

5 Upper Level

The partial model upper_level is located on the Upper Layer of OntoCAPE. It es-
tablishes the fundamental organizational paradigm for the ontology and states the
principles governing its design and evolution. The concepts introduced by the up-
per_level partial model are generic in the sense that they are applicable to differ-
ent domains; thus, the partial model resembles the meta_model (Chap. 4) in this
respect. Yet unlike the Meta Model concepts, the concepts of the upper_level are
intended for direct use and will be passed on to the domain-specific parts of On-
toCAPE.
As for its function within the ontology, the upper_level serves two major purpos-
es: Firstly, it gives a concise and comprehensive overview on OntoCAPE, thus
helping a user to find his/her way around the ontology and to understand its major
design principles. Secondly, it establishes a framework for the development (and
later extension) of the ontology.

Fig. 5.1: The partial model upper_level

The upper_level partial model comprises five ontology modules (cf. Fig. 5.1).
The module system is the most fundamental part of OntoCAPE. Consequently, it
is located at the top of the “inclusion lattice” (Gruber and Olsen 1994) that consti-
tutes the ontology. As indicated in Fig. 5.1, the system module may import the on-
tology modules of the meta_model, provided that such an import is desired (cf.
discussion in Sect. 4.1).

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_5,
© Springer-Verlag Berlin Heidelberg 2010

Meta Model

OntoCAPE

meta_model

upper_level
system

ontology
module

partial model

includes

notation

network
_system

technical
_system

coordinate_system

Upper Layer

tensor_quantity

Meta Model

OntoCAPE

meta_model

upper_level
system

ontology
module

partial model

includes

notation

ontology
module

partial model

ontology
module

partial model

includesincludes

notation

network
_system

technical
_system

coordinate_system

Upper Layer

tensor_quantity

110 Upper Level

The system module establishes the fundamental design paradigm according to
which the ontology is organized: OntoCAPE is based on general systems theory48
and systems engineering49, which are considered advantageous organizing prin-
ciples for building large engineering ontologies (e.g., Alberts 1994; Borst 1997;
Bayer and Marquardt 2004). The system module introduces the constitutive sys-
tems-theoretical and physicochemical primitives, such as system, property, physical
quantity, physical dimension, etc., and specifies their mutual relations.
The remaining modules of the upper_level complement the system module: The
modules network_system and technical_system introduce two important types of
systems and their characteristics. The module tensor_quantity provides concepts
for the representation of vectors and higher-order tensors, while coordi-
nate_system introduces the concept of a coordinate system, which serves as a frame
of reference for the observation of system properties.

5.1 System

5.1.1 Basic Axioms of Systems Theory

The system class is the central concept of the system module. It denotes all kinds
of systems, which may be physical or abstract. The notion of a system is defined
by the following axioms, which summarize the numerous definitions of the sys-
tems concept given in the literature (e.g., von Bertalanffy 1968; Bunge 1979; Pat-
zak 1982; Klir 1985; Gigch 1991):

(1) A system interacts with, or is related to, other systems.
(2) The constituents of a system are again systems50.
(3) A system is separable from its environment by means of a conceptual or

physical boundary.
(4) A system has properties which may take different values.
(5) The properties of a system can be explicitly declared or inferred from the

properties of its constituent subsystems.

48 General systems theory is an interdisciplinary field that studies the structure and properties of
systems (von Bertalanffy 1968).

49 Systems engineering can be viewed as the application of engineering techniques to the engi-
neering of systems, as well as the application of a systems approach to engineering efforts
(Thomé 1993).

50 In systems theory, there are divergent views on the nature of system constituents (e.g., Bunge
1979: “A system component may or may not be a system itself.”). Sect. 5.2.3 addresses this issue
in greater detail.

System 111

The above axioms constitute the basic principles of systems theory, as it is con-
ceptualized in OntoCAPE. They will be revisited in the following sections, which
discuss the concrete realization of the systems concept.

5.1.2 Inter-System Relations

Axiom (1) states that systems interact with, or are related to, other systems. These
interactions are modeled by the relation isRelatedTo, which subsumes all kinds of
binary relationships51 between systems (cf. Fig. 5.2). The isRelatedTo relation is
symmetric to account for the fact that, if system A is related to system B, then B is
related to A, as well. Moreover, the relation is declared to be transitive, such that a
third system C, which is explicitly related to B, can be inferred to be related to A,
as well. Additionally, the non-transitive relation isDirectlyRelatedTo is established,
which subsumes all direct relations between systems.

Fig. 5.2: Inter-system relations

5.1.3 Subsystems and Supersystems

For the realization of axiom (2) – the constituents of a system are again systems –
the following concepts are introduced.
Firstly, the transitive relations hasSubsystem and its inverse isSubsystemOf are in-
troduced as specializations of the isRelatedTo relation. They are derived from the
aggregation relations hasPart and isPartOf introduced in the Meta Model (partial
model mereology, cf. Sect. 4.3; their respective definitions are identical, except
that their ranges and domains are restricted to systems.
Next, the classes subsystem and supersystem are introduced as subclasses of system;
they correspond to the generic parts and aggregates defined in the Meta Model. A
necessary and sufficient condition that a system qualifies as a subsystem is that the

51 A class to represent n-ary relations between systems is currently not implemented in Onto-
CAPE.

isRelatedTo
(symmetric, transitive)

isDirectlyRelatedTo
(symmetric)

System

isRelatedTo0..n

0..n
isRelatedTo

(symmetric, transitive)

isDirectlyRelatedTo
(symmetric)

System

isRelatedTo0..n

0..n
isRelatedTo

(symmetric, transitive)

isDirectlyRelatedTo
(symmetric)

System

isRelatedTo0..n

0..n

112 Upper Level

system is linked to another system via an isSubsystemOf relation. Similarly, a su-
persystem is a system that has a hasSubsystem relation with some other system. In
accordance with the mereological theory defined in the partial model mereology,
a subsystem can have subsystems of its own, and a supersystem may be part of
another supersystem.
The relation hasDirectSubsystem is established as a means to indicate the direct
subsystems of a system; hasDirectSubsystem is a subrelation of both hasSubsystem
and isDirectlyRelatedTo, and it is defined analogously to the hasDirectPart relation
introduced in the Meta Model. Similarly, its inverse isDirectSubsystemOf is de-
clared to be a specialization of the isSubsystemOf relation.
A particular subsystem may be part of more than one system52. To indicate a sub-
system’s unambiguous affiliation to a supersystem, the relation isExclusivelySubsys-
temOf and its inverse isComposedOfSubsystem are to be used. These relations are
subrelations of isDirectSubsystemOf and hasDirectSubsystem, respectively; they are
special types of the composition relations introduced in the partial model mere-
ology. Systems that are involved in these relations are named exclusive subsystem
and composite system.

Fig. 5.3: Composition and decomposition of systems

Fig. 5.3 summarizes the classes and relations that represent the (de)composition of
systems. In analogy to UML notation, we use a line with a white diamond-shaped
arrowhead to represent the relations isSubsystemOf and isDirectSubsystemOf; a black
diamond-shaped arrowhead indicates the relation isExclusivelySubsystemOf.
Unfortunately, current OWL reasoners scale badly when processing large collec-
tions of individuals connected via transitive, inverse relations (Rector and Welty
2005). Hence, the relations hasSubsystem and isSubsystemOf can cause perfor-
mance problems if applied to large data sets. A possibility to avoid these problems
is to employ a single, non-inverse relation, instead. To this end, the unidirectional
contains relation is introduced as a replacement for hasSubsytem. Like hasSubsys-
tem, it is a transitive relation; unlike hasSubsystem, it has no inverse counterpart.

52 A typical example for such a case are the classes property model (which models, e.g., the
thermodynamic behavior of materials) and process model (which represents the mathematical
model of a chemical process). These classes, introduced in the partial model process_model, are
special types of systems. A particular property model may be a subsystem of different
process models.

System

Subsystem Supersystem

isRelatedTo

hasSubsystem

hasDirectSubsystem

isComposedOfSubsystem

isSubsystemOf

isDirectSubsystemOf

isExclusivelySubsystemtOfCompositeSystemExclusiveSubsystem

System

Subsystem Supersystem

isRelatedTo

hasSubsystem

hasDirectSubsystem

isComposedOfSubsystem

isSubsystemOf

isDirectSubsystemOf

isExclusivelySubsystemtOfCompositeSystemExclusiveSubsystem

System

Subsystem Supersystem

isRelatedTo

hasSubsystem

hasDirectSubsystem

isComposedOfSubsystem

isSubsystemOf

isDirectSubsystemOf

isExclusivelySubsystemtOfCompositeSystemExclusiveSubsystem

System 113

The non-transitive relation containsDirectly is established as a specialization of con-
tains; it is to be used analogously to the hasDirectSubsystem relation (cf. Fig. 5.4).
Aside from the performance considerations, there is another application case for
the contains(Directly) relation: It is to be used when only one side of the aggregation
relation is of interest, namely the indication of the constituting elements of a su-
persystem; by contrast, the inverse relation (i.e., the affiliation of a subsystem to a
particular supersystem) is of little or no concern in this application case. As an ex-
ample, consider the relation between the concepts mixture and chemical compo-
nent53. For the definition of a particular mixture, the information about its constitu-
ent chemical components is essential. However, for the definition of a chemical
component, it is irrelevant to know of which mixtures the chemical component is part
of. For that reason, the constituents of a mixture are indicated by means of the con-
tainsDirectly relation.
Note that the contained systems are not classified as subsystems, as this informa-
tion is not relevant, as explained above. Only the containing systems are classified
as supersystems.

Fig. 5.4: The hasSubsystem relation may be replaced by the contains relation

As a graphical notation for the contains(Directly) relation, we use a line with a white
diamond at the one end and an arrowhead at the other end. The diamond indicates
the containing system, whereas the arrow points towards the contained system.
Closing the discussion on system (de)composition, it should be pointed out that
some systems theorists (e.g., Bunge 1979) prefer an alternative formulation of
axiom (2):

(2*) A system consists of multiple elements, which may or may not be
systems themselves.

Thus, contrary to the original formulation of the axiom, the decomposition of a
system into its constituent elements is mandatory, whereas these elements being
systems is optional. This alternative version of axiom (2) will be referred to as
axiom (2*) hereafter.

53 Mixture and chemical component are special types of systems, which are introduced in the
partial model substance (cf. Sect. 7.2).

isRelatedTo

contains

containsDirectly

isDirectlyRelatedTo

System

Supersystem

isRelatedTo

contains

containsDirectly

isDirectlyRelatedTo

System

Supersystem

isRelatedTo

contains

containsDirectly

isDirectlyRelatedTo

isRelatedTo

contains

containsDirectly

isDirectlyRelatedTo

System

Supersystem

System

Supersystem

114 Upper Level

Fig. 5.5 shows the formal representation of axiom (2*). As can be seen, the repre-
sentation of axiom (2) must be extended by one additional class (element) and two
inverse relations (hasElement and isElementOf).

Fig. 5.5: Formal representation of axiom (2*)

There may be application cases where axiom (2*) is more advantageous than
axiom (2). However, for the applications of OntoCAPE encountered so far, axiom
(2) has proven to be adequate. Furthermore, since axiom (2) can be represented in
a more compact way (cf. Fig. 5.3 and Fig. 5.5), it has been preferred over (2*). As
demonstrated, axiom (2) can be easily converted into axiom (2*) by adding the
abovementioned classes and relations to the ontology, if such an extension is re-
quired by some application.

5.1.4 Levels of Decomposition

A (sub)system is considered elementary if it is not further partitioned into subsys-
tems. However, it is often impossible to decide definitively if a system is elemen-
tary or composite. It might be elementary in one context, but in a different context
a further refinement of the system’s description might be needed (Bayer 2003).
Thus, being elementary is not a static classification.
In OntoCAPE, an elementary system is defined as a subsystem that (currently) has
no subsystems of its own.
In an analogous manner, further (de)composition levels of systems can be estab-
lished:

– A top-level system is a supersystem that is not a constituent of some other
system.

– A first level subsystem is a subsystem that is a direct subsystem of a top-level
system.

– A second level subsystem is a direct subsystem of a first level subsystem.
– Etc.

SystemElement

ExclusiveSubsystem

System

Subsystem Supersystem

CompositeSubsystem

Æ isElementOf
 hasElement

1..n 1
SystemElement

ExclusiveSubsystem

System

Subsystem Supersystem

CompositeSubsystem

Æ isElementOf
 hasElement

1..n 1
SystemElement

ExclusiveSubsystem

System

Subsystem Supersystem

CompositeSubsystem

Æ isElementOf
 hasElement

1..n 1

System 115

Due to the open world assumption, a DL reasoner cannot infer the membership to

must be declared explicitly. Once the top (or bottom) of a decomposition hie-
rarchy has been defined that way, the membership to the intermediate decomposi-
tion levels can be inferred automatically.

5.1.5 Topological Connectivity of Systems

The relations isConnectedTo and isDirectlyConnectedTo are introduced to describe
the topological connectedness of systems. They are defined and used just like the
homonymic topological relations introduced in the Sect. 4.4, except that their
ranges and domains are restricted to systems (cf. Fig. 5.6).

Fig. 5.6: Connectivity of systems

The relation isConnectedTo is symmetric and transitive; it summarizes all types of
connections between systems (including indirect connectivity). The relation isDi-
rectlyConnectedTo, a non-transitive specialization of isConnectedTo, represents di-
rect connectivity between systems.
As explained in the Meta Model, mereological and topological relations exclude
each other. Thus, isConnectedTo relations between a subsystem and its supersystem
are prohibited. To enforce this restriction, the following range restrictions are im-
posed on the isDirectlyConnectedTo relation:

– A first (second …) level system can only be connected to a first (second …)
level system.

– An elementary system can only be connected to an elementary system.
– A top-level system can only be connected to a top-level system.

Hence, connectivity is only allowed if two systems are on the same level of de-
composition. If these restrictions are violated, the reasoner will produce an error
message.
The class system interface represents the interfaces through which systems are con-
nected to each other. The usage of this class is optional. It is derived from the meta
class connector and should be utilized analogously.

the classes top-level system and elementary system (cf. Sect. 4.3). Thus, membership

System

isDirectlyConnectedTo

isConnectedTo
(symmetric, transitive)

isDirectlyConnectedTo
(symmetric)

isRelatedTo (transitive)

0..n

0..n

System
Interface

isDirectlyConnectedTo

0..n

0..n

isDirectlyRelatedTo
(symmetric)

System

isDirectlyConnectedTo

isConnectedTo
(symmetric, transitive)

isDirectlyConnectedTo
(symmetric)

isRelatedTo (transitive)

0..n

0..n

System
Interface

isDirectlyConnectedTo

0..n

0..n

isDirectlyRelatedTo
(symmetric)

System

isDirectlyConnectedTo

isConnectedTo
(symmetric, transitive)

isDirectlyConnectedTo
(symmetric)

isRelatedTo (transitive)

0..n

0..n

System
Interface

isDirectlyConnectedTo

0..n

0..n

isDirectlyRelatedTo
(symmetric)

116 Upper Level

5.1.6 Model

According to Wüsteneck (1963), a model is a system that is used, selected, or pro-
duced by a third system to enable the understanding of or the command over the
original system, or to replace the original system. Model system and original sys-
tem share certain characteristics that are of relevance to the task at hand.
Following this definition, the class model is introduced as a subclass of system (cf.
Fig. 5.7). A system qualifies as a model if it models some other system (i.e., having
a models relation to another system is a necessary and sufficient condition for being
subsumed as a model). The relation isModeldBy is defined as the inverse of models.

Fig. 5.7: Representation of models

Different types of models can be distinguished:

– Iconic models resemble the physical object they represent, but are simpli-
fied and/or employ a change of scale or materials. Typical examples would
be an aircraft mockup used for wind tunnel testing, or a pilot plant that si-
mulates the behavior of an industrial scale plant.

– Symbolic models represent the modeled system by means of some symbol-
ic representation. Typical examples are mathematical models or informa-
tion models.

Iconic models are technical systems, as defined in the ontology module technic-
al_system (cf. Sect. 5.3). Symbolic models may be considered as technical systems,
as well; however, this is not necessarily the case. A special class of symbolic
models, mathematical models, is introduced in the ontology module mathemati-
cal_model (cf. Sect. 9.1).

5.1.7 Representation of Viewpoints

Systems are often too complex to be understood and handled as a whole. A tech-
nique for complexity reduction that is widely used in systems engineering is the
adoption of a viewpoint54. A viewpoint is an abstraction that yields a specification

54 In the literature, the viewpoint approach is also referred to as “viewing the system from a cer-
tain perspective” or “considering the system under a particular aspect”.

SystemModel
Æ models

 isModeledBy
SystemModel

Æ models

 isModeledBy
SystemModel

Æ models

 isModeledBy

System 117

of the whole system restricted to a particular set of concerns (IEEE 2000). Adopt-
ing a viewpoint makes certain aspects of the system ‘visible’ and focuses attention
on them, while making other aspects ‘invisible’, such that issues in those aspects
can be addressed separately (Barkmeyer et al. 2003).
In the following, the term aspect system (Patzak 1982) will be used to denote
those aspects about the overall system that are relevant to a particular viewpoint.
An aspect system consists of a subset of the components (elements, relationships,
and constraints) of the overall system. These components constitute again a sys-
tem, which is a subsystem of the overall system. Thus, an aspect system is a par-
ticular subsystem, which contains only those components of the overall system
that are considered under the respective aspect.
In OntoCAPE, an aspect system is modeled as a subclass of an exclusive subsystem
(cf. Fig. 5.8). The type of the respective aspect system can be explicitly labeled by
an instance of the aspect class: To this end, the aspect system is linked to that as-
pect via the relation isConsideredUnderAspectOf. Like any system, an aspect system
can be further decomposed – either into ‘normal’ subsystems or into further aspect
systems. By means of the latter, an aspect system can be gradually refined.

Fig. 5.8: Representation of aspect systems

The relationship between the aspect system and the overall (composite) system is
given by the inverse relations representsAspectOf and hasAspectSystem, which are
specializations of the composition relations isExclusivelySubsystemOf and isCompo-
sedOfSubsystem. These relations can be further refined to indicate the type of the
aspect system: In the ontology module technical_system, for example, the class
system function is introduced as a special type of an aspect system (cf. Sect. 5.1.7); a
system function is linked to the overall system via the relation representsFunctionOf,
which is a specialization of representsAspectOf.
Aspect systems play a key role in the organization of the OntoCAPE ontology.
They are used to partition complex systems into manageable parts, which can be
implemented in segregate ontology modules. An example is given in Fig. 5.9. Two
aspect systems, process and plant, are shown, which represent a functional and a
constitutional view on a chemical process system (cf. Sect. 8.1.1). Each aspect sys-
tem is represented in its own ontology module (process and plant, respectively).

AspectSystem
Æ hasAspectSystem
 representsAspectOf

Exclusive
Subsystem

Composite
System

hasAspectSystem

isComposedOf
Subsystem

representsAspectOf

isExclusively
SubsystemOf

Aspect

isConsidered
UnderAspectOf

AspectSystem
Æ hasAspectSystem
 representsAspectOf

Exclusive
Subsystem

Composite
System

hasAspectSystem

isComposedOf
Subsystem

representsAspectOf

isExclusively
SubsystemOf

Aspect

isConsidered
UnderAspectOf

118 Upper Level

These modules are imported by the ontology module that holds the overall system
(here, module chemical_process_system holding the chemical process system).
Within their respective ontology modules, plant and process are modeled as sub-
classes of system; only in the chemical_process_system module, they are identified
as aspect systems. This is achieved by linking plant and process to the chemical
process system via the relations representsRealizationOf and representsFunctionOf, re-
spectively, which are specializations of the representsAspectOf relation. Based on
this information, a reasoner can infer that plant and process are special types of as-
pect systems.

Fig. 5.9: Partitioning of a complex system into manageable parts

The above pattern is universally applied in OntoCAPE. The advantage of this pat-
tern is that the aspect systems can be used and maintained independently of the
overall system.

5.1.8 System Environment

Axiom (3) states that a system is separable from its environment by means of
some conceptual boundary (which may or may not coincide with a physical sys-
tem boundary). The key idea of this axiom is that the scope of a system is unique-
ly defined, i.e., it is clearly determinable whether a particular object forms part of
the system or belongs to the system’s environment. In OntoCAPE, the environ-
ment of a system can be modeled explicitly, as discussed in the following. The
system boundary, on the other hand, is not represented in OntoCAPE, as it is

system

process

chemical_process_system

plant

Process

Chemical
Process
System

Composite
System

Aspect
System

represents
FunctionOf

AspectisConsidered
UnderAspectOf

realization

function

Plant
isConsidered
UnderAspectOf

isConsidered
UnderAspectOfimports

imports

represents
RealizationOf

Æ hasAspectSystem
 representsAspectOf

system

process

chemical_process_system

plant

Process

Chemical
Process
System

Composite
System

Aspect
System

represents
FunctionOf

AspectisConsidered
UnderAspectOf

realization

function

Plant
isConsidered
UnderAspectOf

isConsidered
UnderAspectOfimports

imports

represents
RealizationOf

Æ hasAspectSystem
 representsAspectOf

system

process

chemical_process_system

plant

Process

Chemical
Process
System

Composite
System

Aspect
System

represents
FunctionOf

AspectisConsidered
UnderAspectOf

realization

function

Plant
isConsidered
UnderAspectOf

isConsidered
UnderAspectOfimports

imports

represents
RealizationOf

Æ hasAspectSystem
 representsAspectOf

System 119

merely an auxiliary construct to mentally demarcate the system from its environ-
ment55.
Generally, the environment of a system includes everything that is not defined as
that system (Alberts 1994). Thus, the environment of a given system S can be de-
fined as the class of all things that are not S. Note that such an environment class
must be individually defined for each system, since the environment concept is
relative.
However, the above definition is too broad for practical use. Normally, one is only
interested in the immediate environment of a system, as defined by Bunge (1979):

“Our definition of the environment of a system as the set of all things
coupled with components of the system makes it clear that it is the
immediate environment, not the total one – i.e., the set of all the things that
are not parts of the system. […] we are interested not in the transactions of a
system with the rest of the universe but only in that portion of the world that
exerts a significant influence on the thing of interest.”

In OntoCAPE, the immediate environment of a system is even further constrained
to those individuals that are again systems56. Therefore, the environment of a sys-
tem is defined as follows: The immediate environment of a particular system S in-
cludes all systems that (1) are not S, (2) are no subsystems of S, (3) are no super-
systems of S, but (4) are directly related to S.
Note that the definition excludes subsystems since they form part of S and thus
cannot be part of the environment of S. Supersystems are excluded since this

of the environment of S. On the other hand, S is a subsystem of SupS by defini-
tion. This would eventually imply that S is a subsystem of its environment.
In the formal specification of OntoCAPE, the class system environment exemplarily
implements this definition for a sample system S57.

5.1.9 Properties of Systems

Axiom (4) states that a system has properties which may take different values. In
OntoCAPE, the property class represents the individual properties (traits, qualities)

55 “The choice of the system boundary corresponds to a division of the universe of discourse into
those parts included in the system under consideration and those belonging to the environment”
(Marquardt 1995).

56 As opposed to properties, values, etc.

57 Implementation advice: Currently, as of 2008, the reasoner RacerPro is not able to infer the
environment of a system correctly. The problem is possibly caused by the allDifferent statement
for individuals, which is not evaluated properly. Nevertheless, the definition is correct in prin-
ciple.

would lead to false conclusions: It would allow a supersystem SupS of S to be part

120 Upper Level

of a system, which distinguish the system from others. Typical examples would be
size, color, or weight, which are modeled as subclasses of property.
The subclasses of property represent general properties, which exist autonomously
(i.e., independent of a particular system). The individual property of a system is
modeled by (1) instantiating the respective subclass of property and (2) linking that
property instance to the system. For (2), the inverse relations hasProperty and isPro-
pertyOf are to be used (cf. Fig. 5.10). As soon as the property instance is linked to a
system, it represents an inherent quality of that particular system and thus must not
be assigned to any other system. To ensure that a property instance is assigned to
one system instance at most58, the isPropertyOf relation is declared to be functional.
Subclasses of property will be introduced on the lower levels of OntoCAPE to
represent properties such as height, volume, diameter etc. These classes can be fur-
ther specialized in order to clarify the meaning of the respective property (e.g., re-
fine diameter to internal diameter, nominal diameter, etc.). However, the refinement
must not imply the affiliation to a particular system; for example, neither pipe di-
ameter nor vessel diameter are valid refinements of diameter59. Instead, the affilia-
tion to a specific system is modeled on the instance level by assigning a property
instance to a system instance via the isPropertyOf relation.

Fig. 5.10: A system has properties which may take different values

A property has certain values – for example the property ‘color’ may take the values
‘red’, ‘green’, ‘blue’, etc. In OntoCAPE, the values of a property are represented
through the value class, which is linked to a property via the isValueOf relation and
its inverse hasValue, respectively. A value is either of qualitative nature (pertaining
to properties like color, taste, etc.) or of quantitative nature (pertaining to properties
like weight, height, or temperature). To avoid ambiguities, the isValueOf relation is
declared to be functional; thus, an instance of value can be assigned to one property
instance at most. A property, in contrast, may have multiple values: Take for exam-
ple the temperature of a solid body – while the existence of this property itself is

58 Some properties are not owned by a particular system at all (cf. Sect. 5.1.15)

59 As an exception to this rule, one may define high-level categorizing properties which sub-
sume the properties of a specific system; for instance, the class phase system properties
subsumes the various properties of a phase system. However, these kinds of properties are
only introduced for organizational purposes and are not to be instantiated for practical use.

System Property

Æ hasProperty
0..1 (inverse functional) 0..n

 isPropertyOf
(functional)

Value

Æ hasValue
0..1 (inverse functional) 0..n

 isValueOf
(functional)

System Property

Æ hasProperty
0..1 (inverse functional) 0..n

 isPropertyOf
(functional)

Value

Æ hasValue
0..1 (inverse functional) 0..n

 isValueOf
(functional)

System Property

Æ hasProperty
0..1 (inverse functional) 0..n

 isPropertyOf
(functional)

Value

Æ hasValue
0..1 (inverse functional) 0..n

 isValueOf
(functional)

System 121

invariant (a solid body will always have a temperature), the temperature values
may change over time.

5.1.10 Backdrop

To distinguish the different values of a property, the concept of a backdrop (Klir
1985) is introduced. Adapting Klir’s definition60 to the terminology of OntoCAPE,
a backdrop is some sort of background against which the different values of a
property can be observed. Thus, a backdrop provides a frame of reference for the
observation of a property. Space and time are typical choices of backdrops.
In OntoCAPE, the values of any property can act as a backdrop to distinguish the
values of another property. The relation isObservedAgainstBackdrop maps the values
that are to be distinguished to their respective backdrop values. An example is pre-
sented in Fig. 5.11: Here, the values of the property Time are used to distinguish the
different values of the property Temperature, which arises in the course of an obser-
vation61. In this particular example, a temperature of 285 Kelvin was observed at
the beginning of the observation; after 300 seconds, the temperature had cooled
down to 273 Kelvin.

Fig. 5.11: Distinguishing the different values of a property by means of the back-
drop relation

60 Klir defines a backdrop as “any underlying property that is actually used to distinguish differ-
ent observations of the same attribute […]. The choice of this term, which may seem peculiar, is
motivated by the recognition that the distinguishing property […] is in fact some sort of back-
ground against which the attribute is observed”.

61 The properties in the example are physical quantities (cf. Sect. 5.1.11). Actually, the values
of physical quantities are represented in a slightly different manner, but the representation is
simplified here for the sake of clarity. The exact representation of the example is shown in Fig.
5.11.

Property
hasValue

Value

isObserved
AgainstBackdrop

Temperature

Time

273 K

300 sec

0 sec

isObserved
AgainstBackdrop285 K

AgainstBackdrop
isObserved

hasValue

hasValue
hasValue

hasValue

System
hasProperty

Property
hasValue

Value

isObserved
AgainstBackdrop

Temperature

Time

273 K

300 sec

0 sec

isObserved
AgainstBackdrop285 K

AgainstBackdrop
isObserved

hasValue

hasValue
hasValue

hasValue

System
hasProperty

Property
hasValue

Value

isObserved
AgainstBackdrop

Temperature

Time

273 K

300 sec

0 sec

isObserved
AgainstBackdrop285 K

AgainstBackdrop
isObserved
AgainstBackdrop
isObserved

hasValue

hasValue
hasValue

hasValue

System
hasProperty

122 Upper Level

The observed property and its backdrop property may both be owned by the same
system; however, this is not mandatory. Often, the backdrop property is owned by a
coordinate system, which is introduced in the ontology module coordinate_system
(cf. Sect. 5.4).
Note that the backdrop concept is relative: A physical quantity acting as a backdrop
may be observed against another backdrop quantity. Consider for instance a physi-
cal quantity that is observed against the space coordinate of a moving system; the
movement of this space coordinate could in turn be measured against the space
coordinate of a fixed coordinate system. Another example is given in Fig. 5.12. It
extends the above example of temperature measurement (Fig. 5.11) by indicating
the time and date of the observation. To this end, one defines a backdrop relation
between the starting time of the observation (t = 0 sec) and the date-time, given by
the time standard UTC (Coordinated Universal Time, cf. Sect. 6.4).

[Property]
Temperature

[Property]
Time

[Value]
0 sec

[Value]
285 K

isObservedAgainstBackdrop

hasValue

hasValue

[Property]
UTC

[Value]
2007-03-11 T 08:42 UTC

isObservedAgainstBackdrop

hasValue

[Property]
Temperature

[Property]
Time

[Value]
0 sec

[Value]
285 K

isObservedAgainstBackdrop

hasValue

hasValue

[Property]
UTC

[Value]
2007-03-11 T 08:42 UTC

isObservedAgainstBackdrop

hasValue

[Property]
Temperature

[Property]
Time

[Value]
0 sec

[Value]
285 K

isObservedAgainstBackdrop

hasValue

hasValue

[Property]
UTC

[Value]
2007-03-11 T 08:42 UTC

isObservedAgainstBackdrop

hasValue

Fig. 5.12: UTC as a backdrop for the starting time of the observation

The indication of backdrop is not mandatory; it can be omitted if it is not impor-
tant or if it can be recognized from the context. In particular, a backdrop is often
superfluous if the property can take only a single value. In this case, the property is
classified as a constant property.

5.1.11 Physical Quantity

The International Vocabulary of Basic and General Terms in Metrology defines a
physical quantity (often abbreviated as a ‘quantity’) as a “property of a phenome-
non, body, or substance, to which a magnitude can be assigned” (VIM 1993). A
more extensive definition of the term is given in the EngMath ontology (Gruber
and Olsen 1994):

“Physical quantities come in several types, such as the mass of a body (a
scalar quantity), the displacement of a point on the body (a vector quantity),
[…] and the stress at a particular point in a deformed body (a second order
tensor quantity). […] Although we use the term "physical quantity" for this

System 123

generalized notion of quantitative measure, the definition allows for
nonphysical quantities such as amounts of money or rates of inflation.
However, it excludes values associated with nominal scales, such as
Boolean state and part number […].”

In OntoCAPE, a physical quantity is a property that has quantifiable values (the latter
are represented through the class quantitative value, cf. Fig. 5.13). In agreement
with the definition given in the EngMath ontology, the class denotes both physical
and nonphysical quantities, and it comprises scalars as well as vectors and higher-
order tensors. Only scalar quantities are considered here; the representation of vector
quantities and higher-order tensor quantities is discussed in Sect. 5.5.

Fig. 5.13: Representing the values of physical quantities

Generally, the value of a scalar quantity consists of a number and (possibly) a unit
of measure. The unit of measure is a particular example of the quantity concerned,
which is used as a reference, and the number is the ratio of the value of the quanti-
ty to the unit of measure (BIPM 2006).

[ScalarQuantity]
Temperature_T1

351.8
hasValue [ScalarValue]

ValueOf_T1

K

numericalValue

hasUnit
OfMeasure

[ScalarQuantity]
Temperature_T1

351.8
hasValue [ScalarValue]

ValueOf_T1

K

numericalValue

hasUnit
OfMeasure

[ScalarQuantity]
Temperature_T1

351.8
hasValue [ScalarValue]

ValueOf_T1

K

numericalValue

hasUnit
OfMeasure

Fig. 5.14: Application example: Temperature T1 has a value of 351.8 K

In OntoCAPE, the values of a scalar quantity are represented by instances of the
class scalar value, a subclass of quantitative value: The number part of a scalar value
is expressed by the attribute numericalValue62, and the unit of measure part is
represented by an instance of the unit of measure class, which is connected to the
scalar value via the relation hasUnitOfMeasure (cf. Fig. 5.13). An application exam-

62 Ordinarily, the values of numericalValue are of type float; however, other XML Schema datatypes are
also possible, such as dateTime.

PhysicalQuantity

Value

ScalarQuantity

xsd:any
hasValue

1

Property hasValue

ScalarValue
UnitOf

Measure
hasUnit
OfMeasure

0..1

QuantitativeValuehasValue

numericalValue

PhysicalQuantity

Value

ScalarQuantity

xsd:any
hasValue

1

Property hasValue

ScalarValue
UnitOf

Measure
hasUnit
OfMeasure

0..1

QuantitativeValuehasValue

numericalValue

PhysicalQuantity

Value

ScalarQuantity

xsd:any
hasValue

1

Property hasValue

ScalarValue
UnitOf

Measure
hasUnit
OfMeasure

0..1

QuantitativeValuehasValue

numericalValue

124 Upper Level

ple is presented in Fig. 5.14, which shows the representation of a temperature val-

represents the time-dependent measurement of a temperature. The scalar quantity
Time acts as a backdrop to distinguish the different values of the scalar quantity
Temperature.

[System]
Cooled
System

[Property]
Temperature

[ScalarValue]
TempValue_1

K
hasProperty

numericalValue
285

0

s[Property]
Time

273

TimeValue_2

300

[ScalarValue]
TempValue_2

TimeValue_1

isObserved
AgainstBackdrop

[System]
Temporal

Coordinate
System

hasProperty

hasValue

hasValue

hasValue

hasValue

numericalValue

hasUnitOfMeasure

hasUnitOfMeasure

numericalValue

numericalValue

hasUnitOfMeasure

hasUnitOfMeasure

[System]
Cooled
System

[Property]
Temperature

[ScalarValue]
TempValue_1

K
hasProperty

numericalValue
285

0

s[Property]
Time

273

TimeValue_2

300

[ScalarValue]
TempValue_2

TimeValue_1

isObserved
AgainstBackdrop

[System]
Temporal

Coordinate
System

hasProperty

hasValue

hasValue

hasValue

hasValue

numericalValue

hasUnitOfMeasure

hasUnitOfMeasure

numericalValue

numericalValue

hasUnitOfMeasure

hasUnitOfMeasure

[System]
Cooled
System

[Property]
Temperature

[ScalarValue]
TempValue_1

K
hasProperty

numericalValue
285

0

s[Property]
Time

273

TimeValue_2

300

[ScalarValue]
TempValue_2

TimeValue_1

isObserved
AgainstBackdrop

[System]
Temporal

Coordinate
System

hasProperty

hasValue

hasValue

hasValue

hasValue

numericalValue

hasUnitOfMeasure

hasUnitOfMeasure

numericalValue

numericalValue

hasUnitOfMeasure

hasUnitOfMeasure

Fig. 5.15: Application example: Temperature measurement with multiple values

5.1.12 Physical Dimension

By convention, physical quantities are organized in a system of dimensions (BIPM
2006). In such systems, each physical quantity has exactly one associated physical
dimension. A typical example would be the dimension of length, which can be as-
sociated with such physical quantities as height, thickness, or diameter.
In OntoCAPE, dimensions are modeled by the class physical dimension. A particu-
lar instance of physical dimension can be assigned to both a physical quantity and a
unit of measure via the relation hasDimension (cf. Fig. 5.16). For instance, both the
scalar quantity ‘radius’ and the unit of measure ‘meter’ have the dimension of length.
Physical dimensions serve two functions in OntoCAPE:

(1) Physical quantities of the same physical dimension share certain characteristics;
for instance, their scalar values relate to the same set of units of measure. Thus, the

ue of 351.8 Kelvin. Figure 5.15 shows a more extensive example than Fig. 5.11; it

System 125

concept of physical dimension may be used to identify physical quantities of the same
kind63 and to differentiate those from other kinds of physical quantities.
(2) According to the conceptualizations stated so far, arbitrary units of measure can
be assigned to the scalar value of a particular scalar quantity. Now, the physical di-
mension provides a means to constrain the set of possible units of measure for a giv-
en quantity. To this end, one needs to implement64 the following constraint:

Fig. 5.16: Physical dimensions

On the basis of this constraint, the consistency of unit of measure assignment and
conversion can be checked. For example, a meter is a valid unit of measure for
measuring the scalar value of a radius, as both radius and meter have the dimension

63 The International Vocabulary of Basic and General Terms in Metrology (VIM 1993) defines
‘quantities of the same kind’ as “quantities that can be placed in order of magnitude relative to
one another”. While it is true that quantities of the same kind must have the same physical di-
mension, the opposite is not true, i.e., having the same physical quantity is a necessary, but not a
sufficient condition for being of the same kind. For example, moment of force and energy are, by
convention, not regarded as being of the same kind, although they have the same dimension, nor
are heat capacity and entropy (VIM 1993).

64 In principle, the constraint could be formulated in the OWL modeling language; however,
such an implementation would be quite exhausting, as the constraint would have to be formu-
lated individually for each scalar quantity. Alternatively, the constraint can be implemented

A unit of measure that is assigned to the scalar value of a scalar quantity must have the
same physical dimension as the scalar quantity.

of length. Similarly, meters can be converted into feet, as both units of measure
have the same dimension.

through a single, generic rule, which applies to all quantities. Rules do not form part of current
OWL, but can be formulated on top of the language. The latter approach is taken in OntoCAPE.

Property

UnitOf
Measure

Physical
Dimension

hasValue
Value

PhysicalQuantity

has
Dimension

has
Dimension

QuantitativeValue

ScalarQuantity ScalarValue

hasUnit
OfMeasurehasValue

Property

UnitOf
Measure

Physical
Dimension

hasValue
Value

PhysicalQuantity

has
Dimension

has
Dimension

QuantitativeValue

ScalarQuantity ScalarValue

hasUnit
OfMeasurehasValue

126 Upper Level

5.1.13 Qualitative Value

Obviously, not all properties are physical quantities. The values of properties like
‘color’ or ‘flavor’ are not (numerically) quantifiable. Instead, such values are
represented by means of the class qualitative value, a subclass of value (cf. Fig.
5.17).

Fig. 5.17: Representation of qualitative values

The actual value of a qualitative value can be specified in two alternative ways: ei-
ther by means of the attribute value, which accepts any string input, or by referring
to an instance of the class value enumeration via the relation qualitativeValue. A value
enumeration defines a (finite) set of possible values, which may be assigned to dif-
ferent qualitative values. The value enumeration class is derived from the meta class
feature space and can be either a fixed value set or an extensible value set:

– A fixed value set is a specialization of the meta class value set. It is uniquely
defined by an exhaustive enumeration of its instances. Thus, the number of
possible values is fixed.

– An extensible value set is a specialization of the meta class non-exhaustive
value set. Unlike a fixed value set, it is not defined by an (exhaustive) enu-
meration of its instances. Thus, the number of possible values may change
at run time.

Like every other value, a qualitative value can be related to a backdrop value. Fig.
5.18 provides the example of a chameleon, whose skin color is observed against a
temporal backdrop.

[System]
Chameleon

[Property]
Skin
Color

[QualitativeValue]
ValueOf

SkinColor

hasProperty hasValue [Exstensible
ValueSet]

green

2007-04-01

isObservedAgainstBackdrop

qualitativeValue

value[Property]
Date

[Value]
DateOfObservation

hasValue

[System]
Chameleon

[Property]
Skin
Color

[QualitativeValue]
ValueOf

SkinColor

hasProperty hasValue [Exstensible
ValueSet]

green

2007-04-01

isObservedAgainstBackdrop

qualitativeValue

value[Property]
Date

[Value]
DateOfObservation

hasValue

[System]
Chameleon

[Property]
Skin
Color

[QualitativeValue]
ValueOf

SkinColor

hasProperty hasValue [Exstensible
ValueSet]

green

2007-04-01

isObservedAgainstBackdrop

qualitativeValue

value[Property]
Date

[Value]
DateOfObservation

hasValue

Fig. 5.18: Application example of a qualitative value

Value
Enumeration0..1

qualitativeValue

Fixed
ValueSet

Extensible
ValueSet

xsd:any
value

0..1
Property

hasValue
Value

Qualitative
Value

Value
Enumeration0..1

qualitativeValue

Fixed
ValueSet

Extensible
ValueSet

xsd:any
value

0..1
Property

hasValue
Value

Qualitative
Value

Value
Enumeration0..1

qualitativeValue

Fixed
ValueSet

Extensible
ValueSet

xsd:any
value

0..1
Property

hasValue
Value

Qualitative
Value

System 127

At first sight, the representation of a qualitative value may seem unnecessarily
complicated as it requires an instantiation of both the qualitative value class and the
value enumeration class. Yet both classes are required for the complete specification
of the qualitative value: While the value enumeration class represents the actual
value, the qualitative value class serves the function of correlating the actual value
with the corresponding backdrop value. A combination of these two functions into
a single class is not possible, since the instances of value enumeration must not be
the origin of a relation (cf. the discussion on feature values in the Meta Model).
However, in cases where the specification of a backdrop is not required, the value
representation can be simplified, as will be explained in the following section.

5.1.14 The hasCharacteristic Relation

Generally, the characterization of a system through properties and their values is
fairly complex, requiring the concatenation of several concepts: First, the property
class must be instantiated and linked to the system via a hasProperty relation; only
then can the value be specified and assigned to the property by means of the hasVa-
lue relation. Such a ‘chain of concepts’ is indispensable for representing properties
that take multiple values, as explained in the previous sections. However, in the
case of a constant property having only a single value, the function of the constant
property is reduced to that of a binary relation relating the value to the system.
Hence, one may use a shorthand notation instead. To this end, the relation hasCha-
racteristic is introduced. Via this relation, the values of constant properties can be di-
rectly assigned to a system, thus substituting the constant property.

Fig. 5.19: Shorthand notation for constant physical quantities

Two cases must be distinguished:

– If the constant property is a physical quantity, hasCharacteristic replaces the
concepts hasProperty, physical quantity, and hasValue (cf. Fig. 5.19).

hasCharacteristic

Quantitative
ValueSystem

hasProperty hasValue

ConstantProperty PhysicalQuantity

Constant
Physical
Quantity

hasCharacteristic

Quantitative
ValueSystem

hasProperty hasValue

ConstantProperty PhysicalQuantity

Constant
Physical
Quantity

hasCharacteristic

Quantitative
ValueSystem

hasProperty hasValue

ConstantProperty PhysicalQuantity

Constant
Physical
Quantity

128 Upper Level

– If the constant property has a qualitative value, the relation additionally substi-
tutes the concepts qualitative value and the relation qualitativeValue, thus re-
ferring directly to the value enumeration (cf. Fig. 5.20).

Fig. 5.20: Shorthand notation for constant properties with qualitative values

Finally some remarks on the usage of the introduced primatives:

– Just like the property class can be specialized to represent specific types of
properties, the hasCharacteric relation needs to be specialized to substitute
these properties. For instance, to replace the property ’height’, the relation ha-
sHeight may be introduced as a specialization of hasCharacteristic.

– Specializations of hasCharacteristic may be utilized to implicitly define po-
lyhierarchies of classes (cf. Sect. 4.2). In this case, the utilized relation
should be declared to be a specialization of both the relation hasCharacteris-
tic and the meta relation isOfType.

– The hasCharacterstic relation allows linking a single value instance to dif-
ferent system instances. This is exploited to relate the value of a physical
constant to different systems (cf. Sect. 5.1.15).

5.1.15 Physical Constant

A physical constant is a special type of a constant property with a fixed (scalar) value.
It is defined as a physical quantity, the value of which is believed to be both univer-
sal in nature and invariant over time. Examples are the elementary charge, the
gravitational constant, Planck's constant, and the speed of light in the vacuum.
Such specific constants are modeled as instances of the physical constant class.
Due to its universal nature, a physical constant cannot be owned by a specific sys-
tem and thus must not be assigned to a system instance via the hasProperty relation.
Instead, the hasCharacteristic relation is used to relate the value of the physical con-
stant to a system. That way, the physical constant itself remains independent.

Value
EnumerationSystem hasProperty Constant

Property
Qualitative

Value
qualitativeValuehasValue

hasCharacteristic

Value
EnumerationSystem hasProperty Constant

Property
Qualitative

Value
qualitativeValuehasValue

hasCharacteristic

Value
EnumerationSystem hasProperty Constant

Property
Qualitative

Value
qualitativeValuehasValue

hasCharacteristic

System 129

Fig. 5.21: Modeling of the elementary charge

Exemplarily, Fig. 5.21 illustrates the modeling of the elementary_charge as an in-
stance of physical constant. The elementary_charge has a physical dimension of elec-
tric_charge; its value e equals 1.6021765314e-19 coulomb. By means of the rela-
tion hasIonicCharge (a specialization of hasCharacteristic), e can be assigned to
different systems, such as the sodium_cation or the potassium_cation.

5.1.16 Internal and External Properties

According to axiom (5), not all the properties of a system need to be declared expli-
citly. Instead, they can be represented as properties of its constituent subsystems.
We call those properties of a system that are explicitly assigned to the system the
‘external properties’ of the system. Accordingly, the ‘internal properties’ of a system
are the external properties of its constituent subsystems.
The internal properties of a system can be inferred from the external properties of its
subsystems by means of a reasoner. To this aim, one needs to define a query class,
which subsumes the (external) properties of all systems that are subsystems of a
given system. Such a query class must be individually defined for each system in-
stance. An exemplary query class named ‘internal properties’ has been implemented
in the formal specification of this ontology module. The query class retrieves the
internal properties of a sample system S65.

65 A system can have both internal and external properties of the same type. For example, con-
sider a phase system, which is composed of two single phases. Both the overall phase sys-
tem and the two single phases have a property of type density. However, their meanings are
different: The external property of the phase system represents the (averaged) density of over-
all system, whereas the internal properties represent the densities of the constituent liquid phase
and vapor phase.

elementary_charge e
C

1.602 176 5314e-19

electric_charge

hasDimension

hasUnitOfMeasure

numericalValue
hasValue

hasDimension

Definition of the physical constant ‘ElementaryCharge‘

[System]
sodium_cation hasIonic

Charge

[System]
potassium_cationhasIonic

Charge

elementary_charge e
C

1.602 176 5314e-19

electric_charge

hasDimension

hasUnitOfMeasure

numericalValue
hasValue

hasDimension

Definition of the physical constant ‘ElementaryCharge‘

[System]
sodium_cation hasIonic

Charge

[System]
potassium_cationhasIonic

Charge

elementary_charge e
C

1.602 176 5314e-19

electric_charge

hasDimension

hasUnitOfMeasure

numericalValue
hasValue

hasDimension

Definition of the physical constant ‘ElementaryCharge‘

[System]
sodium_cation hasIonic

Charge

[System]
potassium_cationhasIonic

Charge

130 Upper Level

5.1.17 Property Set

A property set constitutes an (unordered) collection of properties, which may be of
different types. The properties contained in a property set are identified via the rela-
tion comprisesDirectly, which is a specialization of the transitive relation comprises.
These relations are defined analogously to the contains(Directly) relation between
supersystems and subsystems, yet with their ranges and domains restricted to prop-
erties. Consequently, the comprises(Directly) relation is depicted by the same symbol
as the contains(Directly) relation: a white diamond with directed arrow (Fig. 5.22).

Fig. 5.22: Property set

A property set is itself a property; thus, a property set may comprise other property
sets. However, a property set cannot have a value of its own.

5.1.18 Concept Descriptions

Individual concepts of the module system are defined below.

Class Descriptions

Aspect
An aspect represents a particular viewpoint of a system. An instance of the aspect
class explicitly denominates that viewpoint.

Aspect system
An aspect system is an exclusive subsystem that contains those system components,
relationships, and constraints that are of relevance to a particular aspect.
Formal definition: An aspect system is an exclusive subsystem that is considered un-
der some aspect.

Composite system
A composite system is a system that is composed of other systems.
Formal definition: A composite system is composed of some systems.

Constant property
A constant property is a property that has exactly one value.

PropertySet

comprises

Property comprises
(transitive)

comprisesDirectlyPropertySet

comprises

Property comprises
(transitive)

comprisesDirectlyPropertySet

comprises

Property comprises
(transitive)

comprisesDirectly

System 131

Elementary system

Exclusive subsystem
An exclusive subsystem is a direct subsystem of a composite system; it cannot be a
direct subsystem of any other system.
Formal definition: An exclusive subsystem is exclusively a subsystem of some sys-
tem.

Extensible value set
An extensible value set is a value enumeration which, unlike a fixed value set, is not
defined by an (exhaustive) enumeration of its instances. Thus, the number of poss-
ible values may change at run time.

First-level subsystem
A subsystem at the first level of decomposition.
Formal definition: A subsystem that is a direct subsystem of a top-level system.

Fixed value set
A fixed value set is a value enumeration that is defined by an exhaustive enumeration
of its instances. Thus, the number of possible values is fixed.

Internal properties

They can be specified by means of a query class and thus inferred by a reasoner.
Such a query class must be defined individually for each system instance. The
query class ‘internal properties’ exemplarily demonstrates this approach for a sam-
ple system S.
Formal definition: The internal properties of the system instance S are equivalent to
the properties of the subsystems of S.

Model
A model is a system that is used to enable the understanding of or the command
over the original system, or to replace the original system. Model system and orig-
inal system share certain characteristics that are of relevance to the task at hand
(Wüsteneck 1963).
Formal definition: A model is a system that models some other system.

Physical constant
A physical constant is a scalar quantity, the value of which is believed to be both uni-
versal in nature and invariant over time. Examples are the elementary charge, the
gravitational constant, Planck's constant, and the speed of light in the vacuum.

Physical dimension
A physical dimension is a characteristic associated with physical quantities and units of
measure for purposes of organization or differentiation. Mass, length, and force are
exemplary instances of physical dimension.

An elementary system is a subsystem that cannot be further partitioned into subsys-
tems. Formal definition: An elementary system is a subsystem that is not a supersystem.

The ‘internal properties’ of a system are the properties of its constituent subsystems.

132 Upper Level

Physical quantity
A physical quantity is a property that has quantifiable values. The concept includes
scalars as well as vectors and higher-order tensors. Moreover, it comprises both
physical quantities, such as mass or velocity, and nonphysical quantities, such as
amount of money or rate of inflation.
Formal definition: A physical quantity is a property that has a physical dimension.

Property
The property class represents the individual properties (traits, qualities) of a system,
which distinguish the system from others. Typical examples are size, color, or
weight, which are modeled as subclasses of property.

Property set
A property set constitutes an (unordered) collection of properties, which may be of
different types.

Qualitative value
A qualitative value is a value that is not (numerically) quantifiable.

Quantitative value
A quantitative value is the value of a physical quantity.

Scalar quantity
A scalar quantity is a scalar-valued physical quantity.

Scalar value
A scalar value is the value of a scalar quantity.

Second-level subsystem66
A subsystem at the second level of decomposition.
Formal definition: A subsystem that is a direct subsystem of a first-level subsystem.

Subsystem
A subsystem is a system that is a constituent of another system.
Formal definition: A subsystem is a system that refers to another system via the is-
SubsystemOf relation.

Supersystem
A supersystem is a system that has some constituent subsystems.
Formal definition: A supersystem is a system that refers to another system via the
hasSubsystem relation.

System
The system class denotes all kinds of systems, which may be physical or abstract.

66 This concept simply demonstrates that second, third, fourth, level subsystems can be defined
in an analogues manner to the , if required.

Formal definition: A property set is a property that directly comprises some proper-
ties.

first-level subsystem

System 133

System environment
The immediate environment of a given system S consists of all systems that are di-
rectly related to S. It can be specified by means of a query class. As the environ-
ment concept is relative, such a query class must be defined individually for each
system instance. The query class system environment exemplarily demonstrates the
approach for sample system S.
Formal definition: The immediate environment of the system instance S includes
all systems that (1) are not S, (2) are not subsystems of S, (3) are directly related to
S.

System interface
The class system interface represents the interface through which a system can be
connected to another system.

Top-level system
A top-level system is a supersystem that is not a constituent of some other system.
Formal definition: A top-level system is a supersystem that is not a subsystem.

Unit of measure
A unit of measure is a standard measure for the scalar value of physical quantity,
which has been adopted by convention.

Value
The value class denotes the different values of a property.

Value enumeration
A value enumeration specifies the (finite) set of possible values of a qualitative value.
Formal definition: A value enumeration is either a fixed value set or an extensible val-
ue set.

Relation Descriptions

comprises
The relation comprises indicates the members of a property set.

comprisesDirectly
The relation comprisesDirectly indicates the direct members of a property set.

contains
The contains relation constitutes an alternative to the hasSubsystem relation. It
should be used instead of hasSubsystem

– if the hasSubsystem relation causes performance problems, or
– if only one side of the aggregation relation is of interest, namely the indica-

tion of the constituting elements of a supersystem.

134 Upper Level

containsDirectly
The relation containsDirectly is an alternative to the hasDirectSubsystem relation. It
should be used instead of hasDirectSubsystem

– if the hasDirectSubsystem relation causes performance problems, or
– if only one side of the aggregation relation is of interest, namely the indica-

tion of the direct constituents of a supersystem.

hasAspectSystem
The relation hasAspectSystem designates the aspect systems of a system.

hasCharacteristic
The hasCharacteristic relation constitutes a shorthand notation for the specification
of a constant property and its value.

hasDimension
The relation hasDimension specifies the physical dimension of a physical quantity or a
unit of measure.

hasDirectSubsystem
The relation hasDirectSubsystem refers from a supersystem to its direct subsystem.

hasProperty
The relation hasProperty indicates the properties of a system.

hasSubsystem
The relation hasSubsystem denotes the relation between a supersystem and its sub-
system.

hasUnitOfMeasure
The relation hasUnitOfMeasure establishes the unit of measure of a scalar value.

hasValue
The hasValue relation designates the values of a property.

isBackdropOf
The isBackdropOf relation states that the value serves as a backdrop for the observa-
tion of some other value.

isComposedOfSubsystem
The relation isComposedOfSubsystem indicates the non-sharable, direct subsystem
of a supersystem.

isConsideredUnderAspectOf
The relation isConsideredUnderAspectOf indicates the type of an aspect system by re-
ferring to an instance of the aspect class.

isConnectedTo
The relation isConnectedTo represents topological connectivity between systems.

System 135

isDirectlyConnetedTo
The relation isDirectlyConnectedTo denotes the direct topological connectedness of
two systems.

isDirectlyRelatedTo
The relation isDirectlyRelatedTo subsumes all kinds of direct inter-system relations.

isDirectSubsystemOf
The relation isDirectSubsystemOf links a subsystem to its direct supersystem.

isExclusivelySubsystemOf
The relation isExclusivelySubsystemOf links a non-sharable subsystem to its direct
supersystem.

isModeledBy
The relation isModeldBy points from a modeled system to its model.

isObservedAgainstBackdrop
The isObservedAgainstBackdrop relation maps a value against a backdrop value.

isPropertyOf
The relation isPropertyOf links a property instance to a system instance.

isRelatedTo
The relation isRelatedTo subsumes all kinds of inter-system relations.

isSubsystemOf
The relation isSubsystemOf refers from a subsystem to its supersystem.

isValueOf
The relation isValueOf assigns a value to a property.

models
The relation models links a model to the modeled system.

qualitativeValue
The relation qualitativeValue specifies the actual value of a qualitative value.

representsAspectOf
The relation representsAspectOf links an aspect system to its respective system.

Attribute Descriptions

numericalValue
The attribute numericalValue specifies the number part of a quantitative value.

value
The value attribute holds the actual value of a qualitative value.

136 Upper Level

5.2 Network System

The ontology module network_system introduces a structured representation for
complex systems, which is applicable in such different domains as biology,
sociology, and engineering. The common strategy of these disciplines is to
represent the system as a network. In this context, a network is understood as a
modular structure that “is determined on hierarchical ordered levels by coupling of
components and linking elements” (Gilles 1998). Thus, the representation of net-
work systems calls for two different mechanisms: the mereological decomposition
of systems and the topological ordering of the system components.
The concepts required for the mereological decomposition of systems are provided
by the ontology module system, which allows for the structuring of systems into
subsystems across multiple levels of hierarchy (cf. Sect. 5.1.4). Hence, what re-
mains to be done is to introduce concepts for the topological organization of the
system components. To this aim, we adopt the design pattern for the representa-
tion of graphs that was defined in the ontology module topology of the Meta Mod-
el (cf. Sect. 4.4). Hence, network system is introduced as a specialization of system
incorporating mereological as well as topological considerations. According to the
design pattern, graphs are represented through nodes and connecting arcs, where
an arc may or may not be directional. Additionally, ports and connection points may
be used to further specify the connectivity between nodes and arcs.
Applying this design pattern to the representation of network systems, two special
types of systems, device and connection, are introduced. Hence, a network system is
composed of at least one device and one connection as shown in Fig. 5.23. Device
and connection correspond to the meta classes node and arc, respectively, and are
defined equivalently. Additionally, a directed connection is established as a subclass
of connection.

Fig. 5.23: Connectivity of devices and connections

Device Connection

NetworkSystem

isDirectlyConnectedTo

DirectedConnection

0..2 0..n

Æ hasInput
 enters

0..n

0..1

Æ hasOutput
 leaves

0..1

0..n

System

1 1

1..n 1..n

Device Connection

NetworkSystem

isDirectlyConnectedTo

DirectedConnection

0..2 0..n

Æ hasInput
 enters

0..n

0..1

Æ hasOutput
 leaves

0..1

0..n

System

1 1

1..n 1..n

Device Connection

NetworkSystem

isDirectlyConnectedTo

DirectedConnection

0..2 0..n

Æ hasInput
 enters

0..n

0..1

Æ hasOutput
 leaves

0..1

0..n

System

1 1

1..n 1..n

Network System 137

The relation isDirectlyConnectedTo, previously established in the system module (cf.
Sect. 5.1.5), is utilized to couple a connection with a device. For linking a directed
connection to a device, the relations enters and leaves are to be used, which are de-
fined analogously to the Meta Model (cf. Fig. 5.24).

isDirectlyConnectedTo
(symmetric)

isConnectedTo
(symmetric, transitive)

isPredecessorOf
(transitive)

isSuccessorOf
(transitive)

hasInputenters leaveshasOutput

isDirectlyConnectedTo
(symmetric)

isConnectedTo
(symmetric, transitive)

isPredecessorOf
(transitive)

isSuccessorOf
(transitive)

hasInputenters leaveshasOutput

isDirectlyConnectedTo
(symmetric)

isConnectedTo
(symmetric, transitive)

isPredecessorOf
(transitive)

isSuccessorOf
(transitive)

hasInputenters leaveshasOutput

Fig. 5.24: Hierarchy of topological relations

So far, we have considered only such connections that are connected to exactly two
devices. Another special case of connection is the single-edge connection, which is
directly connected to only a single device. We denote such a class as environment
connection because it represents the connectivity of a network system with its (not
explicitly specified) environment (cf. Fig. 5.25).

Fig. 5.25: Connectivity of environment connection

Ports and connection points are introduced as special types of system interfaces (Fig.
5.26). Just like in the Meta Model, ports and connection points represent the inter-
faces of the devices and connections. Their characteristics need to match in order to
realize a valid coupling (cf. Sect. 4.4.3).

Device Connection

System

isDirectlyConnectedTo n

1

EnvironmentConnection

Device Connection

System

isDirectlyConnectedTo n

1

EnvironmentConnection

Device Connection

System

isDirectlyConnectedTo n

1

EnvironmentConnection

138 Upper Level

Fig. 5.26: Ports and Connection points

The decomposition of devices and connections, depicted in Fig. 5.27, is governed
by the following regulations:

– Devices can only have direct subsystems of type device, connection, or port.
– Connections can only have direct subsystems of type device, connection, or

connection point.
– If a device is decomposed into a number of sub-devices, then these sub-

devices must be connected by connections. Thus, a device needs to be de-
composed into two devices and one intermediate connection, at least.

Fig. 5.27: Decomposition of devices and connections

Similarly, if a connection is decomposed into sub-connections, then there must be
devices in between the sub-connections. Thus, a connection needs to be decomposed
into two connections and one intermediate device, at least.

Port
isDirectlyConnectedTo

0..n

ConnectionPoint

0..2

Device Connection

System

isDirectlyConnectedTo0..2 0..n

1 1

1 1

SystemInterface

Port
isDirectlyConnectedTo

0..n

ConnectionPoint

0..2

Device Connection

System

isDirectlyConnectedTo0..2 0..n

1 1

1 1

SystemInterface

Port
isDirectlyConnectedTo

0..n

ConnectionPoint

0..2

Device Connection

System

isDirectlyConnectedTo0..2 0..n

1 1

1 1

SystemInterface

1..nDevice Connection

1..n
2..n 2..n

isDirectlyConnectedTo

[Device]
SubDevice

[Device]
SubDevice

[Device]
Device

[Connection]
InternalConnection

[Connection]
SubConnection

[Connection]
SubConnection

[Connection]
Connection

[Device]
InternalDevice

isDirectlyConnectedTo

1..nDevice Connection

1..n
2..n 2..n

isDirectlyConnectedTo

[Device]
SubDevice

[Device]
SubDevice

[Device]
Device

[Connection]
InternalConnection

[Connection]
SubConnection

[Connection]
SubConnection

[Connection]
Connection

[Device]
InternalDevice

isDirectlyConnectedTo

1..nDevice Connection

1..n
2..n 2..n

isDirectlyConnectedTo

[Device]
SubDevice

[Device]
SubDevice

[Device]
Device

[Connection]
InternalConnection

[Connection]
SubConnection

[Connection]
SubConnection

[Connection]
Connection

[Device]
InternalDevice

isDirectlyConnectedTo

Network System 139

The aforementioned regulations are derived from the decomposition rules for
nodes and arcs established in the Meta Model. For details on this issue, refer to
Sect. 4.4.3. Finally, we define a network system as a system that is composed of
some devices and connections.

5.2.1 Usage

A large number of real-world systems can be modeled as network systems: technic-
al systems (Alberts 1994; Marquardt 1996; Marquardt et al. 2000), physico-
chemical systems (e.g., Marquardt 1992a; Marquardt 1994b, Marquardt 1995;
Gilles 1998), biological systems (e.g., Mangold et al. 2005), economic systems
(e.g., Andresen 1999), social systems (e.g., Bunge 1979), and others. Generally,
the devices are the crucial elements of a network system and hold the major functio-
nality, while the connections represent the linkages between the devices.
To enhance the understanding for the applicability of network systems, three ex-
amples of describing real-world systems as network systems are discussed subse-
quently:

– Marquardt (1992a) and Gilles (1998) propose a framework for the devel-
opment of mathematical models for physico-chemical systems, wherein
devices and connections represent the individual model building blocks.
Within the modeling framework, only the devices have the capability for
the accumulation and/or change of extensive physical quantities, such as
energy, mass, and momentum. The connections, on the other hand, describe
the fluxes of quantities that are interchanged between the devices; different
types of fluxes can be modeled this way – of matter (e.g., material flow
through a pipe), energy (e.g., heat conduction through a wall), momentum
(e.g., shock wave in a fluid medium).

– Network systems are particularly suitable for the representation of process
flowsheets. For example, consider a Block Flow Diagram (BFD), which is
used to specify the conceptual design of a chemical process: The individual
process units (unit operations) can be considered as devices, and the ma-
terial and energy streams that are exchanged between the units can be
represented as connections. Another example is the Piping & Instrumenta-
tion Diagram (P&ID) applied in basic and detail engineering: Here, the ap-
paratuses and machines are modeled as devices, while connections represent
the pipes (for materials and utilities) and the power supply lines.

– In the area of control theory, the control components (controller, sensor,
controlled system,…) can be modeled as devices, while the connections
represent the signal lines that transmit information between the control
components (Bayer et al. 2001).

140 Upper Level

5.2.2 Concept Descriptions

Individual concepts of the module network_system are defined below.

Class Descriptions

Connection
Connections are those elements of a network system that represent the linkages be-
tween the devices.

Connection point
A connection point represents the interface through which a connection can be con-
nected to the port of a device. Connection points may have certain attributes that fur-
ther specify the type of connection. Connection points are subsystems of the corres-
ponding connection or directed connection, respectively.

Device
Devices are the crucial elements of a network system, holding the major functionali-
ty.

Directed Connection
Directed connection is a specialization of connection and represents likewise the con-

Environment Connection
Environment connection is a specialization of connection and represents a single-edge
connection to exactly one device. Thus, special connections like system inputs or
outputs may be represented for not explicitly defined environments.

Network system
A network system is a system that is composed of connections and devices.
Formal definition: A network system is a system that is composed of some connec-
tions and some devices.

Port
Ports represents the interfaces through which devices are connected to connections.
Formal definition: A port may have certain attributes that characterize the type of
the connection.

Relation Descriptions

enters

necting element between devices. However, the use of directed connection implies a
directed interconnection.

The relation enters interconnects an outgoing directed connection to its target device.

Technical System 141

hasInput
The relation hasInput connects a device to an incoming directed connection.

hasOutput
The relation hasOutput connects a device to an outgoing directed connection.

isSuccessorOf
The relation isSuccessorOf identifies all devices and directed connections that are
successors of the considered one.

isPredecessorOf
The relation isPredecessorOf identifies all devices and directed connections that are
predecessors of the considered one.

leaves
The relation leaves connects an outgoing directed connection to its source device.

sameAs
The relation denotes a correspondence between a connection and its placeholder in
a decomposition hierarchy.

5.3 Technical System

The ontology module technical_system introduces the class technical system as a
special type of a system which has been developed through an (engineering) de-
sign process. The criterion to qualify as a technical system is “to be designed in or-
der to fulfill some required function” (Bayer 2003). Thus, the technical system con-
cept may denote all kind of technical artifacts, such as chemical plants, cars,
computer systems, or infrastructure systems like a sewage water system. But also
non-technical artifacts like chemical products and even non-physical artifacts,
such as software programs or mathematical models, can be considered as technical
systems.
For a comprehensive description of a technical system, five designated viewpoints
are of major importance (Bayer 2003): the system requirements, the function of
the system, its realization, the behavior of the system, and the performance of the
system. These five viewpoints are explicitly modeled in this ontology module, as
will be explained in the following sections: In Sects. 5.3.1 to 5.3.4, the precise
meaning of the respective viewpoints will be clarified. In the subsequent Sect.
5.3.5, the implementation of these viewpoints as specialized aspect systems (cf.
Sect. 5.1.7) will be described. Lastly, Sect. 5.3.6 discusses the interrelations be-
tween the different aspect systems.
Before going into details, it should be mentioned that the concepts provided by
this module may be used to describe the ‘as-is’ state (i.e., the current status) of a

142 Upper Level

technical system as well as its ‘to-be’ state67 (future state, nominal state). Yet while
the concepts are usable for both the ‘as-is’ case and the ‘to-be’ case, the two cases
are not explicitly distinguished within the current version of OntoCAPE. Thus, it
has to be deduced from context, which of the two cases prevails.

5.3.1 Function and Requirements

The ontological representation of function in design is a long-standing research is-
sue. Various definitions of the function concept have been proposed in the litera-
ture; for a review of those, see for example Baxter et al. (1994); Chandrasekaran
(1994); Bilgic and Rock (1997); Chandrasekaran and Josephson (2000); Szykman
et al. (2001); and Kitamura and Mizoguchi (2003).
Here, we adopt the definition of Chandrasekaran and Josephson (2000), who de-
fine function as desired behavior. Thus, function is an abstraction of the actual

According to Chandrasekaran and Josephson (2000), two interpretations of the
function concept must be distinguished for a technical system: function seen from
an environment-centric viewpoint and function seen from a device-centric view-
point (in this context, ‘device’ is used synonymously with technical system). The
former viewpoint reflects the desired effect that a technical system exerts on its en-
vironment, yet without considering how this effect is to be achieved; the latter
viewpoint additionally incorporates the principle of function of the technical sys-
tem.
In OntoCAPE, the class system function represents the device-centric viewpoint,
while the environment-centric viewpoint is described through the class system re-
quirement; both are subclasses of aspect system.
The environment-centric viewpoint (system requirements) is more abstract than the
device-centric viewpoint (system function): System requirements can be stated with-
out knowledge of their technical realization; only the desired effect on the envi-
ronment needs to be specified. The system function, on the other hand, specifies
how the technical system fulfills the system requirements. Hence, the conceptual de-
sign of the technical system must be specified in terms of the underlying physico-
chemical or technical principles.
As an example, consider the design of a process unit. The system requirements can
be stated by describing the effect that the process unit shall exert on the processed
materials (e.g., to separate dispersed particles from a liquid). Yet to specify the
system function, one needs to consider the physical or technical principles based on

67 Particularly, the concepts associated with the viewpoints of requirements and function are fre-
quently (but not exclusively) employed to specify the ‘to-be’ state of a technical system, e.g. dur-
ing its design phase.

behavior (cf. Sect. 5.3.3) insofar as only the desired effects are considered,
whereas all the unwanted and/or side-effects are ignored.

Technical System 143

which the desired effect is going to be achieved (e.g., decide whether the separa-
tion is realized by means of sedimentation, centrifugation, or filtration). Thus,
“moving from an environment-centric functional description towards a device-
centric description calls for partially solving the design problem” (Chandrasekaran
and Josephson 2000).
Clearly, the main use for the concepts of system requirements and system function is
to specify the ‘to-be’ state of a technical system during its design phase. Usually,
the system requirements are formulated first, specifying the desired effect of the
technical system on the environment. Later, at the conceptual design stage, the sys-
tem requirements are refined into system functions, particularizing the principle
based on which the desired effect is to be accomplished.
In addition to that, the concepts of system requirements and system function may also
be used to characterize the ‘as-is’ state of a technical system. Note, however, that
the semantics differ slightly, depending on whether the ‘as-is’ state or the ‘to-be’
state of the technical system is to be described:

– In the ‘to-be’ case, the system requirements and system function specify the
planned desired behavior of the technical system, as, for example, envi-
sioned in the early phases of the design process.

– In the ‘as-is’ case, the system requirements and system function provide an
abstract (i.e., environment-centric or device-centric) description of the ac-
tual desired behavior.

In other words: the ‘as-is’ case describes the desired behavior that is effectively at-
tainable under optimal conditions. Obviously, this may differ from the planned de-
sired behavior reflected by the ‘to-be’ case. As an example, consider a chemical
plant that has been designed for a nominal production capacity of 200,000 tons per
year. After commissioning, however, it turns out that – due to some unforeseen
problems – the actual production capacity is only 190,000 tons per year, at best.
The nominal production capacity can be considered as the ‘to-be’ system require-
ments, whereas the actual production capacity can be considered as the ‘as-is’ sys-
tem requirements.

5.3.2 Realization

The realization aspect, represented through the class system realization, reflects the
physical (or virtual) constitution of the technical system. In case of a physical sys-
tem, the system realization describes the system’s physical structure, including its
geometrical and mechanical properties. For example, the system realization of a
chemical process would comprise the equipment and machinery required for mate-
rials processing; the system realization of a chemical product would reflect its mo-
lecular structure, crystal morphology, etc. In case of a non-physical system (such
as a computer program), the system realization reflects the logical or abstract structure

144 Upper Level

of the system; also, it may describe the (physical) implementation of the non-
physical system (e.g., the model equations of a mathematical model or the source
code of a computer program). Generally, the system realization gives a static de-
scription of the technical system, as opposed to the system behavior (cf. next sec-
tion), which describes its dynamic behavior. Consequently, a system realization has
mostly constant properties, which are often represented in shorthand notation via
the hasCharacteristic relation (cf. Sect. 5.1.14).
A system realization may describe the ‘as-is’ state of the technical system as well as
its ‘to-be’ state. In the ‘as-is’ case, it is comparable to a technical documentation,
which reflects the current state of the technical system. By contrast, the ‘to-be’ case
is comparable to a technical specification, as it is typically created in an engineer-
ing design project to specify the technical system that is to be built. In this context,
it is important to remember that a system realization holds only information pertain-
ing to the system itself; information that specify how to realize a technical system
(e.g., assembly instructions or production planning) do not form part of the system
realization.
Note that a system realization can be specified on different levels of detail and ab-
straction. For example, the system realization of a chemical plant may be stated on
the information level of a P&ID (which represents the major equipment items and
their main dimensions, but no geometrical details) as well as on the more detailed
information level provided by isometric drawings and 3D models.

5.3.3 Behavior

The class system behavior describes how a technical system operates under certain
conditions. Unlike the previously introduced system requirements and system func-
tion, which consider only the desired behavior, the system behavior also accounts
for the unwanted behavior and the side-effects. As an example, consider chemical
reactor, which is described from the viewpoint of system behavior: Such a descrip-
tion would comprise not only the main reaction (i.e. the desired behavior), but also
include the undesirable side reactions.
If the technical system is described ‘as-is’, the system behavior reflects the behavior
that can be actually observed. In the ‘to-be’ case, the system behavior concept
represents the predicted behavior, which may be estimated on the basis of experi-
ments or mathematical models.
The system behavior can be described both quantitatively and qualitatively. A quan-
titative description is provided by the values of its properties, which must be distin-
guished by means of a suitable backdrop property, usually a temporal coordinate68
(cf. Sect. 6.4). This agrees well with the literature on dynamic systems (e.g.,
Föllinger 1982), where the behavior of a system is often defined as the change of

68 Of course, other choices of backdrop properties are also possible.

Technical System 145

its states over time. According to Bayer et al. (2001), the values of one distinct
property and their related (temporal) backdrop values can be considered as a state
variables of the technical system. The state of a technical system is given by the to-
tality of all state variables at one particular point in time. Thus, a state can be con-
sidered as a temporal snapshot of the system behavior, and the system behavior can
be described by the sequence of its states over time.
A qualitative description of the system behavior can be obtained by indicating the
system’s characteristic phenomena. In this context, a phenomenon denotes a typical
mode of behavior exhibited by the system. The specification of a phenomenon
implies (1) the existence of certain properties associated with that particular mode
of behavior, and (2) that the values of these properties follow a designated pattern.
To give an example: the indication of the physicochemical phenomenon of laminar
flow (cf. Sect. 8.6.1.6) implies that (1) the properties ‘velocity’ (or ‘mass flow’), ‘vis-
cosity’, and ‘density’ are of relevance for describing the system behavior, and (2) that
the values of these properties must comply with the laws of laminar flow69. Thus,
through the specification of the prevailing phenomena, the state of the technical sys-
tem can be qualitatively defined70.

5.3.4 Performance

Note that a system performance may evaluate only a particular aspect of the technic-
al system: For example, construction costs measure the economic performance of a
system realization, operating costs denote the economic performance of a system be-
havior, and a ranking of conceptual design alternatives corresponds to the perfor-
mance evaluation of some system function.

69 Note that the mathematical formulation of the laws of laminar flow can be specified through
concepts from the partial model mathematical_model (cf. Chap. 9).

70 Even for the specification of the quantitative behavior, it is advantageous to specify the phe-
nomena first; afterwards, one may query the ontology for a list of relevant properties and phys-
ical laws associated with these phenomena.

The system performance is concerned with the evaluation and benchmarking of the
technical system. The concept itself represents a performance measure for the eval-
uation. Different performance measures are possible, depending on the chosen eval-
uation criterion. Typical criteria would be safety, reliability, ecological performance,
and economic performance; a typical performance measure for the latter would be
costs. The system performance can represent the predicted performance (‘to-be’ case)
as well as the performance that is actually measured (‘as-is’ case).

146 Upper Level

5.3.5 Implementation of the Technical System in OntoCAPE

In OntoCAPE, the viewpoints of system requirements, system function, system beha-
vior, system realization and system performance are modeled as subclasses of aspect
system. Each aspect system is assigned an instance of the aspect class, which expli-
citly typifies the nature of the respective aspect system: For example, the system
function is assigned the aspect of function (cf. Fig. 5.28).

Fig. 5.28: The five major aspects of a technical system

The relationships between the technical system and its aspect systems are estab-
lished via specializations of the relations hasAspectSystem and representsAspectOf,
as indicated in Fig. 5.28 and Fig. 5.29.

hasFunctional
Aspect

system:hasAspectSystem

hasBehavioral
Aspect

… represents
BehaviorOf

system:representsAspectOf

represents
FunctionOf

…hasFunctional
Aspect

system:hasAspectSystem

hasBehavioral
Aspect

… represents
BehaviorOf

system:representsAspectOf

represents
FunctionOf

…hasFunctional
Aspect

system:hasAspectSystem

hasBehavioral
Aspect

system:hasAspectSystem

hasBehavioral
Aspect

… represents
BehaviorOf

system:representsAspectOf

represents
FunctionOf

system:representsAspectOf

represents
FunctionOf

…

Fig. 5.29: Refinement of the hasAspectSystem relation

As explained above, the system behavior can be qualitatively described by indicat-
ing the relevant phenomena. This is modeled through the class phenomenon, which
is assigned to a system behavior via the relation hasPhenomenon (Fig. 5.30).
The occurrence of a particular phenomenon exerts an influence on certain proper-
ties: For example, if the phenomenon of laminar flow is present, it will influence the

system

SystemBehavior

SystemRealization

Aspect
System

Æ hasAspectSystem
 representsAspectOf

Composite
System

Aspect

isConsidered
UnderAspectOf

SystemRequirements

isConsidered
UnderAspectOf

Technical
System

behavior

function
isConsidered
UnderAspectOf

representsBehaviorOf

representsRealizationOf

representsPerformanceOf

representsRequirementsOf

representsFunctionOf SystemFunction

SystemPerformance

system

SystemBehavior

SystemRealization

Aspect
System

Æ hasAspectSystem
 representsAspectOf

Composite
System

Aspect

isConsidered
UnderAspectOf

SystemRequirements

isConsidered
UnderAspectOf

Technical
System

behavior

function
isConsidered
UnderAspectOf

representsBehaviorOf

representsRealizationOf

representsPerformanceOf

representsRequirementsOf

representsFunctionOf SystemFunction

SystemPerformance

system

SystemBehavior

SystemRealization

Aspect
System

Æ hasAspectSystem
 representsAspectOf

Composite
System

Aspect

isConsidered
UnderAspectOf

SystemRequirements

isConsidered
UnderAspectOf

Technical
System

behavior

function
isConsidered
UnderAspectOf

representsBehaviorOf

representsRealizationOf

representsPerformanceOf

representsRequirementsOf

representsFunctionOf SystemFunction

SystemPerformance

Technical System 147

properties ‘velocity’ and/or ‘mass flow’; the phenomenon of chemical equilibrium has
an influence on the concentrations, etc. These kinds of interdependencies can be
modeled by means of the relation isInfluencedBy, which explicitly designates those
properties that are influenced by a particular phenomenon.

Fig. 5.30: Qualitative description of system behavior

5.3.6 Relations between Aspect Systems

Manifold relations and dependencies exist between the aspect systems of technical
system. The type and the number of relations vary, depending on the respective
application context. For example, the following relationships will arise in the
course of a design project:

– In conceptual design, the system requirements are transformed into system
functions.

– Later, the system function is detailed into the system realization at the stage of
basic design.

– The system realization sets boundary conditions that constrain the possible
system behavior.

Depending on the target application, an ontological model of these relations can
turn very complex. For example, Kitamura and Mizoguchi (2003) present a fairly
large ontology designated solely for modeling the interrelations between system
requirements and system functions. According to the authors, this level of detail is
required to provide adequate support for an intelligent design environment.
So far, such applications have not been the focus of OntoCAPE; consequently, the
inter-aspect relations are presently not modeled in detail. Fig. 5.31 presents some
generic binary relations, which may be used to navigate between aspect systems;
additional ones may be introduced if required.
Generally, the inter-aspect relations displayed in Fig. 5.31 are specializations of
the isRelatedTo relation.

– System requirements and system function can be linked via the relations fulfills
and its inverse isAchievedThrough, thus stating that a conceptual design so-
lution fulfills a particular requirement.

SystemBehavior PhenomenonhasPhenomenon

Property

isInfluencedBy
hasProperty

SystemBehavior PhenomenonhasPhenomenon

Property

isInfluencedBy
hasProperty

SystemBehavior PhenomenonhasPhenomenon

Property

isInfluencedBy
hasProperty

148 Upper Level

– The relation realizes and its inverse isRealizedBy indicate that a particular
system realization is able to implement some system function.

– The relations constrains and isConstrainedBy denote the restrictions on the
system behavior, which are imposed by a system realization.

Fig. 5.31: Exemplary relation applied between aspect systems

Finally, the relation evaluates refers from a system performance to the aspect system
the performance of which is measured; its inverse hasPerformanceMeasure points
from the evaluated aspect system to the performance measure.

5.3.7 Concept Descriptions

Individual concepts of the module technical_system are defined below.

Class Descriptions

Phenomenon
A phenomenon denotes a typical mode of behavior exhibited by a technical system,
thus providing a qualitative description of a recurring system behavior.

System behavior
The system behavior describes how a technical system operates under certain condi-
tions; this description can be of a qualitative or quantitative nature.
Formal definition: A system behavior represents the behavioral aspect of a technical
system.

SystemFunction

SystemRequirements

SystemRealization

realizes SystemPerformance

SystemBehavior

constrains

evaluates

fulfills

SystemFunction

SystemRequirements

SystemRealization

realizes SystemPerformance

SystemBehavior

constrains

evaluates

fulfills

SystemFunction

SystemRequirements

SystemRealization

realizes SystemPerformance

SystemBehavior

constrains

evaluates

fulfills

Technical System 149

System function
A system function describes the desired behavior of a technical system from a de-
vice-centric perspective (cf. Chandrasekaran and Josephson 2000). To indicate the
system function of a technical system, the conceptual design of the technical system
must be specified in terms of the underlying physicochemical and/or technical
principles.
Formal definition: A system function represents the functional aspect of a technical
system.

System Performance
The system performance concept constitutes a performance measure for the evalua-
tion and benchmarking of technical systems. Different performance measures are
possible, depending on the chosen evaluation criterion. Typical criteria would be
safety, reliability, ecological performance, and economic performance.
Formal definition: A system performance represents the performance aspect of a
technical system.

System realization
The system realization represents the physical (or virtual) constitution of the tech-
nical system. In case of a physical system, the system realization describes the sys-
tem’s physical structure, including its geometrical and mechanical properties. In
case of a non-physical system, the system realization reflects the logical or abstract
structure of the system; moreover, it may describe the (physical) implementation
of the non-physical system.
Formal definition: A system realization represents the realization aspect of a tech-
nical system.

System requirements
The system requirements specify the desired behavior of a technical system from an
environment-centric perspective (cf. Chandrasekaran and Josephson 2000). From
the perspective of systems requirements, the technical system is viewed as a black
box: Its structure and the underling physical and technical principles are not con-
sidered; only the effect on the environment is specified.
Formal definition: The system requirements represent the requirements aspect of a
technical system.

Technical system
A technical system is a system which has been developed in an engineering design
process. The criterion to qualify as a technical system is “to be designed in order to
fulfill some required function” (Bayer 2003). Thus, the technical system concept
may denote all kinds of technical artifacts, such as chemical plants, cars, computer
systems, or infrastructure systems like a sewage water system. But also non-
technical artifacts like chemical products, and even non-physical artifacts, such as
software programs or mathematical models, can be considered as technical systems.

150 Upper Level

Relation Descriptions

constrains
The constrains relation indicates that a system realization imposes constraints on the
system behavior.

evaluates
The relation evaluates refers from a performance measure to the aspect system the
performance of which is evaluated.

fulfills
The fulfills relation states that a system function fulfills a particular system require-
ment.

hasBehavioralAspect
The relation points to the behavioral aspect of a technical system.

hasFunctionalAspect
The relation points to the functional aspect of a technical system.

hasPerformanceMeasure

hasPerformanceAspect
The relation points to the performance aspect of a technical system.

hasPhenomenon
The relation hasPhenomenon assigns a phenomenon to a system behavior.

hasRealizationAspect
The relation points to the realization aspect of a technical system.

hasRequirementsAspect
The relation points to the requirements aspect of a technical system.

isInfluencedBy
The relation isInfluencedBy indicates which properties are influenced by a particular
phenomenon.

isAchievedThrough
The relation isAchievedThrough states that a system requirement can be achieved by
means of a some system function.

isConstrainedBy

The relation hasPerformanceMeasure points from an aspect system, the performance
of which is evaluated, to the performance measure.

The isConstrainedBy relation states that the system behavior is limited by the con-
straints imposed by the system realization.

Coordinate System 151

isRealizedBy
The relation isRealizedBy states that a system function is implemented by some sys-
tem realization.

realizes
The relation realizes states that a system realization implements a particular system
function.

representsBehaviorOf
The relation refers from a system behavior to the overall technical system.

representsFunctionOf
The relation refers from a system function to the overall technical system.

representsPerformanceOf
The relation refers from a system performance to the overall technical system.

representsRealizationOf
The relation refers from a system realization to the overall technical system.

representsRequirementsOf
The relation refers from the system requirements to the overall technical system.

5.4 Coordinate System

The ontology module coordinate_system is a supplement to the system module.
Fig. 5.32 gives an overview on the concepts established by coordinate_system. In
particular, it introduces the concept of a coordinate system, a special type of system
that provides a frame of reference for the observation of properties owned by other
systems.
The properties of a coordinate system are called coordinates. A coordinate is defined
as a scalar quantity, the values of which (i) serve as a backdrop for some values and
(ii) cannot be observed against some further backdrop. Hence, as a coordinate can-
not have a backdrop of its own, it constitutes an ‘absolute’ or ‘final’ backdrop for
the observation of properties; it thus breaks the loop caused by the relativity of the
backdrop concept (cf. the discussion in Sect. 5.1.10).
Each coordinate refers to one coordinate system axis, which further qualifies the
coordinate. For example, a spatial coordinate may refer to the x-axis of a spatial
coordinate system, thus clarifying its spatial orientation. The coordinate system axis
itself is not further specified through ontological concepts; consequently, its cha-
racteristics – e.g., its orientation relative to some spatial objects not described by
OntoCAPE – must be defined outside the ontology.

152 Upper Level

Fig. 5.32: Coordinate system

5.4.1 Concept Descriptions

Individual concepts of the module coordinate_system are defined below.

Class Descriptions

Coordinate
A coordinate is a property of a coordinate system. The values of a coordinate provide
an ‘absolute’ or ‘final’ backdrop for the observation of some properties.

Coordinate set
A coordinate set groups some coordinates which logically belong together.
Formal definition: A coordinate set is a property set that comprises only coordinates.

Coordinate system
A coordinate system constitutes a frame of reference for the observation of proper-
ties owned by other systems. A coordinate system is a system that has some coordi-
nates as properties.

Coordinate system axis
A coordinate system axis represents an axis of a coordinate system.

Detailed concept definitions are given below. The usage of the concepts is explained
in Sect. 6.4 as part of the documentation of ontology module space_and_time

system

System ScalarValue

Coordinate
System CoordinateValue

CoordinateSystemAxis

refersToAxis

11..n

CoordinateSet

ScalarQuantity

PropertySet

Coordinate hasValue

isBackdropOf

Value

isObserved
AgainstBackdrop

hasAxis

hasProperty

hasCoordinate

system

System ScalarValue

Coordinate
System CoordinateValue

CoordinateSystemAxis

refersToAxis

11..n

CoordinateSet

ScalarQuantity

PropertySet

Coordinate hasValue

isBackdropOf

Value

isObserved
AgainstBackdrop

hasAxis

hasProperty

hasCoordinate

system

System ScalarValue

Coordinate
System CoordinateValue

CoordinateSystemAxis

refersToAxis

11..n

CoordinateSet

ScalarQuantity

PropertySet

Coordinate hasValue

isBackdropOf

Value

isObserved
AgainstBackdrop

isObserved
AgainstBackdrop

hasAxis

hasProperty

hasCoordinate

Tensor Quantity 153

Coordinate value
A coordinate value serves as a backdrop for some values, yet it cannot have a back-
drop of its own.
Formal definition: A coordinate value is a scalar value which is the value of a coordi-
nate.

Relation Descriptions

hasAxis
The relation hasAxis identifies the coordinate system axes that belong to a particular
coordinate system.

hasCoordinate
The relation hasCoordinate indicates the coordinates of a coordinate system.

refersToAxis
By means of the relation refersToAxis, a coordinate can be further specified. For ex-
ample, a spatial coordinate may refer to the x-axis of a spatial coordinate system,
thus clarifying its spatial orientation.

5.5 Tensor Quantity

As explained in Sect. 5.1.11, physical quantities include not only scalars but also
vectors (e.g., velocity vector) and higher-order tensors (e.g., the dyadic stress ten-
sor). The ontology module tensor_quantity provides the necessary concepts to de-
fine such tensor quantities.
A tensor quantity is a physical quantity that is assigned a tensor order. A tensor quanti-
ty of order k can be defined by induction:

– A tensor quantity of order 0 is a scalar quantity.
– A tensor quantity of rank k is given by an n-tuple, the elements of which are

again tensor quantities of order (k-1).

Thus, a tensor quantity of arbitrary order can be recursively decomposed into tensor
quantities of lower order, ultimately obtaining scalar quantities.
The above definition is implemented in OWL as follows. The order of the tensor
quantity is denoted by the attribute hasTensorOrder. For the modeling of the tuple
structure, we apply the design pattern for an array introduced in the Meta Model
(cf. Sect. 4.5.3). This leads to the structure displayed on the left-hand side of Fig.
5.33.
A tensor quantity has elements of type physical quantity, which may again be tensor
quantities of a lower order (note that the rank reduction of the tensor elements can-
not be enforced in the OWL language, but must be accomplished manually). The

154 Upper Level

order of the tensor elements is established through the index class: Each tensor
element is assigned an index with unique integer value (given by the index
attribute) via the determinesPositionOf relation; the indices refer to the tensor quantity
via the isOrderedBy relation (cf. Sect. 5.5 for details).

Fig. 5.33: Tensor quantity and tensor value

The value of a tensor quantity must again be a tensor of the same order as the tensor
quantity. To this end, the class tensor value is introduced. A tensor value is defined
analogously to a tensor quantity, as can be seen on the right-hand side of Fig. 5.33.
Thus, each tensor value can be ultimately decomposed into scalar values. Like all
physical quantities, a tensor quantity is assigned a physical dimension, which must be
the same physical dimension as that of its tensor elements71. Thus, unlike the con-
cept of a property set, a tensor quantity comprises only physical quantities of the same
type.
Two special types of tensor quantities are exemplarily introduced below: the vector
quantity and the matrix quantity.
A vector quantity is a tensor quantity that has a tensor order of 1. It is composed of
vector elements, subclasses of scalar quantity, which by default refer to an index via
the hasIndex relation. A vector quantity has vector values, which are defined analo-
gously to vector quantities. A vector value is composed of scalar vector element val-
ues; these are specialized scalar values referring to an index. Fig. 5.34 summarizes
the above concept definitions.
A matrix quantity is a tensor quantity of rank 2, the elements of which are vector quan-
tities. As these vectors constitute the columns of the matrix quantity, they are specif-

71 Note that this axiom cannot be expressed in the OWL language; consequently, it must be en-
forced by the user.

Tensor
Quantity Index

index

xsd:positiveInteger

2..n1

1

Physical
Quantity

Æ isOrderedBy
 isIndexOf

1

determines
PositionOf

hasElement

hasTensorOrder

xsd:positiveInteger

1

Tensor
Value

2..n

 isOrderedBy
Æ isIndexOf

12..n

Quantitative
Value

hasElement

2..n

determines
PositionOf

1

hasTensorOrder

xsd:positiveInteger

1

hasValue

Coordinate
System

Axis

0..1

correspondsTo
CoordinateSystemAxis

coordinate_system

Tensor
Quantity Index

index

xsd:positiveInteger

2..n1

1

Physical
Quantity

Æ isOrderedBy
 isIndexOf

1

determines
PositionOf

hasElement

hasTensorOrder

xsd:positiveInteger

1

Tensor
Value

2..n

 isOrderedBy
Æ isIndexOf

12..n

Quantitative
Value

hasElement

2..n

determines
PositionOf

1

hasTensorOrder

xsd:positiveInteger

1

hasValue

Coordinate
System

Axis

0..1

correspondsTo
CoordinateSystemAxis

coordinate_system

Tensor
Quantity Index

index

xsd:positiveInteger

2..n1

1

Physical
Quantity

Æ isOrderedBy
 isIndexOf

1

determines
PositionOf

hasElement

hasTensorOrder

xsd:positiveInteger

1

Tensor
Value

2..n

 isOrderedBy
Æ isIndexOf

12..n

Quantitative
Value

hasElement

2..n

determines
PositionOf

1

hasTensorOrder

xsd:positiveInteger

1

hasValue

Coordinate
System

Axis

0..1

correspondsTo
CoordinateSystemAxis

coordinate_system

Tensor Quantity 155

ically designated as column vector quantities, and each column vector quantity is as-
signed a column index. By contrast, the vector elements of the column vector quantity
are ordered by a row index.

Fig. 5.34: Interrelations between vector quantity, vector element, vector value, and vec-
tor element value

The definitions of these concepts are summarized by Fig. 5.35; Fig. 5.36 illustrates
their usage.

Fig. 5.35: Definition of the matrix quantity concept

2..n1

ScalarQuantityTensorQuantity

Æ hasElement

 isElementOf

PhysicalQuantity

hasTensorOrder
1

hasValue

TensorValue

QuantitativeValue

ScalarValue

2..n1 Æ hasElement

 isElementOf

hasValue

hasTensorOrder1

Index

VectorElement

hasIndex

VectorElementValue

hasIndex

VectorQuantity

VectorValue

isOrderedBy

isOrderedBy

2..n1

ScalarQuantityTensorQuantity

Æ hasElement

 isElementOf

PhysicalQuantity

hasTensorOrder
1

hasValue

TensorValue

QuantitativeValue

ScalarValue

2..n1 Æ hasElement

 isElementOf

hasValue

hasTensorOrder1

Index

VectorElement

hasIndex

VectorElementValue

hasIndex

VectorQuantity

VectorValue

isOrderedBy

isOrderedBy

2..n1

ScalarQuantityTensorQuantity

Æ hasElement

 isElementOf

PhysicalQuantity

hasTensorOrder
1

hasValue

TensorValue

QuantitativeValue

ScalarValue

2..n1 Æ hasElement

 isElementOf

hasValue

hasTensorOrder1

Index

VectorElement

hasIndex

VectorElementValue

hasIndex

VectorQuantity

VectorValue

isOrderedBy

isOrderedBy

Row
Index

Column
Index

2..n

VectorQuantity

Tensor
Quantity

Æ isOrderedBy

 isIndexOf

Æ isOrderedBy

 isIndexOf

MatrixQuantity

hasElement
1 determinesPositionOf

Index

1 hasIndex

2..n

hasElement

ColumnVector
Quantity

Vector
Element

1 determinesPositionOf

1 hasIndex

Row
Index

Column
Index

2..n

VectorQuantity

Tensor
Quantity

Æ isOrderedBy

 isIndexOf

Æ isOrderedBy

 isIndexOf

MatrixQuantity

hasElement
1 determinesPositionOf

Index

1 hasIndex

2..n

hasElement

ColumnVector
Quantity

Vector
Element

1 determinesPositionOf

1 hasIndex

Row
Index

Column
Index

2..n

VectorQuantity

Tensor
Quantity

Æ isOrderedBy

 isIndexOf

Æ isOrderedBy

 isIndexOf

MatrixQuantity

hasElement
1 determinesPositionOf

Index

1 hasIndex

2..n

hasElement

ColumnVector
Quantity

Vector
Element

1 determinesPositionOf

1 hasIndex

156 Upper Level

The value of a matrix quantity is designated as a matrix value (not shown in Fig. 5.35
for the sake of clarity). Analogously to the above definitions, a matrix value is
composed of column vector values, again ordered by a column index; the elements of
the column vector value are vector values, which are ordered by a row index.

Fig. 5.36: Usage of the matrix quantity concept

Concluding the above discussion, Fig. 5.37 gives an application example. It shows
a two-dimensional stress tensor (i.e., matrix quantity), consisting of the scalar quanti-
ties σx, τxy, τyx, and σy, and its associated matrix value. Note that only the second col-
umns of matrix quantity and matrix value are elaborately modeled. For the sake of
clarity, the respective class names in brackets are omitted.

isOrderedByindex isOrderedBy index

τxy σy

IndexOf
Column2 2IndexOf

Column11

determines
PositionOf

isOrderedByindex IndexOf
Row1

IndexOf
Row2

isOrderedBy index 2

determines
PositionOf

determines
PositionOf

/ τxy \
\ σy /

1

hasValue

hasValue

/ σx \
\ τyx /

IndexOf
Column2

isOrderedBy index 2IndexOf
Column1

isOrderedByindex1

determines
PositionOf

/ 1 \
\ 3 /

IndexOf
Row1

isOrderedByindex1 IndexOf
Row2

isOrderedBy index 2

[2] [4]2 4

numerical
Value

determines
PositionOf

/ 1 2 \
\ 3 4 /

hasElement hasElement

determines
PositionOf

determines
PositionOf hasElement hasElement

/ 2 \
\ 4 /

numerical
Value

hasElementdetermines
PositionOf

/ σx τxy \
\ τyx σy /

hasElement

isOrderedByindex isOrderedBy index

τxy σy

IndexOf
Column2 2IndexOf

Column11

determines
PositionOf

isOrderedByindex IndexOf
Row1

IndexOf
Row2

isOrderedBy index 2

determines
PositionOf

determines
PositionOf

/ τxy \
\ σy /

1

hasValue

hasValue

/ σx \
\ τyx /

IndexOf
Column2

isOrderedBy index 2IndexOf
Column1

isOrderedByindex1

determines
PositionOf

/ 1 \
\ 3 /

IndexOf
Row1

isOrderedByindex1 IndexOf
Row2

isOrderedBy index 2

[2] [4]2 4

numerical
Value

determines
PositionOf

/ 1 2 \
\ 3 4 /

hasElement hasElement

determines
PositionOf

determines
PositionOf hasElement hasElement

/ 2 \
\ 4 /

numerical
Value

hasElementdetermines
PositionOf

/ σx τxy \
\ τyx σy /

hasElement

isOrderedByindex isOrderedBy index

τxy σy

IndexOf
Column2 2IndexOf

Column11

determines
PositionOf

isOrderedByindex IndexOf
Row1

IndexOf
Row2

isOrderedBy index 2

determines
PositionOf

determines
PositionOf

/ τxy \
\ σy /

1

hasValue

hasValue

/ σx \
\ τyx /

IndexOf
Column2

isOrderedBy index 2IndexOf
Column1

isOrderedByindex1

determines
PositionOf

/ 1 \
\ 3 /

IndexOf
Row1

isOrderedByindex1 IndexOf
Row2

isOrderedBy index 2

[2] [4]2 4

numerical
Value

determines
PositionOf

/ 1 2 \
\ 3 4 /

hasElement hasElement

determines
PositionOf

determines
PositionOf hasElement hasElement

/ 2 \
\ 4 /

numerical
Value

IndexOf
Column2

isOrderedBy index 2IndexOf
Column1

isOrderedByindex1

determines
PositionOf

/ 1 \
\ 3 /

IndexOf
Row1

isOrderedByindex1 IndexOf
Row2

isOrderedBy index 2

[2] [4]2 4

numerical
Value

determines
PositionOf

/ 1 2 \
\ 3 4 /

hasElement hasElement

determines
PositionOf

determines
PositionOf hasElement hasElement

/ 2 \
\ 4 /

numerical
Value

hasElementdetermines
PositionOf

/ σx τxy \
\ τyx σy /

hasElement

Fig. 5.37: Application example of a matrix quantity and its matrix value

matrix quantity

column vector quantity
column index = 2

vector element
row index = 3

a11 a12 a12
a21 a22 a23
a31 a32 a33

matrix quantity

column vector quantity
column index = 2

vector element
row index = 3

a11 a12 a12
a21 a22 a23
a31 a32 a33

matrix quantity

column vector quantity
column index = 2

vector element
row index = 3

a11 a12 a12
a21 a22 a23
a31 a32 a33

a11 a12 a12
a21 a22 a23
a31 a32 a33

Tensor Quantity 157

The definitions introduced so far conceptualize a tensor as a mere data structure,
thereby ignoring its geometrical properties. Yet the complete specification of a
tensor requires a statement of direction or orientation (Gruber and Olsen 1994).
The tensor orientation can be indicated by assigning a spatial dimension to each
element of a tensor; concretely, this is realized by referring from a vector element to
the concept of a coordinate system axis (cf. Sect. 6.4) via the relation hasOrientation.
Note that a vector element may refer to a cartesian coordinate system axis or a curvili-
near coordinate system axis (cf. definitions in Sect. 6.4). The latter enables the defi-
nition of rotation vectors to represent physical quantities like torque or angular mo-
mentum.
The reference to a coordinate system axis (cf. Fig. 5.38) is of special importance,
since we have defined the tensor as the recursive composition of its scalar ele-
ments. Yet while a tensor (as a whole) is independent of any chosen frame of ref-
erence, the decomposition of the tensor into its scalar elements depends on the
particular choice of the reference frame. Thus, for a complete definition of a ten-
sor in terms of its constituent elements, the respective reference coordinate system
must be specified. If such specification is omitted, the following will be assumed
by default: The tensor elements refer to a positive Cartesian coordinate system,
where the vector element with an index value of 1 refers to the x-axis, and the vector
element with an index value of 2 refers to the y-axis, etc.

Fig. 5.38: Specifying the orientation of a tensor by referring to a coordinate system
axis

5.5.1 Concept Descriptions

Individual concepts of the module tensor_quantity are defined below.

Class Descriptions

Column index
A column index denotes the position of a column vector within a matrix.

coordinate_system

Vector
Element

Coordinate
System

Axis

hasOrientation 0..1

coordinate_system

Vector
Element

Coordinate
System

Axis

hasOrientation 0..1

coordinate_system

Vector
Element

Coordinate
System

Axis

hasOrientation 0..1

158 Upper Level

Column vector quantity
A column vector quantity represents a column vector of a matrix quantity.
Formal definition: A column vector quantity is a vector quantity that is an element of a
matrix quantity.

Column vector value
A column vector value represents a column vector of a matrix value.
Formal definition: A column vector value is a vector value that is an element of a ma-
trix value.

Index
An index represents the n-ary relation between a tensor, one of its elements, and
the index attribute that denotes the position of the tensor element.

Matrix quantity
A matrix quantity is a second order tensor quantity.

Matrix value
A matrix value is a second order tensor value.

Row index
A row index denotes the position of a scalar element within a column vector.

Tensor quantity
A tensor quantity is a non-scalar physical quantity, such as a velocity vector or a
stress tensor.

Tensor value
A tensor value is non-scalar quantitative value of a tensor quantity.

Vector element
Formal definition: A vector element is a scalar quantity that is the element of a vector
quantity.

Vector element value

Vector quantity
A vector quantity is a first order tensor quantity.

Vector value
A vector value is a first order tensor value.

Relation Descriptions

determinesPositionOf
The relation determinesPositionOf refers from an index to the associated tensor ele-
ment.

Formal definition: A vector element value is a scalar value that is the element of a
vector value.

References 159

hasElement
The relation hasElement identifies the elements of a tensor.

hasIndex
The relation hasIndex refers from a tensor element to its index.

isElementOf
The relation isElementOf denotes the affiliation of a tensor element to a tensor.

isIndexOf
The relation isIndexOf points from an index to the associated tensor.

isOrderedBy
The relation isOrderedBy identifies the index of a tensor.

hasOrientation
The relation hasOrientation specifies the orientation of a tensor element by referring
to the corresponding coordinate system axis.

Attribute Descriptions

hasTensorOrder
The attribute denotes the order of a tensor. Scalars are of order 0, vectors of order
1.

index
The attribute indicates the numerical value of an index.

5.6 References

Alberts LK (1994) YMIR: a sharable ontology for the formal representation of en-
gineering design knowledge. In: Gero JS, Tyugu E (eds.): Formal Design
Methods for CAD. Elsevier, New York:3–32.

Andresen T (1999) The macroeconomy as a network of money-flow transfer func-
tions. Model. Ident. Contr. 19

Barkmeyer EJ, Feeney AB, Denno P, Flater DW, Libes DE, Steves MP, Wallace
EK (2003) Concepts for Automating Systems Integration. Technical Re-
port (NISTIR 6928), National Institute of Standards and Technology
(NIST), Gaithersburg, MD.

Baxter JE, Juster NP, de Pennington A (1994) A functional data model for assem-
blies used to verify product design specifications. Proc. Inst. Mech. Eng.
Part B J. Eng. Manuf. 208 (B4):235-244.

 (4):207-223.

160 Upper Level

Föllinger O (1982) Einführung in die Zustandsbeschreibung dynamischer
Systeme. Oldenbourg, München.

Gigch JP (1991) System Design Modeling and Metamodeling. Springer, New
York.

Gilles ED (1998) Network theory for chemical processes. Chem. Eng. Technol. 21
(8):121–132.

Gruber TR, Olsen GR (1994) An Ontology for Engineering Mathematics. In:
Doyle J, Torasso P, Sandewall E (eds.): Proceedings of Fourth Interna-
tional Conference on Principles of Knowledge Representation and Rea-
soning. Morgan Kaufmann. Online available at http://www-ksl.stan-
ford.edu/knowledge-sharing/papers/engmath.html. Accessed September
2007.

Bayer B (2003) Conceptual Information Modeling for Computer Aided Support of
Chemical Process Design. Fortschritt-Berichte VDI: Reihe 3, Nr. 787.
VDI-Verlag, Düsseldorf.

Bayer B, Krobb C, Marquardt W (2001) A Data Model for Design Data in Chemi-
cal Engineering - Information Models, Technical Report LPT-2001-15,
Lehrstuhl für Prozesstechnik, RWTH Aachen University.

Bertalanffy L (1968). General System Theory: Foundations, Development, Appli-
cations, Braziller, New York.

Bilgic T, Rock D (1997) Product data management systems: State-of-the-art and
the future. In: Proceedings of the 1997 ASME Design Engineering Tech-
nical Conferences, Sacramento, CA.

BIPM (2006) The International System of Units (SI), 8th edition. SI brochure, pub-
lished by the International Committee for Weights and Measures (Bureau
International des Poids et Measures, BIPM). Online available at
http://www.bipm.fr/en/si/si_brochure/. Accessed 26 September 2007.

Borst WN (1997) Construction of Engineering Ontologies for Knowledge Sharing
and Reuse, PhD Thesis, Centre of Telematics and Information Technolo-
gy, University of Twente.

Bunge M (1979) Treatise on Basic Philosophy, Volume 4. Ontology II: A World of
Systems. Reidel, Dordrecht.

Chandrasekaran B (1994) Functional representation and causal processes. In: Yo-
vits MC (ed.): Advances in Computers. Academic Press, New York.

Chandrasekaran B, Josephson JR (2000) Function in device representation. J. Eng.
Comput. 16 (3/4):162-177.

References 161

Kitamura Y, Mizoguchi R (2003) Ontology-based description of functional design
knowledge and its use in a functional way server. Expert Syst. Appl. 24
(2):153-166.

Klir GJ (1985) Architecture of Systems Problem Solving. Plenum Press, New
York.

Mangold M, Angeles-Palacios O, Ginkel M, Kremling A, Waschler R, Kienle A,
Gilles ED (2005) Computer-aided modeling of chemical and biological
systems: methods, tools and applications. Ind. Eng. Chem. Res. 44:2579–
2591.

Marquardt W (1992a). An object-oriented representation of structured process
models. Comput. Chem. Eng. 16:329–336.

Marquardt W (1994b) Computer-aided generation of chemical engineering
process models. Int. Chem. Eng. 34:28–46.

Marquardt W (1995) Towards a Process Modeling Methodology. In: R. Berber:
Methods of Model-Based Control. NATO-ASI E, Applied Sciences, 293,
Kluwer, Dordrecht:3-41.

Marquardt W (1996) Trends in computer-aided process modeling. Comput. Chem.
Eng. 20 (6/7):591–609.

Marquardt W, von Wedel L, Bayer B (2000) Perspectives on lifecycle process
modeling. In: Malone MF, Trainham JA, Carnahan B (eds.): Foundations
of Computer–Aided Process Design, AIChE:192–214.

Morbach J, Yang A, Marquardt W (2007) OntoCAPE – A large-scale ontology for
chemical process engineering. Eng. Appl. Artif. Intell. 20

Rector A, Welty C, eds. (2005) Simple part-whole relations in OWL Ontologies.
W3C Editor's Draft, 11 August 2005. Online available at http://
www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/. Accessed
November 2007.

Szykman S, Sriram RD, Regli WC (2001) The role of knowledge in next-
generation product development systems. J. Comput. Inf. Sci. Eng. 1
(1):3–11.

IEEE (2000) IEEE Recommended Practice for Architectural Description for Soft-
ware-Intensive Systems. IEEE Standard 1471-2000, Institute for Electric-
al and Electronics Engineering, New York.

 (2):147-161.

Patzak G (1982) Systemtechnik – Planung komplexer innovativer Systeme.
Springer, Berlin.

Thomé B, ed. (1993) Systems Engineering: Principles and Practice of Computer -
based Systems Engineering. John Wiley, New York.

162 Upper Level

VIM (1993) International Vocabulary of Basic and General Terms in Metrology
(VIM), 2nd Edition. Jointly prepared by ISO, IEC, BIPM, IFCC, IUPAC,
IUPAP and OIML. Published by ISO, Geneva, as ISO Guide 99:1993.

