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Abstract. It is important to identify scalability constraints in existing
job scheduling software as they are applied to next generation paral-
lel systems. In this paper, we analyze the scalability of job scheduling
and job dispatching functions in the IBM LoadLeveler job scheduler. To
enable this scalability study, we propose and implement a new virtualiza-
tion method to deploy different size LoadLeveler clusters with minimal
number of physical machines. Our scalability studies with the virtual-
ization show that the LoadLeveler resource manager can comfortably
handle over 12,000 compute nodes, the largest scale we have tested so
far. However, our study shows that the static resource matching in the
scheduling cycle and job object processing during the hierarchical job
launching are two impediments for the scalability of LoadLeveler.

1 Introduction

Job scheduling software is a key piece of system software to maximize the uti-
lization of parallel computing systems. As these systems increase in size with
one generation of systems having more processors and compute power than the
previous generation, the performance of job scheduling becomes crucial to opti-
mize the overall system utilization. To support the current and next generation
of massively parallel systems (MPP), the job scheduler must scale in several
dimensions. It must be able to manage a large number of jobs and compute re-
sources, quickly match resources to a job, and rapidly dispatch the job on those
resources. During the last year, we have analyzed the scalability of IBM Tivoli
workload scheduler LoadLeveler in the context of the IBM DARPA HPCS pro-
gram [2]. This paper presents the method and results of the study, as well as
insights about scheduling and dispatching in the context of LoadLeveler.

An essential requirement for a scalability study is access to a representative
large scale system. Although we indeed have access to fifty 8-processor pSeries
machines, the goal is to study scalability beyond a thousand nodes. This resource
limitation is overcome by developing a lightweight virtualization mechanism that
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creates hundreds of LoadLeveler nodes on each physical machine. This technique
allows testing on up to a 12,000 node LoadLeveler cluster using fifty physical
nodes. Virtualization is applied to study the scalability of LoadLeveler in its
capability in resource monitoring, identifying and scheduling jobs to resources,
and in dispatching jobs to the allocated resources. The following contributions
are made:

– Introduce lightweight virtualization technology that isolates and executes
multiple instances of LoadLeveler node daemons on a physical machine, cre-
ating a large cluster with minimal physical machine and memory require-
ments (Section 3).

– Analyze the scalability of job scheduling algorithms for sequential and par-
allel jobs and isolate the performance of different phases in the scheduling
algorithm. Static resource matching is determined to be a scalability problem
and approaches to address this problem are described (Section 4.2).

– Investigate the scalability of hierarchical job launching and identify scalabil-
ity hot-spots with processing job object at various levels of the hierarchical
tree (Section 4.3).

2 LoadLeveler Overview

LoadLeveler [3] is a distributed job scheduling product of IBM. It is based on
the licensed code from the Condor system [13] in mid 1990. The architectural
framework of LoadLeveler, as shown in Figure 1, retains the core structure of
Condor. The Central Manager (CM) consists of two functional units: the Col-
lector and the Negotiator. The Collector receives resource information sent by
a daemon called StartD running on the machine.1 LoadLeveler ensures there is
only one StartD on each machine with responsibility for reporting the machine
state, resources and attributes, utilization, and managing presence heartbeats.
The Negotiator applies this resource information to allocate machines matching
the execution requirements of user jobs.

Jobs are submitted to LoadLeveler through the Scheduling daemon (SchedD).
SchedD is responsible for maintaining a local job queue and persisting job state,
as well as coordinating the activities of assigning execution nodes to the job,
and launching the job. Multiple SchedD machines can be defined for a cluster to
eliminate bottlenecks with large job submissions requirements. SchedD informs
the Negotiator about each job arrival and the Negotiator applies scheduling al-
gorithms to allocate computational and other resources to jobs. The resource
assignments are returned to the SchedD which forwards the job launch infor-
mation to the StartDs on the allocated executing machines. Execution at the
node is managed by the local StartD which forks a Starter process to initiate
and control the job. Concurrent execution of multiple jobs or tasks at the node
is enabled by forking multiple Starters.

1 The terms ”machine” and ”compute node” are used interchangeably.
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Fig. 1. LoadLeveler Architecture

LoadLeveler continually evolves to support new hardware architectures, and
leverage novel software features. Examples include high bandwidth interconnec-
tion switches (e.g. SP2 switch [12], InfiniBand [10]) hardware multi-threading,
and Blue Gene [6,5]. Supported software features include AIX’s WLM [1], and
various Linux distributions [4]. Recent development has emphasized support for
highly parallel applications running on large scaled clusters with high speed
interconnection instead of flocks of workstations [7].

The following sub-sections describe in more detail scheduling in Negotiator,
and hierarchical communication scheme for scalable job dispatching. This mate-
rial provides the necessary background for our scalability studies covered later
in this paper:

2.1 Scheduling in Negotiator

The Negotiator of CM processes incoming jobs in two sequential phases: schedul-
ing requested resources to jobs and coordinating with SchedD to dispatch jobs
to assigned machines for execution.

During the scheduling phase, Negotiator logically performs the following steps:

1. Select machines that have the capabilities to match the requirements of
the job; Exemplary capabilities include machine architecture type (x86,
POWER), job class definitions, and high-speed switch connectivity.

2. Select capable machines that have the dynamic capacities to assign to the
job; Exemplary capacities include unused job class, unfilled multiprogram-
ming level, and spare switch adapters.

3. Assign the machine(s) to the job based on specific scheduling algorithms
and administrative policies; for example, backfill [9] and fairshare are two of
scheduling algorithms in LoadLeveler.
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At the end of scheduling phase, Negotiator sends successful machines-to-job as-
signments to SchedD, which dispatches the job to all assigned machines through
the StartDs on the machines.

2.2 Hierarchical Scheme for Job Dispatching

In a large cluster, information and command propagation from a single machine
to a large number of other machines is parallelized (e.g. using multi-threading)
for faster communication. However, the number of open communication connec-
tions on a single machine is a potential bottleneck because of limited resources
such as communication buffers and OS data structures. The hierarchical scheme
provides the benefit of parallel communication operations by dividing the con-
nections through a spanning tree.

The hierarchical communication scheme implemented by LoadLeveler [8] is
shown in Figure 2 with an exemplary fan-out of three. When a job is scheduled
by the Negotiator a job object of assigned machines and job specific information
is sent to SchedD. SchedD constructs a hierarchical spanning tree of machines
using the configurable fan-out parameter. and sends the tree structure and job
information to the root node or master StartD. The master StartD repackages
the job object into job objects customized exclusively for the subtree headed
by each immediate child StartD and forwards the information. This process is
repeated down the tree to the leaf nodes. Communication of the job object to all
compute nodes is flagged as successful when an acknowledgement from each node
in the tree is received at the master StartD. Then, a subsequent communication
is sent using the tree to command each node to start the job. The start com-
mand prompts each StartD to launch a Starter process which locally manages
job execution.

Central Manager

SchedD

StartD

Fig. 2. Hierarchical Communication Structure
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3 Virtual Node Method for Scalability Analysis

Analyzing the performance and scalability of LoadLeveler requires a cluster of
at least a few thousand compute nodes. Building and maintaining such a large
scale cluster for this analysis alone is not cost effective. A StartD instance is the
component in LoadLeveler that represents a compute node. From the perspective
of the CM the size of the cluster is the number of StartD processes reporting
to the CM. Thus, the key to creating a compute cluster whose apparent size
is greater than the number of physical machines is to allow multiple StartD to
execute independently and in mutual isolation on each physical node. However,
the design point of LoadLeveler is a single StartD process for each physical
machine node. Communication ports are the identical for all StartD as specified
in a central configuration file and can not be shared among StartD instances
on the same machine. Furthermore, each StartD must appear to both the CM
and other StartDs that it is located at a dedicated and unique ip address. A
secondary issue is that the configuration file read by each StartD also contains
information about spool and log file locations which cannot be shared between
StartD. So the challenge is to provide an environment to StartD where it is on
a private network.

One approach is to fully virtualize the platform hardware at each physical
compute node using a hyper-visor to execute multiple operating system images,
each running a single StartD. This provides the requisite isolation of network
bindings and configuration settings. The drawback is the memory, disk, and
processor overhead of using the operating system as a isolation container. A
StartD process requires about 25MB of memory including the Starter process,
so an OS container is inefficient. A better approach is lightweight virtualization of
just the network layer so that multiple StartDs execute in isolation within a single
OS image. It is reasonable to expect that a lightweight solution on a physical
machine with 4 GB of memory is capable of hosting approximately 160 ’virtual’
compute nodes, more when using memory swap space on disk. A further practical
challenge to lightweight virtualization is that the initial implementation cannot
involve modification of product code. The product group is willing to make minor
modifications to network interface binding to simplify network isolation, when
substantial benefit of emulating large clusters is demonstrated. Such benefit is
initially displayed first using an IPTables approach which motivated a minor (¡
10 lines of code) change to the IP binding in LoadLeveler as explained next.

The adopted methodology for lightweight virtualization of StartD nodes is
now described. The initial hurdle is to generate a unique configuration file for
each virtual StartD. Activation of a StartD process causes it to read a config-
uration file from a fixed location. The configuration file defines daemon com-
munication intervals, locations for log files, spool directories, and IP ports on
which StartD listens for external traffic. Subsequently StartD spawns a thread
that binds to its set of listening ports. As part of job launch, StartD also forks
off Starter processes which also rely on this configuration file. Thus, the con-
figuration file cannot be modified while the StartD process is active. Fortu-
nately, the LoadLeveler development team identified an an environment variable
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LOADL CONFIG which when set is recognized by StartD as an override to the
global configuration file. The original intent of this variable is to manage jobs
in multi-cluster LoadLeveler environment [3]. It is used here to provide each
StartD with a unique set configuration parameters by setting LOADL CONFIG to
a corresponding file prior to instantiating the StartD process. However, the net-
work conflict issue remains as the StartDs still share a common IP address and
conflict over the binding to communications ports.

Tying the communication of each StartD to a different IP requires a flexi-
ble method to create multiple IP addresses and use them for CM, SchedD, and
StartD communications. Because code modification is not permitted in the proof
of concept phase, the approach taken to network isolation is based on iptables.
Iptables maps ports and addresses at the ip layer of the transport stack. For a
large scale system this requires complex setup and imposes significant perfor-
mance overhead. The iptables approach is interesting and a potential solution to
other lightweight virtualization problems [11]. It is successfully used to demon-
strate value of virtualized StartD to the product group, but because it is not
used as an ongoing solution the discussion is presented in the appendix A.

The adopted solution, implemented with minor code changes, introduces a
private network between the CM node, SchedD node, and the compute nodes.
Many network performance related studies use this method of creating a private
network. The basic idea is to create IP aliases to the network interfaces of the
physical machines hosting CM, SchedD and StartDs. The alias adapters appear
in the output of the Linux command /sbin/ifconfig. All aliases are created within
the same subnet so that the machines can communicate without routing. A single
alias of the network interface is built for the CM and another for the SchedD
node. On StartD nodes, an alias of the network interface is created for each
StartD that runs on the machine. Since LoadLeveler uses hostnames to map to
ip addresses, a unique hostname is assigned to every IP address and the hostname
to ip mappings are placed in the /etc/hosts file of every machine. For example,
to execute 500 StartDs on a physical node 500 network adapter aliases with
consecutive ip addresses are created. An alias for the CM and SchedD leads
to a total of 502 entries in the /etc/hosts files of the physical nodes. Having
large /etc/hosts file has performance implications discussed in the experimental
section 4.

With the aliased network adapters in place, communications endpoints need to
be bound from every StartD to a corresponding aliased ip address. The original
code binds an endpoint to the global listening port specified in the configuration
file and physical machine ip address. The modified code issues a bind to the
global listening port and an ip address from an aliased network adapter. The
aliased adapter hostname for each StartD is passed from a new environment
variable (LOADL HOSTNAME). With this modification all StartD instances use the
globally specified listening ports, together with unique ip addresses. Figure 3
summarizes the communications setup. Less than 10 lines of code are needed
to support this expanded endpoint binding functionality. The procedure isolates
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Fig. 3. LoadLeveler with virtualized StartDs – Binding to IP:Port combination

StartDs from each other while preserving common listening ports, and makes
them appear to the central manager as distinct machines.

Virtualized StartDs provide a lightweight platform for studying scalability but
have other limitations. Each StartD thinks it manages all resources of a node
thus, the total amount of resource reported at the CM is the actual resource on
the node multiplied by the total number of StartDs. As a result, the quantity
reported at CM may not be used to study the turn around time of real jobs
that require some amounts of static and dynamic resources on the nodes. This
study is restricted to the scalability of scheduling at the Central Manager and
hierarchical job launching.

4 Performance and Scalability Studies

The performance of LoadLeveler scheduling and job dispatching is evaluated in
two interesting limiting cases: 1) A parallel job requiring all compute nodes in
the system. 2) A single node job on an occupied cluster. The study explores the
applicability of the multiple StartD per node approach and more importantly
identifies bottlenecks in the LoadLeveler implementation that limit scalability.
The study conveniently separates into two sections along the lines of LoadLeveler
functions. Job processing from submission to launch at the compute nodes con-
sists of the sequential and independent cycles of scheduling and dispatching.
According to LoadLeveler implementation (Section 2), the former occurs in the
Negotiator which executes on the CM machine, while the latter is distributed
involving communicating processes on SchedD and between the StartD on each
compute node. Based on our analysis, possible solutions are suggested to miti-
gate scalability problems and improve the performance issues.
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4.1 Methodology

LoadLeveler is treated as a black box and performance data is extracted from
log file messages which are recorded with microsecond timing. Care is taken
that logging does not interfere with system performance as certain flags cause
log performance to overwhelm actual function. Because the granularity of control
of debug flags is coarse an option such as D NEGOTIATE generates thousands of
messages for a single scheduling operation in a large system. Although each log
event takes about two microseconds to time-stamp and format and is written in
the background the aggregate effect causes noticeable delay. The log file data is
used to verify that log events do not impede scheduling operation.

The job description used to drive the experiments contains matching con-
straints on job class and the number of nodes. Typically, the executable is a
shell script that invokes a 60 second sleep command. An MPI executable in-
voking sleep on each node is also used.

Experiments are performed in two different cluster computing environments.
One is a homogeneous collection of 50 IBM pSeries 575 machines running IBM
AIX version 6 and connected by a high speed SP switch. Each machine has eight
dual core IBM POWER5+ processors and 32GB of memory. A heterogeneous
and smaller cluster of machines is also used to collect data. This cluster typically
contains 6 to 8 compute nodes consisting of partitions on an IBM pSeries 575
and IBM POWER blade servers connected by a ten gigabit ethernet switch. The
blades have two dual core IBM POWER5 processors, 4 to 16GB memory, and
run Red Hat Enterprise Linux version 5. Each cluster dedicates a machine for
CM ( scheduling and resource manager) and SchedD (dispatching and job life
cycle management). Each StartD is configured to have a single Starter so that
only one task is executed per virtual node.

4.2 Scheduling Analysis

The time to schedule a job depends on the number of nodes, the parallelism of the
job, and the complexity of matching job requirements to compute node resources.
The study starts by quantifying the dependence of single node job scheduling time
on the number of compute nodes, then moves to large parallel jobs. In both cases
the compute nodes are unoccupied and a single job is placed in the LoadLeveler
queue. A timing event is issued in the log file when the assignment of the job to a
compute node is complete and the job is dequeued from the submit queue.

Single node job scheduling analysis. Figure 4 shows scheduling time for
a single node job where the independent variable is the number of compute
nodes (N). Because the nodes are initially unoccupied, the expected result is
that scheduling time is independent of the number of N, instead, the data show a
linear dependence on N. This result is understood in terms of the three scheduling
steps described in Section 2. First, the scheduler scans all machines to locate
candidate nodes that have the capability to execute the job. The capability scan
is an O(N) operation that produces a bit map of all machines. The bit map is
applied in the subsequent machine matching steps.
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Single Node Job Scheduling
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Fig. 4. Scheduling time for a single node job

The second and third scheduling steps assign the job to the compute node with
the highest priority. In LoadLeveler, the priority of each compute node is defined
by the system administrator using a formula syntax. The default priority scheme,
used here, decreases the priority of a node linearly with the short term (five
minute) average processor utilization of each machine. The scheduler maintains
a priority sorted list of all compute nodes. List order is updated when jobs
are scheduled or terminated as well as by periodic updates of node resource
consumption reported by StartDs. The list entry for each compute node is a
summary of the latest reported resource consumption information about the
nodes, e.g. utilization, memory, job class, network adapters, multi-programming
level. In the second step, the scheduler takes the top priority node and checks
the corresponding bit map entry from the first step. If true, the latest resource
information is checked to see if the node has the current capacity to execute the
job. If not, the scan of the compute node list continues until a match is found.
A machine match results in a job assignment to that node. In this experiment,
the second step time is constant time because the cluster is unoccupied and the
machine at the top of the priority list is always available.

Thus, the single node scheduling time is determined by the O(N) behavior of
the first step of the scheduling process. The data in Figure 4 confirm this and
show how virtual StartDs enable experiments on the 50 physical node cluster
to 12,000 nodes. The data are linear and the scheduling time per node is about
250us for the static resource matching step. Furthermore, the resource manager
component of the CM performed remarkably well as 12,000 nodes are brought
up, identifying all resources in less than two minutes.
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Parallel Job Scheduling
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Fig. 5. Scheduling time for parallel job requesting all compute nodes

This result points to the importance of improving the performance of the
capability scan step of the scheduling cycle. However, it is useful to recognize that
in many scheduling conditions, generation of the bit map in the capability scan
is an optimization. The resource matching of the second step is more extensive
and costly than that of step one and should be avoided for nodes that cannot
potentially execute the job. Such a situation occurs with heterogeneous compute
resources as in an ad hoc cluster of workstations where the bit map may be
sparse, significantly reducing the number of machines tested in the dynamic
matching of the second step. Also, in a highly utilized cluster there is a good
chance that a job is not initially scheduled and needs to be retried. The bit map
is retained with the job and is not recreated in subsequent cycles.

There is still room for enhancements. One observation is that the capability
scan step can be decoupled from the scheduling cycle. Results of the scan are
based on static information about the jobs and compute nodes. So it can be
performed when a job arrives at the CM prior to the scheduling cycle. Binding the
capability scan to the scheduling cycle makes sense when the scheduler supports
ad hoc clusters of workstations with intermittent availability or connectivity. A
decoupled bit map can become out of sync with the cluster state. But this is not
an issue for high performance compute clusters.

A further observation is that clusters are frequently homogeneous. In this case,
every bit in the capability map has the same result for a given job. Here, the scan
result has no added benefit to the machine list matching step. So the scheduling
cycle can have distinct operational states depending on the heterogeneity. Selec-
tion of the state is inferred dynamically based on cluster workload. When recent
job submissions generate a bit map that is largely ones, the scheduler folds the
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capability scan logic of step one into the matching of step two which eliminates
the need to scan the entire cluster. If the machine assignment step fails frequently,
the capability scan step is reconstituted as a distinct step to regain the advantage
of having a single scan for multiple scheduling cycles.

Parallel job scheduling analysis. The next study investigates a parallel job
requesting all N cluster nodes. This study targets the second scheduling step
because the capability scan is performed once while machine matching and job
assignment are exercised N times.

In this experiment, the system is initially unoccupied and a single job request-
ing all nodes is submitted. Figure 5 shows results for the two clusters. The first
observation is that the data for the both clusters has a second order compo-
nent that significantly impacts performance above 1000 nodes. This behavior is
unexpected as the scheduling steps should be linear in the number of nodes.

4.3 Dispatching

As described in Section 2.2, SchedD starts the job dispatch process by construct-
ing a job object. All information necessary to execute the task on the assigned
compute nodes is contained in the job object. While many task details such as
the binary executable location are common to all nodes, node specific details
such as which network interface to use are also included. The job object also
contains the structure of the hierarchical communication tree used to distribute
and communicate job information and status between the compute nodes and
the SchedD. The job object is forwarded from SchedD to the master StartD
to initiate job dispatching. Subsequent responsibility for constructing the com-
munications tree and propagating job dispatching information from the master
StartD node to the compute nodes on the tree belongs to the StartDs at each
compute node. The StartD has no a priori information about the tree structure.
It decodes the job object passed to it and locates its children. Then, a new job
object is created for each child customized to contain only information required
for the child’s subtree. This process continues until the tree is fully constructed.

Dispatching performance is studied in a large scale environment created by
running multiple instances of StartDs on each compute node. The starting point
is to establish the equivalence of logical and physical StartDs within the con-
text of hierarchical communication. There is extensive communication between
StartD instances during the job dispatching cycle. The pattern and concurrency
of the communication processing is expected to change when multiple StartD ex-
ecute on a common physical platform. For example, the concurrency is limited
by the number of available free processing units. Validation starts by compar-
ing a fully parallel cluster with a single StartD on each of 48 nodes to a single
physical node with 48 instances of StartD.

The first experiment compares dispatch time as a function of the fan-out. The
measured dispatch time is the interval that starts when the master StartD receives
the job object and ends with an acknowledgement at the StartD from all nodes on
the tree. The results are presented in Figure 6. The lower solid line corresponds to
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the fully parallel cluster of 48 machines and the ‘1200’ on the label indicates the
number of entries in the /etc/hosts file. The intermediate dashed line is the same
experiment as the lower line except that the /etc/hosts file has 3600 lines. Data
for the single machine, multiple StartD case is at the top.

The qualitative behavior of dispatch time is expected based on the tree archi-
tecture. The number of levels L in a tree of fan-out F with N nodes is

L =
⌈

log(1 + N(F − 1))
log(F )

⌉
.

Performance is poor for a fan-out of unity as this degenerate case serializes com-
munication over the 48 levels. A binary tree reduces the number of levels from 48
to 6 and the multi-processor platform concurrently executes StartDs. Additional
benefit is expected as fan-out grows because of concurrency and logarithmic re-
duction in tree depth. The trend is expected to reverse when fan-out exceeds
machine concurrency and communication becomes serialized.

Figure 6 demonstrates that for up to 48 StartD the behavior of the two con-
figurations with fan-out is comparable. This is an important step in validating
the virtual StartD methodology that allows many StartD on each physical node.
However, the expected gain from increasing fan-out beyond a binary tree is
absent. This suggest some operation is limiting performance and is largely in-
dependent of the fan-out or depth of the communication tree. The log file is
investigated for more information, but the 48 node job does not provide a clue
to the cause.
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In an effort to identify the origin of the problem, a parallel job requesting 1000
nodes is executed with fan-out of 2 in the environment of 2304 compute nodes by
running 48 StartD on each of the 48 physical nodes. The StartD log file shows
significant processing occurs at each StartD prior to forwarding the modified
job objects to the F children. In particular, the processing time is proportional
to the number of compute nodes remaining on this branch of the tree. This
decreases approximately as 1/F at each level down the tree (i.e. as N, N/F, ...,
N/FL, for the Lth level), as shown in Figure 7. It is apparent that time spent
de-serializing the objects from the communications buffers and repackaging and
serializing job object for each child overwhelms the potential performance gains
expected from increased fan-out. To support heterogeneous clusters the external
data representation (XDR, RFC-1832 (1995)) standard is used to encode/decode
every field in the job object and is a large component of the observed overhead.
Because most fields are read for the sole purpose of repackaging and copying
from parent to child there is no reason for these fields to be decoded/encoded
at each level of the tree. Structuring the HC messages to substitute much of the
XDR activity with buffer copies is a potential optimization.

This discovery shows that attention to all aspects of a hierarchical commu-
nications scheme is required to achieve the anticipated gains. The layout of the
data structure used to transfer information in the tree needs to be easy to parse
and rebuild. This raises the question of whether a job object format is possible
so that decoding and repackaging occurs in F rather than N operations. The
cost of the initial construction remains proportional to N, but is incurred once
at the SchedD machine instead of on the compute nodes.
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This example of performance problem detection and analysis highlights the
advantage of using lightweight virtualization to create a large scale system for
testing job scheduling and launching. It exposes design issues not apparent at
the physical cluster size available to developers. The 2304 node cluster is lever-
aged further by measuring the dispatch time for a 2304 node job with the tree
structures of fan-out 2 to 13 with levels of 12 and 4, respectively. The time is
about 100 seconds compared with 60 seconds obtained by linear extrapolation
from the 48 node system of Figure 6. This is not an unreasonable prediction
error for a factor of 48 scale up in a computer system.

An additional performance consideration revealed in the experiments related
to Figure 6 is the effect the /etc/hosts file size. The IP alias for multiple StartDs
on a node require entries in the hosts file increasing the processing time of IP
lookup. Investigation using the secondary test cluster suggests that significant
time is spent searching the /etc/hosts file for IP resolution. The figure demon-
strates the 48 physical node data is significantly improved when /etc/hosts is
reduced to 1200 from 3600 lines. Unfortunately, for large systems the size of
/etc/hosts is considerable large. The speed of /etc/hosts lookups is also operat-
ing system dependent.

5 Concluding Remarks

A lightweight virtualization methodology is introduced to LoadLeveler and ap-
plied to study the scalability of job scheduling and dispatching in large scale
parallel systems using modest number of physical nodes. The study identifies
static resource matching in scheduling and job object processing in dispatching
as potential scalability bottlenecks. and proposed solutions to their performance.
Further research needs to be applied to investigate whether results observed here
continue to demonstrate the same functional scaling in larger systems.
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A Appendix Iptables for StartD Virtualization

Iptables is an approach to orchestrate the communication between the CM,
SchedD and StartDs without code modification. It is a generic network packet
manipulation technology that enables packet filtering, network address trans-
lation, and packet mangling. Iptables is used extensively in building Internet
firewalls, redirecting traffic between servers, sharing public IP addresses.

The difficulty with StartD is that its IP endpoint sockets are bound to the
listening port specified in the ’LoadL-config’ file and the ip associated with the
machine hostname in the network interface. Thus, while each StartD within a
physical machine is assigned a unique listening port by directing it to a unique
configuration file (e.g. ’LoadL-config.nnn’) the ip address of the endpoint lis-
ten socket binding is hard coded. This is fine as the StartD listeners within
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each physical machine no longer conflict with each other. However, the CM and
SchedD assume all StartD in the cluster listen on the same port number at each
machine. What is required is a way for the multiple StartD on each physical
machine having unique ports but a shared ip to appear to the CM and SchedD
that they are at common port but unique ip addresses. In concept, the resolution
is to use iptables to:

– Map outgoing packets from the StartD endpoints (unique-port, common-ip)
to appear to originate at (common-port, unique-ip).

– Map outgoing packets from CM and SchedD sent to (common-port, unique-
ip) to be sent to (unique port, common-ip)

This is accomplished defining iptable rules that remap these endpoint bindings
transparent to the LoadLeveler code. In Figure 8(a), when CM needs to com-
municate to a StartD i (1 ≤ i ≤ n), it sends the message to the respective
destination IP address DIPi but to a fixed port number LPp. When this com-
munication arrives at the StartD node, the packet is trapped by this iptable
forwarding rule and forwards it to the appropriate port LPi based on DIPi.
A similar rule coordinates communication originating from the SchedD to the
StartDs.

StartDs are made to appear to the CM that they originate from unique IP
addresses using the following three steps:

– The configuration file of each StartD is setup so that it uses a private port
to communicate with the CM. Although CM is not actually listening on this
port, this change is needed to identify which packets belong to which StartD
at the iptables layer. When the StartD initiates a communication to the CM,
its packets have this private port as the destination port in their header.

– Create an iptable rule that captures all outgoing packets from any StartD
to the CM (DIPcm), and based on the CM destination port number (LPi)
on the packet header, assigns a corresponding StartD IP address as the
packet source IP address SIPi, as shown in Figure 8(b). With this method,
each outgoing packet to the CM is correctly labeled with the StartD that
generated the packet but its destination port is not the actual port where
CM is listening for StartD communications.

– Create an iptable rule on the CM node that redirects traffic destined to the
list of private ports (LP1, LP2, . . . , LPn) to the public port (LPp) on which
CM is listening.

The above methods create a large LoadLeveler cluster with minimal compute
and memory resources. The iptables setup is automated with a the help of a
few Perl and shell scripts. These scripts are parameterized so that the required
number of StartDs may be activated on different physical machines. This setup
is used to exercise the scheduling algorithms in the CM up to several thousand
computes nodes.

A major limitation of iptables is their performance. Anecdotal evidence sug-
gests that large numbers of iptables rules degrades the network performance
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Fig. 8. LoadLeveler with virtualized StartDs – Iptables

because these rules are processed sequentially for every packet. Since network
performance is a critical component of the hierarchical communication perfor-
mance of LoadLeveler, the iptables approach is less favored than source code
modifications described in the main text to orchestrate communications between
CM, SchedD and StartDs.
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