
 

1 Introduction 

1.1 The Need of Knowledge-Based Systems 

Data, information, knowledge, understanding, and wisdom (Ackoff 1989) drive 
the society, economy, and science. Data refers to a collection of symbols without 
any meaning beyond its existence. Information refers to a set of data which have 
been given a meaning by formulating relations between the data elements in a giv-
en context. Knowledge constitutes a collection of information with the intention of 
a certain kind of use. Understanding (or reasoning) refers to an analytic and cogni-
tive process, which takes some knowledge as its input to infer new knowledge as 
its output by some kind of interpolation. In contrast to understanding, wisdom is 
an extrapolative and non-deterministic process to provide (i) understanding where 
there was no understanding before and (ii) a kind of knowledge which cannot be 
inferred solely by analytical means from available knowledge. Wisdom not only 
calls upon all previous levels of consciousness, but also extends to human pro-
gramming such as moral and ethical codes. Wisdom is a human feature and there-
fore very different from data, information, and knowledge, which can be stored, 
processed, and even extended by computers by algorithmic reasoning.    
Knowledge comes in two forms, either tacit or explicit (Nonaka and Takeuchi 
1995). Tacit knowledge is implicit – it is difficult to grasp for the individual hold-
ing it therefore hard to communicate. To be of value to other individuals, know-
ledge has to be made explicit by some kind of articulation, codification, and sto-
rage by means of some media to facilitate communication to others. Technical 
reports, patents, journal articles, monographs, textbooks, or encyclopedias are 
classical media where the information and knowledge contained is codified by 
means of natural language. Despite its explicit representation, knowledge is often 
hard to access and difficult to process, because natural language representations 
often lack precision and coherence resulting in texts of ambiguous meaning.  
This deficiency is not necessarily a consequence of the imperfect presentation 
skills of the author, but is rather due to the lack of a common vocabulary and 
common understanding, which is a prerequisite for a shared memory and shared 
meaning across different domains of discourse (Konda et al. 1992). Typically, this 
unavoidable shortcoming of natural language knowledge representations is reme-
died by the intellectual skills, i.e., the wisdom of the reader, who is often well-
trained in the domain providing the context of the text.  
The codification of tacit knowledge has to go beyond the use of natural language 
to facilitate sharing, use, and reuse of information and knowledge. The scientific 
and engineering disciplines have come up with very specific ways to address this 
representation problem well before computers have been introduced and used for 
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information and knowledge management. For reasons of conciseness, we will fo-
cus here and in the remainder of this book only on the engineering perspective. 
Engineering knowledge – that is general domain knowledge of the different engi-
neering disciplines as well as specific knowledge evolving, for example, during an 
engineering design project – is not only represented and stored as text documents 
in natural language. Rather, more structured and formalized means of representa-
tion are being used, such as sets of linked text documents with a prescribed struc-
ture, structured worksheets, forms and tables, mathematical models, graphical 
sketches, technical drawings, and the like. These auxiliary, and at least to some 
extent formalized, representational schemes are supposed to enhance the expres-
siveness of natural language, thereby facilitating access and use of information 
and knowledge. However, the exchange of information and knowledge – be it 
within a project team or between different organizations –  is still hampered be-
cause there is no general agreement on the precise syntax and semantics of these 
representational formalisms.  
The problem has not only a logical, but also a technological dimension: That is, 
the syntactic and semantic heterogeneity is aggravated by the diversity of electron-
ic means and formats for storage, communication, and processing of information 
and knowledge. For example, during the individual stages of a process and plant 
design project, information is created and manipulated by diverse software tools 
and stored in heterogeneous proprietary formats, such as electronic documents, da-
ta bases, Computer-Aided Design (CAD) and Computer-Aided Engineering 
(CAE) systems, simulation files, or asset management tools. The lack of integra-
tion between these software tools and their associated data stores unavoidably 
creates a significant overhead for the project engineers, since much time has to be 
spent on re-entering of data, interpreting and understanding the data, manually re-
conciling overlapping data sets, and searching for data. NIST, the National Insti-
tute of Standards and Technology in the U.S., has recently analyzed the efficiency 
losses resulting from inadequate interoperability among computer-aided design, 
engineering, and software systems (Gallaher et al. 2004). According to this study, 
insufficient interoperability causes costs of 15.8 billion dollars in the US capital 
facilities industries, compared to a hypothetical scenario where the exchange of 
data and the access to information are not restricted by technical or organizational 
boundaries. 
In order to improve this situation, we need to introduce new methods and tools 
that enable computer-based information and knowledge management in interdis-
ciplinary and cross-institutional engineering projects – methods and tools, which 
help to cope with the diverse and therefore heterogeneous application software in-
frastructure. As a prerequisite for the solution of these extremely demanding inte-
roperability problems, one has to define a common vocabulary in order to estab-
lish a shared understanding of concepts and terms. Such a shared understanding 
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constitutes the basis of the shared memory of an organization2, regardless of 
whether the organization is a project team, an enterprise, or a collection of coope-
rating institutions. Regardless of its technical realization, a shared memory can 
cover data, information, and – at least to some extent – knowledge implemented 
by algorithmic reasoning, but not wisdom in the sense of the definitions intro-
duced above. Also, the management of data, information, and knowledge relies on 
a carefully designed and implemented shared memory. Its realization constitutes a 
true scientific and technological challenge, given the complexity of the engineer-
ing domains and industrial design projects.   
There is a much simpler, but still similar problem, which has been successfully 
addressed in the past decades – namely, the design and implementation of soft-
ware systems for the mathematical modeling and simulation of technical systems. 
The approach to this particular problem might serve as a useful role model for the 
development of future knowledge-based systems supporting engineering work 
processes. We will briefly draw on this analogy next:  
Modeling and simulation systems3 have originated from an academic environ-
ment. A broad acceptance and routine use in the chemical and process industries 
can be traced back to the 1980s, when commercial systems became widely availa-
ble. The success of these systems relied (and still relies) on three distinct modules: 
editors with tailored representational schemes for the formulation of mathematical 
models; libraries providing reusable mathematical models for standard devices; 
and, finally, numerical solution techniques for the simulation-based evaluation of 
the physicochemical knowledge encoded in the models.   
We conjecture that for the successful implementation of knowledge-based tools in 
engineering projects, three comparable modules are required: Knowledge editors 
providing a semantically rich formalism for knowledge representation; knowledge 
libraries with self-contained and easily accessible chunks of reusable knowledge; 
and, finally, efficient reasoning capabilities to interpret the knowledge encoded in 
the system and to derive new knowledge from it. In fact, mathematical modeling 
and simulation are themselves a kind of knowledge-based application, working 
with chunks of reusable knowledge formalized in a special way, namely by means 
of mathematical equations. The seamless integration of mathematical modeling in 
the traditional sense with information modeling and knowledge representation to 
support model-based engineering work processes is widely considered to be an 
emerging trend (Marquardt et al. 2000; Subrahmanian and Rachuri 2008; Venka-
tasubramanian 2009).    

                                                           
2 Such interoperability problems in collaborative and distributed chemical engineering are 
covered in depth in the recent monograph edited by Nagl and Marquardt (2008). Their solution 
relies on the concept of a shared memory of an organization, but has to reach far beyond.  
3 There is a vast literature on this subject, often with emphasis on a certain engineering domain. 
We exemplarily cite the book of Braunschweig and Gani (2002) for a chemical engineering 
perspective.  
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As a result of the research and development related to the Semantic Web – the 
next-generation internet – semantic technologies are ready for application in other 
scientific disciplines. They are based on ontologies and include exactly the three 
enabling building blocks, namely knowledge editors, knowledge representation (or 
modeling) languages, and powerful reasoning algorithms. 

1.2 The Role of Ontologies 

In the context of this book, ontologies are primarily seen as a means to efficiently 
build the knowledge-based software necessary to effectively support engineering 
work processes. Such software – also referred to as ‘intelligent systems’, ‘artificial 
intelligence’, ‘AI systems’, or ‘expert systems’ – comprises two basic software 
components: the knowledge base, which contains generic domain knowledge as 
well as concrete facts about the case under consideration, and the inference engine 
(also known as reasoner), which processes the knowledge and facts stored in the 
knowledge base and autonomously inferences a solution for the case at hand.  
Traditionally, intelligent systems were built from scratch. For large systems, how-
ever, this proceeding turned out to be too costly and time consuming. Particularly, 
the construction of the knowledge bases proved to be the main cost-driver that 
hindered the further development of intelligent systems in the late 1980s. Neches 
et al. (1991) diagnosed: “knowledge base construction remains one of the major 
costs in building an AI system […] As a result, most systems remain small to me-
dium in size.  […] The cost […] will become prohibitive as we attempt to build 
larger and larger systems.”  
To overcome this economic barrier, Neches et al. (1991) proposed a new approach 
for the building of intelligent systems: “Building knowledge-based systems today 
usually entails constructing new knowledge bases from scratch. It could be instead 
done by assembling reusable components. System developers would then only 
need to worry about creating the specialized knowledge […] new to the specific 
task of the system […] In this way, declarative knowledge […] and reasoning ser-
vices would all be shared among systems.” 
Besides the obvious economic benefits that can be achieved by reusing existing 
knowledge components, the strategy has other considerable advantages:  

– First to mention is the reduced error rate of the software: The robustness 
of a software system increases to the extent to which well-tested parts can 
be reused (Neches et al. 1991). Plus, due to the continuous revision of the 
knowledge components, the number of remaining errors will decrease with 
each reuse cycle. 

– A further advantage results from a mandatory change of system architec-
ture required by the new approach: Traditionally, the knowledge represen-
tation was heavily intertwined with the reasoning services and the program 
code in order to optimize the performance of the overall system. As a re-
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sult, the knowledge was only accessible to developers with programming 
experience; domain experts (i.e., the actual knowledge holders) had to get 
acquainted with the program code first before being able to enter know-
ledge into the system or to maintain and customize the knowledge base to 
their particular needs. In practice, this often proved too great an obstacle 
for the users to overcome. The new approach, by contrast, enforces a strict 
separation of knowledge base, inference engine, and application-specific 
program logic. This novel software architecture enables a domain expert to 
focus on the representation of the knowledge and shields him or her from 
the implementation details.  Therefore, the domain expert is likely to create 
a knowledge base of improved quality. At the same time, the maintainabil-
ity of the entire system is enhanced, since reasoner, program code, and 
knowledge base can be maintained independently by software engineers, 
application programmers, and domain experts, respectively. 

Within the suggested approach, ontologies have the function of providing a con-
sensual knowledge representation, which can be reused and shared across software 
systems and by different groups of users. Domain ontologies, in particular, aim at 
capturing the knowledge of an entire application domain, such as physics, chemi-
stry, or engineering. Note that, in order to be widely applicable, the knowledge 
represented in an ontology must be generic; that is, the ontology is expected to 
provide “a conceptual foundation for a range of anticipated tasks”, but not to “in-
clude vocabulary sufficient to express all the knowledge relevant to those tasks” 
(Gruber 1995). Thus, to convert an ontology into a knowledge base for a particular 
application, the knowledge must be specialized and customized. 

1.3 The Reusability-Usability Trade-off Problem 

Principally, any ontology has to meet two major goals: to be usable and to be 
reusable. 

– According to the IEEE Standard Glossary of Software Engineering Termi-
nology, reusability is defined as “the degree to which a software module or 
other work product can be used in more than one computing program or 
software system” (IEEE 1990). Ontology reusability, in particular, can be 
defined as “the adaptation capability of an ontology to arbitrary application 
contexts” (Pâslaru-Bontaş 2007), including those contexts “that were not 
envisioned at the time of the creation of the ontology” (Russ et al. 1999). 
Note that it is neither feasible nor desirable to design an ontology that is 
equally appropriate for all application contexts (Borst 1997); rather, the 
goal of reusability is to come up with an ontology that can be adapted to a 
preferably large number of applications. 
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– Usability, on the other hand, denotes the degree to which the software 
component is useful for a specific task or application. The term also has 
the connotation of “ease of use”, pertaining to the effort required by a user 
to utilize a given (software) system. By definition, an ontology is never 
ready for use, but must always be adapted and refined to a knowledge base 
for the envisioned application. Therefore, the goal of ontology usability 
can be phrased as minimizing “the effort required to customize the ontolo-
gy so that it can be used by humans or machines in a given application 
context” (Pâslaru-Bontaş 2007).  

A subtle but important difference between ontology usability and reusability is 
pointed out by Jarrar and Meersmann (2002):  

“Increasing the reusability of knowledge implies the maximization of using 
this knowledge among several kinds of (autonomously specified) tasks, 
while increasing ontology usability could mean just maximizing the number 
of different applications using an ontology for the same kind of task”.  

Consequently, it is difficult to simultaneously achieve high degrees of usability 
and reusability: Specializing in one kind of task makes the ontology more useable 
for this particular task, but it also decreases the likelihood of its reusability; a 
highly abstract ontology, on the other hand, may be applicable to a variety of dif-
ferent tasks, but it is unlikely to prove very useful for any of these without exten-
sive modification and detailing. This challenge is known as the reusability-
usability trade-off problem (Klinker et al. 1991) in the literature.  
This trade-off problem has to be one of the drivers for research on ontologies, not 
only for academic, but also for very practical reasons.  

– This problem is academically challenging and rewarding. It constitutes an 
exciting research problem at the interface between computer science and 
its applications in science and engineering. Its solution is of great signific-
ance to both the theory and practice of ontological engineering.  

– The development and maintenance of any major IT system requires a sig-
nificant effort. The software industry has established development 
processes based on proven technologies to reduce cost to the extent possi-
ble. The introduction of a new paradigm and associated technologies not 
only requires some reference systems, which demonstrate the improved 
capabilities from a technological or even from an end-user’s perspective. 
Rather, the economical advantage over established software technologies 
has to be clearly demonstrated in order to motivate a software company to 
take the significant risk of integrating the principles and technologies of 
ontological engineering into their software engineering processes.    

Based on this assessment, an appropriate solution to the reusability-usability trade-
off problem should be considered as the major enabler for a future use of ontolo-
gies in the software industries. Therefore, this trade-off problem has shaped the 
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major guiding principle for our research, the results of which are presented in this 
book.  

1.4 Objective and Outline of the Book 

This book presents OntoCAPE, a general-purpose ontology for applications in the 
domain of computer-aided process engineering (CAPE). CAPE is a sub-discipline 
of chemical engineering focusing on IT methods and tools to support the design, 
planning, construction, commissioning, and operation of chemical process systems 
and plants. We will discuss the architecture of OntoCAPE, thereby putting par-
ticular emphasis on the design rationale we followed. We will show how Onto-
CAPE reconciles the trade-off between reusability and usability, and is thus broad-
ly applicable to a variety of chemical and process engineering tasks with only 
moderate customization effort.  
The content of his book is organized as follows. 
Chapter 2 reviews the scientific background and establishes the terminology re-
quired for discussing ontologies, thus providing the basis for the subsequent chap-
ters. It starts off by contrasting the similar but different perceptions of ‘ontology’ 
in the areas of philosophy and computer science. Next, the specification of ontolo-
gies through informal and formal languages is discussed; the latter option is fur-
ther elaborated by describing the modeling capabilities of formal ontology lan-
guages. Having established these basic facts, it is argued that an ontology must be 
both formally and informally specified in order to be of practical use. The model-
ing language OWL is briefly introduced for the sake of completeness. Moreover, it 
is clarified what differentiates a “true” ontology (i.e., a reusable knowledge repre-
sentation, as defined in Sect. 1.2) from so-called pseudo-ontologies and 
lightweight ontologies. The chapter closes with a classification of ontology types 
according to their respective functions. 
Chapter 3 gives an overview on the scope and content of the OntoCAPE ontolo-
gy. Initially, a short overview is given on its three structural elements – layers , 
modules and partial models – by which the ontology is organized. Furthermore, 
the representation and dissemination of OntoCAPE are presented. Finally, the 
scope and content of the individual parts that constitute OntoCAPE are briefly 
summarized.  
Chapter 4 introduces the Meta Layer, which is located on top of the OntoCAPE 
ontology. The Meta Layer explicitly represents the underlying design principles of 
OntoCAPE and introduces common standards for the design and organization of 
the ontology. In particular, domain-independent root concepts and a theory of me-
reotopology are introduced on the Meta Layer.  
Chapter 5 introduces a number of key concepts, which establish the principles of 
general systems theory and systems engineering, according to which the ontology 
is organized. Important systems-theoretical and physicochemical primitives com-
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plement the mereotopological concepts adopted from the Meta Layer. It also es-
tablishes the means to model a system from a particular viewpoint. These view-
points are used to partition the representation of complex systems into manageable 
parts and to emphasize a certain perspective the system is viewed from. Further-
more, a representation of vectors and higher-order tensors is suggested. We intro-
duce a concept for coordinate system, which serves as a frame of reference for the 
observation of system properties. Finally, we establish the principles of network 
theory to lay a solid foundation for a structured representation of any kind of com-
plex system showing a network character. 
Chapter 6 holds fundamental notions such as space, time, physical dimensions, 
SI-units, mathematical relations, etc., which do not directly belong to the CAPE 
domain but are required for the definition of or as supplements to the domain con-
cepts. Since OntoCAPE is not supposed to conceptualize domains beyond the 
scope of CAPE, this partial model is only rudimentarily elaborated. 
Chapter 7 collects all the concepts which are required to provide an abstract de-
scription of materials processed in a chemical plant. This partial model comprises 
the essential concepts for the description of pure chemical substances and mix-
tures thereof at the macroscopic and atomic scales. Mechanisms and stoichiometry 
of chemical reactions are presented next. Finally, the principles and concepts for a 
rigorous description of the thermodynamic behavior of materials in a certain phys-
ical context are described. 
Chapter 8 presents all those concepts which are directly related to the processing 
of materials and to plant operations. This part of the ontology is of particular in-
terest for chemical process design. The concepts are modeled on a conceptual as 
well as on a more concrete, application-oriented level by adding classes and rela-
tions needed for a specific use of the ontology. This includes the extension to-
wards two alternative classification schemata for unit operations as well as exem-
plary descriptions of typical process units. 
Chapter 9 defines the notions required for a representation of mathematical mod-
els. It introduces the basics concepts for mathematical modeling, including model 
variables and equations, as well as concepts for representing the composition of a 
model from sub-models and their connections. Some specialized types of models 
are presented, including models for representing the behavior of materials and 
process units as well as models for the estimation of investment costs. 
Chapter 10 presents the major design principles that guided the development of 
OntoCAPE: These principles, which subsume the plethora of recommendations 
stated in the literature, are coherence, conciseness, intelligibility, adaptability, mi-
nimal ontological commitment, and efficiency. The principles are defined indivi-
dually, and their general implication on ontology design is critically assessed. Fi-
nally, we describe the translation of these principles into concrete design decisions 
to be taken during the realization of OntoCAPE. 
Chapter 11 gives a review of related work. The earlier efforts in information 
modeling at the authors’ institute are summarized first, since the results of this re-
search have laid the foundation for the development of OntoCAPE. Next, related 
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work of other research groups is reviewed and compared with OntoCAPE. The re-
view is confined to ontologies which are of particular relevance in the context of 
this work. In particular, only those ontologies are considered, which bear close re-
semblance to OntoCAPE with respect to both scope and level of complexity, or 
which had a significant influence on the development of OntoCAPE. 
Chapter 12 describes some software applications, which have been realized on 
the basis of OntoCAPE and thus demonstrate the ontology’s potential for use and 
reuse. At first, two early applications in the area of mathematical modeling and 
simulation are presented. Next, an ontology-based knowledge management system 
is described, which has been based on version 2.0 of OntoCAPE. The last example 
refers to an ongoing project, which realizes information integration and manage-
ment across the plant lifecycle in an industrial setting. The last part of the chapter 
gives an assessment of the improvement achieved by transitioning from Onto-
CAPE version 1.0 to version 2.0 by means a few quantitative measures.  
Chapter 13 concludes the book with a brief summary of the major results, with an 
assessment of the design rationale, and with a review of the continuous improve-
ment process chosen. Future research opportunities are identified, particularly an 
extension of OntoCAPE in scope to also cover work processes.  
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