
The Resource Usage Aware Backfilling

Francesc Guim, Ivan Rodero, and Julita Corbalan�

Computer Architecture Department, Technical University of Catalonia (UPC), Spain

Abstract. Job scheduling policies for HPC centers have been extensively stud-
ied in the last few years, especially backfilling based policies. Almost all of these
studies have been done using simulation tools. All the existent simulators use the
runtime (either estimated or real) provided in the workload as a basis of their sim-
ulations. In our previous work we analyzed the impact on system performance of
considering the resource sharing (memory bandwidth) of running jobs including
a new resource model in the Alvio simulator. Based on this studies we proposed
the LessConsume and LessConsume Threshold resource selection policies. Both
are oriented to reduce the saturation of the shared resources thus increasing the
performance of the system. The results showed how both resource allocation poli-
cies shown how the performance of the system can be improved by considering
where the jobs are finally allocated.

Using the LessConsume Threshold Resource Selection Policy, we propose a
new backfilling strategy : the Resource Usage Aware Backfilling job scheduling
policy. This is a backfilling based scheduling policy where the algorithms which
decide which job has to be executed and how jobs have to be backfilled are based
on a different Threshold configurations. This backfilling variant that considers
how the shared resources are used by the scheduled jobs. Rather than backfilling
the first job that can moved to the run queue based on the job arrival time or job
size, it looks ahead to the next queued jobs, and tries to allocate jobs that would
experience lower penalized runtime caused by the resource sharing saturation.

In the paper we demostrate how the exchange of scheduling information be-
tween the local resource manager and the scheduler can improve substantially
the performance of the system when the resource sharing is considered. We show
how it can achieve a close response time performance that the shorest job first
Backfilling with First Fit (oriented to improve the start time for the allocated
jobs) providing a qualitative improvement in the number of killed jobs and in the
percentage of penalized runtime.

1 Introduction

Several works focused on analyzing job scheduling policies have been presented in the
last decades. The goal was to evaluate the performance of these policies with specific
workloads in HPC centers. A special effort has been devoted to evaluating backfilling-
based ([4][22]) policies because they have demonstrated an ability to reach the best
performance results (i.e: [12] or [21]). Almost all of these studies have been done us-
ing simulation tools. To the best of our knowledge, all the existent simulators use the

� This paper has been supported by the Spanish Ministry of Science and Education under con-
tract TIN200760625C0201 and by the IBM/BSC MareIncognito project under the grant BES-
2005-7919.

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2009, LNCS 5798, pp. 59–79, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

60 F. Guim, I. Rodero, and J. Corbalan

runtime (either estimated or real) provided in the workload as a basis of their simu-
lations. However, the runtime of a job depends on runtime issues such as the specific
resource selection policy used or the resource jobs requirements.

In [15] we evaluated the impact of considering the penalty introduced in the job run-
time due to resource sharing (such as the memory bandwidth) in system performance
metrics, such as the average bounded slowdown or the average wait time, in the back-
filling policies in cluster architectures. To achieve this, we developed a job scheduler
simulator (Alvio simulator) that, in addition to traditional features, implements a job
runtime model and resource model that try to estimate the penalty introduced in the job
runtime when sharing resources. In our previous work and we only considered in the
model the penalty introduced when sharing the memory bandwidth of a computational
node. Results showed a clear impact of system performance metrics such as the average
bounded slowdown or the average wait time. Furthermore, other interesting collateral
effects such as a significant increment in the number of killed jobs appeared. Moreover
the impact on these performance metrics was not only quantitative.

Using the conclusions reached in our preliminary work, in [16] we described two
new resource selection policies that are designed to minimize the saturation of shared
resources. The first one, the LessConsume attempts to minimize the job runtime penalty
that an allocated job will experience. It is based on the utilization status of shared
resources in the current scheduling outcome and the job resource requirements. The
second once, the LessConsume Threshold, finds an allocation for the job that satisfies
the condition that the estimated job runtime penalty factor is lower than a given value
Threshold. This resource selection policy was designed to provide a more sophisticated
interface between the local resource manager and the local scheduler in order to find the
most appropriate allocation for a given job. Both resource allocation policies showed
how the performance of the system can be improved by considering where the jobs are
finally allocated. They showed a very important improvement in the percentage of pe-
nalized runtimes of jobs due to resource sharing saturation, and more importantly, in
the number of killed jobs. Both have reduced by four or even six times the number of
killed jobs versus the traditional resource selection policies.

In this paper we propose a new backfilling strategy: the Resource Usage Aware Back-
filling job scheduling policy. This is a backfilling based scheduling policy where the
algorithms which decide which job has to be executed and how jobs have to be back-
filled are based on a different Threshold configurations. In brief, this backfilling variant
is based on the Shortest-Backfilled First backfilling variant. Rather than backfilling the
first job that can be moved to the run queue, it looks ahead to the next queued jobs,
and tries to allocate jobs that would experience lower penalty factors. However, it also
takes into consideration the expected response time of the jobs that it evaluates during
the backfilling process. The presented paper uses the model described in our previous
work where the memory usage is considered.

The rest of the paper is organized as follows: section 2 presents the related work;
section 3 briefly introduces the resource and runtime models that we proposed; next, the
LessConsume Threshold resource selection policies are described; the RUA-Backfilling
is presented in section 5; in section 6 we present an evaluation of different scheduling
configurations; and finally, in section 9 we present the conclusions of this work.

The Resource Usage Aware Backfilling 61

2 Related Work

Authors like Feitelson, Schwiegelshohn, Calzarossa, Downey or Tsafrir have modeled
logs collected from large scale parallel production systems. They have provided inputs
for the evaluation of different system behavior. Such studies have been fundamental
since they have allowed an understanding how the HPC centers users behave and how
the resources of such centers are being used. Feitelson has presented several works
concerning this topic, among others, he has published papers on log analysis for spe-
cific centers [10], general job and workload modeling [8][11][9], and, together with
Tsafrir, papers on detecting workload anomalies and flurries [25]. Calzarossa has also
contributed with several workload modellization surveys [1][2]. Workload models for
moldable jobs have been described in works of authors like Cirne et al. in [5][6], by
Sevcik in [18] or by Downey in [7]. These studies have been considered in the design
of new scheduling strategies.

From the early nineties, local scheduling architectures and policies have been one of
the main goals of research in the area of high performance computing. Backfilling poli-
cies have been deployed in the major HPC centers. A backfilling scheduling policy is
an optimization of the simplest scheduling algorithm: First-Come-First-Serve (FCFS).
It starts jobs that have arrived later than the job at the head of the wait queue if the
estimated start time of this job is not delayed. Typically, this is called a reservation for
the first job. This backfilling is the most basic backfilling policy proposed by Lifka et al.
in [20] and it is called EASY-Backfilling. Many variants of this first proposal have been
described in several papers. The differences between each of them can be identified as
follows:

– The order in which the jobs are backfilled from the wait queue: in the EASY variant
the jobs are backfilled in arrival order, other variants have proposed backfilling the
jobs in shortest job first order (Shortest-Job-Backfilled-First [23][22]). More so-
phisticated approaches propose dynamic backfilling priorities based on the current
wait time of the job and the job size (LXWF-Backfilling [4]).

– The order in which the jobs are moved to the head of the wait queue, i.e.: which job
is moved to the reservation. Similar to backfilling priorities, in the literature many
papers have proposed pushing the job to the reservation in FCFS priority order or
using the LXWF-Backfilling order.

– The number of reservations that the scheduler has to respect when backfilling jobs.
The EASY variant is the most aggressive backfilling since the number of reserva-
tions is 1. As a result, in some situations the start time for the jobs that are queued
behind the head job may experience delays due to the backfilled jobs. More conser-
vative approaches propose that none of the queued jobs are delayed for a backfilling
job. However, in practice, this last kind of variant is not usually used in real systems.

General descriptions of the most frequently used backfilling variants and parallel
scheduling policies can be found in the report that Feitelson et al. provide in [12]. More-
over, a deeper description of the conservative backfilling algorithm can be found in [21],
where the authors present a characterization and explain how the priorities can be used
to select the appropriate job to be scheduled.

62 F. Guim, I. Rodero, and J. Corbalan

Backfilling [20] policies have been the main goal of study in recent years. As with re-
search in workload modeling, authors like Frachtenberg have provided the community
with many works regarding this topic. In [12] general descriptions of the most com-
monly used backfilling variants and parallel scheduling policies are presented. More-
over, a deeper description of the conservative backfilling algorithm can be found in [21],
where the authors present policy characterizations and how the priorities can be used
when choosing the appropriate job to be scheduled. Other works are [13] and [4].

More complex approaches have been also been proposed by other researchers. For
instance, in [17] the authors propose maintaining multiple job queues which separate
jobs according to their estimated run time, and using a backfilling aggressive based
policy. The objective is to reduce the slowdown by reducing the probability that short
job is queued behind a long job. Another example is the optimization presented by
Shmueli et al. in [19] which attempts to to maximize the utilization using dynamic
programming to find the best packing possible given the system status.

3 The Runtime Model

In this section we provide a brief characterization for the runtime model that we de-
signed for evaluate the resource sharing in the Alvio simulator. The main goal of this
simulator is to model the different scheduling entities and computing resrouces that are
included in the current HPC architectures. Despite the simulator allows to simulate dis-
tributed systems, in the work presented in this paper only one HPC center is considered.
The accesses to the HPC resources are controlled by two different software components:
the Job Scheduler and the Local Resources Manager. The figure 1 provides a general
overview of the different elements that are involved in a HPC system and their relations.
As can be observed, these computational resources are composed by a set of physical
resources (the processors, the memory, the I/O system etc.) that are managed by the
local scheduler and the local resource manager (LRM). The local scheduler has the re-
sponsibility of scheduling the jobs that the users submit and the local resource manager
has the responsibility to control the access to the physical resources.

In [15] we present a detailed description of the model and its evaluation.

3.1 The Job Scheduling Policy

The job scheduling policy uses as input a set of job queues and the information pro-
vided by the local resource manager (LRM) that implements a Resource Selection Pol-
icy (RSP). It is responsible to decide which of the jobs that are actually waiting to be
executed have to be allocated to the free resources. To do this, considering the amount
of free resources it selects the jobs that can run and it requires to the LRM to allocate
the job processes.

3.2 The Resource Selection Policy

The Resource Selection Policy, given a set of free processors and a job α with a set of
requirements, decides to which processors the job will be allocated. To carry out this

The Resource Usage Aware Backfilling 63

Fig. 1. The local scheduler internals

selection, the RSP uses the Reservation Table (RT, see figure 2). The RT represents the
status of the system at a given moment and is linked to the architecture. The reservation
table is a bi dimensional table where the X axes represent the time and the Y axes
represent the different processors and nodes of the architecture. It has the running jobs
allocated to the different processors during the time. One allocation is composed of a
set of buckets1 that indicate that a given job α is using the processors {p0, .., pk} from
start time until end time.

Fig. 2. The reservation table

1 The b(i,ti0 ,ti1) bucket is defined as the interval of time [tx,ty] associated to the processor pi.

64 F. Guim, I. Rodero, and J. Corbalan

An allocation is defined by: allocation{α} =
{
[t0,t1] ,P =

{
p{g,nh}, ..p{s,nt}

}}
and

indicates that the job α is allocated to the processors P from the time t0 until t1. The allo-
cations of the same processors must satisfy that they are not overlapped during the time.

Figure 3 provides an example of a possible snapshot of the reservation table at the
point of time t1. Currently, there are three jobs running in three different job allocations:
a1 =

{
[t0,t2] ,

{
p{1,node1}, p{2,node1}, p{3,node1}

}}

a2 =
{
[t1,t3] ,

{
p{4,node1}, p{5,node1}, p{1,node2}, p{2,node2}

}}

a3 =
{
[t1,t4] ,

{
p{5,node2}

}}

Fig. 3. Reservation Table Snapshot

3.3 Modeling the Conflicts

The model that we have presented in the previous subsection has some properties that
allow us to simulate the behavior of a computational center with more details. Different
resource selection policies can be modeled. Thanks to the Reservation Table, it knows
at each moment which processors are used and which are free.

Using the resource requirements for all the allocated jobs, the resource usage for the
different resources available on the system is computed. Thus, using the Reservation
Table, we are able to compute, at any point of time, the amount of resources that are
being requested in each node.

In this extended model, when a job α is allocated during the interval of time [tx, ty]
to the reservation table to the processors p1, .., pk that belong to the nodes n1, ..,n j, we
check if any of the resources that belong to each node is saturated during any part of the
interval. In the affirmative case a runtime penalty will be added to the jobs that belong
to the saturated subintervals. To model these properties we defined the Shared Windows
and the penalty function associated to it.

The Shared Windows. A Shared Window is an interval of time [tx,ty] associated to the
node n where all the processors of the node satisfy the condition that: either no process
is allocated to the processor, or the given interval is fully included in a process that is
running in the processor.

The Resource Usage Aware Backfilling 65

The penalty function. This function is used to compute the penalty that is associated
with all the jobs included to a given Shared Window due to resources saturation. The
input parameters for the function are:

– The interval associated to the Shared Window [tx, ty].
– The jobs associated to the Shared Window{α0, ..,αn}
– The node n associated to the Shared Window with its physical resources capacity.

The function used in this model is defined as 2:

∀res ∈ resources(n) → demandres =
{α0,..,αn}

∑
α

rα,res (1)

Penalty =
res

∑
resources(n)

(
max(demandres,capacityres)

capacityres
−1) (2)

PenlizedTime = (ty − tx)∗Penalty (3)

First for each resource in the node the resource usage for all the jobs is computed. Sec-
ond, the penalty for each resource consumption is computed. This is a linear function
that depends on the saturation of the used resource. Thus if the amount of required re-
source is lower than the capacity the penalty will be zero, otherwise the penalty added
is proportional to the fraction of demand and availability. Finally, the penalized time
is computed by multiplying the length of the Shared Window and the penalty. This
penalized time is the amount of time that will be added to all the jobs that belong to
the Window corresponding to this interval of time. This model has been designed for
the memory bandwidth shared resource and can be applicable to shared resources that
behave similar. However, for other typology of shared resources, such as the network
bandwidth, this model is not applicable. Our current work is focused on modeling the
penalty model for the rest of shared resources of the HPC local scenarios that can impact
in the performance of the system.

For compute the penalized time that is finally associated to all the jobs that are run-
ning: first, the shared windows for all the nodes and the penalized times associated with
each of them are computed; second the penalties of each job associated with each node
are computed adding the penalties associated with all the windows where the job run-
time is included; and finally, the final penalty associated to the job is the maximum
penalty that the job has in the different nodes where it is allocated.

4 The LessConsume Resource Selection Policies

Using the model that we have presented in the previous section we designed two new
Resource Selection Policies. First, the LessConsume that attempts to minimize the job
runtime penalty that an allocated job will experience. Based on the utilization status of
the shared resources in current scheduling outcome and job resource requirements, the

2 Note that all the penalty, resources, resource demands and capacities shown in the formula refer
to the node n and the interval of time

[
tx,ty

]
. Thereby, they are not specified in the formula.

66 F. Guim, I. Rodero, and J. Corbalan

LessConsume policy allocates each job process to the free allocations in which the job
is expected to experience the lowest penalties. Second, we designed the LessConsume
Threshold selection policy which finds an allocation for the job that satisfies the condi-
tion that the estimated job runtime penalty factor is lower than a given value Threshold.
It is a variant of the LessConsume policy and was designed to provide a more sophisti-
cated interface between the local resource manager and the local scheduler in order to
find the most appropriate allocation for a given job.

The core algorithm of the LessConsume selection policy is similar to the First Fit
resource selection policy. This last one selects the first α{CPUS,p} where the job can
be allocated. However, in contrast to this previous algorithm, the LessConsume policy,
once the base allocation is found, the algorithm computes the penalties associated with
the different processes that would be allocated in the reservation. Thereafter it attempts
to improve the allocation by replacing the selected buckets (used for create this initial
allocation) that would have higher penalties with buckets that can be also selected, but
that have not been evaluated. The LessConsume algorithm will iterate until the rest of
the buckets have been evaluated or the penalty factor associated to the job is 1 (no
penalty).3

In some situations this policy not only minimizes the penalized factor of the allocated
jobs, but it also provides the same start times as the first fit allocation policy, which in
practice provides the earliest possible allocation start time. However, in many situations
the allocation policy of the lower penalty factor provides a start time that is substantially
later than that achieved by a First Fit allocation. To avoid circumstances where the
minimization of the penalty factor results in delays in the start time of scheduled jobs,
we have designed the LessConsume Threshold. This is a parametrized selection policy
which determines the maximum allowed penalty factor allocated to any given job.

In contrast to this first selection policy, the LessConsume Threshold policy allows the
scheduler or to the administrator to specify the maximum desired penalty factor that the
scheduler accepts for a given job. Thus, it is able to carry out the scheduling decisions
taking into account the resource sharing saturation and it is able to verify how the job
response time is affected by different allocations of the job.

The main differences between the two policies is that the second one will stop the
process of evaluating all selected buckets when the penalty of the job is lower than
the provided Threshold. Thus, in some situations this resource selection policy will
return an allocation that has a higher penalty that the once that would have returned the
LessConsume policy, however with a earlier start time. This policy provides the trade
off to the scheduler to balance the benefits of delaying the job start time an obtaining a
lower threshold, or advancing it and having a higher penalty.

5 The RUA-Backfilling

The LessConsume Threshold resource selection policy has been mainly designed to
be deployed in two different scenarios. In the first case, the administrator of the local

3 The penalty factor is computed:
PenaltyFactorα = α{RunTime,rt}+α{PenalizedRunTime,prt}

α{RunTime,rt}
.

The Resource Usage Aware Backfilling 67

scenario specifies in the configuration files the penalty factor of a given allocated job.
This factor could be empirically determined by an analytical study of the performance
of the system. In the second, more plausible, scenario, the local scheduling policy is
aware of how this parameterized RSP behaves and how it can be used by different
factors. In this second case the scheduling policy can take advantage of this parameter
to decide whether a job should start in the current time or whether it could achieve
performance benefits by delaying its start time. In this last scenario the response time
of a job can be improved in two different ways:

– Reducing the final runtime of the job by minimizing the penalty factor associated
to the job.

– Reducing the wait time of the job by minimizing the start time of the job.

The Resource Usage Aware Backfilling Scheduling (RUA-Backfilling) policy takes into
account both considerations when inspecting the wait queue for backfilling the jobs or
finding the allocations for the reservations. In brief, this backfilling variant is based on
the Shortest-Backfilled First backfilling variant. Rather than backfilling the first job that
can moved to the run queue, it looks ahead to the next queued jobs, and tries to allocate
jobs that would experience lower penalty factors. However, it also takes into consid-
eration the expected response time of the jobs that it evaluates during the backfilling
process.

The different parameters of the RUA-Backfilling are:

1. The number of reservation (number of the jobs in the queue whose estimated start
time can not be delayed) is 1.

2. The different Thresholds that will be used to calculate the appropriate allocation
for the job that is moved from the reservation. In the evaluation the thresholds used
by the policy are RUAthresh = {1.15;1.20;1.25;1.5}.

3. The jobs are moved from the wait queue to the reservation using the First Come
First Serve priority. This priority assures that the jobs submitted to the system will
not suffer starvation.

4. The backfilling queue is ordered using a dynamic criteria that is computed each
time that the backfilling processes is required. It is described below.

When a job α has to be moved to the reservation the following algorithm is applied:

1. For each Threshold in the RUAthresh specified in the configuration of the policy (in
the presented evaluation {1.15;1.20;1.25;1.5}):

(a) The allocation based on the LessConsume Threshold resource selection policy
with a parameter of PenaltyFactor = T hreshold is requested from the local
resource manager.

(b) The slowdown for the job is computed based on the start/wait times, the penal-
ized runtime of the job in the returned allocation, the current wait time of the
job and its requested runtime.

2. The allocation with less slowdown is selected to allocate the job. The local sched-
uler contacts the local resource manager to allocate the job in the given allocation.

68 F. Guim, I. Rodero, and J. Corbalan

Given the jobs that are queued in the backfilling queue, the backfilling algorithm be-
haves as follows:

1. In the first step, for each job α in the backfilling queue its allocation is computed
based on the algorithm introduced in the previous paragraph. If the start time for
the returned allocation is the current time the job is added to the backfilling queue
where the allocations are ordered by the penalized factor associated to the allocation
and secondly by its length. Note that each job has only one assigned allocation.

2. In the second step, the backfilling queue has all the jobs that could be backfilled
in the current time stamp ordered in terms of the associated penalty. The queue
is evaluated and the first job that can be backfilled is allocated to the reservation
table using allocation computed in the previous step. Note that the allocation will
be exactly the same as the one computed in the first step.

(a) If no job can be backfilled the process of backfilling is terminated.
(b) Otherwise, steps 1 and 2 will be iterated again.

The key concept of this backfilling variant is to find out the allocation that provides the
best slowdown for the job that is moved to the reservation, and to backfill the jobs in
the manner that the saturation of the shared resources is minimized. The second goal
will reduce the number of killed jobs due to resource sharing saturation.

Note that in this algorithm the allocations are computed using the estimated runtime
that is provided by the user. In the version of the policy evaluated in this scenario we
have supposed that when a job is allocated with a penalty factor of αpenalty, the estimated
runtime is updated according this penalty. Based on our studies in prediction systems in
backfilling policies [14], in our future versions of the RUA we plan to use the predicted
runtime in the LessConsume Threshold and keep the original user requested runtime.

6 Experiments

In this section we characterize the different experiments that we defined in order to
validate the performance of the different scheduling strategies that we propose.

6.1 Workloads

For the experiments we used the cleaned [24] versions of the workloads SDSC Blue
Horizon (SDSC-BLUE) and Cornell Theory Center (CTC) SP2. For the evaluation ex-
periments explained in the following section, we used the 10000 jobs of each workload
plus 10000 jobs that were used in order to warm-up the system and achieve a steady
state. Based on these workload trace files, we generated three variations for each one
with different memory bandwidth pressure:

– HIGH: 80% of jobs have high memory bandwidth demand, 10% with medium de-
mand and 10% of low demand.

– MED: 50% of jobs have high memory bandwidth demand, 10% with medium de-
mand and 40% of low demand.

– LOW: 10% of jobs have high memory bandwidth demand, 10% with medium de-
mand and 80% of low demand.

The Resource Usage Aware Backfilling 69

6.2 Architecture

For each of the workloads used in the experiments we defined architecture with nodes of
four processors, 6000 MB/Second of memory bandwidth, 256 MB/Second of Network
bandwidth and 16 GB of memory. In addition to the SWF [3] traces with the job defi-
nitions we extended the standard workload format to specify the resource requirements
for each of the jobs. Currently, for each job we can specify the average memory band-
width required (other attributes can be specified but are not considered in this work).
Based on our experience and the architecture configuration described above, as a first
approach we defined that a low memory bandwidth demand consumes 500 MB/Second
per process; a medium memory bandwidth demand consumes 1000 MB/Second per
process; and that a high memory bandwidth demand consumes 2000 MB/Second per
process. These memory requirements were selected based on the typology of jobs that
were running in our centers.

7 Scenarios

In the experiments we evaluate the impact of the RUA-Backfilling in the system. To do
this, we compare its performance against the Shortest Job Backfilled First policy under
the LessConsume resource selection policies. For the analysis of the RUA-Backfilling
job scheduling policy the following configurations were evaluated:

1. The Shortest Job Backfilled First scheduling policy using:
– The LessConsume resource selection policy.
– The LessConsume Threshold resource selection policy with four different

factors (1, 1,15, 1,25 and 1,5).
– The First-Fit resource selection policy.

2. The RUA-Backfilling policy.

All the simulations have used the the job runtime model with resource sharing model
introduced in the first part of this paper. In the rest of the section we analyze the dif-
ferent configurations that we have introduced: first, we provide a discussion concerning
the differences between using the LessConsume and LessConsume Thresolds policies in
the SJBF Backfilling variant. Next, we compare the performance of the SJBF Backfill-
ing with the First-Fit and LessConsume resources selection policies against the results
obtained using the RUA-Backfilling.

8 Evaluation

In this section we present the evaluation of the RUA-Backfilling job scheduling policy.
However, in order to provide a characteriztation of the LessConsume resource selection
policies, first we present their performance analysis. This analysis is used later on in the
discussion of the RUA-Backfilling.

70 F. Guim, I. Rodero, and J. Corbalan

8.1 The LessConsume and LessConsume Threshold

Tables 1 and 2 present the 95th percentile and average of the bounded slowdown for
the CTC and SDSC centers for each of the three workloads for the First Fit (FF),
LessConsume and LessConsume Threshold resource selection policy. The last one was
evaluated with three different factors: 1, 1,15, 1,25 and 1,5. In both centers the Less-
Consumepolicy performed better than the LessConsume Threshold with a factor of 1.
One could expected that the LessConsume should be equivalent to use the LessConsume
Threshold with a threshold of 1. However, note that this affirmation would be incorrect.
This is caused due to the LessConsume policy evaluates all the buckets in a subset of
all the possible allocations. The goal of this policy is to optimize the First Fit allocation
but without carry out a deeper search of other possibilities. However, the LessConsume
Threshold may look further in the future in the case that the penalty is higher than the
provided threshold. Thereby, this last one is expected to provide higher wait time val-
ues. On the other hand, as we had expected, the bounded slowdown decreases while
increasing the factor of the LessConsume Threshold policy. In general, the ratio of in-
crement of using a factor of 1 and a factor of 1,5 is around a 20% in all the centers and
workloads.

The performance of these two resource policies, compared to the performance of
the First Fit policy, shows that LessConsume policies give an small increment in the
bounded slowdown. For instance, in the CTC high memory pressure workload the 95th

percentile of the bounded slowdown has increased from 4,2 in the First Fit to 5,94 in the
LessConsume policy, or to 7,92 and 5,23 in the LessConsume Threshold with thresholds
of 1 and 1,5 respectively.

Table 1. Bounded-Slowdown - 95th Percentile

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 4,2 5,94 7,92 6,12 5,32 5,23
Med 2,8 3,55 4,22 3,82 3,65 3,52
Low 2,2 3,12 3,62 3,82 3,45 3,52

SDSC
High 99,3 110,21 128,08 115,28 109,51 106,23
Med 55,4 68,06 74,32 72,83 71,37 68,52
Low 37,8 45,37 57,27 52,86 42,28 42,28

Table 2. Bounded-Slowdown - Average

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 8,2 10,44 18,02 12,38 11,32 13,54
Med 5,3 6,65 7,52 8,05 6,85 7,75
Low 3,2 5,62 5,92 5,82 8,84 8,56

SDSC
High 22,56 24,41 27,37 25,54 24,26 23,53
Med 11,32 12,51 14,76 14,46 14,17 13,6
Low 7,54 7,8 9,08 9,5 8,47 8,27

The Resource Usage Aware Backfilling 71

Tables 3 and 4 show the 95th and average of the wait time for the CTC and SDSC
centers for each of the three workloads for the First Fit, LessConsume and LessConsume
Threshold resource selection policy. This performance variable shows similar pattern to
the bounded slowdown. The LessConsume policy shows a better performance result that
using the LessConsume Threshold with a factor of 1.

The 95th percenage of penalized runtime is presented in the table 5 and the average
is shown in the table table 6. The penalized runtime clearly increases by incrementing
the threshold. For instance, the 95th Percentile of the percentage increases from 8,31
in the SDSC and the high memory pressure workload with a factor of 1 until 11,64
with a factor of 1,5. The LessConsume, different from to the two previously described
variables, shows similar values to the LessConsume Threshold with a factor of 1,5. This
percentage of penalized runtime was reduced with respect to the First Fit when using
all the different factors in both centers.

Table 3. Wait Time - 95th Percentile

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 10286 12588 17945 15612 14555 10188
Med 8962 9565 13391 13123 9186 9094
Low 4898 5034 6544 7198 5235 5759

SDSC
High 55667 63293 70964 69632 59978 41779
Med 44346 45164 58713 59300 47440 45616
Low 32730 35092 38265 37499 33374 33785

Table 4. Wait Time - average

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 20082 24576 35035 30480 28416 19890
Med 13443 14347 20086 19684 13779 13641
Low 7124 7322 9518 10469 7614 8376

SDSC
High 12647 14379 16122 15819 13626 9491
Med 9061 9228 11996 12116 9693 9320
Low 3931 4214 4595 4503 4008 4057

Table 5. Percentage of Penalized Runtime - 95th Percentile

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 8,8 8,01 7,69 7,87 7,91 8,1
Med 4,8 3,81 3,01 3,52 4,06 3,90
Low 0,92 0,78 0,51 0,72 0,62 0,80

SDSC
High 11,8 11,33 8,31 10,37 11,58 11,64
Med 6,7 6,01 4,70 4,85 5,64 5,96
Low 1,4 1,03 0,75 0,81 0,94 1,19

72 F. Guim, I. Rodero, and J. Corbalan

Table 6. Percentage of Penalized Runtime - average

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 7,8 6,81 6,98 7,17 7,39 7,34
Med 3,8 2,54 2,93 3,02 3,1 3,20
Low 0,72 0,7 0,21 0,42 0,33 0,64

SDSC
High 15,1 10,32 7,41 11,73 10,85 12,32
Med 10,2 7,2 4,70 4,85 5,64 5,96
Low 5,2 4,53 2,56 3,11 4,58 4,23

Table 7. Number of Killed Jobs 95th Percentile

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 428 120 57 70 87 97
Med 247 101 76 77 102 99
Low 64 45 36 38 58 52

SDSC
High 475 105 87 130 127 130
Med 255 89 76 79 103 145
Low 51 34 22 27 33 41

The number of killed jobs is the performance variable that showed most improve-
ment in all the memory pressure workloads. The number of killed jobs is qualitatively
reduced with the LessConsume Threshold with a factor of 1: for example with the high
memory pressure workload and the CTC center, the number of killed jobs was reduced
from 428 with the First Fit to 70. The other threshold factors also showed clear improve-
ments; the number was halved. As to the LessConsume policy, the number of killed jobs
was reduced by a factor of 4 compared to the First Fit and the high and medium memory
pressure workloads of both centers.

The LessConsume policy shows how the percentage of penalized runtime and num-
ber of killed jobs can be reduced in comparison to the First Fit, by using this policy
with EASY backfilling. In traditional scheduling architectures this RSP can be used
rather than traditional policies, without any modifications in local scheduling policies.
Furthermore, the LessConsume threshold shows how, with different thresholds, perfor-
mance results can also be improved. Higher penalty factors result in better performance
of the system. However, in this situation the number of killed jobs and the percentage
of penalized runtime is increased. The LessConsume policy shows similar performance
results as the LessConsume Threshold with factors of 1,25 and 1,5.

8.2 The Thresholds Trade Offs

Figures 4, 5, 6 and 7 present the performance of the LessConsume policies (using
bounded slowdown) against the percentage of penalized runtime of the jobs and the
number of killed jobs. The goal of these figures is to show the chance that the Less-
Consume Threshold and LessConsume policies have to improve the performance of
the system while achieving an acceptable level of performance. As can be observed in

The Resource Usage Aware Backfilling 73

Fig. 4. BSLD versus Percentage of Penalized Runtime - CTC Center

Fig. 5. BSLD versus Percentage of Penalized Runtime - SDSC Center

figures 6 and 4 a good balance is achieved in the CTC center using the threshold of 1,15
where both the number of killed Jobs and the percentage of penalized runtime converge
are in acceptable values. In the case of the SDSC center, this point of convergence is
not as evident as the CTC center. Considering the tendency of the bounded slowdown, it
seems that the LessConsume Threshold with a factor of 1.15 is an appropriate configu-
ration for this center, due to the fact that the penalized runtime and the number of killed
jobs presents the lowest values, and the bounded slowdown shows values that are very
close to the factors of 1,15 and 1,25. However, the configuration of the LessConsume
Threshold with a factor of 1,15 also shows acceptable values.

8.3 The RUA-Backfilling

In the previous subsections we have present the performance that the LessConsume re-
source selection policies achieve when they are used together with the SJBF-Backfilling

74 F. Guim, I. Rodero, and J. Corbalan

Fig. 6. BSLD versus Killed Jobs - CTC Center

Fig. 7. BSLD versus Killed Jobs - SDSC Center

variant. We have observed that the LessConsume Threshold resource selection policy
can provide good results when the used threshold is between 1.15 and 1.25 depending
on the workload. Using this results in the first RUA-Backfilling version shown in this
paper we decided to use threshold values presented in the section 5. In this section we
present the benefits of the usage of a backfilling variant that interacts with the local
resource manager against the traditional approaches.

The figures 9 and 8 present the performance that the RUA-Backfilling scheduling
policy has achieved with respect the Shortest-Job-Backfilled First Backfilling (SJBF-
Backfilling) with the First Fit and LessConsume Resource Selection Policies. The re-
sults shows also how each of the policies behaved with the three different memory
pressure workloads for the SDSC and CTC workloads. The figure shows the 95th Per-
centile of the BSLD, the Wait time and the Percentage of Penalized Runtime that the
jobs have experimented and the number of killed jobs that three scheduling strategies
have achieved in the simulations.

The Resource Usage Aware Backfilling 75

Fig. 8. RUA Performance Variables for the CTC Workload

Fig. 9. RUA Performance Variables for SDSC Workload

76 F. Guim, I. Rodero, and J. Corbalan

The bounded slowdown shows how in both workloads the RUA-Backfilling achieves
slightly worst performance that the SJBF-Backfilling with the first fit selection policy.
In both cases the difference between the BSLD is less than a 5%. For instance, the 95th

Percentile of the BSLD with the SJBF-Backfilling in the SDSC workload with high
memory pressure is 100 and with the RUA-Backfilling is around 110. Note that we
could expect that this last one should achieve smaller BSLD that the once obtained by
the SJBF-Backfilling with FF due to it takes into account the resource usage. However,
in the RUA-Backfilling the number of jobs that are used for compute the BSLD (number
of finished jobs) is substantially bigger that the once used in the other (400 less in the
SJBF). Respect the SJBF-Backfilling with the LessConsume resource selection policy,
the RUA-Backfilling shows in both workload better bounded slowdowns.

The wait time shows similar patterns that the Bounded Slowdown. However, the CTC
workload shows higher differences between the SJBF-Backfilling and the other two
strategies. For example, while the 95th Percentile of wait time for the RUA-Backfilling
and the SJBF-Backfilling with FF remains around 4000 and 5000 seconds in the high
pressure scenario, the SJBF-Backfilling with LessConsume presents 95th Percentile of
the wait time around 7000. This, may indicate that the RUA Backfilling is more stable
than using the LessConsume with a non resource usage aware scheduling strategy.

Finally, the number of killed jobs and the 95th Percentile of percentage of penalized
runtime show a qualitative improvement respect the SJBF-Backfilling with First Fit.
For example, the RUA-Backfilling shows a reduction of a 500% in the number of killed
jobs in the high memory pressure scenario of the SDSC workload and a reduction of
300% in the CTC scenario also with the high memory pressure scenario. Although the
percentage of penalized run time shows an improvement in both center using the RUA-
Backfilling, a higher improvement is shown in the SDSC center. For example, in this
last case the percentage of penalized runtime is reduced a 50% in the workload with a
medium memory pressure.

The RUA-Backfilling has demonstrated how the exchange of scheduling information
between the local resource manager and the scheduler can improve substantially the per-
formance of the system when the resource sharing is considered. It has shown how it
can achieve a close response time performance that the SJBF-Backfilling with FF, that
is oriented to improve the start time for the allocated jobs, providing a qualitative im-
provement in the number of killed jobs and in the percentage of penalized runtime. On
the other hand, it has demonstrated how it can also obtain substantial improvement in
these last two variables regarding the SJBF-Backfilling with LessConsume scheduling
strategy, that is oriented to minimize the job runtime penalty due to resource saturation
of the sharing resources.

9 Conclusions

In this paper we have shown how the performance of the system can be improved by con-
sidering resource sharing usage and job resource requirements in the new RUA Back-
filling variant. In this proposal the local scheduler cooperates with the local resource
manager in order to find out the allocation that minimizes the job runtime penalty due
to the saturation of the resource sharing. This is a backfilling variant scheduling policy

The Resource Usage Aware Backfilling 77

where the algorithms which decide which job has to be executed and how jobs have
to be backfilled are based on a different configurations of the LessConsume Threshold
resource selection policy that we proposed in our previous work. In the first part of the
paper we have introduced the key concepts of our previous works that are used in the
RUA-Backfilling algorithm. First the runtime model used in our simulator, and second,
the Find LessConsume and LessConsume Threshold resource selection policies.

In this paper we evaluate the effect of considering the memory bandwidth usage in
the different scheduling strategies under several workloads. Two different workloads
from the Standard Workload Archive have been used in the experiments (the SDSC
Blue Horizon (SDSC-BLUE) and the Cornell Theory Center). For each of them we
have generated three different scenarios: with high (HIGH), medium (MED), and low
(LOW) percentage of jobs with high memory demand. We have evaluated the impact of
using the LessConsume and LessConsume Threshold with the Shortest Job Backfilled
first and the RUA-Backfilling presented in this paper. These synthetic workloads have
been used as a first approach to evaluate the potential of the proposed techniques.

The RUA-Backfilling has demonstrated how the exchange of scheduling information
between the local resource manager and the scheduler can improve substantially the per-
formance of the system when the resource sharing is considered. It has shown how it
can achieve a close response time performance that the SJBF-Backfilling with FF, that
is oriented to improve the start time for the allocated jobs, providing a qualitative im-
provement in the number of killed jobs and in the percentage of penalized runtime. On
the other hand, it has demonstrated how it can also obtain substantial improvement in
these last two variables regarding the SJBF-Backfilling with LessConsume scheduling
strategy, that is oriented to minimize the job runtime penalty due to resource saturation
of the sharing resources.

Concerning the penalty model used in our system, our future work will consider
how other shared resources may impact in the performance of the system. Clearly, the
penalty function that has been presented in our model, has to be extended for consider
penalties that other typologies of resource may show. For instance, the network band-
width shows patterns in the job execution that are not considered in the penalty function.
On the other hand, our future research will evaluate the impact of having inaccurate es-
timations in the job resource sharing requirements. Related to this, we will work in the
usage of prediction techniques in order to estimate the resource requirements of the
submitted jobs.

The RUA-Backfilling that we have presented in this paper uses a set of pre-configured
Threshold for finding out the job allocations. In our research we have stated that the
workloads can show very different load patterns during the time. Thus, depending of
the epoch, the system may experiment better performance using different Threshold
values. Considering this phenomena we will extend the RUA in order to dynamically
determine which factors should be used in each scheduling moment. The first step will
be studying the correlation of the system performance against the load of the system and
Threshold configuration. Afterward, we will use this information for extend the current
RUA-Policy policy.

78 F. Guim, I. Rodero, and J. Corbalan

References

1. Calzarossa, M., Haring, G., Kotsis, G., Merlo, A., Tessera, D.: A hierarchical approach
to workload characterization for parallel systems. In: Hertzberger, B., Serazzi, G. (eds.)
HPCN-Europe 1995. LNCS, vol. 919, pp. 102–109. Springer, Heidelberg (1995)

2. Calzarossa, M., Massari, L., Tessera, D.: Workload characterization issues and method-
ologies. In: Reiser, M., Haring, G., Lindemann, C. (eds.) Dagstuhl Seminar 1997. LNCS,
vol. 1769, pp. 459–482. Springer, Heidelberg (2000)

3. Chapin, S.J., Cirne, W., Feitelson, D.G., Jones, J.P., Leutenegger, S.T., Schwiegelshohn, U.,
Smith, W., Talby, D.: Benchmarks and standards for the evaluation of parallel job schedulers.
In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999, IPPS-WS 1999, and SPDP-WS 1999.
LNCS, vol. 1659, pp. 66–89. Springer, Heidelberg (1999)

4. Chiang, S.-H., Arpaci-Dusseau, A.C., Vernon, M.K.: The impact of more accurate re-
quested runtimes on production job scheduling performance. In: Feitelson, D.G., Rudolph,
L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 103–127. Springer, Hei-
delberg (2002)

5. Cirne, W., Berman, F.: A comprehensive model of the supercomputer workload. In: 4th Ann.
Workshop Workload Characterization (2001)

6. Cirne, W., Berman, F.: A model for moldable supercomputer jobs. In: 15th Intl. Parallel and
Distributed Processing Symp. (2001)

7. Downey, A.B.: A parallel workload model and its implications for processor allocation. In:
6th Intl. Symp. High Performance Distributed Comput. (August 1997)

8. Feitelson, D.G.: Packing schemes for gang scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
IPPS-WS 1996 and JSSPP 1996. LNCS, vol. 1162, pp. 89–110. Springer, Heidelberg (1996)

9. Feitelson, D.G.: Workload modeling for performance evaluation. In: Calzarossa, M.C., Tucci,
S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 114–141. Springer, Heidelberg (2002)

10. Feitelson, D.G., Nitzberg, B.: Job characteristics of a production parallel scientific workload
on the nasa ames ipsc/860. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP
1995. LNCS, vol. 949, pp. 337–360. Springer, Heidelberg (1995)

11. Feitelson, D.G., Rudolph, L.: Metrics and benchmarking for parallel job scheduling. In: Fei-
telson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS,
vol. 1459, pp. 1–24. Springer, Heidelberg (1998)

12. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U.: Parallel job scheduling — A status report.
In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS, vol. 3277,
pp. 1–16. Springer, Heidelberg (2005)

13. Feitelson, D.G., Weil, A.: Utilization and predictability in scheduling the ibm sp2 with back-
filling. In: Proceedings of the 12th. International Parallel Processing Symposium, pp. 542–
546 (1998)

14. Guim, F., Corbalan, J.: Prediction f based models for evaluating backfilling scheduling poli-
cies. In: The 8th International Conference on Parallel and Distributed Computing, Applica-
tions and Technologies (2007)

15. Guim, F., Corbalan, J., Labarta, J.: Modeling the impact of resource sharing in backfilling
policies using the alvio simulator. In: 15th Annual Meeting of the IEEE / ACM International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (2007)

16. Guim, F., Corbalan, J., Labarta, J.: Resource sharing usage aware resource selection poli-
cies for backfilling strategies. In: The 2008 High Performance Computing and Simulation
Conference (2008)

17. Lawson, B.G., Smirni, E.: Multiple-Queue Backfilling Scheduling with Priorities and Reser-
vations for Parallel Systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2002. LNCS, vol. 2537, pp. 72–87. Springer, Heidelberg (2002)

The Resource Usage Aware Backfilling 79

18. Sevcik, K.C.: Application scheduling and processor allocation in multiprogrammed parallel
processing systems. Performance Evaluation, 107–140 (1994)

19. Shmueli, E., Feitelson, D.G.: Backfilling with Lookahead to Optimize the Performance of
Parallel Job Scheduling. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2003. LNCS, vol. 2862, pp. 228–251. Springer, Heidelberg (2003)

20. Skovira, J., Chan, W., Zhou, H., Lifka, D.A.: The easy - loadleveler api project. In: Feitelson,
D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP 1996. LNCS, vol. 1162, pp. 41–47.
Springer, Heidelberg (1996)

21. Talby, D., Feitelson, D.: Supporting priorities and improving utilization of the ibm sp sched-
uler using slack-based backfilling. In: Parallel Processing Symposium, pp. 513–517 (1999)

22. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using runtime predictions rather than user
estimates. Technical Report 2005-5, School of Computer Science and Engineering, The He-
brew University of Jerusalem (2005)

23. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated predictions rather
than user runtime estimates. IEEE TPDS (2006)

24. Tsafrir, D., Feitelson, D.G.: Workload flurries. Technical report, School of Computer Science
and Engineering and The Hebrew University of Jerusalem (2003)

25. Tsafrir, D., Feitelson, D.G.: Instability in parallel job scheduling simulation: the role of work-
load flurries. In: 20th Intl. Parallel and Distributed Processing Symp. (2006)

	The Resource Usage Aware Backfilling
	Introduction
	Related Work
	The Runtime Model
	The Job Scheduling Policy
	The Resource Selection Policy
	Modeling the Conflicts

	The LessConsume Resource Selection Policies
	The RUA-Backfilling
	Experiments
	Workloads
	Architecture

	Scenarios
	Evaluation
	The LessConsume and LessConsume Threshold
	The Thresholds Trade Offs
	The RUA-Backfilling

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

