
Scheduling Restartable Jobs with Short Test

Runs

Ojaswirajanya Thebe1, David P. Bunde1, and Vitus J. Leung2

1 Knox College
{othebe,dbunde}@knox.edu

2 Sandia National Laboratories
vjleung@sandia.gov

Abstract. In this paper, we examine the concept of giving every job
a trial run before committing it to run until completion. Trial runs al-
low immediate job failures to be detected shortly after job submission
and benefit short jobs by letting them run and finish early. This occurs
without inflicting a significant penalty on longer jobs, whose average and
maximum waiting time are actually improved in some cases. The strat-
egy does not require preemption and instead uses the ability to kill and
restart a job from the beginning, which it does at most once for each
job. While others have proposed similar strategies, our algorithm is dis-
tinguished by its determination to give each job a fixed-length trial run
as soon as possible. Our study is also more focused, including a detailed
description of the algorithm and an examination of the effect of varying
the length of a trial run.

1 Introduction

It is widely known that user estimates of job runtimes are highly inaccurate (e.g.
[12],[14]). Typically the worst overestimates are explained by pointing to pro-
grams that fail early in their execution. For example, Perković and Keleher [16]
say “The presence of large runtime overestimations indicates the presence of
applications still in development, and therefore, have high probability to die
prematurely either because of bugs or because they run in a new environment”.
At the same time, job queues on large machines can be long, potentially pre-
venting these failures from being discovered for quite some time. Waiting for an
hour only to discover that your program died from an immediate segmentation
fault increases the frustration already inherent in debugging tasks.

Furthermore, job failures turn out to be surprisingly common. Figure 1 reports
the number and percentage of jobs that fail in traces from the Parallel Workloads
Archive [7]. Many of the traces contain significant numbers of jobs that fail.

Based on the frequency of job failures and the frustration of waiting to dis-
cover them, we believe it is important to design schedulers so that they attempt
to detect jobs that quickly fail as soon after submission as possible. Some of the
failures are likely to be hardware problems, the detection of which cannot be im-
proved by changes to the scheduler. When a job fails because of a programming

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2009, LNCS 5798, pp. 116–137, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Scheduling Restartable Jobs with Short Test Runs 117

Trace Num. Jobs Num. failed % failed

DAS2-fs0-2003-1.swf 219,618 2,643 1.2
SDSC-Par-1995-2.1-cln.swf 53,970 906 1.7
DAS2-fs3-2003-1.swf 66,112 1,143 1.7
DAS2-fs4-2003-1.swf 32,953 602 1.8
SDSC-Par-1996-2.1-cln.swf 32,135 814 2.5
DAS2-fs2-2003-1.swf 65,382 1,994 3.1
DAS2-fs1-2003-1.swf 39,356 1,554 4.0
LPC-EGEE-2004-1.2-cln.swf 220,695 10,490 4.8
LLNL-Thunder-2007-1.1-cln.swf 118,791 7,933 6.7
CTC-SP2-1995-1.swf 70,918 6,972 9.8
LANL-CM5-1994-3.1-cln.swf 122,060 20,368 16.7
LANL-O2K-1999-1.swf 116,996 23,670 20.2
CTC-SP2-1996-2.1-cln.swf 77,222 16,669 21.6
LLNL-Atlas-2006-1.1-cln.swf 38,194 10,250 26.8
KTH-SP2-1996-2.swf 28,489 7,948 27.9
LLNL-uBGL-2006-1.swf 19,405 6,835 35.2
SHARCNET-2005-1.swf 1,194,184 1,003,277 84.0

Fig. 1. Failing jobs by trace. Only traces with at least one failing job are presented.
There were 2 other traces that reported all jobs succeeding, 2 that reported all jobs
having “unknown” exit status, and 4 that reported various mixtures of succeeding,
canceled, or unknown exit status. Also note that the number of jobs varies from the
value reported in the Parallel Workloads Archive [7], sometimes greatly. We exclude
jobs with unknown exit status and those that were canceled without running.

error or something wrong in the runtime environment, however, this failure can be
detected by starting the job soon after its submission. Since failing jobs are only
identified after they fail, this requires that all jobs be started soon after submis-
sion. If the system supports preemption, it is possible to do exactly this; as soon
as a job arrives, preempt other jobs to give it sufficient processors to run for a brief
period of time, after which the new job is itself preempted and the previous jobs
resumed. In this way, any job failure occurring at the beginning of the job would be
detected nearly immediately. If the period is brief enough, the previously-running
jobs are not greatly inconvenienced. Thus, we are left with an engineering tradeoff
to choose the length of a job’s initial run, with longer runs finding more failures
and shorter runs minimizing disruption to already-running jobs.

Unfortunately, preemption is difficult to implement in a large multiprocessor
system because preempting a job requires saving its state on each of its proces-
sors and also catching all “in flight” messages traveling between them. Because
of these difficulties, many multiprocessor systems do not support preemption.
Instead, our algorithms use restarts, in which a job can be stopped and restarted,
but does so from the beginning of its execution, effectively losing its progress
from the first run. Restarts are less powerful than preemption and should be sim-
pler to implement; it is not necessary to save any state, but merely to kill the job
and ignore any of its messages. It is still technically challenging to restart jobs

118 O. Thebe, D.P. Bunde, and V.J. Leung

that perform side effects (e.g. file I/O), but we believe it is easier for systems to
implement restarts than preemption. In exchange for being easier to implement,
restarts impose greater cost on jobs on which they are used; all work previously
done on that job is lost.

Now we can give the outline of our scheduling idea. As above, we attempt to
start every job soon after its submission. We call the first time a job is started
its trial run, which we only allow to continue for a bounded period of time.
Jobs that do not fail (or complete) within this time are killed to be restarted
later. When a job is restarted is determined by a base scheduler such as First-
Come First-Served (FCFS) or EASY [13]. We call the combination of trial runs
and the base scheduler a timed-run scheduler, which can be viewed as the base
scheduler operating within a framework that manages trial runs. Our intent
is for the timed-run scheduler to behave similarly to its base scheduler except
for identifying failing jobs more quickly. In particular, once the base scheduler
decides to start a job, that job is never restarted; our algorithm only kills jobs
at the end of their trial run when relatively little work is lost by doing so. We
say a job is committed when it has been started by the base scheduler. Exactly
when a job should be committed proved to be a more subtle decision than we
originally thought; we discuss this decision later in the paper.

As a side effect of giving jobs trial runs, the timed-run scheduler also benefits
jobs that successfully finish within their trial run. We use the term short jobs to
denote jobs that complete or fail during their trial run and long jobs to denote
the others. Allowing short jobs to cut in front of longer jobs generally improves
the system’s average response time, though at some cost in fairness. For a short
trial run length, we believe that the effect on long jobs is minimal in exchange
for the benefits provided to short jobs, especially jobs that fail immediately after
they start.

We show that this strategy can greatly reduce the time to detect problems in
short failing jobs, the jobs on which users will be most frustrated to wait. The
benefits of our strategy extend to all short jobs, which form a significant fraction
of many workloads. The improvement is achieved with a non-preemptive strategy
that restarts each job at most once. It is generally realized without significantly
penalizing long jobs and even improves their average and maximum response
time in some cases.

These results are based on event-based simulations using traces from the Par-
allel Workloads Archive [7]. We assume that the system being evaluated uses
pure space-sharing to run rigid jobs.

We note that others have proposed similar strategies in the past. What dis-
tinguishes our algorithm is its focus on giving each job a fixed-length trial run
as soon as possible. We also give a more thorough evaluation of trial runs in
isolation, giving a detailed description of the algorithm and an examination of
the effect of varying the length of a trial run.

The rest of the paper is organized as follows. In Section 2 we fully specify the
timed-run scheduling strategy. Then, in Section 3 we evaluate this strategy. We

Scheduling Restartable Jobs with Short Test Runs 119

discuss related work in Section 4. We conclude with a discussion of future work
in Section 5.

2 Timed-Run Scheduling

Now, we are ready to formally define the timed-run algorithm. It maintains a list
of jobs awaiting a trial-run in addition to whatever data structures are required
for the base scheduling algorithm. Newly-arrived jobs are added to the end of
this list as well as to the base scheduler’s data structures. Whenever a job arrives
or processors are freed due to a job completion or termination, the timed-run
scheduler traverses this list looking for jobs to start. Any jobs encountered during
this traversal that can start are removed from the list and started on their trial
run. Only if no jobs can start trial runs is the base scheduler allowed to start
jobs.

Our goals when designing this algorithm were to give jobs their trial runs as
early as possible while impacting the base scheduler as little as possible. The
prioritization of trial runs is reflected in our choice to look for jobs in the trial
run list before consulting the base scheduler. Because the jobs are considered
for trial runs in order of their arrival, we slightly favor earlier-arriving jobs and
provide some measure of fairness. The jobs are not forced to receive trial runs
in the order they arrive, however, to facilitate giving as many jobs as possible
their trial runs soon after they arrive. We also allow the base scheduler to run
jobs even when there are still jobs waiting for trial runs (provided none of them
can start) to minimize the impact on the base scheduler. This decision and
allowing trial runs to occur out of order both penalize large jobs, but we felt this
discrimination was justified to avoid draining the machine just for a trial run of a
large job. We consider it the base scheduler’s responsibility to make such weighty
decisions. In addition, we felt that failures of small jobs were more “justified”
since users should test large programs on a smaller scale before running them
on many processors.

The other obvious decision to make when implementing the timed-run sched-
uler is the duration of trial runs. We initially chose 90 seconds as the trial run
length because this was the value given by Mu’alem and Feitelson [14] in their
discussion of failing jobs. Another value mentioned in the literature is 1 minute,
which Chiang and Vernon [5] observed was sufficient to complete 12–33% of jobs
requesting over an hour and 11–42% of jobs requesting over 10 hours in a trace
from NCSA’s Origin 2000. They did not discuss the cause of these dramatic
overestimates, but it seems likely that job failures played a role. Lawson and
Smirni [11] suggest 180 seconds, which they observed to exclude most jobs that
crashed. We discuss the effect of varying the trial run length in Section 3.2.

2.1 Optimizations and Complications

We decided on the aspects of timed-run scheduling described above without
much difficulty. While implementing it and examining the schedules produced

120 O. Thebe, D.P. Bunde, and V.J. Leung

by our initial prototype, however, we discovered a number of complications. We
now describe these and the policy decisions we made to resolve them.

Jobs wait until finishing their trial runs before committing. The first complica-
tion we discovered applies even to very small input instances. What should the
scheduler do when the machine is idle and a single job arrives? As described
above, the algorithm will select this job for a trial run and then schedule it
again by following the base scheduling algorithm. Obviously, the job should not
be started twice, but it seems premature to commit it to run to completion
simply because it was the first job to arrive after an idle period. Nor is this
necessarily a rare case since the same situation occurs if a job starts a trial run
and then is selected by the base scheduler. We resolved this by not allowing a
job to commit during its trial run. During this time, the base scheduler acts as
if the job cannot fit on the machine.

To improve performance when a job’s trial run and its selection by the base
scheduler occur together, we implemented a fairly obvious optimization: when
a job completes its trial run, if the timed-run scheduler will decide to start the
same job for its committed run, we simply continue that job rather than stopping
and restarting it. This optimization complicates the scheduler’s logic somewhat,
but clearly improves the schedule since it avoids wasting the time already spent
on the trial run.

Jobs continue trial runs until replaced. After implementing the above, we no-
ticed a related optimization. Consider the following job instance, scheduled on a
100-processor machine with 90-second trial runs and a First-Come First-Served
(FCFS) base scheduler:

Job Arrival time Number processors Runtime
A 0 80 300
B 100 100 40
C 110 20 > 90

This instance is scheduled as shown in Fig. 2. Notice that job A continues after
its trial run because nothing else has arrived when it finishes the trial run. Job
C does not get to continue, however, because FCFS wants to run job B first.
Terminating job C at time 200 is not strictly necessary, however, since job B
cannot start until time 300. Instead, we allow jobs that complete their trial runs
to continue running until the scheduler has another use for their processors,
either for a different job’s trial run or for a committed run. For the example
above, this means that job C is allowed to continue until time 300. If it has
length between 90 and 190, this allows it to complete. Even if job C requires
more time than this, nothing is lost since the processors it uses would have been
idle otherwise. Note that extensions are granted even when a job’s estimated
running time indicates that it will not complete because the estimate may be
inaccurate.

Avoiding restarts and extending trial runs are both achieved using lazy job
termination. When a job finishes its trial run, it is added to a collection of jobs

Scheduling Restartable Jobs with Short Test Runs 121

p
ro

ce
ss

o
rs

time �

A

Ctrial

B · · ·

0 110 200 300 340

Fig. 2. Short jobs continue running until replaced

that can be terminated if needed. The scheduler makes its decisions as if all jobs
in this collection had been terminated. If the scheduler decides to start a job
that requires some of their processors, jobs from the collection are terminated
as needed, beginning with the one whose trial run ended longest ago.

Long jobs must wait for their turn in the base scheduler. The next complication
we encountered required a more difficult policy decision. Consider the following
instance, again scheduled on a 100-processor machine with 90-second trial runs
and FCFS scheduling:

Job Arrival time Number processors Runtime
A 0 70 90
B 5 70 60
C 10 50 200
D 20 20 140
E 25 30 40

Two possible schedules are shown in Fig. 3. The difference is in when job D is
committed. At time 150, job D has completed its trial run. The other job in the
system is job C, which has not had a trial run, but should run first according to
the base scheduler (FCFS).

Our first inclination was to start job D immediately in this situation since it
seems wasteful to idle processors while waiting for a job that has already started
(albeit only for a trial run). Our eventual conclusion, however, was to delay job D
until its predecessor gets committed. The reason for this decision is to allow for
the possibility that another job arrives during the trial run of job C. If we com-
mitted job D and a newly-arrived job prevents job C from committing, then the
timed-run scheduler would have committed jobs out of the order given by the base
scheduler, violating our intention to make the timed-run scheduler an augmenta-
tion of the base scheduler rather than its replacement. Note that delaying when
jobs are committed in this way could harm our performance. An alternate solution
would be to start job D, but kill it if job C ends up not committing. This would
be similar to the speculative backfilling of Perković and Keleher [16].

122 O. Thebe, D.P. Bunde, and V.J. Leung

p
ro

ce
ss

o
rs

time �

A

Dtrial

B

E

C

Dlong

0 20 90
110

150

(a)

p
ro

ce
ss

o
rs

time �

A

Dtrial

B

E

C

Dlong

0 20 90
110

150 240

(b)

Fig. 3. Two possible ways to schedule the long run of job waiting for a job starting its
trial run. In (a), job D starts as soon as job C begins its trial run. In (b), it waits for
job C to be committed.

Dealing with job reservations. The final complication we encountered while im-
plementing the timed-run strategy is how to combine it with base schedulers
where jobs are given reservations. In keeping with our goal to give each job a
trial run shortly after it arrives, our algorithm favors trial runs over committing
jobs in the order given by the base scheduler. This means reservations may be
violated since newly-arrived jobs can (briefly) grab processors at any time. How-
ever, we do recognize that reservations are desirable from a user perspective since
they promote fairness and make the system more predictable for users. Thus, we
wished to achieve a compromise by preserving the spirit of reservation-wielding
base schedulers while violating the specific reservations.

For the EASY scheduler, there is a relatively straightforward way to achieve
this compromise. We simply disabled the error checking that reports when a
guarantee is violated. This works because our implementation of EASY (follow-
ing [14]) does not build an entire schedule. Rather, it stores the jobs in arrival
order, the currently-running jobs with their estimated completion times, and the
first job’s guaranteed time. To make a scheduling decision, it traverses the list of
waiting jobs and starts any job that can be run without violating the guarantee.

Scheduling Restartable Jobs with Short Test Runs 123

It is much less clear how to use timed-run scheduling with algorithms that
provide guarantees to more than one job such as Conservative backfilling. One
solution is to rebuild the estimated schedule whenever trial runs cause it to
break, but this could greatly slow down the scheduler. Another idea is to give
initial guarantees with some slack to allow for trial runs by later jobs, but this
seems to violate the spirit of Conservative backfilling. We believe more research
is warranted on this question.

3 Experimental Results

To evaluate the timed-run strategy, we used an event-driven simulator. Events
were generated for job arrivals, job completions, and at the end of trial runs.
The data for our simulations were obtained from the online Parallel Workloads
Archive [7]. All traces were in the standard workload format, from which we
read the job arrival time, processors requested, actual running time, and user-
estimated runtime (when available). For actual runtime, we used field 4 (“run
time”) if it was available and field 6 (“Average CPU time used”) if it was not. We
also used the status field (number 11) to identify failing jobs, but only as a post-
processing step. Cleaned versions of the traces were used when available; the full
filenames for the used traces are given in Fig. 1. We excluded the SHARCNET
trace from our simulations because of its extraordinarily-high failure rate.

3.1 Ninety Second Trial Runs

We compared FCFS and EASY schedulers to their timed-run counterparts using
average and maximum waiting time. We used waiting time since it is in line with
our goal to minimize the absolute time before detecting a failure. It also lessens
the emphasis on small jobs relative to slowdown or bounded slowdown. Note
that the waiting times we record for a job under the timed-run scheduler is until
that job starts the run that finishes, NOT the wait until the job gets a trial
run. Put another way, the waiting time of a job is its completion time minus its
arrival time minus its actual running time.

Our initial simulations used a trial-run length of 90 seconds. Figs. 4 and 5 show
the percent improvement in average and maximum response time achieved by
switching from a normal scheduler to a timed-run scheduler. From the results, the
timed-run scheduler generally performs as expected, decreasing average waiting
time in nearly all cases. The exceptions are all in the DAS2 family of traces.
These traces, from a group of clusters used for distributed computing research,
have quite low utilization (all less than 20%) so they are not representative of
typical production workloads. Quite a few of the improvements in the other
traces are significant, particularly with the FCFS base scheduler.

Also importantly, the improvement in average waiting time does not occur
at the expense of increased maximum waiting time. Instead, maximum waiting
time is largely unchanged, with the worst result an increase of less than 4%. On
several of the traces, using timed-run scheduling with FCFS actually improves
it by a significant margin.

124 O. Thebe, D.P. Bunde, and V.J. Leung

38.7

−13.9

−181.0

−68.5

17.3

58.1

41.3

60.1

0

99.2

32.8

−9.4

−79.1

77.4

16.3 18.2

1.53.2

89.0

24.1

68.4

11.8

47.9

2.6

74.1

9.1

55.1

18.0

75.2
82.4

38.7

−17.3

−200
EASY
FCFS

%
 I

m
pr

ov
em

en
t

D
A

S2
−

fs
0

SD
SC

−
Pa

r9
5

D
A

S2
−

fs
3

D
A

S2
−

fs
4

SD
SC

−
Pa

r9
6

D
A

S2
−

fs
2

D
A

S2
−

fs
1

L
PC

−
E

G
E

E

L
L

N
L

−
T

hu
nd

er

C
T

C
−

SP
2−

19
95

L
A

N
L

−
C

M
5

L
A

N
L

−
O

2K

C
T

C
−

SP
2−

19
96

L
L

N
L

−
A

tla
s

K
T

H
−

SP
2

L
L

N
L

−
uB

G
L

 100

 50

 0

−50

−100

−150

Trace

Fig. 4. Improvement in average waiting time of all jobs from using timed-run scheduler

−3.1

0

−0.8

47.4

00

−1.3
−0.0−0.0

1.0

−1.4 −0.6

7.2

−0.2
−1.3

0.2 0 0

−0.2

1.9
0

−0.6

1.6

−0.1

1.5

5.2

10.1

−0.5 −0.0−0.3

1.6

10.6

−10
EASY
FCFS

%
 I

m
pr

ov
em

en
t

D
A

S2
−

fs
0

SD
SC

−
Pa

r9
5

D
A

S2
−

fs
3

D
A

S2
−

fs
4

SD
SC

−
Pa

r9
6

D
A

S2
−

fs
2

D
A

S2
−

fs
1

L
PC

−
E

G
E

E

L
L

N
L

−
T

hu
nd

er

C
T

C
−

SP
2−

19
95

L
A

N
L

−
C

M
5

L
A

N
L

−
O

2K

C
T

C
−

SP
2−

19
96

L
L

N
L

−
A

tla
s

K
T

H
−

SP
2

L
L

N
L

−
uB

G
L

 50

 40

 30

 20

 10

 0

Trace

Fig. 5. Improvement in maximum waiting time of all jobs from using timed-run
scheduler

Scheduling Restartable Jobs with Short Test Runs 125

2.2

85.6

54.3
40.3

66.2

33.1

69.2
85.6

0.3

19.3
4.5

92.7

58.3

19.5

−87.7

−464.4

50.0

−3.4 −2.8 −7.0

5.05.0

21.5
6.6 0.9

10.0
20.0

10.1
1.5

−9.6−5.6−4.3

D
A

S2
−

fs
3

SD
SC

−
Pa

r9
5

D
A

S2
−

fs
0

%
 I

m
pr

ov
em

en
t

FCFS
EASY

−450

Trace

−100

−50

 0

 50

 100

L
L

N
L

−
uB

G
L

K
T

H
−

SP
2

L
L

N
L

−
A

tla
s

C
T

C
−

SP
2−

19
96

L
A

N
L

−
O

2K

L
A

N
L

−
C

M
5

C
T

C
−

SP
2−

19
95

L
L

N
L

−
T

hu
nd

er

L
PC

−
E

G
E

E

D
A

S2
−

fs
1

D
A

S2
−

fs
2

SD
SC

−
Pa

r9
6

D
A

S2
−

fs
4

Fig. 6. Improvement in average waiting time of failing jobs from using timed-run
scheduler

0
10.8

21.0

−5.3

1.51.10
−0.0−0.0

−5.3

0.8

−10.8

30.8

6.4

19.7

48.4

−0.8

40.1

−0.9

11.3

−1.5

5.3

−1.9

51.9

−0.1
0.5

−498.7

51.9

0 000

L
L

N
L

−
T

hu
nd

er

Trace

%
 I

m
pr

ov
em

en
t

D
A

S2
−

fs
0

SD
SC

−
Pa

r9
5

D
A

S2
−

fs
3

D
A

S2
−

fs
4

SD
SC

−
Pa

r9
6

D
A

S2
−

fs
2

D
A

S2
−

fs
1

L
PC

−
E

G
E

E

C
T

C
−

SP
2−

19
95

L
A

N
L

−
C

M
5

FCFS

C
T

C
−

SP
2−

19
96

L
L

N
L

−
A

tla
s

K
T

H
−

SP
2

L
L

N
L

−
uB

G
L

 50

 0

−50

−100

−500

L
A

N
L

−
O

2K

EASY

Fig. 7. Improvement in maximum waiting time of failing jobs from using timed-run
scheduler

126 O. Thebe, D.P. Bunde, and V.J. Leung

The percent improvements were better for FCFS than EASY. This is unsur-
prising since trial runs can act as an ad hoc version of backfilling. When working
with FCFS, there are many opportunities for jobs to move up and the result
is a significantly better schedule. In addition, the EASY base scheduler does
a better job keeping the processors busy and so offers less room for improve-
ment. In fact, for average waiting time, regular EASY outperformed FCFS with
timed-run scheduling in almost all cases.

Our main motivation was to promptly identify failing jobs so their users could
be notified soon after the jobs have been submitted. Figures 6 and 7 plot the
improvement in average and maximum waiting time for failing jobs as we switch
from regular scheduling and timed-run scheduling. Surprisingly, the results are
not as good for failing jobs as they were for all jobs. The percentage improve-
ments for average waiting time are generally smaller for FCFS and they essen-
tially disappear for EASY. The other patterns are still there, though; FCFS is
improved much more than EASY, the DAS2 traces contributed negative outliers
to the percent improvement in average waiting time, and the affect on maximum
waiting time of adding trial runs ranges is minimal with some improvements and
a couple of good values.

We explain the relative lack of benefit for failing jobs with the observation that
failing jobs are not necessarily short jobs. Although failing jobs ending prematurely
is consistently one of the explanations given for the poor quality of user estimates, it
turns out that job failures do not cause the short jobs in these traces. Figure 8 gives
the percent of all jobs and the percent of failed jobs that are short in each trace.
For all but 3 of the 16 traces, short jobs make up a smaller percentage of failing
jobs than they represent of the trace as a whole. Only in LLNL-uBGL of these
three is the difference large. However, there seems to be no relationship between
the results in Figs. 4–5 and Figs. 6–7 and the percentage of failed jobs that are
short. This could be due to the fact that the total number of failed jobs that are
short is small compared to the total number of jobs that are short.

Figures 9 and 10 show the average and maximum waiting times for short jobs,
respectively. Providing jobs with trial runs does result in short jobs waiting for
considerably less time before running. Figures 11 and 12 shows the average and
maximum waiting times for failed short jobs. The results were similar for average
waiting time, but considerably improved for maximum waiting time. Here again,
there is no relationship between the results in Figs. 9–10 and Figs. 11–12 and
the percentage of all and failed jobs that are short because the numbers of short
failed jobs are much smaller than the numbers of short jobs and a meaningful
comparison cannot be made between the two.

3.2 Varying Trial-Run Length

We also investigated the effects of varying the length of the trial-run. An ideal
length would balance catching failing jobs and increasing responsiveness by let-
ting short jobs finish during their trial-run against making jobs wait too long
while trial-runs occur. Figure 13 shows the average waiting time of short jobs
as the length of the trial run varies, using the KTH-SP2 trace and FCFS as the

Scheduling Restartable Jobs with Short Test Runs 127

short jobs as... % of jobs % of failed jobs

DAS2-fs0 61.5 (134,991 jobs) 50.4 (1,331 jobs)
SDSC-Par95 60.9 (32,845 jobs) 0.1 (1 job)
DAS2-fs3 76.1 (50,321 jobs) 74.6 (853 jobs)
DAS2-fs4 42.9 (14,129 jobs) 48.0 (289 jobs)
SDSC-Par96 44.4 (14,268 jobs) 0.5 (4 jobs)
DAS2-fs2 64.5 (42,191 jobs) 10.4 (207 jobs)
DAS2-fs1 65.6 (25,803 jobs) 33.1 (514 jobs)
LPC-EGEE 69.9 (154,221 jobs) 9.7 (1,013 jobs)
LLNL-Thunder 59.1 (70,246 jobs) 65.2 (5,176 jobs)
CTC-SP2-1995 27.4 (19,404 jobs) 12.6 (880 jobs)
LANL-CM5 30.2 (36,910 jobs) 8.1 (1,650 jobs)
LANL-O2K 30.9 (36,132 jobs) 20.6 (4,877 jobs)
CTC-SP2-1996 21.6 (16,699 jobs) 15.0 (2,507 jobs)
LLNL-Atlas 51.9 (19,809 jobs) 47.5 (4,872 jobs)
KTH-SP2 32.9 (9,375 jobs) 28.5 (2,267 jobs)
LLNL-uBGL 56.7 (11,008 jobs) 92.3 (6,306 jobs)

Fig. 8. Short (< 90 sec) jobs by trace

85.3

64.0

20.0

76.9

2.8

99.6
97.599.098.999.1100.099.8

89.7

98.5 99.6
97.4

91.2

18.2

1.7

61.0

85.0

75.1
77.2

82.7
88.2

94.0

68.2 68.2

15.6

62.8

76.1

87.8

 0

EASY
FCFS

%
 I

m
pr

ov
em

en
t

D
A

S2
−

fs
0

SD
SC

−
Pa

r9
5

D
A

S2
−

fs
3

D
A

S2
−

fs
4

SD
SC

−
Pa

r9
6

D
A

S2
−

fs
2

D
A

S2
−

fs
1

L
PC

−
E

G
E

E

L
L

N
L

−
T

hu
nd

er

C
T

C
−

SP
2−

19
95

L
A

N
L

−
C

M
5

L
A

N
L

−
O

2K

C
T

C
−

SP
2−

19
96

L
L

N
L

−
A

tla
s

K
T

H
−

SP
2

L
L

N
L

−
uB

G
L

 100

 80

 60

 40

 20

Trace

Fig. 9. Improvement in average waiting time of short (< 90 sec) jobs from using timed-
run scheduler

128 O. Thebe, D.P. Bunde, and V.J. Leung

0

39.7

73.8

44.2

21.8 21.8

0

34.9

49.5 50.0

0

67.1

29.4

67.2

0.8

72.1
75.2

0

67.0

99.0

0

76.7

99.0

00.00

39.5

0.4

18.2

50.3

82.1

39.7

Trace

FCFS

%
 I

m
pr

ov
em

en
t

D
A

S2
−

fs
0

SD
SC

−
Pa

r9
5

D
A

S2
−

fs
3

D
A

S2
−

fs
4

SD
SC

−
Pa

r9
6

D
A

S2
−

fs
2

D
A

S2
−

fs
1

L
PC

−
E

G
E

E

L
L

N
L

−
T

hu
nd

er

C
T

C
−

SP
2−

19
95

L
A

N
L

−
C

M
5

L
A

N
L

−
O

2K

C
T

C
−

SP
2−

19
96

L
L

N
L

−
A

tla
s

K
T

H
−

SP
2

L
L

N
L

−
uB

G
L

 100

 80

 60

 40

 20

 0

EASY

Fig. 10. Improvement in maximum waiting time of short (< 90 sec) jobs from using
timed-run scheduler

71.6

2.2

99.5
94.5

98.498.798.8100.0

87.9

99.5
95.5

99.5
95.1

99.2

79.2

71.0

97.0

1.5

55.3

83.3

77.8

60.3

82.3

89.790.487.9

66.7

77.4

0

79.2

10.2

62.9

 0

EASY
FCFS

%
 I

m
pr

ov
em

en
t

D
A

S2
−

fs
0

SD
SC

−
Pa

r9
5

D
A

S2
−

fs
3

D
A

S2
−

fs
4

SD
SC

−
Pa

r9
6

D
A

S2
−

fs
2

D
A

S2
−

fs
1

L
PC

−
E

G
E

E

L
L

N
L

−
T

hu
nd

er

C
T

C
−

SP
2−

19
95

L
A

N
L

−
C

M
5

L
A

N
L

−
O

2K

C
T

C
−

SP
2−

19
96

L
L

N
L

−
A

tla
s

K
T

H
−

SP
2

L
L

N
L

−
uB

G
L

 100

 80

 60

 40

 20

Trace

Fig. 11. Improvement in average waiting time of failing short (< 90 sec) jobs from
using timed-run scheduler

Scheduling Restartable Jobs with Short Test Runs 129

0 000.0

39.5

−12.3

23.3

52.5

93.7

74.874.8

65.0

74.4

67.6

0

12.9 12.9

0

18.6

67.1

87.7

14.5

80.980.5

99.8

82.9

92.194.4

71.0

97.5
94.6

99.7

−20

EASY
FCFS

%
 I

m
pr

ov
em

en
t

D
A

S2
−

fs
0

SD
SC

−
Pa

r9
5

D
A

S2
−

fs
3

D
A

S2
−

fs
4

SD
SC

−
Pa

r9
6

D
A

S2
−

fs
2

D
A

S2
−

fs
1

L
PC

−
E

G
E

E

L
L

N
L

−
T

hu
nd

er

C
T

C
−

SP
2−

19
95

L
A

N
L

−
C

M
5

L
A

N
L

−
O

2K

C
T

C
−

SP
2−

19
96

L
L

N
L

−
A

tla
s

K
T

H
−

SP
2

L
L

N
L

−
uB

G
L

 100

 80

 60

 40

 20

 0

Trace

Fig. 12. Improvement in maximum waiting time of failing short (< 90 sec) jobs from
using timed-run scheduler

Length of trial run (sec)

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 50000 100000 150000 200000

A
ve

. w
ai

tin
g

tim
e

of
 s

ho
rt

 jo
bs

 (
se

c)

 0

Fig. 13. Average waiting time for short jobs in KTH-SP2 trace with varying trial run
lengths and FCFS scheduling

base scheduler. Note that a “short” job is one shorter than the trial run length so
the jobs considered varies with the trial run length. We focus on short jobs to see
how long potentially-identifiable failed jobs would have to wait. From the figure,
we can see that relatively short trial runs will give us the fastest identification of
short jobs. The same holds true when we switch to the EASY scheduler, which

130 O. Thebe, D.P. Bunde, and V.J. Leung

KTH−SP2

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300 350 400

A
ve

. w
ai

tin
g

tim
e

(s
ec

)

Length of trial run (sec)

CTC−SP2−1996
SDSC−Par95
SDSC−Par96
LANL−CM5

 0

Fig. 14. Average waiting time for short jobs with varying trial run lengths (FCFS)

SDSC−Par95

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250 300 350 400

A
ve

. w
ai

tin
g

tim
e

(s
ec

)

Length of trial run (sec)

KTH−SP2
LANL−CM5
SDSC−Par96

CTC−SP2−1996

 0

Fig. 15. Average waiting time for short jobs with varying trial run lengths (EASY)

gives a plot that is not visibly different from Fig. 13. The analogous plots for
the other traces examined in this section also exhibit long climbs starting at low
values of the trial run length.

Because of this observation, we focus on trial run lengths between 0 (no trial-
runs) and 400 seconds for the rest of this section. (The climb depicted in Fig. 13
has already begun by 400 seconds.) The results of our experiments are presented
in Figs. 14–19. Figures 14 and 15 show the average waiting time for short jobs.
This figure provides an idea of how much time jobs failing within their trial run
need to wait. Quick trial runs go through all available jobs faster, and so short
job waiting times are lower since they get to finish quickly. However, the data
have a distinct spike for extremely short trial-run lengths. This is because there
are only a few jobs having extremely low runtimes, and when they do appear in

Scheduling Restartable Jobs with Short Test Runs 131

"SDSC−Par95"

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250 300 350 400

A
ve

. w
ai

tin
g

tim
e

(s
ec

)

Length of trial run (sec)

"KTH−SP2"
"LANL−CM5"
"SDSC−Par96"

"CTC−SP2−1996"

 0

Fig. 16. Average waiting time for all jobs with varying trial run lengths (FCFS)

SDSC−Par95

 4000

 6000

 8000

 10000

 12000

 14000

 0 50 100 150 200 250 300 350 400

A
ve

. w
ai

tin
g

tim
e

(s
ec

)

Length of trial run (sec)

KTH−SP2
LANL−CM5
SDSC−Par96

CTC−SP2−1996

 2000

Fig. 17. Average waiting time for all jobs with varying trial run lengths (EASY)

the system, they need to wait for long jobs to finish and free processors before
they get a chance to run. The average waiting time decreases after the spike
since there are now more short jobs and they do not all need to wait for long
jobs to finish. The waiting time increases after that because we are adding more
overhead time for each job to have a trial run.

Figures 16 and 17 show the overall averagewaiting time for all jobs over increas-
ing trial-run lengths. The two behaviors we see are gradually decreasing and grad-
ually increasing average waiting time. For the most part we see a gradual decrease
in average waiting time as the trial time is increased. This is probably due to an
increasing number of jobs becoming short and having their waiting times dramati-
cally reduced. In the one trace (LANL-CM5) where this does not happen, the wait-
ing time increases probably due to the overhead time for each job to have a trial run.

132 O. Thebe, D.P. Bunde, and V.J. Leung

SDSC−Par95

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 50 100 150 200 250 300 350 400

M
ax

. w
ai

tin
g

tim
e

(s
ec

)

Length of trial run (sec)

KTH−SP2
LANL−CM5

SDSC−Par96
CTC−SP2−1996

 100000

Fig. 18. Maximum waiting time for all jobs (FCFS)

SDSC−Par95

 200000

 250000

 300000

 350000

 400000

 0 50 100 150 200 250 300 350 400

M
ax

. w
ai

tin
g

tim
e

(s
ec

)

Length of trial run (sec)

KTH−SP2
LANL−CM5
SDSC−Par96

CTC−SP2−1996

 150000

Fig. 19. Maximum waiting time for all jobs (EASY)

Long jobs have a higher maximum waiting times than short jobs. Figures 18
and 19, which show the maximum waiting time for all jobs, are also the same
graphs as the maximum waiting time for long jobs. The two behaviors we see are
the steps downward and the gradually increasing maximum waiting time. The
reasons for both are simple. For the flat-line in the steps, that maximum waiting
time is due to the same long job waiting in the base scheduler. However, when
the trial runs are long enough, that job gets to run as a short job and does not
need to wait in the base scheduler. So the maximum waiting time drops.

The gradual increase in the maximum waiting time is due to the extra over-
head time from running each trial for a longer duration. This also allows more
jobs to enter the system which increases the chances of jobs getting pushed
further back.

Scheduling Restartable Jobs with Short Test Runs 133

From Figs. 14–19, we see that both the sixty seconds of Chiang and Vernon [5]
and the ninety seconds of Mu’alem and Feitelson [14] give a reasonable balance
between finding failures and minimizing wasted time during trial runs. The value
of 180 seconds suggested by Lawson and Smirni [11] is also reasonable, but
perhaps a bit too high, particularly for the LANL-CM5 trace.

4 Background and Related Work

Several other researchers have devised schedulers around the observation that
many short jobs are submitted with greatly inflated estimates. The most similar
idea appears in a system described by Perković and Keleher [16]. Their scheduler
uses a number of different techniques, but among them are “speculative test
runs” and “speculative backfilling”. Speculative test runs are a version of our
trial runs; jobs with long estimated running time (over 3 hours) are allowed a
brief run on the machine (5–15 minutes) in the hopes of finishing early. This
differs from what we do in that we give a trial run to all jobs whereas Perković
and Keleher [16] give speculative test runs only to some fraction of the jobs and
do so primarily as part of a larger speculative scheduling phase.

The other part of Perković and Keleher’s speculative scheduling phase is spec-
ulative backfilling: starting a job in a “hole” that occurs in the schedule even
when that job will not be able to complete unless its running time is overesti-
mated. At the end of the hole, the speculatively backfilled job is killed if it has
not already finished. In this way, only processors that would have been idle any-
way are used in the speculation. This is similar to what our scheduler does when
it continues to run jobs whose trial runs have expired, but we do not purposely
start jobs speculatively after their single trial run (though we could). Again,
this differs from our scheduler because we give trial runs to all jobs. The other
main difference between our work and that of Perković and Keleher [16] is in our
tighter focus; due to the number of ideas presented in their paper, they describe
the idea only briefly and do not analyze the effect of this optimization alone or
the effect of varying the length of a speculative execution.

Snell et al. [19] explored an idea similar to speculative backfilling. They al-
lowed jobs to backfill even when there was not enough time in the schedule for
them to complete, killing running jobs as needed to honor reservations. They
considered a number of criteria for selecting the jobs to kill, finding that it was
best to either kill the job with the most (estimated) time remaining or the job
that was most recently started. These strategies improved system performance,
but by relatively small amounts, apparently because of the work lost when jobs
were killed. (Unlike in our strategy, they might kill a job that had already been
processed for a considerable period of time.)

Lawson and Smirni [11] and Chiang et al. [4] take the idea of speculative
execution and apply it to all jobs meeting some criteria rather than using it
opportunistically. Lawson and Smirni [11] give each job whose estimated running
time exceeds 1,000 seconds a 180-second trial run. Their algorithm is based on
work by Lawson et al. [10], placing jobs into separate queues based on their

134 O. Thebe, D.P. Bunde, and V.J. Leung

running time. Each queue is serviced by part of the system so that short jobs
do not wait for long jobs but no job can starve. The base algorithm assumes
that job durations were estimated accurately, but Lawson and Smirni [11] found
that similar ideas work when the speculative runs are used to detect the worst
overestimates. Chiang et al. [4] similarly divided the system into two parts, each
servicing a separate queue. Since they were concerned with systems where the
users do not provide runtime estimates, the first queue is for jobs waiting to
receive a trial run and the second plays the role of our base scheduler. The main
difference between their work and ours is that they assume jobs can be assigned
to different numbers of processors. Neither of these papers considered changing
the length of the speculative run.

A manual version of timed-run scheduling was proposed by Chiang et al. [3].
They were concerned with the accuracy of user estimates and felt that users
would be able to more accurately predict the runtime of many jobs by first
making a “test run” on a smaller version of the problem or with slightly different
input parameters. They examined the effect of test runs equaling 10% of the
estimated run time but not more than 1 hour and then users submitting the
real job with reasonably accurate estimates. They showed that such a scheme
leads to performance improvements despite the overhead of the test runs. As
with our algorithm, their test runs have the effect of identifying and finishing
short jobs quickly. Our system differs in that it makes trial runs automatically
rather than assuming users make them manually. The runs themselves are less
time-consuming in our scheduler, but also do not provide improved estimates.

Others who have considered similar ideas to timed-run scheduling have done
so in the context of systems that support preemption, which is much more flex-
ible than the job restarts that we allow. Most related is work by Chiang and
Vernon [5]; they consider backfilling with “immediate service”, which attempts
to give each newly-arriving job a one-minute run before putting it in the queue.
It does this by preempting the currently-running jobs with lowest current slow-
down among jobs that have not been preempted in 10 minutes. They showed
that this strategy significantly improves average slowdown while having mini-
mal effect on 95th percentile waiting time. This is similar to our results with the
FCFS base scheduler, but preemption allows them to improve even on a sched-
uler with backfilling. Schwiegeishohn and Yahyapour [17] show how to improve
FCFS by allowing preemption only to start jobs requiring a large number of
processors. For other strategies utilizing preemption, see Kettimuthu et al. [9]
and its references.

Although technically dissimilar, our overall goal is analogous to that of Shmueli
and Feitelson [18], who argue that user productivity is a better metric than wait-
ing time or slowdown. Their scheduler attempts to prioritize jobs whose submitter
is likely to still be waiting for the result. Thus, jobs that can be finished shortly
after submission are more critical than either long jobs or jobs that have already
waited for a significant period of time. This is done so that users are able to continue
working rather than needing to switch to another task and incurring a human “con-
text switch” when they refocus on the task requiring the supercomputer system.

Scheduling Restartable Jobs with Short Test Runs 135

Intuitively, the success of our algorithm in quickly identifying failing or unexpect-
edly short jobs should have a similar benefit. Evaluating this would require model-
ing the user (as Shmueli and Feitelson [18] do) so that system performance affects
job arrival rather than relying on the trace-based simulations we present here.

Our results can also be considered related to the work considering the ef-
fect of user estimates on scheduling performance. Many authors (e.g. [14]) have
noted that user estimates tend to be dramatically high. One factor behind this is
the very short jobs (including quick failures) we target with timed-run schedul-
ing. In addition, users tend to reuse estimates once they find something that
works and also strongly prefer “round” numbers (e.g. 5 minutes, 1 hour, etc).
Accounts initially differed on whether overestimates improved [14,23] or hurt [3]
performance. These observations were eventually reconciled with the finding that
overestimates initially help but that extreme overestimates eventually hurt per-
formance [20,22]. Regardless of this, it seems reasonable that good estimates
could be useful since they provide more information to the scheduler. This has
led to work trying to get users to improve their estimates [12] as well as work to
have a system generate its own estimates [6,8,15,21].

5 Discussion

Our results in Section 3 show that timed-run scheduling can more quickly alert
users about jobs that fail and benefit short jobs in general. In some cases, it has
even been shown to improve average and maximum waiting times for the entire
trace. We feel that this approach is promising and deserves further investigation.

The most obvious open problem is to adapt this strategy to other backfilling
schemes. As mentioned in Section 2.1, it is not clear how to preserve the benefits
of reservations when the reservations themselves may be violated if trial runs are
granted to new jobs. One solution would be to rebuild the estimated schedule
whenever trial runs cause reservations to be violated. Another solution would be
to give initial guarantees with some slack to allow for trial runs by later arriving
jobs. Each of these solutions has its own drawbacks, and we believe more research
is necessary to address reservations.

It would also be beneficial to consider the affect of overhead for killing jobs. In
our experiments, it was optimistically assumed that processors from a killed job
could be instantly reassigned to another job. We do not believe that including
realistic amounts of overhead will significantly change the results, but this would
need to be verified before timed-run scheduling could be adopted.

Additionally, experiments with some of our policy decisions in Section 2.1
could further improve the performance of timed-run scheduling. Specifically, the
decision that long jobs must wait for their turn in the base scheduler could
be replaced by a policy similar to the speculative backfilling of Perković and
Keleher [16].

It would also be interesting to evaluate the performance of our algorithm
on user models such as those of Shmueli and Feitelson [18] to see if our quick
completion of short jobs improves user satisfaction and productivity.

136 O. Thebe, D.P. Bunde, and V.J. Leung

Acknowledgments. O. Thebe and D.P. Bunde were partially supported by con-
tract 763836 from Sandia National Laboratories. Sandia is a multipurpose lab-
oratory operated by Sandia Corporation, a Lockheed-Martin Company, for the
United States Department of Energy under Contract No. DE-AC04-94AL85000.
We thank the anonymous referees for many helpful comments. We also thank all
those who contributed traces to the Parallel Workloads Archive. Specifically, we
thank the following people for the traces we used: Dan Dwyer for the CTC-SP2
traces, Hui Li, David Groep, and Lex Wolters for the DAS2 traces, Lars Mali-
nowsky for the KTH-SP2 trace, Curt Canada for the LANL-CM5 trace, Fabrizio
Petrini for the LANL-O2K trace, Moe Jette for the LLNL-Atlas, LLNL-Thunder
and LLNL-uBGL traces, Emmanuel Medernach for the LPC-EGEE trace, Rea-
gan Moore and Allen Downey for the SDSC traces, and John Morton and Clayton
Chrusch for the SHARCNET trace.

References

1. Feitelson, D.G., Rudolph, L. (eds.): IPPS-WS 1997 and JSSPP 1997. LNCS,
vol. 1291. Springer, Heidelberg (1997)

2. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.): JSSPP 2002. LNCS,
vol. 2537. Springer, Heidelberg (2002)

3. Chiang, S.-H., Arpaci-Dusseau, A., Vernon, M.K.: The impact of more accurate
requested runtimes on production job scheduling performance. In: Proc. 8th Work-
shop on Job Scheduling Strategies for Parallel Processing, [2], pp. 103–127

4. Chiang, S.-H., Mansharamani, R., Vernon, M.: Use of application characteristics
and limited preemption for run-to-completion parallel processor scheduling policies.
In: Proc. ACM SIGMETRICS Conf. on Measurement and Modeling of Computer
Systems, pp. 33–44 (1994)

5. Chiang, S.-H., Vernon, M.K.: Production job scheduling for parallel shared memory
systems. In: Proc. 15th IEEE Intern. Parallel and Distributed Processing Symp.
(2001)

6. Downey, A.B.: Using queue time predictions for processor allocation. In: Proc. 3rd
Workshop on Job Scheduling Strategies for Parallel Processing [2], pp. 35–57

7. Feitelson, D.: The parallel workloads archive,
http://www.cs.huji.ac.il/labs/parallel/workload/index.html

8. Gibbons, R.: A historical application profiler for use by parallel schedulers. In:
Proc. 3rd Workshop on Job Scheduling Strategies for Parallel Processing [1]

9. Kettimuthu, R., Subramani, V., Srinivasan, S., Gopalsamy, T., Panda, D.K., Sa-
dayappan, P.: Selective preemption strategies for parallel job scheduling. Intern. J.
of High Performance Computing and Networking 3(2/3), 122–152 (2005)

10. Lawson, B., Smirni, E., Puiu, D.: Self-adapting backfilling scheduling for parallel
systems. In: Proc. 31st Intern. Conf. Parallel Processing, pp. 583–592 (2002)

11. Lawson, B.G., Smirni, E.: Multiple-queue backfilling scheduling with priorities and
reservations for parallel systems. In: Proc. 8th Workshop on Job Scheduling Strate-
gies for Parallel Processing [2]

12. Lee, C.B., Schwartzman, Y., Hardy, J., Snavely, A.: Are user runtime estimates
inherently inaccurate? In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2004. LNCS, vol. 3277, pp. 253–263. Springer, Heidelberg (2005)

http://www.cs.huji.ac.il/labs/parallel/workload/index.html

Scheduling Restartable Jobs with Short Test Runs 137

13. Lifka, D.: The ANL/IBM SP scheduling system. In: Feitelson, D.G., Rudolph, L.
(eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer,
Heidelberg (1995)

14. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
and Distributed Syst. 12(6), 529–543 (2001)

15. Nissimov, A., Feitelson, D.G.: Probabilistic backfilling. In: Frachtenberg, E.,
Schwiegelshohn, U. (eds.) JSSPP 2007. LNCS, vol. 4942, pp. 102–115. Springer,
Heidelberg (2008)

16. Perković, D., Keleher, P.J.: Randomization, speculation, and adaptation in batch
schedulers. In: Proc. 2000 ACM/IEEE Conf. on Supercomputing (2000)

17. Schwiegelshohn, U., Yahyapour, R.: Improving first-come-first-serve job scheduling
by gang scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-
WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 180–198. Springer, Heidelberg
(1998)

18. Shmueli, E., Feitelson, D.G.: On simulation and design of parallel-systems sched-
ulers: Are we doing the right thing? IEEE Trans. Parallel and Distributed Systems
(to appear)

19. Snell, Q.O., Clement, M.J., Jackson, D.B.: Preemption based backfill. In: Proc. 8th
Workshop on Job Scheduling Strategies for Parallel Processing [2], pp. 24–37

20. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Characterization of
backfilling strategies for parallel job scheduling. In: Proc. Intern. Conf. on Parallel
Processing Workshops, pp. 514–522 (2002)

21. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated predic-
tions rather than user runtime estimates. IEEE Trans. on Parallel and Distributed
Systems 18(6), 789–803 (2007)

22. Tsafrir, D., Feitelson, D.G.: The dynamics of backfilling: Solving the mystery of
why increased inaccuracy help. In: Proc. IEEE Intern. Symp. on Workload Char-
acterization, pp. 131–141 (2006)

23. Zotkin, D., Keleher, P.J.: Job-length estimation and performance in backfilling
schedulers. In: Proc. 8th IEEE International Symposium on High Performance
Distributed Computing, pp. 236–243 (1999)

	Scheduling Restartable Jobs with Short Test Runs
	Introduction
	Timed-Run Scheduling
	Optimizations and Complications

	Experimental Results
	Ninety Second Trial Runs
	Varying Trial-Run Length

	Background and Related Work
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

