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Preface

This volume contains the papers presented at the Second International Sympo-
sium on Algorithmic Game Theory (SAGT 2009), which was held on October
18–20, 2009, in Paphos, Cyprus. This event followed the first, very successful
SAGT symposium, which took place in Paderborn, Germany, last year.

The purpose of SAGT is to bring together researchers from computer sci-
ence, economics and mathematics to present and discuss original research at the
intersection of algorithms and game theory. It has been intended to cover all
important areas such as solution concepts, game classes, computation of equilib-
ria and market equilibria, algorithmic mechanism design, automated mechanism
design, convergence and learning in games, complexity classes in game theory, al-
gorithmic aspects of fixed-point theorems, mechanisms, incentives and coalitions,
cost-sharing algorithms, computational problems in economics, finance, decision
theory and pricing, computational social choice, auction algorithms, price of an-
archy and its relatives, representations of games and their complexity, economic
aspects of distributed computing and the internet, congestion, routing and net-
work design and formation games and game-theoretic approaches to networking
problems.

Approximately 55 submissions to SAGT 2009 were received. Each submission
was reviewed by at least three Program Committee members. The Program
Committee decided to accept 29 papers. Out of these, a small number will be
invited to a Special Issue of the Theory of Computing Systems journal with
selected papers from SAGT 2009. The program of SAGT 2009 featured three
invited talks from three outstanding researchers in algorithmic game theory:
Elias Koutsoupias, Dov Monderer and Mihalis Yannakakis. We are very grateful
to Elias, Dov and Mihalis for joining us in Paphos and for their excellent lectures.

Our sincere thanks go to all authors who submitted their research work to
SAGT 2009. We would like to thank all Program Committee members, and the
external reviewers who assisted them, for their wonderful work. We are indebted
to all members of the Organization Committee for their hard work preparing
SAGT 2009. The developers of the EasyChair conference system, which assisted
tremendously both the Program and the Organization Committees, deserve spe-
cial thanks. We also thank Alan Selman, the Editor-in-Chief of the Theory of
Computing Systems journal, for making the Special Issue possible.

We are very pleased to acknowledge financial support from the University
of Cyprus, the Limassol Cooperative Savings Bank Ltd., IBM Cyprus and the
Integrated Project AEOLUS (IST-015964) of the European Union. We are hon-
ored that SAGT is embraced under the auspices of the European Association
for Theoretical Computer Science (EATCS).

October 2009 Marios Mavronicolas
Vicky G. Papadopoulou
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Berthold Vöcking RWTH Aachen Germany

Local Organization

Chryssis Georgiou University of Cyprus Cyprus
Christos Kapoutsis University of Cyprus Cyprus
Marios Mavronicolas University of Cyprus Cyprus
Vicky G. Papadopoulou European University Cyprus Cyprus – Chair
Anna Philippou University of Cyprus Cyprus

External Reviewers

Itai Ashlagi
Vincenzo Auletta
Umang Bhaskar
Vittorio Bilo
Patrick Briest
Markus Brill
Ning Chen
Vincent Conitzer
Nikhil Devanur
Dominic Dumrauf
Khaled Elbassioni
Angelo Fanelli
Michal Feldman
Rainer Feldmann
Diodato Ferraioli
Felix Fischer
Dimitris Fotakis
Andrew Gilpin
Paul Harrenstein
Nicole Immorlica
Albert Jiang
Panagiotis Kanellopoulos
Spyros Kontogiannis
Annamaria Kovacs
Maria Kyropoulou
Aranyak Mehta
Luca Moscardelli

Ahuva Mu’alem
Evdokia Nikolova
Abraham Othman
Mike Paterson
Paolo Penna
James Pita
Ariel Procaccia
Guido Proietti
Evangelia Pyrga
Qi Qi
Heiko Roeglin
Amir Ronen
Maher Said
Mahyar Salek
Michael Schapira
Florian Schoppmann
Ulf-Peter Schroeder
Alexander Skopalik
Troels Sorensen
Orestis Telelis
Tobias Tscheuschner
Angelina Vidali
William Walsh
Jiajin Yu
Yingchao Zhao
Martin Zinkevich
Gianpiero Monaco



Table of Contents

Monotonicity in Mechanism Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Dov Monderer

Computational Aspects of Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Mihalis Yannakakis

A Modular Approach to Roberts’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 14
Shahar Dobzinski and Noam Nisan

Characterizing Incentive Compatibility for Convex Valuations . . . . . . . . . 24
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Monotonicity in Mechanism Design

Dov Monderer

Technion–Israel Institute of Technology
dov@ie.technion.ac.il

Abstract. Consider a model with a finite number of alternatives, and
buyers with private values and quasi-linear utility functions. A domain
of valuations for a buyer is a monotonicity domain if every finite-valued
monotone randomized allocation rule defined on it is implementable, in
the sense that there exists a randomized truth-telling direct mechanism,
which implements this allocation rule. The domain is a weak monotonic-
ity domain if every deterministic monotone allocation rule defined on it is
implementable. I discuss the literature on (weak) monotonicity domain,
which includes the early mathematical literature as well as the recent
CS/Economics literature.

M. Mavronicolas and V.G. Papadopoulou (Eds.): SAGT 2009, LNCS 5814, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Computational Aspects of Equilibria

Mihalis Yannakakis

Department of Computer Science, Columbia University

1 Introduction

Equilibria play a central role in game theory and economics. They characterize
the possible outcomes in the interaction of rational, optimizing agents: In a
game between rational players that want to optimize their payoffs, the only
solutions in which no player has any incentive to switch his strategy are the
Nash equilibria. Price equilibria in markets give the prices that allow the market
to clear (demand matches supply) while the traders optimize their preferences
(utilities). Fundamental theorems of Nash [34] and Arrow-Debreu [2] established
the existence of the respective equilibria (under suitable conditions in the market
case). The proofs in both cases use a fixed point theorem (relying ultimately
on a compactness argument), and are non-constructive, i.e., do not yield an
algorithm for constructing an equilibrium. We would clearly like to compute
these predicted outcomes. This has led to extensive research since the 60’s in
the game theory and mathematical economics literature, with the development
of several methods for computation of equilibria, and more generally fixed points.
More recently, equilibria problems have been studied intensively in the computer
science community, from the point of view of modern computation theory. While
we still do not know definitely whether equilibria can be computed in general
efficiently or not, these investigations have led to a better understanding of
the computational complexity of equilibria, the various issues involved, and the
relationship with other open problems in computation. In this talk we will discuss
some of these aspects and our current understanding of the relevant problems.
We outline below the main points and explain some of the related issues.

2 General Setting

Consider a game G in normal form, i.e., given by the payoff tables of the play-
ers. As usual in computer science, all input data (the payoffs in this case) are
assumed to be rational. However this does not mean that the equilibria will be
also rational: As was observed already by Nash, there are even 3-player games
whose equilibria are irrational. This is a common phenomenon in many areas in
science and engineering, where the quantities of interest are described by non-
linear equations. The usual approach is to compute a rational approximation
to the desired quantities within a desired precision (error) ε; for example, π is
approximately 3.14159 up to five decimal digits of precision, i.e. within error
ε < 10−5. Given a game G, we would like to compute a Nash equilibrium for it,
exactly if possible, or approximately within a given precision ε.

M. Mavronicolas and V.G. Papadopoulou (Eds.): SAGT 2009, LNCS 5814, pp. 2–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The complexity of the Nash equilibrium problem is intimately connected with
the complexity of the computation of fixed points. As mentioned above, Nash
proved the existence of an equilibrium, by constructing from a game G a con-
tinuous function FG from the set D of all real-valued vectors that represent
mixed strategy profiles of the players to itself, such that the set of fixed points
of FG is precisely the set of equilbria of G; since D is a convex compact domain
and FG is continuous, there is at least one fixed point by Brouwer’s theorem.
Nash’s function FG is specified by a simple algebraic formula using the oper-
ators +,−, ∗, /, max. Thus, the computation of a Nash equilibrium for a given
game (exactly, or approximately within given precision) reduces to the (exact
or approximate) computation of a fixed point for a specific algebraic Brouwer
function.

It turns out that a strong converse is also true: Nash equilibria are power-
ful enough to capture the fixed points of all algebraic Brouwer functions. Let
FIXP be the class of total search problems that can be formulated as fixed
point computation problems of algebraic Brouwer functions: a problem Π is in
FIXP if from a given instance I we can construct in polynomial time a circuit
(equivalently, a straight-line program) over basis {+,−, ∗, /, max} with rational
constants that computes a continuous function FI from a domain DI to itself,
such that the solutions of the instance I are the fixed points of FI , i.e. points
x ∈ DI that satisfy x = FI(x); the domain could be a polyhedral domain (e.g.,
simplex, hypercube, or a more complex polytope) or a nonlinear domain such
as an ellipsoid. The Nash equilibrium problem obviously belongs to FIXP by
Nash’s proof. Furthermore it is FIXP-complete for games with 3 or more players
[15]. This holds with respect to both exact and approximate computation. From
an instance I of a problem Π ∈ FIXP we can construct in polynomial time a
3-player game G whose Nash equilibria yield the solutions to the instance I by
a simple linear transformation with rational coefficients. Similarly with approx-
imate computation: To compute a solution of I within a desired number k of
bits of precision (i.e. error ε = 2−k) it suffices to compute an equilibrium of G
within k′ bits of precision, where k′ is polynomial in I and k.

The class FIXP is quite robust, both with respect to the choice of the domain
as mentioned above, as well as with respect to the representation of the function
and the basis set of operators. Thus, for example the class remains the same
whether we use formulas or circuits to represent the function. Also it can be
shown that the class does not change if we add roots and fractional powers to
the basis, nor if we remove division. Many problems from various areas can be
formulated as fixed point computation problems for algebraic functions; see [15]
for several examples. In particular, computing a price equilibrium in the classical
exchange economy market model where the demand functions of the traders are
given explicitly by algebraic formulas (or circuits) is in FIXP by the standard
fixed point formulation of the market equilibrium problem; furthermore, the
problem is also FIXP-complete.

The various discrete computational problems associated with problems in
FIXP, can be solved in polynomial space; this includes the computation of
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a solution (fixed point) within a desired precision, as well as more complex
existence questions, such as whether there exists a solution that satisfies given
conditions (for example, has certain coordinates in a specified range). All these
problems can be expressed in the existential theory of the reals, via the fixed
point equations, and solved in PSPACE using a procedure for this theory. Exis-
tence questions are generally NP-hard; for example, it is NP-hard to tell whether
a given 2-player game has a Nash equilibrium whose support includes specified
strategies, or an equilibrium in which a player receives a specified payoff [22].
However, this does not mean that it is NP-hard to compute (approximately) an
equilibrium (anyone) of a game; this is an open question. As far as we currently
know, FIXP is somewhere between P and PSPACE.

Although there is no known NP-hardness lower bound for the exact or approx-
imate computation of equilibria, the complexity of the equilibria problems are
lower bounded by other longstanding open problems in computation. One such
problem is the square-root-sum (Sqrt-Sum) problem, of determining whether
the sum of square roots of a given set of integers is greater than another in-
teger; this problem arises often especially in geometric computations, and it is
a 30-year old question whether it is in NP (or even in P). A second, and more
fundamental, problem, called PosSLP, is to determine whether a given circuit (or
Straight-Line-Program) with given inputs 0, 1 and operations +,−, ∗ computes
a positive number. The significance of this problem is that it characterizes the
power of the unit-cost model of computation with unbounded precision rational
arithmetic, i.e., a model in which all operations (+,−, ∗, /) on rational numbers
take unit time regardless of the size of the numbers [1]; this model is known also
as the algebraic RAM model, and corresponds essentially to the real computa-
tion model of [5] restricted to rational constants. The Sqrt-Sum problem can be
solved in P-time in this model [47]. It is known that if we have integer division
(even just division by 2, i.e., the floor operation �x

2 �), then all of PSPACE can
be done in polynomial time in the unit cost model [4]. The unit cost rational
model appears to be somewhat weaker than PSPACE: it was shown recently
that P-time in this model is contained in the Counting Hierarchy, a hierarchy
above #P and the Polynomial Hierarchy [1]. The model appears still to be quite
powerful and its relationship to the basic complexity classes in the standard
Turing model (P, NP) remains open.

The Sqrt-Sum and PosSLP problems can be reduced to (and thus lower
bound) the problem of computing approximately with any nontrivial accuracy
a Nash equilibrium of a given 3-player game, or the prices in an equilibrium of
an exchange economy [15]. This lower bound holds even for games and markets
that are guaranteed to have a unique equilibrium. The issue of uniqueness and
the problem of equilibrium selection in games and markets that have multiple
equilibria is an important issue that has received a lot of attention. As in many
other fields, it is desirable for a theory to predict a unique outcome; see e.g.
[23] and the remarks of Aumann regarding the role of uniqueness in games,
and [33], Chapter 17 regarding market equilibria. Of course, if there is only one
equilibrium to begin with, then there is no ambiguity: the unique equilibrium is
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the predicted outcome of the game or the market, and the problem is thus to
compute or estimate the values (strategy probabilities or prices) in the unique
equilibrium. This problem seems to be hard. Specifically, given a game that has
a unique Nash equilibrium, or given a market (with explicit excess demand func-
tions) that has a unique price equilibrium, if we can distinguish in polynomial
time whether the probability of a particular strategy in the (unique) equilibrium
of the given game or the price of a particular good in the given market is very
close to 0 from the case that it is very close to 1, then the unit cost rational
model can be essentially simulated in polynomial time in the standard Turing
model; i.e., unit-cost-P ⊆ P. This is very unlikely.

3 Two-Player Games and Approximate Equilibria

The case of 2-player games has certain nice properties that do not hold for 3 or
more players. One such property is that, if the payoffs are rational, then there
is always a rational Nash equilibrium with polynomial bit complexity. Further-
more, if we know the support of an equilibrium (and there is a finite, though
exponential, number of possible supports), then we can compute explicitly an
equilibrium with this support by setting up and solving a system of linear equa-
tions. This means in particular that the problem of computing an equilibrium
is in NP, since we can guess a support and compute and verify a corresponding
equilibrium. The problem cannot be NP-hard unless NP=coNP (which is widely
believed not to be the case). In the special case of zero-sum 2-player games (i.e.,
if the two players get opposite payoffs for every strategy pair), an equilibrium
can be computed in P by Linear Programming.

In the general (non-zero sum) 2-player case, the equilibrium problem corre-
sponds to a Linear Complementarity problem. An equilibrium can be computed
by the Lemke-Howson algorithm [31]; the algorithm runs in exponential time in
the worst case [40], but this of course does not rule out the existence of other,
more efficient algorithms. Papadimitriou defined in [37] a complexity class PPAD
(motivated primarily by this problem) which captures the basic path-following
principle of the Lemke-Howson algorithm and the similar algorithm of Scarf
for computing approximate fixed points [41]. A recent sequence of papers cul-
minated in showing that computing a Nash equilibrium in 2-player games is
PPAD-complete [11,7]. Furthermore, it is also complete to compute an approxi-
mate ε-Nash equilibrium (i.e. a (mixed) strategy profile in which no player can
improve its payoff by more than ε by switching strategy unilaterally), even if all
the payoffs are 0 or 1 and ε is inverse polynomial in the number of strategies [8].
If all the payoffs are in [0, 1] (or have a bounded range) and ε is constant, then
a ε-Nash equilibrium can be computed in quasipolynomial time, specifically in
time nO(log n/ε2), for any fixed number of players [32]. It is open whether there
is a polynomial time (additive) approximation scheme, even for 2 players. There
are several papers that give polynomial-time algorithms for some constant ε for
2-player games with payoffs in [0, 1]; see [46] for an overview of the progress so
far on the constant ε.
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The class PPAD is somewhere between P and NP, more precisely, TFNP, the
class of total search problems in NP. As with all total NP problems, the problems
in PPAD cannot be NP-hard unless NP=coNP. A characterization of PPAD in
terms of fixed points is that PPAD is the class of search problems that can be
expressed as fixed point computation problems for polynomial piecewise linear
functions [15]. PPAD is contained in FIXP, and more precisely, it corresponds
to the piecewise linear fragment of FIXP, which is obtained by restricting the
circuits in the definition of FIXP to allow multiplication and division only with
rational constants, and not between any gates and inputs variables. The functions
computed by such circuits are piecewise linear, and they always have rational
fixed points.

The problem of computing an ε-Nash equilibrium (ε-NE) for a given game
G and (rational) ε > 0 is in PPAD (and PPAD-complete) for any number of
players, and the same holds for the slightly stronger notion of ε-well supported
Nash equilibrium (ε-ws NE) [11]. A ε-ws NE is an ε-Nash equilibrium with the
additional property that pure strategies whose payoff is suboptimal by more than
ε have 0 probability. These notions are natural relaxations of the equilibrium
solution concept, allowing more solutions where the players’ incentive to switch
strategy is small. The two versions are polynomially related: every ε-ws NE is
by definition an ε-NE, and moreover for any game G and ε, we can take ε′ of
bit-size (i.e. log(1/ε′)) polynomial in G and the bit-size of ε, such that every
ε′-NE of G is an ε-ws NE [11]. The well-supported version (but not plain ε-NE)
has furthermore the following property characterizing exact equilibria of nearby
games: A mixed strategy profile x is a ε-well supported Nash equilibrium of a
game G if and only if there is a game G′ that differs from G at most by ε/2 in
each payoff such that x is a (exact) equilibrium of G′ [19].

4 Relationship between Types of Approximation

Approximate Nash equilibria of a game G (in both the ε-NE and ε-ws NE ver-
sions) are quantitatively different than approximations of (actual) Nash equilib-
ria of G: the fact that a strategy profile is almost at equilibrium, in the sense
that the incentive to move is small, does not necessarily mean that it is near
an equilibrium. (This phenomenon is familiar also in the physical world: the
net force in a configuration may be small, but the system may still be far from
equilibrium.) If a strategy profile is near an equilibrium then it is easy to see
that it is almost at equilibrium. But the converse does not hold. In particular,
there are examples of 3-player games G of size n with a unique Nash equilibrium
such that G has ε-NE (and ε-ws NE) for an extremely small ε = 1/22nc

, that are
almost at distance 1 from the equilibrium, i.e., some strategy probability is close
to 1 in the ε-NE whereas it is close to 0 in the (unique) equilibrium [15]. This
phenomenon is due to the nonlinearity of the Nash equilibrium problem from 3
players on; in particular, it does not happen for 2-player games.

More generally, similar issues arise in the relationship between ε-approximation
to fixed points of a function F on the one hand and ε-approximate fixed points of
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F on the other hand, i.e., points x such that |F (x) − x| ≤ ε; these are referred
respectively as strong and weak approximation because the second one polynomi-
ally reduces to the first one for most common functions (technically, for polynomi-
ally continuous functions). The converse reduction generally does not hold. In the
case of game equilibria, ε-NE correspond to (are polynomially related to) the weak
approximation for Nash’s function.

If we do not care about the complexity of the problems, then the strong and
the weak version are related asymptotically to each other as they both converge
to fixed points as ε → 0, so it is perhaps not so important asymptotically to make
a big distinction between them. Specifically, the following qualitative converse
holds: for every Brouwer function F , for every ε > 0, there is a δ > 0 such that
every point x that satisfies |F (x) − x| ≤ δ is within ε of some fixed point of F
[29]; for a class of smooth functions, δ is moreover linear in ε [3]. These results
indicate that the problem of approximating a fixed point (e.g., an equilibrium)
reduces to the problem of computing an approximate fixed point; it means for
example that we can use algorithms for the computation of approximate fixed
points based on simplicial subdivision, such as those of Scarf, Kuhn, McKennon
and others [41,29] to actually compute approximations of fixed points, by using
a fine enough subdivision. The problem is that the reduction is not a polynomial
reduction: the value of δ that we need depends not only on ε but also on the
function F , i.e., on the instance of the problem in hand. For example, in the
case of the Nash equilibrium problem, F is Nash’s function for the given game,
and we know that δ has to be at least doubly exponentially small in magnitude
(i.e. of exponential bit-size) in the size of the game.

If we consider the complexity of the problems, it is essential to distinguish
carefully between the two types of approximation: computing approximately an
equilibrium (or even exactly if possible, e.g. if it is rational) on the one hand
versus computing an approximate equilibrium on the other hand. Failing to make
the distinction can lead to wrong conclusions: We know that the latter problem of
computing an approximate equilibrium is in PPAD, and thus in NP. However, if
the former problem of computing approximately an equilibrium is in PPAD, this
would have immediate consequences on longstanding open problems; it would
imply in particular that the Sqrt-Sum and posSLP problems are in NP, and
that P-time in the unit-cost rational (algebraic RAM) model is contained in NP
in the standard Turing model. We do not know currently the status of these
problems, and the last statement is in fact very doubtful. We believe actually
that approximate computation of equilibria is most likely not in NP.

The difference between the two types of approximations is manifested starkly
in a setting where the algorithm is not given explicitly full information about
the instance at hand (i.e., the specific function in the case of a fixed point
problem, the strategies and payoffs of the players in a game, the utilities or
demand functions of the traders in a market), but rather information is obtained
dynamically as the algorithm progresses. In these cases, the limitations on the
access of the algorithm to the instance permit one to show unconditional bounds.
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5 Price Adjustment Mechanisms

The question of how markets arrive at equilibrium prices that match demand
and supply has occupied economists for a very long time, starting with Walras’
proposed tatonnement mechanism more than a century ago. Although taton-
nement does not converge to an equilibrium in certain markets (as shown by
Scarf), several other price adjustment mechanisms have been proposed that do
converge to an equilibrium [45,30,24,25]. The mechanisms adjust dynamically
the prices according to the excess demands of the goods. The demand functions
are assumed typically to be differentiable, and the adjustment of prices is de-
scribed mathematically by differential equations based on the demands and their
derivatives. Adjustment mechanisms that converge to equilibria have been also
proposed for games, and serve also a role of selecting an equilibrium when there
are multiple equilibria [23]; see [25] for an overview. Price adjustment mecha-
nisms can be seen as algorithms that compute equilibria, but they do not use
explicitly the excess demand functions directly, but only indirectly through the
observed values (and derivatives).

Consider a general discrete-time price adjustment scheme, the prices are up-
dated in every step based on the excess demands at the current prices as well
as the whole history of prices and demands (and derivatives of demands). As-
sume we restrict to markets that have continuously differentiable excess demand
functions with bounded derivatives and which have a unique equilibrium. The
time required for a price-adjustment mechanism to arrive at an ε-approximate
equilibrium, i.e., a set of prices for which the excess demand of each good is at
most an ε fraction of the total supply, is exponential in the number of goods
(where the base of the exponent depends on ε); the time to converge within ε of
the equilibrium is not bounded by any function of ε (even for three goods) [38].

Technically, these results are shown by extending to differentiable functions
and the price simplex analogous lower bounds of [26,44] on the computation
of a fixed point of a (unknown) Brouwer function F on a hypercube using a
generic black-box algorithm that can access the function only by evaluating it
at individual points. The time (number of function evaluations) required for a
black-box algorithm to compute a weak ε-approximate fixed point is exponential
in the dimension, and the time required to compute a strong ε-approximate fixed
point is unbounded (even for dimension 2).

6 Dynamic, Stochastic Games

The previous discussion on the complexity of Nash equilibria concerned one-shot
games given in normal form, i.e. all the (pure) strategies are listed explicitly, and
the payoffs of the players are given for all possible combinations of pure strate-
gies. In many situations, the games are specified implicitly and they take place
dynamically over time; as a result, the number of pure strategies is much larger
than the specification, exponential or even infinite. We will discuss here briefly
dynamic, stochastic games and the complexity of their equilibria problems.
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A typical dynamic game Γ has a set V of states, and every state u has an
associated (one-shot) game Gu. The game Γ starts at some state and proceeds
in discrete steps from one state to another. In each step, if the game is at state
u, the players choose their actions (pure strategies) in the corresponding game
Gu, based possibly on the whole past history and possibly using randomiza-
tion, and then the play proceeds to a new state v with probability that depends
on the actions selected by the players. The objectives of the players fall into
two main types: one is based on rewards (payoff) accumulated during the ex-
ecution, and the other type is based on a property of the whole execution. In
the first type of objective, the specification of the game Gu includes a reward
to each player for each combination of actions, as in a standard one-shot nor-
mal form game; the rewards rt of a player in the different steps t = 1, 2, . . . of
the execution are aggregated using an aggregation function, such as discounted
sum,

∑∞
t=1 λtrt (where λ < 1 is the discount factor), or long-term average,

e.g. lim supn→∞(
∑n

t=1 rt)/n, and the player wants to maximize the aggregate
reward. In the second type of objective, a player wants to maximize the prob-
ability that the execution satisfies a certain property, such as a ‘reachability’
property (the execution visits a state in a specified set S), or its opposite, called
a ‘safety’ property (no state of S is visited), or an ‘infinite reachability’ prop-
erty (a state in S is visited infinitely often), etc. For computational purposes,
it is assumed as usual that all input data (transition probabilities, rewards) are
rational.

Assume the state set V is finite. If there is only one player and probabilistic
transitions, then Γ is a Markov Decision Process, a model which has a well
developed theory and efficient algorithms for a variety of problems, see e.g. [21].
Already for two-player, zero-sum games, the problems become quite challenging
and there are many important open questions for various classes of such games.
The (2-player 0-sum) games have generally a well-defined value; the problem is
to compute the value for a given game and optimal strategies for the players. We
can classify the games into two types: turn-based games which have the restriction
that at each state only one player has a choice of action, and concurent games, in
which there is no such restriction, i.e., both players can have choices at the same
state. Turn-based games have typically several nice properties: the values are
rational, and the players have pure (deterministic) memoryless optimal strategies
(i.e. they can always pick the same single action at each node) that achieve the
value. In concurrent games the value is generally irrational, there may exist only
ε-optimal strategies and they may require randomization.

Shapley’s original stochastic games [43] are 2-player 0-sum concurrent games
with a discounted aggregate reward objective. The value v is in general irrational,
and we do not know of any efficient way to approximate it or to answer a decision
question such as v > 0? (e.g., should player 1 want to play the game?). The
problem of computing the value of the game is in FIXP. The decision question
is at least as hard as the Sqrt-Sum problem, thus we do not know if it is in NP.
The approximation problem on the other hand is in PPAD [15].
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A simpler game, called simple stochastic game (SSG) was introduced by Con-
don [10]. This is a 2-player, 0-sum game with a reachability objective for player
1 (i.e. he wants to reach a state in a set S), and the complementary safety objec-
tive for player 2 (i.e. he wants to avoid the state set S). The value v is rational
of polynomial bit complexity, but again we do not know of any efficient way to
compute it, or approximate it, or answer a decision question such as v > 1/2?.
We can determine efficiently whether v = 0 or v = 1, but comparing with any
other constant in-between is open. The decision question is in NP∩coNP [10]
(and in fact in UP∩coUP). The problem of computing the value is in PPAD
[15] as well as in the class PLS [49] of Polynomial Local Search problems. PLS
is a class of total search problems between P and NP introduced in [27]. Typi-
cal problems include finding locally optimal solutions to combinatorial problems
and computing pure equilibria of games such as congestion games where they
are guaranteed to exist [20]; see [50] for more information on PLS. We note inci-
dentally that for both Condon’s and Shapley’s games, the values of the game for
various starting states can be expressed as the unique solution to a fixed point
set of equations x = F (x); in both cases it is easy to find a weak ε-approximate
fixed point (i.e., point x such that |F (x) − x| ≤ ε) for ε inverse polynomial,
however such a point gives no information on the desired values of the game.

Two even simpler classes of turn-based 2-player 0-sum non-stochastic games
are the mean payoff games [13] which are games with an average reward objec-
tive, and parity games [14], which have a property-based objective and play a
prominent role in the verification area. Both classes reduce to simple stochastic
games [52,28,39]. Their decision problem for the value of the game is in both
cases in NP∩coNP, and it is open whether it is in P.

In the other direction, simple and concurrent stochastic games can be ex-
tended with a recursive feature to model recursive programs and systems that
combine probabilistic and controlled aspects [18,17,16]. We will not give the
detailed definitions here. A 1-RSSG (Recursive Simple Stochastic Game) es-
sentially consists of several finite-state component SSGs, each component has
a designated entry state where it starts and a designated exit state where it
terminates, and the components can call each other recursively like recursive
procedures. A 1-RSSG is a compact representation of an infinite-state simple
stochastic game. The objective of Player 1 is to terminate the game, i.e. reach
the exit state of the component of the starting state, and Player 2 has the oppo-
site objective. The value is generally irrational in this case (this is so even if there
are no players, i.e. for Recursive Markov Chains). The decision problem (e.g.,
is the value v > 1/2?) in this case is Sqrt-Sum-hard, and thus, it is not known
to be in NP. The qualitative problem of determining whether the value is 1 (i.e.
whether Player 1 can achieve termination almost surely) is in NP∩coNP, and is
at least as hard as the (quantitative) decision problem for Condon’s finite-state
simple stochastic games [17]. In the case of the analogous concurrent 1-RCSG
model with a termination objective, even the qualitative value=1 problem is
Sqrt-Sum-hard [18].
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7 Conclusions

We outlined some of the main aspects in the computation of equilibria, and
discussed some of the related issues. A more detailed overview of equilibria,
fixed points, and the complexity classes that capture them can be found in
[51]. Although there has been significant progress in our understanding of the
algorithmic problems involved in the computation of equilibria, a lot of open
questions remain, both in the general setting, as well as for many interesting
and important classes of games.

Acknowledgement. Work partially supported by NSF Grant CCF-0728736.
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Abstract. Roberts’ theorem from 1979 states that the only incentive
compatible mechanisms over a full domain and range of at least 3 are
weighted variants of the VCG mechanism termed affine maximizers.
Roberts’ proof is somewhat “magical” and we provide a new “modu-
lar” proof. We hope that this proof will help in future efforts to ex-
tend the theorem to non-full domains such as combinatorial auctions or
scheduling.

1 Introduction

Mechanism design theory has gained a place as a conceptual cornerstone for
designing computer protocols among self-interested parties, as is found in the
internet. For background on mechanism design we refer the reader to standard
textbooks in micro-economic theory [10] and for background on its computa-
tional applications to part II of [13].

The most basic notion in mechanism design is that of truthfulness in dominant
strategies. The setting involves a set of alternatives A, and a set of n players,
that each has a valuation function vi ∈ Vi ⊆ 
A, where vi(a) denotes the value
that player i assigns to alternative a. A (direct revelation) mechanism M =
(f, p1, ..., pn) contains a preference-aggregation function f : V1×· · ·×Vn → A and
payment functions pi : V1 × · · · × Vn → 
. An incentive compatible mechanism
ensures that each player’s best interest when “reporting” his input vi to the
mechanism is to report it truthfully.

Definition 1. A mechanism M = (f, p1, ..., pn) is incentive compatible (equiva-
lently truthful or strategy-proof) if for all players i, all valuations vi, v

′
i ∈ Vi and

v−i ∈ V−i,

vi(f(vi, v−i))− pi(vi, v−i) ≥ vi(f(v′i, v−i))− pi(v′i, v−i)

We say that f can be implemented if for some p1, ..., pn, the obtained mechanism
is incentive compatible.
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As incentive compatibility is the basic requirement in applications, a charac-
terization is of central interest:

Characterization Question. Which preference-aggregation functions f are
implementable?

While it is clear why we would like to understand which naturally-desired func-
tions are implementable, in computational applications we require more: un-
derstanding the implementability of the family of approximations to a desired
function. The necessity of settling for an approximation can be either due to
computational hardness of f or due to the unimplementability of f itself.

The key positive result in mechanism design, VCG mechanisms (see, e.g.,
[12]), states that social-welfare maximization is implementable for every range of
alternatives and domain of valuations. I.e., the function f(v1, ..., vn) = argmaxa∑

i vi(a) is implementable with VCG payments. (In the case that maximum
social welfare is obtained at more than alternative, any of them can be chosen.)
It is easy to generalize the VCG mechanisms to weighted variations, termed
affine maximizers:

Definition 2. f : V1 × · · · × Vn → A is an affine maximizer if there exist
real constants α1, ..., αn, αi ≥ 0, and βa for all a ∈ A such that for all v,
f(v) ∈ argmaxa

∑
i(αivi(a)) + βa.

The main impossibility result in the area is the surprising theorem of Roberts:

Theorem 1 ([15]). : The only implementable functions with a finite range of
size more than 2, |A| ≥ 3 and full domains Vi = 
A are affine maximizers.

The main restriction in the theorem is the requirement of full domain. The
extreme opposite case is where the domain is essentially single dimensional. In
these cases, termed “single-parameter”, much more can be implemented, and a
good characterization is known (see, e.g., [12]), which has been used extensively
in computational settings [1,9,4]. The case of |A| = 2 is always single parameter,
which explains why the theorem required |A| ≥ 3.

Most interesting computational applications do not have a full domain nor
are they single-parameter, and indeed we do not have good characterizations
of which functions are implementable for, e.g., combinatorial auctions, multi-
unit auctions, or scheduling. All of the few such characterizations known are
in very restricted settings: restricted auction domains [7,6] and “combinatorial
public projects” [14]. All these papers start by showing that all implementable
mechanisms are affine maximizers by proving Roberts-like theorems, and then
provide lower bounds on what can be achieved by affine-maximizers in polyno-
mial time [5]. This lack of characterization is the underlying reason for the very
little progress on the long standing problems of how well can computationally-
efficient incentive compatible mechanisms approximate the optimal allocation
in combinatorial auctions, or approximate the optimal schedule in scheduling
problems. Of note is a positive result for “combinatorial auctions with duplicate
items” [3].
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Extending Roberts’ theorem to other domains has remained elusive. While
Roberts’ proof itself is not very difficult or long, it is quite mysterious (to us,
at least). There is no clear separation into independent tasks, each which can
be extended (or not) to non-full domains. The second author has already been
involved in efforts to extend [7] and simplify the proof of [8] Roberts’ theorem,
but still finds it mysterious. During the last few years the two authors have
spend considerable time in attempting to extend — or at least obtain a really
clear proof of — Roberts’ theorem. While we can not claim to be completely
satisfied, we feel that we do have a new modular proof that may be of interest
and so we bring it here.

Our Approach. The proof starts by considering the case where there are only
two players. The first novel step is to show that there exists a player with no
veto power. I.e., that for every value of vi, the range of f after fixing this value
still remains full. Having this property, we are able to show that the only im-
plementable mechanisms for two players are affine maximizers. Then, the proof
proceeds by induction on the number of players, showing that if all truthful
mechanisms for n − 1 players are affine maximizers, then all truthful mecha-
nisms for n players must be affine maximizers too. In a sense the last step shows
that as far as characterizations are concerned, we can restrict our attention to
the “simpler” setting of only 2 bidders.

From a technical point of view, our proof is completely combinatorial and does
not rely on the separation theorem between convex bodies, unlike the original
proof. Here is a high-level structure of the new proof.

1. We begin with the direct and standard [12] observations:

– An implementable f is “weakly monotone”: f(vi, v−i) = a and
f(v′i, v−i) = b implies that vi(a)− vi(b) ≥ v′i(a)− v′i(b).

– The payment function for player i does not depend on vi, and may be
represented as pi(vi, v−i) = pa

i (v−i) for a = f(vi, v−i).
– f must optimize for each player: f(vi, v−i) ∈ argmaxa vi(a)− pa(v−i).

2. The next step is due to [7] and shows that “ties can be ignored”. Specifically,
we may assume without loss of generality that the “≥” in the weak mono-
tonicity condition is in fact strict, a condition termed strong monotonicity:
f(vi, v−i) = a and f(v′i, v−i) = b implies that vi(a)−vi(b) > v′i(a)−v′i(b). As
shown in [7] a the critical element here is full-dimensionality of the domains.

3. The third step is a proof that f must have a player with no veto power
– i.e., that for every value of vi, the range of f after fixing this value still
remains full. This is somewhat in spirit of Barbera and Peleg’s proof [2] of
Gibbard-Satterthwaite theorem. A critical element is the un-boundedness of
the valuation space, shedding some light on the bounded domain example
of [11].

4. The fourth step in the proof is the case n = 2 (when we already know that
there is a player with no veto power). Here we observe that that pricing
functions pa

i mentioned in step 1 satisfy a simple condition that pa
i (v1) −

pb
i(v1) is a (monotone) function only of the scalar v1(a) − v1(b). Simple
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closed mathematical reasoning implies that real functions that satisfy these
conditions must all be linear with the same slope, which directly proves the
statement. The critical element in this argument is that the range for every
fixed value of v1 is of size at least 3.

5. The fifth step is induction on n, with the base step being at n = 2. The logic
is basically that every restriction of a single player results in prices that are
linear functions of the remaining players, and since it can be shown that
the slopes must be equal for different restrictions, we get the prices must be
linear over-all.

2 Preliminaries

We start with some notation. A is the set of alternatives, |A| ≥ 3. V = 
A

is the full domain of valuations of a single player. An n-player mechanism is a
pair (f, p) where f : V n → A and p : V n → 
, and p = (p1, · · · , pn), where
pi : V n → R.

Definition 3. va+=δ the valuation obtained from v by increasing the value for
a by δ and not changing any other value.

In the rest of the paper, unless noted otherwise, i will range over 1, ..., n; a, b, c, k
will always range over A, vi, v

′
i will always range over V , and v−i will range over

V n−1.

Definition 4. (f, p) is incentive compatible if for all i, all vi, v
′
i and all v−i we

have that vi(f(vi, v−i))− p(vi, v−i) ≥ v′i(f(v′i, v−i))− p(v′i, v−i).

The next two propositions are standard, and hold over all domains not just the
full domain:

Definition 5. f is weakly monotone if for all vi, v
′
i and a, b: f(vi, v−i) = a and

f(v′i, v−i) = b implies vi(a)− vi(b) ≥ v′i(a)− v′i(b).

Lemma 1 (e.g., [12]). If (f, p) is incentive compatible then there exist
functions pa

i : V n−1 → 
∪ {∞} such that

1. Whenever f(vi, v−i) = a we have that pi(vi, v−i) = pa(v−i).
2. f(vi, v−i) ∈ arg maxa vi(a)− pa

i (v−i).

Lemma 2 ([7]). If (f, p) is incentive compatible then f is weakly monotone.

Proof. Since f is incentive compatible, we have that vi(a) − pa
i (v−i) ≥ vi(b) −

pb
i(v

−i), since f(vi, v−i) = a. On the other hand, f(v′i, v−i) = b, and thus v′i(b)−
pb

i(v
−i) ≥ v′i(a) − pa

i (v−i). Subtracting the two inequalities we get that vi(a) −
vi(b) ≥ v′i(a)− v′i(b). ��
Definition 6. f is an affine maximizer if there exists constants αi ≥ 0 and
βa ∈ 
 ∪ {∞} such that f(v1, ..., vn) ∈ argmaxa(

∑
i(αivi(a))− βa).



18 S. Dobzinski and N. Nisan

3 Getting Rid of Ties

Definition 7. f is strongly monotone if for all vi, v
′
i and a, b: f(vi, v−i) = a

and f(v′i, v−i) = b implies vi(a)− vi(b) > v′i(a)− v′i(b).

Lemma 3 ([7]). If for every incentive compatible (f, p) with a strongly mono-
tone f , f is an affine maximizer, then also for every incentive compatible (f, p),
f is an affine maximizer.

4 Existence of No-Veto-Power Players

Definition 8. Player i is said to hold no veto power in f if for every vi and
every a there exists v−i with f(vi, v−i) = a. Player i said to be decisive in f if
for every v−i and for every a there exists some vi such that f(vi, v−i) = a.

Lemma 4. If (f, p) is incentive compatible and f is strongly monotone then all
players, except perhaps a single one, hold no veto power.

We will prove this by considering the range of vi (for some fixed player i):

Definition 9. range(vi) = {f(vi, v−i)}v−i .

Lemma 5. If (f, p) is incentive compatible and f is strongly monotone and onto
A then range(·) satisfies the following properties:

1. Full Range: ∪virange(vi) = A.
2. Monotonicity: a ∈ range(vi) and δ ≥ 0 implies a ∈ range(va+=δ

i ).
3. IIA: vi(a)−vi(b) = v′i(a)−v′i(b) implies that range(vi)∩{a, b} = range(v′i)∩
{a, b} or range(vi) ∩ {a, b} = ∅.

Proof. We first show that f has a full range. This follows immediately from
f being onto A: for each alternative a, let va

i , va
−i be so that f(va

i , va
−i) = a.

a ∈ range(va
i ), and thus ∪a∈Arange(va

i ) = A.
For monotonicity, consider vi such that a ∈ range(vi), and v−i be such that

f(vi, v−i) = a. By strong monotonicity, for every δ > 0, f(va+=δ
i , v−i) = a.

Hence a ∈ range(va+=δ
i ).

The proof of IIA is a bit more involved. Let vi, v′i be as in the IIA condition. It
is enough to show that it cannot be the case the a, b ∈ range(vi), a ∈ range(v′i),
but b /∈ range(v′i). Suppose not. Consider the case where the valuation of each of
the other players is identical and defined as follows: u(b) = 0, u(a) = t, and for
each other alternative k �= a, b, u(k) = −t, for some t to be defined later. We will
show that f(v, u, . . . , u) = a and f(v′, u, . . . , u) = b, and obtain a contradiction
to strong monotonicity.

We start by showing that f(v, u, . . . , u) = a. Since a ∈ range(v), there exist
valuations u′

2, . . . , u
′
n such that f(v, u′

2, . . . , u
′
n) = a. Choose t to be large enough,

so that for every i ≥ 2, and alternative k �= a, b: t − u′
i(a) = u(a) − u′

i(a) ≥
maxk u(k)− u′

i(k). By strong monotonicity we have that f(v, u, . . . , u) = a.
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We now show that f(v′, u, . . . , u) = b. Since b ∈ range(v′), there exist valu-
ations u′

2, . . . , u
′
n such that f(v′, u′

2, . . . , u
′
n) = b. Choose t to be large enough

so that: 0 − u′
i(b) = u(b) − u′

i(b) ≥ maxu(k) − u′
i(k) = −t − u′

i(k), for every
alternative k �= a and i ≥ 2. We have that f(v′, u, . . . , u) ∈ {a, b}. However,
a /∈ range(v′), and thus f(v′, u, . . . , u) = b, as needed. ��
The rest of the proof considers any R(·) that satisfies these three conditions.

Definition 10. Alternative a is dictatable in R : V → 2A \ {∅} if for some v,
R(v) = {a}.
Lemma 6. If R : V → 2A\{∅} satisfies Full Range (for |A| ≥ 3), Monotonicity,
and IIA then either all alternatives are dictatable in R or none are.

Proof. The proof consists of the following series of claims.

Claim. For all v, a, δ > 0, either R(va+=δ) = {a} or R(v) ⊆ R(va+=δ) ∪ {a}.
Proof. We show that no alternative is removed from the R(va+=δ) unless a
remains alone in the range. Assume b �= a remained in R(va+=δ), and that
c �= b, a was removed. However, this is a contradiction to IIA, since v(b)−v(c) =
va+=δ(b)− va+=δ(c). ��
Claim. For all v and for all alternatives a, there exists some δ > 0 such that
a ∈ R(va+=δ).

Proof. Let v′ be such that a ∈ R(v′). Fix some b ∈ R(v). Assume without loss
of generality v′(a) − v′(b) ≥ v(a) − v(b) (else, consider v′a+=γ instead of v′, for
sufficiently large γ > 0, and still have a ∈ R(v′a+=γ) by monotonicity). Let
δ = v′(a) − v′(b) − (v(a) − v(b)). By Claim 4 either a ∈ R(va+=δ) (and we are
done), or b ∈ R(va+=δ) (since R(v) ⊆ R(va+=δ)). In the latter case, observe that
since v′(a) − v′(b) = va+=δ(a) − va+=δ(b), by IIA and since b ∈ R(va+=δ) we
also have that a ∈ R(va+=δ). ��
Claim. Let a be a non dictatable alternative. Let v be such that a, b ∈ R(v). Let
w be such that v(a) − v(b) ≤ w(a) − w(b). Then, if a ∈ R(w) we also have that
b ∈ R(w).

Proof. Let δ = w(a) − w(b) − (v(a) − v(b)). By Claim 4, a, b ∈ R(va+=δ) (since
a is non-dictatable). The claim now follows by using IIA. ��
Claim. Let a be a non-dictatable alternative. For all v, there exists δ > 0 such
that R(va+=δ) = A.

Proof. For alternative k, let wk be a valuation with a, k ∈ range(w). Such a
valuation exists: Let w′

k be such that k ∈ R(w′
k). By Claim 4, for some δk > 0,

a ∈ R(wa+=δk

k ). By Claim 4, k ∈ R(wa+=δk

k ).
Fix v. For each k, let rk = wk(a)−wk(k). Let γ > 0 be so that a ∈ R(va+=γ),

as guaranteed from Claim 4. Let δ ≥ γ be such that va+=δ(a) − va+=δ(a) ≥
wk(a)−wk(k), for every k. By Claim 4 a ∈ R(va+=δ). By Claim 4 k ∈ R(va+=δ),
for all k. ��
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To finish the proof of Lemma 6, suppose there is a dictatable alternative a, and
a non-dictatable one b. Let v, δ > 0 be such that R(v) = {a}, and R(vb+=δ) = A
(as guaranteed by Claim 4). However, for c �= b, a we have that v(a) − v(c) =
vb+=δ(a)− vb+=δ(c). By IIA b ∈ R(v). A contradiction. ��
Lemma 7. If all alternatives of a player are non-dictatable then the player holds
no veto power.

The lemma immediately gives us Lemma 4 since at most one player can have
all his alternatives dictatable (otherwise two players will dictate contradicting
alternatives).

Proof. Let v be some valuation. Let a, b be some alternatives with a, b ∈ R(v)
(the existence of two such alternatives is guaranteed since all alternatives are non
dictatable). By Claim 4, there is some δ > 0 such that R(va+=δ) = A. For every
other c �= a, b, we have that v(b)− v(c) = va+=δ(b)− va+=δ(c), and thus, by IIA
and since R(va+=δ) = A, we also have that c ∈ R(v), and hence R(v) = A. ��

5 Two Players

Lemma 8. Let f : V 2 → A. If (f, p) is incentive compatible, f satisfies strong
monotonicity, and the second player is decisive then f is an affine maximizer.

Definition 11. p : 
m → 
m is pair-wise-determined if xa − xb = x′
a − x′

b

implies pa(x)− pb(x) = pa(x′)− pb(x′). It is pair-wise-monotone (decreasing) if
xa − xb > x′

a − x′
b implies pa(x) − pb(x) ≤ pa(x′)− pb(x′).

Claim. If (f, p) is incentive compatible, f satisfies strong monotonicity, and the
second player is decisive, then the vector p of payment functions pa : 
m → 

associated with it by Lemma 1 is pair-wise-determined and pair-wise-monotone.

Proof. We first note that the function pa(x) are always finite, as an infinite value
of pa(x) will cause a never to be the value of f contradicting decisiveness. Now
assume by way of contradiction to one of these assertions that pa(x) − pb(x) >
pa(x′)− pb(x′), while xa − xb ≥ x′

a − x′
b. Choosing y such that pa(x) − pb(x) >

ya − yb > pa(x′)− pb(x′), with low values for all other yc’s will give, by Lemma
1, f(x, y) = b but f(x′, y) = a, contradicting strong monotonicity.

The rest of the proof follows directly from this property:

Claim. Let p : 
m → 
m be pair-wise determined and pair-wise-monotone then
for some fixed function h : 
m → 
, constant α ≥ 0 and constants βa ∈ 
 we
have that for all a, pa(x) = h(x)− αxa − βa.

Claim 5 directly implies the lemma: By Lemma 1, we know that f(x, y) ∈
argmaxa(ya − pa(x)) and since h(x) does not depend on a, f(x, y) ∈ argmaxa

(ya + αxa + βa) as required.
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Proof. (of Claim 5) For ease of notation, we start by assuming without loss of
generality that pc(x) = 0 for all x, where c is some fixed alternative. This is
without loss of generality since neither the assumptions nor the result of the
lemma changes when subtracting a fixed function pc from all entries pa. It now
suffices to prove the characterization for x with that xc = 0 since by pair-wise
determination adding a constant k to all entries does not change pa(x), while
increasing the right-hand-side by the fixed constant α · k (the same for all a)
which can be folded back into h(x).

Definition 12. Δa(x) = pa(xa+=δ)− pa(x).

Claim. For every x, Δa(x) = Δb(x).

Proof. By pair-wise determination applied to a, c we have that pa(xa+=δ) =
pa(xa+=δ,b+=δ) and similarly pb(xb+=δ = pb(xa+=δ,b+=δ). But then

Δa(x) −Δb(x) = (pa(xa+=δ)− pa(x)) − (pb(xb+=δ)− pb(x)) =

(pa(xa+=δ,b+=δ)− pb(xa+=δ,b+=δ)− (pa(x) − pb(x)) = 0

where the equality to 0 follows from pair-wise determination applied to a, b. ��
Claim. There exists a constant l = l(δ) such that for all x and a, Δa(x) = l(δ).

Proof. Using pair-wise determination on a, c, Δa(x) may only depend on xa−xc,
and similarly Δb(x) may only depend on xb − xc. Since Claim 5 showed that
these are equal then for all x, y such that xc = yc also Δa(x) = Δa(y). Now take
x, y – by pair-wise determination Δa(x) = Δa(ya+=yc−xc) = Δa(y), where the
last equality is since y and ya+=yc−xc have the same c-coordinate. ��
We now conclude the proof of Claim 5. By definition we have that l(δ + γ) =
l(δ) + l(γ) and so for integer k, l(kδ) = k · l(δ), and then also for rational q,
l(qδ) = q · l(δ). By the definition of pair-wise (decreasing) monotonicity (used
here for the only time) applied to a, c we see that δ ≥ γ implies l(δ) ≤ l(γ). This
implies the extension of l(qδ) = q · l(δ) to all reals q. Now define α = −l(1) (with
α ≥ 0 since l(1) < 0) and we have that for every x, y and a, pa(x) − pa(y) =
−α · (xa − ya). Now define βa = −pa(0) so pa(x) = −α · xa− βa as required. ��

6 n ≥ 3 Players

Theorem 2 ([15]). Let (f, p) be incentive compatible and onto then f is an
affine maximizer.

Proof. By Lemma 3 we assume with out loss of generality that f is strongly
monotone. We now prove the result by induction on n, with our base case n = 2
shown in Lemma 8.

Assume correctness for n − 1 players. We now prove for n. By Lemma 4, all
players, except perhaps player n (without loss of generality) have no veto power,
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and thus for any fixed value of v1, the induced function, fv1(v−1) = f(v1, v−1), is
onto so by the induction hypothesis is an affine maximizer fv1(v−1) ∈ argmaxa

(
∑

i(α
v1
i vi(a))− βv1

a ). Without loss of generality we assume that fv1 is normal-
ized: for each v1 and all i, αi ≤ 1, with at least one αv1

1 = 1, and that we have
βv1

c = 0. We now show:

Lemma 9. The values αi do not depend on v1. I.e., for each v1 and v′1 and i,
αv1

i = α
v′
1

i .

Proof. Suppose not. Without loss of generality, v1 and v′1 differ only in their
value for c, and αv1

i > α
v′
1

i . Let j be the player with αv1
j = 1. Observe that

αv1
j ≤ α

v′
1

j , since the weights are normalized. Define the following valuations:
for player j, vj(a) = t, where t >> |βv1

a − βv1
b |, and vj(k) = 0 for all k �= a.

For player i, define vi(b) = (αv1
j vj(b) + (βv1

a − βv1
b ) − ε)/αi, and v(k) = 0 for

all k �= b. For each player l �= 1, j, k let vl be identically zero. For small enough
values of ε > 0, we have that fv1(v1, v2, . . . , vn) = a but fv1(v′1, v2, . . . , vn) = b,
a contradiction to strong monotonicity. ��
If there is a player with αi = 0, then the output does not depend on his valuation.
In this case f is essentially a function for n− 1 players, and hence it is an affine
maximizer by the induction hypothesis. Else, all αi > 0, and in particular we
have that all players, perhaps except the first one, are decisive.

Lemma 10. For each v1, v
′
1, βv1

a −β
v′
1

a = α1(v1(a)−v′1(a)), for every alternative
a.

Proof. We require the following claim first:

Claim. βv1
a depends only on v1(a).

Proof. Let v1, v
′
1 be such that v1(a) = v′1(a) and βv1

a > β
v′
1

a . Let v2(a) = −(βv1
a −

β
v′
1

a )/2, v2(c) = 0, and for each other k �= a, c, v(k) = −max(|βv1
k |, |βv′

1
k |) − ε,

for some ε > 0. Let all other valuations be identically zero. Now, f(v1, v−i) = a
while f(v′1, v−i) = c, a contradiction to strong monotonicity. ��
Thus, it is enough to consider identical valuations v1, v′1 that only differ in their
value for a. Consider the following two ways to calculate the output. In the first
one, given valuations v1, . . . , vn we calculate the output according to fv1 . In the
second one, define fv2,...,vn−1(v1, vn) = f(v1, . . . , vn) and calculate according to
fv2,...,vn−1 . Since fixing some players and using the same price functions still
result in a truthful mechanism, we may assume that in both fv2,...,vn−1 and fv1

the prices are calculated according to the price functions p1, . . . , pn of f . Also
notice that by the induction hypothesis both functions are affine maximizers
(the range of both is A since player n is decisive). Now, for each alternative a:

pa
i (v1)−pa

i (v′
1) = α1(v1(a)−v′

1(a)) = Σi≥2αivi(a)+βv1
a −(Σi≥2αivi(a)+β

v′
1

a ) = βv1
a −β

v′
1

a
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where the first equality is by calculating the price difference according to
fv2,...,vn−1 and using the fact that it is an affine maximizer, the second equality
is by calculating the price difference according to fv1 and fv′

1
and taking into

account that both fv1 and fv′
1

are affine maximizers. ��
In total we get that the function fv1 maximizes a function of the form argmaxa

Σi≥2αivi(a) + (βa + α1v(a)) = argmaxa Σi≥1αivi(a) + βa, hence f is an affine
maximizer, as needed. ��
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André Berger, Rudolf Müller, and Seyed Hossein Naeemi

Maastricht University, Department of Quantitative Economics, The Netherlands
{a.berger,r.muller,h.naeemi}@ke.unimaas.nl

Abstract. We study implementability in dominant strategies of social
choice functions when sets of types are multi-dimensional and convex,
sets of outcomes are arbitrary, valuations for outcomes are convex func-
tions in the type, and utilities over outcomes and payments are quasi-
linear. Archer and Kleinberg [1] have proven that in case of valuation
functions that are linear in the type monotonicity in combination with
a local integrability condition are equivalent with implementability. We
show that in the case of convex valuation functions one has to require in
addition a property called decomposition monotonicity in order to con-
clude implementability from monotonicity and the integrability condi-
tion. Decomposition monotonicity is automatically satisfied in the linear
case.

Saks and Yu [9] have shown that for the same setting as in Archer and
Kleinberg [1], but finite set of outcomes, monotonicity alone is sufficient
for implementability. Later Archer and Kleinberg [1], Monderer [6] and
Vohra [10] have given alternative proofs for the same theorem. Using our
characterization, we show that the Saks and Yu theorem generalizes to
convex valuations. Again, decomposition monotonicity has to be added
as a condition.

Keywords: Mechanism design, Social choice theory, Incentive compat-
ibility, Convexity.

1 Introduction

The main goal of mechanism design is to design mechanisms that motivate the
agents with private information to choose equilibrium strategies that lead to an
implementation of a desired social choice function. In this paper we assume that
players have preferences in terms of monetary valuations and that the mechanism
designer can use payments to direct agent behavior. Players are assumed to
have quasi-linear utilities over outcomes and payments. Whenever the revelation
principle holds, the question of implementability reduces then to the existence of
a payment rule such that truth telling becomes an equilibrium, in other words,
lying does not pay.

In this paper we study conditions on the type spaces of the players and on
their valuation functions under which there are easily recognizable properties
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that characterize truthfully implementable social choice functions, i.e. functions
that can be combined with payments that motivate the players to reveal their
true type. In particular, the aim is to have payment free, local characterizations,
because with such a characterization implementability can be verified without
the need to construct payments. In one-dimensional settings such a condition is
monotonicity. In multi-dimensional settings (a generalization of) monotonicity
is still necessary, but often not sufficient. The goal is then to identify multi-
dimensional settings where monotonicity is sufficient, or, if it is not, to find
additional necessary conditions, that in combination with monotonicity become
sufficient. A well-known condition of this type in case of convex type spaces
is path-independence of a particular vector field (see, e.g., Jehiel, Moldovanu
and Stacchetti [4] and Müller, Perea and Wolf [7]). Archer and Kleinberg [1]
have shown how to replace this condition by a local condition: for every type
there exists an open neighborhood such that path-integrals on triangles within
this neighborhood are equal to 0. However, their proof requires linear valuation
functions. In this paper we show that for the more general case of convex valua-
tion functions the same local integrability condition is sufficient (in combination
with monotonicity), if one makes the additional assumption that the allocation
rule is decomposition monotone. Müller et al. [7] have shown that in the linear
case decomposition monotonicity is satisfied by all monotone allocation rules,
which explains why it does not appear explicitly in the theorem of Archer and
Kleinberg. Furthermore, Archer and Kleinberg have to make an assumption on
the existence of certain integrals. Our proof shows that even in the convex case
the additional assumption is satisfied automatically, thus eliminating it also in
their setting.

In case of a finite set of outcomes, convex type spaces, and particular linear
valuations, Saks and Yu [9] have shown that monotonicity is a sufficient con-
dition for implementability. In other words, path independence is implied by
monotonicity. Later Archer and Kleinberg [1], Monderer [6] and Vohra [10] have
given alternative proofs for general linear settings1. Using our characterization
for convex valuations, we show that the Saks and Yu theorem generalizes to con-
vex valuations, again under the additional assumption of decomposition mono-
tonicity. Thereby we provide yet another, but very short proof for the special
case of linear valuations. Our proof differs from the proof in Archer and Klein-
berg for the linear case in that it uses as an argument for local implementability
a convex generalization of a Lemma by Monderer [6].

All our results are stated and proven in terms of single agent models. The char-
acterization result for arbitrary set of outcomes immediately generalizes to a char-
acterization of dominant strategy implementable rules as well as Bayes-Nash

1 More precisely, Saks and Yu have provided a proof where types are encoded as
valuation vectors, with one component for each outcome. Monderer has given a proof
for the same encoding, but outcomes are probability vectors over pure outcomes and
the range of the social function is finite. Archer and Kleinberg as well as Vohra
present a proof for the general setting of linear valuations. The previous proofs can,
however, be adopted to the general setting.
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implementable rules in the case of multiple agents. The generalization of the Saks
and Yu theorem for finite sets of outcomes carries over to dominant strategy im-
plementation in the case of multiple agents.

Organization. Section 2 defines our setting and introduces necessary notation.
We prove the main characterization theorem for arbitrary outcome sets and con-
vex valuations in Section 3. In Section 4 we give a short proof of a generalization
of the theorem of Saks and Yu [9]. In Section 5 we show how to apply our char-
acterization when outcomes and types are points in R2 and the valuation for an
outcome is the distance to the type.

2 Definitions and Setting

Henceforth we will assume that T ⊆ Rd (d ≥ 1) is a convex set and that
f : T → A is an allocation rule from the set of types T to the set of outcomes A.
The valuation for an outcome a ∈ A of a certain type t ∈ T is defined by the
value v(a, t) given by the function v : A× T → R. A mechanism is a pair (f, p)
of an allocation function f and a payment function p : T → R. The mechanism
is called truthful or incentive compatible if for all s, t ∈ T it holds that

v(f(s), s) + p(s) ≥ v(f(t), s) + p(t), (1)

i.e. the utility of a player of type s is always maximized when he reports s. The
allocation f is called truthful if there exists such a payment function p that makes
the mechanism (f, p) truthful. It is our goal to characterize truthful allocation
functions without having to provide a p that satisfies (1).

Important concepts in this context are monotonicity and cyclical monotonicity
of allocation functions. They can be defined in terms of the absence of negative
2-cycles and negative cycles, respectively, in the type graph Tf , as introduced by
Gui et al. [2] and generalized in Archer and Kleinberg [1]. The set of nodes of the
type graph is equal to T and every ordered pair of types s, t ∈ T is connected
by a directed edge with edge length either lp(s, t) or ls(s, t), which are defined
as follows:

lp(s, t) := v(f(s), s)− v(f(t), s), (2)
ls(s, t) := v(f(t), t)− v(f(t), s). (3)

We call lp(s, t) and ls(s, t) the p-length and s-length, respectively, and use the
same terminology for lengths of paths and cycles in the respective graphs.

We can now define monotonicity and cyclical monotonicity for allocation
functions.

Definition 1. An allocation function f : T → A is called monotone, if for all
s, t ∈ T it holds that ls(s, t) + ls(t, s) ≥ 0. f is called cyclically monotone, if for
all k ≥ 2 and all {s1, . . . , sk} ⊆ T , we have that

∑k
i=1 ls(si, si+1) ≥ 0, where

indices are taken modulo k.
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The p-length and the s-length are related in the sense that the p-length and
the s-length of any cycle in Tf is the same.

Property 1. For every k ≥ 2 and every subset {s1, . . . , sk} ⊆ T , we have that∑k
i=1 lp(si, si+1) =

∑k
i=1 ls(si, si+1), where indices are taken modulo k.

Proof. This property follows from the fact that lp(s, t) = ls(s, t) + v(f(s), s) −
v(f(t), t) for all s, t ∈ T . ��
Note that due to Property 1 monotonicity and cyclical monotonicity could have
been defined in terms of lp as well.

It is due to the following result of Rochet that we will concentrate on cyclically
monotone allocation functions in the remainder of this paper.

Theorem 1 (Rochet [8]). An allocation function f : T → A is truthful if and
only if it is cyclically monotone.

The simple proof employs the fact that, due to our choice of edge lengths, node
potentials in the type graph coincide with payment rules that implement the
allocation rule. Node potentials exist if and only if the type graph does not have
a negative cycle.

In this paper we focus on settings where T is a convex set, and where for all
outcomes a ∈ A the function v(a, .) : T → R is convex. That is, for all s, t ∈ T
and λ ∈ [0, 1], v(a, (1− λ)s + λt) ≤ (1− λ)v(a, s) + λv(a, t). Almost all previous
literature focused on linear valuation functions. In this case we may identify A
with a set of vectors in Rk such that v(a, t) = a · t. Saks and Yu [9] choose to
present their theorem in the model where T ⊂ RA and v(a, t) = ta, that is,
outcomes are unit vectors. Monderer [6] has chosen the same model for T but
allowed outcomes to be lotteries over unit vectors. Allocation rules in his model
where restricted to those with finite range. Archer and Kleinberg [1], Müller
et al. [7] and Vohra [10] allow for arbitrary linear functions. For finite A and
linear valuations there are almost no differences between the linear models, for
infinite A the canonical representation might move us to infinitely dimensional
type spaces. However, even for finite A there is a fundamental difference between
linear and convex valuation functions: Moving from a model with convex T and
convex valuations to the canonical model may result in a non-convex set in RA.
All previous theorems with linear valuations do not apply on non-convex sets
of types. Therefore our results apply to a strictly larger domain of settings.
However, one needs an additional condition on the setting which we define next.

Definition 2 (Müller et al. [7]). Let T be convex. An allocation function
f : T → A is called decomposition monotone, if for all s, t ∈ T and all λ ∈ [0, 1]
and we have that:

lp(s, t) ≥ lp(s, (1− λ)s + λt) + lp((1− λ)s + λt, t). (4)

It is easy to see that we could have used s-lengths rather than p-lengths in this
definition. Müller et al. [7] have shown that for linear valuation functions any
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monotone allocation rule is decomposition monotone. In the full version of the
paper we provide an example that this does not generalize to convex valuation
functions.

3 Characterizing Incentive Compatibility

In this section we will prove our main theorem that characterizes cyclically mono-
tone allocation functions for convex valuations and arbitrary outcome sets. We
start with two Lemmas that relate s-lengths of edges in the type graph to path
integrals on line segments. We will denote by Ls,t := {s + λ(t − s) : λ ∈ [0, 1]}
the line segment between two types s, t ∈ T .

Recall that a vector ∇ ∈ Rd is a subgradient of a function h : Rd → R at t
if h(s) ≥ h(t) +∇ · (s − t) for all s ∈ T . For every t ∈ T allocation function f
defines a convex function v(f(t), .) : T → R, s �→ v(f(t), s). We denote the set
of subgradients of v(f(t), .) at s = t by ∂f(t). We assume that ∂f(t) �= ∅ on T .2

We can now define a vector field ∇f : T → Rd by selecting for each t ∈ T an
element from ∂f(t). Any such vector field satisfies for all s, t ∈ T

v(f(t), s) ≥ v(f(t), t) +∇f(t) · (s− t). (5)

We summarize a couple of properties of ∇f(t) in the following lemma. They are
key to the proof of our main theorem.

Lemma 1. Let s, t ∈ T and assume that f : T → A is monotone. Moreover,
define g : [0, 1]→ R by g(λ) = ∇f(s+λ(t− s)) · (t− s). Then the following hold:

1. ∇f(s) · (t− s) ≤ ls(s, t) ≤ ∇f(t) · (t− s),
2. g is non-decreasing, and
3. ∇f(s) · (t− s) ≤ ∫

Ls,t
∇f(σ) · dσ ≤ ∇f(t) · (t− s).

Proof. The first property follows immediately from monotonicity and the defi-
nitions of ls(s, t) and ∇f(s). For the second property let 0 ≤ λ1 < λ2 ≤ 1, and
let r1 = s + λ1(t− s) and r2 = s + λ2(t− s). Then, by using monotonicity and
property 1, we get that

0 ≤ ls(r1, r2) + ls(r2, r1)
≤ ∇f(r2) · (r2 − r1) +∇f(r1) · (r1 − r2)
= (λ2 − λ1)(g(λ2)− g(λ1)),

i.e. g(λ2) ≥ g(λ1) and the second property is proven.
Since g is non-decreasing, g is integrable on [0, 1] and∫ 1

0
g(λ)dλ =

∫ 1

0
∇f(s + λ(t− s)) · (t− s)dλ

=
∫

Ls,t

∇f(σ) · dσ.

2 It is well-known that any convex function on T has a subgradient in all t in the
interior of T . We will need the existence also on the boundary of T .
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Thus the line integral of ∇f along the path Ls,t is well defined and finite3.
Also, we have that

g(0) ≤
∫ 1

0
g(λ)d(λ) ≤ g(1).

If we replace g(0) and g(1) with their respective values, the third property
follows. ��
In the following we denote for s1, s2, s3 ∈ T , all three distinct, by �s1,s2,s3 the
convex hull of s1, s2, s3 and let �s1,s2,s3 be the path describing the boundary
of �s1,s2,s3 , i.e Ls1,s2 ∪ Ls2,s3 ∪ Ls3,s1 , with direction s1 → s2 → s3 → s1.
The following lemma will establish the relation between the line integral of any
selection from the subgradient and the s-lengths in the type graph of f .

Lemma 2. Let s, t ∈ T and assume that f : T → A is monotone. For every
n ≥ 1 we let Sn =

∑n−1
i=0 ls(rn

i , rn
i+1), where rn

k := s + k
n (t − s) for 0 ≤ k ≤ n.

Then
lim

n→∞Sn =
∫

Ls,t

∇f(σ) · dσ.

Proof. Fix n ≥ 1. According to Lemma 1 we have that for 0 ≤ i ≤ n− 1

∇f(rn
i ) · (rn

i+1 − rn
i ) ≤ ls(rn

i , rn
i+1) ≤ ∇f(rn

i+1) · (rn
i+1 − rn

i ).

If we sum up the inequalities we get that

n−1∑
i=0

∇f(rn
i ) · (rn

i+1 − rn
i ) ≤ Sn ≤

n−1∑
i=0

∇f(rn
i+1) · (rn

i+1 − rn
i ).

For every n ∈ N we define Ln :=
∑n−1

i=0 ∇f(rn
i ) · (rn

i+1 − rn
i ) and Un :=

∑n−1
i=0 ∇

f(rn
i+1) · (rn

i+1 − rn
i ). Since ∇f is line-integrable on the path Ls,t we have that

lim
n→∞Ln = lim

n→∞Un =
∫

Ls,t

∇f(σ) · dσ.

Furthermore, since Ln ≤ Sn ≤ Un, we conclude that

lim
n→∞Sn =

∫
Ls,t

∇f(σ) · dσ.

��
We are now ready to prove our main theorem of this section.

Theorem 2. Let T ⊆ Rd be convex. Assume that for every fixed a ∈ A the
function v(a, .) : T → R is convex and has non-empty sets of subgradients on T .
Assume further that f : T → A is monotone and decomposition monotone. Then
the following are equivalent:
3 Archer and Kleinberg [1] make the assumption that the allocation function is locally

path integrable in order to get this property. In fact our way of defining ∇f releases
us from this assumption.
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(1) f is cyclically monotone.
(2) for every t ∈ T there exists an open neighborhood U(t) ⊆ Rd, t ∈ U(t), such

that for all s1, s2, s3 ∈ U(t) ∩ T , all three distinct:∫
Δs1,s2,s3

∇f(σ) · dσ = 0

(3) for all s1, s2, s3 ∈ T , all three distinct:∫
Δs1,s2,s3

∇f(σ) · dσ = 0

(4) for all k ≥ 3 and every {s1, . . . , sk} ⊆ T and P =
⋃k

i=1 Lsi,si+1 :∫
P

∇f(σ) · dσ = 0

Proof. (1) ⇒ (2) This implication follows immediately from a result in Krishna
and Maenner [5]. We provide an elementary proof on the basis of type graphs.
Consider any s1, s2, s3 ∈ T , all three distinct. Let ε be an arbitrary positive
number. From Lemma 2 we get that for i = 1, 2, 3 there exist Ni such that for
all n ≥ Ni we have that

Si
n <

∫
Lsi,si+1

∇f(σ) · dσ +
1
3
ε. (6)

Now let N = max{N1, N2, N3}. For n ≥ N it holds that

S1
n + S2

n + S3
n <

∫
�s1,s2,s3

∇f(σ) · dσ + ε.

Since f is cyclically monotone,

S1
n + S2

n + S3
n ≥ 0,

and thus
0 ≤

∫
�s1,s2,s3

∇f(σ) · dσ + ε.

Since ε is an arbitrary positive number we can conclude:∫
�s1,s2,s3

∇f(σ) · dσ ≥ 0.

If we started with �s1,s3,s2 we would conclude that∫
�s1,s3,s2

∇f(σ) · dσ ≥ 0.
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Since
∫

�s1,s2,s3
∇f(σ) · dσ = − ∫�s1,s3,s2

∇f(σ) · dσ we also get that∫
�s1,s2,s3

∇f(σ) · dσ ≤ 0,

and thus
∫

�s1,s2,s3
∇f(σ) · dσ = 0.

(2) ⇒ (3) Let s1, s2, s3 ∈ T . Since �s1,s2,s3 is closed and bounded it is compact.
According to our assumption, for every point in �s1,s2,s3 there is an open neigh-
borhood such that the integral of ∇f along every triangle in the intersection
of the neighborhood and T is zero. The Lebesgue Number Lemma implies that
there is a δ > 0 such that every subset of �s1,s2,s3 of diameter less than δ is
contained in at least one of these neighborhoods. In particular, if we subdivide
�s1,s2,s3 into triangles �1, �2, ..., �M each of which having diameter less than δ,
and orient the boarders �j consistently with �s1,s2,s3 , we get

0 =
M∑

j=1

∫
�j

∇f(σ) · dσ.

In this formula, the path-integral of ∇f along �s1,s2,s3 appears exactly once. All
path-integrals of sides of �j which are not contained in �s1,s2,s3 appear exactly
once in each direction of these sides, and cancel each other out. Therefore we
have ∫

�s1,s2,s3

∇f(σ) · dσ =
M∑

j=1

∫
�j

∇f(σ) · dσ = 0.

(3) ⇒ (4) Consider {s1, ..., sk} ⊆ T and P =
⋃k

i=1 Lsi,si+1 . P can be decom-
posed into the following triangles:

�s1,s2,s3 , �s1,s3,s4 , ..., �s1,sk−1,sk

According to our assumption the integral of ∇f along every triangle is zero. By
a similar argument as before we get∫

P

∇f(σ) · dσ =
∫

�s1,s2,s3

∇f(σ) · dσ + ... +
∫

�s1,sk−1,sk

∇f(σ) · dσ = 0.

(4) ⇒ (1) Let k ≥ 2 and {s1, s2, ..., sk} ∈ T . Let ε be an arbitrary positive
number. According to Lemma 2, for every 1 ≤ j ≤ k we have:

∃Nj such that ∀n : n ≥ Nj Sj
n ≥

∫
Lsj,sj+1

∇f(σ) · dσ − ε

k
,

where Sj
n =

∑n−1
i=0 ls(rn

i,j , r
n
i+1,j) and rn

i,j = sj + i
n (sj+1 − sj) for all 0 ≤ i ≤ n.

Since f is decomposition monotone,

Sj
n ≤ ls(sj , sj+1).
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So for every 1 ≤ j ≤ k∫
Lsj,sj+1

∇f(σ) · dσ ≤ Sj
n +

ε

k
≤ ls(sj , sj+1) +

ε

k
.

If we sum up all these inequalities we get that

0 =
∫

P

∇f(σ) · dσ =
k∑

j=1

∫
Lsj,sj+1

∇f(σ) · dσ ≤
k∑

j=1

ls(sj , sj+1) + ε.

Therefore
k∑

j=1

ls(sj , sj+1) ≥ −ε.

Since the last inequality holds for every ε > 0, f is cyclically monotone. ��

Archer and Kleinberg [1] prove a similar characterization for the case that valua-
tions v(a, t) are linear in t. In particular, we use their approach to show that (2)
implies (3). Obviously, in this case ∇f(.) = v(f(t), .), and it is sufficient to relate
path lengths in the type graph to path integrals of v(f(t), .). When applied to
their special case of linear valuations, our proof shows that it is not necessary
to make the explicit assumption that v(f(t), .) is path integrable.

In Heydenreich et al. [3] it is shown that for any implementable rule f revenue
equivalence holds if and only if distp(s, t) = −distp(t, s) in Tf , where distp(s, t)
is defined as the infimum over all p-lengths of paths from s to t. By the relation
between p-lengths and s-lengths, the same characterization can be stated in
terms of distances with respect to s-lengths. From Lemma 2 it follows that

dists(s, t) ≤
∫

Ls,t

∇f(σ) · dσ,

and therefore dists(s, t) + dists(t, s) ≤ 0. By cyclical monotonicity we get

dists(s, t) + dists(t, s) = 0.

This proves:

Corollary 1 (Revenue Equivalence). If T, v and f satisfy the assumptions
of Theorem 2 and f is implementable, then any two payments that implement f
differ by at most a constant.

4 A Generalization of Saks and Yu

We will now prove a generalization of the result of Saks and Yu [9] to convex
valuation functions.
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Theorem 3. Let T ⊆ Rd be convex and let |A| be finite. Assume that for every
fixed a ∈ A the function v(a, .) : T → R is continuous, convex, and has non-
empty sets of subgradients on T . Assume further that f : T → A is monotone
and decomposition monotone. Then f is cyclically monotone.

This is indeed a generalization of the above mentioned result, since in the case of
linear valuation functions every monotone allocation rule is also decomposition
monotone [7].

Proof. In order to show that f is cyclically monotone, we will show that condi-
tion (2) of Theorem 2 holds for f .

Let t ∈ T . For all a ∈ A let Da := f−1(a), where X denotes the topological
closure of a set X ⊆ Rd. Moreover, for all a ∈ A, let εa(t) := inf

x∈Da

‖x−t‖2. Then,

for each a ∈ A we have that t ∈ Da if and only if εa(t) = 0.
We show first that for each t ∈ T there exists a neighborhood U(t) of t such

that t ∈ Da for all a ∈ f(U(t)). Set A(t) := {a ∈ A : εa(t) = 0}. As t ∈ Df(t), we
have that A(t) �= ∅ and t ∈

⋂
a∈A(t)

Da. If A(t) = A we let U(t) = Rd, otherwise

let ε = min{εa(t) : a ∈ A \ A(t)}. Note that ε > 0. Define U(t) = {x ∈ Rd :
‖x− t‖2 < ε}.

Next we generalize a lemma by Monderer [6] stating that monotonicity of f
on some type set S together with

⋂
a∈f(S) Da �= ∅ implies cyclical monotonicity

on S. We prove its generalization to convex valuation for S = U(t) ∩ T .
For this let {s1, . . . , sk} ⊆ U(t)∩T for some k ≥ 3. Let us fix 1 ≤ i ≤ k. Since

t ∈ Df(si+1), there is a sequence (tj)j∈N, such that f(tj) = f(si+1) for every
j ∈ N and limj→∞ tj = t. Note that

lp(si, si+1) = v(f(si), si)− v(f(si+1), si) = v(f(si), si)− v(f(tj), si)
≥ v(f(si), tj)− v(f(tj), tj) = v(f(si), tj)− v(f(si+1), tj).

Using that v(a, t) is continuous in t we get

lp(si, si+1) ≥ v(f(si), t)− v(f(si+1), t).

Hence
k∑

i=1

lp(si, si+1) ≥
k∑

i=1

v(f(si), t)− v(f(si+1), t) = 0,

and f is cyclically monotone when restricted to U(t) ∩ T .
Finally, we use Theorem 2 [(1) ⇒ (3)] to conclude that for all s1, s2, s3 ∈

U(t) ∩ T , all three distinct, we have that
∫

�s1,s2,s3
∇f(σ) · dσ = 0. ��

5 An Example

In this section we will show an example for an allocation rule to which our
result can be applied. Before we give the example, we first give a general class of
(non-linear) convex valuation functions that can be used in different contexts.
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In this setting we restrict ourselves to the case when the type space as well
as the outcome space are a subset of Rd. The valuation functions we consider
arise from norms on Rd. This will implicitly mean that agents value those out-
comes more that are farther away from their own type. Imagine, for example,
that a state council has to decide upon the site for a new garbage dump, and
the different communities (agents) want to be as far away as possible from the
proposed site.

Lemma 3. Let ‖ · ‖ be a norm on Rd and let T ⊆ Rd be convex. Then for any
fixed a ∈ Rd the valuation function defined by v(a, t) =‖ a − t ‖ is continuous
and convex in t.

We now come to the example in which we use the Euclidean norm for our
valuation functions. Suppose T = A = [0, 1]2 and define an allocation rule on T
by f(t1, t2) = (1 − t1, 1 − t2) for every (t1, t2) ∈ T . For every t and a in [0, 1]2

we define the valuation function v(a, t) as the Euclidean distance of these two
points in the plane: v(a, t) = ‖a−t‖ =

√
(a1 − t1)2 + (a2 − t2)2. In order to have

monotonicity, for every s and t in [0, 1]2 we must have ‖f(s), s‖ + ‖f(t), t‖ ≥
‖f(t), s‖+‖f(s), t‖. This fact, however, follows easily from the triangle inequality,
as the line segments from s to f(s) and from t to f(t) always cross in the
“midpoint” (1/2, 1/2) of T (cf. Fig. 1 (left)).

1

1

t

f(t)

s

f(s)

( 1
2 , 1

2 )

1

1

t

f(t)

s

f(s)

( 1
2 , 1

2 )

r

f(r)

Fig. 1. Left: The segment (t, f(t)) passes through ( 1
2
, 1

2
) for every t ∈ T . Right:

Segments (s, f(r)) and (r, f(t)) always cross each other.

Decomposition monotonicity of f can be shown similarly (cf. Fig. 1 (right)).
Let us now verify the condition from Theorem 2 that will ensure that f is
implementable. According to our definition ∇f : [0, 1]2 → [0, 1]2 is

∇f(t1, t2) =

{
( −2(1−2t1)√

(1−2t1)2+(1−2t2)2
, −2(1−2t2)√

(1−2t1)2+(1−2t2)2
) (t1, t2) �= (1

2 , 1
2 )

(−2, 0) (t1, t2) = (1
2 , 1

2 ).
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For every s and t in [0, 1]2 we get that∫
Ls,t

∇f(σ) · dσ =
√

(1− 2t1)2 + (1− 2t2)2 −
√

(1− 2s1)2 + (1− 2s2)2.

Since the integral depends only on the end points of Ls,t we can conclude that∫
�s1,s2,s3

∇f(σ) · dσ = 0 for all s1, s2, s3 ∈ [0, 1]2. Therefore, according to Theo-
rem 2, f is implementable.

6 Conclusions

In this paper we have presented results about the truthfulness of social choice
functions when the valuation functions are assumed to be convex rather than
the previously used concept of linear valuations.
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Abstract. We prove a general monotonicity result about Nash flows in
directed networks, which generalizes earlier results and can be used for
the design of truthful mechanisms in the setting where each edge of the
network is controlled by a different selfish agent, who incurs costs propor-
tional to the usage of her edge. Moreover, we consider a mechanism design
setting with two-parameter agents, which generalizes the well-known set-
ting of one-parameter agents by allowing a fixed cost component as part
of each agent’s private data. We give a complete characterization of the
set of output functions that can be turned into truthful mechanisms for
two-parameter agents. This characterization also motivates our choice
of linear cost functions without fixed costs for the edges in the selfish
routing setting.

Keywords: algorithmic mechanism design, selfish routing, Nash flows.

1 Introduction

The behavior of transportation networks in which the traffic is not controlled
by a global authority but by many different selfish users has been studied for
decades. As more and more owners of roads (e.g., many European countries)
impose tolls on the usage of roads in order to compensate for their costs, the
impact of these tolls and the behavior of the owners of the roads on the network
traffic becomes a major issue.

Motivated by this setting, we consider a game-theoretic model of transporta-
tion networks with two classes of selfish agents. The first class consists of the
owners of the network edges and the second class is given by the users of the
network. When an edge of the network is used, its owner incurs a cost, which
is assumed to be linear in the load on the edge and known only to the owner
herself. To compensate for these costs, the owner of an edge imposes a toll on
her edge, which every single user of the edge has to pay independently of the
load on the edge. Each selfish user tries to choose a path through the network
that minimizes the (weighted) sum of the latency she incurs and the overall toll
she has to pay to the edges.

To model the interaction of these two classes of selfish users, we use methods
from the game-theoretic areas of selfish routing and algorithmic mechanism de-
sign. The selfish behavior of the network users is modeled by considering Nash
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flows. The owners of the network edges are motivated to set the tolls on the
edges according to their true per unit costs by using side payments that depend
on the load on the edges and the tolls.

In the second part of the paper, we consider an abstract mechanism design
setting with two-parameter agents. This setting generalizes the well-known case
of one-parameter agents by allowing a fixed cost component as part of each
agent’s private data. In our transportation model, such an additional, privately
known cost component could represent a fixed cost for building and maintaining
a road, which the owner incurs independently of the load assignment.

Previous Results. Mechanism design is a classical subfield of noncooperative
game theory and microeconomics. An introduction to the subject can be found
in Chapter 23 of [1]. The systematic study of algorithmic problems in the context
of mechanism design was initiated by a seminal paper of Nisan and Ronen [2].
In algorithmic mechanism design, a mechanism is defined as a pair M = (A,P)
consisting of an (optimization) algorithm A and a payment scheme P defining
the side payments to the agents participating in the mechanism. A mechanism is
called truthful with dominant strategies (in the sequel simply truthful) or strat-
egyproof if truthtelling is a dominant strategy for every agent, i.e., truthfully
revealing her private information maximizes the profit of every agent for any
possible behavior of the other agents.

Archer and Tardos [3] considered the important case of algorithmic mechanism
design for one-parameter agents. In this setting, the type of each agent i is a single
nonnegative real number ti. Each feasible solution x of the global optimization
problem results in an amount of work wi(x) being assigned to agent i, who incurs
a cost of ti · wi(x) for completing this amount of work. The profit of agent i is
defined as the payment she receives from the mechanism minus her cost. Archer
and Tardos [3] showed that an algorithmA for an optimization problem with one-
parameter agents can be used in a truthful mechanism M = (A,P) if and only
if A is monotone, meaning that, for every agent, the amount of work assigned
to her does not increase if her bid increases.

Selfish routing is an active research area these days. The book [4] gives a
good introduction to the subject. Much work on selfish routing in recent years
has focused on quantifying the loss of efficiency due to selfishness. The most
common game-theoretic approach is to consider Nash equilibria, i.e., solutions of
noncooperative games in which no player has an incentive to unilaterally change
her strategy. In nonatomic models of selfish routing as studied in this paper, the
traffic routed by the selfish network users is modeled as a network flow and Nash
equilibria are commonly referred to as Nash flows. Several authors have recently
investigated how Nash flows are influenced by tolls on the network edges [5,6,7].

Our Results. We prove a general monotonicity result about Nash flows in di-
rected networks, which states that the Nash flow on an edge cannot increase
when the cost of the edge to the network users is increased. This result gener-
alizes a result of Dafermos and Nagurney [8], who studied an equivalent model
of selfish routing. However, the analysis in [8] crucially relies on the so called
strong monotonicity condition for the cost functions of the network, which is a
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rather strong assumption and, in particular, requires all cost functions on the
network edges to be strictly increasing. We do not use the strong monotonicity
condition and our monotonicity result holds true in the more general setting of
nondecreasing cost functions. Moreover, our result extends to the case of Nash
equilibria in nonatomic congestion games without modification in the proof.

We use our monotonicity result for the design of truthful mechanisms in the
game-theoretic model with two classes of selfish agents described in the intro-
duction. Our result about Nash flows implies that, when considering the toll
defined by each owner of an edge as a bid for her privately known cost per unit
load, the assignment of load to the edges by a Nash flow yields a monotone al-
gorithm, which can be used in a truthful mechanism. Thus, our results connect
the research areas of mechanism design and selfish routing, which are two of the
main research topics in algorithmic game theory these days.

We motivate the choice of linear cost functions without fixed costs for the
edges by proving results about mechanisms for the case of two-parameter agents
described in the introduction. We show that, for almost all fixed bids for an
agent’s per unit cost, the load assigned to the agent in a truthful mechanism
for two-parameter agents has to be independent of the agent’s bid for her fixed
cost. Moreover, when the load is continuous in the agent’s bid for her per unit
cost, it must be completely independent of the agent’s bid for her fixed cost,
so the situation essentially reduces to the one-parameter setting. Together with
the monotonicity of the load assigned to an agent in the agent’s bid for her per
unit cost as in the one-parameter setting our necessary condition for truthfulness
turns out to be sufficient as well, so we obtain a complete characterization of
the set of output functions that can be turned into truthful mechanisms for
two-parameter agents. Furthermore, we show that no truthful mechanism in
the two-parameter setting can satisfy voluntary participation (also known as
participation constraints or individual rationality constraints), which means that
no truthful mechanism for two-parameter agents can guarantee that agents who
bid truthfully never incur a net loss.

2 The Monotonicity of Nash Flows

In the selfish routing part of the paper, we are given a directed network G =
(V, E) with vertex set V , edge set E, and K source-destination pairs (s1, t1), . . . ,
(sK , tK) ∈ V 2. Pi denotes the set of (simple) si-ti paths and is assumed to be
nonempty for every i ∈ {1, . . . , K}. We write P := ∪iPi.

A flow is a function F : P → R≥0. For a fixed flow F , we denote the value of F
at p ∈ P by Fp. Every flow F induces a nonnegative load fe :=

∑
p∈P:e∈p Fp ≥ 0

on every edge e ∈ E, and we call the vector f = (fe)e∈E the load vector of F .
Each commodity i has a finite and positive demand di > 0, i.e., di units of flow
have to be sent from source si to destination ti. Since all demands are finite, we
may assume without loss of generality that

∑K
i=1 di = 1. A flow F is feasible if∑

p∈Pi
Fp = di for all i ∈ {1, . . . , K}. A load vector f is feasible if it is the load

vector of some feasible flow F . The set of all feasible flows will be denoted by D
and can be considered as a (compact) subset of R|P|.
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Every edge e ∈ E is given a nonnegative cost function ce : [0, 1] � fe �→
ce(fe) ∈ R≥0, which specifies the cost for using edge e when the load on e is
fe. We assume the cost functions ce to be continuous and nondecreasing and
denote the vector of all cost functions by c = (ce)e∈E . The cost of a path p ∈
Pi to commodity i is the sum of the costs of the edges in the path, denoted
by cp(f) =

∑
e∈p ce(fe). We denote the vector of costs of edges e ∈ E when the

load vector is f by c(f) = (ce(fe))e∈E . We call the triple (G, d, c) an instance.
In what follows, we will always assume the network G and the demand vector d
to be fixed, so an instance is defined by only the vector c of cost functions.

Definition 1. A feasible flow F ∈ D with load vector f is at Nash equilibrium
(or is a Nash flow) for costs c if, for every i ∈ {1, . . . , K}, the following holds:

cp1(f) > cp2(f) for p1, p2 ∈ Pi implies Fp1 = 0.

Flows satisfying the condition of Definition 1 are usually referred to as Wardrop
equilibria in the literature, but Definition 1 can easily be seen to agree with the
usual definition of Nash flows in our setting (cf. [5]). To prove the main theorem
of this section (Theorem 1), we need the following results:

Proposition 1. ([9]) A feasible flow F is at Nash equilibrium for costs c if and
only if its load vector f satisfies the variational inequality:

c(f)T ·(f ′−f) ≥ 0 for all feasible load vectors f ′ (where “ T ” is transposition)

Proposition 2. ([5]) There exists a Nash flow for every vector c of continuous,
nondecreasing cost functions. Moreover, if F, F̃ are Nash flows for costs c and
f, f̃ are the respective load vectors, then ce(fe) = ce(f̃e) for each edge e. If, in
addition, all cost functions ce are strictly increasing, then fe = f̃e for all e ∈ E.

Theorem 1. Let c, c̃ be two vectors of continuous, nondecreasing cost functions,
and let f, f̃ be load vectors of Nash flows for costs c and c̃, respectively. If c̃e0 ≤
ce0 for a fixed edge e0 ∈ E, c̃e0(fe0) < ce0(fe0), and c̃e = ce for all e �= e0, then
f̃e0 ≥ fe0 .

Proof. By Proposition 1, f and f̃ satisfy the variational inequality, so

c(f)T · (f ′ − f) ≥ 0 and c̃(f̃)T · (f ′ − f̃) ≥ 0

for all feasible load vectors f ′. Choosing f ′ = f̃ in the first inequality and f ′ = f
in the second one and adding yields (c(f)− c̃(f̃))T · (f − f̃) ≤ 0.
Setting ε := ce0(fe0)− c̃e0(fe0) > 0, we obtain:

0 ≥
(
c(f)− c̃(f̃)

)T

· (f − f̃) =
∑

e∈E

(
ce(fe)− c̃e(f̃e)

)
· (fe − f̃e)

=
∑

e�=e0

(
ce(fe)− ce(f̃e)

)
· (fe − f̃e)︸ ︷︷ ︸

≥0

+
(

ce0(fe0)︸ ︷︷ ︸
=ε+c̃e0(fe0 )

−c̃e0(f̃e0)
)
· (fe0 − f̃e0)

≥ ε · (fe0 − f̃e0) +
(
c̃e0(fe0)− c̃e0(f̃e0)

)
· (fe0 − f̃e0)︸ ︷︷ ︸

≥0

≥ ε︸︷︷︸
>0

·(fe0 − f̃e0)

Thus, it follows that f̃e0 ≥ fe0 as claimed. ��
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Note that we only assume the cost functions to be nondecreasing in Theorem 1.
The result holds in this setting even though the load vector of a Nash flow is not
uniquely defined. Moreover, since Proposition 1 also characterizes Nash equilibria
in the more general case of nonatomic congestion games (cf. for example [10]),
Theorem 1 and its proof extend to this setting.

Also note that, in the case where all cost functions are strictly increasing,
the assumption c̃e0(fe0) < ce0(fe0) is not needed: If c̃e0(fe0) = ce0(fe0), then
c̃(f) = c(f) and it follows from the characterization given in Definition 1 that f
is also the load vector of a Nash flow for costs c̃. Hence, the uniqueness implies
that f̃ = f and, in particular, f̃e0 = fe0 , so we obtain the following corollary:

Corollary 1. Let c, c̃ be two vectors of continuous, strictly increasing cost func-
tions, and f, f̃ the unique load vectors of Nash flows for costs c, c̃, respectively.
If c̃e0 ≤ ce0 for a fixed edge e0 ∈ E and c̃e = ce for all e �= e0, then f̃e0 ≥ fe0 .

3 Application to Our Model

In our model of transportation networks with two classes of selfish agents, the
costs of an edge to the network users are given as a weighted sum of latencies
and tolls as follows: For every edge e ∈ E, we are given a nonnegative toll τe

defined by the owner of edge e and a nondecreasing, continuous latency func-
tion le : [0, 1]→ R≥0. The vector of all tolls is denoted by τ = (τe)e∈E . The cost
function ce of edge e ∈ E is given by ce(x) := le(x) + α · τe, where α > 0 is a
constant factor describing the sensitivity of the agents to tolls. The total latency
on a path p ∈ Pi is denoted by lp(f) =

∑
e∈p le(fe), and the total toll on p is

denoted by τp =
∑

e∈p τe. Using this model, Theorem 1 immediately yields:

Corollary 2. Let the costs be given as a (weighted) sum of latencies and tolls
as above, where the latency functions are continuous and nondecreasing. Let τ, τ̃
be toll vectors with τ̃e0 < τe0 for a fixed edge e0 ∈ E and τ̃e = τe for all e �= e0. If
f, f̃ are load vectors of Nash flows for tolls τ and τ̃ , respectively, then f̃e0 ≥ fe0 .

Our goal is to design a mechanism that ensures a certain amount of cooperation
of both classes of selfish agents, e.g., to make sure that the owners of the edges
do not exploit the network users by setting the tolls too high. A mechanism in
this setting is a pair (A,P) consisting of an algorithm A, which determines an
assignment of load to the edges, and a payment scheme P , which specifies the
payments to the edges by the mechanism.

The costs that the owner of an edge e incurs are assumed to be linear in the
load on the edge, so they are of the form te · ge, where te ≥ 0 is a nonnegative
constant, and ge ≥ 0 is the load on edge e ∈ E. The per unit cost te of the
agent controlling edge e is only known to the agent herself. We assume that
every agent only controls a single edge in the network and, hence, identify the
agent controlling edge e ∈ E with the edge e itself. The costs of an edge e
for the network users are different from the costs that the edge incurs due to
its usage: Every infinitesimally small, selfish user of commodity i will choose a
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path p between her source vertex si and destination vertex ti minimizing her
cost given by lp(g) + α · τp. Thus, the traffic pattern arising will be a Nash flow
with respect to the given latencies and the tolls defined by the edges.

The mechanism considers the toll τe defined by edge e as a claimed value (a
bid) of edge e for te. Based on these bids, the mechanism hands out a payment Pe

to every edge e in order to motivate the edges to set the tolls according to their
true values te, which define the costs the edges have to compensate for.

To see how we can use Corollary 2 for the design of a truthful mechanism, we
first assume the latencies to be strictly increasing, so that the load vector of a
Nash flow is uniquely determined by the latencies and tolls (cf. Proposition 2).
Under this assumption, the situation fits into the framework of mechanism design
with one-parameter agents: The agents are the edges, and the private value of
edge e ∈ E is its per unit cost te. The selfish behavior of the network users is
taken into account by considering Nash flows. Corollary 2 states that the load
on an edge of the network cannot increase when the toll on the edge is increased,
so the algorithm described above, which just takes the Nash flow with the given
latencies and the tolls defined by the edges as the assignment of load to the
edges, is a monotone algorithm. Hence, as shown in [3], our mechanism will be
truthful if and only if the total amount of money that an edge e ∈ E receives
when the toll vector (bid vector) is τ is given as

he(τ−e) + τe · fe(τ−e, τe)−
∫ τe

0 fe(τ−e, u)du,

where the he are arbitrary functions, and fe(τ−e, τe) = fe(τ) denotes the load
on edge e in the Nash flow with the given latencies and the tolls τ . τ−e denotes
the vector of all tolls except for τe.

In our situation, every edge e already gets τe · fe(τ−e, τe) units of money from
the users traveling on e via the tolls. Thus, the (additional) payment it has to
receive from the mechanism in order to obtain a truthful mechanism has to be
of the form Pe(τ−e, τe) = he(τ−e)−

∫ τe

0 fe(τ−e, u)du. Hence, we obtain:

Theorem 2. If all latency functions are strictly increasing, the following is a
truthful mechanism:

1. Let every edge e ∈ E set the toll τe itself.
2. Let the selfish users of the network choose their paths themselves, so that a

Nash flow is obtained. The users pay the tolls directly to the edges.
3. Consider the toll τe set by edge e ∈ E as a bid for the private value te of e.
4. Hand out the payment Pe(τ−e, τe) = he(τ−e)−

∫ τe

0 fe(τ−e, u)du to edge e ∈ E,
where the he are arbitrary functions.

Note that Nash flows in the setting of Theorem 2 can be computed in polynomial
time via convex programming (cf. for example [5]).

Also note that truthfulness of a mechanism in our setting implies that the tolls
payed by the users of the network are exactly equal to the costs of the edges.
Hence, a truthful mechanism ensures that the network users are not exploited
by the edges via too high tolls as mentioned at the beginning of this section.
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When all latency functions are linear, the results of [11] imply that the total
cost

∑
e∈E(le(fe)fe + α · τe · fe) (i.e., the average cost experienced by the users

of the network) in a Nash flow F with load vector f is at most 4
3 times that of

an optimal flow, i.e., of a feasible flow with minimal total cost. Hence, the total
cost of the flow produced by the mechanism from Theorem 2 is at most 4

3 times
optimal in this case. However, a simple example in [11] also shows that without
the assumption of linearity of the latencies the total cost of a Nash flow cannot
be bounded by any constant factor times the minimal total cost.

We now consider voluntary participation. As proved in [3], a monotone al-
gorithm admits a truthful payment scheme satisfying voluntary participation if
and only if, for every e and every fixed vector of bids of all agents except e, the
integral of the work curve of agent e is finite, i.e., if

∫∞
0 fe(τ−e, u)du < ∞ in

our setting. It is easy to see that the functions he can be chosen such that the
mechanism from Theorem 2 has this property under one additional assumption.
Namely, we have to assume that, for each commodity i, there exist (at least) two
edge disjoint si-ti paths in the network G. Otherwise, there would exist edges
that all users of commodity i have to use and the load on each such edge e
would be at least di no matter what the bid of the edge is. Hence, we would
have

∫∞
0 fe(τ−e, u)du ≥ ∫∞

0 didu = ∞ in this case. On the other hand, if there
are two edge disjoint si-ti paths (say pi

1 and pi
2) for every commodity i, all users

of commodity i will use pi
2 if the toll on an edge e ∈ pi

1 gets too high, assuming
that all other bids (and, thus, all other tolls) are unchanged. Hence, we have∫∞
0 fe(τ−e, u)du < ∞ in this case, and the choice he(τ−e) :=

∫∞
0 fe(τ−e, u)du,

i.e., Pe(τ−e, τe) :=
∫∞

τe
fe(τ−e, u)du, ensures voluntary participation.

Theorem 3. The functions he can be chosen such that the mechanism described
in Theorem 2 satisfies voluntary participation if and only if there exist two edge
disjoint si-ti paths in G for every i = 1, . . . , K. In this case, we can choose
he(τ−e) :=

∫∞
0 fe(τ−e, u)du.

In the case where the latencies are only assumed to be nondecreasing rather
than strictly increasing, there can exist Nash flows for a given toll vector that
induce different load vectors. Thus, when we do not assume that the mechanism
can make the network users choose their paths according to a certain Nash flow
chosen in advance, the mechanism has to deal with the uncertainty about the
load assignment resulting from the selfish behavior of the network users. In order
to motivate truthful bidding by the edges, the mechanism needs at least some
information about which load vector will be obtained for a given toll vector since
the load vector determines the edges’ costs.

In the rest of this section, we show how a randomized mechanism truthful in
expectation can be obtained in this setting under the assumption that there is a
commonly known probability distribution of the possible load vectors of Nash flows
for every toll vector τ . Here, we define a randomized mechanism as a pair M =
(A,P), where A is a randomized algorithm, which determines a (random) assign-
ment of load to the edges, and P is a randomized payment scheme, i.e., the pay-
ment Pe to each edge e ∈ E is a random variable. A randomized mechanism is
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called truthful in expectation if truthtelling maximizes the expected profit of every
edge regardless of what the other edges bid and it satisfies voluntary participation
if the expected profit of an edge bidding truthfully is always nonnegative.

By the results of Archer and Tardos [3], a randomized algorithmA can be used
in a randomized truthful in expectation mechanism if and only if the expected
load on each edge is a decreasing function of the edges bid/toll, for every fixed
vector of bids/tolls of the other edges. The expected payments must then be
given by the same formula as in the deterministic case.

Given the probability distribution Prτ of the possible load vectors of Nash
flows for every nonnegative toll vector τ , we can design a randomized mechanism
as follows: We let every edge e ∈ E set the toll τe itself and let the network
users choose their paths completely by themselves as in the mechanism from
Theorem 2. Thus, when the toll vector defined by the edges is τ , every load vector
of a Nash flow for tolls τ is obtained with the probability given by Prτ . Hence,
we obtain a randomized algorithm for assigning the load to the edges. We now
denote the random variable that specifies the load on edge e ∈ E when the toll
vector is τ by fe(τ). Corollary 2 then implies that the expected value E(fe(τ)) of
fe(τ) is decreasing in the toll/bid of e, so the randomized algorithm can be used
in a randomized mechanism that is truthful in expectation. The payments to the
edges can be defined by the same formula as in the mechanism from Theorem 2
with fe replaced by E(fe). Thus, we obtain the following result:

Theorem 4. Let all latency functions be continuous and nondecreasing and as-
sume that, for every nonnegative toll vector τ , there is a commonly known prob-
ability distribution Prτ of the possible load vectors of Nash flows with respect to
the tolls τ . Then the following randomized mechanism is truthful in expectation:
1. Let every edge e ∈ E set the toll τe itself.
2. Let the selfish users of the network choose their paths themselves, so that

every load vector of a Nash flow for tolls τ is obtained with the probability
given by Prτ .The users pay the tolls directly to the edges.

3. Consider the toll τe set by edge e ∈ E as a bid for the private value te of e.
4. Hand out the payment Pe(τ−e, τe) = he(τ−e)−

∫ τe

0 E(fe(τ−e, u))du to edge e ∈
E, where the he are arbitrary functions.

This randomized mechanism ensures cooperation of both classes of selfish agents
with the mechanism in the same sense as the mechanism from Theorem 2.

Note that the mechanism does not use randomization to obtain truthfulness
or a lower total cost. Randomization is only used to deal with uncertainty about
the Nash flow and load assignment resulting from the selfish behavior of the
network users in the situation where the mechanism is only given probability
distributions over possible load vectors of Nash flows.

When considering voluntary participation, the arguments preceding Theo-
rem 3 immediately yield the following result:

Theorem 5. The functions he defining the payments in the randomized mecha-
nism from Theorem 4 can be chosen such that the mechanism satisfies voluntary
participation if and only if there exist two edge disjoint si-ti paths in G for every
i = 1, . . . , K. In this case, we can choose he(τ−e) :=

∫∞
0 E(fe(τ−e, u))du.
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4 Truthful Mechanisms for Two-Parameter Agents

In this section, we prove our results on truthful mechanisms for two-parameter
agents, which also motivate our choice of cost functions in the selfish routing
part of this paper.

We consider m agents 1, . . . , m. Every agent i has some private data, which is
known neither to the mechanism nor to the other agents. Everything except the
agents’ private data is public knowledge. Agent i’s private data is a pair (αi, βi)
of nonnegative real numbers, also called the agent’s true values. Each agent
reports a bid (ai, bi) ∈ R2

≥0 for her true values to the mechanism. Based on the
vectors a, b given by the bids of the agents, the mechanism’s output algorithm
computes an output o = o(a, b), where the output function o takes values in a
given allowable set O. Note that we do not assume the set O of possible outcomes
to be finite as is needed for the characterization of truthful mechanisms/social
choice functions by the weak monotonicity condition [12,13] in more general
settings. Each agent i incurs a cost costi(a, b) = costi(o(a, b)), which depends on
her private data and the outcome chosen by the mechanism. To compensate the
agents for these costs, the mechanism makes a payment Pi(a, b) to each agent i,
which depends on the bids. The objective of every agent i is to maximize her
profit given by profiti(a, b) = Pi(a, b)− costi(a, b).

As mentioned earlier, we assume the cost functions of the agents to have a
special form: The outcome function o assigns an amount wi(a, b) = wi(o(a, b)) of
load or work to each agent i and the cost of i is costi(a, b) = αi ·wi(a, b)+βi. That
is, the private value αi measures agent i’s cost per unit load and βi is the fixed
cost she incurs independently of the load assigned to her. Our aim is to design
truthful mechanisms, i.e., mechanisms for which profiti((a−i, αi), (b−i, βi)) ≥
profiti((a−i, ai), (b−i, bi)) for all values of (a−i, b−i) and (ai, bi). In this setting,
a mechanism is a pairM = (o,P) of an output function o and a vector P of pay-
ment functions. An output function o is said to admit a truthful payment scheme
if there exist payments P such that the mechanism M = (o,P) is truthful.

We now prove our main result on two-parameter agents. The proof extends ar-
guments from the proof of the famous one-parameter monotonicity result in [14].

Theorem 6. An output function o = o(a, b) admits a truthful payment scheme
if and only if, for every i and every pair (a−i, b−i) of vectors of bids of all agents
except i, the following holds:
1. For every fixed value of bi, the load wi(a, b) = wi(o(a, b)) assigned to agent i

is nonincreasing in ai.
2. For almost all values of ai, wi(a, b) is a constant function of bi (where “for

almost all” means “for all but a set of Lebesgue measure zero”).

If these conditions hold, the truthful payments must be given as Pi(ai, bi) =
Pi(0, 0) + ai · wi(ai, bi) −

∫ ai

0 wi(x, bi)dx, which is independent of bi for almost
all values of ai.

Proof. “⇒”: First assume that there exist payments P such that the mechanism
M = (o,P) is truthful. We fix an agent i and the other agents’ bids (a−i, b−i).
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Then, we can consider Pi and wi as functions of just agent i’s bid (ai, bi). We
define a function pi : R2

≥0 → R by

pi(x, y) := Pi(x, y)− x · wi(x, y)− y,

so pi(αi, βi) = Pi(αi, βi)−αi ·wi(αi, βi)−βi is the profit of agent i when bidding
her true values (αi, βi). Truthfulness of the mechanism is then equivalent to

pi(αi, βi) ≥ Pi(ai, bi)− αi · wi(ai, bi)− βi

⇔ pi(αi, βi) ≥ Pi(ai, bi)− ai · wi(ai, bi)− bi

−αi · wi(ai, bi) + ai · wi(ai, bi)− βi + bi

⇔ pi(αi, βi) ≥ pi(ai, bi) + (αi − ai) · (−wi(ai, bi)) + (βi − bi) · (−1) (1)

for all αi, βi, ai, bi ≥ 0. In particular, choosing bi and βi to be equal in (1) yields

pi(αi, bi) ≥ pi(ai, bi) + (αi − ai) · (−wi(ai, bi)) for all αi, ai, bi ≥ 0.

Thus, for fixed bi, pi(ai, bi) is a convex function of ai and −wi(ai, bi) is a
subgradient at ai. Hence, standard results from analysis imply that, for ev-
ery bi, pi(ai, bi) is a continuous function of ai, differentiable almost everywhere
with ∂pi

∂ai
(ai, bi) = −wi(ai, bi), and equal to the integral of its derivative. Thus,

pi(ai, bi) = pi(0, bi)−
∫ ai

0 wi(x, bi)dx and by definition of pi this is equivalent to

Pi(ai, bi) = Pi(0, bi) + ai · wi(ai, bi)−
∫ ai

0 wi(x, bi)dx. (2)

Since pi(ai, bi) is convex in ai for fixed bi, the partial derivative ∂pi

∂ai
(ai, bi) =

−wi(ai, bi) is nondecreasing, so wi(ai, bi) is a nonincreasing function of ai for all
bi ≥ 0, which proves condition 1. Choosing ai and αi to be equal in (1) yields

pi(ai, βi) ≥ pi(ai, bi) + (βi − bi) · (−1) for all βi, ai, bi ≥ 0.

Thus, for every fixed ai, pi(ai, bi) is a convex function of bi and −1 is a subgradi-
ent at bi. Again by results from analysis, this implies that, for every ai, pi(ai, bi)
is continuous in bi, differentiable almost everywhere, and equal to the integral
of its derivative. Moreover, ∂pi

∂bi
(ai, bi) = −1 whenever pi is differentiable with

respect to bi, so pi(ai, bi) = pi(ai, 0)− bi and

pi(ai, bi) = pi(ai, 0)− bi = Pi(ai, 0)− ai · wi(ai, 0)− bi

= Pi(0, 0) + ai · wi(ai, 0)− ∫ ai

0 wi(x, 0)dx − ai · wi(ai, 0)− bi

= Pi(0, 0)− ∫ ai

0 wi(x, 0)dx− bi, (3)

so using that pi(ai, bi) = Pi(ai, bi)− ai · wi(ai, bi)− bi we obtain

Pi(ai, bi)− ai · wi(ai, bi) = Pi(0, 0)− ∫ ai

0 wi(x, 0)dx.

In particular, for ai = 0, we get Pi(0, bi) = Pi(0, 0) for all bi ≥ 0, so by (2) the
payments are given by the formula in the claim. Plugging in, we obtain

pi(ai, bi) = pi(0, bi)−
∫ ai

0 wi(x, bi)dx = Pi(0, bi)− bi −
∫ ai

0 wi(x, bi)dx

= Pi(0, 0)− bi −
∫ ai

0 wi(x, bi)dx.
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Using (3), this yields∫ ai

0 wi(x, 0)dx =
∫ ai

0 wi(x, bi)dx for all ai, bi. (4)

Moreover, since wi(ai, bi) is nonincreasing in ai for every fixed bi, we have∫ ai

0 wi(x, bi)dx − ∫ ãi

0 wi(x, bi)dx =
∫ ai

ãi
wi(x, bi)dx ≥ (ai − ãi) · wi(ai, bi)

for all ai, ãi ≥ 0, i.e., the function ϕ defined by ϕ(ai) :=
∫ ai

0 wi(x, bi)dx (which
is well-defined by equality (4)) is concave and wi(ai, bi) is a supergradient of
ϕ at ai for every bi ≥ 0. Similar to the convex case, this implies that ϕ is
continuous, differentiable almost everywhere, and equal to the integral of its
derivative. Moreover, we have ϕ′(ai) = wi(ai, bi) for every bi ≥ 0 whenever ϕ is
differentiable with respect to ai. Thus, for almost all ai, we can differentiate (4)
and obtain wi(ai, 0) = wi(ai, bi) for all bi ≥ 0, which proves condition 2.

“⇐”: Now suppose that conditions 1. and 2. are satisfied for a given output
function o. As before, we fix an agent i and the other agents’ bids (a−i, b−i)
and consider Pi and wi as functions of just agent i’s bid (ai, bi). We claim that
the formula in the claim defines a truthful payment scheme for o. To prove this,
we have to show that inequality (1) is satisfied for all αi, βi, ai, bi ≥ 0, which is
equivalent to pi(αi, βi)−Pi(ai, bi)+αi ·wi(ai, bi)+βi ≥ 0 for all αi, βi, ai, bi ≥ 0.
Using that wi( , bi) is nonincreasing for every bi by 1. and that

∫ αi

0 wi(x, bi)dx
is independent of bi by 2., we calculate

pi(αi, βi)− Pi(ai, bi) + αi · wi(ai, bi) + βi

= Pi(αi, βi)− αi · wi(αi, βi)− βi − Pi(ai, bi) + αi · wi(ai, bi) + βi

= Pi(0, 0) + αi · wi(αi, βi)−
∫ αi

0 wi(x, βi)dx − αi · wi(αi, βi)− βi

−Pi(0, 0)− ai · wi(ai, bi) +
∫ ai

0 wi(x, bi)dx + αi · wi(ai, bi) + βi

= (αi − ai) · wi(ai, bi) +
∫ ai

αi
wi(x, bi)dx

≥ (αi − ai) · wi(ai, bi) + (ai − αi) · wi(ai, bi) = 0. ��

When wi(ai, bi) is continuous in ai for fixed bi, we see that the function ϕ in
the proof is differentiable everywhere, so differentiating equation (4) yields the
independence of wi(ai, bi) of bi for every fixed value of ai. Hence, we obtain:

Corollary 3. An output function o(a, b) for which the load wi(a, b) assigned to
each agent i is continuous in ai for every fixed a−i, b admits a truthful payment
scheme if and only if wi(a, b) is independent of bi and nonincreasing in ai. In
this case, the payments must be given as Pi(ai, bi) = Pi(0, 0) + ai · wi(ai, bi) −∫ ai

0 wi(x, bi)dx, which is also independent of bi.

As a particular consequence of Theorem 6, no mechanism for two parameter
agents can be strongly truthful, i.e., make truthtelling the only dominant strat-
egy for every agent: Whenever the true per unit cost αi of an agent i is such
that wi(αi, bi) (and, hence, also Pi(αi, bi)) is independent of bi, any bid (αi, bi)
represents a dominant strategy for agent i.



Truthful Mechanisms for Selfish Routing and Two-Parameter Agents 47

Furthermore, Theorem 6 implies that the voluntary participation condition
can never be satisfied in a truthful mechanism for two-parameter agents: To
guarantee a nonnegative profit for every agent i bidding truthfully, we need

profiti(αi, βi) = Pi(αi, βi)− αi · wi(αi, βi)− βi ≥ 0

for all αi, βi ≥ 0. But by Theorem 6, the value Pi(αi, βi) − αi · wi(αi, βi) is
independent of βi for almost every αi, so the profit of agent i is unbounded from
below as βi →∞ for every such αi. Thus, without any a priori upper bound for
βi, it is impossible to guarantee a nonnegative profit for agent i when she bids
truthfully. Hence, we obtain:

Theorem 7. The voluntary participation condition can never be satisfied in a
truthful mechanism for two-parameter agents.
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Abstract. We introduce partition equilibrium and study its existence
in resource selection games (RSG). In partition equilibrium the agents
are partitioned into coalitions, and only deviations by the prescribed
coalitions are considered. This is in difference to the classical concept of
strong equilibrium according to which any subset of the agents may devi-
ate. In resource selection games, each agent selects a resource from a set
of resources, and its payoff is an increasing (or non-decreasing) function
of the number of agents selecting its resource. While it has been shown
that strong equilibrium exists in resource selection games, these games
do not possess super-strong equilibrium, in which a fruitful deviation
benefits at least one deviator without hurting any other deviator, even
in the case of two identical resources with increasing cost functions. Sim-
ilarly, strong equilibrium does not exist for that restricted two identical
resources setting when the game is played repeatedly. We prove that for
any given partition there exists a super-strong equilibrium for resource
selection games of identical resources with increasing cost functions; we
also show similar existence results for a variety of other classes of resource
selection games. For the case of repeated games we identify partitions
that guarantee the existence of strong equilibrium. Together, our work
introduces a natural concept, which turns out to lead to positive and
applicable results in one of the basic domains studied in the literature.

1 Introduction

When considering a prescribed behavior in a multi-agent system, it makes little
sense to assume that an agent will stick to its part of that behavior, if deviating
from it can increase its payoff. This leads to much interest in the study of Nash
equilibrium in games. A Nash equilibrium is an action profile of the agents
for which unilateral deviations are not beneficial. When agents are allowed to
use mixed actions, a Nash equilibrium always exists. Moreover, in the context of
congestion games [14,12], there always exists a pure action equilibrium. However,
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Nash equilibrium does not take into account deviations by non-singleton sets of
agents. While stability against deviations by subsets of the agents, captured by
the notion of strong equilibrium [3], is a most natural requirement, it is well-
known that obtaining such stability is possible only in rare situations. In the
context of congestion games, Holzman and Law-Yone [8,9] characterized the
networks where strong equilibrium always exist. From pragmatic perspective
the most important part of their results is the existence of strong equilibrium in
resource selection games. In a resource selection game (RSG) we have a set of n
players, and a set of m resources. Each player chooses a resource from among the
set of resources, and his cost is a non-decreasing function of the number of players
who have chosen his selected resource. Needless to say, resource selection games
are fundamental and central to work in various communities, such as operations
research, computer science, game theory and economics. However, a closer look
at the above fundamental result shows severe limitations to its applicability. In
particular, the following issues arise:

(1) In the original definition of strong equilibrium a deviation is considered prof-
itable only if it is strictly beneficial to all players. However, it makes much sense
to consider super-strong equilibrium, in which a beneficial deviation improves
the payoff of at least one of the deviator without hurting any other deviator.
(2) The results on existence of strong equilibrium are obtained for one-shot
games, while it makes sense to consider a repeated play, with the desire to have
stability against deviations in that game.

As it turns out, the important basic results about resource selection games fail
to generalize to either super-strong equilibrium or to repeated resource selec-
tion games. Consider the basic setting of two identical resources with (strictly)
increasing cost functions. This setting is fundamental to many studies in elec-
tronic commerce, operations research, communication networks, and economics.
Apparently, there are simple instances of that setting in which there is no super-
strong equilibrium, and simple instances of that setting in which there is no
strong equilibrium when the game is played repeatedly. In order to deal with
these issues, we introduce in this paper the study of partition equilibrium, and
apply it in the context of resource selection games. Partition equilibrium intro-
duces a social context into the study of group deviations by explicitly stating a
partition over the players, allowing only for deviations in which the set of de-
viators constitutes an element of the partition. Needless to say that partition
equilibrium makes much sense in the context of games that take into account
the social structure of the set of participants.

One way to view partition equilibrium is as an extension of work on social
context games [2]. In a social context game, an agent’s utility is effected by the
payoffs of its friends, where friends are defined using some topological or graph-
theoretic structure. However, unlike previous work on social context games,
dealing with single agent deviations, in partition equilibrium we consider the
situation where members of a coalition coordinate their activity and potential
deviations, as in strong equilibrium. Notice that partition equilibrium suggests
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a novel solution to non-cooperative games; in particular, no side payments are
considered or allowed.

Previous work on coalitional congestion games [7,10] has considered side pay-
ments in the context of congestion games; in this context each player is a set of
agents, each of which is a participant in the resource selection game, and the util-
ity of the player is the sum of his agents’ utilities. Side payments however deviate
from the non-transferable utility assumption which is the basic assumption in
work on strong equilibrium [4,1,5,11,13,6]. Our work on partition equilibrium re-
considers deviations by coalitions in the classical non-transferable utility setting.
Notice that in the context of one-shot games, a positive result showing the exis-
tence of equilibrium when monetary transfers are allowed implies the existence
of super-strong partition equilibrium. Indeed, one of our results can be deduced
from these relationships. In most cases however the existence of monetary trans-
fers yields negative results; in fact, even if we have two identical resources with
increasing cost functions it has been shown that if coalitions are not restricted
to have size of at most two then no equilibrium exists when monetary transfers
are allowed; our work shows positive results about the existence of super-strong
partition equilibria in this setting, and in much wider sets of resource selection
games.

The paper is structured as follows. Section 2 presents some definitions. In
particular we define T -SE, strong equilibrium for a partition T , and T -SSE,
super-strong equilibrium for a partition T . In section 3 we consider T -SSE for
one shot games, and in section 4 we consider T -SE for repeated games. Together,
our analysis addresses the above mentioned two basic issues.

In section 3 we first concentrate on resource selection games with increasing
cost functions; this is a most classical type of games. Recall that even in the case
of two identical resources there is no super-strong equilibrium. We show the exis-
tence of T -SSE for any T , and arbitrary number of resources, in that setting. We
then extend our results to dealing with the case of two non-identical resources
with increasing cost functions, and to the case of two identical resources with
non-decreasing (rather than increasing) cost functions. In both cases we provide
subtle analysis, yielding positive results about equilibrium existence. Notice that
in all related cases these are the first positive results on equilibrium existence
when group deviations are considered, and deviations are not required to strictly
benefit all agents. We also consider the case of general resource selection games
with non-decreasing resources and coalitions bounded by size 2. Since this re-
stricted case is the only one for which a positive result is known in games with
monetary transfers (see [10]) we know that a super-strong equilibrium exists in
that setting; however, we provide a simpler proof for that case. Unfortunately,
as we will illustrate, our results do not scale to arbitrary congestion games.

In section 4 we consider repeated resource selection games. In that setting,
strong equilibrium (in the classical sense of Aumann [3]) does not exist even
if we have two identical resources with increasing cost functions and we allow
deviations of size two. We consider general repeated resource selection games,
with non-decreasing cost functions, and show that there exists a T -SE when all
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elements in the partition are of size at most 2, as well as when all elements in
the partition are of size at least 2. The above conditions are in a sense complete:
we show the existence of a repeated resource selection game, where the society
consists of a singleton and a triplet under which there is no T -SE. In addition,
we characterize T -structures that admit a T -SE for a restricted case where the
resources are identical and there is a majority of singletons in the partition.
In this case we show that if the number of players is odd there is a T -SE if
all coalitions are of size at most 3, and that when there is a different coalition
structure we can find a resource selection game with no T -SE. If the number of
players is even there is a T -SE if all coalitions are of size at most two, and when
there is a different coalition structure we can find a resource selection game with
no T -SE.

2 Model and Preliminaries

A game is denoted by a tuple G = 〈N, {Si}n
i=1, {ci}n

i=1〉, where N is the set of
players, Si is a finite action space for player i ∈ N , and ci(·) is a cost function of
player i. We denote by n = |N | the number of players. The action profile space
of the players is S = ×n

i=1Si. For an action profile s ∈ S we denote by s−i the
actions of players j �= i, i.e., s−i = (s1, . . . , si−1, si+1, . . . , sn). Similarly, for a
set of players Γ (also called a coalition) we denote by sΓ and s−Γ the actions
of players j ∈ Γ and j �∈ Γ , respectively. The cost function of player i maps an
action profile s ∈ S to a real number, i.e., ci : S → R. Throughout this paper
we restrict attention to pure actions.

Nash Equilibrium (NE): An action profile s ∈ S is a pure Nash Equilibrium
if no player i ∈ N can benefit from unilaterally deviating from his action to
another action, i.e., ∀i ∈ N ∀a ∈ Si : ci(s−i, a) ≥ ci(s).

Resilience to coalitions: A pure action profile of a set of players Γ ⊆ N
specifies an action for each player in the coalition, i.e., γ ∈ ×i∈Γ Si. An action
profile s ∈ S is not resilient to a pure strong deviation of a coalition Γ if there is
a pure action profile γ of Γ such that ci(s−Γ , γ) < ci(s) for every i ∈ Γ (i.e., the
players in the coalition can deviate in such a way that each player reduces its
cost). In this case we say that the coalition Γ has a strongly-profitable deviation.

Definition 1. A strong equilibrium (SE) is a profile that is resilient to a pure
strongly-profitable deviation of any coalition Γ ⊆ N .

An action profile s ∈ S is not resilient to a pure weak deviation of a coalition
Γ if there is a pure action profile γ of Γ such that ci(s−Γ , γ) ≤ ci(s) for every
i ∈ Γ , and ∃i ∈ Γ s.t. ci(s−Γ , γ) < ci(s) (i.e., the players in the coalition can
deviate in such a way that none of the players increases its cost, and at least
one player strictly reduces its cost). In this case we say that the coalition Γ has
a weakly-profitable deviation.

Definition 2. A super strong equilibrium (SSE) is a profile that is resilient to
a pure weakly-profitable deviation of any coalition Γ ⊆ N .



52 M. Feldman and M. Tennenholtz

Note that the set of super strong equilibria is contained in the set of strong
equilibria.

Suppose the coalitional structure is exogenously given. That is, the finite set
of coalitions is given by a partition T = (T1, . . . , Tk) of the set of players. Given
a partition T , we shall define the following.

Definition 3. A T-strong equilibrium (T -SE) is a profile that is resilient to a
pure strongly-profitable deviation of any coalition Ti ∈ T .

Definition 4. A T-super strong equilibrium (T -SSE) is a profile that is resilient
to a pure weakly-profitable deviation of any coalition Ti ∈ T .

Observation 1. Every SE is also a T -SE for any T , and every SSE is a T -SSE
for any T .

It is important to note that while the set of SE is contained in the set of NE, the
set of T -SE (or T -SSE) is not necessarily contained in the set of NE (nor does
the set of NE contained in the set of T -SE (or T -SSE)). It might be the case
that a single player can deviate unilaterally and strictly improve his own payoff,
but if such a deviation reduces the payoff of a member of his coalition (or does
not improve it), it will not be considered as a beneficial deviation.

We identify two extreme cases:

Single Coalition Case: where there is a single coalition that contains all of the
players; i.e., T = {N}. In the single-coalition case the set of T -SSE outcomes
coincides with the set of Pareto-optimal outcomes; thus there always exists a
T -SSE.

Claim. Every finite game admits a T -SSE if T = {N}.
Fully Distributed Case: This is the case in which each individual player
constitutes a coalition; i.e., T = {{1}, . . . , {n}}. In the fully-distributed case the
set of T -SE coincides with the set of T -SSE and with the set of NE. Thus, any
game that admits a pure NE admits a T -SSE as well.

A direct corollary of the above observations is that every 2-player game that
admits a pure NE admits a T -SSE for any T . If it is the single-coalition case, a
T -SSE exists by Claim 2, and if it is the fully-distributed case, a T -SSE exists
since a NE always exists. This is interesting, for example, in the context of
potential (or congestion) games, where many of the counter examples refuting
the existence of a SE are 2-player games (see, e.g., SE in cost-sharing connection
games [4]). Yet, these games always admit some T -SSE.

2.1 Resource Selection Games

A resource selection setting is characterized by the tuple 〈M, N, {bi(·)}m
i=1〉,

where M = {M1, . . . , Mm} is the set of resources, N = {1, . . . , n} is the
set of players (jobs) and bi(l) ∈ R is the cost of resource Mi under a load of
l players. We also denote the cost function of resource Mi by a vector
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bi = (bi(1), bi(2), . . . , bi(n)). A resource selection setting has identical resources
if ∀i, i′ ∈ {1, . . . , m} ∀l ∈ {1, . . . , n} bi(l) = bi′(l). In identical resources settings
we will use the vector b = (b(1), . . . , b(n)) to denote the cost vector of all the
resources.

A one-shot resource selection game (RSG) has N as the set of players, and we
identify the set of resources with the set of actions; i.e., the action space SJ of
player J ∈ N are all the individual resources, i.e., SJ = M ∀J ∈ N . The action
profile space is S = ×n

J=1SJ . In an action profile s ∈ S player J selects resource
sJ as its action. The load of a resource Mi in the action profile s ∈ S, denoted
li(s), is the number of players that chose resource Mi. The cost of a player J
who chose resource Mi under profile s is cJ(s) = bi(li(s)).

We assume that the cost function bi(·) of all resources is non decreasing; thus,
if bi(l) < bi(l′) then l < l′. In some cases, we will assume a strictly-increasing
cost function; i.e., ∀i∀l bi(l) < bi(l + 1). In this case, bi(l) ≤ bi(l′) implies l ≤ l′

Every RSG is a congestion game, thus admits a NE in pure actions. In addi-
tion, it has been shown in [8] that every RSG with non-decreasing cost functions
admits a SE. Therefore, by Observation 1 it also admits a T -SE for any T . Yet,
as we shall see, an RSG with non-decreasing cost functions might not admit a
T -SSE, nor shall a repeated RSG necessarily admit a T -SE. These two matters
shall be our focus in the following two sections, respectively.

3 T -Super Strong Equilibrium (T -SSE) Existence

Every RSG admits a SE [8], and by Observation 1 admits a T -SE as well. How-
ever, an RSG might not admit any SSE. This non-existence may occur even for
an RSG with two identical strictly-increasing resources, as the following obser-
vation shows.

Observation 2. There exists a one-shot RSG with two identical strictly increas-
ing resources that does not admit any SSE.

Proof. Consider an RSG with two identical resources of cost function b = (1, 2, 3)
and 3 players N = {1, 2, 3}. If all three players share the same resource, this is
obviously not a SSE (and not even a NE). Suppose WLOG that players 1, 2
are assigned to M1 and player 3 is assigned to M2. Then, players 1 and 2 can
deviate such that player 1 migrates to M2, incurring the same cost as before,
while player 2 reduces its cost from 2 to 1. Therefore, this game does not admit
a SSE. ��

3.1 The Case of Identical, Strictly-Increasing Resources

While a SSE might not exist even under the restricted setting of two identical
strictly increasing resources, as we shall soon show, every RSG with identical
strictly-increasing resources admits a T -SSE for any T . Before formulating the
theorem, we introduce the following lemma and definition we will use in the
proof of Theorem 3.
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Lemma 1. Let G be an RSG with m identical strictly increasing resources, and
let s be a NE of G. Suppose there is a coalition Γ that can weakly improve
by deviating to a profile s′ = (s′Γ , s−Γ ). It holds that li(s′) ≤ li(s) + 1 ∀i ∈
{1, . . . , m}.
Definition 5. Let l(s) = (l1(s), . . . , lm(s)) be the congestion vector of a profile
s, sorted in non-increasing order. A T-spread-out-s assignment is an assign-
ment obtained by filling out the resources by spreading out the members of each
coalition by non-increasing order of |Ti| on the resources, according to the sorted
vector l(s).

Theorem 3. Every RSG with identical strictly increasing resources admits a
T -SSE for any T .

Proof. Let s be a NE of G. We claim that a T -spread-out-s assignment is a
T -SSE. Suppose by way of contradiction there is a weakly profitable deviation
of some coalition to a profile s′. Since the resources are identical and strictly
increasing there must exist L s.t. li(s) ∈ {L, L + 1} ∀i. Denote by k the number
of resources of load L. Players assigned to resources of load L and L + 1 are
denoted “low” and “high” players, respectively.

We first claim that li(s′) ≥ L ∀i. Suppose by way of contradiction that ∃i
s.t. li(s′) ≤ L − 1. Then, in order to assign all the low jobs, there must exist
k additional resources of load at most L. But then it must hold that ∃i s.t.
li(s′) ≥ L + 2, contradicting Lemma 1. We conclude that li(s′) ∈ {L, L + 1} ∀i.
Since the total number of players remains the same, there must exist k resources
of load L and m− k resources of load L + 1 in s′.

For every low job J , it must hold that li(s′) ≤ L, thus, for every high job it
must hold that li(s′) = L+1. Therefore, no job in the coalition strictly improves
its load, and the statement follows. ��

3.2 The Case of Two Strictly-Increasing Non-identical Resources

In the following few paragraphs we consider the case of two resources, but move
to the more general case of non-identical resources. We begin with several char-
acteristics of RSG’s with two resources.

We distinguish between two types of deviations by a coalition Γ on two re-
sources, namely uni-directional and bi-directional deviations. In a uni-directional
deviation, some jobs in Γ deviate from one resource to the second one. In a bidi-
rectional deviation, a set Γ1 (|Γ1| > 0) deviates from M1 to M2 and a set Γ2
(|Γ2| > 0) deviates from M2 to M1, s.t. Γ = Γ1∪Γ2 and Γ1∩Γ2 = ∅. Lemmata 2
through 4 below are used in the proof of Theorem 4.

Lemma 2. Let G be an RSG with two strictly increasing resources with cost
functions b1(·) and b2(·), and let s be a NE of G. Suppose WLOG that b1(l1(s)) ≤
b2(l2(s)). Suppose there is a bidirectional coalition Γ that has a weakly-profitable
deviation to a profile s′ = (s′Γ , s−Γ ). Then, the coalition must be of the following
structure: it should include the set S = {J |sJ = M1, J ∈ Γ} (which deviate to
M2) and |S|+ 1 coalition members from M2.
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Lemma 3. Let G be an RSG with two strictly increasing resources, and let s
be a NE of G. Suppose there is a unidirectional deviation by coalition Γ ⊂ Ti

that has a weakly-profitable deviation to a profile s = (s′Γ , s−Γ ). Then, sJ =
sJ′ ∀J, J ′ ∈ Ti.

Definition 6. A vector (σ1, σ2, . . .σm) is lexicographically smaller than
(σ̂1, σ̂2, . . . σ̂m) if for some i, σi < σ̂i and σk = σ̂k for all k < i.

An action profile s is cost-wise lexicographically smaller than s′ if the cost vec-
tor c(s) = (c1(l1(s)), . . . , cm(lm(s))), sorted in non-increasing order, is smaller
lexicographically than c(s′), sorted in non-increasing order. We denote this re-
lationship by s ≺ s′.

Lemma 4. Let s be a cost-wise lexicographic minimum of an RSG game G with
non-decreasing resources. Then, s is a NE of G.

Theorem 4. Any RSG with two strictly increasing resources admits a T -SSE
for any T .

3.3 The Case of m Non-decreasing Non-identical Resources

We next consider the more general case of non-decreasing cost functions. We
show that if |Ti| ≤ 2 ∀i a T -SSE always exists. While this theorem follows as a
special case of [10], we choose to present it due to the simplicity of the proof.
Before formulating our theorem, we present the following lemma.

Lemma 5. Let G be an RSG with m non-decreasing resources, and let s be a
NE of G. Given a coalition Tj, if it holds that |{J |J ∈ Tj, sJ = Mi}| ≤ 1 ∀i,
then Tj has no weakly profitable deviation.

With this we are ready to state the theorem.

Theorem 5. Every RSG G with non-decreasing resources in which |Ti| ≤ 2 ∀i
admits a T -SSE.

Proof. Let s be a NE of G and consider a T -spread-out-s assignment (we abuse
notation and use s to denote both the Ne and the T -spread-out NE). In s, there
might be only a single resource that contains more than a single member of each
coalition, denote it Mi. Since s is a NE, no singleton can deviate. By Lemma 5,
no coalition (of size 2) that is assigned to different resources can deviate either.
Thus, we should only consider deviations of pairs (recall |Ti| ≤ 2 ∀i) that are
assigned to the same resource. Suppose jobs J, J ′ are assigned to Mi and let s′

be a weakly profitable deviation. If both players deviate, it contradicts s being a
NE. Thus, we should only consider a deviation in which s′J′ = Mi and s′J = Mk,
k �= i.

It must hold that cJ(s′) ≤ cJ (s), thus bk(lk(s′)) = bk(lk(s)+1) ≤ bi(li(s)), and
by s being a NE it must hold that bk(lk(s) + 1) ≥ bi(li(s)); thus bk(lk(s) + 1) =
bi(li(s)). Therefore, the cost of player J ′ must strictly reduce; i.e., bi(li(s)−1) <
bi(li(s)).
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We next claim that s′ is also a NE. To show this we show that s′ is also a
NE. By bk(lk(s) + 1) = bi(li(s)) a unilateral deviation from Mi to Mk or in the
other direction are not profitable. A unilateral deviation from Ml, l �= i, k to Mi

is not profitable either since by s being a NE, a job from Ml cannot improve by
deviating to Mk, thus by bk(lk(s)+1) = bi(li(s)) it cannot improve by deviating
to Mi either. By s being a NE, it follows that all other unilateral deviations are
not profitable either. A similar argument shows that after each deviation of a
pair that is assigned to Mi, we should again consider only such deviations. But
this process is limited by the number of pairs that are assigned to Mi, which is
finite. We conclude that this process must converge to a T -SSE. ��

3.4 The Case of Two Non-decreasing Resources

We now turn to another extension. In this subsection we consider the existence
of T -SSE for two identical resources, but allow the resources to have general
non-decreasing cost functions.

The following lemma provides a condition that must be satisfied in order for
a unilateral deviation to occur. It holds for non-identical resources too, and has
been used in section 3.2 as well.

Lemma 6. Let G be an RSG with two non-decreasing resources with cost func-
tions b1(·) and b2(·), and let s be a cost-wise lexicographic minimum, T -spread-
out NE of G with loads l1(s) and l2(s) respectively. A unidirectional deviation
of Γ ⊆ Ti is possible only from a resource that contains all the members of Ti.

Lemma 7. Let G be an RSG with two non-decreasing identical resources, and
let s be a NE of G. If there exists a weakly profitable bi-directional deviation, there
also exists a weakly profitable uni-directional deviation of a smaller coalition.

Lemmata 6 and 7 are used to prove the following theorem.

Theorem 6. Every RSG with two non-decreasing identical resources admits a
T -SSE for any T .

4 T -Strong Equilibrium (T -SE) Existence in Repeated
RSG

Consider a one-shot game G and an integer R. We define the repeated game
Ĝ =< G, R > as R plays of G, where in period t players choose strategies
(s1, . . . , sn) ∈ (S1, . . . , Sn) after observing the actions taken by all the users in
all previous periods. A strategy of player J is a function pJ specifying the action
of player J at time t, given the history up to time t− 1. Player J ’s cost in Ĝ is
cJ(p) =

∑R
t=1 cJ(s1(t), . . . , sn(t)), where sJ(t) is player J ’s one-shot game action

in period t according to pJ .
There is a crucial difference between SE and NE in repeated games. Suppose

s is a NE of the game G. Then, playing s in every round of the repeated game
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must be a NE of the repeated game. In contrast, if s is a SE of the game G, it
is not necessarily the case that playing s in every round of the repeated game is
a SE of the repeated game.

For example, while every RSG admits a SE, even on the very simple RSG
that is composed of two identical resources with non-decreasing cost functions
and 3 players, its repeated version might not admit a SE.

Observation 7. [15]. There exists a repeated RSG with two identical non-
decreasing resources and 3 players that does not admit a SE.

Similarly, if s is a T -SE of the game G, it is not necessarily the case that playing
s in every round of the repeated game is a T -SE of the repeated game (as
exemplified by Theorem 10). Thus, characterizing the set of repeated games
that admit a T -SE is a challenging goal.

4.1 The General Case

The following theorem shows that every repeated RSG on m non-decreasing
resources admits a T -SE if T contains no singletons. We first define a Γ -minimal
player and present several lemmas that will be used in the proof of the theorem.

Definition 7. Let G be a one-shot game and let s be an action profile in G.
Player i is said to be Γ s-minimal if for any action profile s′ = (s′Γ , s−Γ ) it holds
that ci(s) ≤ ci(s′).

Lemma 8. Let Ĝ = 〈G, R〉, and let s be a strategy profile s.t. ∀Ti ∃J ∈ Ti s.t.
J is T s

i -minimal ∀r ∈ R. Then, playing s in every round of Ĝ is a T -SE of Ĝ.

The following theorems identify a family of T -structures for which a T -SE always
exists.

Theorem 8. Every repeated RSG with m non-decreasing resources admits a
T -SE if |Ti| ≥ 2 ∀i.
In addition, every repeated RSG on m non-decreasing resources admits a T -SE
if |Ti| ≤ 2 ∀i. We first introduce a lemma that will be used here and in what
follows.

Lemma 9. Let G be an RSG with m non-decreasing resources, and let s be a
NE of G s.t. ∀i ∀j |{J |J ∈ Tj, sJ = Mi}| ≤ 1 (i.e., no resource contains more
than a single representative of each coalition). Then, playing s in every round
constitutes a T -SE of the repeated game.

With this we are ready to establish the theorem.

Theorem 9. Every repeated RSG with m non-decreasing resources admits a
T -SE if |Ti| ≤ 2 ∀i.
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In addition, the above conditions are tight. In particular, there exists a repeated
RSG that does not adhere to the structure described above, which does not
admit a T -SE, as the following theorem shows.

Theorem 10. There exists a repeated RSG with two identical non-decreasing
resources s.t. |T1| = 1 and |T2| = 3 that does not admit a T -SE.

Proof. Let G be an RSG with two identical resources with cost function b(·) and
four players, where T = {T1, T2}, s.t. |T1| = 3 and |T2| = 1, b(1)+2b(3) < 3b(2),
and b(2) < b(3). Consider the game Ĝ = 〈G, 3〉. Suppose by way of contradiction
that the repeated game above admits a T -SE s. In the third (and last) stage of
the game, the singleton can never share a resource with more than one additional
player, since if it does, it incurs a cost of at least b(3) and by deviating it can
incur a cost of at most b(2). Second, the three players in T1 cannot all share a
resource, since if one of them deviates, all three players reduce their cost from
b(3) to b(2). Therefore, in the third stage, every resource should be assigned
exactly two players. Using a backward induction argument, under the profile s,
in every stage of the game two players should be assigned to every resource, i.e.,
li(s) = 2 ∀i ∈ M . Consider the following deviation s′ of T1: each player in T1
is left alone in one of the stages and has a load of 3 in the other two stages.
For every player J ∈ T1, it holds that cJ(s′) = 2c(3) + c(1) < 3c(2) = cJ(s).
Therefore, s′ is a strongly-profitable deviation of T1 and the game admits no
T -SE. ��
The construction given in the proof of Theorem 10 implies that the existence
of T -SE in one-shot RSGs does not apply to general congestion games. This
can easily be verified by constructing a congestion game that consists of three
networks that are composed serially, where each network is composed of two
parallel edges with the cost functions and T -structure given in the example
above.

4.2 The Case of Majority of Singletons

For special cases, we have a more refined characterization. In particular, if the
majority of the players are singletons and the resources are identical, we fully
characterize the T -structures that serve as the condition for the existence of T -
SE in repeated games. The characterization is slightly different for odd and even
number of players.

Odd Number of Players. For an odd number of players, we find that |Ti| ≤ 3
is a sufficient and necessary condition for the existence of T -SE, as shown in the
following theorems.

Theorem 11. For every T s.t. ∃i s.t. |Ti| ≥ 4, there exists a repeated RSG on
identical resources with an odd number of players and a majority of singletons
that does not admit a T -SE.

Theorem 12. For every repeated RSG Ĝ on m identical non-decreasing re-
sources with a majority of singletons and an odd number of players, if |Ti| ≤ 3 ∀i,
Ĝ admits a T -SE.
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Even Number of Players. For an even number of players, we find that |Ti| ≤ 2
is a sufficient and necessary condition for the existence of T -SE, as shown in the
following theorems.

Theorem 13. For every T s.t. ∃i s.t. |Ti| ≥ 3, there exists a repeated RSG on
identical resources with an even umber of players and a majority of singletons
that does not admit a T -SE.

Theorem 14. For every repeated RSG on m identical non-decreasing resources
with a majority of singletons and an even number of players, if |Ti| ≤ 2 ∀i, G
admits a T -SE.
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Abstract. A mechanism is manipulable if it is in some agents’ best in-
terest to misrepresent their private information. The revelation principle
establishes that, roughly, anything that can be accomplished by a manip-
ulable mechanism can also be accomplished with a truthful mechanism.
Yet agents often fail to play their optimal manipulations due to computa-
tional limitations or various flavors of incompetence and cognitive biases.
Thus, manipulable mechanisms in particular should anticipate byzantine
play. We study manipulation-optimal mechanisms: mechanisms that are
undominated by truthful mechanisms when agents act fully rationally,
and do better than any truthful mechanism if any agent fails to act ra-
tionally in any way. This enables the mechanism designer to do better
than the revelation principle would suggest, and obviates the need to
predict byzantine agents’ irrational behavior. We prove a host of possi-
bility and impossibility results for the concept which have the impression
of broadly limiting possibility. These results are largely in line with the
revelation principle, although the considerations are more subtle and the
impossibility not universal.

1 Introduction

Mechanism design is the science of generating rules of interaction—such as auc-
tions and voting protocols—so that desirable outcomes result despite partici-
pating agents (humans, companies, software agents, etc.) acting in their own
interests. A mechanism receives a set of preferences (i.e. type reports) from the
agents, and based on that information imposes an outcome (such as a choice of
president, an allocation of items, and potentially also payments).

A central concept in mechanism design is truthfulness, which means that an
agent’s best strategy is to report its type (private information) truthfully to the
mechanism. The revelation principle, a foundational result in mechanism design,
proves that any social choice function that can be implemented in some equilib-
rium form can also be implemented using a mechanism where all the agents are
motivated to tell the truth. The proof is based on simply supplementing the ma-
nipulable mechanism with a strategy formulator for each agent that acts strate-
gically on the agent’s behalf (see, e.g., [1]). Since truthfulness is certainly worth
something—simplicity, fairness, and the removal of incentives to invest in infor-
mation gathering about others—the revelation principle produces something for
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nothing, a free lunch. As a result, mechanism design research has largely focused
on truthful mechanisms.

In this work, we explore what can happen in manipulable mechanisms when
agents do not play optimally. Is it possible to design mechanisms with desirable
off-equilibrium properties? There are several reasons why agents may fail to play
their optimal manipulations. Humans may play sub-optimally due to cognitive
limitations and other forms of incompetence. The field of behavioral game the-
ory studies the gap between game-theoretic rationality and human behavior (an
overview is given in [2]). Agents may also be unable to find their optimal ma-
nipulations due to computational limits: finding an optimal report is NP-hard
in many settings (e.g., [3,4,5,6]), and can be #P-hard [4], PSPACE-hard [4], or
even uncomputable [7]. One notable caveat is that an agent’s inability to find its
optimal manipulation does not imply that the agent will act truthfully. Unable
to solve the hard problem of finding its optimal manipulation, an agent may
submit its true private type but she could also submit her best guess of what
her optimal manipulation might be or, by similar logic, give an arbitrary report.
A challenge in manipulable mechanisms is that it is difficult to predict in which
specific ways agents will behave if they do not play according to game-theoretic
rationality. Byzantine players, who behave arbitrarily, capture this idea.

In this paper, we explore mechanism design beyond the realm of truthful
mechanisms using a concept we call manipulation optimality, where a mechanism
benefits—and does better than any truthful mechanism—if any agent fails in
any way to play her optimal manipulation. This enables the mechanism designer
to do better than the revelation principle would suggest, and obviates the need
to predict agents’ irrational behavior. Conitzer and Sandholm [5] proved the
existence of such a mechanism in one constructed game instance, but this work
is the first to explore the concept formally and broadly.

2 The General Setting

Each agent i has type θi ∈ Θi and a utility function uθi

i (o) : O → 
, which
depends on the outcome o ∈ O that the mechanism selects. An agent’s type
captures all of the agent’s private information. For brevity, we sometimes write
ui(o). A mechanism M : Θ1 ×Θ2 × · · · × Θn → O selects an outcome based on
the agents’ type reports.

The mechanism designer has an objective (which can be thought of as mech-
anism utility) which maps outcomes to real values:

M(o) =
n∑

i=1

γiui(o) + m(o),

where m(·) captures the designer’s desires unrelated to the agents’ utilities, and
γi ≥ 0. This formalism has three widely-explored objectives as special cases:

– Social welfare: γi = 1 and m(·) = 0.
– Affine welfare: γi > 0 and m(·) ≥ 0.
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– Revenue: Let outcome o correspond to agents’ payments, π1(o), . . . , πn(o),
to the mechanism. Fix γi = 0 and m(o) =

∑n
i=1 πi(o).

Definition 1. Agent i has a manipulable type θi if, for some report of the other
agents’ types θ−i, there exists θ′i �= θi such that

ui(M(θ′i, θ−i)) > ui(M(θi, θ−i))

Note that a type that is manipulable for some reports of the other agents, but
not for other reports of the other agents, is still manipulable.

Definition 2. Types θi and θ′i are distinct if there exists some report of other
agents θ−i, such that the best response for type θi is to submit t and the best
response for type θ′i is t′, where

M(t, θ−i) ≡ o �= o′ ≡ M(t′, θ−i), and

uθi

i (o) > uθi

i (o′), and u
θ′

i
i (o′) > u

θ′
i

i (o)

Put another way, types are distinct only if there exists a circumstance under
which agents with those types will be motivated to behave distinctly, causing
distinct outcomes that provide distinct payoffs.

Definition 3. A mechanism is (dominant-strategy) truthful if no agent has a
manipulable type.

Definition 4. Let f and g be functions mapping an arbitrary set S → 
. We
say f Pareto dominates g (or g is Pareto dominated by f) if for all s ∈ S,

f(s) ≥ g(s),

where the inequality is strict for at least one s.

Definition 5. A type report of θ∗i ∈ Θi is optimal for agent i if, given reports
of other agents θ−i, ui(M(θ∗, θ−i)) ≥ ui(M(θ, θ−i)), for all θ ∈ Θi.

Now we are ready to introduce the main notion of this paper. We define a
manipulable mechanism to be manipulation optimal if it does as well as the
best truthful mechanism if agents play their optimal manipulations, and strictly
better if any agent fails to do so in any way:

Definition 6. For an arbitrary collection of types, let o represent the outcome
that arises when all agents with manipulable types play optimally, and let ô
represent an outcome that can arise when some agents with manipulable types do
not play optimally. We call a manipulable mechanism M̂ a strictly manipulation
optimal mechanism (strict MOM) if:

1. No truthful mechanism Pareto dominates agents playing optimally in M̂ .
(Here the inputs are the true types of the agents and we measure based on
the mechanism designer’s objective.)
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2. For all ô, M(ô) > M(o), where M(·) represents the designer’s objective.

If instead of the second condition holding strictly (i.e., for all ô), it holds with
equality in some places and with strict inequality in others, we call M̂ a Pareto
manipulation optimal mechanism (Pareto MOM).

We assume that, if an agent’s optimal play is to reveal its true type, then it will
do so. The mechanism, for instance, can publish which types are truthful, and it
can be expected that those agents will behave rationally. With software agents,
such behavior can be hard-coded. However, our setting and results translate
straightforwardly to a fully byzantine setting, where the behavior of every agent
(regardless of the truthfulness of their type) is arbitrary. We discuss this setting
at the conclusion of this section.

On the other hand, agents with manipulable types may not behave opti-
mally; for instance, finding an optimal manipulation can be computationally
intractable. It is important to note that we do not assume that an agent neces-
sarily tells the truth if it fails to find its optimal manipulation. We require that
our MOMs do well for any failure to manipulate optimally.

2.1 A Broad Impossibility Result for Strict MOMs

While Conitzer and Sandholm [5] showed that manipulation-optimal mechanisms
do exist, the following result strongly curtails their existence.

Proposition 1. No mechanism satisfies Characteristic 2 of Definition 6 if any
agent has more than one distinct manipulable type.

Proof. Suppose for contradiction that M̂ is a manipulable mechanism satisfying
Characteristic 2 such that agent i has two distinct manipulable types. Let the
types be a and b, and let x represent the reports of other agents where they
express its distinction, so that agent i of type a has best response a′, and agent
i of type b has best response b′, and:

M̂(a′,x) �= M̂(b′,x)

We first define the following shorthand notation:∑
(a′) ≡

∑
j �=i

γjuj(M̂(a′,x)) + m(M̂(a′,x))

∑
(b′) ≡

∑
j �=i

γjuj(M̂(b′,x)) + m(M̂(b′,x))

Because M̂ satisfies the strict form of Characteristic 2, we get the following two
inequalities on mechanism utilities—for agent i of type b and agent i of type a,
respectively.

γiu
b
i(M̂(b′,x)) +

∑
(b′) < γiu

b
i(M̂(a′,x)) +

∑
(a′)

γiu
a
i (M̂(a′,x)) +

∑
(a′) < γiu

a
i (M̂(b′,x)) +

∑
(b′)
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But because a′ and b′ are distinct, ua
i (M̂(a′,x)) > ua

i (M̂(b′,x)) and ub
i(M̂(b′,x))

> ub
i(M̂(a′,x)). Thus since γi ≥ 0 we have

γiu
b
i(M̂(a′,x)) +

∑
(a′) ≤ γiu

b
i(M̂(b′,x)) +

∑
(a′)

γiu
a
i (M̂(b′,x)) +

∑
(b′) ≤ γiu

a
i (M̂(a′,x)) +

∑
(b′)

Combining the first lines of the above two equation blocks yields
∑

(b′) <
∑

(a′),
while combining the second lines yields

∑
(a′) <

∑
(b′), a contradiction. ��

This impossibility result is driven by the strict inequality in Characteristic 2 of
Definition 6. In the next section, we consider what happens to this result when
we loosen the strict inequality.

2.2 A Characterization of Pareto MOMs

Recall that the difference between the two MOM concepts was that strict MOMs
require that the mechanism always do strictly better when an agent plays sub-
optimally, while Pareto MOMs only require that the mechanism does not do
worse and does strictly better at some point when an agent plays sub-optimally.
It follows that possibility results for strict MOMs implies possibility for Pareto
MOMs, and impossibility results for Pareto MOMs imply impossibility for strict
MOMs.

We now revisit the impossibility of Proposition 1, but with the Pareto MOM
notion. Instead of obtaining impossibility, we derive the following result:

Proposition 2. In any mechanism that satisfies the Pareto version of Char-
acteristic 2 of Definition 6, the report of every type that is a manipulable best-
response for any other type results in identical mechanism utility. Furthermore,
for any agent i with more than one distinct manipulable type, γi = 0.

Proof. This proof follows the same guidelines as the one for strict MOMs. Define
a, b, a′, b′, x,

∑
(a′) and

∑
(b′) as before. The difference is that we now have

only:

γiu
b
i(M̂(b′,x)) +

∑
(b′) ≤ γiu

b
i(M̂(a′,x)) +

∑
(a′)

γiu
a
i (M̂(a′,x)) +

∑
(a′) ≤ γiu

a
i (M̂(b′,x)) +

∑
(b′)

because there is no guarantee that the strict relation is expressed at x. But
because a and b are distinct, ua

i (M̂(a′,x)) > ua
i (M̂(b′,x)) and ub

i(M̂(b′,x)) >

ub
i(M̂(a′,x)). Now if γi > 0, we have

γiu
b
i(M̂(a′,x)) +

∑
(a′) < γiu

b
i(M̂(b′,x)) +

∑
(a′)

γiu
a
i (M̂(b′,x)) +

∑
(b′) < γiu

a
i (M̂(a′,x)) +

∑
(b′)
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which yields a contradiction. However, if γi = 0, we get

γiu
b
i(M̂(a′,x)) +

∑
(a′) = γiu

b
i(M̂(b′,x)) +

∑
(a′)

γiu
a
i (M̂(b′,x)) +

∑
(b′) = γiu

a
i (M̂(a′,x)) +

∑
(b′)

which, when combined with the MOM characterization above, yields possibility
only when

∑
(a′) =

∑
(b′), which, because γi = 0, indicates that mechanism

utility is identical for reports of a′ and b′. ��
Corollary 1. There exist no mechanisms with the social welfare maximization
objective that satisfy the Pareto version of Characteristic 2 of Definition 6 if any
agent has more than one distinct manipulable type.

Corollary 2. In any mechanism that satisfies the Pareto version of Character-
istic 2 of Definition 6, the mechanism utility corresponding to reports of types
that are not the best responses of some manipulable type must be at least the
mechanism utility obtained from the best-response type reports, with at least one
report inducing strictly greater mechanism utility.

Proposition 3. If every type is a manipulable best response for some other type,
then there exist no mechanisms that satisfy the Pareto version of Characteristic 2
of Definition 6.

Proof. Since every type is a manipulable best response for some other type, we
have that every outcome must have identical mechanism utility. But then the
“at least one strict” condition of Pareto dominance fails. ��
From Proposition 3 we see that we get almost as broad impossibility for Pareto
MOMs as we did for strict MOMs (Proposition 1).

We consider the strict MOM notion more compelling than the Pareto MOM
notion for two reasons:

– Strict inequality is in line with prior work. It was the MOM notion used in
the original paper by Conitzer and Sandholm [5] that proved that MOMs
exist (although they did not call the mechanisms MOMs).

– The motivation of MOMs is to have a mechanism that does better when
agents make mistakes—not to impose artificial caveats on the mechanism
designer’s utility function. Thus we consider the blanket impossibility re-
sult that we obtained for strict MOMs more relevant than the somewhat
contrived, barely broader possibility we obtained for Pareto MOMs.

The results in this section extend straightforwardly to a fully byzantine setting,
where all agents (including those with truthful types) behave arbitrarily. It is
easy to see that no strict MOMs exist in this setting, because participating agents
must have more than one type (or else the setting would not require the report
of private information), and so the impossibility result of Proposition 1 holds.
Furthermore, while there can exist Pareto MOMs for the fully byzantine setting,
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because truthful types are their own best response the results of Proposition 2
and its corollaries hold, in the sense that the report of any truthful type must
also result in identical mechanism utility. Finally, for the fully byzantine setting,
Proposition 3 adjusts so that if every type is the best response for any other
type (rather than only just manipulable types) we get impossibility.

For the remainder of the paper, we return to our original setting, in which
only players with manipulable types are byzantine. We feel the argument that
truthful behavior for certain types can be hard-coded into computational agents,
and publicly published and verified for human agents, to be the most convincing
reason why we should expect players with truthful types to actually behave
truthfully.

2.3 Single-Agent Settings

In this subsection we study settings where there is only one agent reporting its
private information. If there are other agents, their types are assumed to be
known, so there is only one type-reporting agent.

Proposition 4. There exist no single-agent Pareto MOM with the objective of
social welfare maximization.

Proof. In the single-agent context, social welfare maximization indicates that
the utility of the mechanism is equivalent to the utility of the single agent. Let
the agent have manipulable type a, which has optimal report a′. Denote â as
the report satisfying the strict Pareto MOM criterion (we could have â = a, but
both a �= a′ (because a is manipulable) and â �= a′ hold). In particular:

ua(M̂(â)) > ua(M̂(a′))

but a′ was an optimal report, so:

ua(M̂(a′)) ≥ ua(M̂(â))

which is a contradiction. ��
The impossibility forParetoMOMs directly implies impossibility for strictMOMs.

Proposition 5. There exist single-agent strict MOMs with the objective of affine
welfare maximization.

Proof. We can derive this result from the constructive proof of Conitzer and
Sandholm [5] by recasting parts of their construction within our framework.

There exists a manager with three possible true types for a team of workers
that needs to be assembled:

– “Team with no friends”, which we abbreviate TNF.
– “Team with friends”, which we abbreviate TF.
– “No team preference”, which we abbreviate NT.
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The mechanism implements one of two outcomes: picking a team with friends
(TF), or picking a team without friends (TNF). The manager gets a base utility
1 if TNF is chosen, and 0 if TF is chosen. If a manager has a team preference,
implementing that team preference (either with or without friends) gives the
manager an additional utility of 3.

In addition to the manager, the other agent in the game is the HR director,
who has utility 2 if a team with friends is chosen. Even though there are two
agents in the game, because the HR director does not report a type, this is not
a multiagent setting. In fact, the HR director’s utilities are equivalent to the
payoffs from the outcome-specific mechanism utility map m(·) (as we defined
earlier in this paper).

The optimal truthful mechanism maps reports of NT and TNF to TNF and
TF to TF. Now consider the manipulable mechanism that maps reports of TNF
to TNF and NT and TF to TF. Note that in this mechanism there is only one
manipulable type, NT, and that its optimal strategic play is to report TNF. This
mechanism is manipulation-optimal: if the manager has type NT and reports NT
or TF instead of TNF, the mechanism generates affine welfare of 2, whereas the
optimal truthful mechanism generates affine welfare of 1. ��
This possibility of strict MOMs implies possibility of Pareto MOMs.

In this example, it is NP-hard for an NT agent to report TNF because con-
structing a team of size k without friends requires solving the independent set
problem in a graph of people where the edges are friend relationships [5]. Com-
putational complexity is a strong justification for why an agent may not be able
to find its optimal manipulation.

2.4 Multi-agent Settings

Though we proved above that there do not exist single-agent social welfare max-
imizing MOMs, they do exist in multi-agent settings!

Proposition 6. There exist strict multi-agent MOMs with the objective of social
welfare maximization.

Proof. Consider a mechanism in which two agents, the row agent and the column
agent, can have one of two types each, a or a′. Our mechanism maps reports to
one of four different outcomes:

Report a′ a
a′ o1 o2

a o3 o4

The following two payoff matrices over the four outcomes constitute a
manipulation-optimal mechanism. Payoffs for type a are on the left and pay-
offs for type a′ are on the right:

Report a′ a
a′ 1,1 4,0
a 0,3 3,0

Report a′ a
a′ 3,4 5,0
a 0,6 0,0



68 A. Othman and T. Sandholm

Another way to view these payoffs is the following table:

Outcome θ urow ucolumn

o1 a 1 1
a′ 3 4

o2 a 4 0
a′ 5 0

o3 a 0 3
a′ 0 6

o4 a 3 0
a′ 0 0

In the mechanism, reporting a′ is a strictly dominant strategy for agents of
both types. By the revelation principle, we can “box” this mechanism into a
truthful mechanism, M1, that always chooses o1. However, when an agent of
type a plays a rather than a′, social welfare is strictly higher than with o1 (this
property holds regardless of how the other agent behaves). We have now proven
(the strict form of) Characteristic 2.

What remains to be proven is Characteristic 1: we need to prove that M1 is
Pareto undominated among truthful mechanisms. We begin by examining the
following table, which shows the social welfare (sum of agents’ utilities) for the
four possible true type combinations (listed as θrow, θcolumn).

True types o1 o2 o3 o4

a, a 2 4 3 3
a, a′ 5 4 6 3
a′, a 4 5 3 0
a′, a′ 7 5 6 0

Suppose that there exists a truthful mechanism, MD, that Pareto dominates
M1. Note that M1 delivers the highest payoff when both agents are of type a′.
Thus, MD(a′, a′) = o1. But this implies that MD(a, a′) and MD(a′, a) must
also equal o1: mapping them to the outcome that gives higher social welfare (in
the former case, o3, and in the latter, o2) is not truthful because the agent of
type a has incentive to report a′ and force o1. At the same time, mapping to
an outcome that is not o1 delivers less social welfare than M1. So, MD(a′, a′) =
MD(a′, a) = MD(a, a′) = o1. But if these three inputs map to o1, MD cannot
truthfully map revelations of (a, a) to any outcome other than o1, because some
agent will always want to deviate by reporting type a′, and force outcome o1.
Therefore MD = M1 and so M1 is undominated among truthful mechanisms.

��
The result above uses dominant strategies as the solution concept. Therefore,
the result implies possibility for weaker equilibrium notions as well, such as
Bayes-Nash equilibrium. Furthermore, this possibility for strict MOMs implies
possibility for Pareto MOMs.
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Definition 7. An anonymous mechanism selects an outcome based only on the
distribution of reported types, rather than based on the identities of the agents
who reported those types.

Definition 8. Let i and j be any two symmetric agents, θ be a true type, θ̂ be
a report, and x be some report of the n − 1 other agents. Then uθ

i (M(θ̂,x)) =
uθ

j(M(θ̂,x)) for all true types θ, all reports θ̂ and all other report vectors x.

The agents in our construction in the proof above are not symmetric. We may
ask whether MOMs exist for what can be considered the most common setting:
where agents are symmetric, the equilibrium concept is dominant strategies, the
mechanism is anonymous, and the objective is welfare maximization.

Proposition 7. There exist no dominant-strategy anonymous strict multi-agent
MOMs with the objective of social welfare maximization for symmetric agents.

Proof. By Proposition 1, we can restrict attention to settings with a single ma-
nipulable type. Call the type a, and let the best report of that type of an agent be
a′. Suppose mechanism M̂ satisfies Characteristic 2. By the revelation principle
it has a corresponding truthful mechanism M . We show that we can construct
a truthful mechanism MD that Pareto dominates M .

First, if a set of reports includes a type other than a or a′, we set MD to
simply mirror the action taken by M . Strategic implications for agents other
than types a and a′ are unaffected because for agents of those types, reporting
the true type was a dominant strategy under M̂ .

Let o be the outcome implemented by M when all agents report a, and let o′

be the outcome implemented by M when all agents report a′. Denote by ã any
combination of reports a and a′; observe that M(ã) = o′.

By Characteristic 2 we know that we get higher social welfare if agents of type
a—whose best manipulation is to report a′—cannot find the manipulation and
report a instead. Since agents are symmetric, this implies ua(o′) < ua(o). This
is akin to the Prisoner’s Dilemma: the dominant strategy of type a is to report
a′, but the outcome is worse for agents if they all report a′ rather than a.

Now we construct MD based on the payoff structure of agents of type a′.

– Case I: ua′
(o′) < ua′

(o). In this case we let MD map each ã to o. MD

Pareto dominates M .
– Case II: ua′

(o′) ≥ ua′
(o). In this case we let MD select o if all agents

report a, and o′ for any other ã. MD Pareto dominates M . Note that MD

is identical to M for all reports except the one where all agents report a.

While the impossibility results earlier in this paper were based on a violation
of Characteristic 2 of MOMs alone, here the impossibility comes from not being
able to satisfy Characteristics 1 and 2 together. ��
We use the strict MOM concept here rather than the Pareto MOM concept,
because we cannot assert that ua(o′) < ua(o) necessarily in the Pareto context.
Both our possibility results and this impossibility result have used the dominant



70 A. Othman and T. Sandholm

strategy solution concept. This implies the strongest possibility, but the weakest
impossibility. Here, our requirement for dominant strategy manipulability avoids
issues with degenerate special cases.

We can circumvent the above impossibility by moving to the affine welfare
objective. Note that for an anonymous mechanism, the outcome-specific mech-
anism utility function m(·) can depend only on the distribution of types, rather
than the identities of the agents reporting those types.

Proposition 8. There exist dominant-strategy anonymous multi-agent strict
MOMs with the objective of affine welfare maximization, even for symmetric
agents.

Proof. We provide a constructive proof with the same structure as Proposition 6,
but now let the payoff matrices be as follows (the left matrix is for type a and
the right matrix for type a′).

Report a′ a
a′ 2,2 1,1
a 1,1 0,0

Report a′ a
a′ 4,4 1,3
a 3,1 0,0

Let γi = 1 for all i, and let the mechanism’s additional payoff, m(·), be {0, 3, 3, 5}
for outcomes o1 through o4, respectively. Note that the row and column agents
are symmetric (the payoff matrices are symmetric) and that m(o2) = m(o3). The
dominant strategy is for every agent to report type a′. Therefore this mechanism
has truthful analogue M1, the mechanism that always chooses o1.

We now show that M1 is Pareto undominated among truthful mechanisms.
First, note that M1 maximizes the objective when both agents have type a′.
It can be shown that (using a construction akin to the last table in the proof
of Proposition 6) that due to agent incentives to deviate, any truthful mecha-
nism that would dominate M1 must map all reports to o1. Thus M1 is Pareto
undominated among truthful mechanisms.

The manipulation-optimality of the mechanism defined by the payoff matrices
above comes from noting that whenever agents of type a fail to report a′, affine
welfare is strictly higher. ��

3 Conclusions and Future Work

The strategic equivalence of manipulable and non-manipulable mechanisms—
captured by the revelation principle—does not mean that every manipulable
mechanism is automatically flawed. It is well-known that agents often fail to
play their optimal manipulations in mechanisms due to computational limita-
tions or various flavors of incompetence and cognitive biases. Yet it is difficult to
predict how such game-theoretically irrational agents will act (or which partic-
ular equilibrium, among many, each agent will play). We studied the notion of
manipulation-optimal mechanisms : mechanisms that are undominated by truth-
ful mechanisms when agents play fully rationally, and do better than any truth-
ful mechanism if any agent fails to play rationally in any way. This enables the
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mechanism designer to do better than the revelation principle would suggest,
and obviates the need to predict agents’ irrational behavior.

For the general setting, we showed that manipulation optimality is limited
to mechanisms that have at most one manipulable type per agent. We also
proved a host of other impossibility and possibility results for the existence of
manipulation-optimal mechanisms for a variety of settings and mechanism design
objectives. In particular, the possibility result for strict MOMs in the multi-agent
social welfare maximization setting was very surprising. However, the overall
impression was one of broad impossibility. Thus, our results suggest that in
many settings there is a “cost of manipulability”: implementing a manipulable
mechanism inherently exposes the designer to achieving an unnecessarily poor
result when agents do not perform optimally.

Manipulation-optimal mechanisms open an avenue for numerous forms of fu-
ture research. For one, it would be interesting to study manipulation optimality
under other objectives, such as notions of fairness. As another direction, we
plan to explore whether automated mechanism design [8] can be used to design
manipulation-optimal mechanisms. Given priors over types (and perhaps also
over behaviors), it may be possible to ignore incentive compatibility constraints
and design manipulable mechanisms that yield higher mechanism utility.
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Abstract. In this paper we study a large class of resource allocation problems
with an important complication, the utilization cost of a given resource is private
information of a profit maximizing agent. After reviewing the characterization of
the optimal bayesian mechanism, we study the informational cost introduced by
the presence of private information. Our main result is to provide an upper bound
for the ratio between the cost under asymmetric information and the cost of a
fully informed designer, which is independent of the combinatorial nature of the
problem and only depend on the statistical distribution of the resource costs. In
particular our bounds evaluates to 2 when the utilization cost’s distributions are
symmetric and unimodal and this is tight. We also show that this bound holds
for a variation of the Vickrey-Clark-Groves mechanism, which always achieves
an ex-post efficient allocation. Finally we point out implementation issues of the
considered mechanisms.

Keywords: Mechanism Design, Information Cost.
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1 Introduction

A wide class of problems of the form min{ctx|x ∈ Γ} have been analyzed in the liter-
ature and their applications to real world problems are vast. In this paper, we consider
such a class of problems with an important and realistic complication, the utilization
cost of a given resource xi is private information of a profit maximizing agent.

For example, let us consider a natural situation in supply chain management. A
large company needs to procure quantities Di of a given good for its various loca-
tions t1, . . . , tk. The good is produced at various locations s1 . . . , sl, each of them with
a maximum production capacity Qj . The delivery of the goods is done through a trans-
portation network in which each link has a cost that is publicly known. This problem,
when the production facilities are owned by the company, reduces to a standard mini-
mum cost flow through a network. If, however, the production facilities are owned by
private contractors, whose production cost is private information, there is an added layer
of difficulty to the problem. Now the company must design a mechanism to minimize
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expected procurement cost, subject to the feasibility constraints on the network, and
inducing contractors to reveal their costs in exchange of a profit.

The main contribution of this paper is to study the informational cost introduced by
the presence of private information. Such a consideration is important, because it lies at
the heart of an old economic question: To make or to buy? If this cost is small, the orga-
nizational cost of acquiring small producers may be high and not worth it. If big, such an
acquisition may turn out to be profitable for the company trying to procure goods or ser-
vices. Our main result is to provide an upper bound for the ratio between the cost under
asymmetric information and the cost of a fully informed designer. Specifically, we show
that for a large class of distributions, containing those that are symmetric and unimodal,
the expected cost of an optimal mechanism is at most twice the cost of an optimal so-
lution obtained by a fully informed planner. Neither this bound nor its tightness depend
on the combinatorial nature of the problem, but only on the statistical distribution of
private information. The latter bound holds for a variation of the Vickrey-Clark-Groves
(VCG) mechanism as well, and becomes significantly better in some special situations.

Related questions were studied by Bulow and Klemperer [2], who analyze the sub-
optimality, in terms of revenue, of VCG for a single unit auction. They show that one
extra bidder in a VCG format gives more revenue than the Myerson mechanism. Re-
cently, Aggarwal et al. [1] study the suboptimality, in terms of efficiency, of the My-
erson auction, showing that Θ(log k) extra bidders suffice to match the efficiency of a
VCG mechanism with k bidders, and generalize the result to multiunit auctions. Also,
Elkind et al. [4] establish bounds on the payments of the VCG and optimal mechanisms
in path auctions, and point out that these may differ significantly. Finally, Hartline and
Roughgarden [5] consider similar issues in the context of money burning mechanisms.

We also study the computational cost of calculating an optimal mechanism. We show
that such a problem is equivalent to performing parametric linear programming over the
set Γ , which is in general of exponential complexity, even if optimization over Γ is sim-
ple. For the important class of problems where the set Γ is a 0-1 polytope, however, we
give a simple algorithm with the same complexity of the original optimization problem
with complete information. For the other problems, we point out that a simple sam-
pling technique, which takes advantage of the owners’ risk neutrality, gives a random
mechanism yielding the same expected cost as the deterministic one.

The paper is organized as follows. In section 2 we quickly review the characterization
of the optimal bayesian (i.e., utilization costs are random variables) mechanism for the
whole class of problems with a linear cost function and a fixed constraint set. Our main
results concerning the informational cost are found in section 3, while the computational
considerations are discussed in section 4.

2 The Model

2.1 The Environment

We consider a setting in which scarce resources must be allocated to carry out a given
project. The cost of each resource may be public or private information. Depending on
the situation, the planner’s goal is to minimize her own expected cost, or the social cost
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of the project. To this end, she can design a mechanism where the owners with private
information have incentives to reveal their private information.

In our framework each resource a ∈ A is represented by a variable xa, and is asso-
ciated with a marginal cost of utilization ca. The set A is partitioned into two sets A1
and A2. Costs of resources a ∈ A1 are private, and thus ca is private information and
is distributed according to Fa, whose bounded support is the interval [ca, ca] ⊂ R+.
The distribution Fa is assumed to have a density fa which is continuous and strictly
positive in [ca, ca]. For simplicity we also assume that Fa(ca)/fa(ca) is nondecreasing
(satisfied among others by the family of logconcave distributions). Costs of resources
a ∈ A2 are public information and equal ca. Resources are scarce and subject to an ex-
ogenous feasibility constraint x ∈ Γ ⊆ R|A|, which we assume compact. Therefore, if
all costs ca, a ∈ A were known, the planner would solve min{cT x : x ∈ Γ}. However,
costs of resources in A1 are unknown and thus the planner must design a mechanism to
elicit this information in order to achieve her goal.

We now give a key property that holds in this environment. It states that if the cost
of a resource increases, the value of the corresponding variable, in a cost-minimizing
solution, does not increase. This intuitive and simple result turns out to be critical for
characterizing the optimal mechanism.

Lemma 1. Let x(c) = {xa(c)}a∈A be the minimum cost assignment in Γ for a cost
vector c. Then xa(·, c−a) is non-increasing for all a ∈ A.

Proof. Consider a cost vector c and let c′ be defined as c′e = ce for all e ∈ A−{a} and
c′a = ca+ε for some ε > 0. From the definition of x(c) we have that: cT x(c) ≤ cT x(c′)
and c′T x(c′) ≤ c′T x(c). Summing both terms we obtain (cT − c′T )[x(c)− x(c′)] ≤ 0
which is equivalent to xa(c) ≤ xa(c′). ��

As usual, if x ∈ Rn, x−i denotes the vector in which the i−th component is removed.
We also define: f(c) =

∏
a∈A1

fa(c), f−a(c) =
∏

e∈A1−{a} fa(c), C =
∏

a∈A1

[ca, ca],

C−a =
∏

e∈A1−{a}[ca, ca].

2.2 Mechanisms

In order to achieve her objectives, the planner designs a mechanism. In other words,
the planner chooses a message space Ma for each a ∈ A1, together with assignment
and payment rules. Given messages from resource owners, these rules determine the
amount of each resource used by the planner and the payment received by each owner.
Due to the revelation principle it is enough to set Ma = [ca, ca] and consider truthful
mechanisms.

Therefore, a mechanism is given by assignment rules {xa}a∈A, indicating how much
of resource a will be used, and a family of payment rules {ta}a∈A1 , indicating the
total payment to the owner of resource a ∈ A1. Naturally, these values depend on
the cost revelations of each owner, therefore xa : C −→ R and ta : C −→ R. Our
framework allows the payment received by the owner of resource a, given revelations
c, to be random. If this is the case, ta denotes the total expected payment to the owner
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of resource a ∈ A1. The payoff of the owner of resource a, with cost ca, when reporting
a cost c′a is given by:

Ua(ca, c′a) =
∫

C−a

[ta(c′a, c−a)− caxa(c′a, c−a)]f−a(c−a)dc−a. (1)

The payoff of a resource owner with cost ca is then:

Va(ca) = max
c′a∈Ca

Ua(ca, c′a). (2)

We must also consider mechanisms that give a positive utility to owners and satisfy the
feasibility constraints. We can thus give the following definition.

Definition 1. A mechanism (x, t) ≡ ({xa}a∈A, {ta}a∈A1) is feasible if and only if for
all cost realizations c the following hold:

(IC) Va(ca) = Ua(ca, ca) for all a ∈ A1,

(PC) Va(ca) ≥ 0 for all a ∈ A1,

(F) x(c) ∈ Γ .

The Optimal Bayesian Mechanism. With the previous definition, we can write the
problem of a cost-minimizing designer as

min

{∫
c∈C

(∑
a∈A1

ta(c) +
∑

a∈A2

caxa(c)

)
f(c)dc : (x, t) is feasible

}
. (3)

Using by now standard arguments introduced by Myerson [9] and extended among
others by Elkind et. al. [4] (see [10, Chapter 13] for a detailed treatment) we can char-
acterize the optimal Bayesian mechanism relying on Lemma 1. A proof can be found
in the full version of this paper. Indeed, the optimal mechanism can be written as the
solution to the following control problem

min
{xa(c)}a∈A

∫
c∈C

(∑
a∈A1

xa(c)
[
ca +

Fa(ca)
fa(ca)

]
+
∑

a∈A2

xa(c)ca

)
f(c)dc

s.t. x(c) ∈ Γ and νa(ca) non-increasing for all a ∈ A1.

Here, νa(ca) :=
∫

C−a
xa(ca, c−a)f−a(c−a)dc−a is the expected utilization of resource

a for a ∈ A1.
Because of Lemma 1, and the assumption that Fa(ca)/fa(ca) is increasing, we

can relax the constraint asking for νa(ca) non-increasing and solve the above prob-
lem pointwise to obtain a feasible solution. Therefore, we can characterize the optimal
mechanism.
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Proposition 1. The optimal assignment rules x̄(c) = {x̄a(c)}a∈A are those solving,
for each cost revelations {ca}a∈A1 , the following optimization problem:

min
y∈Γ

∑
a∈A1

(
ca +

Fa(ca)
fa(ca)

)
ya +

∑
a∈A2

caya,

and an optimal payment rule is given by t̄a(c) = cax̄a(c) +
∫ c̄a

ca
x̄a(t, c−a)dt. In

other words, x(c) is the minimum cost assignment in Γ with virtual costs c′a = ca +
Fa(ca)/fa(ca) for all a ∈ A1, and c′a = ca for all a ∈ A2.

The Truncated Vickrey-Clark-Groves Mechanism. On the other hand, a planner in-
terested in achieving ex-post efficiency may consider the standard VCG mechanism,
which solves, for every cost realization c, the problem min{ctx|x ∈ Γ} and assigns
according to the solution rule xV

a (c): It pays agent a ∈ A1, ta(c) = caxa(c) +
(
∑

b∈A cbx
−a
b (c)−∑b∈A cbxb(c)), where x−a(c) is a solution of min{ctx|x ∈ Γ, xa =

0}. It is well known that such a mechanism is incentive compatible, but can involve in-
finite costs. However, if the support of the cost distribution is known, payments can be
bounded without losing incentive compatibility (and thus efficiency). We denote such
a mechanism, with payments given by ta(c) = min{caxa(c) + (

∑
b∈A cbx

−a
b (c) −∑

b∈A cbxb(c)), c̄axa(c)}, the Truncated Vickrey-Clark-Groves (TVCG) mechanism.

3 Loss Due to Lack of Information

The presence of private information among resource owners increases the cost of per-
forming a given task. A natural problem, with relevant practical implications, is to quan-
tify the relationship between the cost under complete and incomplete information. The
former corresponds to a situation where the planner owns the different resources and the
technology needed for their production, therefore knowing exactly the production costs.
The latter corresponds to a decentralized situation, where the planner has outsourced the
production of necessary inputs, and therefore does not know precisely their production
costs. Since outsourcing can imply important savings in terms of managerial effort, it is
critical to know how much is a firm losing by spinning off some of its components, or
how much is a central planner losing by privatizing some key components of a planned
economy. Moreover, with incomplete information, a cost-minimizing planner does not
necessarily assign resources efficiently (since he considers modified costs), so we con-
sider the question of the expected cost of an efficient mechanism, the TVCG, and its
comparison to the cost-minimizing one and the fully informed solution.

Interestingly, both comparisons can be done independently of the combinatorial
structure of the problem (given by the set Γ ), and depend only on the nature of the
incomplete information (given by the distribution functions Fa). The critical lemma is
the following:

Lemma 2. If the distribution F , with F (a) = 0 and density f , satisfies that E(X |X ≤
y) ≥ y/α, where X is drawn according to F , then for [a, b] ⊂ R+ and g(·) a nonneg-
ative, non-increasing real-valued function defined on [a, b] we have:
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∫ b

a

g(c)F (c)dc ≤ (α− 1)
∫ b

a

g(c)cf(c)dc.

Proof. Let g(·) be any nonnegative non-increasing real-valued function and F be a dis-
tribution, with density f , satisfying the conditions in the proposition. Note that as g(·)
is monotone, it is differentiable almost everywhere [7], thus g′(c) ≤ 0 a.e., implying
that∫ b

a

g(c)(F (c) − (α− 1)cf(c))dc = g(b)
∫ b

a

(F (s)− (α− 1)sf(s))ds

−
∫ b

a

g′(c)
∫ c

a

(F (s)− (α− 1)sf(s))dsdc,

is nonpositive if
∫ y

a F (c)dc ≤ (α − 1)
∫ y

a cf(c)dc holds for all y ∈ [a, b]. This latter
condition is equivalent to E(X |X ≤ y) ≥ y/α, since integrating by parts∫ y

a

F (c)dc− (α− 1)
∫ y

a

cf(c)dc = yF (y)− α

∫ y

a

cf(c)dc,

which is nonpositive so long as E(X |X ≤ y) ≥ y/α. ��

3.1 Cost Loss Due to Lack of Information

We now turn compare the planner’s expected cost when using the cost-minimizing and
the TVCG mechanisms to that in case she had complete information. From the descrip-
tion in Section 2.2 (see full version for details), and noting that the worst type c̄a gets 0
rents in both the cost-minimizing and the TVCG mechanism, we can write the expected
cost of both mechanisms as:

CI = min
x(c)∈Γ

∫
c∈C

(∑
a∈A1

xa(c)
[
ca +

Fa(ca)
fa(ca)

]
+
∑

a∈A2

xa(c)ca

)
f(c)dc. (4)

CV CG =
∫ [∑

a∈A1

xV
a (c)

[
ca +

Fa(ca)
fa(ca)

]
+
∑

a∈A2

xV
a (c)ca

]
f(c)dc, (5)

On the other hand, when complete information is available to the planner, her cost is
given by:

CC = min
x(c)∈Γ

∑
a∈A1

∫
c∈C

caxa(c)f(c)dc +
∑

a∈A2

∫
c∈C

caxa(c)f(c)dc. (6)

Observe that if A1 = A, that is all costs are private information, and Fa is uniform in
[0, s] for all a ∈ A, the planner’s problem given by (4) is exactly the same as that in
(6) with the costs doubled. Therefore the planner’s expected cost in the optimal mech-
anism is twice as much as that in the complete information setting. Moreover, since the
assignment rules of TVCG coincide with the fully informed solution, in this setting the
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cost of the TVCG mechanism is also twice CI . In what follows, we extend this result to
a very general class of distribution functions, and prove that such a bound is also true
for the comparison between the TVCG (which in general has a higher cost than CC) and
the complete information mechanism.

With Lemma 2 at hand, the proof of the next result becomes remarkably simple. Its
full significance though, will be evident in the next section, once we establish that large
and natural classes of distributions satisfy the hypothesis.

Proposition 2. If for all a ∈ A1 the distribution Fa satisfies that E(X |X ≤ y) ≥ y/α,
where X is drawn according to Fa, then CI ≤ CV CG ≤ α · CC ≤ α · CI .

Proof. The first and last inequalities are direct since we first compare the optimal mech-
anism to TVCG, and the fully informed optimal solution to an optimal mechanism. For
the second one, we apply Lemma 2 to expression (5). Note that Lemma 2 holds even if
the function g(·) is not continuous, as it may be the case for xV (·), for instance, when
the underlying set Γ is polyhedral or discrete. Thus we can write:

CV CG =
∫ [∑

a∈A1

xV
a (c)

[
ca +

Fa(ca)
fa(ca)

]
+
∑

a∈A2

xV
a (c)ca

]
f(c)dc

≤ α

∫ ∑
a∈A

xV
a (c)caf(c)dc = αCC .

The last equality holds since TVCG assigns efficiently. ��

Note that the previous bound is related only to the distribution of private informa-
tion about costs, and not to the particular problem Γ being considered. As we already
pointed out, in any instance of a combinatorial problem defined by Γ , when all re-
sources are private and the information is distributed uniformly on [0, a], this bound is
tight, since for a E(X |X ≤ y) = y/2.

Observation. A natural question is whether there is a better bound for the comparison
between CI and CV CG than just CV CG ≤ α · CI . If such a bound holds true when we
consider the full information mechanism, is it possible to do better when considering
the optimal mechanism under incomplete information? The answer is no, as sometimes
the incomplete information planner has the same cost as the fully informed planner,
while the TVCG mechanism performs badly at a cost α · CC . Consider for example
the case where the planner must send one unit of flow between two nodes, in a two
link network. One of the links is public while the other is private, i.e., A1 = {a1},
A2 = {a2}, and Γ = {(xa1 , xa2) ≥ 0 : xa1 + xa2 = 1}. Consider {F (n)

a1 } a family
of symmetric and unimodal distributions for resource a1, and assume that their support
is the full interval [0, 1] and that F

(n)
a1 −→ δ1/2, where δ1/2 is the mass distribution

putting probability 1 to ca1 = 1/2. Assume also that ca2 = 1. Then, we have that

C(n)
V CG = 1, but C(n)

I −→ CC ≡ 1
2 , while the value of α for these distributions is, as we

will see next, 2. Therefore our bound is tight.
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r sy

F (x)

Fig. 1. For α = 2 the condition of Proposition 2 states that the area under the curve is at most
half of the gray area

3.2 Distributions

Having established that Proposition 2 holds independently of the combinatorial struc-
ture of the problem, the main question is thus to determine the distributions satisfying
the hypothesis, and how small their corresponding value of α is. Note first that the
proposition can be applied to densities which are non-decreasing with α = 2. There-
fore, for situations where agents are concentrated among “bad” providers, we can do as
well as in the case with a uniform distribution.

Let us give a geometric interpretation of the inequality E(X |X ≤ y) ≥ y/α, where
X is a random variable drawn according to a distribution F defined in an interval [r, s].
Writing down the expression and integrating by parts we note that the condition is
equivalent to

(α− 1)yF (y) ≥ α

∫ y

r

F (x)dx. (7)

Thus the condition states that for any y in [r, s] the area defined by the rectangle of
width y and height F (y) is at least a fraction α/(α − 1) of the area comprised under
the curve F (x) between r and y. Figure 1 depicts the situation.

With the intuition provided by the above interpretation we are able to find a number
of distributions for which Proposition 2 can be applied. A particularly relevant example
occurs when the distribution which is a minimum between m draws of a uniform dis-
tribution. Here, we capture a situation where providers have a try at m different tech-
nologies and select the best of them. Such an environment is biased towards “good”
providers through “natural selection”, but even in this case we can provide a tight upper
bound.

Proposition 3. Consider agents whose cost is given by the minimum of m draws
from a uniform distribution in [0, 1]. Their cost distribution is then given by
F (x) = 1− (1 − x)m, and it satisfies E(X |X ≤ Y ) ≥ Y/(m + 1).

Proof. Note first that, using condition 7, the inequality E(X |X ≤ y) ≥ y
m+1 is equiv-

alent to

max
y∈[0,1]

∫ y

0 (1− (1− s)m)ds

y(1− (1− y)m)
≤ m

m + 1
,

which in turn can be rewritten as y + (1− y)m+1 + my(1− y)m ≤ 1 for all y ∈ [0, 1].
Further cancelations lead to (1−y)m +my(1−y)m−1 ≤ 1 for all y ∈ [0, 1], and using
the change of variables s = 1−y, we obtain that G(s) = sm+mysm−1 ≤ 1 for all s ∈
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[0, 1]. Noting that G′(s) = msm−1 + m(m − 1)sm−2 −m2sm−1 = 0 implies s = 1,
and that G(0) = 0, G(1) = 1, the result follows. ��
Our result, as we show next, can also be applied to an important class of symmetric dis-
tributions, which in particular includes those that are symmetric and unimodal (SUD).
A distribution function is unimodal if it has a unique local maximum.

Proposition 4. Suppose that for all a ∈ A1 the distribution Fa with density fa has
support [0, 1], is symmetric, and satisfies Fa(y) ≤ yfa(y) for 0 ≤ y ≤ 1/2. Then we
have that CI ≤ CV CG ≤ 2 · CC .

Proof. Because of Proposition 2 we just need to show that if X is a random variable
drawn from a symmetric distribution F , whose density f has support [0, 1], and satisfies
F (y) ≤ yf(y) for 0 ≤ y ≤ 1/2, then E(X |X ≤ y) ≥ y/2. Using condition 7 this is
equivalent to showing

yF (y) ≥ 2
∫ y

0
F (x)dx for all y ∈ [0, 1].

Note first that the inequality holds for y = 0. Furthermore, we know that for all 0 ≤
y ≤ 1/2 we have 2F (y) ≤ (F (y) + yf(y)). The latter is equivalent to saying that the
derivative of the left hand side of the condition above is larger than the derivative of the
right hand side. Thus the condition holds for all y ∈ [0, 1/2].

Furthermore, note that F (y) ≤ y for all y ∈ [0, 1/2]. Indeed, by contradiction as-
sume that F (z) > z for some z ∈ [0, 1/2]. In this case let 1/2 ≥ z′ > z be a real
for which F (z′) ≥ z′ and such that F ′(z′) = f(z′) < 1 (which has to exist since
F (1/2) = 1/2). Now F (z′) ≥ z′ > z′f(z′) which is a contradiction. Using the sym-
metry of F , this implies that F (y) ≥ y for all y ∈ [1/2, 1].

Now, let y ∈ [1/2, 1] and observe that∫ y

0
F (x)dx =

∫ 1−y

0
F (x)dx +

∫ 1/2+(y−1/2)

1/2−(y−1/2)
F (x)dx.

Using that F (x) ≤ x for 0 ≤ x ≤ 1/2 to bound the first term and the symmetry of F
to evaluate the second, we can write:∫ y

0
F (x)dx ≤

∫ 1−y

0
xdx +

2y − 1
2

≤ (1− y)2

2
+

2y − 1
2

≤ y2/2.

Using again that F (y) ≥ y for all y ∈ [1/2, 1] we conclude that y2/2 ≤ yF (y)/2,
which completes the proof. ��
It is straightforward to extend the previous proposition to the case when the support of
the distributions Fa is an interval [r, s] with r ≥ 0 and still satisfy the conditions of the
proposition. If this is the case the bound becomes CI ≤ 2s

r+s · CC . The intuition behind
this result is natural. For instance, if r is very close to s, the cost under incomplete in-
formation approaches that of a fully informed planner. Also, if s = r + K , for constant
K , the bound also goes to one as r goes to infinity. This is because the amount of infor-
mation the planner ignores is irrelevant when compared to the total cost of the project.
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Furthermore, if the distributions Fa for all a ∈ A1 are symmetrical and unimodal, then
fa is nondecreasing in the interval [0, 1/2]. This implies that Fa(y) ≤ yfa(y) for all
y ∈ [0, 1/2]. Thus we have the following corollary.

Corollary 1. If Fa is SUD for all a ∈ A1, then CI ≤ 2 · CC . Moreover, if Fa is SUD on
[r, s] ⊂ R+ for all a ∈ A1, then CI ≤ 2s

r+s · CC .

Finally, observe that unfortunately, one cannot expect to obtain a general bound for any
class of distributions, and this is particularly bad in situations where most providers are
“good”. For some decreasing distributions, the bound becomes arbitrarily bad. Indeed,
consider the case where the planner must send one unit of flow from an origin to a
destination, in a two link network. One of the links is private information with cost
distribution proportional to f(c) = 1/(c + ε) in [0, 1], while the other is public and its
cost equals 1 (so Γ = {(x, y) ≥ 0 : x + y = 1} ). A simple calculation shows that

CI > 1/2 and CC = (ln(1 + 1/ε))−1 − ε.

Thus, the ratio can be made arbitrarily large for small enough ε.
Furthermore, even for symmetric distributions the ratio can be arbitrarily large.

To see this, consider a single good procurement auction with n sellers, i.e., Γ =
{(x1, . . . , xn) ≥ 0 :

∑n
i=1 xi = 1}, where each seller has a symmetric distribution

putting half of the mass at or close to 0, and half at or close to 1. In this situation CC

is approximately (1/2)n, while CI = CV CG is roughly (n + 1)/2n. The ratio grows to
infinity with n.

4 Computation and Implementation

In general, implementing TVCG is no harder than solving |A1| times the original prob-
lem min{cT x : x ∈ Γ}, with the additional constraint that xa = 0. In some situations
this latter problem can be solved even more efficiently [6]. The situation is different
for optimal mechanisms. In fact, to implement an optimal mechanism the planner must
compute the assignment and the payments only for a specific cost realization. Note that
this is simpler than computing the whole assignment and payment rules, which require
the assignment and payments for every cost realization.

Given a cost realization c, Proposition 1, states that the assignment can be computed
as min{c′T x : x ∈ Γ} for some virtual nonnegative cost vector c′. This problem is the
same as solving one instance of the complete information problem. However, to com-
pute the payments t̄a(c) = cax̄a(c)+

∫ c̄a

ca
x̄a(t, c−a)dt for a specific cost realization, in

principle one needs to compute x̄a(t, c−a) for all t ∈ [ca, c̄a]. That is we need to solve
|A1| parametric optimization problems of the form:

gi(θ) =
(

arg min
x∈Γ

(c + θei)T x

)
i

, (8)

where (·)i denotes the i−th component. The computational complexity of such a prob-
lem heavily depends on the structure of Γ and determines the complexity of computing
the optimal mechanism under incomplete information. We now analyze three cases.
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4.1 Case I: Parametric Optimization Is Easy

If the parametric optimization problem (8) can be solved in polynomial time, then the
whole mechanism can be computed in polynomial time as well. This includes the case
in which Γ is the set of all paths from a given source to a given sink, proved to be
computationally easy in [4,6].

Observe that a wider class of problem where parametric optimization turns out to be
efficient is when Γ = P ⊆ [0, 1]|A|, with P being an integral polytope. Of course a
special case of this is Γ = {x : Ax = 11, x ≥ 0}, with A totally unimodular. Shortest
s − t path is included in this class since it can be formulated imposing that the total
flow across every s − t cut equals one. Other problems in this class include minimum
spanning tree and minimum perfect matching.

Proposition 5. If Γ = P ⊆ [0, 1]|A|, with P an integral polytope, then (8) can be
computed in polynomial time, by solving exactly two linear programming problems
over P .

Proof. From Lemma1 gi(·) is non-increasing. Also, since Γ is a {0, 1} polytope we
conclude that gi(θ) is either 0 or 1, for all θ ≥ 0. Therefore, to fully determine gi(θ) (and
thus obtain the optimal mechanism), it suffices to compute θ∗ = max{θ : gi(θ) = 1}.

To this end we first compute

Z = min{(c + θei)T x : x ∈ Γ, xi = 0} = min{cT
−ix−i : (0, x−i) ∈ Γ}.

Analogously we compute

θ + Z ′ = min{(c + θei)T x : x ∈ Γ, xi = 1} = θ + min{cT
−ix−i : (1, x−i) ∈ Γ}.

Obtaining that θ∗ = Z ′ − Z . ��
Remark that the previous proposition can easily be extended to the case in which Γ
is an integral polytope in [0, K]|A| for fixed K , or even for K of polynomial size in
the input. in this case we would need to solve K linear programming problems over Γ .
Furthermore, even for general Γ but satisfying that the optimal solutions to minx∈Γ cT x
lie in {0, . . . , K}|A|, the optimal mechanism can be obtained by solving (K + 1)|A1|
such problems.

4.2 Case II: Optimization Is Easy but Parametric Optimization Is Hard

Even if optimizing over Γ is easy, the parametric optimization counterpart does not
need to be so. For instance, for parametric linear programming, i.e., Γ = {Ax =
b, x ≥ 0}, the function gi(θ) can attain exponentially (in |A| ) many different values
[8]. Additionally, even for more structured problems such as minimum cost flow, gi(θ)
can have a superpolynomial number of values [3].

However, since resource owners are risk-neutral, we can easily obtain a randomized
mechanism that is truthful and gives in expectation the same value, therefore it is also
optimal.
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Indeed, for a given a cost realization c, the assignment x̄(c) is computed exactly
as before (i.e., by solving min{c′T x : x ∈ Γ}), but the payments are computed using
randomization. The payments to the owner of resource a, is given by t̄a(c) = cax̄a(c)+
(c̄a − ca)x̄a(Y, c−a), where Y is a random variable uniformly distributed in [ca, c̄a]. In
expectation, which is all that matters to a risk-neutral resource owner, the latter payment
equals

cax̄a(c) + (c̄a − ca)
∫ c̄a

ca

x̄a(t, c−a) · 1
c̄a − ca

dt = cax̄a(c) +
∫ c̄a

ca

x̄a(t, c−a)dt,

and thus the mechanism is truthful and optimal. We conclude the following result.

Lemma 3. An optimal and truthful mechanism can be implemented by solving, for each
a ∈ A1, two problems of the form min{cT x : x ∈ Γ}.
Naturally the mechanism just described can be implemented in polynomial time so long
as the optimization problem over Γ can be solved in polynomial time. This enables
us to implement a desirable mechanism even if the parametric optimization 8 is hard.
However, this mechanism introduces high risk for the resource owners. To avoid this
issue we could simply take a larger number N of uniform samples Yi and compute
t̄a(c) = cax̄a(c)+(c̄a−ca)

∑N
i=1 x̄a(Yi, c−a)/N . With this the dispersion of payments

will be reduced, though the computational effort will increase with N , leading to a
tradeoff between risk and computational efficiency.

4.3 Case III: Optimization is Hard

We now study what happens when optimizing over Γ is NP-hard, which is the case
for a large number of combinatorial problems [11]. As one may expect, computing an
optimal mechanism in such a case is also hard, so we can turn to search for truthful
mechanism that are approximately optimal.

Suppose that we have an algorithm ALG for solving minx∈Γ cT x, with an approxi-
mation guarantee of β. That is an algorithm returning a solution whose cost is at most β
times the optimal cost. Suppose furthermore that ALG is monotone, that is the returned
solution xALG

a (ca, c−a) is decreasing in ca. Then the mechanism that for each cost re-
alization c assigns according to xALG(c) is truthful. Moreover the expected cost for the
planner of this mechanism is at most β · CI .
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Abstract. It is well-known that for several natural decision problems
no budget balanced Groves mechanisms exist. This has motivated recent
research on designing variants of feasible Groves mechanisms (termed as
‘redistribution of VCG (Vickrey-Clarke-Groves) payments’) that gener-
ate reduced deficit. With this in mind, we study sequential mechanisms
and consider optimal strategies that could reduce the deficit resulting un-
der the simultaneous mechanism. We show that such strategies exist for
the sequential pivotal mechanism of the well-known public project prob-
lem. We also exhibit an optimal strategy with the property that a max-
imal social welfare is generated when each player follows it. Finally, we
show that these strategies can be achieved by an implementation in Nash
equilibrium. All proofs can be found in the full version posted in Comput-
ing Research Repository (CoRR), http://arxiv.org/abs/0810.1383

1 Introduction

1.1 Motivation

Mechanism design is concerned with designing non-cooperative games in which
the participating rational players achieve the desired social outcome by report-
ing their types. Among the most commonly studied mechanisms are the ones
in the Groves family that are based on transfer payments (taxes). For the case
of efficient decision functions they are incentive compatible, i.e., they achieve
truth-telling in dominant strategies. The special case called pivotal mechanism
(sometimes also called VCG (Vickrey-Clarke-Groves) mechanism) is addition-
ally pay only (i.e., each player needs to pay a tax) and hence feasible (i.e., the
generated deficit is negative or zero).

It is well-known that for several problems incentive compatible mechanisms
cannot achieve budget balance (which states that the generated deficit is zero),
see, e.g., Chapter 23 of [14]. This has motivated recent research in designing
appropriate instances of Groves mechanisms that generate a reduced deficit (or
equivalently higher social welfare). These modifications are termed as ‘redistri-
bution of VCG payments’. In fact, they are variants of feasible Groves mech-
anisms. Notably, [3] and [9] showed that a deficit reduction is possible for the
case of Vickrey auctions concerned with multiple units of a single good. On the
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other hand, [1] recently showed that no such deficit reduction is possible in the
well-known case of the pivotal mechanism for the public project problem.

This research direction motivates our study of sequential Groves mechanisms,
in particular sequential pivotal mechanism, in which players move sequentially.
We face then a new situation since each player knows the types reported by the
previous players. Sequential Groves mechanisms apply to a realistic situation in
which there is no central authority that computes and imposes taxes and where
the players move in a randomly chosen order.

1.2 Contributions

We show here that natural strategies exist in the sequential pivotal mechanism
for the public project problem that generate larger social welfare than truth-
telling. We also exhibit a strategy such that the social welfare is maximized when
each player follows it. Finally, we show that the resulting sequential mechanisms
yield an implementation in Nash equilibrium. Moreover, the vector of the latter
strategies is also Pareto optimal.

To properly describe the nature of the introduced strategies we consider two
concepts. An optimal strategy guarantees a player the maximum utility under
the assumption that he moves simultaneously with the players who follow him.
It also guarantess the player at least the same utility as truth-telling, under the
assumption that the other players are truth-telling. In turn, a socially optimal
strategy yields the maximal social welfare among all optimal strategies.

These concepts allow us to analyze altruistic behaviour of the players in the
framework of sequential pivotal mechanism. By altruistic behaviour we mean
that the players do not only care about their own utility, but also about the
utility of the others.

1.3 Related Work

Ever since the seminal paper of [5] mechanism design for public goods has re-
ceived a huge attention in the literature. We mention here only some represen-
tative papers the results of which provide an appropriate background for our
work.

Both the continuous and discrete case of public goods have been studied. The
former situation has been in particular considered in [8], where a taxation scheme
has been proposed which leads to a Pareto optimal solution that can be realized
in a Nash equilibrium. Sequential mechanism design for public good problems
has been considered in [6], where a “Stackelberg” mechanism was proposed that
combines optimal Bayes strategies with dominant strategies.

Here we study the discrete case. The situation when the decision is binary
(whether to realize a public project or not) has been studied in [11], where bal-
anced but not incentive compatible sequential mechanisms have been proposed.
These mechanisms can be realized in an undominated Nash equilibrium and in
subgame perfect equilibrium. Many aspects of incentive compatible mechanisms
for public goods have been surveyed in [4].
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The consequences of sequentiality have also been studied in the context of
private contributions to public goods and in voting theory. In particular, [16] has
studied the behavior of players depending on the position in which they have
to take a decision and [7] has explored the relationship between simultaneous
and sequential voting games. More recently, [12] has studied the problem of
determining the winner in elections in which the voting takes place sequentially.

Our focus on maximizing social welfare is related to research on altruistic
behaviour of the player. This subject has been studied in a number of papers
in game theory, most recently in [13], where several references to earlier litera-
ture on this subject can be found. Finally, in a recent work, [2], we carried out
an analogous analysis for two feasible Groves mechanisms used for single item
auctions: the Vickrey auction and the Bailey-Cavallo mechanism.

1.4 Plan of the Paper

The paper is organized as follows. In the next section we recall Groves mech-
anisms and the pivotal mechanism by focusing on decision problems. Then, in
Section 3, we introduce sequential decision problems, in particular sequential
Groves mechanisms.

In the remaining sections we study the sequential pivotal mechanism for the
public project problem. In Section 4 we exhibit an optimal strategy that in a
limited sense simultaneously maximizes players’ final utilities and another op-
timal strategy that maximizes the social welfare among all vectors of optimal
strategies. Finally, in Section 5, we clarify the status of the optimal strategies in-
troduced in Section 4 by showing that their vector is a Nash equilibrium w.r.t. ap-
propriately defined preference relations on the strategy vectors, and by providing
a corresponding revelation-type result. We conclude by mentioning some open
problems in Section 6.

2 Preliminaries

We briefly recall the family of Groves mechanisms here. In this section we follow
[10]. Let D be a set of decisions, {1, . . ., n} be the set of players with n ≥ 2,
and for each player i let Θi be a set of his types and vi : D × Θi → R be his
(initial) utility function .

A decision rule is a function f : Θ→D, where Θ := Θ1 × · · · × Θn. It is
called efficient if for all θ ∈ Θ and d′ ∈ D

n∑
i=1

vi(f(θ), θi) ≥
n∑

i=1

vi(d′, θi).

We call the tuple (D, Θ1, . . ., Θn, v1, . . ., vn, f) a decision problem .
Recall that a direct mechanism is obtained by transforming the initial

decision problem (D, Θ1, . . ., Θn, v1, . . ., vn, f) as follows:

– the set of decisions is D × Rn,
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– the decision rule is a function (f, t) : Θ→D × Rn, where t : Θ→ Rn and
(f, t)(θ) := (f(θ), t(θ)),

– each final utility function for player i is a function ui : D×Rn×Θi → R
defined by ui(d, t1, . . ., tn, θi) := vi(d, θi) + ti.

We call then
∑n

i=1 ui((f, t)(θ), θi) the corresponding social welfare and refer
to t as the tax function .

A direct mechanism with tax function t is called

– (dominant strategy) incentive compatible if for all θ ∈ Θ, i ∈ {1, . . ., n}
and θ′i ∈ Θi

ui((f, t)(θi, θ−i), θi) ≥ ui((f, t)(θ′i, θ−i), θi),

– budget balanced if
∑n

i=1 ti(θ) = 0 for all θ,
– feasible if

∑n
i=1 ti(θ) ≤ 0 for all θ,

– pay only if ti(θ) ≤ 0 for all θ and all i ∈ {1, . . ., n}.
Each Groves mechanism is obtained by using the tax function t := (t1, . . ., tn),
where1 for all i ∈ {1, . . ., n}

ti(θ) :=
∑
j �=i

vj(f(θ), θj) + hi(θ−i),

with hi : Θ−i →R an arbitrary function.
Finally, we recall the following crucial result.

Groves Theorem. Consider a decision problem with an efficient decision rule
f . Then each Groves mechanism is incentive compatible.

A special case of Groves mechanism is the pivotal mechanism , which is a
pay only mechanism obtained by hi(θ−i) := −maxd∈D

∑
j �=i vj(d, θj).

Direct mechanisms for a given decision problem can be compared w.r.t. the
social welfare they entail. More precisely, given a decision problem

(D, Θ1, . . ., Θn, v1, . . ., vn, f)

and direct mechanisms (determined by the sequences of tax functions) t and t′

we say that t′ welfare dominates t if

– for all θ ∈ Θ
n∑

i=1

ui((f, t)(θ), θi) ≤
n∑

i=1

ui((f, t′)(θ), θi),

– for some θ ∈ Θ

n∑
i=1

ui((f, t)(θ), θi) <

n∑
i=1

ui((f, t′)(θ), θi).

In this paper we analyze the following well-known decision problem, originally
due to [5], and extensively discussed in the economic literature, see, e.g. [14,10].
1 Here and below

∑
j �=i is a shorthand for the summation over all j ∈ {1, . . ., n}, j �= i.
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Public project problem
Consider (D, Θ1, . . ., Θn, v1, . . ., vn, f), where

– D = {0, 1} (reflecting whether a project is cancelled or takes place),
– for all i ∈ {1, . . ., n}, Θi = [0, c], where c > 0,
– for all i ∈ {1, . . ., n}, vi(d, θi) := d(θi − c

n ),

– f(θ) :=
{

1 if
∑n

i=1 θi ≥ c
0 otherwise

In this setting c is the cost of the project, c
n is the cost share of the project for

each player, and θi is the value of the project for player i. Note that the decision
rule f is efficient since

∑n
i=1 vi(d, θi) = d(

∑n
i=1 θi − c).

It is well-known that for no n ≥ 2 and c > 0 an incentive compatible direct
mechanism for the public project problem exists that is budget balanced, see,
e.g. [14, page 861-862]. It is then natural to search for incentive compatible
direct mechanisms that generate a smaller deficit than the one obtained by
the pivotal mechanism. However, the following optimality result concerning the
pivotal mechanism, recently established in [1], dashed hope.

Theorem 1. In the public project problem there exists no feasible incentive com-
patible direct mechanism that welfare dominates the pivotal mechanism. �

Our aim is to show that when the original setting of the public project problem is
changed to one where all players announce their types sequentially in a random
order, then the deficit can be reduced.

3 Sequential Decision Problems

In this section we introduce sequential decision problems. For notational sim-
plicity, and without loss of generality, we assume that players sequentially report
their types in the order 1, . . ., n. To capture this type of situations, given a de-
cision problem D := (D, Θ1, . . ., Θn, v1, . . ., vn, f), we assume that successively
stages 1, . . ., n take place, where in stage i player i announces a type θ′i to the
other players. After stage n this yields a joint type θ′ := (θ′1, . . ., θ′n). Then each
player takes the decision d := f(θ′).

We call the resulting situation a sequential decision problem or more
specifically, a sequential version of D. Note that in a sequential decision prob-
lem a central planner may not exist and decisions may be taken by the players
themselves. Each player i knows the types announced by players 1, . . ., i − 1,
so that he can use this information to decide which type to announce. To prop-
erly describe this situation we need to specify what is a strategy in this setting.
A strategy of player i in the sequential version of D is a function

si : Θ1 × . . .×Θi →Θi.

In this context truth-telling , as a strategy, is represented by the projection
function πi(·), defined by πi(θ1, . . ., θi) := θi.
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From now on, we consider a direct mechanism

D := (D × Rn, Θ1, . . ., Θn, u1, . . ., un, (f, t))

and mainly focus on Groves mechanisms.
We assume that in the considered sequential decision problem each player

uses a strategy si(·) to select the type he will announce. We say that strategy
si(·) of player i is optimal in the sequential version of D if for all θ ∈ Θ and
θ′i ∈ Θi

ui((f, t)(si(θ1, . . ., θi), θ−i), θi) ≥ ui((f, t)(θ′i, θ−i), θi).

Call a strategy of player j memoryless if it does not depend on the types of
players 1, . . ., j − 1. Then a strategy si(·) of player i is optimal if for all θ ∈ Θ it
yields a best response to all joint strategies of players j �= i under the assumption
that players i + 1, . . ., n use memoryless strategies or move jointly with player
i. In particular, an optimal strategy is a best response to the truth-telling by
players j �= i.

A particular case of sequential decision problems are sequential Groves mech-
anisms. The following direct consequence of Groves Theorem provides us with a
simple method of determining whether a strategy is optimal in such a
mechanism.

Lemma 1. Let (D, Θ1, . . ., Θn, v1, . . ., vn, f) be a decision problem with efficient
decision rule f . Suppose that si(·) is a strategy for player i such that for all
θ ∈ Θ, f(si(θ1, . . ., θi), θ−i) = f(θi, θ−i). Then si(·) is optimal in each sequential
Groves mechanism (D × Rn, Θ1, . . ., Θn, u1, . . ., un, (f, t)). �

In particular, when the decision rule is efficient, the truth-telling strategy πi(·)
is optimal in each sequential Groves mechanism.

We are interested in maximizing the social welfare. This motivates the fol-
lowing notion. We say that strategy si(·) of player i is socially optimal in the
sequential version of D if it is optimal and for all optimal strategies s′i(·) of player
i and all θ ∈ Θ we have∑n

j=1 uj((f, t)(si(θ1, . . ., θi), θ−i), θj) ≥
∑n

j=1 uj((f, t)(s′i(θ1, . . ., θi), θ−i), θj).

Hence a socially optimal strategy of player i yields the maximal social welfare
among all optimal strategies, under the assumption that players i + 1, . . ., n use
memoryless strategies or move jointly.

Consider now a sequential version of a given direct mechanism

(D × Rn, Θ1, . . ., Θn, u1, . . ., un, (f, t))

and assume that each player i receives a type θi ∈ Θi and follows a strategy
si(·). The resulting social welfare is then

SW (θ, s(·)) :=
n∑

j=1

uj((f, t)([s(·), θ]), θj),
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where s(·) := (s1(·), . . ., sn(·)) and [s(·), θ] is defined inductively by [s(·), θ]1 :=
s1(θ1) and [s(·), θ]i+1 := si+1([s(·), θ]1, . . ., [s(·), θ]i, θi+1).

In general, if player i assumes that he moves jointly with players i + 1, . . ., n
he will choose an optimal strategy. And if additionally he wants to maximize the
social welfare, he will choose a socially optimal strategy (if it exists). In the next
section we shall see that for the public project problem a sequence of socially
optimal strategies can be found for which the resulting social welfare is always
maximal. In general, we only have the following limited result.

Lemma 2. Consider a direct mechanism (D×Rn, Θ1, . . ., Θn, u1, . . ., un, (f, t))
and let sn(·) be a socially optimal strategy for player n. Then

SW (θ, (s′−n(·), sn(·))) ≥ SW (θ, s′(·))
for all θ ∈ Θ and vectors s′(·) of optimal players’ strategies.

Proof. Directly by the definition of a socially optimal strategy. �

4 Public Project Problem

In what follows, we focus on the special case of sequential pivotal mechanisms
for the public project problem. First, the following theorem gives an optimal
strategy for player i that may differ from truth-telling. Part (ii) shows that,
under certain natural conditions, this strategy simultaneously maximizes the
final utility of every other player.

Theorem 2. Let D be a public project problem. Let

si(θ1, . . ., θi) :=

⎧⎪⎨⎪⎩
θi if

∑i
j=1 θj < c and i < n,

0 if
∑i

j=1 θj < c and i = n,
c if

∑i
j=1 θj ≥ c

be strategy for player i. Then

(i) si(·) is optimal for player i in the sequential pivotal mechanism,
(ii) for all θ ∈ Θ and θ′i ∈ Θi such that si(θ1, . . ., θi) �= θi and f(θ′i, θ−i) =

f(θi, θ−i) we have for all j �= i

uj((f, t)(si(θ1, . . ., θi), θ−i), θj) ≥ uj((f, t)(θ′i, θ−i), θj).

In part (ii) θ−i are the types submitted by players j �= i and θi is the type
received by player i. So part (ii) states that if strategy si(·) of player i deviates
from truth-telling (si(θ1, . . ., θi) �= θi) and the players who follow i use memo-
ryless strategies (so in particular, the types they submit do not depend on the
type submitted by player i), then player i simultaneously maximizes the final
utility of the other players (and hence the social welfare). This happens under
the assumption that player i submits a type that does not alter the decision to
be taken.
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Table 1. Pivotal mechanism

player type submitted type tax ui

A 110 110 −10 0
B 80 80 0 −20
C 110 110 −10 0

Table 2. Sequential pivotal mechanism

player type submitted type tax ui

A 110 110 0 10
B 80 80 0 −20
C 110 300 −10 0

When each player follows strategy si(·), always the same decision is taken as
when each player is truthful, independently on the players’ order. Additionally,
by part (ii) of Theorem 2 with θ′i = θi, social welfare weakly increases. The
following example shows that sometimes a strictly larger social welfare can be
achieved.

Example 1. Assume that c = 300 and that there are three players, A, B and C.
Table 1 illustrates the situation in the case of pivotal mechanism. In Table 2 we
assume that the players submit their types in the order A, B, C. Here the social
welfare increases from −20 to −10. �

However, as Table 2 shows, budget balance does not need to be achieved. The
following result shows that an order can always be found that yields budget
balancedness.

Theorem 3. Let D be a public project problem with the sequential pivotal mech-
anism. For all c > 0, n ≥ 2 and θ ∈ Θ there exists a permutation of players such
that when each player i follows strategy si(·) of Theorem 2, budget balance is
achieved.

Proof. (Sketch). Recall that in the pivotal mechanism, given the sequence of
types θ, a player i is called pivotal if ti(θ) �= 0. First we show that not all players
can be pivotal. Then we show that the desired permutation is the one in which
the last player is not pivotal. �

For instance, in Example 1 when the order is A, C, B or C, A, B, the decision
is taken with no taxes incurred, i.e., budget balance is then achieved.

In Theorem 2(ii) we seem to be maximizing the social welfare. However, this
is not the case because we assume there that each player submits a type that
does not alter the decision to be taken. In fact, strategy si(·) of Theorem 2 is
not socially optimal.

The following theorem provides a socially optimal strategy that in some cir-
cumstances yields a higher social welfare than the above strategy.
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Theorem 4. Let D be a public project problem. Let

si(θ1, . . ., θi) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θi if

∑i
j=1 θj < c and i < n,

0 if
∑i

j=1 θj < c and i = n,
0 if

∑i
j=1 θj = c, θi > c

n and i = n,
c otherwise

be a strategy for player i. Then

(i) si(·) is socially optimal for player i in the sequential pivotal mechanism,
(ii) for all θ ∈ Θ and vectors s′(·) of optimal players’ strategies,

SW (θ, s(·)) ≥ SW (θ, s′(·)),
where s(·) is the vector of strategies si(·).

The remarkable thing about the above strategy si(·) is that when
∑n

j=1 θj = c
and θn > c

n , player n submits type 0, as a result of which the project does not
take place. To illustrate this situation reconsider Example 1. When the play-
ers submit their types sequentially in order A, B, C following the above strat-
egy si(·), then player C submits 0. The resulting social welfare is 0 as opposed
to −10 which results when all players follow strategy si(·) of Theorem 2
(see Table 2). This also shows that the latter strategy is not socially optimal.

However, in general strategy si(·) of Theorem 4 does not need to ensure budget
balance.

Example 2. Suppose that there are three players, A, B, and C, whose true types
are 60, 70, and 250, respectively, while c remains 300. When the players submit
their types following strategy si(·) of Theorem 4, we get the situation summa-
rized in Table 3.

Table 3. Sequential pivotal mechanism

player type submitted type tax ui

A 60 60 0 −40
B 70 70 0 −30
C 250 300 −70 80

Here the same decision is taken as when each player is truthful and in both
situations the deficit is −70. �

On other other hand, part (ii) shows that when we limit ourselves to optimal
strategies and each player follows the introduced strategy si(·), then a maxi-
mal social welfare results. The restriction to the vectors of optimal strategies is
necessary. Indeed, Table 3 of Example 2 shows that when the order is A, B, C
and each player follows the strategy si(·) of Theorem 4, then the resulting social
welfare is 380−300−70 = 10. However, when player B submits 300, then player
C pays no tax and the resulting social welfare is higher, namely 380− 300 = 80.



94 K.R. Apt and A. Estévez-Fernández

5 Comments on a Nash Implementation

The sequential mechanisms here considered circumvent the limitations of the
customary, simultaneous, Groves mechanisms. This and the fact that we max-
imize social welfare by using strategies that deviate from truth-telling requires
some clarification. First of all, we can explain these sequential mechanisms by
turning them into simultaneous ones as follows.

We assume that each player i receives a type θi ∈ Θi and subsequently submits
a function ri : Θ1 × . . . × Θi−1 →Θi instead of a type θ′i ∈ Θi. (In particular,
player 1 submits a type, i.e., r1(·) ∈ Θ1.) The submissions are simultaneous. Then
the behaviour of player i can be described by a strategy si : Θ1 × . . .×Θi →Θi

which when applied to the received type θi yields the function si(·, θi) : Θ1×. . .×
Θi−1 →Θi that player i submits. Then θ and the vector s(·) := (s1(·), . . ., sn(·))
of strategies that the players follow yield an element [s(·), θ] of Θ, where, recall,
[s(·), θ]1 := s1(θ1) and [s(·), θ]i+1 := si+1([s(·), θ]1, . . ., [s(·), θ]i, θi+1).

Given a decision problemD := (D, Θ1, . . ., Θn, v1, . . ., vn, f) and two strategies
si(·) and s′i(·) of player i in the sequential version of D, we write

si(·) ≥d s′i(·) iff for all θ ∈ Θ
vi(f(si(θ1, . . ., θi), θ−i), θi) ≥ vi(f(s′i(θ1, . . ., θi), θ−i), θi).

We write si(·) >d s′i(·) if additionally one of these inequalities is strict, and we
write si(·) =d s′i(·) if all these inequalities are equalities.

Note that si(·) ≥d s′i(·) for all strategies s′i(·) of player i iff strategy si(·) of
player i is optimal in the sequential version of D.

Next, we define for all i ∈ {1, . . ., n} a preference relation !i on the vectors
of players’ strategies by writing

s(·) !i s′(·) iff si(·) >d s′i(·) or
(si(·) =d s′i(·) and
for all θ ∈ Θ, vi(f([s(·), θ]), θi) ≥ vi(f([s′(·), θ]), θi)).

We now say that a joint strategy s(·) is a Nash equilibrium in the sequential
version of D if for all i ∈ {1, . . ., n} and all strategies s′i(·) of player i we have

(si(·), s−i(·)) !i (s′i(·), s−i(·)).
The following result clarifies the status of the strategies introduced in Theorems
2 and 4.

Theorem 5. Let D be a public project problem.

(i) Each of the vectors s(·) of strategies defined in Theorems 2 and 4, respec-
tively, is a Nash equilibrium in the corresponding sequential version of the
pivotal mechanism.

(ii) The vector s(·) of Theorem 2 is Pareto optimal in the universe of opti-
mal strategies, in the sense that for all θ ∈ Θ the resulting social welfare
SW (θ, s(·)) is maximal among all vectors of optimal players’ strategies.
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This result shows that the improvement in terms of the maximization of the
social welfare over the Groves mechanism is achieved by weakening the imple-
mentation in dominant strategies (see Groves Theorem) to an implementation
in Nash equilibrium (in the universe of optimal strategies).

The above definition of the !i relation uses the >d relation to ensure that in
the definition of Nash equilibrium the deviations to non-optimal strategies are
trivially discarded. This ruling out of non-optimal strategies is necessary. Indeed,
when θi > c

n , with i < n, and
∑n

j=1 θj < c, then player’s i final utility increases
from 0 to θi − c

n when he deviates from any of the two strategies considered in
Theorem 5 to the strategy

si(θ1, . . ., θi) :=
{

0 if θi ≤ c
n

c otherwise.

Recall now that the well-known revelation principle (see, e.g., [15]) states that
every mechanism can be realized as a (simultaneous) direct mechanism in which
truth-telling is the optimal strategy. We now show that using any Nash equi-
librium (s1(·), . . ., sn(·)) of Theorem 5 we can construct a revelation-type si-
multaneous mechanism in which the vector (π1(·), . . ., πn(·)) of the projection
functions forms a Nash equilibrium. (Recall that the πi(·) function corresponds
in the sequential setting to truth-telling by player i.) This mechanism is con-
structed using the following preference relations !∗

i on the vectors of players’
strategies:

s′(·) !∗
i s′′(·) iff

(s1(·) ◦ s′1(·), . . ., sn(·) ◦ s′n(·)) !i (s1(·) ◦ s′′1(·), . . ., sn(·) ◦ s′′n(·)),
where strategy si(·) ◦ s′i(·) of player i is defined by

(si(·) ◦ s′i(·))(θ1, . . ., θi) := si(θ1, . . ., θi−1, s
′
i(θ1, . . ., θi)).

Theorem 6. Let D be a public project problem. The vector (π1(·), . . ., πn(·)) of
projection strategies is a Nash equilibrium in the corresponding sequential version
of the pivotal mechanism, where we use the preference relations !∗

1, . . .,!∗
n.

Proof. Note that for all j ∈ {1, . . ., n}, sj(·) ◦ πj(·) = sj(·). Then

(πi(·), π−i(·)) !∗
i (s′i(·), π−i(·)) iff (si(·), s−i(·)) !i (si(·) ◦ s′i(·), s−i(·)),

so the result holds by Theorem 5(i). �

6 Concluding Remarks

As already mentioned, no budget balanced Groves mechanisms exist for the
public project. We have investigated here to what extent the unavoidable deficit
can be reduced when players move sequentially. By focusing on socially optimal
strategies we have incorporated into our analysis altruistic behaviour of the
players.
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The results here established hold for the sequential pivotal mechanism. Some
of them, but not all, can be generalized to sequential Groves mechanisms. More
specifically, the strategies introduced in Theorems 2 and 4 are also optimal in
arbitrary sequential Groves mechanisms. The reason is the following observation.

Note 1. Fix an initial decision problem and consider two Groves mechanisms
(with tax functions) t and t′. A strategy of player i is optimal in the sequential
version of t iff it is optimal in the sequential version of t′.

How to generalize the remaining claims of Theorems 2 and 4 to other sequen-
tial Groves mechanisms remains an interesting open problem.
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Abstract. Since the pioneering paper of Rosenthal a lot of work has been done
in order to determine classes of games that admit a potential. First, we study
the existence of potential functions for weighted congestion games. Let C be an
arbitrary set of locally bounded functions and let G(C) be the set of weighted
congestion games with cost functions in C. We show that every weighted conges-
tion game G ∈ G(C) admits an exact potential if and only if C contains only affine
functions. We also give a similar characterization for weighted potentials with the
difference that here C consists either of affine functions or of certain exponential
functions. We finally extend our characterizations to weighted congestion games
with facility-dependent demands and elastic demands, respectively.

1 Introduction

In many situations, the state of a system is determined by a large number of indepen-
dent agents, each pursuing selfish goals optimizing an individual objective function. A
natural framework for analyzing such decentralized systems are noncooperative games.
It is well known that an equilibrium point in pure strategies (if it exists) need not opti-
mize the social welfare as individual incentives are not always compatible with social
objectives. Fundamental goals in algorithmic game theory are to decide whether a Nash
equilibrium in pure strategies (PNE for short) exists, how efficient it is in the worst case,
and how fast an algorithm (or protocol) converges to an equilibrium.

One of the most successful approaches in accomplishing these goals is the potential
function approach initiated by Rosenthal [24] and generalized by Monderer and Shapley
in [22]: one defines a function P on the set of possible strategies of the game and shows
that every strictly improving move by one defecting player strictly reduces (increases)
the value of P. Since the set of outcomes of such a game is finite, every sequence of
improving moves reaches a PNE. In particular, the global minimum (maximum) of P is
a PNE. A function P with the property above is called a potential function of the game.
If one can associate a weight wi to each player such that wi P decreases about the same
value as the private cost of the defecting player i, then P is called a weighted potential.
If, in addition, wi = 1 for each player, then P is called an exact potential.

1.1 Framework

The first part of this paper studies the existence of potential functions in weighted
congestion games (Definition 4). Congestion games, as introduced by Rosenthal [24],

M. Mavronicolas and V.G. Papadopoulou (Eds.): SAGT 2009, LNCS 5814, pp. 97–108, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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model the interaction of a finite set of strategic agents that compete over a finite set of
facilities. A pure strategy of each player is a set of facilities. We consider cost minimiza-
tion games. Here, the cost of facility f is given by a real-valued cost function c f that
depends on the number of players using f and the private cost of every player equals
the sum of the costs of the facilities in the strategy that she chooses.1 Rosenthal [24]
proved in a seminal paper that such congestion games always admit a PNE by showing
these games posses an exact potential function.

In a weighted congestion game, every player has a demand di ∈ R+ that she places
on the chosen facilities. The cost of a facility is a function of the total demand of the
facility. In contrast to unweighted congestion games, weighted congestion games, even
with two players, do not always admit a PNE, see the examples given by Fotakis et
al. [11], Goemans et al. [14], and Libman and Orda [18].

On the positive side, Fotakis et al. [11,12] proved that every weighted congestion
game with affine cost functions possesses an exact potential function and thus, a PNE.
Panagopoulou and Spirakis [23] proved existence of a weighted potential function for
the set of exponential cost functions.

The results of [11,12] and [23] are particularly appealing as they establish existence
of a potential function independent of the underlying game structure, that is, indepen-
dent of the underlying strategy set, demand vector, and number of players, respectively.
To further stress this independence property, we rephrase the result of Fotakis et al. as
follows: Let C be a set of affine cost functions and let G(C) be the set of all weighted
congestion games with cost functions in C. Then, every game in G(C) possesses an
exact potential.

A natural open question is to decide whether there are further functions guaranteeing
the existence of an exact or weighted potential. We thus investigate the following ques-
tion: How large is the class C of (continuous) cost functions such that every game in the
set of weighted congestion games G(C) with cost functions in C does admit a potential
function and hence a PNE?

Before we outline our results we present related work and explain, why it is important
to characterize weighted congestion games admitting a potential function.

1.2 Related Work

Fundamental issues in algorithmic game theory are the computability of Nash equilib-
ria and the design of distributed dynamics (for instance best-response) that provably
converge in reasonable time to a Nash equilibrium (in pure or mixed strategies).

Monderer and Shapley [22] formalized Rosenthal’s approach of using potential func-
tions to determine the existence of PNE. Furthermore, they show that one-side better
response dynamics always converge to a PNE provided the game is finite and admits
a potential. In addition, they proved that weighted potential games have other desir-
able properties, e.g., the Fictitious Play Process converges to a PNE [21]. For recent
progress on convergence towards approximate Nash equilibria using potential func-
tions, see Awerbuch et al. [4] and Fotakis et al. [10].

1 Since we allow the cost of a facility to be positive or negative, we also cover maximization
games.
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Fabrikant et al. [9] proved that one can efficiently compute a PNE for symmetric
network congestion games with nondecreasing cost functions. Their proof uses a po-
tential function argument, similar to Rosenthal [24]. Fotakis et al. [11] proved that one
can compute a PNE for weighted network games with affine cost (with nonnegative
coefficients) in pseudo-polynomial time (again using a potential function).

Milchtaich [20] introduced weighted congestion games with player-specific cost
functions. Among other results, he presented a game on 3 parallel links with 3 play-
ers, which does not possess a PNE. On the other hand, he proved that such games with
2 players do possess a PNE. Ackermann et al. [1] characterized conditions on the strat-
egy space in weighted congestion games that guarantee the existence of PNE. They also
considered the case of player-specific cost functions.

Gairing et al. [13] derive a potential function for the case of weighted congestion
games with player-specific linear latency functions (without a constant term). Mavroni-
colas et al. [19] prove that every unweighted congestion game with player-specific (ad-
ditive or multiplicative) constants on parallel links has an ordinal potential. Even-Dar et
al. [8] consider a variety of load balancing games with makespan objectives and prove
among other results that games on unrelated machines possess a generalized ordinal
potential function. For related results, see the survey by Vöcking [25] and references
therein.

Potential functions also play a central role in Shapley cost sharing games with
weighted players, which are special cases of weighted congestion games, see Anshele-
vich et al. [3] and Albers et al. [2]. In the variant with weighted players, each player i
has a demand di that she wishes to place on each facility of an allowable subset of fa-
cilities (e.g., a path in a network connecting her source node si to her terminal node
ti). When facility f ∈ F is stressed with a load of � f (x) in strategy profile x, it causes a
cost of k f (� f (x)). Under Shapley cost sharing, this cost is shared linearly with respect
to the demands among the users. Thus the cost of player i for using facility f is defined
as ci, f (x) = k f (� f (x))di/� f (x) and clearly, the private cost of player i in strategy profile
x is given as πi(x) =

∑
f∈xi

ci, f (x). For the unweighted case (di = 1, i ∈ N), Anshelevich
et al. [3] proved existence of PNE and derived bounds on the price of stability using
a potential function argument. This argument fails in general for games with weighted
players, see the counterexamples given by Chen and Roughgarden [5]. Determining
subclasses of Shapley cost sharing games with weighted players that admit a potential,
however, is an open problem that we address in this paper.

1.3 Our Results for Weighted Congestion Games

Our first two results provide a characterization of the existence of exact and weighted
potential functions for the set of weighted congestion games with locally bounded and
continuous cost functions, respectively. Let C be an arbitrary set of locally bounded
functions and let G(C) be the set of weighted congestion games with cost functions in
C. We show that every weighted congestion game G ∈ G(C) admits an exact potential if
and only if C contains only affine functions. For an arbitrary set C of continuous func-
tions, we show that every weighted congestion game G ∈ G(C) possesses a weighted
potential if and only if exactly one of the following cases hold: (i) C contains only affine
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functions; (ii) C contains only exponential functions such that c(�)= ac eφ�+bc for some
ac,bc,φ ∈ R, where ac and bc may depend on c, while φ must be equal for every c ∈ C.

We additionally show that the above characterizations for exact and weighted po-
tentials are valid even if we restrict the set G(C) to two-player games (three-player
games for weighted potentials), three-facility games (four-facility games for weighted
potentials), games with symmetric strategies, games with singleton strategies, games
with integral demands. Moreover, we derive a result for weighted congestion games
where each facility is contained in the strategy set of at most two players, showing
that every such game with cost functions in C admits a weighted potential if C =
{(c : R+→ R) : c(x) = a f (x)+b, a,b ∈ R}, where f : R+ → R is a strictly monotonic
function.

Our results have a series of consequences. First, using a result of Monderer and
Shapley [22, Lemma 2.10], our characterization of weighted potentials in weighted
congestion games carries over to the mixed extension of weighted congestion games.

Second, we obtain the following characterizations for Shapley cost sharing games.
Let K be a set of continuous functions. Then, the set S(K) of Shapley cost sharing
games with weighted players and construction cost functions in K are weighted po-
tential games if and only if K contains either quadratic construction cost functions
(k(�)= ak �

2+bk �) or functions of type k(�)= ak eφ� �+bk � for some ak,bk,φ ∈R, where
ak and bk may depend on k, while φ must be equal for every k ∈ K . Notice that these
results hold for arbitrary coefficients ak,bk,φ ∈R. Thus, we obtain the existence of PNE
for a family of games with nondecreasing and strictly concave construction costs mod-
eling the effect of economies of scale.

1.4 Our Results for Extended Models

In the second part of this paper, we introduce two non-trivial extensions of weighted
congestion games.

First, we study weighted congestion games with facility-dependent demands, that
is, the demand di, f of player i depends on the facility f . These games contain, among
others, scheduling games on identical, restricted, related and unrelated machines. In
contrast to classical load balancing games, we do not consider makespan objectives. In
our model, the private cost of a player is a function of the machine load multiplied with
the demand of the player.

We show the following: Let C be a set of continuous functions and let G f d(C) denote
the set of weighted congestion games with facility-dependent demands and cost func-
tions in C. Every G ∈ G f d(C) has a weighted potential if and only if C contains only
affine functions. In this case the weighted potential is an exact potential. To the best
of our knowledge, our characterization establishes for the first time the existence of an
exact potential function (and hence the existence of a PNE) for affine cost functions and
arbitrary strategy sets and demands, respectively.

Second, we study weighted congestion games with elastic demands. Here, each
player i is allowed to choose both a subset of the set of facilities and her demand di

out of a compact set Di ⊂ R+ of demands that are allowable for her. This congestion
model can be interpreted as a generalization of Cournot games [7], where multiple pro-
ducersstrategically determine quantities they will produce. The cost of a producer is
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given by her offered quantity multiplied with the market price, which is usually a de-
creasing function of the total quantity offered by all producers. Weighted congestion
games with elastic demands generalize Cournot games in the sense that there are mul-
tiple markets (facilities) and each player may offer her quantity on allowable subsets of
these markets.

Weighted congestion games with elastic demands have several more natural applica-
tions: they model, e.g., routing problems in the Internet, where each user wants to route
data along a path in the network and adjusts the injected data rate according to the level
of congestion in the network. Most mathematical models for routing and congestion
control rely on fractional routing, see Kelly [17] and Cole et al. [6]. In practice, how-
ever, routing protocols use single path routing, see, e.g., the current TCP/IP protocol.
Weighted congestion games with elastic demands model both congestion control and
unsplittable routing. Yet another application is that of Shapley cost sharing games with
players that may vary their requested demand.

Let Ge(C) be the set of weighted congestion games with elastic demands where each
player may chose her demand out of a compact space and where the cost of each facility
is determined by a function in C. Our main contribution is to show that all games G ∈
Ge(C) are weighted potential games if and only if C contains only affine functions. For
this important class of games, our result also establishes for the first time the existence
of PNE.

Proofs of our results can be found in [15]. In a follow up paper [16] we characterize
strong Nash equilibria for weighted congestion games with bottleneck objectives.

2 Preliminaries

Definition 1 (Finite game). A finite strategic game is a tuple G = (N,X,π) where N =
{1, . . . ,n} is the non-empty finite set of players, X =

�
i∈N Xi where Xi is the finite and

non-empty set of strategies of player i, and π : X → Rn is the combined private cost
function.

We will call an element x ∈ X a strategy profile. For S ⊂ N, −S denotes the comple-
mentary set of S , and we define for convenience of notation XS =

�
j∈S X j. Instead of

X−{i} we will write X−i, and with a slight abuse of notation we will write sometimes a
strategy profile as x = (xi, x−i) meaning that xi ∈ Xi and x−i ∈ X−i.

Definition 2 (Weighted potential game, exact potential game). A strategic game
G = (N,X,π) is called weighted potential game if there is a vector w = (wi)i∈N of pos-
itive weights and a real-valued function P : X → R such that πi(xi, x−i)− πi(yi, x−i) =
wi (P(xi, x−i)−P(yi, x−i)) for all players i ∈ N and for all x−i ∈ X−i and all xi,yi ∈ Xi.
The function P together with the vector w is then called a weighted potential of the
game G. The function P is called an exact potential if wi = 1 for all i ∈ N.

We sometimes call a weighted potential function P a (wi)i∈N-potential.
Monderer and Shapley [22, Theorem 2.8] have shown that one can characterize exact

potentials in a very convenient way. For this, let a finite strategic game G = (N,X,π) be
given. A path in X is a sequence γ = (x0, x1, . . . xm) with xk ∈ X, k = 0, . . . ,m, such that
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for all k ∈ {1, . . . ,m} there exists a unique player ik ∈ N such that xk = (xk
ik
, xk−1
−ik

) for some

xk
ik
� xk−1

ik
, xk

ik
∈ Xi. A path is called closed if x0 = xm and is called simple if xk � xl for

k � l. The length of a closed path is defined as the number of its distinct elements. For a
set of strategy profiles X let Γ(X) denote the set of all simple closed paths in X that have
length 4. For a finite path γ = (x0, x1, . . . , xm) let the discrete path integral of π along γ
be defined as I(γ,π) =

∑m
k=1

(
πik (xk)−πik(xk−1)

)
where ik is the deviator at step k in γ,

that is xk
ik
� xk−1

ik
.

Theorem 1 (Monderer and Shapley). Let G = (N,X,π) be a finite strategic game.
Then, G is an exact potential game if and only if I(γ,π) = 0 for all γ ∈ Γ(X).

In the following, we will use this characterization in order to study the existence of
potentials in weighted congestion games.

3 Weighted Congestion Games

Definition 3 (Congestion model). A tupleM = (N,F,X =
�

i∈N Xi, (c f ) f∈F) is called
a congestion model, where N = {1, . . . ,n} is a non-empty, finite set of players, F is a
non-empty, finite set of facilities, for each player i ∈ N, her collection of pure strategies
Xi is a non-empty, finite set of subsets of F and (c f ) f∈F is a set of cost functions.

In the following, we will define weighted congestion games similar to Goemans et
al. [14].

Definition 4 (Weighted congestion game). LetM = (N,F,X, (c f ) f∈F) be a congestion
model and (di)i∈N be a vector of demands di ∈R+. The corresponding weighted conges-
tion game is the strategic game G(M) = (N,X,π), where π is defined as π =

�
i∈N πi,

πi(x) =
∑

f∈xi
di c f
(
� f (x)

)
and � f (x) =

∑
j∈N: f∈x j

d j.

We call � f (x) the load on facility f in strategy x. In case there is no confusion on the
underlying congestion model, we will write G instead of G(M).

A slightly different class of games has been considered by (among others) Fotakis
et al. [11,12], Gairing et al. [13] and Mavronicolas et al. [19]. They considered games
that almost coincide with Definition 4 except that the private cost of every player is not
scaled by her demands. We call such games normalized if they comply with Definition 4
except that the private costs are defined as π̄i(x) =

∑
f∈xi

c f
(
� f (x)

)
for all i ∈ N.

Fotakis et al. [11] show that there are normalized weighted congestion games with
c f (�) = � for all f ∈ F that are not exact potential games. They also show that any nor-
malized weighted congestion game with linear costs on the facilities admits a weighted
potential.

We state the following trivial relations between weighted congestion games and nor-
malized weighted congestion games: Let G = (N,X,π) and Ḡ = (N,X, π̄) be a weighted
congestion game and a normalized weighted congestion game with demands (di)i∈N , re-
spectively. Moreover, let them share the same congestion model and the same demands.
Then G and Ḡ coincide in the following sense: (i) A strategy profile x ∈ X is a PNE in
G if and only if x is a PNE in Ḡ; (ii) A real-valued function P : X→ R is a (wi/di)i∈N-
potential for G if and only if P is a (wi)i∈N-potential for Ḡ; (iii) A real-valued function
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P : X→ R is an ordinal potential for G (see [22] for a definition) if and only if P is an
ordinal potential for Ḡ; (iv) The real-valued function P : X→ R is an exact potential for
G if and only if P is a (di)i∈N-potential for Ḡ; (v) The real-valued function P : X→ R is
an exact potential for Ḡ if and only if P is a (1/di)i∈N-potential for G. All proofs rely on
the simple observation that πi(x) = di π̄i(x) for all i ∈ N, x ∈ X.

3.1 Characterizing the Existence of an Exact Potential

In the following, we will examine necessary and sufficient conditions for a weighted
congestion game G to be a potential game. The criterion in Theorem 1 states that the
existence of an exact potential for G = (N,X,π) is equivalent to the fact that I(γ,π) = 0
for all γ ∈ Γ(X). In such paths, either one or two players deviate. It is easy to ver-
ify that I(γ,π) = 0 for all paths γ with only one deviating player. Considering a path
γ with two deviating players, say i and j, each of them uses two different strategies,
say xi,yi ∈ Xi and x j,y j ∈ X j. We denote by z−{i, j} ∈ X−{i, j} the strategy profile of all
players except i and j that remains constant in γ. Then, a generic path γ ∈ Γ(X) can
be written as γ = ((xi, x j,z−{i, j}), (yi, x j,z−{i, j}), (yi,y j,z−{i, j}), (xi,y j,z−{i, j}), (xi, x j,z−{i, j})).
The following lemma provides an explicit formula for the calculation of I(γ,π) for such
a path.

Lemma 1. Let M = (N,F,X, (c f ) f∈F) be a congestion model and G(M) a cor-
responding weighted congestion game with demands (di)i∈N. Moreover, let γ =
((xi, x j,z−{i, j}), (yi, x j,z−{i, j}), (yi,y j,z−{i, j})(xi,y j,z−{i, j}), (xi, x j,z−{i, j})) be an arbitrary
path in Γ(X) with two deviating players. Then,

I(γ,π) =
∑

f∈F1∪F11

(d j −di)c f (di+d j+ r f )−d jc f (d j+ r f )+dic f (di+ r f )

+
∑

f∈F3∪F9

(di−d j)c f (di+d j+ r f )−dic f (di+ r f )+d jc f (d j+ r f ),
(1)

where F1 = (xi \ yi) ∩ (x j \ y j), F3 = (xi \ yi)∩ (y j \ x j), F9 = (yi \ xi) ∩ (x j \ y j), and
F11 = (yi \ xi)∩ (y j \ x j).

Using Lemma 1, we can derive a sufficient condition on the existence of an exact po-
tential in a weighted congestion game.

Proposition 1. Let M = (N,F,X, (c f ) f∈F) be a congestion model and G(M) a corre-
sponding weighted congestion game with demands (di)i∈N. For each facility f ∈ F we
denote by N f = {i ∈ N : (∃xi ∈ Xi : f ∈ xi))} the set of players potentially using f , and
by R f

−{i, j} =
{∑

k∈P dk : P ⊆ N f \ {i, j}
}

the set of possible residual demands by all players

except i and j. If for all f ∈ F and all i, j ∈ N f it holds that

(d j−di)c f (di+d j+ r f )−d jc f (d j+ r f )+dic f (di+ r f ) = 0 ∀r f ∈ R f
−{i, j}, (2)

then G admits an exact potential.

It is a useful observation that we can write the condition of Proposition 1 as

c f (di+d j+ r f )− c f (d j+ r f )

di
=

c f (d j+ r f )− c f (di+ r f )

d j−di
(3)
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for all i, j ∈ N f and r f ∈ R f
−{i, j}. Thus, the difference quotients of c f between the points

di+ r f and d j+ r f as well as d j+ r f and di+d j+ r f must have the same value. It follows
easily that the above condition is satisfied if all demands are equal (this corresponds to
unweighted congestion games, see Rosenthal’s potential [24]). For arbitrary demands
(weighted congestion games) and affine cost functions, one can check that the above
condition is also satisfied, see the positive result of Fotakis et al. [11].

There is, however, an important question left: Are there non-affine cost functions that
give rise to an exact potential in all weighted congestion games? Under mild assump-
tions on feasible cost functions, we will give in Theorem 2 a negative answer to this
question. First, we derive the following lemma from Theorem 1.

Lemma 2. Let C be a set of functions and let G(C) be the set of all weighted congestion
games with cost functions in C. Every G ∈ G(C) has an exact potential if and only if for
all c ∈ C

(x− y)c(x+ y+ z)− xc(x+ z)+ yc(y+ z)= 0 (4)

for all x,y ∈ R+ and z ∈ R0
+.

We will now solve the functional equation (4) in order to characterize all cost functions
that guarantee an exact potential in all weighted congestion games. We require the fol-
lowing property: A function c : R+ → R is locally bounded, if for every compact set
K ⊂ R+, |c(x)| < MK for all x ∈ K and a constant MK ∈ R+ potentially depending on K.

Theorem 2. Let C be a set of locally bounded functions and let G(C) be the set of
weighted congestion games with cost functions in C. Then every G ∈ G(C) admits an
exact potential function if and only if C contains affine functions only, that is, every
c ∈ C can be written as c(�) = ac �+bc for some ac,bc ∈ R.

3.2 Characterizing the Existence of a Weighted Potential

Our next aim is to determine whether weaker notions of potential functions will enrich
the class of cost functions giving rise to a potential game. The idea of a weighted po-
tential allows a player specific scaling of the private cost πi by a strictly positive wi. It
is a useful observation that the existence of a weighted potential function is equivalent
to the existence of a strictly positive-valued vector w = (wi)i∈N such that the game Gw

with private costs π̄ :=
�

i∈N πi/wi has an exact potential.
Using this equivalent formulation and Theorem 1 it follows that the existence of an

exact potential function for the game Gw = (N,X, π̄) is equivalent to I(γ, π̄) = 0 for all
γ ∈ Γ(X) suggesting that Gw has an exact potential if and only if there are wi,wj ∈ R+
such that (

di

wi
− d j

wj

)

c f (di+d j+ r f ) =
di

wi
c f (di+ r f )− d j

wj
c f (d j+ r f )

for all i, j ∈ N and all r f ∈ R−i, j. In particular it is necessary that either c f (di+d j+ r f ) =
c f (d j+ r f ) = c f (di+ r f ) or the value α(di,d j) defined as

α(di,d j) =
wi

wj
=

di

d j
· c f (di+d j+ r f )− c f (di+ r f )

c f (di+d j+ r f )− c f (d j+ r f )
(5)

is strictly positive and independent of both f and r f .
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Lemma 3. Let C be a set of functions. LetG(C) be the set of weighted congestion games
with cost functions in C. Every G ∈ G(C) has a weighted potential if and only if for all
x,y ∈ R+ there exists an α(x,y) ∈ R+ such that

α(x,y) =
x
y
· c(x+ y+ z)− c(x+ z)

c(x+ y+ z)− c(y+ z)
(6)

for all z ∈ R0
+ and non-constant c ∈ C.

Although this condition seems to be similar to the functional equation (4) characterizing
the existence of an exact potential, it is not possible to proceed using differential equa-
tions as in the proof of Theorem 2. As α(x,y) need not be bounded it is not possible to
prove continuity and differentiability of c. Instead, we will use the discrete counterpart
of differential equations, that is, difference equations.

Theorem 3. Let C be a set of continuous functions. Let G(C) be the set of weighted
congestion games with cost functions in C. Then every G ∈ G(C) admits a weighted
potential if and only if exactly one of the following cases holds:

1. C contains only affine functions,
2. C contains only exponential functions c(�)= ac eφ�+bc for some ac,bc,φ ∈R, where

ac and bc may depend on c, while φ must be equal for every c ∈ C.

3.3 Implications of Our Characterizations

It is natural to ask whether these results remain valid if additional restrictions on the
set G(C) are made. A natural restriction is to assume that all players have an integral
demand. As we used infinitesimally small demands in the proof of Lemma 2, our results
for exact potentials do not apply directly to integer demands. With a slight variation of
the proof of Theorem 3 where only the case α(·, ·) = 1 is considered, however, we still
obtain the same result provided that C contains only continuous functions.

Another natural restriction on G(C) are games with symmetric sets of strategies or
games with a bounded number of players or facilities. Since the proofs of Lemma 2 and
3 and Theorems 2 and 3 rely on mild assumptions, we can strengthen our characteriza-
tions as follows.

Corollary 1. Let C be a set of continuous functions. Let G(C) be the set of weighted
congestion games with cost functions in C satisfying one or more of the following
properties

1. Each game G = (N,X,π) ∈ G(C) has two (three) players.
2. Each game G = (N,X,π) ∈ G(C) has three (five) facilities.
3. For each game G = (N,X,π) ∈ G(C) and each player i ∈ N the set of her strategies

Xi contains a single facility only.
4. Each game G = (N,X,π) ∈ G(C) has symmetric strategies, that is Xi = X j for all

i, j ∈ N.
5. In each game G = (N,X,π) ∈ G(C) the demands of all players are integral.
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Then, every G = (N,X,π) ∈ G(C) has an exact (a weighted) potential if and only if C
contains only affine functions (only affine functions or only exponential functions as in
Theorem 3).

Yet, we are able to deduce an interesting result concerning the existence of weighted
potentials in weighted congestion games where each facility can be chosen by at most
two players. As we can set z = 0 in (6), the conditions of Lemma 3 are fulfilled by more
than affine or exponential functions.

Theorem 4. Let m(x) be a strictly monotonic function and Cm = {am(x)+b : a,b ∈ R}.
Let G2(Cm) be the set of games such that cost functions are in Cm and every facility
is contained in the set of strategies of at most two players. Then, every G ∈ G2(Cm)
possesses a weighted potential.

This result generalizes a result of Anshelevich et al. in [3], who showed that a weighted
congestion game with two players and c f (�) = b f /� for a constant b f ∈ R+ has a poten-
tial. Moreover, this result shows that the characterization of Corollary 1 is tight in the
sense that weighted congestion games with two players admit a weighted potential even
if cost functions are neither affine nor exponential.

4 Extensions of the Model

In the last section, we developed a new technique to characterize the set of functions
that give rise to a potential in weighted congestion games. In this section, we will intro-
duce two generalizations of weighted congestion games and investigate the set of cost
functions that assure the existence of potential functions.

Definition 5 (Weighted congestion game with facility-dependent demands). Let
M= (N,F,X, (c f ) f∈F) be a congestion model and let

(
di, f

)

i∈N, f∈F
be a matrix of facility-

dependent demands. The corresponding weighted congestion game with facility-
dependent demands is the strategic game G(M) = (N,X,u), where u is defined as
u =
�

i∈N πi, πi(x) =
∑

f∈xi
di, f c f

(
� f (x)

)
and � f (x) =

∑
j∈N: f∈x j

d j, f .

Restricting the strategy sets to singletons, we obtain scheduling games. In a scheduling
game, players are jobs that have machine-dependent demands and can be scheduled on
a set of admissible machines (restricted scheduling on unrelated machines). In contrast
to the classical approach, where each job strives to minimize its makespan, we consider
a different private cost function: Machines charge a price per unit given by a load-
dependent cost function c f and each job minimizes its cost defined as the price of the
chosen machine multiplied with its machine-dependent demand.

Theorem 5. Let C be a set of continuous functions and let G f d(C) be the set of
weighted congestion games with facility-dependent demands and cost functions in
C. Then, every G ∈ G f d(C) admits a weighted potential if and only if C contains
only affine functions, that is, every c ∈ C can be written as c(�) = ac � + bc for some
ac,bc ∈ R. For a game G with affine cost functions, the potential function is given by
P(x) =

∑
i∈N
∑

f∈xi
c f

(∑
j∈{1,...,i}: f∈x j

d j, f

)
di, f .
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We will now introduce an extension to weighted congestion games allowing players to
also choose their demand.

Definition 6 (Weighted congestion game with elastic demands). Let M =

(N,F,X, (c f ) f∈F) be a congestion model. Together with D =
�

i∈N Di, where Di ⊂ R+
are compact for all i ∈ N, we define the weighted congestion game with elastic de-
mands as the strategic game G(M) = (N, X̄,π) with X̄ := (X,D), π =

�
i∈N πi, and

πi(x̄) =
∑

f∈xi
dic f
(
� f (x̄)

)
and � f (x̄) =

∑
j∈N: f∈x j

d j.

In our definition of weighted congestion games with elastic demands, we explicitly
allow for positive and negative, and for increasing and decreasing cost functions. Thus,
an increase in the demand may increase or decrease the player’s private cost. Note that
in weighted congestion games with elastic demands, the strategy sets are topological
spaces and are in general infinite. By restricting the sets Di to singletons Di = {di}, i ∈ N,
we obtain weighted congestion games as a special case of weighted congestion games
with elastic demands. The proof of the following result is similar to the case of facility-
dependent demands.

Theorem 6. Let C be a set of continuous functions and let Ge(C) be the set of weighted
congestion games with elastic demands and cost functions in C. Then, eve-ry G ∈ Ge(C)
admits a weighted potential function if and only if C contains only affine functions.
For a game G with affine cost functions, the potential function is given by P(x̄) =
∑

i∈N
∑

f∈xi
c f

(∑
j∈{1,...,i}: f∈x j

d j

)
di.

As an immediate consequence, we obtain the existence of a PNE if cost functions are
affine. Note that the existence of a potential is not sufficient for proving existence of a
PNE as we are considering infinite games. However, as X̄ is compact and P is continu-
ous, P has a minimum x̄∗ ∈ X̄ and x̄∗ is a PNE.

Corollary 2. Let C be a set of affine functions and let Ge(C) be the set of weighted
congestion games with elastic demands and cost functions in C. Then every G ∈ Ge(C)
admits a PNE.
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15. Harks, T., Klimm, M., Möhring, R.H.: Characterizing the existence of potential functions in
weighted congestion games. Technical Report 11, COGA, TU Berlin (2009)
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Abstract. This paper studies a setting where a principal needs to mo-
tivate teams of agents whose efforts lead to an outcome that stochas-
tically depends on the combination of agents’ actions, which are not
directly observable by the principal. In [1] we suggest and study a basic
“combinatorial agency” model for this setting. In this paper we expose
a somewhat surprising phenomenon found in this setting: cases where
the principal can gain by asking agents to reduce their effort level, even
when this increased effort comes for free. This phenomenon cannot occur
in a setting where the principal can observe the agents’ actions, but we
show that it can occur in the hidden-actions setting. We prove that for
the family of technologies that exhibit “increasing returns to scale” this
phenomenon cannot happen, and that in some sense this is a maximal
family of technologies for which the phenomenon cannot occur. Finally,
we relate our results to a basic question in production design in firms.

1 Introduction

Background: Combinatorial Agency
The well studied principal-agent problem deals with how a “principal” can moti-
vate a rational “agent” to exert costly effort towards the welfare of the principal.
The difficulty in this model is that the agent’s action (i.e. whether he exerts ef-
fort or not) is unobservable by the principal and only the final outcome, which is
probabilistic and also influenced by other factors, is observable. “Unobservable”
here is meant in a wide sense that includes “not precisely measurable”, “costly
to determine”, or “non-contractible” (meaning that it can not be upheld in “a
court of law”). This problem is well studied in many contexts in classical eco-
nomic theory and we refer the reader to introductory texts on economic theory
for background (e.g. [11] Chapter 14). The solution is based on the observation
that a properly designed contract, in which the payments are contingent upon
the final outcome, can influence a rational agent to exert the required effort.

In [1] we initiated a general study of handling combinations of agents rather
than a single agent. While much work was previously done on motivating teams
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of agents [8,13,9,3], our emphasis in [1] was on dealing with the complex combi-
natorial structure of dependencies between agents’ actions.

In the general model presented in [1], each of n agents has a set of possible
actions, the combination of actions by the players results in some outcome, where
this happens probabilistically. The main part of the specification of a problem
in this model is a function that specifies this distribution for each n-tuple of
agents’ actions (“the technology”). Additionally, the problem specifies the prin-
cipal’s utility for each possible outcome, and for each agent, the agent’s cost for
each possible action. The principal motivates the agents by offering to each of
them a contract that specifies a payment for each possible outcome of the whole
project, with the goal of maximizing his expected net utility. Key here is that
the actions of the players are non-observable and thus the contract cannot make
the payments directly contingent on the actions of the players, but rather only
on the outcome of the whole project.

Given a set of contracts, the agents will each optimize his own utility; i.e.,
will choose the action that maximizes his expected payment minus the cost of
the action. Since the outcome depends on the actions of all players together, the
agents are put in a game here and are assumed to reach a Nash Equilibrium (NE).
The principal’s problem is that of designing the optimal contract: i.e. the vector
of contracts to the different agents that induce an equilibrium that will optimize
his expected utility from the outcome minus his expected total payment.

We refer the reader to our earlier paper [1] for further motivation and details.
Several other papers study different issues in the combinatorial agency model.
Mixed strategies were studied in [2], while [6] studied random audits. In this
paper we deal with a rather surprising (to us) phenomena that we have discovered
in this model: the possible advantage of “throwing away” some free agents’ effort
(effort increase with no increase in cost).

Our Results
We focus on the case of two possible outcomes (“binary outcome”): either the
project succeeds (generating value v to the principal) or fails (value 0). We
generalize the model of [1] and allow for more than two actions for each agent.
In this multiple-actions setting it is natural to assume that each agent has a
linear order over his actions that corresponds to the actions’ cost, and that more
effort (according to the linear order) does not decrease the project’s probability
of success. An agent wastes free labor if he plays an action for which there exists
another action with the same cost and is better according the linear order (as the
project’s success probability can increase with no increase in the agent’s cost).
A contract wastes free labor if at least one of the agents plays an action that
wastes free labor. Is it possible that the principal’s optimal contract will waste
free labor? In the observable-actions case the principal can never gain by such a
waste. Somewhat surprisingly, in the hidden-actions case we are able to present
an example for which the principal can gain by wasting free-labor (Section 3).
The fundamental reason for that is that free labor increases free riding, and
reduces the motivation of other agents to exert effort.
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To measure the principal’s loss from using free labor we define the Price of
Free-Labor (POFL). POFL is defined to be the worse ratio (over all values v)
between the principal’s utility in the optimal contract and the best contract that
must use all free labor (Section 4). Our goal is to characterize technologies for
which free labor is never wasted. We show that for technologies that exhibit
“increasing returns to scale (IRS)”, free labor is never wasted (Section 5). Infor-
mally, the IRS property ensures that an increase in effort of all agents but one
increases the marginal contribution of that agent due to an increase in his effort.
An example for such a technology is the AND technology in which agents are
perfect complements, each agent has a sub-task and the project succeeds only
if all agents succeed in their sub-tasks. Thus, the IRS condition is sufficient to
ensure that free labor is not wasted. Is it also necessary? It is easy to construct
arbitrary technologies that do not exhibit IRS yet do not waste free labor.1

Therefore we focus on a natural and large family of technologies: “structured
technologies”, and aim to prove a complementary result for a natural form of
free labor in that family.

In a “structured technology” each agent has a sub-task to perform and the
project’s success is a deterministic Boolean function of the set of successful
sub-tasks. The success of a sub-task executed by an agent is determined inde-
pendently and stochastically as a function of his effort. If he exert no effort he
bears no cost and the success probability is low, while if he exerts effort the cost
is positive and the success probability is higher. Free labor is introduced by the
principal’s ability to remove agents altogether. Suppose that a given technology
function specifies the underlying technological feasibility, but now the range of
possible technologies that the principal can apriori choose among is given by the
sub-technologies of the given one. I.e. the principal can apriori choose a subset of
the agents and completely removing the others – in which case all the subtasks
of the removed agents will surely fail.2 Removed agents as well as agents that
do not exert effort bear no cost. If an agent supply some positive success prob-
ability for his sub-task without any effort then removing the agent corresponds
to a waste of free labor.

We ask the following question: for which technology functions a waste of free
labor will never occur (independent of the exact parameters of the agents’ success
probabilities in their sub-tasks) ? We show that any structured technology will
waste free labor for some choice of parameters, with a single exception: for the
AND function, with any choice of parameters, free labor should always be used.

Finally, we draw a connection between this phenomenon and the much dis-
cussed question of process-based (PB) vs. function-based (FB) division of la-
bor [10,12,14]: Suppose that a firm produces a product (task) that is composed
of two parts (sub-tasks): A and B. Two workers (agents) A1 and A2 can each
perform a sub-task of type A and two other workers B1 and B2 can each per-
form a sub-task of type B. One can consider two natural ways of organizing the
production in the firm:
1 Actually, if each action has a different cost this holds trivially.
2 One could assign different costs to the different sub-technologies, but we just look

at the simplest question without any associated costs.
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– Function based: Two “divisions”, each consisting of one agent of each type.
The project succeeds if at least one division is successful. The success here
can be represented by (A1 AND B1) OR (A2 AND B2).

– Process based: Two “divisions”, each consisting of two agents of the same
type. In this case there is an “A division” (with A1, A2) and a “B division”
(with B1, B2). The success here can be represented by (A1 OR A2) AND
(B1 or B2).

Notice that the process-based organization is superior in terms of probability of
success: the function-based alternative simply discards the possibility of success
due to (A1 AND B2) OR (A2 AND B1). Yet, our results show that in an
agent-based setting with hidden actions, the function-based approach may still
be superior due to lower level of possible free-riding. We discuss the connection
to the issue of free labor at Section 7. This result seems to be in line with the
main intuitive reasons for choosing function-based organization (see [14]).

Due to lack of space we defer all proofs to the full version of the paper (which
can be found on the authors’ web sites).

2 Model and Preliminaries

Our main interest is in the simple “binary action, binary outcome” scenario
where each agent has two possible actions (”exert effort” or ”shirk”) and there
are two possible outcomes (”failure”, ”success”). In order to study phenomena
in this setting, we will need to work within a more general model in which agents
have general actions, but the outcome is still binary. This falls within the general
framework of [1], and generalizes the “binary action” sub-model.

A principal employs a set of agents N of size n. Each agent i ∈ N has a possible
set of actions Ai, and a cost (effort) ci(ai) ≥ 0 for each possible action ai ∈ Ai

(ci : Ai → 
+). The actions of all players determine, in a probabilistic way, a
“contractible” outcome, o ∈ {0, 1}, where the outcomes 0 and 1 denote project
failure and success, respectively (binary-outcome). The outcome is determined
according to a success function t : A1 × . . . × An → [0, 1], where t(a1, . . . , an)
denotes the probability of project success where players play with the action
profile a = (a1, . . . , an) ∈ A1 × . . . × An = A. We use the notation (t, c(·)) to
denote a technology (a success function and a cost function for each agent).

The principal’s value of a successful project is given by a scalar v > 0, where
he gains no value from a project failure. The idea is that the actions of the
players are unobservable, but the final outcome o is observed by him and others,
and he may design enforceable contracts based on this outcome. We assume that
the principal can pay the agents but not fine them (known as the limited liability
constraint). The contract to agent i is thus given by a scalar value pi ≥ 0 that
denotes the payment that i gets in case of project success. If the project fails,
the agent gets no money.

Given this setting, the agents have been put in a game, where the utility
of agent i under the profile of actions a = (a1, . . . , an) is given by
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ui(a) = pi · t(a) − ci(ai). As usual, we denote by a−i ∈ A−i the (n − 1)-
dimensional vector of the actions of all agents excluding agent i. i.e., a−i =
(a1, . . . , ai−1, ai+1, . . . , an). The agents will be assumed to reach Nash equilib-
rium, if such an equilibrium exists. The principal’s likes to design the contracts
pi as to maximize his own expected utility u(a, v) = t(a) · (v −∑i∈N pi), where
the actions a1, . . . , an are at Nash-equilibrium. In the case of multiple Nash equi-
libria, in our model we let the principal choose the desired one, and “suggest” it
to the agents, thus focusing on the “best” Nash equilibrium.3

As we wish to concentrate on motivating agents, rather than on the coordina-
tion between agents, we assume that more effort by an agent always leads to a
better probability of success. Formally, we assume that the actions of each agent
are ordered according to the amount of effort, i.e. for any i there is a linear order
#i on Ai that is consistent with the costs, ai #i a′

i ⇒ ci(ai) ≥ ci(a′
i), and the

success function t is monotone non-decreasing, ∀i ∈ N, ∀a−i ∈ A−i we have that
ai #i a′

i ⇒ t(ai, a−i) ≥ t(a′
i, a−i). We also assume that t(a) > 0 for any a ∈ A.

We denote ai !i a′
i if ai #i a′

i or ai = a′
i.

We start with the characterization of Nash equilibrium in this setting.

Observation 1. The profile of actions a ∈ A is a Nash equilibrium4 under the
payments (p1, p2, . . . , pn) (agent i is paid pi ≥ 0 if the project succeeds and 0 if
not) if and only if for any agent i ∈ N the payment pi satisfies5

maxa′
i≺iai

ci(ai)− ci(a′
i)

ti(ai, a−i)− ti(a′
i, a−i)

≤ pi ≤ mina′
i�iai

ci(a′
i)− ci(ai)

ti(a′
i, a−i)− ti(ai, a−i)

Moreover, to get the lowest cost payments that induce a ∈ A as a Nash equi-
librium, the lower bound weak inequality must hold as equality.

Given the technology and the value v of the principal from a successful project,
the principal’s goal is to maximize his utility, i.e. to determine a profile of actions
a ∈ A, which gives the highest utility u(a, v) in equilibrium, as calculated above.
We call a profile of actions a ∈ A that maximizes the principal’s utility for the
value v, an optimal contract for v. A simple but crucial observation, generalizing
a similar one in [1], shows that the optimal contract exhibits some monotonicity
properties in the value.

3 A variant, which is similar in spirit to “strong implementation” in mechanism design,
and discussed here, would be to take the worst Nash equilibrium, or even, stronger
yet, to require that only a single equilibrium exists.

4 Note that, unlike in the Boolean action case studied in [1], it is possible that some
profile of actions cannot be a Nash equilibrium with any payments, as no payments
satisfy all these conditions.

5 If t is not strictly monotone, it might be that for some a′
i it holds that ti(ai, a−i) =

ti(a′
i, a−i). In this case for a ∈ A to be a NE, it must be the case that ci(a′

i) ≥ ci(ai).
In this case we interpret the above conditions as follows. The upper bound inequality
holds for any pi ≥ 0 (as ci(a′

i) ≥ ci(ai) for any a′
i �i ai). The lower bound inequality

holds if for a′
i ≺i ai, ci(a′

i) = ci(ai).
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Lemma 1. (Monotonicity lemma): For any technology (t, c(·)) the expected
utility of the principal at the optimal contracts, the success probability of the op-
timal contracts, and the expected payment of the optimal contract, are all mono-
tonically non-decreasing with the principal’s value v.

A similar lemma also holds in the observable-actions case, and is also showed
there.

The principal can determine the action profile played by the agents in equi-
librium by changing the agents’ contracts (payment in case of success). As the
value of v increases, the principal may change the profile of actions obtained at
the equilibrium. It turn out that it is helpful to look at values v in which there
is a change in the contracted action profile, and we call such points (values)
“transition points”.

Definition 1. v ∈ 
+ is a transition point for technology (t, c(·)) if for any
ε1 > 0 and ε2 > 0, the set of optimal contracts for the value v − ε1 is different
from the set of optimal contracts for the value v + ε2.

Some of the results in this paper will be related to success functions for which
the marginal contribution of any agent is non-decreasing in the effort of the
other agents, we say that in such a case the function exhibits increasing returns
to scale. Formally, for two action profiles a, b ∈ A we denote b ! a if for all j,
bj !j aj .

Definition 2. A technology success function t exhibits (weakly) increasing re-
turns to scale (IRS) if for every i, and every b ! a

ti(bi, b−i)− ti(ai, b−i) ≥ ti(bi, a−i)− ti(ai, a−i)

If a technology success function exhibits IRS we also say that the technology
exhibits IRS.

2.1 Structured Technology Functions

Much of our focus will be on technology functions whose structure can be de-
scribed easily as being derived from independent agent sub-tasks – called struc-
tured technology functions. This subclass will first give us some natural examples
of technology functions, and will also provide a succinct and natural way to rep-
resent technology success functions.

In a structured technology function, each individual succeeds or fails in his
own “sub-task” independently. The project’s success or failure deterministically
depends, maybe in a complex way, on the set of successful sub-tasks. Thus we
will assume a monotone Boolean function f : {0, 1}n → {0, 1} which denotes
whether the project succeeds as a function of the success of the n agents’ tasks.

A model with a structured technology success function is a special case of the
binary-outcome, binary-action model [1]. In this model, the action space of each
agent has two possible actions: 0 (shirk) and 1 (exert effort). The cost of shirking
is 0, while the cost of exerting effort is ci > 0.
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Fig. 1. Graphical representations of (a) AND and (b) OR technologies

A structure technology function t is defined by t(a1, . . . , an) being the prob-
ability that f(x1, . . . , xn) = 1 where the bits x1, . . . , xn are chosen according to
the following distribution: if ai = 0 then xi = 1 with probability γi ∈ [0, 1) (and
xi = 0 with probability 1− γi); otherwise, i.e. if ai = 1, then xi = 1 with proba-
bility δi > γi (and xi = 0 with probability 1− δi). We denote x = (x1, . . . , xn).

The question of the representation of the technology function is now reduced
to that of representing the underlying monotone Boolean function f . In the most
general case, the function f can be given by a general monotone Boolean circuit.
An especially natural sub-class of functions in the structured technologies setting
would be functions that can be represented as a read-once network – a graph
with a given source and sink, where every edge is labeled by a different player.
The project succeeds if the edges that belong to player’s whose task succeeded
form a path between the source and the sink6.

A few simple examples should be in order here:

1. The ”AND” technology: f(x1, . . . , xn) is the logical conjunction of xi (f(x) =∧
i∈N xi). Thus the project succeeds only if all agents succeed in their tasks.

This is shown graphically as a read-once network in Figure 1(a).
2. The ”OR” technology: f(x1, . . . , xn) is the logical disjunction of xi (f(x) =∨

i∈N xi). Thus the project succeeds if at least one of the agents succeed in
their tasks. This is shown graphically as a read-once network in Figure 1(b).

3. The ”Or-of-Ands” (OOA) technology: f(x1, . . . , xn) is the logical disjunction
of conjunctions. Thus the project succeeds if in at least one clause all agents
succeed in their tasks. This is shown graphically as a read-once network in
Figure 2(a) The simplest case is the one in which there are nc clauses, each
of length nl; n = nc · nl (thus f(x) =

∨nc

j=1(
∧nl

k=1 xj
k)).

4. The ”And-of-Ors” (AOO) technology: f(x1, . . . , xn) is the logical conjunc-
tion of disjunctions. Thus the project succeeds if at least one agent from
each disjunctive-form-clause succeeds in his tasks. This is shown graphically
as a read-once network in Figure 2(b) The simplest case is the one in which
there are nc clauses of equal length nl (thus f(x) =

∧nl

j=1(
∨nc

k=1 xj
k)).

6 One may view this representation as directly corresponding to the project of deliv-
ering a message from the source to the sink in a real network of computers, with the
edges being controlled by selfish agents.
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Fig. 2. Graphical representations of (a) OOA and (b) AOO technologies

A success function t is called anonymous if it is symmetric with respect to the
players. I.e. t(a1, . . . , an) depends only on

∑
i ai. A technology (t, c) is anonymous

if t is anonymous and the cost c is identical to all agents (there exists a c such
that for any agent i, ci = c). Of the examples presented above, if we assume that
the cost c is identical to all agents and that there exists a γ such that for any
agent i, γi = 1 − δi = γ, then the AND and OR technologies are anonymous
(while for nl, nc ≥ 2, the AOO and OOA technologies are not anonymous).

2.2 Sub-technologies

The model of structured technologies (from [1]) presented above assumes that
the technology function is exogenously given. In this paper we wish to ask how
would the principal choose the technology function, had he had control over it.
Obviously, this question is not interesting in its unrestricted form since the prin-
cipal will always choose a technology in which all agents succeed with probability
1 with no cost. Yet, this question turns out to be interesting under reasonable
restrictions, and it also connected to the issue of free labor. In this paper we
suggest to study the ”removal” model in which the principal is allowed to re-
move an agent, thus ensuring he will certainly fail in his sub-task (instead of
succeeding with low probability γi). It seems natural to assume that if an agent
is removed his cost of action is still 0.

In the “removal” model, we formally introduce the possibility of removing an
agent as follows. We change the set of actions of any agent i to be Ai = {∅, 0, 1},
with 1 #i 0 #i ∅. The additional ∅ action is the action for which the agent does
not participate (“removed”), and has 0 cost. If agent i is removed (ai = ∅ and
the cost to i is 0) his task will always fail, that is, xi = 1 with probability 0. By
removing the set of agents S the principal essentially fixes xi = 0 for any i ∈ S,
and this creates a restricted Boolean function f |S=0 on the bits of the rest of
the agents (Sc). We call such a restricted function a sub-technology.

In terms of the graphical representation as a read-once network as in Figures 1,
this simply means that we allow the principal to erase, ex-ante, some of the
edges. Equivalently, originally, choosing the right subset of agents to contract
with was determining which agent i succeeds with probability δi, where the
others succeeded with probability γi. Now, the principal can decide, within the
group of non-contracted agents, a group that succeed with probability 0 rather
than γi.
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Note that by not removing an agent (and not contracting with him) the
principal essentially get some “free labor” as with the same cost of 0 he get an
increase in success probability. Observe that this model introduces free labor
only for the lowest cost (0 cost) actions. This is so as for any strictly monotonic
technology, it is impossible to induce Nash equilibrium in which an agent chooses
a non-zero cost action that wastes his free labor (By Observation 1 if a ∈ A is
a Nash Equilibrium under p, and a′

i #i ai with ti(a′
i, a−i) > ti(ai, a−i) then it

must be the case that ci(a′
i) > ci(ai).)

3 Free-Labor Might Be Costly: An Example

For the ”removal” model the following example demonstrates that the principal
might be better off not using all free labor. It shows that for some OR technology
with two agents, for some values the principal is better off removing one agent
(discarding his free labor) and contracting with the other.

Example 1. Consider an anonymous OR technology with two agents (n = 2),
c = 1 and γ = 1− δ = 0.2. The optimal contract is obtained when the principal
contracts with no agent for 0 ≤ v ≤ 3.65..., with one agent for 3.65... ≤ v ≤
118.75, and with both agents for v ≥ 118.75. However, if we allow the principal
to ex-ante remove agents from the network, then, for example, when v = 4,
the principal obtains a utility of more than 1.867 if the other agent does not
participate, compared to a utility of 1.61, if the other agent does participate. It
turns out that for 3.04... ≤ v ≤ 118.75, the optimal contract is achieved when
the principal contracts with a single agent and removes the second one.

Obviously, this example strikes us as counter-intuitive because there is unutilized
“free-labor” – the principal prefers that the second agent will not participate
despite the fact that he increases the probability of success with no additional
cost. Yet, free labor increases free riding which results with a lower utility for
the principal overall.

We note that the phenomena of costly free labor has also been identified in
work on selfish routing [5,7] and in hiring teams with no hidden-actions [4].

In what follows, we will formally define the concept of free-labor and study
technologies in which free labor is always used and technologies in which it does
not.

4 The Price of Free-Labor (POFL)

We next like to define a measure of the loss to the principal due to not be able
to discard free labor. We begin by formally defining the meaning of wasting free
labor.

Recall that our focus here is on motivating agents, rather than on the co-
ordination between agents, thus, we are only interested in (weakly) monotone
success functions. That is:

∀i ∈ N, ∀a−i ∈ A−i ai #i a′
i ⇒ t(ai, a−i) ≥ t(a′

i, a−i)
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Definition 3. For a given agent i, action ai ∈ Ai wastes free-labor if there
exists an action a′

i ∈ Ai, such that a′
i #i ai while c(a′

i) = c(ai).

Note that if ai wastes free labor then it is possible to (weakly) improve the
project success by moving to a′

i with no increase in cost. The contract a ∈ A
wastes free labor if for some agent i, action ai wastes free-labor. The two action
profiles a′ ∈ A and a ∈ A correspond to the same costs if for any agent i,
c(a′

i) = c(ai).

Definition 4. Given a technology (t, c(·)) with agents’ action spaces A1, . . . , An,
the sub-technology that utilizes all free-labor is the technology (t, c(·)) with agents’
action spaces A′

1, . . . , A
′
n, obtained by restricting the action space for each agent

i to the set of actions that does not waste free labor, that is
A′

i = {ai ∈ Ai|ai does not waste free-labor}.
The sub-technology that utilizes all free-labor restricts each agent to actions that
do no waste free-labor. In the particular case of structured technologies with the
“removal” model, this means that no agent is ever removed.

We are now ready to define the measure on the damage to the principal if he
is restricted to the sub-technology that utilizes all free-labor.

Definition 5. The price of free-labor POFL(t, c(·)) of a technology (t, c(·)) is
defined as the ratio between the principal’s utility under the optimal contract, and
the principal’s utility under the optimal contract in the case that he is restricted
to the sub-technology that utilizes all free-labor.

Formally, for a given value v, let a∗(v) ∈ A1 × . . . × An = A be an optimal
contract for v in A, and let e∗(v) ∈ A′

1 × . . .× A′
n = A′ be an optimal contract

for v in the sub-technology that utilizes all free-labor (with action spaces A′ as
defined in Definition 4). The price of free-labor is defined to be

POFL(t, c(·)) = Supv>0
u(a∗(v), v)
u(e∗(v), v)

By definition we need to find the supremum over a continuum of values. Yet, we
are able to show that the POFL is obtained at one of finitely many important
points, the transition points between optimal contracts.

Lemma 2. For any technology (t, c(·)) with finite action spaces (|Ai| < ∞ for
all i ∈ N) the price of free-labor is obtained at a transition point (of either the
original technology or the sub-technology with no waste of free-labor).

Note that the lemma implies that the POFL is obtained, and that it is obtained
at a finite positive value.

5 Technologies with Trivial POFL

In this section we consider general technologies and identify a set of technologies
for which the POFL is 1, and no free-labor is ever wasted. We need one additional
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technical condition. A cost function ci : Ai → 
+ has finite image if there exists
a number K < ∞ such that |Image(ci)| < K. This means that there are only
finitely different possible costs for all the actions7. A technology (t, c(·)) has finite
cost image if for any i ∈ N , the cost function ci(·) has a finite image.

Theorem 1. For any technology (t, c(·)) that exhibits IRS and has finite image,
the price of free-labor is 1. That is, for any value v, there exists an optimal
contract (out of A) that does not waste any free labor.

The theorem presents a family of technologies for which the price of free-labor
is trivial. A natural question is at what extend this family is maximal. In the
next section we show that for structured technologies it is maximal in a sense.
Specifically, we show that for any function that is not AND (which ensures IRS),
there are parameters such that the price is not trivial.

6 Sub-technologies: Only AND Ensures Trivial POFL

In the previous section we have seen that technologies that exhibit IRS have
trivial POFL. It is easy to show that AND technology exhibits IRS (even in the
“removal” model).

Observation 2. The AND technology exhibits IRS.

From Theorem 1 we derive the following corollary.

Corollary 1. The price of free-labor for AND technology in the “removal”
model is trivial (1).

For the “removal” model we can actually present a weaker condition than IRS
that ensures that there exists an optimal contract that is non-excluding (all
agents participate, none removed). The new condition requires that for any agent
i, the increase in success probability when he changes his action from shirking to
exerting effort, (weakly) increases when all removed agents are added (becoming
participating agents). This condition (which is formally defined and discussed
at the full version of the paper) is sufficient to ensure the existence of an opti-
mal contract that is non-excluding. Which structured technologies satisfy this
condition? A technology is determined by the Boolean success function and the
parameters of the agents. We are interested in finding with functions ensures
that the technology has trivial POFL for any choice of agents’ parameters.

We show that the AND function is the only monotone function which ensures
that POFL is trivial, out of all technologies that are based on a Boolean function.
That is, given any monotone Boolean function that is not an AND function,
there exist values for γi and δi such that the POFL is greater than 1. This is a
result of the fact that any non-AND function has an OR function “embedded” in
it, and for OR, by Example 1, there exists a constant ζ > 1 such that POFL > ζ.

7 The actions space Ai may still be infinite.
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Lemma 3. Let f : {0, 1}n → {0, 1} for n ≥ 2 be a monotone Boolean function
that is not constant and not a conjunction of some subset of the input bits.
Then there exists an assignment to all but two of the bits such that the restricted
function is a disjunction of the two bits.

Finally we present the main result of this section, showing that the AND func-
tion is the only function that ensures trivial POFL.

Corollary 2. Let f be any monotone Boolean function that is not constant and
not a conjunction of some subset of the input bits (an AND function). Then
there exists a set of parameters {γi, δi}i∈N such that the POFL of the structured
technology with the above parameters (and identical cost c = 1) is greater than
ζ, for some constant ζ > 1.

7 Process-Based vs. Function-Based Technologies

We now present another natural example that may be viewed as having implica-
tions on the controversy of process-based (PB) versus function-based (FB) team
formation approaches [10,14]. In the PB approach, each member of the team is
in charge of a different stage in the production process of a single product, and
the product is successfully produced only if all stages have succeeded in at least
one team. In contrast, an FB team accommodates agents who all work on the
same stage of the production process, and the product is successfully produced
if there was at least one successful agent in each stage.

The PB and FB approaches can be represented by the OOA and AOO net-
works, respectively. Clearly, in the FB approach the product will be produced
with higher probability (since in the PB approach, a failure of a single stage
determines a failure of his team’s product). However, in the hidden-actions case
the principal sometimes favor PB teams due to the high level of free-riding in
FB teams, as demonstrated in the following example.

Example 2. Consider the network demonstrated in Figure 3, where the middle
edge connects the middle points of the upper and lower paths, and has a success
probability of η. Both the OAA and the AOO networks with nl = 2 and nc = 2
are special cases of this network with η = 0 and η = 1, respectively.

Fig. 3. A network that exhibits Braess-like paradox. As μ changes from 0 to 1, the
network moves from Process-Based to Function-Based (and from OOA to AOO).
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Clearly, the probability that a message sent from node s reaches node t is
better when η = 1; namely, in the AOO network. This implies that for sufficiently
large value of v, AOO is better for the principal. Nevertheless, due to the high
level of free-riding in the AOO network compared to OOA, there exist values
for which the optimal contract under the OOA network achieves a better utility
than the AOO network. For example, in the case that for all i, γi = 1− δi = 0.2,
ci = 1, and v = 110, the optimal contract in the AOO network is to contract
with one agent from each OR-component, which yields utility of 74.17..., while
in the OOA network, the optimal utility level is 75.59.., which is achieved when
contracting with all four agents.

One can think of the edge that succeeds with probability η as an edge that is
controlled by an agent with cost of 0 to supply both η = 0 and η = 1. Our
example above can be viewed as showing that the principal is better off wasting
the free labor of that agent as for the presented paraments he prefers that agent
to take the action with η = 0 (although the agent can supply η = 1 with no
additional cost) as it decreases free riding by the other agents.
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Abstract. A key question in cooperative game theory is that of coalitional sta-
bility, usually captured by the notion of the core—the set of outcomes such that
no subgroup of players has an incentive to deviate. However, some coalitional
games have empty cores, and any outcome in such a game is unstable.

In this paper, we investigate the possibility of stabilizing a coalitional game by
using external payments. We consider a scenario where an external party, which
is interested in having the players work together, offers a supplemental payment
to the grand coalition (or, more generally, a particular coalition structure). This
payment is conditional on players not deviating from their coalition(s). The sum
of this payment plus the actual gains of the coalition(s) may then be divided
among the agents so as to promote stability. We define the cost of stability (CoS)
as the minimal external payment that stabilizes the game.

We provide general bounds on the cost of stability in several classes of games,
and explore its algorithmic properties. To develop a better intuition for the con-
cepts we introduce, we provide a detailed algorithmic study of the cost of stabil-
ity in weighted voting games, a simple but expressive class of games which can
model decision-making in political bodies, and cooperation in multiagent settings.
Finally, we extend our model and results to games with coalition structures.

1 Introduction

In recent years, algorithmic game theory, an emerging field that combines computer sci-
ence, game theory and social choice, has received much attention from the multiagent
community [19,8,22,20]. Indeed, multiagent systems research focuses on designing in-
telligent agents, i.e., entities that can coordinate, cooperate and negotiate without requir-
ing human intervention. In many application domains, such agents are self-interested,
i.e., they are built to maximize the rewards obtained by their creators. Therefore, these
agents can be modeled naturally using game-theoretic tools. Moreover, as agents often
have to function in rapidly changing environments, computational considerations are of
great concern to their designers as well.

In many settings, such as online auctions and other types of markets, agents act
individually. In this case, the standard notions of noncooperative game theory, such as
Nash equilibrium or dominant-strategy equilibrium, provide a prediction of the outcome
of the interaction. However, another frequently occurring type of scenario is that agents
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need to form teams to achieve their individual goals. In such domains, the focus turns
from the interaction between single agents to the capabilities of subsets, or coalitions, of
agents. Thus, a more appropriate modeling toolkit for this setting is that of cooperative,
or coalitional, game theory [4], which studies what coalitions are most likely to arise,
and how their members distribute the gains from cooperation. When agents are self-
interested, the latter question is obviously of great importance. Indeed, the total utility
generated by the coalition is of little interest to individual agents; rather, each agent
aims to maximize her own utility. Thus, a stable coalition can be formed only if the
gains from cooperation can be distributed in a way that satisfies all agents.

The most prominent solution concept that aims to formalize the idea of stability in
coalitional games is the core. Informally, an outcome of a coalitional game is a payoff
vector which for each agent lists her share of the profit of the grand coalition, i.e., the
coalition that includes all agents. An outcome is said to be in the core if it distributes
gains so that no subset of agents has an incentive to abandon the grand coalition and
form a coalition of their own. It can be argued that the concept of the core captures
the intuitive notion of stability in cooperative settings. However, it has an important
drawback: the core of a game may be empty. In games with empty cores, any outcome
is unstable, and therefore there is always a group of agents that is tempted to abandon the
existing plan. This observation has triggered the invention of less demanding solution
concepts, such as ε-core and the least core, as well as an interest in noncooperative
approaches to identifying stable outcomes in coalitional games [5,17].

In this paper, we approach this issue from a different perspective. Specifically, we
examine the possibility of stabilizing the outcome of a game using external payments.
Under this model, an external party (the center), which can be seen as a central authority
interested in stable functioning of the system, attempts to incentivize a coalition of
agents to cooperate in a stable manner. This party does this by offering the members of
a coalition a supplemental payment if they cooperate. This external payment is given to
the coalition as a whole, and is provided only if this coalition is formed.

Clearly, when the supplemental payment is large enough, the resulting outcome is
stable: the profit that the deviators can make on their own is dwarfed by the subsidy
they could receive by sticking to the prescribed solution. However, normally the exter-
nal party would want to minimize its expenditure. Thus, in this paper we define and
study the cost of stability, which is the minimal supplemental payment that is required
to ensure stability in a coalitional game. We start by considering this concept in the con-
text where the central authority aims to ensure that all agents cooperate, i.e., it offers
a supplemental payment in order to stabilize the grand coalition. We then extend our
analysis to the setting where the goal of the center is the stability of a coalition struc-
ture, i.e., a partition of all agents into disjoint coalitions. In this setting, the center does
not expect the agents to work as a single team, but nevertheless wants each individual
team to be immune to deviations. Finally, we consider the scenario where the center is
concerned with the stability of a particular coalition within a coalition structure. This
model is appropriate when the central authority wants a particular group of agents to
work together, but is indifferent to other agents switching coalitions.

We first provide bounds on the cost of stability in general coalitional games. We then
show that for some interesting special cases, such as super-additive games, these bounds
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can be improved considerably. We also propose a general algorithmic technique for
computing the cost of stability. Then, to develop a better understanding of the concepts
proposed in the paper, we apply them in the context of weighted voting games (WVGs),
a simple but powerful class of games that have been used to model cooperation in
settings as diverse as, on the one hand, decision-making in political bodies such as the
United Nations Security Council and the International Monetary Fund and, on the other
hand, resource allocation in multiagent systems. For such games, we are able to obtain
a complete characterization of the cost of stability from an algorithmic perspective.

The paper is organized as follows. In Section 2, we provide the necessary background
on coalitional games. In Section 3, we formally define the cost of stability for the setting
where the desired outcome is the grand coalition, prove bounds on the cost of stability,
and outline a general technique for computing it. We then focus on the computational
aspects of the cost of stability in the context of our selected domain, i.e., weighted voting
games. In Section 4.1, we demonstrate that computing the cost of stability in such games
is coNP-hard if the weights are given in binary. On the other hand, for unary weights,
we provide an efficient algorithm for this problem. We also investigate whether the cost
of stability can be efficiently approximated. In Section 4.2, we answer this question
positively by describing a fully polynomial-time approximation scheme (FPTAS) for
our problem. We complement this result by showing that, by distributing the payments
in a very natural manner, we get within a factor of 2 of the optimal adjusted gains, i.e.,
the sum of the value of the grand coalition and the external payments. While this method
of allocating payoffs does not necessarily minimize the center’s expenditure, the fact
that it is both easy to implement and has a bounded worst-case performance may make
it an attractive proposition in certain settings. In Section 5, we extend our discussion
to the setting where the center aims to stabilize an arbitrary coalition structure, or a
particular coalition within it, rather than the grand coalition. We end the paper with a
discussion of related work and some conclusions.

We omit some of the proofs due to space constraints; the full version of the paper
(with all proofs included) is available online [2]. A preliminary version of this paper
was published in AAMAS’09 [3].

2 Preliminaries

Throughout this paper, given a vector x = (x1, . . . , xn) and a set C ⊆ {1, . . . , n} we
write x(C) to denote

∑
i∈C xi.

Definition 1. A (transferable utility) coalitional game G = (I, v) is given by a set of
agents (synonymously, players) I = {1, . . . , n} and a characteristic function v : 2I →
R+ ∪ {0} that for any subset (coalition) of agents lists the total utility these agents
achieve by working together. We assume v(∅) = 0.

A coalitional game G = (I, v) is called increasing if for all coalitions C′ ⊆ C we
have v(C′) ≤ v(C), and super-additive if for all disjoint coalitions C, C′ ⊆ I we have
v(C)+v(C′) ≤ v(C ∪C′). Note that since v(C) ≥ 0 for any C ⊆ I , all super-additive
games are increasing. A coalitional game G = (I, v) is called simple if it is increasing
and v(C) ∈ {0, 1} for all C ⊆ I . In a simple game, we say that a coalition C ⊆ I wins
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if v(C) = 1, and loses if v(C) = 0. Finally, a coalitional game is called anonymous
if v(C) = v(C′) for any C, C′ ⊆ I such that |C| = |C′|. A particular class of simple
games considered in this paper is that of weighted voting games (WVGs).

Definition 2. A weighted voting game is a simple coalitional game given by a set of
agents I = {1, . . . , n}, a vector w = (w1, . . . , wn) of nonnegative weights, where wi

is agent i’s weight, and a threshold q. The weight of a coalition C ⊆ I is w(C) =∑
i∈C wi. A coalition C wins the game (i.e., v(C) = 1) if w(C) ≥ q, and loses the

game (i.e., v(C) = 0) if w(C) < q.

We denote the WVG with the weights w = (w1, . . . , wn) and the threshold q as [w; q]
or [w1, . . . , wn; q]. Also, we set wmax = maxi∈I wi. It is easy to see that WVGs are
simple games; however, they are not necessarily super-additive. Throughout this paper,
we assume that w(I) ≥ q, i.e., the grand coalition wins.

The characteristic function of a coalitional game defines only the total gains a coali-
tion achieves, but does not offer a way of distributing them among the agents. Such a
division is called an imputation (or, sometimes, a payoff vector).

Definition 3. Given a coalitional game G = (I, v), a vector p = (p1, . . . , pn) ∈ Rn

is called an imputation for G if it satisfies pi ≥ v({i}) for each i, 1 ≤ i ≤ n, and∑n
i=1 pi = v(I). We call pi the payoff of agent i; the total payoff of a coalition C ⊆ I

is given by p(C). We write I(G) to denote the set of all imputations for G.

For an imputation to be stable, it should be the case that no subset of players has an
incentive to deviate. Formally, we say that a coalition C blocks an imputation p =
(p1, . . . , pn) if p(C) < v(C). The core of a coalitional game G is defined as the set
of imputations not blocked by any coalition, i.e., core(G) = {p ∈ I(G) | p(C) ≥
v(C) for each C ⊆ I}. An imputation in the core guarantees the stability of the grand
coalition. However, the core can be empty.

In WVGs, and, more generally, in simple games, one can characterize the core us-
ing the notion of veto agents, i.e., agents that are indispensable for forming a winning
coalition. Formally, given a simple coalitional game G = (I, v), an agent i ∈ I is said
to be a veto agent if for all coalitions C ⊆ I \ {i} we have v(C) = 0. The following is
a folklore result regarding nonemptiness of the core.

Theorem 1. Let G = (I, v) be a simple coalitional game. If there are no veto agents
in G, then the core of G is empty. Otherwise, let I ′ = {i1, . . . , im} be the set of veto
agents in G. Then the core of G is the set of imputations that distribute all the gains
among the veto agents only, i.e., core(G) = {p ∈ I(G) | p(I ′) = 1}.
So far, we have tacitly assumed that the only possible outcome of a coalitional game
is the formation of the grand coalition. However, often it makes more sense for the
agents to form several disjoint coalitions, each of which can focus on its own task. For
example, WVGs can be used to model the setting where each agent has a certain amount
of resources (modeled by her weight), and there are a number of identical tasks each
of which requires a certain amount of these resources (modeled by the threshold) to be
completed. In this setting, the formation of the grand coalition means that only one task
will be completed, even if there are enough resources for several tasks.
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The situation when agents can split into teams to work on several tasks simultane-
ously can be modeled using the notion of a coalition structure, i.e., a partition of the
set of agents into disjoint coalitions. Formally, we say that CS = (C1, . . . , Cm) is
a coalition structure over a set of agents I if

⋃m
i=1 Ci = I and Ci ∩ Cj = ∅ for

all i �= j; we write CS ∈ CS(I). Also, we overload notation by writing v(CS ) to
denote

∑
Cj∈CS v(Cj). If coalition structures are allowed, an outcome of a game is

not just an imputation, but a pair (CS ,p), where p is an imputation for the coalition
structure CS , i.e., p distributes the gains of every coalition in CS among its mem-
bers. Formally, we say that p = (p1, . . . , pn) is an imputation for a coalition structure
CS = (C1, . . . , Cm) in a game G = (I, v) if pi ≥ 0 for all i, 1 ≤ i ≤ n, and
p(Cj) = v(Cj) for all j, 1 ≤ j ≤ m; we write p ∈ I(CS , G). We can also gener-
alize the notion of the core introduced earlier in this section to games with coalition
structures. Namely, given a game G = (I, v), we say that an outcome (CS ,p) is in the
CS-core of G if CS is a coalition structure over I , p ∈ I(CS , G) and p(C) ≥ v(C)
for all C ⊆ I; we write (CS ,p) ∈ CS-core(G). Note that if p is in the core of G then
(I,p) is in the CS-core of G; however, the converse is not necessarily true.

3 The Cost of Stability

In many games, forming the grand coalition maximizes social welfare; this happens, for
example, in super-additive games. However, the core of such games may still be empty.
In this case, it would be impossible to distribute the gains of the grand coalition in a
stable way, so it may fall apart despite being socially optimal. Thus, an external party,
such as a benevolent central authority, may want to incentivize the agents to cooperate,
e.g., by offering the agents a supplemental payment Δ if they stay in the grand coalition.
This situation can be modeled as an adjusted coalitional game derived from the original
coalitional game G.

Definition 4. Given a coalitional game G = (I, v) and Δ ≥ 0, the adjusted coalitional
game G(Δ) = (I, v′) is given by v′(C) = v(C) for C �= I , and v′(I) = v(I) + Δ.

We call v′(I) = v(I) + Δ the adjusted gains of the grand coalition. We say that a
vector p ∈ Rn is a super-imputation for a game G = (I, v) if pi ≥ 0 for all i ∈ I and
p(I) ≥ v(I). Furthermore, we say that a super-imputation p is stable if p(C) ≥ v(C)
for all C ⊆ I . A super-imputation p with p(I) = v(I) + Δ distributes the adjusted
gains, i.e., it is an imputation for G(Δ); it is stable if and only if it is in the core of
G(Δ). We say that a supplemental payment Δ stabilizes the grand coalition in a game
G if the adjusted game G(Δ) has a nonempty core. Clearly, if Δ is large enough (e.g.,
Δ = n maxC⊆I v(C)), the game G(Δ) will have a nonempty core. However, usually
the central authority wants to spend as little money as possible. Hence, we define the
cost of stability as the smallest external payment that stabilizes the grand coalition.

Definition 5. Given a coalitional game G = (I, v), its cost of stability CoS (G) is
defined as CoS (G) = inf{Δ | Δ ≥ 0 and core(G(Δ)) �= ∅}.
We have argued that the set {Δ | Δ ≥ 0 and core(G(Δ)) �= ∅} is nonempty. There-
fore, G(Δ) is well-defined. Now, we prove that this set contains its greatest lower bound
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CoS (G), i.e., that the game G(CoS (G)) has a nonempty core. While this can be shown
using a continuity argument, we will now give a different proof, which will also be use-
ful for exploring the cost of stability from an algorithmic perspective. Fix a coalitional
game G = (I, v) and consider the following linear program LP∗:

min Δ subject to:

Δ ≥ 0, (1)

pi ≥ 0 for each i = 1, . . . , n, (2)∑
i∈I

pi = v(I) + Δ, (3)

∑
i∈C

pi ≥ v(C) for all C ⊆ I. (4)

It is not hard to see that the optimal value of this linear program is exactly CoS (G).
Moreover, any optimal solution of LP∗ corresponds to an imputation in the core of
G(CoS (G)) and therefore the game G(CoS (G)) has a nonempty core.

As an example, consider a uniform weighted voting game, i.e., a WVG G = [w; q]
with w1 = · · · = wn = w. We can derive an explicit formula for CoS (G).

Theorem 2. For a WVG G = [w, w, . . . , w; q], we have CoS (G) = n
q/w� − 1.

For example, if w(n − 1) < q ≤ wn, then CoS (G) = 0, i.e., G has a nonempty core.
On the other hand, if w = 1, n = 3k and q = 2k for some integer k > 0, i.e., q = 2

3n,
we have CoS (G) = 3

2 − 1 = 1
2 .

3.1 Bounds on CoS(G) in General Coalitional Games

Consider an arbitrary coalitional game G = (I, v). Clearly, CoS (G) = 0 if and only
if G has a nonempty core. Further, we have argued that CoS (G) is upper-bounded by
n maxC⊆I v(C), i.e., CoS (G) is finite for any fixed coalitional game. Moreover, the
bound of n maxC⊆I v(C) is (almost) tight. To see this, consider a (simple) game G′

given by v′(∅) = 0 and v′(C) = 1 for all C �= ∅. Clearly, we have CoS (G′) = n− 1:
any super-imputation that pays some agent less than 1 will not be stable, whereas setting
pi = 1 for all i ∈ I ensures stability. Thus, the cost of stability can be quite large relative
to the value of the grand coalition.

On the other hand, we can provide a lower bound on CoS (G) in terms of the val-
ues of coalition structures over I . Indeed, for an arbitrary coalition structure CS ∈
CS(I), we have CoS (G) ≥ v(CS ) − v(I). To see this, note that if the total payment
to the grand coalition is less than (v(CS ) − v(I)) + v(I), then for some coalition
C ∈ CS it will be the case that p(C) < v(C). It would be tempting to conjecture
that CoS (G) = maxCS∈CS(I)(v(CS )−v(I)). However, a counterexample is provided
by Theorem 2 with w = 1, q = 2

3n: indeed, in this case we have CoS (G) = 1
2 , yet

maxCS∈CS(I)(v(CS )− v(I)) = 0. We can summarize these observations as follows.

Theorem 3. For any coalitional game G = (I, v), we have

max
CS∈CS(I)

(v(CS) − v(I)) ≤ CoS (G) ≤ n max
C⊆I

v(C).
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For super-additive games, we can strengthen the upper bound considerably. Note that in
such games the grand coalition maximizes social welfare, so its stability is particularly
desirable. Yet, as the second part of Theorem 4 implies, ensuring stability may turn out
to be quite costly even in this restricted setting.

Theorem 4. For any super-additive game G = (I, v), |I| = n, we have CoS (G) ≤
(
√

n− 1)v(I), and this bound is asymptotically tight.

For anonymous super-additive games, further improvements are possible.

Theorem 5. For any anonymous super-additive game G = (I, v), we have CoS (G) ≤
2v(I), and this bound is asymptotically tight.

A somewhat similar stability-related concept is the least core, which is the set of all
imputations p that minimize the maximal deficit v(C) − p(C). In particular, the value
of the least core ε(G), defined as ε(G) = infp∈I(G){max{v(C) − p(C) | C ⊆ I}},
is strictly positive if and only if the cost of stability is strictly positive. The following
proposition provides a more precise description of the relationship between the value
of the least core and the cost of stability.

Proposition 1. For any coalitional game G = (I, v) with |I| = n such that ε(G) ≥ 0,
we have CoS (G) ≤ nε(G), and this bound is asymptotically tight.

3.2 Algorithmic Properties of CoS(G)

The linear program LP∗ provides a way of computing CoS (G) for any coalitional
game G. However, this linear program contains exponentially many constraints (one
for each subset of I). Thus, solving it directly would be too time-consuming for most
games. Note that for general coalitional games, this is, in a sense, inevitable: in general,
a coalitional game is described by its characteristic function, i.e., a list of 2n numbers.
Thus, to discuss the algorithmic properties of CoS (G), we need to restrict our attention
to games with compactly representable characteristic functions.

A standard approach to this issue is to consider games that can be described by
polynomial-size circuits. Formally, we say that a class G of games has a compact cir-
cuit representation if there exists a polynomial p such that for every G ∈ G, G =
(I, v), |I| = n, there exists a circuit C of size p(n) with n binary inputs that on input
(b1, . . . , bn) outputs v(C), where C = {i ∈ I | bi = 1}.

Unfortunately, it turns out that having a compact circuit representation does not guar-
antee efficient computability of CoS (G). Indeed, it is easy to see that WVGs with inte-
ger weights have such a representation. However, in the next section we will show that
computing CoS (G) for such games is computationally intractable (Theorem 7). We
can, however, provide a sufficient condition for CoS (G) to be efficiently computable.
To do so, we will first formally state the relevant computational problems.

SUPER-IMPUTATION-STABILITY: Given a coalitional game G (compactly represented
by a circuit), a supplemental payment Δ and an imputation p = (p1, . . . , pn) in the
adjusted game G(Δ), decide whether p ∈ core(G(Δ)).
COS: Given a coalitional game G (compactly represented by a circuit) and a parameter
Δ, decide whether CoS (G) ≤ Δ, i.e., whether core(G(Δ)) �= ∅.
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Consider first SUPER-IMPUTATION-STABILITY. Fix a game G = (I, v). For any
super-imputation p for G, let d(G,p) = maxC⊆I(v(C) − p(C)) be the maximum
deficit of a coalition under p. Clearly, p is stable if and only if d(G,p) ≤ 0. Observe
also that for any Δ > 0 it is easy to decide whether p is an imputation for G(Δ). Thus, a
polynomial-time algorithm for computing d(G,p) can be converted into a polynomial-
time algorithm for SUPER-IMPUTATION-STABILITY. Further, we can decide COS via
solving LP∗ by the ellipsoid method. The ellipsoid method runs in polynomial time
given a polynomial-time separation oracle, i.e., a procedure that takes as input a candi-
date feasible solution, checks if it indeed is feasible, and if this is not the case, returns
a violated constraint. Now, given a vector p and a parameter Δ, we can easily check if
they satisfy constraints (1)–(3), i.e., if p is an imputation for G(Δ). To verify constraint
(4), we need to check if p is in the core of G(Δ). As argued above, this can be done by
checking whether d(G,p) ≤ 0. We summarize these results as follows.

Theorem 6. Consider a class of coalitional games G with a compact circuit represen-
tation. If there is an algorithm that for any G ∈ G, G = (I, v), |I| = n, and for
any super-imputation p for G computes d(G,p) in time poly(n, |p|), where |p| is the
number of bits in the binary representation of p, then for any G ∈ G the problems
SUPER-IMPUTATION-STABILITY and COS are polynomial-time solvable.

We mention in passing that for games with poly-time computable characteristic func-
tions both problems are in coNP. For SUPER-IMPUTATION-STABILITY, the member-
ship is trivial; for COS, it follows from the fact that the game G(Δ) has a poly-time
computable characteristic function as long as G does, and hence we can apply the re-
sults of [14] (see the proof of Theorem 7 for details).

4 Cost of Stability in WVGs without Coalition Structures

In this section, we focus on computing the cost of stabilizing the grand coalition in
WVGs. We start by considering the complexity of exact algorithms for this problem.

4.1 Exact Algorithms

In what follows, unless specified otherwise, we assume that all weights and the
threshold are integers given in binary, whereas all other numeric parameters, such as the
supplemental payment Δ and the entries of the payoff vector p, are rationals given in bi-
nary. Standard results on linear threshold functions [16] imply that WVGs with integer
weights have a compact circuit representation. Thus, we can define the computational
problems SUPER-IMPUTATION-STABILITY-WVG and COS-WVG by specializing the
problems SUPER-IMPUTATION-STABILITY and COS to WVGs. Both of the resulting
problems turn out to be computationally hard.

Theorem 7. The problems SUPER-IMPUTATION-STABILITY-WVG and COS-WVG
are coNP-complete.
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The reductions in the proof of Theorem 7 are from PARTITION. Consequently, our
hardness results depend in an essential way on the weights being given in binary. Thus,
it is natural to ask what happens if the agents’ weights are polynomially bounded (or
given in unary). It turns out that in this case the results of Section 3.2 imply that SUPER-
IMPUTATION-STABILITY-WVG and COS-WVG are in P, since for WVGs with small
weights one can compute d(G,p) in polynomial time.

Theorem 8. SUPER-IMPUTATION-STABILITY-WVG and COS-WVG are in P when
the agents’ weights are polynomially bounded (or given in unary).

4.2 Approximating the Cost of Stability in Weighted Voting Games

For large weights, the algorithms outlined at the end of the previous section may not
be practical. Thus, the center may want to trade off its payment and computation time,
i.e., provide a slightly higher supplemental payment for which the corresponding stable
super-imputation can be computed efficiently. It turns out that this is indeed possible,
i.e., CoS (G) can be efficiently approximated to an arbitrary degree of precision.

Theorem 9. There exists an algorithmA(G, ε) that, given a WVG G = [w; q] in which
the weights of all players are nonnegative integers given in binary and a parameter
ε > 0, outputs a value Δ that satisfies CoS (G) ≤ Δ ≤ (1 + ε)CoS (G) and runs in
time poly(n, log wmax, 1/ε). That is, there exists a fully polynomial-time approximation
scheme (FPTAS) for CoS (G).

Moreover, one can get a 2-approximation to the adjusted gains simply by paying each
agent in proportion to her weight, and this bound can be shown to be tight.

Theorem 10. For any WVG G = [w; q] with CoS (G) = Δ, the super-imputation
p∗ given by p∗i = min{1, wi

q } is stable and satisfies p∗(I) ≤ 2p(I) for any super-
imputation p ∈ core(G(Δ)).

5 Cost of Stability in Games with Coalition Structures

If a coalitional game is not super-additive, the formation of the grand coalition is not
necessarily the most desirable outcome: for example, it may be the case that by splitting
into several teams the agents can accomplish more tasks than by working together. In
such settings, the central authority may want to stabilize a coalition structure, i.e., a
partition of agents into teams. We now generalize the cost of stability to such settings.

5.1 Stabilizing a Fixed Coalition Structure

We first consider the setting where the central authority wants to stabilize a particular
coalition structure.

Given a coalitional game G = (I, v), a coalition structure CS = (C1, . . . , Cm) over
I and a vector Δ = (Δ1, . . . , Δm), let G(Δ) be the game with the set of agents I
and the characteristic function v′ given by v′(Ci) = v(Ci) + Δi for i = 1, . . . , m and
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v′(C) = v(C) for any C �∈ {C1, . . . , Cm}. We say that the game G(Δ) is stable with
respect to CS if there exists an imputation p ∈ I(CS , G(Δ)) such that (CS ,p) is in
the CS-core of G(Δ). Also, we say that an external payment Δ stabilizes a coalition
structure CS with respect to a game G if there exist Δ1 ≥ 0, . . . , Δm ≥ 0 such that
Δ = Δ1 + · · · + Δm and the game G(Δ) is stable with respect to CS . We are now
ready to define the cost of stability of a coalition structure CS in G.

Definition 6. Given a coalitional game G = (I, v) and a coalition structure CS =
(C1, . . . , Cm) over I , the cost of stability CoS (CS , G) of the coalition structure CS
in G is the smallest external payment needed to stabilize CS , i.e.,

CoS (CS , G) = inf{
m∑

i=1

Δi |Δi ≥ 0 for i = 1, . . . , m and

∃p ∈ I(CS , G(Δ)) s.t. (CS ,p) ∈ CS-core(G(Δ))}.

Fix a game G = (I, v) and set vmax = maxC⊆I v(C). It is easy to see that for any
coalition structure CS = (C1, . . . , Cm) the game G(Δ), where Δi = |Ci|vmax,
is stable with respect to CS , and therefore CoS (CS , G) is well-defined and satisfies
CoS (CS , G) ≤ nvmax. Moreover, as in the case of games without coalition struc-
tures, the value CoS (CS , G) can be obtained as an optimal solution to a linear pro-
gram. Indeed, we can simply take the linear program LP∗ and replace the constraint∑

i∈I pi = v(I)+Δ with the constraint
∑

i∈I pi = v(CS )+Δ. It is not hard to see that
the resulting linear program, which we will denote by LP∗

CS , computes CoS (CS , G):
in particular, the constraints Δi ≥ 0 for i = 1, . . . , m are implicitly captured by the
constraints

∑
i∈Ci pi ≥ v(Ci) in line (4) of LP∗

CS .
We now turn to the question of computing the cost of stability of a given coalition

structure in WVGs. To this end, we will modify the decision problems stated in Sec-
tion 4.1 as follows.

SUPER-IMPUTATION-STABILITY-WVG-CS: Given a WVG G = [w; q] with the set of
agents I , a coalition structure CS = (C1, . . . , Cm) over I , a vector Δ = (Δ1, . . . , Δm)
and an imputation p ∈ I(CS , G(Δ)), decide if (CS ,p) is in the CS-core of G(Δ).

COS-WVG-CS: Given a WVG G = [w; q] with the set of agents I , a coalition struc-
ture CS over I and a parameter Δ, decide whether CoS (CS , G) ≤ Δ.

The results of Section 4.1 immediately imply that both of these problems are com-
putationally hard even for m = 1. Moreover, using the results of [9], we can show
that SUPER-IMPUTATION-STABILITY-WVG-CS remains coNP-complete even if Δ is
fixed to be (0, . . . , 0). On the other hand, when weights are integers given in unary, both
COS-WVG-CS and SUPER-IMPUTATION-STABILITY-WVG-CS are polynomial-time
solvable. Indeed, to solve SUPER-IMPUTATION-STABILITY-WVG-CS, one needs to
check if there is a coalition C with w(C) ≥ q, p(C) < 1. This can be done us-
ing the dynamic programming algorithm from the proof of Theorem 8. Moreover, to
solve COS-WVG-CS, we can simply run the ellipsoid algorithm on the linear program
LP∗

CS described earlier in this section, using the algorithm for SUPER-IMPUTATION-
STABILITY-WVG-CS as a separation oracle. Thus, we obtain the following result.
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Theorem 11. When all players’ weights are integers given in unary, the problems
COS-WVG-CS and SUPER-IMPUTATION-STABILITY-WVG-CS are in P.

Finally, we adapt the approximation algorithm presented in Section 4.2 to this setting.

Theorem 12. There exists an FPTAS for CoS (CS , G) in WVGs.

5.2 Finding the Cheapest Coalition Structure to Stabilize

So far, we have focused on the setting where the external party wants to stabilize a
particular coalition structure. However, it can also be the case that the central authority
simply wants to achieve stability, and does not care which coalition structure arises, as
long as it can be made stable using as little money as possible. We will now introduce
the notion of cost of stability for games with coalition structures to capture this type of
setting. Recall that CS(I) denotes the set of all coalition structures over I .

Definition 7. Given a coalitional game G = (I, v), let the cost of stability for G with
coalition structures, denoted by CoSCS (G), be min{CoS (CS , G) | CS ∈ CS(I)}.
Clearly, one can compute CoSCS (G) by enumerating all coalition structures over I
and picking the one with the smallest value of CoS (CS , G). Alternatively, note that the
linear program LP∗

CS depends only on the value of the coalition structure CS . Hence,
stabilizing all coalition structures with the same total value has the same cost. Moreover,
this implies that the cheapest coalition structure to stabilize is the one that maximizes
social welfare. Hence, if we could compute the value of the coalition structure CS ∗ that
maximizes social welfare, we could find CoSCS(G) by solving LP∗

CS∗ .
For WVGs, paper [9] (see Theorem 2 there) shows that if weights are given in binary,

it is NP-hard to decide whether a given game has a nonempty CS-core. As this question
is equivalent to asking whether CoSCS (G) = 0, the latter problem is NP-hard, too. One
might hope that computing CoSCS (G) is easy if the weights of all players are given
in unary. However, this does not seem to be the case. Indeed, our algorithms for com-
puting the cost of stability in other settings relied on solving the corresponding linear
program. To implement this approach in our scenario, we would need to compute the
value of the coalition structure that maximizes social welfare. However, a straightfor-
ward reduction from 3-PARTITION, a classic problem that is known to be NP-hard even
for unary weights, shows that the latter problem is NP-hard even if weights are given
in unary. While this does not immediately imply that computing CoSCS (G) is hard for
small weights, it means that finding the cheapest-to-stabilize outcome is NP-hard even
if weights are given in unary.

5.3 Stabilizing a Particular Coalition

We now consider the case where the central authority wants a particular group of agents
to work together, but does not care about the stability of the overall game. Thus, it wants
to identify a coalition structure containing a particular coalition C and the minimal
subsidy to the players that ensures that no set of players that includes members of C
wants to deviate. We omit the formal definition of the corresponding cost of stability
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concept, as well as its algorithmic analysis due to space constraints. However, we would
like to mention several subtle points that arise in this context. First, one might think
that the optimal way to stabilize a coalition is to offer payments to members of this
coalition only. However, this turns out not to be true (see [2]). Second, stabilizing a
given coalition may be strictly cheaper than stabilizing any of the coalition structures
that contain it (see [2]). Thus choosing a good definition of the cost of stability of an
individual coalition is a nontrivial issue.

6 Related Work

The complexity of various solution concepts in coalitional games is a well-studied
topic [6,13,7,23]. In particular, [10] analyzes some important computational aspects
of stability in WVGs, proving a number of results on the complexity of the least core
and the nucleolus. The complexity of the CS-core in WVGs is studied in [9]. Paper [15]
is similar to ours in spirit. It considers the setting where an external party intervenes
in order to achieve a certain outcome using monetary payments. However, [15] deals
with the very different domain of noncooperative games. There are also similarities be-
tween our work and the recent research on bribery in elections [11], where an external
party pays voters to change their preferences in order to make a given candidate win. A
companion paper [18] studies the cost of stability in network flow games.

7 Conclusion

We have examined the possibility of stabilizing a coalitional game by offering the agents
additional payments in order to discourage them from deviating, and defined the cost
of stability as the minimal total payment that allows a stable division of the gains. We
focused on the computational aspects of this concept for weighted voting games. In
the setting where the outcome to be stabilized is the grand coalition, we provided a
complete picture of the computational complexity of the related decision problems. We
then extended our results to settings where agents can form a coalition structure.

There are several lines of possible future research. First, while the focus of this paper
was on weighted voting games, the notion of the cost of stability is defined for any
coalitional game. Therefore, a natural research direction is to study the cost of stability
in other classes of games. Second, we would like to develop a better understanding of
the relationship between the cost of stability of a game, and its least core and nucleolus.
Finally, it would be interesting to extend the notion of the cost of stability to games with
nontransferable utility and partition function games.
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Abstract. In a scheduling game, each player owns a job and chooses a
machine to execute it. While the social cost is the maximal load over all
machines (makespan), the cost (disutility) of each player is the comple-
tion time of its own job. In the game, players may follow selfish strategies
to optimize their cost and therefore their behaviors do not necessarily
lead the game to an equilibrium. Even in the case there is an equilibrium,
its makespan might be much larger than the social optimum, and this
inefficiency is measured by the price of anarchy – the worst ratio between
the makespan of an equilibrium and the optimum. Coordination mecha-
nisms aim to reduce the price of anarchy by designing scheduling policies
that specify how jobs assigned to a same machine are to be scheduled.
Typically these policies define the schedule according to the processing
times as announced by the jobs. One could wonder if there are policies
that do not require this knowledge, and still provide a good price of an-
archy. This would make the processing times be private information and
avoid the problem of truthfulness. In this paper we study these so-called
non-clairvoyant policies. In particular, we study the RANDOM policy
that schedules the jobs in a random order without preemption, and the
EQUI policy that schedules the jobs in parallel using time-multiplexing,
assigning each job an equal fraction of CPU time.

For these models we study two important questions, the existence of
Nash equilibria and the price of anarchy. We show under some restric-
tions that the game under RANDOM policy is a potential game for two
unrelated machines but it is not for three or more; for uniform machines,
we prove that the game under this policy always possesses a Nash equi-
librium by using a novel potential function with respect to a refinement
of best-response dynamic. Moreover, we show that the game under the
EQUI policy is a potential game.

Next, we analyze the inefficiency of EQUI policy. Interestingly, the
(strong) price of anarchy of EQUI, a non-clairvoyant policy, is asymp-
totically the same as that of the best strongly local policy – policies in
which a machine may look at the processing time of jobs assigned to it.
The result also indicates that knowledge of jobs’ characteristics is not
necessarily needed.

1 Introduction

With the development of the Internet, large-scale autonomous systems became
more and more important. The systems consist of many independent and selfish
� This work is done while the author was student in Ecole Polytechnique, France.
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agents who compete for the usage of shared resources. Every configuration has
some social cost, as well as individual costs for every agent. Due to the lack of
coordination, the equilibrium configurations may have high cost compared to
the global social optimum and this inefficiency can be captured by the price of
anarchy. It is defined as the ratio between the the worst case performance of
Nash equilibrium and the global optimum. Since the behavior of the agents is
influenced by the individual costs, it is natural to come up with mechanisms
that both force the existence of Nash equilibria and reduce the price of anarchy.
The idea is to try to reflect the social cost in the individual costs, so that self-
ish agents’ behaviors result in a socially desired solution. In particular we are
interested in scheduling games, where every player has to choose one machine
on which to execute its job. The individual cost of a player is the completion
time of its job, and the social cost is the largest completion time over all jobs,
the makespan. For these games, so called coordination mechanisms have been
studied by [9]. A coordination mechanism is a set of local policies, one for every
machine, that specify a schedule for the jobs assigned to it, and the schedule can
depend only on these jobs. Most prior studied policies depend on the process-
ing times and need the jobs to announce their processing times. The jobs could
try to influence the schedule to their advantage by announcing not their correct
processing times. There are two ways to deal with this issue. One is to design
truthful coordination mechanisms where jobs have an incentive to announce their
real processing times. Another way is to design mechanisms that do not depend
on the processing times at all and this is the subject of this paper: we study
coordination mechanisms based on so called non-clairvoyant policies that we
define in this section.

1.1 Preliminaries

Scheduling. The machine scheduling problem is defined as follows: we are given n
jobs, m machines and each job needs to be scheduled on exactly one machine. In
the most general case machine speeds are unrelated, and for every job 1 ≤ i ≤ n
and every machine 1 ≤ j ≤ m we are given an arbitrary processing time pij ,
which is the time spend by job i on machine j. A schedule σ is a function
mapping each job to some machine. The load of a machine j in schedule σ is the
total processing time of jobs assigned to this machine, i.e., �j =

∑
i:σ(i)=j pij .

The makespan of a schedule is the maximal load over all machines, and is the
social cost of a schedule. It is NP-hard to compute the global optimum even for
identical machines, that is when pij does not depend on j. We denote by OPT
the makespan of the optimal schedule.

Machine Environments. We consider four different machine environments, which
all have their own justification. The most general environment concerns unrelated
machines as defined above and is denoted R||Cmax. In the identical machine
scheduling model, denoted P ||Cmax, every job i comes with a length pi such
that pij = pi for every machine j. In the uniform machine scheduling model,
denoted Q||Cmax, again every job has length pi and every machine j a speed sj
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such that pij = pi/sj . For the restricted identical machine model, every job i
comes with a length pi and a set of machines Si on which it can be scheduled,
such that pij = pi for j ∈ Si and pij = ∞ otherwise. In [6] this model is denoted
PMPM ||Cmax, and in [21] it is denoted B||Cmax.

Nash Equilibria. What we described so far are well known and extensively stud-
ied classical scheduling problems. But now consider the situation where each of
the n jobs is owned by an independent agent. The agents do not care about the
social optimum, their goal is to complete their job as soon as possible. In the pa-
per, we concentrate on pure strategies where each agent selects a single machine
to process its job. Such a mapping σ is called a strategy profile. He is aware of
the decisions made by other agents and behaves selfishly. From now on we will
abuse notation and identify the agent with his job. The individual cost of a job
is defined as its completion time. A Nash equilibrium is a schedule in which no
agent has an incentive to unilaterally switch to another machine. A strong Nash
equilibrium is a schedule that is resilient to deviations of any coalition, i.e., no
group of agents can cooperate and change their strategies in such a way that all
players in the group strictly decrease their costs. For some given strategy profile,
a best move of a job i is a strategy (machine) j such that if job i changes to job
j, while all other players stick to their strategy, the cost of i decreases strictly. If
there is such a best move, we say that this job is unhappy, otherwise it is happy.
In this setting a Nash equilibrium is a strategy profile where all jobs are happy.
The best-response dynamic is the process of repeatedly choosing an arbitrary
unhappy job and changing it to an an arbitrary best move. A potential game
[22] is a game that admits a potential function. Consequently, a potential game
always possesses a Nash equilibrium. However, the existence of equilibrium does
not necessarily mean that the game is potential.

Coordination Mechanism. A coordination mechanism is a set of scheduling poli-
cies, one for each machine, that determines how to schedule jobs assigned to a
machine. The idea is to connect the individual cost to the social cost, in such a
way that the selfishness of the agents will lead to equilibria that have low social
cost. How good is a given coordination mechanism? This is measured by the
well-known price of anarchy (PoA). It is defined as the ratio between the cost
of the worst Nash equilibrium and the optimal cost, which is not an equilibrium
in general. We also consider the strong price of anarchy (SPoA) which is the
extension of the price of anarchy applied to strong Nash equilibria.

Policies. A policy is a rule that specifies how the jobs that are assigned to a
machine are to be scheduled. We distinguish between local, strongly local and
non-clairvoyant policies. Let Sj be the set of jobs assigned to machine j. A policy
is local if the scheduling of jobs on machine j depends only on the parameters
of jobs in Sj , i.e., it may look at the processing time pik of a job i ∈ Sj on any
machine k. A policy is strongly local if it looks only at the processing time of jobs
in Sj on machine j. We call a policy non-clairvoyant if the scheduling of jobs on
machine j does not depend on the processing time of any job on any machine.
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In this paper we only study coordination mechanisms that use the same policy
for all machines, as opposed to [1]. SPT and LPT are policies that schedule
the jobs without preemption respectively in order of increasing or decreasing
processing times with a deterministic tie-breaking rule for each machine. An
interesting property of SPT is that it minimizes the sum of the completion
times, while LPT has a better price of anarchy, because it incites small jobs to
go on the least loaded machine which smoothes the loads. A policy that relates
individual costs even stronger to the social cost is MAKESPAN, where jobs are
scheduled in parallel on one machine using time-multiplexing and assigned each
job a fraction of the CPU that is proportional to its processing time. As a result
all jobs complete at the same time, and the individual cost is the load of the
machine.

What could a scheduler do in the non-clairvoyant case? He could either sched-
ule the jobs in a random order or in parallel. The RANDOM policy schedules
the jobs in a random order without preemption. Consider a job i assigned to
machine j in the schedule σ, then the cost of i under the RANDOM policy is its
expected completion time [21], i.e.,

ci = pij +
1
2

∑
i′:σ(i′)=j, i′ �=i

pi′j .

In other words the expected completion time of i is half of the total load of the
machine, where job i counts twice. Again, as for MAKESPAN, the individual and
social cost in RANDOM are strongly related, and it is likely that these policies
should have the same price of anarchy. That is is indeed the case except for
unrelated machines.

CA D D

A

B

C

C

D

LPTSPT

B C ABC

EQUI

D

MAKESPAN

BA

Fig. 1. Illustration of different scheduling policies for pA = 1, pB = 1, pC = 2, pD = 3.
Tie is broken arbitrarily between jobs A and B. The rectangles represent the schedules
on a single machine with time going from left to right and the hight of a block being
the amount of CPU assigned to the job.

Another natural non-clairvoyant policy is EQUI. As MAKESPAN it schedules
the jobs in parallel preemptively using time-multiplexing and assigns to every
job the same fraction of the CPU. Suppose there are k jobs with processing
times p1j ≤ p2j ≤ . . . ≤ pkj assigned to machine j, we renumbered jobs from
1 to k for this example. Since, each job receives the same amount of resource,
then job 1 is completed at time c1 = kp1j . At that time, all jobs have remaining
processing time (p2j − p1j) ≤ (p3j − p1j) ≤ . . . ≤ (pkj − p1j). Now the machine
splits its resource into k− 1 parts until the moment job 2 is completed, which is



Non-clairvoyant Scheduling Games 139

at kp1j + (k − 1)(p2j − p1j) = p1j + (k − 1)p2j. In general, the completion time
of job i, which is also its cost, under EQUI policy is:

ci = ci−1 + (k − i + 1)(pij − pi−1,j) (1)
= p1j + . . . + pi−1,j + (k − i + 1)pij (2)

We already distinguished policies depending on what information is needed from
the jobs. In addition we distinguish between preemptive and non-preemptive
policies, depending on the schedule that is produced. Among the policies we
considered so far, only MAKESPAN and EQUI are preemptive, in the sense that
they rely on time-multiplexing, which consists in executing arbitrary small slices
of the jobs. Note that, EQUI is a realistic and quite popular policy. It is imple-
mented in many operating systems such as Unix, Windows.

1.2 Previous and Related Work

Coordination mechanism are related to local search algorithms. The local im-
provement moves in the local search algorithm correspond to the best-response
moves of players in the game defined by the coordination mechanism. Some
results on local search algorithms for scheduling problem are surveyed in [24].

Most previous work concerned non-preemptive strongly local policies, in par-
ticular the MAKESPAN policy. [10] gave tight results Θ(log m/ log log m) of
its price of anarchy for pure Nash equilibria on uniform machines. [14] ex-
tended this result for the strong price of anarchy, and obtained the tight bound
Θ(log m/(log log m)2). In addition, [17] and [3] gave tight bounds for the price
of anarchy for restricted identical machines.

Coordination mechanism design was introduced by [9]. They studied the
LPT policy on identical machines. [21] studied coordination mechanism for all
four machine environments and gave a survey on the results for non-preemptive
strongly local policies. They also analyzed the existence of pure Nash equilibria
under SPT, LPT and RANDOM for certain machine environments and the speed
of convergence to equilibrium of the best response dynamics. Precisely, they
proved that the game is a potential game under the policies SPT on unrelated
machines, LPT on uniform or restricted identical machines, and RANDOM on
restricted identical machines. The policy EQUI has been studied in [13] for its
competitive ratio. The results are summarized in Table 1.

For local policies, [5] introduced the inefficiency-based policy which has price
of anarchy O(log m) on unrelated machines and modified it to get a policy which
always admits an equilibrium and the price of anarchy is O(log2 m). Moreover,
they also proved that every non-preemptive strongly local policy with an ad-
ditional assumption has price of anarchy at least m/2, which shows a sharp
difference between strongly local and local policies. [7] gave three local poli-
cies with price of anarchy O(log m), O(log m/ log log m) and O(log2 m), respec-
tively, in which the games under first and the third policies always admit an
equilibrium.
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Table 1. Price of anarchy under different strongly local and non-clairvoyant policies.
The right most column is a contribution of this paper, which is also the strong price
of anarchy.

model \ policy MAKESPAN SPT LPT RANDOM EQUI
identical 2 − 2

m+1
2 − 1

m
4
3
− 1

3m
2 − 2

m+1
2 − 1

m

[15, 23] [18, 21] [19, 9] [15, 23]
uniform Θ( log m

loglogm
) Θ(log m) 1.52 ≤ PoA ≤ 1.59 Θ( log m

loglogm
) Θ(log m)

[10] [2, 21] [11, 16, 21] [10]
restricted id. Θ( log m

loglogm
) Θ(log m) Θ(log m) Θ( log m

loglogm
) Θ(log m)

[17, 3] [2, 21] [4, 21] [17, 3]
unrelated unbounded Θ(m) unbounded Θ(m) Θ(m)

[23] [8, 20, 5] [21]

1.3 Our Contribution

We are interested in admissible non-clairvoyant policies – policies that always
induce a Nash equilibrium for any instance of the game. Maybe more important
than the question of existence of Nash equilibrium is the question of convergence
to an equilibrium. Since no processing times are known to the coordination
mechanism, it is impossible to compute some equilibria. As all processing times
are known to all jobs, it makes sense to let the jobs evolve according to the
best-response dynamics, until they eventually reach an equilibria. Therefore it
is important to find out under which conditions the dynamics converges.

For the unrelated machine model, we call a job i balanced if the ratio of its
processing times is bounded by 2, meaning maxj pij/ minj pij ≤ 2. In addition
for the uniform machine model, we say that machines have balanced speeds if
the maximum and minimum speeds differ at most by factor 2. Note that, in the
model of uniform machines with balanced speeds, jobs are all balanced.

In Section 2, we study the existence of Nash equilibrium under the non-
clairvoyant policies RANDOM and EQUI. We show that in the RANDOM policy,
the game always possesses an equilibrium on uniform machines with speed ra-
tio at most 2. We also show that on two unrelated machines, it is a potential
game, but for three unrelated machines or more the best-response dynamic does
not converge. These results partly answer open questions in [21]. Moreover, we
prove that for the EQUI policy, the game is a (strong) potential game, see Ta-
ble 2. Note that, in our proofs of equilibrium existence, it is sufficient to show
that there exist potential functions which are strictly decreased at each step of
the dynamic. As the game is finite, after finite number of steps, the potential
function will converge to an equilibrium.

In Section 3, we analyze the price of anarchy and the strong price of anarchy of
EQUI in different machine models. In uniform and restricted identical machine
models, our main contributions are the lower bounds of the price of anarchy.
Moreover, we prove that these lower bounds also hold for the strong price of
anarchy. We observe that, except for these models, RANDOM is slightly better
than EQUI. In the unrelated machine model, interestingly, the price of anarchy of
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Table 2. Convergence of the best response dynamic and existence of equlibria. (*)
A refinement of the best response dynamic converges when machines have balanced
speeds. (**) The best-response dynamic does not converge for m ≥ 3 machines, but
converges for m = 2 machines and balanced jobs.

model \ policy MAKESPAN SPT LPT RANDOM EQUI

identical
Yes
[folklore]

Yes
[21]

Yes
[21]

Yes [21]

Yes
uniform (*)
restricted identical Yes [21]
unrelated No (**)

EQUI reaches the lower bound in [5] on the PoA of any non-preemptive strongly
local policy with some additional condition. The latter showed that although
there is a clear difference between strongly local and local policies with respect
to the price of anarchy, our result indicates that in contrast, restricting strongly
local policies to be non-clairvoyant does not really affect the price of anarchy.
Moreover, EQUI policy does not need any knowledge about jobs’ characteristics,
even their identities (IDs) which are useful in designing policies with low price
of anarchy in [5, 7].

Due to the limit of space, only some proofs are presented in the paper. The
others can be found in the full version [12].

2 Existence of Nash Equilibrium

Summary of Results on the Existence of Nash Equilibrium. We consider
the scheduling game under different policies in different machine environments.

1. For the RANDOM policy on unrelated machines, it is not a potential game
for 3 or more machines, but it is a potential game for 2 machines and bal-
anced jobs. On uniform machines with balanced speeds, the RANDOM policy
induces a Nash equilibrium.

2. For the EQUI policy it is an exact potential game.

2.1 The RANDOM Policy for Unrelated Machines

In the RANDOM policy, the cost of a job is its expected completion time. If the
load of machine j is �j then the cost of job i assigned to machine j is 1

2 (�j +pij).
We see that a job i on machine j has an incentive to move to machine j′ if and
only if pij + �j > 2pij′ + �j′ . In the following, we will characterize the game
under the RANDOM policy in the unrelated model as a function of the number
of machines.

Theorem 1. The game is a potential game under the RANDOM policy on 2
machines with balanced jobs.

Lemma 1. The best-response dynamic does not converge under the RANDOM
policy on 3 or more machines.
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2.2 The RANDOM Policy on Uniform Machines with Balanced
Speeds

Let p1 ≤ p2 ≤ . . . ≤ pn be the job lengths and s1 ≥ s2 ≥ . . . ≥ sm be the
machine speeds. Now the processing time of job i on machine j is pi/sj . A new
unhappy job with respect to a move is a job that was happy before the move
and has become unhappy by this move.

Lemma 2. Consider a job i making a best move from machine a to b on uniform
machines with balanced speeds. We have that if there is a new unhappy job with
index greater than i then sa > sb.

Theorem 2. On uniform machines with balanced speeds, there always exist
Nash equilibria under the RANDOM policy.

Proof. We use a potential argument on a refinement of the best-response dy-
namic. Consider a best-response dynamic in which among all unhappy jobs, the
one with the greatest index makes the best move. By numbering convention,
this job has the greatest length among all unhappy jobs. Given a strategy profile
σ, let t be the unhappy job of greatest index. We encode t by a characteristic
function fσ : {1, 2, . . . , n} → {0, 1} as fσ(i) = 1 if 1 ≤ i ≤ t, otherwise fσ(i) = 0.
Define the potential function Φ(σ) = (fσ(1), sσ(1), fσ(2), sσ(2), . . . , fσ(n), sσ(n)).
We claim that in each step of the best-response dynamic described above, the
potential function decreases strictly lexicographically.

Let t be the unhappy job of greatest index in the strategy profile σ, let t′ be
the unhappy job of greatest index in σ′ – the strategy profile after the move of t.
Note that the unique difference between σ and σ′ is the machine to which job t
moved. If t′ < t, we have that fσ(i) = fσ′(i) = 1, sσ(i) = sσ′(i) for all i ≤ t′ and
1 = fσ(t′ + 1) > fσ′(t′ + 1) = 0. Thus, Φ(σ) > Φ(σ′). If t′ > t, we also have that
fσ(i) = fσ′(i) = 1, sσ(i) = sσ′(i) for all i < t and fσ(t) = fσ′(t) = 1. However,
t′ > t means that there are some new unhappy jobs with lengths greater than pt,
hence by Lemma 2, sσ(t) > sσ′(t). In the other words, Φ(σ) > Φ(σ′). Therefore,
the dynamic converges, showing that there always exists a Nash equilibrium. ��

2.3 The EQUI Policy

In the EQUI policy, the cost of job i assigned to machine j is given by formulation
in (1) and (2). Here is an alternative formulation for the cost

ci =
∑

i′:σ(i′)=j
pi′j≤pij

pi′j +
∑

i′:σ(i′)=j
pi′j>pij

pij

Theorem 3. The game with the EQUI policy is an exact potential game. In
addition, it is a strong potential game, in the sense that the best-response dynamic
converges even with deviations of coalitions.
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3 Inefficiency of Equilibria under the EQUI Policy

In this section, we study the inefficiency of the game under the EQUI policy
which is captured by the price of anarchy (PoA) and the strong price of anarchy
(SPoA). Note that the set of strong Nash equilibria is a subset of that of Nash
equilibria so the SPoA is at most as large as the PoA. We state the main theorem
of this section. Whenever we bound (S)PoA we mean that the bound applies to
both the price of anarchy and the strong price of anarchy.

Summary of Results on the Price of Anarchy. The game under the EQUI
policy has the following inefficiency.

1. For identical machines, the (S)PoA is 2− 1
m .

2. For uniform machines, the (S)PoA is Θ(min{logm, r}) where r is the num-
ber of different machine’s speeds in the model.

3. For restricted identical machines, the (S)PoA is Θ(log m).
4. For unrelated machines, the (S)PoA is Θ(m).

In the following, we concentrate on the inefficiency of equilibria in unrelated
machines. We prove that the PoA of the game under the EQUI policy is upper
bounded by 2m. Interestingly, without any knowledge of jobs’ characteristics, the
inefficiency of EQUI – a non-clairvoyant policy – is the same up to a constant
compared to that of SPT – the best strongly local policy with price of anarchy
Θ(m).

Theorem 4. For unrelated machines, the price of anarchy of policy EQUI is at
most 2m.

Proof. For job i, let qi be the smallest processing time of i among all machines,
i.e., qi := minj pij and let Q(i) := argminjpij be the corresponding machine.
Without loss of generality we assume that jobs are indexed such that q1 ≤ q2 ≤
. . . ≤ qn. Note that

∑n
i=1 qi ≤ m · OPT , where OPT is the optimal makespan,

as usual. First, we claim the following lemma.

Lemma 3. In any Nash equilibrium, the cost ci of job i is at most

2q1 + . . . + 2qi−1 + (n− i + 1)qi. (3)

Proof. The proof is by induction on i. The cost of job 1 on machine Q(1) would
be at most nq1, simply because there are at most n jobs on this machine. There-
fore the cost of job 1 in the Nash equilibrium is also at most nq1. Assume the
induction hypothesis holds until index i− 1. Consider job i. Since the strategy
profile is a Nash equilibrium, i’s current cost is at most its cost if moving to
machine Q(i). We distinguish different cases. In these cases, denote c′i as the
new cost of i if it moves to machine Q(i).

1. All Jobs t Scheduled on Machine Q(i) Satisfy t > i.
This case is very similar to the basis case. There are at most n − i jobs on
machine Q(i), beside i. The completion time of job i is then at most (n−i+1)qi

which is upper bounded by (3). For the remaining cases, we assume that there
is a job i′ < i scheduled on Q(i).
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2. There is a Job t < i on Machine Q(i) Such that ptQ(i) ≥ piQ(i)(= qi).
Since ptQ(i) ≥ qi, the new cost of job i is not more than the new cost of job
t. Moreover, the new cost of job t is increased by exactly qi, so the new cost
of i is bounded by

c′i ≤ ct + qi

≤ 2q1 + . . . + 2qt−1 + (n− t + 1)qt + qi

= 2q1 + . . . + 2qt−1 + 2(i− t)qt + (n− 2i + t + 1)qt + qi

≤ 2q1 + . . . + 2qt−1 + 2qt + . . . + 2qi−1 + (n− i + 1)qi,

where the first inequality uses the induction hypothesis and the last inequality
is due to t < i and qt ≤ qt+1 ≤ . . . ≤ qi.

3. Every Job t Scheduled on Machine Q(i) with ptQ(i) ≥ qi Satisfies
t ≥ i.
Since we are not in the first two cases, there is a job t < i on machine Q(i)
with ptQ(i) < qi. Let i′ be the job of greatest index among all jobs scheduled
on Q(i) with smaller processing time than qi. All jobs t scheduled on Q(i)
and having smaller processing time than that of i, also have smaller index
because qt ≤ ptQ(i) ≤ qi. Therefore i′ is precisely the last job to complete
before i. At the completion time of i′ there are still qi−pi′Q(i) ≤ qi− qi′ units
of i to be processed. By the case assumption, there are at most (n − i) jobs
with processing time greater than that of i. Therefore the new cost of i is at
most

c′i = ci′ + (n− i + 1)(qi − qi′)
≤ 2q1 + . . . + 2qi′−1 + (n− i′ + 1)qi′ + (n− i + 1)(qi − qi′ )
= 2q1 + . . . + 2qi′−1 + (i− i′)qi′ + (n− i + 1)qi

≤ 2q1 + . . . + 2qi′−1 + (qi′ + . . . + qi−1) + (n− i + 1)qi

≤ 2q1 + . . . + 2qi−1 + (n− i + 1)qi

where the first inequality uses the induction hypothesis and the third inequal-
ity is due to the monotonicity of the sequence (qj)n

j=1. ��

Since the term 2q1 + . . .+2qi−1 +(n− i+1)qi is increasing in i and at i = n this
term is 2

∑n
i=1 qi ≤ 2m ·OPT , the cost of each job in an equilibrium is bounded

by 2m ·OPT , so the price of anarchy is at most 2m. ��

We provide a game instance, inspired by the work of [5], showing that the upper
bound analyzed above is tight.

Lemma 4. The (strong) price of anarchy of EQUI is at least (m + 1)/4.

Acknowledgments. We would like to thank Adi Rosén for helpful discussions.
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Abstract. We consider the balloon popping problem introduced by Im-
morlica et al. in 2007 [13]. This problem is directly related to the problem
of profit maximization in online auctions, where an auctioneer is selling
a collection of identical items to anonymous unit-demand bidders. The
auctioneer has the full knowledge of bidders’ private valuations for the
items and tries to maximize his profit. Compared with the profit of fixed
price schemes, the competitive ratio of Immorlica et al.’s algorithm was
in the range [1.64, 4.33]. In this paper, we narrow the gap to [1.659, 2].

Keywords: auction, lower bound, upper bound.

1 Introduction

In auctions, sellers try to maximize profits by selling items at high prices. Buyers
have individual valuations for items and try to buy items at low prices relative
to their valuations. We can categorize auction problems into two branches: profit
maximization problems and social welfare maximization problems. Profit max-
imization problems focus on maximizing seller’s profit [1,3,6,12]. Social welfare
maximization problems concentrate on maximizing the sum of buyers’ valua-
tions [7,8,10,16].

In online auctions, the auctioneer allocates items to bidders when bidders or
items arrive online. In recent years, many online and offline auction algorithms
were designed, and their performance was analyzed using competitive analy-
sis [2,6,5,13,14,15]. To analyze competitive ratio, usually the profit of an online
auction is compared with that of fixed price mechanisms [3,6,5,4].

In this paper, we consider the problem of profit maximization in the following
auction setting. The seller possesses a number of identical items, and the number
of buyers is equal to the number of items. The seller repeatedly announces a price,
and each buyer decides whether to stay or leave. The seller can sell an item at
any time to each buyer at a price accepted by the buyer. Each buyer can receive
at most one item. We assume a special distribution for the buyers’ valuations,
and compare the power of an auction with that of a fixed price mechanism.

M. Mavronicolas and V.G. Papadopoulou (Eds.): SAGT 2009, LNCS 5814, pp. 147–158, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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1.1 Previous Results and Our Results

Immorlica et al. [13] studied the power of ascending auctions in a scenario in
which the seller sells multiple identical items to anonymous unit-demand bidders.
They showed that even with full knowledge of bidders’ private valuations, if the
bidders are ex-ante identical, no ascending auction can get profit more than a
constant times the profit of the best fixed price scheme. Our work in this paper
narrows the gap proved by Immorlica et al. [13]. Although much of the work
in auctions concentrates on design of truthful mechanisms [18], in this paper,
we assume that bidders are truthful. Also, we assume a discrete distribution for
bidders’ valuations.

We describe the balloon popping problem and online balloon popping mecha-
nisms in Section 2. In Section 3, we give an improved lower bound for the balloon
popping problem. In Section 4, we derive a variant of ballot theorem which can
be applied to our problem. In Section 5, we give an improved upper bound for
the online balloon popping mechanism. Finally, we conclude with remarks.

2 Problem Description

Immorlica et al. [13] formulate their ascending auction problem as a balloon
popping problem as follows.

The Balloon Popping Problem. Suppose that n indistinguishable balloons,
yet to be blown up, are given. Each balloon has an allowable capacity. If a balloon
is blown up more than the capacity, then it is popped. Suppose also that the
set of capacities of the given n balloons is {1, 1

2 , 1
3 , · · · , 1

n}. The objective is to
maximize the sum of the volumes of the blown-up balloons.

To get a feeling for the problem, consider the following strategy.

strategy inc:

– Initialize i to be n− 1. Blow up all the balloons to 1
n .

– While i �= 0, do the following: Select a balloon among the unpopped and
the unselected balloons uniformly at random. Blow up all the unpopped and
unselected balloons to 1

i . If there is a balloon which is popped while being
blown up, deselect the balloon selected just before.

– i := i− 1.

The strategy inc is ascending auction-style, unlike the strategy in Immorlica
et al., which is descending auction-style. Under strategy inc, the balloon with
capacity 1

j will be unpopped if it is selected in the iteration of the strategy inc
when there are j unpopped balloons remaining. Indeed, before this iteration, the
balloon with capacity 1

j is not popped. Thus, the probability that this balloon
is not popped is 1

j , and its volume, when blown up, is 1
j . Hence, the expected

final total volume is
∑

1≤k≤n
1
k2 , which goes to π2

6 ≈ 1.64 when n →∞.
In the balloon popping problem, the balloons correspond to bidders in an

online auction problem, and the capacities of the balloons are bidders’ private
valuations. The objective corresponds to maximizing profits of the auctioneer.
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Let Bn be the optimal expected volume for the balloon popping problem with
n balloons. Let B∞ = limn→∞ Bn. We will refer to the balloon with capacity 1

i
as the 1

i -balloon.
Immorilica et al. defined an online balloon popping mechanism corresponding

to an online auction. The online mechanism processes balloons sequentially in
a fixed order. It is assumed that if a balloon has been processed, its capacity
is revealed irrespective of whether this balloon was popped. We reproduce the
definition of Immorlica et al. below.

Online Balloon Popping Mechanism. Let us assume that we are given bal-
loons with capacities v1 ≥ v2 ≥ · · · ≥ vn. Balloons are ordered by a random
permutation π, i.e., the i-th balloon has capacity vπi . An online balloon popping
mechanism is defined by a function Blow(vπ1 , · · · , vπi−1) that outputs a non-
negative number b, indicating that b units of air should be blown into balloon
i. If b ≤ vπi , let si = b. Otherwise, let si = 0. The payoff or profit of the online
balloon popping mechanism is

∑
i si.

Immorlica et al. [13] proved that we can assume without loss of generality the
set of bidders’ valuations (balloon capacities) is {1, 1

2 , 1
3 , · · · , 1

n}.
Lemma 1. [13] Suppose that the capacities of the balloons are v1≥v2≥ · · ·≥vn.
Without loss of generality, assume that maxi ivi = 1. Then the maximum ex-
pected volume achievable by a balloon popping mechanism on {v1, v2, · · · , vn} is
at most the maximum achievable on {1, 1

2 , 1
3 , · · · , 1

n}.
Denote the optimal value of an online balloon popping mechanism for n balloons
by ONOPTn. Immorlica et al. proved that Bn ≤ ONOPTn by reducing the
balloon popping problem to designing an online balloon popping mechanism.

Theorem 1. [13] Bn ≤ ONOPTn.

Also, Immorlica et al. characterize the profit of the optimal online balloon pop-
ping mechanism by the following simple formula.

Theorem 2. [13] Let T be a random subset of {v1, . . . , vn}, and let 1
y1

, 1
y2

, · · · ,
1

y|T |
be the order statistics of the set T (so 1

y1
is the largest element of T , 1

y2
is the

second largest element of T , etc.). Define the random variable g(T ) to be g(T ) =
1
|T |maxj=1,...,|T |

j
yj

. Then the revenue of the optimal online balloon popping mech-
anism is given by

∑n
k=1 ET [g(T )], where the expectation in the k-th term in the

summation is over a random subset T of {v1, . . . , vn} of size k.

Immorlica et al. proved that π2

6 ≤ B∞ ≤ 4.3331. We improve both the lower
and the upper bound on B∞. The following is the main theorem in this paper.

Theorem 3. For the balloon popping problem with n balloons, 1.659 ≤ B∞ ≤ 2.

Together, Theorem 3 and Lemma 1 imply the following theorem.

Theorem 4. For balloon capacities v1 ≥ v2 ≥ · · · ≥ vn, no balloon popping
strategy can achieve an expected volume that exceeds 2 ·maxi ivi.

In order to prove the upper bound of Bn, in Section 4 we consider an extension
of the famous generalized ballot problem.
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3 Lower Bound

In this section, we suggest a simple algorithm for the balloon popping problem
that achieves a profit of at least 1.659.

We assume that the balloons are given in the order of b1, b2, . . . , bn, where
{b1, b2, . . . , bn} = {1, 1

2 , 1
3 , · · · , 1

n}.
In the following algorithm Bunch, V means the set of balloon capacities still

under consideration. Intuitively speaking, in the first while loop of Bunch,
we process balloons one by one, trying to fill them to the maximum possible
capacity. We stop when all balloons with capacities between 1

y and 1 are either
filled or popped. In the second while loop of Bunch, we deal with sets of z
consecutive balloons, finishing each set before beginning the next.

Algorithm 1. Bunch
V ⇐ {1, 1

2
, 1

3
, · · · , 1

n
}

i ⇐ 1
v ← max(V )
Fix integer constants y and z such that y < n and z < n.
while v is greater than or equal to 1

y
do

Blow the balloon bi up to the volume v
if the balloon bi pops at a volume 1

k
then

V ⇐ V − { 1
k
}

si ⇐ 0
else

V ⇐ V − {v}
si ⇐ v

end if
Increase i by one
v ← max(V )

end while
while i <= n do

j ⇐ the minimum integer such that zj ≥ 1
max(V )

.
c ⇐ the maximum integer such that c ≤ zj and 1

c
∈ V .

while there exists a balloon with volume at least 1
c

among the remaining balloons
bi, bi+1, . . . , bn do

Blow the balloon bi up to the volume 1
c

if the balloon pops at a volume 1
k

then
V ⇐ V − 1

k

si ⇐ 0
else

si ⇐ 1
c

end if
Increase i by one

end while
Remove from V all values that are greater than or equal to 1

c

end while
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After the algorithm Bunch terminates, the total volume is
∑

1≤i≤n si. For
example, let us fix n = 7, y = 2, and z = 2. Consider a collection of balloons
with capacities 1

2 , 1
4 , 1, 1

3 , 1
6 , 1

5 , 1
7 (in this order). The algorithm Bunch blows the

1st balloon up to 1. The 1st balloon pops, so s1 = 0. Then the 2nd balloon is
blown up to 1. It also pops, so s2 = 0. The 3rd balloon is blown up to 1, and
does not pop, so s3 = 1. Next, the 4th balloon is blown up to 1

3 , so s4 = 1
3 . The

5th balloon is blown up to 1
6 , so s5 = 1

6 . The 6th balloon is blown up to 1
6 , so

s6 = 1
6 . Finally, the 7th balloon is blown up to 1

7 , so s7 = 0. The final volume in
this case is 1 + 1

3 + 1
6 + 1

6 + 1
7 . In general, the algorithm Bunch with y = 2 and

z = 2 gives us expected profit of 1.6596.

Lemma 2. When y = 2 and z = 2, algorithm Bunch has expected profit that
approaches 1.6596 when n→ +∞.

Proof. The expected total profit is E[
∑

1≤i≤n Vi], where Vi denotes the volume
of the 1

i -balloon. We have E[V1] = 1, E[V2] = 1
22 . For i ≥ 2, the 1

2i−1 -balloon can
have non-zero volume 1

2i−1 or 1
2i . To get non-zero volume, it must not pop, i.e.,

it has to appear later than the balloons with capacities 1, 1
2 , . . . , 1

2i−2 . Further, it
gets volume 1

2i−1 if the 1
2i -balloon pops before the 1

2i−1 -balloon appears, which
means that the 1

2i -balloon must appear before one of the balloons 1, 1
2 , . . . , 1

2i−2 .
Thus, the probability that the 1

2i−1 -balloon gets volume 1
2i−1 is 1

2i−1
2i−2
2i . Simi-

larly, the probability that it gets volume 1
2i is 1

2i−1
2
2i . Hence, for i ≥ 2, we have

E[V2i−1] = 1
2i−1

1
2i−1

2i−2
2i + 1

2i
1

2i−1
2
2i .

By the algorithm Bunch, the 1
2i -balloon can get non-zero volume 1

2i . This
can only happen if this balloon appears after the balloons with capacities
1, 1

2 , . . . , 1
2i−2 , which happens with probability 1

2i−1 . Thus, for i ≥ 2, we have
E[V2i] = 1

2i
1

2i−1 . Further, it can be shown that limn→+∞
∑

2≤i≤∞ E[V2i−1] =
− 1

2 + 4 ln(2) − 5
24π2, and limn→+∞

∑
2≤i≤∞ E[V2i] = − 1

2 + ln(2). Therefore,
E[
∑

1≤i≤∞ Vi] ≈ 1.6596. ��
We obtain the following corollary.

Corollary 1. 1.659 ≤ B∞.

4 A Ballot Theorem

In this section, we derive a version of the ballot theorem to prove an upper bound
of B∞. The generalized ballot problem is stated as follows.

The Ballot Problem. Suppose that in an election, candidate A receives n
votes and candidate B receives k votes, where n ≥ sk for some positive integer
s. Compute the number of ways that the ballots can be ordered so that A main-
tains more than s times as many votes as B does throughout the counting of
the ballots.
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The solution to this problem is well-known.

The ballot theorem. The solution to the ballot problem is n−sk
n+k

(
n+k

k

)
.

The original ballot problem corresponds to the case s = 1. For integer s ≥ 1,
Barbier has generalized the problem without proof. Later various proofs for the
ballot problem has been found [17]. In this paper we use a cycle lemma [9] to
prove a variant of the ballot theorem.

The ballot problem can be interpreted as counting the lattice paths from
(0, 0) to (k, n) that do not touch the line y = sx after the point (0, 0) and before
(k, n). A lattice path from (0, 0) to (k, n) can be seen as a sequence p0p1p2 · · · pt

of n + k + 1 vertices, where p0 = (0, 0) and pt = (k, n). From now on, “lattice
path” always refers to a lattice path from (0, 0) to (k, n). Define an x-strict lattice
path as a lattice path such that p1 = (0, 1) and no three consecutive vertices have
the same y-coordinates (see Figure 1). Note that an x-strict lattice path can be
represented by a sequence of k horizontal segments with different y-coordinates
and n vertical segments. Since there are n possibilities for the y-coordinates of
the k horizontal segments, the number of x-strict lattice paths from (0, 0) to
(k, n) is

(
n
k

)
. Let A be the set of all x-strict lattice paths from (0, 0) to (k, n). In

this section we prove the following theorem.

p3p2

p1p0

p4

p5

p6

p7

p3p2

p1p0

p4

p5

p6

p7

p1

p0

p2

p3 p4

p5

p6 p7

p1

p0

p2

p3 p4

p5

p6 p7

Fig. 1. The left figure is a non x-strict lattice path from (0,0) to (3,4). The right figure
is an x-strict lattice path from (0,0) to (3,4).

Theorem 5. The number of x-strict lattice paths not touching the line y = n
k x

is at most 1
k

(
n−1
k−1

)
. Moreover, when n and k are relatively prime, it equals to

1
k

(
n−1
k−1

)
.

To prove Theorem 5, we use a method similar to the one used by Dvoretzky and
Motzkin [9] to prove the original ballot theorem.

We start with some preliminary definitions. A lattice path can be expressed
as a sequence that consists of n elements with value 1 and k elements with value
−n

k , where the elements with value 1 correspond to the vertical segments of the
path and the elements with value −n

k correspond to its horizontal segments. If
the given lattice path is x-strict, then the corresponding sequence starts with 1,
and between any two elements of the form −n

k there is at least one 1. Let us
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call any such sequence an x-strict sequence. Clearly, there is a bijection between
x-strict lattice paths and x-strict sequences.

Note that the sum of all elements of an x-strict sequence is 0. An x-strict
sequence is called good if every partial sum from the starting element of the
sequence is positive, and bad otherwise. A circular arrangement is a clockwise
arrangement of elements of a sequence on a circle. We say that two circular ar-
rangements are equivalent if one can be obtained from the other by a circular
shift. For example, in Figure 2 an x-strict lattice path from (0,0) to (3,4) corre-
sponds to a circular arrangement. The segment p0p1 corresponds to the 12 o’clock
element in the circular arrangement. The x-strict sequence 1,− 4

3 , 1,− 4
3 , 1, 1,− 4

3
is bad because the partial sum 1+ (− 4

3 ) of the first two elements is not positive.
A circular set for an x-strict sequence is the set of all x-strict sequences with
the same circular arrangement. We partition the set A into disjoint circular sets
C1, C2, · · · , Ct. We will now prove that the proportion of good sequences in each
circular set is at most 1

n .

p1
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p2

p3 p4

p5

p6 p7

p1
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p3 p4
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p6 p7 1
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4
−

3

4
−

1

1

1

1

3

4
−

3

4
−

3

4
−

1

1

1

Fig. 2. An x-strict lattice path from (0,0) to (3,4) and the corresponding circular
arrangement

Lemma 3. If there exists a good sequence in a circular set for an x-strict se-
quence, then it is unique.

Proof. Let s be a good sequence s1, s2, · · · , sn+k in a circular set. Let s′ be
another good sequence si, si+1, · · · , sn+k−1, sn+k, s1, · · · , si−1 in the same cir-
cular set starting at si. Since s is a good sequence, we have

∑
1≤j≤i−1 sj > 0.

Therefore, we have
∑

i≤j≤n+k sj < 0, a contradiction with s′ being a good
sequence. ��
Lemma 4. The circular set of an x-strict sequence contains at most n distinct
x-strict sequences. Moreover, if this circular set contains a good sequence, then
it contains exactly n distinct x-strict sequences.

Proof. Any x-strict sequence must start with 1 and there are n 1’s in the cir-
cular arrangement for an x-strict sequence. Hence, there are at most n x-strict
sequences in a circular set. Moreover, some of these n sequences may coincide.
However, if the circular set contains a good sequence, then by Lemma 3 it is
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Fig. 3. A circular arrangement and the corresponding path

unique. Denote this good sequence by a = a1, a2, . . . , an+k. Since a1 is uniquely
determined from the circular arrangement, all the possible n x-strict sequences
for this circular arrangement are distinct. ��
We will refer to a path from (0, 0) to (n+k, 0) that has north-east steps of slope 1
and south-east steps of slope −n

k as a diagonal path. There is a natural bijection
between circular arrangements and diagonal paths (see Figure 3). We say that
two diagonal paths are equivalent if the corresponding circular arrangements are
equivalent. Consider the diagonal path in Figure 3. It is easy to see that the
equivalent diagonal path that starts from its lowest point corresponds to the
unique x-strict sequence in Lemma 3.

Lemma 5. If n and k are relatively prime, then the circular set of any x-strict
sequence contains exactly one good sequence.

Proof. The circular set of an x-strict sequence a = a1, a2, · · · ,
an+k can be represented as a diagonal path (see Figure 3). Since n and k are rel-
atively prime, the diagonal path has a unique minimum point. Suppose that this
point corresponds to a point ai in the circular arrangement. Then the sequence
ai, ai+1, · · · , ai+n+k−1 is good, and is in the same circular set as the sequence a.
The uniqueness follows from Lemma 3. ��
We now prove Theorem 5.

Proof. We partition the set A into disjoint circular sets C1, C2, . . . , Ct. Then
|A| =

∑
1≤m≤t |Cm|. Let B be the set of all x-strict lattice paths that do not

touch the line y = n
k x. Such paths correspond to good sequences, so by Lemma 3

and Lemma 4, we have |B| ≤ 1
n

∑
1≤m≤t |Cm| ≤ 1

n |A|. Since |A| = (nk), we obtain
|B| ≤ 1

n

(
n
k

)
= 1

k

(
n−1
k−1

)
. The first statement is proved. If n and k are relatively

prime, the above inequalities become equalities by Lemma 5. ��

5 Upper Bound

By Lemma 1, we can assume that {v1, . . . , vn} = {1, 1
2 , 1

3 , · · · , 1
n}. Let Yk,n be

the collection of all subsets of {1, 1
2 , 1

3 , · · · , 1
n} of size k. Any set Y ∈ Yk,n is of
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y1

y2

y3

n=4   k=3

y1

y2

y3

n=4   k=3

Fig. 4. Correspondence between an x-strict lattice path that does not touch the line
y = n

k
x and Y = { 1

y1
, . . . 1

yk
} ∈ Yk,n, where n = 4 and k = 3

the form { 1
y1

, 1
y2

, · · · , 1
yk
}; we will assume y1 < y2 < · · · < yk. By Theorem 2,

we have ONOPTn =
∑n

k=1 ET [g(T )] =
∑n

k=1
∑

y∈Yk,n

1
(n

k)
× 1

k max1≤j≤k( j
yj

).

Set g(k, n) = |{Y ∈ Yk,n | 1
yk

= 1
n , k

n > i
yi

for 1 ≤ i < k}|. The last condition
in the definition of g(k, n) corresponds to requiring that yi > in

k for 1 ≤ i < k.
Any set Y that satisfies this condition corresponds bijectively to an x-strict
lattice path that does not touch the line y = n

k x. Therefore, g(k, n) is equal
to the number of x-strict lattice paths that do not touch the line y = n

k x (see
Figure 4). By Theorem 5, we have g(k, n) ≤ 1

k

(
n−1
k−1

)
. Thus, we have proved the

following lemma.

Lemma 6. g(k, n) ≤ 1
k

(
n−1
k−1

)
.

Let y(k, n) =
∑

Y ∈Yk,n
maxj( j

yj
). We will now prove an interesting inequality

for y(k, n). For ease of notation, set
∑

k+1≤i≤n
1
i = 0 for k = n.

Lemma 7. We have y(k, n) ≤ (n−1
k−1

)
+
(
n−1
k−1

)∑
k+1≤i≤n

1
i for all n ≥ 1 and

1 ≤ k ≤ n.

Proof. We prove the lemma by using induction on k and n. The statement is
clearly true for the base case: y(1, n) =

∑
1≤i≤n

1
i for all n ≥ 1.

Now suppose that n ≥ 2 and 2 ≤ k ≤ n. By the induction hypothesis, we can
assume that the statement of the lemma holds for y(k−1, n−1) and y(k, n−1).
To prove that it holds for y(k, n), we need to consider two cases.

Case 1. 1
yk
�= 1

n .
In this case, by the induction hypothesis, we have∑

Y ∈Yk,n s.t. 1
yk

�= 1
n

maxj(
j

yj
) = y(k, n− 1)

≤
(

n− 2
k − 1

)
+
(

n− 2
k − 1

) ∑
k+1≤i≤n−1

1
i
.

(1)
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Case 2. 1
yk

= 1
n .

Let IY be an indicator variable given by IY = 1 if max1≤j≤k( j
yj

) = k
n and IY = 0

otherwise. We get the following inequalities.∑
Y ∈Yk,n s.t. 1

yk
= 1

n

maxj(
j

yj
)

≤
∑

Y ∈Yk,n s.t. 1
yk

= 1
n

(
max

1≤j≤k−1
(

j

yj
) + IY (

k

n
− k − 1

n− 1
)
)

≤ y(k − 1, n− 1) + g(k, n)(
k

n
− k − 1

n− 1
)

≤
(

n− 2
k − 2

)
+
(

n− 2
k − 2

)
(
∑

k≤i≤n−1

1
i
) + g(k, n)(

k

n
− k − 1

n− 1
)

≤
(

n− 2
k − 2

)
+
(

n− 2
k − 2

)
(
∑

k≤i≤n−1

1
i
) +

(
n−1
k−1

)
k

(
k

n
− k − 1

n− 1
).

(2)

The first inequality comes from the following fact. If k
yk

is the largest element
in { 1

y1
, 2

y2
, · · · , k

yk
}, then the second largest element of this set is at least k−1

n−1 .
Therefore, max1≤j≤k( j

yj
) ≤ max1≤j≤k−1( j

yj
) + IY ( k

n − k−1
n−1 ). The second in-

equality comes from the definition of g(k, n). The third inequality follows from
the induction hypothesis. The fourth inequality comes from Theorem 5. If we
combine the inequalities (1) and (2), we get the following desired result.

y(k, n) ≤
(

n− 2
k − 1

)
+
(

n− 2
k − 1

)
(

∑
k+1≤i≤n−1

1
i
) +
(

n− 2
k − 2

)

+
(

n− 2
k − 2

)
(
∑

k≤i≤n−1

1
i
) +

(
n−1
k−1

)
k

(
k

n
− k − 1

n− 1
)

=
(

n− 1
k − 1

)
+
(

n− 1
k − 1

)
(
∑

k+1≤i≤n

1
i
). ��

We can now give an upper bound of B∞.

Theorem 6. B∞ ≤ 2.

Proof.

ONOPTn =
n∑

k=1

∑
Y ∈Yk,n

1(
n
k

) × 1
k

maxj(
j

yj
)

≤
n∑

k=1

1
k
(
n
k

)
⎛⎝(n− 1

k − 1

)
+
(

n− 1
k − 1

)
(
∑

k+1≤i≤n

1
i
)

⎞⎠
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=
n∑

k=1

1
n

⎛⎝1 +
∑

k+1≤i≤n

1
i

⎞⎠
= 1 +

1
n

⎛⎝ ∑
2≤i≤n

i− 1
i

⎞⎠
= 1 +

n− 1
n

− 1
n

⎛⎝ ∑
2≤i≤n

1
i

⎞⎠
≤ 1 +

n− 1
n

− ln(n + 1)− ln(2)
n

.

The first inequality follows from Lemma 7. The last inequality follows from the
simple fact that

∑
2≤i≤n

1
i ≥ ln(n + 1)− ln(2).

Now, by Theorem 1, Bn ≤ 1 + n−1
n − ln(n+1)−ln(2)

n for any n ≥ 1. Therefore,
we conclude that B∞ ≤ 2. ��

6 Concluding Remarks

In this paper, we improved previous results of Immorlica et al. for the balloon
popping problem. We increased lower bound for the balloon popping problem
from 1.64 to 1.659 by giving the algorithm Bunch. We can further increase the
lower bound by the following method: Let y = 2 and z = 2 until the 1

6 -balloon
is processed. After that, let z = 3. According to a Maple calculation, this gives
an expected profit of at least 1.67.

For the online balloon popping mechanism, we decreased upper bound from
4.33 to 2 by extending the ballot theorem. Since a simulation result by Immorlica
et al. shows that the upper bound may be greater than 1.89, we think that the
upper bound in this paper is almost tight for online balloon popping mechanisms.
Getting exact bound for the online balloon popping problem is open. Another
open problem is finding the optimal solution for the balloon popping problem.

Acknowledgments. We would like to thank anonymous reviewers including
Bernhard von Stengel for valuable comments and suggestions. We give special
thanks to Edith Elkind for her pure contribution to improve presentation and
exposition in this paper.
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Abstract. We consider the loss in social welfare caused by individual
rationality in matching scenarios. We give both theoretical and exper-
imental results comparing stable matchings with socially optimal ones,
as well as studying the convergence of various natural algorithms to
stable matchings. Our main goal is to design mechanisms that incen-
tivize agents to participate in matchings that are socially desirable. We
show that theoretically, the loss in social welfare caused by strategic be-
havior can be substantial. However, under some natural distributions
of utilities, we show experimentally that stable matchings attain close
to the optimal social welfare. Furthermore, for certain graph structures,
simple greedy algorithms for partner-switching (some without conver-
gence guarantees) converge to stability remarkably quickly in
expectation. Even when stable matchings are significantly socially sub-
optimal, slight changes in incentives can provide good solutions. We de-
rive conditions for the existence of approximately stable matchings that
are also close to socially optimal, which demonstrates that adding small
switching costs can make socially optimal matchings stable.

1 Introduction

This paper investigates the social quality of stable matchings. The theory of sta-
ble matching has received attention because of its many applications, including
matching graduating medical students to residency programs [1], and matching
kidney donors with recipients [2]. Most of the work on stable matching has as-
sumed that the agents being matched have some preference ordering on who they
would like to be matched with, without assigning a concrete utility for agent i
being matched with agent j [3,4,5, inter alia]. This is natural, because stabil-
ity as a concept does not need the stronger requirement of ascribing utilities to
outcomes: it only needs the ranking of matchings from the perspective of every
agent.

Matching problems, however, often bring with them outcomes that need to
be evaluated in terms of cardinal utility. This occurs, for example, in pair pro-
gramming, a central practice of the software engineering methodology known as
Extreme Programming [6]. The utility of a matching is a function of the produc-
tivity of a pair of programmers working together. In kidney exchange, as well
as many other stable matching scenarios, the goal is not only to form stable
matchings, but also to form a matching with high overall utility.

M. Mavronicolas and V.G. Papadopoulou (Eds.): SAGT 2009, LNCS 5814, pp. 159–170, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The properties of matching mechanisms determine the utilities received by
agents in these situations. A good mechanism for kidney exchange could make
donors happier with their decision to donate while arranging the best possible
matches for recipients. A good mechanism for pairing programmers would lead
to the best possible programming productivity for their employer. Inevitably,
there is a tradeoff between stable matchings, which are pairwise (or groupwise)
rational, and socially optimal matchings (for our purposes, for the rest of this
paper we assume simple additive social utilities, so that the socially optimal
matching is the one that maximizes the sum of utilities received by each in-
dividual). The central question of mechanism design for matching markets is
how to get people into “good” matchings, however “good” is defined. Almost
all the work on matching mechanism design has focused on engineering stable
matchings. This work has met with significant large-scale success in applications
like matching graduating medical students to residency programs, and matching
students to public high schools [7,1]. Some of this work, especially recent work
on designing high school student matches, also explicitly seeks to realize the best
matchings for one side of the market (in the high school case, the best matchings
for students), but the notion of welfare is weak pareto-optimality among the set
of stable matches for one side of the market [8].

Our focus is on extending our understanding of matching problems in situ-
ations where we are concerned with social welfare in terms of utility, instead
of just stability and choice among stable outcomes. Several alternatives may be
available in these situations, ranging from purely centralized allocation based
on information available to a matchmaker, to purely individual decision-making
based on personal preferences. The first set of questions that arises can be di-
vided into three categories: (1) How bad are stable matchings when compared
with socially optimal ones? (2) Can agents find stable matchings on their own?
What are the outcomes of algorithms they may actually use in practice? (3) How
can we incentivize agents to participate in matchings that are socially desirable?

Our Results. We initiate an investigation of the questions described above in
the context of two-sided matchings, and give both theoretical and experimental
results. Specifically, we study the effects of different network structures and util-
ity distributions on the price of anarchy: the ratio of social utilities achieved by
stable and optimal matchings respectively. We find that in most cases the stable
matching attains close to the optimal social welfare (generally above 90%). We
characterize some situations where the price of anarchy can be more substan-
tial, and then study a potential means of incentivizing good stable matchings in
Section 5. We consider approximate stability, which corresponds to the addition
of a switching cost to the mechanism, so that an agent would have to pay in
order to deviate from the current matching. We show both theoretically and
experimentally that the addition of a small switching cost can greatly improve
the quality of stable solutions. Finally, in Section 6 we consider several greedy
algorithms for partner-switching, and show experimentally that they converge
quickly to stability for some simple yet natural distributions of utilities, as well
as prove convergence guarantees.
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2 Matching, Stability, and Social Welfare

Matching, the process of agents forming beneficial partnerships, is a fundamental
social process. Examples of matching with self-interested agents range from basic
social activities (marriage, mate assignment [9]), to the core of economic activity
(matching employees and employers [10]), to recent innovations in health care
(matching kidney donors and recipients [11]). The process of matching can be
complex, since (1) agents can have complicated preferences, and, (2) agents are
self-interested: they care mostly about their own welfare, and would not obey a
centralized matching algorithm unless it was to their benefit.

For this reason, the outcomes of matching processes are usually analyzed in
terms of stability, the requirement that no collection of agents could form a group
together, and become better off than they are currently [3]. For the classic “sta-
ble marriage” problem [12], this corresponds to the lack of desire of any pair
to drop their current partners and instead match with each other. While stable
matchings may be natural outcomes, desirable for various reasons, there are few
guarantees on the quality and social welfare of stable matchings. Most research
on matchings of self-interested agents has focused on (1) defining outcomes with
stability as the goal, (2) computing stable outcomes and understanding their
properties (ranging from the seminal work of Gale and Shapley [12] to algo-
rithms that try and compute “optimal” matches, for example by minimizing the
average preference ranking of matched partners [13]), and (3) designing truthful
preference-revealing mechanisms (such as in public school matches [8]). Ques-
tions about the social welfare of stable matchings have been less studied.1 There
has been almost no research on constructing socially desirable stable outcomes,
partly because in most situations one cannot instruct self-interested agents on
what to do in order to engineer such outcomes, since an agent will only follow
instructions if it benefits them personally.

An increasing body of literature in behavioral economics (e.g. [14]), how-
ever, suggests that desirable outcomes can be achieved by giving people a little
“nudge” in certain directions, by altering their incentives slightly while still leav-
ing them with freedom to choose their own actions. Small changes that greatly
improve a social system are easy to identify in some situations: for example,
making retirement savings 401(K) plans opt-out rather than opt-in increases par-
ticipation dramatically. Finding similar changes in matching scenarios is more
difficult because of the complexity of a system where any agent’s actions can
theoretically affect a large number of other agents.

Before addressing the mechanism design question of how to achieve better
social outcomes, we first need to address the question of whether or not stable
matching can lead to substantial social losses. For this question to make sense,
we first need an objective function that measures the quality of a matching. One
of the reasons why the social quality of stable matchings is usually not addressed

1 One of the desiderata for matching students with schools or medical students with
residencies can be to compute the stable matching that is best (typically) for the
students, but this is a different notion of welfare.
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Fig. 1. Worst-case realizations of the price of anarchy. In each case the socially optimal
matching is {(A, C), (B, D)} but the only stable matching pairs A and D.

is because the agents in question are assumed to have a preference ordering on
their possible partners, without a specific utility function that states how good a
match would be.2 Here we are specifically concerned with contexts where every
agent has a utility function, not just a preference ordering: that is, for every
possible partner v, an agent has a value U(v) specifying how happy it would be
to be matched with v.

The tradeoff between stable matchings and socially optimal matchings is quan-
tified by the price of anarchy: the ratio between the maximum possible social
utility and the utilities of equilibrium outcomes (stable matchings). Understand-
ing the price of anarchy is important, since it acts as a bound on the amount of
improvement in stable matchings that better mechanisms could yield.

Price of Anarchy Bounds. The price of anarchy can vary widely depending
on the problem instance and the preference structure. Figure 1 illustrates some
cases where the stable matching is highly socially suboptimal (discussed in more
detail in the next section). In two of the underlying types of graph structures, the
price of anarchy is at most two (and the bound can be tight), while in the third
the social utility of the stable matching can be arbitrarily bad compared with
the socially optimal one. But how bad are stable matchings in expectation? This
question is tackled in detail in Section 4. Empirically, we find that despite the
potentially bad worst-case behavior, across many different random distributions
of preferences and several graph structures the price of anarchy tends to be lower.

Creating Better Stable Matchings. Given the agents’ utilities, the social-
welfare maximizing matching can be computed by finding a maximum weighted
matching on a graph. We cannot just force people to accept such a matching
because of individual preferences. But what if we could suggest a good matching,
and provide some incentives for agents to go along with those matchings? This is

2 Measures like average preference ranking [13] can be hard to justify. For example,
agent A might greatly prefer its first choice to its second, while agent B only slightly
prefers its first choice.
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the subject of Section 5. We consider changing incentives to make more socially
desirable matchings become stable by adding switching costs into the system.
We show both theoretically and empirically that a small amount of incentives
can greatly affect the quality of stable matchings.

Convergence to Stability. Another natural question we ask is whether stable
matchings will arise in practical situations, where each participant does not want
to submit his or her preferences to a centralized matchmaker. Previous work
has focused especially on randomized best response dynamics [15,16]. We know
that simple decentralized partner switching algorithms can fail to converge to
stable matchings [15]. However, what happens in cases where the structure of
preferences obeys some extra constraints? We explore this question in Section 6.

3 The Matching Model

We are concerned with pairwise matching problems. While we focus on bipartite
graphs, (most of) our results also hold for general graphs, and in our experiments
we did not find a significant difference between the quality of matchings in
bipartite and non-bipartite graphs. We assume that each agent gains some utility
from being paired up with another agent. The utility of remaining unmatched
is assumed to be 0. We consider each agent as a vertex in a graph G, and only
agents u and v with the edge (u, v) being present in G are allowed to match
with each other. In two-sided matching scenarios, the agents can be separated
into two types, one on each side of the graph, and no edges are allowed between
agents of the same type.

We consider several different utility structures:

1. Vertex-Labeled Graphs. A vertex-labeled graph is defined as G=(V, E, w)
where V is the set of vertices, E is the set of (undirected) edges, and w is a
vector of weights corresponding to the vertices. When two vertices u and v
are in a matching, the agent corresponding to u receives utility w(v) and the
agent corresponding to v receives utility w(u). These graphs correspond to a
situation where being paired with agent X will yield the same utility to any
agent Y allowed to match with X , independent of the identity of Y .

2. Symmetric Edge-Labeled Graphs. A symmetric edge-labeled graph G =
(V, E, w) is different in that the weights w correspond to edges rather than
vertices. When two vertices u and v are in a matching, the agents correspond-
ing to both u and v receive utility w({u, v}). These graphs reflect situations
where the utility received by both members of a pair is the same, perhaps
determined by their combined output when working together – for example,
pair programming may be judged by the productivity of the pair. Markets
with these types of utilities are called “correlated two-sided markets” in [15].

3. Asymmetric Edge-Labeled Graphs. An asymmetric edge-labeled graph
G = (V, E, w) is the same except that edges are now directed, and the
utility received by agent u in a matching that includes the pair u, v is given
by w(u, v), while the utility received by v is given by w(v, u). This is the
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most general case, in which each agent receives an unconstrained value from
each agent they may possibly be paired with.

We also consider combinations of the above models, such as when agent u’s util-
ity for being matched with v has a vertex-labeled component w(v), as well as
an edge-labeled component w(u, v). The types of utilities mentioned above arise
in many contexts including market sharing games [17] and distributed caching
games [18]. In the context of marriage markets, vertex-labeled graphs are equiv-
alent to what Das and Kamenica call sex-wide homogeneity of preferences, and
edge-labeled graphs are equivalent to what they call pairwise homogeneity of
preferences [19].

4 The Price of Anarchy

In general, the price of anarchy is the ratio between the social utility of the
(worst) equilibrium outcome of a game and the maximum social utility possible
in that game. The usual definition relates the largest social welfare achievable to
the social welfare of the worst Nash equilibrium. In the context of matching, we
move from the concept of Nash equilibrium to the concept of stable equilibrium
described above, because stable outcomes are determined by the possibility of
pairwise deviations rather than individual deviations.

The price of anarchy can vary widely depending on the problem instance
and the preference structure. Figure 1 illustrates some cases where the stable
matching is highly socially suboptimal (the price of anarchy is high) in the three
different preference settings for two-sided matching described in Section 3. Below
we present price of anarchy bounds for the three models we consider.

Observation 1. In symmetric edge-labeled graphs, the social utility of any sta-
ble matching is at least one-half of the social utility of the optimum matching.

In other words, the price of anarchy is at most 2. The socially optimal matching
is simply the maximum-weight matching in this model. The above observation is
a special case of Theorem 1 (see Section 5), but it can also be seen to follow from
two facts: (1) Any stable matching can be returned by an algorithm that exam-
ines edges greedily by magnitude, adding them to the matching if the vertices
involved have not yet been matched (the particular stable matching produced
depends on the procedure for breaking ties between equal-weighted edges), and
(2) Any greedy solution to the maximum weighted matching problem is within
a factor of two of the optimal solution. This argument holds generally, even for
non-bipartite graphs. Figure 1(a) provides an example of a graph where this
bound is achieved, showing that the bound is tight.

Observation 2. In vertex labeled graphs the social utility of any stable matching
is at least one-half of the social utility of the optimum matching.

This is a consequence of Theorem 2 (see Section 5 for further discussion). Again,
Figure 1(b) provides an example of a graph where this bound is achieved.
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Fig. 2. Average ratio of the realized stable matching to the maximum weighted match-
ing in three different preference models when utilities are sampled at random from
exponential and uniform distributions with the same mean (0.5: the rate parameter
is 2 for the exponential and the support of the uniform is [0, 1]). Reported values are
averaged over 200 runs. There are 100 agents on each side of the matching market in
all cases. The X axis shows the degree of each node. Note that the ratio is very high,
almost never dropping below 85%, even in individual runs.

Observation 3. In asymmetric edge-labeled graphs, the social utility of the sta-
ble matching can be arbitrarily bad compared with the socially optimal matching.

Consider the case in Figure 1(c) – the utility received by agent B from being
matched with Agent D is arbitrarily high, but the pair is not part of the stable
matching, so the loss in utility can be unbounded. Again this argument holds
for non-bipartite graphs as well.

These are worst-case constructions. A natural question is what the price of
anarchy is like in realistic graphs with different distributions over utilities. We
examine several different distributions of utilities within the three models de-
scribed above, and also consider different graph structures in order to get a
sense of the potential practical implications of these price of anarchy results. We
generate random graphs of the different types described above, with randomly
sampled utilities, and compute both the maximum-weighted stable matching
(the socially optimal matching) and a stable matching using the Gale-Shapley
algorithm (in all cases considered here, except one described in more detail below,
the proposing side does not affect the outcome in expectation because preference
distributions are symmetric).

Figure 2 shows that when utilities are randomly distributed according to two
common distributions (exponential and uniform, although this result seems to
be robust across many different distributions), the social loss due to stability is
not particularly high in any of the three models we describe above. This is not
surprising for vertex labeled graphs – since any person in the matching will con-
tribute the same to the total utility regardless of whom they are matched with
(for example, every perfect matching is socially optimal). As the average degree
of each vertex increases, the number of agents getting matched increases, and
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the ratio quickly reaches 1, because all stable matchings become perfect at some
point. However, the result is considerably more surprising for the other two cases,
particularly for asymmetric edge-labeled preferences. The only case in which the
ratio goes below 0.9 is for exponentially distributed utilities with asymmetric
edge-labeled preferences (the ratio stops declining significantly beyond degree
10). For asymmetric edge labeled graphs, it makes sense that the ratio declines
as the degree of the graph gets larger, because it becomes possible to construct
matchings that are socially much better. Our experiments show that the value
of the optimal matching grows quickly (since it has more options available),
while the value of stable matching grows slowly (since it is hampered by the
stability constraint). The actual high percentage is quite surprising given that
in theory, the ratio could be arbitrarily bad. The uniform distribution ratios are
generally higher than those for the exponential distribution because the uniform
distribution enforces a compression in the range of high utilities by capping
utilities at 1.

Some additional empirical results are presented in the full version of this
paper [20]. They show that the results above are not particular to random bi-
partite graphs, but also hold for a variety of common networks, like preferential
attachment networks and small-world networks. “Unbalancing” the network by
making one side’s range of utilities significantly higher than the other’s can lead
to a higher price of anarchy. Finally, it is worth noting that the price of anar-
chy is not the only important measure – for example, we show in the [20] that
increasing the heterogeneity of tastes can lead to a higher price of anarchy, but
increased utility for everyone.

5 Improving Social Outcomes

In this section, we consider how to improve the quality of stable matchings. We
consider the addition of a switching cost to the mechanism so that an agent
would have to pay in order to deviate from the current matching. We find that
it is possible to improve the quality of social outcomes substantially by making
only small changes to the incentives of the agents, and thus without drastically
changing the nature of the matching market. An approximate equilibrium is a
solution where no agent gains more than a small factor in utility by deviating. In
the case of matching, we consider the following notion of approximately-stable
matching.

Definition 1. A matching is called α-stable if there does not exist a pair of
agents not matched with each other who would both increase their utility by a
factor of more than α by switching to each other.

If α = 1, then this is exactly a stable matching. An α-stable matching also
corresponds to a stable solution if we assume that switching has a cost. In other
words, in the presence of switching costs, the set of stable matchings is simply
the set of α-stable matchings without switching costs.
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Fig. 3. Ratio of the social utilities of best α-stable and socially optimal matchings
as a function of α when the matchings are constructed according to our algorithm
in symmetric edge-labeled graphs. The dramatic increase between α = 1 and α =
1.1 shows that introducing even small switching costs has the potential to produce
significant social benefits. Preferences were sampled uniformly at random on [0, 1].

How does increasing α improve the quality of stable matchings? We are specif-
ically concerned with the price of stability [21], which is the ratio of the utility
of the best stable matching relative to the optimum matching. Much recent work
in network design and routing [22,23] has considered the price of stability in var-
ious contexts. It is especially important from the point of view of a mechanism
designer with limited power, since it can compute the best stable solution and
suggest it to the agents, who would implement this solution since it is stable.
Therefore, the price of stability captures the problem of optimization subject to
the stability constraint.

Below we present various theoretical bounds, showing that for symmetric
edge-labeled graphs, there always exists an α-stable matching with utility of at
least α

2 OPT (where OPT is the value of the optimum matching), and that in
vertex-labeled graphs, there always exists an α-stable matching with utility at
least α

1+αOPT. We provide a constructive algorithm for finding such an α-stable
matching. This shows that by increasing α, we can implement much better stable
solutions than for α = 1, and decrease the price of stability. Empirical results
using this algorithm show an even more dramatic improvement than predicted
by the theoretical bounds. Figure 3 shows that for α = 1.1 we already obtain a
tremendous improvement in the quality of stable matching, essentially obtaining
stable matchings that are as good as a matching with maximum utility. This
means that adding a switching cost as small as five or ten percent can make an
enormous difference in the quality of stable matchings. In many situations, it
is reasonable to believe that a central controller can compute a good α-stable
matching, assign agents to that matching, and only allow them to deviate on
payment of the switching cost.

For edge-labeled graphs, in the presence of switching costs of a factor α, the
price of anarchy is at most 2α, but the price of stability is at most 2/α. This
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means that as we increase α, there begin to be stable matchings that are worse,
but there always exists a stable matching that is close to optimal. For α = 1,
these bounds coincide, giving us the result that all stable matchings are within
a factor of 2 from the maximum weight matching. For α = 2, this gives us the
easily verifiable fact that the optimum matching is 2-stable.

Theorem 1. Let OPT be the value of the socially optimal matching. In any
undirected edge-labeled graph, there exists an α-stable matching whose social util-
ity is at least α

2 OPT. Furthermore, the social utility of any α-stable matching is
at least 1

2αOPT.

Our proofs appear in the full version of this paper [20].
Similar results hold for vertex labeled graphs. The price of anarchy is at most

1 + α and the price of stability is at most (1 + α)/α. For α = 1 this gives us the
observation in Section 4 (notice that while it is easy to show a correspondence
between stable matchings for edge-labeled and vertex-labeled graphs, the same
does not hold for α-stable matchings).

Theorem 2. Let OPT be the value of the maximum-weight perfect matching. In
any vertex-labeled graph, there exists an α-stable matching whose social utility is
at least α

1+αOPT. Furthermore, the social utility of any α-stable matching is at
least 1

1+αOPT.

6 Convergence to Stability

While many good algorithms exist for computing stable matchings (Gale-Shapley
being the most standard), we would like to consider more natural dynamics for
forming stable matchings. Such dynamics are likely to occur in practice if there
were no central planner to compute a matching for the agents, and if instead
the agents tried to do what was best for themselves in a decentralized manner.
In such cases, how likely is it that realistic algorithms yield stable outcomes?

We study the convergence properties of a particular decentralized partner-
switching algorithm: first, sort the vertices randomly, then repeat until conver-
gence: for each vertex, in the sorted order, find the best partner that vertex can
be matched with. The vertex can be matched with a partner if an edge connects
them and the deviation is utility-increasing for both the vertex and its new part-
ner. The best partner is the one of these that yields maximum utility for this
vertex. Add this new pair to the matching, removing any pairs that this vertex
or its new partner were previously connected to.

This algorithm captures the intuitive notion that, in a society of agents, pairs
take turns deviating from the current matching if it is in their interest to do so.
We call each iteration through all agents a phase. Instead of iterating through
all the agents in a fixed order, we could instead pick random agents to deviate
at every step, as in [15]. None of our results change significantly in this case.

Theorem 3. This algorithm converges to a stable matching after at most n
phases in vertex-labeled and symmetric edge-labeled graphs.
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The simple decentralized algorithm described above converges to a stable match-
ing in time O(n2), since each phase takes linear time. Notice, however, that if
instead of switching to its best partner, the agents simply switched to a random
improving partner, the same argument would guarantee convergence to a stable
matching in an expected time of O(n2d), where d is the maximum degree of
the graph. In practice (see figure in [20]), on random utility distributions, the
convergence time for vertex-labeled graphs does indeed appear to be quadratic,
but the convergence time for symmetric edge-labeled graphs seems linear. We
conjecture that the algorithm converges in expected linear time for these graphs,
perhaps because good edges for one node are in expectation also good for the
other node in the edge, because of the symmetric preferences.

Asymmetric Edge-Labeled. While Theorem 3 guarantees convergence for
vertex-labeled and symmetric edge-labeled utilities, but in asymmetric edge-
labeled graphs there are easy examples where this algorithm can cycle. In our
experiments, however, for small n (the number of nodes on each side) the al-
gorithm converged to a stable matching on all but a small percentage of cases,
showing that the bad scenarios are not “typical.” As n gets larger, this algorithm
converges more and more rarely (approximately 2% less for every additional
node), with convergence essentially non-existent for n = 70.

7 Discussion

This paper explores the prices of anarchy and of stability in matching markets.
We demonstrate that even though the price of anarchy can theoretically be high,
when utilities are randomly sampled, the loss in social welfare from strategic be-
havior is limited. This result encompasses many different graph and preference
structures, and is experimentally robust. While the downside is limited, even this
downside can be alleviated: a significant improvement in social welfare can be ob-
tained by suggesting a good matching and requiring agents to pay small switching
costs to deviate. We show this theoretically using an algorithm for construct-
ing approximately stable matchings, and then demonstrate that the algorithm
is effective in experiments. We also show that simple greedy partner switching
algorithms can converge quickly to stable matchings in some graph structures.
From a practical perspective, future work should include understanding real-
world utility distributions and how they affect the social outcomes of match-
ing as compared to random distributions of utilities. From a mechanism design
perspective, it would be interesting to explore whether agents would choose to
participate in a switching-cost based, designer-suggested matching mechanism.
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Abstract. In both transportation and communication networks we are
faced with “selfish flows”, where every agent sending flow over the net-
work desires to get it to its destination as soon as possible. Such flows
have been well studied in time-invariant networks in the last few years. A
key observation that must be taken into account in defining and study-
ing selfish flow, however, is that a flow can take a non-negligible amount
of time to travel across the network from the source to destination, and
that network states like traffic load and congestion can vary during this
period. Such flows are called dynamic flows (a.k.a. flows over time). This
variation in network state as the flow progresses through the network
results in the fundamentally different and significantly more complex
nature of dynamic flow equilibria, as compared to those defined in static
network settings.

In this paper, we study equilibria in dynamic flows, and prove various
bounds about their quality, as well as give algorithms on how to compute
them. In general, we show that unlike in static flows, Nash equilibria may
not exist, and the price of anarchy can be extremely high. If the system
obeys FIFO (first-in first-out), however, we show the existence and how
to compute an equilibrium for all single-source single-sink networks. In
addition, we prove a set of much stronger results about price of anarchy
and stability in the case where the delay on an edge is flow-independent.

1 Introduction

The concepts of “selfish flow” and “selfish routing” in time-invariant networks
have been thoroughly explored over the last few years (see, for example,
[18, 19, 22]). These models apply to networks that involve routing by a large
number of independent self-interested agents, such as transportation networks,
Internet routing, and peer-to-peer file sharing systems. In all these systems, in-
dividual agents using the network (vehicles on highways, Internet peer-to-peer
clients, etc.) can be expected to be somewhat “selfish”, and may only be inter-
ested in optimizing their own performance metric when making routing decisions.
Understanding equilibria in such networks is crucial in order to measure system
efficiency and performance, and to design suitable mechanisms that improve the
properties of the system.

M. Mavronicolas and V.G. Papadopoulou (Eds.): SAGT 2009, LNCS 5814, pp. 171–182, 2009.
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Unlike in the usual selfish routing models, however, in many networked sys-
tems the state is a function of both the number of agents and the time when the
agents use the network. In addition, a flow (or equivalently, the agents/entities
that constitute the flow) can take a non-negligible amount of time to travel
across the network from the source to destination, and network state like traf-
fic load and congestion can vary during this period. For instance, in hurricane
evacuations, the number of people evacuating in the transportation network is
a time-dependent process which can vary considerably during the time it takes
to move from homes to safe shelters. In the context of the Internet, network
congestion levels (and thereby, download speeds) can vary significantly within
a few hours, which is the typical time-scale for downloads of large video files in
peer-to-peer systems.

We study routing done by self-interested agents in the context of such flows,
which we call “dynamic flow” (or equivalently, “flow over time”). The behavior
of dynamic flows is very different from static (time-invariant) flows, as was seen
before in numerous papers studying dynamic flows from a centralized point of view
[14,10,12] (i.e, without self-interested agents). To further illustrate the difference
between static and dynamic flow, consider that in static selfish flow, the congestion
of a link is a function of all the users that use this link, aggregated over time. This is
problematic, however, in time varying flows. In our model, when carefully choosing
their best route, user i does not consider the congestion on link e based on the total
number of users that traverse e, or even on the users that are currently using e, but
instead considers the congestion on e that will take place when i reaches e. For a
detailed description of our model, see Section 2.

In this paper we study equilibria in dynamic flows, and prove various bounds
about their quality, as well as give algorithms on how to compute them. We con-
centrate on Nash equilibria in dynamic flow models, and show that their proper-
ties can be quite different from the ones in static models. We call such equilibria
“dynamic equilibria” to differentiate them from Nash equilibria in static selfish
flow. The notion of dynamic Nash equilibrium in this context refers to a system
state where each agent is not better off by deviating from its chosen solution
(which can consist of the agent’s route, start and waiting times, etc.). As this
paper illustrates, the variation in network state as the flow progresses through
the network results in the fundamentally different and significantly more com-
plex nature of dynamic flow equilibria problems, as compared to those defined
in static network settings.

Background and Related Work. While both dynamic flows (a.k.a. flows over time)
and selfish flows have been studied extensively, few outside the transportation
community [15] have yet attempted to study flows that are selfish and take time
to traverse a link. Below we outline some of the related work on these topics.

Static Selfish Flows. Traditional computer science research concerning routing
of self-interested agents in networks has mostly focused on static flows [18,4]. In
a static routing game, we are given a graph G = (V, E) of links, with latency
functions �e(x) for each edge e (these functions are usually assumed to be non-
decreasing and convex). We are also given a source s and sink t (or possibly many
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sources and sinks), along with some amount of flow that desires to be routed
from s to t. This flow is sometimes considered to be non-atomic (composed of
an infinite number of users, each controlling an infinitesimal amount of flow)
or atomic (composed of a finite number of users, each controlling a discrete
amount of flow). In this paper, we focus on non-atomic flow, although many
of our results can be adopted to the atomic case. Each user is able to choose
the route along which its flow proceeds, and since the users are self-interested,
they will choose the route that has minimum congestion. Specifically, if xe is
the total amount of flow on edge e, then the congestion or delay on path P is
defined to be

∑
e∈P �e(xe). When considering the solution quality for such flows,

the most common measure is the total congestion (which also corresponds to the
social welfare), measured by

∑
e∈E xe�e(xe). The centralized optimal solution is

considered to be the flow that minimizes this value (and therefore maximizes
social welfare). Many properties are known about such static selfish flows, such
as results about the prices of anarchy [18, 5] and stability [6], and the fact that
a Nash equilibrium exists and (for certain classes of games) is unique.

Flows over time. The single major difference between the unsolved problems
we address and most traditional network flow research is the notion of time pass-
ing while flow (i.e., cars/packets) move through the network. This type of flow is
often called “flow over time” or “dynamic flow”, and is applicable not only to all
kinds of transportation networks, but also a wide range of data communication
networks. Specifically, a flow over time means that flow on different links in the
network can change over time, and more importantly, a flow requires a certain
amount of transit time to travel through each link, this amount possibly depen-
dent on the current congestion. Unlike in static flow systems, the amount of flow
or congestion on a link changes at every time step, as some flow enters and some
flow leaves this link, adding an extra temporal component. There has been some
excellent research in flows over time using various optimization techniques (for
surveys, see [12,2,16,17]). The work in [13,9] is especially relevant to ours, since
these papers consider traffic delays that are flow-dependent, as we do in Sections
3 and 4. All of this research, however, does not take into account the strategic
nature of agents in the system. One of the main goals of this paper is to combine
the techniques used for analyzing dynamic flows with the ones used for static
selfish flows [7].

Dynamic Equilibrium in Transportation Networks. Due to the inherent
nature of time-varying flow in transportation networks, dynamic flow (referred
to as Dynamic Traffic Assignment) models are heavily used in transportation
network planning, operations, and evaluating real-time systems. These are typ-
ically classified into two categories: analytical models based on mathematical
programming formulations, and simulation-based heuristic models. Extensive
work has been performed for both types of approaches and an overview of this
literature can be found in [21,15]. A key limitation of the previously developed
models is that even under simplified assumptions, the models lack rigorous theo-
retical results on the existence, uniqueness, and algorithms to compute dynamic
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flow equilibria. While simulation models allow us to compute a “solution”, it is
difficult to guarantee that it is indeed a dynamic equilibrium. Simply put, our
work provides a much needed theoretical foundation to the dynamic strategic
flow concept, while building on the work done by transportation researchers.
Portions of the results in this paper were presented at DTA 2008 (International
Symposium on Dynamic Traffic Assignment), and the full version of this paper
can be found at [1].

2 Model and Our Results

In this section we describe our general model of strategic flow over time. In our
model we are given a road or computer network, represented by a directed graph
G = (V, E). We also have some flow demands, with source-sink pairs {si, ti} such
that a unit of flow desires to move from si to ti. This flow is selfish and non-
atomic, so a player in this case corresponds to an infinitesimal amount of flow,
and the goal of every player is simply to reach its destination in the least amount
of time possible. The strategies of the players consist of picking a path from their
source to their destination.

Everything we defined so far is exactly the same as in the usual selfish routing
model. The main difference is the congestion function. Every link has a function
de(x, Ht

e), which determines how long it takes x units of flow that enter edge e
at time t to traverse this edge. This amount can depend not just on the amount
of flow x, but also on the “history” of the edge usage. Specifically, define Ht

e to
be the set of amounts of flow using e before time t, and how long ago it entered e
before time t. For example, if 2 units of flow entered e one time step before t, and
1/3 units of flow entered e two timesteps before t, then Ht

e = {(2, 1), (1/3, 2)}.
This is an extremely general way to model flow over time. The fact that the
delay de depends on the history vector He means that, for example, the delay
for x flow entering at time t can depend on the total flow that is currently on
the edge, or on the time until all previous flow leaves the edge, etc. We assume
that the functions de are monotone increasing, i.e., that increasing the amount
of flow in He or in x can only increase delays. Given these congestion functions
and the behavior of other users, each user chooses a path from si to ti that would
minimize its delay.

What makes our model drastically different from static selfish flow is that it
takes time for a user to traverse a link. As we show in Section 4, the proper-
ties of our model are also very different from the static flow model. For example,
equilibria may not exist in dynamic flows, and unlike for static non-atomic flows,
they may not be unique. This results partially from the fact that unlike static
flows, self-interested dynamic flows do not form a congestion game [4], and mod-
eling dynamic flow games simply as repeated static flow games can result in
great inaccuracies.

Flow-Dependent Delays Obeying FIFO. We are especially interested in dynamic
flows where the FIFO (first-in first-out) property is obeyed. This is certainly
true for most communication networks, where packets are forwarded according
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to their arrival order, and is a common assumption for transportation networks
as well, since FIFO is largely enforced in time of high congestion, and is enforced
on average always. Because of this, in Section 3 we consider the general model
described above, but with the assumption that for all e,

de(x, Ht
e) + t ≥ de(x′, Ht′

e ) + t′ (1)

where x enters e at time t, and x′ enters e at time t′ < t (so that (x′, t−t′) ∈ Ht
e).

This condition simply states that if flow x′ enters an edge before x, then it
also leaves before x. For a discussion of some concrete models that fit into this
framework, see Section 3.1.

In Section 4 we show that for delay functions satisfying FIFO, it is still possible
that no equilibria exist, and that the price of anarchy is unbounded. On the posi-
tive side, however, we show in Section 3 that for single-source single-sink networks
obeying FIFO, a Nash equilibrium always exists, and can be computed efficiently.

Flow-Independent Delays. In Section 5 we focus on a very special case of flow in-
dependent delay functions. In this model, the travel time on a link e ∈ E does
not depend on the amount of flow on that link, so the delay de is constant. Con-
currently with our work, [11] showed many interesting properties of a continuous
version of the model with flow-independent delays. While the flow-dependent de-
lay model above has extremely different properties from static flow, in the case of
flow-independent delays there is a close relationship between static and dynamic
flows [14].

We exploit this relationship to give price of stability bounds for dynamic flows
with flow-independent delays. Specifically, we show that there always exists a
Nash equilibrium that is as good as the centralized optimum. We also consider
the case when the players’ cost functions do not simply correspond to travel
time. For example, a player’s cost might be a function of both travel time and
the congestion on the links taken. We show that if these cost functions are linear,
then we can compute an equilibrium that is at most 4/3 more expensive than
the centralized optimum (and in general it will be α more expensive, where α is
a factor dependent on the class of cost functions in [19, 18]).

3 Flow-Dependent Delays Obeying First-In First-Out
(FIFO)

An important goal in modeling dynamic flows is to understand the desirable prop-
erties of a good dynamic equilibrium model. In this section we assume that the de-
lays on the links satisfy the first-in first-out (FIFO) property. The FIFO property
can be defined as that any unit of flow A entering a link e before some flow unit
B also exits the link before B; in other words overtaking is not allowed1. It is easy
to show that simple inflow [9] or exit flow models violate the FIFO condition. An
inflow model is a model where the travel time for x flow entering a link at time t

1 For a precise definition, see Inequality 1.
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depends only on the size of flow x. In other words, the delay function is of the form
de(x), and does not rely on He. To see that inflow models violate FIFO, consider
the case when there is a sharp increase in traffic flow at time t followed by a rapid
decrease in flow at time t + 1. Then FIFO will be violated since the time taken for
a flow entering at time t is much higher than the flow entering at time t+1. Several
authors in the transportation community have tried to overcome this limitation
by assuming that the number of vehicles on a link at time t is a function of both
inflow and exit flow [8, 3]. While these models work well for most practical traffic
flows, FIFO can still be violated in such models.

In this section we assume that all delay functions satisfy the FIFO property,
i.e., that Inequality 1 always holds. There is a range of models which satisfy
this condition, including point queue models and other models that provide
approximate “positions” (based on microscopic traffic simulations) of the flow
currently on the link (i.e., how far along the link it has traveled so far) or/and a
function of speed of the flow. We describe some of these models in Section 3.1.

Even if the FIFO property holds, dynamic equilibria can be extremely differ-
ent from static equilibria. As we show in Section 4, in multi-source multi-sink
networks, equilibria may not exist, and the price of anarchy can be unbounded.
This is in contrast with static flows, where an (essentially unique) equilibrium
always exists, and can be computed efficiently [18].

For single-source single-sink networks, however, dynamic flows behave much
better in the presence of FIFO. Below we assume that there is a single unit of
flow starting from a node s and with destination t. If more than a single unit
of flow is present, we can always scale the flow so that there is only a single
unit: the important thing is that flow only leaves s at one moment in time, since
otherwise this essentially becomes a multi-source problem. For the single-source
single-sink case, we prove that there exists a Nash equilibrium for this general
class of dynamic models, and provide an algorithm to compute the equilibrium
solution. To the best of our knowledge, this is the first theoretical result on the
existence/computation of Nash equilibria for this general class of models. The
proofs of all our results can be found in the full version [1].

Theorem 1. If delay functions obey FIFO, when a single (splitable) unit of flow
desires to get from a source s to a sink t, a Nash equilibrium always exists and
can be computed efficiently.

The proof of this theorem essentially shows that equilibria in our model corre-
spond exactly to static equilibria in the appropriate static network. Since static
equilibria are efficiently computable (especially for linear congestion functions),
this theorem provides us with an algorithm for computing dynamic equilibria
as well. In addition to the existence of Nash equilibria, we can also show that
dynamic equilibria are unique in the presence of strict FIFO.

Proposition 2. With the same assumptions as in Theorem 1, if strict FIFO is
satisfied (i.e., Inequality 1 is satisfied without equality), then the dynamic Nash
equilibrium is unique.
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3.1 Concrete Models Satisfying FIFO

There are many realistic flow models that satisfy the FIFO property. Unfortu-
nately, the delay functions de for most of the models cannot be written in closed
form and do not possess a general analytical solution. However, these models
can be solved using numerical methods using various discrete time forward or
backward differencing methods for solving first-order differential equations. To
illustrate the types of functions de that obey FIFO, we present a specific model
below. For another, simpler set of functions, see the examples in Section 4.

Variations of the Point Queue Model. Consider the following form of what is
known in the transportation community as the point queue model. Suppose that
a flow x enters the tail of a link e at time t, and assume that if there were no
flow on the link at time t, then x will traverse the link in a fixed travel time
which can be a constant ce or, to more accurately account for congestion effects,
an expression such as cex. Now suppose instead that some flow y were already
present on the link at time t. In this model, we will think of flow x as traveling
on edge e with constant velocity Vx, picked so that it never passes any flow that
is in front of it, which is also traveling at constant velocity. Specifically, let τ(y)
be the time at which the last unit of the y flow exits the link e. If y entered e at
time t′, then it is traveling at velocity Vy = 1/(τ(y)− t′). Since it is now time t,
the flow y has traversed t−t′

τ(y)−t′ of the edge. If we now set Vx = 1/(cex + τ(y)),
then the flow x will never overtake any flow in front of it, guaranteeing the FIFO
property. To see this, notice that

τ − t′

τ(y)− t′
>

τ − t

cex + τ(y)

for all τ ≥ t. This is true because τcex + τt′ + tτ(y) > t′cex + tt′ + t′τ(y), which
holds because τ ≥ t > t′. Since τ−t

cex+τ(y) is exactly the position of the x flow at
time τ if it is traveling at velocity Vx, then the flow x always lags behind flow
y. The travel time for flow x in this case will be de(x, Ht

e) = cex + τ(y).
In fact, any travel times that result in the x flow exiting the edge after τ(y)

would satisfy FIFO. For example, we could instead say that x exits the edge at
time max(cex+ t, τ(y)). This would correspond to the x flow traveling along the
link at a top speed of 1/cex, but being unable to pass any flow that is in front of
it. In general, any model where flow x has a top speed for traveling on an edge,
with its actual speed dependent on the presence or on the density of the flow
ahead of x, fits into our framework. FIFO is satisfied in such a model as long as
the speed constraints are such that flow never passes anyone ahead of it.

4 Lower Bounds and Examples with No Equilibrium

In the previous section we saw that for the single-source single-sink case of
dynamic flow satisfying FIFO, a unique Nash equilibrium exists, and can be
computed efficiently. Unfortunately, as we show below, this equilibrium can be
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much worse than the optimal solution, leading to large prices of anarchy and
stability (which are the same in this case, since the equilibrium is unique). We
also give an example with multiple sources where an equilibrium does not exist
at all, and an example with multiple equilibria.

Example with Unbounded Price of Anarchy. In the proof of Theorem 1, we estab-
lished that the equilibria of our dynamic model correspond to static equilibria
in the same graph G with cost functions ge(x). In this case ge(x) is the time it
would take x amount of flow to traverse edge e if there were no flow ahead of it
on e. The price of anarchy in our model can be very different from the price of
anarchy for static flows, however, since while the cost of the equilibrium remains
the same, the optimal solution in the dynamic model can be very different from
the optimal solution for static flow. This leads to the cost of the optimal solution
being very small compared to the cost of the equilibrium.

s
v

t

0

k

1
x x x

Fig. 1. An example with unbounded Price of Anarchy. The edges are labeled with
values de(x, ∅).

To illustrate this, consider the example in Figure 1, where we have k parallel
paths leading from s to v, followed by a path of 100 edges leading from v to t.
Suppose the parallel paths have constant delay, with the i’th path having delay
i− 1. That is, if e is the i’th parallel edge, then set de(x, Ht

e) = i− 1. The 100
edges in the bottleneck path each have a delay such that if x amount of flow
enters an edge, with no other flow currently on this edge, then it will take x time
units for this flow to leave the edge. Any such delay functions that obey FIFO
will give us the desired example. To be fully concrete, however, we will give a
specific example of de, defined recursively. First, we set de(x, ∅) = x. In general,
if the last amount of flow that entered e before t was an amount x′ at time t′,
then the latest element of Ht

e is (x′, t− t′). In such a case, we define de(x, Ht
e) =

max{de(x′, Ht′
e ) + t′ − t, 0} + x. These functions satisfy the desired condition,

since if there is no other flow on edge e at time t, then de(x′, Ht′
e )+ t′ ≤ t, and so

de(x, Ht
e) = x. It is also easy to show that these functions satisfy FIFO (see [1]).

For Multi-source, Nash Equilibria May not Exist. We have shown above that
the price of anarchy can be very high in most FIFO models, since the optimal
dynamic solution can “stagger” the flow by breaking it up into small pieces,
while an equilibrium must keep all the flow together so all of it arrives at the
same time. For the multi-source version of our FIFO model, the situation is even
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worse, since a Nash equilibrium may not exist at all. While below we present
a multi-source multi-sink example with no equilibrium, there also exist such
examples with only a single sink node (but multiple source nodes). We give one
such example in [1].

Consider the example in Figure 2, with functions de(x, ∅) as shown in the
figure. We define the functions de(x, Ht

e) as in the previous example, so that
FIFO is satisfied, and so that if x units of flow enters e at time t, and no flow is
present on e at that time, then it takes de(x, ∅) time for this x flow to traverse
the link. In the previous example, this value de(x, ∅) was equal to x, but now
it can vary between edges as specified in the figure. For example, for the edge
from v to t2, if x flow enters this edge, with no other flow currently on this edge,
then it will take 100x time units for this flow to leave the edge. If an edge is not
labeled with a function, then we say that the delay on this link is always 0.

s1

s2

s3

10

t1

t2

1103

20xx

v
1

100 100x

x+1

2 t3
150

102

2

Fig. 2. A multi-source multi-sink example with no Nash Equilibrium. The edges are
labeled with values de(x, ∅).

There are three demands d1, d2, d3 with sources (si, ti) for i = 1, 2, 3, and with
flow sizes of 2, 100, and 10 respectively. All these demands leave their sources
at the same time.

Proposition 3. The example pictured in Figure 2 has no pure dynamic Nash
equilibrium.

Equilibrium is Not Unique. As we proved in Proposition 2, if strict FIFO is
obeyed, then there exists only a unique dynamic equilibrium. In the full version
of this paper [1], we present a simple example where equilibria are not unique
when FIFO is violated.

5 Flow-Independent Delays

In this section, we consider an important special case of Flow-Independent delay
functions. Specifically, in the Flow-Independent model, we assume that each link
e has a delay de, and any flow that enters this link at time τ leaves this link
at time τ + de. In other words, the delay function is simply de(x, Ht

e) = de, a
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constant. This is flow-independent in the sense that the delay de does not depend
on the amount of flow on the link. If edges are uncapacitated, then the best thing
for any flow (whether selfish or not) would be to proceed on the fastest path from
the source to the sink. Therefore, we assume that each edge also has a capacity
ce so that at every timestep, at most ce units of flow are allowed to enter e.

In Section 4, we showed that dynamic flow models can behave very differently
from static flow. For the flow independent case, however, there is a powerful
relationship between static and dynamic flows. As several papers including [14]
pointed out before, looking at a flow over time in the Flow Independent Model
is the same as looking at a static flow in the appropriate time-expanded graph.
Specifically, form a new graph G′ with a set of nodes V τ in G′ for every timestep
τ , and add edges (vτ , wτ+de) with capacity ce to G′ if and only if there is an
edge e = (v, w) in G. For every sink node t in G, we also form a special node t∗

in G′, and add edges (tτ , t∗) for every time τ . It is easy to see that any static
flow in G′ corresponds exactly to a flow over time in G (even with multiple
sources and sinks). In fact, [14] gave a PTAS for finding the centralized optimal
solution in this model. Notice that in our model we do not allow “waiting” (a.k.a.
“intermediate storage”), where flow stays at a vertex instead of immediately
leaving it. See [1] for further discussion on this topic.

To understand the price of anarchy in the Flow Independent Model, we first
consider the quality of Nash equilibria in the static flow model with capacities.
It is easy to see that there can exist many equilibria in the presence of capacities,
and in fact the price of anarchy can be unbounded [6], since the worst equilibrium
can be much more expensive than the centralized optimum. This has led to the
investigation of the price of stability. Recall that the price of stability is the
ratio between the best Nash equilibrium and the centralized optimum. The best
equilibrium can naturally be viewed as the optimum solution subject to the
constraint that the solution be stable, with no agent having an incentive to
unilaterally deviate from it once it is implemented. For models with a unique
equilibrium, the price of stability coincides with the price of anarchy, but in the
case of capacitated networks, [6] demonstrated that these can be dramatically
different.

Theorem 4. For Flow-Independent delays, the price of stability is 1. In other
words, there exists a Nash equilibrium as good as the centralized optimum.

Because of the correspondence between static flows in G′ and dynamic flows
in G, we know that comparing dynamic equilibria with OPT in G is the same
as comparing static equilibria with OPT in G′. This tells us that the price of
anarchy in the Flow-Independent Model is unbounded, using the results of [6].

Using this intuition, we can also generalize Theorem 4 as follows. Suppose that
the disutility of a player traveling on path P is not simply its delay

∑
e∈P de (as

we assume in the rest of this paper), but is instead a function of how congested its
route is. Specifically, for every edge e of G, suppose that there is some function
δt
e(f

t
e) that shows the cost to a player using edge e at time t, with this cost

dependent on the amount of traffic f t
e entering edge e at time t. The total cost

to a player using path P is then the sum of these costs, and minimizing the total
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cost to all the players is the same as maximizing social welfare. In other words,
we assume that while it still takes a constant amount of time de for everyone to
traverse edge e (independent of the amount of traffic f t

e), the disutility δt
e(f t

e) of a
player using edge e actually increases as the amount of traffic increases, modeling
the fact that people do not like to drive in heavy traffic, even if it does not cause
them to be delayed. This can also model other modes of transportation (such
as subway systems), where the travel time may not change with the number of
users, but the utility of a user changes greatly (e.g., because the subway car is
crowded, or there is no place left to sit).

These new player utilities do not change the possible flows, so the transforma-
tion between G and G′ is still valid, as well as the correspondence between dynamic
flows in G and static flows in G′. If we set the cost of an edge et in G′ to be a func-
tion δt

e(f
t
e) instead of just a constant de, then the cost of a flow F ′ in G′ is still the

same as the total cost to all players in the corresponding dynamic flow F of G. This
means that instead of thinking about dynamic flows in G, we can now think about
static flows in G′, and compare the Nash equilibria in G′ with OPT. Using exist-
ing results about static flows [20], we know that in capacitated graphs, the price of
anarchy can be very high, while the price of stability is at most α(A), a value de-
pending on the class of possible latency functions A. For example, if the functions
δt
e are linear in the amount of traffic, then α(A) equals 4/3, and for polynomials

of degree d and positive coefficients, α(A) = d/ log d. In addition, we know that
in graphs without capacities, the price of anarchy is at most α(A) [18], and so all
equilibria are good compared to the optimal centrally planned solution.

Theorem 5. The prices of anarchy and of stability for the Flow-Independent
model with player cost functions δe are at most those for the static flow model with
cost functions δt

e. For example, if δt
e are all linear functions, then:

– The price of stability is at most 4/3 for capacitated graphs.
– The price of anarchy is at most 4/3 for uncapacitated graphs.

If instead of linear, the functions δt
e were polynomials with degree at most d, then

the factor of 4/3 above can be replaced with d/ log d.
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Abstract. Congestion control at bottleneck routers on the internet is a long stand-
ing problem. Many policies have been proposed for effective ways to drop pack-
ets from the queues of these routers so that network endpoints will be inclined to
share router capacity fairly and minimize the overflow of packets trying to enter
the queues. We study just how effective some of these queuing policies are when
each network endpoint is a self-interested player with no information about the
other players’ actions or preferences. By employing the adaptive learning model
of evolutionary game theory, we study policies such as Droptail, RED, and the
greedy-flow-punishing policy proposed by Gao et al. [10] to find the stochasti-
cally stable states: the states of the system that will be reached in the long run.

1 Introduction

Ever since the first congestion control algorithms for TCP endpoints were introduced
in [12], the important problem of congestion control at bottleneck routers on the In-
ternet has garnered wide-spread attention. Several algorithms have been proposed for
queue management and scheduling of packets in routers. Initially, such algorithms were
designed under the assumption that all packets arriving at the routers come from TCP
complying sources that produce packet flows with certain characteristics: all flows that
become aware of congestion at the router (by seeing some of their packets dropped)
will respond by reducing their transmission rates. However, TCP flows are not the only
ones competing for available bandwidth or space in router queues. UDP flows behave
in a completely different manner, tending to be more aggressive without sharing the
same congestion control profile as TCP. Moreover, the assumption that future users will
continue using the current TCP protocol seems questionable. Since there is no central
authority governing their behavior, as users compete for bandwidth, they may very well
change the way they respond to congestion.

Studying congestion control from a game theoretic perspective was therefore the
natural next step. Using a variety of models, game theory has been used not only to
find Nash equilibria (NE) when users are self-interested and routers employ existing
methods, (e.g. FIFO with Droptail, or RED [8]) but also to design new router queuing
policies, aimed at reaching good social outcomes in the presence of such users [10].
Such “good social outcomes” include the avoidance of congestion at routers, and thus
avoidance of Internet congestion collapse, but also fairness of bandwidth sharing.
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However, an approach commonly taken is to assume perfect information. Users are
assumed to know the transmission rates of others and the congestion levels at the router,
and use this information to compute a best response and optimize their utility. Even
though such assumptions are standard, and even necessary, in the study of NE, they
are not likely to be met in a setting like the Internet. Without such assumptions, can
the equilibria be reached? Could there be a set of states, none of them necessarily a
NE, such that the system gets essentially “trapped” cycling among the states in the set?
These are the questions we are aiming to answer in this work.

Using a simple yet general model of the game played by internet endpoints at internet
bottleneck routers, we provide the first (to our knowledge) analysis of this problem us-
ing stochastic stability, a classical solution concept from the adaptive learning model of
evolutionary game theory. Evolutionary game theory’s adaptive learning setting is suited
especially well for the game of internet endpoints competing for bottleneck router ca-
pacity. In traditional game theoretic settings, each player must assume all other players
are perfectly rational, and must be fully informed of each other’s actions and prefer-
ences. When players are internet endpoints, such requirements seem unreasonable and
quite unlikely to be met. In our evolutionary setting, under adaptive learning’s imita-
tion play, players need only know what you would expect them to know: what they
themselves experience in each round of play. Then they use simple heuristics to decide,
based on the results of their recent play, what strategy to employ for the next round.
The simplicity of the model but also its ability to cope with limited information, make
it particularly useful for modeling router congestion games.

To study our problem in this adaptive learning setting, we use a new model proposed
by Efraimidis and Tsavlidis [7] called the window game. This model is not only simple,
but more general than previous models in which players are usually assumed to be TCP
endpoints with specific loss recovery properties. In the window game, the endpoints
are modeled so that they can be thought of as using either TCP, UDP, or whatever
transmission protocol they choose. There are n internet endpoints, each seeking to send
an unlimited amount of traffic. But all endpoints encounter the same bottleneck router,
which has capacity C. Each of the endpoints is a player that chooses a strategy: an
integer-sized “window” between 0 and C. The window size can be thought of as the
amount of the router’s capacity being requested by the player, or the number of packets
being sent by the player. The amount of capacity that the router actually allocates to each
player is then determined by the router’s queuing policy and the specified window sizes
(capacity requests) of the other users. The utility of a player is defined as the number
of successfully sent packets, minus the number of dropped packets times some factor
g ≥ 0. Hence, g represents the cost a player suffers by having one packet dropped.

We assume that this game is played repeatedly in rounds, in which every player
chooses a strategy to play using imitation dynamics: sampling the outcomes of the
rounds of play in its memory, and then imitating the strategy that served it best. How-
ever, with very small probability, each player fails to follow the imitation dynamics
and chooses a strategy at random. Then, loosely speaking, the set of stochastically sta-
ble states represents the set of strategy profiles that have positive probability of being
played in the long run, or, the states that the system eventually settles on. More details
can be found in Section 2.1.
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Our Results. The policies we deal with here have been studied with respect to Nash
Equilibria before (see the Related Work section for more details), mainly though assum-
ing that the rates at which the sources send their packets is described by a given rule,
for instance, assuming Poisson rates. In our work, we make no such assumption, but
employ the window game of Efraimidis and Tsavlidis [7]. We believe that this model
is simple enough to allow interesting theoretical analysis, but still captures the essence
of the game played between competing internet endpoints. We extend the results in [7]
with respect to Nash Equilibria but also study the stochastic stability of the underlying
games.

We begin by analyzing the two currently most well-known and widely-used
router queuing policies: FIFO with Droptail and RED (Random Early Detection)
[8]. When Droptail is used, all incoming packets are simply dropped once the queue
is full. We show that for any reasonable value of g, the only NE and the only stochas-
tically stable state is the state where all players send g+1

g C n−1
n2 packets. This implies,

for instance, that for a large number of flows and any value of g ≤ 1 (g = 1 means
that each player is hurt by each lost packet about the same as the amount they gain from
each successful packet), the router is getting hit by roughly more than twice as much
traffic as it has capacity. Next, we show that under RED queuing, in which the router
starts dropping packets preemptively as soon as its buffer reaches a certain threshold
T < C, things cannot get much better. For reasonable values of g, there is a single NE,
which constitutes also the single stochastically stable state, in which the congestion at
the router is still significant.

Finally we study a queue policy proposed by Gao et al. [10], in which any overflow is
compensated for by dropping the packets belonging to the most demanding flow. This
policy was designed, in a idealized setting, to have a unique NE such that the router
capacity is equally shared among all flows and overflow is avoided. They also studied
a non-idealized setting in which flows do not have perfect information, and all sources
are restricted to fixed-rate Poisson rates except one, which can be arbitrarily aggressive.
In this setting, they succeed at a more modest goal: the source that can be arbitrarily
aggressive should not outperform the best Poisson source by much. In this work we
show that this policy can actually do even better. We show that even if flows have
no information about one another, and all of them can arbitrarily adjust their window
sizes (so no flow is restricted to a fixed rate), the system will still converge to the fair
equilibrium under adaptive learning with imitation dynamics.

Even though the stochastically stable states for the queuing policies we study turn out
to coincide with the NE, what our results indicate is the following: even in the chaotic
internet setting, where players have extremely limited information about the game and
make instantaneous decisions, the NE will actually be reached.

Related Work. FIFO with Droptail is the traditional queue policy that has been em-
ployed widely in internet routers. As soon as the router queue is full, all subsequent in-
coming packets are dropped. For more information on Droptail and its variants, see [2].
RED [8] works similarly, but starts dropping packets with a certain probability as soon
as the number of packets in the queue exceeds a threshold T < C. Both these poli-
cies punish all flows in a similar manner, regardless of whether they are “responsible”
for causing the overflow or not. Specifically, the expected fraction of the demand of
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each flow that gets through the router is the same among all flows, those with moderate
demands, and those with demands far exceeding their “fair share”. The result is that
flows with large demand can use more router capacity at the expense of lower-demand
flows.

There have been methods suggested for inhibiting such behavior. The Fair Queueing
algorithm [4] ensures the maxi-min fairness criterion: using round-robin for selecting
the outgoing packets, every flow can at least obtain its “fair share.” Even though this is a
fair scheme, it comes at the cost of efficiency. It requires separate buffers for each queue
and a lot of book-keeping, making it unusable in practice. A method that achieves the
same result without the high computational cost at the routers was suggested in [19].
This method however, cannot be used independently in each router, as it depends on
receiving flow-specific information from other routers.

CHOKe [17], on the other hand, is a stateless queue management scheme, which can
be implemented in a router independently from what other routers use. When a packet
arrives to the queue, it is compared to M ≥ 1 packets chosen uniformly at random from
those currently in the queue; if it comes from the same source as any of them, then both
are dropped. There are both theoretical and experimental studies [20,15] suggesting its
effectiveness at preventing greedy (e.g. UDP) flows from strangling moderate flows.
However, as the number of greedy flows varies, the parameter M must also change in
order to protect the more moderate flows from losing their fair share.

Gao et al [10] introduce a router queue management algorithm, which, unlike Fair
Queuing, does not require separate buffers for each flow, but, under some assumptions,
achieves the same (fair) NE as maxi-min fairness. The main idea is to keep track of the
“greediest” flow. Whenever there is an overflow, the algorithm drops only packets that
belong to this flow. 1 The Prince algorithm described in [7] works in a similar manner.
The algorithm in [10] was aiming to fulfill, among others, the following two objec-
tives. First, in an idealized environment of full information, the profile corresponding
to maxi-min fairness is the unique NE. Second, removing the full information setup
but restricting all flows but one to being Poisson sources of fixed rates, the unrestricted
flow has no way of obtaining a throughput much better than that of the best Poisson
flow.

There are several game theoretic results for congestion control. For a better introduc-
tion, we refer the reader to [18] and [14]. Akella et al. [1] study the equilibria of a TCP
game, in which all flows use the Additive Increase Multiplicative Decrease (AIMD)
algorithm. This is the method currently employed by TCP endpoints. The strategy sets
consist of the possible values for the parameters of the algorithm. They show that even
though the older TCP endpoint implementations can lead to efficient equilibria even
with FIFO Droptail and RED router queue policies, this is no longer the case with
newer implementations. They show that some measure of “network efficiency” can be
established with a variant of CHOKe, assuming however that all flows are TCP. A lot
of work has been devoted to game theoretic models in which all flows originate from
Poisson sources and each source is allowed to vary the transmission rate [18,5,6]. The
inefficiency of NE is studied, mainly in the case of a single bottleneck router, but also in

1 Only in case that the overflow is greater than the number of packets of the greediest flow in
the queue, will packets from other flows be dropped as well.
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more general networks [11]. Kesselman et al. [14] consider a model in which the flows
are explicitly deciding when to send new packets, instead of implicitly modifying their
transmission rates.

An evolutionary game theoretic approach based on adaptive learning is used in [16]
to analyze a game in which users set transmission rates for optimally receiving multi-
media traffic. In [3], adaptive learning with imitation dynamics was used to analyze a
load balancing game.

The Window Game model we study here was first proposed in [7], where it was used
to find the NE in games between AIMD but also more general flows.

2 Model, Notation, and Background

To model internet endpoints competing for capacity at a bottleneck router, we use the
window game of [7]. Let N be the set of players, |N | = n, with each player representing
an internet endpoint. The strategy set for each player is the set of all possible window
sizes, integer values between 0 and C, where C is the capacity of the bottleneck router.
Let wi be the window size requested by player i. Let w = (w1, w2, . . . , wn); w is a
strategy profile vector of the game. Let w−i refer to the vector of all the strategies in
w except wi. Let W =

∑n
i=1 wi and let W−i = W − wi. The bottleneck router uses

a (possibly randomized) queuing algorithm (like Droptail, RED, etc.), to decide how
many of each player’s packets to keep, and how many to drop. Therefore the queuing
policy maps each strategy profile w to a corresponding vector that indicates for each
player i how many of its wi packets are kept (in expectation), keepi, and how many
are dropped, wi − keepi. As described in the previous section, g ≥ 0 is a real value
that indicates how much detriment a lost packet causes to each player. Then for any
i = 1 . . .n, function of i is πi(w) = (keepi)− g(wi − keepi).

A best response to w−i for each player i is then bri(w−i) = arg maxwi

πi(wi, w−i).

2.1 Adaptive Learning and Imitation Dynamics

We now more formally present the relevant aspects of evolutionary game theory’s adap-
tive learning model [9,21,22], as well as the imitation dynamics of [13]. A related, more
detailed summary can be found in [3], in which adaptive learning and imitation dynam-
ics are applied to a load balancing game.

In the adaptive learning model with imitation dynamics, each of n players has a finite
memory of their own actions and payoffs in the previous m rounds of play. After each
round, each player samples (uniformly at random) s of the m previous rounds of play,
and then in the next round, plays the strategy (in our case, the window size) that yielded
highest average payoff over the rounds that were sampled. In this way, the player is
“imitating” the strategy that has served her well in the past.

These dynamics correspond to a Markov process P , where each state in the process
is the history of the last m rounds of play. Each play history is comprised of m strategy
profiles, and a state where all m strategy profiles are the same is called a monomorphic
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state.2 The transition probabilities between states of the process are determined by the
imitation dynamics described above. A recurrent class of a Markov process is a set of
states such that there is zero probability of leaving the set once a state in the set has
been reached, but positive probability of reaching any state in the set from any other
state in the set. Josephson and Matros [13] prove the following about the process P .

Theorem 2.1 ([13]). If s/m ≤ 1/2, a subset of states is a recurrent class if and only if
it is a singleton set containing a monomorphic state.

If we now suppose that in each round, each player with probability ε > 0 does not fol-
low the imitation dynamics, but instead chooses a strategy at random, we have modified
the Markov process so that there is always positive probability of eventually reach-
ing any state from any other state. Therefore, there is a unique stationary distribution
over the states in this modified process. We refer to this modified process as the per-
turbed Markov process, P ε and the stationary distribution as με. The stochastically sta-
ble states (SSS) are those states h in this modified process for which limε→0 με(h) > 0.

A better reply is a unilateral strategy deviation by a player that gives that player at
least as high a payoff as the original strategy profile. I.e., x is a better reply for player i
if πi(x, w−i) ≥ πi(w). A cusber set or a set “closed under single better replies,” is a set
of strategy profiles such that any sequence of better replies, by any sequence of players,
starting from any strategy profile in the set, always leads to another strategy profile that
is also in the set. A minimal cusber set is a cusber set such that if any strategy profile is
removed, the remaining set is no longer a cusber set.

Theorem 2.2 ([13]). Under imitation dynamics, the profiles in the set of
stochastically stable states are a minimal cusber set or a union of minimal cusber sets.

Note that the following corollary is an immediate consequence of Theorem 2.2.

Corollary 2.3. If a single strategy profile comprises the only minimal cusber set in a
game, then that is the only strategy profile in the set of stochastically stable states under
imitation dynamics.

For a more complete background on stochastic stability and imitation dynamics, we
refer the reader to [22,13]. In what remains, we assume that s/m ≤ 1/2.

3 Droptail

FIFO queues with Droptail are widely used in Internet routers. While the queue has not
reached its capacity, incoming packets are inserted in the end of the queue. As soon
as the capacity is reached, any new incoming packets are dropped. We will start by
describing the window game model of Droptail, then discuss the NE, and finally prove
that there is a single stochastically stable state that corresponds to the unique NE.

2 For expository simplicity, if a monomorphic state has w as the strategy profile that fills its
history, we will sometimes abuse notation and use w not just as the name of the strategy
profile, but when the context is clear, as the name of the monomorphic state containing w.
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Remember that for any profile w, we denote by W the total window size requested,
i.e., W =

∑N
i=1 wi. Under the Droptail routing policy, when W > C, the router

chooses W − C packets uniformly at random to be dropped. Therefore, for any player
i with window size wi, the expected number of packets of i that will enter the queue is
wi ·C/W , while wi · (1−C/W ) will be dropped. Of course, when W ≤ C no packets
will be dropped. This means that the expected payoff for player i can be expressed as

πi(w) =
{

wi if wi ≤ C −W−i

wi · C
W − gwi

(
1− C

W

)
if wi > C −W−i .

(1)

We note that when the total window size equals the capacity, i.e., wi + W−i = C, then
both pieces of the payoff function result in the same payoff. Therefore, for W = C
either of the two subcases can be used.

Definition 3.1. Define dg to be g+1
g C n−1

n2 .

Efraimidis and Tsavlidis in [7] proved that, assuming g ≤ n−1,3 the profile (dg, ..., dg)
is the unique symmetric NE. In fact, as the next theorem states, that is the only NE for the
case g ≤ n− 1. The proof, which involves first determining the best response function
for each player, and then ruling out the possibility of all other NE, can be found in the
full version of this paper.

Theorem 3.2. If g ≤ n − 1, then the outcome in which each player’s window size is
dg = (g+1)C(n−1)

n2g is the only NE.

In the following, we will assume that g ≤ n − 1, since the case where g > n − 1 is
of no practical relevance. We will now establish that the state (dg, . . . , dg) is the only
SSS. Our proof uses the fact that any profile in a stochastically stable state is found in
a minimal cusber set (Theorem 2.2), along with the fact that under Droptail the only
minimal cusber set in our game is the NE profile itself. We first give two lemmas that
allow us to establish the latter fact, by showing there is a better-reply path from any
profile to the NE profile. Due to lack of space, we refer to the full version of this work
for the proof of Lemma 3.3.

Lemma 3.3. Let w �= (dg . . . , dg), W ≥ C. Within at most two better replies, a profile
w′ can be reached, such that for any k with wk = dg , w′

k = dg , and there is some
player i, such that wi �= dg and w′

i = dg . Moreover, W ′ ≥ C.

Lemma 3.4. For any w �= (dg , . . . , dg), there is a finite sequence of better replies that
leads to the profile (dg, . . . , dg).

Proof. We note first that if W < C, then for any player i, playing C −W−i is a better
response than wi. Hence we will assume that W ≥ C. Note that applying Lemma 3.3
to w �= (dg, . . . , dg), we will obtain some w′ such that still W ′ ≥ C. Therefore, by
simply invoking Lemma 3.3 at most n times, we can see that there is a path of (in total)
at most 2n + 1 better response moves from w to the profile (dg, . . . , dg). ��

3 Given that the number of flows that share the capacity of a bottleneck router is large, the case
that g > n − 1 is not realistic, and thus of no practical interest. For completeness, the NE for
the case that g > n − 1 are discussed in the full version of this work.
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Theorem 3.5. For g ≤ n − 1, the state in which every player plays dg is the unique
stochastically stable state.

Proof. First of all, note that dg is the unique better response to W−i = (n−1)dg. There-
fore the profile a = (dg, . . . , dg) is a minimal cusber set. Moreover, by Lemma 3.4,
there is a better response path from any w �= a to a. Therefore any other cusber set
would have to contain a, which implies there is no other minimal cusber set. Hence, by
Corollary 2.3, a is the only state that is stochastically stable. ��

4 RED (Random Early Detection)

RED (Random Early Detection) [8] was meant to keep the average queue size low. It
works similarly to Droptail, but starts dropping packets before the queue is full. When
the total load at the router exceeds a system-defined minimum threshold T , the router
begins dropping each new arriving packet with probability proportional to the load. Af-
ter total load exceeds a system-defined maximum threshold, the packets are dropped
with probability 1. (Note that when the maximum threshold is set to C, then once ca-
pacity is reached, RED behaves exactly like Droptail.)

To simplify our study, we will assume that the maximum threshold is C, but we
will leave the minimum threshold T as a free parameter. We then must model the RED
mechanism in the window game setup. Assume that the current load at the queue is L ≥
T . Then, according to RED, each new arriving packet will be dropped with probability
L−T
C−T . Assume that when W packets arrive sequentially, the expected number of them
that enter the queue is x. In contrast to this sequential process where packets arrive one
by one, using the window game we assume that given a strategy profile w, all W packets
arrive at the same time. Each packet will be admitted to the queue with probability x

W
(x packets are chosen uniformly at random). If W ≤ T , then all packets are admitted.

Lemma 4.1. Assume that RED is used and let w be a strategy profile such that W > T .

i) If W ≥ WC , where WC = (C − T )HC−T + T , then the queue size reaches C.
ii) If T ≤ W < WC , then T + k̃W packets enter the queue, (and the probability for

any packet to be kept is k̃W +T
W ), where k̃W ≈ (C − T )

(
1− e−

W−T
C−T

)
.

Proof. The proof uses the solution to the well-known coupon collector problem. In
what follows we use the term kept to refer to the event of a packet not being dropped.
We consider the case that W packets arrive sequentially. Consider the moment at which
the queue size becomes T + i − 1, for some i, 1 ≤ i ≤ C − T . Let Xi be a random
variable that represents the number of packets that arrive to the system until the queue
size reaches T + i (i.e., Xi − 1 is the number of packets that arrive to the router and
get dropped until one is kept). According to the description of RED, when T + i − 1
packets are already in the queue, the probability that a newly arriving packet is dropped
is i−1

C−T . This implies that E[Xi] = C−T
C−T−i+1 . Let Hj be the jth harmonic number.

i) WC = T + E
[∑C−T

i=1 Xi

]
= T +

∑C−T
i=1

C−T
C−T−i+1 = (C − T )HC−T + T .
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ii) The total number number of packets k̃W that enter the queue, out of the total

of W that arrive, is given as the maximum k, such that T + E
[∑k

i=1 Xi

]
≤ W ⇔∑k

i=1
C−T

C−T−i+1 ≤ W − T ⇔ (C − T ) (HC−T −HC−T−k) ≤ W − T .

Approximating Hj with ln j we get: ln(C − T − k) ≥ ln(C − T )− W−T
C−T which gives

k̃W ≈ (C − T )
(
1− e−

W−T
C−T

)
. ��

In order to simplify our presentation (and to allow clean formulation of a best response
function), we will approximate k̃W by kW = W−T

HC−T
. Note that kW is also a continuous

function, while kT = 0 and kWC = C − T ; therefore, when W equals T (respec-
tively, WC ), the total number of packets entering the queue is T (respectively, C), in
accordance to Lemma 4.1. The payoff function of flow i is now expressed as:

πRED
i (w) =

⎧⎨⎩
wi if W ≤ T

wi · kW +T
W − gwi

(
1− kW +T

W

)
if T < W ≤ WC

wi · C
W − gwi

(
1− C

W

)
if W > WC

The best response function of RED differs according to the value of g. In particular,
there are three possible ranges for g. Due to space limitations, we will only discuss

here the case where g ∈ Rg , for Rg =
[

C
(C−T )(HC−T −1) , n− 1

]
, which is the most

practically relevant range of values.4 We defer the other cases, as well as the proofs of
the following two theorems, to the full version of this work.

Definition 4.2. Define rg = T (g+1)(HC−T −1)
gHC−T −g−1 · n−1

n2 .

Theorem 4.3. If g ∈ Rg , then there is a unique NE, such that wi = rg , for all i.

Theorem 4.4. If g ∈ Rg , then the only stochastically stable state under RED is the
state where all players set their window sizes to rg .

The above theorems imply that under RED the system will converge to the unique Nash
Equilibrium. Given that g ∈ Rg , the total congestion will be less than the corresponding

one in Droptail. Still, however, the overflow is large: as n grows, since (g+1)(HC−T −1)
gH−g−1 >

g+1
g , the total window size will be (roughly) at least 2T . And, as g decreases to values

outside of Rg , the congestion at RED NE can sometimes be even greater than at the
Droptail NE. More details can be found in the full version of this work.

5 “Fair” Queue Policy

In this section we study the queuing policy proposed by Gao et al. in [10]. The main
idea (similar also to the Prince algorithm of [7]) is that in case of congestion, the most
demanding flow is punished. Assuming that all players are fully informed of the other

4 In practice T = λC, for some constant λ meaning that C
(C−T )(HC−T −1)

is a decreasing
function on C tending to 0, as C grows large.
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players’ strategies, this policy was constructed so as to have a unique NE in which all
players share the capacity equally. In a more realistic setting, where the rates at which
other flows send packets are not globally known, the authors wish to reach a less lofty
goal: if all flows but one have fixed rates, then the unrestricted flow cannot use up much
more of the router queue capacity at the expense of the fixed-rate flows. We will show
here that in fact, the fair equilibrium is also the only stochastically stable state. This
implies that, even without fully informed players, the algorithm in [10] can achieve the
fair NE, even when all flows are allowed to be arbitrarily aggressive.

The window game adaptation of Protocol I in [10] works as follows. For any profile
(w1, · · · , wn), if W ≤ C then for any flow i, all wi packets will enter the queue, i.e.
πi(w) = wi. On the other hand, if W > C then let i0 = argmaxi∈N{wi} (breaking
ties arbitrarily). Flow i0 will be the one to be punished for the overflow, and if wi0 <
W − C then the rest of the packets will be dropped according to Droptail. In other
words, πi0 = max{0, wi0 − (W −C)} − g ·min{wi0 , W − C}, while for any i �= i0,

πi(w) =

{
wi if wi0 ≥W − C

wi · C
W−wi0

− gwi

(
1− C

W−wi0

)
if wi0 < W − C .

(2)

The next theorem was stated in [7].

Theorem 5.1. Assuming g > 0, there is a unique NE in which all players play C/n.

The following theorem establishes the fact that the unique NE is also the only stochas-
tically stable state. We prove this by showing that the profile (C/n, ..., C/n) is the only
minimal cusber set.

Theorem 5.2. If g > 0, then the only stochastically stable state is (C/n, ..., C/n).

Proof. Let ŵ = (C/n, · · · , C/n). We will show that the singleton set {ŵ} is the
only minimal cusber set. Then we can conclude using Corollary 2.3 that ŵ is the only
stochastically stable state. First note that {ŵ} is a minimal cusber set: any player de-
viating from ŵ will be strictly decreasing her payoff. (Assume that a player i moves
to some value x �= C/n. If x < C/n, then πi(x, ŵ−i) = x < C/n = πi(ŵ). If
x > C/n, then x−C/n of her packets will be dropped and her payoff will decrease to
πi(x, ŵ−i) = C/n− g(x− C/n) < πi(ŵ), since g > 0.)

We proceed now to showing that for any profile w �= ŵ, there is a finite better
response path to ŵ. Assume first that W > C and let i0 = arg maxi∈N{wi}. Then
min{wi0 , W − C} of i0’s packets get dropped. In that case it is at least as good for i0
to play max{0, wi0 − (W − C)}, since the same amount of i0’s packets will enter the
queue as before, but without any being dropped. We will call this a move of type A.

Assume now that W = C, but w �= (C/n, · · · , C/n). Let j be the player with
the maximum window size in w, i.e., j = argi∈N maxwi. The fact that W = C
and w �= ŵ, imply that wj > C/n. Moreover there must be some player k �= j, with
wk < C/n. Playing C/n is a better response to k, since C/n < wj , meaning that j will
be the one to be punished for the overflow. (The new total window size cannot exceed
the capacity by more than C/n, implying only packets from flow j will be dropped.)
Therefore, k gets more packets in the queue by changing wk to C/n, and still none
dropped. We will call this a move of type B.
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Now the better response path to ŵ is constructed as follows: From any w, if W < C,
then any player can improve her payoff by increasing her window size by C −W . We
then arrive at a profile w′ where W ′ = C. If W > C, after fewer than n moves of type
A, a strategy profile w′ is reached where W ′ = C.

For any w′ such that W ′ = C, if w′ �= ŵ, then a move of type B occurs in which a
player that in w′ played something less than C/n moves to C/n. This is immediately
followed by a move of type A in which a player that in w′ was playing something greater
than C/n reduces her window size. If w′′ corresponds to the new profile reached, then
again W ′′ = C. This alternation between moves of type A and moves of type B con-
tinues, until ŵ is reached. Note that once a player moves to C/n then she does not
change her window size anymore, meaning that the total number of steps needed until
ŵ is reached is finite. ��
We note that the condition g > 0 in the above theorem is necessary in order for the
cusber set to contain only the profile (C/n, . . . , C/n). If g = 0, then a flow can deviate
from the profile (C/n, . . . , C/n) by increasing its window size while still obtaining
exactly the same payoff. We also note that unlike the results of Sections 3 and 4, here,
the result in this section holds even if each flow has a different value for g, a value that
can be arbitrarily small.

6 Discussion

While Droptail and RED have stochastically stable states with high congestion at the
bottleneck router, the Gao et al. policy leads to fair and efficient use of the bottleneck
router capacity. Specifically, we’ve established that under Droptail queuing, the unique
stochastically stable state (and unique NE) is the profile in which all players send a
window size of dg = C(g + 1)(n− 1)/(gn2). This means that if g ≤ (n− 1)/(n + 1),
each player will be sending at least 2C/n packets, which amounts to twice as many
total packets as the capacity allows.

Under RED, when g is reasonably large (i.e., for g ∈ Rg), the unique stochastically
stable state (and unique NE) is the profile where all players send a window size of rg ,
which is greater than T (g + 1)(n − 1)/(gn2). (Recall that T < C is the threshold
value at which RED begins preemptively dropping packets. It is a free parameter of
the RED protocol.) This means, analogously to the above discussion about Droptail,
that if g ≤ (n − 1)/(n + 1) (which is close to 1 as n grows large), players will be
sending at least 2T/n. This would imply that even with values of g nearly as large as
1, if deployers of RED routers set T to relatively large values, the gain with respect to
overflow, as compared to the case of Droptail, will be small.

On the other hand, the more discriminating Gao et al. protocol can be safely deployed
without knowledge of the specific value of g: the endpoints each send C/n as long as
g is positive. In addition, our results hold even when each player has its own g value.
Intuitively, this means the results apply even when the endpoints are all of different
types: well-behaved TCP flows, more aggressive TCP flows, UDP flows, etc., as long
as dropped packets cause some loss to the flows, no matter how small it is.
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Finally we note the fact that the stochastically stable states in each case can be
reached with the players having very limited knowledge; they need not be aware of
the actions of other players, or even of their number n. Even though we assumed that
players choose a window size between 0 and C, any other sufficiently large upper bound
for the window sizes would have done just as well. In other words, the players need also
not be aware of the exact value of the router capacity C.

Acknowledgments. The authors wish to thank Kirk Pruhs for invaluable advice and
guidance, Lazaros Tsavlidis for his help with the window game, and Ihsan Qazi, Subrata
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Abstract. We study the convergence time of Nash dynamics in two
classes of congestion games – constant player congestion games and
bounded jump congestion games. It was shown by Ackermann and Skopa-
lik [2] that even 3-player congestion games are PLS-complete. We design
an FPTAS for congestion games with constant number of players. In par-
ticular, for any ε > 0, we establish a stronger result, namely, any sequence
of (1 + ε)-greedy improvement steps converges to a (1 + ε)-approximate
equilibrium in a number of steps that is polynomial in ε−1 and the size
of the input. As the number of strategies of a player can be exponential
in the size of the input, our FPTAS result assumes that a (1 + ε)-greedy
improvement step, if it exists, can be computed in polynomial time. This
assumption holds in previously studied models of congestion games, in-
cluding network congestion games [9] and restricted network congestion
games [2].

For bounded jump games, where jumps in the delay functions of re-
sources are bounded by β, we show that there exists a game with an
exponentially long sequence of α-greedy best response steps that does
not converge to an α-approximate equilibrium, for all α ≤ βo(n/ log n),
where n is the number of players and the size of the game is O(n). So in
the worst case, Nash dynamics may fail to converge in polynomial time
to such an approximate equilibrium. We also prove the same result for
bounded jump network congestion games. In contrast, we observe that
it is easy to show that a β2n-approximate equilibrium is reached in at
most n best response steps.

1 Introduction

A fundamental problem in algorithmic game theory is to determine the com-
putational complexity of computing a Nash equilibrium for various classes of
non-cooperative games. Nash [14] showed that a mixed Nash equilibrium always
exists in any finite game, where there are finite number of players and strategies.
In a mixed Nash equilibrium, players are allowed to play randomized strategies,
and they wish to maximize their expected payoff. In contrast, pure Nash equi-
librium, where players play deterministic strategies only, may not exist in all
games. However, there are classes of games which always have a pure Nash equi-
librium. The most prominent class with this property is potential games, defined
by Monderer and Shapley [13].

M. Mavronicolas and V.G. Papadopoulou (Eds.): SAGT 2009, LNCS 5814, pp. 196–207, 2009.
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Nash equilibrium is especially interesting in systems where selfish agents make
their own decisions, in a decentralized fashion. Nash dynamics is a well-studied
model of selfish decentralized decision-making in a game, where players always
play deterministic strategies (eg. [20]). The players either wish to maximize their
payoff or minimize their cost – accordingly, the game is called profit maximizing
or cost minimizing. The joint strategy of all the players is said to define a state
of the game. Given a state of the game, a better response of a player is any
of her strategies that has a higher payoff (or less cost) if the strategies of the
other players remain unchanged. A best response refers to a strategy that has the
highest payoff (or least cost, respectively) among the better responses. A pure
Nash equilibrium is a state where no player has a better response. Nash dynamics
is a repeated process in the game that starts from some initial state), and in each
step, a player switches to a better response given the current state. We refer to
each such step as an improvement step. Nash dynamics is also referred to as best
response dynamics if the improvement steps are always best responses. Clearly,
Nash dynamics stops (converges) when no player has a better response, that is,
the dynamics has reached a pure Nash equilibrium.

Potential games [13] are defined as games where there is a potential function
defined on the states of the game, which is finite-valued, and satisfies the property
that for any improvement step, the change in potential is equal to the change
in delay of the player that makes the step. A potential game may be profit
maximizing or cost minimizing. Thus in a potential game, the Nash dynamics,
starting from any state, always converges to a pure Nash equilibrium. However,
it may take a long time to converge, possibly the number of states of the game.
The time taken by Nash dynamics to converge in various potential games is the
focus of this paper. We shall consider a worst-case analysis, that is, the longest
possible sequence of improvement steps starting from any state. Potential games
include various natural classes of games such as congestion games [16,9], cut
games (or party affiliation games) [9,18,7] and market sharing games [10,21].

In particular, we shall focus on congestion games. A congestion game is an n-
player game with m resources, and each player is assigned several strategies that
she may choose from, where a strategy of a player is a subset of the resources. A
player playing a strategy s is said to be using the resources in s. Each resource e
is also associated with a non-negative increasing integral delay function de(fe),
where fe is the number of players using e. Each player that uses e suffers a delay
of de(fe) on e, and the total delay of a player playing strategy s is

∑
e∈s de(fe).

Every player must play one strategy, and selfishly seeks to reduce her own delay.
Rosenthal [16] showed that every congestion game has a pure Nash equilibrium,
and the proof effectively showed that every congestion game is a potential game.
The potential function defined by Rosenthal is

∑
e

∑c(e)
i=1 de(i) where c(e) is the

number of players using a resource e, known as the congestion of e.

Computational Complexity. Nash dynamics can be viewed as a natural algo-
rithm to compute pure Nash equilibrium in potential games. However, the num-
ber of steps required to converge to an equilibrium from some initial state may
not be polynomially bounded, and so this algorithm need not run in
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polynomial time. Johnson et al. [12] introduced a complexity class PLS related
to local search problems, and Nash dynamics implies that computing a pure
Nash equilibrium for potential games belong to this class, as long as the best-
response can be computed in polynomial time (in the size of the game in a
specific representation).

In fact, Fabrikant et al. [9] proved that the computing a pure Nash equilibrium
in congestion games is PLS-complete. They also defined a subclass of congestion
games called network congestion games, in which the input is a directed net-
work, whose edges are the resources, and players correspond to source-sink pairs
with strategies being the paths from the source to the sink. These games are
also known as routing games with unsplittable flow, and are examples of games
where the number of strategies may be exponential, but the best response can
be computed in time polynomial in the size of the input. It was shown in [9]
that computing equilibrium in network congestion games is also PLS-complete.
Fabrikant et al. [9] also showed that computing equilibria in symmetric conges-
tion games, where every player has the same strategy space, is PLS-complete.
The PLS-completeness proofs for these problems also show that there exists ini-
tial states such that any sequence of improvement steps leading from the initial
state to some equilibrium has exponentially many steps, regardless of the order
of players chosen to make the improvement step.

Approximate Nash Equilibrium and Greedy Dynamics. Since it is
considered to be unlikely that PLS = P, subsequent research has focused on
computing approximate equilibria of congestion games. A natural definition for
α-approximate equilibrium (see, eg. [17,7,1,11,6,19,3]) is a state where no player
can unilaterally change her own strategy to reduce her own delay by a factor of
α. In other words, a player is indifferent between strategies whose delays differ
by less than a factor of α.

When looking for α-approximate equilibrium, it is natural to assume that all
players shall make α-greedy improvement steps only, that is, a player may switch
to a better response during Nash dynamics if the move reduces her delay by a
factor of at least α. This α-greedy dynamics in potential games was first studied
in [7].

1.1 Constant Player Congestion Games

The first result in this paper concerns potential games with constant number of
players. In a potential game with constant number of players, if the strategies
are explicitly specified in the input, then the number of states in the game is
polynomial in the size of the input, so Nash dynamics reaches exact equilibrium
in polynomial steps. Thus the question of determining whether the convergence
time of Nash dynamics is polynomial, becomes interesting only when its repre-
sentation is such that the number of strategies is exponential in the size of the
input, but the best response can be computed in polynomial time. This condition
is satisfied by network congestion games [9].

Ackermann and Skopalik [2] defined a class of games called restricted network
congestion games , which is a network congestion game where each player is
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barred from using a certain subset of edges. These games are potential games.
Moreover, they are congestion games, and the best response of a player can be
computed in polynomial time. Ackermann and Skopalik [2] showed that comput-
ing an equilibrium in restricted network congestion games with only 3 players is
PLS-complete.

This result can be compared with the problem of computing mixed Nash
equilibrium in normal-form games, which is PPAD-complete, and moreover, an
FPTAS cannot exist even for two-player games unless PPAD = P, which is
unlikely [15,8,4,5]. In contrast, we give an FPTAS for computing a pure Nash
equilibrium in all congestion games with constant number of players where the
best response can be computed in polynomial time, and the input size is at
least logarithm of the maximum potential of any state. The latter assumption is
justified if the delay functions are written explicitly in the input. This includes
network congestion games [9] and restricted network congestion games [2]. We
show this by proving the stronger result that all sequences of improvement steps
are polynomial in length. The formal statement of our result is given by the
theorem below.

Theorem 1. In any congestion game with k players and an arbitrary initial
state s with potential ϕ(s), every sequence of (1+ε)-greedy steps reaches a (1+ε)-
approximate equilibrium in at most (2kε−1 ln ϕ(s))2k steps, for any 0 < ε ≤ 1.

Note that an FPTAS is immediately implied by the above theorem if it can be
determined in polynomial time whether a given state is a (1 + ε)-approximate
equilibrium, and if it is not, a (1 + ε)-greedy step can also be computed in
polynomial time. Our proof easily implies that the above result is also true for
profit-maximizing potential games with payoff for each resource, such as market
sharing games [10,21].

1.2 Bounded Jump Congestion Games

Chien and Sinclair [6] gave an FPTAS for symmetric congestion games with
polynomially bounded jumps. They showed that several natural variants of Nash
dynamics converges fast in such games. However, they could not show that all
sequences converge fast to an approximate equilibrium, unlike Theorem 1. How-
ever, their result handles arbitrary number of players, although requiring the
bounded jump condition and symmetry, unlike our result. A resource e is said
to satisfy the bounded jump condition if its delay increases by a factor of at most
β with the addition of a new player using e, for some polynomially bounded
parameter β.

Progress has also been made on the inapproximability of equilibria in conges-
tion games (via Nash dynamics or otherwise). Ackermann et al. [1] constructed
an asymmetric congestion game with bounded jumps, in which there exists an
initial state and an exponentially long sequence of α-greedy steps leading to an
α-approximate equilibrium. This result was strengthened in [19], with the con-
struction of an asymmetric congestion game with bounded jumps, where there
exists an initial state such that every sequence of α-greedy steps from this state
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to some α-approximate equilibrium is exponential in length. Finally, and most
recently, [19] also showed that for asymmetric congestion games with unbounded
jumps (that is, general congestion games), computing α-approximate equilibrium
is PLS-complete for any polynomially computable α. We note that this result is
true for symmetric congestion games with unbounded jumps as well.

The construction in [19] for (asymmetric) congestion games with β-bounded
jumps does not allow polynomially bounded sequences of α-greedy steps lead-
ing to an α-approximate equilibrium, where β = Θ(α27). Thus, it leaves open
the question whether the Nash dynamics converges in polynomial steps to a
γ-approximate equilibrium in β-bounded congestion games, for some γ that is
polynomial in β. Given that general congestion games are hard to approximate
within any polynomial factor [19], and that the reductions critically use resources
with unbounded jumps, bounded jumps is one of the most natural restrictions
one can put on the game and hope for positive results about computing approx-
imate equilibrium. However, we provide negative evidence for it, showing that
Nash dynamics may fail badly in the worst case. We also construct a network
congestion game that exactly model the constructed congestion game mentioned
above, and thus obtain the same result for network congestion games with uni-
form jump.

Theorem 2. For every β > 1, there exists infinitely many integers n, such
that there exists a congestion game G(n) with n players and 2n resources, and
with jumps bounded by β that satisfies the following property. For every α ≤
βo(n/ log n), there exists an initial state of the game and a super-polynomial length
sequence of α-greedy best response steps, such that the resulting state is not an
α-approximate equilibrium.

In fact, there exists a network congestion game with O(n) players and O(n)
vertices and edges, and with jumps bounded by β, satisfying the same property.

It is easy to see that in any congestion game where the jumps are bounded by
β, a sequence of β2n-greedy best response steps starting from any state, leading
to a β2n-approximate equilibrium, is of length at most n – each player can
move at most once. Our negative result indicates that without a smart choice
of the order in which players make improvement steps, in the worst case, Nash
dynamics shall not converge in polynomial time for any approximation that is
significantly better than the trivially obtainable β2n. In our construction, every
player has only two strategies, so there is no distinction between best response
and better response Nash dynamics. Further, all resources in our construction
satisfy a stronger condition that we call the uniform jump condition, where the
delay increases by a factor of exactly β with the addition of a new player using
the resource, that is, de(t + 1) = βde(t) ∀t ≥ 1. This is interesting because such
delay functions can be represented succinctly by just two integers, β and de(1).

Organization. The rest of the paper is organized as follows: we formally define
congestion games and its various restrictions in Section 2. In Section 3, we prove
our result for constant player congestion games, namely, Theorem 1. In Section
4, we describe our construction of a uniform jump general congestion game that
proves Theorem 2.



Nash Dynamics in Constant Player and Bounded Jump Congestion Games 201

2 Preliminaries

A game consists of a finite set of players p1, p2 . . . pn. Each player pi has a finite set
of strategies Si and a cost or delay function ci : S1 × . . .Si × . . . Sn → N that it
wishes tominimize. A game is called symmetric if all strategy setsSi’s are identical.
A combination of strategies s = (s1, s2 . . . sn) ∈ S1× . . .Si× . . .Sn is called a state
of the game, where pi plays strategy si ∈ Si. A state s is a pure Nash equilibrium
if for all players pi, ci(s1, ..., si, ..., sn) ≤ ci(s1, ..., s

′
i, ..., sn) for all s′i ∈ Si. In such

a state, no player can improve its cost by unilaterally changing its strategy.
Congestion games is a class of games where players’ costs are based on the

shared usage of a common set of resources E = {e1, e2 . . . em}. Each strategy of a
player is a subset of resources, and the strategy set of pi is Si ⊆ 2E, an arbitrary
collection of subsets of E. Each resource e ∈ E has a non-decreasing delay
function de : 1, ..., n → N associated with it. If j players are using the resource e,
each of these players incurs a delay of de(j). The delay incurred by a player pi in
a state s = (s1, . . . sn) is the sum of the delays it incurs on each resource in its
strategy, that is, ci(s) =

∑
e∈si

de(fs(e)), where fs(e) is the number of players
using resource e in state s, that is, fs(e) = |{j : e ∈ sj}|. A network congestion
game is a congestion game defined over an underlying network such that edges
of the network are the resources and the strategies correspond to paths in the
network. Specifically, each player pi is associated with a source vertex si and a
sink vertex ti. The strategy set of a player pi is the set of all paths from si to ti.

The following function, defined on a state s = (s1 . . . si . . . sn) of a congestion
game is called the potential function of the game: ϕ(s) =

∑
e

∑fs(e)
i de(i). This

function has the property that if pi changes its strategy from si to s′i, all other
players’ strategies remaining unchanged, then the potential of the resulting state
s′ = (s1 . . . s′i . . . sn) is ϕ(s′) = ϕ(s) + (ci(s′) − ci(s)), that is, the change in
potential is equal to the change in the delay of pi [16].

Given a state s = (s1 . . . sn), a better response strategy of a player pi is some
strategy s′i ∈ Si such that if the player switches her strategy from si to s′i her
delay decreases. A best response is a better response strategy that maximizes this
decrease. Changing the state by making a player switch to a better response strat-
egy is called an improvement step. Nash dynamics starting from some state s refers
to a sequence of states such that only one player changes strategy in one step, and
each such change is an improvement step with respect to the preceding state.

An α-approximate equilibrium is a state s such that for any strategy s′i ∈ Si,
if s′ = (s1, s2 . . . s′i . . . sn), then ci(s) ≤ αci(s′), for all 1 ≤ i ≤ n. An α-greedy
improvement step is an improvement step where the change of strategy causes
the player’s delay to decrease by a multiplicative factor of at least α, that is, if
state s changed to state s′, ci(s′) ≤ ci(s)/α.

A resource e is said to satisfy the bounded jump condition if de(i + 1)/de(i) ≤
β ∀i ≥ 1 for some β. In this case, the jumps are said to be bounded by β. A
resource e is said to satisfy the uniform jump condition if de(i+1) = βde(i) ∀i ≥ 1
for some β. Note that for every resource e satisfying the uniform jump condition,
and every positive integer i, we have de(i) = β(i−1)de(1). So the values de(1) and
β succinctly define the entire delay function.
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3 Constant Player Congestion Games

In this section, we prove Theorem 1. Let a(k, s) be the maximum number of
(1 + ε)-greedy steps required by any congestion game of k players to converge
to a (1 + ε)-approximate equilibrium starting from state s. We shall prove by
induction on the number of players k that a(k, s) ≤ (2kε−1 ln ϕ(s))2k.

As the base step for induction, let k = 1. The potential function is simply the
delay of the lone player. Since in each step, the lone player must improve her
delay by a factor of (1 + ε), the potential after t steps is at most ϕ(s)/(1 + ε)t.
Since the delay functions are all integral, once the delay is less than 1, it must be
zero and the equilibrium must be reached. Thus, an upper bound on the number
of steps is the maximum value of t such that ϕ(s)/(1 + ε)t ≥ 1, which implies
that t ≤ log1+ε ϕ(s) = lnϕ(s)

ln(1+ε) . Since ε ≤ 1, so ln(1 + ε) > ε/2, and we have
a(1, s) ≤ 2ε−1 ln ϕ(s), thus proving the base case.

For the inductive step, assume that the assertion holds for all congestion
games with (k − 1) players. Now, consider any congestion game with k players
p1, p2 . . . pk. Let us consider any state s = (s1, s2 . . . sk) where si is the strategy
of player pi. Without loss of generality, let pk be the player with the highest delay
C =

∑
e∈sk

de(cs(e)), where cs(e) is the congestion on resource e in state s. Note

that the sum of the delays of all players is
∑

e cs(e)de(cs(e)) ≥
∑

e

∑cs(e)
i=1 de(i) =

ϕ(s), since the delay functions are increasing. So C ≥ ϕ(s)/k.
Now suppose we start our sequence of (1+ ε)-greedy steps from s. We need to

put an upper bound on the number of steps that can happen before pk must get
to move or the process terminates. Observe that if the strategy of pk remains
fixed, the rest of the players are effectively playing a reduced game involving
k − 1 players, and the delay functions of the resources in sk have been modified
(by setting d′e(i) = de(i + 1)). It is easy to see that the potential of this state
sred of the reduced (k − 1)-player game is no more than ϕ(s). Thus the number
of (1 + ε)-greedy steps that can occur before pk moves or process terminates,
is at most a(k − 1, sred), which by our induction hypothesis is at most (2(k −
1)ε−1 ln ϕ(sred))2(k−1) < (2kε−1 ln ϕ(s))2(k−1).

Now, when pk finally moves, let s′ denote the state that results after pk makes
a (1 + ε)-greedy step. The following claim is similar to that of Lemma 4.2 of [6],
and we omit its proof due to lack of space. It should be noted that the definition
of ε-approximation in [6] is in fact a 1

1−ε -approximation in our notation, which
is the same as that in [19]. The difference in the definitions vanish when we seek
an FPTAS.

Claim. ϕ(s)− ϕ(s′) ≥ ε
1+εC ≥ εϕ(s)

k(1+ε) . Since ε ≤ 1, so ϕ(s′) ≤ ϕ(s)
1+(ε/2k) .

From the claim and the upper bound established previously, it follows that in
(2kε−1 ln ϕ(s))2(k−1)+1 steps, the potential must go down by a factor of

(
1 + ε

2k

)
.

Again, since the potential must be greater than 1 for an improvement step to
exist, we have that
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a(k, s) ≤ ln ϕ(s)
ln(1 + ε

2k )
((2kε−1 ln ϕ(s))2(k−1) + 1)

≤ ln ϕ(s)
ε/4k

((2kε−1 ln ϕ(s))2(k−1) + 1) (since ε/2k ≤ 1)

< (2kε−1 ln ϕ(s))2k

4 Exponential Dynamics in Uniform (Bounded) Jump
Congestion Games

In this section, we present the proof of first part of Theorem 2 by constructing
a bounded jump congestion game that satisfies the conditions of the theorem.
To complete the proof of Theorem 2, we show that the game constructed here
can be modeled as a network congestion game. This latter part of the proof is
deferred to the full version of the paper due to lack of space.

Let δ > 1. We will construct a congestion game where every resource has
a uniform jump of δ4, that is, every resource e and positive integer i satisfies
de(i) = δ4(i−1)de(1). We shall say that a resource with such a delay function
satisfies the uniform jump condition with jump factor δ4. Let k be any integer
such that δk/2 > k ≥ 2, and let r ≥ 10.

Let n0 be any positive integer. Our constructed game has 4kn0 players, and
8kn0 resources. Also, every player has exactly two strategies. We shall exhibit
a state s and a sequence of Θ(k2n0) improvement steps, starting from s, such
that each decreases the delay of the player by a factor of at least δk/2. Thus
δk/2-greedy Nash dynamics will fail to produce a δk/2-equilibrium in polynomial
(in n0) number of steps if the sequence of players is adversarially chosen, with
each player choosing its best response when given an opportunity.

Assuming that we can construct such a game, we shall now prove Theorem 2
with a careful choice of the parameters k, n0 and δ. Suppose we are given β > 1.
We choose δ such that β = δ4. Then, every resource has a delay function with
uniform jump β. Suppose we are also given some function g(t) = o(t/ log t). We
define a function h(t) = Θ(t/g(t)) = ω(log t) such that h(t) is always a positive
integer. For a particular t, we choose n0 = h(t), and we choose k = %t/n0& =
Θ(g(t)). Then the size of the game is Θ(kn0) = Θ(t), and δk/2 = βΘ(g(t)).
Moreover, the length of the sequence of improvement steps is Θ(k2n0) = 2ω(log t),
which is superpolynomial in the length of the input, which is O(t). This yields
Theorem 2. Thus, it only remains to construct a game with the parameters δ, k
and n0 as mentioned above.

Description of the Game. The Nash dynamics will simulate an n0-bit counter.
Each bit of the counter is represented by 4k players which logically belong to 4
different groups of k players each. Also, there are 8k resources logically attributed
to each bit. For the ith bit of the counter, these resources are aij , a

′
ij , bij , b

′
ij , uij ,

u′
ij , tij , t

′
ij , where j = 1, 2 . . .k. The groups of players are as follows:
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– Tri1, T ri2 . . . Trik. These are the first set of trigger players. Trij have one
private resource tij that constitutes one of their strategies, 1 ≤ j ≤ k. The
other strategy is {ai1, ai2 . . .aik, uij}. We refer to playing the former strategy
as the reset state, while the latter as the triggered state.

– Tr′i1, T r′i2 . . . Tr′ik. These are the second set of trigger players. Tr′ij have one
private resource t′ij that constitutes one of their strategies, 1 ≤ j ≤ k. The
other strategy is {a′

i1, a
′
i2 . . .a′

ik, u′
ij}. We refer to playing the former strategy

as reset state, while the latter as triggered state.
– pi1, pi2 . . . pik. These are the first set of base players. One strategy for pij is
{aij}, and this strategy is congested whenever the first set of trigger players
get into triggered state. The other strategy is {bij} ∪ {u′

lq | 1 ≤ l < i, 1 ≤
q ≤ j}, in which it congests the triggered states of the second set of trigger
players of all bits lower than i.

– p′i1, p
′
i2 . . . p′ik. These are the second set of base players. One strategy for p′ij

is {a′
ij}, and this strategy is congested whenever the second set of trigger

players get into triggered state. The other strategy is {b′ij}∪{uiq | 1 ≤ q ≤ j},
in which it congests the triggered states of the first set of trigger players of
the ith bit.

Table 1. Strategies of players

Player(p) First strategy s(p, 1) (private) Second strategy s(p, 2) (non-private)
Trij tij ai1, ai2 . . . aik, uij

Tr′ij t′ij a′
i1, a

′
i2 . . . a′

ik, u′
ij

pij aij u′
11 . . . u′

1k, u′
21 . . . u′

2k, . . . u′
(i−1)1 . . . u′

(i−1)k, bij

p′
ij a′

ij b′ij , ui1, ui2 . . . uik

Interpreting Strategies as a Counter Value. We say that a player playing a
singleton strategy is in its private state, and else to be in their non-private state.
In Table 1, we describe the two strategies of every player. i ranges from 1 through
n0, while j ranges from 1 through k. We shall say that the ith bit of the counter
is zero if all players corresponding to the ith bit are in their private states. We
shall say that the ith bit of the counter is one if all players in the first sets of
trigger and base players are in their private state, while all players in the second
sets of trigger and base players are in their non-private state. We shall also use
the notation e(i) to denote the delay on a resource e when i players are using it.

Overview. Our starting state corresponds to all bits in the counter initialized to
zero. We implement a sequence of phases where each phase consists of a sequence
of length Θ(k) such that (i) each step corresponds to an α-greedy improvement
step for some player, and (ii) the resulting state corresponds to incrementing
the counter by 1. The game terminates when all bits in the counter are set to 1,
thus giving us an overall sequence of length Θ(k2n0).

Implementation of a Phase. We now describe the implementation of a phase.
Suppose at the beginning of the phase, the state corresponds to the bit i of the
counter set to 0, and all lower-order bits set to 1. The sequence of improvement
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steps for this phase will convert the ith bit to one and all lower bits to zero. The
steps are as given below, along with the change in delay for the improving player
(we shall specify the delay functions later):

1. The first set of triggers (in any order) of the ith bit switches to their non-
private state (triggered) and thus congests the private states of the first
set of base players. Thus the state changes for Trij as follows: tij(1) →∑k

q=1 aiq(w+1)+uij(1) for some 1 ≤ w ≤ k. Note that w is solely determined
by the order in which these trigger players are chosen to move. For example,
if the natural order of ti1, ti2 . . . tik is used, then w = j. A similar statement
about the value of w holds for the steps below.

2. The first set of base players (in any order) move to their non-private states,
thus congesting the second set of triggers of lower bits (who are in their
non-private states). Thus the state changes for pij as follows: aij(k + 1) →
bij(1) +

∑i−1
l=1
∑k

q=1 u′
lq(w + 1) for some 1 ≤ w ≤ k.

3. The second set of triggers of lower bits (in any order) move to their private
states (they are reset), thus releasing the private resources of the correspond-
ing base players. Thus the state changes for Tr′lj as follows:

∑k
q=1 a′

lq(w) +
u′

lj(k + 1)→ t′lj(1) for some 1 ≤ w ≤ k.
4. The second set of base players of lower bits (in any order) move to their

private states too. Thus the lower bits have been converted to zeroes. Thus
the state changes for p′lj as follows: b′lj(1) +

∑k
q=1 ulq(w) → a′

lj(1) for some
1 ≤ w ≤ k.

5. The second set of triggers of the ith bit (in any order) now moves to their non-
private state, congesting the private states of the second set of base players.
Change for Tr′ij : t′ij(1)→∑k

q=1 a′
iq(w + 1) + u′

ij(1) for some 1 ≤ w ≤ k.
6. The second set of base players (in any order) move to their non-private state,

congesting the non-private state of the first set of triggers. Thus the state
changes for p′ij as follows: a′

ij(k + 1) → b′ij(1) +
∑i−1

l=1
∑k

q=1 uiq(w + 1) for
some 1 ≤ w ≤ k.

7. The first set of triggers move to their private state (reset), releasing the
private states of the first set of base players. Thus the state changes for Trij

as follows:
∑k

q=1 aiq(w) + uij(k + 1)→ tij(1) for some 1 ≤ w ≤ k.
8. The first set of base players move to their private states too, and the ith

bit has been converted to one. Thus the state changes for pij as follows:
bij(1) +

∑i−1
l=1
∑k

q=1 u′
lq(w) → aij(1) for some 1 ≤ w ≤ k.

The states held by the players logically assigned to the ith bit or less significant
bits change through these steps, as expressed in Table 2, while players assigned to
higher bits do not change their strategy. P stands for private strategy, N stands
for non-private strategy of a player. Column labelled x shows the strategy of
various players after the group of steps x in the sequence above. j varies from 1
to k, and l varies from 1 to i− 1.

We shall now define the delay functions. Let γ = δk. Since every resource
has a uniform jump of δ4, it suffices to simply define e(1) for every resource
e. Also, note that r = 10. The delay functions are defined in Table 3. Note
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Table 2. Sequence of state vectors

Player Initial 1 2 3 4 5 6 7 8 (Final)
Trij P N N N N N N P P
pij P P N N N N N N P

Tr′ij P P P P P N N N N
p′

ij P P P P P P N N N
Trlj P P P P P P P P P
plj P P P P P P P P P

Tr′lj N N N P P P P P P
p′

lj N N N N P P P P P

Table 3. Delays of strategies

Resource(e) aij a′
ij bij b′ij uij u′

ij tij t′ij
e(1) γ2ri γr(2i+1) γ2ri+2 γr(2i+1)+2 γ2ri+4 γr(2i+1)+4 γ2ri+6 γr(2i+1)+6

that aij(k + 1) = γ2ri+4, a′
ij(k + 1) = γr(2i+1)+4, uij(k + 1) = γ2ri+8, and

u′
ij(k + 1) = γr(2i+1)+8.
Now we can verify that every improvement step is an improvement by a factor

of more than γ/k, using the facts that γ ≥ 2 and r = 10. By our choice of k, we
have γ/k > γ1/2 = δk/2.

Finally, we note that if all the bits are in their one state, then we have an
exact equilibrium. To see this, note that in this state, players logically assigned
to the ith bit use resources logically assigned to this bit only. Thus, it is enough
to check that if the game is restricted to just one bit, then the four groups of
players assigned to this bit are at equilibrium. This is easy to check: The second
set of trigger players have the higher delay on their private strategy, so it is best
for them to play their non-private strategy, and so the second set of base players
will be dissuaded from switching to their private strategies. Since the second set
of base players are using their non-private strategies, the best-response of the
first set of trigger players is to use their private strategies, and so the first set of
base players can stay at their uncongested private strategy, which they prefer.
Thus the Nash dynamics terminates when this state, where all bits are one, is
reached. This completes the construction and analysis of the game.

We can also construct a network congestion game that captures the behavior
of the congestion game in Section 4, thus completing the proof of Theorem 2.
The construction of this network is omitted due to lack of space.
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18. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve.
SIAM J. Comput. 20(1), 56–87 (1991)
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Abstract. We study the survivable version of the game theoretic net-
work formation model known as the Connection Game, originally intro-
duced in [4]. In this model, players attempt to connect to a common
source node in a network by purchasing edges, and sharing their costs
with other players. We introduce the survivable version of this game,
where each player desires 2 edge-disjoint connections between her pair of
nodes instead of just a single connecting path, and analyze the quality of
exact and approximate Nash equilibria. For the special case where each
node represents a player, we show that Nash equilibria are guaranteed to
exist and price of stability is 1. For the general version of the Survivable
Connection Game, we show that there always exists a 2-approximate
Nash equilibrium that is as cheap as the socially optimal solution.

1 Introduction

The global performance of networks such as the Internet, which are developed,
built, and maintained by a large number of selfish agents, may not be as good
as in the case where a central authority can simply dictate a solution. In order
to understand the performance of such systems, we need to analyze the quality
of solutions that are consistent with self-interested behavior. Much research in
the theoretical computer science community has focused on this performance
gap and specifically on the notions of the price of anarchy and the price of
stability — the ratios between the costs of the worst and best Nash equilibrium1,
respectively, and that of the centralized optimal solution. Both of these notions
are important since they quantify the borders of the quality spectrum of Nash
equilibria, which are often the only viable outcomes of agent interactions. We
will only consider pure (i.e., deterministic) Nash equilibria, as mixed strategies
do not make as much sense in our network design context.

Connection Game. In this paper, we consider the price of stability of several
important extensions of the Connection Game, which was first defined in [4],
and later studied in a variety of papers including [2,8,10,12,14,15]. This game
represents a general framework where a network is being built by many different
agents/players who have different connectivity requirements, but can combine
1 Recall that a (pure-strategy) Nash equilibrium is a solution where no single player

can switch her strategy and become better off, given that the other players keep
their strategies fixed.
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their money to pay for some part of the network. The Connection Game models
not only communication networks, but also many kinds of transportation net-
works that are built and maintained by competing interests. Specifically, each
player in this game has some connectivity requirements in a graph G = (V, E),
i.e, she desires to connect a particular pair of nodes in this graph. With this as
their goal, players can offer payments indicating how much they will contribute
towards the purchase of each edge in G. If the players’ payments for a partic-
ular edge e sum to at least the cost of e, then the edge is considered bought,
which means that e is added to our network and can now be used to satisfy the
connectivity requirements of any player.

Survivable Network Design. One of the most important extensions of the
Steiner Forest problem is Survivable Network Design (sometimes called the Gen-
eralized Steiner Forest problem). In this problem, we must not simply connect
all the desired pairs of terminals, but instead connect them using r edge-disjoint
paths. This is generally needed so that in the case of a few edge failures, all
the desired terminals still remain connected. Many nice results have been shown
for finding the cheapest survivable network, including Jain’s 2-approximation
algorithm [17].

In this paper, we consider the Survivable Connection Game, where each agent/
player wishes to connect to her destination using r = 2 edge-disjoint paths. The
optimal (i.e., cheapest) centralized solution for this game is the optimal solution
to Survivable Network Design, which we denote by OPT. Our major goal is to
understand the level of consistency of selfish acts with global system efficiency,
by comparing the cost of exact and approximate Nash equilibria to OPT.

Our Results. We only consider the case where all players are attempting to
connect to a single common source. For the single source version of the Connec-
tion Game, [4] proved that the price of stability is 1, and that in particular, a
pure Nash equilibrium always exists. This is no longer true if the players have
arbitrary connection requirements, as a pure Nash equilibrium is no longer guar-
anteed to exist. As we show in the full version of the paper, a Nash equilibrium
is not guaranteed to exist even for 2-player games, and there may not exist an α-
approximate2 Nash equilibrium for any α < 2. So, adding stronger connectivity
requirements to the Connection Game significantly changes it, since the prices
of anarchy and stability become infinite. Instead of considering arbitrary con-
nection requirements, therefore, we restrict our attention to the case where all
terminals desire to connect using 2 disjoint paths. In this case, we prove results
that are similar to the properties of the original Connection Game. Specifically,
our main results are as follows:

– In the special case where all nodes are terminal nodes (i.e., there exists a
player that desires to connect this node to the source), there always exists a
Nash equilibrium that is as good as OPT.

2 An α-approximate Nash equilibrium is a solution where no player can save more
than a factor of α by deviating.
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– For the general Survivable Connection Game, there exists a 2-approximate
Nash equilibrium that is as good as OPT and there is a polynomial time
algorithm which finds a cheap (2 + ε)-approximate Nash equilibrium.

Our approach for forming equilibrium payments is similar to [4], in that we show
that either every edge can be bought using our equilibrium payment scheme, or
that OPT is not actually an optimal solution, thus deriving a contradiction. The
fact that OPT is no longer a tree, however, significantly complicates matters,
forcing the payment scheme to be a bit more clever and requiring different proof
techniques. In order to prove the results:

– We consider a version of the Survivable Connection Game where each player
is only allowed to deviate by changing the payments on a single path and
show that for that version, there always exists a stable solution that is as
good as the centralized optimal solution, i.e, the price of stability is 1. We
obtain our main result by proving that any stable solution of this version
corresponds to a 2-approximate Nash equilibrium of the general Survivable
Connection Game.

– We prove strong results about the laminar structure of survivable networks,
which are outlined in Section 2. These results are of independent interest,
and give useful techniques for dealing with survivable networks in both game
theoretic and more traditional contexts.

Related Work. Over the last few years, there have been several new papers
about the Connection Game, e.g., [2,8,10,12,14,15]. Recently, Hoefer [13] proved
some interesting results for a generalization of the game in [4], and showed an
interesting relationship between the Connection Game and Facility Location.
While the survivable network design games that we consider can be expressed
as part of the framework in [13], these results do not imply ours, and our results
cannot be obtained using their techniques.

The research on non-cooperative network design and formation games is too
much to survey here, see [16,18,21,23,24] and the references therein. Fabrikant
et al. [11] (see also [1]) studied the price of anarchy of a very different network
design game, and [5] considered the price of stability of a network design game
with local interactions, intended to model the contracts made by Autonomous
Systems in the Internet.

A major part of the research on network games has focused on congestion
games [3,7,9,20,23]. Probably the most relevant such model to our research is
presented in [3] (and further addressed in [7,8,12]). In [3], extra restrictions
of “fair sharing” are added to the Connection Game, making it a congestion
game and thereby guaranteeing some nice properties, like the existence of Nash
equilibria and a bounded price of stability. While the Connection Game is not a
congestion game, and is not guaranteed to have a Nash equilibrium, it actually
behaves much better than [3] when all the agents are trying to connect to a single
common node. Specifically, the price of stability in that case is 1, while the best
known bound for the model in [3] is log n

log log n [19]. Moreover, all such models



Price of Stability in Survivable Network Design 211

restrict the interactions of the agents to improve the quality of the outcomes,
by forcing them to share the costs of edges in a particular way. This does not
address the contexts when we are not allowed to place such restrictions on the
agents, as would be the case when the agents are building the network together
without some overseeing authority. However, as [4] has shown for the Connection
Game and we show for the Survivable version of it, it is still possible to nudge
the agents into an optimal outcome without restricting their behavior.

2 The Model and Structural Properties of OPT

We now formally define the Survivable Connection Game for N players. Let an
undirected graph G = (V, E) be given, with each edge e having a nonnegative
cost c(e), and let s ∈ V be a special root (or source) node. Each player i has
a single terminal node (also called player node) that she must connect to s
using 2 edge-disjoint paths. The terminals of different players do not have to be
distinct.

A strategy of a player is a payment function pi, where pi(e) is how much
player i is offering to contribute to the cost of edge e. Observe that players
can share the cost of the edges. An edge e is considered bought if

∑
i pi(e) ≥

c(e). Let Gp denote the subgraph of bought edges corresponding to the strategy
vector p = (p1, . . . , pN). While strictly required to connect her terminals using
at least 2 edge-disjoint connections, each player also tries to minimize her total
payments,

∑
e∈E pi(e). Specifically, cost(i) =

∑
e∈E pi(e) if there are at least

2 edge-disjoint paths between the terminal of player i and s, and cost(i) = ∞
otherwise.

Assume Gp is the socially optimal solution OPT. Then, for every edge e, there
is a set of players whose connection requirement will be dissatisfied if e is deleted
from OPT, since otherwise a feasible network cheaper than OPT can be obtained
by simply deleting e. Note that in a Nash equilibrium, only this set of players
can make payments on e, since all other players will deviate by setting their
payment on e to 0 if they have paid for e. The players in this set are therefore
said to witness e, since without them, e would not be needed.

Let v be a player witnessing e, i.e., v will have only 1 path to s if e is deleted.
Observe that the size of the min-cut between v and s in OPT is at least 2 and
it becomes 1 when e is deleted. Therefore, there is a cut (A, B) in OPT between
v and s of size 2 with e as one of the cut-edges. We call such a set of nodes A,
a witness set of e. The 2 cut edges are called the boundary edges of the witness
set since one side of them is in the set and the other side is outside the set. Note
that since every edge in OPT has necessarily a witnessing player, it has a witness
set as well, which can be constructed by the cut argument above. Figure 1(A)
shows various witness sets of an edge e. The black circles represent the player
nodes.

Definition 1. A witness set of an edge e is a set of nodes including at least one
player node and excluding s, with exactly 2 boundary edges, one of which is e.
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(A) (B) (C)

Fig. 1. (A) Shows various witness sets of an edge e. (B) An example illustrating our sta-
ble solution concept. (C) Result of the Tree Generation algorithm. The ovals represent
smallest witness sets.

Observe that any player in a witness set of e witnesses e, and any player wit-
nessing e has to be involved in some witness set of e. Intuitively, a player inside
a witness set must use both of the edges leaving it, since the witness set is a cut
of size 2 and she needs 2 disjoint paths. A player witnessing e = (i, j) may be
using e either in the direction i → j or in the direction j → i. If it is using e in
the direction i → j then it is inside a witness set containing i and it is inside a
witness set containing j otherwise. Among the sets witnessing e in the direction
i → j, the smallest one in terms of the number of nodes included is called the
smallest witness set of e in the direction i → j and we denote it by Wi(i, j).
Wj(i, j) is also defined similarly. Smallest witness sets of the edges of OPT have
very nice structural properties that we use in our proofs. Specifically, we rely on
the following theorem. The proof of this theorem, as well as all of our missing
proofs appear in the full version of the paper.

Theorem 1. Let W be the set of all smallest witness sets of OPT, i.e., W =
{Wi(e)| for some i, e}. Then, there exists an equivalent graph (i.e., with the same
price of stability) where W is laminar.

Because of this theorem, for the rest of this paper we will assume that W is a lami-
nar set system. In other words, for any two smallest witness sets W1 and W2 (they
may be the smallest witness sets of different edges), either one of them is a subset
of the other or they are disjoint. Because of this, we can now speak of Wi(i, j) as
the unique smallest witness set in the direction of i → j, and therefore e may have
2 smallest witness sets, one in each direction. In the rest of this paper, we show
how to construct a stable solution where only the players in the smallest witness
sets of an edge e contribute to the payment of e. In fact, this laminar property
holds not only for the optimal network, but also for any minimal feasible network
G′, i.e., where G′ − e is not feasible for any e ∈ E(G′). Therefore, if we do not
possess OPT but some minimal feasible network, our techniques can still be used
to obtain approximate equilibria with provable cost guarantees.
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3 When All Nodes Are Terminals

In this section, we study a special case of the Survivable Connection Game,
where each node of G is a player node, and prove that there always exists a
Nash equilibrium as cheap as OPT, i.e., the price of stability is 1. To prove this
result, we form a strategy profile p that buys the edges of OPT, i.e., we give an
algorithm that decides how the cost of each edge of OPT is shared among the
players. For each edge e of OPT, our algorithm only asks the adjacent terminals
to contribute to the cost of e. Since we are trying to form a Nash equilibrium,
each terminal can only contribute to the cost of the edges it witnesses. Though
a terminal can have an arbitrary number of incident edges, it witnesses at most
2 of them. To see this, assume there is a player that witnesses more than 2 of its
incident edges. Then at least one of the connection paths of this terminal is using
at least 2 of its incident edges by the pigeonhole principle, which implies this
connection path contains a cycle. Since that terminal is still 2-connected after
removal of the cycle, it does not witness the incident edges included in the cycle.
That observation gives us a nice substructure in OPT, which we call chains.

A chain is a path with maximal length in OPT, where each edge of the path
has 2 smallest witness sets. Observe that each intermediate node of the chain
is witnessing both of its incident edges in the chain, since every edge has 2
smallest witness sets, one containing each of its incident nodes. Since a terminal
can witness at most 2 of its incident edges, no intermediate node of the chain
witnesses any incident edge except the ones in the chain. The boundary nodes
of the chain are witnessing the edge of the chain they are adjacent to. Observe
that boundary nodes of the chain may or may not witness any other incident
edge but if they do, this incident edge they witness will have only 1 smallest
witness set, since otherwise this edge would have been part of the chain as
well.

Observe that every edge e with 2 smallest witness sets is included in some
chain. In the simplest case, where both of the adjacent nodes of e do not witness
any other incident edges or witness one other edge with 1 smallest witness set,
we will have a chain that includes only one edge, namely e. Therefore, OPT is
composed of chains and edges with 1 smallest witness set. To form the stable
solution, we first form the payment on the edges with only 1 smallest witness
set, and then form the payments on the edges of the chains.

Since we are trying to form a stable solution, we should never ask the players to
make a payment that will create an incentive of unilateral deviation. To ensure
this, whenever we ask a player i to contribute to the cost of an edge e, the
algorithm should compute the cost of the cheapest deviation χi for player i on
the edges of G−e. Observe that all edges of OPT such that i is not contributing
any payment to them can be used by i freely. Therefore, when computing χi,
the algorithm should not use the actual cost of the edges in G − e, but instead
for each edge f it should use the cost i would face if she is to use f . We call
this the modified cost of f for i, and denote it by c′(f). Specifically, for f not in
OPT , c′(f) = c(f), f ’s actual cost, since this is how much i would have to pay
to purchase f . If i is already paying some amount pi(f) for f , then c′(f) = pi(f),
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since i has to continue paying this amount to use f . And finally, if i is paying
nothing for f that is in OPT (or has not been asked to pay anything for it yet
by our algorithm), then c′(f) = 0. Therefore, from i’s perspective, all the edges
of OPT that are not adjacent to it, or that it is not witnessing, are always free,
since our payment scheme will never ask i to pay for them.

Payment Algorithm. The algorithm first loops through all edges of OPT that
have only 1 smallest witness set. Let e = (i, j) be one of those edges and without
loss of generality assume i is the witnessing adjacent player. Then the algorithm
asks i to pay for the whole cost of e. As mentioned above, it also computes
the cost of the cheapest deviation χi. If χi ≥

∑
j �=e pi(j) + c(e) then it sets

pi(e) = c(e) and proceed with the next edge. If χi <
∑

j �=e pj(e) + c(e) then the
algorithm breaks (we prove below that this can never happen). If the algorithm
succeeds in paying for all the edges with 1 smallest witness set, i.e., it does not
break, then we consider the payment of the chains. We loop through all the
chains C of OPT. Let e1 = (n1, n2), e2 = (n2, n3), . . . , ek = (nk, nk+1) be the
edges of a chain C. To form the payment on the edges of C, the algorithm loops
through all the edges of C starting from the leftmost edge e1 till the rightmost
edge ek. So the payment for ei is decided after the payments for e1, e2, . . . , ei−1
are already decided. To form the payment for ei, the algorithm asks ni to make
the maximum payment that will not create an incentive of unilateral deviation.
The algorithm then asks ni+1 to pay for the rest of the cost of ei while not
creating an incentive for unilateral deviation. If the adjacent nodes succeed in
paying for the edge, the algorithm continues with the next edge of the chain.
Otherwise, the algorithm breaks. If the algorithm succeeds in paying for the
chain, it proceed to the next chain.

Theorem 2. The payment algorithm forms a Nash equilibrium on the edges of
OPT, and therefore the price of stability is 1.

Proof. [Summary] Observe that the payment algorithm never asks a player to
make a payment that will create an incentive of unilateral deviation. Therefore,
in order to show the price of stability is 1, all we need to do is to prove that the
algorithm never breaks at an intermediate stage. We prove this by constructing
a feasible network cheaper than OPT whenever the algorithm breaks, which will
contradict the optimality of OPT. We first show that players will always pay for
edges e = (i, j) that have only one smallest witness set. If the player i does not
pay for e, then we can make player i deviate, i.e., play χi instead of pi. The new
network is cheaper than OPT and we prove that it is also a feasible network
by showing all the players that were witnessing e can “follow” i’s deviation. We
then proceed to show that chains are always paid for. If a chain (n1, n2, . . . , nk)
cannot be paid for, we form a network cheaper than OPT by letting a contiguous
subset of players n1, n2, . . . , nk deviate. Because of the specific order in which
we form the deviations, the new network is still feasible by similar but slightly
more complicated arguments. ��
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4 Good Stable Solutions When Not All Nodes Are
Terminals

Approximation Algorithm Technique. To prove our main result, we define
a restricted version of the Survivable Connection Game such that this version
of the game is identical to the original game, except that for each strategy pi

of a player i, the set of deviations she can take are restricted. In this version, a
player is only allowed to deviate by changing the payments on one of her paths,
instead of both of them at once, i.e., for any strategy profile p = (p1, . . . , pn), p′i
is a deviation for player i from her strategy pi if for each edge e along one path
from i to s in Gp, pi(e) = p′i(e). In this version of the game, each player should
also determine her connection paths as well as the payment she makes on the
edges as part of her strategy. To avoid ambiguity, in the rest of the paper we
will use the term stable solutions for the equilibria of the restricted version and
the results for the stability of the restricted version will imply results about the
Nash equilibria of the Survivable Connection game due to Theorem 3.

Theorem 3. A stable solution p is a 2-approximate Nash equilibrium of the
original Survivable Connection Game.

The restricted version of the game is also of independent interest in scenarios
where each path of a single player is managed by a different entity.

In Figure 1(B), we have a game with one player that wants to connect from t
to s through 2 edge-disjoint paths. Each thick edge has a cost of 3, each dashed
edge has a cost of 1 and the total cost of the thin edges is ε. Any feasible solution
has to include all 4 of the thin edges. Let p be a strategy of the player where she
buys the 2 thick edges and all 4 of the thin edges where she uses the upper path
and the lower path in Figure 1(B) as her connection paths. Please note that,
though the connection paths are uniquely determined on this game for this set
of bought edges, this is not true in general, therefore they are to be specified as
part of the strategy. Let p′ be a strategy where the player buys the dashed and
the thin edges as well as the top thick edge and for each connection path she
uses a dashed edge and its 2 incident thin edges. Observe that in this strategy
player buys the top thick edge although she does not use it. If the player switches
her strategy from p to p′, she reroutes both of her connection paths. However,
p′ is considered a valid deviation since she keeps the payments on one of her
connection paths in p the same.

Recall that because of Theorem 3, we can restrict our attention to stable
solutions as defined above. In the following discussion we will use the terms
price of anarchy and price of stability for the ratio of the cost of the worst and
best stable solutions to the cost of OPT. In fact, we can immediately observe
that the price of anarchy cannot be more than 2N , and we give an example in
the full version that shows this bound is tight. Because of this, we focus on the
price of stability.

In this section, we present an algorithm to find a stable strategy vector that
buys OPT, which implies that the price of stability for the Survivable Connection
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Game is 1. Since a strategy of a player is composed of specifying 2 edge-disjoint
paths to s and the amount of payment made on the edges, then we must specify
both of these for every player.

Theorem 4 states that there always exists an equivalent graph G′ where each
player has node-disjoint connection paths on the socially optimal solution. Equiv-
alence among the graphs means that the socially optimal solution of the new
graph costs as much as OPT, and that for each stable network in the new graph,
there corresponds a unique stable network in the original graph with the same
cost. Because of Theorem 4, we assume all players have a node-disjoint routing
on OPT in the rest of the paper. We fix an arbitrary such routing for all the
players and next show how to form payments on the edges of OPT.

Theorem 4. There exists an equivalent graph G′ with a routing on the socially
optimal solution that is node-disjoint.

Our payment scheme is formed by Algorithm 1. While deciding the payment on
an edge e = (u, v), the algorithm needs to form the cheapest deviation χi on
G − e, for all players i in Wu(u, v) and Wv(u, v). For each player i in Wu(u, v)
or Wv(u, v), we call the connection path of i that does not use e the enduring
path of player i and denote it as Ei. To form the cheapest deviation χi in this
algorithm, we need to be able to find the cheapest way for a player to form 2
edge-disjoint paths to s, while keeping the payments on Ei the same. As shown
in Algorithm 1, this can be done by using modified costs c′i(f) for each edge f ,
that represent how much it costs for player i to use edge f in χi. Specifically,
for f not in OPT , c′i(f) = c(f), the actual cost of f . For the edges f of OPT
that i has not paid anything for, or for the edges in Ei, we have that c′i(f) = 0,
since from i’s perspective, she can use these edges for free (she cannot change
the payments on Ei, so from a deviational point of view, those edges are free for
i to use in χi). For all the other edges f that i is paying pi(f) for, c′i(f) = pi(f),
since that is how much it costs for i to use f in her deviation χi.

Note that Algorithm 1 never asks a player i to pay more than the cost of
her cheapest deviation χi and so, the algorithm forms a stable solution if it

Initialize pi(e) = 0 for all players i and edges e;
Loop until the payments for all edges are determined;

Pick an edge e = (u, v) whose payment scheme hasn’t been decided;

Pay for all the edges in e’s smallest witness sets recursively;

Loop through all terminals i of Wu(u, v) and Wv(u, v) until e is

paid for;

Define pi =
∑

f∈(E\Ei)
pi(f);

Define p(e) =
∑

j pj(e);
Define c′i(f) to be the modified cost of f for i;
Define χi to be the cost of the cheapest deviation by player

i in G − e under c′i;
Set pi(e) = min{χi − pi, c(e) − p(e)}.

Algorithm 1. Algorithm That Generates the Payment Scheme
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terminates. Therefore, all we need to prove is that for any edge e, the terminals
inside its smallest witness sets will be willing to pay for e. To show this, we will
actually prove a stronger statement. Specifically, for every edge e = (i, j) we will
generate two trees Ti and Tj in Wi(e) and Wj(e) rooted at i and j respectively,
such that the leaves of Ti and Tj are player nodes/terminals, and all other nodes
are non-player nodes. We will show that just the leaves of these trees are willing
to pay for the whole cost of e, and the other terminals in the smallest witness
sets are not needed. In fact, we can just as easily make our algorithm only ask
the players that are leaves of these trees to contribute to the payment of e.

Tree Generation. Since W is laminar, we construct the trees Tj(i, j) recur-
sively, starting with the smallest sets in W , and continuing to the sets containing
those. To construct Tj(i, j), we start the search in Wj(i, j) from j. If j is a player
then the tree is just a single node. If it is a non-player node we add all its in-
cident edges in Wj(i, j), along with their corresponding trees in their smallest
witness sets from the other side, as shown in Figure 1(C). That is, for every
edge (j, k) inside Wj(i, j), we add the edge (j, k) and the subtree Tk(j, k). These
trees must have already been generated, since those witness sets are contained
inside Wj(i, j). We presented the tree generation in terms of the smallest wit-
ness sets but indeed it is equivalent to making a breadth-first search in Wj(i, j)
starting from j, except we stop when a branch arrives at a player node. The
following lemma proves that the tree generation algorithm is well-defined and
the structures it generates Ti(e) and Tj(e) are indeed trees.

Lemma 1. Any edge f of Ti(e) generated by the Tree Generation Algorithm
has a smallest witness set from the side of the lower level nodes of the tree.
Furthermore, the structure Tj(e) generated by the Tree Generation Algorithm
for any edge e = (i, j) of OPT is a tree such that all leaf-nodes are player nodes
and all non-leaf nodes are non-player nodes.

We now know each player node t at a leaf of a tree Tj(e) is in the smallest
witness set of all the edges of the path of the tree between her and j. This
implies that every one of these edges must be used by t to connect to s, and
since the connection paths to s are node-disjoint, this implies that one of the
connection paths of t must simply proceed up the tree Tj(e). Therefore, we know
that the other connection path of t does not use any edge of this path. Lemma
2, which is one of the key lemmas for our proof, shows an even stronger property
and states that the connection paths of all players leaving Wj(i, j) through the
other boundary edge (i.e., not the edge (i, j)) don’t use any edge of Tj(e) at all.

Lemma 2. Let Wj(i, j) be a smallest witness set of some arbitrary edge e =
(i, j). Let p be a player inside Wj(i, j). Then the other connection path of p
(that leaves Wj(i, j) through the other boundary edge) does not use any of the
edges of Tj(e).

Now that we generated the trees Ti(e) inside each smallest witness set that are
disjoint from the other connection paths of the player nodes, we are ready to
state our main theorem.
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Theorem 5. Algorithm 1 fully pays for OPT, and so the price of stability is 1.
Moreover, the leaves of Ti(e) and Tj(e) are willing to pay for an edge e = (i, j)
without help from any other players.

Proof. [Summary] To prove Algorithm 1 succeeds in paying for OPT, we show
that for any edge e, the leaf-nodes of Ti(i, j) and Tj(i, j) will be willing to pay for e.
Assume the players are unable to buy an edge e. Then each player at the leaf of its
corresponding trees has some deviation which explains why she cannot contribute
more to the cost of e. As before, our proof is based on obtaining a feasible network
cheaper than OPT by modifying OPT with a careful subset of these paths.

Recall the deviation χk found in Algorithm 1, which consisted of edge-disjoint
paths P1 and P2 from a terminal tk to s, together with tk’s enduring path. Define
player tk’s alternate connection cycle Ak to be the paths P1 ∪ P2. If there is
more than one such deviation, choose Ak to be the one which includes as many
ancestors of tk as possible before including edges outside the tree. Let dk be
the highest ancestor of tk that Ak reaches before leaving the tree. To show that
all edges are paid for, we need the following technical lemma concerning the
structure of the alternate connection cycles.

Lemma 3. Let player tk be a leaf-node of Ti(i, j). Then Ak, the alternate
connection cycle of tk, does not use any edge of Ti(i, j) except in the subtree
below dk.

Using the above lemma, we can now prove Theorem 5. If the leaves of the trees
Ti(i, j) and Tj(i, j) together cannot pay for the edge (i, j), then we let a certain
subset of these players deviate. Afterwards, we must show that the resulting
solution is still feasible, by showing that everyone still has 2 edge-disjoint paths
to s. The complications that arise here result from the fact that a terminal t
cannot simply “follow” the deviating paths of a terminal t′, since the deviation
of t′ might not be disjoint from the other connection path of t. We can still show,
however, that the resulting solution is feasible and cheaper than OPT, giving us
a contradiction.

Since computing OPT is computationally infeasible, we give the following
result.

Theorem 6. Given an α-approximate socially optimal graph Gα and any ε > 0,
there is a polynomial time algorithm which returns a 2(1 + ε)-approximate Nash
equilibrium on a feasible graph G′, where c (G′) ≤ c (Gα).
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T.: The Price of Stability for Network Design with Fair Cost Allocation. In: Proc.
45th Annual IEEE Symposium on Foundations of Computer Science (2004)

4. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-Optimal Network De-
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Abstract. Congestion games—in which players strategically choose
from a set of “resources” and derive utilities that depend on the con-
gestion on each resource—are important in a wide range of applications.
However, to date, such games have been constrained to use utility func-
tions that are linear sums with respect to resources. To remove this
restriction, this paper provides a significant generalisation to the case
where a player’s payoff can be given by any real-valued function over the
set of possible congestion vectors. Under reasonable assumptions on the
structure of player strategy spaces, we constructively prove the existence
of a pure strategy equilibrium for the very wide class of these generalised
games in which player utility functions are congestion-averse—i.e., mono-
tonic, submodular and independent of irrelevant alternatives. Although,
as we show, these games do not admit a generalised ordinal potential
function (and hence—the finite improvement property), any such game
does possess a Nash equilibrium in pure strategies. A polynomial time
algorithm for computing such an equilibrium is presented.

1 Introduction

Models of congestion have recently become a major issue of study in algorith-
mic game theory, as they arise from many real-life situations (examples include
network routing, resource and task allocation, competition of firms for produc-
tion processes [8,16,17]) and yet possess plausible theoretical properties. To date,
much of research deals with the model of congestion games introduced by Rosen-
thal [16]. Here, players share a finite set of resources, and a strategy for a player
is to choose a subset of the resources. Each resource is associated with a resource
utility function, which determines the utility of each of its users as a function of
the number of players that have selected the resource. Given a strategy profile,
a combination of the players’ chosen strategies, the payoff for a player will be
simply the sum of utilities from his utilised resources.

Now, the key result of Rosenthal is that congestion games always possess
pure strategy Nash equilibria. This is important because pure strategy equilibria
have some indisputable advantages over mixed strategy equilibria: they are more
intuitive, especially in the context of one-shot games, they are generally easier to
compute than mixed equilibria, and they are easier for players to coordinate to.
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However, there are only a few known classes of such games with pure equilibria,
and, to date, there has been relatively little work providing efficient and exact
algorithms for computing such equilibria.

Related Work and Motivation. To this end, Monderer and Shapley [10] in-
troduced the notion of potential function (and its relaxed version—(generalised)
ordinal potential function) and proved that the existence of a generalised ordinal
potential is equivalent to the finite improvement property (FIP), implying that
any sequence of unilateral improving deviations terminates at a pure strategy
Nash equilibrium. The authors also showed that the classes of finite—exact—
potential games and congestion games coincide.

More recently, congestion games have been extended to local-effect games [6],
player-specific congestion games [7], weighted congestion games [7] and
ID-congestion games [9]. In these models, the player’s payoff depends not only
on the number of players choosing his resources, but also on the number of
players choosing the neighboring resources or on the players’ identities. Addi-
tional generalizations [11,15,13,14] deal with the possibility that resources may
fail to execute their assigned tasks, or with the actual order in which the tasks
are executed; we will refer to these models as congestion games with faulty or
random-order services. Finally, much of the work has been devoted to the study
of the computational complexity of finding pure strategy equilibria [1,5] and their
social performance [2,3] in congestion games and some of the extended models.

In this paper we generalise the class of congestion games still further. Specif-
ically, we consider settings in which the payoff of a player is determined by the
vector of resource congestion (note that the resources might be mutually de-
pendent!), via any real-valued function—not just as a sum of resource-specific
functions. Clearly, in this very general setting a potential function and a pure
strategy equilibrium are not guaranteed to exist. However, under reasonable as-
sumptions on the structure of player strategy spaces and payoff functions, we
will prove the existence of a pure strategy equilibrium and develop a polynomial
time algorithm for the computation of such an equilibrium.

Specifically, we assume that each player has a set of accessible resources, which
is a subset of a given set of resources to share, and his strategy space consists of
all possible subsets of his set of resources at hand. This, for instance, captures
settings with typed resources, where subsets of resources of a particular type are
matched to particular player tasks, or situations where some resources are not
(physically) accessible by a particular player or the player’s permissions for the
resource use are restricted.

In many applications of congestion games discussed in the literature, the re-
source utility function is decreasing as a function of the number of users (or, the
resource cost function is increasing). This typically reflects situations where a
resource is a service provider whose costs per user are increasing due to compe-
tition on internal resources, or a player’s utility from a resource decreases due
to reduction in the resource efficiency or reliability caused by higher congestion.
The latter also gives rise to the very real issue of redundant usage of resources,
which often occurs in non-cooperative multi-agent systems, where selfish agents
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try to run their jobs on several resources in parallel, in an attempt to increase
the probability of success or in the hope that one will be faster. In such settings
it is natural to assume that the more resources a player has in use or the lower is
the congestion on his utilised resources, the less marginal benefit he derives from
hiring an additional resource—that is, the player’s utility is submodular. This is
also the case in multi-task allocation settings with concave values of task port-
folios and other scenarios. Finally, a player’s preference between two resources
is usually determined by the congestion these resources experience but is inde-
pendent of irrelevant alternatives—that is, of selection and congestion levels of
the other resources.

Contribution. Following the above motivation, we introduce the class of games
with congestion-averse utilities (CAGs) where the structure of strategy spaces
is the one described above, and the payoff functions are congestion-averse—
that is, monotonically decreasing, submodular and independent of irrelevant
alternatives. We observe that the presented class of games includes—but is not
restricted to—the earlier discussed congestion models with player-specific payoff
functions, or faulty/random-order services. Indeed, CAGs significantly generalise
the aforementioned models as they, in particular:

– allow for more general—and non-identical—player payoff function structures.
Informally, when utilities and costs are understood metaphorically (e.g. as a
monetisation of a benefit or inconvenience) this allows us to model different
degrees of motivation/impatience between players; when they are understood
literally it allows us to model utility/cost differentiation on behalf of the
resource provider;

– take into account the possibility that players may have unequal access to
different resources. This allows us to model player-specific tasks which can
only be executed by a certain collection of resources;

– allow for non-identical and mutually-dependent resources;
– can be used to model multi-task allocation and other complex scenarios.

The main results of this paper are as follows. We observe that CAGs do not,
in general, admit a generalised ordinal potential function and the finite im-
provement property. However, we prove that every such game possesses a Nash
equilibrium in pure strategies and that any strategy profile which is stable un-
der elementary changes (adds, drops or switches of a single resource), is a Nash
equilibirum—this is called the single profitable move property (SPMP). Moreover,
we show that the family of games with SPMP coincides with the class of CAGs,
and thus our result is complete. Finally, we develop a universal, polynomial time
algorithm that computes a pure strategy equilibrium in any given CAG, while
the methods previously developed for models with player-specific payoff func-
tions or faulty/random-order services, which are special cases of CAGs, appear
to fail in the general case. Our new technique is based on the special sequences
of elementary changes which we call “drop ladders” and “swap ladders”. In par-
ticular, we show that an equilibrium can be achieved by applying O(N2R2)
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of elementary changes, where N and R stand for the number of players and
resources, respectively. Most of the proofs are omitted, due to space limitations.

2 Games with Congestion-Averse Utilities

Consider a congestion setting with a set N = {1, . . . , N} of players, where each
player i ∈ N has a set Ri of Ri ∈ N accessible resources, which is a subset of
a finite superset R = {r1, . . . , rR}. A player i’s strategy is to choose a subset
of resources from Ri, i.e. i’s strategy space, Σi, is given by a power set of Ri

(either including the empty set or not, depending on the nature of the particular
application). We refer to a resource that a player has assigned a task to as
“selected” by that player, and “unselected” otherwise.

Every N -tuple of strategies σ = (σi)i∈N corresponds to an R-dimensional
congestion vector h(σ) = (hr(σ))r∈R where hr(σ) is the number of players who
select resource r (we drop the profile to give hr when it’s clear which profile
is under consideration). Given a strategy profile σ ∈ Σ, for any player i ∈ N,
we define his personalised vector of congestion, hi(σ), to be a vector in NR that
coincides with h(σ) for all the resources that have been selected by i and that
has zero entries for all of i’s unselected resources: that is, hi

r(σ) = hr(σ) if r ∈ σi

and hi
r(σ) = 0 otherwise. For a vector h ∈ NR we define the “support” of h,

S(h) ⊆ {1, . . . , R}, to be {j : hrj > 0}.
In a classic congestion game [16], the payoff function of player i is defined by

Ui(σ) =
∑

r∈σi
ur (hr(σ)), where ur : {1, . . . , N} → R, r ∈ R, is an assignment

of resource utility functions; for any resource r ∈ R, ur(k) denotes the utility
for a player from using resource r if the total number of users of r is k.

In our, generalised, model, the utility of player i in a congestion setting is
given by a function Ui : NR → R that assigns a real value to a vector of
congestion.1 To precisely define the set of utility functions we permit, it is first
necessary to introduce a set of strategy modifications which we call “elementary
changes”2. Given a profile σ ∈ Σ, we denote the elementary changes as follows:

– Add Ai(r)—player i adds an unselected resource r: σ′
i = σi ∪ {r}.

– Drop Di(r)—player i drops a selected resource r: σ′
i = σi \ {r}.

– Switch Si(r+ ← r−)—player i switches resources by adding resource r+
and dropping resource r− (note that Si(r+ ← r−) = Ai(r+) + Di(r−)3

Using the above notation, we now define the “congestion-averseness” conditions
on the players’ utilities. Here, a utility function is said to be congestion-averse
if it (i) monotonically decreases as congestion increases, (ii) is submodular in
1 Note that the player’s utility only depends on the numbers of players choosing each

resource but not on their identities—that is, this setting is anonymous (see [4] for
results on approximating equilibria in anonymous games).

2 In [12,13] they are referred to as “single moves”.
3 Here and in what follows, “+” should be understood to mean sequential execution,

read left-to-right. We also use this notation to indicate elementary changes applied
to strategy profiles: e.g., σ + D denotes a drop applied to profile σ.
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that the “better” collection of resources a player uses—the less incentive he has
to add new resources, and (iii) is independent of irrelevant alternatives (i.e., a
player’s preference between two resources depends only on congestion on the
resources in question). Formally,

Definition 1. A utility function U : NR → R is described as congestion-
averse if it satisfies the following three conditions:

– Monotonicity (M). Function U is monotonically decreasing with respect to
increasing congestion: if S(h) = S(h′) and ∀r, hr ≥ h′

r, then U(h) ≤ U(h′).
– Submodularity (SM). Improving a resource selection by either (i) profitable

switches, (ii) extending the set of utilised resources or (iii) reducing conges-
tion on them does not make new adds more profitable, or drops less profitable;
likewise, unprofitable switches, deleting the resources or increasing the con-
gestion does not make drops more profitable, or adds less profitable. Equiva-
lently, for any h, h′ and h′′ such that |S(h)| = 1 and S(h) � S(h′), S(h′′),

U(h + h′)− U(h′) ≤ U(h + h′′)− U(h′′),

if either (i) |S(h′) \ S(h′′)| = |S(h′′) \ S(h′)| = 1 and U(h′) ≥ U(h′′), (ii)
S(h′′) ⊆ S(h′) and hj

′′ = hj
′ for any j ∈ S(h′′), or (iii) S(h′) = S(h′′) and

h′ ≤ h′′.
– Independence of irrelevant alternatives (IIA). If a player “prefers” one

resource over another at their current congestion levels, then he still does so
no matter what other changes are made to any other resources. Formally,
if Si(r+ ← r−) is a profitable switch for player i given profile σ, then it
is profitable for i from any other profile σ′ satisfying r− ∈ σ′

i, r+ /∈ σ′
i,

hr−(σ) = hr−(σ′) and hr+(σ) = hr+(σ′).

A CAG is now defined as a game in the congestion domain with congestion-averse
utility functions, in which a player’s utility from a combination of strategies is
determined by his personalised vector of congestion. More presicely,

Definition 2. A CAG Γ =
(
N,R, (Ui(·))i∈N

)
consists of a set N of N ∈ N

players, a set R of R ∈ N resources, and for each player i a set of accessible
resources Ri ⊆ R and a congestion-averse utility function Ui : NR → R. The
strategy space for each player i ∈ N is the set of subsets of Ri, and the payoff to
the player from a combination of strategies σ is ui(σ) = Ui(hi(σ)), where hi(σ)
is i’s personalised vector of congestion as determined by σ.

As we have previously discussed, congestion-averseness is a very reasonable as-
sumption that is natural in many applications of congestion settings. In partic-
ular, we note that the independence of irrelevant alternatives holds for classic
congestion games and all their known up to date extensions and generalisations.
Interestingly, these are the only conditions we will need on the players’ utility
functions in order to guarantee a pure strategy equilibrium. Before we proceed
to the proof, however, we point out some interesting subclasses of CAGs.
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Interesting Subclasses. Although congestion games as a whole are unlikely to
be included in the class of CAGs (as they are, in general, PLS-complete [5]), the
presented model captures various scenarios that lie far beyond the borders of the
classic model. Below we provide a number of examples of generalised congestion
settings, previously studied in the literature, to illustrate the richness of our
model. We note, however, that the class of CAGs is not restricted to these
special cases, as we shall also learn from their properties discussed in the sequel.

Probably the first significant extension of congestion games was the work of
Milchtaich on congestion games with player-specific functions [7], in which the
utility function associated with each resource is not universal but player-specific.
This generalisation was accompanied by two limiting assumptions: (i) that each
player chooses only one resource, and (ii) that the utility he derives from a
particular resource decreases with congestion on it. Now, one can observe that
a player-specific congestion game can be easily modified to a CAG by assuming
that a player can choose any (non-empty) subset of originally available single
resources, and by setting the utility of a player i from a congestion vector h to
be given by Ui(h) =

∑
r∈S(h) ui

r(hr)−M(|h|−1), where ui
r(·) represent resource

utility functions in the original game and M is a sufficiently big number (say,
M >

∑
r∈R maxi∈N ui

r(1)) (note that for a vector h with S(h) = 1 this coincides
with the original resource utility function). Obviously, the sets of outcomes of
these games are identical, and the congestion-averse conditions are satisfied.

Another interesting example is the family of congestion models with faulty
or random-order services, that, specifically, includes taxed congestion games with
failures [15], congestion games with load-dependent failures [13] and random order
congestion games4 [14]. In each of these, a player has a task that can be carried
out by any element of a set of independent resources. A player may decide to
assign his task, simultaneously, to several resources, either for reliability reasons
or hoping that his task will be completed in a short time by at least one of the
resources (all possible subsets of all given resources are available to all of the
players). Doing this, each player wants to maximise the probability of successful
(or, quick) completion of his task and, simultaneously, to minimise his cost. It has
been (naturally) assumed that the failure probabilities increase with congestion,
implying the monotonicity of player utility functions, and that the marginal
benefit from hiring an additional resource decreases as the player’s selection
of resources improves, implying the submodularity. Finally, since resources are
uncorrelated, the IIA also holds.5

We also note that CAGs can be used to model more complex—rather than
“single job”—scenarios. Consider, e.g., a setting where a player is given different
tasks, each associated with a value and workload. A subset of resources can com-
plete a task if its productivity (which is a function of the number and congestion
on the resources) meets the task’s workload. A player strives to maximise the
total value of his completed tasks, and thus he is interested in executing as many
(valuable) tasks as possible.

4 These games are also referred to as asynchronous congestion games [12].
5 We omit the formal proofs and definitions for brevity of exposition.
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Finally, as we discussed earlier in the Introduction, CAGs possess additional
features allowing for modeling player-specific tasks, non-identical and mutually
dependent resources. Thus, while the above are interesting models of specific
task allocation problems, games with congestion-averse utilities provide a general
framework for more realistic modelling of congestion scenarios.

3 Properties of CAGs

In this section we investigate the properties of games with congestion-averse
utilities. In particular, we observe that these games do not admit a generalised
ordinal potential function and the FIP. However, as we show below, they do
possess the single profitable move property. Based on this, we develop our “drop
and swap ladders” technique that enables us to achieve a pure strategy Nash
equilibrium in any given CAG, while the algorithms previously developed for
specific subclasses fail in the general case.

3.1 The Non-existence of the FIP

The finite improvement property is equivalent to the existence of a generalised
ordinal potential function—a real-valued function over the set of pure strategy
profiles with the property that an increase in the utility of a player who uni-
laterally shifts to another strategy implies an increase in the potential function;
that is, the potential increases along any improvement path.

Based on this, we construct an example showing that CAGs, in general,
have no FIP. In fact, this can be concluded directly from the inclusion in the
class of CAGs of congestion games with player-specific payoff functions [7], for
which examples of games without FIP have been previously found. In con-
trast, although the models with faulty/random-order services [11,15,13,14] have
been shown to not admit an exact potential function, the previous work failed
to prove or disprove the existence of an ordinal potential function in these
games.

Note, however, that the absence of the FIP, in general, does not contradict the
existence of an equilibrium in pure strategies or the convergence of particular
one-sided better reply dynamics. In what follows, we consider special types of
improving deviations and the corresponding properties of games with congestion-
averse utilities that we will use to develop efficient procedures for constructing
pure strategy equilibria.

3.2 The Single Profitable Move Property

The simplest deviations from a strategy profile in a CAG involve adds, drops or
switches of single resources, referred to as elementary changes (see 2 for the for-
mal definition). As we show below, any profile which is stable against elementary
changes possesses no profitable deviations at all, and hence is a Nash equilibrium.
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The above property, referred to as the single profitable move property (SPMP),
has been previously shown to hold for special cases of games with faulty/random-
order services [15,13,14].6 Here we extend this result to the superclass of CAGs.
We then complete the result by showing that the congestion-averse condi-
tions are not just sufficient but also necessary for the existence of SPMP
(see 3.4).

Theorem 1. A strategy profile σ of a given CAG is a pure strategy Nash equi-
librium if and only if it possesses no profitable elementary changes.

This allows us to significantly reduce the size of the set of possible player de-
viations from a given strategy profile that we need to examine. Moreover, it
is, in fact, not necessary to consider all adds, drops or switches, but only the
maximally profitable ones.

Corollary 1. A profile σ of a given CAG is a pure strategy Nash equilibrium if
and only if there are no maximally profitable elementary changes available.

We describe a strategy profile σ as A-stable (D-stable, S-stable) if it admits no
maximally profitable adds (drops, switches); likewise for AS-stable, DS-stable and
so on. Thus, another way of stating Corollary 1 is that a profile is in equilibrium
if and only if it is ADS-stable.

3.3 Pure Strategy Nash Equilibrium

The SPMP has been used as a basis for the proof of existence of a pure strategy
Nash equilibrium in the aforementioned special cases of games with congestion-
averse utilities. However, as we shall see, the previous techniques have been
heavily built on additional properties of the particular models that do not hold
for more general CAGs.

Specifically, for games with player-specific payoff functions [7] the proof is
based on showing the existence of a best-reply improvement path that connects
an arbitrary initial point to a Nash equilibrium. Now, any such path consists of
profitable switches only (as in these games only singleton strategies are allowed),
which make it impossible to use analogous dynamics in general CAGs where
players have strategies of different sizes available to them, and thus a player
might need to use adds or drops to modify one strategy to another, rather than
just switches. In addition, an upper bound on the length of the shortest path as
above provided in [7] is not polynomial. Ackermann et al [1] extended this study
to deal with player-specific matroid congestion games, in which the strategy
space of a player consists of the bases of a matroid on the set of resources, and
developed a polynomial time algorithm for computing pure equilibria in such
games. However, similarly to the singleton case, this dynamics involves switch-
type deviations only, as all player strategies are of the same size.

6 For the class of congestion games with player-specific payoff functions [7] and, in
fact, for any model with singleton strategies, the property holds trivially, as the set
of all possible deviations is restricted to switches only.
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The polynomial time procedure developed in [15] for taxed congestion games
with failures, is based on the specific property that an add applied to any DS-
stable strategy profile either preserves its DS-stability, or requires only one
uniquely defined drop for stabilisation. This property, however, does not hold
even for other models with faulty/random-order services, where an add may
cause a long chain of consecutive drops. Therefore, in games with load-dependent
failures [13] and random order congestion games [14], algorithms were developed
to first find an initial DS-stable strategy profile whose stability is not affected by
adds, termed “post-addition DS-stable profile”. In general CAGs however, such
a profile does not necessarily exist. In addition, the above algorithms only deal
with identical resources and specific utility functions. This implies the need to
develop a new, universal technique for computation of equilibria in games with
congestion-averse utilities.

We now proceed to investigate the properties of particular sequences of el-
ementary changes, which we call “drop and swap ladders”, when applied to
partially stable strategy profiles. As we shall see, these ladders play a central
role in our general method of constructing pure strategy Nash equilibria.

Drop and Swap Ladders. Suppose that a strategy profile σ is AS-stable, but
does have a sequence of profitable deviations, consisting of a drop followed by
m ≥ 1 switches. We define a drop ladder to be a sequence as above, all of whose
elementary changes are maximally profitable to each of the deviators.

Definition 3. A drop ladder is a sequence

Di0(r0) + Si1(r
′
1 ← r1) + · · ·+ Sim(r′m ← rm),

consisting of a maximally profitable drop followed by a sequence of m ≥ 0 maxi-
mally profitable switches. The length of the ladder is determined by the number
of switches, m, and its tail is the last switched-out resource involved, rm.

When applied on partially stable profiles, drop ladders have a particular struc-
ture and some interesting properties that we summarise in the following lemma.

Lemma 1. Given a CAG, let σ be an AS-stable strategy profile that possesses
a drop ladder of length m ≥ 0, and let σk denote the result of applying the drop
and the first k switches to σ. Suppose further that σk is A-stable for 0 ≤ k < m.
Then,

– switches “chain” with one another and with the initial drop: for all 1 ≤ k ≤ m
we have r′k = rk−1;

– if there is a profitable add Ai(r+) to the profile σm, then r+ = rm.

Following the observation made in Lemma 1, we now define an additional class
of strategy profile modifications, termed swap ladders, as follows.
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Definition 4. A swap ladder is a drop-ladder followed by a maximally prof-
itable add at the end:

Di0(r0) + Si1(r0 ← r1) + · · ·+ Sim(rm−1 ← rm) + Aim+1(rm). (1)

The number of switches, m, is the length of the ladder. The swap ladder is
described as minimal if all intermediate strategy profiles before the last add
were A-stable (i.e., if the add is performed at the first opportunity).

By Lemma 1, a profitable add can be made only to the tail of a minimal drop
ladder, and the result of the corresponding swap ladder possesses the same con-
gestion vector as the original profile; this gives us a reason to hope that minimal
swap ladders preserve AS-stability. To build the intuition for the proof, we first
make a couple of observations.

Consider a swap ladder as in (1); let σk be the result of applying to σ the drop
and the first k switches, and let σm+1 be the final profile after the add. Notice
that for any player ik, 1 ≤ k ≤ m+1, who performs the kth move after the initial
drop, the congestion on his selected resources immediately before the move, i.e.
at σk−1, is the same as at σ: indeed, the only resource at which congestion is
any different from that at σ is rk−1, which at that point is not selected by ik or
he would be unable to switch to or add it. Likewise, after the kth move, at σk,
player ik still does not use any resource whose congestion is lower than at σ (if
there is any such resource it is the result of ik switching-out at rk+1, which is
clearly no longer part of his profile).

This is the key observation: that within a swap ladder, a player making an
elementary change experiences the same congestion immediately before and after
the move that he did before the start of the swap ladder. Swap ladders do not
change congestion, so in fact this congestion is the same throughout any sequence
of swap ladders. More precisely, although congestion does of course change as
other players move, the congestion experienced by a given player before and after
any move that this particular player makes is the same as in the initial profile,
so from his decision-making point of view there is a fixed ranking on resources
throughout the sequence of swap ladders. That is, for any particular congestion
vector, each player has a ranking on resources determined by the utility of holding
that single resource: we say that for player i, r1 ≤ r2, if Ui({r1}) ≤ Ui({r2}).
The IIA property then implies that this preference is independent of what other
resources the player may have (so long as congestion on r1 and r2 does not
change): for any xi ∈ Σi such that r1, r2 /∈ xi, Ui(xi ∪ {r1}) ≤ Ui(xi ∪ {r2}).

We are now in a position to present the key lemma which is central to our
existence proof. It characterises a possible sequence of elementary changes that
a given player can make in consecutive minimal swap ladders.

Lemma 2. Consider the sequence of adds, drops and switches that a single
player makes in a sequence of minimal swap ladders. Then,

– the resources dropped or switched-out are always the lowest-ranked among
the player’s selected resources right before the corresponding move,
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– they form an increasing sequence with respect to the total rank, and
– once dropped or switched-out, they are not subsequently added back or

switched-in.

Lemma 2 easily supplies us with a linear bound on the number of changes that
a sequence of minimal swap ladders can contain:

Corollary 2. There can be no more than 2NR elementary changes in total in
any sequence of minimal swap ladders.

Proof. Consider a single player’s contribution to the sequence of swap ladders.
From Lemma 2, once it has been dropped or switched-out, each resource can-
not subsequently be added or switched-in; each resource can therefore only be
dropped or switched-out once and added or switched-in once. It follows that the
total number of elementary changes for a given player is at most 2R. The result
then holds simply by multiplying by the number of players.

Finally, Lemma 2 implies the AS-stability of post-swap-ladder profiles.

Proposition 1. If a swap ladder is applied to an AS-stable profile σ, then the
resulting profile is also AS-stable.

Based on Proposition 1 and Corollary 2 we then conclude the existence of pure
strategy Nash equilibria in CAGs. The following theorem is one of our main
contributions.

Theorem 2. Every CAG possesses a pure strategy Nash equilibrium.

3.4 Necessity of Congestion-Averseness Conditions

As the congestion-averse conditions on utility functions have been shown to be
sufficient to prove the existence of SPMP and pure strategy Nash equilibria, an
interesting question that now arises is that of necessity of the above conditions.
Below we show that each of the three congestion-averse conditions is necessary,
in general, for the existence of SPMP.

Theorem 3. In a CAG setting, if any one of the congestion-averse conditions
on utility functions is violated then the SPMP is not guaranteed to exist.

4 Computation of Equilibria

We finally make practical use of our theoretical results. The proof of Theorem
2 suggests a constructive algorithm for finding equilibria; we can, starting from
any AS-stable profile, look for maximal drop ladders, and convert them into
swap ladders whenever the result is not A-stable. Obviously this process must
terminate since either the total congestion strictly decreases, or we have a swap
ladder, of which—courtesy of Corollary 2—there can only be a limited number
consecutively. This algorithm is presented in Algorithm 1.

The analysis of the worst-case asymptotic complexity of Algorithm 1 results
in the following proposition.
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Algorithm 1. An algorithm for constructing an equilibrium strategy profile,
which searches for drop-ladders and swap-ladders in the same loop.
1: INPUT: A CAG game, G
2: OUTPUT: A pure-strategy equilibrium σ for G
3: σ ← (R1, . . . ,RN )
4: while σ is not ASD-stable do
5: choose a maximally profitable drop D
6: σ ← σ + D
7: while σ is not AS-stable do
8: find a maximally profitable switch S
9: σ ← σ + S

10: if σ has a maximally profitable add A then
11: σ ← σ + A
12: end if
13: end while
14: end while

Proposition 2. Algorithm 1 requires O(N2R2) of elementary changes, and has
asymptotic complexity O

(
N2R2g(N, R)

)
, where g(N, R) is the complexity of a

player’s utility evaluation.

5 Conclusions

In this paper we have proved the existence of pure strategy Nash equilibria for
a large class of games—Games with Congestion-Averse Utilities—loosely mod-
elled on traditional congestion games. We have also provided an algorithm that
constructs an equilibrium explicitly. This work was motivated by a desire to
address a broader class of resource contention scenarios than those previously
modelled, and we have indeed done so; but more remains to be done. In particu-
lar, the question of necessity of the congestion-averseness conditions for existence
of pure equilibria remains open. This implies a possibility of extending our re-
sults to models without the SPMP, which is a great challenge as our current
techniques build heavily on this property.
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Abstract. Let A be a randomized, unlimited supply, unit demand,
single-item auction, which given a bid-vector b ∈ [h]n, has expected
profit E[P (b)]. Aggarwal et al. showed that given A, there exists a de-
terministic auction which given a bid-vector b, guarantees a profit of
E[P (b)]/4 − O(h). In this paper we show that given A, there exists a
deterministic auction which given a bid-vector b of length n, guarantees
a profit of E[P (b)] − O(h

√
n lnhn). As is the case with the construction

of Aggarwal et al., our construction is not polynomial time computable.

1 Introduction

For our good fortune, we were hired to design a mechanism for handling the
upcoming ‘world cup’ TV broadcasts. We are given a two sided communication
with the (numerous) potential costumers, the marginal cost for adding one viewer
is negligible, and our primary goal is to maximize our revenue. The classical
approach for maximizing the revenue on scenarios like this is to set up a fixed
price, and charge it from any viewer. However, the price can be fixed too high,
causing a smaller number of viewers, or too low, causing a low price collecting
from each viewer. Either way, the overall revenue might be too low.

This motivates the study of an unlimited supply, unit demand, single item
auction. These auctions can guarantee a revenue which is a constant approxi-
mation to the best single price revenue (which is not necessarily known). In this
paper we study the derandomization of such truthful auctions. Goldberg et al. [5]
introduced randomized auctions that achieve on expectation a constant fraction
approximation of the optimal single price revenue.1 They named these auctions
competitive after the notion of competitive analysis of online algorithms. They
also proved that randomization is essential assuming the auction is symmetric
(that is, assuming the outcome of the auction does not depend on the order of
the input bids). Aggarwal et al. [1] later showed how to construct from any ran-
domized auction a deterministic, asymmetric auction with approximately the
same revenue. More accurately, given a randomized auction A which accepts
bid-vectors in [1, h]n, they constructed a deterministic, asymmetric auction AD

satisfying PAD (b) ≥ E[PA(b)]/4 − O(h) for every b ∈ [1, h]n; here PAD (b) is the

1 Actually, they looked on optimal single price where there are at least two buyers,
see [5] for farther details.
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profit of AD given a bid-vector b and E[PA(b)] is the expected profit of A given
a bid-vector b. The same result also holds in the more restrictive case where
A accepts bid-vectors in [h]n. In addition, Aggarwal et al. showed that if the
bid-vectors are restricted to be vectors of powers of 2 then the multiplicative
factor of 4 above can be improved to 2.

In this paper we show that in the case where the bid-vectors come from [h]n,
one can improve the construction of AD above so as to guarantee a better lower
bound for PAD (b), for the cases where PAD (b) = ω(h

√
n ln hn). Formally we

prove the following.

Theorem 1. Let A be a randomized auction which accepts bid-vectors in [h]n.
Assume that A has expected profit E[PA(b)] for every bid-vector b ∈ [h]n. Then
there exists a deterministic auction AD that guarantees a profit of PAD (b) ≥
E[PA(b)]−O(h

√
n ln hn) for every bid-vector b ∈ [h]n.

The proof of Theorem 1 can be outlined roughly as follows. Given a randomized
auction A, we first define a distribution over a set of deterministic auctions. We
then show that if we choose a deterministic auction AD from that distribution at
random, then E[PAD (b)] = E[PA(b)] for every bid-vector b (where the expectancy
on the left-hand side is w.r.t. the choice of AD and the expectancy on the right-
hand side is w.r.t. the coin tosses of A). In addition to that, our distribution has
the property that the event Badb, that PAD (b) < E[PAD (b)] − t, depends on a
relatively few number of other events Badb′ . Moreover, for every b, we have that
the probability of Badb is sufficiently small. We then apply the Lovász Local
Lemma to show that there exists a choice for AD for which none of the events
Badb occur. For our choice of t, this will give the theorem.

We stress the fact that the result of Aggarwal et al. [1] is more general in
the sense that it deals with bid-vectors in [1, h]n, while Theorem 1 only deals
with discrete bid-vectors. Still, discrete bid-vectors make more sense in real life
auctions, where for example, bids are being made in Dollars and Cents. We also
note that the construction used in the proof of Theorem 1 is not polynomial
time computable and that this is also the case in the construction of Aggar-
wal et al. [1].

2 Preliminaries

Definition 1 (Unlimited Supply, Unit Demand, Single Item Auction).
An unlimited supply, unit demand, single item auction is a mechanism in which
there is one item of unlimited supply to sell by an auctioneer to n bidders. The
bidders place bids for the item according to their valuation of the item. The
auctioneer then sets prices for every bidder. If the price for a bidder is lower
than or equal to its bid, then the bidder is considered as a winner and gets to
buy the item for its price. A bidder with price higher than its bid does not pay
nor gets the item. The auctioneer’s profit is the sum of the winners prices.

For a natural number k, let [k] denote the set {1, 2, ..., k}. A bid-vector b ∈ [h]n

is a vector of n bids in [h]. For b ∈ [h]n we denote by b−i the vector which is
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the result of replacing the ith bid in b with a question mark; that is, b−i is the
vector (b1, b2, . . . , bi−1, ?, bi+1, . . . bn).

A truthful auction is an auction in which every bidder bids its true valua-
tion for the item. It is well known that truthfulness can be achieved through
bid-independent auctions (see for example [4]). A bid-independent auction is an
auction for which the auctioneer computes the price for bidder i using only the
vector b−i (that is, without the ith bid).

2.1 A Structural Lemma

Let A be a randomized truthful auction that accepts bid-vectors from [h]n. We
can view A’s execution in the following manner. The auction maintains a set
of nm functions {gi,j: i ∈ [n], j ∈ [m]}, where gi,j is a function from vectors in
([h]∪ {?})n with exactly one question mark to [h]. On a bid-vector b ∈ [h]n, the
auction tosses some coins, and chooses accordingly an integer j ∈ [m]. We let
pj be the probability that j ∈ [m] was chosen. The auction then offers bidder i
the price gi,j(b−i). Let accepti,j(b) be 1 if gi,j(b−i) ≤ bi and 0 otherwise. The
expected profit of the auction on input b is then:

E[PA(b)] =
∑

j

pj

∑
i

accepti,j(b) · gi,j(b−i).

One can define the following randomized auction A′, which is equivalent to the
above randomized auction A with respect to expected profits. First, A′ maintains
the exact same list of functions as A. On a bid-vector b ∈ [h]n, the auction
performs the following independently for every i ∈ [n]: it tosses the same coins
that A does, chooses accordingly an integer j ∈ [m] and then offers the ith bidder
price gi,j(b−i). The expected profit of A′ on input b is given by:

E[PA′(b)] =
∑

i

∑
j

pj · accepti,j(b) · gi,j(b−i).

We call A′ the bidder-self-randomness-dual of A. The following clearly follows
from the discussion above.

Lemma 1. Let A be a randomized auction and A′ be its bidder-self-randomness-
dual auction. Then A and A′ have the same expected profit on every bid-vector.

2.2 Probabilistic Tools

The proof of Theorem 1 makes use of the Lovász Local Lemma [3]. We need the
following version of the lemma [2].

Lemma 2 (The Local Lemma; Symmetric Case). Let Badi, 1 ≤ i ≤ N ,
be events in an arbitrary probability space. Suppose that each event Badi is mu-
tually independent of a set of all the other events Badj but at most d, and that
Pr[Badi] ≤ p for all 1 ≤ i ≤ N . If ep(d + 1) ≤ 1, where e is the base of the
natural logarithm, then Pr[

∧N
i=1 ¬Badi] > 0.
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Let X be the average of n independent random variables Xi, where Xi ∈ [ai, bi]
for all i. We will need the following inequality [6]:

Lemma 3 (Hoeffding). Pr[X < E[X ]− t] ≤ 2 exp
(

−2n2t2∑n
i=1 (bi−ai)2

)
3 Proof of Theorem 1

Let A be a randomized auction which accepts bid-vectors in [h]n. Let {gi,j :
i ∈ [n], j ∈ [m]} be the set of functions that A maintains. We construct a
deterministic auction AD. To do that, we first define a certain tripartite graph
G = (Lft ,Cntr ,Rght , E). Using this tripartite graph, we define a distribution
over deterministic auctions. We will then obtain a deterministic auction AD

by choosing an auction at random according to that distribution. The proof of
Theorem 1 will follow by showing that AD satisfies the conclusion in the theorem
with positive probability.

We first describe the tripartite graph G. We let Lft be the set of all nhn−1

vectors b−i, where b ∈ [h]n is a bid-vector and i ∈ [n]. We let Cntr be the set of
all pairs {(b−i, gi,j(b−i)) : i ∈ [n], j ∈ [m]}. We let Rght be the set of all possible
hn bid-vectors in [h]n. The edges E are defined as follows. A vertex b−i ∈ Lft
is connected to all the vertices in the set {(b−i, gi,j(b−i)) ∈ Cntr : j ∈ [m]}. A
vertex (b−i, gi,j(b−i)) ∈ Cntr is connected to all bid-vectors r ∈ Rght for which
it holds that b−i = r−i and accepti,j(r) = 1.

Observe that every subgraph G′ of G in which every b−i ∈ Lft has exactly one
adjacent edge induces naturally a deterministic auction AD. To see that this is
indeed the case, consider such a subgraph G′ of G. The deterministic auction AD

behaves as follows: on a bid-vector b ∈ [h]n, the price offered to the ith bidder
is gi,j(b−i) if and only if {b−i, (b−i, gi,j(b−i))} is an edge in G′.

Let G′ be a subgraph of G chosen in the following way. Independently, for
every b−i ∈ Lft , choose a random edge {b−i, (b−i, gi,j(b−i))} according to the
distribution {pj}m

j=1. Let AD be the deterministic auction that is naturally in-
duced by G′. Note that for every bid-vector b ∈ [h]n,

E[PAD (b)] =
∑

i

∑
j

pj · accepti,j(b) · gi,j(b−i),

which by Lemma 1, is equal to E[PA(b)].
Let Badb be the event that PAD (b) < E[PAD (b)] − t, where we define t :=

10h
√

n ln hn. We need the following two claims.

Claim. For all b ∈ [h]n, Pr[Badb] < 1/(10hn).

Proof. Fix b ∈ [h]n and let Xi be the profit extracted from bidder i, that is,
Xi = accepti,j(b) · gi,j(b−i) (recall that j is determined by AD). Note that Xi ∈
[1, h] for all i and that the Xi’s are independent random variables. Let X be the
average of the Xi’s. We have

Pr[Badb] = Pr[PAD (b) < E[PAD (b)]− t] = Pr[X < E[X ]− t/n],
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which by Lemma 3 is at most 2 exp
(−2t2

h2n

)
. The claim now follows since t =

10h
√

n ln hn. ��
Claim. For all b ∈ [h]n, Badb depends on at most hn other events Badb′ .

Proof. Fix b ∈ [h]n. It is enough to show that there are at most hn vertices
b′ ∈ Rght with the following property: there is a vertex b−i ∈ Lft such that there
is a path of length 2 from b−i to b and from b−i to b′. Indeed, for the vertex
b ∈ Rght , there are at most n vertices b−i ∈ Lft which are at distance 2 from b.
In addition, for every b−i ∈ Lft there are at most h vertices b′ ∈ Rght which are
at distance 2 from b−i. ��
Combining the two claims above with the Lovász Local Lemma, we get that with
positive probability Badb does not occur for all b ∈ [h]n. Hence, with positive
probability, for every bid-vector b ∈ [h]n, PAD (b) ≥ E[PAD (b)] − t. This proves
the theorem.
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Abstract. We continue the recently initiated study of the computa-
tional aspects of weak saddles, an ordinal set-valued solution concept
proposed by Shapley. Brandt et al. gave a polynomial-time algorithm
for computing weak saddles in a subclass of matrix games, and showed
that certain problems associated with weak saddles of bimatrix games
are NP-complete. The important question of whether weak saddles can
be found efficiently was left open. We answer this question in the nega-
tive by showing that finding weak saddles of bimatrix games is NP-hard,
under polynomial-time Turing reductions. We moreover prove that rec-
ognizing weak saddles is coNP-complete, and that deciding whether a
given action is contained in some weak saddle is hard for parallel access
to NP and thus not even in NP unless the polynomial hierarchy col-
lapses. Our hardness results are finally shown to carry over to a natural
weakening of weak saddles.

1 Introduction

Saddle points, i.e., combinations of actions such that no player can gain by devi-
ating, are one of the earliest solutions suggested in game theory (see, e.g., [25]).
In two-player zero-sum games (henceforth matrix games), every saddle point
happens to coincide with an optimal outcome both players can guarantee in the
worst case and thus enjoys a very strong normative foundation. Unfortunately,
however, not every matrix game possesses a saddle point. In order to remedy this
situation, von Neumann [24] considered mixed, i.e., randomized, strategies and
proved that every matrix game contains a mixed saddle point (or equilibrium)
that moreover maintains the appealing normative properties of saddle points.
The existence result was later generalized to arbitrary general-sum games by
Nash [17], at the expense of its normative foundation. Since then, Nash equilib-
rium has commonly been criticized for its need for randomization, which may
be deemed unsuitable, impractical, or even infeasible (see, e.g., [14, 15, 5]).

In two papers from 1953, Lloyd Shapley showed that existence of saddle points
(and even uniqueness in the case of matrix games) can also be guaranteed
by moving to minimal sets of actions rather than randomizations over them
[21, 22].1 Shapley defines a generalized saddle point (GSP) to be a tuple of sub-
sets of actions of each player, such that every action not contained in the GSP is
1 The main results of the 1953 reports later reappeared in revised form [23].
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dominated by some action in the GSP, given that the remaining players choose
actions from the GSP. A saddle is an inclusion-minimal GSP, i.e., a GSP that
contains no other GSP. Depending on the underlying notion of dominance, one
can define strict, weak, and very weak saddles. Shapley [23] showed that every
matrix game admits a unique strict saddle. Duggan and Le Breton [10] proved
that the same is true for the weak saddle in a certain subclass of symmetric ma-
trix games that we refer to as confrontation games. While Shapley was the first to
conceive weak GSPs, he was not the only one. Apparently unaware of Shapley’s
work, Samuelson [20] uses the very related concept of a consistent pair to point
out epistemic inconsistencies in the concept of iterated weak dominance. Also,
weakly admissible sets as defined by McKelvey and Ordeshook [15] in the context
of spatial voting games are identical to weak GSPs. Other common set-valued
concepts in game theory include rationalizability [3, 19] and CURB sets [1] (see
also Myerson’s textbook ([16], pp. 88-91) for a general discussion of set-valued
solution concepts).

In this paper we continue the recently initiated study of the computational
aspects of Shapley’s saddles. Brandt et al. [5] gave polynomial-time algorithms
for computing strict saddles in general games and weak saddles in confrontation
games. Although it was shown that certain problems associated with weak sad-
dles in bimatrix games are NP-complete, the question of whether weak saddles
can be found efficiently was left open. We answer this question in the negative
by showing that finding weak saddles is NP-hard. Moreover, we prove that rec-
ognizing weak saddles is coNP-complete, and that deciding whether an action
is contained in a weak saddle of a bimatrix game is complete for parallel access
to NP and thus not even in NP unless the polynomial hierarchy collapses. We
finally demonstrate that our hardness results carry over to very weak saddles.

2 Related Work

In recent years, the computational complexity of game-theoretic solution con-
cepts has come under increasing scrutiny. One of the most prominent results in
this stream of research is that the problem of finding Nash equilibria in bimatrix
games is PPAD-complete [7, 9], and thus unlikely to admit a polynomial-time
algorithm. PPAD is a subclass of FNP, and it is obvious that Nash equilibria
can be recognized in polynomial time. Interestingly, our results imply that this
is not the case for weak saddles unless P=NP.

Weak saddles rely on the elementary concept of weak dominance, whose com-
putational aspects have been studied extensively in the form of iterated weak
dominance [12, 8, 6]. In contrast to iterated dominance, saddles are based on a
notion of stability reminiscent of Nash equilibrium and its various refinements.
Weak saddles are also related to minimal covering sets, a concept that has been
proposed independently in social choice theory [11, 10] and whose computational
complexity has recently been analyzed [4, 2].

Brandt et al. [5] constructed a class of games that established a strong re-
lationship between weak saddles and inclusion-maximal cliques in undirected
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graphs. Based on this construction and a reduction from the NP-complete prob-
lem CLIQUE, they showed that deciding whether there exists a weak saddle
with a certain number of actions is NP-hard. This construction, however, did
not permit any statements about the more important problems of finding a
weak saddle, recognizing a weak saddle, or deciding whether a certain action is
contained in some weak saddle.

3 Preliminaries

An accepted way to model situations of strategic interactions is by means of a
normal-form game (see, e.g., [14]).

Definition 1 (Normal-Form Game). A (finite) game in normal-form is a
tuple Γ = (N, (Ai)i∈N , (pi)i∈N ) where N = {1, 2, . . . , n} is a set of players
and for each player i ∈ N , Ai is a nonempty finite set of actions available to
player i, and pi : (

∏
i∈N Ai)→ R is a function mapping each action profile (i.e.,

combination of actions) to a real-valued payoff for player i.

A subgame of a (normal-form) game Γ = (N, (Ai)i∈N , (pi)i∈N ) is a game Γ ′ =
(N, (A′

i)i∈N , (p′i)i∈N ) where, for each i ∈ N , A′
i is a nonempty subset of Ai and

p′i(a
′) = pi(a′) for all a′ ∈ A′

1 × . . .×A′
n. Γ is then called a supergame of Γ ′.

In order to formally define Shapley’s weak saddles, we need some additional
notation. Let AN = (A1, . . . , An). For a tuple S = (S1, . . . , Sn), write S ⊆ AN

and say that S is a subset of AN if ∅ �= Si ⊆ Ai for all i ∈ N . Further let
S−i = (S1, . . . , Si−1, Si+1, . . . , Sn). For a player i ∈ N and two actions ai, bi ∈ Ai

say that ai weakly dominates bi with respect to S−i, denoted ai >S−i bi, if
pi(ai, s−i) ≥ pi(bi, s−i) for all s−i ∈ S−i, with at least one strict inequality.

Definition 2 (Weak Saddle). Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a game and
S = (S1, . . . , Sn) ⊆ AN . Then, S is a weak generalized saddle point (WGSP)
of Γ if for each player i ∈ N the following holds:

For every ai ∈ Ai \ Si there exists si ∈ Si such that si >S−i ai. (1)

A weak saddle is a WGSP that contains no other WGSP.

An example game with two weak saddles is given in Figure 1. The interpretation
of this definition is the following: Every player i has a distinguished set Si of
actions such that for every action ai that is not in the set Si, there is some action
in Si that weakly dominates ai, provided that the other players play only actions
from their distinguished sets. Condition (1) will be called external stability in
the following. A WGSP thus is a tuple S that is externally stable for each player.
Observe that the tuple AN of all actions is always a WGSP, thereby guaranteeing
existence of a weak saddle in every game. As the game in Figure 1 illustrates,
weak saddles do not have to be unique. It is also not very hard to see that
weak saddles are invariant under order-preserving transformations of the payoff
functions and that every weak saddle contains a (mixed) Nash equilibrium.
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b1 b2 b3

a1
0

2
1

1
0

1

a2
1

1
1

1
1

2

Fig. 1. Example game with two weak saddles: ({a1}, {b1, b2}) and ({a1, a2}, {b2})

In the remainder of the paper we will concentrate on two-player games.2 For
such games, we can simplify notation and write Γ = (A, B, p), where A is the set
of actions of player 1, B is the set of actions of player 2, and p : A×B → R×R
is the payoff function on the understanding that p(a, b) = (p1(a, b), p2(a, b)) for
all (a, b) ∈ A × B. A two-player game is often called a bimatrix game, as it
can conveniently be represented as a |A| × |B| bimatrix M , i.e., a matrix with
rows indexed by A, columns indexed by B and M(a, b) = p(a, b) for every action
profile (a, b) ∈ A × B. We will commonly refer to actions of players 1 and 2 by
the rows and columns of this matrix, respectively. When representing a bimatrix
game graphically, we follow the convention to write player 1’s payoffs in the lower
left corner and player 2’s payoff in the upper right corner of the corresponding
matrix cell (see Figure 1 for an example).

For an action a and a weak saddle S = (S1, S2), we will sometimes slightly
abuse notation and write a ∈ S if a ∈ (S1 ∪ S2). In such cases, whether a is
a row or a column should be either clear from the context or irrelevant for the
argumentation. This partial identification of S and S1 ∪ S2 is also reflected in
referring to S as a “set” rather than a “pair” or “tuple.” When reasoning about
the structure of the saddles of game, the following notation will be useful. For
two actions x, y ∈ A ∪B, we write x � y if every weak saddle containing x also
contains y. Observe that � as a relation on (A∪B)× (A∪B) is transitive. We
now identify two sufficient conditions for x � y to hold.

Fact 1. Let Γ = (A, B, p) be a two-player-game, b ∈ B an action of player 2,
and a ∈ A an action of player 1. Then b � a if one of the following two
conditions holds:3

(i) a is the unique action maximizing p1(·, b), i.e., {a} = argmaxa′∈A p1(a′, b).
(ii) a maximizes p1(·, b), and all actions maximizing p1(·, b) yield identical pay-

offs for all opponent actions, i.e., a ∈ argmaxa′∈A p1(a′, b) and p1(a1, b
′) =

p1(a2, b
′) for all a1, a2 ∈ arg maxa′∈A p1(a′, b) and all b′ ∈ B.

Part (i) of the statement above can be generalized in the following way. An action
a is in the weak saddle if it is a unique best response to a subset of saddle actions:
if {b1, . . . , bt} ⊂ S and there is no a′ ∈ A \ {a} with p1(a′, bi) ≥ p1(a, bi) for all
i ∈ [t], then a ∈ S.4 In this case, we write {b1, . . . , bt} � a. Moreover, for two
2 Naturally, all hardness results carry over to the general n-player case by adding an

arbitrary number of “dummy” players that always receive the same payoff.
3 The statement remains true if the roles of the two players are reversed.
4 For n ∈ N, we write [n] = {1, 2, . . . , n}.
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sets of actions X and Y , we write X � Y if X � y for all y ∈ Y . For example,
in the game in Figure 1, b1 � a1 � b2, {b2, b3}� a2 and {b1, b3}� {a1, a2}.

We assume throughout the paper that games are given explicitly, i.e., as tables
containing the payoffs for every possible action profile. We will be interested in
the following computational problems for a given game Γ :

– FindWeakSaddle: Find a weak saddle of Γ .
– IsWeakSaddle: Is a given collection (S1, . . . , Sn) of subsets of actions for

each player a weak saddle of Γ ?
– UniqueWeakSaddle: Does Γ contain exactly one weak saddle?
– InWeakSaddle: Is a given action a contained in a weak saddle of Γ ?
– InAllWeakSaddles: Is a given action a contained in every weak saddle

of Γ ?
– NontrivialWeakSaddle: Does Γ contain a weak saddle that does not

consist of all actions?

We assume the reader to be familiar with the basic notions of complexity the-
ory, such as polynomial-time many-one reductions and Turing reductions, and
the related notions of hardness and completeness, and with standard complexity
classes such as P, NP, and coNP (see, e.g., [18]). We will further use the com-
plexity classes Σp

2 and Θp
2 . Σp

2 = NPNP forms part of the second level of the
polynomial hierarchy and consists of all problem that can be solved on a non-
deterministic Turing machine with access to an NP oracle. Θp

2 = PNP
|| consists of

all problems that can be solved on a deterministic Turing machine with parallel
(non-adaptive) access to an NP oracle.

4 Hardness Results for Weak Saddles

We will now derive various hardness results for weak saddles. We begin by pre-
senting a general construction that transforms a Boolean formula ϕ into a bima-
trix game Γϕ, such that the existence of certain weak saddles in Γϕ depends on
the satisfiability of ϕ. This construction will be instrumental for each of the hard-
ness proofs. The proofs themselves are often omitted due to space constraints
and can be found in the full version of this paper.

4.1 A General Construction

Let ϕ = C1 ∧ . . .∧Cm be a Boolean formula in conjunctive normal form (CNF)
over a finite set V = {v1, . . . , vn} of variables. Denote by L =

⋃
v∈V {{v, v} : v ∈

V } the set of all literals, where a literal is either a variable or its negation. Each
clause Cj is a set of literals. An assignment α : L → {0, 1} is a function mapping
each literal to either 1 (“true”) or 0 (“false”). Assignment α is valid if α(v) �=
α(v) for all v ∈ V . For a valid assignment α, denote by Lα = {� ∈ L : α(�) = 1}
the set of literals that are set to true under α. We say that α satisfies a clause
Cj if Cj ∩ Lα �= ∅. Finally, formula ϕ is satisfiable if there is an assignment
that satisfies each of its clauses. We assume without loss of generality that ϕ
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Fig. 2. Subgame of Γϕ for a formula ϕ = C1∧· · ·∧Cm with v1, v2 ∈ C1 and v1, vn ∈ C2

does not contain trivial clauses, i.e., clauses that contain a literal � as well as its
negation �. The game Γϕ = (A, B, p) is defined in three steps.

Step 1. Player 1 has actions {a∗, d∗} ∪ C, where C = {C1, . . . , Cm} is the set of
clauses of ϕ. Player 2 has actions B = {b∗} ∪ L, where L is the set of literals.5

Payoffs are given by

– p(a∗, b∗) = (1, 1),
– p(d∗, �) = (1, 1) for all � ∈ L,
– p(Cj , b

∗) = (0, 1) for all j ∈ [m],
– p(Cj , �) = (1, 0) if and only if � /∈ Cj ,
– p(a, b) = (0, 0) otherwise.

An example of such a game is shown in Figure 2. Observe that (a∗, b∗) is a weak
saddle and thus no strict superset can be a weak saddle. Furthermore, row d∗

dominates row Cj with respect to a set of columns {�1, . . . , �t} ⊆ L if and only
if �i ∈ Cj for some i ∈ [t]. In particular, d∗ >Lα Cj if and only if α satisfies
Cj . Another noteworthy property of this game is the fact that no weak saddle
contains any of the rows Cj , because Cj � b∗ � a∗ for each j ∈ [m].

The basic idea behind this construction is the following. We want to have an
“assignment saddle” Sα = (S1, S2) with d∗ ∈ S1 and S2 = Lα if and only if α
satisfies ϕ. For the direction from left to right, we have to ensure that Sα cannot
be a weak saddle if α does not satisfy ϕ or if α is not a valid assignment. This
is achieved by means of additional actions, for which the payoffs are defined in
such a way that every “wrong” (i.e., unsatisfying or invalid) assignment yields a
set containing both a∗ and b∗. Obviously, such a set can never be a weak saddle,
because it contains the weak saddle (a∗, b∗) as a proper subset. In fact, (a∗, b∗)
will be the unique weak saddle in cases where there is no satisfying assignment.
5 There shall be no confusion by identifying literals with corresponding actions of

player 2, which will henceforth be called “literal actions” (or “literal columns”).
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Step 2. We augment the action sets of both players. Player 1 has one addi-
tional row �′ for each literal � ∈ L.6 Player 2 has one additional column yi for
each variable vi ∈ V . Payoffs for profiles involving new actions are defined as
follows:

– p(a∗, yi) = (1, 0) for all i ∈ [n],
– p(�′, �) = (2, 1) if �′ = �,
– p(�′, yi) = (0, 1) if �′ ∈ {vi, vi},
– p(a, b) = (0, 0) otherwise.

Observe that, by Fact 1 and the discussion thereafter, � � �′, {�′, �′} � yi and
yi � a∗ � b∗. This means that no assignment saddle can contain both � as well
as its negation �.

There only remains one subtlety to be dealt with. In the game defined so far,
there are weak saddles containing row d∗, whose existence is independent of the
satisfiability of ϕ, namely ({d∗, �′}, {�}) for each � ∈ L. We destroy these saddles
using additional rows.

Step 3. We introduce new rows r1, r1, . . . , rn, rn, one for each literal, with the
property that ri � b∗, and that ri or ri can only be weakly dominated (by vi

and vi, respectively) if at least one literal column other than vi or vi is in the
saddle. For this, we define

– p(ri, b
∗) = p(ri, b

∗) = (0, 1) for all i ∈ [n],
– p(ri, vi) = r(ri, vi) = (2, 0),
– p(ri, �) = p(ri, �) = (−1, 0) if � ∈ {vi+1, vi+1} (where vn+1 = v1),
– p(a, b) = (0, 0) otherwise.

The game Γϕ now has action sets A = {a∗, d∗}∪C ∪L∪{r1, . . . , rn} for player 1
and B = {b∗} ∪ L ∪ {y1, . . . , yn} for player 2. The size of Γϕ thus is clearly
polynomial in the size of ϕ. A complete example of such a game is given in the
full version of this paper.

For an assignment α, define the assignment saddle Sα as Sα = ({d∗}∪Lα, Lα).
It should be clear from the argumentation above that Sα is a weak saddle of Γϕ

if and only if α satisfies ϕ.

4.2 Membership Is NP-hard

We show NP-hardness of the membership problem via a reduction from SAT.
Given a CNF formula ϕ, we show that the game Γϕ defined in Section 4.1 has a
weak saddle containing action d∗ if and only if ϕ is satisfiable. In particular, we
need to show that there is no saddle containing d∗ if ϕ is unsatisfiable.

Theorem 1. InWeakSaddle is NP-hard.

6 Action ′ of player 1 and action  of player 2 refer to the same literal, but we name
them differently to avoid confusion.



The Computational Complexity of Weak Saddles 245

c
0

1

Γ

0
1

. . .
0

1
0

λ
1

0
0

λ
1

0
0

λ
1

0
0

λ
1

0
...

. . .
0

λ
1

0

Fig. 3. Construction used in the proof of Lemma 1. Payoffs are (0, 0) unless specified
otherwise, λ is chosen to maximize p1(·, c). Every weak saddle containing column c
then equals the set of all actions.

4.3 Membership Is coNP-hard

In order to show that InWeakSaddle is also coNP-hard, we first show the
following: given a game and an action c, it is possible to augment the game with
additional actions such that every weak saddle of the augmented game that
contains c contains all actions of this game.

Lemma 1. Let Γ = (A, B, p) be a two-player game, c ∈ A ∪ B and action
of Γ . Then there exists a supergame Γ c = (A′, B′, p′) of Γ with the following
properties:

(i) If S is a weak saddle of Γ c containing c, then S = (A′, B′).
(ii) If S is a weak saddle of Γ that does not contain c, then S is a weak saddle

of Γ c.
(iii) The size of Γ c is polynomial in the size of Γ .

The game Γ c is sketched in Figure 3. Briefly, we introduce new actions (A′ \A)
and (B′ \B) and define the payoffs for profiles involving these actions in such a
way that c � (A′ \A) � (B′ \ {c}) � A. We have the following.

Theorem 2. InWeakSaddle is coNP-hard.

Proof. We give a reduction from UNSAT. For a given CNF formula ϕ, consider
the game Γ b∗

ϕ obtained by augmenting the game Γϕ defined in Section 4.1 in such
a way that every weak saddle containing action b∗ in fact contains all actions. We
show that Γ b∗

ϕ has a weak saddle containing b∗ if and only if ϕ is unsatisfiable.
For the direction from left to right, assume that there exists a weak saddle

S = (S1, S2) with b∗ ∈ S2. By Lemma 1, S is trivial, i.e., equals the set of all
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actions. Furthermore, S must be the unique weak saddle of Γ b∗
ϕ , because any

other weak saddle would violate minimality of S. In particular, Sα cannot be a
saddle for any assignment α, which by the discussion in Section 4.1 means that
ϕ is unsatisfiable.

For the direction from right to left, assume that ϕ is unsatisfiable. It is not
very hard to see that every weak saddle S = (S1, S2) contains at least one
column not corresponding to a literal, i.e., S2 � L (otherwise, S would be an
assignment saddle). However, since a∗ � b∗ and b � a∗ for every non-literal
column b ∈ B \ L, we have that b∗ ∈ S2 for every weak saddle S. ��
The proof of Theorem 2 implies several other hardness results.

Corollary 1. The following holds:
– IsWeakSaddle is coNP-complete.
– InAllWeakSaddles is coNP-complete.
– UniqueWeakSaddle is coNP-hard.

Proof. Let ϕ be a Boolean formula, which without loss of generality we can
assume to have either no satisfying assignment or more than one. Otherwise, we
could add a clause {w1, w2} to ϕ (where w1 and w2 are new variables), thereby
multiplying the number of satisfying assignments by three. Recall the definition
of the game Γ b∗

ϕ used in the proof of Theorem 2. It is easily verified that the
following statements are equivalent: formula ϕ is unsatisfiable, Γ b∗

ϕ has a trivial
weak saddle, Γ b∗

ϕ has a unique weak saddle, b∗ is contained in all weak saddles
of Γ b∗

ϕ . This provides a reduction from UNSAT to each of the problems above.
Membership of InAllWeakSaddles in coNP holds because any externally

stable set that does not contain the action in question serves as a witness that
this actions is not contained in every weak saddle. For membership of IsWeak-

Saddle, consider a tuple S of actions that is not a weak saddle. Then either
S itself is not externally stable, or a proper subset of S is. For both cases there
exists a witness of polynomial size. ��

4.4 Finding a Saddle Is NP-hard

A particularly interesting consequence of Theorem 2 concerns the existence of
a nontrivial weak saddle. As we will see, hardness of deciding the latter can be
used to obtain a result about the complexity of the search problem.

Corollary 2. NontrivialWeakSaddle is NP-complete.

Proof. For membership in NP, observe that proving the existence of a nontrivial
weak saddle is tantamount to finding a proper subset of the set of all actions that
is externally stable. By definition, every such subset is guaranteed to contain a
weak saddle. Obviously, external stability can be checked in polynomial time.

Hardness is again straightforward from the proof of Theorem 2, since the game
Γ b∗

ϕ has a nontrivial weak saddle if and only if formula ϕ is satisfiable. ��
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Corollary 3. FindWeakSaddle is NP-hard under polynomial-time Turing re-
ductions.

Proof. Suppose there exists an algorithm that computes some weak saddle of
a game in time polynomial in the size of the game. Such an algorithm could
obviously be used to solve the NP-hard problem NontrivialWeakSaddle in
polynomial time. Just run the algorithm once. If it returns a nontrivial saddle,
the answer is “yes.” Otherwise the set of all actions must be the unique weak
saddle of the game, and the answer is “no.” ��

4.5 Membership Is Θp
2-hard

Now that we have established that InWeakSaddle is both NP-hard and coNP-
hard, we will raise the lower bound to Θp

2 . Wagner provided a sufficient condition
for Θp

2-hardness that turned out to be very useful (see, e.g., [13]).

Lemma 2 (Wagner [26]). Let S be an NP-complete problem, and let T be
any set. Further let f be a polynomial-time computable function such that the
following holds for all k ≥ 1 and all strings x1, x2, . . . , x2k satisfying xj−1 ∈ S
whenever xj ∈ S for every j with 1 < j ≤ 2k:

‖{i : xi ∈ S}‖ is odd ⇐⇒ f(x1, x2, . . . , x2k) ∈ T .

Then T is Θp
2-hard.

The following statement can be shown by applying Wagner’s Lemma to the
NP-complete problem S = SAT and to T = InWeakSaddle.

Theorem 3. InWeakSaddle is Θp
2-hard.

We conclude this section by showing that Σp
2 is an upper bound for the mem-

bership problem.

Proposition 1. InWeakSaddle is in Σp
2 .

Proof. Let Γ = (N, (Ai)i∈N , (pi)i∈N ) be a game, d∗ ∈ ⋃i Ai a designated action.
First observe that we can verify in polynomial time whether a subset of AN is
externally stable. We can guess a weak saddle S containing d∗ ∈ S in nondeter-
ministic polynomial time and verify its minimality by checking that none of its
subsets are externally stable. This places InWeakSaddle in NPcoNP and thus
in Σp

2 . ��

5 Very Weak Saddles

A natural weakening of weak dominance is very weak dominance, which does
not require a strict inequality in addition to the weak inequalities [14]. Thus, in
particular, two actions that always yield the same payoff very weakly dominate
each other. Formally, for a player i ∈ N and two actions ai, bi ∈ Ai we say that ai
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very weakly dominates bi with respect to S−i, denoted ai ≥S−i bi, if pi(ai, s−i) ≥
pi(bi, s−i) for all s−i ∈ S−i. Based on this modified notion of dominance, one
can define the very weak analog of the weak saddle (cf. Definition 2).

Computational problems for very weak saddles are defined analogously to
their counterparts for weak saddles. It turns out that most of our results for the
latter can be transferred to the former.

Theorem 4. The following holds:

– InVeryWeakSaddle is NP-hard.
– InVeryWeakSaddle is coNP-hard.
– IsVeryWeakSaddle is coNP-complete.
– InAllVeryWeakSaddles is coNP-complete.
– UniqueVeryWeakSaddle is coNP-hard.
– NontrivialVeryWeakSaddle is NP-complete.
– FindVeryWeakSaddle is NP-hard.

It should be noted that the hardness results for very weak saddles do not follow
in an obvious way from the corresponding results for weak saddles, or vice versa.
While the proofs are based on the same general idea, and again on one core
construction, there are some significant technical differences.

6 Conclusion

In the early 1950s, Shapley proposed an ordinal set-valued solution concept
known as the weak saddle. We have shown that weak saddles are intractable
in bimatrix games. As it turned out, not only finding but also recognizing weak
saddles is computationally hard. This distinguishes weak saddles from Nash equi-
librium, iterated dominance, and any other game-theoretic solution concept we
are aware of. Three of the most challenging remaining problems are to study
the complexity of weak saddles in matrix games, to close the gap between Θp

2
and Σp

2 for InWeakSaddle, and to completely characterize the complexity of
FindWeakSaddle.

Acknowledgements. This material is based on work supported by the Deutsche
Forschungsgemeinschaft under grants BR-2312/6-1 and BR 2312/3-2.
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Abstract. Computing optimal Stackelberg strategies in general two-player
Bayesian games (not to be confused with Stackelberg strategies in routing games)
is a topic that has recently been gaining attention, due to their application in var-
ious security and law enforcement scenarios. Earlier results consider the compu-
tation of optimal Stackelberg strategies, given that all the payoffs and the prior
distribution over types are known. We extend these results in two different ways.
First, we consider learning optimal Stackelberg strategies. Our results here are
mostly positive. Second, we consider computing approximately optimal Stackel-
berg strategies. Our results here are mostly negative.

1 Introduction

Game theory defines solution concepts for strategic situations, in which multiple self-
interested agents interact in the same environment. Perhaps the best-known solution
concept is that of Nash equilibrium [11]. A Nash equilibrium prescribes a strategy for
every player, in such a way that no individual player has an incentive to change her
strategy. If strategies are allowed to be mixed—a mixed strategy is a probability distri-
bution over pure strategies—then it is known that every finite game has at least one Nash
equilibrium. Some games have more than one equilibrium, leading to the equilibrium
selection problem.

Perhaps the most basic representation of a game is the normal form. In the normal-
form representation, every player’s pure strategies are explicitly listed, and for every
combination of pure strategies, every player’s utility is explicitly listed.

The problem of computing Nash equilibria of a normal-form game has received
a large amount of attention in recent years. Finding a Nash equilibrium is PPAD-
complete [6,1]. Finding an optimal equilibrium (for just about any reasonable defini-
tion of “optimal”—for instance, maximizing the sum of the players’ utilities) is NP-
hard [7,3]; moreover, it is not even possible to find an equilibrium that is approximately
optimal in polynomial time, unless P=NP [3]. This holds even for two-player games.
However, Nash equilibrium is not always the right solution concept. In some settings,
one player can credibly commit to a strategy, and communicate this to the other player,
before the other player can make a decision. To see how this can affect the outcome of
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L R

U (2,1) (4,0)
D (1,0) (3,1)

Fig. 1. A sample game and its extensive form representation

a game, consider the following simple normal-form game (which has previously been
used as an example for this, e.g., [2]):

For the case where the players move simultaneously (no ability to commit), the
unique Nash equilibrium is (U, L): U strictly dominates D, so that the game is solvable
by iterated strict dominance. So, player 1 (the row player) receives utility 2. However,
now suppose that player 1 has the ability to commit. Then, she is better off committing
to play D, which will incentivize player 2 to play R, resulting in a utility of 3 for player
1. The situation gets even better for player 1 if she can commit to a mixed strategy: in
this case, she can commit to the mixed strategy (.5− ε, .5 + ε), which still incentivizes
player 2 to play R, but now player 1 receives an expected utility of 3.5 − ε. To ensure
the existence of optimal strategies, we assume (as is commonly done [2,12]) that player
2 breaks ties in player 1’s favor, so that the optimal strategy for player 1 to commit to
is (.5, .5), resulting in a utility of 3.5. (Note that there is never a reason for player 2
to randomize, since he effectively faces a single-agent decision problem.) An optimal
strategy to commit to is usually called a Stackelberg strategy, after von Stackelberg,
who showed that in Cournot’s duopoly model [4], a firm that can commit to a pro-
duction quantity has a strategic advantage [15]. Throughout this paper, a Stackelberg
strategy is an optimal mixed strategy to commit to; we will only consider two-player
games. In this context, the Stackelberg leader’s expected utility is always at least the
expected utility that she would receive in any Nash (or even correlated) equilibrium
of the simultaneous-move game [16]. In contrast, committing to a pure strategy is not
always beneficial; for example, consider matching pennies.

One may argue that the normal form is not the correct representation for this game. In
game theory, the time structure of games is usually represented by the extensive form.
Indeed, the above game can be represented as the extensive-form game in Figure 1.
While this is a conceptually useful representation, from a computational perspective it is
not helpful: player 1 has an infinite number of strategies, hence (the naı̈ve representation
of) the tree has infinite size. It should be emphasized that committing to a mixed strategy
is not the same as randomizing over which pure strategy to commit to; in fact, there is
no reason to randomize over which strategy to commit to. Thus, from a computational
viewpoint, it makes more sense to operate directly on the normal form.

The problem of computing Stackelberg strategies in general normal-form (or, more
generally, Bayesian) games has only recently started to receive attention. A 2006 EC
paper by Conitzer and Sandholm [2] layed out the basic complexity results for this
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setting: Stackelberg strategies can be computed in polynomial time for two-player
general-sum normal-form games using linear programming (in contrast to the prob-
lem of finding a Nash equilibrium), but computing Stackelberg strategies is NP-hard
for two-player Bayesian games or three-player normal-form games. Undeterred by the
NP-hardness result, Paruchuri et al. [12] developed a mixed-integer program for finding
an (optimal) Stackelberg strategy in the two-player Bayesian case (the setting that we
study in this paper). They show that using this formulation is much faster than convert-
ing the game to normal form (leading to an exponential increase in size) and then using
the linear programming approach. Moreover, this algorithm forms the basis for their
deployed ARMOR system, which is used at the Los Angeles International Airport to
randomly place checkpoints on roads entering the airport, as well as to decide on canine
patrol routes [9,13]. The use of commitment in similar games dates back much further,
including, for example, applications to inspection games [10]. The formal properties of
various types of commitment are also studied in [8].

It should be noted that Stackelberg strategies are a generalization of minimax strate-
gies in two-player zero-sum games. Because computing minimax strategies is equiv-
alent to linear programming [5], this also implies that a linear programming solution
for computing Stackelberg strategies is the best that we can hope for. Of course, Nash
equilibrium is an alternative generalization of minimax strategies. Stackelberg strate-
gies have the significant advantage that they avoid the equilibrium selection problem:
there is an optimal value of the game for the leader (player 1), which in general cor-
responds to a single optimal strategy (though not in degenerate cases). The notion of
“Stackelberg strategies” has appeared in other contexts in the algorithmic game theory
literature, specifically, in the context of routing games, where a single benevolent party
controls part of the flow, and commits to routing this flow in a manner that minimizes
total latency [14]. While interesting, that paper does not seem that closely related to our
work, because in our context, the leader is a selfish player in an arbitrary game.

The rest of this paper is layed out as follows. In Section 2, we formally review the
necessary concepts, introduce our notation, and discuss existing results that are relevant.
In Section 3—the first half of our contribution—we prove several results about learning
Stackelberg strategies, in contexts where the follower payoffs and/or the distribution
over types is not known initially. In Section 4—the second half of our contribution—
we consider purely computational problems and give (in)approximability results.

2 Preliminaries

In this section, we review notation and existing results.

2.1 Notation and Definitions

We will refer to player 1 as the leader and to player 2 as the follower. Let Al be the
set of leader actions in the game (|Al| = d), and let Af be the set of follower actions
(|Af | = k). The leader’s utility is given by a function ul : Al × Af → R. When we
are studying approximability, we (wlog) require all the leader utilities to be nonnegative
(to make multiplicative approximation meaningful). In a Bayesian game, the follower
has a set of types Θ (|Θ| = τ ), which, together with the actions taken, determine his
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utility, according to a function uf : Θ × Al × Af → R. For simplicity, we will not
consider situations where the leader’s utility also depends on the follower’s type; this
restriction strengthens our hardness results. We will refer to these as Bayesian games; a
normal-form game is the special case where there is only a single type.

σ denotes a mixed strategy for the leader, and σ(al) the probability that σ places on
action al. Let BR(θ, σ) ∈ Af denote the action that the follower plays (that is, his best
response, with ties broken in favor of the leader) when his type is θ and the leader has
committed to playing σ. We note that

BR(θ, σ) ∈ arg max
af∈Af

∑
al∈Al

σ(al)uf (θ, al, af )

The BR function also captures the fact that the follower breaks ties in the leader’s favor.
Given the follower type θ, the leader’s expected utility is∑

al∈Al

σ(al)ul(al, BR(θ, σ))

Given a prior probability distribution P : Θ → [0, 1] over follower types, the leader’s
expected utility for committing to σ is∑

θ∈Θ

P (θ)
∑

al∈Al

σ(al)ul(al, BR(θ, σ))

When we take a worst-case perspective, we will be interested in a setting with types but
without a prior distribution over them (also known as a pre-Bayesian game).

2.2 Known Results and Techniques

In this subsection we review the most relevant prior work. For a normal-form game,
the optimal mixed leader strategy can be computed in polynomial time, as follows:1 for
every follower action af , the following linear program (whose variables are the σ(al))
can be used to determine the best leader strategy that makes the follower play af :

maximize
∑

al
σ(al)ul(al, af)

subject to
(∀a′

f )
∑

al
σ(al)uf (al, af ) ≥∑al

σ(al)uf (al, a
′
f )∑

al
σ(al) = 1

(∀al) σ(al) ≥ 0

Some of these linear programs may be infeasible (it is impossible to make a follower
play a strictly dominated strategy), but some will be feasible; the solution of the one
with the highest objective value gives the optimal mixed strategy for the leader.

For Bayesian games (with a prior), the problem of computing the optimal mixed
leader strategy is known to be NP-hard [2]. However, this strategy can be found using a
mixed integer program [12].

1 This algorithm was presented in [2]. Some of the analysis in [16] is based on similar insights.
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2.3 Visualization

In this subsection, we show how the problems we discussed above can be visualized. Let
us consider the normal-form case. The space of possible strategies for the leader defines
a unit simplex in d − 1 dimensions, where d is the number of leader actions. For each
strategy of the leader, the follower has a best response. The space of leader strategies
for which the follower’s best response is af defines a (possibly empty) polyhedron.
Therefore, the d-simplex splits into at most k (number of follower actions) polyhedral
regions, based on the follower utility function. Each of these regions corresponds to the
feasible region of one of the linear programs, and the objective of that linear program
can be represented as an arrow in the region.

Let us consider the following small example and its visualization.

L C R
U (0,1) (1,0) (0,0)
M (4,0) (0,1) (0,0)
D (0,0) (1,0) (1,1)

Fig. 2. A small game and its visualization

Each dot in Figure 2 represents the optimal point (leader mixed strategy) within
each region (which lie on separating hyperplanes or on the boundary); the largest dot
(.5,.5,0) shows the optimal point overall.

The Bayesian case can be visualized in (at least) two different ways. A simple way is
to have a separate unit simplex for every type; this does not require a prior distribution
over types (that is, it works for pre-Bayesian games). If there is a prior distribution over
types, another way is to have a region for each element of the set of all pure strategies
for the follower, so that (aθ1

f , . . . , aθτ

f ) corresponds to the region where type θ1’s best

response is aθ1

f , type θ2’s best response is aθ2

f , etc. The arrows in this region represent
the objective, which depends on the prior. This representation does not work for pre-
Bayesian games where we take a worst-case perspective, because the optimal point may
be in the interior of a region.

3 Learning Stackelberg Strategies

If a game is repeated over time, this opens up the possibility for the leader to learn
something about the follower’s utilities or the distribution over types. To avoid the pos-
sibility that the follower tries to mislead the leader over time, we imagine that a new
follower agent is drawn in every round. Alternatively, the follower can be assumed to
behave myopically. In a round, the leader commits to a mixed strategy, and subsequently
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observes the follower’s response. The leader’s goal is to learn enough to determine the
optimal Stackelberg strategy, in as few rounds (samples) as possible.

Due to space constraint, we focus on the case with a single type: that is, in each
round, the follower has the same payoff matrix, given by uf (al, af ), initially unknown
to the leader. In each round, the leader commits to a mixed strategy σ and learns the
follower’s response. We say that the leader queries or samples the point σ on the prob-
ability simplex. The goal is to minimize the number of samples necessary to find the
optimal (Stackelberg) mixed strategy for the leader. In the full version of this paper
(Appendices B,C) we consider two other cases with more than one type, one where
the leader needs to learn the follower payoff function, and one where this function is
known, but the leader must discover the distribution over types. We make the following
assumptions:

– The follower utilities are non-degenerate; no separating hyperplanes coincide.
– We will only consider regions whose volume is at least some fraction ε > 0 of the

total volume, and try to find the optimal solution among points in these regions. (It
can be argued that solutions in smaller regions are too unstable. Alternatively, we
can simply assume that every nonempty region has at least this volume.)

– We assume that the optimal solution can be specified exactly using a limited amount
of precision quantified by L. This allows us to bound the number of iterations of
binary search needed to calculate these hyperplanes exactly, to a linear multiple
of L.

Our approach will be to learn all the regions (whose volume is at least ε of the total)—
that is, find all hyperplanes separating these regions. Once we know these, the optimal
strategy can be computed using the linear programming approach above.

A high-level outline of our algorithm SU is as follows. For each follower action
af ∈ Af , the algorithm maintains an overestimate Paf

of the region where af is a best
response. It then refines these overestimates via sampling, until they are disjoint.

SU

1. For each af ∈ Af , find a point (leader strategy) qaf
in the d-simplex to which

af is a best response (provided the corresponding region is sufficiently large).
2. Initially, each Paf

is the entire d-simplex.
3. Repeat the following until all Paf

are disjoint:
(a) Find a point p∗ in the intersection of some Pa′

f
and Pa′′

f
.

(b) Sample to obtain the optimal follower strategy at p∗; call it a∗
f .

(c) Draw a line segment between p∗ and some qaf
for af �= a∗

f , af ∈ {a′
f , a′′

f};
perform binary search on this line to find a single point on a hyperplane that
we have not yet discovered.

(d) Find a set of d linearly independent points on the hyperplane, and hence
reconstruct it.

(e) Update the Paf
to take this new hyperplane into account.

We now describe the steps of SU in detail.
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Step (1). Finding a point in each region (with at least ε of the volume) can be achieved
via random sampling, via the following lemma.

Lemma 1. It takes O(Fk log k) samples to w.h.p. (with high probability) find a single
point in each sufficiently large region, where F = 1/ε.

Proof. The probability that a randomly chosen point corresponds to follower action af

is at least ε. Therefore, for any constant integer c ≥ 1, after ((c + 1)F log k) samples,
the probability that follower action af is not hit is at most ( 1

k )c+1. By a union bound,
the probability that at least one action is not hit is at most ( 1

k )c.

Step (3 a–c). Consider two overestimates Pa′
f

and Pa′′
f

that have nonzero overlap vol-
ume. By Step (1), we may assume that we have sampled a point qa′

f
that led to a re-

sponse of a′
f (that is, qa′

f
is in the region corresponding to a′

f ), and a point qa′′
f

that led
to a response of a′′

f . Both of these overestimates are characterized by sets H ′ and H ′′

of hyperplanes that we have previously discovered. We need to discover a new hyper-
plane. It will not suffice to do binary search on the line segment between the two starting
points, as illustrated by Figure 3, which illustrates a situation where we have discovered
two of the hyperplanes of Figure 2. If we do binary search on the line segment between
the two indicated points, we cannot discover the missing hyperplane, because the top
region “gets in the way” (another action, namely C, will start being the best response).
However, if we sample from the shaded set PL ∩ PR, the result will be different from
one of the two points; then, by performing binary search on the line segment between
this point and the new point, we will find a point on a new hyperplane. The follow-
ing algorithm formalizes this idea. In it, we do not assume that the two overestimates
overlap

FIND POINT

1. Solve a linear program to find an interior point p∗ of Pa′
f
∩ Pa′′

f
given the con-

straints H ′ ∪H ′′. (If this is not feasible, return failure.)
2. Sample this point and let the follower strategy returned be a∗

f .
(a) If a∗

f = a′
f , search the line segment between p∗ and qa′′

f
for a point on a

hyperplane that has the region corresponding to a′′
f adjacent on one side, via

binary search.
(b) Otherwise, search the line segment between p∗ and qa′

f
for a point on a hyper-

plane that has the region corresponding to a′
f adjacent on one side, via binary

search.

Lemma 2. Given overestimates Pa′
f

and Pa′′
f

on the regions corresponding to a′
f and

a′′
f , and points qa′

f
and qa′′

f
in these respective regions, FIND POINT will either give a

point on a new hyperplane for one of the regions Pa′
f

or Pa′′
f

, or will return that Pa′
f

and Pa′′
f

already have zero intersection volume. This requires O(L) samples.

The detailed proof is in Appendix A of the full paper.
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Fig. 3. Finding a hyperplane

Step (3d). In this step, the input is a point p on the hyperplane that we need to recon-
struct, and the two follower actions a′

f and a′′
f that correspond to the regions separated

by this hyperplane. The following DETERMINE HYPERPLANE finds the hyperplane.

DETERMINE HYPERPLANE

1. Sample the vertices of a regular d-simplex with sides of length ε′ ) ε, centered
at p. (Draw this simplex uniformly at random among such simplices.)

2. Organize the vertices of this simplex into two sets, V ′ and V ′′ according to the
region they fall in. (Both of these sets will be nonempty.)

3. Choose d distinct pairs of points where one of the points is in V ′ and the other is
in V ′′

4. Binary-search the d line segments formed by these pairs, to find the points where
these line segments intersect the hyperplane.

Lemma 3. DETERMINE HYPERPLANE will give d linearly independent points on the
hyperplane using O(dL) samples.

Proof. First, consider the d + 1 vertices of the d-simplex centered at p. Since ε′ is
sufficiently small, all of the points fall into one of the two regions (and since the simplex
is chosen at random, there is zero probability of one of the vertices being exactly on the
hyperplane). Since the hyperplane goes through p, at least one of the vertices of the
simplex will fall into each region. As a result, there are at least d line segments between
vertices of the simplex where the two vertices of the segment produce different follower
actions. Finally, the points where the hyperplane intersects with these line segments
must be linearly independent; otherwise, the simplex would not be full-dimensional.
Furthermore, the number of samples needed to find the hyperplane-intersecting point
on a line segment via binary search is linear in L. This completes the proof.

With these tools, we can give our main result for this problem:

Theorem 1. To find, w.h.p., all the hyperplanes that separate regions, SU requires
O(Fk log k + dk2L)) samples, where F = 1/ε, ε is the smallest volume of regions
that we consider, L is the precision, and k = |Af |. Computationally, this requires the
solution of O(k2) linear programs.
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Details of the proof are in Appendix A of the full paper. Once we have generated all the
hyperplanes that separate regions, we can use the known linear programming approach
described in Subsection 2.2 to find the optimal mixed strategy to commit to.

4 Computing Stackelberg Strategies

In this section, we consider how different modeling assumptions affect the computa-
tional tractability and approximability of the Stackelberg problem with multiple
follower types. Unlike the previous section, this section does not consider learning
problems at all: it focuses strictly on the computational aspects of the optimization.
Because of this, we only consider a single-round setting in this section.

The following aspects of the model will remain the same throughout this section.

– We consider two-player, general-sum games that have more than one follower type.
– The leader’s utility does not depend directly on the follower’s type (but it does

depend on the follower’s action, which can be affected by the follower’s type).
– The follower’s utility function uf(θ, al, af ) is common knowledge.

We consider two modeling decisions. The first decision concerns whether the type space
is discrete or continuous. For the discrete case, we assume that we have a finite number
of types, which are explicitly listed. For the continuous case, we assume that the space
of possible types is defined by a lower bound and an upper bound for the follower’s
utility for each action profile (al, af ); every follower payoff matrix that is consistent
with these bounds corresponds to some type.

The second modeling decision is whether the follower type is chosen according to a
Bayesian model or an adversarial (worst-case) model. Note that the “adversary” is not
one of the players of the game, in particular, the adversary and the follower are different.

4.1 Computing Bayesian Optimal Strategies with Finitely Many Types

In this subsection we study how to compute the optimal mixed strategy when the fol-
lower’s type is drawn from a known distribution over finitely many types. We refer to
this problem as Bayesian optimization for finite types (BOFT). BOFT is defined as:

– We have a set Θ of possible follower types, |Θ| = τ .
– The follower’s utility function uf(θ, al, af ) is common knowledge.
– Both the follower’s utility function uf (θ, al, af) and the leader’s utility function

uf (θ, al, af ) are normalized to lie in [0,1] for all inputs.
– The prior over follower types P (θ) is common knowledge.
– An optimal leader strategy is one that maximizes the leader’s expected utility.

This problem was first studied in [2], where it was shown to be NP-hard. It also forms
the basis for much of the applied work on computing Stackelberg strategies [9]. How-
ever, to the best of our knowledge, the approximability of this problem has not yet been
studied. We settle the approximability precisely in this subsection.

Theorem 2. For all constant ε > 0, no polynomial-time factor-τ1−ε approximation
exists for BOFT unless NP = P, even if there are only two follower actions.
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This hardness of approximation can be shown by a reduction from MAX-
INDEPENDENT-SET. In this reduction, vertices correspond to types, and the leader
cannot incentivize two adjacent types to both play a desirable action. The full reduction
appears in Appendix D of the full paper.

Theorem 3. There is a polynomial-time factor-τ approximation algorithm for BOFT.

A simple algorithm that achieves this is the following: choose a type uniformly at ran-
dom, and solve for the optimal mixed strategy to commit to for this specific type (using
the linear programming approach). With probability 1/τ , we choose the type that is ac-
tually realized, in which case we perform at least as well as the optimal overall strategy.
Hence, this guarantees at least a τ approximation. Details and derandomization appear
in Appendix D of the full paper.

4.2 Computing Worst-Case Optimal Strategies with Finitely Many Types

A prior distribution over follower types is not always readily available. In that case, we
may wish to optimize for the worst-case type (equivalently, the worst-case distribution
over types). We note that the worst-case type depends on the mixed strategy that we
choose, so that this is not the same problem as optimizing against a single type. We
refer to this problem as worst-case optimization for finite types (WOFT):

– We have a set Θ of possible follower types, |Θ| = τ .
– The follower’s utility function uf(θ, al, af ) is common knowledge.
– An optimal leader strategy is one that maximizes the worst-case expected utility

for the leader, where the worst case is taken over follower types (but we are taking
the expectation over the mixed strategy). That is, an adversary (not equal to the
follower) chooses the follower type after the leader mixed strategy is chosen, but
before the pure-strategy realization.

It turns out that WOFT is even less approximable than BOFT.

Theorem 4. WOFT is completely inapproximable in polynomial time, unless P=NP
(that is, it is hard to distinguish between instances where the leader can get at least 1 in
the worst case, and instances where the leader can only get 0)—even if there are only
four follower actions.

This can be shown by a reduction from 3-SAT. In the resulting game, the leader can
obtain an expected utility of 1 against every type if the 3-SAT instance is satisfiable,
and otherwise will obtain utility 0 against some type. The full reduction appears in
Appendix D of the full paper.

4.3 Optimizing for the Worst Type with Ranges

So far, we have assumed that the space of possible types is represented by explicitly
listing the (finitely many) types and the corresponding utilities. However, this repre-
sentation of the uncertainty that the leader has over the follower’s preferences is not
always convenient. For example, the leader may have a rough idea of every follower
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payoff, which could be represented by a range in which that payoff must lie. This cor-
responds to a continuous type space for the follower: every setting of all the follower
payoffs within the ranges corresponds to a type.

In this subsection, we study the problem of maximizing the leader’s worst-case utility
over all types (instantiations of the follower payoffs within the ranges). Later in the
subsection, we also consider a generalization where the follower payoffs in different
entries can be linked to each other.

For example, consider the following game with ranges:

L R
U 0, [1,2] 1, 0
D 1,0 0, [1,2]

The leader is unsure about the follower’s utility for (U, L) and (D, R), each of which is
known to lie somewhere in the range [1, 2] (they can vary independently). The follower
knows his utilities. If the leader places less than 1/3 probability on U , then the follower
is guaranteed to play R; this results in a utility of at most 1/3 for the leader. If the leader
places more than 2/3 probability on U , then the follower is guaranteed to play L; this
results in a utility of at most 1/3 for the leader. If the leader places probability between
1/3 and 2/3 on U , then the follower may end up playing either L or R; by placing
probability 1/2 on U , the leader obtains an expected utility of 1/2, which is optimal.

We refer to this problem as worst-case optimization for range types (WORT):

– For every (al, af ), the leader has a range in which the follower utility might
lie, uf (al, af ) ∈ [ul

f(al, af ), uh
f (al, af )]. The leader knows her own utilities

ul(al, af).
– An optimal leader strategy is one that maximizes the worst-case expected utility for

the leader, where the worst-case values of

Theorem 5. WORT is NP-hard.

This follows from a reduction from 3-COVER, which is presented in Appendix D of
the full paper. It is an open question whether WORT can be efficiently approximated.
In Appendix E of the full paper, we define a generalization of WORT, which we prove
is inapproximable unless P = NP . This generalization allows the follower’s payoffs
to be linked across entries.

5 Conclusion

Computing optimal Stackelberg strategies in general two-player Bayesian games is a
topic that has been gaining attention in recent years, due to their application in both se-
curity and law enforcement. Earlier results consider the computation of optimal Stack-
elberg strategies, given that all the payoffs and the prior distribution over types are
known. We extended these results in two ways.

First, we considered learning optimal Stackelberg strategies. We first considered the
normal-form case where the follower payoffs are not known and showed how we can
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efficiently learn enough about the payoffs to determine the optimal strategy. We then
extended this to Bayesian games. We also considered the case where the payoffs are
known, but the distribution over types is not. We showed how we can efficiently learn
enough about the distribution to determine the optimal strategy. It must be admitted that
it is debatable whether this framework for learning is practical for current real-world se-
curity applications, since the costs incurred during the learning phase may be too high;
however, these costs may be more manageable in electronic commerce applications.

Second, we considered computing approximately optimal Stackelberg strategies. Our
results here were mostly negative: we showed that the best possible approximation ra-
tio that can be obtained in polynomial time for the standard Bayesian problem is τ ,
the number of types, unless NP = P. Optimizing for the worst type is completely inap-
proximable in polynomial time, in the sense that we cannot distinguish instances where
we can guarantee utility 1 from instances where it is impossible to guarantee positive
utility, unless P=NP. We also studied a different representation of uncertainty about the
follower’s payoffs that relies on ranges, and showed that optimizing for the worst case
is NP-hard in the basic setting, and completely inapproximable in a generalized setting
where the payoffs are linked. These negative results provide some justification for the
use of worst-case exponential-time algorithms in this context, such as those that use
mixed integer programming.

Two immediate directions for future research are: (1) investigating the approximabil-
ity of the basic ranges problem, and (2) considering the ranges problem in the Bayesian
case (rather than the worst case). There are many other directions for future research,
for example, studying the number of samples required to learn approximately optimal
strategies, investigating the case where there are more than two players, and/or comput-
ing optimal Stackelberg strategies when the normal form has exponential size, but the
game is concisely represented.
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Abstract. We study economic means to improve network performance
in the well-known game theoretic traffic model due to Wardrop. We in-
troduce two sorts of spam flow - auxiliary and adversarial flow - that
have no intrinsic value. Auxiliary/adversarial flows are a separate com-
modity with the sole objective to minimize/maximize the latency at the
induced Wardrop equilibrium of the selfish flow. By this means a sepa-
rate access to the edges is not necessary and the latency of the regulating
flow does not distort the arising latency cost. We present networks where
auxiliary flow is able to improve the network performance. However, we
show that the optimal auxiliary flow is NP-hard to compute and not ap-
proximable within a factor of less then 4

3
. The minimal amount of aux-

iliary flow needed to induce the best possible equilibrium is even hard
to approximate by any subexponential factor. These hardness results are
complemented by proving NP-hardness for the optimal adversarial flow.
All hardness results hold even for single-commodity networks.

1 Introduction

Wardrop’s traffic model is a well-studied model for routing with important ap-
plications in road traffic and computer networks. In this model, we are given a
network equipped with non-decreasing non-negative latency functions mapping
flow on the edges to latency. For each of several commodities a fixed demand
has to be routed between a source-sink pair. The cost of a flow assignment is the
weighted sum of travel times between the source and target nodes. A flow that
minimizes the total latency is called (socially) optimal. A common interpretation
of the Wardrop model is that flow is controlled by an infinite number of self-
ish users each of which carries an infinitesimal amount of flow. Each user aims
at minimizing its path latency. An allocation in which no user can improve its
situation by unilaterally deviating from its current path is called Wardrop equi-
librium. In general a Wardrop equilibrium is not socially optimal, i.e, it does not
minimize the total latency. The inefficiency of selfish flows has been extensively
studied in previous work [3, 23, 24, 26].

We study a means of reducing the inefficiency of selfish flow applicable in
scenarios with no central control. There have been several approaches to this
problem in the literature, most prominently taxing, Stackelberg routing, and
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network design, but there are some problems with these approaches in large
networks without strong centralized control. Taxing requires to collect possibly
different taxes at each edge, a process that requires an infrastructure that can
be costly or impossible to establish. In addition, a look at classical taxing pro-
cedures from a user perspective reveals that, albeit taxes improve the latency
of the networks, they do not improve the disutility of users for a large set of
networks [7]. In Stackelberg routing the idea is to put a fraction of selfish flow
under centralized control and reroute this flow such that the total latency of all
flow is optimized. Here the underlying assumption that a central control agency
can directly manipulate the selfish demand is quite strong. Finally, network
design requires to manipulate the network structure, which is clearly a strong
assumption of centralized control in a large network.

In this paper, we consider a means of control motivated by the concept of spam
in the Internet. We introduce two sorts of spam flows, which we call auxiliary
and adversarial flow. The demand value of these flows is given independently in
addition to the given selfish flow demand. Spam flow can be seen as a separate
altruistic or malicious commodity that tries to influence the routing decisions
of selfish players without directly taking control over (parts of) the players or
the network. The goal is to route the spam flow in such a way that the induced
equilibrium minimizes/maximizes the total latency of the selfish flow. The routed
packets solely alter the latency of the used edges. They have no value and are
essentially spam. Therefore we assume that the latency of spam flow does not
contribute to the social cost.

Our results. We first present networks where auxiliary flow eradicates the
inefficiency of the Wardrop equilibrium (Section 2). However, it turns out that
both the optimal auxiliary flow of given value and the minimal amount of an
optimal auxiliary flow are NP-hard to compute (Subsection 3.1 and 3.2). Further,
we prove that for auxiliary flow there is no polynomial time approximation with
a factor of less than 4

3 . The minimal amount of the optimal auxiliary flow cannot
be approximated by any subexponential factor. These results are complemented
by proving NP-hardness for adversarial flow (Subsection 3.3).

Related Work. The game theoretic traffic model considered in this paper was
introduced by Wardrop [29]. Beckmann et al. [2] observe that such an equilibrium
flow is an optimal solution to a related convex program. They give existence and
uniqueness results for traffic equilibria (see also [9] and [24]). Dafermos and
Sparrow [9] show that the equilibrium state can be computed efficiently under
some assumptions on the latency functions.

The inefficiency of Wardrop equilibria is a well-known phenomenon [20], which
is exemplified by Braess paradox [3]. Bounding the inefficiency of equilibria, how-
ever, has only recently been considered, initiated by Koutsoupias and Papadim-
itriou [18], and for the Wardrop model by Roughgarden and Tardos [24, 26].

One of the most prominent approaches to eradicate the inefficiency of Wardrop
equilibria is taxing. The effectiveness of taxes has been observed by Pigou [20]
and generalized by Beckmann et al. [2]. They show that marginal cost pricing
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completely eliminates the inefficiency of selfish routing. Major results for taxes
for heterogeneous users can be found in [8], [10], [11] and [14]. Cole et al. [7]
consider taxes that minimize the total user disutility (latency plus tax) at equi-
librium. They show that for linear latency functions marginal cost pricing does
not improve the cost of Wardrop equilibria and prove tight inapproximability
results for optimal taxes.

Korilis et al. [16] consider the problem of a Stackelberg leader, who in a
first phase can fix the routes for a certain fraction of the demand. In a second
phase, selfish users enter the system and route their own flow on top of the
leader demand. The objective of the leader is to minimize the resulting cost
of the total (both leader and selfish) flow. Roughgarden [22] shows that it is
weakly NP-hard to compute the optimal leader strategy even for parallel links
with linear latency functions. Kaporis and Spirakis [13] show that for single-
commodity networks the minimal fraction of flow needed by the leader to induce
optimal cost, can be computed in polynomial time. Sharma and Williamson [27]
compute the minimum fraction of users that must be centrally routed to improve
the quality of the resulting Wardrop equilibrium. Subsequent papers [28, 15, 4]
consider Stackelberg routing in different variants for more general networks.

Roughgarden [25] studies designing networks that exhibit good performance
when used selfishly and proves tight inapproximability results.

Other approaches for coping with selfishness are, for example, proposed by
Korilis et al. [17] who add capacity to the resources and Cocchi et al. [6] who
study the role of various pricing policies in networks with selfish users.

While the fundamental assumptions is that all agents act selfishly, large sys-
tems often display forms of altruism or spite. In these cases, some agents’ goals
is to improve or to harm the global outcome instead of optimizing their per-
sonal objective function. Babaioff et al. [1] and Roth [21] study the existence of
equilibria for these games, and quantify the impact of malicious players on the
equilibrium. Chen and Kempe [5] proved that equilibria exist for any population
of selfish, altruistic and spiteful agents.

2 Preliminaries and Initial Results

We first define the classical Wardrop model originally introduced in [29] and then
introduce our additional spam flow. We are given a directed graph G = (V, E)
with vertex set V , edge set E, a set of commodities [k] = {1, . . . , k} specified
by source-sink pairs (si, ti) ∈ V × V , and flow demands di > 0. The edges are
equipped with non-decreasing, continuous latency functions �e : R≥0 → R≥0.

Let Pi denote the available paths of commodity i, i. e., all paths connecting si

and ti, and let P =
⋃

i∈[k] Pi. A non-negative path flow vector (fP )P∈P is fea-
sible if it satisfies the flow demands

∑
P∈Pi

fP = di for all i ∈ [k]. Throughout
this paper, we will consider only feasible path flow vectors. For single com-
modity networks we drop the index i and normalize the demand to one. A
path flow vector (fP )P∈P induces an edge flow vector f = (fe)e∈E with fe =∑

i∈[k]
∑

P∈Pi:e∈P fP . The latency of an edge e ∈ E is given by �e(fe) and the la-
tency of a path P is given by the sum of the edge latencies �P (f) =

∑
e∈P �e(fe).
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The latency cost of a flow is defined as C(f) =
∑

P∈P �P (f)fP =
∑

e∈E �e(fe)fe.
A flow f of minimal latency cost is called (socially) optimal.

Additionally to the given selfish flow, we introduce two kinds of spam
flow - auxiliary and adversarial flow (δe). Let δ > 0 denote the spam flow and
its demand. The objective of the spam flow is to minimize/maximize the la-
tency cost of the induced equilibrium of the selfish flow. The routed spam has
no intrinsic value and hence does not contribute to the latency cost. Given the
routes of the spam flow and the selfish flow, the latency cost equals C(f, δ) =∑

e∈E �e(fe + δe)fe. If not specified further, we refer by flow to the selfish flow.
Finally, we call the tuple Γ = (G, (s, t), δ) an instance.

A flow vector is considered stable when no fraction of the flow can improve
its sustained cost by moving unilaterally to another path. Such a stable state is
generally known as Nash equilibrium. In our model a flow is stable if and only
if all used paths within a commodity have the same minimal latency, whereas
unused paths may have larger latency. We call such a flow Wardrop equilibrium.

Definition 1. Given an instance Γ and fixed routes for the spam δ, a feasible
flow vector f is at Wardrop equilibrium if for every commodity i ∈ [k] and paths
P1, P2 ∈ Pi with fP1 > 0 it holds that �P1(f + δ) ≤ �P2(f + δ).

Observation 1. If f is at Wardrop equilibrium then all used paths in commodity
i have equal latency Li(f, δ) and the latency cost can be expressed as C(f, δ) =∑

i∈[k] Li(f, δ) · di ([24, 29]).

Note that the spam commodity δ is not composed of stabilizing selfish users.
Instead, the aim is to allocate this flow in a coordinated way to influence the cost
of the Wardrop equilibrium. Our optimization problem is similar to Stackelberg
routing [16]. In particular, it can be formulated as a bilevel problem, where in a
first phase spam flow is allocated to the routes. In a second phase the selfish flow

s

x

x

t

x

2

1 + ε

1 + ε

εx

x

2

Fig. 1. In absence of spam flow, the selfish flow uses only the zig-zag-path at equilib-
rium. Routing spam over the dashed edges, the selfish flow splits half-half among the
bold edges and reaches the social optimum.
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stabilizes at Wardrop equilibrium depending on the allocation in the first phase.
The resulting latency of the selfish flow is to be optimized by the allocation of
spam flow in the first place.

Let us note two initial observations about auxiliary flow. Figure 1 yields our
first observation.

Observation 2. There are networks in which auxiliary flow eradicates the in-
efficiency of selfish routing.

One can easily modify the network in Figure 1, such that even an arbitrary small
amount of auxiliary flow does the job.

Observation 3. Adding auxiliary flow to selfish flow increases the path latency
in series-parallel graphs. Since the cost at equilibrium equals the path latency L,
auxiliary flow of arbitrary value does not improve the latency cost at equilibrium.

3 Computational Complexity

In this section, we discuss the computational complexity of problems related to
auxiliary and adversarial flow.

In the decision problem Optimal-Flow we are given a single-source selfish
routing instance, an amount of auxiliary flow, and a cost value C. The problem
is to decide if there is a routing of the auxiliary flow such that the latency cost
of the equilibrium is at most C.

In the decision problem Threshold-Flow we are given a single-source self-
ish routing instance and an amount of auxiliary flow δ. The problem is to decide
if there is a routing of the auxiliary flow such that the latency cost of the equi-
librium is less or equal than the latency cost of the equilibrium induce by any
auxiliary flow δ′ > δ.

In the decision problem Worst-Flow we are given a single-source selfish
routing instance, an amount of adversarial flow, and a cost value C. The problem
is to decide if there is a routing of the adversarial flow such that the latency cost
of the equilibrium is at least C.

3.1 Complexity of Optimal-Flow

Observation 2 shows that auxiliary flow can improve the cost of Wardrop equi-
libria. Here, we show that computing the optimal routing for the auxiliary flow
is NP-hard.

Theorem 1. Optimal-Flow is NP-hard.

Proof. Our proof is based on the proof given in [7] to show that taxing to min-
imize total disutility is hard. We reduce from the problem 2 Directed Dis-

joint Path (2DDP) which is known to be NP-hard [12]. An instance I =
(G, (s1, t1), (s2, t2)) is a directed graph G and two pairs of nodes (s1, t1) and
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Fig. 2. This figure outlines the construction of G′. The dashed edges are the edges of
G and the dotted edges are the edges in P . The edges are labeled with their latency
functions.

(s1, t2). An instance I belongs to 2DDP, that is I ∈ 2DDP, if and only if there
exist two node disjoint paths in G from s1 to t1 and from s2 to t2, respectively.
Without loss of generality, we assume that there exist paths from s1 to t1 and
from s2 to t2, respectively.

Given an instance I = (G, (s1, t1), (s2, t2)) with G = (V, E) and |E| = m,
we construct a single commodity selfish routing game Γ = (G′, (s, t), δ) with
auxiliary flow of δ = 3m2 that has the following properties: If and only if I ∈
2DDP, optimal auxiliary flow yields a Wardrop equilibrium with social cost of
less than C = 3

2m + 2.
We construct G′ = (V ′, E′) as follows: V ′ = V ∪ {s, t} and E′ = E ∪

{(s, s1), (s, s2), (t1, t)(t2, t)} ∪ P with P = {(s, u), (v, t) | for all (u, v) ∈ E}.
The latency function of each edge e ∈ E is �e(x) = 1

mx, for the edges e ∈
{(s, s1), (t2, t)} it is �e(x) = mx, for the edges e ∈ {(s, s2), (t1, t)} it is �e(x) =
m + 1, and for all edges e ∈ P it is �e(x) = m42. Note that in equilibrium no
selfish flow is assigned to an edge e ∈ P because latency of m42 is much larger
than the latency of any s-t-path that does not include an edge e ∈ P .

If I ∈ 2DDP, there exist two disjoint paths from s1 to t1 and from s2 to
t2, respectively, in G′. Let D ⊆ E be the set of edges of these two paths. An
auxiliary flow that assigns, for all (u, v) ∈ E \ D, flow of at least 3m to each
of the edges (s, u), (v, t) ∈ P , and (u, v) essentially forces the selfish flow to use
the two disjoint paths only. The latency for flow demand d′ on such a path is at
least md′ + m + 1 and at most md′ + m · 1

m + m + 1. Thus, in equilibrium the
maximal flow demand on each of the two paths is bounded by m+1

2m+1 . Therefore,
the latency of a path in a resulting Wardrop equilibrium is at most 3

2m + 2 and
the latency cost is at most C.

If I /∈ 2DDP, we show that there is no auxiliary flow that induces an equilib-
rium flow with social cost of less than 2m. We distinguish several cases by the
usage of the four edges incident to s and t. It suffices to show that there is an
used path with latency of at least 2m.

1. If a flow uses a path starting with (s, s2) and ending with (t1, t), this path
has latency of at least 2m + 2.
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2. If a flow uses only paths starting with (s, s1) and ending with (t2, t), it has
cost of at least 2m.

3. If a flow uses only paths starting with (s, s1) and ending with (t2, t) or (t1, t),
the latency from s1 to t must be the same on all paths. Therefore every path
has latency of at least 2m + 1.

4. If a flow uses only paths starting with (s, s1) or (s, s2) and ending with (t2, t),
the same argument holds.

5. If a flow uses at least one path starting with (s, s1) and ending with (t1, t)
and at least one path starting with (s, s2) and ending with (t2, t), there exists
a vertex v∗ that is contained in both paths. All path segments from s to v∗

and from v∗ to t must have the same latency. Thus, every path has latency
of at least 2m + 2.

Thus, the optimal auxiliary flow induces an equilibrium with social cost less or
equal C in Γ if and only if I ∈ 2DDP. ��
Note that the decision in the previous instances is whether the cost of the selfish
flow can be reduced to a cost of at most C = 3

2m + 2. If this is impossible, for
every flow the cost is at least 2m. Now suppose there is a polynomial time ap-
proximation algorithm, which computes a

( 4
3 − ε

)
-approximation for optimizing

the cost of selfish flow. Then, such an algorithm could be used to decide 2DDP

using the previously outlined set of instances. We therefore get the following
corollary. Note that a 4

3 -approximation for linear latencies is trivially obtained
by routing no auxiliary flow at all [24].

Corollary 4. For every ε > 0 it is NP-hard to approximate Optimal-Flow on
instances with linear latency functions to a factor of 4

3 − ε.

In addition, note that in the NP-hardness reduction the auxiliary flow is much
larger than the demand of selfish flow. However, we can show that the result
even holds, if the auxiliary flow is only a (polynomially small) fraction of the
selfish demand.

Theorem 2. Optimal-Flow is NP-hard and even NP-hard to approximate to
a factor of 4

3 − ε for every ε > 0 on instances with linear latency functions and

auxiliary flow δ ∈ O
(

d
poly(m)

)
.

Proof. Again, we reduce from 2DDP. Given an instance I and an ε, we con-
struct a selfish routing game Γ as described in the proof of Theorem 1. We use
k = 3m2 ·%ε−1& copies Γ1, . . . , Γk of this game to create a new game Γ ′ as follows.
We add a source vertex s∗ and a target vertex t∗. The vertex s∗ is connected to
each source vertex s′i of Γi (for all 1 ≤ i ≤ k) by an edge (s∗, si) with the latency
function �(s∗,si)(x) = 0. Likewise, there is an edge with �(t′i,t∗)(x) = 0 from each
vertex t′i to t∗. Additionally, for every i ∈ {1, . . . , k − 1}, there is an edge from
t′i to s′i+1 with �(t′i,si+1)(x) = k42. The demand of the selfish flow is d = k and
the auxiliary flow is limited to 3m2 and C = d · 3

2m + 2.
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Fig. 3. The network contains k = 3m2 · �ε−1� copies of the network G′ of the proof of
Theorem 1. Between s∗ and t∗ there is a demand of k.

If I ∈ 2DDP, there is an auxiliary flow that yields an equilibrium flow with
social costs of at most d · (3

2m + 2): We assign auxiliary flow of at most 3m2

between the vertices s′i and t′i in each copy Γi as described in the proof of
Theorem 1. We assign the same amount of flow to the edges {(s∗, s′1), (t′1, s′2), . . . ,
(t′k−1, s

′
k), (t′k, t∗)} to obtain a flow of at most 3m2 from s∗ to t∗. In the resulting

Wardrop equilibrium, there is a flow of 1 that is assigned to each copy Γi and
the edges that connect it to s∗ and t∗. Each of these flows has cost of at most
3
2m + 2. Thus the social cost sum up to at most d · (3

2m + 2).
If I /∈ 2DDP, then the latency cost of the selfish flow is more than d · 2m.

Note, that in equilibrium the selfish flow never chooses an edge that connects
two of the copies because it has latency of k42 and there is always a s∗-t∗-path
with lower latency. Therefore, there is at least one copy Γi in which flow of at
least 1 is routed from s′i to t′i. As shown in the proof of Theorem 1, the latency
of the s′i-t

′
i-paths at least 2m. Since the flow is a Wardrop equilibrium, every

path between s′j and t′j for every 1 ≤ j ≤ k has latency of at least 2m. Thus,
the latency cost sums up to more than d · 2m. ��

3.2 Complexity of Threshold-Flow

The previous result showed that it is computationally difficult to compute the
best possible auxiliary flow. In this section we show that it is even hard to
approximate the minimal amount of auxiliary flow that is needed to achieve the
best possible Wardrop equilibrium.

Note that this result strongly contrasts the corresponding result of Kaporis
and Spirakis [13] for Stackelberg routing. In Stackelberg routing the minimal
fraction of flow needed by the Stackelberg leader to induce optimal cost can be
computed in polynomial time for single commodity networks.

Theorem 3. Threshold-Flow is NP-hard.
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Fig. 4. This figure outlines the modified construction of G′ for the proof of Theorem 3

Proof. Again, we reduce from 2 Directed Disjoint Path (2DDP). Given an
instance I = (G, (s1, t1), (s2, t2)) with G = (V, E) and |E| = m, we construct a
single commodity selfish routing game whose optimal auxiliary flow has demand
of at most 3m3 if and only if I ∈ 2DDP. Construct Γ = (G′, (s, t), δ) as described
in the proof of Theorem 1 and modify it as follows. Remove the edge (t2, t) and
replace it with the following gadget. Add the vertices u and v and the edges
(t2, u), (u, v), (u, t), (t2, v), (v, t). Latency functions are �e(x) = (m

2 − 1
2m100 )x

for the edges e ∈ {(t2, u), (v, t)} and �e(x) = m
2 + 1

2m100 for the edges e ∈
{(u, t), (t2, v)} and �(u,v)(x) = 1

m100 x. We add additional edges (s, u) and (v, t)
with latency m42 and add them to the set P (cf. proof of Theorem 1).

Observe that for routing flow demand d′ ≤ 2m101+2
3m101+1 from t2 to t, it is optimal

to leave all selfish flow on the zig-zag path, which generates latency md′ and
also yields an equilibrium. Observe that the optimum assignment of selfish flow
that is achievable by (marginal cost) taxing might split the flow along all three
possible paths from t2 to t. However, the resulting latency of such a flow is
larger here, as the auxiliary flow is accounted in the latency of selfish flow. For
more flow than d′, splitting the flow and assigning d′

2 to the edges (t2, u), (t2, v),
(u, t), and (v, t), yields a better latency. This flow and its improved latency can
be achieved using a sufficiently large auxiliary flow along edge (u, v).

If I ∈ 2DDP, then optimal auxiliary flow of demand of at most 3m3 is
sufficient to obtain the best possible Wardrop equilibrium. Note that for large m
only close to 1

2 selfish flow is routed through the gadget from t2 to t. Therefore,
it is not necessary to route auxiliary flow over the edge (u, v).

If I /∈ 2DDP, then optimal auxiliary flow yields a Wardrop equilibrium in
which the whole selfish demand is routed from s via s1 and t2 to t. The optimal
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Fig. 5. This figure depicts the corresponding graph G′ for an instance G for the prob-
lem Hamilton. The dashed edges correspond to vertices in G and the dotted edges
correspond to edges in G′.

auxiliary flow must block edge (u, v). Even to motivate one selfish player to use
(u, t), it needs to route demand of more than m101

2 − 1
2 over the edge (u, v). ��

Note that one can easily replace the term m100 in the latency functions of our
gadget with any arbitrarily large constant that can be represented by a polyno-
mial number of bits in the input size. In particular, assuming that the numbers
in our instance are represented in binary coding, it can be replaced by 2m. Then,
for m ≥ 2, a 2m

6m3 -approximation algorithm of Threshold-Flow in the above
instances can decide 2DDP. Thus, we have the following corollary.

Corollary 5. For any constant ε > 0, it is NP-hard to approximate Threshold-

Flow by a factor of 2m(1−ε).

3.3 Complexity of Worst-Flow

We have seen that the optimal auxiliary flow is NP-hard to compute. We now
turn to the computational complexity of computing the optimal adversarial flow.

Theorem 4. Worst-Flow is NP-hard.

Proof. We reduce from the NP-hard problemHamilton. A graphG ∈ Hamilton

if and only if G contains a Hamiltonian path. Given a directed graph G = (V, E)
with |V | = n and |E| = m and two vertices x, y ∈ V , we construct a selfish
routing game Γ = (G′, (s, t), δ) that has the property that the cost maximizing
adversarial flow induces social cost of at least C = 1

n + δ if and only if G ∈
Hamilton. We construct G′ = (V ′, E′) as follows: For every node v in G there
is a a pair of nodes uv, wv in G′ and, additionally we have a source and a sink
node s and t. That is V = {s, t} ∪ {uv, wv | ∀v ∈ V }.

There are edges from s to all u nodes, from each node uv to wv and from all w
nodes to t. The selfish flow will use only these edges. Additionally, we have edges
(with high latency) that connect a node wv with a node uv′ if there is an edge
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from v to v′ in the graph G for v ∈ V − {x}. To summarize E′ = S′ ∪ U ′ ∪W ′

with S′ = {(uv, wv) | ∀v ∈ V }, U ′ = {(s, uv), (wv, t) | ∀v ∈ V }, and W ′ =
{wv, uv′ | ∀(v, v′) ∈ E and v′ ∈ V −{x}}. For all edges e ∈ S′ we set �e(x) = x,
for all edges e ∈ U ′ we set �e(x) = 0, and for all edges e ∈W ′ we set �e(x) = 42.
Note that the selfish flow never uses edges e ∈W ′ and therefore, assigns flow to
the n paths s, uv, wv, s (for all v ∈ V ). Without adversarial flow, the equilibrium
flow is equally distributed among these paths and the social costs are n 1

n2 = 1
n .

Assume G ∈ Hamilton and x = vi1 , . . . , vin = y is a Hamiltonian path in
G. Then it is possible to assign adversarial flow of δ to all edges e ∈ S′ by
choosing the path s, uvi1

, wvi1
, uvi2

, wvi2
, . . . , uvin

, wvin ,, t. Note, that the edges
between the w and u vertices exist by construction. Because all non constant
edges carry the maximal amount of adversarial flow and this flow maximizes the
social costs which are m( 1

n + δ) · 1
n = 1

n + δ.
Consider a graph G /∈ Hamilton. Then there is no path in G′ from s to t that

visits all vertices e ∈ U ′. Therefore, there is at least one edge with adversarial
flow less than δ. Thus, the latency cost of the equilibrium flow is strictly less
than 1

n + δ. ��

4 Conclusions

We have initiated the study of spam flow in non-atomic routing games. We
considered the computational complexity of several problems related to auxil-
iary and adversarial flow. Both, Optimal-Flow and Worst-Flow turned out
to be NP-hard. Moreover, Optimal-Flow and Threshold-Flow are hard to
approximate, which strongly contrasts the results for the analogous problem of
the “Price of Optimum” in Stackelberg routing [13]. Further research on algo-
rithms and corresponding complexity issues regarding spam that improves or
deteriorates latency cost may well be worthwhile.
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Abstract. In the tollbooth problem on trees, we are given a tree
T = (V, E) with n edges, and a set of m customers, each of whom is
interested in purchasing a path on the graph. Each customer has a fixed
budget, and the objective is to price the edges of T such that the total
revenue made by selling the paths to the customers that can afford them
is maximized. An important special case of this problem, known as the
highway problem, is when T is restricted to be a line. For the tollbooth
problem, we present an O(log n)-approximation, improving on the cur-
rent best O(log m)-approximation. We also study a special case of the
tollbooth problem, when all the paths that customers are interested in
purchasing go towards a fixed root of T. In this case, we present an al-
gorithm that returns a (1 − ε)-approximation, for any ε > 0, and runs
in quasi-polynomial time. On the other hand, we rule out the existence
of an FPTAS by showing that even for the line case, the problem is
strongly NP-hard. Finally, we show that in the discount model, when we
allow some items to be priced below zero to improve the overall profit,
the problem becomes even APX-hard.

1 Introduction

Consider the problem of pricing the bandwidth along the links of a network
such that the revenue obtained from customers interested in buying bandwidth
along certain paths in the network is maximized. Suppose that each customer
declares a set of paths she is interested in buying, and a maximum amount
she is is willing to pay for each path. The network service provider’s objec-
tive is to assign single prices to the links such that the total revenue from
customers who can afford to purchase their paths is maximized. Recently, nu-
merous papers have appeared on the computational complexity of such pricing
problems [1,6,5,7,8,9,10,11,12,15,13,16,17,18].

A special case of this problem, where each customer is interested in purchasing
only a single path (single-minded), and where there is no upper bound on the
number of customers purchasing each link (unlimited supply) was studied by
Guruswami et al. [16], under the name of tollbooth problem. The authors of [16]
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showed that the problem is already APX-hard when the network is restricted
to be a tree, and also presented a polynomial time algorithm for the case when
all paths start at a certain root of the tree. In [16], the authors also studied
the highway problem, a further restriction where the tree is a path, and gave
polynomial time algorithms when either the budgets are bounded and integral,
or all paths have a bounded length.

In this paper, we continue the study of these problems. For the tollbooth
problem, a uniform pricing gives an approximation factor of O(log n + log m),
where n and m are respectively the number of edges of the tree and the number
of customers. This result applies in fact for general sets [16], and not neces-
sarily paths of a network, and even in the non single-minded case [4]. Very
recently, and more generally, Cheung and Swamy [10] gave an algorithm that,
given any LP-based α-approximation algorithm for maximizing the social wel-
fare under limited supply, returns a solution with profit within a factor of
α log umax of the maximum, where umax is the maximum supply of an item.
In particular, this gives an O(log m)-approximation for the tollbooth problem
on trees. In this paper, we give an O(log n)-approximation which is an improve-
ment over the O(log m) since n ≤ 3m can be always assumed (see Section 2).
While the problem is APX-hard even in the very simple case of a star [16],
we show that if all the paths are going towards (but not necessarily starting
at) a certain root, then a (1 − ε)-approximation can be obtained in quasi-
polynomial time. This result extends a recently developed quasi-PTAS [12] for
the highway problem, and uses essentially the same technique. However, there
is a number of technical issues that have to be resolved for this technique to
work on trees; most notably is the use of the Separator Theorem for trees,
and the modification of the price-guessing strategy to allow only for one-sided
guesses.

The existence of a quasi-PTAS for the highway problem indicates that a PTAS
or even an FPTAS is still a possibility, since the problem was only known to be
weakly NP-hard [8]. In the last section of this paper, we show that the high-
way problem is indeed strongly NP-hard and hence admits no FPTAS unless
P=NP.

Balcan et al. [3] considered a model in which some items can be priced below
zero (in the form of a discount) so that the overall profit is maximized. They
gave a 4-approximation for the uniform budgets case, and a quasi-PTAS for
a special case in which there is an optimal pricing that has only a bounded
number of negatively priced items. Here we show that the existence of a quasi-
PTAS in the general case is highly unlikely, by showing that the problem is
APX-hard.

In the next section, we give a formal definition of the problem. In Section 3, we
give an O(log n) approximation for trees and in Section 4 we give a quasi-PTAS
for the case of uncrossing paths. We describe our hardness results in Section 5.
We conclude in Section 6. Due to lack of space, most proofs have been omitted
from this extended abstract.
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2 The Tollbooth Problem on Trees

2.1 Notation

Let T = (V, E) be a tree. We assume that we are given a (multi)set of paths
I = {I1, . . . , Im}, defined on the set of edges E, where Ij = [sj , tj ] ⊆ E is the
path connecting sj and tj in T. For Ij ∈ I, we denote by B(Ij) ∈ R+ the budget
of path Ij , i.e., the maximum amount of money customer j is willing to pay
for purchasing path Ij . In the tollbooth problem, denoted henceforth by Tb, the
objective is to assign a price p(e) ∈ R+ for each edge e ∈ E, and to find a subset
J ⊆ I, so as to maximize

∑
I∈J p(I) subject to the budget constraints

p(I) ≤ B(I), for all I ∈ J , (1)

where, for I ∈ I, p(I) =
∑

e∈I p(e).
For a node w ∈ V , let I[w] ⊆ I be the set of paths that pass through w. In

section 4, we will assume that the tree is rooted at some node r ∈ V . The depth
of T, denoted d(T), is the length of the longest path from the root r to a leaf.
For a node w ∈ V , we denote by T(w), the subtree of T rooted at w (excluding
the path from the parent of w to r), and for a subtree T′ of T we denote by
V (T′), E(T′) and I(T′) the vertex set, edge set, and set of intervals contained
completely in T′, respectively.

2.2 Preliminaries

In the following sections, we denote by p∗ : E �→ R+ an optimal set of prices,
and by Opt ⊆ I the set of intervals purchased in this optimum solution. For
a subset of intervals I ′ ⊆ I, and a price function p : E �→ R+, we denote by
p(I ′) =

∑
I∈I′ p(I) the total price of intervals in I ′.

It easy to see that n ≤ 3m may be assumed without loss of generality. Indeed,
if we root the tree at some vertex r, then for every vertex v ∈ V , we may assume
that there is either an interval I ∈ I beginning at v or an interval I ∈ I that
passes through two different children of v; otherwise, every interval through v
must contain its parent u (unless v = r in which case all edges incident to r can
be contracted), and hence we can contract the edge e = {u, v} and increase by
p∗(e) the prices of each the edges {v, v′} for each child v′ of v.

Let ε > 0 be a given constant.

Proposition 1 ([12]). Let p∗ be an optimal solution for a given instance of Tb,
and ε > 0 be a given constant. Then there exists a price function p̃ : E �→ R+
for which

(i) p̃(e) ∈ {0, 1, . . . , P}, for every e ∈ E, where P = nm/ε,
(ii) p̃(I) ≤ B(I)

1+ε , for every I ∈ Opt, and
(iii) p̃(Opt) ≥ (1− 2ε)p∗(Opt).

We shall call the set of prices p̃ satisfying the conditions of Proposition 1, ε-
optimal prices.

We will make use of the following well-known separator result for trees.
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Proposition 2. Let T = (V, E) be a tree. Then there exists a node v (called
separator node) with the following property: Let s1, . . . , sr be the sizes of the
components obtained by deleting v from T, then there is a subset S ⊆ [r] def=
{1, . . . , r} such that

�n
3
� ≤
∑
i∈S

si ≤ %2n

3
&. (2)

Such a separator can be found in linear time.

This gives a recursive partitioning of T in the following standard way: Let
v0 be a separator vertex in T and T1, . . . ,Tr be the components of T − v0.
Recursively, find separator vertices v1, . . . vr in T1, . . . ,Tr. We say that node
v0 has level(v0) = 1, nodes v1, . . . , vr have level 2, and in general if node v is a
separator vertex in the subtree T′ obtained by deleting one-higher level separator
vertex v′ then level(v) = level(v′) + 1. By (2), the maximum number of levels k
in this decomposition is at most log3/2 n. We shall denote by N (T) the set of
separator nodes used in the full decomposition of T.

3 An O(log n) Approximation for the Tollbooth Problem
on Trees

In this section, we prove the following theorem.

Theorem 1. There is a deterministic O(log n)-approximation algorithm for Tb.

The proof goes along the same lines used in [2] to obtain an O(log n)-
approximation for the highway problem. The algorithm consists of 3 main steps:
Partitioning, “randomized cut”, and then dynamic programming. We can then
derandomize it to obtain a deterministic algorithm. We give the details below.

We say that the given set of paths I is rooted, if all the paths in I start at some
node r, called the root of T. We will also make use of the following theorem.

Theorem 2 ([16]). The tollbooth problem on rooted paths can be solved in poly-
nomial time using dynamic programming.

For i = 1, . . . , k, let

I(i) = {I ∈ I : i is the smallest level of a separator v ∈ N (T) contained in I}.
Then I = ∪i∈[k]I(i) and I ∩ J = ∅ for all I, J ∈ I(i) that contain distinct
separators at level i. Let (Opt, p∗) be an optimal solution. Then, p∗(Opt) =∑k

i=1 p∗(Opt ∩ I(i)). Thus if we solve k independent problems on each of the
sets I(i), i = 1, . . . , k, and take the solution with maximum revenue, we get
a solution of value at least p∗(Opt)/k. Thus it remains to show the following
result.

Theorem 3. Let v be a node of T, and suppose that all the paths in I go through
v. Then a solution (J , p) of expected value p(J ) ≥ p∗(Opt)/8 can be found in
polynomial time.
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Proof. Let v1, . . . , vr be the nodes adjacent to v. Note that each path I ∈ I can
be divided into two sub-paths starting at v; we denote them by I1 and I2. We
use the following procedure.

1. Let X ⊆ {v1, . . . , vr} be a subset obtained by picking each vi randomly and
independently with probability 1/2.

2. Let I′ = {Ij : I ∈ I, j ∈ {1, 2}, Ij contains exactly one vertex of X}.
3. Use dynamic programming (cf. Theorem 2) to get an optimal solution (J , p)

on the instance defined by I ′ and the tree T′ with root v and sub-trees rooted
at the children in X .

4. Extend p with zeros on all the other arcs not in T′, and return (J , p).

Let (Opt, p∗) be an optimal solution. We now argue that the solution re-
turned by this algorithm has expected revenue of p∗(Opt)/8. Clearly, for every
I ∈ I, either p∗(I1) ≥ p∗(I)/2 or p∗(I2) ≥ p∗(I)/2; let us call this more prof-
itable part by I∗. Then

∑
I∈Opt

p∗(I∗) ≥ p∗(Opt)/2. Let Opt
′ = {I∗ : I ∈

Opt, I contains exactly one vertex of X and this vertex lies on I∗}. Note that
with probability exactly 1/4 each I ∈ Opt has I∗ belonging to Opt

′. In
particular,

E[p∗(Opt
′)] =

∑
I∈Opt

E[p∗(I∗)] =
1
4

∑
I∈Opt

p∗(I∗) ≥ 1
8
p∗(Opt).

Since what our procedure returns is at least as profitable as this quantity, the
theorem follows. ��
The randomized algorithm above can be derandomized using the method of
pairwise independence [19,20,2].

4 Uncrossing Paths

Here we assume that the tree is rooted at some node r ∈ V , and that paths in I
have the following uncrossing property: If I = [s, t] ∈ I then t lies on the path
[s, r]. This property implies that once paths in I meet they cannot diverge.

In the course of the solution, we shall consider the following generalized version
of the problem: Given intervals as above, and also a function h : I × Rn

+ �→
R+, find J ⊆ I and a pricing p : E �→ R+, satisfying (1) and maximizing∑

I∈J h(I, p).
Given a price function p : E �→ R+ and a node w ∈ V , the accumulative

price at any node u on the path [w, r] with respect to w is defined as p([w, u]).
Obviously, this monotonically increases as u moves towards the root. In this
section we prove the following theorem.

Theorem 4. There is a quasi-polynomial time approximation scheme for the
tollbooth problem with uncrossing paths.

In the following, we fix K=%log(nP )/log(1+ ε)&, where P=nm
ε (c.f. Proposition 1).
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Definition 1. (ε-Relative pricings) Let w ∈ V be a given node of T, and 0 ≤
k ≤ K and 0 ≤ k′ ≤ 2 log3/2 n be given integers. We call any selection of k nodes
u1, . . . , uk ∈ V , k indices −∞ ≤ i1 < · · · < ik ≤ K, and k′ values p1, . . . , pk′ ∈
{0, 1, . . . , nP}, such that w, u1, u2, . . . , uk, r lie on the path [w, r] in that order, an
ε-relative pricing w.r.t. w, and denote it by (w, k, k′, u1, . . . , uk, i1, . . . , ik, p1, . . . ,
pk′).

The total number of possible ε-relative pricings with respect to a given w ∈ V
is at most

L = (d(T )K)K(nP + 1)2 log3/2 n, (3)

which is mpolylog(m) for every fixed ε > 0.

Definition 2. (Consistent pricings) Let R = (w, k, k′, u1, . . . , uk, i1, . . . , ik, p1,
. . . , pk′) be an ε-relative pricing w.r.t. node w ∈ V , L = {s1, . . . , sk′} be the set
of separators from N (T) on the path from (w, r], and p : E �→ R+ be a pricing
of E. We say that R is ε-consistent with p and L if

(C1) for j = 1, . . . , k − 1, (1 + ε)ij ≤ p([w, u]) ≤ (1 + ε)ij+1 if u lies in the
interval [uj , uj+1) (excluding uj+1),

(C2) for j = 1, . . . , k′, p([w, sj ]) = pj.

Lemma 1. Let p̃ : E �→ R+ be an ε-optimal pricing for a given instance of Tb,
w ∈ V be an arbitrary node, and L = {s1, . . . , sk′} be the set of separators in
N (T) on the path from [w, r]. Then there exists an ε-relative pricing R w.r.t. w,
that is ε-consistent with p̃ and L.

With every ε-relative pricing R, we can associate a system of linear inequalities,
denoted by S(R), on a set of E variables {p(e) : e ∈ E}, consisting of the
constraints (C1) and (C2), together with the non-negativity constraints p(e) ≥ 0.
The feasible set for this system gives the set of all possible pricings with which
R is ε-consistent. For two systems of inequalities S1, S2, we denote by S1 ∧ S2
the system obtained by combining their inequalities.

Let R = (w, k, k′, u1, . . . , uk, i1, . . . , ik, p1, . . . , pk′) be an ε-relative pricing
w.r.t. a node w ∈ V . Given an interval I ∈ I[w], we associate a value v(I, R)
to I, defined with respect to R as follows: Let j(I) be the largest index such
that uij(I) is contained in I. Then, define v(I, R) = (1 + ε)j(I). For a subset of
intervals I ′ ⊆ I, we define, as usual, v(I ′, R) =

∑
I∈I′ v(I, R). It follows that

for any ε-relative pricing R w.r.t. a node w ∈ V , any p : E �→ R+ with which R
is consistent, and any I = [s, t] ∈ I[w], we have

v(I, R) ≤ p([w, t]) ≤ (1 + ε)v(I, R). (4)

Decomposition into Two Subproblems. Let w ∈ N (T) be a separator
node. Then T can be decomposed into two subtrees TL = (VL, EL) and TR =
(VR, ER), such that the root r ∈ VR and w ∈ VL ∩ VR is the root of TL. We
define two Tb instances (TL, IL) and (TR, IR) where:

I0 = {[s, t] ∈ I[w] : s ∈ VL and t ∈ VR},
IL = {[s, t] ∈ I : s, t ∈ VL} ∪ {[s, w] : [s, t] ∈ I0},
IR = {[s, t] ∈ I : s, t ∈ VR}.



On Profit-Maximizing Pricing for the Highway and Tollbooth Problems 281

In other words, the intervals passing through w, crossing from TL to TR are trun-
cated in TL while all other intervals remain the same1. Note that from the choice
of w, we have max{|V (TL)|, |V (TR)|} ≤ 2n

3 + 1, and both instances (TL, IL)
and (TR, IR) are of the uncrossing type, with roots w and r, respectively.

The algorithm is given as Algorithm 1 below. It is initially called with an
empty S, and with h(I) = 0 for all I ∈ I. The procedure iterates over all ε-
relative pricings R, consistent with S, w.r.t. the middle edge e∗, then recurses
on the subsets of intervals to the left and right of e∗. Intervals crossing from TL

to TR will be truncated and their values will be charged to TL; hence the cor-
responding budgets are reduced, and the corresponding h-values are increased.

Algorithm 1. Tb(T, I, r, B, h,S)
Require: An uncrossing Tb instance (T = (V, E), I) with root r, budgets and values

B : I → R+ and h : I × Rn
+ → R+, and a feasible system of inequalities S

Ensure: A pricing p : E → R+ and a subset J ⊆ I
1: if |I| = 0 then
2: S ′ ←REDUCE(S , E)
3: return (p, ∅), where p is any feasible solution of S ′

4: end if
5: if d(T) = 1 then
6: for edge e of T do
7: S ′ ←REDUCE(S , {e})
8: p(e) ← argmax{∑I∈I: p′≤B(I)(h(I) + p′) : p′ satisfies S ′}
9: J (e) ← {I ∈ I : B(I) ≥ p(e)}

10: end for
11: Return ((p(e) : e ∈ E),

⋃
e∈E J (e))

12: end if
13: Let w be a separator node of T and TL,TR, I0, IL, IR be as defined above
14: for every ε-relative pricing R w.r.t. w for which S ∧ S(R) is feasible do
15: for I ∈ I0 do
16: B(I) ← B(I) − (1 + ε)v(I,R)
17: h(I) ← h(I) + v(I,R)
18: end for
19: (p1,J1) ← Tb(TL, IL, w, B, h,S)
20: (p2,J2) ← Tb(TR, IR, r, B, h,S ∧ S(R))
21: Let p be the pricing defined by p(e) = p1(e) if e ∈ EL and p(e) = p1(e) if e ∈ ER

22: J ← J1 ∪ J2

23: record (p,J )
24: end for
25: Return the recorded solution with largest p(J ) + h(J ) value

Solving the Base Case. At the lowest level of recursion (either line 3 or 8), we
have to solve a linear program defined by the system S. Note that the system may
1 Throughout, we will make the implicit assumption that each interval has an

“identity”; so, for instance, IL ∩I0 will be used to denote the set {I ∈ I0 : I = [s, t]
and [s, w] ∈ IL}.
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contain constraints on variables outside the current set of edges E of the current
tree T (resulting from previous nodes of the recursion tree). However, we can
reduce this LP to one that involves only variables in E. Indeed, any constraint
that involves a variable not in E, has the form L ≤ p([w, u]) ≤ U , where u ∈
V (T), and w �∈ V (T) is a separator node such that there is another separator
node w′ ∈ V (T) on the path from w to u. Then when w′ was considered in the
recursion, a constraint of the form p([w, w′)] = q, for some value q, was appended
to S (recall (C2) in the definition of consistent pricings). Now, we can replace
the first constraint by the equivalent constraint L−q ≤ p([w′, u]) ≤ U−q, which
only involves variables from E. This is exactly what procedure REDUCE(S, ·)
does in lines 2 and 7.

When the procedure returns, we get a pricing p : E �→ R+ and a set of
intervals J ⊆ I which can be purchased under this pricing.

Theorem 4 follows from the following two lemmas.

Lemma 2. Algorithm Tb runs in quasi-polynomial time in m, for any fixed
ε > 0.

Lemma 3. For any ε > 0, Algorithm Tb returns a pricing p and a set of
intervals J such that p(I) ≤ B(I) for all I ∈ J and p(J ) ≥ (1− 3ε)p∗(Opt).

5 Hardness of the Highway Problem

5.1 Strong NP-Hardness in the Standard Model

Recall that the highway problem is the special case of the tollbooth problem
when the underlying graph is a path. In this section, we show that the problem
is strongly NP-hard, thus ruling out the existence of an FPTAS for the problem.
Consider a MAX-2-SAT instance with n variables {x1, . . . , xn} and m clauses
{C1, . . . , Cm}. Let the variables be numbered 1, . . . , n.

Theorem 5. The highway problem is strongly NP-hard.

Proof. The proof follows by the construction of gadgets for the variables and
clauses in a given MAX-2-SAT instance. We next describe their construction.
Variable Gadget: The gadget for each variable consists of two copies of the fol-
lowing basic gadget, and a consistency gadget.
Basic Gadget: The basic gadget consists of 4 edges e1, . . . , e4, and 4 types of inter-
vals A, B, C and D. There are 4 intervals each of type A and B, labeled a1, . . . , a4,
and b1, . . . , b4 respectively. The intervals ai = bi = [ei], for i = 1, . . . , 4. The inter-
vals a1, . . . , a4 have budgets of 1, 2, 2, 1 respectively, and the intervals b1, . . . , b4
have budgets 2, 1, 1, 2 respectively. There are 2 type C intervals, c1 and c2, with
c1 = [e1, e2], and c2 = [e3, e4]. These intervals have a budget of 3. There are two
intervals of type D, d1 = d2 = [e2, e3] with d1 having a budget of 4, and d2, a
budget of 2. The basic gadget is shown in Figure 1. We can show that there are
exactly two price assignments for {e1, . . . , e4} that gives us optimum profit.
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Fig. 1. A basic gadget. The gadget consists of 4 edges, and 4 types of intervals A, B, C
and D. The interval labels are shown below each interval, and the budgets are shown
above each interval.

Lemma 4. The maximum profit that can be obtained from a basic gadget is 18,
and there are exactly two sets of prices namely (1, 2, 2, 1) and (2, 1, 1, 2) for the
edges (e1, . . . , e4) that achieve this profit.

The price assignment (1, 2, 2, 1) and (2, 1, 1, 2) to the edges e1, . . . , e4 respectively
are called TRUE and FALSE assignments respectively. The variable gadget is
constructed on 8n + 1 edges (e4n, e4n−1, . . . , e1, h, f1, . . . , f4n), where n is the
number of variables in the MAX-2-SAT instance. Each variable gadget con-
sists of two copies of the basic gadget, along with a consistency gadget. The
consistency gadget ensures that the two basic gadgets have the same price as-
signment. More formally, let (x1, . . . , xn) be an order on the variables of the
MAX-2-SAT instance. Then, the gadget for variable xi consists of two basic
gadgets, B1

i and B2
i . B1

i consists of intervals (customers) interested in the edges
e4i−3, . . . , e4i and B2

i consists of intervals interested in the edges f4i−3, . . . , f4i.
Finally, the intervals ensuring consistency of the gadget for variable xi spans
from e4i−1, . . . , f4i−3. The consistency gadget consists of a single interval that
has a budget of mn2 +6(2i−2)+6. Finally, we add a new type of interval, called
a type H interval that is interested only in the edge h, and has a budget of mn2.

Figure 2 shows the arrangement of the variable gadgets. We can show that
the consistency intervals do their job, i.e., if for a variable gadget, B1

i and B2
i

have different price assignments, we obtain a smaller profit than when they are
the same.

. .
 .

. . . . . .

h

mn2 + 12 + 6

mn2 + 6

mn2

x2 x2x1 x1

H

f8e7 e6 e5e8 e4 e3 e2 e1 f1 f2 f3 f4 f5 f6 f7

Fig. 2. The variable gadget
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Lemma 5. The maximum profit of 2mn2 + 6(2i− 2) + 6 + 36 from a variable
gadget and the interval h is achieved only when both the basic gadgets corre-
sponding to a variable are consistent, and the type H interval purchases edge h
at a price of mn2.

We will create several copies of the basic gadgets, the consistency gadgets for
each variable as well as several copies of the H interval to ensure that in an
optimum price assignment, the basic gadgets are consistent, and the reduction
goes through. But before we do this, we describe the clause gadgets.

Clause Gadgets: The clause gadget for a clause of variables xi and xj runs
between the basic gadget B1

i and B2
j . There are four types of clause gadgets

corresponding to the four types of clauses. Each clause gadget consists of one
interval. These intervals have the property that we obtain a certain revenue
from the clause interval if and only if the clause is satisfied; otherwise we obtain
nothing. (See the table in Figure 3).

Clause Interval Budget
(xi ∨ xj) [e4i−3, f4j−3] mn2 + 6(i + j − 2) + 3
(xi ∨ xj) [e4i−1, f4j−3] mn2 + 6(i + j − 2) + 6
(xi ∨ xj) [e4i−3, f4j−1] mn2 + 6(i + j − 2) + 6
(xi ∨ xj) [e4i−1, f4j−1] mn2 + 6(i + j − 2) + 9

Fig. 3. This table shows the lengths and budgets of the intervals making up a clause
gadget for the four different kinds of clauses

We say that a pricing is consistent if for every variable, the price assignment
to the two basic gadgets of the variable gadget are both TRUE or both FALSE,
and the consistency intervals spend their entire budgets.

Lemma 6. Consider a clause C consisting of variables xi and xj and a con-
sistent price assignment to the edges. Then, the intervals corresponding to C
will be able to purchase their desired edges if and only if the corresponding truth
assignment to the variables satisfies the clause C.

We now describe the final reduction. As mentioned earlier, we have to create
copies of the variable gadget, consistency gadget and the H interval for the
proof to go through. We make T copies of each basic gadget, of each consistency
gadget, and of the H interval, where any value of T , larger than m2n3 will suffice
for the proof. Observe that for a variable gadget again, the profit maximizing
prices achieve consistency of the variable gadget, and making T copies of the H
intervals ensures that the price of the edge h is set to mn2.

5.2 APX-Hardness in the Discount Model

When negative prices are allowed, the highway problem becomes APX-hard.



On Profit-Maximizing Pricing for the Highway and Tollbooth Problems 285

Theorem 6. The highway problem with negative prices is APX-hard even when
restricted to instances in which one edge is shared by all the customers.

We prove the above theorem by first showing that it is equivalent to a pricing
problem on bipartite graphs and then prove that the latter is APX-hard via
a reduction from maxcut on 3-regular graphs. The details of the proof can be
found in the extended version of this paper. This result has been independently
obtained in [18].

6 Conclusion

We presented an O(log n)-approximation algorithm for the tollbooth problem
on trees, which is better than the current upper bound for the general problem.
Improving this bound is an interesting open problem. One plausible direction
towards this is to use as a subroutine, the quasi-polynomial time algorithm for
the case of uncrossing paths. Such techniques have been used before, for example
for the multicut problem on trees [14]. However, it is unclear how a general
instance of the Tb problem can be decomposed into a set of problems of the
uncrossing type. For the highway problem, the strong NP-hardness presented
in this paper shows that the problem is almost closed, modulo improving the
running time from quasi-polynomial to polynomial. When negative prices are
allowed, somewhat surprisingly, the problem becomes harder, and even a quasi-
PTAS is unlikely to exist.

Acknowledgements. We would like to thank Naveen Garg for suggesting to
use the separator theorem in the proof of Theorem 1.
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Abstract. In game theory, a player’s action is said to be weakly domi-
nated if there exists another action that, with respect to what the other
players do, is never worse and sometimes strictly better. We investigate
the computational complexity of the process of iteratively eliminating
weakly dominated actions (IWD) in two-player constant-sum games, i.e.,
games in which the interests of both players are diametrically opposed.
It turns out that deciding whether an action is eliminable via IWD is
feasible in polynomial time whereas deciding whether a given subgame is
reachable via IWD is NP-complete. The latter result is quite surprising
as we are not aware of other natural computational problems that are
intractable in constant-sum games. Furthermore, we slightly improve a
result by Conitzer and Sandholm [6] by showing that typical problems
associated with IWD in win-lose games with at most one winner are
NP-complete.

1 Introduction

A simple and indisputable conviction in game theory is that a player need not
bother to consider an action that yields less payoff than some other action no
matter what all the other players do (see, e.g., [12]). In game-theoretic terms,
such an action is strictly dominated. Similarly, one says that an action is weakly
dominated if there exists another action that, with respect to what the other
players do, is never worse and sometimes strictly better. An action that is not
weakly dominated is also said to be admissible. When a (strictly or weakly) dom-
inated action is eliminated from a player’s consideration, it may be possible that
a previously undominated action of another player becomes dominated. Thus,
based on the mutual rational belief that (some) dominated actions will not be
played, one can define an iterative process of eliminating actions. It is well-known
that this process invariably leads to the same subgame no matter in which order
strictly dominated actions are eliminated whereas this is not the case for weak
dominance (see, e.g., [1, 20]). The dependence on the order of elimination gives
rise to some combinatorial difficulties as witnessed by the NP-completeness of
various computational problems related to iterated weak dominance [6, 8]. By
contrast, the corresponding problems for iterated strict dominance are compu-
tationally tractable. This disparity has also become apparent in the complexity
analysis of other solution concepts based on dominance [4].

M. Mavronicolas and V.G. Papadopoulou (Eds.): SAGT 2009, LNCS 5814, pp. 287–298, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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We investigate the computational complexity of iterated weak dominance
(IWD)—or iterated admissibility—in two-player constant-sum games, i.e., games
in which the interests of both players are diametrically opposed. Our analysis
is restricted to dominance by pure strategies although most of our results can
be readily applied to mixed strategies as well (see Section 6). It turns out that
deciding whether an action is eliminable via IWD is feasible in polynomial time
whereas deciding whether a given subgame is reachable via IWD is NP-complete.
The latter result is quite surprising as we are not aware of other natural com-
putational problems that are intractable in normal-form constant-sum games.1

Furthermore, we slightly improve a result by Conitzer and Sandholm [6] by show-
ing that typical problems associated with IWD in win-lose games with at most
one winner are NP-complete.

Iterated weak and strict dominance are well-established solution concepts,
which have a long history and occur in virtually every textbook on game theory.
The publication of Bernheim [2] and Pearce [17] instigated a renewed discussion
concerning their formal and intuitive connections with rationalizability and the
epistemic foundations of solution concepts [3, 18], the stability of equilibria [10],
and backward induction solutions [7, 19]. It cannot be said that iterated weak
dominance has left the arena entirely unscathed. Unlike iterated strict dom-
inance, proper epistemic foundations for iterated weak dominance are pretty
hard to come by. In particular, Samuelson [18] showed that common knowledge
of admissibility does not imply iterated weak dominance. Nevertheless, IWD has
been argued to have its place as a tool in the analysis of games (see, e.g., [14, 15],
for discussions). Our aim, however, is by no means to pass judgement on iter-
ated weak dominance as a solution concept as such. Rather, our focus is on the
computational aspects of IWD in two-player zero-sum and win-lose games with
at most one winner. As mentioned above, the fact that some of these problems
turn out to be NP-hard is interesting and surprising in its own right.

After having introduced our formal framework (Section 2), we introduce the
auxiliary concept of a regionalized game in Section 3. We prove that regionalized
games may be used as a convenient tool in the proofs of our hardness results.
In Section 4 we deal with the computational complexity of the reachability and
eliminability problems in two-player constant-sum games. Finally, we address the
same problems for win-lose games that allow at most one winner in Section 5.
Due to space restrictions, some of the proofs are omitted.

2 Preliminaries

A two-player game Γ = (A1, A2, u) is given by a finite set A1 of actions of
player 1, a finite set A2 of actions of player 2, and a utility function u : A1 ×
A2 → R × R. We also have A denote A1 ∪ A2 and write u1(a, b) = x and
u2(a, b) = y if u(a, b) = (x, y). Both players are assumed to choose one of their
1 Hard problems are known in the context of extensive constant-sum games. For in-

stance, Koller and Megiddo [11] show that finding maximin behavior strategy in
constant-sum extensive form games without perfect recall is NP-hard.
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actions simultaneously. If player 1 chooses a and player 2 chooses b, their payoffs
will be u1(a, b) and u2(a, b), respectively.

A two-player game is called constant-sum if u1(a, b) + u2(a, b) = u1(c, d) +
u2(c, d) for all a, c ∈ A1 and b, d ∈ A2. It is convenient to write down the payoffs
of a game in a matrix with rows indexed by the actions of player 1 and columns
indexed by the actions of players 2.

Consider a game and let a, b ∈ A1 be two actions of player 1. Then a is said to
weakly dominate b at c ∈ A2 if u1(a, c) > u1(b, c) and for all d ∈ A2, u1(a, d) ≥
u1(b, d). More generally, a is said to weakly dominate b if a weakly dominates b
at c for some c ∈ A2. We further say that c ∈ A2 backs the elimination of b by a
if u1(a, c) > u1(b, c), and blocks the elimination of b by a if u1(a, c) < u1(b, c).
Dominance, backing, and blocking for actions of player 2 is defined analogously.
Obviously an action is dominated by another action of the same player if some
action of the other player backs the elimination, and none of them blocks it. As
the remainder of this paper only concerns (iterated) weak dominance, we will
drop the qualification ‘weak’ and by ‘dominance’ understand weak dominance,
unless stated otherwise.

An elimination sequence of a game Γ = (A1, A2, u) is a finite sequence Σ =
(Σ1, . . . , Σk) of subsets of actions in A = A1 ∪ A2. For a game Γ = (A1, A2, u)
and an elimination sequence Σ = (Σ1, . . . , Σk) of Γ we have Γ (Σ) denote the
subgame where the actions in Σ1 ∪ · · · ∪ Σk have been removed, i.e., Γ (Σ) =
(A′

1, A
′
2, u

′) where A′
1 = A1 \ (Σ1 ∪ · · · ∪ Σk) and A′

2 = A2 \ (Σ1 ∪ · · · ∪ Σk)
and u′ is the restriction of u to A′

1 × A′
2. The validity of elimination sequences

is then defined inductively: the empty sequence ε is valid for every game and
an elimination sequence (Σ1, . . . , Σm, Σm+1) is valid in Γ if (Σ1, . . . , Σm) is
valid in Γ and every action a ∈ Σm+1 is dominated in Γ (Σ1, . . . , Σm). If in
(Σ1, . . . , Σm) for each 1 ≤ i ≤ m, Σi is a singleton, we say the elimination
sequence is simple. Simple elimination sequences we usually write as sequences
σ = (σ1, . . . , σm) of actions in A.

Let Γ be a game. Then, an action a is called eliminable by b at c in Γ if
there exists a valid elimination sequence Σ such that a is dominated by b at c
in Γ (Σ). Action a is eliminable in Γ if there are actions b and c such that a is
eliminable by b at c. A subgame Γ ′ of Γ is reachable from Γ if there exists a valid
elimination sequence Σ such that Γ (Σ) = Γ ′. Furthermore Γ is called solvable if
some game Γ ′ = (A′

1, A
′
2, u

′) with |A′
1| = |A′

2| = 1 is reachable from Γ . Finally,
we say Γ is irreducible if none of its actions is dominated.

We assume familiarity with the theory of complexity, in particular with the
complexity classes P and NP and the canonical problem 3SAT (see, e.g., [16]).

3 Regions and Regionalized Games

An essential building block of our hardness proofs are regionalized games.

Definition 1. A regionalized two-player game is a tuple (Γ, X1, X2) consisting
of a two-player game Γ = (A1, A2, u) and partitions X1 and X2 of A1 and A2,
respectively. The elements of X1 and X2 are also called regions.
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For regionalized games the concept of a valid elimination sequence is modified,
so as to allow only eliminations of actions that are dominated by other actions
in the same region.

Definition 2. A valid elimination sequence for a regionalized game (Γ, X1, X2)
is a sequence Σ = (Σ1, . . . , Σk) for Γ such that for each i with 1 ≤ i ≤ k and
each a ∈ Σi, there is some action b and some x ∈ X1 ∪ X2 such that a, b ∈ x
and b dominates a in Γ (Σ1, . . . , Σi−1).

The following lemma shows that any regionalized two-player game can be trans-
formed in polynomial time into a non-regionalized two-player game with the same
valid elimination sequences. The significance of this result is that for the com-
putational problems we consider—reachability of (irreducible) subgames, elim-
inability and solvability—we can restrict ourselves to regionalized games, which
are often more practical for and afford more insight into the constructions used
in our hardness proofs than games without regions.

Lemma 1. For each regionalized game (Γ, X1, X2) with Γ = (A1, A2, u), there
is a game Γ ′ = (A′

1, A
′
2, u

′) computable in polynomial time such that the valid
elimination sequences of Γ ′ and (Γ, X1, X2) coincide:

{Σ : Σ a valid sequence in Γ ′} = {Σ : Σ a valid sequence in (Γ, X1, X2)}.

Moreover, u′(a, b) ∈ {(0, 1), (1, 0)} for all a ∈ A′
1 \A1 and b ∈ A′

2 \A2.

4 Two-Player Constant-Sum Games

We show that subgame reachability is NP-complete even in games that only allow
the outcomes (0, 1) and (1, 0). This may be attributed to the order dependence
of IWD. In Section 4.2 we find that for two-player constant-sum games a weak
form of order independence can be salvaged, which allows us to formulate an
efficient algorithm for the eliminability problem. We first show that in the case
of two-player zero-sum games we can restrict our attention to simple elimination
sequences.

Lemma 2. Let Γ be a two-player constant-sum game and Σ = (Σ1, . . . , Σm)
a valid elimination sequence. Then, there is a simple elimination sequence σ =
(σ1, . . . , σk) with {σ1, . . . , σm} = Σ1 ∪ · · · ∪Σm that is also valid in Γ .

Since every simple elimination sequence is an elimination sequence, it follows
that a subgame of a two-player zero-sum game is reachable if and only if it
is reachable by a simple elimination sequence. Analogous statements hold for
eliminability and solvability in two-player zero-sum games.

Lemma 2 does not hold for general strategic games. In particular it fails for
games with outcomes in {(0, 0), (0, 1)(1, 0)}, as the game in Figure 1 shows.
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y y′

x (0, 0) (0, 1)

x′ (1, 0) (0, 0)

Fig. 1. Both x and y are weakly dominated in the game above. Hence, the elimination
sequence {x, y} is valid. However, neither of the simple elimination sequences (x, y)
and (y, x) is valid.

4.1 Reachability

We first show that subgame reachability in constant-sum games is intractable.

Theorem 1. Given constant-sum games Γ and Γ ′, deciding whether Γ ′ is
reachable from Γ is NP-complete, even when restricted to outcomes (0, 1) and
(1, 0) and Γ ′ is to be irreducible.

Proof. For membership in NP consider arbitrary constant-sum games Γ and Γ ′.
Given an elimination sequence σ = (σ1, . . . , σk), it can clearly be decided in
polynomial time whether σ is a valid elimination sequence for (Γ, X1, X2) such
that Γ ′ = Γ (σ).

The proof of hardness proceeds by a reduction from 3SAT . By virtue of
Lemma 1 it suffices to prove this for regionalized games. Consider an arbitrary
3CNFϕ = C1∧· · ·∧Ck, where each Ci = (λ1

i ∨λ2
i ∨λ3

i ) is a clause and each λj
i is

a literal, for 1 ≤ i ≤ k and 1 ≤ j ≤ 3. Define the regionalized game (Γϕ, X1, X2),
with Γϕ = (A1, A2, u) as follows.

A1 = {p,¬p,¬(p ∧ ¬p) : p a variable in ϕ}
∪ {Ci, (λ1

i , i), (λ
2
i , i), (λ

3
i , i) : Ci a clause in ϕ}

∪ {e}
A2 = {p,¬p : p a variable in ϕ} ∪ {a, b}
X1 = {{p,¬p,¬(p ∧ ¬p)} : p a variable in ϕ}

∪ {{Ci, (λ1
i , i), (λ

2
i , i), (λ

3
i , i)} : Ci a clause in ϕ}

∪ {{e}}
X2 = {{p,¬p : p a variable in ϕ} ∪ {a, b}} = {A2}

For each propositional variable p occurring in ϕ, the payoffs in rows p, ¬p and
¬(p∧¬p) are defined as in the following table, where q is a typical variable in ϕ
distinct from p.

p ¬p q ¬q a b

p (1, 0) (0, 1) (0, 1) (0, 1) (1, 0) (0, 1)
¬p (0, 1) (1, 0) (0, 1) (0, 1) (1, 0) (0, 1)

¬(p ∧ ¬p) (1, 0) (1, 0) (0, 1) (0, 1) (0, 1) (0, 1)
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Due to the regionalization, ¬(p∧¬p) can be eliminated only by row p or row ¬p.
Moreover, column a is the only action backing the elimination of ¬(p ∧ ¬p).
Also, at least one of the columns p and ¬p needs to be removed (by column b)
before ¬(p∧¬p) can be eliminated. Intuitively, removing column p means setting
variable p to false, removing column ¬p, setting variable p to true, thus choosing
a valuation.

Also for each i with 1 ≤ i ≤ k, the payoffs in rows Ci, (λ1
i , i), (λ2

i , i), (λ3
i , i)

depend on the literals occurring in Ci. In the table below, λj
i = ¬p, if λj

i = p,
and λj

i = p, if λj
i = ¬p. Also, we assume i �= m.

λ1
i λ1

i λ2
i λ2

i λ3
i λ3

i λj
m λj

m a b

(λ1
i , i) (1, 0) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

(λ2
i , i) (0, 1) (0, 1) (1, 0) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)

(λ3
i , i) (0, 1) (0, 1) (0, 1) (0, 1) (1, 0) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1)
Ci (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (0, 1) (1, 0) (0, 1)

Thus, the only columns backing the elimination of Ci are λ1
i , λ2

i and λ3
i .

Also notice that column a blocks the elimination of Ci. Nevertheless, as we saw
above, column a is essential to the elimination of the rows ¬(p∧¬p). Intuitively,
this signifies that a valuation needs to be chosen before any of the rows Ci is
eliminated.

Finally, let u(e, y) = (1, 0) if y �= b, and u(e, y) = (0, 1).

λ1
1 λ1

1 · · · λ3
k λ3

k a b

e (1, 0) (1, 0) · · · (1, 0) (1, 0) (1, 0) (0, 1)

Observe that row e is the only action in its region and as such cannot be elimi-
nated. Also, e backs the elimination of every column by b.

Now define (Γ ′
ϕ, X ′

1, X
′
2) with Γ ′

ϕ = (A′
1, A

′
2, u

′) such that

A′
1 = {p,¬p : p a variable in ϕ}

A′
2 = {b}.

Moreover, we have u′, X ′
1 and X ′

2 appropriately restricted to A′
1 and A′

2, i.e.,
u′ = u|A′

1×A′
2
, X ′

1 = {x ∩ A′
1 : x ∈ X1} and X ′

2 = {x ∩A′
2 : x ∈ X2}. It is easily

appreciated that in (Γ ′
ϕ, X ′

1, X
′
2) there are no actions that can be eliminated,

i.e., (Γ ′
ϕ, X ′

1, X
′
2) is irreducible.

We now prove that ϕ is satisfiable if and only if (Γ ′
ϕ, X ′

1, X
′
2) is reachable from

(Γϕ, X1, X2).
Assume that ϕ is satisfiable and let v be a valuation satisfying ϕ. Now

let b eliminate all columns representing a literal λ that is set to false by v.
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Subsequently, being backed by column a, for each variable p, row p or row ¬p,
as the case may be, eliminates row ¬(p ∧ ¬p). Next, a itself is eliminated by b,
removing the blocks at a on Ci for each i with 1 ≤ i ≤ k. Having assumed ϕ to
be satisfiable, for each clause Ci there still is a column λj

i present. Backed by
this column, row Ci can now be eliminated by row (λj

i , i). All rows ¬(p ∧ ¬p)
for a variable p and Ci for 1 ≤ i ≤ k being removed, column b eliminates all
remaining columns, thus reaching subgame (Γ ′

ϕ, X ′
1, X

′
2).

For the opposite direction assume that (Γ ′
ϕ, X ′

1, X
′
2) is reachable from

(Γ, X1, X2) and let σ be the witnessing elimination sequence. Now observe that
for each variable p occurring in ϕ row ¬(p∧¬p) is eliminated. Recall that this is
only possible when at least one of the columns p and ¬p is eliminated first and
when column a is still present to back the elimination. Also, for each 1 ≤ i ≤ k
row Ci is eliminated in σ. This elimination, however, is only possible by some
row (λj

i , i) backed by column λj
i , and only when column a is no longer there to

block it. Now define a valuation v∗ such that v∗ satisfies all literals λj
i repre-

sented by columns that are still present at the point that column a is eliminated
in σ. It follows that v∗ is well-defined and also satisfies ϕ. ��
By definition, solvability is a special case of subgame reachability, which Theo-
rem 1 shows to be intractable in constant-sum games. For single-winner games,
i.e., constant-sum games consisting only of the outcomes (0, 1) and (1, 0), this
problem is tractable [5]. Whether solvability is tractable in general constant-sum
games, however, remains an open question.

4.2 Eliminability

The failure of IWD being order independent, can be rephrased as that, for
elimination sequences σ = (σ1, . . . , σk) and actions d, σ being valid in a
game Γ does not generally imply that σ is still valid in Γ (d) (or that
(σ1, . . . , σk−1, σk+1, . . . , σn) is, if d = σk). The problem is that there may be i
with 1 ≤ i ≤ n such that action d is the only action in Γ (σ1, . . . , σi−1) that backs
the elimination of σi. Eliminating d too early may thus render σi uneliminable.
For two-player constant-sum games, we find, however, that under particular cir-
cumstances and for a particular type of elimination sequence, which we will
call essential, one can carry out the elimination of d earlier and still be able to
eliminate all of the actions σ1, . . . , σn, provided one is prepared to postpone the
elimination of some of them. This observation forms the basis of Theorem 2,
proving that the eliminability problem for two-player constant-sum games can
be solved efficiently.

Fix a game Γ and let σ = (σ1, . . . , σn) and δ = (δ1, . . . , δn) be sequences of
actions. We say that σ is valid in Γ with respect to δ if for each i with 1 ≤ i ≤ n,
action δi dominates σi in Γ (σ1, . . . , σi−1). This implies that δi /∈ {σ1, . . . , σi}.
Given σ and δ we also define for each i with 1 ≤ i ≤ k,

Bi(δ, σ) = {(δj , σj) : σi blocks the elimination of σj by δj in Γ}.
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Observe that j > i for all (δj , σj) ∈ Bi(δ, σ), if σ is valid in Γ with respect
to δ. Also, if Bi(δ, σ) = ∅ for some i with 1 ≤ i ≤ n the elimination se-
quence (σ1, . . . , σi−1, σi+1, . . . , σn) is also valid in Γ . We say that σ is essential if
Bi(δ, σ) �= ∅ for all i with 1 ≤ i < n. An action σi is said to an obstacle in σ with
respect to δ if δi does dominate σi in Γ (σ1, . . . , σi−1). The set of obstacles of σ
with respect to δ we denote by O(δ, σ). Finally, for σ = (σ1, . . . , σn) a sequence
of actions and 1 ≤ i < j ≤ n, we write

σi→j = (σ1, . . . , σi−1, σi+1, . . . , σj , σi, σj+1, . . . , σn).

Thus, σi→j is exactly like σ with the only difference that σi moved to the position
directly behind σj . We now have the following useful lemma, which specifies
sufficient conditions under which the elimination of an action can be delayed
without producing new obstacles apart from the action itself.

Lemma 3. Let σ = (σ1, . . . , σn) and δ = (δ1, . . . , δn) be sequences of actions of
a game Γ = (A1, A2, u). Fix an i with 1 ≤ i ≤ n and let m be the smallest index k
with i < k ≤ n such that (δk, σk) ∈ Bi(δ, σ). Then, for all j with i ≤ j < m,
O(δi→j , σi→j) ⊆ O(σ, δ) ∪ {σi}.
Proof. Consider an arbitrary σk with 1 ≤ k ≤ n and k �= i. Assume that σk

is no obstacle in σ with respect to δ, i.e., σk be dominated by δk at some ac-
tion x in Γ (σ1, . . . , σk−1). The only interesting case is i < k ≤ j, as otherwise
Γ (σ1, . . . , σk−1) = Γ (σi→j

1 , . . . , σi→j
k−1). Hence, σk = σi→j

k−1 and (δk, σk) /∈ Bi(δ, σ).
Observe that in Γ (σi→j

1 , . . . , σi→j
k−1), action x still backs the elimination of σk

by δk. As (δk, σk) /∈ Bi(δ, σ), σi does not block this elimination, neither do any
other actions in Γ (σi→j

1 , . . . , σi→j
k−1). Therefore, σk is no obstacle in σi→j . ��

One corollary of Lemma 3 is that, under the conditions specified, σi→j is valid
in Γ if σ is. Furthermore, if an obstacle σi in σ is moved to a position j
where it is no longer an obstacle, and j is smaller than the smallest index with
(δk, σk) ∈ Bi(δ, σ) but greater than i, the number of obstacles strictly decreases,
i.e., |O(δi→j , σi→j)| < |O(δ, σ)|. We now have the following lemma.

Lemma 4. Let Γ = (A1, A2, u) be a constant-sum game. Let a, b and c be
distinct actions in A1 ∪A2 and σ a valid elimination sequence in Γ containing
neither a, b nor c. Then, if a is eliminable by b at c in Γ , a is still eliminable
by b at c in Γ (σ).

Proof. Let d be an action distinct from a, b and c that is dominated by some
action x in Γ . It suffices to prove the following:

If a is eliminable by b at c in Γ , then a is eliminable by b at c in Γ (d).

The lemma then follows by a straightforward induction.
Assume a is eliminable by b at c in Γ . Accordingly, there are sequences

σ = (σ1, . . . , σn) and δ = (δ1, . . . , δn) in Γ such that σ is valid with respect
to δ, c /∈ {σ1, . . . , σn}, σn = a, δn = b and a being dominated by b at c in
Γ (σ1, . . . , σn−1). Without loss of generality we may assume that σ is essential.
We also make the following observations. First, we may assume without loss of
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generality that d �= δi for all 1 ≤ i ≤ n. Let d is dominated by action x in Γ and
set for each i with 1 ≤ i ≤ n

xi =

⎧⎪⎨⎪⎩
x if i = 1,
δi−1 if xi−1 = σi−1,
xi−1 otherwise.

Then, by transitivity of dominance, for each i with 1 ≤ i ≤ n, if d dominates σi so
does xi and thus can go proxy for d. Second, σn is no obstacle in (d, σ1, . . . , σn).
To appreciate this, observe that in Γ (σ1, . . . , σn−1) there are no actions blocking
the elimination of σn = a by δn = b, so neither are there any such actions in
Γ (d, σ1, . . . , σn−1). Moreover, c still backs the elimination of σn = a by δn = b.
Hence, σn = a is dominated by δn = b at c in Γ (d, σ1, . . . , σn−1).

We consider the case in which d /∈ {σ1, . . . , σn}; apart from some tedious
details, the case in which d ∈ {σ1, . . . , σn} runs along analogous lines. We
show by induction on the number of obstacles in (d, σ1, . . . , σn) with respect
to (x, δ1, . . . , δn) that there is a sequence τ = (τ1, . . . , τn) that is valid in Γ (d)
and, moreover, is such that b dominates a at c in Γ (d, τ1, . . . , τn−1).

If (d, σ1, . . . , σn) contains no obstacles, σ is obviously valid in Γ (d) and can
be taken as a witness for τ . So assume (d, σ1, . . . , σn) contains more than one
obstacle and consider the obstacle σi with the smallest index i. Because σn is no
obstacle, σi �= σn. Consequently, σ being both valid and essential, there is some
smallest index j > i such that (δj , σj) ∈ Bi(δ, σ). Without loss of generality as-
sume that σi ∈ A1 and δj, σj ∈ A2. Then, u2(σi, δj) < u2(σi, σj) and, by Γ being
constant-sum, u1(σi, δj) > u1(σi, σj). Because δi dominates σi in Γ (σ1, . . . , σi−1)
but not in Γ (d, σ1, . . . , σi−1) and δi �= d, it follows that the only dominance of δi

over σi in Γ (σ1, . . . , σi−1) is at d. Consequently, u1(σi, x) = u1(δi, x) for all
x ∈ A2 \ {d, σ1, . . . , σn−1}. In particular, u1(σi, δj) = u1(δi, δj) and u1(σi, σj) =
u1(δi, σj). With Γ being constant-sum, it follows that u2(δi, δj) < u2(δi, σj),
i.e., δi blocks the elimination of σj by δj in Γ . Accordingly, δi is eliminated
before σj in σ, i.e., δi = σi1 for some i < i1 < j and (δj , σj) ∈ Bi1(δ, σ).
Repeating this argument, there are i = i0 < i1 < · · · < im < j such that
σik

= δik−1 , (δj , σj) ∈ Bik
(δ, σ) for 1 ≤ k ≤ m, and u2(δim , δj) ≥ u2(δim , σj).

The latter because otherwise δj would not dominate σj in Γ (σ1, . . . , σj−1). As Γ
is constant-sum, moreover, u1(δim , σj) ≥ u1(δim , δj). By transitivity of domi-
nance, then, u1(δim , δj) ≥ u1(σi, δj). The situation is depicted in Figure 2. It
follows that u1(δim , σj) > u(σi, σj). As a consequence, δim dominates σi at σj

in Γ (d, σ1, . . . , σi−1, σi+1, . . . , σim).
Now consider the elimination sequence σi→im = (σi→im

1 , . . . , σi→im
n ). Re-

call that im < j. By choice of j and Lemma 3, the sequence σi→im is
valid in Γ and (d, σi→im

1 , . . . , σi→im
n ) contains fewer obstacles with respect to

(x, δi→im
1 , . . . , δi→im

n ) than (d, σ1, . . . , σn) does with respect to (x, δ1, . . . , δn). By
virtue of the induction hypothesis, we may conclude that there is an elimination
sequence τ = (τ1, . . . , τn) that is valid in Γ (d) and is such that b dominates a
at c in Γ (d, τ1, . . . , τn−1) ��



296 F. Brandt et al.

d δj σj

δim u1(δim , δj) ≤ u1(δim , σj)≥ ≥
δim−1 = σim u1(δim−1 , δj) > u1(δim−1 , δj)≥ ≥

...
...

...
...≥ ≥

δi = σi1 u1(δi, d) u1(δi, δj) > u1(δi, σj)

> = =

σi u1(σi, d) u1(σi, δj) > u1(σi, σj)

Fig. 2. Diagram illustrating the proof of Lemma 4

Intuitively, Lemma 4 says that, if one wishes to eliminate a particular action a
by b backed by c, one can proceed greedily and eliminate any action whenever
possible. One just has to be careful not to eliminate the actions b and c before a
is eliminated. On the basis of this observation, we obtain the following result.

Theorem 2. Given a two-player constant-sum game Γ , deciding whether a par-
ticular action a is eliminable can be decided in polynomial time.

Proof. Without loss of generality we may assume that a ∈ A1. Now consider the
algorithm that performs the following steps:

1. Compose a list (b1, c1), . . . , (bk, ck) of all actions bi ∈ A1 and ci ∈ A2 such
that ci backs the elimination of a by bi.

2. For each i with 1 ≤ i ≤ k arbitrarily eliminate any actions distinct from bi

and ci until no more eliminations are possible. Let σi = (σi
1, . . . , σ

i
mi

) denote
the resulting valid elimination sequence.

3. If for some i with 1 ≤ i ≤ k, action a is eliminated in σi, i.e., a ∈
{σi

1, . . . , σ
i
mi
}, output “yes”, otherwise “no”.

Obviously, this algorithm runs in polynomial time. Moreover, soundness follows
from Lemma 4. ��

5 Win-Lose Games

Conitzer and Sandholm [6] show that subgame reachability and eliminabil-
ity are NP-complete in win-lose games, i.e., games which only allow the
outcomes (0, 0), (0, 1), (1, 0) and (1, 1). As both win-lose and constant-sum
games generalize single-winner games, it is interesting to compare their results
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with the ones for constant-sum games in the previous section. We show that
Conitzer and Sandholm’s results even hold for win-lose games with at most one
winner, i.e., for games with (0, 0), (0, 1), (1, 0) as only outcomes.

Theorem 1 established that subgame reachability is NP-complete for games
with outcomes in {(0, 1), (1, 0)}. This obviously implies that this problem is also
NP-complete when additionally allowing outcome (0, 0).

It turns out that eliminability is also NP-complete for win-lose games with at
most one winner. The proof is a reduction from 3SAT and involves a modification
of the construction used in the proof of Theorem 1.

Theorem 3. Given a game Γ with outcomes in {(0, 0), (0, 1), (1, 0)}, deciding
whether a particular action is eliminable is NP-complete.

Conitzer and Sandholm [6] reduced eliminability to solvability in win-lose games
to establish the computational intractability of the latter problem. Their con-
struction hinges on the presence of the outcome (1, 1). Our reduction for the
more restricted class of games without (1, 1) as an outcome is directly from
3SAT and exploits the internal structure of the construction used in the proof
of Theorem 3.

Theorem 4. Deciding whether a game Γ with outcomes in {(0, 0), (0, 1), (1, 0)}
is solvable is NP-complete.

6 Conclusion

We investigated the computational complexity of iterated weak dominance in
two-player constant-sum games. In particular, we showed that deciding whether
an action is eliminable is feasible in polynomial time whereas deciding whether a
given subgame is reachable is NP-complete. Furthermore, we proved that typical
problems associated with iterated dominance in win-lose games with at most one
winner are NP-complete.

Conitzer and Sandholm [6] have shown that in win-lose games an action is
dominated by a mixed strategy if and only if it is dominated by a pure strategy.
Thus, although our analysis has been restricted to dominance by pure strate-
gies, it is readily appreciated that all of our results, apart from Theorem 2,
immediately extend to dominance by mixed strategies.

A solution concept related to weak dominance is very weak dominance, which
also allows a player to eliminate one of two actions between which he is com-
pletely indifferent. Knuth et al. [9] have shown that in constant-sum games de-
ciding whether an action can be eliminated is P-complete. It is not very hard to
see that all problems considered in this paper are tractable when replacing weak
dominance with very weak dominance. In a similar spirit, Marx and Swinkels [13]
have shown that, in constant-sum games, all subgames that are reachable via iter-
ated weak dominance (subject to no more eliminations being possible) are payoff-
equivalent in the sense that they are the same up to the addition or removal of
identical actions. However, this property does not imply any of our results be-
cause it does not discriminate between actions that yield identical payoffs for some
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reachable subgame. The conceptual difference between this paper and the above
mentioned work is linked to the question whether one is interested in action pro-
files or payoff profiles as “solutions” of a game, or, more generally, whether one
champions a prescriptive or a descriptive interpretation of game theory. It may be
argued that the computational gap between both concepts is of particular interest
in this context.

Acknowledgements. This material is based on work supported by the Deutsche
Forschungsgemeinschaft under grants BR-2312/6-1 and BR 2312/3-2.
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Abstract. In voting theory, bribery is a form of manipulative behavior in which
an external actor (the briber) offers to pay the voters to change their votes in order
to get her preferred candidate elected. We investigate a model of bribery where
the price of each vote depends on the amount of change that the voter is asked to
implement. Specifically, in our model the briber can change a voter’s preference
list by paying for a sequence of swaps of consecutive candidates. Each swap may
have a different price; the price of a bribery is the sum of the prices of all swaps
that it involves. We prove complexity results for this model, which we call swap
bribery, for a broad class of voting rules, including variants of approval and k-
approval, Borda, Copeland, and maximin.

1 Introduction

There is a range of situations in social choice where an external actor may alter some of
the already submitted votes, or the votes that the voters intend to submit. For example, a
candidate can attempt to change the voters’ preferences by running a campaign, which
may be targeted at a particular group of voters. A more extreme (and illegal) version of
this strategy involves paying voters to change their votes, or bribing election officials
to get access to already submitted ballots in order to modify them. Alternatively, one
can assume that the submitted votes can be contaminated with random mistakes, and a
central authority should be allowed to correct the votes (preferably, by changing them
as little as possible) to reveal the true winner. Indeed, this scenario is, in fact, one of the
original motivations behind Dodgson’s voting rule. (See also papers [16, 6].)

All of these activities can be interpreted as changing the voters’ preferences sub-
ject to a budget constraint, and can therefore be studied using the notion of bribery in
elections introduced by Faliszewski, Hemaspaandra, and Hemaspaandra [10]. In their
model of bribery, we are given an election (i.e., a set of candidates and a list of votes),
a preferred candidate p, a price of each vote, and a budget B. We ask if there is a way
to pick a group of voters whose total price is at most B so that via changing their votes
we can make p a winner.

In the model of Faliszewski, Hemaspaandra, and Hemaspaandra [10] each voter may
have a different price, but this price is fixed and does not depend on the nature of the
requested change: upon paying a voter, the briber can modify her vote in any way.
While there are natural scenarios captured by this model, it fails to express the fact that
voters may be more willing to make a small change to their vote (e.g., swap their 2nd
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and 3rd most favorite candidates) than to change it completely. To account for such
settings, Faliszewski [9] proposed a new notion of bribery, which he called nonuniform
bribery. Under nonuniform bribery, a voter’s price may depend on the nature of changes
she is asked to implement. A similar notion called microbribery was considered in [11].
However, none of these papers considers the standard model of elections, in which votes
are preference orders over the set of candidates. Specifically, Faliszewski [9] focused
on the so-called utility-based voting, while Faliszewski et al. [11] used the irrational
voter model, in which voters’ preferences may contain cycles.

The goal of this paper is to study a notion of nonuniform bribery that can be used
within the standard model of elections. Our framework, which we call swap bribery,
is inspired by Dodgson voting rule (see Fellows, Rosamond, and Slinko [12] for a re-
lated discussion). We use the name “swap bribery” as it precisely captures the nature
of our framework. Specifically, in swap bribery, the briber can ask a voter to perform
a sequence of swaps; each swap changes the relative order of two candidates that are
currently adjacent in this voter’s preference list. For example, if a voter prefers a to b
and b to c (we write this as a # b # c), she can be asked to swap a and b, then a and
c, then b and c, resulting in the vote c # b # a. Each swap has an associated price, and
the total price is simply the sum of the prices of individual swaps. When preferences
are viewed as orderings, a swap of adjacent candidates is a natural “atomic” operation
on a vote. Moreover, one can transform any vote into any other vote by a sequence
of such swaps. Hence, attaching prices to such operations provides a good model for
nonuniform bribery in the standard setting.

We also study a special case of swap bribery, which we call shift bribery. Under this
model of bribery the only allowable swaps are the ones that involve the preferred can-
didate. Thus, in effect, a shift bribery amounts to asking a voter to move the preferred
candidate up by a certain number of positions in her preference order. As argued above,
bribery can be used to model a legitimate approach to influencing elections, namely,
campaigning: the “briber” simply invests money into trying to convince a particular
group of voters that one candidate is better than another. The message and costs of the
campaign can vary from one group of voters to another, which is captured by different
bribery prices. In this context, shift bribery corresponds to campaigning for the pre-
ferred candidate (as opposed to discussing relative merits of other candidates), and is
therefore particularly appealing.

After introducing our model of bribery, we proceed to study it from the algorithmic
perspective. Our goal here is threefold. First, as argued above, despite its negative con-
notations, bribery may correspond to perfectly legal and even desirable behavior, and
therefore we are interested in developing efficient algorithms that a potential “briber”
(that is, a campaign manager) can use. Second, from a more technical perspective, we
would like to pinpoint the source of computational hardness in nonuniform bribery. In-
deed, when the number of candidates is unbounded, the general bribery of Faliszewski,
Hemaspaandra, and Hemaspaandra [10] appears to be hard for all but the simplest vot-
ing rules. In contrast, there is a number of polynomial-time algorithms for nonuniform
bribery in non-standard models, such as utility-based voting or irrational voters. We
would like to know whether these easiness results are tied to the increased flexibility
of pricing in nonuniform bribery, or to the increased flexibility of the alternative voter
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models. The results of this paper, most of which are NP-completeness results, suggest
that the latter is true. We are also motivated by the “computational hardness as a bar-
rier against manipulation” line of work, pioneered by Bartholdi, Tovey, and Trick [1].
While it has since been argued that NP-hardness might not provide sufficient protection
against dishonest behavior and that more robust notions of hardness are needed (see,
e.g., [21, 13, 19, 20]), identifying settings in which bribery is NP-hard is a useful first
step towards finding a voting rule that is truly resistant to dishonest behavior.

This paper is organized as follows. After providing the necessary background in
Section 2, in Section 3 we formally define our model of bribery, and prove some general
results about swap bribery. Section 4 contains a detailed study of bribery in approval
voting. In Section 5, we consider other popular voting rules, such as Borda, Copeland,
and maximin. We conclude with several directions for further research in Section 6. We
omit most of the proofs due to space constraints; these proofs appear in the full version
of the paper [7].

2 Preliminaries

Elections. An election is a pair E = (C, V ), where C = {c1, . . . , cm} is a set of
candidates and V = (v1, . . . , vn) is a list of voters. Each voter vi is represented via
her preference order #i, which is a strict linear order over the candidates in C (in
the context of the possible-winner problem we also allow partial orders). For example,
given C = {c1, c2, c3} and V = (v1, v2), we write c2 #2 c1 #2 c3 to denote that the
second voter, v2, prefers c2 to c1 to c3. For any C′ ⊆ C, by writing C′ in a preference
order we mean listing all the elements of C′ in an arbitrary but fixed order. Similarly,←−
C′ means listing members of C′ in the reverse of this fixed order.

A voting rule E maps an election E = (C, V ) to a set W ⊆ C of winners. We assume
the nonunique-winner model: all members of E(E) are considered to be winning. All
voting rules considered in this paper are point-based: they assign, via some algorithm,
points to candidates, and declare as winners the ones with most points. For an election
E = (C, V ), we denote by scoreE(ci) the number of points that a candidate ci ∈ C
receives in E according to a given voting rule. Sometimes, to disambiguate, we will
indicate in the superscript the particular voting rule used. We will provide the definitions
of the relevant rules as we discuss them in further sections.

Manipulation, Possible Winners, and Bribery. In this paper we take manipulation to
mean unweighted constructive coalitional manipulation as defined by Conitzer, Lang,
and Sandholm [5]. That is, in E-manipulation we are given an election E = (C, V ), a
preferred candidate p, and a list of “manipulative” voters V ′, and we ask if it is possi-
ble to set the preferences of voters in V ′ so that p is an E-winner of (C, V ∪ V ′). In
the E-possible-winner problem we are given an election E = (C, V ), where the vot-
ers’ preference are (possibly) partial, i.e., are given by partial orders over C, and we
ask if it is possible to complete the votes so that a given candidate p is an E-winner of
the resulting election. It is not hard to see that E-manipulation is a special case of E-
possible-winner where some votes are completely specified and some (i.e., those of the
manipulative voters) are completely unspecified . The study of possible-winner prob-
lems was initiated by Konczak and Lang [15] and then continued by multiple other
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authors (see, e.g., Walsh’s overview paper [17] and the work of Xia and Conitzer [18]).
Finally, in E-bribery [10], we are given an election E = (C, V ), a preferred candidate
p, a list of voters’ prices and a nonnegative integer B, and we ask if it is possible to
modify votes at a total cost of at most B so that p becomes an E-winner of the resulting
election. (In [10] “bribery” refers to the case where all voters have unit prices, and the
more general setting described above is called $bribery.)

Computational Complexity. We assume familiarity with standard notions of compu-
tational complexity such as the classes P and NP, NP-completeness, and (polynomial-
time) many-one reductions. Many of our hardness proofs rely on reductions from the
NP-complete problem EXACT COVER BY 3-SETS (X3C) [14].

Definition 1 ([14]). An instance (B,S) of EXACT COVER BY 3-SETS (X3C) is given
by a ground set B = {b1, . . . , b3K}, and a family S = {S1, . . . , SM} of subsets of B,
where |Si| = 3 for each i = 1, . . . , M . It is a “yes”-instance if there is a subfamily
S′ ⊆ S, |S′| = K , such that for each bi ∈ B there is an Sj ∈ S′ such that bi ∈ Sj , and
a “no”-instance otherwise.

3 Swap Bribery

In any reasonable model of nonuniform bribery, one should be able to specify the price
for getting a given voter to submit any preference ordering (some of these orderings
may be unacceptable to the voter, in which case the corresponding price should be
set to +∞). However, in elections with m candidates, there are m! possible votes,
so listing the prices of these votes explicitly is not practical. Alternatively, one could
specify the bribery prices via an oracle, i.e., via a polynomial-time algorithm that, given
a voter i and a preference order #, outputs the price for getting i to vote according to
#. However, without any restrictions on the oracle, even finding a cheapest way to
affect a given vote will require exponentially many queries, and providing appropriate
restrictions would be challenging.

Against this background, we will now present a model of bribery that allows for easy
specification of bribery prices, and yet is expressive enough to capture many interesting
scenarios. Our model is based on the following idea. Intuitively, an atomic operation on
a given vote is a swap of two consecutive candidates. Moreover, one can transform any
vote into any other vote by a sequence of such steps. It is therefore natural to assume
that the price for such transformation is reasonably well approximated by the sum of
the prices of individual swaps. We now proceed to formalize this approach.

Let E = (C, V ) be an election, where C = {c1, . . . , cm} and V = (v1, . . . vn). A
swap-bribery price function is a mapping π : C × C → N, which for any ordered pair
of candidates (ci, cj) specifies a number π(ci, cj), Intuitively, this number is the price
of swapping ci and cj in a given voter’s preference order. More precisely, for a voter vk

with a swap-bribery price function πk, a unit swap is a triple (vk, ci, cj). A unit swap is
admissible if ci immediately precedes cj in vk’s preference order; its price is πk(ci, cj).
Executing an admissible unit swap (vk, ci, cj) means changing vk’s preference order
from . . . # ci # cj # . . . to . . . # cj # ci # . . . .
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Note that we do not allow swapping non-adjacent candidates in a single step (though,
of course, such a swap could be simulated by a sequence of swaps of adjacent candi-
dates). Indeed, such a swap would change these candidates’ order relative to all candi-
dates that appear between them in the vote.

Definition 2. For any voting rule E , an instance of E-swap-bribery is given by an
election E = (C, V ) with C = {c1, . . . , cm}, p = c1 and V = (v1, . . . , vn), a list
of voters’ swap-bribery price functions (π1, . . . , πn), and a nonnegative integer B (the
budget). We ask if there exists a sequence (s1, . . . , st) of unit swaps such that (1) when
executed in order, each unit swap is admissible at the time of its execution, (2) executing
s1, . . . , st ensures that p is a winner of the resulting E-election, and (3) the sum of the
prices of executing s1, . . . , st is at most B.

As argued above, swap bribery can be used to transform any vote into any other vote. It
is natural to ask if one can efficiently compute an optimal way of doing so. It turns out
that the answer to this question is “yes”.

Proposition 1. Given two votes v1 = ci1 #1 . . . #1 cim and v2 = cj1 #2 . . . #2 cjm ,
and a swap-bribery price function π, one can compute in polynomial time the cheapest
(with respect to π) sequence of swaps converting v1 into v2.

Proof. Set I(v1, v2) = {(ci, cj) | ci #1 cj , cj #2 ci}; we say that a pair of can-
didates (ci, cj) ∈ I(v1, v2) is inverted. Clearly, to obtain v2 from v1, it is neces-
sary to swap each inverted pair, so the total cost of an optimal bribery is at least
s =

∑
(ci,cj)∈I(v1,v2) π(ci, cj). We will now argue that one never needs to swap a

pair not in I(v1, v2), or to swap a pair in I(v1, v2) more than once; this implies that the
cost of an optimal bribery is exactly s.

Our argument is by induction on the size of I(v1, v2). If |I(v1, v2)| = 0, then v1 =
v2 and the statement is obvious. Now, suppose that the statement has been proved for
all v′1, v

′
2 with |I(v′1, v

′
2)| < k, and consider a pair (v1, v2) with |I(v1, v2)| = k. We

claim that there is a pair of candidates (ci, cj) ∈ I(v1, v2) that is adjacent in v1. Indeed,
suppose otherwise, and let (ci, cj) be a pair in I(v1, v2) that is the closest in v1. By our
assumption, there exists at least one c ∈ C such that ci #1 c #1 cj , yet (ci, c) �∈
I(v1, v2), (c, cj) �∈ I(v1, v2). Hence, we have ci #2 c, c #2 cj , so by transitivity of
#2 we conclude ci #2 cj , a contradiction with (ci, cj) ∈ I(v1, v2). Hence, I(v1, v2)
always contains an adjacent pair (ci, cj). By swapping ci and cj , we obtain a vote v′1
that satisfies |I(v′1, v2)| = k − 1. Note also that I(v′1, v2) = I(v1, v2) \ {(ci, cj)}, as
the relative order of all other candidates with respect to ci and cj did not change. We can
now apply our inductive hypothesis. Note that this argument implies a polynomial-time
algorithm for transforming v1 into v2 in s steps. ��
Proposition 1 shows how to optimally convert one vote into another using swaps. We
can also compute in polynomial time the cheapest way of transforming a collection of
votes into any other collection of votes of the same cardinality.

Proposition 2. Given a list of votes V = (v1, . . . , vn), a corresponding list of price
functions (π1, . . . , πn), and a multiset of votes V ′ = {v′1, . . . , v′n}, one can find in
polynomial time an optimal swap bribery that transforms V into V ′.
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The idea of the proof is to find a minimum-cost perfect matching between V and V ′,
where the cost of each edge (v, v′) is given by the price of transforming v into v′ via
swap bribery.

A voting rule is called anonymous if its outcome does not depend on the order of
votes in V . Typical voting rules are anonymous. For such rules, Proposition 2 suggests a
polynomial-time algorithm for finding an optimal swap bribery in the important special
case where the number of candidates is fixed.

Theorem 1. For any anonymous voting rule with a polynomial-time winner determi-
nation procedure, one can compute an optimal swap bribery in polynomial time if the
number of candidates is bounded by a constant.

The idea of the proof is to consider all possible multisets of votes that the briber might
request to obtain and apply Proposition 2 to each of them. Observe that when |C| is
constant, the number of different multisets of votes is polynomial in |V |, but the number
of different lists of votes is exponential in |V |. This is why Proposition 2 is phrased in
terms of multisets of votes rather than lists of votes.

The next result allows us to quickly derive swap-bribery hardness results from
possible-winner hardness results.

Theorem 2. For any voting rule E , E-possible-winner many-one reduces to E-swap-
bribery.

Proof. An instance of the E-possible-winner problem is a pair 〈(C, V ), p〉, where V
may contain partial orders and p ∈ C. We will now describe a polynomial-time al-
gorithm that transforms 〈(C, V ), p〉 into an instance of E-swap-bribery in which p can
become a winner via swap bribery of cost 0 if and only if the votes in V can be com-
pleted in such a way that p is a winner of the resulting election.

Our construction works as follows. First, for each (possibly) partial vote #k in V
we compute a complete vote #′

k that agrees with #k wherever #k is defined. This can
easily be done via, e.g., topological sorting. Next, for each vote#′

k we construct a price
function πk as follows. For any pair of candidates ci, cj ∈ C, we set πk(ci, cj) = 1
if ci #k cj and πk(ci, cj) = 0 otherwise. We output an instance of swap bribery with
budget 0, preferred candidate p and an election E′ which is identical to E except that
each vote #k is replaced by vote #′

k associated with price function πk.
Clearly, this reduction works in polynomial time. To prove its correctness, fix an

index k and consider a vote #′
k and an arbitrary vote #′′

k . We claim that #′
k can be

transformed into #′′
k via a swap bribery of cost 0 (with respect to πk) if and only if #′′

k

agrees with #k on all pairs of candidates comparable under #k. Indeed, as shown in
the proof of Proposition 1, the optimal swap bribery that transforms#′

k into #′′
k swaps

each pair of candidates ci, cj such that ci #′
k cj and cj #′′

k ci exactly once. Clearly,
the cost of these swaps is 0 if and only if #′′

k agrees with #k on all pairs of candidates
comparable under #k. Consequently, the votes in E can be completed so as to make p
a winner if and only if there is a swap bribery of cost 0 that makes p a winner in E′. ��
Since E-manipulation is a special case of E-possible-winner, as a corollary we immedi-
ately obtain that E-manipulation many-one reduces to E-swap-bribery.
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Shift bribery. In some settings, the briber may be unable to ask voters to make a swap
that does not involve the preferred candidate. For example, in an election campaign
investing money to support another candidate may be viewed as unethical. In such cases,
the only action available to the briber is to ask a voter to move the preferred candidate
up in her preference order. We will refer to this type of bribery as shift bribery.

Fix an election E = (C, V ) with C = {c1, . . . , cm}, p = c1, and a voter v ∈ V
with a preference order #. Suppose that p appears in the jth position in #. We say that
a mapping ρ : N → N is a shift-bribery price function for v if it satisfies (1) ρ(0) = 0;
(2) ρ(i) ≤ ρ(i′) for i < i′ < j; and (3) ρ(i) = +∞ for i ≥ j. We interpret ρ(i) as the
price of moving p up by i positions in #.

Definition 3. For any voting rule E , an instance of E-shift-bribery is given by an elec-
tion E = (C, V ) with C = {c1, . . . , cm}, p = c1 and V = (v1, . . . , vn), a list of
voters’ shift-bribery price functions (ρ1, . . . , ρn), and a nonnegative integer B (the
budget). We ask if there is a sequence (k1, . . . , kn) of nonnegative integers such that∑n

i=1 ρi(ki) ≤ B and bribing each voter vi to shift p up by ki places ensures that p is
a E-winner of the resulting election.

It is not hard to see that E-shift-bribery is a special case of E-swap-bribery.

Proposition 3. For any voting rule E , any election E = (C, V ) with C =
{c1, . . . , cm}, p = c1 and V = (v1, . . . , vn), and any list (ρ1, . . . , ρn) of shift-bribery
price functions for V , we can efficiently construct a list (π1, . . . , πn) of swap-bribery
price functions for V so that the problem of E-shift-bribery with respect to (ρ1, . . . , ρn)
is equivalent to the problem of E-swap bribery with respect to (π1, . . . , πn).

Proof. The general idea of the proof is as follows. We set the budget in the swap bribery
problem to be the same as in the input shift bribery problem. To construct a swap-
bribery price function πi for a voter vi, we renumber the candidates in C so that c1 = p
and vi’s preference order is ck #i ck−1 #i · · · #i c2 #i p #i · · · . Now set

πi(x, y) =

⎧⎪⎨⎪⎩
ρi(1) if x = p and y = c2

ρi(�− 1)− ρi(�− 2) if x = p and y = c�, � = 3, . . . , k

+∞ in all other cases.

A simple inductive proof shows that setting all πi in this way proves the theorem. ��
The analog of Theorem 2 does not seem to hold for shift bribery. Hence, unlike in the
case of swap bribery, it is of interest to explore the complexity of shift bribery even
when the corresponding possible-winner problem is known to be hard. Another natural
question in this context is whether there are voting rules for which shift bribery is strictly
easier than swap bribery. As our subsequent results show, the answer to this question is
“yes” (assuming P �= NP).

4 Case Study: Approval Voting

In this section we investigate the complexity of swap bribery in k-approval voting.
The family of k-approval voting rules (for various values of k) is a simple but inter-
esting class of voting rules, including such well-known rules as plurality and veto. In
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k-approval, a voter assigns a point to each of the top k candidates on her preference
list. Thus, 1-approval is simply the plurality rule and, for |C| = m, (m − 1)-approval
is the veto rule, where, in effect, each voter votes against her least desirable candidate.
Our first result is that swap bribery is easy for plurality and veto but hard for almost all
variants of k-approval with fixed k.

Theorem 3. Swap bribery is in P for plurality (i.e., 1-approval) and veto (i.e., (m−1)-
approval). However, for each fixed k such that k ≥ 3, swap bribery for k-approval is
NP-complete, even if all swaps have costs in the set {0, 1, 2}.
We omit the proof of this theorem due to space constraints. Note that Theorem 3 does
not say anything about the complexity of swap bribery for 2-approval. Very recently,
Betzler and Dorn [2] have shown that for 2-approval the possible winner problem is
NP-hard, and thus by Theorem 2 swap bribery for 2-approval is NP-hard as well.
In contrast to Theorem 3, shift bribery for k-approval is easy for all values of k. Thus,
shift bribery can indeed be easier than swap bribery.

Theorem 4. Shift bribery for k-approval is in P for any k < m.

The proof relies on the fact that under shift bribery, the only reasonable way to bribe a
given voter is to ask him to approve of p at the lowest possible cost.

Now, the NP-hardness proof in Theorem 3 assumes that both the number of candi-
dates and the number of voters are parts of the input (i.e., are not bounded by any fixed
constant). We have seen that the first requirement is necessary: by Theorem 1, swap
bribery becomes easy if the number of candidates is constant. It is therefore natural to
ask if the number of voters plays a similar role. It turns out that if k is bounded by a
constant, swap bribery is indeed easy for each fixed number of voters.

Theorem 5. For each fixed k, swap bribery for k-approval is in P if the number of
voters is bounded by a constant.

Proof. Consider an election E = (C, V ) with C = {c1, . . . , cm}, V = (v1, . . . , vn), a
preferred candidate p ∈ C, a budget B. and a list of price functions (π1, . . . , πn). Let
C1, . . . , CT be the list of all k-element subsets of C; note that T =

(
m
k

)
= poly(m).

For a given vote v, we can compute the cost of moving the candidates from a given k-
element subset Ct into top k positions in v. Indeed, suppose that Ct = {ci1 , . . . , cik

},
and ci1 is the first of these candidates to appear in v, ci2 is second, etc. Then this cost is
simply the cost of moving ci1 into the top position by successively swapping it with all
candidates that are above him, followed by moving ci2 into the second position, etc. To
see why this naive algorithm is optimal, note that it only swaps pairs that are inverted
in the sense of Proposition 1, i.e., ones that have to be swapped anyway.

We can now go over all lists of the form (Ci1 , . . . , Cin), ij ∈ {1, . . . , T } for j =
1, . . . , n, and for each such list compute the cost of the optimal bribery that for j =
1, . . . , n transforms the jth input vote into a vote that lists the candidates in Cij in the
top k positions. There are at most

(
m
k

)n = poly(m) such lists; we accept if at least one
of them costs at most B and bribing the voters to implement it ensures p’s victory. ��
On the other hand, when k is unbounded, swap bribery becomes difficult even if
there is just one voter. To prove this result, we reduce from the NP-complete problem
BALANCED BICLIQUE (BB) (see [14]).
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Definition 4 ([14]). An instance of BB is given by a bipartite graph G = (U, W, E),
where |U | = |W | = N and E ⊆ U × W , and a natural number K ≤ N . It is a
“yes”-instance if there are sets U ′ ⊆ U and W ′ ⊆ W such that |U ′| = |W ′| = K and
for all u ∈ U ′, w ∈ W ′ we have (u, w) ∈ E, and a “no”-instance otherwise.

Intuitively, the reason why swap bribery for k-approval is difficult for large values of k
is that it may be beneficial for the briber to move around some candidates other than p,
as this may enable him to promote p via swaps of lower cost.

Theorem 6. When k is a part of the input, swap bribery for k-approval is NP-complete
even for a single voter.

Proof. It is easy to see that our problem is in NP. We focus on the NP-hardness proof.
We give a reduction from BB (see Definition 4 above). Suppose that we are given an
instance of BB with U = {u1, . . . , uN}, W = {w1, . . . , wN}. Our election will have
2N + 1 candidates u1, . . . , uN , w1, . . . , wN , p, where p is the preferred candidate, and
a single voter v with preference ordering U # W # p. The price function is given by
π(ui, uj) = 0, π(wi, wj) = 0 for all i, j = 1, . . . , N , π(wi, p) = 1, π(ui, p) = 0 for
all i = 1, . . . , N , π(ui, wj) = 0 if (ui, wj) ∈ E and π(ui, wj) = N−K +1 otherwise.
Finally, we set k = N + 1 and B = N −K .

Suppose that we have a “yes”-instance of BB, and let (U ′, W ′) be the corresponding
witness. Then we can first reorder U and W for free so that U \U ′ # U ′, W ′ # W \W ′,
then swap U ′ and W ′ (which is free, since (U ′, W ′) is a biclique in G), and, finally,
move p past W \W ′ and U ′, paying |W \W ′| = N −K = B.

Conversely, suppose that there is a successful bribery for v. Let U ′ be the set of
candidates from U that end up below p, and let W ′ be the set of candidates from W
that end up above p after the bribery. Observe that this means that we had to swap each
pair (u, w) ∈ U ′ ×W ′, and hence (u, w) ∈ E for all (u, w) ∈ U ′ ×W ′, as otherwise
we would have exceeded our budget. We had to pay 1 for swapping p with each of the
candidates in W \ W ′, so |W \ W ′| ≤ N − K and hence W ′ ≥ K . On the other
hand, p ended up among the top N + 1 candidates, so |W ′|+ |U \U ′| ≤ N , and hence
|U ′| ≥ K . Pick U ′′ ⊆ U ′, W ′′ ⊆ W ′ so that |U ′′| = |W ′′| = K . The pair (U ′′, W ′′) is
a balanced biclique of the required size in G because we have started with a successful
bribery. ��
Bribery in SP-AV. Nonuniform bribery for approval voting has already been studied
thoroughly [10, 9]. Recently, Brams and Sanver [3] introduced a variant of approval
voting called SP-AV, whose computational study was initiated by Erdélyi, Nowak, and
Rothe [8]. In the full version of this paper [7] we discuss swap bribery for SP-AV.

5 Further Voting Rules and Shift Bribery

In this section we consider voting rules other than approval, starting with Borda. In
a Borda election with m candidates, the number of points assigned by a voter v to a
candidate c equals the number of candidates that v ranks below c. The possible winner
problem for Borda is NP-complete [18] and thus Theorem 2 implies that swap bribery
for Borda is NP-complete. Thus, we will now focus on Borda-shift bribery.
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Perhaps unsurprisingly, shift bribery for Borda turns out to be computationally hard.

Theorem 7. Shift bribery for Borda is NP-complete.

However, there exists a 2-approximation algorithm for Borda-shift bribery.

Theorem 8. There exists a polynomial time algorithm that, given an instance I =
(C, V, p, (ρ1, . . . , ρn), B) of shift bribery, outputs a sequence of shifts that makes p
a Borda winner, and whose cost is at most twice the cost of an optimal Borda-shift
bribery for I .

Proof. Fix an instance I of Borda-shift bribery. Suppose that the optimal shift bribery
in I has cost c and moves p up by k positions in total. It is easy to see that any bribery
in I that shifts p up by at least 2k positions makes p a winner. Indeed, in the optimal
solution shifting p up by k positions increases p’s score by k and decreases every other
candidate’s score by at most k. Thus, altogether the advantage that p has over any other
candidate increases by at most 2k. We obtain the same effect by shifting p up by 2k
positions.

Suppose that we know k. Then we can use dynamic programming to compute a
minimum-cost bribery that shifts p up by k positions as follows. For each i = 1, . . . , n
and k′ = 1, . . . , k, let f(i, k′) be the cost of a minimum-cost shift bribery that moves
p up by k′ positions in the preferences of the first i voters. We have f(1, k′) = ρi(k′)
for k′ ≤ m − k1, where k1 is the position of p in the first vote, and f(1, k′) = +∞
for k′ > m − k1. Further, we have f(i + 1, k′) = min{f(i, k′ − k′′) + ρi+1(k′′) |
k′′ = 1, . . . , m − ki+1}, where ki+1 is the position of p in the (i + 1)st vote. Denote
the resulting bribery by B. Obviously, the cost of B is given by f(n, k), and one can
compute B itself using standard techniques. Observe that the cost of B is at most c.

The bribery B includes some j shifts, j ≤ k, that also appear in the optimal solution.
Suppose that we know the value of j, and imagine that we first execute these j shifts.
After doing so, we get an instance I ′ that still allows the remaining k − j shifts of the
optimal solution. Thus, given I ′, one can find k − j shifts that ensure p’s victory and
so, by the observation in the previous paragraph, any 2(k − j) shifts from I ′ suffice to
make p a winner. Let I ′′ be the instance obtained after executing B. Clearly, one can
transform I ′ into I ′′ using k − j shifts. Therefore, in I ′′ any bribery that shifts p by
k− j positions makes p a winner. Thus, after executing B, we pick the cheapest bribery
B′ that shifts p up by k− j positions. These k− j shifts cost at most c, because there are
the k − j unused shifts from the optimal solution, whose cost is at most c. As a result,
we ensure p’s victory via 2k − j shifts, and pay at most 2c.

Now, the algorithm above assumes that we know k and j. When solving an arbitrary
instance, we do not know them, but we can try all combinations. ��
There is an interesting connection between shift bribery for Borda and computing the
Dodgson score of a candidate. We point the reader to the full version of this paper [7]
for a discussion comparing the algorithm described above and one of the algorithms
of [4] for the Dodgson score.

We now turn to elections defined via considering majority contests between pairs of
candidates. Specifically, we consider maximin and Copelandα, where α is a rational
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number, 0 ≤ α ≤ 1. These voting rules are formally defined as follows. Fix an election
E = (C, V ) where C = {c1, . . . cm} and V = (v1, . . . vn). and define

NE(ci, cj) = |{vk | ci #k cj}|.

Let α be a rational number such that 0 ≤ α ≤ 1. Then the Copelandα score of a
candidate ci, which we denote by scoreα

E(ci), is defined as

scoreα
E(ci) = |{cj | NE(ci, cj) > NE(cj , ci)}|+ α|{cj | NE(ci, cj) = NE(cj , ci)}|.

The maximin score of a candidate ci, which we denote by scorem
E (ci), is defined as

scorem
E (ci) = mini�=j NE(ci, cj).

Theorem 9. Shift bribery is NP-complete for maximin and, for each rational α be-
tween 0 and 1, for Copelandα.

It is interesting to compare the results of this section with those of [11], where it is
shown that for irrational voters microbribery for Copeland0 and for Copeland1 is in P.
In fact, we can show that microbribery for the case of irrational voters is in P also for
Borda and maximin (though we omit these results due to limited space and our focus
on rational voters). This is a further (meta)-argument that perhaps the main source of
hardness in many voting problems stems from having to deal with preference orders
rather than the properties of particular voting rules.

6 Conclusions

We introduced two notions of nonuniform bribery—swap bribery and shift bribery—
for the standard model of elections, and analyzed their complexity for several well-
known voting rules such as plurality, k-approval, Borda, Copeland, and maximin. It
turns out that, in sharp contrast to the easiness results for microbribery [11] and nonuni-
form bribery in utility-based systems [9], swap bribery is NP-hard for many of these
rules. This is quite surprising as our swap bribery is essentially the microbribery model
adapted to the rational-voter setting.

Our work leads to several open problems. First, it would be useful to identify natural
special cases of our setting for which one can find an optimal swap bribery in polyno-
mial time. Another way to tackle computational hardness is by constructing efficient
approximation algorithms for swap bribery and shift bribery; Theorem 8 makes the first
step in this direction. Designing approximation algorithms for shift bribery under other
voting rules as well as for swap bribery is an interesting topic for future research.
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Vittorio Bilò1, Angelo Fanelli2, Michele Flammini3, and Luca Moscardelli4

1 Dipartimento di Matematica “Ennio De Giorgi” - Università del Salento
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Abstract. We investigate the approximation ratio of the solutions
achieved after a one-round walk in linear congestion games. We con-
sider the social functions Sum, defined as the sum of the players’ costs,
and Max, defined as the maximum cost per player, as a measure of the
quality of a given solution. For the social function Sum and one-round
walks starting from the empty strategy profile, we close the gap between
the upper bound of 2 +

√
5 ≈ 4.24 given in [8] and the lower bound of 4

derived in [4] by providing a matching lower bound whose construction
and analysis require non-trivial arguments. For the social function Max,
for which, to the best of our knowledge, no results were known prior to
this work, we show an approximation ratio of Θ( 4

√
n3) (resp. Θ(n

√
n)),

where n is the number of players, for one-round walks starting from the
empty (resp. an arbitrary) strategy profile.

1 Introduction

In congestion games [19] there is a set of n players sharing a set E of resources.
Each player can choose among certain subsets of resources. The congestion of a
resource e ∈ E is defined as the number of players using e in a given strategy
profile. Each resource has an associated latency function which only depends on
its congestion. The cost of a player in a given strategy profile is then defined as the
sum of the latencies of all the resources she is using. The cases in which all latency
functions are linear (resp. exponential) in the congestion are called linear (resp.
exponential) congestion games, while those in which the strategies available to all
players are made of a single resource are called singleton congestion games.

Congestion games constitute, perhaps, the most studied class of games in
Algorithmic Game Theory for at least two reasons: first, they can model the

M. Mavronicolas and V.G. Papadopoulou (Eds.): SAGT 2009, LNCS 5814, pp. 311–322, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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non-cooperative version of several basic computational problems, such as load
balancing, network design with fair cost sharing, routing, facility location, and,
secondly, they possess several useful properties suggesting and easying the study
of different aspects of selfish and non-cooperative behavior. It is well known,
in fact, that congestion games are isomorphic to exact potential games [17],
which means that they not only always admit pure Nash equilibria, but that
any better-response dynamic always converges to one such an equilibrium inde-
pendently from the starting strategy profile (finite improvement path property).
Moreover, among these games, the subclass of linear congestion games occupies
a particular role, since, together with the exponential one, it is the only subclass
of congestion games whose weighted version still possesses the finite improve-
ment path property, see [13,14,18]. The generalization of congestion games with
weighted players, in fact, may not admit pure Nash equilibria even when the
latency functions are monotone in the congestion [15].

In non-cooperative games possessing the finite improvement path property, a
natural question is that of evaluating the worst-case number of moves needed
to reach a pure Nash equilibrium starting from a given or an arbitrary strategy
profile. Also, one may ask about the price of anarchy yielded by the subset
of pure Nash equilibria which can be reached starting from a certain strategy
profile. Pushing these issues even further, since for the majority of games an
exponential number of moves may be needed in order to reach a pure Nash
equilibrium, it becomes natural to ask whether a polynomial number of moves
suffices to reach strategy profiles whose performances are sufficiently close to
those of pure Nash equilibria. In their seminal paper, Mirrokni and Vetta [16]
introduced the notions of covering walk and k-round walk in order to model
significant sequences of best-response dynamics. A covering walk is a sequence
of best-response dynamics in which each player performs at least a move. A
one-round walk is a covering walk in which each player performs exactly a move,
while a generic k-round walk is the concatenation of k one-round walks. In such
a setting it is quite natural to assume the empty strategy profile as the most
reasonable starting point for any type of walk.

Our Contribution. In this paper we investigate the approximation ratio of the
solutions achieved after a one-round walk in linear congestion games. This study
is motivated by the fact that convergence to pure Nash equilibria in these games
may require a number of moves which can be exponential in n [1]. We consider the
social functions Sum, defined as the sum of the players’ costs, and Max, defined
as the maximum cost per player, as a measure of the quality of a given strategy
profile. For the social function Sum and one-round walks starting from the empty
strategy profile, we close the existing gap between the upper bound of 2 +

√
5 ≈

4.24 given in [8] and the lower bound of 4 derived in [4] by providing a family
of instances yielding lower bounds approaching 2 +

√
5 as the number of players

goes to infinity. The construction and the analysis of these instances require
non-trivial arguments. For the social function Max, which, to the best of our
knowledge, was not considered before in this setting, we provide asymptotically
matching upper and lower bounds which show a Θ( 4

√
n3)-approximation and a
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Θ(n
√

n)-approximation for one-round walks starting from the empty strategy
profile and an arbitrary strategy profile, respectively.

Related Works. Christodoulou and Koutsoupias showed in [7] that the price of
anarchy of pure Nash equilibria in linear congestion games is 2.5 for the social
function Sum and Θ(

√
n) for the social function Max. For the social function

Sum, Awerbuch et al. [2] gave an exact bound of 2.618 on the price of anarchy
of either pure and mixed Nash equilibria in weighted linear congestion games.
Again, for the social function Sum, the 2.5 and 2.618 bounds were extended to
correlated equilibria by Christodoulou and Koutsoupias in [6], where they also
proved that the price of stability of pure Nash equilibria lies between 1+

√
3/3 ≈

1.577 and 1.6. Caragiannis et al. [4] closed this gap by lowering the upper bound
to exactly 1 +

√
3/3.

Mirrokni and Vetta [16] initiated the study of convergence of Nash dynamics
to approximate solutions by focusing on the class of valid-utility games [21] and,
in particular, on two special subclasses: basic-utility games and market sharing
games. Such an investigation is particularly relevant for congestion games, since
Fabrikant et al. [10] have proven that determining a Nash equilibrium is a PLS-
complete problem [9], even when all the players have the same strategy set.
Ackermann et al. [1] showed that PLS-completeness carries over also to the case
of linear latency functions. As a consequence, a number of moves exponential in
the number of players may be required to reach an equilibrium.

However, for the special case of symmetric congestion games on series-parallel
networks, Fotakis at al. [13] showed that a one-round walk starting from the
empty configuration leads to a pure Nash equilibrium, while Fotakis [12] showed
that for symmetric congestion games on extension-parallel networks, a pure Nash
equilibrium is reached even when starting from an arbitrary configuration.

Christodoulou et al. [8] initiated the study of the performances of one-round
walks in linear congestion games. For the social function Sum, they proved that
the approximation ratio of the solutions achieved after a one-round walk is Θ(n)
when starting from an arbitrary strategy profile, while it is at most 2+

√
5 ≈ 4.24

when starting from the empty one. They also provided a linear congestion game
for which the approximation ratio of the solutions achieved after a k-round walk
is Ω( 2O(k)√

n/k). Such result has been improved by Fanelli et al. [11] by show-
ing a lower bound of Ω( 2k√

n/k) and an asymptotically matching upper bound,
thus proving that a Θ(log log n)-round walk is necessary and sufficient to achieve
a nearly optimal strategy profile. The importance of the results in [11] is em-
phasized by the existence of congestion games with Ω(2n)-round walks from an
arbitrary state to a Nash equilibrium and by the recent negative result by Awer-
buch et al. [3]. They construct a linear congestion game such that an Ω(

√
n

log n )-
approximate solution is achieved after a k-covering walk, where k is exponential
in the number of players and there are players performing a polynomial number
of moves in each covering walk.

Finally, results about the performances of ε-moves in congestion games can
be found in [3,5,20].
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Paper Organization. Next section contains the necessary definitions and nota-
tion. In Sections 3 and 4 we present our results for the social functions Sum and
Max, respectively. Finally, in the last section, we deal with open problems and
future research. Due to space limitations, many details have been removed and
will appear in the full version.

2 Definitions and Preliminaries

(Non-cooperative) Strategic Games. A strategic game is defined by a tuple
G = (N, (Σi)i∈N , (ci)i∈N ), where N = {1, 2, . . . , n} denotes the set of n players
(or agents), Σi a set of (pure) strategies for player i and ci : ×i∈NΣi �→ R≥0 is
the cost function for player i.

Let Σ = ×i∈NΣi be the strategy profile set or state set of the game and
S = (s1, s2, . . . , sn) ∈ Σ be a generic strategy profile or state (or solution) in
which each player i chooses strategy si ∈ Σi. ∅i corresponds to an empty (or null)
strategy for player i, and ∅ to the empty strategy profile, i.e., ∅ = (∅1, ∅2, . . . , ∅n).
Whereas we call arbitrary, any strategy profile in which every player choose a
non-null strategy. Given the strategy profile S = (s1, s2, . . . , sn) and a strategy
s′i ∈ Σi, let (S ⊕ s′i) = (s1, s2, . . . , si−1, s

′
i, si+1, . . . , sn) be the strategy profile

obtained from S if player i changes her strategy from si to s′i.
In a non-cooperative strategic game we assume that each player acts selfishly

and aims at choosing the strategy minimizing her cost, given the strategic
choices of the other players. For a strategy profile S = (s1, s2, . . . , sn), an
improving move of player i is a strategy s′i ∈ Σi such that ci(S ⊕ s′i) < ci(S).
Furthermore, a best response (move) of player i in S is a strategy s∗i ∈ Σi

yielding the minimum possible cost, given the strategic choices of the other
players, i.e., ci(S ⊕ s∗i ) ≤ ci(S ⊕ s′i) for any other strategy s′i ∈ Σi. Notice that
a best response move corresponding to the strategy currently played in S by
the involved player is not necessarily an improving move.

Best Response Nash Dynamics Graphs. The best response Nash dynamics
graph associated to a non-cooperative strategic game G is a directed graph B =
(V, A) where each vertex in V corresponds to a strategy profile and there is an
edge (S, S′) ∈ A with label i, where S′ = S ⊕ s′i and s′i ∈ Σi, if and only if both
the following conditions are met: (I) s′i is a best response move of i in S; (II) if
S �= S′, s′i is also an improvement move of i in S. Any sink in B corresponds to
a pure Nash equilibrium. Observe that B may contain cycles.

A best response walk in B is a directed walk W = (S0, S1, . . . , Sk). We denote
by πW (i) the label of the edge (Si, Si+1). S0 is said the initial state of W and
Sk its final state. In this work we consider the following type of best response
walks.
• One-round walk (or round) : it is a best response walk in B with exactly

one edge with label i, for each player i ∈ N . We denote the round by(
S0, S1, . . . , Sn

)
. Let S0 = (s1, s2, . . . , sn). We assume that the player mov-

ing in state Si−1 is player i, which changes her strategy from si to s′i, that
is Si = Si−1 ⊕ s′i = (s′1, s

′
2, . . . , s

′
i, si+1, . . . , sn).
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Congestion Games. A congestion game C = (N, E, (Σi)i∈N , (fe)e∈E , (ci)i∈N )
is a non-cooperative strategic game in which there is a set E of m resources (or
facilities) to be shared among the players in N . Any (pure) strategy si ∈ Σi

for player i is a subset of resources, i.e., Σi ⊆ 2E . Given a strategy profile
S = (s1, s2, . . . , sn) and a resource e, the number of players using e in S, called
the congestion on e, is denoted by ne(S) = |{i ∈ N | e ∈ si}|. A latency function
fe : N �→ R≥0 associates to resource e a cost (or latency) depending on the
number of players currently using e. The cost (or latency) of player i for the
pure strategy si, depends on the congestion of each resource in si and is given
by ci(S) =

∑
e∈si

fe(ne(S)). This work is concerned only with linear latency
functions, i.e., the case in which fe(x) = ae ·x + be with ae, be ∈ R≥0. Moreover,
we assume that the social cost of S can be either the sum (or average) of the
players’ costs, i.e., Sum(S) =

∑
i∈N ci(S), or the maximum cost of a player, i.e.,

Max(S) = maxi∈Nci(S). We denote the cost of the optimal strategy profile,
i.e., the strategy profile minimizing the social cost, by Optsum and Optmax

respectively.

3 Social Function Sum

Christodoulou et al. [8] proved that for any linear congestion game and one-
round walk (S0, S1, . . . , Sn) with S0 = ∅, it holds Sum(Sn) ≤ (2+

√
5)Optsum ≈

4.24Optsum. Surprisingly enough, the best known lower bound is the one derived
by Caragiannis at al. [4] for the restricted case of load balancing on identical
servers, which poses Sum(Sn) ≥ 4Optsum − ε, for any ε > 0. We close this
gap by proving that, for any ε > 0, there always exist a linear congestion game
and a one-round walk (S0, S1, . . . , Sn), with S0 = ∅, such that Sum(Sn) ≥
(2 +

√
5− ε)Optsum.

Given three positive integers n, k and o, with n ≥ 2k + o− 1 and k ≥ 2o, we
define the game Cn,k,o in which there are n players, m = n + 1 resources and
each player i ∈ [n] possesses exactly two strategies si and s′i defined according
to the following scheme.

• si = {ei} and s′i = {ei+1} ∪
k+i⋃

j=k+1

{ej}, for any i ∈ [k − 1];

• sk = {ek} and s′k =
2k⋃

j=k+1

{ej};

• si =
i⋃

j=k+1

{ej} and s′i =
k+i⋃

j=i+1

{ej}, for any k + 1 ≤ i ≤ k + o;

• si =
i⋃

j=i−o+1

{ej} and s′i =
min{k+i,m}⋃

j=i+1

{ej}, for any k + o + 1 ≤ i ≤ n.

A small example in which n = 22, k = 8 and o = 3 is shown in Figure 1.
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Fig. 1. The set of strategies available to each player in the game C22,8,3. Rows are
associated with players, while columns with resources. White and black circles represent
the first and the second strategy, respectively.

For any j ∈ [m] we associate the linear latency function fj(x) = aj · x with
resource ej , where each aj is obtained as a solution of the following system of
linear equations.

A =

⎧⎪⎪⎨⎪⎪⎩
eq1
eq2
. . .
eqn

where each eqi is defined as follows:

• a1 − a2 − ak+1 = 0,

• 2ai − ai+1 −
k+i∑

j=k+1

((k + i− j + 1)aj) = 0 ∀ i = 2, . . . , k − 1,

• 2ak −
2k∑

j=k+1

((2k − j + 1)aj) = 0,

• (k + 1)
i∑

j=k+1

aj −
m∑

j=i+1

((k + i− j + 1)aj) = 0 ∀ i ∈ {k + 1, . . . , k + o},

• (k+1)
i∑

j=i−o+1

aj−
min{k+i,m}∑

j=i+1

((k + i− j + 1)aj) = 0 ∀ i ∈ {k+o+1, . . . , n}.

Note that the definition of each equality is such that, for any i ∈ [n], both
strategies are equivalent for player i, provided all players j < i have chosen s′j
and all players j > i have not entered the game yet.

Let B be the n × m coefficient matrix defining system A. The matrix B
generated by the game C22,8,3 is shown in Figure 2.

Let a = (a1, . . . , am)T . In order for our instance to be well defined, we need to
prove that there exists at least a strictly positive solution to the homogeneous
system Ba = 0.
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Fig. 2. The coefficient matrix B generated by the game C22,8,3

Lemma 1. The system of linear equations Ba = 0 admits a strictly positive
solution.

We claim that the strategy profile in which all players choose the second of their
strategies is a possible outcome for a one-round walk starting from the empty
strategy profile.

Lemma 2. For any game Cn,k,o, there exists a one-round walk (S0, S1, . . . , Sn)
such that S0 = ∅ and Sn = (s′1, . . . , s

′
n).

Proof. The claim is a direct consequence of the definition of system A. ��
For our purposes, we do not have to explicitly solve system A, but only need to
prove some properties characterizing its set of solutions. We do this in the next
two lemmas.

Lemma 3. In any solution of system A it holds a1 ≤ 4
2k∑

j=k+1

aj.

Lemma 4. In any solution of system A it holds

(k + 1)
m∑

i=m−o+1

((i−m + o)ai) ≤ k3

n− 2k − o + 1

m−o∑
i=k+1

ai.

We can now prove our main result.

Theorem 1. For any ε > 0, there exist a linear congestion game Cn,k,o and a
one-round walk (S0, S1, . . . , Sn), with S0 = ∅, such that Sum(Sn) ≥ (2+

√
5− ε)

Optsum.

Proof. For a fixed integer n , 0, set k = � 4
√

n� and o = � 3−√
5

2 k�. Note that, for
a sufficiently big n, these values are consistent with the definition of Cn,k,o since
n ≥ 2k + o− 1 and k ≥ 2o.
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Consider the sum of all the equations defining system A together with the
dummy one a1 = a1. We obtain the equation

k∑
i=1

2ai + (k + 1)o
m∑

i=k+1

ai − (k + 1)

m∑
i=m−o+1

((i − m + o)ai) =

k∑
i=1

ai +
k(k + 1)

2

m∑
i=k+1

ai

which yields

k∑
i=1

ai = (k + 1)
(

k

2
− o

) m∑
i=k+1

ai + (k + 1)
m∑

i=m−o+1

((i−m + o)ai). (1)

Let S∗ = (s1 . . . , sn) be the strategy profile in which all players choose the first
of their strategies. Because of Lemma 2, we have that there exists a one-round
walk (S0, S1, . . . , Sn) such that S0 = ∅ and Sn = (s′1, . . . , s

′
n). By comparing the

social costs of Sn and S∗, we obtain

Sum(Sn)
Optsum

≥ Sum(Sn)
Sum(S∗)

≥

k∑
i=2

ai + k2
m∑

i=k+1

ai

k∑
i=1

ai + o2
m∑

i=k+1

ai

,

where we have exploited the fact that Optsum ≤ Sum(S∗) ≤ ∑k
i=1 ai +

o2∑m
i=k+1 ai.

By using Equality 1, we get

Sum(Sn)
Optsum

≥

k∑
i=2

ai + k2
m∑

i=k+1

ai

k∑
i=1

ai + o2
m∑

i=k+1

ai

=

(
(k + 1)

(
k
2 − o

)
+ k2

) m∑
i=k+1

ai + (k + 1)
m∑

i=m−o+1

((i−m + o)ai)− a1

(
(k + 1)

(
k
2 − o

)
+ o2

) m∑
i=k+1

ai + (k + 1)
m∑

i=m−o+1

((i−m + o)ai)

≥

(
(k + 1)

(
k
2 − o

)
+ k2 + k3

n−2k−o+1 − 4
) m∑

i=k+1

ai

(
(k + 1)

(
k
2 − o

)
+ o2 + k3

n−2k−o+1

) m∑
i=k+1

ai

,
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where, in the last inequality, we have used Lemmas 3 and 4 together with the
fact that for any four positive numbers α, β, γ and δ such that α ≥ β and γ ≥ δ,
it holds α+δ

β+δ ≥ α+γ
β+γ .

For n going to infinity, by considering only the dominant terms, we ob-

tain limk→∞
Sum(Sn)
Optsum

≥ limk→∞
k( k

2−o)+k2

k( k
2−o)+o2 = limk→∞

√
5−2
2 k2+k2

√
5−2
2 k2+ 7−3

√
5

2 k2
=

limk→∞
√

5
2 k2

5−2
√

5
2 k2

=
√

5
5−2

√
5

= 2 +
√

5, which implies the claim. ��
Some numerical results, obtained on particular games, are shown in Figure 3. It
is possible to appreciate there that the value of k may be chosen much higher
than the bound � 4

√
n� fixed in the proof of Theorem 1. This is due to the fact

that, for the sake of simplicity, the bound proved in Lemma 4 is really far from
being tight.

n k o SUM(Sn)
SUM(S∗)

70 8 3 4.001152
100 8 3 4.012482
500 80 30 4.185590
700 80 30 4.208719
1000 100 38 4.216734
1500 100 38 4.220854
2000 200 76 4.224342
3000 300 114 4.226854

Fig. 3. Lower bounds on the approximation ratio of the solution achieved after a one-
round walk starting from the empty strategy profile in the games Cn,k,o for some
particular values of n, k and o

4 Social Function Max

In this section we show that the approximation ratio of the solutions achieved
after a one-round walk is Θ( 4

√
n3) when starting from the empty strategy profile

and Θ(n
√

n) when starting from an arbitrary one.
Throughout the section, for simplicity and without loss of generality, we will

always assume identical latency functions, i.e., ae = 1 and be = 0 for every
e ∈ E. In fact, given a congestion game C having latency functions fe(x) =
ae·x+be with integer coefficient ae, be ∈ R≥0, it is possible to obtain an equivalent
congestion game C′, having the same set of players and identical latency functions
as claimed in [7]. Under such assumption, ci(S) =

∑
e∈si

ne(S) and Sum =∑
e∈E n2

e(S).
For every congestion game, given a one-round walk

(
S0, S1, . . . , Sn

)
, if

Sum(Sn) ≤ H ·Optsum, then a trivial upper bound for Sum(Sn) is the following

Sum(Sn) ≤ H ·Optsum ≤ Hn ·Optmax.

The following lemma provides a non-trivial upper bound for Sum(Sn) when
S0 = ∅.
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Lemma 5. For every congestion game, given a one-round walk
(
S0, S1, . . . , Sn

)
where S0 = ∅, if Sum(Sn) ≤ H · Optsum, then Sum(Sn) ≤ T · Optmax, where
T = 2n(

√
H + 1).

By exploiting the above lemma, we establish an upper bound on the approxi-
mation ratio of the solutions achieved after a one-round walk starting from the
empty strategy profile.

Lemma 6. For every congestion game, given a one-round walk
(
S0, S1, . . . , Sn

)
where S0 = ∅, if Sum(Sn) ≤ H · Optsum, then for any player k, ck(Sk) ≤
(
√

T + 1)Optmax, where T = 2n(
√

H + 1).

Theorem 2. For every congestion game, given a one-round walk(
S0, S1, . . . , Sn

)
where S0 = ∅, if Sum(Sn) ≤ H · Optsum, then

Max(Sn) ≤
(√

(
√

T + 1)T
)

Optmax, where T = 2n(
√

H + 1).

Proof. Let k be the player maximizing the cost in Sn, i.e., ck(Sn) =∑
e∈s′

k
ne(Sn) = Max(Sn). It is easy to see, by applying Cauchy-Schwarz in-

equality, that

Max(Sn) =
∑
e∈s′

k

ne(Sn) ≤
√
| s′k |

∑
e∈s′

k

n2
e(Sn) ≤

√
| s′k |

∑
e∈E

n2
e(Sn). (2)

Since the number of resources in the strategy of player k cannot be grater than
the player’s cost, by exploiting Lemma 6 it follows that

| s′k |≤
(√

2n(
√

H + 1) + 1
)

Optmax. (3)

From Lemma 5 we know that∑
e∈E

n2
e(S

n) ≤ 2n
(√

H + 1
)

Optmax. (4)

By using 3 and 4 in 2, we get

Max(Sn) ≤
⎛⎝
√√√√(√2n

(√
H + 1

)
+ 1

)
2n
(√

H + 1
)⎞⎠Optmax. ��

Since Sum(Sn) ≤ (2 +
√

5) ·Optsum [8], by applying Theorem 2, we can claim
the following result.

Corollary 1. For every congestion game C and one-round walk (S0, S1, . . . , Sn)
such that S0 = ∅, it holds Max(Sn) = O( 4

√
n3)Optmax.

As an asymptotically matching lower bound we can prove the following theorem.
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Theorem 3. There exist a congestion game and a one-round walk
(S0, S1, . . . , Sn), with S0 = ∅, such that Max(Sn) = Ω( 4

√
n3)Optmax.

As a consequence of these last two results, we can conclude that the approxi-
mation ratio of the solutions achieved after a one-round walk starting from the
empty strategy profile is Θ( 4

√
n3). It is worth noting that such a bound is only

4
√

n times away from the price of anarchy of pure Nash equilibria which is equal
to Θ(

√
n), as proved in [7].

For the case in which the one-round walk may start from an arbitrary strategy
profile we can prove the following results establishing an approximation ratio of
Θ(n

√
n).

Theorem 4. For every congestion game and one-round walk
(
S0, S1, . . . , Sn

)
,

if Sum(Sn) ≤ H ·Optsum, then Max(Sn) ≤ n
√

H ·Optmax.

Corollary 2. For every congestion game and one-round walk
(
S0, S1, . . . , Sn

)
,

it holds Max(Sn) = O (n
√

n) Optmax.

Theorem 5. There exist a congestion game and a one-round walk(
S0, S1, . . . , Sn

)
such that Max(Sn) = Ω (n

√
n)Optmax.

5 Open Problems

We have considered the problem of evaluating the approximation ratio of the
solutions achieved after a one-round walk in linear congestion games. For the
social function Sum, we have given an exact bound for one-round walks starting
from the empty strategy profile. For the social function Max, we have given
asymptotically tight bounds for one-round walks starting from either the empty
or an arbitrary strategy profile. But, still, several questions remain open even
when restricting to one-round walks starting from the empty strategy profile.
What about the case of singleton linear congestion games? For the social function
Sum, [4] shows an upper bound of 4.055 and a lower bound of 4 in the case of
identical resources. For heterogeneous ones, nothing is known except for the 4
lower bound coming from the identical case and the 4.24 upper bound coming
from the general case of linear congestion games. For the social function Max,
no results are known so far. We can prove a lower bound of 1 + �log n� for
the case of identical resources. Furthermore, what about extensions to weighted
players? To the best of our knowledge, the only known result is the upper bound
of (1 +

√
3)2 ≈ 7.46 given in [8] for general weighted linear congestion games

under the social function Sum.
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Abstract. We study Nash equilibria in the context of flows over time.
Many results on static routing games have been obtained over the last
ten years. In flows over time (also called dynamic flows), flow travels
through a network over time and, as a consequence, flow values on edges
are time-dependent. This more realistic setting has not been tackled from
the viewpoint of algorithmic game theory yet; but there is a rich literature
on game theoretic aspects of flows over time in the traffic community.

We present a novel characterization of Nash equilibria for flows over
time. It turns out that Nash flows over time can be seen as a concatena-
tion of special static flows. The underlying flow over time model is the
so-called deterministic queuing model that is very popular in road traffic
simulation and related fields. Based upon this, we prove the first known
results on the price of anarchy for flows over time.

1 Introduction

In a groundbreaking paper, Roughgarden and Tardos [36] (see also Roughgar-
den’s book [35]) analyze the price of anarchy for selfish routing games in net-
works. Such routing games are based upon a classical static flow problem with
convex latency functions on the edges of the network. In a Nash equilibrium, flow
particles (infinitesimal flow units) selfishly choose an origin-destination path of
minimum latency.

One main drawback of this class of routing games is its restriction to static
flows. Flow variation over time is, however, an important feature in network
flow problems arising in various applications. As examples we mention road or air
traffic control, production systems, communication networks (e.g., the Internet),
and financial flows; see, e.g., [5,31]. In contrast to static flow models, flow values
on edges may change with time in these applications. Moreover, flow does not
progress instantaneously but travels at a certain pace through the network which
is determined by transit times on the edges. Both temporal features are captured
by flows over time (sometimes also called dynamic flows) which were introduced
by Ford and Fulkerson [15,16].

Another crucial phenomenon in many of those applications mentioned above
is the variation of time taken to traverse an edge with the current (and maybe
� This work is supported by DFG Research Center Matheon “Mathematics for key

technologies” in Berlin.
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also past) flow situation on this edge. The latter aspect induces highly complex
dependencies and leads to non-trivial mathematical flow models. For a more de-
tailed account and further references we refer to [5,11,19,25,31,32]. In particular,
all of these flow over time models have so far resisted a rigorous algorithmic
analysis of Nash equilibria and the price of anarchy.

We identify a suitable flow over time model that is based on the following
simplifying assumptions. Every edge of a given network has a fixed free flow
transit time and a capacity. The capacity of an edge bounds the rate (flow per
time unit) at which flow traverses this edge. The free flow transit time denotes
the time that a flow particle needs to travel from the tail to the head of the edge.
If, at some point in time, more flow wants to traverse an edge than its capacity
allows, the flow particles queue up at the end of the edge and wait in line before
they actually enter the head node. When a new flow particle wants to traverse
an edge, the time needed to arrive at the head thus consists of the fixed free flow
transit time plus the waiting time. In the traffic literature, this flow over time
model is known as “deterministic queuing model”.

Related Literature. As already mentioned above, flows over time with fixed
transit times were introduced by Ford and Fulkerson [15,16]. For more details
and further references on these classical flows over time we refer, for example,
to [14,37].

So far, Nash equilibria for flows over time were mostly studied within the
traffic community. Vickrey [42] and Yagar [45] are the first to introduce this
topic. Up to the middle of the 1980’s, nearly all contributions consider Nash
equilibria on given small instances; see, e.g., [42,21,13,24]. Since then, the num-
ber of publications in this area has increased rapidly and Nash equilibria where
modeled mathematically. Two main models are distinguished: The route-choice-
model where a player only chooses an s-t-path for the controlled flow particle
and the simultaneous departure-time-route-choice-model where in addition the
departure time is also chosen. For a survey see, e.g., [30]. The considered models
can be grouped into four categories: mathematical programming (e.g., [23,20]),
optimal control (e.g., [33,18]), variational inequalities (e.g., [17,12,34,39,40]),
and simulation-based approaches (e.g., [45,26,7,41,6]). Up to now, variational
inequalities are the most common formulation for analyzing Nash equilibria in
the context of flows over time.

Many models mentioned above use a path-based formulation of flows over
time. Therefore they are computationally often intractable. Edge-based formu-
lations are, for example, considered in [2,12,34]. Realistic assumptions on the
underlying flow model with respect to traffic are described by Carey [9,10].

In this paper the deterministic queuing model is considered. This model was
introduced by Vickrey [42] and later by Hendrickson and Kocur [21]. Smith [38]
shows the existence of an equilibrium for this model in a special case. Aka-
matsu [1,2] presents an edge-based formulation of the deterministic queuing
model on restricted single-source-instances. Akamatsu and Heydecker [3] study
Braess’s paradox for single-source-instances. Braess’s paradox [8] states (for
static flows) that increasing the capacity of one edge can increase the total cost
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of all users in a Nash flow. It is well known that this paradox is extendable to the
dynamic case. Mounce [27,28] considers the case where the edge capacities can
vary over time and states some existence results. Again, it should be mentioned
that these results are based on strong assumptions.

Recently Anshelevich and Ukkusuri [4] analyze a discrete model for Nash equi-
libria in the context of flows over time. They consider how a single splittable flow
unit present at source s at time 0 would traverse a network assuming every flow
particle is controlled by a different player. The underlying flow model allowed
to send a positive amount of flow over an edge at each integral points in time.
Moreover the transit times are assumed to be constant.

Our Contribution. In this paper, we characterize and analyze Nash equilibria
for flows over time. Although algorithmic game theory is a flourishing area of
research (see, e.g., the recent book [29]), network flows over time have not been
studied from this perspective in the algorithms community so far. The main
purpose of this paper is to make first steps in this relevant direction, present
interesting and novel results, and stimulate further interesting research. We con-
sider the deterministic queuing model in networks with a single source and a
single sink. A player controls one flow particle and chooses an s-t-path (route-
choice-model) but no departure time which is given a priori.

A precise description of a routing game over time and the underlying flow over
time model is given in Section 2. The resulting model of Nash equilibria along
with several equivalent characterizations is discussed in Section 3. The main
technical contribution of this paper is presented in Section 4. Here we show
that a Nash equilibrium can be characterized via a sequence of static flows with
special properties. The resulting static flow problems are of interest in their own
right. The final Section 5 is devoted to results on the price of anarchy. For the
important class of shortest paths networks we prove that every Nash equilibrium
is a system optimum. Moreover, a Nash flow over time can be computed in
polynomial time by a sequence of sparsest cut computations. Surprisingly, the
price of anarchy is, in general, unbounded for arbitrary networks.

Due to space limitations, we omit all proofs in this extended abstract and
refer to the full version of the paper [22].

2 A Model for Routing Games over Time

In this section we present a model for Nash equilibria in the context of flows
over time. First, in Section 2.1 we define a routing game over time showing
the game theoretic aspect of the model. Then in Section 2.2 we introduce an
appropriate flow over time model which is known as the deterministic queuing
model mentioned above.

Throughout the paper we often use the term flow particle in order to refer to
an infinitesimal flow unit which corresponds to one player and travels along a
single path through the network. The terms flow rate and supply rate both refer
to an amount of flow per time unit.
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2.1 From Static Routing Games to Routing Games over Time

Consider a network consisting of a directed graph G := (V, E) with node set V
and edge set E. Further, there is a source s ∈ V and a sink t ∈ V . Each flow
particle is a player and the strategy set of each player is the set P of all s-t-paths.

In a static routing game, the players’ decisions yield a static s-t-flow μ of
value d where d is the given supply at the source s. Moreover, there is a con-
tinuous cost (or payoff) function �P for each path P ∈ P such that �P (μ) is the
cost that a player choosing path P has to pay. The static flow μ = (μP )P∈P is a
Nash flow if, for all P ∈ P with μP > 0, it holds that �P (μ) = minP ′∈P �P ′(μ).

The situation is considerably more complicated when we turn to routing games
over time. Here we assume that supply, i.e., players, occur at the source node
s over time at a fixed rate d. We can thus identify each player with the point
in time θ at which its corresponding flow particle originates at the source. In
particular, and in contrast to static routing games, players are not identical. The
routing decisions of players yield a flow over time μ = (μP )P∈P where μP is a
function determining the flow rate μP (θ) at which flow enters path P at time θ
and it holds that

∑
P∈P μP (θ) = d, for all θ. Thus, also �P (μ) is a function which

assigns a cost �P (μ)(θ) to every point in time θ. That is, the cost experienced
by a flow particle that originates at the source at time θ and chooses path P is
equal to �P (μ)(θ).

In this paper we restrict to payoff functions where �P (μ)(θ), P ∈ P , is the
time when a flow originating at s at time θ arrives at t. This time depends upon
the particular model of flows over time that we consider which is described in
Section 2.2 below.

Like in static routing games, a Nash equilibrium is characterized by a flow
over time μ where no player has an incentive to change her chosen path in order
to reduce her cost.

Definition 1 (Nash Flow over Time). Let μ be a flow over time determining
the routing decisions of the players in a routing game over time. Then, μ is a
Nash equilibrium (Nash flow over time) if, for almost all θ and for all P ∈ P
with μP (θ) > 0, it holds that �P (μ)(θ) = minP ′∈P �P ′(μ)(θ).

This definition is an immediate generalization of the definition of static Nash
flows under the assumption that the payoff functions are continuous. A closer
look at Definition 1 shows us that the continuity of the payoff functions �P is
also essential here. We skip further technical details due to space limitations.

2.2 An Appropriate Flow over Time Model

Although Definition 1 is an immediate generalization of static Nash flows, it
is still a highly nontrivial problem to come up with an appropriate flow over
time model. Here the main issue are the cost functions �P , P ∈ P . For static
routing games, these cost functions are not given explicitly, but implicitly via
edge latency functions. The cost of a path P ∈ P is the sum of the latencies
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Fig. 1. If more flow particles want to leave an edge than its capacity allows, they form
a waiting queue

of its edges. The latency of an edge e is a function of the load μe of that edge
which can easily be computed as follows: μe :=

∑
P∈P:e∈E(P ) μP .

The situation is considerably more complicated for flows over time. Here, it
is usually a highly nontrivial problem to compute the flow rate function μe of
edge e from given flow rate functions (μP )P∈P . Consider a flow particle that
enters a path P ∈ P at a certain time θ. Notice that the time at which this
particle arrives at an edge e ∈ E(P ) depends on the latencies experienced on the
predecessor edges on path P . This fact induces involved dependencies among
the flow rate functions (μe)e∈E of the edges. As a consequence, given a flow over
time (μP )P∈P , determining the cost (overall latency) of a flow particle entering
path P at time θ is, in general, a highly nontrivial task. For more details on this
so-called dynamic network loading problem we refer to [43,44]. Nevertheless,
for the deterministic queuing model described below, these difficulties can be
handled at least for the case of Nash flows over time.

Let (G, u, τ, s, t) be a network consisting of a directed graph G := (V, E), edge
capacities ue ∈ R+, e ∈ E, constant free flow transit times τe ∈ R+, e ∈ E, a
source s ∈ V , and a sink t ∈ V . We assume without loss of generality that there
are no incoming edges at the source node s and no outgoing edges at the sink
node t. The capacity ue of an edge e bounds the rate at which flow leaves edge e
at its head node. The basic concept of the considered flow over time model are
waiting queues which built up at the head (exit) of an edge if, at some point in
time, more flow particles want to leave an edge than the capacity of the edge
allows. The free flow transit time of an edge determines the time for traversing
an edge if the waiting queue is empty. Thus, the (flow-dependent) transit time on
an edge is the sum of the free flow transit time and the current waiting time. We
think of the edges as corridors with large entries and small exits, which are wide
enough for storing all waiting flow particles (point-queue-model); see Fig. 1.

Every flow particle arriving at an intermediate node v immediately enters
the next edge on its path without any delay. In the following we give a more
precise mathematical description of the flow over time model. A flow over time
is defined by two families of flow rate functions. For an edge e we have an
Lebesgue integrable inflow rate f+

e meaning that the rate at which flow enters
the tail of e at time θ is f+

e (θ) ≥ 0; moreover, the Lebesgue integrable outflow
rate f−

e describes the rate of flow f−
e (θ) ≥ 0 leaving the head of e at time θ.

Moreover, we define for an edge e the cumulative in- and outflow at time θ ≥ 0
by F+

e (θ) :=
∫ θ

0 f+
e (ϑ) dϑ and F−

e (θ) :=
∫ θ

0 f−
e (ϑ) dϑ, respectively. Thus the

amount of flow that has entered e before time θ is F+
e (θ) and the amount of flow
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which has traversed e completely before time θ is F−
e (θ). Note that F+

e and F−
e

are (absolutely) continuous and monotonically increasing, for all e ∈ E.
In order to obtain a feasible flow over time f := (f+, f−), the in- and the

outflow rates must satisfy several conditions. The capacity of an edge bounds
the outflow rate of that edge:

f−
e (θ) ≤ ue for all e ∈ E, θ ∈ R+. (1)

We also have to impose several kinds of flow conservation constraints. Firstly,
flow can only traverse an edge if it has previously been assigned to this edge:

F+
e (θ) − F−

e (θ + τe) ≥ 0 for all e ∈ E, θ ∈ R+. (2)

Secondly, we want flow arriving at an intermediate node v ∈ V \ {s, t} to be
immediately assigned to an outgoing edge of v:∑

e∈δ−(v)

f−
e (θ) =

∑
e∈δ+(v)

f+
e (θ) for all v ∈ V \ {s, t}, θ ∈ R+. (3)

In order to ensure that flow which is assigned to an edge must leave this edge
again at some point in time, we proceed as follows: Regarding condition (2),
the value F+

e (θ) is the amount of flow entering edge e before time θ which is
equal to the flow arriving at the end of the waiting queue of e until time θ + τe.
Moreover, the value F−

e (θ + τe) is the amount of flow arriving at the head node
of e until time θ + τe. Thus, F+

e (θ) − F−
e (θ + τe) is the amount of flow in the

waiting queue at time θ+τe. We impose the natural condition that, whenever the
waiting queue on edge e is nonempty, the flow rate leaving e at its head equals
the capacity ue. Therefore the waiting time spent by a flow particle entering the
tail of e at time θ is equal to

qe(θ) :=
F+

e (θ)− F−
e (θ + τe)

ue
for all e ∈ E, θ ∈ R+. (4)

The interpretation of qe(θ) as the waiting time for flow particles arriving at
time θ on edge e is based on the assumption that the first-in-first-out (FIFO)
property holds on edge e. That is, no flow particle overtakes any other flow
particle within the waiting queue. Since the free flow transit times are constant,
the FIFO property holds for the entire edge.

We state the following proposition which follows directly from (4) and the
continuity of F+

e and F−
e .

Proposition 2. For any edge e ∈ E, the function θ �→ θ+qe(θ) is monotonically
increasing and continuous.

3 Characterizing Nash Flows over Time

The main aspect of Nash equilibria in flow models is the selfish routing of flow
particles which are identified with players. As mentioned in Section 2.1, we as-
sume that flow occurs at the source s according to a fixed supply rate d ∈ R+.
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As soon as a flow particle pops up at the source, it decides by itself how to travel
to the sink t. That is, it chooses an s-t-path and immediately enters the first
edge on that path.

We consider two classes of flows over time. In the first class, every flow particle
travels along “currently shortest paths” only. In the second class, every flow
particle tries to overtake as many other flow particles as possible while not be
overtaken by others. It turns out that the latter condition leads to a flow where
no particle overtakes any other particle. Moreover, we show that the two classes
of flows over time coincide and are, in fact, Nash flows over time.

We start by defining currently shortest s-t-paths in a given flow over time.
To do so, we consider the problem of sending an additional flow particle at
time θ ≥ 0 from the source s to the sink t as quickly as possible. Let �v(θ) be
the earliest point in time at which this flow particle can arrive at node v ∈ V .
Then,

�v(θ) + τe + qe(�v(θ)) ≥ �w(θ) for each e = vw ∈ E. (5)

On the other hand, for each node w ∈ V \ {s}, there exists at least one in-
coming edge e = vw ∈ δ−(w) such that equality holds in (5). That is, the flow
particle can use edge e in order to arrive at node w as early as possible (at
time �w(θ)). Moreover, we have �s(θ) = θ for all θ ≥ 0. Therefore, we define the
label functions �w : R+ → R+ as follows:

�w(θ) :=

{
θ for w = s,
min
e=vw

�v(θ) + τe + qe(�v(θ)) for w ∈ V \ {s}. (6)

The label functions can be computed simultaneously for each time θ by adapting
the shortest path algorithm of Bellman and Ford1. The following proposition
follows from (6) and Proposition 2.

Proposition 3. For each node v ∈ V , the label function �v is monotonically
increasing and continuous.

In a Nash equilibrium, flow should always be sent over currently shortest s-t-
paths only. We say that edge e ∈ E is contained in a shortest path at time θ ≥ 0
if and only if �w(θ) = �v(θ) + τe + qe(�v(θ)). Of course, if an edge e = vw ∈ E
does not lie on a shortest s-t-path at a certain time θ ≥ 0, then no flow should
be assigned to that edge at time �v(θ) in a Nash flow.

Definition 4. We say that flow is only sent along currently shortest paths if, for
each edge e = vw ∈ E, the following condition holds for almost all times θ ≥ 0:

�w(θ) < �v(θ) + τe + qe(�v(θ)) =⇒ f+
e (�v(θ)) = 0 .

1 The update procedure of Bellman-Ford for a certain label �w(θ) is applied for all
times θ simultaneously and, hence, is seen as a operation on functions. If we use
Dijkstra instead we have to maintain the set of already finalized nodes separately
for each time θ. Thus, we also have to apply the update procedure of Dijkstra
separately for each θ.
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We emphasize the following aspect of Definition 4: In general, it is not clear
that the label functions are strictly monotonically increasing. In particular, the
label function of the sink t might possibly be constant over a certain time inter-
val [θ1, θ2] with θ1 < θ2. Thus, a flow particle originating at s at time θ1 might
arrive at t at the earliest possible time without necessarily being as early as pos-
sible at all intermediate nodes of its path. Definition 4 enforces, however, that all
subpaths of the s-t-path chosen by a flow particle have to be as short as possible.

The condition in Definition 4 is equivalent to the condition that every particle
tries to overtake as much other flow as possible while not being overtaken. The
latter condition is in fact a universal FIFO condition. That is, it is equivalent to
the statement that no flow particle can possibly overtake any other flow particle.

In order to model the universal FIFO condition more formally, we consider
again an additional flow particle originating at s at time θ ≥ 0. Of course, in
order to ensure that no flow particle has the possibility to overtake this particle,
it is necessary to take a shortest s-t-path. Therefore, for each edge e = vw ∈ E,
we define the amount of flow x+

e (θ) assigned to e before this particle can reach v
and the amount of flow x−

e (θ) leaving e before this particle can reach w as follows:

x+
e (θ) := F+

e (�v(θ)), x−
e (θ) := F−

e (�w(θ)) for all θ ≥ 0. (7)

Thus, the amount of flow bs(θ) := d · θ that has originated at s before our flow
particle occurs at s and the amount of flow −bt(θ) arriving at t before our flow
particle can reach t satisfy

bs(θ) =
∑

e∈δ+(s)

x+
e (θ) and bt(θ) = −

∑
e∈δ−(t)

x−
e (θ) . (8)

By definition, bs(θ) is always nonnegative and bt(θ) is always non-positive.
If bs(θ) > −bt(θ), then the considered flow particle overtakes other flow par-
ticles. And if bs(θ) < −bt(θ), then the flow particle is overtaken by other flow
particles. This motivates the following definition.

Definition 5. We say that no flow overtakes any other flow if, for each point
in time θ ≥ 0, it holds that bs(θ) = −bt(θ).

Now we are able to prove the equivalence of the universal FIFO condition and
the condition that flow only uses currently shortest paths. In addition, a further
equivalent statement is given.

Theorem 6. For a given flow over time, the following statements are equivalent:

(i) Flow is only sent along currently shortest paths.
(ii) For each edge e ∈ E and at all times θ ≥ 0, it holds that x+

e (θ) = x−
e (θ).

(iii) No flow overtakes any other flow.
(iv) It is a Nash flow over time.

Note that whenever one of the four statements in Theorem 6 holds, then x+ and
x− coincide. Further, for all θ ≥ 0, setting xe(θ) := x+

e (θ) for all e ∈ E, yields a
static s-t-flow x(θ) of value bs(θ). In the following, for a flow over time satisfying
the universal FIFO condition, we refer to (xe(θ))e∈E as the underlying static
flow at time θ. This flow will be studied in more detail in the next section.



Nash Equilibria and the Price of Anarchy for Flows over Time 331

4 A Special Class of Static Flows

In this section we study the underlying static flows of a Nash flow over time. It
turns out, that these static flows have a special structure that can be used to
characterize, compute, and analyze Nash flows over time. Further, the network on
which these flows are considered is a special subnetwork of the original network.

Definition 7 (Current Shortest Paths Network). Consider a flow over
time on a network (G, u, s, t, τ, d). For θ ≥ 0, the current shortest paths net-
work Gθ is the subnetwork induced by the edges occurring in a currently shortest
path.

Definition 8 (Thin Flow with Resetting). Let (G, u, s, t, d) be a static net-
work and E1 ⊆ E(G) a subset of edges. A static flow x′ with flow value F is a
thin flow with resetting on E1 if there exist node labels �′ such that:

�′s = F/d (9)
�′w ≤ �′v for all e = vw ∈ E(G) \ E1 with x′

e = 0 (10)
�′w = max{�′v, x′

e/ue} for all e = vw ∈ E(G) \ E1 with x′
e > 0 (11)

�′w = x′
e/ue for all e = vw ∈ E1 (12)

Notice that, if E1 = ∅, the label �′v of node v is the congestion of all flow-
carrying s-v-path and a lower bound on the congestion of any s-v-path. Here,
the congestion of a path is the maximum congestion of its edges. The name “thin
flow with resetting” refers to the special edges in E1 which play the following
role. Whenever a path starting at s traverses an edge e ∈ E1, it “forgets” the
congestion of all edges seen so far and “resets” its congestion to x′

e/ue. It is not
difficult to see that, for the special case E1 = ∅, a thin flow with resetting can
be computed in polynomial time.

Next we show that for a Nash flow over time, the derivatives of the label
functions and of the underlying static flow define a thin flow with resetting. The
following theorem is only applicable if the derivatives of the label and the under-
lying static flow functions exist. But both the label functions and the underlying
static flow functions are monotonically increasing implying that both families of
functions are differentiable almost everywhere.

Theorem 9. Consider a Nash flow over time on a network (G, u, s, t, τ, d) with
corresponding label functions (�v)v∈V and edge waiting time functions (qe)e∈E.
For θ′ ≥ 0, let x(θ′) be the underlying static flow. Let θ′ ≥ 0 such that dxe

dθ (θ′)
and d�v

dθ (θ′) exist for all e ∈ E and v ∈ V . Then, on the current shortest paths
network Gθ′ , the derivatives (dxe

dθ (θ′))e∈E(Gθ′ ) form a thin flow of value d with
resetting on the waiting edges E1 := {e ∈ E | qe(θ′) > 0}. A corresponding set
of node labels fulfilling (9) to (12) is given by the derivatives (d�v

dθ (θ))v∈V (Gθ).

The reverse direction of Theorem 9 also holds. Whenever the derivatives of the
underlying static flow functions and the label functions of a flow over time are
thin flows with resetting in the current shortest paths network for all times θ,
then the flow over time is in fact a Nash flow over time. We skip further details
due to space limitations.
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5 Nash Flows over Time and the Price of Anarchy

The characterization of Nash flows over time via thin flows with resetting en-
ables us to completely analyze shortest paths networks where every s-t-path has
the same total free flow transit time. An important subclass of shortest paths
networks are networks where the free flow travel times of all edges are zero. We
study the price of anarchy which, in general, is the worst case ratio of the cost of
a Nash equilibrium to the cost of a system optimum. In the context of routing
games over time, we define the price of anarchy of an instance as the worst case
ratio over all points in time θ regarding the following objective:2 For given θ,
maximize the amount of flow arriving at the sink until time θ. In particular,
according to this definition, earliest arrival flows that maximize the amount of
flow at the sink simultaneously for each point in time are the system optima.

Theorem 10. For shortest paths networks, each Nash flow over time is an ear-
liest arrival flow and thus a system optimum. Moreover, a Nash flow over time
can be computed in polynomial time.

In contrast to static routing games, there exist instances of the routing game
over time where the price of anarchy is unbounded.

Proposition 11. There exists a family of instances for which the price of an-
archy is Ω(m) where m is the number of edges.

Acknowledgments. The authors are much indepted to Jose Correa for inspiring
discussions on the topic of this paper.
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Abstract. We study auctions whose bidders are embedded in a social
or economic network. As a result, even bidders who do not win the auc-
tion themselves might derive utility from the auction, namely, when a
friend wins. On the other hand, when an enemy or competitor wins, a
bidder might derive negative utility. Such spite and altruism will alter
the bidding strategies. A simple and natural model for bidders’ utilities
in these settings posits that the utility of a losing bidder i as a result of
bidder j winning is a constant (positive or negative) fraction of bidder
j’s utility.

We study such auctions under a Bayesian model in which all valuations
are distributed independently according to a known distribution, but the
actual valuations are private. We describe and analyze Nash Equilibrium
bidding strategies in two broad classes: regular friendship networks with
arbitrary valuation distributions, and arbitrary friendship networks with
identical uniform valuation distributions.

1 Introduction

The traditional view of auctions posits that bidders only care if they win the
item(s) and at what price. The utility of bidders not winning the auction is 0,
regardless of the actual outcome. If the auction is conducted among perfectly
rational strangers, the items are solely for resale, and no future competitive
advantage is gained by winning an auction cheaply, this assumption is quite
accurate. However, in many realistic scenarios, the bidders are embedded in
social and economic networks, which will affect their perception of an auction’s
outcome.

For instance, if bidders i and j are friends, and bidder j wins the auction at
a cheap price, bidder i may derive direct or indirect benefits. These could take
the form of shared joy, or tangible financial benefits due to bidder j’s generosity.
Similarly, if bidders i and j are enemies, then bidder i might actively resent
j’s winning. Even in a purely economic environment, there can be differences
in i’s perception of the winner. For instance, if j is a direct competitor of i,
then winning the auction cheaply might give bidder j significant future market
advantage. Thus, bidder i derives negative utility from j’s winning. If j mostly
belongs to a different market, then i might be neutral to j’s winning. And if i
and j might be future collaborators, then i might derive some positive utility
from j’s winning.
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These observations motivate the study of auctions in which the utility of losers
is not always 0, but rather depends on the identity of the winner, and the utility
the winner derives from the auction. We can model this setting naturally with
a spite/altruism matrix A = (ai,j), where each ai,j ∈ (−1, 1) for i �= j, and
ai,i ∈ [0, 1] for each i. If bidder j wins the auction and obtains subutility uj ,
then bidder i’s utility from the auction is ai,j · uj . Thus, if ai,j > 0, then bidder
i is altruistic toward bidder j (or a friend); if ai,j < 0, then bidder i is spiteful
toward bidder j (or a foe)1. Notice that we do not assume A to be symmetric.

Auctions with spite among bidders have been studied before [6,7,16,18,21].
However, in all past work, the assumption was that each off-diagonal entry of the
matrix A was the same (and negative), i.e., all bidders have the same spite level
toward each other. We call this the case of uniform spite. While it is interesting
as an analysis of the effects of general distrust or future competition between
bidders, it does not take into account the effects of social or economic networks
on individual behaviors.

In this paper, we study auctions with Bayesian priors in the presence of more
general altruism/spite matrices. For two large subclasses of these auctions, we
explicitly describe a Nash Equilibrium. These two subclasses are the following:

1. The spite/altruism matrix A is arbitrary, but each bidder’s valuation of the
item is drawn independently and uniformly from the interval [0, 1], and the
auction is first-price.

2. The valuations are drawn independently from [0, 1] according to an arbitrary
(but identical) distribution for all bidders, and the social network of bidders
is regular. This means that each bidder i has non-zero ai,j for the same
number d of other bidders j, and all such non-zero entries have the same
value ai,j = a. In this case, we analyze both first- and second-price auctions.

These characterizations significantly generalize recent results of Morgan et al. [18]
and Brandt et al. [6], which characterized a Nash Equilibrium for the case of
uniform spite. We also point out here that the equilibrium in the first case is not
symmetric: different bidders have different bidding strategies. This is significant
in particular from a technical viewpoint, as past analysis has relied heavily on
symmetry assumptions in order to be able to derive equilibrium strategies.

Our explicit characterization allows us to derive several interesting corollaries.
For the case of arbitrary social networks and uniform valuation distributions, the
explicit characterization allows us to study how changes in the social or economic
network affect bidding behavior. Perhaps somewhat surprisingly, an increase in
spite does not always lead to an increase in bids. Instead, we show that whether
it leads to an increase or decrease in bids depends on whether the recipient of
spite is currently overbidding or underbidding.

A further corollary concerns auctions with several cliques of friends who are
indifferent to other cliques. Our characterization allows us to easily derive ex-
plicit equilibrium bidding strategies in this case. Interestingly, the strategy of the

1 Past work [6,7] used ai,j > 0 for spite. However, the convention we adopt here
simplifies notation, and is consistent with the notation of [14,9,17].
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members of a clique depends only on the size of the clique, the strength of ties in
the clique, and the total number of bidders, but not on the strength of the ties
in other cliques. In this case in particular, the resulting bidding strategies can
be considered an alternative to collusion without explicit information exchange
between the members of a clique.

For the case of regular social networks and uniformly random valuations, we
show that if a < 0 (i.e., bidders only have foes and neutral other bidders),
the expected revenue of the second-price auction dominates the first-price auc-
tion. Conversely, if a > 0, then the expected revenue of the first-price auction
dominates the second-price auction. (The case of a = 0 corresponds exactly
to standard auctions, and the Revenue Equivalence Theorem implies that both
auctions provide the same revenue.)

1.1 Related Work

The notion of spite and altruism as defined here broadly falls into the class of
allocation externalities in auctions: the utility of a bidder depends not exclusively
on her own allocation, but also on the allocations of other bidders. There is
a large amount of literature on various types of allocation externalities (see,
e.g., [11,12,13,8]). In particular, Jehiel et al. [12] construct revenue-maximizing
auctions for the case where each potential buyer has a given constant externality
depending on the identity of the winner. Thus, the difference to our model is
that in the model of [12], a loser’s utility does not depend on the price at which
the winner obtained the object, only the winner’s identity.

Altruism and spite specifically in the context of auctions were studied in several
recent papers: Brandt and Weiß[7] studied full-information equilibria between two
bidders, both of whom have spite level a = 1

2 . Morgan et al. [18] and Brandt et
al. [6] focused on Bayesian Nash Equilibria of first-price and second-price auctions
with uniform spite. The results in these two papers are very similar to each other,
and differ mostly in the precise model of the utility of the winner, as discussed
briefly in Section 2. Vetsikas and Jennings [21] extend this work to auctions for
multiple items, still assuming uniform spite among the bidders.

A similar model is also studied in a recent paper by Deng and Qi [10] on auction
design for pricing priority rights. Losers in this model also incur a negative utility,
albeit one that depends on their own utility for the item, rather than the winner’s.
The goal in [10] is to design a truthful, egalitarian and budget-balanced auction.

Several recent papers have analyzed the impact of spiteful or altruistic be-
havior in other game-theoretic settings. In the context of congestion games, [9]
shows that when all players are at least β-altruistic (meaning that their utility
is a convex combination of their own latency and the derivative of the average
latency, with weight β on the average latency), then the PoA is bounded by 1/β.
Babaioff et al. [3] and Roth [20] consider the effect of malicious or Byzantine
players on the PoA or regret.

In the context of network inoculation [2], Moscibroda et al. [19] study the effect
of Byzantine malicious players, while Meier et al. [17] show that friendship with
neighbors can sometimes lead to significantly more efficient network inoculations.
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The impact of social network structure on games has also recently been stud-
ied by Ashlagi et al. [1], under the name social context games. They posit that the
utility of an agent can be computed from the subutility functions in her neighbor-
hood, according to various competitive or collaborative aggregation functions.
The specific games studied in [1] differ from the auctions considered here, and
mostly belong to the class of resource selection games.

2 Model and Preliminaries

Each of the n bidders has a valuation vi drawn independently from the same dis-
tribution F over [0, 1]. While the valuations are private, F is common knowledge
among all bidders. We identify the distribution with its cumulative distribution
function (cdf), and use f = F ′ to denote its density function.

We study auctions in which the auctioneer is selling a single item to spiteful
and altruistic bidders. Bids are denoted by bi. The auction mechanism selects as
winner a bidder w maximizing bw (breaking ties arbitrarily, but consistently).
We define the threshold bid of w to be τw = maxj �=w bj . In a first-price auction,
bidder w pays bw, while in a second-price auction, she pays τw.

In a second-price auction, the subutility of the winning bidder is uw = vw−τw.
Similarly, for a first-price auction, the subutility of the winning bidder is uw =
vw − bw. In both cases, the subutility of all losing bidders is ui = 0.

In an auction with altruism and spite, the utility of a bidder is a combination
of her own and the other bidders’ subutilities. (A similar model was proposed
by Ledyard [14].) Specifically, for any bidder i:

ui =
∑

j ai,j · uj . (1)

Since it is reasonable to assume that each bidder cares more about her own
subutility than that of others, we assume that |ai,j | < ai,i for all i, j. Substituting
the specific subutilities of first-price and second-price auctions into Equation (1),
we obtain the following utilities for bidders i.

First-price auction: ui =
{

ai,i · (vi − bi) for i = w
ai,w · (vw − bw) for i �= w

(2)

Second-price auction: ui =
{

ai,i · (vi − τi) for i = w
ai,w · (vw − τw) for i �= w

(3)

Remark 1. The definition used by Brandt et al. [6] is the special case of our
definition when ai,j = a < 0 for all i �= j, i.e., players have uniform spite, and
ai,i = 1 + a. (However, [6] uses a > 0 for spite.) The definition of Morgan et
al. [18] is nearly identical, except it corresponds to the case of ai,i = 1 for all i.

Bidders are assumed to maximize expected utility, and may submit bids bi �= vi.
Specifically, we denote the bid function for bidder i by bi(·), meaning that with
valuation v, bidder i will submit a bid of bi(v). We stress here that while the
valuations are private, both the common distribution of valuations and the altru-
ism/spite matrix A are common knowledge. (We briefly discuss the latter point
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in Section 4.) The externalities in our setting arise solely from the perception
that losers have of the winner; there is no correlation between the valuations of
different bidders.

According to Equation (1), the larger |ai,j | (and the smaller ai,i), the more
important the winning or losing of other bidders becomes to i. Notice, however,
that we do not recursively consider the utility a bidder derives from another bid-
der’s perceived utility. Such systems of utility functions are studied, for instance,
by Bergstrom [4], who shows that by solving a system of linear equations, they
can be reduced to the case studied here.

While our model allows for friendship between bidders, we assume that the
bidders do not collude. Collusion would require the bidders to share their private
valuations with each other, which may be an inferior strategy in terms of the
individual utilities. Furthermore, it is not clear how the profit should be split
between colluding bidders when 0 < ai,j < 1.

3 Calculating and Analyzing Equilibria

We first derive general Nash Equilibrium conditions for arbitrary distributions
F on [0, 1] and altruism, for both first- and second-price auctions. Since these
conditions are too complicated to solve in general, we then focus on two special
cases:

1. First-price auctions with arbitrary spite/altruism matrices A, but in which
all valuations are drawn uniformly from the interval [0, 1]. For this case,
we present a (non-symmetric) Nash Equilibrium, and show how the bidding
strategies change if the entries of A change.

2. Networks in which each bidder has the same number d of acquaintances,
and feels the same spite/altruism level a toward all of them. Thus, we have
a social network in which each node has outdegree d, and all bidders have
uniform spite/altruism. For this case, we analyze both first- and second-
price auctions under arbitrary distributions F of valuations. We show that
under uniformly random valuations, the revenue of the second-price auction
dominates the first-price auction for a < 0, while the domination is reversed
for a > 0.

We denote by b−1
i the inverse function of the bidding function, i.e., b−1

i (b) is the
valuation v such that bidder i with valuation v would bid b.2

Lemma 1. Assume that all valuations are drawn independently from the same
distribution F over [0, 1].

1. Nash Equilibria of first-price auctions satisfy the following system of differ-
ential equations:

∑
j �=i

(
ai,i(v − bi(v)) + ai,j(bi(v) − b−1

j (bi(v)))

)
· f(b−1

j (bi(v)))·b−1
j

′
(bi(v))

F (b−1
j (bi(v)))

= ai,i. (4)

2 We are thus implicitly assuming that the bidding functions are strictly increasing.
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2. Nash Equilibria of second-price auctions satisfy the following system of dif-
ferential equations:

ai,i ·
∑

j �=i

f(b−1
j (bi(v))·b−1

j
′
(bi(v)))

F (b
−1
j (bi(v)))

· (v − bi(v))

+
∑

j �=i
ai,j

F (b−1
j (bi(v)))

·
(
− F (b−1

j (bi(v))) · bi(v) ·∑k �=i,j

f(b−1
k

(bi(v)))b−1
k

′
(bi(v))

F (b−1
k

(bi(v)))

+ bi(v) ·∑� �=i f(b−1
� (bi(v))) · b−1

�

′
(bi(v))

− b−1
j (bi(v)) · f(b−1

j (bi(v))) · b−1
j

′
(bi(v)) − 1

)
= −∑j �=i ai,j

(5)

The proof is rather technical, and deferred to the full version of this paper due
to space constraints. Compared to standard analysis of equilibrium strategies in
auctions, it requires deriving a system of differential equations, rather than a
single differential equation. In general, this system of differential equations (4)
or (5) does not admit a direct solution, due to the interplay between inverses of
bidding functions. We therefore next focus on special cases where the particular
form of bidding functions allows us to simplify the differential equations further.

3.1 First-Price Auctions with Uniform Valuations

Our first special case is that of first-price auctions with uniform valuations on
[0, 1], i.e., F (x) = x for x ∈ [0, 1]. In this case, we can calculate a Bayesian Nash
Equilibrium explicitly, because there happens to be a Nash Equilibrium where
each bidder bids bi(v) = γiv for some constant γi. Unfortunately, a guess of
bi(v) = γiv, or even bi(v) = γiv + ξi, does not appear to lead to a solution of
the corresponding system (5) for second-price auctions, and we are not aware of
any explicit characterization of an equilibrium of the second-price auction here.

Theorem 1. Assume that all valuations are drawn independently and uniformly
from [0, 1]. There is a Bayesian Nash Equilibrium for first-price auctions with
an arbitrary friendship/spite matrix A where each bidder i bids bi(vi) = γivi,
with

γi = det(C)
det(C)−det(Ci)

.

The matrix C has entries ci,i = −(n − 1) and ci,j = ai,j

ai,i
for i �= j, and Ci is

formed by replacing the ith column of C by all 1’s.

Proof. We start with the general system of differential equations derived as
Equation (4). We now substitute that F (x) = x and f(x) = 1 for all x ∈ [0, 1],
obtaining that∑

j �=i

(
ai,i(v − bi(v)) + ai,j(bi(v)− b−1

j (bi(v)))
)
· b−1

j

′(bi(v))

b−1
j (bi(v))

= ai,i.

We next guess that bi(v) = γiv for each bidder i, i.e., each bidder simply scales
her valuation by a constant factor that may depend on A, but not on the valu-
ations. Then, (b−1

j )′(bi(v)) = 1/γj, and b−1
j (bi(v)) = γi

γj
· v, so we obtain∑

j �=i

(
ai,i(1− γi)v + ai,j(γiv − γi

γj
· v)
)
· 1

γiv
= ai,i.
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Canceling all v terms and the γi, and pulling constant terms out of the sum, this
simplifies to

(n− 1)ai,i( 1
γi
− 1) +

∑
j �=i ai,j(1 − 1

γj
) = ai,i.

Writing βi = 1− 1
γi

, this system becomes −(n− 1)βi +
∑

j �=i
ai,j

ai,i
βj = 1 for all i.

Thus, the vector β of all βi entries solves C ·β = 1, where 1 is the n-dimensional
all-ones vector. The theorem now follows from Cramer’s rule, which gives that
βi = det(Ci)

det(C) . Because |ai,j | < ai,i for all i, j, all off-diagonal entries of C are
strictly less than 1, so C is diagonally dominant. Gershgorin’s Disc Theorem
thus guarantees that det(C) �= 0, and the system always has a solution.

Competing Cliques. One natural special case which can be solved easily using
our general result in Theorem 1 is that of disjoint cliques of friends in an auction.
The bidders form g disjoint groups S1, . . . , Sg. Within group Sk, all bidders have
altruism a(k) to each other (and ai,i = 1). Across groups, bidders are indifferent,
i.e., a bidder’s altruism or spite level towards any other bidder who is not in his
group is 0. Then, C is a block matrix, and the system of linear equations can
be solved for each block separately. Due to symmetry, within each group Sk, all
bidders will use the same bidding strategy, i.e., βi = βj =: β(k) whenever i, j ∈
Sk. The linear equality thus simplifies to −(n−1)β(k) +(|Sk|−1) ·a(k) ·β(k) = 1,
with the solution β(k) = 1

(|Sk|−1)·a(k)−(n−1) . Substituting this into the definition
of γi, we obtain the following corollary:

Corollary 1. If the bidders form disjoint cliques Sk with mutual altruism a(k),
and all valuations are drawn uniformly from [0, 1], then there exists a Bayesian
Nash Equilibrium in which each bidder i ∈ Sk bids n−1−a(k)(|Sk|−1)

n−a(k)(|Sk|−1) · vi.

Notice that this corollary reveals several interesting tendencies. First, both βi

and γi are always less than 1, and decreasing in |Sk| and a(k). This is not entirely
unexpected, as bidders in large or tightly knit cliques feel less of a need to win
the auction themselves, since they are more likely to derive utility from a friend’s
winning. What is perhaps more surprising is that the bidding strategy of a clique
Sk does not depend on how large or tightly knit another group Sk′ is. While this
follows readily from our general result, it is not at all apparent a priori, since
another tightly knit group might bid lower, allowing group Sk to lower its bids
safely as well.

Altruism Changes. We can also use Theorem 1 for an investigation of how
bidder i’s strategy changes if her spite level ai,j toward another member of the
network changes. One would intuitively expect that if bidder i’s altruism toward
bidder j increases, then bidder i will always bid lower, i.e., decrease γi, because
she derives more utility from bidder j’s winning. (Indeed, for disjoint cliques,
this intuition is borne out.) It turns out that this is not always the case. In
response to the change of one ai,j , the entire network’s strategies adapt, and in
some cases, this means that bidder i will increase her bid. The following theorem
characterizes the change — its proof is quite tedious and technical, and deferred
to the full version of this paper due to space constraints.
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Theorem 2. The derivative of βi with respect to ai,j is

∂βi

∂ai,j
= −det(Ci,i)·det(Cj)

det(C)2 = −det(Ci,i)
det(C) · βj ,

where Ci,i is the (n− 1)× (n− 1) matrix obtained by removing the ith row and
column from C, and Cj is the matrix formed by replacing the jth column of C
by all ones.

In the result of Theorem 2, det(Ci,i) and det(C) always have opposite signs,
because all their eigenvalues are negative, and one of them has even, the other one
odd, dimension. Thus, if bidder i increases her altruism level to another bidder
j who is overbidding (βj > 0, thus γj > 1), then bidder i will increase her bid.
Conversely, if she increases her altruism level to another bidder j who is currently
underbidding, then bidder i will decrease her bid. Thus, the current bidding
strategy of bidder j captures enough information to determine the direction of
the change in bidder i’s bid when her altruism or spite changes.

3.2 Regular Networks

In order to be able to solve the system of differential equations, we assumed in
the previous section that the valuations were drawn uniformly from [0, 1]. As
a first step towards avoiding this assumption, we consider regular networks, in
which each node has the same out-degree d. Furthermore, we assume that for
each pair of bidders (i, j) with a directed edge from i to j, the spite level is the
same, ai,j = a for all i, j with an edge. Similarly, all diagonal entries are the
same, i.e., ai,i = α for all i.

Under this scenario, both the first-price and second-price auction have a sym-
metric Bayesian Nash Equilibrium, i.e., a Nash Equilibrium in which all bidding
functions are the same, bi = b for all i.

Theorem 3. For α �= 0, there exists a Bayesian Nash Equilibrium for first-price
auctions in which all bidders bid b(v) = E [X | X < v], where X is a random
variable with cdf F (x)n−1−da/α.

Proof. Substituting the symmetric guess into the the system (4) for first-price
auctions, we can simplify to∑

j �=i

(
ai,i(v − b(v)) + ai,jb(v)− ai,jv

)
· f(v)

F (v)b′(v) = ai,i,

and, using the network structure, simplify further to(
((n− 1)α− da) · (v − b(v))

)
· f(v)

F (v)b′(v) = α.

Solving for b(v) gives us b(v) = v− 1
n−1−da/α · F (v)b′(v)

f(v) . This differential equation
has solution

b(v) = F (v)−(n−1−da/α) · ∫ v

0 x · (n− 1− da/α) · F (x)n−2−da/αf(x)dx. (6)

Thus, we have proved the theorem.
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Note that the bidding function can be interpreted as the expectation of the
highest of (n−1)− ad

α private values below v, in spite of the fact that (n−1)− ad
α

may be a fractional number. Notice that this theorem does not characterize
all equilibria, and indeed, it seems very likely that this auction also possesses
asymmetric Nash Equilibria (see also the discussion in [6]).

Substituting the uniform distribution over [0, 1] for every bidder’s valuation,
we obtain the following corollary:

Corollary 2. There is a Bayesian Nash Equilibrium for first-price auctions with
all valuations uniformly distributed in [0, 1] in which all bidders bid b(v) = (1−

α
n·α−ad) · v.
In particular, when d = n− 1, Theorem 3 and Corollary 2 recover the results of
Brandt et al. [6] who showed that b(v) = n−1

n+a · v for uniform spite levels (with
α = 1 + a), and those of Morgan et al. [18] (with α = 1).

Second-Price Auctions. We next turn our attention to second-price auctions,
and prove the following theorem.

Theorem 4. For a �= 0, there is a Bayesian Nash Equilibrium for the second-
price auction with regular friendship graphs in which all bidders bid b(v) =
E [X | X > v], where X is a random variable with cdf 1− (1− F (x))1−

(n−1)α
ad .

Proof. We again substitute the symmetric guess bi = b for all i into the system
(5), canceling and simplifying it to

ai,i ·
∑

j �=i
f(v)

F (v)b′(v)
· (v − b(v))

+
∑

j �=i
ai,j

F (v)
·
(
− b(v)

∑
k �=i,j

f(v)
b′(v)

+ b(v)
∑

� �=i
f(v)
b′(v)

− v f(v)
b′(v)

− 1

)
= −∑j �=i ai,j .

Noting that the two sums inside the parentheses almost cancel out, pulling con-
stant terms out of the sum, and using that

∑
j �=i ai,j = da and ai,i = α for all i,

we simplify further to

α · (n− 1) · f(v)
F (v)b′(v) · (v − b(v)) − f(v)

F (v)b′(v) · da · (v − b(v)) = −(1− 1
F (v) ) · da.

Rearranging yields the differential equation b(v) = v + −ad·(1−F (v))·b′(v)
((n−1)α−ad)·f(v) , which

for a �= 0 has the solution

b(v) = 1

(1−F (v))1−
(n−1)α

ad

· ∫ 1
v x · (1− (n−1)α

ad ) · (1 − F (x))−
(n−1)α

ad f(x)dx.

Thus, we have proved the theorem.

(Note that for a = 0, the differential equation simplifies to b(v) = v, which
matches the known truthful bidding strategy for standard second-price auctions.)
The bidding function can be interpreted as the expectation of the lowest of
1 − (n−1)α

ad private values above v. Substituting the uniform distribution over
[0, 1] for F gives us the following corollary:
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Corollary 3. There is a symmetric Bayesian Nash Equilibrium for the second-
price auction with all bids independently and uniformly drawn from [0, 1] in which
all bidders bid

b(v) = (1 + ad
(n−1)α−2ad ) · v − ad

(n−1)α−2ad .

Again, when d = n − 1, Theorem 4 and Corollary 3 subsume the results for
second-price auctions with uniform spite by Brandt et al. [6] who showed that
b(v) = v−a

1−a (with α = 1 + a), and those by Morgan et al. [18] (with α = 1).
By combining Corollaries 2 and 3, we can compare the expected revenues of the
first-price auction and second-price auction when all valuations are drawn from
the uniform distribution.

Theorem 5. Assume that the social graph is regular, with uniform
spite/friendship values a < α, and that the valuations of all bidders are drawn
independently and uniformly from [0, 1]. Then,

1. In the presence of uniform spite (a < 0), the expected revenue of the second-
price auction dominates the expected revenue of the first-price auction.

2. In the presence of uniform altruism (a > 0), the expected revenue of the first-
price auction dominates the expected revenue of the second-price auction.

Proof. Let bF and bS denote the bidding functions for first- and second-price
auctions, respectively. Also, let V(1) and V(2) be the highest and second-highest
valuations among all bidders, respectively. Notice that because all bidders use the
same bidding function, the highest valuation always corresponds to the highest
bid, and the second-highest valuation to the second-highest bid.

The revenue of the first-price auction is thus bF (V(1)), while the revenue of the
second-price auction is bS(V(2)). Notice that both bidding functions are linear, so
we can use linearity of expectations. Furthermore, E

[
V(1)
]

= n
n+1 , and E

[
V(2)
]

=
n−1
n+1 . Substituting these in the bidding functions of Corollaries 2 and 3,

E
[
bF (V(1))

]
= (1− α

n·α−ad ) · n
n+1 = (n−1)α−ad

n·α−ad · n
n+1 ,

E
[
bS(V(2))

]
= (1 + ad

(n−1)α−2ad ) · n−1
n+1 − ad

(n−1)α−2ad

= (n−1)α−ad
(n−1)α−2ad · n−1

n+1 − ad
(n−1)α−2ad .

The difference is

E
[
bS(V(2))

]− E
[
bF (V(1))

]
= bS(E

[
V(2)
]
)− bF (E

[
V(1)
]
)

= (n−1)α−ad
(n−1)α−2ad · n−1

n+1 − ad
(n−1)α−2ad − (n−1)α−ad

n·α−ad · n
n+1

= (n−1)·(n·α−ad)((n−1)α−ad)−n·((n−1)α−2ad)·((n−1)α−ad)
(n+1)·((n−1)α−2ad)·(n·α−ad) − ad

(n−1)α−2ad

= −ad·(n·α−ad)
((n−1)α−2ad)·(n·α−ad) − −α(n−1)ad+(ad)2

((n−1)α−2ad)·(n·α−ad)
= −ad·α

((n−1)·α−2ad)·(n·α−ad) .

Because α > 0 by definition, the denominator is positive for all values of d and
all a ∈ (−1, 1). The numerator has the opposite sign of a. Thus, we have proved
the claim.
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Notice that Theorem 5 recovers a special case of Theorem 3 from [6] for α = 1+a
and a < 0. However, [6] proved the result for arbitrary valuation distributions,
while ours holds only for uniform valuations. The techniques used in [6] do not
carry over immediately when the degree d of agents is small, and generalizing
Theorem 5 to arbitrary distributions is ongoing work.

4 Conclusions

In this paper, we studied auctions with spite and altruism among bidders. We
gave explicit characterizations of Nash Equilibria for first-price auctions with
valuations drawn uniformly from [0, 1] and arbitrary spite/altruism matrices A,
and for first- and second-price auctions with arbitrary valuations and regular
social networks.

Many questions remain for future work. For Bayesian auctions, can we find
a Nash Equilibrium for second-price auctions in general? It appears that this is
significantly more complex: the fact that first-price auctions had a Nash Equilib-
rium in which each bidder simply multiplies her bid by a constant was fortuitous.
Also, can we extend the analysis of first-price auctions to other distributions, or
to priors that are not identical for different bidders? Even within the realm we
considered, it would be interesting to characterize all Nash Equilibria, although
this has proven to be quite difficult even in simpler settings.

Having characterized the Nash Equilibrium bidding strategies, we would also
like to explicitly compute the revenue and social welfare of the auction. The
main obstacle here is to find the expected value of the winning bid, which is now
a maximum among n values drawn from different distributions. A secondary
problem is that the range of each distribution ([0, γi]) is only given by a formula
involving determinants. Calculating the revenue or social welfare would let us
characterize a “price of spite” or “benefit of altruism”.

Another intriguing question is whether agents can learn equilibrium bidding
strategies using a natural algorithm. Assuming that each agent knows the entire
matrix A is certainly unrealistic. Are there simple strategies (in the style of [5])
wherein each bidder adapts her bidding strategy based on the utility derived
from earlier auctions?

Finally, we would like to extend these results beyond single-item auctions to
more complex settings. A particularly promising direction would be the context
of keyword auctions [15], as well as various combinatorial settings.
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Abstract. In the ADM minimization problem, the input is a set of
arcs along a directed ring. The input arcs need to be partitioned into
non-overlapping chains and cycles so as to minimize the total number
of endpoints, where a k-arc cycle contributes k endpoints and a k-arc
chain contains k + 1 endpoints. We study ADM minimization problem
both as a non-cooperative and a cooperative games. In these games, each
arc corresponds to a player, and the players share the cost of the ADM
switches. We consider two cost allocation models, a model which was
considered by Flammini et al., and a new cost allocation model, which
is inspired by congestion games. We compare the price of anarchy and
price of stability in the two cost allocation models, as well as the strong
price of anarchy and the strong price of stability.

1 Introduction

WDM (Wavelength Division Multiplexing)/SONET (Synchronous Optical NET-
works) rings form a network architecture, which is being used, for example, by
telecom carriers. In such architectures, each wavelength channel carries a high-
speed SONET ring. The key terminating equipment consists of optical add-drop
multiplexers (OADM) and SONET add-drop multiplexers (ADM). Each ver-
tex is equipped with exactly one OADM. For a given ring, a SONET ADM is
required at every vertex which carries some traffic terminating at this vertex,
but not at other vertices. This motivates problems where the costs incurred by
SONET ADMs are considered, with the goal of minimizing such costs.

Formally, we are given a set E of circular-arcs over the vertices 0, 1, . . . , n−1,
where the vertices are ordered clockwise. The vertices 0, 1, . . . , n − 1 form a
ring, where a link connects vertex i − 1 to vertex i, for i = 1, 2, . . . , n − 1,
and in addition, there is a link connecting vertex n − 1 to vertex 0. An arc
(i, j) represents the clockwise path along the ring from a vertex i to the vertex
j. Each arc is operated by a selfish rational player. A pair of arcs (i, j), (k, l)
is non-intersecting if the clockwise path along the cycle 0, 1, . . . , n − 1, 0 that
connects i to j and the clockwise path that connects k to l do not share any link
of the cycle. A set of arcs is non-intersecting if each pair of arcs from this set
is non-intersecting. A feasible solution is a partition of E into non-intersecting
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subsets of arcs E1, E2, . . . , Ep. The social cost of Ei is the number of different
vertices of the ring which are end-points of any arc in Ei. The social cost of the
solution is the sum of social costs of Ei for all i. The social goal is to find a
minimum social cost feasible solution.

For an arc (i, j), we define its length as �(i, j) = j − i mod n. For a subset
of arcs, the length of the subset is the total length of its arcs. Throughout the
paper, the length of a path is defined to be the total length of its arcs. We use
the following auxiliary definition. The deficiency of a vertex v, def(v), is defined
as follows. Let in(v) be the number of ingoing arcs of v, and let out(v) be the
number of outgoing arcs of V . Then, def(v) = 1

2 |in(v)− out(v)|. The deficiency
of a set of arcs is the total deficiency over all vertices.

A chain is an open directed path of length at most n−1, and a cycle is a closed
directed path of length exactly n. Without loss of generality, we can assume that
the arcs in each Ei form a connected component (either a chain or a cycle). This
is so because if the arcs in Ei are disconnected, then we can partition Ei to its
connected components without increasing its total social cost. Therefore, we ask
for a partition of E into cycles and (open-)chains. Since the social cost of a cycle
equals to the number of arcs in it, whereas the social cost of a chain equals to
the number of arcs in it plus 1, an alternative definition for the social cost of a
feasible solution is given by the sum of the two factors, the number of chains in
the solution and the number of arcs in the input, |E|.

A significant amount of work on the minimization problem of the social goal
was carried out during the last few years. The current best approximation ratio
for this global problem is a 98

69 ≈ 1.42029-approximation algorithm in [6]. For
additional work on the problem, see [21,6,9,14,10,22,4].

In this paper we are concerned with the selfish behavior of users correspond-
ing to the arcs of the above problem. Flammini et al. [8] considered two non-
cooperative games related to this problem. In their setting the cost of a solution
is distributed among the arcs, and each arc tries selfishly to improve its own
cost by changing its connections (to its adjacent arcs), without disconnecting
any existing connections in which it does not participate. In these games they
analyzed the so-called price of anarchy (see below). The two games of [8] differ
by the cost allocation schemes (i.e., how one distributes the cost of the solution
among the arcs). They considered two allocation schemes. In the first one, called
Shapley, the arcs sharing an ADM pay for it by splitting its cost equally. That
is, an arc is charged with two costs resulting from its endpoints as follows. If
two arcs appear consecutively along a common chain or cycle then the single
ADM which is required at this common endpoint implies identical costs of 1

2 ,
charged to each one of the two arcs. An arc which has an endpoint which is not
shared with another arc is charged with a unit cost, which results from the ADM
required at this endpoint. In the Egaliterian cost allocation scheme the cost
of the entire solution is shared equally by all arcs. Hence in the Egaliterian

method each player basically has the social goal as its own goal. They showed
that the price of anarchy in each of the two models is exactly 5

3 . The results of [8]
hold also for general topology but they were in fact shown to be tight already for
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rings, which we consider here. They concluded their work by stating that “the
determination of other intermediate methods combining both the Shapley and
Egaliterian advantages is an important left open question”. A general discus-
sion on cost allocation methods for combinatorial optimization problems can be
found in [11]. Note that a meaningful cost sharing method for the ADM prob-
lem should be such that the cost of a player is related to the connections of its
arc on one hand, similarly to the Shapley model, but as in the Egaliterian

model, the cost cannot be determined in an entirely local way. Not only direct
connections should affect the cost, but indirect connections should be taken into
account as well. In this paper we introduce such a cost allocation model and
study its properties.

In the game definition of [8], each arc (i.e., player) has a strategy defined as
a pair consisting of its clockwise adjacent arc (if such exists), and its counter-
clockwise adjacent arc. We note that given a solution, one arc cannot change
its strategy without affecting the strategies of other arcs, and hence we must
allow an arc to affect the strategies of other arcs in a limited way as follows. An
arc a can force a change of the strategies of its current adjacent arcs at their
common endpoints by disconnecting a’s existing neighbors. In addition, it can
force the new adjacent arcs of a to connect to a, but only if the endpoints which
are being connected to a were free before the change (assuming such a change
creates a feasible solution, i.e., in the new solution the component which contains
a does not have intersecting arcs). More precisely, a new adjacent arc b can be
connected to a only if in the previous solution the relevant endpoint of b was
not connected at all. That is, an arc a can force a pair of connected arcs b, c to
become disconnected, only if a = b or a = c. An arc a is motivated to deviate
from its strategy if as a result of the deviation the cost which it incurs strictly
decreases. We define a mapping over the set of valid solutions as follows. One
solution is mapped to another solution if the second solution can result from
the first one by a deviation of a single arc from its strategy (possibly forcing
the change of strategies of its previously adjacent arcs, and new adjacent arcs).
Each fixed point of the mapping is considered as a (pure) Nash equilibrium (an
NE) [17]. If we consider a cooperative game in which we allow a coalition of arcs
to change their strategies simultaneously, then a new solution is created in two
steps. In the first step each arc of the coalition can get disconnected from one or
two arcs (forcing these arcs a change of strategy). In the second step, each arc of
the coalition can connect to other arcs at its free endpoints, provided that no ad-
ditional connections are being disconnected, and the implied solution is feasible.
An arc would join a coalition if its cost strictly decreases in the new solution. A
fixed point of the corresponding mapping defined on the set of solutions is called
a strong Nash equilibrium (an SNE), or a strong equilibrium [3].

In this paper we consider the Shapley cost allocation scheme of [8] as well
as a new cost allocation scheme which is motivated by congestion games [19]. In
congestion games, the total cost of a part of the solution is usually split equally
among the players sharing this part (which is typically a resource). In our setting
we let the arcs of a common chain or cycle (of the resulting solution) share the
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cost of their component equally. That is, an arc which belongs to a cycle pays
1, and an arc which belongs to a chain consisting of k arcs pays 1 + 1

k . We call
this cost allocation, Congestion cost allocation.

For the two models, we present upper and lower bounds on the price of anar-
chy, the strong price of anarchy, price of stability and strong price of stability.
We next define these metrics of games. For a game G which belongs to a model
M , which admits an NE and an SNE, we let OPT(G) denote the minimum
social cost of any solution (when G is clear from the context, we denote this
optimal solution and its cost by OPT). Let NE(G) denote the set of valid
solutions which are Nash equilibria and let SNE(G) denote the set of valid so-
lutions which are strong equilibria. For a solution S, we use S to denote its
social cost as well. Then the price of anarchy for the model M is defined as
PoA(M) = sup

G∈M
sup

S∈NE(G)

S
OPT(G) , that is, the worst case ratio between the so-

cial cost of a solution which is a Nash equilibrium, and the optimal social cost.
The strong price of anarchy is defined as SPoA(M) = sup

G∈M
sup

S∈SNE(G)

S
OPT(G) ,

that is, the worst case ratio between the largest social cost of a solution which
is a strong equilibrium, and the optimal social cost. The price of stability and
the strong price of stability are defined as PoS(M) = sup

G∈M
inf

S∈NE(G)

S
OPT(G) and

SPoS(M) = sup
G∈M

inf
S∈SNE(G)

S
OPT(G) , respectively, that is, the worst case ratio

between the smallest social cost of a solution which is a strong equilibrium, and
the optimal social cost.

Since for any game G, SNE(G) ⊆ NE(G), if all the measures above are well
defined, a model M satisfies PoS(M) ≤ SPoS(M) ≤ SPoA(M) ≤ PoA(M).

In the last few years, there has been extensive studies of the relation between
equilibria for combinatorial optimization problems, and social optima. The ap-
plication of concepts and techniques borrowed from game theory to various prob-
lems in computer science, and specifically, to network problems, was initiated in
[13,18]. Since then, issues like routing [20,15,5], bandwidth allocation [23], and
congestion control [12], to name only a few, have been analyzed from a game
theoretic perspective. Typically the studies focus on the worst equilibrium of a
given model (that is, on the price of anarchy), since the price of stability often
turns out to be 1, yet systems may converge to any possible equilibrium. Since
for some applications, a system can be forced to stay in a specific configuration,
as long as this configuration is stable, the best equilibrium is of interest too, and
a more careful study of the price of stability is required [2]. There has been some
work on cooperative games as well, and in particular, Andelman, Feldman, and
Mansour [1] suggested the study of strong equilibria in order to separate the
effect of lack of coordination from the effect of selfishness.

The Egaliterian cost sharing model for the ADM minimization problem
was shown to be equivalent to the Shapley cost sharing method, in terms of
Nash equilibria [8]. This property is not true for strong equilibria. It is not diffi-
cult to see that SPoA(Egaliterian)= 1, and therefore PoS(Egaliterian) =
SPoS(Egaliterian) = 1. This holds since a solution which is not a social
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optimum cannot be a strong equilibrium; for such a solution, the entire set
of arcs is a coalition which wishes to deviate and create a social optimum.
Thus we do not consider this variant further in the current work. Interest-
ingly, we show that SPoA(Shapley) = 3

2 , but yet SPoS(Shapley) = 1. The
Congestion cost sharing model turns out to be similar to the other models
in terms of the PoA, and we show PoA(Congestion) = 5

3 . We further show
3
2 ≤ SPoA(Congestion) ≤ 11

7 ≈ 1.57143. However, in this model the best equi-
libria turns out to be of interest. We show PoS(Congestion) ≥ 16

13 ≈ 1.23077,
and 1.25 ≤ SPoS(Congestion) ≤ 1.38. The upper bounds on the SPoA and
the SPoS of the Congestion model are our main technical contribution. In or-
der to obtain these bounds, we present insights into the combinatorial structure
of the problem. We then use factor revealing mathematical programs and solve
them using a non-trivial application of methods allowing to solve rational goal
optimization problems with linear constraints.

In the full version, we discuss an additional ADM minimization problem,
called the chord version [4,7]. Due to space limitation, some proofs are omitted.

Table 1. Results. The abbreviations LB and UB stand for lower bound and upper
bound, respectively. The abbreviations E., S. and C. stand for the cost allocation
models: Egaliterian, Shapley and Congestion, respectively.

E. LB E. UB S. LB S. UB C. LB C. UB
PoA 5/3 [8] 5/3 [8] 5/3 [8] 5/3 [8] 5/3 5/3
SPoA 1 1 3/2 3/2 3/2 11/7 ≈ 1.57143
SPoS 1 1 1 1 1.25 1.38
PoS 1 [8] 1 [8] 1 [8] 1 [8] 16/13 ≈ 1.23077 1.38

2 The Shapley Cost Allocation Model

In this section, we consider the Shapley cost allocation model. The paper [8]
proved that the price of anarchy of this game is exactly 5

3 . We show that the
corresponding game always admits an SNE, and consider the strong price of
anarchy of this game, which turns out to be very different from the SPoA in
the Egaliterian cost sharing model.

Theorem 1. An optimal solution OPT, which has a maximal number of cycles
(among optimal solutions), is an SNE. Therefore, an SNE always exists, and
PoS = SPoS = 1. The strong price of anarchy of the Shapley cost allocation
model is exactly 3

2 .

3 The Congestion Cost Allocation Model

In this section we study the new cost allocation model and stress the differences
between the two models. Since the arcs which belong to a chain share its cost
equally, arcs are well motivated to belong to long chains. We start with showing



352 L. Epstein and A. Levin

two simple games, each of which corresponds to a Nash equilibrium in one model
but not in the other. By these examples, we find that the two models are distinct,
and the new model needs to be considered separately.

Example 1. Consider a ring over n = 5 vertices, and the four arcs e1 = (0, 2),
e2 = (2, 3), e3 = (3, 4) and e4 = (4, 1). The total length of arcs is 6, and moreover
the arcs do not induce a valid cycle, therefore any solution consists of at least two
chains. Consider the solution which consists of two chains, where the first chain
contains e1 and e2 and the second one contains the other two arcs. This solution
is an SNE in the Shapley model; even though either e2 or e3 could potentially
connect to the other chain, since the cost of each arc is 3

2 , this cost would not
change as a result of the deviation. However, this deviation is beneficial in the
Congestion model, where this solution is not an NE, since it would change
the cost of a deviating arc from 3

2 to 4
3 .

The first example showed a game which is an SNE in the Shapley model, but
not even an NE in the Congestion model. This situation seems to be natural,
since costs are allocated in the Shapley model only as a function of the role
of an arc in a chain or a cycle, and in a more uniform way in the Congestion

model. We show however, that the opposite situation may occur as well.

Example 2. Consider a ring over n = 6 vertices, and the five arcs e1 = (0, 1),
e2 = (1, 3), e3 = (3, 5), e4 = (4, 0) and e5 = (1, 2). The total length of arcs is
8, and the arcs do not induce a valid cycle, therefore any solution consists of at
least two chains. Consider the solution which consists of three chains, where the
first chain contains e1, e2, and e3, and each of e4 and e5 are one-arc chains. This
solution is an SNE in the Congestion model; the longest chain which can be
created from the input consists of three arcs, so the arcs of the first chain have
no incentive to change their strategies. However, the deviation of e1, to join both
e4 and e5 is beneficial in the Shapley model, since its cost would change from
3
2 to 1, so this solution is not even an NE in the Shapley model.

A crucial difference between the two cost allocation models is that in the
Congestion model the costs of arcs can take any value of the form 1 + 1

k for
k = 1, 2, . . . ,∞, while the costs in the Shapley model are in the set {1, 3

2 , 2}.
Still, an arc which belongs to a cycle pays 1, and thus it would never deviate
from its current strategy.

We next establish the existence of an SNE for any game of this model, which
will ensure the existence of an NE in every game as well. To prove the existence
of an SNE we study the following algorithm.

Algorithm A

1. Repeat until no valid cycle can be created:
Find a valid cycle and remove its arcs from the input. Add the newly found
cycle to the components of the resulting solution.

2. Repeat until the input is empty:
Find a valid chain with a maximum number of arcs and remove it from
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the input. Add the newly found chain to the components of the resulting
solution.

end of algorithm A.

The relation between this algorithm A and strong equilibria is established in
the next lemma.

Lemma 1. Algorithm A is a polynomial time algorithm which always returns
an SNE. Moreover, every SNE is an output of some execution of algorithm A
(i.e., can be returned by the algorithm with some tie-breaking decisions).

Theorem 2. For any game in the Congestion cost allocation model there ex-
ists an SNE (and therefore an NE). It is possible to verify in polynomial time
that a solution SOL is an SNE.

Proof. The existence of an NE and an SNE follows by Lemma 1. It remains to
show a polynomial time algorithm which validates that some solution SOL is an
SNE. We consider the set of arcs which belong to chains in SOL. If these arcs
contains the arcs of a valid cycle, then SOL is clearly not an SNE. Otherwise,
for each i = 1, 2, . . . , n − 1 we check if the collection of arcs which belong to
chains of at most i arcs in SOL can form a chain consisting of at least i + 1
arcs (by finding a valid chain with a maximum number of arcs). If so, then SOL

is not an SNE. Otherwise SOL is indeed an SNE, since it can be given as an
output of algorithm A. ��
After we have established the existence of an NE, we analyze the price of anarchy
of this game. Note that the proof of [8] is not valid for this case, since it relies
on the fact that an arc has one of a set of three possible costs.

Theorem 3. The price of anarchy of the Congestion cost allocation game is
exactly 5

3 . The strong price of stability of the Congestion cost allocation model
is at least 5

4 = 1.25. The price of stability in the Congestion cost allocation
model is at least 16

13 . The strong price of anarchy of the Congestion cost allo-
cation model is at least 3

2 .

Theorem 4. The SPoS of the Congestion cost allocation model is at most
1.38.

Proof. The overview of the proof is as follows. We obtain combinatorial struc-
tural properties of a pre-specified SNE, and use these properties to get a math-
ematical program which bounds the average cost of the SNE per a unit cost of
the optimal solution. The calculation is performed on all components of OPT

together. This mathematical program has a ratio objective function, and linear
constraints. We use the properties of this type of programs to obtain a closed-
form solution, which enables us to prove the claim.

Consider a given input consisting of a set of m arcs |E| on a ring with n
vertices and an optimal solution OPT. We construct an SNE, SOL, using a
specific execution of the greedy algorithm above. In the cycle creation phase, at
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every step, if there exists a cycle of OPT for which all arcs are still available,
then such a cycle is chosen. In the chain creation phase, let i be the maximum
number of arcs in any valid chain which can be created from available arcs. If
there exists a chain or a sub-path of a chain of OPT, which consists of i arcs,
and all these arcs are still available, then such a chain is chosen.

Without loss of generality, we assume that the two solutions OPT and SOL

do not contain any identical component (cycle or chain), and in particular, no
common cycles, and no common chains consisting of a single arc. If such a
common component exists, the removal of its arcs from the input would not
harm the strong equilibrium, and would not increase the ratio between the costs
of SOL and the cost of OPT. By the construction, this means that OPT consists
of chains and no cycles, since all its cycles are part of the constructed solution.

We create a new graph over the vertices of the ring as follows. Let C =
{p1, p2, . . . , pi} be a chain of SOL, such that pj = (�j , rj). Then the arcs of C
are removed and replaced by a single arc (�1, ri). The arcs which are inserted
instead of the original arcs are called the new arcs. Note that the deficiency of
the new graph is equal to the deficiency of the original set of arcs, and the total
length of new arcs is equal to the total length of original arcs.

We claim that if two new arcs share an endpoint in the new graph, then the
corresponding two chains have a total length which exceeds n. To see this, we
note that otherwise the arcs of the two chains can form a coalition which would
reduce the cost of every arc in it by creating a concatenated chain. Denote the
new set of new arcs by E′. Let d = def(E) = def(E′). We claim that the new
arcs can be partitioned into (possibly invalid) paths and cycles, such that the
number of paths is at most d. This can be achieved by constructing Euler tours
on the connected components of the new graph. We next claim that the total
length of new arcs is at least n |E′|−d

2 . Consider a cycle of k new arcs in the
partition into cycles and paths which is implied by the Euler decomposition.
Since the length of each pair of consecutive new arcs is more than n, we get that
the total length of the cycle is at least kn

2 . A similar argument holds for paths
with an even number of new arcs, since the path can be split into k

2 consecutive
pairs. Consider a path of k new arcs, where k is odd. The same argument holds
for a sub-path of k−1 arcs, and thus the total length is at least (k−1)n

2 . Summing
up for all components, and taking into account that the number of odd paths is
at most the number of paths which is at most d, we get a total length of n |E′|−d

2 .
We next find lower bounds on the number of chains in OPT. Since OPT

contains no cycles, and the length of each chain is at most n − 1, then the
number of chains is at least the total length of all arcs divided by n − 1. Since
the total length of arcs in E is equal to the total length of arcs in E′, OPT

contains more than |E′|−d
2 chains. On the other hand, OPT has at least d chains

due to the deficiency. Therefore, |E′| = 2( |E
′|−d
2 ) + d is at most three times the

number of chains of OPT.
Denote by CHi the number of chains with i arcs in OPT. Then we derive

that the number X of chains in SOL satisfies X ≤ 3
n−1∑
i=1

CHi. We next obtain



On Equilibria for ADM Minimization Games 355

another upper bound on X . To do so, we will bound the total price paid by all
arcs. We denote by T (i) + i an upper bound on the maximum total price which
can be paid by the arcs of one chain, which consists of i arcs, that is, T (i) is the
marginal cost of the arcs, not taking into account the cost of at least 1, which is
the minimal cost for any arc.

Our bound on T (i) will follow from the following observation. Given an i-
arcs chain C, it must contain an arc which pays at most 1

i+1 (otherwise, in the
creation process of SOL, we would prefer to pick C which is part of the optimal
solution). When we delete this arc from a chain we create two chains with j arcs
and i− j − 1 arcs and the total price paid by the arcs of these chains is at most
T (j) + T (i− j − 1). Hence, T (i) satisfies the following recursion.

T (i) =
1

i + 1
+ max

j=0,1,2,...,�(i−1)/2�
{T (j) + T (i− j − 1)}.

The starting condition is T (0) = 0 and T (1) = 1. Via direct calculation we can
find the following values which we use later : T (2) = 4

3 , T (3) = 9
4 = 2.25, T (4) =

38
15 ≈ 2.5333, T (5) = 41

12 ≈ 3.41667, T (6) = 313
84 ≈ 3.72619, T (7) = 37

8 = 4.625.
Moreover, since each chain incurs a cost of 1 in addition to a cost of 1 for each

one of its arcs, we conclude that X ≤
n−1∑
i=1

T (i)CHi.

We next formulate a mathematical program whose solution is an upper bound

on the SPoS. We let x = X
m and for all i, ci = CHi

m . We use
n−1∑
i=1

iCHi = m,

OPT = m +
n−1∑
i=1

CHi, and SOL = m + X .

max
1 + x

1 +
n−1∑
i=1

ci

s.t.
n−1∑
i=1

ici = 1, x ≤
n−1∑
i=1

T (i)ci, x ≤ 3
n−1∑
i=1

ci, x, c1, . . . , cn−1 ≥ 0.

We next note that since we assume that OPT and SOL do not contain any
identical component, and in particular, no common chains consisting of a single
arc. Hence in this mathematical program we can replace T (1) by 1

2 (while the
recursive definition still uses T (1) = 1).

We next note that though the resulting mathematical program is not a lin-
ear program (as the objective function is rational function and non-linear), the
optimal solution can be assumed to be a basic solution. To derive this property,
we suggest to invoke Megiddo’s parametric search method [16] for solving this
mathematical program. In this method, we solve the problem by calling an LP
solver multiple times. Eventually, the solution is obtained as the solution re-
turned by the LP solver in one of the iterations. If in each iteration we return
a basic solution, the overall optimal solution which we find, is a basic solution.
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Hence, since there are three constraints (beside the non-negativity constraints)
there are at most three positive variables in the optimal solution.

We next note that in the optimal basic solution x must be positive, and
hence x is in the optimal basis. It remains to identify the two remaining basic
variables. We first show that neither of the surplus variables which we introduce
to transform the problem into standard form, is in the optimal basis. To see this
fact note that in such basic solutions there is at most one variable ci which is
positive. So x ≤ T (i)ci, if i > 1 and x ≤ c1

2 , if i = 1 . First we consider the cases
in which i ≥ 5. From the first constraint we conclude that ci ≤ 1

5 , and hence
1+x

1+
n−1∑
j=1

cj

≤ 1+3ci

1+ci
= 3− 2

1+ci
≤ 4

3 .

For i = 1, x ≤ ci

2 , so we obtain 1+x

1+
n−1∑
j=1

cj

≤ 1+ ci
2

1+ci
≤ 1. For i = 2, x ≤ 4

3ci, so

we obtain 1+x

1+
n−1∑
j=1

cj

≤ 1+ 4
3 ci

1+ci
< 4

3 . For i = 3, x ≤ 9
4ci, and ci ≤ 1

3 , so we obtain

1+x

1+
n−1∑
j=1

cj

≤ 1+ 9
4 ci

1+ci
= 9

4 − 5
4(1+ci)

≤ 1.3125. For i = 4, x ≤ 38
15ci, and ci ≤ 1

4 , so we

obtain 1+x

1+
n−1∑
j=1

cj

≤ 1+ 38
15 ci

1+ci
≤ 38

15 − 23
15(1+ci)

≤ 98
75 ≈ 1.30667.

Therefore, without loss of generality we can restrict ourselves to basic solutions
in which all the three constraints are tight. That is, we replace all the inequalities
by equalities.

We note that in this optimization problem the objective function, 3 − 6
x+3 ,

is a monotonically increasing function of x. Hence, to optimize it, it suffices to
maximize x instead of maximizing 3− 6

x+3 .
We suggest a feasible solution to the linear program. In this solution the basic

variables are x, c3, c7 and the value of these variables are x = 19
27 , c3 = 13

81 and
c7 = 2

27 (all remaining variables are 0). This solution is clearly a feasible solution
to the linear program. We next argue that this is an optimal solution. To prove
this claim we consider the dual problem to the above linear program which we
state next. The variables α, β and γ correspond to the constraints of the primal
program (in this order).

min α, s.t. β + γ ≥ 1, α− β

2
− 3γ ≥ 0, jα− T (j)β − 3γ ≥ 0, 2 ≤ j ≤ n− 1.

For this dual linear program we present the following dual solution α = 19
27 ,

β = 32
27 and γ = −5

27 . Note that the objective function value of this dual solution
is exactly the objective function value of the primal solution we pinpoint above.
Hence, if we establish the feasibility of the dual solution, we get that the primal
solution is optimal (by weak duality of linear program).

So we next show that the dual solution is feasible. β + γ = 32
27 + −5

27 = 1 so
the first constraint holds. α− β

2 − 3γ = 19
27 − 16

27 + 15
27 = 2

3 > 0 and so the second
constraint holds.
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As for the (family of the) third constraint, we prove this constraint by induc-
tion. The base cases are j = 0, 1, 2, . . . , 6. We need to prove 19j−32T (j)+15 ≥ 0.
We have 19·0−32T (0)+15 = 15, 19·1−32T (1)+15 = 2, 19·2−32T (2)+15 = 31

3 ,
19 · 3 − 32T (3) + 15 = 0, 19 · 4 − 32T (4) + 15 = 149

15 , 19 · 5 − 32T (5) + 15 = 2
3 ,

and 19 · 6 − 32T (6) + 15 = 205
21 . Next, we prove the inequality for some J ≥ 7.

There exist integer values j1, j2 ≥ 0 such that J = j1 + j2 + 1 and T (J) =
T (j1) + T (j2) + 1

J+1 . By the induction hypothesis, 19ji − 32T (ji) + 15 ≥ 0 for
i = 1, 2 thus 19(j1+j2)−32(T (j1)+T (j2))+30 ≥ 0. We have 19J−32T (J)+15 =
19(j1 + j2 +1)−32(T (j1 +T (j2)+ 1

J+1 ))+15 ≥ 19− 32
J+1 −15 = 4(1− 8

J+1 ) ≥ 0,
for J ≥ 7.

Hence, the dual solution is feasible. As explained above, this means that the
primal solution is optimal to the linear program and hence also to our origi-
nal mathematical program which bounds the SPoS. Finally, by plugging-in the
values of our primal solution to the objective function of the mathematical pro-
gram, we obtain that the SPoS is at most 69

50 = 1.38. ��
Note that this analysis is not tight in the sense that the solution of the math-
ematical program results in a worst case example, where OPT consists only of
chains with three arcs and chains with seven arcs, where every second arc has a
cost of 2 in SOL. Specifically, the costs of arcs in chains of three arcs are (2, 5

4 , 2)
and the costs of arcs in chains of seven arcs are (2, 5

4 , 2, 9
8 , 2, 5

4 , 2). Hence in SOL

all arcs belong to chains of a single arc, chains of four arcs or chains of eight
arcs. Consider a chain of SOL which consists of four arcs. Denote these arcs by
e1, e2, e3, e4, and assume that in OPT each ei appears between the arcs ai and
bi (so ai, ei, bi is a part of a chain in OPT). All arcs ai and bi are single-arc
chains in SOL. Then, for i = 1, 2, 3 we have that ai+1 has a common end-vertex
as bi. Since they are not merged into a single chain in SOL, we conclude that
�(ai+1)+ �(bi) > n. However, for every i we have �(ai)+ �(ei)+ �(bi) < n. Hence,
we conclude that �(a1) + �(e1) + �(e2) + �(e3) + �(e4) + �(b4) < n and therefore
SOL can extend the four arcs chain using a1 and b4 contradicting the assump-
tion that SOL is an NE. A similar argument holds for eight-arc chains of SOL

as well. Therefore, the exact value of SPoS (Congestion) remains open.
For the SPoA, we can apply a similar proof technique incorporated with

application of the structural properties of Megiddo’s parametric search method
[16], to prove the following upper bound.

Theorem 5. The SPoA of the Congestion cost allocation model is at most
11
7 ≈ 1.5714.
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