
Characterizing the Existence of Potential Functions in
Weighted Congestion Games

Tobias Harks, Max Klimm, and Rolf H. Möhring
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Abstract. Since the pioneering paper of Rosenthal a lot of work has been done
in order to determine classes of games that admit a potential. First, we study
the existence of potential functions for weighted congestion games. Let C be an
arbitrary set of locally bounded functions and let G(C) be the set of weighted
congestion games with cost functions in C. We show that every weighted conges-
tion game G ∈ G(C) admits an exact potential if and only if C contains only affine
functions. We also give a similar characterization for weighted potentials with the
difference that here C consists either of affine functions or of certain exponential
functions. We finally extend our characterizations to weighted congestion games
with facility-dependent demands and elastic demands, respectively.

1 Introduction

In many situations, the state of a system is determined by a large number of indepen-
dent agents, each pursuing selfish goals optimizing an individual objective function. A
natural framework for analyzing such decentralized systems are noncooperative games.
It is well known that an equilibrium point in pure strategies (if it exists) need not opti-
mize the social welfare as individual incentives are not always compatible with social
objectives. Fundamental goals in algorithmic game theory are to decide whether a Nash
equilibrium in pure strategies (PNE for short) exists, how efficient it is in the worst case,
and how fast an algorithm (or protocol) converges to an equilibrium.

One of the most successful approaches in accomplishing these goals is the potential
function approach initiated by Rosenthal [24] and generalized by Monderer and Shapley
in [22]: one defines a function P on the set of possible strategies of the game and shows
that every strictly improving move by one defecting player strictly reduces (increases)
the value of P. Since the set of outcomes of such a game is finite, every sequence of
improving moves reaches a PNE. In particular, the global minimum (maximum) of P is
a PNE. A function P with the property above is called a potential function of the game.
If one can associate a weight wi to each player such that wi P decreases about the same
value as the private cost of the defecting player i, then P is called a weighted potential.
If, in addition, wi = 1 for each player, then P is called an exact potential.

1.1 Framework

The first part of this paper studies the existence of potential functions in weighted
congestion games (Definition 4). Congestion games, as introduced by Rosenthal [24],
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model the interaction of a finite set of strategic agents that compete over a finite set of
facilities. A pure strategy of each player is a set of facilities. We consider cost minimiza-
tion games. Here, the cost of facility f is given by a real-valued cost function c f that
depends on the number of players using f and the private cost of every player equals
the sum of the costs of the facilities in the strategy that she chooses.1 Rosenthal [24]
proved in a seminal paper that such congestion games always admit a PNE by showing
these games posses an exact potential function.

In a weighted congestion game, every player has a demand di ∈ R+ that she places
on the chosen facilities. The cost of a facility is a function of the total demand of the
facility. In contrast to unweighted congestion games, weighted congestion games, even
with two players, do not always admit a PNE, see the examples given by Fotakis et
al. [11], Goemans et al. [14], and Libman and Orda [18].

On the positive side, Fotakis et al. [11,12] proved that every weighted congestion
game with affine cost functions possesses an exact potential function and thus, a PNE.
Panagopoulou and Spirakis [23] proved existence of a weighted potential function for
the set of exponential cost functions.

The results of [11,12] and [23] are particularly appealing as they establish existence
of a potential function independent of the underlying game structure, that is, indepen-
dent of the underlying strategy set, demand vector, and number of players, respectively.
To further stress this independence property, we rephrase the result of Fotakis et al. as
follows: Let C be a set of affine cost functions and let G(C) be the set of all weighted
congestion games with cost functions in C. Then, every game in G(C) possesses an
exact potential.

A natural open question is to decide whether there are further functions guaranteeing
the existence of an exact or weighted potential. We thus investigate the following ques-
tion: How large is the class C of (continuous) cost functions such that every game in the
set of weighted congestion games G(C) with cost functions in C does admit a potential
function and hence a PNE?

Before we outline our results we present related work and explain, why it is important
to characterize weighted congestion games admitting a potential function.

1.2 Related Work

Fundamental issues in algorithmic game theory are the computability of Nash equilib-
ria and the design of distributed dynamics (for instance best-response) that provably
converge in reasonable time to a Nash equilibrium (in pure or mixed strategies).

Monderer and Shapley [22] formalized Rosenthal’s approach of using potential func-
tions to determine the existence of PNE. Furthermore, they show that one-side better
response dynamics always converge to a PNE provided the game is finite and admits
a potential. In addition, they proved that weighted potential games have other desir-
able properties, e.g., the Fictitious Play Process converges to a PNE [21]. For recent
progress on convergence towards approximate Nash equilibria using potential func-
tions, see Awerbuch et al. [4] and Fotakis et al. [10].

1 Since we allow the cost of a facility to be positive or negative, we also cover maximization
games.
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Fabrikant et al. [9] proved that one can efficiently compute a PNE for symmetric
network congestion games with nondecreasing cost functions. Their proof uses a po-
tential function argument, similar to Rosenthal [24]. Fotakis et al. [11] proved that one
can compute a PNE for weighted network games with affine cost (with nonnegative
coefficients) in pseudo-polynomial time (again using a potential function).

Milchtaich [20] introduced weighted congestion games with player-specific cost
functions. Among other results, he presented a game on 3 parallel links with 3 play-
ers, which does not possess a PNE. On the other hand, he proved that such games with
2 players do possess a PNE. Ackermann et al. [1] characterized conditions on the strat-
egy space in weighted congestion games that guarantee the existence of PNE. They also
considered the case of player-specific cost functions.

Gairing et al. [13] derive a potential function for the case of weighted congestion
games with player-specific linear latency functions (without a constant term). Mavroni-
colas et al. [19] prove that every unweighted congestion game with player-specific (ad-
ditive or multiplicative) constants on parallel links has an ordinal potential. Even-Dar et
al. [8] consider a variety of load balancing games with makespan objectives and prove
among other results that games on unrelated machines possess a generalized ordinal
potential function. For related results, see the survey by Vöcking [25] and references
therein.

Potential functions also play a central role in Shapley cost sharing games with
weighted players, which are special cases of weighted congestion games, see Anshele-
vich et al. [3] and Albers et al. [2]. In the variant with weighted players, each player i
has a demand di that she wishes to place on each facility of an allowable subset of fa-
cilities (e.g., a path in a network connecting her source node si to her terminal node
ti). When facility f ∈ F is stressed with a load of � f (x) in strategy profile x, it causes a
cost of k f (� f (x)). Under Shapley cost sharing, this cost is shared linearly with respect
to the demands among the users. Thus the cost of player i for using facility f is defined
as ci, f (x) = k f (� f (x))di/� f (x) and clearly, the private cost of player i in strategy profile
x is given as πi(x) =

∑
f∈xi

ci, f (x). For the unweighted case (di = 1, i ∈ N), Anshelevich
et al. [3] proved existence of PNE and derived bounds on the price of stability using
a potential function argument. This argument fails in general for games with weighted
players, see the counterexamples given by Chen and Roughgarden [5]. Determining
subclasses of Shapley cost sharing games with weighted players that admit a potential,
however, is an open problem that we address in this paper.

1.3 Our Results for Weighted Congestion Games

Our first two results provide a characterization of the existence of exact and weighted
potential functions for the set of weighted congestion games with locally bounded and
continuous cost functions, respectively. Let C be an arbitrary set of locally bounded
functions and let G(C) be the set of weighted congestion games with cost functions in
C. We show that every weighted congestion game G ∈ G(C) admits an exact potential if
and only if C contains only affine functions. For an arbitrary set C of continuous func-
tions, we show that every weighted congestion game G ∈ G(C) possesses a weighted
potential if and only if exactly one of the following cases hold: (i) C contains only affine
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functions; (ii) C contains only exponential functions such that c(�)= ac eφ�+bc for some
ac,bc,φ ∈ R, where ac and bc may depend on c, while φ must be equal for every c ∈ C.

We additionally show that the above characterizations for exact and weighted po-
tentials are valid even if we restrict the set G(C) to two-player games (three-player
games for weighted potentials), three-facility games (four-facility games for weighted
potentials), games with symmetric strategies, games with singleton strategies, games
with integral demands. Moreover, we derive a result for weighted congestion games
where each facility is contained in the strategy set of at most two players, showing
that every such game with cost functions in C admits a weighted potential if C =
{(c : R+→ R) : c(x) = a f (x)+b, a,b ∈ R}, where f : R+ → R is a strictly monotonic
function.

Our results have a series of consequences. First, using a result of Monderer and
Shapley [22, Lemma 2.10], our characterization of weighted potentials in weighted
congestion games carries over to the mixed extension of weighted congestion games.

Second, we obtain the following characterizations for Shapley cost sharing games.
Let K be a set of continuous functions. Then, the set S(K) of Shapley cost sharing
games with weighted players and construction cost functions in K are weighted po-
tential games if and only if K contains either quadratic construction cost functions
(k(�)= ak �

2+bk �) or functions of type k(�)= ak eφ� �+bk � for some ak,bk,φ ∈R, where
ak and bk may depend on k, while φ must be equal for every k ∈ K . Notice that these
results hold for arbitrary coefficients ak,bk,φ ∈R. Thus, we obtain the existence of PNE
for a family of games with nondecreasing and strictly concave construction costs mod-
eling the effect of economies of scale.

1.4 Our Results for Extended Models

In the second part of this paper, we introduce two non-trivial extensions of weighted
congestion games.

First, we study weighted congestion games with facility-dependent demands, that
is, the demand di, f of player i depends on the facility f . These games contain, among
others, scheduling games on identical, restricted, related and unrelated machines. In
contrast to classical load balancing games, we do not consider makespan objectives. In
our model, the private cost of a player is a function of the machine load multiplied with
the demand of the player.

We show the following: Let C be a set of continuous functions and let G f d(C) denote
the set of weighted congestion games with facility-dependent demands and cost func-
tions in C. Every G ∈ G f d(C) has a weighted potential if and only if C contains only
affine functions. In this case the weighted potential is an exact potential. To the best
of our knowledge, our characterization establishes for the first time the existence of an
exact potential function (and hence the existence of a PNE) for affine cost functions and
arbitrary strategy sets and demands, respectively.

Second, we study weighted congestion games with elastic demands. Here, each
player i is allowed to choose both a subset of the set of facilities and her demand di

out of a compact set Di ⊂ R+ of demands that are allowable for her. This congestion
model can be interpreted as a generalization of Cournot games [7], where multiple pro-
ducersstrategically determine quantities they will produce. The cost of a producer is
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given by her offered quantity multiplied with the market price, which is usually a de-
creasing function of the total quantity offered by all producers. Weighted congestion
games with elastic demands generalize Cournot games in the sense that there are mul-
tiple markets (facilities) and each player may offer her quantity on allowable subsets of
these markets.

Weighted congestion games with elastic demands have several more natural applica-
tions: they model, e.g., routing problems in the Internet, where each user wants to route
data along a path in the network and adjusts the injected data rate according to the level
of congestion in the network. Most mathematical models for routing and congestion
control rely on fractional routing, see Kelly [17] and Cole et al. [6]. In practice, how-
ever, routing protocols use single path routing, see, e.g., the current TCP/IP protocol.
Weighted congestion games with elastic demands model both congestion control and
unsplittable routing. Yet another application is that of Shapley cost sharing games with
players that may vary their requested demand.

Let Ge(C) be the set of weighted congestion games with elastic demands where each
player may chose her demand out of a compact space and where the cost of each facility
is determined by a function in C. Our main contribution is to show that all games G ∈
Ge(C) are weighted potential games if and only if C contains only affine functions. For
this important class of games, our result also establishes for the first time the existence
of PNE.

Proofs of our results can be found in [15]. In a follow up paper [16] we characterize
strong Nash equilibria for weighted congestion games with bottleneck objectives.

2 Preliminaries

Definition 1 (Finite game). A finite strategic game is a tuple G = (N,X,π) where N =
{1, . . . ,n} is the non-empty finite set of players, X =

�
i∈N Xi where Xi is the finite and

non-empty set of strategies of player i, and π : X → Rn is the combined private cost
function.

We will call an element x ∈ X a strategy profile. For S ⊂ N, −S denotes the comple-
mentary set of S , and we define for convenience of notation XS =

�
j∈S X j. Instead of

X−{i} we will write X−i, and with a slight abuse of notation we will write sometimes a
strategy profile as x = (xi, x−i) meaning that xi ∈ Xi and x−i ∈ X−i.

Definition 2 (Weighted potential game, exact potential game). A strategic game
G = (N,X,π) is called weighted potential game if there is a vector w = (wi)i∈N of pos-
itive weights and a real-valued function P : X → R such that πi(xi, x−i)− πi(yi, x−i) =
wi (P(xi, x−i)−P(yi, x−i)) for all players i ∈ N and for all x−i ∈ X−i and all xi,yi ∈ Xi.
The function P together with the vector w is then called a weighted potential of the
game G. The function P is called an exact potential if wi = 1 for all i ∈ N.

We sometimes call a weighted potential function P a (wi)i∈N-potential.
Monderer and Shapley [22, Theorem 2.8] have shown that one can characterize exact

potentials in a very convenient way. For this, let a finite strategic game G = (N,X,π) be
given. A path in X is a sequence γ = (x0, x1, . . . xm) with xk ∈ X, k = 0, . . . ,m, such that
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for all k ∈ {1, . . . ,m} there exists a unique player ik ∈ N such that xk = (xk
ik
, xk−1
−ik

) for some

xk
ik
� xk−1

ik
, xk

ik
∈ Xi. A path is called closed if x0 = xm and is called simple if xk � xl for

k � l. The length of a closed path is defined as the number of its distinct elements. For a
set of strategy profiles X let Γ(X) denote the set of all simple closed paths in X that have
length 4. For a finite path γ = (x0, x1, . . . , xm) let the discrete path integral of π along γ
be defined as I(γ,π) =

∑m
k=1

(
πik (xk)−πik(xk−1)

)
where ik is the deviator at step k in γ,

that is xk
ik
� xk−1

ik
.

Theorem 1 (Monderer and Shapley). Let G = (N,X,π) be a finite strategic game.
Then, G is an exact potential game if and only if I(γ,π) = 0 for all γ ∈ Γ(X).

In the following, we will use this characterization in order to study the existence of
potentials in weighted congestion games.

3 Weighted Congestion Games

Definition 3 (Congestion model). A tupleM = (N,F,X =
�

i∈N Xi, (c f ) f∈F) is called
a congestion model, where N = {1, . . . ,n} is a non-empty, finite set of players, F is a
non-empty, finite set of facilities, for each player i ∈ N, her collection of pure strategies
Xi is a non-empty, finite set of subsets of F and (c f ) f∈F is a set of cost functions.

In the following, we will define weighted congestion games similar to Goemans et
al. [14].

Definition 4 (Weighted congestion game). LetM = (N,F,X, (c f ) f∈F) be a congestion
model and (di)i∈N be a vector of demands di ∈R+. The corresponding weighted conges-
tion game is the strategic game G(M) = (N,X,π), where π is defined as π =

�
i∈N πi,

πi(x) =
∑

f∈xi
di c f
(
� f (x)

)
and � f (x) =

∑
j∈N: f∈x j

d j.

We call � f (x) the load on facility f in strategy x. In case there is no confusion on the
underlying congestion model, we will write G instead of G(M).

A slightly different class of games has been considered by (among others) Fotakis
et al. [11,12], Gairing et al. [13] and Mavronicolas et al. [19]. They considered games
that almost coincide with Definition 4 except that the private cost of every player is not
scaled by her demands. We call such games normalized if they comply with Definition 4
except that the private costs are defined as π̄i(x) =

∑
f∈xi

c f
(
� f (x)

)
for all i ∈ N.

Fotakis et al. [11] show that there are normalized weighted congestion games with
c f (�) = � for all f ∈ F that are not exact potential games. They also show that any nor-
malized weighted congestion game with linear costs on the facilities admits a weighted
potential.

We state the following trivial relations between weighted congestion games and nor-
malized weighted congestion games: Let G = (N,X,π) and Ḡ = (N,X, π̄) be a weighted
congestion game and a normalized weighted congestion game with demands (di)i∈N , re-
spectively. Moreover, let them share the same congestion model and the same demands.
Then G and Ḡ coincide in the following sense: (i) A strategy profile x ∈ X is a PNE in
G if and only if x is a PNE in Ḡ; (ii) A real-valued function P : X→ R is a (wi/di)i∈N-
potential for G if and only if P is a (wi)i∈N-potential for Ḡ; (iii) A real-valued function
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P : X→ R is an ordinal potential for G (see [22] for a definition) if and only if P is an
ordinal potential for Ḡ; (iv) The real-valued function P : X→ R is an exact potential for
G if and only if P is a (di)i∈N-potential for Ḡ; (v) The real-valued function P : X→ R is
an exact potential for Ḡ if and only if P is a (1/di)i∈N-potential for G. All proofs rely on
the simple observation that πi(x) = di π̄i(x) for all i ∈ N, x ∈ X.

3.1 Characterizing the Existence of an Exact Potential

In the following, we will examine necessary and sufficient conditions for a weighted
congestion game G to be a potential game. The criterion in Theorem 1 states that the
existence of an exact potential for G = (N,X,π) is equivalent to the fact that I(γ,π) = 0
for all γ ∈ Γ(X). In such paths, either one or two players deviate. It is easy to ver-
ify that I(γ,π) = 0 for all paths γ with only one deviating player. Considering a path
γ with two deviating players, say i and j, each of them uses two different strategies,
say xi,yi ∈ Xi and x j,y j ∈ X j. We denote by z−{i, j} ∈ X−{i, j} the strategy profile of all
players except i and j that remains constant in γ. Then, a generic path γ ∈ Γ(X) can
be written as γ = ((xi, x j,z−{i, j}), (yi, x j,z−{i, j}), (yi,y j,z−{i, j}), (xi,y j,z−{i, j}), (xi, x j,z−{i, j})).
The following lemma provides an explicit formula for the calculation of I(γ,π) for such
a path.

Lemma 1. Let M = (N,F,X, (c f ) f∈F) be a congestion model and G(M) a cor-
responding weighted congestion game with demands (di)i∈N. Moreover, let γ =
((xi, x j,z−{i, j}), (yi, x j,z−{i, j}), (yi,y j,z−{i, j})(xi,y j,z−{i, j}), (xi, x j,z−{i, j})) be an arbitrary
path in Γ(X) with two deviating players. Then,

I(γ,π) =
∑

f∈F1∪F11

(d j −di)c f (di+d j+ r f )−d jc f (d j+ r f )+dic f (di+ r f )

+
∑

f∈F3∪F9

(di−d j)c f (di+d j+ r f )−dic f (di+ r f )+d jc f (d j+ r f ),
(1)

where F1 = (xi \ yi) ∩ (x j \ y j), F3 = (xi \ yi)∩ (y j \ x j), F9 = (yi \ xi) ∩ (x j \ y j), and
F11 = (yi \ xi)∩ (y j \ x j).

Using Lemma 1, we can derive a sufficient condition on the existence of an exact po-
tential in a weighted congestion game.

Proposition 1. Let M = (N,F,X, (c f ) f∈F) be a congestion model and G(M) a corre-
sponding weighted congestion game with demands (di)i∈N. For each facility f ∈ F we
denote by N f = {i ∈ N : (∃xi ∈ Xi : f ∈ xi))} the set of players potentially using f , and
by R f

−{i, j} =
{∑

k∈P dk : P ⊆ N f \ {i, j}
}

the set of possible residual demands by all players

except i and j. If for all f ∈ F and all i, j ∈ N f it holds that

(d j−di)c f (di+d j+ r f )−d jc f (d j+ r f )+dic f (di+ r f ) = 0 ∀r f ∈ R f
−{i, j}, (2)

then G admits an exact potential.

It is a useful observation that we can write the condition of Proposition 1 as

c f (di+d j+ r f )− c f (d j+ r f )

di
=

c f (d j+ r f )− c f (di+ r f )

d j−di
(3)
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for all i, j ∈ N f and r f ∈ R f
−{i, j}. Thus, the difference quotients of c f between the points

di+ r f and d j+ r f as well as d j+ r f and di+d j+ r f must have the same value. It follows
easily that the above condition is satisfied if all demands are equal (this corresponds to
unweighted congestion games, see Rosenthal’s potential [24]). For arbitrary demands
(weighted congestion games) and affine cost functions, one can check that the above
condition is also satisfied, see the positive result of Fotakis et al. [11].

There is, however, an important question left: Are there non-affine cost functions that
give rise to an exact potential in all weighted congestion games? Under mild assump-
tions on feasible cost functions, we will give in Theorem 2 a negative answer to this
question. First, we derive the following lemma from Theorem 1.

Lemma 2. Let C be a set of functions and let G(C) be the set of all weighted congestion
games with cost functions in C. Every G ∈ G(C) has an exact potential if and only if for
all c ∈ C

(x− y)c(x+ y+ z)− xc(x+ z)+ yc(y+ z)= 0 (4)

for all x,y ∈ R+ and z ∈ R0
+.

We will now solve the functional equation (4) in order to characterize all cost functions
that guarantee an exact potential in all weighted congestion games. We require the fol-
lowing property: A function c : R+ → R is locally bounded, if for every compact set
K ⊂ R+, |c(x)| < MK for all x ∈ K and a constant MK ∈ R+ potentially depending on K.

Theorem 2. Let C be a set of locally bounded functions and let G(C) be the set of
weighted congestion games with cost functions in C. Then every G ∈ G(C) admits an
exact potential function if and only if C contains affine functions only, that is, every
c ∈ C can be written as c(�) = ac �+bc for some ac,bc ∈ R.

3.2 Characterizing the Existence of a Weighted Potential

Our next aim is to determine whether weaker notions of potential functions will enrich
the class of cost functions giving rise to a potential game. The idea of a weighted po-
tential allows a player specific scaling of the private cost πi by a strictly positive wi. It
is a useful observation that the existence of a weighted potential function is equivalent
to the existence of a strictly positive-valued vector w = (wi)i∈N such that the game Gw

with private costs π̄ :=
�

i∈N πi/wi has an exact potential.
Using this equivalent formulation and Theorem 1 it follows that the existence of an

exact potential function for the game Gw = (N,X, π̄) is equivalent to I(γ, π̄) = 0 for all
γ ∈ Γ(X) suggesting that Gw has an exact potential if and only if there are wi,wj ∈ R+
such that (

di

wi
− d j

wj

)

c f (di+d j+ r f ) =
di

wi
c f (di+ r f )− d j

wj
c f (d j+ r f )

for all i, j ∈ N and all r f ∈ R−i, j. In particular it is necessary that either c f (di+d j+ r f ) =
c f (d j+ r f ) = c f (di+ r f ) or the value α(di,d j) defined as

α(di,d j) =
wi

wj
=

di

d j
· c f (di+d j+ r f )− c f (di+ r f )

c f (di+d j+ r f )− c f (d j+ r f )
(5)

is strictly positive and independent of both f and r f .
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Lemma 3. Let C be a set of functions. LetG(C) be the set of weighted congestion games
with cost functions in C. Every G ∈ G(C) has a weighted potential if and only if for all
x,y ∈ R+ there exists an α(x,y) ∈ R+ such that

α(x,y) =
x
y
· c(x+ y+ z)− c(x+ z)

c(x+ y+ z)− c(y+ z)
(6)

for all z ∈ R0
+ and non-constant c ∈ C.

Although this condition seems to be similar to the functional equation (4) characterizing
the existence of an exact potential, it is not possible to proceed using differential equa-
tions as in the proof of Theorem 2. As α(x,y) need not be bounded it is not possible to
prove continuity and differentiability of c. Instead, we will use the discrete counterpart
of differential equations, that is, difference equations.

Theorem 3. Let C be a set of continuous functions. Let G(C) be the set of weighted
congestion games with cost functions in C. Then every G ∈ G(C) admits a weighted
potential if and only if exactly one of the following cases holds:

1. C contains only affine functions,
2. C contains only exponential functions c(�)= ac eφ�+bc for some ac,bc,φ ∈R, where

ac and bc may depend on c, while φ must be equal for every c ∈ C.

3.3 Implications of Our Characterizations

It is natural to ask whether these results remain valid if additional restrictions on the
set G(C) are made. A natural restriction is to assume that all players have an integral
demand. As we used infinitesimally small demands in the proof of Lemma 2, our results
for exact potentials do not apply directly to integer demands. With a slight variation of
the proof of Theorem 3 where only the case α(·, ·) = 1 is considered, however, we still
obtain the same result provided that C contains only continuous functions.

Another natural restriction on G(C) are games with symmetric sets of strategies or
games with a bounded number of players or facilities. Since the proofs of Lemma 2 and
3 and Theorems 2 and 3 rely on mild assumptions, we can strengthen our characteriza-
tions as follows.

Corollary 1. Let C be a set of continuous functions. Let G(C) be the set of weighted
congestion games with cost functions in C satisfying one or more of the following
properties

1. Each game G = (N,X,π) ∈ G(C) has two (three) players.
2. Each game G = (N,X,π) ∈ G(C) has three (five) facilities.
3. For each game G = (N,X,π) ∈ G(C) and each player i ∈ N the set of her strategies

Xi contains a single facility only.
4. Each game G = (N,X,π) ∈ G(C) has symmetric strategies, that is Xi = X j for all

i, j ∈ N.
5. In each game G = (N,X,π) ∈ G(C) the demands of all players are integral.
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Then, every G = (N,X,π) ∈ G(C) has an exact (a weighted) potential if and only if C
contains only affine functions (only affine functions or only exponential functions as in
Theorem 3).

Yet, we are able to deduce an interesting result concerning the existence of weighted
potentials in weighted congestion games where each facility can be chosen by at most
two players. As we can set z = 0 in (6), the conditions of Lemma 3 are fulfilled by more
than affine or exponential functions.

Theorem 4. Let m(x) be a strictly monotonic function and Cm = {am(x)+b : a,b ∈ R}.
Let G2(Cm) be the set of games such that cost functions are in Cm and every facility
is contained in the set of strategies of at most two players. Then, every G ∈ G2(Cm)
possesses a weighted potential.

This result generalizes a result of Anshelevich et al. in [3], who showed that a weighted
congestion game with two players and c f (�) = b f /� for a constant b f ∈ R+ has a poten-
tial. Moreover, this result shows that the characterization of Corollary 1 is tight in the
sense that weighted congestion games with two players admit a weighted potential even
if cost functions are neither affine nor exponential.

4 Extensions of the Model

In the last section, we developed a new technique to characterize the set of functions
that give rise to a potential in weighted congestion games. In this section, we will intro-
duce two generalizations of weighted congestion games and investigate the set of cost
functions that assure the existence of potential functions.

Definition 5 (Weighted congestion game with facility-dependent demands). Let
M= (N,F,X, (c f ) f∈F) be a congestion model and let

(
di, f

)

i∈N, f∈F
be a matrix of facility-

dependent demands. The corresponding weighted congestion game with facility-
dependent demands is the strategic game G(M) = (N,X,u), where u is defined as
u =
�

i∈N πi, πi(x) =
∑

f∈xi
di, f c f

(
� f (x)

)
and � f (x) =

∑
j∈N: f∈x j

d j, f .

Restricting the strategy sets to singletons, we obtain scheduling games. In a scheduling
game, players are jobs that have machine-dependent demands and can be scheduled on
a set of admissible machines (restricted scheduling on unrelated machines). In contrast
to the classical approach, where each job strives to minimize its makespan, we consider
a different private cost function: Machines charge a price per unit given by a load-
dependent cost function c f and each job minimizes its cost defined as the price of the
chosen machine multiplied with its machine-dependent demand.

Theorem 5. Let C be a set of continuous functions and let G f d(C) be the set of
weighted congestion games with facility-dependent demands and cost functions in
C. Then, every G ∈ G f d(C) admits a weighted potential if and only if C contains
only affine functions, that is, every c ∈ C can be written as c(�) = ac � + bc for some
ac,bc ∈ R. For a game G with affine cost functions, the potential function is given by
P(x) =

∑
i∈N
∑

f∈xi
c f

(∑
j∈{1,...,i}: f∈x j

d j, f

)
di, f .
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We will now introduce an extension to weighted congestion games allowing players to
also choose their demand.

Definition 6 (Weighted congestion game with elastic demands). Let M =

(N,F,X, (c f ) f∈F) be a congestion model. Together with D =
�

i∈N Di, where Di ⊂ R+
are compact for all i ∈ N, we define the weighted congestion game with elastic de-
mands as the strategic game G(M) = (N, X̄,π) with X̄ := (X,D), π =

�
i∈N πi, and

πi(x̄) =
∑

f∈xi
dic f
(
� f (x̄)

)
and � f (x̄) =

∑
j∈N: f∈x j

d j.

In our definition of weighted congestion games with elastic demands, we explicitly
allow for positive and negative, and for increasing and decreasing cost functions. Thus,
an increase in the demand may increase or decrease the player’s private cost. Note that
in weighted congestion games with elastic demands, the strategy sets are topological
spaces and are in general infinite. By restricting the sets Di to singletons Di = {di}, i ∈ N,
we obtain weighted congestion games as a special case of weighted congestion games
with elastic demands. The proof of the following result is similar to the case of facility-
dependent demands.

Theorem 6. Let C be a set of continuous functions and let Ge(C) be the set of weighted
congestion games with elastic demands and cost functions in C. Then, eve-ry G ∈ Ge(C)
admits a weighted potential function if and only if C contains only affine functions.
For a game G with affine cost functions, the potential function is given by P(x̄) =
∑

i∈N
∑

f∈xi
c f

(∑
j∈{1,...,i}: f∈x j

d j

)
di.

As an immediate consequence, we obtain the existence of a PNE if cost functions are
affine. Note that the existence of a potential is not sufficient for proving existence of a
PNE as we are considering infinite games. However, as X̄ is compact and P is continu-
ous, P has a minimum x̄∗ ∈ X̄ and x̄∗ is a PNE.

Corollary 2. Let C be a set of affine functions and let Ge(C) be the set of weighted
congestion games with elastic demands and cost functions in C. Then every G ∈ Ge(C)
admits a PNE.
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1. Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and
weighted congestion games. Theor. Comput. Sci. 410(17), 1552–1563 (2009)

2. Albers, S., Eilts, S., Even-Dar, E., Mansour, Y., Roditty, L.: On Nash equilibria for a network
creation game. In: Proc. of the 17th Symposium on Discrete Algorithms (SODA), pp. 89–98
(2006)

3. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The
price of stability for network design with fair cost allocation. In: Proc. of the 45th Symposium
on Foundations of Computer Science (FOCS), pp. 295–304 (2004)

4. Awerbuch, B., Azar, Y., Epstein, A., Mirrokni, V.S., Skopalik, A.: Fast convergence to nearly
optimal solutions in potential games. In: Proc. of the 9th conference on Electronic commerce
(EC), pp. 264–273 (2008)

5. Chen, H.-L., Roughgarden, T.: Network design with weighted players. In: Proc. of the 18th
Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 29–38 (2006)



108 T. Harks, M. Klimm, and R.H. Möhring
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