
 

2 Scientific Background 

2.1 Ontology in Philosophy 

Originally, Ontology is a philosophical discipline concerned with the question of 
what exists and what is the essence of things. The term ‘Ontology’ stems from an-
cient Greek and can be translated as ‘theory of existence’4. The discipline of On-
tology was founded by Greek philosophers, such as Parmenides of Elea and Aris-
totle, during the 4th Century BC. Ontology has been a topic of active research 
throughout the Middle Ages and Modern Age until today, with contributions from 
such renowned philosophers as Kant and Wittgenstein. Nowadays, Ontology con-
stitutes an important area of contemporary philosophy, covering large research 
projects and reaching out to such different areas as artificial intelligence, database 
theory, and natural language processing. 
According to the Stanford Encyclopedia of Philosophy (cf. Hofweber 2005), the 
discipline of modern Ontology comprises four different aspects, denoted by (O1) 
to (O4): 

(O1) The study of what there is, what exists. 

(O2) The study of the most general features and relations of the entities which 
do exist. 

A prerequisite for (O1) is to clarify in which things one must (initially) believe be-
fore one may reason about the existence of other things. Therefore, Ontology also 
includes  

(O3) the study of ontological commitment, i.e., to become aware of what one 
is committed to. 

Generally, an ontological commitment to the existence of an entity (A) becomes 
necessary in order to make a statement about the existence of another entity (B). 
In other words: the existence of entity A is presupposed or implied by asserting 
the existence of entity B. A typical commitment would be the choice of a model-
ing language (cf. Sect. 2.3); that is, one commits to abstract entities, such as 
classes or relations, or to particular theories, such as second order logic 
Finally, the field of Ontology incorporates 

(O4) the study of Meta-Ontology, i.e., saying what task it is that the discipline 
of Ontology should aim to accomplish, if any, how the questions it aims 

                                                           

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_2,  
© Springer-Verlag Berlin Heidelberg 2010 

4 ὄ (Ontos), the genitive of ὄ (On), means ‘of being‘; the suffix - (-logia) denotes a science, 
study, or theory. So originally, the word signifies ‘theory of being’. 



12      Scientific Background 

to answer should be understood, and with what methodology they can be 
answered. 

In the following, a particular ontological theory is referred to as an ontology5. The 
individual ontologies considered in the context of this work will mainly focus on 
the aspects (O1) and (O2). 
An ontology can be specified on different levels of formality. According to 
Uschold and Grüninger (1996) and Hofweber (2005), an ontology is designated as  

– informal if expressed in natural language; 
– semi-informal if expressed in a restricted and structured form of natural 

language; 
– semi-formal if expressed in an artificial and formally defined language; 

and 
– (rigorously) formal if the ontology contains precise mathematical defini-

tions of certain entities in terms of their properties and their relations to 
other entities. Such definitions are usually given in form of axioms formu-
lated in a logic-based language. This allows proving certain properties 
about an ontology, such as its consistency6. 

Formal ontologies have proven to be applicable in numerous areas; a particularly 
popular field of application is based on utilizing a formal ontology as a framework 
for information representation.. Information represented in such a framework is 
easily accessible to automated information processing. For that reason, ontologies 
have become a subject of intensive research in the area of computer science. 

2.2 Ontology in Computer Science 

Over the last decades, the term ‘ontology’ has been adopted by computer scien-
tists, firstly in the field of artificial intelligence (AI) and more recently in other 
areas, as well. Within this community, the term is used in a more narrow sense 
than in the context of philosophy, denoting a formal ontology for information re-
presentation7 (see above). Viewed from the perspective of an AI system, this con-
ception of an ontology is equivalent to the original philosophical definition of On-
tology as a “theory of existence”, since, as Gruber (1995) put it, “for AI systems, 
what ‘exists’ is that which can be [formally] represented”. 

                                                           
5 Adopting a proposal of Guarino and Giaretta (1995), we use the uncountable noun ‘Ontology’ 
(with capital ‘O’) to refer to the philosophical discipline; in contrast, the countable noun ‘ontolo-
gy’ (with lowercase ‘o’) refers to a specific ontological theory, such as ‘Aristotle’s ontology’ or 
‘the Cyc ontology’. 

6 An ontology is said to be consistent if it does not contain any logically conflicting statements. 

7 ‘Knowledge representation’ is often used synonymously with ‘information representation’. 



Ontology in Computer Science     13 

In computer science, there are two principal types of usage for an ontology: 

– The first type of usage has already been explicated in Chap. 1: An ontolo-
gy serves as a library of knowledge components to efficiently build intelli-
gent systems. To this aim, the generic ontology is to be transformed (i.e., 
extended and customized) into a knowledge base according to the require-
ments of the respective application. 

– The second type of usage is as a shared vocabulary for communication be-
tween interacting human and/or software agents. According to their respec-
tive functions, the communicating agents may have different knowledge 
bases, but all the knowledge bases must be consistent with the ontology 
(Gruber 1995).  

Both types of usage make the same demand on the ontology: They both require a 
consensual knowledge representation that is reusable in different application con-
texts. For the first case, this is obvious and has been extensively discussed in 
Chap. 1. As for the second case, the communicating agents perform different tasks 
requiring different knowledge bases, and thus the ontology must be suitable for 
each of these8. Thus, a properly crafted ontology should be applicable to both 
types of usage. As will be explained in Chaps. 11 and 12 OntoCAPE originally 
started as a shared vocabulary, but later evolved to a library for building know-
ledge-based systems. 
Guarino (1998) points out that in philosophy, the term ‘ontology’ denotes a con-
ceptual framework, whereas in computer science, ‘ontology’ often (but not al-
ways) refers to the engineering artifact used to represent such a conceptual frame-
work:  

“In the philosophical sense, we may refer to an ontology as a particular 
system of categories accounting for a certain vision of the world. As such, 
this system does not depend on a particular language: Aristotle's ontology is 
always the same, independently of the language used to describe it.  
On the other hand, in its most prevalent use in AI, an ontology refers to an 
engineering artifact, constituted by a specific vocabulary used to describe a 
certain reality, plus a set of explicit assumptions regarding the intended 
meaning of the vocabulary words.”  

In this book, the term ‘ontology’ is used ambiguously with both meanings. If ne-
cessary, we will use the phrases ‘ontology at the syntactic level’ to refer to the en-
gineering artifact, and ‘ontology at the semantic level’ to refer to the abstract con-
ceptual framework9.  
                                                           
8 The only difference is that, in the first case, the ontology is directly reused for building the 
knowledge base, whereas this is not necessarily true in the second case. Yet even if a knowledge 
base has not developed directly from the ontology, it must still be consistent with the ontology’s 
definitions. 

9 The synonymous terms ‘symbolic level’ and ‘knowledge level’, first suggested by Newell 
(1982), are also used in the literature. 



14      Scientific Background 

Note that in computer science, the term ‘ontological commitment’ has a special 
meaning, as well: If some human or software agents agree on using an ontology 
for a given task in a consistent manner, they are said to commit to that ontology 
(Gruber and Olsen 1994; Studer et al. 1998). In other words, “an agent commits to 
an ontology if its observable actions are consistent with the definitions in the on-
tology” (Gruber 1995). 

2.3 Representation of Formal Ontologies 

Ontologies can be modeled with different modeling techniques, and they can be 
implemented in various kinds of languages (Uschold and Grüninger 1996). Exam-
ples of common modeling techniques, or modeling paradigms, include frames 
(e.g., Minsky 1975), first-order logic (e.g., Hodges 1983), description logic (abbr. 
DL; e.g., Baader et al. 2003), database modeling techniques (e.g., Chen 1976), and 
rule-based languages (a.k.a. rule languages; e.g., Lloyd 1987); for each paradigm, 
multiple implementations, or modeling languages, exist. 
In spite of their diversity, the different modeling languages share structural simi-
larities and have comparable modeling elements. In particular, most languages 
provide constructs for classes, individuals, relations, and attributes, although they 
may be named differently in the respective implementations. Moreover, some lan-
guage allow for the definition of axioms. In the following, these different model 
components will be described in detail. 

2.3.1 Classes and Individuals 

A class represents a collection of entities that share a common characteristic. De-
pending on the respective modeling paradigm, classes are also denoted as concepts 
or frames. If referred to in the text, class identifiers are highlighted by italicized 
sans-serif font. 
Entities that belong to a particular class are said to be instances or members of that 
class; for example, water and ethanol are instances of the substance class. Some 
modeling languages allow for the definition of metaclasses, the instances of which 
are again classes. The instances of an ordinary class are called individuals. 
Throughout this book, individuals are accentuated by bold sans-serif font. 
Classes can be hierarchically organized by means of subsumption relations, which 
are also known as specialization relations or subclassing relations: The class B is 
said to be a specialization or a subclass of the class A if every instance of B is also 
an instance of A. In this case, B is said to be subsumed by A, and A is called a su-
perclass of B.  



Representation of Formal Ontologies     15 

By means of axioms (see below), it is possible to state certain properties about a 
class, such as the existence of relations (see below). In this context, two types of 
classes can be distinguished:  

– Primitive classes have only necessary conditions (expressed in terms of 
their properties) for membership: An instance of a primitive class must al-
ways comply with the properties of that class, but there may be other indi-
viduals with the same properties which are not members of that class. Con-
sequently, membership to a primitive class must be explicitly stated. 

– Defined classes are characterized by necessary and sufficient conditions 
for membership. Thus, an individual whose properties match those of a de-
fined class is automatically inferred to be a member of that class. Similar-
ly, the subclasses of a defined class can be inferred if their properties 
match the class definition. 

Most languages support inheritance between the classes in a subsumption hie-
rarchy; that is, a subclass inherits all the properties of its superclass. Some lan-
guages allow for multiple inheritance, which means that a particular class can in-
herit properties from more than one superclass.  

2.3.2 Relations 

A relation represents an interrelation between some classes; depending on the re-
spective modeling paradigm, relations are also called properties, roles, slots, or 
associations. While most modeling languages only provide modeling constructs 
for binary relations (i.e., relations between exactly two classes), a few have built-
in constructs for higher-arity relations (a.k.a. n-ary relations) involving three or 
more classes. In the following, the term ‘relation’ is synonymously used for ‘bi-
nary relation’. Relation identifiers will be denoted by sans-serif font throughout the 
text. 
By default, a relation is (uni-)directional, which means that it points from a partic-
ular domain class to a designated range class: As an example, consider the relation 
hasReactant, which refers from a chemical reaction (its domain) to a substance (its 
range).  
A relation can be instantiated, which means that it can be applied between an in-
stance of the domain class and an instance of the range class. For example the 
above hasReactant relation can refer from the esterification of acetic acid (an in-
stance of chemical reaction) to the individual ethanol. Unlike a class instance, an in-
stantiated relation is not given a specific name but is identified via its domain and 
range individuals. 
Some languages allow to further specify the relations by means of relation proper-
ties (sometimes called property characteristics). The following relation properties 



16      Scientific Background 

are quite common, although a single language does not necessarily support all of 
them:  

– A relation may be associated with another relation denoting its inverse – 
for example, isReactantOf would be the inverse of hasReactant, thus point-
ing from a substance to a chemical reaction.  

– Alternatively, a relation may be declared to be symmetric – in this case, it 
is equivalent to its own inverse: A concrete example is the isEqualTo rela-
tion – it implies that, if A is equal to B, then B is equal to A, as well. 

– A different property is antisymmetry, which is defined as follows: Given 
an antisymmetric relation R and two entities, A and B. If A is R-related to 
B, and B is R-related to A, then A and B must be identical. Note that sym-
metry and antisymmetry are not mutually exclusive – for instance, the isE-
qualTo relation is both symmetric and antisymmetric. 

– Additionally, a relation may be declared to be transitive. This means that if 
entities A and B are related via a transitive relation R, and so are B and C, 
then A and C must also be R-related. A concrete example would again be 
the isEqualTo relation – if A equals B, and if B equals C, then A equals C. 

– A relation may be declared to be reflexive, meaning that each entity to 
which a reflexive relation R is applicable is R-related to itself. For instance, 
the isEqualTo relation is reflexive since each entity is equal to itself. 

– Alternatively, a relation R may be declared to be irreflexive; in conse-
quence, an entity can never be R-related to itself. The relation isGreaterThan 
is a typical example of an irreflexive relation. 

– A functional relation (sometimes also referred to as a function) cannot 
have more than one unique range individual; if a domain individual is re-
lated to more than one range individual via a functional relation, it will be 
concluded that the range individuals are identical. For obvious reasons, this 
property should not be combined with transitivity.  

– The opposite effect is caused by an inverse-functional relation: If two do-
main individuals are related to the same range individual via an inverse-
functional relation, it will be inferred that the domain individuals are iden-
tical. Thus, the range individuals of an inverse-functional relation can be 
utilized as unique identifiers for the domain individuals. Note that the in-
verse of a functional relation is automatically an inverse-functional rela-
tion. 

A few modeling languages treat subsumption as a special case of a (transitive, ref-
lexive, and antisymmetric) relation. Other languages allow for a hierarchical or-
ganization of relations, which is similar to that of classes. Unlike in class hierar-
chies, a subrelation may have properties different from those of its superrelation. 



Representation of Formal Ontologies     17 

2.3.3 Attributes 

Attributes represent features, characteristics, or parameters of classes and their in-
stances. An attribute is identified by its name; it takes one or several values, which 
are specific to the class or instance the attribute is attached to. Usually, the values 
of a particular attribute are restricted to a specific datatype such as boolean, string, 
or integer. 
Often, the same modeling constructs are used for the representation of relations 
and attributes; they differ from each other only with respect to their ranges: The 
range of a relation is given by its range class, whereas the range of an attribute is 
specified by its datatype. Due to the absence of a range class, most of the above 
relation properties cannot be applied to attributes. However, it is possible to dec-
lare an attribute to be functional or inverse functional; also, attributes may be hie-
rarchically ordered. 

2.3.4 Axioms 

An axiom models a proposition or sentence that is always true. Generally, axioms 
provide an additional means for knowledge representation: They allow formaliz-
ing such knowledge that goes beyond stating the mere existence of classes, rela-
tions, and instances. Therefore, modeling paradigms that include axioms have a 
greater expressiveness than those without. In particular, axioms serve  

– to explicitly define the semantics (or at least to constrain the possible in-
terpretations and uses) of an ontological concept by imposing constraints 
on its values and/or its interactions with other concepts in the ontology;  

– to verify the consistency of the knowledge represented in the ontology; and 
– to infer new (i.e., formerly implicit) knowledge from the explicitly stated 

facts. 

Formal axioms may be embedded in class or relation definitions, where they spe-
cify the properties of the respective class or relation. In fact, the declaration of the 
above introduced relation properties is usually realized by means of embedded 
axioms.  
The following are common types of class-embedded axioms, stating  

– the disjointness of classes – if the classes A and B are declared to be dis-
joint, then an instance of class A cannot simultaneously be an instance of 
class B;  

– the equivalence of classes, meaning that such classes have precisely the 
same instances; 

– the extension of a class by means of an explicit enumeration of its mem-
bers. 



18      Scientific Background 

Another common type of class-embedded axioms puts constraints on the relations 
originating from the respective class. Unlike relation properties, which are univer-
sally valid, these constraints are specific to the domain class, i.e., they are only lo-
cally valid. These local constraints include, but are not restricted to 

– (local) range restrictions, stating that the range of a relation originating 
from the domain class is restricted to certain classes;10 

– cardinality constraints, which specify either the exact number or the max-
imum/minimum number of range individuals for a given relation;  

– qualified cardinality restrictions (a.k.a. qualified cardinality constraints, 
abbr.: QCR), which, in addition to specifying the number of range individ-
uals, also prescribe the range class of which the individuals are to be in-
stantiated from.11  

The above introduced basic axiom types can be combined to more complex ex-
pressions. To this end, ontology languages provide additional constructors, such as 
the set operators of union, intersection, and complement. 
Finally, rules constitute a further, very powerful mechanism for stating axioms. A 
rule axiom consists of an antecedent (or rule body) and a consequent (or rule 
head). Both the antecedent and the consequent are logical expressions, which are 
formulated in terms of the other constructs of the modeling language. Whenever 
the expression specified in the antecedent holds true, then the expression specified 
in the consequent must also hold. Thus, if an antecedent matches the current state 
of the ontology, then the consequent is affirmed, i.e., added to the ontology. Note 
that, while the antecedent is not necessarily true, the rule as a whole is universally 
valid, and therefore matches the above definition of an axiom; ‘classical’ axioms 
(i.e., axioms without a precondition) can be modeled as rules with an empty rule 
body.  

2.3.5 Modularization 

Virtually all of the modern ontology modeling languages support the modulariza-
tion of ontologies, i.e., the subdivision of an ontology into small, manageable 
pieces. This requires two complementary mechanisms: (1) a clustering mechanism 
for grouping a subset of interdependent model components (classes, instances, re-
lations, attributes, and accompanying axioms) into a common module, and (2) an 
inclusion or import mechanism, which allows including the model components of 

                                                           
10 Local range restrictions are typically formulated by means of the universal quantifier (∀). 

11 Postulating the existence of at least one instance of a particular range class is a special case, 
which can be formulated by means of the existential quantifier (∃). 



Representation of Formal Ontologies     19 

some ontology module into another module12. That way, an ontology can be orga-
nized as an inclusion hierarchy of interdependent subontologies. 

2.3.6 Notation of Modeling Elements 

Having established the major elements of ontology modeling languages, we will 
now introduce a graphical notation for these elements. This notation, which is 
based on the UML notation for class diagrams (e.g., Fowler 1997), will be applied 
throughout this book. Its main components are depicted in Fig. 2.1.  

 

Fig. 2.1: Basic elements for the graphical representation of ontologies 

Grey shaded boxes with solid boundary lines represent classes, white boxes 
represent individuals. Datatypes are denoted by grey shaded boxes with dashed 
boundary lines, attribute values by white boxes with dashed boundary lines. Spe-
cialization is depicted through a solid line with a solid arrowhead pointing from 
the subclass to the superclass. A dashed line with an open arrowhead denotes in-
stantiation. Binary relations are depicted through solid lines, thereby 
distinguishing three different cases: a line with one open arrowhead represents the 
standard case of an unidirectional relation; a line with two open arrowheads 
represents a symmetric relation; finally, a line without any arrowheads represents a 
relation and its inverse (cf. Fig. 2.2). Please note, that there are further specializa-
tions of relations (i.e. for aggregation and composition) which are introduced in 
detail in Sect. 5.1.3. Cardinality constraints are depicted by numbers placed close 
to the range class of the respective relation. No particular symbols are provided for 
the other types of axioms. 

                                                           
12 Inclusion means that if module A includes module B, the model components specified in B are 
valid in A and can thus be directly used (i.e., extended, refined …) in A. Inclusion is transitive, 
that is, if module B includes another module C, the ontological definitions specified in C are va-
lid and usable in A, as well. 

individual attribute value

class datatype

relation or attribute

symmetric relation

specialization

superclass

subclass

class

individual

instantiationindividual attribute value

class datatype

relation or attribute

symmetric relation

specialization

superclass

subclass

class

individual

instantiationindividual attribute value

class datatype

individual attribute value

class datatype

relation or attribute

symmetric relation

relation or attribute

symmetric relation

specialization

superclass

subclass

class

individual

instantiation

 



20      Scientific Background 

Fig. 2.2: Graphical notation for cardinalities and inverse relations 

Generally, classes and relations will be named in accordance with the Camel-
Case13 naming convention: UpperCamelCase notation is used to denote identifiers 
of classes, while relation identifiers are represented in lowerCamelCase notation. 
No particular naming convention is followed for identifiers of individuals. For bet-
ter readability, the UpperCamelCase notation is not applied in the text; instead, the 
individual words that constitute the class identifiers are written separately and in 
lowercase (e.g., class identifier). 

2.4 Informal and Formal Specification of an Ontology 

Next, we need to discuss the overall form that an ontology must have at the syn-
tactic level in order to be of practical use. An often quoted definition for an ontol-
ogy stipulates that “an ontology may take a variety of forms, but it will necessarily 
include a vocabulary of terms and some specification of their meaning. This in-
cludes definitions and an indication of how concepts are inter-related” (Uschold 
et al. 1998). Smith (1996) further postulates that “the ontology should be […] ex-
plained in ways which make its content intelligible to human beings, and […] im-
plemented in ways which make this content accessible to computers”. From these 
statements, it can be concluded that two different representations of the ontology 
are required for practical use, which are referred to as formal specification and in-
formal specification hereafter14. The formal specification is to be processed by AI 
systems, while the informal specification addresses the human users of the ontolo-
gy. 

– The formal specification constitutes an implementation of the ontology in 
machine-readable form. It specifies the meaning of the vocabulary terms 

                                                           
13 CamelCase is the practice of writing compound words joined without spaces; each word is 
capitalized within the compound. While the UpperCamelCase notation also capitalizes the initial 
letter of the compound, the lowerCamelCase notation leaves the first letter in lowercase. 

14 The informal and the formal specification are different ontologies at the syntactic level, but 
they represent the same ontology at the semantic level. 

domain class range class
1..n

cardinality of R

Æ R
 iR

relation R and its inverse iR

2

cardinality of iR

domain class range class
1..n

cardinality of R

Æ R
 iR

relation R and its inverse iR

2

cardinality of iR

domain class range class
1..n

cardinality of R

Æ R
 iR

relation R and its inverse iR

2

cardinality of iR
 



Informal and Formal Specification of an Ontology     21 

and constrains their interrelations (and thus their possible uses) by means 
of axiomatic definitions, which are stated in a formal modeling language. 

– The informal specification expresses the definitions of the formal specifi-
cation in human-readable form. Particularly, it clarifies the meaning of the 
ontological vocabulary by giving precise term definitions in natural lan-
guage. Additionally, the interrelations of the terms and their intended 
usage are described in some appropriate way (e.g., through UML-like dia-
grams and/or textual descriptions). Some further documentation may be 
provided, which goes beyond the knowledge stated in the formal specifica-
tion – for instance, user guidelines for the extension of the ontology. 

One of the most common current formal modelling languages is the OWL Web 
Ontology Language (Smith et al. 2004; Bechhofer et al. 2004). OWL and its pre-
decessor DAML+OIL (Connolly et al. 2001) are ontology markup languages that 
have been developed for publishing and sharing ontologies in the Web. Their syn-
tax is based on existing Web markup languages, the most prominent of which is 
XML (W3C 2006). By now, DAML+OIL has been superseded by its successor 
OWL, which has been endorsed as a W3C recommendation15. As OWL is derived 
from DAML+OIL, it shares most of its features (a listing of the differences be-
tween the two languages can be found in Appendix D of Bechhofer et al. 2004). 
Therefore, only OWL will be discussed in the following.  
Model entities are represented through classes and individuals in OWL. Classes 
can be hierarchically ordered, thereby allowing multiple inheritances. They can al-
so be further specified through class-embedded axioms stating the disjointness of 
classes, the equivalence of classes, or the extension of a class. These basic axiom 
types can be combined by means of the set operators of union, intersection, and 
complement. 
Furthermore, OWL provides language primitives for attributes (called ‘datataype 
properties’) and binary relations (called ‘object properties’); higher-arity relations 
must be represented through classes in OWL. Attributes and relations can be hie-
rarchically ordered, and their usage can be restricted through range and cardinali-
ty constraints. Relations may be further specified through axioms declaring a rela-
tion to be transitive, symmetric, functional, or inverse-functional (the latter two are 
also applicable to attributes). Additionally, two distinct relations can be declared 
to be equivalent to, or the inverse of, each other. Modularization is supported by 
the import mechanism of OWL, which allows including the definitions and 
axioms of other ontologies into the current ontology.  
The OWL language provides three increasingly expressive sublanguages, called 
OWL Lite, OWL DL, and OWL Full. Each of these sublanguages is an extension 
of its simpler predecessor, both in what can be legally expressed and in what can 

                                                           
15 A W3C recommendation is the final stage of a ratification process of the World Wide Web 
Consortium (W3C) concerning a standard for the Web. It is the equivalent of a published stan-
dard in other industries. 



22      Scientific Background 

be validly concluded (Smith et al. 2004). Save for a few exceptions, the represen-
tation of OntoCAPE, is restricted to the OWL DL subset. This sublanguage is 
compatible with a particular type of description logic (DL) called SHOIN(D) 
(Horrocks and Patel-Schneider 2004). As a consequence, the models represented 
in OWL DL can be processed with standard DL reasoners. 
The current release of OWL (version 1.0) lacks certain language constructs, such 
as those for the relation properties of antisymmetry and reflexivity, or for the re-
presentation of qualified cardinality constraints. These (and other) language con-
structs will be included in the next release of OWL DL, which will move from the 
SHOIN(D) Description Logic to the more expressive SROIQ(D) Description Logic 
(Patel-Schneider and Horrocks 2006). 
Rules are currently not part of OWL; however there are plans for an additional 
rule language that is to be defined on top of OWL (Horrocks et al. 2004). Yet the 
problem of how to efficiently combine logic-based reasoning and rule-based rea-
soning still remains to be solved. 

2.5 What an Ontology Is and Isn’t 

With the growing popularity of web-enabled ontology languages like OWL (Smith 
et al. 2004; Bechhofer et al. 2004), the term ‘ontology’ is more and more being 
used in an inflationary manner to denote all kinds of knowledge representation 
structures. In many of these cases, it is erroneously assumed that the mere use of 
an ontology modeling language qualifies the respective structure as an ontology. 
However, this is definitely not the case: Being represented in an ontology model-
ing language is only a necessary, but not a sufficient criterion for being considered 
a (formal) ontology.  
To better illustrate our point of view, we will below identify two types of ontolo-
gy-like structures that we do not categorize as full-fledged ontologies: We refer to 
them as pseudo ontologies and lightweight ontologies, respectively. In the follow-
ing, we will define these terms and explain why they do not comply with our – 
admittedly quite strict – conception of an ontology. 
By “pseudo ontology” we mean a part of a software system that is formulated in a 
formal ontology language such as OWL, but has not been explicitly designed for 
reuse. A typical example would be the knowledge base of an intelligent system: In 
our judgment, such a knowledge base – or rather the state-independent part of that 
knowledge base (cf. Sect. 2.6) –can only be considered an ontology if it is reusa-
ble and can thus be shared across software applications and by different groups of 



What an Ontology Is and Isn’t     23 

users16 (cf. Chap. 1). If, on the other hand, the knowledge base has been designed 
for a single purpose only, we refer to it as a pseudo ontology. 
In addition to pseudo ontologies, a second class of ontology-like structures must 
be differentiated from “true” ontologies. Unlike before, the differentiating factor is 
not the reusability of the respective structure, but its semantic richness: Structures 
of this class are not considered full-fledged ontologies as they do not formally de-
fine the semantics of the vocabulary terms through axiomatic definitions. Due to 
their simple internal design, they are sometimes referred to as ‘lightweight ontolo-
gies’ in the literature – as opposed to ‘heavyweight ontologies’, which model the 
domain in a deeper way and provide more restrictions on domain semantics 
(Gómez-Pérez et al. 2004). While a lightweight ontology may be represented in a 
formal ontology modeling language, it utilizes only a subset of the available mod-
eling elements – that is, a lightweight ontology is built using classes, sometimes 
instances, and possibly relations, but it does not include relation properties, local 
constraints, or other forms of axioms. Four types of lightweight ontologies may be 
distinguished: 

– A controlled vocabulary is a list of predefined, authorized terms with an 
unambiguous description given in natural language. The terms may be 
modeled as classes or instances, but there are no further axiomatic specifi-
cations of the meaning of terms. 

– A taxonomy is a controlled vocabulary that is organized in a hierarchical 
structure; the hierarchy is usually modeled by means of subsumption rela-
tions.  

– A thesaurus is a taxonomy that additionally specifies certain semantic re-
lationships between its vocabulary terms. Unlike a semantic network (see 
below), a thesaurus includes only very few types of semantic relationships 
(typically the synonyms or near-synonyms and the antonyms of a term). 
These relationships can be modeled through associative relations. 

– A semantic network is a knowledge representation formalism, which de-
scribes terms their relationships in form of a network consisting of labeled 
nodes and arcs. Typically, the labels of the nodes are nouns, and the labels 
of the arcs are verbs; that way, the triple formed by two nodes and the in-
terconnecting arc represents a declarative sentence of the form subject-
predicate-object. The nodes can be modeled as classes and/or instances, 
and the arcs can be modeled through associative relations.  

Some ontologists (e.g., Guarino 1998; Lassila and McGuinness 2001) prefer a 
gradual approach to defining ontologies. They do not draw a clear distinction be-
tween lightweight and heavyweight ontologies, but postulate an “ontology spec-
trum” (McGuinness 2002), which ranges from simple taxonomies to sophisticated 

                                                           
16 This view is supported by numerous ontologists, such as Neches et al. (1991), Borst (1997), 
Studer et al. (1998), Chandrasekaran et al. (1999), Jarrar and Meersman (2002), Gómez-Pérez et 
al. (2004), Smith (2006), or Pâslaru-Bontaş (2007). 



24      Scientific Background 

heavyweight ontologies: Originating from taxonomies, the level of complexity is 
incrementally increased by adding instances, relations, relation properties, local 
constraints, and finally global axioms. 

2.6 Classification of Ontologies 

As the final topic of this theory chapter, a classification framework for ontologies 
is introduced, and the interdependencies between the different ontology types are 
discussed. In the later chapters of this book, the classification framework will 
serve as a frame of orientation to clarify the roles of the individual subontologies 
that constitute OntoCAPE as well as the roles of those ontologies that are related 
to OntoCAPE. 
According to Guarino (1997b), ontologies can be classified into the following 
types, which are distinguished by their level of dependence on a particular task or 
point of view: 

– Top-level ontologies define general-purpose concepts like object, state, ac-
tion, etc., which are independent of a particular problem or domain and can 
therefore be universally applied. In the literature, top-level ontologies are 
also referred to as abstract ontologies (e.g., Borst 1997), generic ontolo-
gies (e.g., van Heijst et al. 1997a), foundation(al) ontologies (e.g., 
Schneider 2003), or upper (level) ontologies (e.g., Guarino 1998). Promi-
nent examples of top-level ontologies are the Top-Elements Classification 
by Sowa (1995), UpperCyc (Lenat and Guha 1990), or the Suggested Up-
per Level Merged Ontology SUMO (Niles and Pease 2001). 

– Domain ontologies capture the knowledge of a domain of expertise, such 
as medicine or engineering. A domain ontology is not specifically tailored 
to a particular task or application; instead, it defines general domain know-
ledge that is relevant for a wide range of different tasks and applications. 
The goal of a domain ontology is to be universally applicable (and thus 
reusable) within the respective domain of expertise. 

– A task ontology (often also referred to as method ontology) describes gen-
eral problem-solving methods that can be applied in different contexts. 
Such methods are task-specific, but the task itself should be generic in the 
sense that it occurs in different applications and domains of expertise. An 
example of a generic task would be graph searching, for which different 
search methods (e.g., depths-first search or breadth-first search) could be 
specified in a task ontology. Note that a task ontology does not actually 
realize (i.e., implement) the method, but only specifies the “terminology 
for expressing the competence and the knowledge requirements of a me-
thod” (Fensel et al. 1996). For a graph searching method, the terminology 
could, for example, include the concepts of ‘current node’, ‘visited node’, 



Classification of Ontologies     25 

‘search depth’, etc. Do also note that domain ontology and task ontology 
have different but complementary objectives with respect to reusability: 
the former is applicable to different tasks but restricted to a particular ap-
plication domain; the latter is designated for a particular task but reusable 
across domains. 

– Finally, an application ontology provides the concepts that are required for 
a particular application. To clarify the difference between an application 
ontology and a knowledge base, Guarino (1997b) proposed the following 
definition: An application ontology comprises only state-independent in-
formation (i.e., facts that are always true), whereas a knowledge base may 
also hold state-dependent information (i.e., facts and assertions related to a 
particular state of affairs). 

The interdependencies between these four ontology types are depicted in Fig. 2.3: 
According to Borst (1997) and Guarino (1997b), a task ontology may import the 
terminology from a top-level ontology and utilize it for the specification of me-
thods. In a similar manner, a domain ontology may describe domain concepts as 
specializations of the top-level concepts. Furthermore, the concepts in an applica-
tion ontology can typically be defined by combining and refining concepts from 
both a domain and a task ontology; this is particularly facilitated if the domain and 
task ontology are founded on the same top-level concepts and thus share a com-
mon world-view. As an example, consider a top-level ontology that introduces the 
terminology to describe directed graphs. Based on this terminology, a task ontolo-
gy could specify a graph searching method. Likewise, a domain ontology for 
chemical engineering could define the concept of a process flowsheets as a special 
form of a directed graph. An application ontology could finally combine domain 
knowledge and problem-solving knowledge in order to realize a search application 
for process flowsheets.  

Fig. 2.3: Ontology types and interdependencies according to Guarino (1997b); ar-
rows indicate specialization relationships 

top-level ontology
a.k.a. abstract ontology, 
foundation(al) ontology , or upper 
(level) ontology

task ontology
a.k.a. method ontology

application ontology
a.k.a. application task ontology

domain ontology

top-level ontology
a.k.a. abstract ontology, 
foundation(al) ontology , or upper 
(level) ontology

task ontology
a.k.a. method ontology

application ontology
a.k.a. application task ontology

domain ontology

top-level ontology
a.k.a. abstract ontology, 
foundation(al) ontology , or upper 
(level) ontology

task ontology
a.k.a. method ontology

application ontology
a.k.a. application task ontology

domain ontology

 



26      Scientific Background 

While the above classification framework is widely accepted in principle, some 
points remain subject to debate: The borderline between top-level ontologies on 
the one hand, and domain and task ontologies on the other hand, is rather vague, 
as pointed out by van Heijst et al. (1997a); yet, as further argued by these authors, 
the distinction is intuitively meaningful and useful for building libraries of reusa-
ble ontologies. More controversial is the question whether or not it is feasible to 
separate domain knowledge from knowledge about problem-solving methods (cf. 
the discussion between van Heijst et al. 1997a, 1997b, and Guarino 1997a). At the 
core of the discussion is the so-called interaction problem (Bylander and Chandra-
sekaran 1988), which states the following: a method cannot be described without 
knowing the domain knowledge it will be applied to, and, vice versa, domain 
knowledge cannot be represented without knowing for what tasks or methods it 
will be used. Guarino (1997a), while admitting the validity of the interaction prob-
lem in principle, argues that one should nevertheless strive for a task-independent 
representation of domain knowledge; even though the goal cannot be fully 
achieved, it is quite possible to build a domain ontology that is reusable for a large 
number of different tasks.  
As an extension to the above classification framework, some authors introduce 
subtypes and combinations of the four basic ontology types: 

– Gómez-Pérez et al. (2004) recognize the so-called general ontologies (van 
Heijst et al. 1997a) or common ontologies (Mizoguchi et al. 1995) as an 
additional, distinct type of ontologies. According to these authors, ontolo-
gies of this type represent common-sense knowledge that is reusable across 
domains. However, the differentiating criterion between top-level ontolo-
gies and common ontologies remains vague – presumably, a top-level on-
tology contains only high-level concepts, which must be specialized in 
domain and task ontologies to become usable, whereas the concepts of a 
common ontology are directly applicable. A special type of a common on-
tology would be a supertheory – the term has been coined by Borst (1997) 
to denote an abstract ontology that defines a self-contained theory. Promi-
nent examples of this category are the mereology and topology ontologies 
created by Borst (1997). 

– Some authors (e.g., Mizoguchi et al. 1995; Gómez-Pérez et al. 2004) ex-
plicitly subdivide a task ontology in a task part and a method part; only the 
former part is then referred to as ‘task ontology’, while the latter part is 
called ‘method ontology’. 

– Gómez-Pérez et al. (2004) additionally introduce the type of a domain-task 
ontology which is defined as an application-independent task ontologies 
that is reusable in a given domain, but not across domains. 

– Pâslaru-Bontaş (2007) differentiates between application domain ontolo-
gies and application task ontologies. The former refines and extends the 
general-purpose knowledge of a domain ontology to the requirements of a 
particular application, whereas the latter corresponds to a combination of 



Classification of Ontologies     27 

application-relevant domain and task-related knowledge, similar to the ap-
plication ontologies introduced by Guarino (1997b). 

– Some authors (e.g., Valente and Breuker 1996; van Heist et al. 1997a; 
Doerr et al. 2003) suggest an additional ontology type called core ontolo-
gy. In the literature, there is no general agreement on what constitutes a 
core ontology. A core ontology, as we understand it (cf. Brandt et al. 
2008a; Morbach et al. 2007; Chap. 12), constitutes the top-level part of an 
application ontology. More specifically, the function of a core ontology is 
(1) to select and retrieve the top-level concepts that are relevant for the par-
ticular application from the respective domain and task ontologies, (2) to 
specify how these concepts are to be used (i.e., interpreted) by the applica-
tion, and (3) to introduce additional top-level concepts required by the ap-
plication that cannot be retrieved from the available ontologies. 

A further type of ontologies, which is not covered by the above classification 
framework, is the so-called (knowledge) representation ontology. Representation 
ontologies explicate the conceptualizations that underlie knowledge representation 
formalisms (Davis et al 1993). They are intended to be neutral with respect to 
world entities (Guarino and Boldrin 1993). That is, they provide a representational 
framework without making claims about the world (van Heijst et al. 1997a). Top-
level ontologies as well as domain and task ontologies are described through the 
primitives provided by representation ontologies. Well-known examples of this 
ontology type are the Frame Ontology (Gruber 1993) or the representation ontolo-
gies for the Semantic Web languages RDFS (W3C 2000) and OWL (W3C 2002). 
Finally, the notion of a meta model, or meta ontology, needs to be defined. Gener-
ally, a meta model is “a design framework, that describes the basic model ele-
ments and the relationships between the model elements as well as their seman-
tics. This framework also defines rules for the use […] of model elements and 
relationships” (Ferstl and Sinz 2001, p. 86). There are two possible interpretations 
of the term ‘meta model’ which are consistent with this definition: for their diffe-
rentiation, Atkinson and Kühne (2002) coined the terms physical metalevel and 
logical metalevel. A meta model at the physical metalevel defines the concepts 
and mechanisms of the modeling language and it thus equivalent to a representa-
tion ontology. By contrast, a meta model at the logical metalevel guides the devel-
opment of the actual ontology by means of predefined types and patterns, which 
reflect modeling best practice. 
Fig. 2.4 presents the extended classification framework, now including both types 
of meta ontologies17. Also, the degree of usability and reusability of the respective 
ontology types is shown in the figure: Compliant with the usability-reusability 
trade-off (cf. Sect. 1.3), the usability increases with the ontology type’s degree of 
specialization, whereas its reusability decreases. 

                                                           
17 The other ontology types introduced above are not depicted since they are merely subtypes of 
the ones presented in the figure. 



28      Scientific Background 

 

Fig. 2.4: Extended classification framework 

2.7 Summary 

We have contrasted the similar but different perceptions of ‘ontology’ in the areas 
of philosophy and computer science: In the former discipline, an ontology denotes 
a theory of existence, which may be formulated on any level of formality; it is 
created for no specific purpose but to gain insight into the respective universe of 
discourse. In computer science, by contrast, an ontology is created for practical 
use – either as a shared vocabulary for communication between interacting agents 
or as a library of reusable knowledge components for building intelligent systems; 
moreover, a computer science ontology is always formal (and thus machine-
interpretable), even though the provision of an additional informal specification 
for human users is highly advisable. 
Over the last decades, several modeling paradigms and modeling languages have 
been proposed for the representation of formal ontologies. We have presented the 
common elements and pointed out the differences of these paradigms and lan-
guages. 

top-level ontology
a.k.a. abstract ontology, foundation(al) 
ontology , or upper (level) ontology

a.k.a. representation ontology

meta ontology (logical metalevel) 

task ontology
a.k.a. method ontology

Usability
Re

us
ab

ili
ty

meta ontology (physical metalevel)

application ontology
a.k.a. application task ontology

domain ontology

top-level ontology
a.k.a. abstract ontology, foundation(al) 
ontology , or upper (level) ontology

a.k.a. representation ontology

meta ontology (logical metalevel) 

task ontology
a.k.a. method ontology

Usability
Re

us
ab

ili
ty

meta ontology (physical metalevel)

application ontology
a.k.a. application task ontology

domain ontology

top-level ontology
a.k.a. abstract ontology, foundation(al) 
ontology , or upper (level) ontology

a.k.a. representation ontology

meta ontology (logical metalevel) 

task ontology
a.k.a. method ontology

Usability
Re

us
ab

ili
ty

meta ontology (physical metalevel)

application ontology
a.k.a. application task ontology

domain ontology

 



References     29 

Different types of ontologies can be differentiated: Firstly, one needs to distin-
guish between full-fledged ‘heavyweight’ ontologies and ‘lightweight’ ontologies, 
which do not make use of axiomatic definitions. Secondly, one must distinguish 
truly reusable ontologies from ‘pseudo ontologies’, which are built for a single 
application only. Finally, an ontology may be partitioned into sub-ontologies of 
different types, which can be classified according to their respective functions; the 
most common types, ordered by increasing usability, are meta ontology, top-level 
ontology, domain ontology, task ontology, and application ontology. 

2.8 References 

Atkinson C, Kühne T (2002) The role of metamodeling in MDA. In: Proceedings 
of the Workshop in Software Model Engineering (in conjunction with 
UML’02, Dresden, Germany). Online available at http://www.meta mod-
el.com/wisme-2002/papers/atkinson.pdf. Accessed January 2008. 

Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (2003) The 
Description Logic Handbook: Theory, Implementation, Applications. 
Cambridge University Press, Cambridge. 

Bechhofer S, van Harmelen F, Hendler J, Horrocks I, McGuinness D, Patel-
Schneider L, Stein LA (2004) OWL Web Ontology Language Reference. 
W3C Recommendation, 10 February 2004. Online available at 
http://www.w3.org/TR/owl-ref/. Accessed September 2007. 

Borst WN (1997) Construction of Engineering Ontologies for Knowledge Sharing 
and Reuse. PhD Thesis, Centre for Telematics and Information Technol-
ogy, University of Twente. 

Brandt SC, Fritzen O, Jarke M, List T (2008a) Goal-oriented information flow 
management in development processes. In: Nagl M, Marquardt W (eds.): 
Collaborative and Distributed Chemical Engineering. Springer, 
Berlin:369–400. 

Bylander T, Chandrasekaran B (1988) Generic tasks in knowledge-based reason-
ing: the right level of abstraction for knowledge acquisition. In: Gaines 
B, Boose J (eds.): Knowledge Acquisition for Knowledge-Based Systems. 
Academic Press, London:65–77. 

Chandrasekaran B, Josephson JR, Benjamins VR (1999) What are ontologies, and 
why do we need them? IEEE Intell. Syst. 14 (1):20–26. 

Chen PP (1976) The entity-relationship model – toward a unified view of data. 
ACM Transactions on Database Systems 1 (1):9–36. 



30      Scientific Background 

Davis R, Shrobe H, Szolovits P (1993) What is a knowledge representation? AI 
Mag. 14 (1):17–33. 

Doerr M, Hunter J, Lagoze C (2003) Towards a core ontology for information in-
tegration. J. Digit. Inf. 4 (1), Article No. 169. 

Fensel D, Schönegge A, Groenboom R, Wielinga BJ (1996) Specification and ve-
rification of knowledge-based systems. In: Gaines BR, Musen MA (eds.): 
Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-
Based Systems Workshop. SRDG Publications. 

Ferstl OK, Sinz EJ (2001) Grundlagen der Wirtschaftsinformatik, Bd. 1. 
Oldenbourg, München. 

Fowler M (1997) UML Distilled – Applying the Standard Object Modeling Lan-
guage. Addison-Wesley. 

Gómez-Pérez A, Fernández-López M, Corcho O (2004) Ontological Engineering. 
Springer, Berlin. 

Gruber TR (1993) A Translation Approach to Portable Ontology Specifications. 
Knowl. Acquis. 5 (2):199–220. 

Gruber TR (1995) Toward principles for the design of ontologies used for know-
ledge sharing. Int. J. Hum Comput Stud. 43 (5/6):907–928. 

Gruber TR, Olsen GR (1994) An Ontology for Engineering Mathematics. In: 
Doyle J, Torasso P, Sandewall E (eds.): Proceedings of Fourth Interna-
tional Conference on Principles of Knowledge Representation and Rea-
soning. Morgan Kaufmann. Online available at http://www-ksl.stan-
ford.edu/knowledge-sharing/papers/engmath.html. Accessed September 
2007. 

Guarino N (1997a) Understanding, building, and using ontologies: A commentary 
to "Using Explicit Ontologies in KBS Development", by van Heijst, 
Schreiber, and Wielinga. Int. J. Hum Comput Stud. 46 (2/3):293–310. 

Guarino N (1997b) Semantic matching: formal ontological distinctions for infor-
mation organization, extraction, and integration. In: Pazienza MT (ed.): 
Information Extraction: A Multidisciplinary Approach to an Emerging 
Information Technology. Springer, Berlin:139–170. 

Guarino N (1998) Formal ontology and information systems. In: Guarino N (ed.): 

Connolly D, van Harmelen F, Horrocks I, McGuinness DL, Patel-Schneider PF, 
Stein LA (2001) DAML+OIL reference description. W3C Note, 18 
December 2001. Online available at  
http://www.w3.org/TR/daml+oilreference. Accessed January 2008. 

Formal Ontology in Information Systems. IOS Press, Amsterdam:3–15. 



References     31 

Guarino N, Boldrin L (1993) Ontological requirements for knowledge sharing. In: 
Skuce, D. (ed.): Proceedings of the IJCAI’95 Workshop on Basic Onto-
logical Issues in Knowledge Sharing. 

Guarino N, Giaretta P (1995) Ontologies and knowledge bases: towards a termino-
logical clarification. In: Mars N (ed.): Towards Very Large Knowledge 
Bases: Knowledge Building and Knowledge Sharing. IOS Press, Amster-
dam:25–32. 

Hodges W (1983) Elementary predicate logic. In: Gabbay DM, Guenthner F 
(eds.): Handbook of Philosophical Logic – Vol. I: Elements of Classical 
Logic. Reidel, Dordrecht:1–131. 

Hofweber T (2005) Logic and ontology. In: Zalta EN (ed.): The Stanford Encyc-
lopedia of Philosophy (Winter 2005 Edition). Online available at 
http://plato.stanford.edu/achives/win2005/entries/logic-ontology/. Acces-
sed January 2007. 

Horrocks I, Patel-Schneider P (2004) Reducing OWL entailment to description 
logic satisfiability. J. Web Sem. 1 (5):345–357.  

Horrocks I, Patel-Schneider P, Boley H, Tabet S, Grosof B, Dean M (2004) 
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. 
W3C Member Submission 21 May 2004. Online available at 
http://www.w3.org/Submission/SWRL/. Accessed December 2007. 

Lenat D, Guha RV (1990) Building Large Knowledge-Based Systems: Represen-
tation and Inference in the Cyc Project. Addison Wesley. 

Lloyd JW (1987) Foundations of Logic Programming, 2nd edition. Springer, 
Berlin. 

McGuinness DL (2002) Ontologies come of age. In: Fensel D, Hendler J, Lieber-
man H, Wahlster W (eds.): Spinning the Semantic Web: Bringing the 
World Wide Web to Its Full Potential. MIT Press:171–194. 

Minsky M (1975) A framework for representing knowledge. In: Winston PH (ed.): 
The Psychology of Computer Vision. McGraw-Hill, New York. 

Jarrar M, Meersman R (2002) Scalability and knowledge reusability in ontology 
modeling. In: Proceedings of the International conference on Infrastruc-
ture for e-Business, e-Education, e-Science, and e-Medicine 
SSGRR2002. 

Lassila O, McGuinness D (2001) The Role of Frame-Based Representation on the 
Semantic Web. Technical Report (KSL-01-02), Knowledge Systems Labora-
tory, Stanford University. Online available at http://www-ksl.stanford.edu/ 
KSL_Abstracts/KSL-01-02.html. Accessed October 2007. 



32      Scientific Background 

Mizoguchi R, Vanwelkenhuysen J, Ikeda M (1995) Task ontologies for reuse of 
problem solving knowledge. In: Mars N (ed.): Towards Very Large 
Knowledge Bases: Knowledge Building and Knowledge Sharing. IOS 
Press, Amsterdam:46–57. 

Morbach J, Yang A, Marquardt W (2007): OntoCAPE – a large-scale ontology for 
chemical process engineering. Eng. Appl. Artif. Intell. 20 (2):147–161. 

Neches R, Fikes R, Finin T, Gruber T, Patil R, Senator T, Swartout WR (1991) 
Enabling technology for knowledge sharing. AI Mag. 12 (3):36–56. 

Newell A (1982) The knowledge level. Artif. Intel. 18 (1):87–127. 

Niles P (2001) Towards a standard upper ontology. In: Guarino N, Welty C, Smith 
B (eds.): Proceedings of the 2nd International Conference on Formal On-
tology in Information Systems (FOIS-2001). ACM:2–9. 

Patel-Schneider PF, Horrocks I (2006) OWL 1.1 Web Ontology Language Over-
view. W3C Member Submission, 19 December 2006. Online available at 
http://www.w3.org/Submission/owl11-overview/. Accessed October 
2007. 

Schneider L (2003) How to build a foundational ontology: the object-centered 
high-level reference ontology OCHRE. In: Günter A, Kruse R, Neumann 
B (eds.): KI 2003: Advances in Artificial Intelligence. Springer, 
Berlin:120–134. 

Smith B (1996) Mereotopology: a theory of parts and boundaries. Data Know. 
Eng. 20 (3):287–303. 

Smith B (2006) Against idiosyncrasy in ontology development. In: Bennett B, 
Fellbaum C (eds.): Formal Ontology in Information Systems. IOS 
Press:15–26. 

Smith MK, Welty C, McGuinness DL, eds. (2004) OWL Web Ontology Languag-
es Guide. W3C Recommendation, 10 February 2004. Online available at 
http://www.w3.org/TR/owl-guide/. Accessed October 2007. 

Sowa JF (1995) Top-level ontological categories. Int. J. Hum Comput Stud. 43 
(5/6):669–685. 

Studer S, Benjamins VR, Fensel D (1998) Knowledge engineering principles and 
methods. Data Knowl. Eng. 25 (1/2):161–197. 

Uschold M, Grüninger M (1996) Ontologies: principles, methods and applications. 
Knowl. Eng. Rev. 11 (2):93–136. 

Pâslaru-Bontaş E (2007) Contextual Approach to Ontology Reuse: Methodology, 
Methods and Tools for the Semantic Web. PhD Thesis, FU Berlin. 



References     33 

Uschold M, King M, Moralee S, Zorgios Y (1998) The enterprise ontology. 
Knowl. Eng. Rev. 13:31–89. 

Valente A, Breuker J (1996) Towards principled core ontologies. In: Gaines BR, 
Mussen M (eds.): Proceedings of the 10th Banff Knowledge Acquisition 
for Knowledge-Based Systems Workshop. SDRG Publications.  

van Heijst G, Schreiber AT, Wielinga BJ (1997a) Using explicit ontologies in 
KBS development. Int. J. Hum Comput Stud. 46 (2/3):183–292. 

van Heijst G, Schreiber AT, Wielinga BJ (1997b) Roles are not classes: a reply to 
Nicola Guarino. Int. J. Hum Comput Stud. 46 (2/3):311–318. 

W3C (2000) The RDFS representation ontology. Web resource. Online available 
at http://www.w3.org/2000/01/rdf-schema. Accessed June 2008. 

W3C (2002) The OWL representation ontology. Online available at http://www. 
w3.org/2002/ 07/owl. Accessed October 2007. 

W3C (2006) Extensible Markup Language (XML). Online available at http://www. 
w3.org/XML/. Accessed December 2007. 




