides the basic concepts for the identi-
fication of mathematical models from a mathematical point of view (e.g., whether
it is an ODE or DAE) This identification was primarily of concern in the COGents
project (cf. Sect. 12.1.1), where this module was applied to specify the type of ma-
thematical model to search for in various libraries.
Typically, mathematical models may be classified either by means of content
(e.g., a mathematical model for a polyethene reactor) or simply by mathematical
features, as it is done here. As an example, consider a process engineer who
searches for a particular mathematical model, which is supposed to be applied for
the calculations of a reactor. Depending on the software (e.g., he might have only
a solver for ODEs available), a classification with respect to the characteristics
(e.g., ODE type) is extremely helpful to identify the suitable mathematical model.

334 Mathematical Models

Class Descriptions

Algebraic equation system
An algebraic equation system is a mathematical model which solely consists of alge-
braic equations.
Formal definition: An algebraic equation system is either a linear algebraic system or a
nonlinear algebraic system.

DAE type
Characterizes the explicitness of a differential algebraic equation system.
Formal definition: The class DAE type is an exhaustive enumeration of the individ-
uals fully_implicit and semi-explicit.

Differential algebraic equation system
A differential algebraic equation system (DAE system) is a mathematical model that
comprises both algebraic and differential equations.
Formal definition: A differential algebraic equation system is either an ordinary differen-
tial algebraic system or a partial differential algebraic system.

Differential equation system
A differential equation system is a mathematical model that solely consists of differen-
tial equations.
Formal definition: A differential equation system is either an ordinary differential equa-
tion system or a partial differential equation system.

Equation system characteristics
The equation system characteristics characterize the model equations of a mathemati-
cal model.

Linear algebraic system type

Formal definition: A linear algebraic system type is an algebraic system that is charac-
terized as linear.

Linearity VT

Formal definition: Linearity is an exhaustive enumeration of the individuals linear
and nonlinear.

Model representation form
A mathematical model may appear in two forms, as indicated by the model represen-
tation form:
- An open-form model is solved by an external algorithm. One can freely

choose the inputs and outputs of the open-form model.

A linear algebraic system type is an algebraic system which contains only linear equa-
tions.

Linearity VT characterizes the linearity of a mathematical model.

Equation System 335

- A closed-form model includes an underlying numerical algorithm that solves
the model equations. The algorithm accepts only a fixed set of input variables,
and consequently returns only a fixed set of output variables.

Formal definition: The class model representation form is an exhaustive enumeration
of the individuals open-form and closed-form.

Nonlinear algebraic system type
Formal definition: A nonlinear algebraic system type is an algebraic equation system
that is characterized as nonlinear.

Numerical stiffness
In mathematics, stiff equations are equations where certain implicit methods, in
particular BDF, perform better, usually tremendously better, than explicit ones
(Hairer and Wanner 1996).
Formal definition: The class numerical stiffness is an exhaustive enumeration of the
individuals stiff and nonstiff.

ODE_type
Characterizes the explicitness of an ordinary differential equation system, which can
be given in implicit_formulation or explicit_formulation.
Formal definition: ODE_types is an exhaustive enumeration of the individuals im-
plicit_formulation and explicit_formulation.

Ordinary differential algebraic system
An ordinary differential algebraic system comprises algebraic equations as well as or-
dinary differential equations, but no partial differential equations.

Ordinary differential equation system
An ordinary differential equation system (ODE system) is a differential equation system
which solely consists of ordinary differential equations.

Partial differential algebraic system
A partial differential algebraic system is a differential algebraic equation system which
comprises both partial differential equations and algebraic equations.

Partial differential equation system
A partial differential equation system (PDE system) is a differential equation system
which consists of partial differential equations.

Variables type
A variables type indicates whether the model quantities of a mathematical model are all
continuous, all discrete, or partly continuous and partly discrete.
Formal definition: The class variables type is an exhaustive enumeration of the in-
dividuals continuous, discrete, and mixed.

336 Mathematical Models

Relation Descriptions

hasDAE_Type
Indicates an equation system characteristic of type DAE type.

hasLinearity
Refers from a mathematical model to a linearity value type.

hasModelRepresentationForm
Indicates an equation system characteristic of type model representation form.

hasNumericalStiffness
Indicates an equation system characteristic of type numerical stiffness.

hasODE_Type
Indicates an equation system characteristic of type ODE type.

hasVariablesType
Indicates an equation system characteristic of type variables type.

Attribute Descriptions

differentialIndex
The attribute represents the differential index of an ordinary differential algebraic
equation system, as defined by Gear and Petzold (1984) or of a partial differential
algebraic system, as defined by Martinson and Barton (2000).

differentialOrder
The attribute differentialOrder denotes the order of a differential equation, which is
defined as the order of the highest derivative of a model quantity appearing in the
differential equation.

9.3 Numerical Solution Strategy

In this ontology module, strategies for solving mathematical models are defined. At
present, it is confined to numerical solution strategies only. A classification of

ticular type of mathematical model is explicitly specified. The major concepts are
shown in Fig. 9.10. A model solution strategy solves a mathematical model; the sub-
classes of model solution strategy represent different types of numerical algorithms,
which are specifically designed to solve a certain type of mathematical model with
certain equation system characteristics. To this end, a model solution strategy may ap-
ply some other, specialized model solution strategy. So far, only numerical solution

numerical solution techniques is given, and the ability of a strategy to solve a par-

Numerical Solution Strategy 337

strategies have been considered in OntoCAPE, but symbolic/analytical solution
methods could be added in an analogous manner.

Fig. 9.10: Numerical solution strategy.

Fig. 9.11 shows the refinement of class algebraic model solution strategy. An exem-
plary linear algebraic model solution strategy is Gauss-elimination, an example of a
nonlinear algebraic model solution strategy is Newton’s method.

Fig. 9.11: Types of algebraic model solution strategies

An ODE solution strategy can be further characterized by indicating if the algorithm
is a one-step_method (e.g., the classical Runge-Kutta methods) or a multi-
step_method (e.g., the Adams-Bashforth methods). Moreover, it can be specified
whether the algorithm is a solution strategy for explicit ODEs or implicit ODEs (cf. Fig.
9.12.

mathematical_model

MathematicalModel
solves

OrdinaryDifferential
EquationSystem

ODE_
SolutionStrategy

DAE_
SolutionStrategy

AlgebraicModel
SolutionStrategy

solves

DifferentialAlgebraic
EquationSystem

solves

Algebraic
EquationSystem

solves

ModelSolutionStrategy

applies

applies

applies

PartialDifferential
AlgebraicModel
SolutionStrategy

PartialDifferential
AlgebraicSystem

solves

0..n

mathematical_model

MathematicalModel
solves

OrdinaryDifferential
EquationSystem

ODE_
SolutionStrategy

DAE_
SolutionStrategy

AlgebraicModel
SolutionStrategy

solves

DifferentialAlgebraic
EquationSystem

solves

Algebraic
EquationSystem

solves

ModelSolutionStrategy

applies

applies

applies

PartialDifferential
AlgebraicModel
SolutionStrategy

PartialDifferential
AlgebraicSystem

solves

0..n

mathematical_model

NonlinearAlgebraic
ModelSolutionStrategy

LinearAlgebraic
ModelSolutionStrategy

AlgebraicModel
SolutionStrategy

Algebraic
EquationSystem

solves

Nonlinear
AlgebraicSystem

Linear
AlgebraicSystem

solves

solves

mathematical_model

NonlinearAlgebraic
ModelSolutionStrategy

LinearAlgebraic
ModelSolutionStrategy

AlgebraicModel
SolutionStrategy

Algebraic
EquationSystem

solves

Nonlinear
AlgebraicSystem

Linear
AlgebraicSystem

solves

solves

mathematical_model

NonlinearAlgebraic
ModelSolutionStrategy

LinearAlgebraic
ModelSolutionStrategy

AlgebraicModel
SolutionStrategy

Algebraic
EquationSystem

solves

Nonlinear
AlgebraicSystem

Linear
AlgebraicSystem

solves

solves

338 Mathematical Models

Fig. 9.12: Further specification of ODE solution strategy

9.3.1 Concept Descriptions

Individual concepts of the module numerical_solution_method are defined below.

Class Descriptions

Algebraic model solution strategy
An algebraic model solution strategy is a model solution strategy for solving algebraic
equation systems.

DAE solution strategy
A DAE solution strategy is a model solution strategy for solving differential algebraic eq-
uation systems. Examples are implicit Runge-Kutta, BDF, etc.

Linear algebraic model solution strategy
A linear algebraic model solution strategy is a model solution strategy for solving linear
algebraic systems. An example is Gauss elimination.

Model solution strategy
A model solution strategy is a (typically numerical) algorithm that can be used to
solve mathematical models.

Nonlinear algebraic model solution strategy
A nonlinear algebraic model solution strategy is a model solution strategy for solving
nonlinear algebraic systems. An example is Newton’s method.

ODE solution strategy
An ODE solution strategy is a model solution strategy for solving ordinary differential
equation systems. An example is the Euler method.

Partial differential algebraic model solution strategy
A partial differential algebraic model solution strategy is a model solution strategy for
solving partial differential algebraic systems. An example is a finite element method.

TypeOfInvolvedSteps

one-step_method

hasTypeOfInvolvedSteps

SolutionStrategyFor
ImplicitODEs

SolutionStrategyFor
ExplicitODEs

ODE_
SolutionStrategy

multistep_method

TypeOfInvolvedSteps

one-step_method

hasTypeOfInvolvedSteps

SolutionStrategyFor
ImplicitODEs

SolutionStrategyFor
ExplicitODEs

ODE_
SolutionStrategy

multistep_method

TypeOfInvolvedSteps

one-step_method

hasTypeOfInvolvedSteps

SolutionStrategyFor
ImplicitODEs

SolutionStrategyFor
ExplicitODEs

ODE_
SolutionStrategy

multistep_method

Numerical Solution Strategy 339

Solution strategy for explicit ODEs
A solution strategy for explicit ODEs is used to solve ordinary differential equation sys-
tems that are given in an explicit_formulation. Examples are explicit Euler, explicit
Runge-Kutta, etc.

Solution strategy for implicit ODEs
A solution strategy for implicit ODEs is used to solve ordinary differential equation sys-
tems that are given in an implicit_formulation. Examples are implicit Euler, implicit
Runge-Kutta, etc.

Type of involved steps
A type of involved step denotes whether an ODE solution strategy is a one-
step_method or a multi-step_method.
- A one-step_method characterizes an ODE solution strategy that uses informa-

tion of one integration step. Examples are various Runge-Kutta methods.
- A multi-step_method characterizes an ODE solution strategy that uses informa-

tion of multiple integration steps. Examples are Adams, BDF, etc.
Formal definition: Exhaustive enumeration of the individuals one-step_method
and multi-step method.

Relation Descriptions

applies
A model solution strategy may apply some other, specialized model solution strategy
(e.g., for initialization, solving corrector equation, solution of a subproblem, etc.).

hasTypeOfInvolvedSteps
Indicates the type of involved steps of an ODE solution strategy.

solves
The relation indicates the type of mathematical model, for the solution of which a
particular model solution strategy is designated.

Attribute Descriptions

handlesDifferentialIndexUpTo
A DAE solution strategy can only solve differential algebraic equation systems up to a
certain differentialIndex. This restriction is specified through the attribute handlesDif-
ferentialIndexUpTo.

340 Mathematical Models

9.4 Cost Model

The ontology module cost_model establishes some cost models for predicting the
(investment) costs of chemical plants. A cost model is a special type of economic
performance model, which models the economic performance of a chemical process
system.
At present, the module merely holds a number of models for the estimation of the
fixed capital investment (cf. Sect. 8.7.1.2); in the future, further types of cost models
are to be added, and the existing ones are to be specified in detail. Fig. 9.13 gives
an overview on the cost models defined so far. For an explanation of the individual
classes, we refer to the concept definitions below.

Fig. 9.13: Models for estimating the fixed capital investment

9.4.1 Concept Descriptions

Individual concepts of the module cost_model are defined below.

mathematical_model

CPS_performance

FixedCapitalInvestment
Model

CapacityFCIModel FactorialFCIModelDetailedItemFCIModel

TurnoverRatio
Model

StepCounting
Model

DifferentialFactorial
Model

CostModel

PowerFactor
Model

SixTenthsRuleModel

GlobalFactorial
Model

UnitCostEstimateModel

Costs

FixedCapitalInvestment

EconomicPerformanceModelmodels

correspondsToQuantity

correspondsToQuantity

EconomicPerformance

hasProperty

MathematicalModel
mathematical_model

CPS_performance

FixedCapitalInvestment
Model

CapacityFCIModel FactorialFCIModelDetailedItemFCIModel

TurnoverRatio
Model

StepCounting
Model

DifferentialFactorial
Model

CostModel

PowerFactor
Model

SixTenthsRuleModel

GlobalFactorial
Model

UnitCostEstimateModel

Costs

FixedCapitalInvestment

EconomicPerformanceModelmodels

correspondsToQuantity

correspondsToQuantity

EconomicPerformance

hasProperty

MathematicalModel
mathematical_model

CPS_performance

FixedCapitalInvestment
Model

CapacityFCIModel FactorialFCIModelDetailedItemFCIModel

TurnoverRatio
Model

StepCounting
Model

DifferentialFactorial
Model

CostModel

PowerFactor
Model

SixTenthsRuleModel

PowerFactor
Model

SixTenthsRuleModel

GlobalFactorial
Model

UnitCostEstimateModel

GlobalFactorial
Model

UnitCostEstimateModel

Costs

FixedCapitalInvestment

EconomicPerformanceModelmodels

correspondsToQuantity

correspondsToQuantity

EconomicPerformance

hasProperty

MathematicalModel

Cost Model 341

Class Descriptions

Capacity FCI model
Capacity FCI models are based on fixed capital investments of past design projects that
are similar to the current chemical process system. Besides, some relating factors

Cost model
A cost model is a mathematical model to estimate the investment costs of a chemical
process system.
Formal definition: A cost model is an economic performance model that has a model
quantity which corresponds to the quantity of costs.

Detailed-item FCI model
A detailed-item FCI model requires careful determination of all individual direct and
indirect cost items. For such models, extensive data and large amounts of
engineering time are necessary. Therefore, this type of estimate is almost
exclusively prepared by contractors bidding on complete and all-inclusive work
from finished drawings and specifications.

Differential factorial model
Within differential factorial models, different factors are used for estimating the costs
of the fixed capital investment. Examples are modular estimate models, where
individual modules consisting of a group of similar items are considered
separately, and their costs are then summarized (Guthrie 1969).

Economic performance model
An economic performance model models the economic performance of a chemical
process system.
Formal definition: An economic performance model is a mathematical model that
models some economic performance.

Factorial FCI model
Factorial FCI models rely on the fact that the percentages of the different costs
within the fixed capital investment are similar for different chemical process systems.
Based on one or several known costs (for example the equipment costs), the fixed
capital investment is estimated using some factors that are derived from cost
records, published data, and experience.

Fixed capital investment model
Fixed capital investment models (FCI models) are mathematical models that are used to
estimate the fixed capital investment of a chemical process system.
Formal definition: A fixed capital investment model is a cost model which has a model
quantity that correspondsToQuantity of fixed capital investment.

(e.g., the turn-over ratio), exponential power ratios, or more complex relations are
given.

342 Mathematical Models

Global factorial model

Power factor model
The power factor model relates the fixed capital investment of a new chemical process
system to the one of similar, previously constructed systems by an exponential
power ratio (cf. Peters and Timmerhaus 1991).

Six-tenths rule model
The six-tenths rule model is a power factor model with x=0.6.

Step counting model
Step counting models are based on the assumption that the fixed capital investment can
be estimated from the number of process steps (depending on the specific
approach, composite process steps or unit operations and reactions are used),
multiplied with the costs per process step and some correcting factors. The costs of
the process steps are estimated from their capacity and some other factors (Vogt
1996).

Turnover ratio model
The turnover ratio model is a fast evaluation method for order-of-magnitude
estimates. The turnover ratio is defined as the ratio of gross annual sales to fixed
capital investment. Values of turnover ratios for different types of chemical
processes are for example given by Schembra (1991) and Vogt (1996).

Unit-cost estimate model
Unit-cost estimate models are based on detailed estimates of the main purchase costs
for system realization (either obtained from quotations or from cost records and
published data).

9.5 Process Model

As an extension to mathematical_model, the ontology module process_model
enables the definition of specialized mathematical models for the domain of chemi-
cal engineering. Such models, which model either process units (cf. Sect. 8.1.1) or
materials (cf. Sect. 7.1) or subsystems of these, are called process models (cf. Fig.
9.14). The modeling principle based on which a process model is developed may also
be indicated.

A global factorial model estimates the fixed capital investment by multiplying the basic
equipment cost by some factor. This factor depends, among other things, on the
type of chemical process involved, on the required materials of construction, and
on the location of the chemical process system realization. Examples for global fac-
tors are the ones proposed by (Lang 1947). This model can be extended to calcu-
late the total capital investment.

Process Model 343

Fig. 9.14: Overview on process_model

Fig. 9.15: Laws and property models

A law constitutes the mathematical representation of a scientific law, such as the
law of energy conservation (cf. Sect. 9.6). Each law can be associated with a physi-
cochemical phenomenon (cf. Sect. 8.6.1.6). The former gives a quantitative, the lat-
ter a qualitative description of a certain physical behavior. The correspondence be-
tween a law and a physicochemical phenomenon can be stated via the relation
isAssociatedWith, as indicated in Fig. 9.15. Moreover, the model quantities of the law
correspond to the physical quantities that are influenced by the physicochemical phe-
nomenon, as exemplarily shown in Fig. 9.16.

A process model may contain other process models, particularly the established laws
and property models (cf. Fig. 9.15). Neither laws nor property models are self-
contained models, but form part of an overall process model, where they represent
mathematical correlation between designated model quantities.

material chemical_process_system

system

mathematical_model

first-principles

data_drivenhybrid

MathematicalModel

Modeling
Principle

ModelQuantity

1 hasModelingPrinciple

hasVariable

models

correspondsToQuantity

PhysicalQuantity

isPropertyOf

Process
Model

ProcessUnitMaterial

material chemical_process_system

system

mathematical_model

first-principles

data_drivenhybrid

MathematicalModel

Modeling
Principle

ModelQuantity

1 hasModelingPrinciple

hasVariable

models

correspondsToQuantity

PhysicalQuantity

isPropertyOf

Process
Model

ProcessUnitMaterial

material chemical_process_system

system

mathematical_model

first-principles

data_drivenhybrid

MathematicalModel

Modeling
Principle

ModelQuantity

1 hasModelingPrinciple

hasVariable

models

correspondsToQuantity

PhysicalQuantity

isPropertyOf

Process
Model

ProcessUnitMaterial

ProcessModel

behavior

Physicochemical
Phenomenon

isAssociatedWith
Law 0..n0..n

1

PropertyModel

1..n 1..n
ProcessModel

behavior

Physicochemical
Phenomenon

isAssociatedWith
Law 0..n0..n

1

PropertyModel

1..n 1..n
ProcessModel

behavior

Physicochemical
Phenomenon

isAssociatedWith
Law 0..n0..n

1

PropertyModel

1..n 1..n

344 Mathematical Models

Fig. 9.16: Exemplary law modeling thermal equilibrium

A property model represents a mathematical correlation for the computation of one
designated model quantity, which corresponds to one specific physical quantity. An
example is given in Fig. 9.17: An activity coefficient model constitutes a correlation
for the computation of activity coefficients. Consequently, an activity coefficient model
comprises, among others, a model quantity which corresponds to an activity coeffi-
cient.

Fig. 9.17: Exemplary property model

9.5.1 Concept Descriptions

Individual concepts of the module process_model are defined below. For a de-
scription of the instances of modeling principle, we refer to Morbach et al. (2008j).

phase_system

behavior

[PhysicochemicalPhenomenon]
ThermalEquilibrium

mathematical_model

[ThermalEquilibriumLaw]
myThermalEquilibriumLaw

[ModelQuantity]
T2

[ModelQuantity]
T1

models

isAssociatedWith

[PhaseInterface]
PhaseBoundary_L1/L2

[MultiphaseSystem]
L1+L2

isDirectlyConnectedTo

isDirectlyConnectedTo

[Temperature]
T_L1

hasProperty

hasProperty

hasVariable

[SinglePhase]
L1

[SinglePhase]
L2

[Temperature]
T_L2

correspondsTo
Quantity

isInfluencedBy

correspondsTo
Quantity

phase_system

behavior

[PhysicochemicalPhenomenon]
ThermalEquilibrium

mathematical_model

[ThermalEquilibriumLaw]
myThermalEquilibriumLaw

[ModelQuantity]
T2

[ModelQuantity]
T1

models

isAssociatedWith

[PhaseInterface]
PhaseBoundary_L1/L2

[MultiphaseSystem]
L1+L2

isDirectlyConnectedTo

isDirectlyConnectedTo

[Temperature]
T_L1

hasProperty

hasProperty

hasVariable

[SinglePhase]
L1

[SinglePhase]
L2

[Temperature]
T_L2

correspondsTo
Quantity

isInfluencedBy

correspondsTo
Quantity

phase_system

behavior

[PhysicochemicalPhenomenon]
ThermalEquilibrium

mathematical_model

[ThermalEquilibriumLaw]
myThermalEquilibriumLaw

[ModelQuantity]
T2

[ModelQuantity]
T1

models

isAssociatedWith

[PhaseInterface]
PhaseBoundary_L1/L2

[MultiphaseSystem]
L1+L2

isDirectlyConnectedTo

isDirectlyConnectedTo

[Temperature]
T_L1

hasProperty

hasProperty

hasVariable

[SinglePhase]
L1

[SinglePhase]
L2

[Temperature]
T_L2

correspondsTo
Quantity

isInfluencedBy

correspondsTo
Quantity

property_model mathematical_model phase_system

ActivityCoefficient
Model ModelQuantity ActivityCoefficient

hasVariable corresponds
ToQuantity

PropertyModel

property_model mathematical_model phase_system

ActivityCoefficient
Model ModelQuantity ActivityCoefficient

hasVariable corresponds
ToQuantity

PropertyModel

property_model mathematical_model phase_system

ActivityCoefficient
Model ModelQuantity ActivityCoefficient

hasVariable corresponds
ToQuantity

PropertyModel

Laws 345

Class Descriptions

Law
A law constitutes the mathematical representation of a scientific law. It usually
forms part of an overall process model.

Modeling principle

- Following the data_driven modeling principle, a process model is derived from
the values of the properties of a modeled object. Examples of this type of models
are neural network models.

- Following the first-principles modeling principle, the process model is based on
established physical laws and mechanisms.

- A hybrid modeling principle applies both the first-principles and the data_driven
approach.

Formal definition: Modeling principle is defined by an exhaustive enumeration of the
individuals data_driven, first-principles, and hybrid.

Process model
A process model is a mathematical model that models a process unit or material (or
subsystems of these).

Property model
A property model forms part of an overall process model. It represents a mathemati-
cal correlation for the computation of a designated model quantity, which corres-
ponds to a specific physical quantity. Examples are vapor pressure correlations or
activity coefficient models.

Relation Descriptions

hasModelingPrinciple
Indicates the modeling principle on which a process model is based.

isAssociatedWith
The relation denotes a correspondence between a law and a physicochemical pheno-
menon. The former gives a quantitative, the latter a qualitative description of a cer-
tain physical behavior.

9.6 Laws

The ontology module laws, located on the Application-Oriented Layer of Onto-
CAPE, introduces a hierarchical collection of laws that are frequently used in

A modeling principle represents the principle on which the development of process
model is based.

346 Mathematical Models

process modeling. The law hierarchy shown was originally presented by Mar-
quardt (1995). A selection of the taxonomy related to physicochemical laws is
given in Fig. 9.18 - Fig. 9.22. The high-level concepts include balance laws, consti-
tutive laws, and constraints as shown in Fig. 9.18.

Fig. 9.18: High-level classification of laws

Fig. 9.19: Specialization of balance laws

Fig. 9.20: Specialization of constitutive law

Balance laws generally represent the change of an extensive quantity in process
models. This typically includes balances for total mass and mass of species in a
mixture (mass balance law), for momentum (momentum balance law), for total or any
other kind of energy (energy balance law), and for the particle number in case of a
particulate system (population balance laws), as depicted in Fig. 9.19.

However, balance equations do not suffice to describe the behavior related to a
process model. Thus, constitutive laws have to be added in order to determine the
process model completely. Three types of constitutive laws may be distinguished
(compare Sect. 8.6.1.7 and Fig. 9.20), including generalized flux laws, phenomeno-
logical coefficient law, and thermodynamic state function law. Generalized flux laws de-
scribe the contribution to any kind of balance law. These laws are typically com-
posed of a phenomenological coefficient and a driving force determined by some
thermodynamic state function which are modeled by phenomenological coefficient
laws and thermodynamic state function laws.

Law

Constraint BalanceLaw ConstitutiveLaw

Law

Constraint BalanceLaw ConstitutiveLaw

BalanceLaw

Momentum
BalanceLaw

Population
BalanceLaw

Energy
BalanceLaw

Mass
BalanceLaw

BalanceLaw

Momentum
BalanceLaw

Population
BalanceLaw

Energy
BalanceLaw

Mass
BalanceLaw

ConstitutiveLaw

GeneralizedFluxLaw Phenomenological
CoefficientLaw

ThermodynamicState
FunctionLaw

ConstitutiveLaw

GeneralizedFluxLaw Phenomenological
CoefficientLaw

ThermodynamicState
FunctionLaw

Laws 347

Fig. 9.21: Specialization of generalized flux laws

Fig. 9.22: Specialization of equilibrium constraints

In Fig. 9.21, the specializations of generalized flux law are presented, including
some further specializations associated to transport and exchange phenomena.
These specific laws have to be considered before a concrete process model can be
generated.

Finally, constraints describe all kinds of (algebraic) relations between process quan-
tities which – literally or by assumption – have to hold at any time. Typical exam-
ples are volume constraints or equilibrium constraints, which specialize the class con-
straint in Fig. 9.18.

In Fig. 9.22, equilibrium constraints are specialized into thermal equilibrium, chemical
equilibrium, and mechanical equilibrium on the one hand, which refer to equal temper-
ature, pressure, or chemical potential in adjacent phases. Phase equilibrium and
chemical reaction equilibrium are considered on the other hand. It shows that phase

GeneralizedFluxLaw

SourceLawAccumulationLawTransportLaw ExchangeLaw

HeatRadiation
Law

ConvectiveMaterial
FlowLaw

SurfaceMass
DiffusionLaw

InterfaceHeat
ConductionLaw

InterfaceMass
DiffusionLaw

InterfaceViscous
MomentumTransportLaw

IntraphaseViscous
MomentumTransportLaw

IntraphaseMass
DiffusionLaw

IntraphaseHeat
ConductionLaw

GeneralizedFluxLaw

SourceLawAccumulationLawTransportLaw ExchangeLaw

HeatRadiation
Law

ConvectiveMaterial
FlowLaw

SurfaceMass
DiffusionLaw

InterfaceHeat
ConductionLaw

InterfaceMass
DiffusionLaw

InterfaceViscous
MomentumTransportLaw

IntraphaseViscous
MomentumTransportLaw

IntraphaseMass
DiffusionLaw

IntraphaseHeat
ConductionLaw

EquilibriumConstraint

ChemicalReaction
Equilibrium
Constraint

Phase
Equilibrium
Constraint

Thermal
Equilibrium
Constraint

Chemical
Equilibrium
Constraint

Mechanical
Equilibrium
Constraint

EquilibriumConstraint

ChemicalReaction
Equilibrium
Constraint

Phase
Equilibrium
Constraint

Thermal
Equilibrium
Constraint

Chemical
Equilibrium
Constraint

Mechanical
Equilibrium
Constraint

348 Mathematical Models

9.7 Property Models

The ontology module property_models, which is located on the Application-
Oriented Layer of OntoCAPE, provides a hierarchically ordered collection of fre-
quently used property models. As indicated in Fig. 9.23, a property model might be
one of the following:

– A chemical kinetics model, which specifies how to calculate the rate coeffi-
cient of a homogenous or heterogeneous reaction.

– A phase interface transport property model, which provides a correlation for
computing certain phase interface transport properties.

– A thermodynamic property model, which indicates the correlation between
certain intensive thermodynamics state variables (cf. Sect. 7.3.3) and intra-
phase transport properties.

Fig. 9.23: High-level classification of property models

The classification of these specialized property models is given in Fig. 9.24 - Fig.
9.27:

98 For example, a number of alternative formulations exist for chemical equilibrium, such as the
equality of chemical potentials between two phases and the equality of fugacities between two
phases. The equality of fugacities can further be written in different forms depending on what
property models are to be used in conjunction with the law for the chemical equilibrium.

equilibrium is just an aggregation of thermal, chemical, and mechanical equili-
brium. Chemical reaction equilibrium refers to a network of chemical reactions resid-
ing in a single phase, where all forward reaction rates equal the backward reaction
rates. The constraint phase equilibrium can also be formulated in various alternative
ways which are fully equivalent98.
Currently, only the hierarchy of laws and the associated physicochemical phenomena
(cf. Sect. 8.6.1.6) are modeled. In future extensions of this ontology module, one
may add further definitions and constraints in order to specify a law’s model quanti-
ties and their corresponding physical quantities.
For an exhaustive description of all concepts used in the module laws, we refer to
Morbach et al. (2008j).

Thermodynamic
PropertyModel

PropertyModel

ChemicalKinetics
Model

PhaseInterfaceTransport
PropertyModel

Thermodynamic
PropertyModel

PropertyModel

ChemicalKinetics
Model

PhaseInterfaceTransport
PropertyModel

Thermodynamic
PropertyModel

PropertyModel

ChemicalKinetics
Model

PhaseInterfaceTransport
PropertyModel

Property Models 349

Fig. 9.24: Some phase interface transport property models

Fig. 9.25: Some chemical kinetics models

Fig. 9.26: Some thermodynamic property models

Fig. 9.27: Some intensive thermodynamic state models

PhaseInterfaceTransport
PropertyModel

HeatTransfer
CoefficientModel

MassTransfer
CoefficientModel

PhaseInterfaceTransport
PropertyModel

HeatTransfer
CoefficientModel

MassTransfer
CoefficientModel

PhaseInterfaceTransport
PropertyModel

HeatTransfer
CoefficientModel

MassTransfer
CoefficientModel

ChemicalKinetics
PropertyModel

HeterogeneousReaction
RateCoefficientModel

HomogeneousReaction
RateCoefficientModel

AdsorptionRate
CoefficientModel

ChemicalKinetics
PropertyModel

HeterogeneousReaction
RateCoefficientModel

HomogeneousReaction
RateCoefficientModel

AdsorptionRate
CoefficientModel

ChemicalKinetics
PropertyModel

HeterogeneousReaction
RateCoefficientModel

HomogeneousReaction
RateCoefficientModel

AdsorptionRate
CoefficientModel

ThermalConductivity
Model

MassDiffusion
CoefficientModel

ViscosityModel

ThermoModel

SurfaceTension
Model

IntraPhaseTransport
PropertyModel

IntensiveThermodynamic
StateModel

ThermalConductivity
Model

MassDiffusion
CoefficientModel

ViscosityModel

ThermoModel

SurfaceTension
Model

IntraPhaseTransport
PropertyModel

IntensiveThermodynamic
StateModel

ThermalConductivity
Model

MassDiffusion
CoefficientModel

ViscosityModel

ThermoModel

SurfaceTension
Model

IntraPhaseTransport
PropertyModel

IntensiveThermodynamic
StateModel

IntensiveThermodynamicStateModel

FugacityCoefficientModel

PartialMolarVolumeModelPartialMolarEnthalpyModel

SpecificEnthalpyModel

AdsorptionEquilibriumConstantModel

ReactionEquilibriumConstantModel

PhaseEquilibriumRatioModel

HeatCapacityModel

VaporPressureModel

ActivityCoefficientModel

DensityModel

SpecificGibbsFreeEnergyModel

IntensiveThermodynamicStateModel

FugacityCoefficientModel

PartialMolarVolumeModelPartialMolarEnthalpyModel

SpecificEnthalpyModel

AdsorptionEquilibriumConstantModel

ReactionEquilibriumConstantModel

PhaseEquilibriumRatioModel

HeatCapacityModel

VaporPressureModel

ActivityCoefficientModel

DensityModel

SpecificGibbsFreeEnergyModel

IntensiveThermodynamicStateModel

FugacityCoefficientModel

PartialMolarVolumeModelPartialMolarEnthalpyModel

SpecificEnthalpyModel

AdsorptionEquilibriumConstantModel

ReactionEquilibriumConstantModel

PhaseEquilibriumRatioModel

HeatCapacityModel

VaporPressureModel

ActivityCoefficientModel

DensityModel

SpecificGibbsFreeEnergyModel

350 Mathematical Models

Exemplarily, the definition of the class density model is shown in Fig. 9.28: A den-
sity model has some model quantities, one of which corresponds to a physical quantity
of type density. The other property models are defined analogously.

Fig. 9.28: Definition of the class density model

For an exhaustive description of all concepts used in the module property_models,
we refer to Morbach et al. (2008j).

9.8 Process Unit Models

The ontology module process_unit_models, located on the application-oriented
level of OntoCAPE, provides a collection of mathematical models that model the
behavioral aspect of process units.
Please note that this module is introduced not for the purpose of providing a full
account on this topic, but rather for suggesting a principle for defining various
types of process unit models and illustrating the principle by means of only a few
examples.
These exemplary property unit models are classified according to the modeled
process units (Wiesner et al. 2008a): a chemical reactor model models a chemical reac-
tor behavior, a flash unit model models a flash unit behavior, etc. (cf. Fig. 9.29).

Fig. 9.29: High-level classification of process unit models

mathematical_model

phase_system

DensityModel ModelQuantity

Density

hasVariable

correspondsToQuantity

mathematical_model

phase_system

DensityModel ModelQuantity

Density

hasVariable

correspondsToQuantity

mathematical_model

phase_system

DensityModel ModelQuantity

Density

hasVariable

correspondsToQuantity

ProcessUnitModel

ChemicalReactorBehavior

MaterialAmount models

ChemicalReactorModelmodels

FlashUnitBehavior FlashUnitModelmodels

HeatTransferUnitBehavior HeatTransferUnitModelmodels

DistillationColumn
Behavior

TrayByTrayDistillation
ColumnModel

models

ProcessUnitModel

ChemicalReactorBehavior

MaterialAmount models

ChemicalReactorModelmodels

FlashUnitBehavior FlashUnitModelmodels

HeatTransferUnitBehavior HeatTransferUnitModelmodels

DistillationColumn
Behavior

TrayByTrayDistillation
ColumnModel

models

ProcessUnitModel

ChemicalReactorBehavior

MaterialAmount models

ChemicalReactorModelmodels

FlashUnitBehavior FlashUnitModelmodels

HeatTransferUnitBehavior HeatTransferUnitModelmodels

DistillationColumn
Behavior

TrayByTrayDistillation
ColumnModel

models

References 351

Beyond this high-level classification, the ontology module comprises some special
types of process unit models. Fig. 9.30 exemplarily shows the definition of a CSTR
model: A CSTR model is a chemical reactor model that models a chemical reactor beha-
vior with the physicochemical phenomenon of phenomenon ideally_mixed. Further-
more, the CSTR model is a first-principles model and incorporates the following
laws: energy conservation law, mass conservation law, and reaction kinetics law.

Fig. 9.30: Definition of the class CSTR model

Currently, the ontology module provides only a few of such specialized process
unit models. In the future, it is to be extended to offer a substantial library of
process unit models. As for now, the module merely provides the framework for es-
tablishing such a library.

9.9 References

Gear CW, Petzold L (1984) ODE methods for the solution of differential/algebraic
systems. Trans. Society Computer Simulation 1:27–31.

Guthrie K (1969) Data and techniques for preliminary capital cost estimation.
Chem. Eng. (New York) 24 (3):114-142.

Ion P, Miner R, eds. (1999) Mathematical Markup Language (MathML) 1.01 Spe-
cification. W3C Recommendation, revision of 7 July 1999. Online avail-
able at http://www.w3.org/TR/REC-MathML/. Accessed April 2007.

Lang HJ (1947) Engineering approach to preliminary cost estimates. Chem. Eng.
(New York):130-133.

Lloyd CM, Halstead MDB, Nielsen PF (2004) CellML: its future, present and
past. Progress in Biophysics and Molecular Biology 85 (2-3):433-450.

Martinson WS, Barton PI (2000) A differentiation index for partial differential-
algebraic equations. SIAM J. Sci. Comput. 21:2295–2315.

Hairer E, Wanner G (1996) Solving Ordinary Differential Equations II – Stiff and
Differential-Algebraic Problems, Springer, Berlin.

CSTR_Model

ChemicalReactorModel

ChemicalReactorBehavior models

ideally_mixed

hasPhenomenon

MassConservationLaw

EnergyConservationLaw

ReactionKineticsLaw

first-principles

hasModeling
Principle

CSTR_Model

ChemicalReactorModel

ChemicalReactorBehavior models

ideally_mixed

hasPhenomenon

MassConservationLaw

EnergyConservationLaw

ReactionKineticsLaw

first-principles

hasModeling
Principle

CSTR_Model

ChemicalReactorModel

ChemicalReactorBehavior models

ideally_mixed

hasPhenomenon

MassConservationLaw

EnergyConservationLaw

ReactionKineticsLaw

first-principles

hasModeling
Principle

352 Mathematical Models

Morbach J, Yang A, Marquardt W (2008j) OntoCAPE 2.0 – Mathematical Mod-
els. Technical Report (LPT-2008-28), Lehrstuhl für Prozesstechnik,
RWTH Aachen University.

Peters MS, Timmerhaus KD (1991) Plant Design and Economics for Chemical
Engineers, McGraw-Hill, New York.

von Wedel L (2002) CapeML – A Model Exchange Language for Chemical
Process Modeling. Technical Report (LPT-2002-16), Lehrstuhl für Pro-
zesstechnik, RWTH Aachen University.

Wiesner A, Morbach J, Bayer B, Yang A, Marquardt W (2008a) OntoCAPE 2.0 –
Chemical Process System. Technical Report (LPT-2008-29), Lehrstuhl
für Prozesstechnik, RWTH Aachen University. Online available at
http://www.avt.rwth-aachen.de/AVT/index.php?id=541&L=0&Nummer
=LPT-2008-29.

Schembra M (1991) Daten und Methoden zur Vorkalkulation des
Anlagekapitalbedarfs von Chemieanlagen. PhD thesis, Technische
Universität Berlin.

Vogt M (1996) Neuere Methoden der Investitionsrechnung in der Chemischen
Industrie. Diploma thesis, Technische Universität Berlin.

