
Effects of Topology-Aware Allocation Policies on
Scheduling Performance

Jose Antonio Pascual, Javier Navaridas, and Jose Miguel-Alonso

The University of the Basque Country, San Sebastian 20018, Spain
{joseantonio.pascual,javier.navaridas,j.miguel}@ehu.es

Abstract. This paper studies the influence that job placement may have
on scheduling performance, in the context of massively parallel comput-
ing systems. A simulation-based performance study is carried out, using
workloads extracted from real systems logs. The starting point is a par-
allel system built around a k -ary n-tree network and using well-known
scheduling algorithms (FCFS and backfilling). We incorporate an alloca-
tion policy that tries to assign to each job a contiguous network partition,
in order to improve communication performance. This policy results in
severe scheduling inefficiency due to increased system fragmentation. A
relaxed version of it, which we call quasi-contiguous allocation, reduces
this adverse effect. Experiments show that, in those cases where the ex-
ploitation of communication locality results in an effective reduction of
application execution time, the achieved gains more than compensate the
scheduling inefficiency, therefore resulting in better overall performance.

1 Introduction

Supercomputer centres are usually designed to provide computational resources
to multiple users running a wide variety of applications. Users send jobs to a
scheduling queue, where they wait until the resources required by the job are
available. These jobs may vary from large parallel programs that need many pro-
cessors, to small sequential programs. The scheduler manages system resources,
taking into consideration different policies that may restrict the use in terms of
maximum number of processors or maximum execution time. Other restrictions
may be implemented such as user or group priorities, quotas, etc.

Generally, site performance is measured in terms of the utilization of the sys-
tem and the slowdown suffered by jobs while waiting in the queue until the re-
quired resources become available. Consequently, a variety of scheduling policies
[1] and allocation algorithms [2] [3] [4] have been developed aiming to minimize
both the number of nodes that remain idle and the job waiting times. Scheduling
policies are in charge to decide the order in which jobs are launched. Schedul-
ing decisions may be based on different variables, such as job size, user priority
or system status. Allocation algorithms map jobs onto available resources (typ-
ically, processors). Locality-aware policies select resources taking into account
network characteristics, such as its topology or the distance between processors.

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2009, LNCS 5798, pp. 138–156, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Effects of Topology-Aware Allocation Policies on Scheduling Performance 139

The most commonly used scheduling policies are FCFS (First-Come First-
Serve) and FCFS + backfilling, sometimes with variations. The FCFS discipline
imposes a strict order in the execution of jobs. These are arranged by their arrival
time and order violations are not permitted, even when resources to execute the
first job are not available but there are enough free resources to execute some
other (or others) jobs in the queue. The main drawback of this policy is that it
produces severe system fragmentation because some processors can remain idle
during a long period of time due to the sequentially ordered execution of jobs.
Idle processors could be used more efficiently running less-demanding jobs, thus
achieving a performance improvement.

With the goal of minimizing the effect of this strictly sequential execution order,
several strategies have been developed [1], backfilling being the most widely used
due to its easy implementation and proven benefits. This policy is a variant of
FCFS, based on the idea of advancing jobs through the queue. If some queued jobs
require a smaller amount of processors than the one at the head, we can execute
them until the resources required by the job at the head become available. This
way, utilization of resources is improved because both network fragmentation and
job waiting times decrease. The reader should note that, throughout this paper,
we will often use the word network to refer to the complete parallel system.

Network fragmentation caused by scheduling algorithms is known as external
fragmentation [5]. But a different kind of fragmentation appears in topologies like
meshes or tori when the partitions reserved to jobs are organized as sub-meshes
or sub-tori; for example, to allocate a job composed by 4x3 processes, some algo-
rithms search for square sub-meshes, 4x4 being the smallest size that can be used
to run the job. In this case, four processors reserved for the job will never be used.
This effect is named internal fragmentation [5]. Some job allocation algorithms try
to minimize this effect. However, this work does not consider this effect, because
each parallel job will be assigned to the exact number of required nodes.

Neither FCFS nor backfilling are allocation algorithms, as they do not take
into account the placement of job processes onto network nodes. In a parallel
system, application processes (running on network nodes) communicate inter-
changing messages. Depending on the communication pattern of the application,
and the way processes are mapped onto the network, severe delays may appear
due to network contention; delays that result in longer execution times. If we
have several parallel jobs running in the same network, each of them randomly
placed along the network, communication locality inside each job will not be
exploited; and what is more, messages from different applications will compete
for network resources, greatly increasing network contention. An effective ex-
ploitation of locality results in smaller communication overheads, which reflects
in lower running times. Note that searching for this locality is expensive in terms
of scheduling time, because jobs cannot be scheduled until contiguous resources
are available (and allocated), so that network fragmentation increases. In or-
der to avoid this effect, we propose the utilization of quasi-contiguous allocation
schemes in which some restrictions of the purely-contiguous policy are relaxed,
allowing the non-contiguous allocation of part of the required network nodes.



140 J.A. Pascual, J. Navaridas, and J. Miguel-Alonso

This way network occupancy can be increased, at the cost of some penalty in
terms of application run times.

A trade-off has to be found between the gains attainable via exploitation of
locality and the negative effects of increasing fragmentation. This is precisely the
focus of this paper. We study only the placement in k -ary n-tree topologies [6],
but the tools and methodology presented here will be extended to other topolo-
gies such as meshes or tori. Our final goal is to demonstrate that the introduction
of locality-aware policies in the schedulers may provide important performance
improvements in systems with multiple users and different applications.

The rest of the paper is organized as follows. In Section 2 we discuss some
previous work on scheduling and allocation policies, describing in Section 3 those
used in this paper. The simulation environment and the workloads used for the
experiments are described in Section 4. Section 5 analyze a few preliminary
experiments that provide evidence of the pros and cons of consecutive allocation
schemes. These experiments are further elaborated in Section 6, that focuses on
the search of a trade-off between application speedup and scheduling slowdown.
Section 7 closes the paper with some conclusions and future lines of research.

2 Related Work

Extensive research has been conducted in the area of parallel job scheduling.
Most works were focused on the search of new scheduling policies that minimize
job waiting times, and on allocation algorithms that minimize network fragmen-
tation. In [1] authors analyzed a large variety of scheduling strategies; however,
none of them took into account virtual topologies of applications (the logical way
of arranging processes to exploit communication locality) or network topology.

To our knowledge, only [5] described a performance study of parallel applica-
tions taking into account locality-aware allocation schemes. The starting point
of this job was the fact that, in schedulers optimized for certain network topolo-
gies (they focused on meshes and tori), allocation was always done in terms of
sub-meshes (or sub-tori). This policy optimized communication in terms of lo-
cality and non-interference, but caused severe fragmentation, both internal and
external. The authors did not use scheduling with backfilling, a technique that
would partly reduce this undesirable effect. However, they tested a collection
of allocation strategies that sacrifice contiguity in order to increase occupancy.
They claimed that the effect on application performance attributable to the
partial loss of contiguity was low, and more than compensated by the overall
improvement in system utilization.

A more recent paper [7] evaluated the positive impact that locality-aware
allocations have on applications performance, but focused on three particu-
lar applications, running on supercomputers connected by 3-D interconnection
networks.

Part of our experiments corroborates the conclusions of the cited papers. How-
ever, our work differs from them in several important aspects. Previous research
work shows that, depending on the communication pattern of the application,



Effects of Topology-Aware Allocation Policies on Scheduling Performance 141

contiguous allocation provides remarkable performance improvements [8]. There-
fore, we do not make extensive use of non-contiguity to increase system utilization;
instead, we incorporate backfilling scheduling policy into the scheduler. Addition-
ally, we focus on k -ary n-trees, instead of meshes or tori.

A review of schedulers in use in current supercomputers, such as Maui, Sun
Grid Engine, and PBS Pro, shows that they do not implement contiguous allo-
cation strategies. Some of them provide methods for the system administrator to
develop their own strategies but, in practice, this is rarely done. To our knowl-
edge, the only two current schedulers that maintain the locality are the one
used by the BlueGene family supercomputers [9] and SLURM. The BlueGene
scheduler puts tasks from the same application in one or more midplanes of
8x8x8 nodes which decreases network contention and allows locality exploita-
tion. SLURM performs always a best-fit algorithm building first a Hilbert curve
through the nodes on the Sun Constellation and Cray XT systems in order to
keep locality as higher as possible. In contrast, the scheduling strategy used by
the default scheduler (PBS Pro) on Cray XT3/XT4 systems (also a custom-made
3D tori) simply gets the first available compute processors [10].

3 Scheduling and Placement Policies

We used simulation to carry out an analysis of the impact that contiguous and
quasi-contiguous allocation strategies have on scheduling performance. Our sim-
ulator implements two different scheduling policies (FCFS with and without
backfilling), as well as three allocation algorithms (non-contiguous, contiguous,
and quasi-contiguous) implemented for k -ary n-trees. The workloads used to
feed the simulations have been obtained from actual supercomputers and are
publicly available at the Parallel Workload Archive [11].

The details of the scheduling algorithms used in the experiments are as follows:

1. First Come First Serve (FCFS): In this policy, jobs are strictly processed
in arrival order and executed as soon as there are enough available resources.
The scheduling process is stopped until this condition is reached, even if there
are enough free resources that could be allocated to other waiting jobs.

2. Backfilling (BF): This strategy permits the advance of jobs, even when
they are not at the head of the queue, in such a way that system utiliza-
tion increases, but without delaying the execution of the jobs that arrived
first. The mechanism works as follows. A reservation for the first job in the
queue is done, if enough resources are not currently available; the reserva-
tion time is computed taking into account the estimated termination time of
currently running jobs. Other waiting jobs demanding fewer resources may
be allowed to run while the first one is waiting. When the time of the reser-
vation is reached, the waiting job has to run; if at that point resources are
not available, some running, advanced jobs must be killed, because other-
wise the reservation would be violated. This way, the starvation of the first
job is avoided. Reservations are computed using a parameter called User



142 J.A. Pascual, J. Navaridas, and J. Miguel-Alonso

Estimated Runtime, which represents a user-provided estimation of the job
execution time [12]. In some cases the scheduling system itself may provide
this value, based on estimations made over the historical system logs [13].

Other scheduling methods have been proposed in the literature, such as SJF
(Shortest Jobs First [1]) which selects the jobs to be executed by their size instead
of their arrival time, and several variations of backfilling (see [1]). However, the
most commonly used algorithm in production systems is the EASY backfilling
[1], also known as aggressive backfilling. EASY performs reservations only over
the first job in the queue. This is the policy used in this study.

Regarding the allocation algorithms, the following are included in the study:

1. Non-contiguous: This policy performs a search of free nodes making a
sequential search over them, ignoring the locality. This is the most used
technique in commercial systems, like the Cray XT3/XT4 systems, that
simply gets the first available compute processors [10]. This scheme provides
a flat vision of the network, ignoring its topological characteristics and the
virtual topologies of scheduled applications [4]. Note that in the long run it
behaves as a random allocation of resources.

2. Contiguous: In this scheme job processes are allocated to nodes maintain-
ing them as close as possible. To minimize the distance between processes
(nodes) in a k -ary n-tree, we have defined the concept of level of a job. This
level is related to the number of stages in the tree (n), and the number of
ports per switch (k up and k down) [6]. Stage 1 corresponds to switches
at the bottom of the tree, i.e., those directly connected to compute nodes.
Small jobs of less than k nodes can be allocated to a collection of nodes
attached to the same stage-1 switch, without requiring communication in-
volving switches in upper stages of the tree. These are level-1 jobs. However,
jobs larger than k will require the utilization of switches at stages 2, 3, etc.
In general, up to ki nodes can be allocated using stage-i switches.

3. Quasi-contiguous: This algorithm is a relaxed version of the previous one.
It searches nodes that are contiguously allocated but, if the required number
of free nodes is not found at the job level, it searches for the remaining nodes
using switches one level above; contiguity is partly kept. The threshold of
required-but-not-found free nodes that triggers the search on a higher level is
a parameter provided to the algorithm, and the value providing best results
is highly dependent on the size and type of the jobs that are executed in
the systems. This parameter, which we call qct (quasi-contiguity threshold)
is actually a percentage of the job size representing the number of tasks of
that job allowed to be allocated using one extra level of the tree. Using this
equation

maxj∈J =
⌈

qct
100

× sizej

⌉
. (1)

the algorithm computes maxj∈J , the maximum number of tasks of the job
j allowed to be allocated using switches at the next level.



Effects of Topology-Aware Allocation Policies on Scheduling Performance 143

The utilization of additional stages of the tree may increase network con-
tention, so we try to keep it under control by reducing the number of mes-
sages traversing high-level switches. To do so, we maintain the maximum
possible number of nodes under switches belonging to the same level; actu-
ally, in favorable conditions this algorithm behaves exactly like the purely
contiguous one. However, as some tasks can be assigned to non-contiguous
portions of the network, external fragmentation is reduced. The qct thresh-
old will maintain the number of quasi-contiguously allocated tasks limited,
in order to reduce the interference created by the messages of different
applications.

The contiguous algorithm starts computing the level to which the job belongs,
and the size of this level (level_size, the number of compute nodes below a
single switch located at that level, which is the maximum size of a job that
can be contiguously allocated below that level). After this preliminary step, the
search of free nodes is performed, in groups of level_size nodes following a first fit
allocation scheme, because this way all the allocated nodes would be contiguous,
that is, connected by the same switch or switches at the required level. If the
complete tree is traversed but the necessary number of nodes has not been found,
the job cannot be allocated. For example, in a 4-ary 3-tree topology, if we need

Fig. 1. Top: a 4-ary 3-tree; compute nodes are not represented for the sake of clarity.
Bottom: a section of the network, with some examples of allocated jobs.



144 J.A. Pascual, J. Navaridas, and J. Miguel-Alonso

to allocate a 4-node job, we have to find a completely empty stage-1 switch. For
a 6-node job (level-2) we need to find 6 free nodes that are connected using only
stage-1 and stage-2 switches.

The quasi-contiguous algorithm requires two steps. Firstly, it performs a
search for contiguous partitions as we stated before. If not found, because there
are not enough free nodes at the job level, and the percentage of non-allocated
tasks is below the qct threshold, the search continues in the level above. For
example, in a 4-ary 3-tree topology, if we need to allocate a 4-node job, we start
searching for completely empty stage-1 switches but, if none is available, another
search is performed using stage-2 switches.

In Figure 1 we represent some simple allocation examples in a 4-ary 3-tree
topology. We can observe how Job 1, of size 4, can be allocated into a single
stage-1 switch; this is a contiguous allocation. The level of Job 2, of size 6, is 2;
this means that it is allocated to two stage-1 switches that directly connected
via switches at stage 2. Therefore, allocation of Job 2 is also contiguous. Job 3
is quasi-contiguously allocated because it should be a level-1 job (size is 4) but
it requires the utilization of stage-2 switches.

4 Description of the Workloads

As we stated before, in this work we evaluate the performance of schedulers
using logs of workloads extracted from real systems that are available from the
PWA (Parallel Workload Archive, [11]). These logs have information about the
system as described in the SWF format (Standard Workload Format) [14]. In
this study we used the following fields:

1. Arrival Time: The timestamp at which a job arrives to the system queue.
Logs are sorted by this field.

2. Execution Time: The interval of time that the job was running in the
system. In order to simulate the improvement of performance due to the ex-
ploitation of communication locality, we scale this field by applying a speed-
up factor.

3. Processors: Number of processors required by the job.
4. User Estimated Runtime: This information is used only by the backfilling

scheduling policy and represents a user estimation of the job execution time.
5. Status: This field represents the status of a job. Jobs can fail, or be cancelled

by the user or by the system, before or after they started the execution. Some
studies do not include in the simulations those jobs that were not successfully
completed (due to failure or cancellation), but we consider important all the
jobs because they stayed in the queues, delaying the execution of other jobs.

In our experiments, all times were measured in minutes. We only used workloads
that provide User Estimated Runtime information, because of the need of this
parameter to perform a backfilling scheduling policy.

In [15], the authors suggested a metric to measure the load managed by the
scheduler. Selecting workloads with different values of this metric allows us to
check our proposals on different scenarios. The load is computed as follows:



Effects of Topology-Aware Allocation Policies on Scheduling Performance 145

load =
(∑

j∈J sizej × runtimej

P × (Tend − Tstart)

)
. (2)

where P is the number of processors, J is the set of jobs between Tstart and Tend,
Tend is the last termination time and Tstart is the last arrival time of the first
1% of the jobs. This 1% of firstly arrived jobs and the jobs that terminate after
the last arrival are removed, in order to reduce warm up and cool down effects.

From the workloads available at the PWA, we have selected these three:

1. HPC2N (High Performance Computing Center North). This is a
system located in Sweden, composed by 240 compute nodes and using the
Maui scheduler. The workload log contains information of 527,371 jobs. Load:
0.62.

2. LLNL Thunder (Lawrence Livermore National Laboratory). This
is a Linux cluster composed by 4008 processors in which the nodes are con-
nected by a Quadrics network. The scheduler used in this system is Slurm.
The log is composed by 128,662 job records. Load: 0.76.

3. SDSC BLUE(San Diego Supercomputer Center). This system is an
IBM SP located in San Diego, with 1152 processors. The scheduler in use
is Catalina, developed at SDSC, and performs backfilling. The log contains
information of 243,314 jobs. Load: 0.86.

We simulated these workloads in k -ary n-trees adapted to each system sizes.
For the first workload we have simulated a 4-ary 4-tree with 256 nodes. For the
other two we have used a 4-ary 6-tree with 4096 nodes. The number of nodes
of the topologies does not match with the nodes of the workloads, so we have
considered that the extra processors are not installed and they are ignored in
the simulation.

5 Costs and Benefits of Contiguous Allocation Policies

Parallel applications performance depends on many factors, such as the com-
munication pattern, distance between the application tasks, network contention,
etc. The first one is an application-dependent characteristic, but the others are
affected by the way the application is allocated.

A contiguous allocation strategy reduces the distance between the applica-
tion tasks, to accelerate the interchange of messages and to reduce network
utilization. An important, additional effect is that interference with other run-
ning applications is also reduced. This interference, that causes contention for
network resources, may result in severe performance drops. Therefore, the con-
tiguous allocation of a job improves the overall performance of the system, not
only of that job.

In [8], the authors evaluate the possible benefits of contiguity for a collection of
parallel applications. These benefits are highly dependent on the communication
patterns of the applications. However, as we will show, the search of contiguity
can be very expensive in terms of scheduling time. The execution of jobs may be



146 J.A. Pascual, J. Navaridas, and J. Miguel-Alonso

delayed for a long time, until the required resources are available, the external
fragmentation increases and the overall system utilization suffers. To minimize
these negative effects we have introduced the concept of quasi-contiguity, a re-
laxed version of the contiguous allocation scheme which is expected to be less
harmful in terms of scheduling time, while providing the same (or nearly the
same) benefits in terms of application acceleration.

In order to validate the benefits of a contiguous and quasi-contiguous alloca-
tion policy, we have carried out several simulations using the INSEE simulator
[16]. This tool does not simulate a scheduling algorithm, just the execution of a
message-passing application on a multicomputer connected via an interconnec-
tion network. To feed this simulator we need traces of the messages interchanged
by the communicating tasks. We have obtained these traces using a selection of
the well-known NAS Parallel Benchmarks (NPB [17]). INSEE performs a de-
tailed simulation of the interchange of the messages through the network, con-
sidering network characteristics (topology, routing algorithm) and application
behavior (causality among messages). The output is a prediction of the time
that would be required to process all the messages in the application, in the
right order, and including causal relationships. Therefore, it only measures the
communication costs, assuming infinite-speed CPUs. When using actual ma-
chines, a good portion of the time (ideally, most of the time) would be devoted

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

BT CG IS LU MG SP

E
x

e
c

u
ti

o
n

 t
im

e

Trace

Contiguous
1 task

2 tasks
3 tasks
4 tasks

Non-Contiguous

Fig. 2. Execution time for different allocation policies simulating the traces of some
NAS Parallel Benchmarks in a 4-ary 4-tree topology. Values are normalized, so that 1
represents the contiguous allocation.



Effects of Topology-Aware Allocation Policies on Scheduling Performance 147

to CPU processing, and the impact of accelerated communications in overall
execution time would be smaller.

The simulated topology is a 4-ary 4-tree, with 256 nodes. Instead of one
application, we simulate the simultaneous execution of sixteen instances (jobs)
of the same application (actually, trace), each one using sixteen nodes. The
sixteen jobs have been allocated onto the network using three strategies:

1. Contiguous: Each job is allocated onto four level-2 switches, so the com-
munications between tasks of the same job never need links or switches at
level 3.

2. Quasi-Contiguous: In this strategy, we allow a partial non-contiguous al-
location of the job tasks. The four experiments performed allow the non
contiguous allocation of 1, 2, 3 or 4 tasks of each job, respectively.

3. Non-Contiguous: Tasks of each job are distributed along all the switches
at level 4 (the maximum level of this tree). This means that intra-job com-
munications do use level-4 switches, and also that messages of different jobs
compete for network resources.

Figure 2 shows the execution time of each application using each strategy nor-
malized to the time required by the contiguous placement. The benefits of con-
tiguous allocation strategies are clear: non-contiguously allocated applications

 0

 20

 40

 60

 80

 100

 120

LLNL-FCFS LLNL-BF SDSC-FCFS SDSC-BF HPC2N-FCFS HPC2N-BF

R
e

la
ti

v
e

 W
a

it
in

g
 T

im
e

Workload - Scheduling Policy

Contiguous
qct=10
qct=20
qct=30
qct=40

Fig. 3. Cost of contiguous and quasi-contiguous allocation, in terms of waiting time.
A value of 1 would represent the average job waiting time for the non-contiguous
allocation with the same scheduling policy.



148 J.A. Pascual, J. Navaridas, and J. Miguel-Alonso

run between 2 and 3 times slower. Regarding the quasi-contiguous allocation,
we can appreciate that performance is always good, being only 30-50% higher
to that obtained with purely contiguous allocation. These results confirm our
expectations: a good allocation strategy can substantially reduce the execution
time of a set of applications sharing a parallel computer as stated in [8].

Now we will asses the real cost of contiguity on scheduling. Using the schedul-
ing simulator with the selected workloads (those from the PWA), we measure
application waiting time for FCFS and backfilling scheduling algorithms, for
purely contiguous allocation and quasi-contiguous allocation for four values of
qct : 10, 20, 30 and 40%. Results are plotted in Figure 3. Note that values are
relative to those obtained with the same workload and scheduling using non-
contiguous allocation. Results are devastating: waiting times can be up to 100
times worse if contiguity is a requirement. Values are better for quasi-contiguity,
but still bad. However, note that we did not take into consideration the accel-
eration that jobs experience due to better allocation. We will explore this issue
in the next section. It is remarkable the difference between the LLNL workload
waiting times and the other workloads waiting times, due to the presence of big
size jobs (some of them of 1024 nodes). Finding contiguous partitions of this size
is quite difficult, which results in longer waiting times for them and for the jobs
that follow.

6 Tradding Off Costs and Benefits of Contiguous
Allocation

In this section we carry out a collection of experiments to thoroughly evalu-
ate the effect that contiguous allocation may have on scheduling performance.
In these experiments we consider that contiguous allocation is able to accelerate
the execution of parallel jobs. However, the actual values of attainable speed-ups
are not available to us – they strongly depend on the communication character-
istics of the applications, something that requires an exhaustive knowledge of
each and all the applications included in the workload logs. We do not have
that knowledge. For this reason, we introduce speed-up as a parameter of the
simulation. With this setup we are able to know to what extent a certain level of
application speed-up compensates the performance drop introduced by a restric-
tive allocation policy. This parameter is applied only to the parallel applications
of the workload remaining the sequential jobs with the same runtime.

We have studied several combinations of scheduling and allocation policies.
We evaluate them in terms of these two measurements:

1. Job waiting time. The time jobs spent in the queue.
2. Job total time. All the time spent in the system, which includes the time

waiting at the queue and the execution time.

As stated before, when using contiguous and quasi-contiguous allocation, a
speed-up factor has been applied to reduce the execution time. Note again that



Effects of Topology-Aware Allocation Policies on Scheduling Performance 149

applying a speed-up factor to a running time improves not only the application
finish time, but also reduces the time spent by the jobs using system resources;
and therefore, the scheduling performance is increased too. In the simulations
we used the workloads from the PWA described in Section 4.

The quasi-contiguous strategy has been evaluated with four values of qct.
Results are depicted in Figures 4, 5, 6 and 7. Note that, as the range of values is
very wide, we used a logarithmic scale in the Y axis of all figures. We represent
the averages of total time (waiting plus running) and, in some cases, waiting time
alone. In each graph we can see six lines, one per allocation policy. Tested speed-
up factors range from 0% to 50%. When this factor is 0% it means that, although
the scheduler seeks contiguity, using it does not accelerate program execution.
In all other cases we accelerate the execution times reported in the logs using
the indicated speed-up factors (a value of 10% means that the execution requires
10% less time to be executed with that allocation scheme). Obviously, we cannot
assume any acceleration with non-contiguous allocation, and for this reason the
corresponding line is flat.

Let us now pay attention to Figure 4, where the LLNL workload is studied
in detail. In all scheduling-allocation combinations, results with speed-up=0 are
as appalling as described in the previous section. However, when this value in-
creases (that is, when applications really run faster when allocated contiguous
resources) the picture changes. At speed-up values between 5% - 30% the con-
tiguous and quasi-contiguous approaches show their potential. It is clear that the
quasi-contiguous strategies prove beneficial at lower speed-ups than the purely
contiguous. Also, note that if the scheduler uses backfilling, global system effi-
ciency is higher (the workload is processed faster), and the thresholds at which
contiguity is advantageous are lower.

Figure 5 shows the results of the same experiments, but from a different per-
spective. Only waiting times are shown. A direct comparison with the previous
figure help us to determine which part of the total time is spent in the queue, and
which part is running time. For the cases with small speed-ups, most of the time
is waiting time. When applying a speed-up factor, running time is accordingly
reduced, but waiting time is also reduced.

In Figures 6 and 7 we have summarized results for workloads HPC2N and
SDSC. To be succinct, and given that the qualitative analysis performed with
LLNL is still valid, we only show results of total times for the FCFS and back-
filling. For the SDSC workload, the threshold at which contiguous and non-
contiguous allocation starts being beneficial falls between 15% and 25% (higher
than that of LLNL). Similar, although slightly lower, values required by HPC2N
are between 10% and 25%.

In all figures, we can see the benefits of using the quasi-contiguous policy. The
scheduler performs better and, as described in the previous section, the expected
speed-ups would be only slightly lower that those attainable with contiguous
allocation. We have to remark that the implementation of this strategy tries
always to find first a contiguous allocation, and only uses non-contiguous nodes
as the last alternative. Therefore, if we estimate that we can obtain a certain



150 J.A. Pascual, J. Navaridas, and J. Miguel-Alonso

 1

 10

 100

 1000

 10000

 100000

 0  10  20  30  40  50

T
im

e
 (

m
in

)

Speed-Up

LLNL - FCFS - Mean Total Time

Non Contiguous
Contiguous

qct=10
qct=20
qct=30
qct=40

 1

 10

 100

 1000

 10000

 100000

 0  10  20  30  40  50

T
im

e
 (

m
in

)

Speed-Up

LLNL - BF - Mean Total Time

Non Contiguous
Contiguous

qct=10
qct=20
qct=30
qct=40

Fig. 4. Results of the experiments with the LLNL workload for FCFS and backfilling
scheduling policies for various allocation strategies. Mean Total Time (Wait Time +
Execution Time) at different speed-ups. The scale of the Y axis is logarithmic.



Effects of Topology-Aware Allocation Policies on Scheduling Performance 151

 1

 10

 100

 1000

 10000

 100000

 0  10  20  30  40  50

T
im

e
 (

m
in

)

Speed-Up

LLNL - FCFS - Mean Wait Time

Non Contiguous
Contiguous

qct=10
qct=20
qct=30
qct=40

 1

 10

 100

 1000

 10000

 100000

 0  10  20  30  40  50

T
im

e
 (

m
in

)

Speed-Up

LLNL - BF - Mean Wait Time

Non Contiguous
Contiguous

qct=10
qct=20
qct=30
qct=40

Fig. 5. Results of the experiments with the LLNL workload for FCFS and backfilling
scheduling policies for various allocation strategies. Mean Wait Time at different speed-
ups. The scale of the Y axis is logarithmic.



152 J.A. Pascual, J. Navaridas, and J. Miguel-Alonso

 100

 1000

 10000

 100000

 1e+06

 0  10  20  30  40  50

T
im

e
 (

m
in

)

Speed-Up

SDSC - FCFS - Mean Total Time

Non Contiguous
Contiguous

qct=10
qct=20
qct=30
qct=40

 100

 1000

 10000

 100000

 1e+06

 0  10  20  30  40  50

T
im

e
 (

m
in

)

Speed-Up

SDSC - BF - Mean Total Time

Non Contiguous
Contiguous

qct=10
qct=20
qct=30
qct=40

Fig. 6. Results of the experiments with the SDSC workloads for FCFS and backfilling
scheduling policies for various allocation strategies. Mean Total Time (Wait Time +
Execution Time) at different speed-ups. The scale of the Y axis is logarithmic.



Effects of Topology-Aware Allocation Policies on Scheduling Performance 153

 100

 1000

 10000

 0  10  20  30  40  50

T
im

e
 (

m
in

)

Speed-Up

HPC2N - FCFS - Mean Total Time

Non Contiguous
Contiguous

qct=10
qct=20
qct=30
qct=40

 100

 1000

 10000

 0  10  20  30  40  50

T
im

e
 (

m
in

)

Speed-Up

HPC2N - BF - Mean Total Time

Non Contiguous
Contiguous

qct=10
qct=20
qct=30
qct=40

Fig. 7. Results of the experiments with the HPC2N workload for FCFS and backfilling
scheduling policies for various allocation strategies. Mean Total Time (Wait Time +
Execution Time) at different speed-ups. The scale of the Y axis is logarithmic.



154 J.A. Pascual, J. Navaridas, and J. Miguel-Alonso

speed-up when using a given value of qct, we will actually obtain better speed-
ups, because in some cases the scheduler will obtain a contiguous allocation for
the jobs.

Note that the increase of the qct parameter results in an equalization of the
FCFS and backfilling performance reducing the difference between them. The
reason is that the quasi-contiguous allocation strategy has a similar effect to
the backfilling policy allowing the schedule of more jobs and thus, reducing the
waiting time in the queue.

7 Conclusions and Future Work

Most current supercomputing sites are built around parallel systems shared be-
tween different users and applications. The optimal use of resources is a complex
task, due to the heterogeneity in user and application demands: some users run
short sequential applications, while others launch applications that use many
nodes and need weeks to be completed.

Supercomputers are expensive to build and maintain, so that conscious ad-
ministrators try to keep utilization as high as possible. However, the efficient use
of a parallel computer cannot be measured only by the lack of unused nodes.
Other utilization characteristics, although not that evident, may improve the
general system performance.

In this paper we have studied the impact on performance of allocation and
scheduling policies. We compared two scheduling techniques combined with three
allocation algorithms in a k -ary n-tree network topology. Allocation algorithms
that search for contiguous resources have an elevated cost in terms of system
fragmentation, but also are able to accelerate the execution of applications. With
the quasi-contiguous allocation, this acceleration is slightly penalized but the
scheduling performance is significantly improved.

Experiments with actual workloads demonstrate that the cost of contigu-
ous allocation is very high, but when the improvement of run time experienced
by jobs is around 20-30%, this cost is compensated. Using relaxed versions of
the contiguous allocation strategy (which we have called quasi-contiguous) this
threshold lowers significantly, in such a way that in some cases speed-ups around
10% are enough to provide improvements in terms of scheduling efficiency.

This study has focused only in tree-based networks; the next step will be a
performance study for other topologies (in particular, for k -ary n-cubes and k -
ary n-tori). Because of the highly dependency of the allocation algorithms on
the underlying topology, new quasi-contiguous allocation strategies should be
developed for each new studied topology. We have provided application accel-
eration as a simulation parameter, although we know that the real acceleration
depends heavily on the communication pattern of the applications, and on the
way processes are mapped onto system nodes. For this reason, we plan to per-
form more complex simulations, in which the actual interchanges of messages
are considered; to that end, we plan to integrate INSEE [16] into the scheduling
simulator.



Effects of Topology-Aware Allocation Policies on Scheduling Performance 155

Finally, we plan to implement our allocation techniques into a real (com-
mercial or free) scheduler in order to make real measurements in production
environments with real applications.

References

1. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling, – a status
report. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004.
LNCS, vol. 3277, pp. 1–16. Springer, Heidelberg (2005)

2. Gupta, E.K.S., Srimani, P.K.: Subtori Allocation Strategies for Torus Connected
Networks. In: Proc. IEEE 3rd Int’l Conf. on Algorithms and Architectures for
Parallel Processing, pp. 287–294 (1997)

3. Choo, H., Yoo, S.M., Youn, H.Y.: Processor Scheduling and Allocation for 3D
Torus Multicomputer Systems. IEEE Transactions on Parallel and Distributed Sys-
tems 11(5), 475–484 (2000)

4. Mao, W., Chen, J., Watson, W.I.: Efficient Subtorus Processor Allocation in a
Multi-Dimensional Torus. In: HPCASIA 2005: Proceedings of the Eighth Interna-
tional Conference on High-Performance Computing in Asia-Pacific Region, Wash-
ington, DC, USA, p. 53. IEEE Computer Society, Los Alamitos (2005)

5. Lo, V., Windisch, K., Liu, W., Nitzberg, B.: Noncontiguous Processor Allocation
Algorithms for Mesh-Connected Multicomputers. IEEE Transactions on Parallel
and Distributed Systems 8, 712–726 (1997)

6. Petrini, F., Vanneschi, M.: Performance Analysis of Minimal Adaptive Wormhole
Routing with Time-Dependent Deadlock Recovery. In: IPPS 1997: Proceedings of
the 11th International Symposium on Parallel Processing, Washington, DC, USA,
p. 589. IEEE Computer Society, Los Alamitos (1997)

7. Bhatele, A., Kale, L.V.: Application-specific Topology-aware Mapping for Three
Dimensional Topologies. In: Proceedings of Workshop on Large-Scale Parallel Pro-
cessing (held as part of IPDPS 2008) (2008)

8. Navaridas, J., Pascual, J.A., Miguel-Alonso, J.: Effects of Job and Task Placement
on the Performance of Parallel Scientific Applications. In: Proc 17th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing,
Weimar, Germany (February 2009)

9. Aridor, Y., Domany, T., Goldshmidt, O., Moreira, J.E., Shmueli, E.: Resource
Allocation and Utilization in the Blue Gene/L Supercomputer. IBM Journal of
Research and Development 49(2–3), 425–436 (2005)

10. Ansaloni, R.: The Cray XT4 Programming Environment,
http://www.csc.fi/english/csc/courses/programming/

11. PWA: Parallel workloads archive,
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

12. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Modeling User Runtime Estimates. In:
Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2005. LNCS, vol. 3834, pp. 1–35. Springer, Heidelberg (2005)

13. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling Using System-Generated Pre-
dictions Rather than User Runtime Estimates. IEEE Trans. Parallel Distrib.
Syst. 18(6), 789–803 (2007)

http://www.csc.fi/english/csc/courses/programming/
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html


156 J.A. Pascual, J. Navaridas, and J. Miguel-Alonso

14. Chapin, S.J., Cirne, W., Feitelson, D.G., Jones, J.P., Leutenegger, S.T.,
Schwiegelshohn, U., Smith, W., Talby, D.: Benchmarks and standards for the eval-
uation of parallel job schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP
1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 67–90. Springer,
Heidelberg (1999)

15. Tsafrir, D.: Modeling, Evaluating, and Improving the Performance of Supercom-
puter Scheduling. PhD thesis, School of Computer Science and Engineering, the
Hebrew University, Jerusalem, Israel (September 2006) Technical Report 2006–78

16. Ridruejo, F.J., Miguel-Alonso, J.: INSEE: An Interconnection Network Simulation
and Evaluation Environment. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005.
LNCS, vol. 3648, pp. 1014–1023. Springer, Heidelberg (2005)

17. NASA Advanced Supercomputer (NAS) division: Nas parallel benchmarks,
http://www.nas.nasa.gov/Resources/Software/npb.html

http://www.nas.nasa.gov/Resources/Software/npb.html

	Effects of Topology-Aware Allocation Policies on Scheduling Performance
	Introduction
	Related Work
	Scheduling and Placement Policies
	Description of the Workloads
	Costs and Benefits of Contiguous Allocation Policies
	Tradding Off Costs and Benefits of Contiguous Allocation
	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




