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Preface

This volume contains the papers presented at the 14th workshop on Job Schedul-
ing Strategies for Parallel Processing. The workshop was held in Rome, Italy, on
May 29, 2009, in conjunction with the IEEE International Parallel Processing
Symposium 2009.

This year 25 papers were submitted to the workshop. All submitted pa-
pers went through a complete review process, with the full version being read
and evaluated by an average of four reviewers. We would like to especially
thank the program committee members and additional referees for their will-
ingness to participate in this effort and their excellent, detailed reviews: Su-Hui
Chiang, Walfredo Cirne, Allen Downey, Dror Feitelson, Alexander Fölling, Allan
Gottlieb, Christian Grimme, Andrew Grimshaw, Moe Jette, Joachim Lepping,
Raquel Lopes, Reagan Moore, Jose Moreira, Bill Nitzberg, Alexander Papaspy-
rou, Lars Schley, Mark Squillante, John Towns, Dan Tsafrir, Jon Weissman, and
Philipp Wieder.

As a result of the review process 14 papers were accepted for oral presentation
at the workshop. One additional paper is included in these proceedings after
making substantial improvements based on the comments of the referees. The
final versions of the papers in this volume have addressed the comments of the
referees and partially reflect the discussions held during the workshop.

This year we observed an increasing trend towards heterogeneous and multi-
core architectures. The paper by Gong, Pierces, and Fox proposes an improved
heuristic approach to workflow scheduling and shows its efficiency with the help
of simulations. This workshop series used to exclude task scheduling. However,
precedence constraints are starting to play an important role in grid jobs. There-
fore, DAGs and workflows are becoming more important in the context of job
scheduling. Fölling, Grimme, Lepping, and Papaspyrou show in their paper that
grids can produce win-win situations for independent sites if these sites are will-
ing to collaborate by exchanging some jobs. However contrary to job scheduling
on classical high performance architectures, there are hardly any workload traces
available for grid computing, making it difficult to evaluate new scheduling ap-
proaches with respect to practical application. This problem is addressed by
Lingrand, Montagnat, Martyniak, and Colling who analyze the workload of the
presently largest production grid EGEE.

There are still a number of open issues in classical job scheduling on par-
allel architectures. For instance, Guim, Rodero, and Corbalan present an im-
provement of backfilling. Birkenheuer, Brinkmann, and Karl suggest applying
overbooking, an approach well known in other scheduling and allocation areas,
to job scheduling. Workload modeling also remains important in job scheduling
for classical and new parallel architectures as workload traces remain rare and
are not always applicable without modifications. To improve the present models,
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Minh and Wolters present an approach to better include temporal locality. The
problem of preventing faulty jobs from disrupting the schedule is addressed in the
paper by Thebe, Bunde, and Leung who suggest using trial runs of restartable
jobs.

Pascual, Navaridas, and Miguel-Alonso discuss allocation policies that better
consider the topology of the parallel architecture. This issue may become im-
portant again in the context of very large parallel architectures. In situations in
which performance is more important than efficiency, Sinnen, To, and Kaur pro-
pose to use task duplication in order to improve the speed-up of jobs. The paper
by Wolf, Bansal, Hildrum, Parekh, Rajan, Wagle, and Wu presents approaches
for scheduling and allocation of streaming applications. These applications are
likely to become more important for parallel architectures as these architectures
enter a broader market. Bobroff, Coppinger, Fong, Seelam, and Xu suggest an
extension of the well-known LoadLeveler job scheduler to handle virtualization.

Job scheduling problems that are relevant in the context of multi-core ar-
chitectures were the topic of the last session of the workshop. Sun, Cao, and
Hsu suggest using resource augmentation to handle non-clairvoyant and mal-
leable jobs. They evaluate their approach with both simulation and theoretical
analysis. Zeng and Sodan show that resource utilization on multi-core architec-
tures can be improved with the help of forming appropriate groups of jobs. This
holds for time and space sharing. Then Sodan reports on first experiences with
adaptive scheduling that adjusts the size of jobs according to the actual load
situation. This is also done in the context of virtual machines. The final paper
by Vrba, Espeland, Halvorsen, and Griwodz discusses the benefit of workload
stealing for complex applications with respect to utilization and load balancing
in multi-core architectures.

The proceedings of previous workshops are available from Springer as LNCS
volumes 949, 1162, 1291, 1459, 1659, 1911, 2221, 2537, 2862, 3277, 3834, 4376,
and 4942. Since 1998 these volumes have also been available online.

Finally, we would like to explicitly thank Joachim Lepping for his support in
organizing the publication of this volume.

July 2009 Eitan Frachtenberg
Uwe Schwiegelshohn
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Dynamic Resource-Critical Workflow Scheduling
in Heterogeneous Environments�

Yili Gong1, Marlon E. Pierce2, and Geoffrey C. Fox3

1 Computer School, Wuhan University, Wuhan, HuBei, P.R. China 430079
yiligong@whu.edu.cn

2 Community Grids Lab, Indiana University, Bloomington, IN 47404
mpierce@cs.indiana.edu

3 Community Grids Lab, Department of Computer Science, School of Informatics,
Indiana University, Bloomington, IN 47404

gcf@indiana.edu

Abstract. Effective workflow scheduling is a key but challenging issue
in heterogeneous environments due to the heterogeneity and dynamism.
Based on the observations that not all tasks can run on all resources and
acquired data transferring and queuing for a resource can be concurrent,
we propose a dynamic resource-critical workflow scheduling algorithm
which take into consideration the environmental heterogeneity and dy-
namism. We evaluate its performance by simulations and show that it
outperforms another selected widely used approach.

Keywords: Dynamic Scheduling, Resource-Critical Scheduling, Work-
flow, Heterogeneous Environments.

1 Introduction

Heterogeneous distributed systems are widely deployed for executing compu-
tation and/or data intensive parallel applications, especially scientific work-
flows [1]. A workflow is a set of ordered tasks that are linked by logic or data
dependencies and a workflow management system is employed to define, manage
and execute these workflow applications [12]. The efficient execution of workflows
in this kind of environments requires an effective scheduling strategy which de-
cides when and which resources the tasks in a workflow should be submitted to
and run on.

The environment includes both heterogeneous resource and policy. The soft-
ware installation and configuration on resources are different as well as their
physical computing capabilities. On the other side, the administration policies,
such as access control policies, are autonomous and diverse. The dynamism
means that the resource status, e.g. load, waiting time in the queue, availability,
etc., changes over time are often uncontrollable. Thus the environment requires

� This work is supported by 973 Program (Grant No. 2005CB321807) and the National
Natural Science Foundation of China (Grants No. 60773058 and No. 60672051).

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2009, LNCS 5798, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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that the workflow scheduling take into consideration both heterogeneity and
dynamism, which make the problem very unique and challenging.

Concerning heterogeneity, we find that in practice due to access control policy,
software version incompatibility or special hardware requirement, it is common
that some tasks can not run on certain resources. With this observation, the
tasks which can run on every resource are more flexible for scheduling than the
resource-critical ones which can only run on just a few resources. For a resource-
critical task, considering the more resource-flexible tasks before and after it as a
group when scheduling should be better than scheduling them individually. This
is the key idea of our resource-critical algorithms.

In terms of the timing of scheduling, there are two categories of workflow
scheduling approaches: static scheduling and dynamic scheduling. A static
scheduling system makes a schedule before the workflow starts to run based
on available resource and environment information; while a dynamic scheduling
approach schedule a workflow realtime. The static approach is comparatively
simpler and easier to implement. However, its performance heavily relies on the
accuracy of the resource and environment information. Unfortunately it is diffi-
cult to precisely predict this information due to resource autonomy and free will
user behavior. To make full advantage of the known and predicted information
as well as to adapt to dynamics of environment, dynamic scheduling is intro-
duced. After initially scheduling, the schedule can be re-assigned according to
the hitherto workflow execution progress and resource status at runtime. Thus
we use the resource-critical mapping algorithm as a base, but when resource
status changes, we using the base algorithm to reschedule the unfinished part of
a workflow.

With respect to the architecture of a scheduling system, it could be either
centralized or distributed. In a centralized workflow scheduling system, all the
scheduling is fulfilled by a central scheduler. While in a decentralized scheduling
system, there are many distributed brokers. The cooperation among the brokers
is a tough problem and makes the system complicated. Since generally speaking,
the calculation overhead of a dynamic scheduling algorithm is far less than the
execution cost of a workflow, we still prefer a centralized approach.

Analyzing the makespan of a workflow, it can be seen that it is composed of
tasks’ execution time, data transferring time and waiting time in resource queues.
To reduce any of these three items is beyond the reach of a workflow management
system, but it is possible that the data transferring time and the waiting time can
be concurrent, i.e. a task can be inserted into a resource waiting queue though
its required data are not transferred to the resource yet. As long as the data are
available when the task can actually get to use the resource, it works. This is also
a principal distinction between our work and other existing work.

In this paper, our main contributions include that we propose a dynamic
resource-critical workflow scheduling approach and prove that it outperforms
the other selected widely used approach by simulations.

The rest of the paper is organized as follows. The related work is discussed
in Section II. In Section III, the proposed dynamic resource-critical workflow
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scheduling algorithm is described. We elaborate the design of experiments and
evaluate the performance of our algorithm in Section IV. The conclusion is
shown in Section V.

2 Related Work

Extensive work has been done in the field of workflow scheduling in distributed
environments. The key differentiators of our work in this paper from the related
work lies in that (1) we do not assume that a task can run on all resources,
which greatly extends the meaning of heterogeneity; (2) we assume that the
data transferring and the waiting time for resources can be concurrent.

HEFT(Heterogeneous Earlier Finish Time) [10] is one of the most popular
static heuristic and proven to be superior to other alternatives. Thus we select
it as a base algorithm for comparison. In [4], Yu et al. proposes a HEFT-based
adaptive rescheduling algorithm, AHEFT. It assumes the accuracy of estimation,
i.e. communication and computation cost is estimated accurate and task starts
and finishes punctually as predicted. In contrast, our proposed algorithm, DRCS,
does not assume this. On the other side, in the AHEFT algorithm, a task can
not start without all required inputs available on the resource on which the
task is to execute; while we take advantage of the fact that data transferring
and waiting in a queue for a resource can be concurrent. In AHEFT, if a task
has not finished by clock, it will be rescheduled; while in DRCS, the unfinished
tasks will be rescheduled when the resource’s waiting time changes. [9] is a
HEFT-based algorithm for dynamically created DAG scheduling.

The authors of [7] present a decentralized workflow scheduling algorithm
which utilizes a P2P coordination space to coordinate the scheduling among the
workflow brokers. It is a static scheduling approach and focuses on the scheduling
coordination.

In [6] a distributed dynamic scheduling is proposed and it needs to collect
resource information from local resource monitor services. Since the calculation
overhead of a scheduling algorithm is far less than the execution duration of a
workflow and resource information is available from existed third party sercies,
we still adopt a centralized approach to avoid additional resource information
propagation and synchronization.

Besides using makespan as the single criteria, there are some work on multi-
criteria workflow scheduling. [8] proposes a bi-criteria scheduling heuristic based
on dynamic programming. [5] presents a bi-criteria approach to minimize the
latency given a fixed number of failures or the other way round.

3 Dynamic Resource-Critical Workflow Scheduling
Algorithm

In this section, we give the details of our dynamic resource-critical workflow
scheduling algorithm.
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3.1 Task Status

During the execution of a workflow, a task is in one of the five possible statuses:
unmapped, mapped, submit, running and finished, shown in Figure 1.

Fig. 1. A task’s possible statuses and their transitions

– Unmapped: The task has not been mapped yet.
– Mapped: The task is assigned with a resource but has not been submitted.
– Submitted: The task has been submitted to the resource and is in the waiting

queue.
– Running: The task is running.
– Finished: The task has finished and the result is ready for use or transfer.

If it is unmapped, mapped or submitted, a task is called in unfixed status
or unfixed for short, and we consider it could be rescheduled; if it has started
running or is finished, it should not.

3.2 Revised Resource-Critical Mapping

In [2], we proposed a Static Resource-Critical workflow Mapping heuristic, re-
ferred as SRCM here. Its key idea is that it is better to map neighboring resource-
critical tasks as a group than to map them individually. In this paper, we adapt
the static approach to dynamic scheduling.

Given a DAG (Directed Acyclic Graph) of a workflow application, G = (V, E),
V = {v1, . . . , vN} is the set of nodes in the DAG, i.e. tasks in the workflow,
N is the total number of nodes. Hereafter, we use the two terms – node and
task interchangeably. volij denotes the volume of data generated by node i and
required by node j, i, j ∈ V and ij ∈ E.

Let the set of resources be R = {r1, . . . , rM} and M be the number of re-
sources. cij is the computation cost of task i on resource j. If task i can not run
on resource j, cij is infinity.
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In a batch system, after submitted, a task typically has to wait for some time
in a queue before actually get started. Due to the load on the resource, the
waiting time varies with time. wij(t) is the waiting time for task i on resource
j at time t. Since in most heterogeneous environments, resources are shared
among a lot of autonomous users, it’s impossible to know the exact waiting time
in future. So far we use QBETS [3] to predict the waiting times, represented as
w′

ij(t), which might be different from the actual waiting time of a task.
trkl is the transfer rate from resource k to l, k, l ∈ R. tkl

ij is the communication
cost between task i and j when i is executed on resource k and j on l, and
tkl
ij = volij

trkl
, i, j ∈ V , k, l ∈ R. When task i and j are executed on the same

resource k, the communication cost is zero, i.e. tkk
ij = 0.

Let parent(v) be the parent(s) of task v and child(v) be the child(ren) of task
v, v ∈ V . These functions can be inferred from the DAG. We assume that the
DAG has a single start node v0 which has no parent, i.e. parent(v0) = φ and a
single end node vN−1 which has no child, i.e. child(vN−1) = φ; any of the other
nodes has at least one parent and one child.

The main difference of the dynamic scheduling from the original static map-
ping is that the assignment of a task to a resource might be changed during
the workflow execution, thus a variable, time t, is introduced. The function
map(v, t) : V → R is the resource mapping of the task v at time t. When
scheduling, the new mapping is only related to the last time scheduling result.
t represents the current time and t′ is the last scheduling time, correspondingly
map(v, t) is the current mapping and map(v, t′) is the last time mapping.

Let EST (v, r, t) and EFT (v, r, t) be the earliest start time and the earliest
finish time of task v on resource r at time t respectively by estimation. AST (v)
is the actual start time and AFT (v) is the actual finish time of task v.

To calculate the makespan of a workflow, we set EST (v0, r, 0) = 0, r ∈ R,
which means that the entry task v0 can run on any satisfactory resource at time
0. For a task v, EST (v, r, t) means calculated at time t, the earliest time at
which all data that v requires have been transferred to resource r and v gets the
right to run on r. Here, we make an important assumption that the waiting for
the data and the resource be concurrent. Thus EST (v, r, t) is defined as

EST (v, r, t) =

{
max (drt(v, r, t), rat(v, r, t)), v is unfixed,

AST (v), otherwise.

Wherein drt(v, r, t) is task v’s data ready time and rat(v, r, t) is its resource
available time, which are described in detail later.

EFT (v, r, t) is the earliest finish time of task v on resource r and

EFT (v, r, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

EST (v, r, t) + cvr, case 1,

AST (v) + cvr, case 2,

AFT (v), case 3,

Infinity, otherwise,
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Wherein,
case 1: task v is unfixed;
case 2: task v is running and map(v, t) = r;
case 3: task v is finished and map(v, t) = r.

When a task finishes, its output will be transferred to its child(ren)’s assigned
resource(s) immediately. Thus when calculating the data ready time for a parent-
child pair, if the previously arranged data transfer is no longer valid (either or
both of the mappings for the parent and the child change, we need arrange a
new transfer. The earliest data ready time for data from parent u to child v on
resource r at time t, edrt(u, v, r, t), is as follows:

edrt(u, v, r, t) =

{
t + t

map(u,t),r
uv , case 1,

EFT (u) + t
map(u,t),r
uv , otherwise,

Wherein,
case 1: task u is finished and either map(u, t′) �= map(u, t) or map(v, t′) �= r or
both.

The data ready time for all data that task v requires, drt(v, r, t), is the max-
imum of the data ready times for all parents, i.e.

drt(v, r, t) = max
∀u∈parent(v)

edrt(u, v, r, t).

The resource available time for task v on resource r at time t is the earliest time
that v can get r and start to run. If a task has been submitted to its resource’s
waiting queue, as long as its data can arrive before it finishes waiting and gets
the resource, the submission is valid. Otherwise, we need to resubmit the task
at time t. Here, we assume that resources are FIFO batch systems and jobs
submitted earlier should get resources no later than those submitted later.

rat(v, r, t) =

{
rat(v, r, t′), case 1,

t + w′
vr(t), otherwise,

Wherein,
case 1: v is submitted and map(v, t′) = r and rat(v, r, t′) > t and drt(v, r, t) <
rat(v, r, t′).

The makespan, the overall execution time of the workflow, is the actual finish
time of the end node, vN−1, i.e. AFT (vN−1).

In Algorithm 1, we show the revised resource-critical mapping (RRCM) al-
gorithm. The key idea is to consider resource-critical jobs with their resource-
flexible neighbors together as a group for mapping is better than mapping them
individually.

Since a job may not run on all resources, we define MR(v) as the match
ratio of the number of resources on which the job v can run and the number of
all resources, v ∈ V . By checking the computation cost array, it is easy to get
MR(v) by calculating the number of cvr which is not equal to infinity, r ∈ R.

The algorithm has three steps: ranking, grouping and group scheduling.
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Algorithm 1. The revised resource-critical mapping (RRCM) algorithm
1: // ranking
2: Set weights of nodes and edges with mean values.
3: Compute the rank of nodes by traversing the DAG upward, starting from the end

node.
4: Sort the nodes in a non-ascending order of the rank values.
5: // grouping
6: G0 ← φ; i← 0.
7: repeat
8: Get a node v in the order of nodes’ rank values.
9: if v’s mapping is unfixed and it is ungrouped then

10: Gi ← Gi + {v}.
11: for all u such that u is v’s descendants do
12: if all ancestors of u have been grouped, all nodes on the path from v to u

is in Gi and MR(u) ≤ α then
13: Gi ← Gi + {u}.
14: end if
15: end for
16: i← i + 1; Gi ← φ.
17: end if
18: until there are no more nodes.
19: // mapping
20: for all group Gi, in ascending order of i. do
21: Schedule the jobs in Gi.
22: Choose the schedule with the smallest finish time.
23: end for

In the first step, each node and edge of the DAG is given the mean value of all
its non-infinite values. The weight of a node is the mean of its computation cost
on all matched resources. The weight of an edge is the mean of the maximum
of the communication cost and the waiting time of all possible combinations of
resources.

With the weights, upward ranking is computed and a rank value is given to
each node. The rank value, ranki, of a node i is recursively defined as follows:
ranki = nwi + max∀j∈children(i) (ewij + rankj), where nwi is the weight of node
i, and ewij is the weight of the edge connecting node i and j.

In the second step, nodes are grouped. First of all, nodes are sorted in the
non-ascending order of their rank values. Tie-breaking is done randomly. Mark
all fixed nodes as grouped. The first ungrouped node with the highest rank
value is added to a group numbered 0. Check each of the node’s children if its
ancestors are grouped and its match ratio is below a certain valve α. If so, add
the child node into the group, mark it as grouped and check its children further
on. If no additional such node is found, make the next ungrouped node with the
highest rank value as the first node of a new group, and so on. The outcome of
this process is a set of ordered group, each of which consists of a node and its
descendants on the path to which the match ratios of the nodes are all lower
than the valve α.
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In the third step, the node groups are mapped, where any algorithm for
scheduling a DAG could be used. Since when scheduling a group, the mapping
is probably incomplete, the makespan of the whole workflow is not a proper
metric to value different assignments. Given a mapping, an end node is defined
as a node which either has no children or whose children have not all yet been
mapped. The finish time of a schedule is defined as the largest EFT of all end
nodes in the group. Comparing two mappings, the one with the smaller finish
time is preferred; if they have the same finish time, i.e. the same largest EFT,
the one with the smaller second largest EFT is better; and so on. If all EFTs
of the end nodes are the same, choose one of them randomly. So far, we adopt
an enumerative algorithm to try all combinations of resources for a group and
choose the one with the best EFTs of all end nodes.

The main difference between RRCM and SRCM lies in:

– Grouping nodes: on line 9, RRCM requires that if a node is fixed, it will not
be grouped.

– EFT calculation: on line 21 and 22, RRCM’s method to calculate EFT is
different as described above.

3.3 Dynamic Resource-Critical Scheduling

In this section, we will introduce the dynamic resource-critical scheduling al-
gorithm, which is based on RRCM. Specifically we use RRCM to schedule the
unfinished workflow tasks, shown in Algorithm 2.

When a workflow is first submitted for execution, an initial resource schedule
is generated. When some triggering events happen, such as the resource waiting
time changing, the tasks would be rescheduled.

Algorithm 2. The dynamic resource-critical scheduling (DRCS) algorithm
1: S ← φ
2: while (((S == φ) OR (triggering event happens)) AND (vN−1 is not finished))

do
3: update the resource statuses
4: update the task statuses
5: call the revised resource-critical mapping (RRCM) algorithm
6: update mapping() and schedule submit and/or data transfer events
7: end while

4 Experiments

In this section, we evaluate the performance of our dynamic resource-critical
workflow scheduling algorithm. First, we introduce the experimental environ-
ment, followed by the metrics that we select. Then, we compare our DRCS with
three other algorithms: AHEFT [4], HEFT [10] and SRCM [2].
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4.1 Simulation Setup

1. DAG Generator
We generate parameter sweep DAGs, whose structure is shown in [2]. Every
DAG has one start node and one end node. Tasks on the same level in
different branches have same resource requirements and similar execution
time. We vary the branch number and the depth respectively from 4 to 12
and from 8 to 24, correspondingly the number of nodes varies from 34 to
290.

2. Heterogeneity Model
The heterogeneity model we adopt is based on the loosely consistent hetero-
geneity model, also called the proportional computation cost model in [11].
Instead of generating the resource computing power randomly, we use the
practical numbers from TeraGrid.

The baseline execution time of a task is chosen by using a random uniform
distribution over the interval [10, 100]. The computing cost of a task on a
resource is a random between 95% and 105% of the quotient of its baseline
time divided by the resource’s computing power number.

3. Match Ratio
This is a factor used in SRCM and DRCS introduced by the factor that
some tasks can never run on certain kinds of resources. The match ratio for
a task is the ratio of the matching and total resource numbers. The ratios
are generated randomly among (0, 1] and a task can run on at least one
resource.

4. Communication Bandwidth
The communication bandwidth between any two resources is a random num-
ber between 5M/s and 300M/s, which are the bandwidth range we measured
on TeraGrid.

5. Communication-to-Computation-Ratio (CCR)
CCR of a workflow is defined as its average communication cost divided by
its average computation cost for all resources. If a workflow’s CCR is low,
it would be considered as a computation intensive application; while if the
CCR is high, it is data intensive.

6. Waiting-to-Computation Ratio (WCR)
WCR is the ratio of the average resource waiting time to the workflow com-
putation time.

7. Match Ratio Threshold (MRT)
This value is used by SRCM and DRCS to decide what kind of nodes should
be grouped together for mapping. If MRT is so small that no node’s match
ratio below it and every node is an individual group, the SRCM and DRCS
will degenerate to HEFT and AHEFT respectively. If MRT is large, the
group size grows, it is time-consuming to find the best solution for a big
group. In our experiments, we set MRT between 0.1 to 0.5.

8. Parameters for Dynamic Changing of Resources
We use two parameters to represent the changing of resources:
– Resource Change Period (RCP) – the interval of the resource waiting

time change;
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– Resource Fluctuation Indicator (RFI) – the waiting time fluctuation per-
centage from the initial value.

4.2 Metrics

To compare the performance of the four algorithms, the main metric we use is
average makespan difference ratio, which is based on two metrics: makespan and
average makespan difference ratio.

1. Makespan
Makespan is the complete time needed to finish a workflow under a certain
workflow scheduling algorithm.

2. Makespan Difference Ratio
We use the makespan of HEFT algorithm as a base, and the performance
of other algorithms is compared with HEFT’s. Thus the average makespan
difference ratio of HEFT is always 0.

3. Average Makespan Difference Ratio
For any given branch number and depth, we generate 200 DAGs with their
own task computation costs, communication cost, resource matchings and
resource bandwidths, each of which is called a case. With each combination
of the branch number, depth, CCR and MRT, these four algorithms will run
on the 200 cases.

The average makespan difference ratio is the average of the makespan
difference ratios for the 200 cases under the same environmental setting.

4.3 Results

In our simulation, we vary the factors introduced above to evaluate their influ-
ence on the four workflow scheduling approaches.

Except in the experiment 3, which deals with how the DAG shape of the
parameter sweep applications affects the scheduling, the DAG branch number
and depth are fixed at 8 and 16 respectively.

1. Communication-Computation-Ratio (CCR)
To analyze the influence of CCR on the scheduling performance, we set
WCR = 1.0, RCP = 5000, RFI = 0.2, and MRT = 0.3 for the two
resource-critical algorithms. The makespans and the average makespan dif-
ference ratios under various CCR values are shown in Figure 2 and Figure 3
respectively. Since we set computation cost fixed, bigger CCR means bigger
communication cost, thus for all the algorithms, the overall makespan gets
longer.

When CCR is small, the two static approaches, HEFT and SRCM, and
the two dynamic approaches, AHEFT and DRCS, perform almost the same.
As CCR grows, the performance of SRCM and DRCS get better and when
CCR is over 3, the static approach SRCM even outperforms the dynamic
approach AHEFT. This surpassing depends on the fact that most benefit of
the resource-critical algorithms comes from the communication time saving.
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Fig. 5. Average makespan difference
ratios under various WCRs

As the weight of the communication time in the makespan gets higher, the
benefit gets bigger. Therefore, SRCM and DRCS are more suitable for the
data intensive applications.

Figure 3 presents the improvement of AHEFT, SRCM and DRCS over
HEFT, from which we can notice more clearly the tendency that AHEFT
approaches HEFT and SRCM approaches DRCS. In further on simulation,
when CCR = 100, the difference between HEFT and AHEFT is about 0.69%
and the difference between SRCM and DRCS is about 1.19%. This is because
as CCR increases, the dynamic scheduling algorithms have less opportunity
to re-assign the tasks, since the cost of moving data gets bigger.

2. Waiting-Computation-Ratio (WCR)
Here CCR = 1.0, RCP = 5000, RFI = 0.2, and MRT = 0.3. Figure 4 and
Figure 5 present the results. For all four algorithms, the WCR increasing
causes the increasing of the waiting time cost, correspondingly the increasing
of the makespan.

When WCR is small (= 0.1), the two resource-critical algorithms per-
forms almost the same and better than HEFT and AHEFT. While as WCR
grows, the two dynamic algorithms are much less affected than the static
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ones. It shows that dynamic scheduling can adjust the schedule when the
waiting time changes to shorten the overall execution time and the longer
the waiting time, the more obvious the advantage. It can be seen that DRCS
is always performs better than the other three, including AHEFT.

From Figure 5, it can been seen that the performance of HEFT and
AHEFT tends to close to that of SRCM and DRCS respectively. When
WCR = 10, the average makespan difference ratio of SRCM over HEFT is
only 0.65%, and the difference between AHEFT and DRCS is 0.92%. This
shows again that the benefit of SRCM and DRCS are from the communi-
cation cost reduction, once the waiting time gets longer, the weight of the
communication cost decreases, thus the performance improvement decreases.

3. DAG branch number and depth
In this set of experiments, CCR = 1.0, WCR = 1.0, RCP = 5000, RFI =
0.2, MRT = 0.3. When the branch number varies, the depth is fixed at 16;
while when the depth varies, the branch number is 8.

As the branch number varies from 4 to 12, the makespan of four algo-
rithms increases (refer to Figure 6). This happens due to the reason that the
branch number growth causes more tasks are ready to run at approximately
the same time, since the capacity of resources is limited, some of the tasks
have to wait longer to actually acquire the resources.

Figure 7 presents the performance improvement of the two dynamic al-
gorithms decreases with the branch number. For instance, when the branch
number is 4, the makespan difference ratios of AHEFT and DRCS are 22.69%
and 30.96 respectively; while when the branch number is 12, the ratios are
18.96% and 23.59%.It shows that when the resource competition is fierce,
there is little room for the dynamic approaches to reschedule the tasks to get
better waiting time. In contrast, the difference ratio of SRCM over HEFT
does not change much with the different branch numbers.

It is evident that the makespan increases approximately linearly as the
depth varies from 8 to 24 (see Figure 8 and Figure 9), since more tasks should
be executed sequentially. The deeper the depth, the bigger the improvement
ratio of the two resource-critical algorithms than the corresponding HEFT or
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AHEFT algorithms. The improvement ratio of SRCM over HEFT increases
from 4.00% to 8.69% and that of DRCS over AHEFT increases from 5.26% to
10.82%. This shows that deeper depth allows the resource-critical algorithms
group more nodes together to achieve better schedule.

4. Resource Change Period (RCP) and Resource Fluctuation Indicator (RFI)
To measure how the resource changing affect the algorithms, we introduce
two factors: Resource Change Period and Resource Fluctuation Indicator,
which depict when and by what degree resources change.

In Figure 10, the setting is CCR = 1.0, WCR = 1.0, RFI = 0.2, and
MRT = 0.3. We can see that the resource change period has no influence
on the performance of the dynamic approaches. In contrast, as the period
grows, the makespan of the static ones decreases. The static approaches
decide the schedule of the workflow before it starts, and will not change
during the its execution duration. Thus when the resources change, i.e. the
waiting times change, the initial schedule will become unsuitable and the
performance suffers. If the resource change period is long, it would change
less times during the workflow execution and the suffering would be less,
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correspondingly the makespan improves. As a result, the dynamic scheduling
methods are adapted to the dynamic resource environment. In Figure 11,
CCR = 1.0, WCR = 1.0, RCP = 5000, and MRT = 0.3. It shows that the
resource fluctuation percentage does not affect the performance of workflow
scheduling much. This is because the resource status fluctuation makes some
jobs finish earlier than predicted and some later, and the influence is balanced
out.

5. Match Ratio Threshold (MRT)
Match ratio threshold is only used in the resource-critical algorithms. Here,
we set CCR = 1.0, WCR = 1.0, RCP = 5000, and RFI = 0.2.

In Figure 12, as the MRT increases from 0.1 to 0.5, the makespan of
SRCM and DRCS decreases from 56404.30s to 55122.44s and from 44122.46s
to 42841.48s respectively. This is because with a bigger MRT, the algorithms
could group more nodes together and try all the combinations to select the
best out them.

5 Conclusion

In this paper we have presented DRCS, an efficient workflow scheduling ap-
proach for heterogeneous and dynamic systems based on the resource-critical
algorithm. Aiming at heterogeneity, the algorithm combines the resource-critical
tasks with their ancestors and/or descendants together and finds the best sched-
ule for them as a group. For dynamism, it reschedules the unfinished tasks ac-
cording to the current resource status. To evaluate the performance of DRCS,
simulation studies were conducted to compare it with other competitors in the
literature, HEFT, AHEFT and SRCM. It is shown that DRCS outperforms
HEFT, AHEFT and SRCM in almost all environments in terms of makespan.
Especially, the two resource-critical idea based algorithms, DRCS and SRCM are
suited for data-intensive applications. The two dynamic scheduling algorithm,
DRCS and AHEFT are superior in the long waiting time systems.

To further on adapt to the unreliable, dynamic and heterogeneous environ-
ment, we plan to investigate the effect of resource liability and task failure on
the scheduling performance.
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Abstract. In this paper, we address the problem of finding workload
exchange policies for decentralized Computational Grids using an Evo-
lutionary Fuzzy System. To this end, we establish a non-invasive col-
laboration model on the Grid layer which requires minimal information
about the participating High Performance and High Throughput Com-
puting (HPC/HTC) centers and which leaves the local resource man-
agers completely untouched. In this environment of fully autonomous
sites, independent users are assumed to submit their jobs to the Grid
middleware layer of their local site, which in turn decides on the dele-
gation and execution either on the local system or on remote sites in a
situation-dependent, adaptive way. We find for different scenarios that
the exchange policies show good performance characteristics not only
with respect to traditional metrics such as average weighted response
time and utilization, but also in terms of robustness and stability in
changing environments.

1 Introduction

Modern science more and more relies on experimental scientific discovery made
with extensive simulations, and during the last decade, Grid Computing has
become the key infrastructure in academia to support this development. The
use of Grid Computing, however, is not anymore limited to HPC/HTC-centric
communities such as High Energy Physics, Astronomy, or Climate Research,
which have a certain tradition of using such infrastructures. Other sciences—e.g.
Financial Services, Construction Engineering, and even arts and humanities—
also start to adopt Grid Computing as a tool for e-Science, and show an ever-
increasing demand for computing power and storage space.

While well-established approaches such as the EGEE environment [6] have
relied on centralized middleware infrastructures for whole e-Science communi-
ties, other—mostly emerging—efforts have chosen a Service Grid approach with
smaller, more community-tailored Grids. In the latter case, however, a strong
demand for enabling collaboration and cooperation on the infrastructure layer
between the different communities and Grids can be observed.

A major issue in such collaborations is the possibility of inter-community re-
source usage: Although most communities run their own data centers, working

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2009, LNCS 5798, pp. 16–36, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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together in an ad-hoc manner by allowing alien workload to be run on commu-
nity hardware is still a tedious task and usually requires resorting to 1980s-style
command line interfaces and undesirable micro-management. This is mainly due
to technical issues: Many e-Science infrastructures show a lack of standardiza-
tion, and therefore, collaborations between the workload gateways (usually Grid
schedulers or brokers) fail on a compatibility level. There are, however, also
organizational issues: Each community Grid strives for delivering the highest
possible Quality of Service to its own users and, as such, is only interested in
participating in joint efforts if they are beneficial for all participants likewise.

This last aspect is an open research problem in the field of Grid scheduling,
see Grimme et al. [7,8]: algorithms for the exchange of workload between differ-
ent Grid communities—with respect to common performance metrics—have to
perform at least as good as in the non-cooperative case. Otherwise, the motiva-
tion for participating in a HPC/HTC federation, vanishes quickly, since one of
the participating user communities will suffer from the collaboration. Here, we
can identify four important properties for such algorithms:

– Support for environments with very strict information policies: Although
almost every Grid provides various kinds of information services, data re-
garding the machines themselves such as their current or overall utilization,
average response times, or throughput is often kept confidential due to com-
petition reasons.

– Strict separation from local resource management systems (LRMS): Machine
owners usually have their own operational policies implemented on their
systems and obviously are not willing to cease control over the machines
they are obliged to fund.

– Situation-dependent, adaptive decision-making: The current state of the sys-
tem is crucial when deciding on whether to accept or decline foreign work-
load, e.g. allowing for additional remote jobs if the local system is already
highly loaded seems to be inappropriate.

– Robustness and stability in changing environments: Even with respect to fu-
ture, still unknown (and usually unpredictable) job submissions, it is crucial
that aspects such as complete site failures or even rogue participants are
handled gracefully with respect to the own and overall performance.

In the work at hand, we address these properties using a Fuzzy based approach
for job exchange in Computational Grids, where the controller acts depending
on the current system state. The states are modeled by Fuzzy sets which are rep-
resented by simple membership functions. Such Fuzzy System based scheduling
techniques have been successfully applied to online scheduling problems before,
see for example Franke et al. [4]. They outperform most static scheduling heuris-
tic due to their ability to flexibly adapt decisions to changing environments. As
they have proven to be a reliable concept to tackle challenging online schedul-
ing problems, we decide to also apply them in the Grid context. In order to
establish good rules for the Fuzzy System, we furthermore use evolutionary al-
gorithms for finding parameterization of the Fuzzy membership functions. This
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approach is especially suitable because of the possibility to find a simple and ef-
ficient encoding of the whole controller. This combination of Fuzzy Systems and
evolutionary algorithm is commonly denoted as Evolutionary Fuzzy Systems, see
Cordón et al. [1]. We show that our approach, while respecting the aforemen-
tioned requirements for Grid scheduling algorithms, shows adequate performance
characteristics in real setups.

The remainder of the paper is organized as follows: In Section 2, we establish
the basis for understanding our model, algorithm, and optimization. We then in-
troduce our system model in Section 3 and our Fuzzy Grid Scheduling approach
in Section 4. After discussing tools for performance measurement in Section 5,
we depict the evolutionary learning of rule sets in Section 6. Next, we evalu-
ate our approach with respect to adaptiveness in a Grid federation in Section 7
and robustness in unknown environments in Section 8 and conclude our work
Section 9.

2 Background

This section briefly introduces the basics of job scheduling on Massively Parallel
Processing (MPP) systems, Evolutionary Fuzzy Systems, and evolutionary al-
gorithms. These definitions and tools are applied throughout the paper to easily
describe the used Grid architecture as well as the proposed approach for realizing
job migration.

2.1 Job Scheduling for MPP Systems

The scheduling of MPP systems is an online problem as jobs are submitted
over time and the precise processing times of those jobs is unknown in advance.
Furthermore, information about future jobs are not available. We assume inde-
pendent rigid parallel batch jobs for our analysis, which are dominant on most
parallel computer systems. Those jobs are neither moldable nor malleable and re-
quire concurrent and exclusive access to the requested resources. Formally, each
job j is characterized by its degree of parallelism mj and its processing time pj .
Although many additional criteria are conceivable, see Feitelson et al. [3], we
restrict ourselves to only those two required job properties.

During the execution phase, job j requires the concurrent and exclusive access
to mj ≤ mk processing nodes with mk being the total number of nodes on the
MPP system at site k. The number of required processing nodes mj is available
at the release date rj of job j and does not change during the execution. As
the network does not favor any subset of the nodes and all nodes of a parallel
computer system are either identical or very similar, we assume that a job j can
be processed on any subset of mj nodes of the system.

Further, most current real installations of parallel computers do not use pre-
emption but let all jobs run to completion. The completion time of job j within
the schedule S is denoted by Cj(S).
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2.2 Evolutionary Algorithms

Optimization algorithms that mimic the natural process of Darwinian evolution
are widespread in computer science and often applied for parameter optimization
when the fitness landscape of the optimization problem is unknown.

A specific type of these algorithms—Evolution Strategies [11]—operate on
a population of μ individuals, where each individual represents a real-coded
solution to the given optimization problem. These approaches apply variation
operators like mutation (a random change in genome) and recombination (com-
bining two or more parent individuals’ genomes) to breed λ offspring individuals
from those μ parental individuals, followed by a global selection process in which
the individuals compete against each other to form the new μ parents for the
next generation. The above described evolutionary loop is executed until a given
termination criterion, like a fixed number of generations or a quality level within
the objective space, is satisfied. Two versions of Evolution Strategies are distin-
guishable: In the (μ, λ)-strategy, the next parent generation is selected just from
the offspring individuals while the (μ + λ)-strategy selects the best individuals
of both the parent and offspring generations. All other individuals are removed
from the system and the next loop iteration starts.

2.3 Evolutionary Fuzzy Systems

Since their conceptualization in the early 1960s Fuzzy Systems have been widely
and successfully applied to various areas like for example control systems or clas-
sification. Especially in control systems, they are particularly suited for the rep-
resentation of problem specific knowledge, as imprecision or vague descriptions
are common properties of expertise. Currently, many decision making methods
(e.g. in the fields of resource management or robot behavior) solve problems
in a heuristic fashion. They give advices for actions in certain—often fuzzy
described—situations that have turned out to be profitable with respect to a
given objective. Such a collection of situation-dependent expertise is called a
knowledge base.

There are several advantages to represent a knowledge base by Fuzzy logic
within a Fuzzy System: The interpolative nature of Fuzzy Systems has the ability
to express partial and concurrent activations of behaviors and gradual transitions
between them. Further, the behavior can be conveniently synthesized by a set of
IF-THEN rules using linguistic terms to encode the expert knowledge. Finally,
due to its approximate reasoning capabilities, Fuzzy logic produces controllers
that are robust to uncertainty and imprecision. Especially, the latter property
is of great importance for the problem addressed in this paper, as we aim to
produce robust exchange mechanisms within changing environments.

However, one of the major drawbacks of classic Fuzzy Systems is their missing
learning ability. They always require a existing knowledge base that has to be
derived from experts knowledge which is often called training data. In many
cases, that data is not available and the design of Fuzzy Systems is not possible
at all. Also for the problem at hand we cannot revert to any kind of training
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data. Therefore, we employ an evolutionary learning process to automate the
Fuzzy System design.

Evolutionary Fuzzy Systems are Fuzzy Systems derived and optimized by
an evolutionary learning process. For these systems an evolutionary algorithm
is employed to learn or tune different components. They are always applied, if
neither expert knowledge nor training data is available or cannot be transformed
directly into corresponding rules. Those algorithms do not require particular
knowledge about the problem structure and can be applied to various systems.

3 System Model

The problem of job distribution between federated compute clusters has been
continuously studied since the emergence of Grid computing in the beginning
of the 1990s. Early approaches favor a hierarchical scheduling structure, where
a central scheduler instance—often called Meta-Scheduler, Grid Scheduler, or
Broker—delegates submitted jobs to subordinated partner sites [10]. The most
profound problem of this scheduling structure is its bad fault-tolerance and lack
of scalability.

With respect to the basic parameters of modern e-Infrastructures regarding
organizational autonomy and equity, we therefore assume our Computational
Grid as a loose cooperation between different HPC centers—further referred to
as sites—and consider Massively Parallel Processing (MPP) systems as their ba-
sic entities. For every MPP entity we assume an own local user demand for com-
putational resources which is reflected by the sites’ originating workload. This
includes the submission characteristics, but also the adaptation of the submitted
jobs’ resource demand to the local configuration. This scenario is based on the
perception that, as a general rule, Grid environments are not build from scratch,
but emerge from collaborations between different organizational domains, each
of which already operating one or more MPP systems for internal purposes, in
order to serve a prescribed, project-driven community of users.

More formally, a Computational Grid consists of |K| independent sites. Each
site k ∈ K is modeled by mk parallel processors which are identical such that
a parallel job can be allocated on any subset of these machines. Splitting jobs
over multiple sites (multi-site computation) is not allowed. Moreover, we assume
that all sites only differ in the number of available processors, but not in their
speed: As we focus on the job exchange algorithms, the differences in execution
speeds can be neglected, see Schwiegelshohn et al. [12].

The workload management within the infrastructure is conducted by a two-
tier middleware, see Figure 1, comprising a Local Resource Management Sys-
tem (LRMS) and a Grid Resource Management System (GRMS) on each site.
While the LRMS takes care of assigning workload to resources for the local site
only, the GRMS decides on the delegation of jobs from and to the site. Users
submit their workload to the local site in the same manner as on classic LRMS
systems; a small submission component intercepts those and forwards them to
the local GRMS for further inspection.
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Fig. 1. Computational Grid scenario with independent sites in a federated environment

That is, jobs that are submitted to the local site scheduler may not be accepted
for execution elsewhere because of their resource demand being oversized for
some or all of the other sites. Ignoring the inter-site collaboration for a moment,
we describe the local scheduling problem on MPP systems in the next paragraph.

3.1 LRMS Layer

The Local Resource Management System (LRMS) layer consists of a waiting
queue and a scheduler. The waiting queue stores all locally submitted jobs while
the scheduler executes a specific scheduling strategy in order to assign jobs from
the waiting queue onto the available local resources. On MPP system layer, this
approach allows the realization of priorities for jobs of different user groups.
Usually, the scheduling strategies are formulated by the system provider to ful-
fill the users’ needs. Although many special-purpose algorithms exists that are
tailored for certain MPP system owner priorities, we use the basic and sim-
ple First-Come-First-Serve (FCFS) algorithm as an example on LRMS. The



22 A. Fölling et al.

heuristic starts the first job of the waiting queue whenever enough idle resources
are available. Despite the very low utilization that is produced in the worst
case this heuristic works well in practice [13]. Please note that our job exchange
methodology is not restricted to any kind of local scheduling algorithm but it
serves for any arbitrary scheduling algorithm on the LRMS layer.

3.2 GRMS Layer

The Grid Scheduling Resource Management System (GRMS) extends every site
by an additional layer on top of the LRMS, see Figure 1. The GRMS accepts
locally submitted jobs on behalf of the underlying LRMS. The actual exchange
behavior is realized exclusively by the GRMS and due to this strict layered
architecture the LRMS is kept completely unmodified. Both removal of jobs
from LRMS queues as well as any kind of intervention in the local scheduling
process is prohibited. Furthermore, the GRMS is transparent to local users and
the LRMS. From the users point of view, all submitted jobs are executed on
the local site, whereas each LRMS considers every job as a locally submitted
independent of its origin. Decisions about a job’s delegation to another GRMS
or local scheduling is made by a deployed exchange policy.

This exchange policy can be differentiated into two independent policies:

Location Policy
This policy becomes relevant if more than one exchange partner is available
in the Grid. Thus, there exists more than one possibility to delegate a job to
a remote Grid participant. For such scenarios, the location policy determines
as a first step the sorted subset of possible delegation targets ➀, see Figure 2.

Transfer Policy
After the location policy has been applied the transfer policy specifies whether
a job should be delegated to a certain partner or not. For this purpose the
policy is applied separately on each partner in an redetermined order. Every
time the transfer policy is consulted it decides whether the job should be ex-
ecuted locally ➁ or delegated to the considered partner ➂. In the first case,
the job is sent to the remote LRMS ➃ and in the other case the considered
partner is requested for a job’s acceptance. A request can be replied in two
different ways:

1. The job is accepted by the remote partner ➄. In this case, the job is
delegated to this partner and no other further delegation attempts have
to be made.

2. If the acceptance is declined the transfer policy is applied for another
partner in the Grid ➅. This iterative procedure is continued until all
partners have been requested. If none of the Grid participants is willing
to accept the job, the requesting site must execute it locally ➆, ➇, and ➃.

Further, the transfer policy has to decide about jobs that are offered from
remote sites and can choose between accepting or declining a job offer. In
the former case, the job is immediately forwarded to the LRMS ➈, while it
is rejected in the latter case ➉.
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Fig. 2. Decision making concept at GRMS layer

4 Fuzzy System Based Grid Scheduling Approach

For the design of our GRMS decision policy we apply the method of Fuzzy
inference proposed by Takagi, Sugeno and Kang, which is known as the Takagi-
Sugeno-Kang (TSK) model in Fuzzy Systems literature [14].

Such a decision policy is founded on a set of rules. Each specific rule describes
a system state in which decisions about the acceptance or refusal of jobs must be
made. Thus, each system state is described by a set of features. From the different
parts of the overall system various state describing features are conceivable. They
might be related to the current state of the LRMS layer or to the currently job
to decide. Please note that information about remote sites’ systems states is
assumed strictly classified.

Following the Fuzzy rule concepts, a rule consists of a feature describing con-
ditional part and a consequence part that decides on the acceptance or decline of
an offered job. The so composed rule base constitutes the core of the rule system
that can therefore be considered as a controller. The current system is checked
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whenever a new job has been submitted to the local system or has been offered
from remote sites. In all those cases the current system state might change and
the controller output has to be changed if necessary. The controller concept is
described in the next paragraph.

4.1 Fuzzy System for Decision Making

The general TSK model consists of Nr IF-THEN rules Ri such that

Ri := IF x1 is g
(1)
i and . . . and xNf

is g
(Nf)
i

THEN yi = bi0 + bi1x1 + . . . + biNf
xNf

(1)

where x1, x2, . . . , xNf
are input variables and elements of a vector x, and yi are

local output variables. Further, g
(h)
i is the h-th input Fuzzy set that describes the

membership for a feature h. Thus, system state is described by a number of Nf

features. The actual degree of membership is computed as function value of an
input Fuzzy set which is characterized for example by a Gaussian Membership
Function (GMF). The here used Fuzzy sets are explained in the next section.
Furthermore, bih are real valued parameters that specify the local output variable
yi as a linear combination of the input variables x. The overall output of the
system yD(x) is computed by Equation 2.

yD(x) =

Nr∑
i=1

φi(x)yi

Nr∑
i=1

φi(x)
=

Nr∑
i=1

φi(x)(bi0 + bi1x1 + . . . + biNf
xNf

)

Nr∑
i=1

φi(x)
(2)

where φi(x) is the degree of membership of rule Ri for a given input vector x,
which is defined as

φi(x) = g
(1)
i (x1) ∧ g

(2)
i (x2) ∧ . . . ∧ g

(Nf)
i (xNf

) (3)

Each rule’s recommendation is weighted by its degree of membership with re-
spect to the input vector x. The corresponding output value of the TSK-System
is then computed by the weighted average output recommendation over all rules.
In the following, we explain how this very general model is adapted to the here
addressed problem of decision making. The specific coding of rules and the out-
put computation will be detailed in the following paragraphs.

4.2 Encoding of Rules

For a single rule Ri every feature h of all Nf features is modeled by a (γ(h)
i , σ

(h)
i )-

Gaussian Membership Function (GMF)1 with no normalization as shown in
Equation 4.
1 Different from the common notation we denote the mean of the GMF by γ to avoid

conflicts with the parental population size of Evolution Strategies which is in this
paper denoted by μ.
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g
(h)
i (x) = exp

⎧⎨
⎩−(x − γ

(h)
i )2

σ
(h)
i

2

⎫⎬
⎭ (4)

This function is completely described by defining the γ
(h)
i and σ

(h)
i values. The

γ
(h)
i -value adjusts the center of the feature value, while σ

(h)
i models the region

of influence for this rule in the feature domain. In other words, for increasing
σ

(h)
i values the GMF becomes wider, while the peak value remains constant at

1. Using this property of a GMF we are able to steer the influence of a rule for
a certain feature by σ

(h)
i .

Using this GMF as membership function a feature can be coded as a pair
of real values γ

(h)
i and σ

(h)
i following the approach of Juang et al. [9].Using

this feature description, a single rule’s conditional part is composed as shown
in Figure 3. For the consequence part, the general model in Equation 2, can
be simplified as we have to deal with binary decisions only. Dependent on the
current system state, the Fuzzy decision maker has to decide whether to accept
an offered job or not. Thus, we represent the acceptance of a job by an output
value of 1 and the corresponding refusal of a job by -1. With this binary decision
concept, all weights except bi0 in Equation 2 are set to 0 and the TSK model
output becomes yi = bi0. As we have to decide between the acceptance/decline
of a job offer, the output values for a rule Ri can be chosen as

yi =

{
1, if job is accepted
−1, otherwise

(5)

This scheme allows the encoding of a single rule by a string of 2 · Nf real-
valued and one integer variable, see Figure 3. The whole rule base is encoded by
concatenation of single rules. A whole rule base consisting of Nr rules is therefore

ã1
(1) ó1

(1) ã1
(2) ó1

(2) ã1
(Nf) ó1

(Nf)…

ã2
(1) ó2

(1) ã2
(2) ó2

(2) ã2
(Nf) ó2

(Nf)…

y1

y2

R1

R2

…

RNr

R1 R2 R3 RNr
…

Rule Base

1/-1

1
(1)

1
(1)

1
(2)

1
(2)

1
(Nf)

1
(Nf)…

2
(1)

2
(1)

2
(2)

2
(2)

2
(Nf)

2
(Nf)…

y1

y2

R1

R2

…

RNr

R1 R2 R3 RNr
…

Rule Base

1/-1

Fig. 3. Encoding pattern for single rules and construction concept for a whole rule
base using concatenation
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entirely described by a set of

l = Nr(2 · Nf + 1) (6)

parameters, see Equation 6. This encoding scheme is perfectly suited as individ-
ual representation within an evolutionary algorithm where individuals have the
length l.

4.3 Computation of the Controller Decision

To determine the actual controller output for a set of input states x the su-
perposition of all degrees of memberships for a single rule Ri is computed first.
For each rule Ri a degree of membership g

(h)
i (xh) of the h-th of all Nf features

is determined for all h. This value is computed as the function value of the h-
th GMF for the given input feature value xh. According to the general model,
see Equation 3, the multiplicative superposition of all these values as ”AND”-
operation leads to an overall degree of membership φi(x) for rule Ri as shown
in Equation 7.

φi(x) =
Nf∧
h=1

g
(h)
i (xh) =

Nf∏
h=1

exp

{
− (xh − γ

(h)
i )2

σ
(h)2
i

}
(7)

Further, the final controller output YD can be computed by considering the
leading sign only, see Equation 8,

YD = sgn(yD(x)) (8)

where a positive number again represents the acceptance of the job and a neg-
ative values the decline. Note that the value zero corresponds to a decline as
well.

The TSK-model allows including an arbitrary number of features as controller
input. Thus, it is possible to achieve a preferably accurate state description. How-
ever, this would increase the number of adjustable system parameters drastically
as each feature requires an additional (γ, σ)-pair per rule. As the proposed Fuzzy
system is going to be optimized with an evolutionary algorithm the number of
system describing parameters must be kept as small as possible as every ad-
ditional parameter increases the search space of the optimization problem and
might deteriorate the solution quality. Thus, we restrict ourselves to only two
features for the system state description and detail them in the next paragraph.

4.4 Feature Selection for System State Description

For the description of the current system state we rely on only Nf = 2 different
features that will constitute the conditional part of a rule. We denote jobs that
have been inserted into the waiting queue ν at site k as j ∈ νk. In order to
cover comprehensive system information with only a single feature we consider
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the Normalized Waiting Parallelism at site k (NWPk) as the first feature, see
Equation 9.

NWPk =
1

mk

∑
j∈νk

mj (9)

This feature indicates how many processors are expected to be occupied by all
submitted jobs (note that the number of requires processors mj is known at
release time) related to the maximum number of available processors mk at
site k. It reflects the efficiency of the currently running LRMS and measures the
near future expected load of the machine.

The second features focuses on the actual job that has to be decided. The
ratio of a job’s resource requirements mj and the maximum number of available
resources mk at the job’s submission site k is expressed by the Normalized Job
Parallelism (NJP), see Equation 10.

NJPj =
mj

mk
(10)

With those two selected features we approximate every possible system state.

4.5 Configuration of the Evolutionary Fuzzy System

Before we present the evaluation results the configuration of the Evolutionary
Fuzzy System and the further evaluation circumstances are detailed. We generate
our Evolutionary Fuzzy Systems with a fixed number of Nr = 10 rules. Previous
studies of Franke et al. [5] revealed that rule bases consisting of five to ten rules
yield good results. As we encode the whole rule base in one individual, we have
to optimize a problem with Nr · (Nf · 2 + 1) = 10 · (2 · 2 + 1) = 50 parameters,
see Equation 6.

For the tuning of the Fuzzy System we apply a (μ + λ)-Evolution Strategy.
During the run of 150 generation a continuous progress in fitness improvement
is observable. As recommended by Schwefel [11], the ratio of μ/λ = 1/7 should
be used for Evolution Strategies. We created a parent population of μ = 13
individuals which results in a children population of λ = 91 individuals. Hence,
91 individuals must be evaluated within each generation.

For the variation operators we used further the following configurations: The
mutation is performed with an individual mutation step-size for each feature.
As the two features vary in they possible value range by a ratio of 1:10, see
Section 4.4, we used a mutation step-size of 0.01 for NWP and 0.1 for NJP
respectively. This mutation is applied for the conditional part of the rule as they
are real values. For the binary consequence part we mutate values by flips from -1
to 1 or vice versa. Further, we apply discrete recombination in each reproduction
step.

The population is uniformly initialized within the ranges [0, 10] for the (γ, σ)-
values of NWP and [0, 100] for NJP respectively. As the fitness evaluation of an
individual is quite time consuming (from several minutes up to half an hour) we
evaluated the whole population in parallel on a 200 node cluster with Pentium
IV, 2.4Ghz machines.
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5 Performance Evaluation

In order to evaluate the performance of our approach in the given scenario, we
introduce the tools we use for assessing the optimized exchange policies against
a realistic background. To this end, we define several well-known performance
indicators for job scheduling in the context of Grid computing, both from the
users’ and the providers’ point of view. Additionally, we discuss the workload
traces we use as input data that are derived from real-world setups.

5.1 Average Weighted Response Time

This objective is computed for all jobs j ∈ τk that have been initially submitted
to site k, see Equation 11. It is widely agreed that a short AWRT is the best way
to describe that on average users do not wait long for their jobs to complete.
Following Schwiegelshohn and Yahyapour [13], we use the resource consumption
(pj ·mj) of each job as weight. This ensures that neither splitting nor combination
of jobs can influence the objective function in a beneficial way.

AWRTk =

∑
j∈τk

pj · mj · (Cj(S) − rj)∑
j∈τk

pj · mj
(11)

Note that this also respects the execution on remote sites and, as such, the
completion time Cj(S) refers to the site that executed job j.

5.2 Squashed Area and Utilization

The first two objectives are Squashed Area SAk andUtilization Uk, both specific
to a certain site k. They are measured from the start of the schedule Sk, that is
minj∈πk

{Cj(Sk)−pj} as the earliest job start time, up to its makespan Cmax,k =
maxj∈πk

{Cj(Sk)}, that is the latest job completion time and thus the schedule’s
length.

SAk denotes the overall resource usage of all jobs that have been executed on
site k, see Equation 12.

SAk =
∑
j∈πk

pj · mj (12)

Uk describes the ratio between overall resource usage and available resources
after the completion of all jobs j ∈ πk, see Equation 13.

Uk =
SAk

mk ·
(

Cmax,k − min
j∈πk

{Cj(Sk) − pj}
) (13)

Uk describes the usage efficiency of the site’s available machines. Therefore, it is
often serving as a schedule quality metric from the site provider’s point of view.
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However, comparing single-site and multi-site utilization values is forbidden:
since the calculation of Uk depends on Cmax,k, valid comparisons are only ad-
missible if Cmax,k is approximately equal between the single-site and multi-site
scenario. Otherwise, high utilizations may indicate good usage efficiency, al-
though the corresponding Cmax,k value is very small and shows that only few
jobs have been computed locally while many have been delegated to other sites
for remote execution.

As such, we additionally introduce the Change of Squashed Area ΔSAk,
which provides a makespan-independent view on the utilization’s alteration, see
Equation 14.

ΔSAk =
SAk∑

j∈τk

pj · mj
(14)

From the system provider’s point of view this objective reflects the real change of
the utilization when jobs are shared between site compared to the local execution.

5.3 Input Data

The Parallel Workloads Archive2 provides job submission and execution traces
recordedon real-worldMPP system sites.Relevant details of the examined cleaned
traces are given in Table 1.

Table 1. Workload characteristics of the used input data, including AWRT in seconds,
U in %, and Cmax in seconds for single site execution with FCFS

Identifier #Jobs mk AWRT U Cmax

KTH-5 11780 100 488387.49 64.84 13765377
KTH-6 16699 100 99236.27 68.52 16420782
CTC-5 35360 430 57897.77 63.74 13009718
CTC-6 41839 430 59118.15 67.05 16346403
SDSC05-5 28184 1664 56925.10 45.94 13078215
SDSC05-6 46719 1664 77463.52 70.97 16419455

SDSC00-6 16316 128 413957.04 73.38 17002360

Naturally, the total number of available processors differs in workloads which
makes it possible to model unequally sized site configurations. Further, the orig-
inal workloads record time periods of different length. In order to be able to
combine different workloads in a multi-site simulations and to have a validation
set available, we shortened and separated the workloads to set of five and six
month respectively. To reflect different site configurations (e.g. small machine
and large machine) we combine only workloads that represent a long record pe-
riod to obtain meaningful results. Therefore, we created shortened versions of
the KTH, CTC, and SDSC05 workloads3. In the remainder of this work, the
2 http://www.cs.huji.ac.il/labs/parallel/workload/
3 http://www.it.irf.uni-dortmund.de/~lepping/traces/

http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.it.irf.uni-dortmund.de/~lepping/traces/
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five month sequence will serve as training sequences for the Evolutionary Fuzzy
Systems. The six month sequences are then used for application tests. In this
context, the SDSC00-6 trace will only be used to investigate the behavior of the
trained system when an previously unknown partner participates in the system.
Thus, we created no five month training sequence of the SDSC00 workload.

Further, we do not shift the traces regarding their originating timezones. We
restrict our study to workloads which are all submitted within the same timezone.
Therefore, the known diurnal rhythm of job submission is similar for all sites in
our scenario and time shifts cannot be availed to improve scheduling. In a global
grid the different timezones even benefit the job scheduling as idle machines at
night can be used by jobs from peak loaded sites at noon, see Ernemann at
al. [2]. As we cannot benefit from timezone shifts the presented results might be
even better in a global grid.

We simulated the workload on their original machines with a LRMS that
applied FCFS, see Section 3.1 for the local scheduling. The results for the above
described performance metrics as well as other relevant job characteristics are
listed in Table 1. We will refer to this non-cooperative case for the matter of
comparison in the rest of this paper.

6 Learning a Basic Rule Set

So far, we presented our Fuzzy controller concept at the GRMS layer, explained
how the complex decision making process can be adjusted by a set of parameters,
and discussed metrics and test data for the system’s performance evaluation.
Now, we will introduce the learning process of rule sets for the Fuzzy system,
detail the evolution-driven optimization procedure, and present corresponding
results.

Starting with no rule set at all, we need to bootstrap the system: A first,
basic set of rules has to be learned. Although it is generally necessary to create
rule sets for both location and transfer policy, see Section 3.2, we start with
a pair-wise training approach in order to reduce other partners’ influences as
much as possible. To this end, we limit job exchange to a single partner only—
thus needing no location policy at all—and concentrate on the optimization
of the transfer policy. Furthermore, we evolve only one site at a time while
applying a static transfer policy on the other site. This policy realizes an Accept
When Fit (AWF) behavior, which accepts all jobs offered to the GRMS layer
for local execution if they do not require more than the currently free resources.
Otherwise, the job is offered to the other participants.

The motivation for using a static transfer policy for the training partner and
refraining from developing both sites together lies in the application of evolu-
tionary optimization methods: A simultaneous training of two rule bases would
lead to a mutual adaption of both training partners. This however, would result
in an environment subject to continuous change, making an evolutionary-guided
adaptation very difficult: A rule base that leads to good results during one gen-
eration might fail completely in the next generation if the partner site changes
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its behavior completely, too. The aspired robustness in changing environments
will be achieved by additional refinements of the concept in the next sections.

6.1 Results for Training Sequences

The training results are listed in Table 2; gray-shaded lines indicate the evolved
site while the other lines indicate the static site as described above. As expected,
the optimization leads to significant improvements of the AWRT in all examined
setups.

Table 2. Results for the pair-wise rule base training. The gray shaded rows indicated
the optimized rule base.

Setup Site AWRTk Uk ΔAWRTk ΔUk ΔSAk ΔCmax,k

I
KTH-5 66100.77 sec. 35.33% 86.47% -45.51% -48.56% 5.60%
CTC-5 63534.29 sec. 71.40% -9.74% 12.01% 12.15% -0.14%

II
KTH-5 62884.33 sec. 73.00% 87.12% 12.58% 6.40% 5.49%
CTC-5 54745.53 sec. 62.70% 5.44% -1.64% -1.60% -0.05%

III
KTH-5 59409.60 sec. 45.15% 87.84% -30.36% -34.04% 5.28%
SDSC05-5 58799.15 sec. 47.34% -3.29% 3.06% 3.04% 0.01%

IV
KTH-5 70561.62 sec. 53.39% 85.55% -17.66% -21.75% 4.97%
SDSC05-5 54773.39 sec. 46.85% 3.78% 1.98% 1.94% 0.02%

V
CTC-5 45997.73 sec. 58.55% 20.55% -8.14% -8.15% 0.01%
SDSC05-5 57013.44 sec. 47.27% -0.16% 2.90% 2.91% -0.02%

VI CTC-5 57069.59 sec. 63.30% 1.43% -0.69% -0.51% -0.20%
SDSC05-5 49916.01 sec. 46.04% 12.31% 0.22% 0.18% 0.02%

This results in larger AWRT for the partner site that does not adapt its behav-
ior. For instance in Setup I, the AWRT improves by 86.47% compared to FCFS,
see Table 1, while the AWRT for the CTC worsens for almost 10%. Note that this
corresponds to a strong shift of work as the Squashed Area (ΔSA) is 48.56% lower
for the KTH and approximately 12% higher on the CTC site. However, when the
focus is changed, see Setup II, and CTC is optimized we achieve also improve-
ments of 5.44% for AWRT and slight load relief for the CTC site. Besides that,
the AWRT is still significantly improved in Setup II although we do not focus on
the KTH. This is due to the worse performance in the non-cooperative case and
indicates that Grid computing is for this site very advantageous.

Furthermore, in Setup III and IV the small KTH interacts with the very large
SDSC05 compute center and naturally the KTH benefits from more available
resources. It is remarkable that also the SDSC05 can improve its AWRT for
more than 3%, see Setup IV. At the same time, the Squashed Area is slightly
increased which indicated that an improvement in AWRT is not necessarily
caused by smaller utilization.

When the CTC interacts with a large compute center, see Setup V, the CTC
also strongly benefits as its AWRT is decreased by more than 20%. Likewise,
the SDSC05 can benefits from the cooperation with a medium size compute
installation like the CTC, see Setup VI.
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6.2 Robustness of Trained Rule Sets

To test the robustness of the pair-wise learned rule bases, we apply them to the
6 month workloads within the same setups. To this end, only two site Grids are
considered and every partner applies its egoistically learned rule base. Note that
AWF is not used in these scenarios anymore.

In Figure 4(a), the changes in AWRT and SA are depicted when both partners
apply their learned rule bases to previously unknown job submissions.
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Fig. 4. AWRT and SA improvements for the optimized rule sets

Obviously, the Evolutionary Fuzzy Systems still decrease the AWRT signifi-
cantly in all cases. This indicates a high robustness with respect to submission
changes.

Further, we show in Figure 4(b) the AWRT improvements in comparison to
the AWF transfer policy. Although AWF performs good for KTH and leads to
slight improvements for SDSC05 it completely fails for the CTC workload trace.
However, the rule based transfer policy outperforms AWF in all cases and leads
even to shorter AWRT values for the SDSC05 together with the much smaller
KTH.

7 Coping with More Than One Partner

After setting up the basic rule sets for job exchange in a controlled environment
with a single partner, we now focus on the applicability of the rule bases in a
Grid scenario with more participants. To this end, KTH, CTC, and SDSC05
are combined and the unknown submissions from the remaining six month of
the traces are used. This time, however, a location policy needs to be applied in
order to prioritize the options of delivering jobs to another participant.

7.1 An AWRT-Based Location Policy

In order to create a prioritization of the available potential delegation targets we
follow a two-step approach. As first step, we generate the subset of sites that in
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total provide enough machines to execute the job. That is, we sort out all sites
with mk < mj ∀ k ∈ K.

As second step the generated subset is sorted according to their former achieve-
ment with respect to a delegation source. Good achievements can be measured by
short AWRT of jobs on the corresponding sites. For the here proposed location
policy, a site calculates the AWRT metric with respect to every exchange partner.
To this end, only jobs are considered that have been delivered to the correspond-
ing partner. The AWRT indicates how long the delegation source had to wait for
the completion of its delivered jobs in the past. This metric is based on the as-
sumption that a short AWRT for delivered jobs in the past is expected to yield
also short AWRT values for future delegated job.

7.2 Results for Multiple Partners

The results in Figure 5(a) clearly indicate that the AWRT is still significantly
improved for all sites while the utilization decreases for the small partner. How-
ever, although the CTC and SDSC05 are slightly more utilized it does again
improve their objective values.

8 Coping with Alien Partners

Until now, our learning approach was suited to generate a pool of rule bases for
partners that are known in advance. This, however, requires knowledge about
the submitted workload in order to tune the transfer policies. With respect to
the robustness requirement, we therefore extend our approach to being able to
perform well in an environment with previously unknown Grid participants. This
requires the automatic adjusting of transfer behavior to partners that were not
part of a training scenario.

8.1 Selection of Rule Base

As mentioned in Section 3.2, the rule based transfer policy is applied to each
partner site separately. If a new partner arises a transfer policy has to be selected
from the pool of all learned transfer policies. To identify the best suitable transfer
policy we assume a correlation between delegation targets’ maximum amount of
available resources and their transfer behavior. We conjecture that the behavior
within the grid mainly depends on a site’s resource number. Thus, we categorize
the various trained rule bases by the machines sizes they belong to. Among
the whole trained pool of transfer policies the best fitting one, with respect to
the number of maximum available resources, is selected to make the decision for
a submitted job.

8.2 Results for Alien Partners

Finally, we investigate the performance of the rule base selection concept and
add the SDSC00 as a site with mk = 128 processors to the Grid. Following the
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rule base selection concept, every site uses the KTH learned rule base for the
interaction with SDSC00 as it has the greatest similarity with respect to the
machine size. The SDSC00 site, in turn, uses AWF for exchange purpose.
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Fig. 5. AWRT and SA improvements for the optimized rules in a three-site Grid sce-
nario on non-trained data sets (a) and in a four-site Grid scenario with SDSC00 as
unknown participant (b)

In Figure 5(b) the results for interaction with three other partners are depicted
and, again, we observe strong AWRT improvements. Similarly to the KTH, also
SDSC00 shows a poor performance for exclusive single site execution. Therefore,
there is a high potential to improve the AWRT. However, it is important to see
that not only this partner can improve its AWRT but also other participants are
able to improve their AWRT for at least 10%.

Summarizing, the learned Evolutionary Fuzzy Systems realize a beneficial job
exchange for several cooperative computing environments. The examined Grid
sizes range from two to four sites and include unknown job submissions as well as
previously unknown Grid participant. In all cases, the AWRT can be significantly
decreased which results in improvements of about 10%-20% for large sites and
40%-80% for larger sites. It has been shown, that the job exchange policies
show a strong robustness with respect to both new sort of job submissions and
environmental changes.

9 Conclusion and Future Work

We presented an Evolutionary Fuzzy System approach to finding non-invasive,
situation-adaptive, and robust algorithms for workload distribution in decentral-
izedComputationalGrids. Such environments assume full autonomy of the partici-
patingHPC/HTCcenters and strict confidentiality of dynamic system information
and demand Grid middlewares that do not interfere with the running LRMS.

In our model, we introduced a decoupled GRMS layer on top of the available
systems, which decides upon execution on the local system or delegation to a
remote site for user-submitted jobs in an online, non-clairvoyant manner. The
decision mechanism is established by using a Fuzzy controller system with flexible
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rule sets that are optimized using evolutionary computation, using a pair-wise
training approach and performance metric-based rule base selection.

The presented system shows that—using real-world data—it is possible to
establish job exchange policies which lead to significantly improved performance
for all user communities in terms of response time and utilization. We further
find that our approach behaves robustly with respect to fluctuations in the work-
load pattern and shows situational adaptiveness even under circumstances of un-
known submission characteristics. Overall, we think that the derived controllers
provide a stable basis for workload distribution and interchange in Computa-
tional Grids, and may qualify as a promising technology for future Service Grid-
based e-Science infrastructures.
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Abstract. Grids reliability remains an order of magnitude below clus-
ters on production infrastructures. This work is aims at improving grid
application performances by improving the job submission system. A
stochastic model, capturing the behavior of a complex grid workload
management system is proposed. To instantiate the model, detailed
statistics are extracted from dense grid activity traces. The model is
exploited in a simple job resubmission strategy. It provides quantitative
inputs to improve job submission performance and it enables quantifying
the impact of faults and outliers on grid operations.

1 Introduction

In response to the growing consumption of computing resources and the need for
global interoperability in many scientific disciplines, inter-continental production
grid infrastructures have been deployed over recent years. Grids are understood
here as the federation of many regular computing units distributed world-wide,
taking advantage of high-bandwidth Internet connectivity. Productions grids
are systems exploiting dedicated resources administrated and operated 24/7,
as opposed to desktop grids that federate more volatile individual resources.
The production systems operated today (e.g. EGEE1, OSG2, NAREGI3...) have
emerged as a global extension of institutional clusters. They federate computing
centers which operate pools of resources almost autonomously. The grid mid-
dleware is designed to sit on top of heterogeneous, existing local infrastructures
(typically, pools of computing units interconnected through a LAN and shared
through batch systems) and to adapt to different operation policies.

These complex systems have passed feasibility tests and are exploited as the
backbone of many research and industrial projects today. They provide users with
an unprecedented scale environment for harnessing heavy computation tasks and
building large collaborations. Their exploitation has led to new distributed com-
putational models. However, they also introduce a range of new problems directly
1 Enabling Grids for E-sciencE, http://www.eu-egee.org
2 Open Science Grid, http://www.opensciencegrid.org
3 NAREGI, http://www.naregi.org

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2009, LNCS 5798, pp. 37–58, 2009.
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related to their scale and complex software stacks: high variability of data transfer
and computation, heterogeneity of resources, many opportunity for faults, hard-
ware failures, difficulty with bug tracking, etc. The workload management system
of grid infrastructures is probably one of the most critical and most studied ser-
vice provided. Despite the tremendous efforts invested in guaranteeing reliable
and performing workload managers, the current records demonstrate that grid
reliability remains an order of magnitude lower than clusters reliability, and per-
formances may be disappointing when compared to the promise of virtually un-
limited resources aggregation. As a consequence, grid users are directly exposed
to system limitations. They adopt empirical application level strategies to cope
with the problems most commonly encountered.

Production grid infrastructures remain to a large extent complex systems with
behavior that is little understood and for which “optimization” strategies are of-
ten empirically designed. The reason for this cannot be attributed to the youth
of grid systems alone. The complexity of software stacks, the split of resources
over different administrative domains and the distribution at a very large scale
makes it particularly difficult to model and comprehend grid operations. Struc-
tured investigation techniques are needed to analyze grids behavior and optimize
grid performances. Considering the grid workload management systems in par-
ticular, users are often in charge of manually resubmitting jobs that failed. They
need assistance to adopt smart resubmission strategies that improve performance
according to global criteria.

1.1 Objectives and Organization

In this paper we analyze the operation of the EGEE production grid infrastruc-
ture and more particularly its Workload Management System (WMS) in order
to assist users in performing jobs submission reliably and improving application
performance. Experience shows that EGEE users are facing a significant ratio
of faults when using the WMS and their applications’ performance is impacted
by very variable latencies. Each job submitted to the grid may succeed, fail, or
become an outlier (i.e. get lost due to some system fault). The execution time
of successful jobs is impacted by the system latency. Faulty jobs and outliers are
similarly introducing variable delays before the error is detected and the jobs can
be resubmitted. From the user point of view, the overall waiting time, including
all necessary resubmissions, should be minimized. Ad-hoc fault detection and
resubmission strategies are typically implemented on a per-application basis.
Determining the optimal grace delay before resubmission is difficult though, due
to the absence of notification of outliers and the impact of faults. The objective
of this study is to provide quantitative input and optimal resubmission timing.

Previous works have demonstrated that statistics collection on the live grid
system and derived probabilistic models could help in optimizing grid perfor-
mance according to user-oriented and system-oriented criterions [1,2]. However,
the statistics utilized so far were collected through invasive probing of the grid
infrastructure, thus leading to rather sparse and incomplete data retrieval, dif-
ficult to update although grid workload is non-stationarity. This work describes
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a more structured approach leveraging on the international effort to set up a
Grid Observatory4 which tackles the problems related to grid operation traces
collection in order to provide accurate, dense and relevant statistics for modeling
and optimizing the infrastructure.

In the remainder, the EGEE grid architecture, and more specifically its Work-
load Management System, is introduced. The Grid Observatory implementation,
based on grid service log files analysis and merging, is then described. The data
extracted and its exploitation for deriving a novel probabilistic model of the
grid job latencies is presented. Finally, a simple job resubmission strategy is
optimized, based on the probabilistic model proposed.

1.2 Related Work

Frachtenberg and Schwiegelshohn [3] have pointed that in case of failure, re-
scheduling is needed in order to reduce submission cost. They also pointed out
that very few real production grid workload traces and models are available.
A few local pieces of work have been done however, such as on the Auvergne
regional part of EGEE by Medernach [4]. An initiative of data publication and
organization is the Grid Workloads Archive [5] which proposes a workload data
exchange format and associated analysis tools in order to share real workload
data from different grid environments.

Early work such as [6] have set up a methodology of statistical workload
modeling from real data with the characteristics observed on Grids: heavy tailed
distribution and rare events. More recent works have proposed to model different
parameters such as job inter-arrival time, job delays, job size and their correlation
on different platforms: the EGEE grid [7,8] or the Dutch DAS-2 multi-cluster
environment [9] for different periods of time from 1 month to 1 year.

Real workload models are mandatory to test new algorithms at different stages
of jobs life-cycle such as submission (client side) or scheduling (middleware side).
Authors of [8] have used their data to compare two user-level schedulers algo-
rithms.

Workload models are also used for platform analysis and comparison. For
example, authors of [7] have compared their results on the EGEE Grid with a
real local cluster and an ideal cluster.

Finally, workload models will also enable more realistic simulations when used
in Grid simulator such as SimGrid [10].

2 EGEE Grid Infrastructure

EGEE is an unprecedented large scale federation of computing centers, each op-
erating internal clusters in batch mode. EGEE today accounts for more than
80,000 CPU cores distributed in greater than 250 computing centers of various
sizes. With more than 9,000 users authorized to access the infrastructure and

4 Grid Observatory, http://www.grid-observatory.org

http://www.grid-observatory.org
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more than 200,000 computing tasks handled daily, EGEE experiences very vari-
able load conditions and strong latencies in user requests processing, mostly due
to the middleware latency and the batch queuing time of requests.

EGEE operates the gLite middleware5. gLite is a collection of interoperat-
ing services that cover all functionality provided, including grid-wide security,
information collection, data management, workload management, logging and
bookkeeping, etc. A typical gLite deployment involves many hosts distributed
over and communicating through the WAN. The main services provided by gLite
are: the security foundational layer (based on GLOBUS Toolkit 2), the Infor-
mation System collecting status information on the platform hierarchically, the
Data Management System providing a unified view of files distributed over many
sites, and the Workload Management System (WMS) in charge of dispatching
and monitoring computing tasks. Each of these systems is a compound, dis-
tributed architecture in its own right.

EGEE is a multi-sciences grid and EGEE users and resource are grouped into
Virtual Organizations (VOs) which define both communities of users sharing a
common goal and an authorization delineation of the resources accessible to each
user group.

2.1 EGEE Workload Management System

The EGEE WMS is seen from the user as a two-level batch system: the User
Interface (client) connects to a Workload Manager System (WMS). The WMS is
interfaced to the grid Information System to obtain indications on the grid sites
status and workload conditions. It queues user requests and dispatches them to
one of the sites connected. The sites receive grid jobs through a gateway known as
Computing Element (CE). Jobs are then handled through the sites’ local batch
systems. To comprehend the complexity of the system, a more complete view of
the WMS architecture, extracted from the WMS user guide [11] is depicted in
figure 1.

When submitting a job, the client User Interface connects to the core Work-
load Manager through a WMProxy Web Service interface on the Network Server.
The Workload Manager queries the Resource Broker and its Information Super-
Market (repository of resource information) to determine the target site that will
handle the computation task, taking into account the job specific requirements.
It then finalizes the job submission through the Job Adapter and delegates the
job processing to CondorC. The job evolution will be monitored by the Log Mon-
itor (LM) which intercepts interesting events (affecting the job state machine)
from the CondorC log file. Finally, the Logging and Bookkeeping service (LB)
logs job events information and keeps a state machine view of the job life cycle.
The user can later on query the LB to receive information on her job evolution.

For load balancing and system scalability, the EGEE infrastructure operates
around a hundred of similar WMS. However, if those WMSs share the same pop-
ulation of connected CEs, they are not interconnected and they do not perform

5 gLite middleware, http://www.glite.org

http://www.glite.org
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Fig. 1. gLite Workload Management System architecture; source: WMS user guide

internal load balancing. It is up to the clients to select their WMS at submission
time. The client User Interface implements a simple round-robin WMS selection
policy to assist users in their job submission process.

In the remainder we are particularly interested in the impact of the grid
middleware on the job execution time, i.e. the latency induced by the middleware
operation, that is not related to the job execution itself. This latency is a measure
of the middleware overhead. In case of faults (scheduling problems, middleware
faults...) this latency will arbitrarily increase and the job needs to be considered
lost after a long waiting time enough to prevent application blocking.

2.2 Job’s Life Cycle

The job’s life cycle is internally controlled through a state machine displayed in
figure 2 (source: WMS user guide).

The normal states assigned to a job are underlined in boxes with thick borders
(they correspond to the case of a job completed successfully):

SUBMITTED the job was received by the WMS and the submission event is
logged in the LB

WAIT the job was accepted by WM, waiting to match a CE
READY the job is sent to its execution CE
SCHEDULED the job is queued in the CE batch manager
RUNNING the job executes on a worker node of the target site
DONE (ok) the job completed successfully.

Other states may also be encountered:

ABORT in any state, the middleware can abort the operation. An additional
status reason is usually returned.
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Fig. 2. Jobs life cycle state machine; source: WMS user guide

DONE (failed) some errors may prevent correct job completion. An additional
status reason is usually returned.

DONE (cancelled) in any state, the submission user can cancel her job.
CLEARED after outputs of a completed job have been retrieved by the user,

the job is cleared.

2.3 Grid Observatory

The basis of our work on the WMS behavior modeling is the collection of statis-
tical information on job evolution on the live grid infrastructure. The relevant
information for performance modeling is the duration of jobs, including fine de-
tails on the intermediate times spent between transitions of the state diagram.
This information collection step is difficult by itself. In a previous work [12], we
collected such information through poll jobs submission on the infrastructure
and monitoring of the polls life-cycle. Although this strategy is easy to imple-
ment (all that is needed is a user interface connected to the infrastructure), it is
both restrictive (the polls are specific short duration jobs, the jobs are limited
to the resources accessible to the specific user performing submission) and has
limited accuracy (only a limited number of polls can be simultaneously submit-
ted to avoid disturbing normal operation, the traces are collected by periodic
polling and the period selected impacts the accuracy of results).

A more satisfying approach is to collect traces from regular jobs submitted
on the grid infrastructure during normal grid operation, thus assembling a com-
plete and accurate corpus of data. However, there are much more difficulties in
implementing this approach than would be expected, including:
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– traces are recorded by different inter-dependent services (WM, CondorC,
LM, LB...) that are tracing partly redundant and partly complementary
information;

– traces are collected on many different sites (operating different WMSs) ad-
ministrated independently: agreement to collect the data has to be negoti-
ated with the (many) different site administrators;

– different versions of the middleware services co-exist on the infrastructure
and traces are produced by slightly varying sources (including changes in
states, labels, spell fixing in messages returned, etc);

– traces are recorded on different computers which clocks are not always well
synchronized (although NTP should be installed on every grid hosts);

– traces collected are incomplete as parts of them can be lost (log files loss,
disk crashes, etc) and all job states are not always recorded (middleware
latency and faults cause some transition losses);

– as it will appear in the rest of this paper, the traces recorded often do not
match precisely the information documented in the existing guides (state
name changes, etc).

The most accurate source of traces available on the EGEE grid today is the
Real Time Monitor6 (RTM) implemented at the Imperial College London for the
need of real time grid activity monitoring and visualization. The RTM gathers
information from EGEE sites hosting Logging and Bookkeeping (LB) services.
Conforming to our college policy, information is cached locally at a dedicated
server at Imperial College London and made available for clients to use in near
real time.

The system consists of 3 main components: the RTM server, enquirer and
an apache Web Server which is queried by clients. The RTM server queries the
LB servers at fixed time intervals, collecting job related information and storing
this in a local database. Job data stored in the RTM database is read by the
enquirer every minute and converted to an XML format which is stored on the
Web Server. This decouples the RTM server database from potentially many
clients which could bottleneck the database.

The RTM also provides job summary files for every job as text files (“Raw
Data”). These data are analysed off-line and fixed record length tuples are cre-
ated on daily basis, one file per LB server. These files are used for the analysis
presented in this paper.

The systematic collection of grid traces for studying grid systems has been
recognized as a key issue and significant effort has been recently invested in
setting up a Grid Observatory7 which aims at collecting information and easing
access to it through a portal. The grid observatory has long term objectives of
curating and harmonizing the data. It currently provides access to first data
corpuses collected in Paris regional area (GRIF) and by the RTM.

6 Real Time Monitor, http://gridportal.hep.ph.ic.ac.uk/rtm
7 EGEE Grid Observatory, http://www.grid-observatory.org

http://gridportal.hep.ph.ic.ac.uk/rtm
http://www.grid-observatory.org
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3 Statistical Data

The data considered in this study are RTM traces of the EGEE grid activity
during the period from September 2005 to June 2007. 33,419,946 job entries were
collected, each of them representing a complete job run. Among the information
recorded in an entry can be found: the job ID, the resources used (UI, RB, CE,
WN), the VO used, the job specific requirements, the job life cycle concatenated
field and a complementary ”final reason” text detailing the reason for the final
state reached. Different epoch times are given, allowing to measure the duration
of each step of the job life cycle:

epoch regjob ui: registration of a job on a User Interface
epoch accepted ns: job accepted by the network server
epoch matched wm: job matched to a target CE
epoch transfer jc: job accepted and being transfered to the CE
epoch accepted lm: job accepted by the CE
epoch running lm: job started running (logged by the LM)
epoch done lm: job completed (successfully or not)
epoch running lrms: job started running (logged by the LRMS)
epoch done lrms: job completed (successfully or not)

The last two couples of epoch data can be redundant: one is given by the LM
while the other is given by the local resource management system (LRMS) or
batch system. The LM data is less accurate than the LRMS, but the LRMS data
does not exist for all CEs.

The life cycle field holds information on the different states the job has
encountered during its life cycle (see figure 2). It is composed of the concate-
nation of the different state names, considering some minor variations in names
(e.g. RAN corresponds to a past RUNNING state; REGISTERED corresponds
to a job registered on the UI it has been SUBMITTED to). In the data con-
sidered in this paper, 77 different values of the life cycle field have occurred
with different frequency. They correspond to different situations: job success-
fully terminated and data retrieved (REGISTERED DONE RAN CLEARED),
job aborted (REGISTERED ABORT), etc. The top 5 life cycle values with their
frequencies are given in table 1.

To give more information on the reason for the final state of a job (especially in
case of error), the final reason field provides a user readable message.
Unfortunately, the set of possible values is larger, due to the diversity of cases that
may occur but also to the different versions of middlewares, sometimes displaying

Table 1. Top 5 life cycle values with their frequencies

REGISTERED DONE RAN CLEARED 41.3 %
REGISTERED ABORT 29.4 %
REGISTERED DONE RAN 22.8 %
REGISTERED DONE 2.7 %
REGISTERED ABORT RAN 0.9 %
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Table 2. Abbreviations for some type values

RDRC REGISTERED-DONE-RAN-CLEARED
RDR REGISTERED-DONE-RAN
RA REGISTERED-ABORT
RAC REGISTERED-ABORT-CLEARED
RD REGISTERED-DONE
UA UNDEFINED-ABORT
Una UNDEFINED-na
RE REGISTERED-ENQUEUED
RnaR REGISTERED-na-RAN
UDR UNDEFINED-DONE-RAN
UDRC UNDEFINED-DONE-RAN-CLEARED
RRR REGISTERED-RUNNING-RAN
RT REGISTERED-TRANSFER

different messages for the same reason. Combined with the life cycle field, we
counted 315 different cases. Some final reason fields were shortened to exclude
non relevant specific information such as particular file name or site name appear-
ing in the message. For instance, the text "cannot retrieve previous matches
for https://lcgrb01.gridpp.rl.ac.uk:9000/XCKb1dsA3fXbzsY7Q" was
replaced by "cannot retrieve previous matches for".

Before exploiting the data, some curation was needed for proper interpre-
tation. Namely: data sources were selected when redundant information was
available (LM and LRMS traces redundancy); specific text final reason fields
were truncated; and rare events were neglected in order to reduce the number of
cases to analyze (an experimental justification if given in paragraph 5.3). As a
result, table 3 details the 37 most frequent cases, representing 99.4% of the total
data. This selection is a compromise between data completeness and number of
cases to analyze. The last column of table 3 proposes a classification of the cases
into 3 classes that are detailed below.

3.1 Successful Jobs

The first class corresponds to jobs that have started running and either termi-
nated successfully or were canceled by the user. We consider that these jobs
were possibly successful job even if the intervention of the user changed the final
status or if some produced files were not retrieved nor used. For these jobs, we
denote by R the job latency, i.e. the time between the epoch of registration on
the UI and the epoch where the job starts running. Due to some clock synchro-
nization problems it may happen that a latency value R is negative: such entries
have been excluded from the study. Of course, such problem may also alter some
positive values. However, these events are rare and the synchronisation difference
are small compared to the values considered.

It also happens that either LM or LRMS traces are available. Since LRMS
values are more accurate, we decided to keep only data where LRMS values were
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Table 3. The 37 most frequent cases of type and final reason field values are totalizing
99.4% of the total data. Type values have been abbreviated for readability of the table,
using table 2. The last column distinguishes correctly running jobs with latency (R
with number of data entries remaining after cleaning), failed jobs (F) and outliers.

case type and final reason occurrences % class
1 RDRC Job terminated successfully 11,563,331 34.6% R (9,999,928)
2 RDR Job terminated successfully 5,639,638 16.9% R (5,035,776)
3 RA Job RetryCount (0) hit 3,838,380 11.5% outlier
4 RA Cannot plan: BrokerHelper: no compa 3,422,319 10.2% F
5 RDRC - 1,299,235 3.89% R (1,138,324)
6 RDRC There were some warnings: some file 1,004,800 3.01% R (884,932)
7 RDR There were some warnings: some file 911,500 2.73% R (813,405)
8 RDR - 877,229 2.62% R (750,473)
9 RD Aborted by user 863,094 2.58% R (875,89)

10 RA Job RetryCount (3) hit 582,152 1.74% outlier
11 RA - 557,055 1.67% F
12 RA Job proxy is expired. 495,519 1.48% F
13 RA cannot retrieve previous matches fo 322,839 0.97% F
14 RAR Job proxy is expired. 267,890 0.80% F
15 Una - 235,458 0.70% R (10,632)
16 RDR Aborted by user 188,421 0.56% R (15,3479)
17 RA Job RetryCount (1) hit 165,231 0.49% outlier
18 UA Error during proxy renewal registra 149,095 0.45% F
19 RA Unable to receive 115,867 0.35% F
20 RE - 109,089 0.33% F
21 RA Cannot plan: BrokerHelper: Problems 89,553 0.27% F
22 UA Unable to receive 70,215 0.21% F
23 RA Job RetryCount (2) hit 63,595 0.19% outlier
24 RnaR - 56,044 0.17% R (53,055)
25 RD - 45,400 0.14% R (2,091)
26 RAC cannot retrieve previous matches fo 35,887 0.11% F
27 UDR Job terminated successfully 31,722 0.09% R (236)
28 RAR - 26,268 0.08% F
29 RDRC There were some warnings: some outp 25,868 0.08% R (20,341)
30 RDR There were some warnings: some outp 23,178 0.07% R (18,315)
31 RRR - 22,983 0.07% R (19561)
32 RA Submission to condor failed. 22341 0.07% F
33 RA Job RetryCount (5) hit 22,260 0.07% outlier
34 RT Job successfully submitted to Globu 18,972 0.06% R (3,768)
35 RT unavailable 18,065 0.05% F
36 RA Job RetryCount (7) hit 17,328 0.05% outlier
37 RA hit job shallow retry count (0) 16,863 0.05% outlier

available. The number of remaining data is given for each case in table 3 inside
the parenthesis after the R symbol. This class is composed of 18,991,905 entries.

Figure 3 displays the distribution of latency values for all successful cases from
table 3. We observe that all profiles are similar although the frequencies differ,
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Fig. 3. Occurrences of latency values for different cases (see table 3) of successful jobs.
The figure below gives more details for low values. The first two cases (1 and 2) are
plotted thicker for an easier reading.
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Fig. 4. cdf (top) and pdf (bottom) of the latency in all the cases displayed in figure 3

and the first class represents most of the data. Figure 4 displays the probability
density function (pdf) of the latency on top and its cumulative density function
(cdf) on bottom. These laws are known to be heavy tailed [13] meaning that the
tail is not exponentially bounded (see figure 5):

∀λ > 0, lim
t→∞ eλt(1 − FR(t)) = +∞

3.2 Failed Jobs

The second class corresponds to jobs that have failed for different reasons, leading
to abortion by the WMS (no compatible resources, proxy error, BrokerHelper
problem, CondorC submission failure...). Most jobs are aborted after a delay,
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denoted by the variable F , computed from the epoch of job registration until
the done state epoch corresponding to the abortion instant. The delay F is one of
the subjects of this study. Similarly to the previous class, some synchronization
clock problems led to exclude some data. Moreover, the terminal “done” status
may not be reached in some cases, as for example 18 and 22. We have decided
to assume that the fault was immediately reported to the system in these cases.
This class is finally composed of 5,607,329 entries.

The different fault latency profiles (F ) for the different cases of table 3 labelled
as faults are displayed in figure 6. Contrarily to the study of successful jobs, we
observe that the profiles of the curves corresponding to each case conducting
to fault are quite different. The corresponding pdf and cdf of F are plotted in
figure 7. They corresponds approximately to the profile of case number 4 even if
they have been computed on all failed jobs: case number 4 is predominant (10.2%
of entries compared to second larger, case number 11 with 1.67% of entries).

3.3 Outliers

Jobs with type “REGISTERED-ABORT” and final reason “Job RetryCount
(any number) hit” are jobs that have failed at least once at a site and been
submitted to other sites until the user defined maximum number of retries is
reached at which point the WMS gives up on the jobs. The WMS is aware of
such failures either because it is notified of the job failure or because the job
times out.

The final reason for a large part of these jobs is known after a very long delay
(few 100000s seconds) when compared to other failed jobs. They correspond to
jobs that never return due to some middleware failure or network interruption
(jobs may have been sent to a CE that has been disconnected or crashed and the
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examined in figure 6

LB will never receive notification of the completion). They are usually detected
using a timeout value by the WMS. This last class of jobs, labelled as outliers,
contains 4,705,809 entries.

3.4 Summary

We denote as ρ the ratio of outliers and φ the ratio of faulty jobs. In the complete
data set considered, we measure:

outliers : ρ = 16.1%
faults : φ = 19.1%
successful : 1 − ρ − φ = 64.8%
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When comparing the distribution of F to the one of R, we observe that, even if
faults are not always known immediately, they are usually identified in a shorter
time than the latency impacting most successful jobs. We will now study the
impact of the delay before faults detection on the total latency of a job.

4 Resubmission after Fault

4.1 Probabilistic Modeling

In the remainder, a capital letter X traditionally denotes a random variable with
pdf fX and cdf FX . Let R denote the latency of a successful job and F denote the
failure detection time. Assuming that faulty jobs are resubmitted without delay,
let L denote the job latency taking into account the necessary resubmissions. L
depends on the distribution of the jobs failure time. With ρ the ratio of outliers
and φ the ratio of failed jobs, the probability, for a job to succeed is (1− ρ−φ).

A job encounters a latency L < t, t being fixed, if it is not an outlier and
either:

– the job does not fail (probability (1−ρ−φ)) and its latency R < t (probability
P (R < t) = FR(t)); or

– the job fails at t0 < t (probability φfF (t0)) and the job resubmitted encoun-
ters a latency L < (t − t0)

The cumulative distribution of L is thus defined recursively by:

FL(t) = (1 − ρ − φ)FR(t) + φ

∫ t

0
fF (t0).FL(t − t0)dt0

where the distributions of R and F are for instance numerically estimated from
the statistical data set described in the previous section. However, in this equa-
tion, the cdf FL appears both in left and right sides. Moreover, its value at time
t does appear in both terms.

In order to compute the cdf FL, we discretize this equation with some con-
siderations:

– No successful job has a null latency: FR(0) = 0
– We introduce the second as the discretization step for the variable t. Indeed,

in practice we know that we cannot have a higher precision than the second
for our measurements. The discretization step is chosen accordingly.

– Some jobs are immediately known to fail (for example if the fault occurs on
the client side). We thus consider FF (0) �= 0

Since no job has a null latency, this is also the case with resubmitted jobs:
FL(0) = 0. Supposing now t > 1, we get:

FL(t) = (1 − ρ − φ)FR(t) + φ
t−1∑
t0=0

fF (t0)FL(t − t0)
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This equation is resolved differently in the cases t = 1 and t > 1. For t = 1, it
simplifies to:

FL(1) = (1 − ρ − φ)FR(1) + φfF (0)FL(1) ⇒ FL(1) =
1 − ρ − φ

1 − φfF (0)
FR(1)

For t > 1, we can write:

FL(t) = (1 − ρ − φ)FR(t) + φfF (0)FL(t) + φ
t−1∑
t0=1

fF (t0)FL(t − t0)

leading to:

FL(t) =
1

1 − φfF (0)

[
(1 − ρ − φ)FR(t) + φ

t−1∑
t0=1

fF (t0)FL(t − t0)

]

On the right side of this equation, the terms in FL are in the form FL(u) with
u ∈ [1 ; (t − 1)]. FL(t) can therefore be computed recursively. The complete
formula is given by equation 1:

FL(0) = 0

FL(1) =
1 − ρ − φ

1 − φfF (0)
FR(1)

FL(t > 1) =
1

1 − φfF (0)

[
(1 − ρ − φ)FR(t) + φ

t−1∑
u=1

fF (t − u)FL(u)

] (1)

4.2 Exploitation of the Grid Traces

Figure 8 displays the cdfs of several variables. FR and FF have been estimated
from the grid traces data. Equation 1 enables to compute FL, the cdf of successful
jobs including resubmission in case of failures. We clearly observe the impact of
failures in this latency L when compared to R. FL’s curve is lower: the probability
of achieving a given latency when faults occur is thus lower. In order to see more
precisely the impact of failures, we also plotted (1 − ρ)FR which corresponds
to the outliers and the successful jobs, ignoring failed jobs. This last curve is
slightly above FL: while L displays a probability of 50% for jobs to have a
latency lower than 761 seconds, it reduces to 719 seconds when ignoring failures
(or the difference of probability is 1% for the same latency value).

Having established the distribution properties of L, we will now focus on the
exploitation of the data for implementing a realistic resubmission strategy that
aims at reducing the latency experienced by users.
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5 Resubmission Strategy

5.1 Modeling

As seen in the previous section, the probability for a job to terminate before a
given instant t is given by FL(t). We consider the resubmission strategy devel-
oped in [13] where a job is canceled and resubmitted if its latency is higher than
a given timeout value t∞ which value needs to be optimized. The work presented
in [13] was based on probe jobs that neglected faults (they were excluded from
the data) but some jobs did not return and were labelled as outliers. We denote
F̃R(t) the probability for a job to face a latency lower than t. When neglecting
faults, F̃R is related to the distribution of latency FR and the ratio of outliers:

F̃R(t) = (1 − ρ)FR(t)

We denote J the total latency including resubmissions after waiting periods
of t∞. From [13], we can express the expected total latency EJ , considering
resubmissions at t∞ as:

EJ (t∞) =
1

F̃R(t∞)

∫ t∞

0
(1 − F̃R(u))du (2)

Thanks to the more complete workload data studied in this paper, we can
refine the model by taking the latency for fault detections into account. We
thus consider the following resubmission strategy: jobs for which the latency L,
including resubmissions due to failures, is greater than a timeout value t∞ are
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canceled and resubmitted. Observing that FL(t) corresponds to the probability
for a job to succeed with a latency lower than t, we can replace, in equation 2,
F̃R by FL:

EJ (t∞) =
1

FL(t∞)

∫ t∞

0
(1 − FL(u))du (3)

Minimizing this equation leads to the estimation of the optimal timeout t∞
value.

5.2 Experiments: Taking into Account Faults in the Model

The profile of the expectation of the total latency, including all resubmissions and
computed from equation 3 is plotted in figure 9. The curve reaches a minimum
value EJ = 584s for an optimal timeout value t∞ = 195s.
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Fig. 9. Expectation of total latency with respect to timeout value t∞. The first curve
is obtained from equation 3. The result is compared with the case ignoring failures and
the case where failures are accounted as outliers.

Two others profiles are plotted for comparison. The first one is the case ig-
noring the failures and corresponding to equation 2 with F̃R = (1 − ρ)FR. In
that case, the minimum is reached at t∞ = 191s, leading to EJ = 529s which is
under-evaluated.

The second comparison is performed with the assumption that failures can
be considered as outliers, thus leading to a total of 35% of outliers. In this case,
EJ reaches a minimum at t∞ = 185s, which is underestimated and conducts to
minimal value EJ = 704s, highly overestimated.

This experiment shows that taking into account a model of latency for faults
detection has an influence on the parameters for this particular resubmission
strategy.
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5.3 Experiments: Reducing the Number of Cases

In section 3, we have retained the 37 most frequent cases, displayed in table 3.
Here, results obtained with different number of most frequent cases are com-
pared, in order to measure the relevance of reducing the number of cases to be
taken into account. Figure 10 presents the variation of EJ with respect to the
timeout value t∞ for different numbers of most frequent cases. The optimal val-
ues of t∞ leading to minimal EJ values are given in table 4. We observe that
reducing the number of cases from 37 to 30 does not impact the results of the
resubmission strategy, showing that not taking care of all possible cases (315
cases) does not impact the final result, since we are considering the most fre-
quent ones. However, reducing the number to 20 or less cases impacts the final
result. In table 4, results concerning the model including faults and the previous
model without including faults are displayed. These results shows that reducing
the number of cases to less than 20 cases impacts more than not considering the
faults in the model.
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Fig. 10. Variations of the expected total latency (EJ) including resubmissions with
respect to the timeout value, for different number of cases from table 3. We observe no
visual difference between 37 and 30 cases. For less cases, we observe variations of EJ .

Table 4. Influence of the number of most frequent cases taken into account in the
model on the estimation of optimal timeout value (t∞) and minimal expectation of
total latency including resubmission (EJ). Comparison of the results in two cases: with
or without faults included in the model.

nb. of with faults (FL) without faults (F̃R)
cases opt. t∞ min. EJ opt. t∞ min. EJ

37 195s 584s 191s 529s
30 194s 584s 191s 529s
20 195s 577s 191s 524s
10 192s 558s 189s 530s
4 199s 606s 197s 570s
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6 Conclusions and Perspectives

Probabilistic models of the grid jobs latency enable us to capture the complex
behavior of grid workload management systems. The model proposed in this pa-
per relies on statistic collection of job execution traces in order to estimate the
cdf of several parameters stochastically modeled. As compared to previous work,
the model as been enriched to take into account normal operations, outliers and
faults, which frequency is high on grids and therefore significantly impacts job
execution time. The model is exploited to optimize a simple job resubmission
strategy that aims at optimizing applications performance using objective infor-
mation. The more jobs a grid application is composed with, the more it will be
sensitive to such fault recovery procedures. In the future, more elaborate sub-
mission strategies commonly implemented on grids, such as multiple submission
of a same task, will be considered.

This paper also emphasizes on the practical difficulties encountered when col-
lecting and then exploiting traces on a large scale, heterogeneous production grid
infrastructure. The set up of a Grid Observatory with well established procedures
for traces collection, harmonization and curation is critical for the success of such
grid behavioral analysis. It will allow to focus on modeling and experimentation
without having to consider heavy-weight technical problems in the context of
each new study. In addition, the Grid Observatory ensures dense data collection
for accurate estimations without disturbing the normal grid operation.

The preliminary work detailed in this paper exploits a consistent but archived
set of traces for a posteriori analysis. In the future, the Grid Observatory is
expected to provide live information for tackling the non-stationarity of the grid
workload manager and enabling relevant estimate of the grid running conditions.
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The Resource Usage Aware Backfilling
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Abstract. Job scheduling policies for HPC centers have been extensively stud-
ied in the last few years, especially backfilling based policies. Almost all of these
studies have been done using simulation tools. All the existent simulators use the
runtime (either estimated or real) provided in the workload as a basis of their sim-
ulations. In our previous work we analyzed the impact on system performance of
considering the resource sharing (memory bandwidth) of running jobs including
a new resource model in the Alvio simulator. Based on this studies we proposed
the LessConsume and LessConsume Threshold resource selection policies. Both
are oriented to reduce the saturation of the shared resources thus increasing the
performance of the system. The results showed how both resource allocation poli-
cies shown how the performance of the system can be improved by considering
where the jobs are finally allocated.

Using the LessConsume Threshold Resource Selection Policy, we propose a
new backfilling strategy : the Resource Usage Aware Backfilling job scheduling
policy. This is a backfilling based scheduling policy where the algorithms which
decide which job has to be executed and how jobs have to be backfilled are based
on a different Threshold configurations. This backfilling variant that considers
how the shared resources are used by the scheduled jobs. Rather than backfilling
the first job that can moved to the run queue based on the job arrival time or job
size, it looks ahead to the next queued jobs, and tries to allocate jobs that would
experience lower penalized runtime caused by the resource sharing saturation.

In the paper we demostrate how the exchange of scheduling information be-
tween the local resource manager and the scheduler can improve substantially
the performance of the system when the resource sharing is considered. We show
how it can achieve a close response time performance that the shorest job first
Backfilling with First Fit (oriented to improve the start time for the allocated
jobs) providing a qualitative improvement in the number of killed jobs and in the
percentage of penalized runtime.

1 Introduction

Several works focused on analyzing job scheduling policies have been presented in the
last decades. The goal was to evaluate the performance of these policies with specific
workloads in HPC centers. A special effort has been devoted to evaluating backfilling-
based ([4][22]) policies because they have demonstrated an ability to reach the best
performance results (i.e: [12] or [21]). Almost all of these studies have been done us-
ing simulation tools. To the best of our knowledge, all the existent simulators use the
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runtime (either estimated or real) provided in the workload as a basis of their simu-
lations. However, the runtime of a job depends on runtime issues such as the specific
resource selection policy used or the resource jobs requirements.

In [15] we evaluated the impact of considering the penalty introduced in the job run-
time due to resource sharing (such as the memory bandwidth) in system performance
metrics, such as the average bounded slowdown or the average wait time, in the back-
filling policies in cluster architectures. To achieve this, we developed a job scheduler
simulator (Alvio simulator) that, in addition to traditional features, implements a job
runtime model and resource model that try to estimate the penalty introduced in the job
runtime when sharing resources. In our previous work and we only considered in the
model the penalty introduced when sharing the memory bandwidth of a computational
node. Results showed a clear impact of system performance metrics such as the average
bounded slowdown or the average wait time. Furthermore, other interesting collateral
effects such as a significant increment in the number of killed jobs appeared. Moreover
the impact on these performance metrics was not only quantitative.

Using the conclusions reached in our preliminary work, in [16] we described two
new resource selection policies that are designed to minimize the saturation of shared
resources. The first one, the LessConsume attempts to minimize the job runtime penalty
that an allocated job will experience. It is based on the utilization status of shared
resources in the current scheduling outcome and the job resource requirements. The
second once, the LessConsume Threshold, finds an allocation for the job that satisfies
the condition that the estimated job runtime penalty factor is lower than a given value
Threshold. This resource selection policy was designed to provide a more sophisticated
interface between the local resource manager and the local scheduler in order to find the
most appropriate allocation for a given job. Both resource allocation policies showed
how the performance of the system can be improved by considering where the jobs are
finally allocated. They showed a very important improvement in the percentage of pe-
nalized runtimes of jobs due to resource sharing saturation, and more importantly, in
the number of killed jobs. Both have reduced by four or even six times the number of
killed jobs versus the traditional resource selection policies.

In this paper we propose a new backfilling strategy: the Resource Usage Aware Back-
filling job scheduling policy. This is a backfilling based scheduling policy where the
algorithms which decide which job has to be executed and how jobs have to be back-
filled are based on a different Threshold configurations. In brief, this backfilling variant
is based on the Shortest-Backfilled First backfilling variant. Rather than backfilling the
first job that can be moved to the run queue, it looks ahead to the next queued jobs,
and tries to allocate jobs that would experience lower penalty factors. However, it also
takes into consideration the expected response time of the jobs that it evaluates during
the backfilling process. The presented paper uses the model described in our previous
work where the memory usage is considered.

The rest of the paper is organized as follows: section 2 presents the related work;
section 3 briefly introduces the resource and runtime models that we proposed; next, the
LessConsume Threshold resource selection policies are described; the RUA-Backfilling
is presented in section 5; in section 6 we present an evaluation of different scheduling
configurations; and finally, in section 9 we present the conclusions of this work.
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2 Related Work

Authors like Feitelson, Schwiegelshohn, Calzarossa, Downey or Tsafrir have modeled
logs collected from large scale parallel production systems. They have provided inputs
for the evaluation of different system behavior. Such studies have been fundamental
since they have allowed an understanding how the HPC centers users behave and how
the resources of such centers are being used. Feitelson has presented several works
concerning this topic, among others, he has published papers on log analysis for spe-
cific centers [10], general job and workload modeling [8][11][9], and, together with
Tsafrir, papers on detecting workload anomalies and flurries [25]. Calzarossa has also
contributed with several workload modellization surveys [1][2]. Workload models for
moldable jobs have been described in works of authors like Cirne et al. in [5][6], by
Sevcik in [18] or by Downey in [7]. These studies have been considered in the design
of new scheduling strategies.

From the early nineties, local scheduling architectures and policies have been one of
the main goals of research in the area of high performance computing. Backfilling poli-
cies have been deployed in the major HPC centers. A backfilling scheduling policy is
an optimization of the simplest scheduling algorithm: First-Come-First-Serve (FCFS).
It starts jobs that have arrived later than the job at the head of the wait queue if the
estimated start time of this job is not delayed. Typically, this is called a reservation for
the first job. This backfilling is the most basic backfilling policy proposed by Lifka et al.
in [20] and it is called EASY-Backfilling. Many variants of this first proposal have been
described in several papers. The differences between each of them can be identified as
follows:

– The order in which the jobs are backfilled from the wait queue: in the EASY variant
the jobs are backfilled in arrival order, other variants have proposed backfilling the
jobs in shortest job first order (Shortest-Job-Backfilled-First [23][22]). More so-
phisticated approaches propose dynamic backfilling priorities based on the current
wait time of the job and the job size (LXWF-Backfilling [4]).

– The order in which the jobs are moved to the head of the wait queue, i.e.: which job
is moved to the reservation. Similar to backfilling priorities, in the literature many
papers have proposed pushing the job to the reservation in FCFS priority order or
using the LXWF-Backfilling order.

– The number of reservations that the scheduler has to respect when backfilling jobs.
The EASY variant is the most aggressive backfilling since the number of reserva-
tions is 1. As a result, in some situations the start time for the jobs that are queued
behind the head job may experience delays due to the backfilled jobs. More conser-
vative approaches propose that none of the queued jobs are delayed for a backfilling
job. However, in practice, this last kind of variant is not usually used in real systems.

General descriptions of the most frequently used backfilling variants and parallel
scheduling policies can be found in the report that Feitelson et al. provide in [12]. More-
over, a deeper description of the conservative backfilling algorithm can be found in [21],
where the authors present a characterization and explain how the priorities can be used
to select the appropriate job to be scheduled.
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Backfilling [20] policies have been the main goal of study in recent years. As with re-
search in workload modeling, authors like Frachtenberg have provided the community
with many works regarding this topic. In [12] general descriptions of the most com-
monly used backfilling variants and parallel scheduling policies are presented. More-
over, a deeper description of the conservative backfilling algorithm can be found in [21],
where the authors present policy characterizations and how the priorities can be used
when choosing the appropriate job to be scheduled. Other works are [13] and [4].

More complex approaches have been also been proposed by other researchers. For
instance, in [17] the authors propose maintaining multiple job queues which separate
jobs according to their estimated run time, and using a backfilling aggressive based
policy. The objective is to reduce the slowdown by reducing the probability that short
job is queued behind a long job. Another example is the optimization presented by
Shmueli et al. in [19] which attempts to to maximize the utilization using dynamic
programming to find the best packing possible given the system status.

3 The Runtime Model

In this section we provide a brief characterization for the runtime model that we de-
signed for evaluate the resource sharing in the Alvio simulator. The main goal of this
simulator is to model the different scheduling entities and computing resrouces that are
included in the current HPC architectures. Despite the simulator allows to simulate dis-
tributed systems, in the work presented in this paper only one HPC center is considered.
The accesses to the HPC resources are controlled by two different software components:
the Job Scheduler and the Local Resources Manager. The figure 1 provides a general
overview of the different elements that are involved in a HPC system and their relations.
As can be observed, these computational resources are composed by a set of physical
resources (the processors, the memory, the I/O system etc.) that are managed by the
local scheduler and the local resource manager (LRM). The local scheduler has the re-
sponsibility of scheduling the jobs that the users submit and the local resource manager
has the responsibility to control the access to the physical resources.

In [15] we present a detailed description of the model and its evaluation.

3.1 The Job Scheduling Policy

The job scheduling policy uses as input a set of job queues and the information pro-
vided by the local resource manager (LRM) that implements a Resource Selection Pol-
icy (RSP). It is responsible to decide which of the jobs that are actually waiting to be
executed have to be allocated to the free resources. To do this, considering the amount
of free resources it selects the jobs that can run and it requires to the LRM to allocate
the job processes.

3.2 The Resource Selection Policy

The Resource Selection Policy, given a set of free processors and a job α with a set of
requirements, decides to which processors the job will be allocated. To carry out this
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Fig. 1. The local scheduler internals

selection, the RSP uses the Reservation Table (RT, see figure 2). The RT represents the
status of the system at a given moment and is linked to the architecture. The reservation
table is a bi dimensional table where the X axes represent the time and the Y axes
represent the different processors and nodes of the architecture. It has the running jobs
allocated to the different processors during the time. One allocation is composed of a
set of buckets1 that indicate that a given job α is using the processors {p0, .., pk} from
start time until end time.

Fig. 2. The reservation table

1 The b(i,ti0 ,ti1 ) bucket is defined as the interval of time [tx,ty] associated to the processor pi.
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An allocation is defined by: allocation{α} =
{
[t0,t1] ,P =

{
p{g,nh}, ..p{s,nt}

}}
and

indicates that the job α is allocated to the processors P from the time t0 until t1. The allo-
cations of the same processors must satisfy that they are not overlapped during the time.

Figure 3 provides an example of a possible snapshot of the reservation table at the
point of time t1. Currently, there are three jobs running in three different job allocations:
a1 =

{
[t0,t2] ,

{
p{1,node1}, p{2,node1}, p{3,node1}

}}
a2 =

{
[t1,t3] ,

{
p{4,node1}, p{5,node1}, p{1,node2}, p{2,node2}

}}
a3 =

{
[t1,t4] ,

{
p{5,node2}

}}

Fig. 3. Reservation Table Snapshot

3.3 Modeling the Conflicts

The model that we have presented in the previous subsection has some properties that
allow us to simulate the behavior of a computational center with more details. Different
resource selection policies can be modeled. Thanks to the Reservation Table, it knows
at each moment which processors are used and which are free.

Using the resource requirements for all the allocated jobs, the resource usage for the
different resources available on the system is computed. Thus, using the Reservation
Table, we are able to compute, at any point of time, the amount of resources that are
being requested in each node.

In this extended model, when a job α is allocated during the interval of time [tx, ty]
to the reservation table to the processors p1, .., pk that belong to the nodes n1, ..,n j, we
check if any of the resources that belong to each node is saturated during any part of the
interval. In the affirmative case a runtime penalty will be added to the jobs that belong
to the saturated subintervals. To model these properties we defined the Shared Windows
and the penalty function associated to it.

The Shared Windows. A Shared Window is an interval of time [tx,ty] associated to the
node n where all the processors of the node satisfy the condition that: either no process
is allocated to the processor, or the given interval is fully included in a process that is
running in the processor.
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The penalty function. This function is used to compute the penalty that is associated
with all the jobs included to a given Shared Window due to resources saturation. The
input parameters for the function are:

– The interval associated to the Shared Window [tx, ty].
– The jobs associated to the Shared Window{α0, ..,αn}
– The node n associated to the Shared Window with its physical resources capacity.

The function used in this model is defined as 2:

∀res ∈ resources(n) → demandres =
{α0,..,αn}

∑
α

rα,res (1)

Penalty =
res

∑
resources(n)

(
max(demandres,capacityres)

capacityres
−1) (2)

PenlizedTime = (ty − tx)∗Penalty (3)

First for each resource in the node the resource usage for all the jobs is computed. Sec-
ond, the penalty for each resource consumption is computed. This is a linear function
that depends on the saturation of the used resource. Thus if the amount of required re-
source is lower than the capacity the penalty will be zero, otherwise the penalty added
is proportional to the fraction of demand and availability. Finally, the penalized time
is computed by multiplying the length of the Shared Window and the penalty. This
penalized time is the amount of time that will be added to all the jobs that belong to
the Window corresponding to this interval of time. This model has been designed for
the memory bandwidth shared resource and can be applicable to shared resources that
behave similar. However, for other typology of shared resources, such as the network
bandwidth, this model is not applicable. Our current work is focused on modeling the
penalty model for the rest of shared resources of the HPC local scenarios that can impact
in the performance of the system.

For compute the penalized time that is finally associated to all the jobs that are run-
ning: first, the shared windows for all the nodes and the penalized times associated with
each of them are computed; second the penalties of each job associated with each node
are computed adding the penalties associated with all the windows where the job run-
time is included; and finally, the final penalty associated to the job is the maximum
penalty that the job has in the different nodes where it is allocated.

4 The LessConsume Resource Selection Policies

Using the model that we have presented in the previous section we designed two new
Resource Selection Policies. First, the LessConsume that attempts to minimize the job
runtime penalty that an allocated job will experience. Based on the utilization status of
the shared resources in current scheduling outcome and job resource requirements, the

2 Note that all the penalty, resources, resource demands and capacities shown in the formula refer
to the node n and the interval of time

[
tx,ty
]
. Thereby, they are not specified in the formula.
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LessConsume policy allocates each job process to the free allocations in which the job
is expected to experience the lowest penalties. Second, we designed the LessConsume
Threshold selection policy which finds an allocation for the job that satisfies the condi-
tion that the estimated job runtime penalty factor is lower than a given value Threshold.
It is a variant of the LessConsume policy and was designed to provide a more sophisti-
cated interface between the local resource manager and the local scheduler in order to
find the most appropriate allocation for a given job.

The core algorithm of the LessConsume selection policy is similar to the First Fit
resource selection policy. This last one selects the first α{CPUS,p} where the job can
be allocated. However, in contrast to this previous algorithm, the LessConsume policy,
once the base allocation is found, the algorithm computes the penalties associated with
the different processes that would be allocated in the reservation. Thereafter it attempts
to improve the allocation by replacing the selected buckets (used for create this initial
allocation) that would have higher penalties with buckets that can be also selected, but
that have not been evaluated. The LessConsume algorithm will iterate until the rest of
the buckets have been evaluated or the penalty factor associated to the job is 1 (no
penalty).3

In some situations this policy not only minimizes the penalized factor of the allocated
jobs, but it also provides the same start times as the first fit allocation policy, which in
practice provides the earliest possible allocation start time. However, in many situations
the allocation policy of the lower penalty factor provides a start time that is substantially
later than that achieved by a First Fit allocation. To avoid circumstances where the
minimization of the penalty factor results in delays in the start time of scheduled jobs,
we have designed the LessConsume Threshold. This is a parametrized selection policy
which determines the maximum allowed penalty factor allocated to any given job.

In contrast to this first selection policy, the LessConsume Threshold policy allows the
scheduler or to the administrator to specify the maximum desired penalty factor that the
scheduler accepts for a given job. Thus, it is able to carry out the scheduling decisions
taking into account the resource sharing saturation and it is able to verify how the job
response time is affected by different allocations of the job.

The main differences between the two policies is that the second one will stop the
process of evaluating all selected buckets when the penalty of the job is lower than
the provided Threshold. Thus, in some situations this resource selection policy will
return an allocation that has a higher penalty that the once that would have returned the
LessConsume policy, however with a earlier start time. This policy provides the trade
off to the scheduler to balance the benefits of delaying the job start time an obtaining a
lower threshold, or advancing it and having a higher penalty.

5 The RUA-Backfilling

The LessConsume Threshold resource selection policy has been mainly designed to
be deployed in two different scenarios. In the first case, the administrator of the local

3 The penalty factor is computed:
PenaltyFactorα = α{RunTime,rt}+α{PenalizedRunTime,prt}

α{RunTime,rt}
.
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scenario specifies in the configuration files the penalty factor of a given allocated job.
This factor could be empirically determined by an analytical study of the performance
of the system. In the second, more plausible, scenario, the local scheduling policy is
aware of how this parameterized RSP behaves and how it can be used by different
factors. In this second case the scheduling policy can take advantage of this parameter
to decide whether a job should start in the current time or whether it could achieve
performance benefits by delaying its start time. In this last scenario the response time
of a job can be improved in two different ways:

– Reducing the final runtime of the job by minimizing the penalty factor associated
to the job.

– Reducing the wait time of the job by minimizing the start time of the job.

The Resource Usage Aware Backfilling Scheduling (RUA-Backfilling) policy takes into
account both considerations when inspecting the wait queue for backfilling the jobs or
finding the allocations for the reservations. In brief, this backfilling variant is based on
the Shortest-Backfilled First backfilling variant. Rather than backfilling the first job that
can moved to the run queue, it looks ahead to the next queued jobs, and tries to allocate
jobs that would experience lower penalty factors. However, it also takes into consid-
eration the expected response time of the jobs that it evaluates during the backfilling
process.

The different parameters of the RUA-Backfilling are:

1. The number of reservation (number of the jobs in the queue whose estimated start
time can not be delayed ) is 1.

2. The different Thresholds that will be used to calculate the appropriate allocation
for the job that is moved from the reservation. In the evaluation the thresholds used
by the policy are RUAthresh = {1.15;1.20;1.25;1.5}.

3. The jobs are moved from the wait queue to the reservation using the First Come
First Serve priority. This priority assures that the jobs submitted to the system will
not suffer starvation.

4. The backfilling queue is ordered using a dynamic criteria that is computed each
time that the backfilling processes is required. It is described below.

When a job α has to be moved to the reservation the following algorithm is applied:

1. For each Threshold in the RUAthresh specified in the configuration of the policy (in
the presented evaluation {1.15;1.20;1.25;1.5}):

(a) The allocation based on the LessConsume Threshold resource selection policy
with a parameter of PenaltyFactor = T hreshold is requested from the local
resource manager.

(b) The slowdown for the job is computed based on the start/wait times, the penal-
ized runtime of the job in the returned allocation, the current wait time of the
job and its requested runtime.

2. The allocation with less slowdown is selected to allocate the job. The local sched-
uler contacts the local resource manager to allocate the job in the given allocation.
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Given the jobs that are queued in the backfilling queue, the backfilling algorithm be-
haves as follows:

1. In the first step, for each job α in the backfilling queue its allocation is computed
based on the algorithm introduced in the previous paragraph. If the start time for
the returned allocation is the current time the job is added to the backfilling queue
where the allocations are ordered by the penalized factor associated to the allocation
and secondly by its length. Note that each job has only one assigned allocation.

2. In the second step, the backfilling queue has all the jobs that could be backfilled
in the current time stamp ordered in terms of the associated penalty. The queue
is evaluated and the first job that can be backfilled is allocated to the reservation
table using allocation computed in the previous step. Note that the allocation will
be exactly the same as the one computed in the first step.

(a) If no job can be backfilled the process of backfilling is terminated.
(b) Otherwise, steps 1 and 2 will be iterated again.

The key concept of this backfilling variant is to find out the allocation that provides the
best slowdown for the job that is moved to the reservation, and to backfill the jobs in
the manner that the saturation of the shared resources is minimized. The second goal
will reduce the number of killed jobs due to resource sharing saturation.

Note that in this algorithm the allocations are computed using the estimated runtime
that is provided by the user. In the version of the policy evaluated in this scenario we
have supposed that when a job is allocated with a penalty factor of αpenalty, the estimated
runtime is updated according this penalty. Based on our studies in prediction systems in
backfilling policies [14], in our future versions of the RUA we plan to use the predicted
runtime in the LessConsume Threshold and keep the original user requested runtime.

6 Experiments

In this section we characterize the different experiments that we defined in order to
validate the performance of the different scheduling strategies that we propose.

6.1 Workloads

For the experiments we used the cleaned [24] versions of the workloads SDSC Blue
Horizon (SDSC-BLUE) and Cornell Theory Center (CTC) SP2. For the evaluation ex-
periments explained in the following section, we used the 10000 jobs of each workload
plus 10000 jobs that were used in order to warm-up the system and achieve a steady
state. Based on these workload trace files, we generated three variations for each one
with different memory bandwidth pressure:

– HIGH: 80% of jobs have high memory bandwidth demand, 10% with medium de-
mand and 10% of low demand.

– MED: 50% of jobs have high memory bandwidth demand, 10% with medium de-
mand and 40% of low demand.

– LOW: 10% of jobs have high memory bandwidth demand, 10% with medium de-
mand and 80% of low demand.



The Resource Usage Aware Backfilling 69

6.2 Architecture

For each of the workloads used in the experiments we defined architecture with nodes of
four processors, 6000 MB/Second of memory bandwidth, 256 MB/Second of Network
bandwidth and 16 GB of memory. In addition to the SWF [3] traces with the job defi-
nitions we extended the standard workload format to specify the resource requirements
for each of the jobs. Currently, for each job we can specify the average memory band-
width required (other attributes can be specified but are not considered in this work).
Based on our experience and the architecture configuration described above, as a first
approach we defined that a low memory bandwidth demand consumes 500 MB/Second
per process; a medium memory bandwidth demand consumes 1000 MB/Second per
process; and that a high memory bandwidth demand consumes 2000 MB/Second per
process. These memory requirements were selected based on the typology of jobs that
were running in our centers.

7 Scenarios

In the experiments we evaluate the impact of the RUA-Backfilling in the system. To do
this, we compare its performance against the Shortest Job Backfilled First policy under
the LessConsume resource selection policies. For the analysis of the RUA-Backfilling
job scheduling policy the following configurations were evaluated:

1. The Shortest Job Backfilled First scheduling policy using:
– The LessConsume resource selection policy.
– The LessConsume Threshold resource selection policy with four different

factors (1, 1,15, 1,25 and 1,5).
– The First-Fit resource selection policy.

2. The RUA-Backfilling policy.

All the simulations have used the the job runtime model with resource sharing model
introduced in the first part of this paper. In the rest of the section we analyze the dif-
ferent configurations that we have introduced: first, we provide a discussion concerning
the differences between using the LessConsume and LessConsume Thresolds policies in
the SJBF Backfilling variant. Next, we compare the performance of the SJBF Backfill-
ing with the First-Fit and LessConsume resources selection policies against the results
obtained using the RUA-Backfilling.

8 Evaluation

In this section we present the evaluation of the RUA-Backfilling job scheduling policy.
However, in order to provide a characteriztation of the LessConsume resource selection
policies, first we present their performance analysis. This analysis is used later on in the
discussion of the RUA-Backfilling.
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8.1 The LessConsume and LessConsume Threshold

Tables 1 and 2 present the 95th percentile and average of the bounded slowdown for
the CTC and SDSC centers for each of the three workloads for the First Fit (FF),
LessConsume and LessConsume Threshold resource selection policy. The last one was
evaluated with three different factors: 1, 1,15, 1,25 and 1,5. In both centers the Less-
Consumepolicy performed better than the LessConsume Threshold with a factor of 1.
One could expected that the LessConsume should be equivalent to use the LessConsume
Threshold with a threshold of 1. However, note that this affirmation would be incorrect.
This is caused due to the LessConsume policy evaluates all the buckets in a subset of
all the possible allocations. The goal of this policy is to optimize the First Fit allocation
but without carry out a deeper search of other possibilities. However, the LessConsume
Threshold may look further in the future in the case that the penalty is higher than the
provided threshold. Thereby, this last one is expected to provide higher wait time val-
ues. On the other hand, as we had expected, the bounded slowdown decreases while
increasing the factor of the LessConsume Threshold policy. In general, the ratio of in-
crement of using a factor of 1 and a factor of 1,5 is around a 20% in all the centers and
workloads.

The performance of these two resource policies, compared to the performance of
the First Fit policy, shows that LessConsume policies give an small increment in the
bounded slowdown. For instance, in the CTC high memory pressure workload the 95th

percentile of the bounded slowdown has increased from 4,2 in the First Fit to 5,94 in the
LessConsume policy, or to 7,92 and 5,23 in the LessConsume Threshold with thresholds
of 1 and 1,5 respectively.

Table 1. Bounded-Slowdown - 95th Percentile

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 4,2 5,94 7,92 6,12 5,32 5,23
Med 2,8 3,55 4,22 3,82 3,65 3,52
Low 2,2 3,12 3,62 3,82 3,45 3,52

SDSC
High 99,3 110,21 128,08 115,28 109,51 106,23
Med 55,4 68,06 74,32 72,83 71,37 68,52
Low 37,8 45,37 57,27 52,86 42,28 42,28

Table 2. Bounded-Slowdown - Average

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 8,2 10,44 18,02 12,38 11,32 13,54
Med 5,3 6,65 7,52 8,05 6,85 7,75
Low 3,2 5,62 5,92 5,82 8,84 8,56

SDSC
High 22,56 24,41 27,37 25,54 24,26 23,53
Med 11,32 12,51 14,76 14,46 14,17 13,6
Low 7,54 7,8 9,08 9,5 8,47 8,27
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Tables 3 and 4 show the 95th and average of the wait time for the CTC and SDSC
centers for each of the three workloads for the First Fit, LessConsume and LessConsume
Threshold resource selection policy. This performance variable shows similar pattern to
the bounded slowdown. The LessConsume policy shows a better performance result that
using the LessConsume Threshold with a factor of 1.

The 95th percenage of penalized runtime is presented in the table 5 and the average
is shown in the table table 6. The penalized runtime clearly increases by incrementing
the threshold. For instance, the 95th Percentile of the percentage increases from 8,31
in the SDSC and the high memory pressure workload with a factor of 1 until 11,64
with a factor of 1,5. The LessConsume, different from to the two previously described
variables, shows similar values to the LessConsume Threshold with a factor of 1,5. This
percentage of penalized runtime was reduced with respect to the First Fit when using
all the different factors in both centers.

Table 3. Wait Time - 95th Percentile

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 10286 12588 17945 15612 14555 10188
Med 8962 9565 13391 13123 9186 9094
Low 4898 5034 6544 7198 5235 5759

SDSC
High 55667 63293 70964 69632 59978 41779
Med 44346 45164 58713 59300 47440 45616
Low 32730 35092 38265 37499 33374 33785

Table 4. Wait Time - average

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 20082 24576 35035 30480 28416 19890
Med 13443 14347 20086 19684 13779 13641
Low 7124 7322 9518 10469 7614 8376

SDSC
High 12647 14379 16122 15819 13626 9491
Med 9061 9228 11996 12116 9693 9320
Low 3931 4214 4595 4503 4008 4057

Table 5. Percentage of Penalized Runtime - 95th Percentile

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 8,8 8,01 7,69 7,87 7,91 8,1
Med 4,8 3,81 3,01 3,52 4,06 3,90
Low 0,92 0,78 0,51 0,72 0,62 0,80

SDSC
High 11,8 11,33 8,31 10,37 11,58 11,64
Med 6,7 6,01 4,70 4,85 5,64 5,96
Low 1,4 1,03 0,75 0,81 0,94 1,19
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Table 6. Percentage of Penalized Runtime - average

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 7,8 6,81 6,98 7,17 7,39 7,34
Med 3,8 2,54 2,93 3,02 3,1 3,20
Low 0,72 0,7 0,21 0,42 0,33 0,64

SDSC
High 15,1 10,32 7,41 11,73 10,85 12,32
Med 10,2 7,2 4,70 4,85 5,64 5,96
Low 5,2 4,53 2,56 3,11 4,58 4,23

Table 7. Number of Killed Jobs 95th Percentile

Center MEM FF LC LCT=1 LCT=1,15 LCT=1,25 LCT=1,5

CTC
High 428 120 57 70 87 97
Med 247 101 76 77 102 99
Low 64 45 36 38 58 52

SDSC
High 475 105 87 130 127 130
Med 255 89 76 79 103 145
Low 51 34 22 27 33 41

The number of killed jobs is the performance variable that showed most improve-
ment in all the memory pressure workloads. The number of killed jobs is qualitatively
reduced with the LessConsume Threshold with a factor of 1: for example with the high
memory pressure workload and the CTC center, the number of killed jobs was reduced
from 428 with the First Fit to 70. The other threshold factors also showed clear improve-
ments; the number was halved. As to the LessConsume policy, the number of killed jobs
was reduced by a factor of 4 compared to the First Fit and the high and medium memory
pressure workloads of both centers.

The LessConsume policy shows how the percentage of penalized runtime and num-
ber of killed jobs can be reduced in comparison to the First Fit, by using this policy
with EASY backfilling. In traditional scheduling architectures this RSP can be used
rather than traditional policies, without any modifications in local scheduling policies.
Furthermore, the LessConsume threshold shows how, with different thresholds, perfor-
mance results can also be improved. Higher penalty factors result in better performance
of the system. However, in this situation the number of killed jobs and the percentage
of penalized runtime is increased. The LessConsume policy shows similar performance
results as the LessConsume Threshold with factors of 1,25 and 1,5.

8.2 The Thresholds Trade Offs

Figures 4, 5, 6 and 7 present the performance of the LessConsume policies (using
bounded slowdown) against the percentage of penalized runtime of the jobs and the
number of killed jobs. The goal of these figures is to show the chance that the Less-
Consume Threshold and LessConsume policies have to improve the performance of
the system while achieving an acceptable level of performance. As can be observed in
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Fig. 4. BSLD versus Percentage of Penalized Runtime - CTC Center

Fig. 5. BSLD versus Percentage of Penalized Runtime - SDSC Center

figures 6 and 4 a good balance is achieved in the CTC center using the threshold of 1,15
where both the number of killed Jobs and the percentage of penalized runtime converge
are in acceptable values. In the case of the SDSC center, this point of convergence is
not as evident as the CTC center. Considering the tendency of the bounded slowdown, it
seems that the LessConsume Threshold with a factor of 1.15 is an appropriate configu-
ration for this center, due to the fact that the penalized runtime and the number of killed
jobs presents the lowest values, and the bounded slowdown shows values that are very
close to the factors of 1,15 and 1,25. However, the configuration of the LessConsume
Threshold with a factor of 1,15 also shows acceptable values.

8.3 The RUA-Backfilling

In the previous subsections we have present the performance that the LessConsume re-
source selection policies achieve when they are used together with the SJBF-Backfilling
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Fig. 6. BSLD versus Killed Jobs - CTC Center

Fig. 7. BSLD versus Killed Jobs - SDSC Center

variant. We have observed that the LessConsume Threshold resource selection policy
can provide good results when the used threshold is between 1.15 and 1.25 depending
on the workload. Using this results in the first RUA-Backfilling version shown in this
paper we decided to use threshold values presented in the section 5. In this section we
present the benefits of the usage of a backfilling variant that interacts with the local
resource manager against the traditional approaches.

The figures 9 and 8 present the performance that the RUA-Backfilling scheduling
policy has achieved with respect the Shortest-Job-Backfilled First Backfilling (SJBF-
Backfilling) with the First Fit and LessConsume Resource Selection Policies. The re-
sults shows also how each of the policies behaved with the three different memory
pressure workloads for the SDSC and CTC workloads. The figure shows the 95th Per-
centile of the BSLD, the Wait time and the Percentage of Penalized Runtime that the
jobs have experimented and the number of killed jobs that three scheduling strategies
have achieved in the simulations.
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Fig. 8. RUA Performance Variables for the CTC Workload

Fig. 9. RUA Performance Variables for SDSC Workload
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The bounded slowdown shows how in both workloads the RUA-Backfilling achieves
slightly worst performance that the SJBF-Backfilling with the first fit selection policy.
In both cases the difference between the BSLD is less than a 5%. For instance, the 95th

Percentile of the BSLD with the SJBF-Backfilling in the SDSC workload with high
memory pressure is 100 and with the RUA-Backfilling is around 110. Note that we
could expect that this last one should achieve smaller BSLD that the once obtained by
the SJBF-Backfilling with FF due to it takes into account the resource usage. However,
in the RUA-Backfilling the number of jobs that are used for compute the BSLD (number
of finished jobs) is substantially bigger that the once used in the other (400 less in the
SJBF). Respect the SJBF-Backfilling with the LessConsume resource selection policy,
the RUA-Backfilling shows in both workload better bounded slowdowns.

The wait time shows similar patterns that the Bounded Slowdown. However, the CTC
workload shows higher differences between the SJBF-Backfilling and the other two
strategies. For example, while the 95th Percentile of wait time for the RUA-Backfilling
and the SJBF-Backfilling with FF remains around 4000 and 5000 seconds in the high
pressure scenario, the SJBF-Backfilling with LessConsume presents 95th Percentile of
the wait time around 7000. This, may indicate that the RUA Backfilling is more stable
than using the LessConsume with a non resource usage aware scheduling strategy.

Finally, the number of killed jobs and the 95th Percentile of percentage of penalized
runtime show a qualitative improvement respect the SJBF-Backfilling with First Fit.
For example, the RUA-Backfilling shows a reduction of a 500% in the number of killed
jobs in the high memory pressure scenario of the SDSC workload and a reduction of
300% in the CTC scenario also with the high memory pressure scenario. Although the
percentage of penalized run time shows an improvement in both center using the RUA-
Backfilling, a higher improvement is shown in the SDSC center. For example, in this
last case the percentage of penalized runtime is reduced a 50% in the workload with a
medium memory pressure.

The RUA-Backfilling has demonstrated how the exchange of scheduling information
between the local resource manager and the scheduler can improve substantially the per-
formance of the system when the resource sharing is considered. It has shown how it
can achieve a close response time performance that the SJBF-Backfilling with FF, that
is oriented to improve the start time for the allocated jobs, providing a qualitative im-
provement in the number of killed jobs and in the percentage of penalized runtime. On
the other hand, it has demonstrated how it can also obtain substantial improvement in
these last two variables regarding the SJBF-Backfilling with LessConsume scheduling
strategy, that is oriented to minimize the job runtime penalty due to resource saturation
of the sharing resources.

9 Conclusions

In this paper we have shown how the performance of the system can be improved by con-
sidering resource sharing usage and job resource requirements in the new RUA Back-
filling variant. In this proposal the local scheduler cooperates with the local resource
manager in order to find out the allocation that minimizes the job runtime penalty due
to the saturation of the resource sharing. This is a backfilling variant scheduling policy
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where the algorithms which decide which job has to be executed and how jobs have
to be backfilled are based on a different configurations of the LessConsume Threshold
resource selection policy that we proposed in our previous work. In the first part of the
paper we have introduced the key concepts of our previous works that are used in the
RUA-Backfilling algorithm. First the runtime model used in our simulator, and second,
the Find LessConsume and LessConsume Threshold resource selection policies.

In this paper we evaluate the effect of considering the memory bandwidth usage in
the different scheduling strategies under several workloads. Two different workloads
from the Standard Workload Archive have been used in the experiments (the SDSC
Blue Horizon (SDSC-BLUE) and the Cornell Theory Center). For each of them we
have generated three different scenarios: with high (HIGH), medium (MED), and low
(LOW) percentage of jobs with high memory demand. We have evaluated the impact of
using the LessConsume and LessConsume Threshold with the Shortest Job Backfilled
first and the RUA-Backfilling presented in this paper. These synthetic workloads have
been used as a first approach to evaluate the potential of the proposed techniques.

The RUA-Backfilling has demonstrated how the exchange of scheduling information
between the local resource manager and the scheduler can improve substantially the per-
formance of the system when the resource sharing is considered. It has shown how it
can achieve a close response time performance that the SJBF-Backfilling with FF, that
is oriented to improve the start time for the allocated jobs, providing a qualitative im-
provement in the number of killed jobs and in the percentage of penalized runtime. On
the other hand, it has demonstrated how it can also obtain substantial improvement in
these last two variables regarding the SJBF-Backfilling with LessConsume scheduling
strategy, that is oriented to minimize the job runtime penalty due to resource saturation
of the sharing resources.

Concerning the penalty model used in our system, our future work will consider
how other shared resources may impact in the performance of the system. Clearly, the
penalty function that has been presented in our model, has to be extended for consider
penalties that other typologies of resource may show. For instance, the network band-
width shows patterns in the job execution that are not considered in the penalty function.
On the other hand, our future research will evaluate the impact of having inaccurate es-
timations in the job resource sharing requirements. Related to this, we will work in the
usage of prediction techniques in order to estimate the resource requirements of the
submitted jobs.

The RUA-Backfilling that we have presented in this paper uses a set of pre-configured
Threshold for finding out the job allocations. In our research we have stated that the
workloads can show very different load patterns during the time. Thus, depending of
the epoch, the system may experiment better performance using different Threshold
values. Considering this phenomena we will extend the RUA in order to dynamically
determine which factors should be used in each scheduling moment. The first step will
be studying the correlation of the system performance against the load of the system and
Threshold configuration. Afterward, we will use this information for extend the current
RUA-Policy policy.
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Abstract. This paper analyzes the effect of overbooking for schedul-
ing systems in a commercial environment. In this scenario each job is
associated with a release time and a finishing deadline as well as a fee
for a successful execution and a penalty for violating the deadline. The
core idea is to exploit overestimations of required job execution times,
providing an opportunity to aggressively schedule additional jobs. The
proposed probabilistic scheduler is based on histories of job execution
times, device failure rates, and penalties for SLA service violations. This
paper includes a theoretical background and a mathematical model of
the overbooking approach and a simulative evaluation with a synthetic
workload on a single-processor system.

1 Introduction

The commercial use of grid and cloud infrastructures is steadily growing. Current
developments in automatic negotiation of service level agreements (SLAs) and
the provision of quality of service (QoS) with fault tolerance mechanisms will
further increase its commercial acceptance and adoption [1]. This acceptance
allows providers to think about new business cases to foster their competitiveness
in the emerging global service economy.

Grid or Cloud contracts will be based on the negotiation of SLAs between the
service providers and their customers. During SLA negotiation, the customers
reserve the amount of required computing and storage resources for a given
time period. If the computation takes longer than expected, jobs are commonly
killed at the end of the SLA-defined lifetime. Therefore, users are cautious not
to lose their jobs and tend to overestimate their job’s execution time and reserve
resources accordingly. In practice, this leads to underutilized resources, as jobs
finish often much earlier than expected.

Overbooking is used in many commercial fields, where more people buy re-
sources than actually use them. To improve profit, airlines have e.g. become used
to sell seat reservations more than once [2,3]. The number of reservations that
will not be used is estimated based on prior experiences and used in the plan-
ning processes. This estimated number is only correct with a specific probability.
Consequently, if more passengers appear than expected and not enough seats are
available in the aircraft, the airline has to pay a penalty to its customers.

Obviously, the objective of overbooking is to improve the expected profit. In-
stead of selling each seat once, profit can be increased by selling them several
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times. This opportunity has to be compared with the risk implied by overbook-
ing, i.e. the compensation for the buyer if no seat is available combined with
the probability of that event. The best estimation of risk and opportunity will
provide the best profit.

In this paper, we propose different overbooking strategies for grid, cloud or
HPC infrastructure providers to increase their profit and competitiveness. These
strategies differ in many aspects from traditional overbooking strategies for air-
craft seats or hotel beds. On the one side, the number of concurrent users of a
compute resource is smaller than the number of passengers of an airplane, mak-
ing it harder to predict expected behavior. On the other side, computing jobs
can be started nearly anytime, while a plane only takes off once for each flight.

Conservative scheduling strategies, which do not use overbooking, do not ac-
cept a job, if the maximum estimated job duration is even slightly longer than
any gap in the current schedule. Applying overbooking, the scheduler can assess
the risk to place the job in a gap that is smaller than the estimated execution
time. For such an overbooked job, the probability of failure is no longer only
dependent on machine failure rates (as in conservative scheduling), but it also
depends on the likelihood that the real execution time of the job is longer than
the gap length.

The proposed strategies are based on an analytical model for overbooking
that uses the convolution of the probability density functions of the runtime
estimates of the jobs to calculate the probability of failure (PoF) for a SLA.
When the calculated risk is acceptably small in comparison to the opportunity,
the service provider can accept the SLA.

The experimental evaluation of the strategies is based on real job traces,
which show the benefits as well as associated risks of overbooking, especially if
the customer base is diverse or unknown to the service provider. The job traces
are derived from a one year record of job estimates and actual runtimes on a
400 processor cluster at the Paderborn Center for Parallel Computing (PC2).
To focus on the influence of overbooking, we have reduced the dimension of the
job traces from a parallel machine to a single resource. However, we plan to
generalize the described approach to overbooking in parallel machines.

The paper is organized as follows: In the next section we discuss the technical
foundations of our work, followed by a description of our model and strategies
for risk-aware overbooking in Section 3. In Section 4, we evaluate the risk and
opportunity of overbooking mechanisms for Grid providers.

2 Related Work

This chapter summarizes relevant related work. Firstly, it discusses scheduling ap-
proaches in distributed environments, followed by related work on overbooking.

2.1 Scheduling

Most scheduling strategies for cluster systems are based on a first-come first-
serve (FCFS) approach that schedules jobs based on their arrival times. FCFS
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guarantees fairness, but leads to a poor system utilization as it might create
gaps in the schedule. The gaps can occur, because each job description does not
only contain execution time information, but also information about its earliest
starting time / release time. Start times in the future are common for interactive
jobs or for jobs which are part of a workflow. Interactive jobs are monitored
and adopted by the users and the job runtimes have therefore to be known in
advance by the user and have to fit to his working times and schedules. Workflow
jobs can in principle run at arbitrary times, but dependencies between sub jobs
enforce that the start time of a sub job is after the deadline of the preceding
one. Gaps can therefore arise, if a new job arrives with a starting time after the
end time of the last job in the current schedule. As standard FCFS schedules
jobs strictly according to their arrival times, resulting gaps will remain idle and
waste resources.

To increase system utilization and throughput in this scenario Backfilling has
been introduced [4]. Backfilling schedules a new job not necessarily at the end of
the plan, but is able to fill gaps if a new job fits in. The additional requirement
for the ability to use backfilling instead of simply FCFS is an estimation about
the runtime of each job. This allows to determine if the job fits in a gap in the
schedule.

The EASY (Extensible Argonne Scheduling sYstem) backfilling approach [4]
can be used to improve system utilization. Within EASY backfilling putting
a job in a gap is acceptable if the first job in the queue is not delayed. This
preserves starvation and leads to an increased utilization of the underling system.
However, EASY backfilling has to be used with caution in systems guaranteeing
QoS aspects, since jobs in the queue might be delayed.

Therefore, [5] introduced the conservative backfilling approach which only uses
free gaps if no previously accepted job will be delayed. Thus, conservative back-
filling still preserves fairness. Additionally, it is possible to plan a job, this means
to determine the latest start time for every job. The latest start time is the time
a job starts when all its predecessors use their complete estimated runtime.

Simulations show that both backfilling strategies help to increase overall sys-
tem utilization [6] and reduce the slowdown and waiting time of the scheduling
system. The work also shows that the effect of both described backfilling ap-
proaches is limited due to the inaccurate user estimation concerning the runtime
of their jobs.

Several papers analyzes the effect of bad runtime estimations to the scheduling
performance. The interesting effect is that bad estimations can lead to a better
performance [7]. However, references [8] approach to improve the scheduling re-
sults by adding a fixed factor to the user estimated runtimes shows no advantage
while using real job traces. Therefore, effort has been taken to develop meth-
ods to cope with the bad runtime estimations and have more accurate estima-
tions. Reference [9,10,11] tried to automatically predict the application runtimes
based on the history of similar jobs. Tsafier et al. present a backfilling approach
which uses system-generated runtime predictions instead of given user runtime
estimations [12]. The paper presents a scheduling algorithm similar to the EASY
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approach (called EASY++) that uses system-generated execution time predic-
tions and shows an improved scheduling performance for the jobs’ waiting times.
The approaches show that automatically runtime prediction can improve back-
filling strategies, but the usability of the automatically runtime predicting ap-
proaches lack on wrong decisions according the runtime.

The approaches found in literature are not directly applicable to our work. Aim
of the shown algorithms is to improve the system utilization as whole and decrease
the slowdown of the single jobs. They assume to run in a queuing based scheduling
system which tries best effort and does not deal with strict deadlines, thus SLA are
not usable. Our work instead assumes a planning based scheduling scenario with
strict SLAs and tries to improve a providers profit by overbooking ressources.

2.2 Overbooking

Overbooking is widely used and analyzed in the context of hotels [13] or air-
line reservation systems [3,2]. However, overbooking of grid or cloud resources
significantly differs from those fields of applications. The grid does not require
fixed starting times for a resource, while e.g. a seat in an airplane cannot be
occupied after the aircraft has taken off. As a consequence, results and obser-
vations from overbooking in the classical application fields cannot be reused for
grid computing.

2.3 Use of Overbooking for Planning and Scheduling

Overbooking for web and internet service platforms is presented in [14]. It is
assumed that different web applications are running concurrently on a limited
set of nodes. The overbooking approach is based on firstly deriving an accurate
estimate of application resource needs by profiling applications on dedicated
nodes, and then by using these profiles to guide the placement of application
components onto shared nodes. By overbooking cluster resources in a controlled
fashion, the approach is able to provide performance guarantees to applications
even when overbooked. The difference between this and our approach is that
nodes are typically exclusively assigned. Therefore, it is at least difficult to share
resources between different applications, while it is possible to use execution
time length overestimations, which are not applicable for web hosting.

Overbooking for high-performance computing (HPC), cloud, and grid com-
puting has been proposed in [15] or [16]. However, the references only mention
the possibility of overbooking, but do not propose solutions or strategies. In the
grid context, overbooking has been integrated in a three-layered negotiation pro-
tocol [17]. The approach includes the restriction that overbooking is only used
for multiple reservations for workflow sub-jobs, which were queried by the nego-
tiation protocol for optimal workflow planning. Chen et al. [18] use time sharing
mechanisms to provide high resources utilization for average system and applica-
tion loads. At high load, they use priority based queues to ensure responsiveness
of the applications. Sulisto et. al [19] try to compensate no shows of jobs with
the use of revenue management and overbooking. However they do not deal with
the fact that jobs can start later and run shorter than estimated.
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Nissimov and Feitelson [20] introduce a probabilistic backfilling approach
where user runtime estimations and a probabilistic assumption about the real
finish of the job allows to use a gap smaller as the estimated execution time. A
job is allowed to be backfilled if the probability that the backfilling postpones
the start of the rst job in the queue is less than a given trashold. If the job runs
longer than the gap size the following jobs are delayed. In scope of assessing
the success of putting a job in a gap the probabilistic backfilling approach is
similar to our overbooking scenario. The difference in the concepts are that the
acceptance test of [20] is applied to an already scheduled job with aim to reduce
its slowdown while in our approach each job has a deadline and the acceptance
test is applied at arrival time to determine if the job could be executed before
the deadline.

We propose to combine backfilling with overbooking concerning the accep-
tance test in a commercial scenario with focus on increasing profit of a grid or
could provider. This instrument should increase system utilization and should
not affect already planned jobs. To successfully use overbooking strategies, we
have to be able to calculate the risk of violating SLAs and therefore we have
to know the distribution of job execution time overestimations. The probability
of success (PoS) for overbooking can then be calculated based on the likelihood
that the job finishes in the given gap and the chance that the resource lives at
the beginning of the planned execution and survives the job.

3 Overbooking Model and Algorithms

This section depicts the details of the applied overbooking model and our al-
gorithmic approach, which is presented in Section 3.1. As we want to improve
the profit by overbooking certain time slots, we need to estimate the PoF and
PoS, which is (1- PoF), for each overbooked schedule. The accuracy of the PoF
depends on the quality of the predicted job execution times (see Section 3.2).

Overbooking means to put a job in a gap in a schedule that is smaller than
the job’s maximum execution time. In fact, this job may actually try to use
more time than the available size of the gap, leading either to a loss of this job
or to a postponement of the following job. Both cases might lead to a penalty
for the service provider. We assume a system with a single resource that has a
failure rate λ and a repair rate μ, which are distributed according to a Poisson

Table 1. Job scheduling information

Variable Content Comment
r release time earliest start time
ω estimated execution time given by the user

ddl deadline given by the user
s start time planned start time
f finish time of the job planned job end



The Gain of Overbooking 85

job j

relase r start s finish f = s + ω deadline ddl

Schedule:

Fig. 1. Example of job information in a schedule

distribution. A job j has an earliest release time r, an estimated execution time
ω, and a deadline ddl (see also Fig. 1). When the job is placed, the start time s is
either its release time or the finish time of the previous job. The finish time f is
important if the scheduling strategy follows conservative backfilling, where the
job should not delay following jobs. Therefore, the job will be killed at f = snext.

3.1 Overbooking Algorithm

This paragraph briefly defines possible scheduling strategies for backfilling with
overbooking. Generally, the scheduler holds a list of all jobs in the schedule. For
each new job jnew arriving in the system, the scheduler computes the PoS for the
execution of this job in every space free in the schedule where the job might be
executed. For the concrete implementation of the scheduling algorithm, several
decision strategies could be applied.

– A conservative approach could be chosen, where the job is placed in the gap
with the highest PoS.

– A best fit approach uses the gap providing the highest profit, while still
ensuring an acceptable PoF.

– A first fit approach, where the job is placed in the first gap with an acceptable
PoS.

If the job is not placeable within the schedule, it can be planned as last job, if
it is still executable before the user given deadline of the job. The calculation of
the PoS is defined in Section 3.3 and decent PoF threshold values are evaluated
in Section 4. In this paper we will further investigate an overbooking strategy
based on first fit.

3.2 Job Execution Time Estimations

Evaluations of job execution time estimations ω and their corresponding real
execution times x show that the job duration is typically overestimated by a
factor of two to three [21]. A closer look on job traces shows that the distribution
of the actual to estimated execution times seems to be uniform and has two peaks
a the beginning and end of the spectrum forming a bathtub [6]. The first peak can
be explained by jobs missing their input data and test jobs. The second peak
includes 15% to nearly 30% of the jobs, which underestimate their execution
time and which are killed after the negotiated execution time. The theoretical
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P(t)

Prob. to use estimated runtime 

0% 100%50%

Fig. 2. The probability density function for a single job

examples inside this paper assume the execution time distribution of the jobs to
be uniform (see Fig. 2). However, it is important to notice that all results inside
this paper do not depend on the shape of the execution time distributions. The
simulations shown in Section 4 therefore also use other distributions that are
derived from real job run traces.

For the calculation of the probability that the job 2 ends at time t, it is neces-
sary to calculate the expected joint probability density function for the execution
time distribution for job 2 and its predecessor job 1, P1(t) and P2(t). If jobs are
scheduled following to each other, three different cases can be distinguished:

Jobs do not overlap. The jobs are not interfering if r2 > f1. In this case, the
original probability distribution remains unchanged for each job.

Jobs are overlapping and have the same release time. The expected joint execution
time distribution of two jobs P1(t) and P2(t) with the same release time can be
calculated by a convolution of the execution time distributions of the two jobs.

The convolution leads to a distribution as shown in Fig. 3, if ω1 < ω2 and it
leads to a simple triangle, if ω1 = ω2. If three or more jobs with the same release
time r are convolved, the resulting distribution converges against a Gaussian
distribution.

Jobs can overlap. The next job j2 has a release time r2 with r1 < r2 < r1 + ω1.
Here the probability distribution of job 2 has only to be convoluted with P1(t) for

P1(t)  P2(t)

Prob. to use estimated runtime ( 1+ 2)

0 ( 1+ 2)/2 ( 1+ 2)1 2

Fig. 3. The probability density function for two jobs with same release time
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job jprev job jnext
job jnext+1

new job jnew

ddlnewfprev =snew snext=fnew

Fig. 4. The job can only be accepted using overbooking

t > r2. Furthermore, the probability p to end job 1 before r2 has to be multiplied
with the distribution of the original distribution of the job 2 and added to the
convolution.

Pnew
2 = p · P2 + P2 ◦ P1(t > r2)

In most cases, the convolution has to be calculated numerically, as no (reason-
able) closed formula exists.

3.3 PoS for Overbooking

The probability to successfully complete an overbooked job depends on the prob-
ability of a machine failure and the probability of the new job to finish in time.
To finish in time means that the job has an execution time that fits into a gap
between jprev and jnext.

For the calculations we will define a job with a tuple [r, ω, ddl].

PoS(jnew). The probability PoS(jnew) depends on the probability Pavailable(s)
that the resource is operational at start time s, the probability Pexecutable(jnew)
that the job is able to end with its given maximum execution time, and
Psuccess(jnew) which is given by the machine failure rate λ and the job’s exe-
cution time.

PoS(jnew) = Pavailable(s) · Pexecutable(jnew) · Psuccess(jnew)

Pavailable(s). The probability that the resource is operational at the start time
is

Pavailable(s) =
MTTF

MTTF + MTTR
=

1
λ

1
λ + 1

μ

=
1

1 + λ
μ

where MTTF is the mean time to failure 1
λ and MTTR is the mean time to

repair 1
μ .
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Pexecutable(jnew). The calculation of the probability to execute successful
Pexecutable(jnew) is described in in detail in Section 3.2. If the job jnew has no
predecessor it is scheduled at its release time and Pexecutable(jnew) is given by
the execution time distribution and the maximal execution time x of the job.
For a uniform distribution it holds that Pexecutable(jnew) = x

ω . If x = ω then
Pexecutable(jnew) = 1.

If the job jnew has a direct predecessor jprev the convolution of the execution
time distribution has always to be computed with the previous job’s distribution.
The reason for calculating the distribution with the previous job results from the
fact, that due to overbooking the job jnew has no defined start time any more.
jnew starts at the end of its predecessor jprev. As the distribution of jprev already
includes the distributions from all possibly influencing previously planned jobs
the convolution has only to be done with jprev. Pexecutable(jnew) = 1 if the job
has its full estimated execution time ω available and less if the job is overbooked
and s + ω < ddl.

Psuccess(jnew). The probability that the job’s resources survive the execution
time is given by their failure probability which is determined by the machine
failure rate λ and the job’s execution time x. Psuccess(jnew) = e−λ·x

Decision Making. During SLA negotiation a simple equation can decide whether
it is beneficial to accept an SLA with overbooking or not:

If(PoSSLA · ChargeSLA > PoFSLA · PenaltySLA) accept the SLA.
else reject the SLA.

Nevertheless, in the following we will use an overbooking strategy that bases
its decision only on a threshold for the probability of failure PoF to investigate
the influence of different, more or less aggressive strategies. If the ratio between
charges and penalties is constant, then it is possible to derive the results for
the presented decision making strategies by simply setting the threshold to the
learned best ratio.

4 Evaluation

This section evaluates the possible additional profit that a provider can earn with
overbooking. Generally, the expected profit for a job E[profitjob] for overbooking
is:

E[profitjob] = Chargejob · PoSjob − Penaltyjob · PoFjob

As this section will show, the additional profit strongly depends on the quality
of the prediction of the execution times.

4.1 Simulation Model

Several parameters influence the simulation results:

Simulation Resources. Actually, only a single resource is considered. We plan to
extend the simulation to be able to cope with n ∈ N resources.
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Simulation Metrics. For simplification, the simulation considers the relation of
charge to penalty as equal, of for each booked time unit. However, Section 4.8
shows that the relation of charges to penalties does not affect PoF values for
maximum profit.

Job Creation Model

– The average job length is exponentially distributed with a mean of 72 time
units.

– The earliest release time of the jobs also follows an exponential distribution
with a mean of 30 time units which is added to the release time of the
previously created job.

– After the creation process for the jobs, their release times are monotonously
increasing in the job number. But an increasing order of release times would
simply favor FCFS and would not be realistic according to our scenario.
Therefore, the order is afterwards randomly permuted to create a more re-
alistic release time distribution.

– The deadline of each job is set to its release time plus five times the estimated
execution time (ddl = r + 5 ∗ ω).

The mean of the release time distribution compared to the mean of the job
length directly describes possible load of the system. If the mean of the release
times is bigger as the mean job length more jobs are arriving as feasible in the
scheduling system. The chosen simulation parameters enforce that more jobs
are submitted than the system could successfully execute. Each simulation ends
after the deadline of the last accepted job.

Resources Stability

– The resource’s MTTF is 14505 time units or λ = 0.00165.
– The resource’s MTTR is 12 time units or μ = 0.0833.

These assumptions are taken for most of the shown simulation. We will addi-
tionally show in Section 4.8 that different MTTF values only lead to an offset
in the profit curve for the overbooking strategies.

Simulations Usage. For each test run, the incoming jobs, job length, and release
times as well as the up and downtime of the resource have been randomly chosen.
Based on this input data, the three strategies have been applied and the results
of the strategies have been evaluated and aggregated to the following figures.
For each test point, we have performed 10000 runs with 100 incoming jobs per
run. Therefore, every result is based on 600000 schedules.

Execution Time Distribution. The required execution time of a job is calculated
based on the applied execution time distribution. We have evaluated four differ-
ent distribution schemes. The first one is the simple uniform distribution. The
second one is a bathtub distribution, which seems most realistic if applied to a
huge number of jobs and users [6]. This bathtub curve could also be derived from
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the traces of our local cluster system. The next execution time distributions are
derived from traces of two dedicated users of our cluster system. They should
depict the fact that given enough information (traces from jobs) of a single user,
better overbooking results could be achieved.

Simulations result. We calculate a threshold Pmax that will provide the maxi-
mum PoF acceptable by the scheduler for different situations. To evaluate the
best threshold for overbooking, we have implemented FCFS and conservative
backfilling to be able to compare the overbooking strategies with standard im-
plementations. The overbooking strategy of accepting jobs is based on the PoF
given by the convolution of the execution time distribution with the distribution
of the previous jobs. A job is placed in the first gap where the calculated PoF is
lower than Pmax.

4.2 Uniform Execution Time Distribution

The evaluation starts with the assumption that the execution time distribution
follows an uniform distribution. The simulation results for each test run contain
the charge and the penalty of each strategy. The profit of a test run is its charge
minus the penalty. Penalties for FCFS and backfilling without overbooking can
only occur, if the machine fails during the execution of a job (see Figure 5).

Depicted results shown in the figure 5 are

– y-axis charge and penalty for each strategy
– x-axis maximal PoF Pmax accepted

In the Figure 6 and following figures showing simulation results are

– y-axis profit.
– x-axis maximal PoF Pmax accepted

The simulation starts with a maximum acceptable PoF for a job of 0.05 and
ends with 1. The x-axis has, besides fluctuations of the randomized measurement
parameters, no influence on FCFS and backfilling without overbooking. Markers
around the values in the figures show the 95 % confidence intervals.

For a uniform execution time distribution, the FCFS strategy fills on average
1100 time units per schedule, while the backfilling strategy has a mean planned
execution time of 2200 time units per schedule. The overbooking strategy is able
to fill on average 2570 time units, depending on the accepted PoF Pmax and
varying from 2440 to 2630 time units per schedule. It is also shown in Figure 5
that the penalties for overbooking start lower than for conservative backfilling.
This is caused by the fact that conservative backfilling is mostly unable to re-
start a job after a resource outage, because the remaining time slot is not long
enough. In contrast, overbooking still has the opportunity to fill the new, smaller
gap in the schedule.

Due to space limitations, we will only present the accumulated profit in the
following. The profits with overbooking are, until a Pmax = 0.8, better than
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Fig. 5. Charge and penalties with different scheduling strategies

with simple backfilling (see Figure 6). Overbooking strongly depends on Pmax.
The profit is increasing at the beginning due to additionally accepted jobs and
is shrinking at the end again due to the increasing amount of violated SLAs
caused by too high accepted values of Pmax. For these assumptions, Pmax = 0.3
should be chosen to maximize profit, increasing the profit by 20% compared to
a conservative backfilling strategy.

4.3 Bathtub Distribution

The following simulations are based on a job execution time analysis of the year
2007 for the Arminius HPC cluster system at the Paderborn Center for Parallel
Computing (PC2). Within the analyzed 23286 jobs, 6109 jobs used less than 1 %
of the booked execution time, while 3553 jobs used 100 %. For the simulation,
we have assumed that 26 % of the jobs have zero execution time, 15 % use 100 %
percent of their execution time and 59 % of the jobs are uniformly distributed
in between.

Figure 8 shows the profit similar to Section 4.2. FCFS andgad conservative
backfilling do not dependent on the quality of the runtime estimations and we
will not discuss their behavior again. The overbooking strategy fills on average
2490 time units for each schedule, varying from 2330 to 2610 time units for dif-
ferent Pmax. It is shown in Figure 8 that the maximum profit after subtracting
the penalties is achieved for Pmax = 0.6. Starting with Pmax = 0.9, overbook-
ing induces negative effects. The profit is increased compared to a conservative
backfilling strategy by 19% for Pmax = 0.6.
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Fig. 6. The accumulated profit for uniform execution time distributions
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Fig. 7. Execution time distribution on a real cluster system for the year 2007

4.4 Simulations with Precise Execution Time Estimations

This section analyses overbooking approaches for customers with very precise
execution time estimations. The simulation uses input data of a user which nearly
always uses 88.2 % of the reserved execution time. There are some jobs which
have been killed due to missing input data and some which have underestimated
their required execution time (see Figure 9).
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Fig. 8. Profit with different scheduling strategies for a bathtub distribution

Distrubution of booked runtime to used runtime

Percent of time used.
0 20 40 60 80 100

N
um

be
r 

of
 J

ob
s

0

10

20

30

40

50

60

70

80

Distrubution of real to used time.

Fig. 9. Execution time distribution with a peak at 88% for a single user

The results of this simulation are shown in Figure 10. The overbooking strat-
egy fills on average 2370 time units, varying from 2320 to 2390 time units
per schedule. At Pmax = 0.35 the maximum profit is available. Then, until
Pmax = 0.95, the additional profit is nearly stable. Starting from Pmax of 0.95,
overbooking jobs for this customer has a negative effect. The profit is increased
compared to a conservative backfilling strategy by 13% for Pmax = 0.35.
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Fig. 10. Profit with different scheduling strategies for precise user estimations
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Fig. 11. Job execution time distributions with a near bathtub characteristic

4.5 Execution Time Distributions with Near-Bathtub Behavior

The following simulations are based on a user profile, where the user rarely uses
more than 60 % of the reserved execution time. There is a peak in the distribution
at zero and at 100 % and a high probability that the user consumes between 1 %
to 60 %. This interval includes 85 % of all jobs and the interval from 60 % to 99 %
only contains 5 % of the jobs (see Figure 11). The overbooking strategy fills on
average 2660 time units, varying from 2340 to 2780 time units per schedule.
The maximum profit is achieved for Pmax = 0.4. Then, until Pmax = 0.9, the
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Fig. 12. Simulation results for user with most of the jobs gathered between 1% to
60% of the execution time

additional profit is nearly stable. Starting from Pmax = 0.97, overbooking jobs
of this customer has a negative effect. The profit is increased compared to a
conservative backfilling strategy by 22% for Pmax = 0.4.

4.6 Uniform vs. Bathtub

In the previous sections, the calculation for the overbooking strategies have been
based on the same runtime distributions as the simulated jobs. We will investi-
gate in the following sections the influence of imprecise runtime estimations on
the quality of the scheduling. Figure 13 shows the case in which the overbook-
ing strategy assumes a uniform job length distribution, while the simulated jobs
behave according to bathtub distribution from section 4.3.

The overbooking strategy fills on average 2570 time slots, varying from 2450
to 2610 time units per schedule. The maximum profit can be achieved for Pmax =
0.15. Starting from Pmax = 0.8, overbooking jobs of this customer has a negative
effect. The profit is increased compared to a conservative backfilling strategy
by 19% for Pmax = 0.15. For these comparable probability density functions,
overbooking is still able to produce very good results.

4.7 Uniform vs. Peak

Now, the simulation evaluates a very different user behavior compared to the run-
time prediction.The simulation still assumes a uniform distribution, while the sim-
ulated jobs are created according to the peak distribution from Section 4.4.
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Fig. 13. Here a bathtub execution time distribution occurs while the scheduler assumes
a uniform distribution
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Fig. 15. The resulting profit with different penalty factors

The overbooking strategy fills on average 2210 time units per schedule, varying
from 1980 to 2380 time units per schedule. At Pmax = 0.05 the maximum profit
is available there the profit is increased compared to a conservative backfilling
strategy by 9 %. Already starting from Pmax = 0.15, overbooking jobs of this
customer has a negative effect and starting from Pmax = 0.8 the profit is worser
than with FCFS.

It is clear that in this case overbooking has a very bad impact on the schedule,
as the user does a very exact assessment and the overbooking assumes a uniform
distribution. The result shows that for users which are able to accurately predict
their job runtimes, overbooking has to be applied very carefully.

4.8 Dependency on Penalty and MTTF

The previous simulation results assumed equal profit and penalty for each time
unit. Figure 14 contains results for different ratios of profit and penalty, starting
from factor one and going up to a factor of five. As input we have chosen the
results of the measurement of Section 4.3. It is clear that an increased penalty
decreases the achievable profit. However, the shape of the curves is not affected.

Figure 16 shows additional simulations concerning resource stability. They
were performed to evaluate the impact of the machine failure rates on the pre-
dictions for overbooking. The result shows that the value of Pmax is nearly in-
dependent of the machine outage characteristics.

The evaluation shows that the impact of overbooking in Grid, Cloud, or HPC
environments is dependent on the accuracy of the underlying assumptions of the
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relation of booked to real used runtime. With the given data of a real cluster
system and assuming SLA negotiations, it is possible to increase the profit of
a cluster system by 20%. Furthermore, the simulations show that assuming
accurate assumptions for user’s runtime estimations the profit of a cluster system
can be further increased. On the other hand, incorrect assumptions can have a
negative impact on the profit.

5 Conclusion and Future Work

This paper has motivated the need for overbooking in Grid, Cloud or HPC envi-
ronments and outlined the limitations of current scheduling algorithms. There-
after, the idea of using overbooking to increase the ability to accept more SLAs
has been shown. As overbooking increases the risk of SLA violations, mecha-
nisms for determining whether or not it is worthy to use overbooking have been
shown followed by an evaluation of the impact from the proposed methods on
the ability to successfully accept additional SLAs. Therefore, a threshold Pmax

has been defined with which a provider can maximize the profit for a overbook-
ing strategy. The evaluation shows that the additional profit depends on the
accuracy of the underlying runtime estimations and can be given real runtime
distributions around 20% of additional utilisation.

An interesting point of future work will be to define overbooking strategies
which will be able to combine multiple resources and that can be used for parallel
jobs. It might also be interesting to determine if there are user and application
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specific distributions which would allow to increase the quality of the risk es-
timations for overbooking. With this knowledge, the quality of the estimations
could be further increased.
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Abstract. In parallel systems, similar jobs tend to arrive within bursty
periods. This fact leads to the existence of the locality phenomenon,
a persistent similarity between nearby jobs, in real parallel computer
workloads. This important phenomenon deserves to be taken into ac-
count and used as a characteristic of any workload model. Regrettably,
this property has received little if any attention of researchers and syn-
thetic workloads used for performance evaluation to date often do not
have locality. With respect to this research trend, Feitelson has suggested
a general repetition approach to model locality in synthetic workloads
[6]. Using this approach, Li et al. recently introduced a new method for
modeling temporal locality in workload attributes such as run time and
memory [14]. However, with the assumption that each job in the syn-
thetic workload requires a single processor, the parallelism has not been
taken into account in their study. In this paper, we propose a new model
for parallel computer workloads based on their result. In our research,
we firstly improve their model to control locality of a run time process
better and then model the parallelism. The key idea for modeling the
parallelism is to control the cross-correlation between the run time and
the number of processors. Experimental results show that not only the
cross-correlation is controlled well by our model, but also the marginal
distribution can be fitted nicely. Furthermore, the locality feature is also
obtained in our model.

1 Introduction

Parallel systems from supercomputers to clusters and grids have become more
and more popular for solving many problems not only in scientific computing
but also in industry. To enable effective resource allocation on these systems,
numerous schedulers have been built such as Maui [5] and KOALA [15]. The
quality of schedulers depends on their algorithms and has a considerable im-
pact on the overall performance of parallel systems. Hence, the evaluation of
scheduling algorithms is an essential part to build a scheduler. The accuracy of
the evaluation highly relies upon workloads applied, where real workloads (called
traces) are usually chosen because they reflect the system reality. However, there
are several reasons showing that workload models have a number of advantages
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over traces [24]. Workload modeling creates a general model which can be used
to generate synthetic workloads.

Arrival time, run time and parallelism (the number of processors) are three
important workload attributes necessary to be modeled to apply for studies on
performance evaluation. While the arrival time attribute can be modeled indi-
vidually, two remaining attributes are more difficult and require to be modeled at
the same time because it is proven that there exists a cross-correlation between
the run time and the parallelism [13,24]. In [11,23], a multifractal wavelet model
is introduced to control the fractal behaviour and the temporal correlation of
arrival rate processes. In [24], a combined model is suggested where the inter-
arrival times fit a hyper-Gamma distribution and the job arrival rates match
the daily cycle. Models for run time and parallelism are also proposed recently
based on fitting the marginal distribution [24] or Markov chains to control the
cross-correlation between these two attributes [1]. However, it can be seen that
although the phenomenon of locality - a persistent similarity between nearby
jobs - has been recognized to strongly exist in real parallel computer work-
loads [6], this important characteristic is not taken into account in the studies
mentioned.

With respect to this research trend, Feitelson [6] has proposed a general rep-
etition approach to model locality in synthetic workloads. Using this approach,
Li et al. [14] recently introduced a new two-stage method for modeling the run
time attribute with a temporal locality feature. The first stage consists of apply-
ing the model called mixture of Gaussians, whose parameters are estimated via
the Model-Based Clustering (MBC) framework [3]. The second stage includes a
Localized Sampling (LS) algorithm [14] for generating temporal locality in the
data series. However, with the assumption that each job in the synthetic work-
load requires a single processor, the parallelism has not been taken into account
in their model (MBC-LS). Furthermore, we also found that MBC-LS does not
control the locality very well to fit the locality of real data. In this paper, we
propose a new model for parallel computer workloads based on MBC-LS. In our
research, we firstly improve MBC-LS to control the temporal locality feature of
a run time process so that the locality of real data is matched better. Then,
the parallelism is modeled with the key idea that the cross-correlation between
two workload attributes -run time and parallelism- fits the real data as accu-
rately as possible. Experimental results show that not only the cross-correlation
is controlled well by our model, but also the marginal distribution can be fitted
nicely. Moreover, the temporal locality feature is also obtained by improving and
applying MBC-LS in our model.

The rest of this paper is organized as follows. Section 2 describes workload
data used in our experiments. MBC-LS and our improvements are presented in
section 3. We continue in section 4 to model the parallelism as well as to control
the cross-correlation between the run time and the parallelism. Experimental
results are shown in section 5. Finally, we conclude in section 6 our study and
discuss some future research.
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2 Workload Data

Table 1 describes details of the traces used in our study. KTH is from the IBM
SP2 machine installed at the Swedish Royal Institute of Technology in Stock-
holm and is scheduled using the EASY backfilling scheduler [4]. LANL is from
the Connection Machine CM-5 installed at Los Alamos National Lab and is
scheduled using DJM [8]. SDSC is collected from the San Diego Supercomputer
Center Intel Paragon machine whose scheduling is based on NQS [16]. This trace
is available under two separate one-year traces, namely SDSC95 and SDSC96.
Though the first four traces in Table 1 are rather old, we select them in our
experiments for comparison with recent studies [1,24].

Table 1. Traces used in the experiments

Trace Period Number of processors Number of jobs
KTH 09/1996-08/1997 100 28480
LANL 01/1996-09/1996 1024 37517

SDSC95 12/1994-12/1995 416 53885
SDSC96 12/1995-12/1996 416 32032

LLNLATLAS 02/2007-05/2007 9216 23911
GRID5000 07/2006-08/2006 3216 42171

Newly collected traces are also considered in our study, including LLNLAT-
LAS and GRID5000. At the cluster level, LLNLATLAS, a large Linux cluster
called Atlas installed at the Lawrence Livermore National Lab and scheduled
by MOAB [18], is selected. At the grid level, GRID5000 [10], consisting of 9
sites with a total of 15 clusters geographically distributed in France, is chosen.
GRID5000 uses OARGrid as grid resource broker and OAR as batch scheduler
for its local clusters [19]. Note that this grid trace includes both jobs submitted
via the grid resource broker and jobs directly submitted to the clusters. All traces
and detailed information are available on [21], except for GRID5000 which are
collected from [9].

3 Modeling Job Run Time with Locality

We first show in this section the reason why we need to take into account tem-
poral locality when modeling the run time attribute. Then, we present briefly
a two-stage approach [14] to model job run time with the locality feature. The
first stage consists of the mixture of Gaussians model, whose parameters are
estimated via Model-Based Clustering (MBC) framework. The second stage in-
cludes a Localized Sampling (LS) algorithm for generating temporal locality in
the data series. In addition, we also describe our improvement on this approach
to control locality better.
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3.1 Why Locality?

In the effort of improving the performance of parallel systems, several researches
on predicting job run time using historical data to provide schedulers with better
information have been done [12,22,26]. These studies are based on the belief that
the recent past is indicative of the near future. It is a generalization of the idea
of locality. Furthermore, we observe that the real workload data is far from inde-
pendently and identically distributed, instead, similar jobs tends to arrive within
bursty periods. Therefore, locality should be taken into account when modeling
parallel system workloads to help studies on predicting more accurately.

3.2 Model-Based Clustering

Model-Based Clustering (MBC) [3] is a methodological framework that underlies
a powerful approach not just to data clustering but also to discriminant analysis
and multivariate density estimation. Instead of looking for a single probability
density function for the distribution of the data, the main idea of MBC is that
it considers the data as generated by a mixture of normal (Gaussian) probabil-
ity density functions, where each function represents a different cluster1. The
selection of the number of clusters is based on the Bayesian information cri-
terion. Gaussian parameters for these clusters are calculated by combining ag-
glomerative hierarchical clustering and the expectation-maximization algorithm
for maximum likelihood. MBC is implemented in the MCLUST software and
available on [17].

3.3 Localized Sampling

The localized sampling algorithm presented in this section is used to model
the locality feature of a job run time process. The concept and phenomenon of
temporal locality [20] has been recognized and recently studied to model parallel
workloads. To this end, a locality of sampling algorithm has been introduced by
Feitelson [6] based on the observation that the lengths of repetitions of equivalent
jobs empirically follow a Zipf-like (power law) distribution [7]. This algorithm
can be summarized by the following steps:

1. Sample a variate X from the probability distribution of the data.
2. Sample a variate R from the fitted Zipf distribution of repetitions in the

data.
3. Repeat the X variate R times to distort the distribution locally.
4. Return step 1 until the desired number of samples has been generated.

Though the locality can be obtained well, this algorithm still has a number of
limitations. Firstly, it is not easy to know exactly the probability density function
1 The term “cluster” stems from the concept of “data clustering”. Data clustering

is the classification of similar objects into different groups, or more precisely, the
partitioning of a data set into subsets (clusters), so that the data in each subset
(ideally) share some common trait. (definition from Wikipedia).
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of the real data. Hence, sampling for the variate X in step 1 is very difficult and
almost infeasible. Secondly, repetition of a single value in step 3 is a simple
treatment and more sophisticated techniques are needed for better stochastic
approximation. To this end, a localized sampling algorithm has been proposed
by Li et al. in [14] to overcome these limitations. They found that not only
the repetitions of real data but also the repetitions of cluster labels empirically
follow a power law. The classification/cluster labels can be obtained via MBC
presented in section 3.2. The idea of their algorithm is that the cluster label
series instead of the real data is taken into account to serve as the input for
the 4-step procedure above. In this way, the first limitation is solved because
the probability distribution of cluster labels is known in advance via MBC.
Futhermore, the second limitation is also eliminated because each cluster label
represents a cluster of values instead of a single value. Each cluster label in the
generated series is converted into a specific value in the final synthetic run time
process by sampling the distribution of the corresponding cluster, which is also
known in advance via MBC.

Although using MBC to classify data series and applying these classifications
to the 4-step procedure above is a good idea, we found that a new limitation
occurs with this approach. That is only repetitions of cluster labels follow the
power law, but repetitions of the final synthetic run time process do not fit the
Zipf-like distribution as the real data any more. It is because the authors use
a cluster of values instead of a single value to overcome the second limitation
in Feitelson’s algorithm. Therefore, we propose a solution to solve this problem.
When we repeat a cluster label R times, we also equivalently sample the distribu-
tion of that cluster R times to produce R specific values in the final synthetic run
time process. Our idea is that instead of sampling the distribution of a cluster
R times, we will produce a single value r times with r < R and then sample the
distribution of the cluster R− r times. So how to obtain the value r? Observing
all the times where a cluster label appears repeatedly in the cluster label series,
we recognize that there are periods where no single value is produced repeatedly.
Based on this observation, we calculate a probability p to indicate the ability
that there is a single value produced repeatedly at a repetition time of a cluster
label. As such, r can be calculated by sampling from the fitted Zipf distribution
of repetitions in the real data with a probability p. Otherwise, with a probability
1 − p, r is assigned to be equal to 0.

Combining the idea of Feitelson, the idea of Li et al. and our idea, we sum-
marize the following steps to model the locality feature for a run time process:

1. Run the model-based clustering procedure in section 3.2, where the real
run time process Datai, i = 1 → n serves as an input, to obtain mixture
of Gaussians parameters (μk,

∑
k; pk), k = 1 → G and classifications Li ∈

{1, · · · , G}, i = 1 → n; where G is the number of clusters, μk,
∑

k and pk are
mean, variance and probability of cluster k, respectively.

2. Count the lengths of repetitions in Li and fit them to a Zipf distribution ZL.
For example, if Li = {2, 2, 2, 3, 1, 1, 4, 5, 5, 5, 5}, we have a series of lengths
of repetitions as {3, 1, 2, 1, 4} and fit this series to a Zipf distribution.
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3. Count the lengths of repetitions in Datai and fit them to a Zipf distribution
ZD.

4. Calculate the probability p for the occurence of the repetition of a single
value within each repetition in classifications Li.

5. Generate a series of cluster labels C according to the cluster probability pk.
6. Set the window size W . Form a series Cσ by applying the cluster permu-

tation procedure2 . This step is used to control the autocorrelation in the
synthetic data and completely independent on the locality. The autocorre-
lation increases when W is large and in the simplest case, Cσ = C when
W = 1. This step can be bypassed without any impact on the locality by
simply setting W = 1 if users do not want to control the autocorrelation.

7. Select a cluster label c from Cσ sequentially.
8. Sample a variate R from the fitted Zipf distribution ZL.
9. Sample a variate Prob from the uniform distribution over the range [0, 1].

10. If Prob ≤ p, sample a variate r from the fitted Zipf distribution ZD, else
assign r = 0. Note that the sampling work is done by a loop until we obtain
r < R.

11. Sample the Gaussian distribution fc(μc,
∑

c) to obtain a single value and
repeat this value r times.

12. Sample the Gaussian distribution fc(μc,
∑

c) R − r times.
13. Return step 7 until the desired number of samples has been generated.

4 Modeling Parallelism and Control the Cross-Correlation

For most parallel systems, parallelism is another vital workload attribute beside
run time. Furthermore, the cross-correlation between it and the run time is
also very important. In [25], Lo et al. demonstrated how different degrees of
this cross-correlation might lead to discrepant conclusions about the evaluation
of scheduling performance. Therefore, we should take into account this cross-
correlation when modeling parallel system workloads.

As indicated in [14], despite the fact that the mixture of Gaussians model is
a good choice for fitting the marginal distribution, it is not suitable for some
attributes with discrete values such as parallelism. Hence, we propose in this
section a new three-stage approach to model the parallelism as well as control
the cross-correlation between it and the run time. Firstly, the parallelism process
is classified into a number of classes. However, different from the run time process
with continuous values, the parallelism process with discrete values can not be
classified via MBC in section 3.2. Rather than, we create a new method for the
classification of the parallelism process. Secondly, we control the cross-correlation
between the run time and the parallelism by creating and using a transition
table. Thirdly, we convert class labels into specific values based on the sample
probability.
2 Hereby we give an example of the cluster permutation procedure, for details see [14].

If we have a series of cluster labels generated in step 5 C = {1, 2, 1, 3, 2, 2, 3, 2, 4, 1, 4}
and W = 4, we deduce Cσ = {1, 1, 2, 3, 2, 2, 2, 3, 4, 4, 1}.
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4.1 Classify the Parallelism

Our approach to classify the parallelism is presented in detail in Algorithm 1.
We start by grouping jobs that require the same number of processors and count
the number of jobs in each group. Then, each group is assigned a label which is
an integer calculated by rounding the logarithm of the number of jobs in that
group to the base 2 and adding 1. Jobs belong to a group are also classified with
its label. As such, groups that have approximately equal quantities of jobs will
be assigned the same label. For example, if there are 250 jobs requesting 4 cpus
and 300 jobs requesting 10 cpus, all of them will be classified as 9. Note that
this classification approach can only be applied on a series with discrete values
such as parallelism.

Algorithm 1. Classify the parallelism process. The operator length(·) indicates
the length of a series and the operator round(X) rounds X to the nearest integer.

Input: A parallelism process Pi, i = 1→ n.
Output: A classification process Ci, i = 1→ n where Ci indicates the class to which
Pi belongs.

Assign maxcpus = max({Pi, i = 1→ n});
for j = 1 to maxcpus do

Calculate the number of occurences of j in {Pi}: countj = length({x = j, x ∈
{Pi}});
if countj �= 0 then

countj = round(log2(countj)) + 1;
end if

end for
for i = 1 to n do

Ci = countPi ;
end for

4.2 Control the Cross-Correlation

We use Algorithm 2 to control the cross-correlation between the run time and
the parallelism. Firstly, we calculate the transition conditional probability table
Pr(c, l), where c and l are labels of the parallelism and the run time, respectively.
Pr(c, l) indicates the probability for a job to have the parallelism label c with
the condition that the label for its run time is known in advance as l. Pr(c, l)
of a job is calculated by the ratio between the probability P (c, l) for that job to
have the parallelism label c and the run time label l at the same time and the
probability P (l) for that job to have the run time label l. Secondly, we form a
series of parallelism labels based on the transition probability table Pr(c, l). Each
parallelism label corresponds to a cluster label in the series CW . We obtain CW
by using Cσ and repeating each cluster label in Cσ R times. Reminding that
in the algorithm presented in section 3.3, Cσ is formed in step 6 by applying
the cluster permutation procedure. Each cluster label from Cσ is selected and
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Algorithm 2. Create a series of parallelism labels
Input: Classifications of the run time process Li, i = 1 → n obtained via MBC
in section 3.2, classifications of the parallelism process Ci, i = 1 → n obtained via
Algorithm 1 and the series of cluster labels CW .
Output: A series of parallelism labels CL.

Assign maxruntimelabel = max({Li, i = 1→ n});
Assign maxcpulabel = max({Ci, i = 1→ n});
for l = 1 to maxruntimelabel do

P (l) = length({x=l,x∈Li})
n

;
end for
for c = 1 to maxcpulabel do

for l = 1 to maxruntimelabel do
P (c, l) = length({i∈[1,n]:Ci=c,Li=l})

n
, where i represents a job;

Pr(c, l) = P (c,l)
P (l)

;
end for

end for
for each cwj in CW do

Select an integer x ∈ [1, maxcpulabel] according to the transition conditional
probability table Pr(c, l) with l = cwj and assign clj = x to form a series of
parallelism labels CL;

end for

repeated R times in step 7 and step 8, where R is sampled from the fitted Zipf
distribution. For example, if we have Cσ = {1, 3, 2} and the values of R for these
labels are 2, 1, 4 respectively, we obtain CW = {1, 1, 3, 2, 2, 2, 2}.

4.3 Generate Specific Values

This stage receives a series of run time labels CW and a series of parallelism
labels CL as its inputs. The way to obtain CW is presented in section 4.2. CL
can be achieved via Algorithm 2. Combining CW and CL, we have a series of
labels for parallel jobs (cwi, cli), where cwi ∈ CW and cli ∈ CL. The specific
value for the run time of job i is generated by sampling the distribution of the
cluster with label cwi. The specific value for the number of processors of job i
with label cli is generated by the following steps:

1. Determine all jobs in the real data that have labels of (cwi, cli) based on
classifications of the run time process Li, i = 1 → n obtained via MBC
in section 3.2 and classifications of the parallelism process Ci, i = 1 → n
obtained via Algorithm 1. We can know exactly and call the number of
processors of these jobs {processors}.

2. Consider {processors} as a sample space, the specific value we seek is se-
lected in {processors} according to the uniform probability of this space.
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5 Experimental Results

Details of the traces used in our experiments are described in section 2. All
these traces are applied on our model to generate synthetic workloads. The
quality of these synthetic workloads is evaluated by comparing with the real
data. Furthermore, we compare our model with the model of Song et al. [1] and
the model of Lublin/Feitelson [24]. They are recent models for parallel system
workloads.

Evaluation metrics used in our experiments include the marginal distribution,
the cross-correlation between the run time and the parallelism, and the squashed
area discussed in section 5.2. Note that we do not evaluate the locality feature
of the run time process since it is assured by the Zipf distribution of repeti-
tions. Instead, we only evaluate our improvement by comparing with MBC-LS
model [14].

5.1 Locality of the Run Time Process

Figure 1 shows experimental results in evaluating our improvement. Reminding
that our purpose is to fit the locality of the real data better. In order to compare
our model with MBC-LS, we count the lengths of repetitions in both synthetic
and real run time processes and draw the log-log histograms of these lengths.
It can be seen that in all cases, our improved model fits the real data better
than MBC-LS. Nevertheless, the model does not match the real data very well.
It is because the probability p we calculate in step 4 of the algorithm presented
in section 3.3 is not a perfect value. Another reason is that we only allow one
sequence of r repeated values each time R values are generated. Of course, we
can improve this matching by increasing p and allow more than one sequence but
it depends on the traces. In our experiment, we found that this method indeed
helps to match some traces better but also causes the situations of overfitting
for other traces. Therefore, we decide to select the current method to avoid
overfitting. However, more research is still left to improve the locality matching
of the model compared with the real data.

5.2 The Metric Squashed Area

The squashed area (SA) metric is proposed by Song et al. [1]. It is the total
resource consumptions of all jobs

SA =
∑

j∈Jobs

req processorj × run timej. (1)

Furthermore, the difference of squashed area is calculated by

d SA =
synthetic SA − original SA

original SA
. (2)



110 T. Ngoc Minh and L. Wolters

Fig. 1. Log-log histograms for the lengths of repetitions in the traces and synthetic
run time processes
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Table 2. The difference of squashed area. Results for Song et al.’s model are collected
from [1].

Trace Our model Song et al.
KTH 0.39% 15%
LANL 2.21% -1%

SDSC95 -0.04% -3%
SDSC96 -3.12% 8%

In [2], Ernemann et al. demonstrated that the squash area has significant
impacts on scheduling performance. It can be concluded from Equation (2) that
if d SA is closer to 0, the result is better (i.e. the model matches well the real
traces). The results in Table 2 show that our model is better than the model of
Song et al. since in most cases our differences of squashed area are smaller.

5.3 The Metric Cross-Correlation

One of the most difficult problems in modeling parallel workloads is how to con-
trol the cross-correlation between the run time and the parallelism as accurately
as in the real data. The cross-correlation is measured by calculating the corre-
lation coefficient between the run time and the parallelism. It can be seen from
Table 3 that our model controls the cross-correlation well since our results are
closer to the real data than those of the other models. As understanding from our
experiments, the cross-correlation is controlled well thanks to the combination
of Algorithm 2 and the way we generate specific values for parallelism labels as
described in section 4.3.

Table 3. The cross-correlation between the run time and the parallelism. Results for
the models of Song et al. and Lublin/Feitelson are collected from [1].

Trace Real data Our model Song et al. Lublin/Feitelson
KTH 0.011 0.015 0.005 0.005
LANL 0.172 0.192 0.226 0.29

SDSC95 0.277 0.233 0.140 0.105
SDSC96 0.371 0.332 0.155 0.116

LLNLATLAS 0.034 0.033 - -
GRID5000 0.006 0.009 - -

5.4 Marginal Distribution

Another important result from our model is that the marginal distribution is
fitted very well. Figure 2 and Figure 3 show how well the cumulative density
function (CDF) of the run time and the parallelism is fitted in our model. For
the run time with continuous values, the marginal distribution is determined
by the mixture of Gaussians model (see section 3.2). For the parallelism with
discrete values, our experiment proves that the marginal distribution is fitted
well by Algorithm 1 in section 4.1.
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Fig. 2. Fitted marginal distribution of the parallelism
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Fig. 3. Fitted marginal distribution of the run time
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6 Conclusions and Future Work

When modeling parallel system workloads, researchers should take care of the
locality and the cross-correlation between the parallelism and the run time. The
locality feature is necessary for studies on predicting job run time, based on the
belief that the recent past is indicative of the near future. The cross-correlation
was demonstrated in [25] to have significant impacts on the evaluation of schedul-
ing performance.

With respect to the locality, Li et al. [14] and Feitelson [6] recently introduced
approaches to produce locality in the synthetic run time process. We also dis-
cussed some limitations of their methods and suggested a solution to overcome
these limitations. Our solution indeed fits locality of the real data better than Li
et al. ’s model (see Figure 1) but not very well. The reason was already discussed
in section 5.1 and more effort to improve this result is left for future.

For the cross-correlation, experimental results (see Table 2 and Table 3)
showed that our model can control the cross-correlation between the run time
and the parallelism more accurately, compared with recent models for parallel
system workloads [1,24].

In addition, another important result from our model is that the marginal
distributions of the synthetic run time and the synthetic parallelism fit the real
data very well (see Figure 2 and Figure 3).

From our results, we believe that modeling parallel system workloads based
on classifying data is a good approach. In future work, we continue to use this
idea to model other workload attributes such as user estimated run time and
requested memory in order to form a full synthetic workload with adequate
necessary attributes including real run time, user estimated run time, requested
memory and parallelism.
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Abstract. In this paper, we examine the concept of giving every job
a trial run before committing it to run until completion. Trial runs al-
low immediate job failures to be detected shortly after job submission
and benefit short jobs by letting them run and finish early. This occurs
without inflicting a significant penalty on longer jobs, whose average and
maximum waiting time are actually improved in some cases. The strat-
egy does not require preemption and instead uses the ability to kill and
restart a job from the beginning, which it does at most once for each
job. While others have proposed similar strategies, our algorithm is dis-
tinguished by its determination to give each job a fixed-length trial run
as soon as possible. Our study is also more focused, including a detailed
description of the algorithm and an examination of the effect of varying
the length of a trial run.

1 Introduction

It is widely known that user estimates of job runtimes are highly inaccurate (e.g.
[12],[14]). Typically the worst overestimates are explained by pointing to pro-
grams that fail early in their execution. For example, Perković and Keleher [16]
say “The presence of large runtime overestimations indicates the presence of
applications still in development, and therefore, have high probability to die
prematurely either because of bugs or because they run in a new environment”.
At the same time, job queues on large machines can be long, potentially pre-
venting these failures from being discovered for quite some time. Waiting for an
hour only to discover that your program died from an immediate segmentation
fault increases the frustration already inherent in debugging tasks.

Furthermore, job failures turn out to be surprisingly common. Figure 1 reports
the number and percentage of jobs that fail in traces from the Parallel Workloads
Archive [7]. Many of the traces contain significant numbers of jobs that fail.

Based on the frequency of job failures and the frustration of waiting to dis-
cover them, we believe it is important to design schedulers so that they attempt
to detect jobs that quickly fail as soon after submission as possible. Some of the
failures are likely to be hardware problems, the detection of which cannot be im-
proved by changes to the scheduler. When a job fails because of a programming
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Trace Num. Jobs Num. failed % failed
DAS2-fs0-2003-1.swf 219,618 2,643 1.2
SDSC-Par-1995-2.1-cln.swf 53,970 906 1.7
DAS2-fs3-2003-1.swf 66,112 1,143 1.7
DAS2-fs4-2003-1.swf 32,953 602 1.8
SDSC-Par-1996-2.1-cln.swf 32,135 814 2.5
DAS2-fs2-2003-1.swf 65,382 1,994 3.1
DAS2-fs1-2003-1.swf 39,356 1,554 4.0
LPC-EGEE-2004-1.2-cln.swf 220,695 10,490 4.8
LLNL-Thunder-2007-1.1-cln.swf 118,791 7,933 6.7
CTC-SP2-1995-1.swf 70,918 6,972 9.8
LANL-CM5-1994-3.1-cln.swf 122,060 20,368 16.7
LANL-O2K-1999-1.swf 116,996 23,670 20.2
CTC-SP2-1996-2.1-cln.swf 77,222 16,669 21.6
LLNL-Atlas-2006-1.1-cln.swf 38,194 10,250 26.8
KTH-SP2-1996-2.swf 28,489 7,948 27.9
LLNL-uBGL-2006-1.swf 19,405 6,835 35.2
SHARCNET-2005-1.swf 1,194,184 1,003,277 84.0

Fig. 1. Failing jobs by trace. Only traces with at least one failing job are presented.
There were 2 other traces that reported all jobs succeeding, 2 that reported all jobs
having “unknown” exit status, and 4 that reported various mixtures of succeeding,
canceled, or unknown exit status. Also note that the number of jobs varies from the
value reported in the Parallel Workloads Archive [7], sometimes greatly. We exclude
jobs with unknown exit status and those that were canceled without running.

error or something wrong in the runtime environment, however, this failure can be
detected by starting the job soon after its submission. Since failing jobs are only
identified after they fail, this requires that all jobs be started soon after submis-
sion. If the system supports preemption, it is possible to do exactly this; as soon
as a job arrives, preempt other jobs to give it sufficient processors to run for a brief
period of time, after which the new job is itself preempted and the previous jobs
resumed. In this way, any job failure occurring at the beginning of the job would be
detected nearly immediately. If the period is brief enough, the previously-running
jobs are not greatly inconvenienced. Thus, we are left with an engineering tradeoff
to choose the length of a job’s initial run, with longer runs finding more failures
and shorter runs minimizing disruption to already-running jobs.

Unfortunately, preemption is difficult to implement in a large multiprocessor
system because preempting a job requires saving its state on each of its proces-
sors and also catching all “in flight” messages traveling between them. Because
of these difficulties, many multiprocessor systems do not support preemption.
Instead, our algorithms use restarts, in which a job can be stopped and restarted,
but does so from the beginning of its execution, effectively losing its progress
from the first run. Restarts are less powerful than preemption and should be sim-
pler to implement; it is not necessary to save any state, but merely to kill the job
and ignore any of its messages. It is still technically challenging to restart jobs
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that perform side effects (e.g. file I/O), but we believe it is easier for systems to
implement restarts than preemption. In exchange for being easier to implement,
restarts impose greater cost on jobs on which they are used; all work previously
done on that job is lost.

Now we can give the outline of our scheduling idea. As above, we attempt to
start every job soon after its submission. We call the first time a job is started
its trial run, which we only allow to continue for a bounded period of time.
Jobs that do not fail (or complete) within this time are killed to be restarted
later. When a job is restarted is determined by a base scheduler such as First-
Come First-Served (FCFS) or EASY [13]. We call the combination of trial runs
and the base scheduler a timed-run scheduler, which can be viewed as the base
scheduler operating within a framework that manages trial runs. Our intent
is for the timed-run scheduler to behave similarly to its base scheduler except
for identifying failing jobs more quickly. In particular, once the base scheduler
decides to start a job, that job is never restarted; our algorithm only kills jobs
at the end of their trial run when relatively little work is lost by doing so. We
say a job is committed when it has been started by the base scheduler. Exactly
when a job should be committed proved to be a more subtle decision than we
originally thought; we discuss this decision later in the paper.

As a side effect of giving jobs trial runs, the timed-run scheduler also benefits
jobs that successfully finish within their trial run. We use the term short jobs to
denote jobs that complete or fail during their trial run and long jobs to denote
the others. Allowing short jobs to cut in front of longer jobs generally improves
the system’s average response time, though at some cost in fairness. For a short
trial run length, we believe that the effect on long jobs is minimal in exchange
for the benefits provided to short jobs, especially jobs that fail immediately after
they start.

We show that this strategy can greatly reduce the time to detect problems in
short failing jobs, the jobs on which users will be most frustrated to wait. The
benefits of our strategy extend to all short jobs, which form a significant fraction
of many workloads. The improvement is achieved with a non-preemptive strategy
that restarts each job at most once. It is generally realized without significantly
penalizing long jobs and even improves their average and maximum response
time in some cases.

These results are based on event-based simulations using traces from the Par-
allel Workloads Archive [7]. We assume that the system being evaluated uses
pure space-sharing to run rigid jobs.

We note that others have proposed similar strategies in the past. What dis-
tinguishes our algorithm is its focus on giving each job a fixed-length trial run
as soon as possible. We also give a more thorough evaluation of trial runs in
isolation, giving a detailed description of the algorithm and an examination of
the effect of varying the length of a trial run.

The rest of the paper is organized as follows. In Section 2 we fully specify the
timed-run scheduling strategy. Then, in Section 3 we evaluate this strategy. We
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discuss related work in Section 4. We conclude with a discussion of future work
in Section 5.

2 Timed-Run Scheduling

Now, we are ready to formally define the timed-run algorithm. It maintains a list
of jobs awaiting a trial-run in addition to whatever data structures are required
for the base scheduling algorithm. Newly-arrived jobs are added to the end of
this list as well as to the base scheduler’s data structures. Whenever a job arrives
or processors are freed due to a job completion or termination, the timed-run
scheduler traverses this list looking for jobs to start. Any jobs encountered during
this traversal that can start are removed from the list and started on their trial
run. Only if no jobs can start trial runs is the base scheduler allowed to start
jobs.

Our goals when designing this algorithm were to give jobs their trial runs as
early as possible while impacting the base scheduler as little as possible. The
prioritization of trial runs is reflected in our choice to look for jobs in the trial
run list before consulting the base scheduler. Because the jobs are considered
for trial runs in order of their arrival, we slightly favor earlier-arriving jobs and
provide some measure of fairness. The jobs are not forced to receive trial runs
in the order they arrive, however, to facilitate giving as many jobs as possible
their trial runs soon after they arrive. We also allow the base scheduler to run
jobs even when there are still jobs waiting for trial runs (provided none of them
can start) to minimize the impact on the base scheduler. This decision and
allowing trial runs to occur out of order both penalize large jobs, but we felt this
discrimination was justified to avoid draining the machine just for a trial run of a
large job. We consider it the base scheduler’s responsibility to make such weighty
decisions. In addition, we felt that failures of small jobs were more “justified”
since users should test large programs on a smaller scale before running them
on many processors.

The other obvious decision to make when implementing the timed-run sched-
uler is the duration of trial runs. We initially chose 90 seconds as the trial run
length because this was the value given by Mu’alem and Feitelson [14] in their
discussion of failing jobs. Another value mentioned in the literature is 1 minute,
which Chiang and Vernon [5] observed was sufficient to complete 12–33% of jobs
requesting over an hour and 11–42% of jobs requesting over 10 hours in a trace
from NCSA’s Origin 2000. They did not discuss the cause of these dramatic
overestimates, but it seems likely that job failures played a role. Lawson and
Smirni [11] suggest 180 seconds, which they observed to exclude most jobs that
crashed. We discuss the effect of varying the trial run length in Section 3.2.

2.1 Optimizations and Complications

We decided on the aspects of timed-run scheduling described above without
much difficulty. While implementing it and examining the schedules produced
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by our initial prototype, however, we discovered a number of complications. We
now describe these and the policy decisions we made to resolve them.

Jobs wait until finishing their trial runs before committing. The first complica-
tion we discovered applies even to very small input instances. What should the
scheduler do when the machine is idle and a single job arrives? As described
above, the algorithm will select this job for a trial run and then schedule it
again by following the base scheduling algorithm. Obviously, the job should not
be started twice, but it seems premature to commit it to run to completion
simply because it was the first job to arrive after an idle period. Nor is this
necessarily a rare case since the same situation occurs if a job starts a trial run
and then is selected by the base scheduler. We resolved this by not allowing a
job to commit during its trial run. During this time, the base scheduler acts as
if the job cannot fit on the machine.

To improve performance when a job’s trial run and its selection by the base
scheduler occur together, we implemented a fairly obvious optimization: when
a job completes its trial run, if the timed-run scheduler will decide to start the
same job for its committed run, we simply continue that job rather than stopping
and restarting it. This optimization complicates the scheduler’s logic somewhat,
but clearly improves the schedule since it avoids wasting the time already spent
on the trial run.

Jobs continue trial runs until replaced. After implementing the above, we no-
ticed a related optimization. Consider the following job instance, scheduled on a
100-processor machine with 90-second trial runs and a First-Come First-Served
(FCFS) base scheduler:

Job Arrival time Number processors Runtime
A 0 80 300
B 100 100 40
C 110 20 > 90

This instance is scheduled as shown in Fig. 2. Notice that job A continues after
its trial run because nothing else has arrived when it finishes the trial run. Job
C does not get to continue, however, because FCFS wants to run job B first.
Terminating job C at time 200 is not strictly necessary, however, since job B
cannot start until time 300. Instead, we allow jobs that complete their trial runs
to continue running until the scheduler has another use for their processors,
either for a different job’s trial run or for a committed run. For the example
above, this means that job C is allowed to continue until time 300. If it has
length between 90 and 190, this allows it to complete. Even if job C requires
more time than this, nothing is lost since the processors it uses would have been
idle otherwise. Note that extensions are granted even when a job’s estimated
running time indicates that it will not complete because the estimate may be
inaccurate.

Avoiding restarts and extending trial runs are both achieved using lazy job
termination. When a job finishes its trial run, it is added to a collection of jobs
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Fig. 2. Short jobs continue running until replaced

that can be terminated if needed. The scheduler makes its decisions as if all jobs
in this collection had been terminated. If the scheduler decides to start a job
that requires some of their processors, jobs from the collection are terminated
as needed, beginning with the one whose trial run ended longest ago.

Long jobs must wait for their turn in the base scheduler. The next complication
we encountered required a more difficult policy decision. Consider the following
instance, again scheduled on a 100-processor machine with 90-second trial runs
and FCFS scheduling:

Job Arrival time Number processors Runtime
A 0 70 90
B 5 70 60
C 10 50 200
D 20 20 140
E 25 30 40

Two possible schedules are shown in Fig. 3. The difference is in when job D is
committed. At time 150, job D has completed its trial run. The other job in the
system is job C, which has not had a trial run, but should run first according to
the base scheduler (FCFS).

Our first inclination was to start job D immediately in this situation since it
seems wasteful to idle processors while waiting for a job that has already started
(albeit only for a trial run). Our eventual conclusion, however, was to delay job D
until its predecessor gets committed. The reason for this decision is to allow for
the possibility that another job arrives during the trial run of job C. If we com-
mitted job D and a newly-arrived job prevents job C from committing, then the
timed-run scheduler would have committed jobs out of the order given by the base
scheduler, violating our intention to make the timed-run scheduler an augmenta-
tion of the base scheduler rather than its replacement. Note that delaying when
jobs are committed in this way could harm our performance. An alternate solution
would be to start job D, but kill it if job C ends up not committing. This would
be similar to the speculative backfilling of Perković and Keleher [16].
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Fig. 3. Two possible ways to schedule the long run of job waiting for a job starting its
trial run. In (a), job D starts as soon as job C begins its trial run. In (b), it waits for
job C to be committed.

Dealing with job reservations. The final complication we encountered while im-
plementing the timed-run strategy is how to combine it with base schedulers
where jobs are given reservations. In keeping with our goal to give each job a
trial run shortly after it arrives, our algorithm favors trial runs over committing
jobs in the order given by the base scheduler. This means reservations may be
violated since newly-arrived jobs can (briefly) grab processors at any time. How-
ever, we do recognize that reservations are desirable from a user perspective since
they promote fairness and make the system more predictable for users. Thus, we
wished to achieve a compromise by preserving the spirit of reservation-wielding
base schedulers while violating the specific reservations.

For the EASY scheduler, there is a relatively straightforward way to achieve
this compromise. We simply disabled the error checking that reports when a
guarantee is violated. This works because our implementation of EASY (follow-
ing [14]) does not build an entire schedule. Rather, it stores the jobs in arrival
order, the currently-running jobs with their estimated completion times, and the
first job’s guaranteed time. To make a scheduling decision, it traverses the list of
waiting jobs and starts any job that can be run without violating the guarantee.
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It is much less clear how to use timed-run scheduling with algorithms that
provide guarantees to more than one job such as Conservative backfilling. One
solution is to rebuild the estimated schedule whenever trial runs cause it to
break, but this could greatly slow down the scheduler. Another idea is to give
initial guarantees with some slack to allow for trial runs by later jobs, but this
seems to violate the spirit of Conservative backfilling. We believe more research
is warranted on this question.

3 Experimental Results

To evaluate the timed-run strategy, we used an event-driven simulator. Events
were generated for job arrivals, job completions, and at the end of trial runs.
The data for our simulations were obtained from the online Parallel Workloads
Archive [7]. All traces were in the standard workload format, from which we
read the job arrival time, processors requested, actual running time, and user-
estimated runtime (when available). For actual runtime, we used field 4 (“run
time”) if it was available and field 6 (“Average CPU time used”) if it was not. We
also used the status field (number 11) to identify failing jobs, but only as a post-
processing step. Cleaned versions of the traces were used when available; the full
filenames for the used traces are given in Fig. 1. We excluded the SHARCNET
trace from our simulations because of its extraordinarily-high failure rate.

3.1 Ninety Second Trial Runs

We compared FCFS and EASY schedulers to their timed-run counterparts using
average and maximum waiting time. We used waiting time since it is in line with
our goal to minimize the absolute time before detecting a failure. It also lessens
the emphasis on small jobs relative to slowdown or bounded slowdown. Note
that the waiting times we record for a job under the timed-run scheduler is until
that job starts the run that finishes, NOT the wait until the job gets a trial
run. Put another way, the waiting time of a job is its completion time minus its
arrival time minus its actual running time.

Our initial simulations used a trial-run length of 90 seconds. Figs. 4 and 5 show
the percent improvement in average and maximum response time achieved by
switching from a normal scheduler to a timed-run scheduler. From the results, the
timed-run scheduler generally performs as expected, decreasing average waiting
time in nearly all cases. The exceptions are all in the DAS2 family of traces.
These traces, from a group of clusters used for distributed computing research,
have quite low utilization (all less than 20%) so they are not representative of
typical production workloads. Quite a few of the improvements in the other
traces are significant, particularly with the FCFS base scheduler.

Also importantly, the improvement in average waiting time does not occur
at the expense of increased maximum waiting time. Instead, maximum waiting
time is largely unchanged, with the worst result an increase of less than 4%. On
several of the traces, using timed-run scheduling with FCFS actually improves
it by a significant margin.



124 O. Thebe, D.P. Bunde, and V.J. Leung

38.7

−13.9

−181.0

−68.5

17.3

58.1

41.3

60.1

0

99.2

32.8

−9.4

−79.1

77.4

16.3 18.2

1.53.2

89.0

24.1

68.4

11.8

47.9

2.6

74.1

9.1

55.1

18.0

75.2
82.4

38.7

−17.3

−200
EASY
FCFS

%
 I

m
pr

ov
em

en
t

D
A

S2
−

fs
0

SD
SC

−
Pa

r9
5

D
A

S2
−

fs
3

D
A

S2
−

fs
4

SD
SC

−
Pa

r9
6

D
A

S2
−

fs
2

D
A

S2
−

fs
1

L
PC

−
E

G
E

E

L
L

N
L

−
T

hu
nd

er

C
T

C
−

SP
2−

19
95

L
A

N
L

−
C

M
5

L
A

N
L

−
O

2K

C
T

C
−

SP
2−

19
96

L
L

N
L

−
A

tla
s

K
T

H
−

SP
2

L
L

N
L

−
uB

G
L

 100

 50

 0

−50

−100

−150

Trace

Fig. 4. Improvement in average waiting time of all jobs from using timed-run scheduler
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Fig. 6. Improvement in average waiting time of failing jobs from using timed-run
scheduler
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The percent improvements were better for FCFS than EASY. This is unsur-
prising since trial runs can act as an ad hoc version of backfilling. When working
with FCFS, there are many opportunities for jobs to move up and the result
is a significantly better schedule. In addition, the EASY base scheduler does
a better job keeping the processors busy and so offers less room for improve-
ment. In fact, for average waiting time, regular EASY outperformed FCFS with
timed-run scheduling in almost all cases.

Our main motivation was to promptly identify failing jobs so their users could
be notified soon after the jobs have been submitted. Figures 6 and 7 plot the
improvement in average and maximum waiting time for failing jobs as we switch
from regular scheduling and timed-run scheduling. Surprisingly, the results are
not as good for failing jobs as they were for all jobs. The percentage improve-
ments for average waiting time are generally smaller for FCFS and they essen-
tially disappear for EASY. The other patterns are still there, though; FCFS is
improved much more than EASY, the DAS2 traces contributed negative outliers
to the percent improvement in average waiting time, and the affect on maximum
waiting time of adding trial runs ranges is minimal with some improvements and
a couple of good values.

We explain the relative lack of benefit for failing jobs with the observation that
failing jobs are notnecessarily short jobs. Although failing jobs ending prematurely
is consistently one of the explanations given for the poor quality of user estimates, it
turns out that job failures do not cause the short jobs in these traces. Figure 8 gives
the percent of all jobs and the percent of failed jobs that are short in each trace.
For all but 3 of the 16 traces, short jobs make up a smaller percentage of failing
jobs than they represent of the trace as a whole. Only in LLNL-uBGL of these
three is the difference large. However, there seems to be no relationship between
the results in Figs. 4–5 and Figs. 6–7 and the percentage of failed jobs that are
short. This could be due to the fact that the total number of failed jobs that are
short is small compared to the total number of jobs that are short.

Figures 9 and 10 show the average and maximum waiting times for short jobs,
respectively. Providing jobs with trial runs does result in short jobs waiting for
considerably less time before running. Figures 11 and 12 shows the average and
maximum waiting times for failed short jobs. The results were similar for average
waiting time, but considerably improved for maximum waiting time. Here again,
there is no relationship between the results in Figs. 9–10 and Figs. 11–12 and
the percentage of all and failed jobs that are short because the numbers of short
failed jobs are much smaller than the numbers of short jobs and a meaningful
comparison cannot be made between the two.

3.2 Varying Trial-Run Length

We also investigated the effects of varying the length of the trial-run. An ideal
length would balance catching failing jobs and increasing responsiveness by let-
ting short jobs finish during their trial-run against making jobs wait too long
while trial-runs occur. Figure 13 shows the average waiting time of short jobs
as the length of the trial run varies, using the KTH-SP2 trace and FCFS as the



Scheduling Restartable Jobs with Short Test Runs 127

short jobs as... % of jobs % of failed jobs
DAS2-fs0 61.5 (134,991 jobs) 50.4 (1,331 jobs)
SDSC-Par95 60.9 (32,845 jobs) 0.1 (1 job)
DAS2-fs3 76.1 (50,321 jobs) 74.6 (853 jobs)
DAS2-fs4 42.9 (14,129 jobs) 48.0 (289 jobs)
SDSC-Par96 44.4 (14,268 jobs) 0.5 (4 jobs)
DAS2-fs2 64.5 (42,191 jobs) 10.4 (207 jobs)
DAS2-fs1 65.6 (25,803 jobs) 33.1 (514 jobs)
LPC-EGEE 69.9 (154,221 jobs) 9.7 (1,013 jobs)
LLNL-Thunder 59.1 (70,246 jobs) 65.2 (5,176 jobs)
CTC-SP2-1995 27.4 (19,404 jobs) 12.6 (880 jobs)
LANL-CM5 30.2 (36,910 jobs) 8.1 (1,650 jobs)
LANL-O2K 30.9 (36,132 jobs) 20.6 (4,877 jobs)
CTC-SP2-1996 21.6 (16,699 jobs) 15.0 (2,507 jobs)
LLNL-Atlas 51.9 (19,809 jobs) 47.5 (4,872 jobs)
KTH-SP2 32.9 (9,375 jobs) 28.5 (2,267 jobs)
LLNL-uBGL 56.7 (11,008 jobs) 92.3 (6,306 jobs)

Fig. 8. Short (< 90 sec) jobs by trace
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Fig. 9. Improvement in average waiting time of short (< 90 sec) jobs from using timed-
run scheduler



128 O. Thebe, D.P. Bunde, and V.J. Leung

0

39.7

73.8

44.2

21.8 21.8

0

34.9

49.5 50.0

0

67.1

29.4

67.2

0.8

72.1
75.2

0

67.0

99.0

0

76.7

99.0

00.00

39.5

0.4

18.2

50.3

82.1

39.7

Trace

FCFS

%
 I

m
pr

ov
em

en
t

D
A

S2
−

fs
0

SD
SC

−
Pa

r9
5

D
A

S2
−

fs
3

D
A

S2
−

fs
4

SD
SC

−
Pa

r9
6

D
A

S2
−

fs
2

D
A

S2
−

fs
1

L
PC

−
E

G
E

E

L
L

N
L

−
T

hu
nd

er

C
T

C
−

SP
2−

19
95

L
A

N
L

−
C

M
5

L
A

N
L

−
O

2K

C
T

C
−

SP
2−

19
96

L
L

N
L

−
A

tla
s

K
T

H
−

SP
2

L
L

N
L

−
uB

G
L

 100

 80

 60

 40

 20

 0

EASY
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Fig. 11. Improvement in average waiting time of failing short (< 90 sec) jobs from
using timed-run scheduler
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Fig. 12. Improvement in maximum waiting time of failing short (< 90 sec) jobs from
using timed-run scheduler
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Fig. 13. Average waiting time for short jobs in KTH-SP2 trace with varying trial run
lengths and FCFS scheduling

base scheduler. Note that a “short” job is one shorter than the trial run length so
the jobs considered varies with the trial run length. We focus on short jobs to see
how long potentially-identifiable failed jobs would have to wait. From the figure,
we can see that relatively short trial runs will give us the fastest identification of
short jobs. The same holds true when we switch to the EASY scheduler, which
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Fig. 14. Average waiting time for short jobs with varying trial run lengths (FCFS)
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Fig. 15. Average waiting time for short jobs with varying trial run lengths (EASY)

gives a plot that is not visibly different from Fig. 13. The analogous plots for
the other traces examined in this section also exhibit long climbs starting at low
values of the trial run length.

Because of this observation, we focus on trial run lengths between 0 (no trial-
runs) and 400 seconds for the rest of this section. (The climb depicted in Fig. 13
has already begun by 400 seconds.) The results of our experiments are presented
in Figs. 14–19. Figures 14 and 15 show the average waiting time for short jobs.
This figure provides an idea of how much time jobs failing within their trial run
need to wait. Quick trial runs go through all available jobs faster, and so short
job waiting times are lower since they get to finish quickly. However, the data
have a distinct spike for extremely short trial-run lengths. This is because there
are only a few jobs having extremely low runtimes, and when they do appear in
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Fig. 16. Average waiting time for all jobs with varying trial run lengths (FCFS)
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Fig. 17. Average waiting time for all jobs with varying trial run lengths (EASY)

the system, they need to wait for long jobs to finish and free processors before
they get a chance to run. The average waiting time decreases after the spike
since there are now more short jobs and they do not all need to wait for long
jobs to finish. The waiting time increases after that because we are adding more
overhead time for each job to have a trial run.

Figures 16 and 17 show the overall averagewaiting time for all jobs over increas-
ing trial-run lengths. The two behaviors we see are gradually decreasing and grad-
ually increasing average waiting time. For the most part we see a gradual decrease
in average waiting time as the trial time is increased. This is probably due to an
increasing number of jobs becoming short and having their waiting times dramati-
cally reduced. In the one trace (LANL-CM5) where this does not happen, the wait-
ing time increases probably due to the overhead time for each job tohave a trial run.
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Fig. 18. Maximum waiting time for all jobs (FCFS)
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Fig. 19. Maximum waiting time for all jobs (EASY)

Long jobs have a higher maximum waiting times than short jobs. Figures 18
and 19, which show the maximum waiting time for all jobs, are also the same
graphs as the maximum waiting time for long jobs. The two behaviors we see are
the steps downward and the gradually increasing maximum waiting time. The
reasons for both are simple. For the flat-line in the steps, that maximum waiting
time is due to the same long job waiting in the base scheduler. However, when
the trial runs are long enough, that job gets to run as a short job and does not
need to wait in the base scheduler. So the maximum waiting time drops.

The gradual increase in the maximum waiting time is due to the extra over-
head time from running each trial for a longer duration. This also allows more
jobs to enter the system which increases the chances of jobs getting pushed
further back.
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From Figs. 14–19, we see that both the sixty seconds of Chiang and Vernon [5]
and the ninety seconds of Mu’alem and Feitelson [14] give a reasonable balance
between finding failures and minimizing wasted time during trial runs. The value
of 180 seconds suggested by Lawson and Smirni [11] is also reasonable, but
perhaps a bit too high, particularly for the LANL-CM5 trace.

4 Background and Related Work

Several other researchers have devised schedulers around the observation that
many short jobs are submitted with greatly inflated estimates. The most similar
idea appears in a system described by Perković and Keleher [16]. Their scheduler
uses a number of different techniques, but among them are “speculative test
runs” and “speculative backfilling”. Speculative test runs are a version of our
trial runs; jobs with long estimated running time (over 3 hours) are allowed a
brief run on the machine (5–15 minutes) in the hopes of finishing early. This
differs from what we do in that we give a trial run to all jobs whereas Perković
and Keleher [16] give speculative test runs only to some fraction of the jobs and
do so primarily as part of a larger speculative scheduling phase.

The other part of Perković and Keleher’s speculative scheduling phase is spec-
ulative backfilling: starting a job in a “hole” that occurs in the schedule even
when that job will not be able to complete unless its running time is overesti-
mated. At the end of the hole, the speculatively backfilled job is killed if it has
not already finished. In this way, only processors that would have been idle any-
way are used in the speculation. This is similar to what our scheduler does when
it continues to run jobs whose trial runs have expired, but we do not purposely
start jobs speculatively after their single trial run (though we could). Again,
this differs from our scheduler because we give trial runs to all jobs. The other
main difference between our work and that of Perković and Keleher [16] is in our
tighter focus; due to the number of ideas presented in their paper, they describe
the idea only briefly and do not analyze the effect of this optimization alone or
the effect of varying the length of a speculative execution.

Snell et al. [19] explored an idea similar to speculative backfilling. They al-
lowed jobs to backfill even when there was not enough time in the schedule for
them to complete, killing running jobs as needed to honor reservations. They
considered a number of criteria for selecting the jobs to kill, finding that it was
best to either kill the job with the most (estimated) time remaining or the job
that was most recently started. These strategies improved system performance,
but by relatively small amounts, apparently because of the work lost when jobs
were killed. (Unlike in our strategy, they might kill a job that had already been
processed for a considerable period of time.)

Lawson and Smirni [11] and Chiang et al. [4] take the idea of speculative
execution and apply it to all jobs meeting some criteria rather than using it
opportunistically. Lawson and Smirni [11] give each job whose estimated running
time exceeds 1,000 seconds a 180-second trial run. Their algorithm is based on
work by Lawson et al. [10], placing jobs into separate queues based on their
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running time. Each queue is serviced by part of the system so that short jobs
do not wait for long jobs but no job can starve. The base algorithm assumes
that job durations were estimated accurately, but Lawson and Smirni [11] found
that similar ideas work when the speculative runs are used to detect the worst
overestimates. Chiang et al. [4] similarly divided the system into two parts, each
servicing a separate queue. Since they were concerned with systems where the
users do not provide runtime estimates, the first queue is for jobs waiting to
receive a trial run and the second plays the role of our base scheduler. The main
difference between their work and ours is that they assume jobs can be assigned
to different numbers of processors. Neither of these papers considered changing
the length of the speculative run.

A manual version of timed-run scheduling was proposed by Chiang et al. [3].
They were concerned with the accuracy of user estimates and felt that users
would be able to more accurately predict the runtime of many jobs by first
making a “test run” on a smaller version of the problem or with slightly different
input parameters. They examined the effect of test runs equaling 10% of the
estimated run time but not more than 1 hour and then users submitting the
real job with reasonably accurate estimates. They showed that such a scheme
leads to performance improvements despite the overhead of the test runs. As
with our algorithm, their test runs have the effect of identifying and finishing
short jobs quickly. Our system differs in that it makes trial runs automatically
rather than assuming users make them manually. The runs themselves are less
time-consuming in our scheduler, but also do not provide improved estimates.

Others who have considered similar ideas to timed-run scheduling have done
so in the context of systems that support preemption, which is much more flex-
ible than the job restarts that we allow. Most related is work by Chiang and
Vernon [5]; they consider backfilling with “immediate service”, which attempts
to give each newly-arriving job a one-minute run before putting it in the queue.
It does this by preempting the currently-running jobs with lowest current slow-
down among jobs that have not been preempted in 10 minutes. They showed
that this strategy significantly improves average slowdown while having mini-
mal effect on 95th percentile waiting time. This is similar to our results with the
FCFS base scheduler, but preemption allows them to improve even on a sched-
uler with backfilling. Schwiegeishohn and Yahyapour [17] show how to improve
FCFS by allowing preemption only to start jobs requiring a large number of
processors. For other strategies utilizing preemption, see Kettimuthu et al. [9]
and its references.

Although technically dissimilar, our overall goal is analogous to that of Shmueli
and Feitelson [18], who argue that user productivity is a better metric than wait-
ing time or slowdown. Their scheduler attempts to prioritize jobs whose submitter
is likely to still be waiting for the result. Thus, jobs that can be finished shortly
after submission are more critical than either long jobs or jobs that have already
waited for a significant period of time. This is done so that users are able to continue
working rather than needing to switch to another task and incurring a human “con-
text switch” when they refocus on the task requiring the supercomputer system.
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Intuitively, the success of our algorithm in quickly identifying failing or unexpect-
edly short jobs should have a similar benefit. Evaluating this would require model-
ing the user (as Shmueli and Feitelson [18] do) so that system performance affects
job arrival rather than relying on the trace-based simulations we present here.

Our results can also be considered related to the work considering the ef-
fect of user estimates on scheduling performance. Many authors (e.g. [14]) have
noted that user estimates tend to be dramatically high. One factor behind this is
the very short jobs (including quick failures) we target with timed-run schedul-
ing. In addition, users tend to reuse estimates once they find something that
works and also strongly prefer “round” numbers (e.g. 5 minutes, 1 hour, etc).
Accounts initially differed on whether overestimates improved [14,23] or hurt [3]
performance. These observations were eventually reconciled with the finding that
overestimates initially help but that extreme overestimates eventually hurt per-
formance [20,22]. Regardless of this, it seems reasonable that good estimates
could be useful since they provide more information to the scheduler. This has
led to work trying to get users to improve their estimates [12] as well as work to
have a system generate its own estimates [6,8,15,21].

5 Discussion

Our results in Section 3 show that timed-run scheduling can more quickly alert
users about jobs that fail and benefit short jobs in general. In some cases, it has
even been shown to improve average and maximum waiting times for the entire
trace. We feel that this approach is promising and deserves further investigation.

The most obvious open problem is to adapt this strategy to other backfilling
schemes. As mentioned in Section 2.1, it is not clear how to preserve the benefits
of reservations when the reservations themselves may be violated if trial runs are
granted to new jobs. One solution would be to rebuild the estimated schedule
whenever trial runs cause reservations to be violated. Another solution would be
to give initial guarantees with some slack to allow for trial runs by later arriving
jobs. Each of these solutions has its own drawbacks, and we believe more research
is necessary to address reservations.

It would also be beneficial to consider the affect of overhead for killing jobs. In
our experiments, it was optimistically assumed that processors from a killed job
could be instantly reassigned to another job. We do not believe that including
realistic amounts of overhead will significantly change the results, but this would
need to be verified before timed-run scheduling could be adopted.

Additionally, experiments with some of our policy decisions in Section 2.1
could further improve the performance of timed-run scheduling. Specifically, the
decision that long jobs must wait for their turn in the base scheduler could
be replaced by a policy similar to the speculative backfilling of Perković and
Keleher [16].

It would also be interesting to evaluate the performance of our algorithm
on user models such as those of Shmueli and Feitelson [18] to see if our quick
completion of short jobs improves user satisfaction and productivity.
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16. Perković, D., Keleher, P.J.: Randomization, speculation, and adaptation in batch
schedulers. In: Proc. 2000 ACM/IEEE Conf. on Supercomputing (2000)

17. Schwiegelshohn, U., Yahyapour, R.: Improving first-come-first-serve job scheduling
by gang scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-
WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 180–198. Springer, Heidelberg
(1998)

18. Shmueli, E., Feitelson, D.G.: On simulation and design of parallel-systems sched-
ulers: Are we doing the right thing? IEEE Trans. Parallel and Distributed Systems
(to appear)

19. Snell, Q.O., Clement, M.J., Jackson, D.B.: Preemption based backfill. In: Proc. 8th
Workshop on Job Scheduling Strategies for Parallel Processing [2], pp. 24–37

20. Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Characterization of
backfilling strategies for parallel job scheduling. In: Proc. Intern. Conf. on Parallel
Processing Workshops, pp. 514–522 (2002)

21. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Backfilling using system-generated predic-
tions rather than user runtime estimates. IEEE Trans. on Parallel and Distributed
Systems 18(6), 789–803 (2007)

22. Tsafrir, D., Feitelson, D.G.: The dynamics of backfilling: Solving the mystery of
why increased inaccuracy help. In: Proc. IEEE Intern. Symp. on Workload Char-
acterization, pp. 131–141 (2006)

23. Zotkin, D., Keleher, P.J.: Job-length estimation and performance in backfilling
schedulers. In: Proc. 8th IEEE International Symposium on High Performance
Distributed Computing, pp. 236–243 (1999)



Effects of Topology-Aware Allocation Policies on
Scheduling Performance

Jose Antonio Pascual, Javier Navaridas, and Jose Miguel-Alonso

The University of the Basque Country, San Sebastian 20018, Spain
{joseantonio.pascual,javier.navaridas,j.miguel}@ehu.es

Abstract. This paper studies the influence that job placement may have
on scheduling performance, in the context of massively parallel comput-
ing systems. A simulation-based performance study is carried out, using
workloads extracted from real systems logs. The starting point is a par-
allel system built around a k -ary n-tree network and using well-known
scheduling algorithms (FCFS and backfilling). We incorporate an alloca-
tion policy that tries to assign to each job a contiguous network partition,
in order to improve communication performance. This policy results in
severe scheduling inefficiency due to increased system fragmentation. A
relaxed version of it, which we call quasi-contiguous allocation, reduces
this adverse effect. Experiments show that, in those cases where the ex-
ploitation of communication locality results in an effective reduction of
application execution time, the achieved gains more than compensate the
scheduling inefficiency, therefore resulting in better overall performance.

1 Introduction

Supercomputer centres are usually designed to provide computational resources
to multiple users running a wide variety of applications. Users send jobs to a
scheduling queue, where they wait until the resources required by the job are
available. These jobs may vary from large parallel programs that need many pro-
cessors, to small sequential programs. The scheduler manages system resources,
taking into consideration different policies that may restrict the use in terms of
maximum number of processors or maximum execution time. Other restrictions
may be implemented such as user or group priorities, quotas, etc.

Generally, site performance is measured in terms of the utilization of the sys-
tem and the slowdown suffered by jobs while waiting in the queue until the re-
quired resources become available. Consequently, a variety of scheduling policies
[1] and allocation algorithms [2] [3] [4] have been developed aiming to minimize
both the number of nodes that remain idle and the job waiting times. Scheduling
policies are in charge to decide the order in which jobs are launched. Schedul-
ing decisions may be based on different variables, such as job size, user priority
or system status. Allocation algorithms map jobs onto available resources (typ-
ically, processors). Locality-aware policies select resources taking into account
network characteristics, such as its topology or the distance between processors.
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The most commonly used scheduling policies are FCFS (First-Come First-
Serve) and FCFS + backfilling, sometimes with variations. The FCFS discipline
imposes a strict order in the execution of jobs. These are arranged by their arrival
time and order violations are not permitted, even when resources to execute the
first job are not available but there are enough free resources to execute some
other (or others) jobs in the queue. The main drawback of this policy is that it
produces severe system fragmentation because some processors can remain idle
during a long period of time due to the sequentially ordered execution of jobs.
Idle processors could be used more efficiently running less-demanding jobs, thus
achieving a performance improvement.

With the goal of minimizing the effect of this strictly sequential execution order,
several strategies have been developed [1], backfilling being the most widely used
due to its easy implementation and proven benefits. This policy is a variant of
FCFS, based on the idea of advancing jobs through the queue. If some queued jobs
require a smaller amount of processors than the one at the head, we can execute
them until the resources required by the job at the head become available. This
way, utilization of resources is improved because both network fragmentation and
job waiting times decrease. The reader should note that, throughout this paper,
we will often use the word network to refer to the complete parallel system.

Network fragmentation caused by scheduling algorithms is known as external
fragmentation [5]. But a different kind of fragmentation appears in topologies like
meshes or tori when the partitions reserved to jobs are organized as sub-meshes
or sub-tori; for example, to allocate a job composed by 4x3 processes, some algo-
rithms search for square sub-meshes, 4x4 being the smallest size that can be used
to run the job. In this case, four processors reserved for the job will never be used.
This effect is named internal fragmentation [5]. Some job allocation algorithms try
to minimize this effect. However, this work does not consider this effect, because
each parallel job will be assigned to the exact number of required nodes.

Neither FCFS nor backfilling are allocation algorithms, as they do not take
into account the placement of job processes onto network nodes. In a parallel
system, application processes (running on network nodes) communicate inter-
changing messages. Depending on the communication pattern of the application,
and the way processes are mapped onto the network, severe delays may appear
due to network contention; delays that result in longer execution times. If we
have several parallel jobs running in the same network, each of them randomly
placed along the network, communication locality inside each job will not be
exploited; and what is more, messages from different applications will compete
for network resources, greatly increasing network contention. An effective ex-
ploitation of locality results in smaller communication overheads, which reflects
in lower running times. Note that searching for this locality is expensive in terms
of scheduling time, because jobs cannot be scheduled until contiguous resources
are available (and allocated), so that network fragmentation increases. In or-
der to avoid this effect, we propose the utilization of quasi-contiguous allocation
schemes in which some restrictions of the purely-contiguous policy are relaxed,
allowing the non-contiguous allocation of part of the required network nodes.
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This way network occupancy can be increased, at the cost of some penalty in
terms of application run times.

A trade-off has to be found between the gains attainable via exploitation of
locality and the negative effects of increasing fragmentation. This is precisely the
focus of this paper. We study only the placement in k -ary n-tree topologies [6],
but the tools and methodology presented here will be extended to other topolo-
gies such as meshes or tori. Our final goal is to demonstrate that the introduction
of locality-aware policies in the schedulers may provide important performance
improvements in systems with multiple users and different applications.

The rest of the paper is organized as follows. In Section 2 we discuss some
previous work on scheduling and allocation policies, describing in Section 3 those
used in this paper. The simulation environment and the workloads used for the
experiments are described in Section 4. Section 5 analyze a few preliminary
experiments that provide evidence of the pros and cons of consecutive allocation
schemes. These experiments are further elaborated in Section 6, that focuses on
the search of a trade-off between application speedup and scheduling slowdown.
Section 7 closes the paper with some conclusions and future lines of research.

2 Related Work

Extensive research has been conducted in the area of parallel job scheduling.
Most works were focused on the search of new scheduling policies that minimize
job waiting times, and on allocation algorithms that minimize network fragmen-
tation. In [1] authors analyzed a large variety of scheduling strategies; however,
none of them took into account virtual topologies of applications (the logical way
of arranging processes to exploit communication locality) or network topology.

To our knowledge, only [5] described a performance study of parallel applica-
tions taking into account locality-aware allocation schemes. The starting point
of this job was the fact that, in schedulers optimized for certain network topolo-
gies (they focused on meshes and tori), allocation was always done in terms of
sub-meshes (or sub-tori). This policy optimized communication in terms of lo-
cality and non-interference, but caused severe fragmentation, both internal and
external. The authors did not use scheduling with backfilling, a technique that
would partly reduce this undesirable effect. However, they tested a collection
of allocation strategies that sacrifice contiguity in order to increase occupancy.
They claimed that the effect on application performance attributable to the
partial loss of contiguity was low, and more than compensated by the overall
improvement in system utilization.

A more recent paper [7] evaluated the positive impact that locality-aware
allocations have on applications performance, but focused on three particu-
lar applications, running on supercomputers connected by 3-D interconnection
networks.

Part of our experiments corroborates the conclusions of the cited papers. How-
ever, our work differs from them in several important aspects. Previous research
work shows that, depending on the communication pattern of the application,
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contiguous allocation provides remarkable performance improvements [8]. There-
fore, we do not make extensive use of non-contiguity to increase system utilization;
instead, we incorporate backfilling scheduling policy into the scheduler. Addition-
ally, we focus on k -ary n-trees, instead of meshes or tori.

A review of schedulers in use in current supercomputers, such as Maui, Sun
Grid Engine, and PBS Pro, shows that they do not implement contiguous allo-
cation strategies. Some of them provide methods for the system administrator to
develop their own strategies but, in practice, this is rarely done. To our knowl-
edge, the only two current schedulers that maintain the locality are the one
used by the BlueGene family supercomputers [9] and SLURM. The BlueGene
scheduler puts tasks from the same application in one or more midplanes of
8x8x8 nodes which decreases network contention and allows locality exploita-
tion. SLURM performs always a best-fit algorithm building first a Hilbert curve
through the nodes on the Sun Constellation and Cray XT systems in order to
keep locality as higher as possible. In contrast, the scheduling strategy used by
the default scheduler (PBS Pro) on Cray XT3/XT4 systems (also a custom-made
3D tori) simply gets the first available compute processors [10].

3 Scheduling and Placement Policies

We used simulation to carry out an analysis of the impact that contiguous and
quasi-contiguous allocation strategies have on scheduling performance. Our sim-
ulator implements two different scheduling policies (FCFS with and without
backfilling), as well as three allocation algorithms (non-contiguous, contiguous,
and quasi-contiguous) implemented for k -ary n-trees. The workloads used to
feed the simulations have been obtained from actual supercomputers and are
publicly available at the Parallel Workload Archive [11].

The details of the scheduling algorithms used in the experiments are as follows:

1. First Come First Serve (FCFS): In this policy, jobs are strictly processed
in arrival order and executed as soon as there are enough available resources.
The scheduling process is stopped until this condition is reached, even if there
are enough free resources that could be allocated to other waiting jobs.

2. Backfilling (BF): This strategy permits the advance of jobs, even when
they are not at the head of the queue, in such a way that system utiliza-
tion increases, but without delaying the execution of the jobs that arrived
first. The mechanism works as follows. A reservation for the first job in the
queue is done, if enough resources are not currently available; the reserva-
tion time is computed taking into account the estimated termination time of
currently running jobs. Other waiting jobs demanding fewer resources may
be allowed to run while the first one is waiting. When the time of the reser-
vation is reached, the waiting job has to run; if at that point resources are
not available, some running, advanced jobs must be killed, because other-
wise the reservation would be violated. This way, the starvation of the first
job is avoided. Reservations are computed using a parameter called User
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Estimated Runtime, which represents a user-provided estimation of the job
execution time [12]. In some cases the scheduling system itself may provide
this value, based on estimations made over the historical system logs [13].

Other scheduling methods have been proposed in the literature, such as SJF
(Shortest Jobs First [1]) which selects the jobs to be executed by their size instead
of their arrival time, and several variations of backfilling (see [1]). However, the
most commonly used algorithm in production systems is the EASY backfilling
[1], also known as aggressive backfilling. EASY performs reservations only over
the first job in the queue. This is the policy used in this study.

Regarding the allocation algorithms, the following are included in the study:

1. Non-contiguous: This policy performs a search of free nodes making a
sequential search over them, ignoring the locality. This is the most used
technique in commercial systems, like the Cray XT3/XT4 systems, that
simply gets the first available compute processors [10]. This scheme provides
a flat vision of the network, ignoring its topological characteristics and the
virtual topologies of scheduled applications [4]. Note that in the long run it
behaves as a random allocation of resources.

2. Contiguous: In this scheme job processes are allocated to nodes maintain-
ing them as close as possible. To minimize the distance between processes
(nodes) in a k -ary n-tree, we have defined the concept of level of a job. This
level is related to the number of stages in the tree (n), and the number of
ports per switch (k up and k down) [6]. Stage 1 corresponds to switches
at the bottom of the tree, i.e., those directly connected to compute nodes.
Small jobs of less than k nodes can be allocated to a collection of nodes
attached to the same stage-1 switch, without requiring communication in-
volving switches in upper stages of the tree. These are level-1 jobs. However,
jobs larger than k will require the utilization of switches at stages 2, 3, etc.
In general, up to ki nodes can be allocated using stage-i switches.

3. Quasi-contiguous: This algorithm is a relaxed version of the previous one.
It searches nodes that are contiguously allocated but, if the required number
of free nodes is not found at the job level, it searches for the remaining nodes
using switches one level above; contiguity is partly kept. The threshold of
required-but-not-found free nodes that triggers the search on a higher level is
a parameter provided to the algorithm, and the value providing best results
is highly dependent on the size and type of the jobs that are executed in
the systems. This parameter, which we call qct (quasi-contiguity threshold)
is actually a percentage of the job size representing the number of tasks of
that job allowed to be allocated using one extra level of the tree. Using this
equation

maxj∈J =
⌈

qct
100

× sizej

⌉
. (1)

the algorithm computes maxj∈J , the maximum number of tasks of the job
j allowed to be allocated using switches at the next level.
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The utilization of additional stages of the tree may increase network con-
tention, so we try to keep it under control by reducing the number of mes-
sages traversing high-level switches. To do so, we maintain the maximum
possible number of nodes under switches belonging to the same level; actu-
ally, in favorable conditions this algorithm behaves exactly like the purely
contiguous one. However, as some tasks can be assigned to non-contiguous
portions of the network, external fragmentation is reduced. The qct thresh-
old will maintain the number of quasi-contiguously allocated tasks limited,
in order to reduce the interference created by the messages of different
applications.

The contiguous algorithm starts computing the level to which the job belongs,
and the size of this level (level_size, the number of compute nodes below a
single switch located at that level, which is the maximum size of a job that
can be contiguously allocated below that level). After this preliminary step, the
search of free nodes is performed, in groups of level_size nodes following a first fit
allocation scheme, because this way all the allocated nodes would be contiguous,
that is, connected by the same switch or switches at the required level. If the
complete tree is traversed but the necessary number of nodes has not been found,
the job cannot be allocated. For example, in a 4-ary 3-tree topology, if we need

Fig. 1. Top: a 4-ary 3-tree; compute nodes are not represented for the sake of clarity.
Bottom: a section of the network, with some examples of allocated jobs.
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to allocate a 4-node job, we have to find a completely empty stage-1 switch. For
a 6-node job (level-2) we need to find 6 free nodes that are connected using only
stage-1 and stage-2 switches.

The quasi-contiguous algorithm requires two steps. Firstly, it performs a
search for contiguous partitions as we stated before. If not found, because there
are not enough free nodes at the job level, and the percentage of non-allocated
tasks is below the qct threshold, the search continues in the level above. For
example, in a 4-ary 3-tree topology, if we need to allocate a 4-node job, we start
searching for completely empty stage-1 switches but, if none is available, another
search is performed using stage-2 switches.

In Figure 1 we represent some simple allocation examples in a 4-ary 3-tree
topology. We can observe how Job 1, of size 4, can be allocated into a single
stage-1 switch; this is a contiguous allocation. The level of Job 2, of size 6, is 2;
this means that it is allocated to two stage-1 switches that directly connected
via switches at stage 2. Therefore, allocation of Job 2 is also contiguous. Job 3
is quasi-contiguously allocated because it should be a level-1 job (size is 4) but
it requires the utilization of stage-2 switches.

4 Description of the Workloads

As we stated before, in this work we evaluate the performance of schedulers
using logs of workloads extracted from real systems that are available from the
PWA (Parallel Workload Archive, [11]). These logs have information about the
system as described in the SWF format (Standard Workload Format) [14]. In
this study we used the following fields:

1. Arrival Time: The timestamp at which a job arrives to the system queue.
Logs are sorted by this field.

2. Execution Time: The interval of time that the job was running in the
system. In order to simulate the improvement of performance due to the ex-
ploitation of communication locality, we scale this field by applying a speed-
up factor.

3. Processors: Number of processors required by the job.
4. User Estimated Runtime: This information is used only by the backfilling

scheduling policy and represents a user estimation of the job execution time.
5. Status: This field represents the status of a job. Jobs can fail, or be cancelled

by the user or by the system, before or after they started the execution. Some
studies do not include in the simulations those jobs that were not successfully
completed (due to failure or cancellation), but we consider important all the
jobs because they stayed in the queues, delaying the execution of other jobs.

In our experiments, all times were measured in minutes. We only used workloads
that provide User Estimated Runtime information, because of the need of this
parameter to perform a backfilling scheduling policy.

In [15], the authors suggested a metric to measure the load managed by the
scheduler. Selecting workloads with different values of this metric allows us to
check our proposals on different scenarios. The load is computed as follows:



Effects of Topology-Aware Allocation Policies on Scheduling Performance 145

load =
(∑

j∈J sizej × runtimej

P × (Tend − Tstart)

)
. (2)

where P is the number of processors, J is the set of jobs between Tstart and Tend,
Tend is the last termination time and Tstart is the last arrival time of the first
1% of the jobs. This 1% of firstly arrived jobs and the jobs that terminate after
the last arrival are removed, in order to reduce warm up and cool down effects.

From the workloads available at the PWA, we have selected these three:

1. HPC2N (High Performance Computing Center North). This is a
system located in Sweden, composed by 240 compute nodes and using the
Maui scheduler. The workload log contains information of 527,371 jobs. Load:
0.62.

2. LLNL Thunder (Lawrence Livermore National Laboratory). This
is a Linux cluster composed by 4008 processors in which the nodes are con-
nected by a Quadrics network. The scheduler used in this system is Slurm.
The log is composed by 128,662 job records. Load: 0.76.

3. SDSC BLUE(San Diego Supercomputer Center). This system is an
IBM SP located in San Diego, with 1152 processors. The scheduler in use
is Catalina, developed at SDSC, and performs backfilling. The log contains
information of 243,314 jobs. Load: 0.86.

We simulated these workloads in k -ary n-trees adapted to each system sizes.
For the first workload we have simulated a 4-ary 4-tree with 256 nodes. For the
other two we have used a 4-ary 6-tree with 4096 nodes. The number of nodes
of the topologies does not match with the nodes of the workloads, so we have
considered that the extra processors are not installed and they are ignored in
the simulation.

5 Costs and Benefits of Contiguous Allocation Policies

Parallel applications performance depends on many factors, such as the com-
munication pattern, distance between the application tasks, network contention,
etc. The first one is an application-dependent characteristic, but the others are
affected by the way the application is allocated.

A contiguous allocation strategy reduces the distance between the applica-
tion tasks, to accelerate the interchange of messages and to reduce network
utilization. An important, additional effect is that interference with other run-
ning applications is also reduced. This interference, that causes contention for
network resources, may result in severe performance drops. Therefore, the con-
tiguous allocation of a job improves the overall performance of the system, not
only of that job.

In [8], the authors evaluate the possible benefits of contiguity for a collection of
parallel applications. These benefits are highly dependent on the communication
patterns of the applications. However, as we will show, the search of contiguity
can be very expensive in terms of scheduling time. The execution of jobs may be
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delayed for a long time, until the required resources are available, the external
fragmentation increases and the overall system utilization suffers. To minimize
these negative effects we have introduced the concept of quasi-contiguity, a re-
laxed version of the contiguous allocation scheme which is expected to be less
harmful in terms of scheduling time, while providing the same (or nearly the
same) benefits in terms of application acceleration.

In order to validate the benefits of a contiguous and quasi-contiguous alloca-
tion policy, we have carried out several simulations using the INSEE simulator
[16]. This tool does not simulate a scheduling algorithm, just the execution of a
message-passing application on a multicomputer connected via an interconnec-
tion network. To feed this simulator we need traces of the messages interchanged
by the communicating tasks. We have obtained these traces using a selection of
the well-known NAS Parallel Benchmarks (NPB [17]). INSEE performs a de-
tailed simulation of the interchange of the messages through the network, con-
sidering network characteristics (topology, routing algorithm) and application
behavior (causality among messages). The output is a prediction of the time
that would be required to process all the messages in the application, in the
right order, and including causal relationships. Therefore, it only measures the
communication costs, assuming infinite-speed CPUs. When using actual ma-
chines, a good portion of the time (ideally, most of the time) would be devoted
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to CPU processing, and the impact of accelerated communications in overall
execution time would be smaller.

The simulated topology is a 4-ary 4-tree, with 256 nodes. Instead of one
application, we simulate the simultaneous execution of sixteen instances (jobs)
of the same application (actually, trace), each one using sixteen nodes. The
sixteen jobs have been allocated onto the network using three strategies:

1. Contiguous: Each job is allocated onto four level-2 switches, so the com-
munications between tasks of the same job never need links or switches at
level 3.

2. Quasi-Contiguous: In this strategy, we allow a partial non-contiguous al-
location of the job tasks. The four experiments performed allow the non
contiguous allocation of 1, 2, 3 or 4 tasks of each job, respectively.

3. Non-Contiguous: Tasks of each job are distributed along all the switches
at level 4 (the maximum level of this tree). This means that intra-job com-
munications do use level-4 switches, and also that messages of different jobs
compete for network resources.

Figure 2 shows the execution time of each application using each strategy nor-
malized to the time required by the contiguous placement. The benefits of con-
tiguous allocation strategies are clear: non-contiguously allocated applications
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run between 2 and 3 times slower. Regarding the quasi-contiguous allocation,
we can appreciate that performance is always good, being only 30-50% higher
to that obtained with purely contiguous allocation. These results confirm our
expectations: a good allocation strategy can substantially reduce the execution
time of a set of applications sharing a parallel computer as stated in [8].

Now we will asses the real cost of contiguity on scheduling. Using the schedul-
ing simulator with the selected workloads (those from the PWA), we measure
application waiting time for FCFS and backfilling scheduling algorithms, for
purely contiguous allocation and quasi-contiguous allocation for four values of
qct : 10, 20, 30 and 40%. Results are plotted in Figure 3. Note that values are
relative to those obtained with the same workload and scheduling using non-
contiguous allocation. Results are devastating: waiting times can be up to 100
times worse if contiguity is a requirement. Values are better for quasi-contiguity,
but still bad. However, note that we did not take into consideration the accel-
eration that jobs experience due to better allocation. We will explore this issue
in the next section. It is remarkable the difference between the LLNL workload
waiting times and the other workloads waiting times, due to the presence of big
size jobs (some of them of 1024 nodes). Finding contiguous partitions of this size
is quite difficult, which results in longer waiting times for them and for the jobs
that follow.

6 Tradding Off Costs and Benefits of Contiguous
Allocation

In this section we carry out a collection of experiments to thoroughly evalu-
ate the effect that contiguous allocation may have on scheduling performance.
In these experiments we consider that contiguous allocation is able to accelerate
the execution of parallel jobs. However, the actual values of attainable speed-ups
are not available to us – they strongly depend on the communication character-
istics of the applications, something that requires an exhaustive knowledge of
each and all the applications included in the workload logs. We do not have
that knowledge. For this reason, we introduce speed-up as a parameter of the
simulation. With this setup we are able to know to what extent a certain level of
application speed-up compensates the performance drop introduced by a restric-
tive allocation policy. This parameter is applied only to the parallel applications
of the workload remaining the sequential jobs with the same runtime.

We have studied several combinations of scheduling and allocation policies.
We evaluate them in terms of these two measurements:

1. Job waiting time. The time jobs spent in the queue.
2. Job total time. All the time spent in the system, which includes the time

waiting at the queue and the execution time.

As stated before, when using contiguous and quasi-contiguous allocation, a
speed-up factor has been applied to reduce the execution time. Note again that
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applying a speed-up factor to a running time improves not only the application
finish time, but also reduces the time spent by the jobs using system resources;
and therefore, the scheduling performance is increased too. In the simulations
we used the workloads from the PWA described in Section 4.

The quasi-contiguous strategy has been evaluated with four values of qct.
Results are depicted in Figures 4, 5, 6 and 7. Note that, as the range of values is
very wide, we used a logarithmic scale in the Y axis of all figures. We represent
the averages of total time (waiting plus running) and, in some cases, waiting time
alone. In each graph we can see six lines, one per allocation policy. Tested speed-
up factors range from 0% to 50%. When this factor is 0% it means that, although
the scheduler seeks contiguity, using it does not accelerate program execution.
In all other cases we accelerate the execution times reported in the logs using
the indicated speed-up factors (a value of 10% means that the execution requires
10% less time to be executed with that allocation scheme). Obviously, we cannot
assume any acceleration with non-contiguous allocation, and for this reason the
corresponding line is flat.

Let us now pay attention to Figure 4, where the LLNL workload is studied
in detail. In all scheduling-allocation combinations, results with speed-up=0 are
as appalling as described in the previous section. However, when this value in-
creases (that is, when applications really run faster when allocated contiguous
resources) the picture changes. At speed-up values between 5% - 30% the con-
tiguous and quasi-contiguous approaches show their potential. It is clear that the
quasi-contiguous strategies prove beneficial at lower speed-ups than the purely
contiguous. Also, note that if the scheduler uses backfilling, global system effi-
ciency is higher (the workload is processed faster), and the thresholds at which
contiguity is advantageous are lower.

Figure 5 shows the results of the same experiments, but from a different per-
spective. Only waiting times are shown. A direct comparison with the previous
figure help us to determine which part of the total time is spent in the queue, and
which part is running time. For the cases with small speed-ups, most of the time
is waiting time. When applying a speed-up factor, running time is accordingly
reduced, but waiting time is also reduced.

In Figures 6 and 7 we have summarized results for workloads HPC2N and
SDSC. To be succinct, and given that the qualitative analysis performed with
LLNL is still valid, we only show results of total times for the FCFS and back-
filling. For the SDSC workload, the threshold at which contiguous and non-
contiguous allocation starts being beneficial falls between 15% and 25% (higher
than that of LLNL). Similar, although slightly lower, values required by HPC2N
are between 10% and 25%.

In all figures, we can see the benefits of using the quasi-contiguous policy. The
scheduler performs better and, as described in the previous section, the expected
speed-ups would be only slightly lower that those attainable with contiguous
allocation. We have to remark that the implementation of this strategy tries
always to find first a contiguous allocation, and only uses non-contiguous nodes
as the last alternative. Therefore, if we estimate that we can obtain a certain
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speed-up when using a given value of qct, we will actually obtain better speed-
ups, because in some cases the scheduler will obtain a contiguous allocation for
the jobs.

Note that the increase of the qct parameter results in an equalization of the
FCFS and backfilling performance reducing the difference between them. The
reason is that the quasi-contiguous allocation strategy has a similar effect to
the backfilling policy allowing the schedule of more jobs and thus, reducing the
waiting time in the queue.

7 Conclusions and Future Work

Most current supercomputing sites are built around parallel systems shared be-
tween different users and applications. The optimal use of resources is a complex
task, due to the heterogeneity in user and application demands: some users run
short sequential applications, while others launch applications that use many
nodes and need weeks to be completed.

Supercomputers are expensive to build and maintain, so that conscious ad-
ministrators try to keep utilization as high as possible. However, the efficient use
of a parallel computer cannot be measured only by the lack of unused nodes.
Other utilization characteristics, although not that evident, may improve the
general system performance.

In this paper we have studied the impact on performance of allocation and
scheduling policies. We compared two scheduling techniques combined with three
allocation algorithms in a k -ary n-tree network topology. Allocation algorithms
that search for contiguous resources have an elevated cost in terms of system
fragmentation, but also are able to accelerate the execution of applications. With
the quasi-contiguous allocation, this acceleration is slightly penalized but the
scheduling performance is significantly improved.

Experiments with actual workloads demonstrate that the cost of contigu-
ous allocation is very high, but when the improvement of run time experienced
by jobs is around 20-30%, this cost is compensated. Using relaxed versions of
the contiguous allocation strategy (which we have called quasi-contiguous) this
threshold lowers significantly, in such a way that in some cases speed-ups around
10% are enough to provide improvements in terms of scheduling efficiency.

This study has focused only in tree-based networks; the next step will be a
performance study for other topologies (in particular, for k -ary n-cubes and k -
ary n-tori). Because of the highly dependency of the allocation algorithms on
the underlying topology, new quasi-contiguous allocation strategies should be
developed for each new studied topology. We have provided application accel-
eration as a simulation parameter, although we know that the real acceleration
depends heavily on the communication pattern of the applications, and on the
way processes are mapped onto system nodes. For this reason, we plan to per-
form more complex simulations, in which the actual interchanges of messages
are considered; to that end, we plan to integrate INSEE [16] into the scheduling
simulator.
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Finally, we plan to implement our allocation techniques into a real (com-
mercial or free) scheduler in order to make real measurements in production
environments with real applications.
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Abstract. Scheduling a task graph onto several processors is a trade-off
between maximising concurrency and minimising interprocessor commu-
nication. A technique to reduce or avoid interprocessor communication
is task duplication. Certain tasks are duplicated on several processors to
produce the data locally and avoid the communication among processors.
Most algorithms using task duplication are for the classic model, which
allows concurrent communication and ignores contention for communica-
tion resources. The recently proposed, more realistic contention model in-
troduces contention awareness into task scheduling by assigning the edges
of the task graph to the links of the communication network. It is intuitive
that scheduling under such a model benefits even more from task duplica-
tion. This paper proposes a contention-aware task duplication scheduling
algorithm, after investigating how to use task duplication in the contention
model. An extensive experimental evaluation demonstrates the significant
improvements to the speedup of the produced schedules.

1 Introduction

In the task scheduling area, a program is represented as a directed acyclic graph,
called task graph, where the nodes represent the tasks and the edges represent
the communications between the tasks. Scheduling such a task graph on a set of
processors for fastest execution is a well known NP-hard optimisation problem
[10] and many heuristics have been proposed [3,7,10,17].

Task duplication is a well known technique to reduce the necessary commu-
nication between processors. In this technique certain crucial tasks are executed
on more than one processor. The data they procedure is then locally available on
different processors and less communication has to be sent between the proces-
sors. Again, many algorithms have been proposed that incorporate this technique
into scheduling [4,7,8,9].

The classic model used by most scheduling algorithms heavily idealises the
target parallel system. It is assumed that all communication can happen at the
same time and that all processors are fully connected, in other words there is no
contention for communication resources. It is now more and more recognised that
this classic model is not realistic and does not suffice for accurate and efficient
task scheduling [1,5,15,16]. Contention aware scheduling algorithms depart from
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the classic model and schedule not only the tasks, but also the edges on the
communication resources.

It is intuitive that avoiding or reducing interprocessor communication be-
comes more important under the contention model. Consequently, task duplica-
tion should be more beneficial under this model. To the authors’ best knowledge
however, no task duplication algorithm to be used under a contention model
has been proposed. In this paper we propose a contention-aware task duplica-
tion scheduling algorithm. It works under the general contention model and its
algorithmic components are based on state-of-the-art techniques used in task
duplication and contention-aware algorithms. We investigate the changes to the
scheduling model (Section 3) and discuss the proposed algorithm (Section 4).
An extensive experimental evaluation shows that our algorithm is far superior
to contention-aware algorithms that do not use task duplication and to task
duplication algorithms under the classic model (Section 5). The next section
gives a background on task scheduling, including the different models and basic
algorithmic techniques.

2 Task Scheduling

The program to be scheduled is represented by a directed acyclic graph (DAG),
called task graph, G = (V,E, w, c). The nodes V represent the program’s tasks
and the edges E the communications between them. An edge eij ∈ E represents
the communication from node ni to node nj . The positive weight w(n) of node
n ∈ V represents its computation cost and the non-negative weight c(eij) of
edge eij ∈ E represents its communication cost.

The set {nx ∈ V : exi ∈ E} of all direct predecessors of ni is denoted by
pred(ni) and the set {nx ∈ V : eix ∈ E} of all direct successors of ni, is
denoted by succ(ni).

A schedule of a task graph on a target system consisting of a set P of dedi-
cated processors is the association of a start time and a processor with each of its
nodes: ts(n, P ) denotes the start time of node n ∈ V. Thus, the node’s finish
time is given by tf (n, P ) = ts(n, P )+w(n). The processor to which n is allocated
is denoted by proc(n). Further, let tf (P ) = maxn∈V:proc(n)=P {tf(n, P )} be the
processor finish time of P and let sl(S) = maxn∈V{tf(n, proc(n))} be the
schedule length (or makespan) of S, assuming minn∈V{ts(n, proc(n))} = 0.
For such a schedule to be feasible, the following two conditions must be fulfilled
for all nodes in G.

The Processor Constraint enforces that only one task is executed by a
processor P at any point in time, which means for any two nodes ni,nj ∈ V that
either tf (ni, P ) ≤ ts(nj , P ) or tf (nj , P ) ≤ ts(ni, P ) must be true.

The Precedence Constraint enforces that for every edge eij ∈ E, ni, nj ∈
V, the destination node nj can only start after the communication associated
with eij has arrived at nj ’s processor P

ts(nj , P ) ≥ tf (eij , proc(ni), P ). (1)
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tf (eij , Psrc, Pdst) is the edge finish time of eij communicated from Psrc to Pdst,
which is defined later, depending on the scheduling model.

2.1 Classic Scheduling

Traditionally, most scheduling algorithms have employed a strongly idealised
model of the target parallel system [3,7,10,17].

Definition 1 (Classic System Model).
A parallel system Mclassic = (P) consists of a finite set of dedicated processors
P connected by a communication network. This dedicated system has the fol-
lowing properties: i) local communication has zero costs; ii) communication is
performed by a communication subsystem; iii) communication can be performed
concurrently; iv) the communication network is fully connected.

Based on this system model, the edge finish time only depends on the finish
time of the origin node and the communication time. The edge finish time of
eij ∈ E is given by

tf (eij , Psrc, Pdst) = tf (ni, Psrc) +
{

0 if Psrc = Pdst

c(eij) otherwise (2)

Thus, communication can overlap with the computation of other nodes, an un-
limited number of communications can be performed at the same time, and
communication has the same cost c(eij), regardless of the origin and the desti-
nation processor, unless the communication is local.

2.2 List Scheduling

The scheduling problem is to find a schedule with minimal length. As this prob-
lem is NP-hard [10], many heuristics have been proposed for its solution. A
heuristic must schedule a node on a processor so that it fulfils all resource and
precedence constraints.

The best known scheduling heuristic is list scheduling as given in Algorithm 1.
In this simple, but common, variant of list scheduling the nodes are ordered
according to a priority in the first part of the algorithm. The schedule order
of the nodes is important for the schedule length and many different priority
schemes have been proposed [6,13,17]. A common and usually good priority is
the node’s bottom level bl, which is the length of the longest path leaving the
node. Recursively defined it is

bl(ni) = w(ni) + max
nj∈succ(ni)

{c(eij) + bl(nj)} (3)

2.3 Contention Aware Scheduling

The classic scheduling model (Definition 1) does not consider any kind of con-
tention for communication resources. To make task scheduling contention aware,
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Algorithm 1. List scheduling
1: Sort nodes n ∈ V into list L, according to priority scheme and precedence con-

straints.
2: for each n ∈ L do
3: Find processor P ∈ P that allows earliest finish time of n.
4: Schedule n on P .

and thereby more realistic, the communication network is modelled by a graph,
where processors are represented by vertices and the edges reflect the commu-
nication links. The awareness for contention is achieved by edge scheduling [11],
i.e. the scheduling of the edges of the DAG onto the links of the network graph,
in a very similar manner to how the nodes are scheduled on the processors.

The network model proposed in [15] captures network [11,13] as well as end-
point contention [1,5]. This is achieved by using different types of edges and
by using switch vertices in addition to processor vertices. Here, it suffices to
define the topology network graph to be TG = (P,L), where P is a set of
vertices representing the processors and L is a set of edges representing the
communication links. The system model is then defined as follows.

Definition 2 (Target Parallel System – Contention Model).
A target parallel system MTG = (TG) consists of a set of processors P connected
by the communication network TG = (P,L). This dedicated system has the
following properties: i) local communications have zero costs; ii) communication
is performed by a communication subsystem.

The notions of concurrent communication and a fully connected network found
in the classic model (Definition 1) are substituted by the notion of scheduling
the edges E on the communication links L. Corresponding to the scheduling of
the nodes, ts(e, L) and tf (e, L) denote the start and finish time of edge e ∈ E
on link L ∈ L, respectively.

When a communication, represented by the edge e, is performed between two
distinct processors Psrc and Pdst, the routing algorithm of TG returns a route
from Psrc to Pdst: R = 〈L1, L2, . . . , Ll〉, Li ∈ L for i = 1, . . . , l. The edge e is
scheduled on each link of the route. For details on the scheduling of the edges
on the links and the topology graph refer to [15].

It is important to realise that the edge scheduling only affects the scheduling
of the tasks through a redefinition of the edge finish time, when compared with
the classic model (eq. 2). Let R = 〈L1, L2, . . . , Ll〉 be the route for the commu-
nication of eij ∈ E from Psrc to Pdst if Psrc �= Pdst. The edge finish time of
eij is

tf (eij , Psrc, Pdst) =
{

tf (ni, Psrc) if Psrc = Pdst

tf (eij , Ll) otherwise (4)

Thus, the edge finish time tf (eij , Psrc, Pdst) is now the finish time of eij on the
last link of the route, Ll, unless the communication is local. As nothing else
changes for the scheduling of the tasks, most scheduling heuristics proposed for
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the classic model, can also be used under the contention model, thereby making
them contention aware. This is in particular true for list scheduling [13].

3 Duplication in Contention Aware Scheduling

Scheduling a task graph is a trade-off between maximising the concurrency and
minimising the interprocessor communication costs. It often happens that the
advantage of executing tasks in parallel is negated by the associated interpro-
cessor communication cost. It is intuitive that this is even more pronounced
under the more realistic contention model, where contention can increase the
communication delay.

Task duplication is a well known technique that tries to reduce the communica-
tion costs, by scheduling certain tasks on more than one processor. The function
proc(n) for the processor allocation of node n becomes a subset of P , denoted by
proc(n). The communication from these duplicated nodes then becomes local
on their allocated processors, avoiding costly interprocessor communication.

Many algorithms have been proposed using task duplication [4,7,8,9]. The
irony is that most of them have been proposed for the classic model, even
though avoiding interprocessor communication under the more realistic con-
tention model can be more crucial. This paper proposes a novel task duplication
algorithm for the contention model. In this section we will study the general
consequence for the scheduling of the nodes and the next section proposes a
contention aware task duplication algorithm. First, let us look at task duplica-
tion under the classic model.

Under the classic model, task duplication has an impact on the Precedence
Constraint, eq. (1). Given the communication eij , the node nj cannot start until
at least one instance of the duplicated nodes of ni has provided the communi-
cation eij . It is not necessary to define which instance of ni is sending the data
to nj in case there is more than one instance that can provide it on time.

3.1 Under Contention Model

Task duplication under the contention model changes significantly. Under the
contention model, it must be strictly defined from where a communication is
sent if there are several instances of a sending task. Regard Figure 2 where the
task graph of Figure 1(left) is scheduled under the contention model on four
processors connected to a central ideal switch (Figure 1(right)). Ideal means
there is no contention within the switch. The tasks A and B have been duplicated
and only two communications are remote. Edge eAE is scheduled on links L2 and
L3 (route from P2 to P3) , and eAF on links L1 and L4 (route from P1 to P4). In
other words, both instances of A are sending out data, but each only one edge.

Because of the contention model, it is actually important that eAE and eAF

are sent from different processors as can be observed in Figure 3, where both
are sent from P2. Due to contention on L2, eAF is delayed and therefore arrives
one time unit later at P4, which in turn increases the schedule length through
F ’s later start time.
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Fig. 3. Contention on L2 delays communication eAF , increases schedule length

The consequence from this observation is that it must be decided during the
scheduling of the tasks and edges, which instance of a duplicated task sends the
communication. As several instances of a node ni might exist, eij might be sent
several times to different processors, possibly from the same source processor.

As this duplication is done under the contention model, the finish time of the
edge remains as defined in eq. (4), that is it corresponds to the finish time of the
edge on the link entering the destination processor, for example in Figure 3 the
finish time of eAF is f(eAF , P2, P4) = f(eAF , L4) = 3.

A scheduling algorithm must carefully choose from which task a communica-
tion is sent when several instances exist so that the communication edge can be
scheduled and an accurate view of the contention is gained. Under the contention
model, this choice is make by tentatively scheduling the edges on the links of
the different routes to see from where the communication arrives first as will be
seen in the following section [15].
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4 Algorithm

The contention-aware task duplication scheduling algorithm proposed in this
section is based on scheduling algorithms for the contention model and task
duplication techniques used under the classic model. In the following we present
and discuss its elements.

List scheduling. As the general algorithmic approach, list scheduling, as given
in Algorithm 1, is chosen. List scheduling is easily adaptable to the contention
model, as shown in [13]. In the first phase the nodes are ordered according to
their bottom levels bl(n), defined in (3), which was shown to be the superior node
priority under the contention model in an extensive experimental evaluation [13].
Algorithm 2 outlines our proposed algorithm.

Algorithm 2. Contention-aware task duplication scheduling algorithm
1: � 1. Part:
2: Sort nodes n ∈ V into list L, according to bl(n)
3: � 2. Part:
4: for each n ∈ L do
5: for each P ∈ P do
6: Tentatively schedule n, recursively duplicating n’s critical parent – record best

finish time tf (n, P ) and ancestors to be duplicated, if any
7: Let Pmin be processor where n can finish earliest
8: Duplicate recorded ancestors of n on Pmin

9: Schedule n on Pmin

10: Remove redundant tasks and their in-edges

Insertion technique. During list scheduling, each task can be scheduled between
already scheduled tasks (insertion technique) or after the finish time of processor
P (end technique). The same principle applies of course to the scheduling of
the edges on the links. For the necessary tentative scheduling and the redundant
task/edge removal (see below) the insertion technique is more suitable and hence
employed.

Critical parent. An essential question for task duplication algorithms is which
tasks should be duplicated. When a task n is scheduled on a processor P , the
primary candidates for duplication are its predecessors pred(n), or parents. As
task duplication algorithms have shown, it is usually not beneficial to duplicate
all predecessors. The most important task to duplicate is the task from which the
data transfer arrives the latest, called critical parent cp(n) [4]. Under the con-
tention model, this corresponds to the edge ecp(n),n with the highest finish time
f(ecp(n),n, Ll) on the link Ll entering the processor P . If that communication
ecp(n),n can be made local, task n might start earlier. Hence, our proposed algo-
rithm considers the critical parent for duplication. The duplication is accepted
if the task n can start earlier.
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Recursive duplication. In some situations it can be more beneficial to not only
duplicate the critical parent, but also considering the predecessors of the crit-
ical parent for duplication. Task duplication algorithms therefore consider the
recursive duplication of the critical parent cp(n), its critical parent cp(cp(n))
and so on [2]. This approach is adopted by our algorithm, whereby the recursive
duplication goes as deep as it is most beneficial, i.e. as it reduces the start time
of task n most.

Tentative scheduling. A characteristic aspect of scheduling under the contention
model is the need to tentatively schedule edges on the communication links in
order to obtain the data ready time of a task n, i.e. the time when all incoming
edges have finished communication. For example, we search for the processor
that allows task ni’s earliest finish time and ni has the in-edges eli and eki.
Then, for each processor P , we must schedule the communication on the links
of the route from proc(nl) and proc(nk) to P . That gives us an accurate data
ready time of ni on P . Before the next processor is considered, the edges must
be removed from the schedule, hence tentative scheduling. With task duplication
this tentative scheduling is even more involved as there might be more than one
instance of nl and nk, as seen with task A in the example of Figure 2 and 3.
Our algorithm therefore integrates tentative scheduling also on this level, i.e. the
communication is tentatively scheduled from each instance of a predecessor task
in order to find the best data provider.

Redundant task/edge removal. When a task n is duplicated on processor P , the
original and other instances of n might have become redundant. This is the
case, if one or more of these instances do not provide data to any predecessor.
The redundant tasks can and should be removed from the schedule. Under the
contention model, the removal of a task implies that also its in-edges can be re-
moved from the links. Especially together with the insertion technique, the freed
space can be used by subsequently scheduled tasks and their edges, potentially
leading to shorter schedules. Our algorithm checks for and removes redundant
tasks after the scheduling of each task.

Complexity. The complexity of contention-aware list scheduling with the inser-
tion technique is O(|V|2 + |P||E|2O(routing)) [12]. O(routing) is the complexity
for finding the communication route in the network and its length, but is for
many practically relevant systems O(1). With our recursive task duplication the
complexity increases to O(|P|2(|V|3 + |V||E|2O(routing))).

5 Experimental Evaluation

Two questions need to be answered in the evaluation of the proposed algorithm:
i) How do the schedules improve compared to a task duplication algorithm with-
out contention awareness? ii) How does task duplication improve upon other
contention-aware scheduling algorithms? To answer these questions, we have
implemented four algorithms. The proposed contention-aware task duplication
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algorithm (CA-D) is compared with a contention-aware list scheduling (CA-LS)
[13], which is essentially the same algorithm as CA-D, but without the du-
plication of tasks. Further, we implemented a task duplication (D) and a list
scheduling algorithm (LS) under the classic model. Again, they are identical to
CA-D and CA-LS, respectively, but without the contention awareness.

Schedules produced under the different models cannot be directly compared
[14]. Usually, schedules under the contention-model are longer, but more real-
istic, resulting in shorter execution times. Hence to compare the schedule, we
simulated contention for D and LS. This was done by rescheduling the D’s and
LS’s schedules under the contention model [14]. To indicate this contention sim-
ulation we named D and LS in the following D-CS and LS-CS.

5.1 Setup

For the models of the parallel target systems we have chosen sets of processors
(2, 8 and 15) connected to an ideal switch. Each processor has an out-going
and an in-coming link connected to this switch, thus only one communication
in each direct can take place at the same time. This corresponds to full-duplex
communication ports and this model is also referred to the one-port model [1].

A large set of graphs was generated as the workload for the scheduling algo-
rithms. This set comprised of graphs of seven types: In-trees, Out-trees, Series-
Parallel (SP), Fork, Join, Fork-join and Random [12]. Within each type, graphs of
different sizes were created (number of nodes= 20, 100, 500, 1000) with random
node and edge weights, scaled to achieve different communication to compu-
tation ratios (CCR = 0.1, 1, 10) [12]. CCR is a measure for the importance of
communication and is defined as the total edge weight over the total node weight
CCR =

∑
e∈E c(e)∑

n∈V w(n) . In total about 2000 graphs were generated and scheduled.

5.2 Results

In this section the significant experimental results are shown and discussed.
Regard Figures 4 and 5 that display the speedup over the number of processors
for different graph types. The displayed values are average values across all
different graphs of the same type. Speedup of a schedule S is defined as the
sequential length of the graph over the schedule length speedup(S) =

∑
n∈V w(n)
sl(S) .

Contention aware (CA-D) vs. non-contention aware duplication (D-
CS). The figures show that contention aware duplication (CA-D) is never worse
than non-contention aware duplication (D-CS). In fact, CA-D produces greater
speedup than D-CS for all graphs, except for fork graphs. The difference between
the two algorithms is the greatest with SP graphs, where the speedup produced
by CA-D on 15 processors is 120 percent greater than that of D-CS.

Figure 5(right) shows the average speedup across graph types produced by
each algorithm for different CCR values on 15 processors. The average speedup
values produced by the algorithms for high communication graphs (CCR = 10)
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Fig. 4. Speedup over processors for SP-graphs (left) and random graphs (right)

Fig. 5. Speedup over processors for out-trees (left) and speedup over CCR for all graphs
on 15 processors (right)

show the greatest difference (95 percent) between contention aware duplication
(CA-D) and non-contention aware duplication (D-CS). The difference is less, but
still significant for medium communication graphs (contention aware duplication
is 20 percent greater). As can be expected, contention aware duplication can excel
most when the CCR value is medium to high, in other words when avoiding
communication and contention is most important. To summarise, duplication
under the contention model is significantly better than under the classic model.

Contention aware duplication (CA-D) vs. contention aware list
scheduling (CA-LS). Task duplication has never been used in contention-
aware algorithms. In this sub-section we are therefore evaluating if it improves
the schedule length at least as much as it does under the classic model, so we
compare CA-D with CA-LS, both contention aware algorithms, but only CA-D
does duplication. As can be seen in the figures, CA-D has greater speedup on all
numbers of processors for all graph types. Graphs with structures that benefit
from task duplication (i.e., graphs where there is at least one node with more
than one child) show the greatest difference in speedup. Speedup produced on
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15 processors by CA-D is 54 percent greater than that of CA-LS for out-trees,
31 percent greater for SP graphs, and 18 percent greater for random graphs.
Note that the difference between the non-contention aware algorithms D-CS and
LS-CS is sometimes significantly less, e.g. for random-graphs. This is evidence
supporting our hypothesis that task duplication is more important for schedul-
ing under the contention model. To summarise, the duplication technique does
significantly improve the list scheduling heuristic under the contention model for
most task graphs, even more than under the classic model.

6 Conclusions

This paper proposed a novel contention-aware task duplication scheduling al-
gorithm. It was studied how task duplication can be performed under the con-
tention model. Based on this an algorithm was proposed using state-of-the-art
scheduling techniques found in classic task duplication algorithms and other
contention-aware algorithms.

An extensive experimental evaluation of the algorithm was performed, com-
paring the proposed algorithm with task duplication under the classic model
and with a contention-aware algorithm without task duplication. This revealed
very significant speedup gains, both compared to task duplication under the
classic model and to other contention-aware scheduling algorithms without task
duplication. As predicted, task duplication is even more beneficial under the
contention model than under the classic model.
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Abstract. This paper describes a new and novel scheme for job admis-
sion and resource allocation employed by the SODA scheduler in System
S . Capable of processing enormous quantities of streaming data, Sys-
tem S is a large-scale, distributed stream processing system designed to
handle complex applications. The problem of scheduling in distributed,
stream-based systems is quite unlike that in more traditional systems.
And the requirements for System S , in particular, are more stringent
than one might expect even in a “standard” stream-based design. For
example, in System S , the offered load is expected to vastly exceed sys-
tem capacity. So a careful job admission scheme is essential. The jobs in
System S are essentially directed graphs, with software “processing ele-
ments” (PEs) as vertices and data streams as edges connecting the PEs.
The jobs themselves are often heavily interconnected. Thus resource al-
location of individual PEs must be done carefully in order to balance
the flow. We describe the design of the SODA scheduler, with particular
emphasis on the component, known as macroQ, which performs the job
admission and resource allocation tasks. We demonstrate by experiments
the natural trade-offs between job admission and resource allocation.

1 Introduction

We consider distributed computer systems designed to handle large-scale data
stream processing jobs. This area of research is relatively new. Early examples
include Borealis, TelegraphCQ, STREAM, StreamBase and Aurora [1,3,5,15,23].
These systems mostly take relational model as a basis. They process voluminous
quantities of incoming stream data, performing relational operations on them.

We have been involved in an ambitious project, started in 2003 at the IBM
T. J. Watson Research Center, known as System S [2,8, 9, 11, 18, 19]. System S
is a large-scale, distributed computer system designed to handle complex jobs
involving enormous quantities of streaming data. The paradigm is significantly
more general than a relational model-oriented streaming environment. A pro-
totype of this system has been built and continues to evolve. The scheduler
for System S is known as SODA.1 In this paper, we will describe the SODA
scheduler, focusing particularly on one key mathematical component known as

1 SODA stands for Scheduling Optimizer for Distributed Applications.
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macroQ. Specifically, we will present the detailed mathematical formulation and
algorithm of macroQ. This component deals with job admission and resource
allocation, among other things, and is perhaps the most novel of the four math-
ematical components in SODA in terms of both functionality and design. Note
that in a related but substantially different paper [18], we presented an overview
of all the SODA components without mathematical details, and showed several
SODA performance studies with System S applications.

The basic unit of computational work in System S is called a processing ele-
ment (PE). PEs can be arbitrary stream processing software. They are the basic
execution containers in System S . The PEs are connected via streams, which
flow from an output port of one PE to an input port of another. The PEs and
streams are grouped into jobs which represent the basic unit of admittable work
in the system. Hence a job is represented by a directed graph. In the current
System S implementation, each job consists of one or more alternative data flow
graphs called templates. These templates could be provided to SODA by the
application developers. Each template represents a different implementation of
the same job, perhaps to achieve a different level of solution quality. The logical
nodes in a given template correspond to PEs, and the directed arcs correspond
to streams. PEs thus both consume and produce streams.

The macroQ module of SODA in System S provides three critical functions,
namely job admission, template selection and resource allocation. We will define
a new notion, known as importance, which can be thought of intuitively as a
function which measures the “benefit” produced by a particular job template
when allocated a specific amount of processing resources. The macroQ module
will attempt to maximize the total importance across all the competing job tem-
plates by optimizing importance as a function of allocated resources. For those
jobs that get admitted it will choose a template alternative and an amount of
resources to be allocted to the PEs in that template. Even though job admission
and resource allocation in themselves are not new, they are significantly more
challenging in the context of a distributed streaming system. In particular, Sys-
tem S has even more stringent requirements than a standard streaming system,
and the offered load is expected to vastly exceed system capacity. Our main
contribution is a novel approach that combines these three critical decisions in
a unified framework. We elaborate on these issues in the next few paragraphs.

A key design assumption of Systems S is that there will be too much work.
Thus System S hardware must be made to run at nearly full capacity nearly
all of the time. This includes the processing nodes, which must be utilized as
completely as possible. Moreover, some work simply will not fit. It is the role of
the macroQ module to make intelligent decisions about job admission. To the
best of our knowledge, there are no other schedulers implemented in any stream
processing system that consider job admission. (In [20], the authors describe a
scheduler for a hypothetical system with a simplified model of stream process-
ing.) Some schedulers [13, 16] perform load shedding to deal with dynamically
overloaded processing nodes, but this is an inherently different concept.
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Fig. 1. Template Alternatives

A second role of the System S scheduler is to choose one of the alternative
templates for each admitted job. Fig. 1(a) shows a job with three such templates.
All the nodes in these data flow graphs are PEs, as noted above, except for the
following left and right edge conventions: The left-hand node in each case is a
dummy node, which may be used to “connect” this job to another. The right-
hand node in each template represents disk storage, which can be regarded as
a second type of dummy connector node, for persisted data. Both the left- and
right-hand side streams are required by SODA to “match” in all templates, as
are the dummy nodes, so that the identical inter-job connections may take place
regardless of the template chosen.

The example in Fig. 1(a) is one possible scenario which results in multiple
templates for a job. In this case, the first template would provide the basic job
functionality, consisting of 4 PEs. The second template adds a preprocessing PE
to achieve a higher quality of solution. The third further adds a post-processing
PE, to achieve an even higher quality of solution. But there is a correlation
between the benefit of doing a job and the total resources allocated to it. Each
alternative template will provide the greatest overall benefit within some range of
total resources allocated to the job. In SODA the notion of importance, defined
formally in the next section, is used to quantify benefit. Fig. 1(b) illustrates
importance as a function of allocated resources for the three job templates.
In this case, at high allocated resource levels the third template dominates.
(At this level, sufficient resources are available for both the preprocessing and
post-processing PEs.) At medium allocated resource levels the second template
dominates, and at low allocated resource levels the first template dominates.

A third function of the scheduler in System S is resource allocation of the PEs
in the various accepted jobs. It is the interconnected (producer/consumer) nature
of these PEs, potentially even across jobs, that makes this problem difficult: Flow
imbalances can lead on one hand to buffer overflows (and loss of data), and
on the other to under-utilization of processing nodes. The resources allocated
to a PE which produces a stream affect the resources required for the PE(s)
that consume that stream. The macroQ module optimizes and flow balances
the amount of processing resources allocated to each PE in the jobs that are
admitted.
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Fig. 2. Macro and micro epochs

It is the role of other SODA modules to take these processing goals and
fractionally assign each PE to one or more acceptable processing nodes [18].
Thus the problem of determining quantity of PE resource allocations is effectively
decoupled from the problem of determining where the PEs should be executed.
In assigning the PEs in the chosen templates of the accepted jobs to processing
nodes, there is a trade-off between the load on the processing nodes and stream
traffic on the network. Assigning two PEs connected by a stream to the same
processing node eliminates the contribution of that stream to network traffic, but
may contribute instead to overloading the processing node. So SODA attempts
to achieve a balanced placement that does not overload either network links
or node capacities. In fact, it attempts to minimize a weighted average of six
separate metrics associated with processing loads on the nodes and traffic on the
network links. The assignment problem is made more complex by the addition
of many special constraints imposed by System S . These include, among many
others, hardware constraints for certain PEs and nodes (resource matching),
security and license constraints, constraints that pairs of PEs be placed together
(colocation), or that pairs of PEs be placed on distinct nodes (ex-location). Of
course, many PEs may share a node. SODA attempts to provide each PE with
a fraction of the processing power of any node to which it assigned, matching as
closely as possible the overall PE flow balancing goals already computed.

Finally, in order to react quickly in a highly dynamic environment, SODA
is an epoch-based scheduler. There are two kinds of epochs: macro epochs and
micro epochs. Each macro epoch contains several micro epochs. Fig. 2 shows the
temporal hierarchy between macro and micro epochs.2 The macroQ component
operates at the macro epoch level, and hence we focus mainly on macro epochs
in this paper. At the beginning of each epoch, SODA obtains as input a snapshot
of the current system state, including the jobs running on the system and the
jobs waiting to be admitted. It then computes for most of an epoch, finally
outputting its scheduling decisions at the end of the epoch. That is, it produces
a list of accepted and rejected jobs. For the accepted jobs it produces a choice
of templates and a set of fractional allocations of the PEs to processing nodes.
Those decisions are enforced by System S during the following epoch, and the

2 For reasonably sized System S installations the macro and micro epochs can also be
solved sequentially.
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entire process repeats indefinitely. Epoch lengths are a SODA settable parameter,
but macro epochs on the order of a minute are typical. This is a reasonable
compromise between the staleness of the input data and the time required for
the mathematical components of SODA to make high quality decisions. Each
macro epoch usually corresponds to five micro epochs, allowing SODA to respond
quickly to changes in system.

Our contributions can be summarized as follows:

1. We provide the first stream processing scheduler in a working system that
performs job admission. The choice to admit a job will depend on whether or
not the optimal total importance occurs when that job is allocated a positive
amount of resources, given certain natural constraints.

2. We provide a systematic way of optimally choosing one of several job tem-
plates for newly admitted jobs. The choice will depend on the relative im-
portance of work which can be produced by these templates as well as that
of the other potential work in the system.

3. We provide flow balanced resource allocations for each of the PEs in the cho-
sen templates of accepted jobs, while simultaneously optimizing the overall
allocation of resources in the system. In other words, each admitted job will
get an appropriate total amount of resources based on its contribution to
overall importance, and the PEs within that job will be allocated those re-
sources in a balanced manner. Given the highly interconnected nature of the
data flow graphs this is a difficult optimization problem.

4. We provide appropriate constructs to allow the scheduler to react quickly
and intelligently to dynamic changes in the system, including the arrival and
departure of jobs, nodes going up and down, and also changes in the relative
importance of the work in the system.

5. We have designed a real-time scheduler which makes complicated decisions
in each epoch, using algorithms that are deadline-aware.

The remainder of this paper is organized as follows. Section 2 contains prelim-
inaries, including a glossary of new terms used by SODA, and by macroQ in
particular. Section 3 contains an overview of the SODA scheduler itself, describ-
ing each of the four major mathematical components. In Section 4 we give the
description, formulation and the solution approach to macroQ. (We are focusing
here on macroQ because of its novelty, but also because of space limitations:
A very complete description of all of the SODA components, associated infras-
tructure components and many other SODA capabilities is available [17].) Sec-
tion 5 describes experiments showing the natural trade-offs associated with job
admission and resource allocation. (We should point out that while alternative
template selection is a current macroQ feature, the System S infrastructure does
not yet support multiple templates. So we do not provide experiments illustrat-
ing this feature in the current paper.) Section 6 describes related work. Finally,
Section 7 gives conclusions.
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2 Preliminaries

In macroQ, we use a number of terms that have very specific meanings to the
scheduler. We list these below, with explicit definitions. These concepts are crit-
ical to the discussions that follow. The first two items, the value function and
weight, are the key components of the third item, importance. Roughly speak-
ing, value functions measure benefit. Weights are used in their traditional sense
as multiplicative “knobs”, in this case accentuating or decentuating value. The
product of the two is importance. Importance, in turn, is the metric that macroQ
tries to maximize. The fourth item, the resource function (RF), is essentially the
means by which we iteratively compute this notion of importance. Finally, rank,
the fifth item, is an orthogonal notion to importance. It is a priority metric as-
signed to each job. Jobs which produce little importance but have a better rank
may get admitted instead of jobs which have more importance but have a worse
rank. Some of these terms are not new in themselves, but the combination of
them is novel.

1. Value function: Each derived stream produced by a potential System S job
has a value function associated with it. The domain of this function might
typically be the projected rate of the stream. Or it might instead be a stream
quality measure, such as projected goodput. In theory it could be a cross
product of a variety of quantity, quality and even other measures of benefit.
The definition is intentionally general, though early SODA instances have
employed simple rate-based value functions. Also note that value functions
which are 0 everywhere will typically predominate: Although the notion is
also intentionally general we expect to see non-trivial value functions mostly
on terminal streams of various jobs. These are, of course, the “end products”
of System S work, and one would thus naturally want to measure benefit
there.

2. Weight: Each derived stream produced by a potential System S job also has
a weight associated with it. Non-trivial weights will also typically be quite
sparse, since we will see that the weight may as well be 0 unless the stream
also has a non-zero value function.

3. Importance: Each derived stream produced by a potential System S job has
an importance which is the product of the weight and the value function.
Importance is therefore a function of the rate or quality of the stream, which
in turn depends on the resources allocated to all the upstream PEs – in other
words, those PEs which help to produce the stream. The summation of this
importance over all derived streams is the overall importance being produced
by System S , and this is what macroQ attempts to maximize. (Again, a large
majority of streams will typically not contribute to this importance metric.)
Consider Fig. 3, representing the flow graph of the same job in scenarios in-
volving two different sets of weights. In Fig. 3(a), positive weights are at all
the terminal, “starred” streams. But in Fig. 3(b) the second weight has been
eliminated (changed to 0). It follows that the 2 PEs immediately upstream of
that weight cannot do work which contributes to overall importance. SODA
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(a) All Weights (b) One Weight Removed

Fig. 3. Varying the Weights

will therefore not allocate resources to them. (Other PEs, further upstream,
do useful work in support of streams with positive weights. They may get
fewer resources than they would in the upper half, of course.) Weights are
thus a multiplier knob to turn on and off portions of a job and, more gener-
ally, a simple way to adjust relative importance.

4. Resource function:3 If importance is the metric to be maximized, the natu-
ral question is how to compute it. The first part of the answer is as follows:
Each derived stream s in System S (and by approximate terminology the PE
that produces that stream) has an RF associated with it. The RF is multidi-
mensional. If there are N input streams to the producer PE, then the RF has
N +1 input parameters. There is one parameter for each of the input streams,
each with the same domain as the value function. The final input dimension is
the (computational) resources which may be allocated to the PE, in millions
of instructions per second (MIPS). The output of this function for stream s is
again in terms of the same domain. See, for example, Fig. 4(a). Assuming the
domain to be rate-based, the RF for stream s4 takes 4 parameters as input.
The first three are the rates of streams s1 through s3, and the fourth is the
MIPS allocated to PE 4. The output is the rate of stream s4. (Some details
are hinted at in the figure. Output ports filter the streams, and the output
from PEs 1 and 2 are aggregated into the first input port, effectively decreas-
ing the dimensionality of this RF by one.) The RF needs to be “learned” over
time by a SODA infrastructure component known as the Resource Function
Learner (RFL). The second part of computing importance involves itera-
tively traversing the data flow graphs from “left” to “right”, ending in a final
value function calculation. Consider Fig. 4(b). By topologically sorting [7] a
directed acyclic graph, we can apply ready list scheduling [4,6] to compute the
importance for stream s5. In the figure three RF s are initially ready because
they are fed by primal (external) streams. So we obtain the rates at streams
s1 through s3. One additional RF becomes ready in each of the next two steps
(because their inputs have been computed), and we obtain the rates at streams
s4 and s5 in succession. Finally we apply the weighted value function at s5 to
obtain importance. (SODA can also handle data flow graphs with cycles, but
we omit details for that case.)

3 A paper about these RFs is forthcoming.
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Fig. 5. Job Admission as a Function of Rank

5. Rank: Each job in System S has a rank, a positive integer which is used to
determine whether the job should be run at all. A lower job rank is better
than a higher one. (There are two seemingly irreconcilable camps on the issue
of whether rank should improve with value or the reverse. Our motivation
in using the convention we chose is twofold: First, it is common to say that
something is “priority one”, meaning it is most important. Second, one is
inarguably the smallest positive integer, and thus we definitively will know
that a job with rank one is most essential. On the other hand, it is certainly
true that adopting this definition causes rank to be inversely related to the
assigned rank number.)

The rank of a job is set by a separate, independent component in System
S based on a set of criteria, beyond the scope of this paper. The importance,
on the other hand, determines the amount of resources to be allocated to
each job that will be run. A lower job rank is better than a higher one.
We will shortly provide a notion of rank-legality which will describe the
possible subsets of jobs that can be admitted into System S . There is a
specific job rank for which the following holds: All jobs with lower ranks are
admitted, and all jobs with higher ranks are not admitted. Jobs with that
rank may or may not be admitted, depending on the available resources and
the importance associated with the (streams of the) jobs themselves. We call
this property rank-legality. (This statement is a slight simplification, since
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one needs to account for inter-job dependencies. We will describe this notion
of revised rank shortly.) Fig. 5 illustrates job admission based on revised
rank. The waterline (that is, the cardinality of the highest admitted job
rank) goes up in the case of lighter load conditions or with more processing
power in the system. It goes down in heavier load conditions or with less
processing power.

3 Overview of SODA

In this section we describe the four major mathematical components of SODA.
We describe the solution approaches and motivate them from a practical stand-
point, emphasizing how the solutions are dictated and/or guided by the SODA
design philosophy.

To make the scheduling problem tractable, each SODA epoch is divided into
four mathematical phases. Each of the four phases corresponds to a mathematical
optimization module. The first two phases are known collectively as the macro
model, while the second two are known as the micro model. The two temporally
hierarchical levels and their goals are:

– The macro model, which chooses the jobs that will be admitted, the tem-
plates for those jobs, and the candidate nodes to which the PEs in those
jobs and templates can be assigned. The choices made in the macro model
are respected by the micro model during the micro epochs of the next macro
epoch, making the decisions of the micro model easier and more effective.

– The micro model, which chooses the fractional allocations of the PEs in the
jobs and templates that have been chosen by the macro model. Fractional
allocations of PEs are 0 for a particular node unless that node has been
chosen as a candidate node by the macro model. The micro model handles
dynamic variability in the relative importance of work (via revised weights),
and changes in the state of the system (via nodes and PEs that go up or
down), without having to consider the difficult constraints handled in the
macro model.

This decomposition is not perfect. Periodically there could be solutions from the
macro model which are inconsistent with the constraints of the micro model. A
“micro to macro” feedback loop would seem to be useful, but we have not seen
examples where it is needed in practice.

Now we describe the individual decoupled quantity and where components
for both the macro and micro models:

– macroQ, the macro quantity model, maximizes projected importance by de-
ciding which jobs to admit, which templates to choose, and by comput-
ing flow balanced PE processing allocation goals (in MIPS), subject to job
rank-legality, required jobs, minimum and maximum MIPS constraints. We
describe macroQ in the next section.

– macroW, the macro where model, minimizes projected network traffic and
load balances the nodes, allocating uniformly more candidate nodes than
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PE goals dictate, subject to resource matching, specialized hardware, secu-
rity, licensing, memory, PE exclusivity, maximum PEs per node, maximum
degrees of parallelism for each PE, fixed PEs, mutual PE exclusion and colo-
cation, legal fractional allocations and various incremental movement limits.
It optimizes a weighted average of six separate metrics, three of which are
averages of the utilizations of the nodes, the traffic in the network, and the
bandwidth in and out of the nodes. The other three are maximum values on
these same components. The overallocation allows more flexibility in han-
dling micro epoch dynamics.

– microQ, the micro quantity model, maximizes projected importance, com-
puting more accurate MIPS allocation goals for the PEs than those of
macroQ by taking the candidate nodes into account. (Recall that macroQ
does not know this information.) It also deals with revisions due to changes
in node states, PE states and the like.

– microW, the micro where model, minimizes the differences between the goals
output by microQ and achieved fractional allocations subject to various
constraints on incremental movement and node changes, fixed PEs and so
on. The output is thus a set of fractional assignments of the PEs to the nodes
whose sum across all nodes is as close to the allocation goals as possible.

4 MacroQ Algorithm

The macro quantity model, macroQ, finds a set of jobs to admit during the
next macro epoch. For each job it chooses a template from among the options
given to it. Each template represents an alternative plan for performing the job.
The jobs have ranks, and the jobs that are chosen by macroQ must respect
a rank-legality constraint. Required jobs must be admitted. (Without loss of
generality we can assume required jobs have rank 1.) Minimum and maximum
PE MIPS constraints must also be respected. The goal of the macroQ model is
to maximize the projected importance of the streams produced by the winning
jobs and templates. In the process of solving the problem macroQ computes
the optimal importance, the list of job and template choices, and finally the set
of processing power goals (measured in MIPS) for each of the PEs within the
chosen list. We formalize this below.

The problem formulation and the algorithm in macroQ are fairly elaborate.
For the reader’s convenience, Table 1 provides a summary of notation used, in
order of appearance. And Fig. 6 provides a summary of the macroQ pseudo-code.
Note that there are basically three nested loops.

– The outer loop, from line 3 to line 26, considers different levels of resolution
granularity for the resource allocation problems that will be solved. A coarse
level of granularity provides a quick solution, while a fine level provides an
accurate solution. Because SODA is a real-time scheduler, macroQ must have
a solution by the time the macro epoch completes. A quick, coarse solution
will serve this purpose.
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Table 1. Key macroQ Notation

Variable Definition
J Number of jobs offered
π(j) Original rank of job j
Nj Number of templates for job j
J Job list
T Template list
TJ Set of all template lists for job list J
L Job/template list
D(J ,T ) Directed acyclic graph associated with job/template pair (J , T )
P(J ,T ) Nodes (PEs) in D(J ,T )

d(J ,T ) Asymmetric distance function
D(J ,T )(p) Set of PEs which depend on PE p
π(J ,T )(j) Revised rank for job j

L̂ Rank-legal job/template list
gp mips allotted to PE p
Vs Composite value function for stream s
ws Weight for stream s
Is Importance function for stream s
G Total MIPS in system
mp Minimum MIPS for PE p if admitted
Mp Maximum MIPS for PE p if admitted
Ĵ Jobs that must be admitted
Ḡ Number of resource units in discrete RAP
m̄p Minimum resource units for PE p if admitted
M̄p Maximum resource units for PE p if admitted
C(J , T ) Number of weak components for job/template list (J , T )
Ic Importance function for weak component c
m̄c Minimum resource units for weak component c
M̄c Maximum resource units for weak component c
Lr Number of job/template alternatives examined of revised rank r

– The middle loop, from line 5 to line 24, decrements the possible revised rank
waterlines, considering less and less jobs as it goes.

– The inner loop, from line 7 to line 23, is a divide and conquer approach based
on the number of so-called weak components of the relevant data flow graphs.
The overall resource allocation problem to be solved can be handled by
solving an elaborate problem on each weak component, and then combining
the solutions via a simpler problem across all components. We will describe
these in more detail later in this section. problems are solved as we go along.

Ultimately we output the best solution discovered, on line 27.

4.1 Notation

Let J denote the number of jobs being considered, indexed by j. Each job j
has a rank π(j) ∈ IN. (Here, IN represents the natural numbers.) We adopt the
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1: Set OPT =∞
2: Set OK = false
3: while OK=false do
4: Pick resolution granularity Ḡ
5: for r = R to 1 by -1 do
6: Create list (J , T )1, ..., (J , T )Lr of rank-legal job/templates with waterline r
7: for l = 1 to l = Lr do
8: Compute C(J ,T ) weak components
9: for c = 0 to c = C(J ,T ) − 1 do

10: NSDP scheme to solve component c RAP with granularity Ḡ
11: end for
12: Compute number of components with concave importance functions
13: if all are concave then
14: Galil-Megiddo scheme to solve inter-component RAP with granularity Ḡ
15: else if none are concave then
16: DP scheme to solve inter-component RAP with granularity Ḡ
17: else
18: Fox/DP scheme to solve inter-component RAP with granularity Ḡ
19: end if
20: if I > OPT then
21: OPT=I
22: end if
23: end for
24: end for
25: Evaluate OK
26: end while
27: Output OPT

Fig. 6. macroQ Pseudocode

(slightly unnatural) convention that lower numbers indicate better ranks. Thus
the best possible rank is 1. Each job j comes with a small number of possible
job templates. This number may be 1. It will be 1 if the job has already been
instantiated, because we assume that the choice of a template is fixed throughout
the “lifetime” of a job. It is, however, the role of the macroQ model to make this
choice for jobs that are newly admitted. Let Nj denote the number of templates
for job j, indexed by t.

Any subset J ∈ 2J will be called a job list. For each job list J a function
T : J → IN satisfying T (j) ≤ Nj for all j will be called a template list. Denote
the set of all template lists for J by TJ . Finally, define the job/template list to
be the set L = {(J , T )|J ∈ 2J , T ∈ TJ }. A major function of macroQ is to
make a “legal and optimal” choice of a job/template list.

We will make the assumption, for ease of exposition, that no cycles exist in the
directed flow graphs for a job and template choice. SODA can actually handle
intra- and inter-job cycles, but the details are somewhat complex.

Each job/template list (J , T ) gives rise to a directed acyclic graph D(J ,T )
whose nodes P(J ,T ) are the PEs in the template and whose directed arcs are
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the streams. (This digraph is “glued” together from the templates of the various
jobs in the list, and we omit the exact details. These PE nodes may come from
multiple jobs.) Assigning length one to each of the directed arcs, there is an ob-
vious notion of an asymmetric distance function d(J ,T ) between pairs of relevant
PEs. Note that d(J ,T )(p, q) < ∞ means that PE p precedes PE q, or, equiva-
lently, that q depends on p. Let D(J ,T )(p) denote the set of PEs q ∈ D(J ,T )
for which q depends on p. This notion of dependence gives rise, in turn, to the
notion of dependence between the relevant jobs: Given jobs j, j′ ∈ J , we will
say that j′ depends on j provided there exist PEs q and p, belonging to j′ and
j, respectively, for which d(J ,T )(p, q) < ∞. Let D(J ,T )(j) denote the set of jobs
j′ ∈ J for which j′ depends on j.

We now define a revised job rank notion based on a particular job/template
list (J , T ) by setting

π(J ,T )(j) =
{

minj′∈D(J ,T )(j) π(j′) if j ∈ J
π(j) otherwise.

This is well-defined. We can define the notion of a rank-legal job/template list
(J , T ) as follows: We insist that j ∈ J and j′ /∈ J implies that π(J ,T )(j) ≤
π(J ,T )(j′). (This is equivalent to the statement that there is a value for which all
jobs with lower revised ranks will be admitted and all jobs with higher revised
ranks will not be admitted.) Let L̂ denote the set of rank-legal job/template lists.

Define the decision variable gp to be the resource allocation, in MIPS, given
to PE p. As noted, any derived stream s associated with job/template list (J , T )
has a value function. The stream, in turn, is created by a unique PE p associ-
ated with (J , T ). The PE p gives rise to a set {q1, ..., qkp} of kp PEs qi for which
p ∈ D(J ,T )(qi). This set includes p itself. We have also introduced the notions
of learned RFs which can be iteratively composed to create a function from the
processing power tuple (gq1 , ..., gqkp

) to the domain of the value function. And
so the composition of these recursively unfolded functions with the value func-
tion yields a mapping Vs from the tuple (gq1 , ..., gqkp

) to the non-negative real
numbers for stream s. This function is called the composite value function for
s. Multiplied by a weight ws for stream s it becomes a stream importance func-
tion Is mapping (gq1 , ..., gqkp

) to the non-negative real numbers [0,∞). Finally,
aggregating all the stream importance functions together for all streams which
are created by a given PE p yields a PE importance function Ip.

Let G denote the total amount of System S processing power, in MIPS. Let
mp denote the minimum amount of processing power which can be given to PE
p if it is admitted, and Mp denote the maximum amount of processing power
which can be given to PE p if it is admitted. Suppose that the set Ĵ represents
the jobs that must be admitted.

4.2 Mathematical Formulation

We seek to maximize the overall importance, which is the sum of the PE impor-
tance functions across all possible rank-legal job/template lists. The objective is
therefore to find
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max
(J ,T )∈L̂

∑
p∈P(J ,T )

Ip(gq1 , ..., gqkp
)

subject to the following constraints:∑
p∈P(J ,T )

gp ≤ G, (1)

mp ≤ gp ≤ Mp ∀p ∈ P(J ,T ), (2)

Ĵ ⊆ J (3)

Constraint 1 is the resource allocation constraint. It ensures that all of the re-
source is used if it is useful and possible to do so. Constraint 2 requires a PE p
to be within some minimum and maximum range if it is admitted. Constraint 3
insists that required jobs are admitted.

4.3 Solution Approach

We discretize the above continuous resource allocation problem by dividing the
total amount of resource G into Ḡ equal size atomic units of “resolution” G/Ḡ
MIPS each. Assume that this value Ḡ is given. For each PE p let m̄p = �mpḠ/G�
and M̄p = �MpḠ/G� represent the discrete analogues of the minimum and
maximum MIPS constraint terms. Also assume a fixed rank-legal job/template
list (J , T ) ∈ L̂ containing all the required jobs J . Partition the PEs and streams
into C(J , T ) weak components and fix one such component c.

We consider, using the natural change in notation, the corresponding discrete
resource allocation problem of maximizing

∑
p∈cIp(ḡq1 , ..., ḡqkp

) subject to the
constraints

∑
p∈c ḡp ≤ Ḡ and m̄p ≤ ḡp ≤ M̄p for all p ∈ c. This problem can be

solved by a scheme known as Non-Serial Dynamic Programming (NSDP) [10].
NSDP is a complex dynamic programming scheme designed specifically to handle
difficult (non-separable) resource allocation problems. (See line 10 of Fig. 6.) As
part of the solution methodology we obtain the optimal values Ic(ḡc) for every
ḡc between 1 and Ḡ, as well as the PE MIPS allocations that constitute this
optimal solution. We can thus regard Ic as a component importance function of
the resources ḡc allotted to component c. Set m̄c =

∑
p∈c m̄p and M̄c =

∑
p∈c M̄p.

Note that the objective function can be regarded as a “black box”, calculated
by iterative RF compositions followed by a weighted value function calculation.
To make this as efficient as possible the macroQ code has itself been carefully
optimized. Careful analyses are performed to determine which sub-graph cal-
culations are strictly necessary and which are redundant. A cache of previous
results is also employed. Also, macroQ code is aware of time and is given a
deadline by SODA. So it occasionally takes “shortcuts”, using a partially greedy
scheme instead of a full NSDP algorithm. This fits the design philosophy: SODA
is a real-time scheduler.

Having performed this NSDP on each component we now consider the problem
of optimizing over all components. The good news here is that the problem is
a separable resource allocation problem: We wish to maximize

∑
c Ic(ḡc) such
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that
∑

c ḡc ≤ Ḡ and m̄c ≤ ḡc ≤ M̄c for all c. Separability here means that each
summand is a function of a single decision variable, and such resource allocation
problems are inherently easier to solve.

In fact, if the component importance functions happen to be concave the
problem can be solved by one of three algorithms: These are the schemes by
Fox, Galil and Megiddo, and Frederickson and Johnson, which can be regarded as
fast, faster and (theoretically) fastest, respectively. If the component importance
functions, on the other hand, are not concave, the problem may still be solved
by dynamic programming. See [10] for details on all of these algorithms. Also
see lines 14, 16 and 18 of Fig. 6.

It turns out that concavity is not an uncommon condition for our component
importance functions. So we test each component for concavity and adopt one
of three approaches, depending on the results.

– If all component importance functions are concave we solve the resource
allocation problem by the Galil and Megiddo algorithm. This algorithm is
quite fast and easier to code than the Fredrickson and Johnson scheme.

– If all the component importance functions are not concave we solve the
resource allocation problem by dynamic programming.

– In other cases we solve the concave portion of the problem by the Fox algo-
rithm (because it provides the needed intermediate values) and then solve
the remainder of the problem by dynamic programming.

At the end of this step we have computed the optimal MIPS allocations for
each PE. But this can be regarded as just the inner loop of a three step nested
process. In the central loop we evaluate all rank-legal templates. In the outer
loop we evaluate successively finer resolution granularities. Again, see Fig. 6.

The evaluation of all rank-legal templates is obviously exponential [7] in na-
ture, though the problem is generally not large: SODA only evaluates alternative
for new jobs. Once a template decision has been reached it lasts for the remain-
ing epochs of the job. And most jobs, in fact, only have a single template. The
rank-legality constraints adds another exponential term, but this process can
also be streamlined if time is an issue. The code loops through each rank value,
working from the highest rank (R) to lowest rank (1): For any given rank value
it assumes all higher revised rank jobs will not be admitted, all lower revised
rank jobs will be admitted, and has to decide which jobs of that revised rank
will be admitted. For all but the highest revised rank these jobs were admit-
ted in the previous calculation. The code computes their importance divided by
their resource allocations and orders the jobs accordingly. If a full exponential
evaluation will not complete in time the code admits jobs of that revised rank
based on this ordering. The case where there are a large number of jobs of the
highest revised rank is obviously less satisfactory. And this case includes the case
where all jobs have the same revised rank. The code performs a greedy scheme
if pressed for time, but the results may be less than optimal. The philosophy
is that an imperfect macroQ solution is better than no solution at all. In the
pseudo-code we let Lr the be the number of job/template alternatives examined
of revised rank r, whether linear or exponential.
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Table 2. mips x 100

% Rank 1 Rank 2 Rank 3
A B C D E F G H I J K L M N O P Q R S

100 786 882 462 540 558 318 336 786 870 462 702 264 366 786 870 516 558 294 336
95 780 840 462 540 558 318 336 780 780 462 696 264 366 780 780 516 558 294 336
90 786 792 462 540 558 318 336 780 780 462 612 264 366 696 780 516 558 294
85 696 792 372 540 468 318 318 696 780 372 612 264 366 696 780 516 468 294
80 690 786 366 534 462 312 312 690 780 366 606 258 366 696 774 510 288
75 684 780 366 534 354 270 312 626 768 366 606 258 360 684 774 510
70 690 786 366 534 444 312 312 690 774 366 606 258 360 690 510
65 696 792 372 540 468 318 336 696 780 390 612 264 366 516
60 696 792 372 540 468 318 324 696 780 372 612 264 366
55 696 792 462 540 552 318 336 696 780 612 264
50 690 786 366 534 426 312 312 692 774 606
45 690 792 366 534 462 318 312 696 780
40 696 792 462 540 558 318 336 696
35 626 710 354 494 426 300 314 626
30 510 558 344 426 354 272 292 544
25 510 558 344 426 354 272 286

Table 3. Importance

% Rank 1 Rank 2 Rank 3
A B C D E F G H I J K L M N O P Q R S

100 402 389 136 262 222 279 13 402 389 136 261 250 291 402 390 304 222 279 13
95 402 388 136 262 222 279 13 402 388 136 261 250 291 402 388 304 222 279 13
90 402 388 136 262 222 279 13 402 388 136 259 250 291 400 388 304 222 279
85 400 388 129 262 216 279 10 400 388 129 259 250 291 400 388 304 216 279
80 395 383 126 260 212 275 9 395 388 126 257 245 291 400 383 301 275
75 389 377 126 260 215 274 9 389 377 126 257 245 286 389 383 301
70 395 383 126 260 205 275 9 395 383 126 257 245 286 395 301
65 400 388 129 262 216 279 13 400 388 129 259 250 291 304
60 400 388 129 262 216 279 11 400 388 129 259 250 291
55 400 388 136 262 221 279 13 400 388 259 250
50 395 383 126 260 178 275 9 395 383 257
45 395 388 126 260 212 279 9 400 388
40 400 388 136 262 222 279 13 400
35 359 355 125 259 178 273 10 389
30 301 333 116 253 170 262 6 380
25 301 333 116 253 170 262 5

The resolution granularity loop is simple in nature: macroQ starts with a
coarse resolution to obtain a quick solution. Then it uses the time already spent
to estimate the finest resolution it believes it can safely solve in the remaining
time, subject to a reasonable minimum MIPS value. It reports the best impor-
tance found, and this is typically based on the finer resolution.

5 Experiments

In this section we experimentally evaluate SODA performance, focusing on the
functions of job admission and resource allocation. Note that the trade-offs be-
tween the two can be quite subtle. In order to better reveal these subtle trade-offs,
a carefully chosen set of well-controlled experiments were conducted. In these
experiments, a variety of job submission scenarioswere simulated. For the complete
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SODA performance with real applications running on System S , we refer readers
to [17, 18].

Now we will describe the experimental setup. The largest system installation
we consider has 100 processing nodes with a rating of 11,000 MIPS each. In the
experiments we examine the effect of removing 5 processing nodes (and thus
5% of the processing power) from the system at a time. The jobs presented
to macroQ always remain the same: There are 19 jobs (labeled A through S),
consisting of 7 required jobs of rank 1, 6 optional jobs of rank 2, and 6 optional
jobs of rank 3. The jobs are not interconnected, so rank and revised rank are
identical for each job. The experiments are designed so that at 100 processing
nodes the jobs will nearly (but not quite) use all the resources in the system
when each is allocated their maximum useful resources. This occurs, as per the
previous section, when each of the component importance functions becomes
flat as a function of allocated resources. In fact, when macroQ is run on the full
100 processing nodes all 19 jobs are admitted and the average utilization of the
processors is 97%.

Fig. 7(a) shows the number of jobs admitted by rank as the number of pro-
cessing nodes decreases in 5% increments from 100 nodes to 25 nodes. At 95%
all jobs are still admitted, though the processor utilization now is 100%. From
there on the utilization remains at 100%, as one would expect based on macroQ’s
design: The system is overloaded. At 90% 1 job of rank 3 is rejected, and all of
the rank 3 jobs are gone by the 60 processing node level. But rank 1 and 2 jobs
remain during the 65% to 100% range. Thus the rank waterline is 3. In the 30%
to 60% range the rank waterline is 2. All rank 1 jobs are admitted, but more and
more rank 2 jobs are rejected as the processing power decreases. At 25 processing
nodes only the required rank 1 jobs are admitted. The system is fully stressed
at this point, and a macroQ run at 20% of the processing nodes would not find
a feasible solution: There would not be sufficient processing power to admit all
of the required jobs even at their minimum acceptable resource allocations.

Fig. 7(b) shows the contribution to overall importance by rank as the number
of processing nodes decreases from 100 to 25. Importance is a decreasing function
of system resources, as should be the case. But between 100 and 85 nodes the
importance curve is actually quite flat: The component importance curves turn
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out to be concave or close to concave, and there are sufficient resources available
so that the solution lies near the flat part of each curve. Job S is rejected at 85%
and 90%. But its importance is low and its resource requirements is high. One
can see this in Tables 2 and 3. The first table shows the allocated resources
(in hundreds of MIPS) by individual jobs as the number of processing nodes
decreases. The second table shows the corresponding importance values. Job
S contributes an importance of only 13 at 33600 MIPS, so it is clearly highly
expendable, and being of rank 3 it is jettisoned as soon as the offered load exceeds
available resources. The effect on overall importance is minimal. The only other
job with a poor ratio of importance to resources is job G. Job G is a twin of
Job S, but it is required and macroQ cannot reject it. Observe in Fig. 7(b) that
importance does start to decrease linearly from 80 down through 25 processing
nodes. The available MIPS dictate that the solution to the component resource
allocation problems occur on the steeper portion of each importance curve.

Examine Table 2 in the 3 ranges of resource allocations for which the admitted
jobs remains identical. (The 100% and 95% rows have this property. So do the
90% and 85% rows. And finally, so do the 40%, 35% and 30% rows.) If the
component importance curves are concave for each admitted job in these ranges,
the separable resource allocation problems in macroQ would solve where the first
differences (effectively the derivatives) at each job would be as close to equal as
possible. And that would, in turn, imply that the resource allocations for each
job would be monotone non-increasing as the number of processors decrease. In
fact, this is the case in each of the three ranges, as an examination of the relevant
columns shows.

Overall, however, the allocated resources for each job will not be monotone as
the number of processors decrease. Consider, for example, the column for Job C
in Table 2. The MIPS allocated are high in the 85% to 100% range, because the
system is not heavily overloaded. As the number of processors decrease the MIPS
allocated to Job C exhibits somewhat oscillatory behavior, decreasing through
70%, then increasing back to its maximum useful allocation at 55%, and so on.
This behavior is primarily due to the changes in admission of the other jobs.
As jobs get rejected the allocations they would have received become available,
and macroQ will distribute these to the jobs that remain. (A secondary reason
for the lack of monotonicity is the slight deviations from concavity.) At the 25
and 30 processor levels the system is truly stressed and there the job is given
minimum acceptable MIPS allocations.

We have focused on the macroQ problems of job admission and resource
allocation in these experiments. Extensive experimental analyses of the overall
performance of SODA can be found in [18, 17].

6 Related Work

Stream processing systems have been an active area of research in recent years.
Example systems include Borealis [1], TelegraphCQ [5], STREAM [3], Aurora,
StreamBase [15] and Medusa [23] and so on. These systems are mostly based
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on relational model and process voluminous quantities of incoming stream data.
In contrast, System S is much more general in terms of programming model. It
does not assume a relational model and it allows arbitrarily complex operators.

Most of these stream processing systems are designed to be run on more than
one node, and thus there has also been work on scheduling and load-balancing the
stream operations. While these scheduling approaches have some of the flavor of
the work we have presented here, none targets our problem exactly. We describe
some of these related scheduling approaches here.

The FIT algorithm [16] is a load-shedding algorithm which intelligently drops
load. Determining where best to drop load can be quite a complex problem, since
dropping at a particular operator has an effect on the downstream operators,
sometimes an unintended one. In some cases, shedding load on a particular
operator increases the resources for other operators on that node, and so could
increase load at nodes downstream. FIT cleverly addresses this problem in a
distributed way, but without a global notion of importance. The SODA scheduler
provides this same functionality as part of its resource allocation and scheduling,
and does so in a way that takes into account the processing graph for a job and
the total system objectives.

In [21, 22], the authors address the problem of variance in stream rates.
Both papers describe a way to distribute the load so that changes in input
rate have a smaller chance of overloading the system. However, they do not
address the case when the system is overloaded, and make no decisions about
job admission. In [14], the authors provide a scheduling algorithm for a wide-
area network that places operators so as to minimize network latency. In the
local area network that we address, bandwidth, not network latency, is the main
concern. In addition, their work does not address the problem of job admission.
Others [12] also address scheduling to minimize latency.

The STREAM project [13] has goals somewhat similar to those presented
in this paper. Their system handles queries in an SQL-like language. When re-
sources are tight, they revise queries by dropping packets and/or changing inter-
nal parameters. Finally, in [20], the authors address admission control problem
in a hypothetical stream processing systems. Their model assumes a linear pro-
cessing graph. In other words, input stream is processed, successively, by a series
of operators. Thus, no operator takes input from more than one source stream.

7 Conclusions

In this paper we have described the SODA scheduler for large-scale distributed
stream processing applications. We have focused on one component, macroQ,
in particular. This component is responsible for the two key functions of job
admission and resource allocation. We have provided an introduction to System
S , an introduction to the scheduler in general, and to the macroQ component of
SODA in particular. We have evaluated the subtle trade-offs between job admis-
sion and resource allocation via simulation experiments, showing the capabilities
of the scheduler.
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Abstract. It is important to identify scalability constraints in existing
job scheduling software as they are applied to next generation paral-
lel systems. In this paper, we analyze the scalability of job scheduling
and job dispatching functions in the IBM LoadLeveler job scheduler. To
enable this scalability study, we propose and implement a new virtualiza-
tion method to deploy different size LoadLeveler clusters with minimal
number of physical machines. Our scalability studies with the virtual-
ization show that the LoadLeveler resource manager can comfortably
handle over 12,000 compute nodes, the largest scale we have tested so
far. However, our study shows that the static resource matching in the
scheduling cycle and job object processing during the hierarchical job
launching are two impediments for the scalability of LoadLeveler.

1 Introduction

Job scheduling software is a key piece of system software to maximize the uti-
lization of parallel computing systems. As these systems increase in size with
one generation of systems having more processors and compute power than the
previous generation, the performance of job scheduling becomes crucial to opti-
mize the overall system utilization. To support the current and next generation
of massively parallel systems (MPP), the job scheduler must scale in several
dimensions. It must be able to manage a large number of jobs and compute re-
sources, quickly match resources to a job, and rapidly dispatch the job on those
resources. During the last year, we have analyzed the scalability of IBM Tivoli
workload scheduler LoadLeveler in the context of the IBM DARPA HPCS pro-
gram [2]. This paper presents the method and results of the study, as well as
insights about scheduling and dispatching in the context of LoadLeveler.

An essential requirement for a scalability study is access to a representative
large scale system. Although we indeed have access to fifty 8-processor pSeries
machines, the goal is to study scalability beyond a thousand nodes. This resource
limitation is overcome by developing a lightweight virtualization mechanism that
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creates hundreds of LoadLeveler nodes on each physical machine. This technique
allows testing on up to a 12,000 node LoadLeveler cluster using fifty physical
nodes. Virtualization is applied to study the scalability of LoadLeveler in its
capability in resource monitoring, identifying and scheduling jobs to resources,
and in dispatching jobs to the allocated resources. The following contributions
are made:

– Introduce lightweight virtualization technology that isolates and executes
multiple instances of LoadLeveler node daemons on a physical machine, cre-
ating a large cluster with minimal physical machine and memory require-
ments (Section 3).

– Analyze the scalability of job scheduling algorithms for sequential and par-
allel jobs and isolate the performance of different phases in the scheduling
algorithm. Static resource matching is determined to be a scalability problem
and approaches to address this problem are described (Section 4.2).

– Investigate the scalability of hierarchical job launching and identify scalabil-
ity hot-spots with processing job object at various levels of the hierarchical
tree (Section 4.3).

2 LoadLeveler Overview

LoadLeveler [3] is a distributed job scheduling product of IBM. It is based on
the licensed code from the Condor system [13] in mid 1990. The architectural
framework of LoadLeveler, as shown in Figure 1, retains the core structure of
Condor. The Central Manager (CM) consists of two functional units: the Col-
lector and the Negotiator. The Collector receives resource information sent by
a daemon called StartD running on the machine.1 LoadLeveler ensures there is
only one StartD on each machine with responsibility for reporting the machine
state, resources and attributes, utilization, and managing presence heartbeats.
The Negotiator applies this resource information to allocate machines matching
the execution requirements of user jobs.

Jobs are submitted to LoadLeveler through the Scheduling daemon (SchedD).
SchedD is responsible for maintaining a local job queue and persisting job state,
as well as coordinating the activities of assigning execution nodes to the job,
and launching the job. Multiple SchedD machines can be defined for a cluster to
eliminate bottlenecks with large job submissions requirements. SchedD informs
the Negotiator about each job arrival and the Negotiator applies scheduling al-
gorithms to allocate computational and other resources to jobs. The resource
assignments are returned to the SchedD which forwards the job launch infor-
mation to the StartDs on the allocated executing machines. Execution at the
node is managed by the local StartD which forks a Starter process to initiate
and control the job. Concurrent execution of multiple jobs or tasks at the node
is enabled by forking multiple Starters.

1 The terms ”machine” and ”compute node” are used interchangeably.
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Fig. 1. LoadLeveler Architecture

LoadLeveler continually evolves to support new hardware architectures, and
leverage novel software features. Examples include high bandwidth interconnec-
tion switches (e.g. SP2 switch [12], InfiniBand [10]) hardware multi-threading,
and Blue Gene [6,5]. Supported software features include AIX’s WLM [1], and
various Linux distributions [4]. Recent development has emphasized support for
highly parallel applications running on large scaled clusters with high speed
interconnection instead of flocks of workstations [7].

The following sub-sections describe in more detail scheduling in Negotiator,
and hierarchical communication scheme for scalable job dispatching. This mate-
rial provides the necessary background for our scalability studies covered later
in this paper:

2.1 Scheduling in Negotiator

The Negotiator of CM processes incoming jobs in two sequential phases: schedul-
ing requested resources to jobs and coordinating with SchedD to dispatch jobs
to assigned machines for execution.

During the scheduling phase, Negotiator logically performs the following steps:

1. Select machines that have the capabilities to match the requirements of
the job; Exemplary capabilities include machine architecture type (x86,
POWER), job class definitions, and high-speed switch connectivity.

2. Select capable machines that have the dynamic capacities to assign to the
job; Exemplary capacities include unused job class, unfilled multiprogram-
ming level, and spare switch adapters.

3. Assign the machine(s) to the job based on specific scheduling algorithms
and administrative policies; for example, backfill [9] and fairshare are two of
scheduling algorithms in LoadLeveler.
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At the end of scheduling phase, Negotiator sends successful machines-to-job as-
signments to SchedD, which dispatches the job to all assigned machines through
the StartDs on the machines.

2.2 Hierarchical Scheme for Job Dispatching

In a large cluster, information and command propagation from a single machine
to a large number of other machines is parallelized (e.g. using multi-threading)
for faster communication. However, the number of open communication connec-
tions on a single machine is a potential bottleneck because of limited resources
such as communication buffers and OS data structures. The hierarchical scheme
provides the benefit of parallel communication operations by dividing the con-
nections through a spanning tree.

The hierarchical communication scheme implemented by LoadLeveler [8] is
shown in Figure 2 with an exemplary fan-out of three. When a job is scheduled
by the Negotiator a job object of assigned machines and job specific information
is sent to SchedD. SchedD constructs a hierarchical spanning tree of machines
using the configurable fan-out parameter. and sends the tree structure and job
information to the root node or master StartD. The master StartD repackages
the job object into job objects customized exclusively for the subtree headed
by each immediate child StartD and forwards the information. This process is
repeated down the tree to the leaf nodes. Communication of the job object to all
compute nodes is flagged as successful when an acknowledgement from each node
in the tree is received at the master StartD. Then, a subsequent communication
is sent using the tree to command each node to start the job. The start com-
mand prompts each StartD to launch a Starter process which locally manages
job execution.

Central Manager

SchedD

StartD

Fig. 2. Hierarchical Communication Structure
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3 Virtual Node Method for Scalability Analysis

Analyzing the performance and scalability of LoadLeveler requires a cluster of
at least a few thousand compute nodes. Building and maintaining such a large
scale cluster for this analysis alone is not cost effective. A StartD instance is the
component in LoadLeveler that represents a compute node. From the perspective
of the CM the size of the cluster is the number of StartD processes reporting
to the CM. Thus, the key to creating a compute cluster whose apparent size
is greater than the number of physical machines is to allow multiple StartD to
execute independently and in mutual isolation on each physical node. However,
the design point of LoadLeveler is a single StartD process for each physical
machine node. Communication ports are the identical for all StartD as specified
in a central configuration file and can not be shared among StartD instances
on the same machine. Furthermore, each StartD must appear to both the CM
and other StartDs that it is located at a dedicated and unique ip address. A
secondary issue is that the configuration file read by each StartD also contains
information about spool and log file locations which cannot be shared between
StartD. So the challenge is to provide an environment to StartD where it is on
a private network.

One approach is to fully virtualize the platform hardware at each physical
compute node using a hyper-visor to execute multiple operating system images,
each running a single StartD. This provides the requisite isolation of network
bindings and configuration settings. The drawback is the memory, disk, and
processor overhead of using the operating system as a isolation container. A
StartD process requires about 25MB of memory including the Starter process,
so an OS container is inefficient. A better approach is lightweight virtualization of
just the network layer so that multiple StartDs execute in isolation within a single
OS image. It is reasonable to expect that a lightweight solution on a physical
machine with 4 GB of memory is capable of hosting approximately 160 ’virtual’
compute nodes, more when using memory swap space on disk. A further practical
challenge to lightweight virtualization is that the initial implementation cannot
involve modification of product code. The product group is willing to make minor
modifications to network interface binding to simplify network isolation, when
substantial benefit of emulating large clusters is demonstrated. Such benefit is
initially displayed first using an IPTables approach which motivated a minor (¡
10 lines of code) change to the IP binding in LoadLeveler as explained next.

The adopted methodology for lightweight virtualization of StartD nodes is
now described. The initial hurdle is to generate a unique configuration file for
each virtual StartD. Activation of a StartD process causes it to read a config-
uration file from a fixed location. The configuration file defines daemon com-
munication intervals, locations for log files, spool directories, and IP ports on
which StartD listens for external traffic. Subsequently StartD spawns a thread
that binds to its set of listening ports. As part of job launch, StartD also forks
off Starter processes which also rely on this configuration file. Thus, the con-
figuration file cannot be modified while the StartD process is active. Fortu-
nately, the LoadLeveler development team identified an an environment variable
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LOADL CONFIG which when set is recognized by StartD as an override to the
global configuration file. The original intent of this variable is to manage jobs
in multi-cluster LoadLeveler environment [3]. It is used here to provide each
StartD with a unique set configuration parameters by setting LOADL CONFIG to
a corresponding file prior to instantiating the StartD process. However, the net-
work conflict issue remains as the StartDs still share a common IP address and
conflict over the binding to communications ports.

Tying the communication of each StartD to a different IP requires a flexi-
ble method to create multiple IP addresses and use them for CM, SchedD, and
StartD communications. Because code modification is not permitted in the proof
of concept phase, the approach taken to network isolation is based on iptables.
Iptables maps ports and addresses at the ip layer of the transport stack. For a
large scale system this requires complex setup and imposes significant perfor-
mance overhead. The iptables approach is interesting and a potential solution to
other lightweight virtualization problems [11]. It is successfully used to demon-
strate value of virtualized StartD to the product group, but because it is not
used as an ongoing solution the discussion is presented in the appendix A.

The adopted solution, implemented with minor code changes, introduces a
private network between the CM node, SchedD node, and the compute nodes.
Many network performance related studies use this method of creating a private
network. The basic idea is to create IP aliases to the network interfaces of the
physical machines hosting CM, SchedD and StartDs. The alias adapters appear
in the output of the Linux command /sbin/ifconfig. All aliases are created within
the same subnet so that the machines can communicate without routing. A single
alias of the network interface is built for the CM and another for the SchedD
node. On StartD nodes, an alias of the network interface is created for each
StartD that runs on the machine. Since LoadLeveler uses hostnames to map to
ip addresses, a unique hostname is assigned to every IP address and the hostname
to ip mappings are placed in the /etc/hosts file of every machine. For example,
to execute 500 StartDs on a physical node 500 network adapter aliases with
consecutive ip addresses are created. An alias for the CM and SchedD leads
to a total of 502 entries in the /etc/hosts files of the physical nodes. Having
large /etc/hosts file has performance implications discussed in the experimental
section 4.

With the aliased network adapters in place, communications endpoints need to
be bound from every StartD to a corresponding aliased ip address. The original
code binds an endpoint to the global listening port specified in the configuration
file and physical machine ip address. The modified code issues a bind to the
global listening port and an ip address from an aliased network adapter. The
aliased adapter hostname for each StartD is passed from a new environment
variable (LOADL HOSTNAME). With this modification all StartD instances use the
globally specified listening ports, together with unique ip addresses. Figure 3
summarizes the communications setup. Less than 10 lines of code are needed
to support this expanded endpoint binding functionality. The procedure isolates
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Fig. 3. LoadLeveler with virtualized StartDs – Binding to IP:Port combination

StartDs from each other while preserving common listening ports, and makes
them appear to the central manager as distinct machines.

Virtualized StartDs provide a lightweight platform for studying scalability but
have other limitations. Each StartD thinks it manages all resources of a node
thus, the total amount of resource reported at the CM is the actual resource on
the node multiplied by the total number of StartDs. As a result, the quantity
reported at CM may not be used to study the turn around time of real jobs
that require some amounts of static and dynamic resources on the nodes. This
study is restricted to the scalability of scheduling at the Central Manager and
hierarchical job launching.

4 Performance and Scalability Studies

The performance of LoadLeveler scheduling and job dispatching is evaluated in
two interesting limiting cases: 1) A parallel job requiring all compute nodes in
the system. 2) A single node job on an occupied cluster. The study explores the
applicability of the multiple StartD per node approach and more importantly
identifies bottlenecks in the LoadLeveler implementation that limit scalability.
The study conveniently separates into two sections along the lines of LoadLeveler
functions. Job processing from submission to launch at the compute nodes con-
sists of the sequential and independent cycles of scheduling and dispatching.
According to LoadLeveler implementation (Section 2), the former occurs in the
Negotiator which executes on the CM machine, while the latter is distributed
involving communicating processes on SchedD and between the StartD on each
compute node. Based on our analysis, possible solutions are suggested to miti-
gate scalability problems and improve the performance issues.
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4.1 Methodology

LoadLeveler is treated as a black box and performance data is extracted from
log file messages which are recorded with microsecond timing. Care is taken
that logging does not interfere with system performance as certain flags cause
log performance to overwhelm actual function. Because the granularity of control
of debug flags is coarse an option such as D NEGOTIATE generates thousands of
messages for a single scheduling operation in a large system. Although each log
event takes about two microseconds to time-stamp and format and is written in
the background the aggregate effect causes noticeable delay. The log file data is
used to verify that log events do not impede scheduling operation.

The job description used to drive the experiments contains matching con-
straints on job class and the number of nodes. Typically, the executable is a
shell script that invokes a 60 second sleep command. An MPI executable in-
voking sleep on each node is also used.

Experiments are performed in two different cluster computing environments.
One is a homogeneous collection of 50 IBM pSeries 575 machines running IBM
AIX version 6 and connected by a high speed SP switch. Each machine has eight
dual core IBM POWER5+ processors and 32GB of memory. A heterogeneous
and smaller cluster of machines is also used to collect data. This cluster typically
contains 6 to 8 compute nodes consisting of partitions on an IBM pSeries 575
and IBM POWER blade servers connected by a ten gigabit ethernet switch. The
blades have two dual core IBM POWER5 processors, 4 to 16GB memory, and
run Red Hat Enterprise Linux version 5. Each cluster dedicates a machine for
CM ( scheduling and resource manager) and SchedD (dispatching and job life
cycle management). Each StartD is configured to have a single Starter so that
only one task is executed per virtual node.

4.2 Scheduling Analysis

The time to schedule a job depends on the number of nodes, the parallelism of the
job, and the complexity of matching job requirements to compute node resources.
The study starts by quantifying the dependence of single node job scheduling time
on the number of compute nodes, then moves to large parallel jobs. In both cases
the compute nodes are unoccupied and a single job is placed in the LoadLeveler
queue. A timing event is issued in the log file when the assignment of the job to a
compute node is complete and the job is dequeued from the submit queue.

Single node job scheduling analysis. Figure 4 shows scheduling time for
a single node job where the independent variable is the number of compute
nodes (N). Because the nodes are initially unoccupied, the expected result is
that scheduling time is independent of the number of N, instead, the data show a
linear dependence on N. This result is understood in terms of the three scheduling
steps described in Section 2. First, the scheduler scans all machines to locate
candidate nodes that have the capability to execute the job. The capability scan
is an O(N) operation that produces a bit map of all machines. The bit map is
applied in the subsequent machine matching steps.
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Single Node Job Scheduling
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Fig. 4. Scheduling time for a single node job

The second and third scheduling steps assign the job to the compute node with
the highest priority. In LoadLeveler, the priority of each compute node is defined
by the system administrator using a formula syntax. The default priority scheme,
used here, decreases the priority of a node linearly with the short term (five
minute) average processor utilization of each machine. The scheduler maintains
a priority sorted list of all compute nodes. List order is updated when jobs
are scheduled or terminated as well as by periodic updates of node resource
consumption reported by StartDs. The list entry for each compute node is a
summary of the latest reported resource consumption information about the
nodes, e.g. utilization, memory, job class, network adapters, multi-programming
level. In the second step, the scheduler takes the top priority node and checks
the corresponding bit map entry from the first step. If true, the latest resource
information is checked to see if the node has the current capacity to execute the
job. If not, the scan of the compute node list continues until a match is found.
A machine match results in a job assignment to that node. In this experiment,
the second step time is constant time because the cluster is unoccupied and the
machine at the top of the priority list is always available.

Thus, the single node scheduling time is determined by the O(N) behavior of
the first step of the scheduling process. The data in Figure 4 confirm this and
show how virtual StartDs enable experiments on the 50 physical node cluster
to 12,000 nodes. The data are linear and the scheduling time per node is about
250us for the static resource matching step. Furthermore, the resource manager
component of the CM performed remarkably well as 12,000 nodes are brought
up, identifying all resources in less than two minutes.
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Fig. 5. Scheduling time for parallel job requesting all compute nodes

This result points to the importance of improving the performance of the
capability scan step of the scheduling cycle. However, it is useful to recognize that
in many scheduling conditions, generation of the bit map in the capability scan
is an optimization. The resource matching of the second step is more extensive
and costly than that of step one and should be avoided for nodes that cannot
potentially execute the job. Such a situation occurs with heterogeneous compute
resources as in an ad hoc cluster of workstations where the bit map may be
sparse, significantly reducing the number of machines tested in the dynamic
matching of the second step. Also, in a highly utilized cluster there is a good
chance that a job is not initially scheduled and needs to be retried. The bit map
is retained with the job and is not recreated in subsequent cycles.

There is still room for enhancements. One observation is that the capability
scan step can be decoupled from the scheduling cycle. Results of the scan are
based on static information about the jobs and compute nodes. So it can be
performed when a job arrives at the CM prior to the scheduling cycle. Binding the
capability scan to the scheduling cycle makes sense when the scheduler supports
ad hoc clusters of workstations with intermittent availability or connectivity. A
decoupled bit map can become out of sync with the cluster state. But this is not
an issue for high performance compute clusters.

A further observation is that clusters are frequently homogeneous. In this case,
every bit in the capability map has the same result for a given job. Here, the scan
result has no added benefit to the machine list matching step. So the scheduling
cycle can have distinct operational states depending on the heterogeneity. Selec-
tion of the state is inferred dynamically based on cluster workload. When recent
job submissions generate a bit map that is largely ones, the scheduler folds the
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capability scan logic of step one into the matching of step two which eliminates
the need to scan the entire cluster. If the machine assignment step fails frequently,
the capability scan step is reconstituted as a distinct step to regain the advantage
of having a single scan for multiple scheduling cycles.

Parallel job scheduling analysis. The next study investigates a parallel job
requesting all N cluster nodes. This study targets the second scheduling step
because the capability scan is performed once while machine matching and job
assignment are exercised N times.

In this experiment, the system is initially unoccupied and a single job request-
ing all nodes is submitted. Figure 5 shows results for the two clusters. The first
observation is that the data for the both clusters has a second order compo-
nent that significantly impacts performance above 1000 nodes. This behavior is
unexpected as the scheduling steps should be linear in the number of nodes.

4.3 Dispatching

As described in Section 2.2, SchedD starts the job dispatch process by construct-
ing a job object. All information necessary to execute the task on the assigned
compute nodes is contained in the job object. While many task details such as
the binary executable location are common to all nodes, node specific details
such as which network interface to use are also included. The job object also
contains the structure of the hierarchical communication tree used to distribute
and communicate job information and status between the compute nodes and
the SchedD. The job object is forwarded from SchedD to the master StartD
to initiate job dispatching. Subsequent responsibility for constructing the com-
munications tree and propagating job dispatching information from the master
StartD node to the compute nodes on the tree belongs to the StartDs at each
compute node. The StartD has no a priori information about the tree structure.
It decodes the job object passed to it and locates its children. Then, a new job
object is created for each child customized to contain only information required
for the child’s subtree. This process continues until the tree is fully constructed.

Dispatching performance is studied in a large scale environment created by
running multiple instances of StartDs on each compute node. The starting point
is to establish the equivalence of logical and physical StartDs within the con-
text of hierarchical communication. There is extensive communication between
StartD instances during the job dispatching cycle. The pattern and concurrency
of the communication processing is expected to change when multiple StartD ex-
ecute on a common physical platform. For example, the concurrency is limited
by the number of available free processing units. Validation starts by compar-
ing a fully parallel cluster with a single StartD on each of 48 nodes to a single
physical node with 48 instances of StartD.

The first experiment compares dispatch time as a function of the fan-out. The
measured dispatch time is the interval that starts when the master StartD receives
the job object and ends with an acknowledgement at the StartD from all nodes on
the tree. The results are presented in Figure 6. The lower solid line corresponds to
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Fig. 6. Compare logical to physical StartD at 48 nodes. The 1200, 3600 indicate size
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the fully parallel cluster of 48 machines and the ‘1200’ on the label indicates the
number of entries in the /etc/hosts file. The intermediate dashed line is the same
experiment as the lower line except that the /etc/hosts file has 3600 lines. Data
for the single machine, multiple StartD case is at the top.

The qualitative behavior of dispatch time is expected based on the tree archi-
tecture. The number of levels L in a tree of fan-out F with N nodes is

L =
⌈

log(1 + N(F − 1))
log(F )

⌉
.

Performance is poor for a fan-out of unity as this degenerate case serializes com-
munication over the 48 levels. A binary tree reduces the number of levels from 48
to 6 and the multi-processor platform concurrently executes StartDs. Additional
benefit is expected as fan-out grows because of concurrency and logarithmic re-
duction in tree depth. The trend is expected to reverse when fan-out exceeds
machine concurrency and communication becomes serialized.

Figure 6 demonstrates that for up to 48 StartD the behavior of the two con-
figurations with fan-out is comparable. This is an important step in validating
the virtual StartD methodology that allows many StartD on each physical node.
However, the expected gain from increasing fan-out beyond a binary tree is
absent. This suggest some operation is limiting performance and is largely in-
dependent of the fan-out or depth of the communication tree. The log file is
investigated for more information, but the 48 node job does not provide a clue
to the cause.
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Fig. 7. Time to build job object, 2304 node binary tree

In an effort to identify the origin of the problem, a parallel job requesting 1000
nodes is executed with fan-out of 2 in the environment of 2304 compute nodes by
running 48 StartD on each of the 48 physical nodes. The StartD log file shows
significant processing occurs at each StartD prior to forwarding the modified
job objects to the F children. In particular, the processing time is proportional
to the number of compute nodes remaining on this branch of the tree. This
decreases approximately as 1/F at each level down the tree (i.e. as N, N/F, ...,
N/FL, for the Lth level), as shown in Figure 7. It is apparent that time spent
de-serializing the objects from the communications buffers and repackaging and
serializing job object for each child overwhelms the potential performance gains
expected from increased fan-out. To support heterogeneous clusters the external
data representation (XDR, RFC-1832 (1995)) standard is used to encode/decode
every field in the job object and is a large component of the observed overhead.
Because most fields are read for the sole purpose of repackaging and copying
from parent to child there is no reason for these fields to be decoded/encoded
at each level of the tree. Structuring the HC messages to substitute much of the
XDR activity with buffer copies is a potential optimization.

This discovery shows that attention to all aspects of a hierarchical commu-
nications scheme is required to achieve the anticipated gains. The layout of the
data structure used to transfer information in the tree needs to be easy to parse
and rebuild. This raises the question of whether a job object format is possible
so that decoding and repackaging occurs in F rather than N operations. The
cost of the initial construction remains proportional to N, but is incurred once
at the SchedD machine instead of on the compute nodes.
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This example of performance problem detection and analysis highlights the
advantage of using lightweight virtualization to create a large scale system for
testing job scheduling and launching. It exposes design issues not apparent at
the physical cluster size available to developers. The 2304 node cluster is lever-
aged further by measuring the dispatch time for a 2304 node job with the tree
structures of fan-out 2 to 13 with levels of 12 and 4, respectively. The time is
about 100 seconds compared with 60 seconds obtained by linear extrapolation
from the 48 node system of Figure 6. This is not an unreasonable prediction
error for a factor of 48 scale up in a computer system.

An additional performance consideration revealed in the experiments related
to Figure 6 is the effect the /etc/hosts file size. The IP alias for multiple StartDs
on a node require entries in the hosts file increasing the processing time of IP
lookup. Investigation using the secondary test cluster suggests that significant
time is spent searching the /etc/hosts file for IP resolution. The figure demon-
strates the 48 physical node data is significantly improved when /etc/hosts is
reduced to 1200 from 3600 lines. Unfortunately, for large systems the size of
/etc/hosts is considerable large. The speed of /etc/hosts lookups is also operat-
ing system dependent.

5 Concluding Remarks

A lightweight virtualization methodology is introduced to LoadLeveler and ap-
plied to study the scalability of job scheduling and dispatching in large scale
parallel systems using modest number of physical nodes. The study identifies
static resource matching in scheduling and job object processing in dispatching
as potential scalability bottlenecks. and proposed solutions to their performance.
Further research needs to be applied to investigate whether results observed here
continue to demonstrate the same functional scaling in larger systems.

Acknowledgments

We are extremely grateful to Linda Cham for tirelessly helping us with our most
last minutes requests to build the LL library for various platforms. We also thank
Waiman Chan, Alexander Druyan, Nathan Falk, Kevin Gildea, Kailash Marthi,
and Ravindra Sure for numerous valuable discussions. We express our gratitude
to David Olshefski and Gong Su for their valuable insight on iptables setup. This
material is based upon work supported by the US Defense Advanced Research
Projects Agency (DARPA) under its Agreement No. HR0011-07-9-0002.

References

1. AIX 5l workload manager (wlm),
http://www.redbooks.ibm.com/redbooks/pdfs/sg245977.pdf

2. Darpa high productivity computing systems project,
http://www.darpa.mil/ipto/programs/hpcs/hpcs.asp

http://www.redbooks.ibm.com/redbooks/pdfs/sg245977.pdf
http://www.darpa.mil/ipto/programs/hpcs/hpcs.asp


204 N. Bobroff et al.

3. IBM tivoli workload scheduler loadleveler,
http://publib.boulder.ibm.com/-infocenter/clresctr/vxrx/index.jsp

4. Linux distributions, http://www.linux.org/dist/
5. Aridor, Y., Domany, T., Goldshmidt, O., Kliteynik, Y., Moreira, J., Shmueli, E.:

Open job management architecture for the Blue Gene/L supercomputer. In: Feit-
elson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2005.
LNCS, vol. 3834, pp. 91–107. Springer, Heidelberg (2005)

6. Aridor, Y., Domany, T., Goldshmidt, O., Kliteynik, Y., Shmueli, E., Moreira, J.E.:
Multitoroidal interconnects for tightly coupled supercomputers. IEEE Trans. Par-
allel Distrib. Syst. 19(1), 52–65 (2008)

7. Pruyne, J., Livny, M.: A worldwide flock of condors: Load sharing among worksta-
tion clusters. Journal on Future Generations of Computer Systems (1996)

8. Moreira, J.E., Chan, W., Fong, L.L., Franke, H., Jette, M.A.: An infrastructure for
efficient parallel job execution in terascale computing environments. In: Supercom-
puting 1998: Proceedings of the 1998 ACM/IEEE conference on Supercomputing
(CDROM), Washington, DC, USA, pp. 1–14. IEEE Computer Society, Los Alami-
tos (1998)

9. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the ibm sp2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

10. Pfister, G.F.: An introduction to the InfiniBand architecture. In: Jin, H., Cortes,
T., Buyya, R. (eds.) High Performance Mass Storage and Parallel I/O: Technologies
and Applications, ch. 42, pp. 617–632. IEEE Computer Society Press/Wiley, New
York (2001)

11. Ryu, K.D., Daly, D., Seminara, M., Song, S., Crumley, P.G.: Agent multiplication:
An economical large-scale testing environment for system management solutions.
In: IEEE International Symposium on Parallel and Distributed Processing, IPDPS
2008, April 2008, pp. 1–8 (2008)

12. Stunkel, C.B., Shea, D.G., Aball, B., Atkins, M.G., Bender, C.A., Grice, D.G.,
Hochschild, P., Joseph, D.J., Nathanson, B.J., Swetz, R.A., Stucke, R.F., Tsao,
M., Varker, P.R.: The sp2 high-performance switch. IBM System Journal 34(2),
185–204 (1995)

13. Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor – a distributed job
scheduler. In: Sterling, T. (ed.) Beowulf Cluster Computing with Linux. MIT Press,
Cambridge (2001)

A Appendix Iptables for StartD Virtualization

Iptables is an approach to orchestrate the communication between the CM,
SchedD and StartDs without code modification. It is a generic network packet
manipulation technology that enables packet filtering, network address trans-
lation, and packet mangling. Iptables is used extensively in building Internet
firewalls, redirecting traffic between servers, sharing public IP addresses.

The difficulty with StartD is that its IP endpoint sockets are bound to the
listening port specified in the ’LoadL-config’ file and the ip associated with the
machine hostname in the network interface. Thus, while each StartD within a
physical machine is assigned a unique listening port by directing it to a unique
configuration file (e.g. ’LoadL-config.nnn’) the ip address of the endpoint lis-
ten socket binding is hard coded. This is fine as the StartD listeners within
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each physical machine no longer conflict with each other. However, the CM and
SchedD assume all StartD in the cluster listen on the same port number at each
machine. What is required is a way for the multiple StartD on each physical
machine having unique ports but a shared ip to appear to the CM and SchedD
that they are at common port but unique ip addresses. In concept, the resolution
is to use iptables to:

– Map outgoing packets from the StartD endpoints (unique-port, common-ip)
to appear to originate at (common-port, unique-ip).

– Map outgoing packets from CM and SchedD sent to (common-port, unique-
ip) to be sent to (unique port, common-ip)

This is accomplished defining iptable rules that remap these endpoint bindings
transparent to the LoadLeveler code. In Figure 8(a), when CM needs to com-
municate to a StartD i (1 ≤ i ≤ n), it sends the message to the respective
destination IP address DIPi but to a fixed port number LPp. When this com-
munication arrives at the StartD node, the packet is trapped by this iptable
forwarding rule and forwards it to the appropriate port LPi based on DIPi.
A similar rule coordinates communication originating from the SchedD to the
StartDs.

StartDs are made to appear to the CM that they originate from unique IP
addresses using the following three steps:

– The configuration file of each StartD is setup so that it uses a private port
to communicate with the CM. Although CM is not actually listening on this
port, this change is needed to identify which packets belong to which StartD
at the iptables layer. When the StartD initiates a communication to the CM,
its packets have this private port as the destination port in their header.

– Create an iptable rule that captures all outgoing packets from any StartD
to the CM (DIPcm), and based on the CM destination port number (LPi)
on the packet header, assigns a corresponding StartD IP address as the
packet source IP address SIPi, as shown in Figure 8(b). With this method,
each outgoing packet to the CM is correctly labeled with the StartD that
generated the packet but its destination port is not the actual port where
CM is listening for StartD communications.

– Create an iptable rule on the CM node that redirects traffic destined to the
list of private ports (LP1, LP2, . . . , LPn) to the public port (LPp) on which
CM is listening.

The above methods create a large LoadLeveler cluster with minimal compute
and memory resources. The iptables setup is automated with a the help of a
few Perl and shell scripts. These scripts are parameterized so that the required
number of StartDs may be activated on different physical machines. This setup
is used to exercise the scheduling algorithms in the CM up to several thousand
computes nodes.

A major limitation of iptables is their performance. Anecdotal evidence sug-
gests that large numbers of iptables rules degrades the network performance
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Fig. 8. LoadLeveler with virtualized StartDs – Iptables

because these rules are processed sequentially for every packet. Since network
performance is a critical component of the hierarchical communication perfor-
mance of LoadLeveler, the iptables approach is less favored than source code
modifications described in the main text to orchestrate communications between
CM, SchedD and StartDs.
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Abstract. As multi-core processors proliferate, it has become more im-
portant than ever to ensure efficient execution of parallel jobs on multipro-
cessor systems. In this paper, we study the problem of scheduling parallel
jobs with arbitrary release time on multiprocessors while minimizing the
jobs’ mean response time. We focus on non-clairvoyant scheduling schemes
that adaptively reallocate processors based on periodic feedbacks from the
individual jobs. Since it is known that no deterministic non-clairvoyant al-
gorithm is competitive for this problem,we focus on resource augmentation
analysis, and show that two adaptive algorithms, Agdeq and Abgdeq,
achieve competitive performance using O(1) times faster processors than
the adversary. These results are obtained through a general framework for
analyzing the mean response time of any two-level adaptive scheduler. Our
simulation results verify the effectiveness of Agdeq and Abgdeq by evalu-
ating their performances over a wide range of workloads consisting of syn-
thetic parallel jobs with different parallelism characteristics.

Keywords: Malleable jobs, Mean response time, Non-clairvoyant
algorithm, Online scheduling, Resource augmentation analysis, Two-level
adaptive scheduling, Simulations.

1 Introduction

With the proliferation of multi-core computers and the increasing use of multi-
processor systems, more software developers have started programming in par-
allel and migrating the existing sequential applications to the parallel platforms.
One imminent challenge for the operating system is thus to schedule the parallel
applications to fully exploit the multiprocessor resources.

In this paper, we study the problem of scheduling a set of parallel jobs with
arbitrary release time on multiprocessors. The objective is to minimize the jobs’
mean response time, where the response time of a job is defined to be the duration
between its release and its completion. We consider malleable jobs [17] that
have changing degrees of parallelism and can execute with a varying number
of allocated processors [12, 13, 18]. The task of the operating system scheduler
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is to decide the number of processors allocated to each job at any time. Since
information about the jobs’ characteristics is generally unavailable to the system,
we assume that the schedulers are online non-clairvoyant, that is, they know
nothing about the job’s release time, work and future parallelism when making
scheduling decisions.

To date, many excellent results for online scheduling have been obtained using
competitive analysis [9], in which the performance of a scheduling algorithm is
described in terms of its competitive ratio against the optimal scheduler. How-
ever, since it has been shown in [25] that any deterministic online non-clairvoyant
algorithm is Ω(n1/3)-competitive with respect to the mean response time even
for scheduling sequential jobs on a single processor, some recent studies along
this line have focused on resource augmentation analysis [21, 26], in which the
online algorithm is augmented with extra resources as compared to the adver-
sary, either in the form of faster processors or more processors. In this case,
the online algorithm is said to be s-speed c-competitive if its performance with
s times of extra resources is no worse than c times that of the optimal. The
rationale for resource augmentation is that the traditional competitive analysis
for an online algorithm can lead to a large competitive ratio because the online
algorithm, being non-clairvoyant, cannot recover from sometimes even a small
mistake made on certain worst-case job instances. The extra resources for the
online algorithm compensates for their non-clairvoyance on these worst-case sce-
narios. Hence, if an algorithm achieves competitive result with moderate increase
in processor resources, then it is likely to perform comparably to the optimal on
most practical workloads. The readers may wish to refer to [21, 26, 28, 27] for
more elaborate interpretations of resource augmentation. Basically, the goal is to
achieve competitive performance for an algorithm with minimal extra resources.

Perhaps the simplest online non-clairvoyant scheduler for parallel jobs is Equi
(Equi-Partitioning)[14, 13], which divides the total number of processors evenly
among all active jobs at any time. Using a sophisticated analysis, Edmonds [13]
proved that Equi is (2 + ε)-speed O(1)-competitive with respect to the mean
response time of any set of jobs. Recently, Edmonds and Pruhs [16] proposed
Laps (Latest Arrival Processor Sharing), a variant of Equi that divides the
total number of processors among a certain portion of the latest released jobs.
They showed that Laps is (1+ ε)-speed O(1)-competitive with sufficiently large
ε. The analysis of Equi and Laps employs a technique called amortized local
competitive argument, which bounds the amortized performance of an algorithm
at any local time through a carefully designed potential function, and it has
become a useful technique for analyzing scheduling algorithms (see, e.g. [28, 27,
5, 4, 23, 11]). In this paper, we extend the amortized local competitive argument
and provide a simple framework to analyze the mean response time for a set
of perhaps less well-known but also quite effective schedulers called two-level
adaptive schedulers [1, 18, 32].

The theoretical study of two-level adaptive schedulers was initiated by Agrawal,
et al. [1]. Unlike Equi, which allocates processors to jobs without considering the
jobs’ utilization of the allocated resources, the two-level adaptive schedulers take
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a corrective approach by collecting statistics from jobs’ past executions and using
them to guide the future processor allocations. Since no knowledge about the fu-
ture is assumed, they are also non-clairvoyant in nature. Specifically, the schedul-
ing of jobs by a two-level adaptive scheduler can be decomposed into two parts:
at the system level, an OS allocator decides the processor allocations for jobs; at
the job level, a task scheduler schedules the tasks of each job with the allocated
processors. In order to allocate processors more effectively, each task scheduler
provides feedback to the OS allocator indicating the job’s future processor desire.
The processors are reallocated periodically by the OS allocator after each schedul-
ing quantum based on the feedback from the jobs. The length of the scheduling
quantum is usually set to be long enough to amortize the overheads incurred by
the processor reallocations and bookkeepings for scheduling, but it should not be
too long to make the feedback relevant.

Using the above two-level adaptive scheduling framework, Agrawal et al. [1]
proposed Ag (Adaptive Greedy) task scheduler, which calculates the processor
desire for a job in each scheduling quantum with a simple multiplicative-increase
multiplicative-decrease strategy based on the execution statistics of the job in the
immediate previous quantum. They analyzed the performance of Ag in terms of
an individual job’s running time and processor utilization. He et al. [18] combined
Ag task scheduler with Deq (Dynamic Equi-Partitioning) [33, 24] OS allocator,
which is a variant of Equi that never allocates more processors to a job than the
job’s processor desire. They called the resulting two-level scheduler Agdeq, and
showed that it is O(1)-competitive with respect to the mean response time of any
set of batched parallel jobs (i.e., all jobs are released at time 0). Furthermore,
they showed that Agdeq simultaneously guarantees O(1)-competitiveness for
the makespan of arbitrarily released jobs. Sun and Hsu [32] later proposed a
task scheduler Abg (Adaptive B-Greedy), which directly utilizes the job’s past
parallelism to calculate the processor desire and improves upon Ag in terms of
its desire stability. They also showed similar mean response time and makespan
performances for the two-level scheduler Abgdeq.

In this paper, we show that, for parallel jobs with arbitrary release time,
Agdeq and Abgdeq are competitive with respect to the mean response time
with O(1) times faster processors. Compared to Equi, which is competitive for
the mean response time [14, 13], but not competitive for the makespan [29],
the results of Agdeq and Abgdeq show that the two-level adaptive schedulers
achieve both fairness and efficiency for executing parallel applications on mul-
tiprocessor systems. Moreover, we provide a framework for analyzing the mean
response time of any algorithm that can be formulated as a two-level adaptive
scheduler. The analysis given in this paper and in [18] offers a convenient tech-
nique for analyzing the mean response time of a wide spectrum of scheduling
algorithms that utilize parallelism feedbacks from the jobs, while the analysis in
the previous results [13, 15, 29, 30, 16] are applied more specifically to Equi and
its variants.

In addition, we also conduct simulations and compare the mean response time
of Agdeq and Abgdeq with that of Equi. The simulation results verify the
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effectiveness of the two-level adaptive schedulers over a wide range of workloads
consisting of synthetic parallel jobs with different parallelism characteristics.

The rest of this paper is organized as follows. Section 2 formally introduces
the job model and the objective function. Section 3 discusses two-level adaptive
scheduling in general, and describes Agdeq and Abgdeq algorithms in details.
Section 4 provides the mean response time analysis framework, and its applica-
tions to Agdeq and Abgdeq. Our simulation results are presented in Section 5.
Section 6 discusses some related work, and Section 7 concludes the paper.

2 Job Model and Objective Function

We adopt the job model used by Edmonds et al. [13, 16], which allows a paral-
lel job to have time-varying parallelism modeled by multiple phases of speedup
functions. However, unlike in [13, 16], where each phase of a job admits an arbi-
trary non-decreasing but sub-linear speedup, we consider a simpler model where
each phase has a linear speedup function up to a certain degree of parallelism,
beyond which no further speedup can be gained.1 Specifically, we consider a set
J = {J1, J2, . . . , Jn} of n jobs to be scheduled on P processors. Each job Ji

in the job set contains pi phases 〈J1
i , J2

i , . . . , Jpi

i 〉, and each phase Jp
i has an

amount of work wp
i , and a linear speedup function Γ p

i up to a certain degree of
parallelism hp

i , where hp
i ≥ 1. The span lpi of phase Jp

i is therefore lpi = wp
i /hp

i .
The phase is parallelizable if hp

i = ∞, and it is sequential if hp
i = 1. The total

work of job Ji is denoted by wi =
∑pi

p=1 wp
i , and the total span of the job is

li =
∑pi

p=1 lpi . At any time t, suppose that job Ji is in its p-th phase and is
allocated ai(t) processors of speed s, the effective speedup or execution rate of
the job is thus given by Γ p

i (ai(t)) = ai(t) · s if ai(t) ≤ hp
i and Γ p

i (ai(t)) = hp
i · s

if ai(t) > hp
i .

A scheduling algorithm Alg for any set J of jobs specifies the number ai(t)
of processors allocated to each job Ji at any time t. In order for the schedule
to be valid, we require that at any time t the total processor allocation is not
more than the total number of processors, i.e.,

∑n
i=1 ai(t) ≤ P . Let ri denote

the release time of job Ji. Let cp
i denote the completion time of the p-th phase

of job Ji, and let ci = cpi

i denote the completion time of job Ji. We also require
that a valid schedule must complete all jobs in finite amount of time and can not
begin to execute a phase of a job unless it has completed all its previous phases,
i.e., ri = c0

i < c1
i < . . . < cpi

i < ∞, and
∫ cp

i

cp−1
i

Γ p
i (ai(t))dt = wp

i for all 1 ≤ p ≤ pi.
The job Ji is said to be active at time t if it is released but not completed

at t, i.e., ri < t < ci. The response time Ri of the job is the duration between
the completion time and the release time of the job, i.e., Ri = ci − ri. The total
response time R(J ) of the entire job set J is thus given by R(J ) =

∑n
i=1 Ri,

or alternatively can be expressed as R(J ) =
∫∞
0 ntdt, where nt is the number of

active jobs at time t. The mean response time R(J ) of the job set is therefore
R(J ) = R(J )/n.

1 See Section 7 for our discussion on the chosen job model.
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Our objective is to minimize the mean response time R(J ) of the job set J ,
for which we use resource augmentation analysis [21, 26]. Specifically, we equip
the online algorithm Alg with processors of speed s, where s > 1, while the
optimal algorithm is only given processors of unit speed. In this case, Alg is
said to be s-speed c-competitive with respect to the mean response time if there
exists a constant b such that it satisfies RAlg(J ) ≤ c ·R∗

(J ) + b for any job set
J , where R

∗
(J ) denotes the mean response time of the optimal scheduler.

Let l(J ) denote the total span of job set J , i.e., l(J ) =
∑n

i=1 li. Then a
simple lower bound for the total response time of job set J is its total span,
that is, R∗(J ) ≥ l(J ), since it takes at least li time to complete job Ji using
any scheduler on unit-speed processors.

3 Two-Level Adaptive Scheduling: From AGDEQ to
ABGDEQ and beyond

In this section, we present how two-level adaptive scheduling can be used to
schedule parallel jobs. We first introduce the basic concept of two-level adaptive
scheduling, followed by detailed descriptions of two specific two-level algorithms,
namely Agdeq and Abgdeq. We end this section with a remark on the general
applicability of two-level adaptive schedulers.

3.1 Two-Level Adaptive Scheduling

In two-level adaptive scheduling, the execution of jobs is decomposed into two
parts: a system-level OS allocator decides the processor allocations for jobs;
and a task scheduler for each job in the user level executes the job with the
allocated processors. The processors are reallocated by the OS allocator after
each scheduling quantum, which is usually set to be a fixed amount of time,
say L time units. In order for the OS allocator to allocate processors to jobs
more effectively, the task scheduler should provide feedback to the OS allocator
indicating the job’s processor desire for each quantum, typically based on the
execution statistics of the job in previous quanta. For a scheduling quantum q,
let di(q) and ai(q) denote the processor desire and the processor allocation for
job Ji, respectively. We assume that the task scheduler always executes the job
based on the model given in Section 2. Hence, as far as the task schedulers are
concerned, their only difference lies in the strategies for estimating the processor
desires. In [19], the interaction between task scheduler and the OS allocator is
referred to as the processor request-allocation protocol. At each quantum in this
protocol, we say that a job Ji is satisfied if its processor allocation is no less
than its processor desire, i.e., ai(q) ≥ di(q). Otherwise, the job is deprived if
ai(q) < di(q). In addition, the notions of satisfied and deprived are extended
from quantum to time. A job is said to be satisfied (deprived) at time t if t is
within a satisfied (deprived) quantum for the job. Finally, to ease our analysis,
when a new job is released in the middle of a quantum, it is not scheduled until
the beginning of the next quantum.
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3.2 AGDEQ

Agdeq (Adaptive-Greedy Dynamic Equi-Partitioning) is a two-level adaptive
scheduler proposed by He et al. [18] that combines the task scheduler Ag [1] and
the OS allocator Deq [33, 24]. In this subsection, we will describe the two parts
in detail.

The task scheduler Ag estimates the processor desire for a job in a schedul-
ing quantum based on the job’s execution characteristics in the immediate pre-
vious quantum. Specifically, let tq denote the time when quantum q starts,
then the work wi(q) completed for job Ji in quantum q is given by wi(q) =∫ tq+L

tq
Γ pt

i (ai(q))dt, where L is the length of the scheduling quantum and pt is
the phase job Ji is executing at time t. The execution of job Ji is said to be effi-
cient in quantum q if the work wi(q) completed is at least δ fraction of the max-
imum amount of work that can be done in the quantum, i.e., wi(q) ≥ δai(q)sL,
where 0 < δ < 1 is called the utilization threshold ; otherwise it is inefficient
if wi(q) < δai(q)sL. Based on the efficient and inefficient classification as well
as the satisfied and deprived classification for quantum q, the processor de-
sire for the next quantum q + 1 is calculated using a multiplicative-increase
multiplicative-decrease strategy as shown in Algorithm 1, assuming that the OS
allocator never allocates more processors than its desire.2

Algorithm 1. Ag(δ)
1: if wi(q) < δai(q)sL then
2: di(q + 1) = di(q)/2 //inefficient
3: else if ai(q) = di(q) then
4: di(q + 1) = di(q) · 2 //efficient and satisfied
5: else
6: di(q + 1) = di(q) //efficient and deprived

The rationale of the Ag algorithm is as follows [1]. If the allocated processors in
quantum q are not utilized efficiently, then the parallelism of the job may not be as
high. Therefore, the processor desire will be reduced by a factor of 2 for the next
quantum q +1 (line 1 and line 2). If the allocated processors are utilized efficiently
and the processor desire is satisfied, then the parallelism of the job could be even
higher.Thus, theprocessor desirewillbe increasedbya factor of 2 (line3 and line 4).
Lastly, if the allocated processors are utilized efficiently but the desire is deprived,
then it is not known whether the processors could still be efficiently utilized had
the desire been satisfied. Therefore, the processor desire is not changed for the next
quantum (line 5 and line 6). The processor desire for the initial quantum when the
2 In this paper, we simplify Ag algorithm by setting its multiplicative factor to 2,

while in [1], a tuning parameter ρ is defined that can take on any value greater than
1. The simplification is justified by the fact that the multiplicative factor is mainly
related to the processor waste of the job in deductible quanta [1], which we show in
this paper is actually irrelevant to the jobs’ mean response time, provided that the
initial processor desire is set sufficiently high.
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job is first scheduled is set to be the total number P of processors.3 Following the
terminologies in [1], a job is referred to as accounted in quantum q if the job is both
deprived and efficient. Otherwise, the job is deductible.

Now, we describe the OS allocator Deq, which is a variants of Equi that
partitions the total number of processors equally among all active jobs. In Deq,
however, if a job desires for less processors than the equal share, it will not
be allocated more processors than its desire, and the remaining processors will
instead be given to the other jobs with higher desires. Let J (t) denote the set of
active jobs at time t when a new quantum begins. Based on the processor desires
from all jobs in J (t), Deq allocates the processors as shown in Algorithm 2.

Algorithm 2. Deq(J (t), P )
1: if J (t) = ∅ then
2: return
3: S = {Ji ∈ J (t) : di(t) ≤ P/ |J (t)|}
4: if S = ∅ then
5: for each Ji ∈ J (t) do
6: ai(t) = P/ |J (t)| //deprived jobs get current equal share
7: return
8: else
9: for each Ji ∈ S do

10: ai(t) = di(t) //satisfied jobs get their desires
11: Deq(J (t)− S, P −

∑
Ji∈S ai(t))

As can be seen in the pseudocode, if a job’s processor desire is not more
than the equal share P/ |J (t)| of processors, the job will be satisfied (line 3
and line 10). After that, the equal share will be recalculated excluding the jobs
already satisfied and the processors already allocated. The remaining processors
will then be allocated to the rest of the jobs by recursively calling the main
procedure (line 11) until all jobs’ processor desires are satisfied or they exceed
the equal share. In the latter case, each remaining job will be deprived and get the
current equal share of processors (lines 4-7). As was shown in [12, 18], if there are
deprived jobs for a quantum, then all P processors must have been allocated by
Deq, and each deprived job will have the same number of allocated processors,
which is higher than the initial equal share P/ |J (t)|. Note that in this paper,
as in [12, 13, 18, 16], we assume that the number of processors allocated to a job
can be non-integral. The fractional allocation can be considered as time-sharing
a processor among the jobs.
3 Note that in [1], the initial desire is set to be 1. This more conservative strategy is

to ensure that jobs do not waste a lot of processors, especially in deductible quanta,
which intuitively could affect the mean response time of the job set, since the wasted
processors of a job could have been well utilized by the other jobs to speed up their
executions [18]. However, we show in this paper that the mean response time of the
jobs is actually independent of their deductible waste. This phenomenon can also be
observed in the analysis of Equi, which fares poorly in terms of its processor utilization,
yet it still achieves good performance in terms of mean response time [13].
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3.3 ABGDEQ

Abgdeq (Adaptive B-Greedy Dynamic Equi-Partitioning) was proposed by Sun
and Hsu [32] and it combines OS allocator Deq with task scheduler Abg, which
directly calculates the average parallelism of the job in a quantum, and uses it
as the processor desire for the next quantum. Specifically, let tq denote the time
when quantum q starts, then the work wi(q) completed for job Ji in quantum q is
wi(q) =

∫ tq+L

tq
Γ pt

i (ai(q))dt, and the span li(q) reduced for job Ji in quantum q is

li(q) =
∫ tq+L

tq
Γ pt

i (ai(q))/hpt

i dt, where L is the length of the scheduling quantum
and pt is the phase job Ji is executing at time t. Although the instantaneous par-
allelism of job Ji at any time during quantum q may vary, its average parallelism
Ai(q) in the quantum is given by Ai(q) = wi(q)/li(q). Abg directly sets the pro-
cessor desire for quantum q + 1 to the average parallelism of quantum q, i.e.,
di(q +1) = Ai(q).4 This strategy makes the processor desire more representative
of the job’s average processor requirement, and eliminates the desire instability
problem of Ag when the parallelism of the job stays constant for sufficiently
long time (see Section 5). Again, the initial desire is set to be the total number
P of processors. In addition, job Ji is said to be under-allocated in quantum q
if the average parallelism is at least the processor allocation, i.e., Ai(q) ≥ ai(q),
otherwise it is over-allocated if Ai(q) < ai(q). Following the terminologies from
Ag, a job is accounted if it is both deprived and under-allocated, and otherwise
it is deductible.

3.4 Remark

Beyond Agdeq and Abgdeq, the general concept of two-level adaptive schedul-
ing can represent a rich class of scheduling algorithms with various other feed-
back mechanisms and allocation policies. For instance, Equi can be considered
as a special type of two-level adaptive scheduler with variable quantum length
(a quantum only expires if a job completes or a new job is released) and an
oblivious OS allocator (which always divides the processors equally among the
active jobs regardless of each job’s processor desire). In the following section, we
will present a general framework for analyzing the mean response time on this
class of schedulers.

4 Mean Response Time Analysis

In this section, we present a general framework for the mean response time anal-
ysis of the two-level adaptive schedulers, and apply it to Agdeq and Abgdeq
algorithms. We begin this section by introducing a few concepts and notations.
4 In [32], the processor desire for quantum q + 1 is set to be a linear combination

of the average parallelism and the processor desire of quantum q, i.e., di(q + 1) =
(1−v)Ai(q)+vdi(q), where v is called the convergence rate. In this paper, we set the
convergence rate to be v = 0, hence make the processor desire achieve one-quantum
convergence towards the job’s average parallelism when the latter is constant.
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4.1 Preliminaries

At any time t, a job Ji executed by the online algorithm can be characterized by
certain properties. For example, a job can be classified according to “satisfied”,
“deprived”, “accounted”, or “deductible” as described in the preceding section.
Our analysis relies on identifying two such properties A and B for the set of
active jobs. Let J (t) denote the set of active jobs at time t, and let JA(t)
and JB(t) denote the sets of active jobs at time t that satisfy property A and
property B, respectively. Throughout the execution of job Ji, let aA(Ji) denote
the total processor allocation when job Ji satisfies property A, i.e., aA(Ji) =∫∞
0 ai(t)s · [Ji(t) ∈ JA(t)]dt, and let tB(Ji) denote the total amount of time

when job Ji satisfies property B, i.e., tB(Ji) =
∫∞
0 s · [Ji(t) ∈ JB(t)]dt, where s

denotes the processor speed of the online algorithm and [x] is 1 if proposition x
is true and 0 otherwise. In addition, we also require the notion of total amount
of time for the entire job set J that satisfies property B, which is defined to be
tB(J ) =

∑n
i=1 tB(Ji). To simplify our notations, we let nt = |J (t)| denote the

number of active jobs at time t, and let nA
t = |JA(t)| and nB

t = |JB(t)| denote
the number of active jobs at time t that satisfy property A and property B,
respectively. As far as this paper is concerned, the two properties A and B are
chosen such that JA(t) and JB(t) are disjoint, i.e., JA(t)

⋂
JB(t) = ∅, and they

cover the whole set of active jobs, i.e., JA(t)
⋃

JB(t) = J (t). Hence, we have
nA

t + nB
t = nt.

We also introduce the notions of t-prefix and t-suffix for jobs to ease our
analysis. For an online algorithm, define the t-prefix Ji(

←−
t ) of job Ji to be the

portion of the job executed before time t, and the t-suffix Ji(
−→
t ) to be the

portion executed after time t. Specifically, if the online algorithm is execut-
ing the p-th phase of job Ji at time t, then Ji(

←−
t ) consists of the first p − 1

phases 〈J1
i , J2

i , . . . , Jp−1
i 〉 of job Ji, followed by part of the p-th phase with

work
∫ t

cp−1
i

Γ p
i (ai(t))dt; and Ji(

−→
t ) begins with the rest of the p-th phase with

work
∫ cp

i

t
Γ p

i (ai(t))dt, followed by the remaining phases 〈Jp+1
i , Jp+2

i , . . . , Jpi

i 〉 of
job Ji. In addition, we extend the definitions of t-prefix and t-suffix from a
job to a job set such that J (

←−
t ) = {J1(

←−
t ), J2(

←−
t ), . . . , Jnt(

←−
t )} and J (

−→
t ) =

{J1(
−→
t ), J2(

−→
t ), . . . , Jnt(

−→
t )}. We let J ∗(

←−
t ) = {J∗

1 (
←−
t ), J∗

2 (
←−
t ), . . . , J∗

n∗
t
(
←−
t )}

and J ∗(
−→
t ) = {J∗

1 (
−→
t ), J∗

2 (
−→
t ), . . . , J∗

n∗
t
(
−→
t )} denote the t-prefix and t-suffix of

job set J executed by the optimal scheduler, respectively, where n∗
t is the number

of active jobs at time t under the optimal scheduler.

4.2 Analysis Framework

Our analysis framework adopts the amortized local competitive argument [27],
which bounds the amortized performance of an online algorithm at any time
through a potential function. In addition, we also extend the two-step analysis
used in [18] for bounding the mean response time of batched parallel jobs (i.e.,
when all jobs arrive at time 0). In the case of two-level adaptive schedulers, we
first analyze the task scheduler by bounding two specific properties of it on an
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individual job. We then apply the amortized local competitive argument to the
OS allocator. Finally, by combining the analysis of the task scheduler and the
OS allocator, we can obtain the mean response time performance of the two-level
algorithm. Specifically, our analysis develops as follows.

Step (1): For the task scheduler, choose two properties A and B. Then bound
the processor allocation aA(Ji) to any job Ji in terms of the total work wi of the
job, as well as the amount of time tB(Ji) for any job Ji in terms of the total span
li of the job, on processors of any speed s, where s > 0. That is, find coefficients
γ1, γ2 and constant γ3 such that

aA(Ji) ≤ γ1 · wi , (1)
tB(Ji) ≤ γ2 · li + γ3 . (2)

Step (2): For the OS allocator, with properties A and B chosen in Step (1) in
mind, find a potential function Φ(t), a processor speed s′, and coefficients c1 and
c2 such that on processors of speed s = s′ + ε for any ε > 0, the execution of the
job set satisfies the following

- Boundary Condition: Φ(0) = 0 and Φ(∞) ≥ 0;
- Arrival Condition: Φ(t) does not increase when new jobs arrive;
- Completion Condition: Φ(t) does not increase when jobs complete;
- Running Condition:

dR(J (t))
dt

+
dΦ(t)

dt
≤ c1 ·

dR∗(J ∗(t))
dt

+ c2 ·
dtB(J (t))

dt
, (3)

where dR(J (t))
dt = limΔt→0

R(J (
←−−−
t+Δt))−R(J (

←−
t ))

dt denotes the change of total re-
sponse time under the online algorithm in an infinitesimal interval of time Δt,
and apparently we have dR(J (t))

dt = nt. Similarly, the change of total response
time under the optimal algorithm satisfies dR∗(J ∗(t))

dt = n∗
t , and the change of

total amount of time for the job set satisfying property B under the online al-
gorithm is given by dtB(J (t))

dt = snB
t . In addition, dΦ(t)

dt = limΔt→0
Φ(t+Δt)−Φ(t)

dt
denotes the change of potential function in interval Δt. Note that we assume Δt
is infinitesimally small such that no new job arrives, and no job completes, or
makes a transition between two phases, or experiences processors reallocation
under both the online algorithm and the optimal.

The form of the potential function Φ(t) may not be unique, but it usually
depends on the processor allocation aA(Ji) and the coefficient γ1 given in In-
equality (1). In addition, coefficient γ1 can also affect the choice of processor
speed s′ for Inequality (3) to be satisfied. In the next subsection, we will provide
a concrete example on choosing the potential function and the processor speed
for the analysis of the OS allocator Deq. Now, combining the results of Step
(1) and Step (2), we can obtain the performance for the two-level algorithm.
First, summing over all jobs for Inequality (2), we get tB(J ) ≤ γ2 · l(J ) + γ3n.
Since l(J ) is a lower bound on the total response time of job set J , integrating
Inequality (3) over time, we have
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R(J ) ≤ c1 · R∗(J ) + c2 · tB(J )
≤ c1 · R∗(J ) + c2γ2 · l(J ) + c2γ3n

≤ (c1 + c2γ2) · R∗(J ) + c2γ3n .

The mean response time R(J ) thus satisfies R(J ) ≤ (c1 + c2γ2) · R
∗
(J ) +

c2γ3, which suggests that the two-level algorithm is (s′ + ε)-speed (c1 + c2γ2)-
competitive with respect to the mean response time for any job set J , provided
that c2 and γ3 are constants.

4.3 Performance of AGDEQ

We now apply the framework outlined in the preceding subsection to analyze the
mean response time of two-level adaptive scheduler Agdeq. We choose property
A and property B for Agdeq to be “accounted” and “deductible”, respectively.

We first focus on the task scheduler Ag, whose total accounted allocation and
the total deductible time have been bounded in [1] on unit-speed processors.
Using the same argument [1], we can show similar results for Ag on speed s
processors. The following lemma gives the performance bounds.

Lemma 1. Suppose that Ag schedules a job Ji with work wi and span li on speed
s processors. Then the total accounted allocation to the job satisfies aA(Ji) ≤
wi/δ, and the total deductible time of the job satisfies tB(Ji) ≤ 2li/(1− δ) + 2L,
where δ < 1 is Ag’s utilization threshold and L is the length of the scheduling
quantum.

Proof sketch. The total accounted allocation aA(Ji) to job Ji can be directly in-
ferred from the definition of accounted quantum. Specifically, since an accounted
quantum q for job Ji is also efficient, we have ai(q)sL ≤ wi(q)/δ. Let AC denote
the set of accounted quanta for the job. The total accounted allocation thus
satisfies aA(Ji) =

∑
q∈AC ai(q)sL ≤

∑
q∈AC wi(q)/δ ≤ wi/δ.

The total deductible time tB(Ji) of job Ji can be bounded by considering the
total inefficient time and the total efficient-and-satisfied time, separately. The
former is no more than li/(1− δ) by considering the reduction of the job’s span
in each inefficient quantum. The latter can be related to the former, because
there exists a correspondence between the set of inefficient quanta and the set of
efficient-and-satisfied quanta due to the multiplicative-increase multiplicative-
decrease strategy [3]. By setting the initial processor desire to P , the total
efficient-and-satisfied time turns out to be no more than li/(1 − δ) + L. The
total deductible time of the job is thus bounded by summing up the two terms
as well as the additional waiting time of the job after its arrival, which is at most
the quantum length L. ��
We now turn to the analysis of the OS allocator Deq using amortized local
competitive argument. We adopt the potential function used by Lam et al. [23]
in the context of online speed scaling and tailor it to suit the mean response
time analysis of two-level adaptive schedulers. Specifically, at any time t, let
nt(z) denote the number of jobs whose remaining accounted allocation is at



218 H. Sun, Y. Cao, and W.-J. Hsu

least γ1z under Agdeq, i.e., nt(z) =
∑nt

i=1[aA(Ji(
−→
t )) ≥ γ1z], and let n∗

t (z)
denote the number of jobs whose remaining work is at least z under the optimal,
i.e., n∗

t (z) =
∑n∗

t
i=1[w(J∗

i (
−→
t )) ≥ z]. Apparently, nt(z) and n∗

t (z) are staircase-like
decreasing functions of z, and Figure 1(a) shows an example of nt(z) and n∗

t (z)
at a given time t. The potential function is defined to be

Φ(t) = η

∫ ∞

0

⎡
⎣
⎛
⎝nt(z)∑

i=1

i

⎞
⎠− nt(z)n∗

t (z)

⎤
⎦ dz , (4)

where η = 2γ1
εP . For convenience, define φt(z) =

(∑nt(z)
i=1 i

)
−nt(z)n∗

t (z). We can
now check the four conditions for Step (2) of the analysis framework given in
the preceding subsection.

- Boundary Condition: at time 0, no job exists in the system. The terms nt(z)
and n∗

t (z) are both 0 for all z. Therefore, we have Φ(0) = 0. At time ∞, no
job remains in the system, so again we have Φ(∞) = 0. Hence, the boundary
condition holds.

- Arrival Condition: suppose that a new job with work w′ arrives at time t. Let
t− and t+ denote the instances right before and after the job arrives. Hence, we
have n∗

t+(z) = n∗
t−(z) + 1 for z ≤ w′ and n∗

t+(z) = n∗
t−(z) for z > w′. Similarly,

nt+(z) = nt−(z)+1 for z ≤ a′/γ1 and nt+(z) = nt−(z) for z > a′/γ1, where a′ is
the total accounted allocation to the job. Figure 1(b) illustrates the changes of
nt(z) and n∗

t (z) in this case. Note that a′/γ1 ≤ w′ from Step (1) of the analysis.
Thus, it is obvious that for z > w′, we have φt+(z) = φt−(z). For z ≤ w′, we
consider two cases.

Case 1: for z ≤ a′/γ2, we have φt+(z) − φt−(z) =
(∑nt− (z)+1

i=1 i
)
−

(nt−(z) + 1)
(
n∗

t−(z) + 1
)
−
(∑nt− (z)

i=1 i
)

+ nt−(z)n∗
t−(z) = −n∗

t−(z) ≤ 0.

Case 2: for a′/γ2 ≤ z ≤ w′, we have φt+(z) − φt−(z) =
(∑nt− (z)

i=1 i
)
−

nt−(z)
(
n∗

t−(z) + 1
)
−
(∑nt− (z)

i=1 i
)

+ nt−(z)n∗
t−(z) = −nt−(z) ≤ 0.

Hence, Φ(t+) = η
∫∞
0 φt+(z)dz ≤ η

∫∞
0 φt−(z)dz = Φ(t−), and the arrival condi-

tion holds.
- Completion Condition: when a job completes under Agdeq or the optimal

algorithm, the potential function Φ(t) remains unchanged, because in such cases,
nt(z) or n∗

t (z) only reduces by 1 for z = 0. Hence, the completion condition also
holds.

At this point, the first three conditions hold true regardless of the OS allocator
used and the properties A and B chosen. It remains to check the running condition,
which typically depends on the specific OS allocator as well as the properties A
and B. The following lemma shows the running condition of Deq with property
A and property B being “accounted” and “deductible”, respectively.

Lemma 2. Suppose that Deq schedules a job set J on speed s processors with
Ag. Then the running condition in Inequality (3) is satisfied with potential
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Fig. 1. (a) An example of nt(z) and n∗
t (z) at a given time t. (b) The changes of

nt(z) and n∗
t (z) after a new job arrives. (c) The changes of nt(z) and n∗

t (z) in an
infinitesimally small interval of time Δt.

function in Equation (4), processor speed s = 2γ1 + ε, and coefficients c1 = 2s/ε
and c2 = 2/ε, provided that property A and property B are chosen to be “ac-
counted” and “deductible”, respectively.

Proof. As mentioned in Section 3.2, Deq ensures that accounted jobs, which are
deprived by definition, get at least P/nt processors at any time t. In the worst
case, these nA

t accounted jobs at time t have the most remaining accounted pro-
cessor allocation among the nt active jobs, while the optimal scheduler executes
the job with the least remaining work using all P processors. As a result, which
can be seen from Figure 1(c), each of the bottom nA

t horizontal stripes of nt(z)
shrinks by sPΔt/(γ1nt), and the top horizontal stripe of n∗

t (z) shrinks by PΔt
in interval Δt. The change of the potential function can then be bounded by

dΦ(t)
dt

=
η

Δt

∫ ∞

0

⎡
⎣
⎛
⎝nt+Δt(z)∑

i=1

i

⎞
⎠ − nt+Δt(z)n∗

t+Δt(z)−

⎛
⎝nt(z)∑

i=1

i

⎞
⎠ + nt(z)n∗

t (z)

⎤
⎦ dz

≤ η

Δt

∫ ∞

0

⎡
⎣
⎛
⎝nt+Δt(z)∑

i=1

i

⎞
⎠ −

⎛
⎝nt(z)∑

i=1

i

⎞
⎠
⎤
⎦ dz

+
η

Δt

∫ ∞

0

[nt(z) (n∗
t (z)− n∗

t+Δt(z)) + n∗
t (z) (nt(z)− nt+Δt(z))] dz

≤ 2γ1

εPΔt

(
−nA

t (nA
t + 1)
2

· sP

γ1nt
Δt + ntPΔt + n∗

t
sPnA

t

γ1nt
Δt

)

≤ 2γ1

ε

(
1− x2

ts

2γ1

)
nt +

2s

ε
n∗

t , (5)
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where xt = nA
t /nt, and 0 ≤ xt ≤ 1. Since a job is either accounted or deductible,

we have nB
t = (1 − xt)nt. It can be easily verified that the running condition

holds for all values of xt by substituting Inequality (5), s = 2γ1 + ε, c1 = 2s/ε
and c2 = 2/ε into Inequality (3). ��

Now, we can establish the mean response time performance of two-level adaptive
scheduler Agdeq in the following theorem.

Theorem 1. Agdeq is (2
δ + ε)-speed

(
2 + 4

δ(1−δ)ε

)
-competitive with respect to

the mean response time of any job set, where δ < 1 is Ag’s utilization threshold.

Proof. The theorem follows by combining the analysis given in Section 4.2 and
the results of task schedulers Ag in Lemma 1 and the result of OS allocator
Deq in Lemma 2. ��

4.4 Performance of ABGDEQ

In this subsection, we show the mean response time of two-level adaptive sched-
uler Abgdeq. Again, we choose property A and property B to be “accounted”
and “deductible”, respectively.

The performance of task scheduler Abg relies on a certain characteristic of
the job, which is called transition factor in [32] and denoted as CL for a given
quantum length L. Roughly speaking, the transition factor of a job characterizes
how fast the job’s parallelism changes with time in the worst case, and hence
reflects the degree of difficulty to schedule it in an adaptive fashion. The following
lemma bounds the performance of Abg on speed s processors. The proof follows
closely that of Lemma 1 and can be found in [32].

Lemma 3. Suppose that Abg schedules a job Ji with work wi and span li
on speed s processors. Then the total accounted allocation to the job satisfies
aA(Ji) ≤ 2wi, and the total deductible time of the job satisfies tB(Ji) ≤ (CL +
1)li + 2L, where CL is the transition factor of the job and L is the length of the
scheduling quantum. ��

The following theorem gives the mean response time performance of Abgdeq.

Theorem 2. Abgdeq is (4+ ε)-speed
(
2 + 10+2CL

ε

)
-competitive with respect to

the mean response time of any job set, where CL ≥ 1 is the maximum transition
factor of the jobs in the job set.

Proof. Since we can apply the analysis of Deq to Abgdeq as well, combining
the results of Lemma 3 and Lemma 2, the theorem follows. ��

4.5 Discussions

As suggested in Section 3.4, we can formulate Equi as a two-level adaptive
scheduler, where Equi serves as the OS allocator itself that interacts with an
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arbitrary task scheduler using variable quantum length. To analyze its mean
response time, we choose properties A and B as follows. At any time t, a job
Ji satisfies property A if its processor allocation is no more than the maximum
parallelism of the phase the job is currently executing, i.e., ai(t) ≤ hpt

i . Other-
wise, the job satisfies property B if ai(t) > hpt

i . In this case, we can easily show
that the coefficients γ1 and γ2 are both equal to 1, which when combined with
a similar analysis in Lemma 2, can lead to the mean response time performance
of (2 + ε)-speed (2 + 6

ε )-competitiveness. This demonstrates the generality of
two-level adaptive scheduling as well as the usefulness of our analysis frame-
work. Note that the results in this paper are obtained by augmenting the online
schedulers with extra-speed processors. Slightly larger competitive ratios can be
obtained by giving them extra number of processors as shown in [13, 16].

It is also worth noting that the extra resources required by Agdeq and
Abgdeq as well as their competitive ratios are more than that of Equi, which
implies that the two-level adaptive schedulers have inferior mean response time
performance in the worst case. The same phenomenon can be observed when
comparing the competitive ratios of Agdeq, Abgdeq and Equi for schedul-
ing batched parallel jobs [14, 18, 32]. The reason is because two-level adaptive
schedulers only utilize the history of the job to generate feedbacks and we as-
sume that the job’s future parallelism need not be correlated to its past. Hence,
in the worst case, the adversary can always make the future parallelism of the job
deviate from its processor desire, e.g., by forcing the job to have high parallelism
when its processor desire is low or vice versa. Thus, compared to Equi, the OS
allocator of Agdeq and Abgdeq can be tricked into making poorer decisions,
resulting in worse processor distributions.

In practice, however, the worst-case scenario is not likely to occur. Therefore,
we expect that Agdeq and Abgdeq should perform comparably to or even
better than Equi, especially when the parallelism of the job does not change
frequently, hence the correlation between the future parallelism and the past
can be well exploited by the adaptive strategies of Agdeq and Abgdeq. More-
over, the practical performances of the two-level adaptive schedulers may also
depend upon the specific parallelism characteristics of the jobs, the length of the
scheduling quantum selected and the amount of system overhead incurred, etc.,
which are omitted in the theoretical analysis. We will evaluate the impacts of
these factors in the next section by carrying out simulations.

5 Simulations

In this section, we conduct simulations on two-level adaptive schedulers Agdeq
and Abgdeq using synthetic parallel jobs with various parallelism characteris-
tics. To better understand adaptive scheduling, we first study how task sched-
ulers Ag and Abg respond to these parallelism characteristics in terms of their
processor desire estimation. We then focus on the mean response time of Agdeq
and Abgdeq by comparing them with Equi on various workloads and by study-
ing the impacts of different quantum length and system overhead. Since resource
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augmentation employed in the previous sections only serves as an analysis tool
for deriving the performance bound of an algorithm, for a fair comparison, we
assign unit-speed processors to all algorithms in our simulations instead of giving
them different extra-speed processors.

5.1 Synthetic Parallel Jobs

We construct synthetic parallel jobs with different types of parallelism character-
istics. Specifically, we identify five distinct parallelism variation curves, which are
specified by Step, Impulse, Ramp, Poly(I) and Poly(II) functions, respectively,
and they describe precisely how the parallelism changes with time. Figure 2(a)
shows these five parallelism variation curves with each one containing the same
underlining work and span, hence the same average parallelism. Among them,
the Step function can represent part of a data-parallel job that contains con-
stant and stable parallelism. The Impulse function, with drastically increased
parallelism after a sequential phase, can approximate part of an irregular par-
allel job containing transient and spiky parallelism profile. The Ramp, Poly(I)
and Poly(II) functions, which are constructed by polynomials of degree 1, 3 and
1/3 respectively in our simulation, can represent parts of a parallel job whose
parallelism increases at different levels of steepness. Since the exact parallelism
characteristics of the actual applications are generally unknown, we believe that
these types of parallelism variation curves can represent a wide range of paral-
lelism structures, which are useful for evaluating scheduling algorithms.

Besides the increasing parallelism curves as shown in Figure 2(a), we can also
have parallelism structures specified by the corresponding decreasing curves,
which together with the increasing curves form the basic building blocks for
our parallel job construction. In our simulations, each block contains a pair of
increasing and decreasing curves of the same type with the average parallelism
chosen uniformly from 1 to 200 and the length fixed at 250. In addition, to
study the impacts of different parallelism variations on scheduling algorithms,
we only generate homogeneous jobs, where each job contains over 500 blocks of
the same type interconnected by sequential phases with the same length. Note
that the concept of a block used here should be distinguished from that of a
phase introduced in Section 2. While a block describes the parallelism structure
of a job over a period of time, a phase refers to a segment of the job in which
the parallelism is constant.

5.2 Transient Response

To better understand the behavior of two-level adaptive scheduling algorithms,
we first focus on task schedulers Ag and Abg in this subsection by studying
their transient response to different parallelism variation curves.5

5 The term “transient response” stems from electrical/control engineering, and often
refers to the response of a system to changes in the input signal from a steady state.
In this case, we use transient response to describe how a task scheduler responds to
different parallelism variations in terms of its processor desire estimation.
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Fig. 2. (a) Five different parallelism variation curves, represented by the Step, Poly(II),
Ramp, Poly(I) and Impulse functions. (b)-(e) Transient responses of Ag and Abg on
the Step, Poly(II), Ramp, and Poly(I) functions. (f) The response time ratios of Ag
and Abg on five parallel jobs with same average parallelism but different parallelism
variations.

Figures 2(b)-2(e) demonstrate the transient response of Ag and Abg on four
parallelism variations given in the previous subsection. (The response of the Im-
pulse function is similar to that of the Step function and is not shown.) The
length of the scheduling quantum is set to 100, which is scaled in the figure to
restore the original parallelism variation. We assume that the desires for both
schedulers start and end at a steady state with value of 1, and are satisfied by the
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OS allocator at all time. As shown in these figures, both adaptive schedulers can
efficiently adjust the processor desires based on the parallelism changes, although
Ag and Abg exhibit different transient responses with respect to different par-
allelism variations. For the Step function, Ag is able to gradually catch up with
the parallelism change but suffers from desire instability even when the paral-
lelism remains constant. In contrast, Abg rapidly approaches the parallelism
within a quantum, and thereafter provides stable desires by directly utilizing
the average parallelism of the job. For the other functions, both Ag and Abg
respond gradually to the parallelism variations with Abg in general following
more closely the changes of the parallelism and thus taking shorter time to reach
steady state. This is due to Abg’s more effective processor desire calculation.

To confirm the quality of feedbacks observed in the transient responses, we
also measure the response time of Ag and Abg on five parallel jobs with the
same average parallelism but different parallelism variations. Figure 2(f) shows
the performances of Ag and Abg on each of the five jobs in terms of the job’s
response time normalized by its span. We can see clearly that Abg indeed out-
performs Ag for all parallelism variations. This is especially true on the Step
and Impulse functions, where Abg shows clear advantage over Ag with more
stable and efficient feedbacks.

5.3 Mean Response Time

In this subsection, we study the mean response time of two-level adaptive sched-
ulers Agdeq and Abgdeq. We simulate a system with 1000 processors, and
generate a wide range of workloads by varying the number of jobs and their
parallelism variations. In each experiment, jobs are released according to the
Poisson process within the span of the first arrived job so that all jobs would be
released before any could complete. Hence, the load of the system will increase
with the number of jobs used for each experiment. As with [19], we define the
load of the system to be the sum of the average parallelism of all jobs normal-
ized by the total number of processors. In our simulations, the number of jobs is
varied from 1 to 100 for each parallelism variation. The mean response time of
Agdeq and Abgdeq are compared to that of Equi. In addition, we also study
the impacts of quantum length and system overhead on the performances of the
two-level adaptive schedulers.

(1) Performance comparison.
As can be observed in Figure 3, Agdeq and Abgdeq generally achieve better
performances than Equi on jobs with all parallelism variations. When the system
has light workload with a small number of jobs, Equi performs better because in
this case all jobs can be easily satisfied on the given processors. With increased
workload, however, both Agdeq and Abgdeq outperform Equi, and eventually
tend to converge to Equi at extremely heavy workloads, where each job gets very
few processors most of the time and hence the advantage of adaptive scheduling
is diminished. This suggests that two-level adaptive scheduling is more effective
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Fig. 3. (a)-(e) Mean response time ratios of Equi over Agdeq and Equi over Abgdeq
on different workloads and parallel jobs with Step, Poly(II), Ramp, Poly(I), and Impulse
parallelism curves. (f) Average mean response time normalized by the theoretical lower
bound for Equi, Agdeq and Abgdeq over the entire workload range on jobs with the
five parallelism variations.

under moderate workloads with many parallel jobs competing for but not over-
whelmed by the limited processor resources. Moreover, Figure 3 also shows that
the performance of Abgdeq is always better than that of Agdeq, which is again
due to task scheduler Abg’s more effective processor desire feedbacks.
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(2) Impact of parallelism variations.
The impact of different parallelism variations on the performances of Agdeq,
Abgdeq, and Equi are shown in Figure 3(f), which gives the average perfor-
mances of the three algorithms over our entire workload range in terms of their
mean response time normalized by the theoretical lower bound. Roughly speak-
ing, the performances of all three algorithms are closely related to the degree at
which the parallelism varies. Specifically, the Impulse function contains the most
drastic parallelism variation and therefore incurs the worst performance for all
algorithms. The other functions present better performances for the algorithms
with smoother parallelism variations. Furthermore, we can also see that the per-
formance of Abgdeq is relatively insensitive to different parallelism variations,
while Equi is affected the most as the parallelism variations change from Step
to Impulse.

(3) Impacts of quantum length and overhead.
In the preceding simulations, we fixed the quantum length to 100 and ignored
the system overhead. However, in two-level adaptive scheduling, the length of
the scheduling quantum is an important system parameter, which together with
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Fig. 4. (a)-(b) Impacts of different quantum length and scheduling overhead on the per-
formances of Agdeq and Abgdeq. (c) Performance comparison among Equi, Agdeq,
and Abgdeq on medium to heavy workloads with and without overhead (36%) for
different quantum length.
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the scheduling overhead can significantly affect the mean response time per-
formance. To better understand their impacts, we conduct a set of simulations
by changing the quantum length and the scheduling overhead. Specifically, the
quantum length is varied from 50 to 600 in steps of 50. The scheduling overhead
is changed from zero (i.e., OH= 0%) up to 36% in terms of the smallest quantum
length 50 at an increment of 4% each time. Figure 4 shows the simulation results
on medium to heavy workloads using jobs whose parallelism variation follows the
Step function. Similar outcomes are observed using jobs with the other types of
parallelism variations. We can see that as the scheduling overhead increases, both
Agdeq and Abgdeq have significantly worse performances when the quantum
length is small, while the impact of the overhead becomes less severe with larger
quantum length. When the quantum length is large enough, the performances of
Agdeq and Abgdeq become generally stable and are slightly worse than that of
Equi, which is hardly affected by the overhead. However, when the system has
relatively small overhead, both adaptive schedulers do outperform Equi with
suitably chosen quantum length. In this sense, two-level adaptive schedulers are
quite sensitive to the length of scheduling quantum and the amount of system
overhead. Hence, when implementing these algorithms on different platforms,
attentions should be paid to choosing an appropriate quantum length based on
the scheduling overhead of the system in order to offer desirable performances.

6 Related Work

The problem of scheduling a set of fully parallelizable jobs on multiprocessors
is equivalent to scheduling sequential jobs on a single processor. For the lat-
ter problem, Motwani et al. [25] showed that, for batched jobs, Rr (Round
Robin) is (2 − 2/(n + 1))-competitive with respect to the mean response time.
When jobs can have arbitrary release time, however, they showed that ev-
ery deterministic non-clairvoyant algorithm is Ω(n1/3)-competitive and every
randomized non-clairvoyant algorithm is Ω(log n)-competitive. Using resource
augmentation analysis, Kalyanasundaram and Pruhs [21] proved that the de-
terministic non-clairvoyant algorithm Setf (Shortest Elapsed Time First) is
(1 + ε)-speed (1 + 1/ε)-competitive, which was later improved by Berman and
Coulston [7] to 2/s when s ≥ 2. Kalyanasundaram and Pruhs [22] also showed
that the randomized non-clairvoyant algorithm Rmlf (Randomized Multi-Level
Feedback) is O(log n log log n)-competitive against an adaptive adversary. Bec-
chetti and Leonardi [6] improved the competitive ratio of Rmlf to O(log n) when
the adversary is oblivious, hence matching the lower bound in this case. In addi-
tion, it is well-known that the clairvoyant algorithm Srpt (Shortest Remaining
Processing Time) is optimal for this problem [10].

For parallel jobs with changing execution characteristics, Edmonds [13] proved
that Equi is (2 + ε)-speed O(1)-competitive with respect to the mean response
time of the jobs. Edmonds and Pruhs [16] recently proposed Laps (Latest Arrival
Processor Sharing), which in a sense combines Equi and Setf, and proved
that it is (1 + ε)-speed O(1)-competitive for sufficiently large ε, hence achieving
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almost fully scalable [28, 27], i.e., the least possible extra resources required to be
competitive. For the relatively easier case, where jobs are released in a batched
fashion, Edmonds et al. [14] showed that Equi is (2 +

√
3)-competitive. Deng

et al. [12] showed that Deq with jobs’ instantaneous parallelism as feedback is
2-competitive for parallel jobs with single phase and 4-competitive for multiple-
phase jobs. The latter ratio was recently improved to 3 by He et al. [20]. In
addition, Edmonds et al. [15] also extended the analysis of Equi to the TCP
protocol in Internet congestion control. Robert and Schabanel [29, 30] applied
variations of Equi to other job models and objective functions.

For two-level adaptive schedulers, modeling a parallel job as a directed acyclic
graph (dag), Agrawal et al. [1, 3] proposed two algorithms, namely Ag (Adap-
tive Greedy) and As (Adaptive Work-Stealing), which are based on centralized
scheduling and distributed work stealing, respectively. They proved that Ag and
As achieve nearly linear speedup and waste a relatively small number of proces-
sor cycles for each individual job. He et al. [18] later combined task schedulers
Ag and As with the OS allocator Deq to form two-level schedulers. They proved
that the resulting algorithms Agdeq and Asdeq are both O(1)-competitive with
respect to the mean response time for batched parallel jobs. In addition, He et
al. [19] also showed that when the system is heavily-loaded, the two-level algo-
rithms can be coupled with Rr to achieve similar results. Observing that Ag can
cause unstable processor desires although the parallelism of the job is constant,
Sun and Hsu [32] proposed Abg (Adaptive B-Greedy) task scheduler, which
guarantees stability of the processor desires along with other control-theoretic
properties. They also proved the mean response time of batched parallel jobs for
the two-level scheduler Abgdeq in terms of the jobs’ parallelism transition.

Several empirical studies on two-level adaptive scheduling are also known in the
literature. Sen [31] presented experimental results on a dynamic desire estimation
algorithm for the Cilk work-stealing scheduler [8], which inspired the research pre-
sented in [1, 3]. Agrawal,He and Leiserson [2] comparedAsdeqwith Equi through
simulations, and confirmed that the former has superior performance. He, Hsu and
Leiserson [19] evaluated the performance Agdeq under a wide range of workloads,
and revealed that it actually performs much better in practice than predicted by
the theoretical bounds. Sun and Hsu [32], also through simulations, confirmed that
Abgdeq does improve upon Agdeq for batched parallel jobs.

7 Conclusion

In this paper, we have analyzed the mean response time of two-level adaptive
schedulers Agdeq and Abgdeq on parallel jobs with arbitrary release time
and changing degrees of parallelism. We have shown through a general analysis
framework that both Agdeq and Abgdeq are competitive with respect to the
mean response time using O(1) times faster processors. In addition, we have
also conducted simulations over a wide range of workloads using parallel jobs
with different parallelism variations. The simulation results have verified the
effectiveness of Agdeq and Abgdeq with appropriately chosen quantum length.
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Compared to the job model used in this paper, Edmonds et al. [13, 16] have
assumed a more general model, in which each phase of a job can admit an
arbitrary non-decreasing and sub-linear speedup. However, to analyze the mean
response time of Equi and Laps, Edmonds et al. reduced any set J of jobs
with non-decreasing and sub-linear speedups to a set J ′ of jobs that consist of
only fully parallelizable and strongly sequential phases, where a phase is fully
parallelizable if its speedup function Γ satisfies Γ (a) = a for all a ≥ 0 and
it is strongly sequential if Γ (a) = 1 for all a ≥ 0. One implicit assumption
used in this reduction is that the online algorithm is not able to distinguish a
newly constructed phase from the original phase because it is non-clairvoyant.
Thus, the same number of processors will be allocated to J ′ and J at any
time. However, such reduction does not directly apply to the type of adaptive
schedulers considered in this paper because their future processor allocations do
depend on the past parallelism of the jobs. It will be interesting to see if similar
reductions are possible for these adaptive schedulers.

Another problem with existing task schedulers Ag and Abg is that they both
require comprehensive statistics about a job’s execution in the current quantum
in order to estimate its processor desire for the next quantum. Collecting such
statistics can be difficult in real systems, and even if possible, might incur signif-
icant overheads, which as have been shown in our simulations can have adverse
effect on the system performance. It will be useful to design task schedulers
that use incomplete information about a job’s execution (e.g., obtained through
samplings) to estimate its processor desires while still guaranteeing desirable
performances.
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Abstract. Multi-core nodes of parallel machines may only provide grad-
ual performance improvement per application due to competition on
resources like the cache. As shown in our earlier work, spreading out
applications over as many nodes as possible or letting different applica-
tions with potentially complementary characteristics (semi time) share
each node by allocating different cores to them may provide better per-
formance. In the latter case, groups of jobs may be necessary to obtain
balanced resource utilization due to different sizes of jobs. We present
a scheduler G-LOMARC-TS which can match groups of jobs and con-
sider both space- and time-sharing allocation. Since matchmaking may
select jobs further down in the waiting queue, fairness in regards to
possible delays of the other jobs is watched and delays are kept within
certain bounds. This results in a large number of possible combinations.
A number of heuristics to select the most promising combinations make
it possible to deal with the NP-completeness of the problem. We show
that our scheduler improves utilization of high-load phases by about 27%
and subsequently average response times by about 36% (and 53% for
long jobs) compared to space sharing scheduling for normal workloads.
Additionally the scheduler can handle much higher workloads than a
space-sharing scheduler.

Keywords: space sharing, semi time sharing, lookahead matchmaking,
job groups.

1 Introduction

Multi-core nodes in cluster are becoming widespread though the additional
cores may only provide gradual performance improvement due to competition
on shared resources such as memory, network, and potentially caches. In ear-
lier work, we have shown that better results may be obtained if rather using
the additional cores for other applications with complementary characteristics
[15][17][21], as also found by other researchers [19]. We call such resource allo-
cation semi time sharing since the cores are partitioned among the applications,
i.e. space-shared, but the other resources may be shared.

Our LOMARC scheduler [17] first proposed such semi time sharing on nodes
with hyperthreaded CPUs, assuming that the second virtual CPU per CPU/node
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would either be allocated to a second application or remain unused. We proved
that many combinations of the NAS benchmarks ran very well together. Under
the conditions mentioned, LOMARC improved average response times by 30%
to 50%. In other work, we showed that even if the choice is between using
fewer nodes exclusively (space sharing) vs. more nodes coscheduled with another
application (semi time sharing), semi time sharing may perform better [16]. We
also found that pairing communication-bound applications may yield acceptable
slowdown [16][21]. While our work focused on computation and communication
performance, the study in [19] focused on memory and I/O, confirming the
benefits from coscheduling. However, there are also cases where an application
can exploit the performance potential of all cores per node well and space sharing
may perform better.

To use the cores per node most effectively, more general schedulers are needed
that can allocate the cores intelligently for high resource utilization. Similar
to adaptive approaches which reduce job sizes under high load [14], we can
expect that higher resource utilization decreases average response times in spite
of increasing individual runtimes, because load and subsequently average wait
times are significantly decreased.

The LOMARC scheduler [17] applied lookahead matchmaking among waiting
and running jobs to find jobs with complementary usage of multiple resources,
using simple heuristics to select the best combination. However, no fairness con-
siderations were applied in regards to the impacts of the partial reordering of
the waiting queue.

Our main goals for the work presented in this paper are to

– Provide a more flexible approach for nodes with multiple cores and for ap-
plications which may either exploit multiple cores per node exclusively or
share them with another application. We can consider this approach as semi
adaptive by assuming a fixed number of processes that can be allocated
differently to nodes and cores.

– Provide a framework which, in spite of partial reordering of the waiting queue
that is necessary to find suitable matches, is fair to individual jobs and does
not impose overly high delays on individual jobs.

– Match groups of jobs since jobs typically have very different job sizes and
only matching two jobs may therefore not provide sufficient potential for
utilization gain.

The main contributions of this paper and our new G-LOMARC-TS scheduler
are:

– Matching groups of jobs among waiting and/or running jobs.
– Applying several heuristics that are likely to extract the most promising

groups since finding the optimum group among the many possibilities is an
NP-complete problem.

– Including important special cases like bursts of serial jobs.
– Using a metric for selection of the best group which considers the absolute

gain in utilization (nodes saved over a certain time interval) and subsequently
the global interest of all jobs.
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– Supporting both space and time sharing and choosing between them accord-
ing to the utilization gain and current machine load.

– Providing fairness to individual jobs by using a maximum slack factor vs.
the originally estimated response time as a constraint for the reordering.

– Providing more chances to fit a job into the machine by including the options
of 1) matching it with running jobs and 2) reducing its node requirement
via space sharing.

G-LOMARC-TS is implemented as an extension of the coarse-grain preemption
scheduler Scojo-PECT [5]. We demonstrate via simulation with synthetic work-
loads that G-LOMARC-TS performs significantly better than pure space sharing
and that group matching contributes significantly to the improvements and is
therefore essential.

The paper discusses related work in Section 2. Section 3 defines the machine
and application model. Our G-LOMARC-TS algorithm is described in Section 4,
including utilization-gain and slowdown metrics. Experimental results are shown
in Section 5, and Section 6 gives a summary and conclusion.

2 Related Work

Existing approaches to time sharing for parallel jobs are gang scheduling [5] and
loosely coordinated coscheduling [14]. Gang scheduling allocates globally syn-
chronized time slices, while keeping all jobs in memory to make slice switches
fast. Loosely coordinated coscheduling uses distributed algorithms to approxi-
mate coordinated execution which is necessary to avoid idling in communication.
Though gang scheduling may better pack jobs into the machine, it does not im-
prove utilization of the individual resources such as network or disk. Loosely
coordinated coscheduling has the potential of improving utilization by switch-
ing between jobs to hide resource-access latencies. However, jobs need to be
fairly synchronous or very coarse-grain to make coordinated execution possi-
ble or unimportant, respectively. Proposals were made to relax gang scheduling
and merge time slices with computation-bound and I/O-bound jobs [20] or to
switch from gang scheduling to loosely coordinated coscheduling for coarse-grain
or I/O-bound jobs [1]. Both approaches depend on the dynamic availability of
suitable job combinations but can adapt to different phases in the program ex-
ecution. However, the probability of finding suitable dynamic job combinations
decreases if groups of jobs need to be formed.

In regards to semi time sharing, studies found complementary characteristics
of the coscheduled jobs to perform better due to balancing the usage of system
resources [17][19]. Spreading out jobs to different nodes and semi time sharing
the resources per node among multiple jobs may perform better than dedicated
allocation of all node resources to one job [15][16][19]. The experiments in [19]
were carried out with only 4 nodes and therefore limited communication but the
experiments in [15][16] on up to 64 nodes show that the benefits of semi time
sharing vs. dedicated allocation scale to larger number of nodes. Characteristics
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which were found important for job combinations are whether the job is CPU-
bound, cache-bound, memory-bound, network-bound, or disk-bound [17][19] but
also which access patterns are applied [11][21]. For example, CPU-bound jobs
were shown to match well with network-bound or memory-bound jobs. Several
studies on hyperthreaded and multi-core CPUs showed that scheduling multiple
processes of the same job per node provides limited benefits or does not work
well in certain cases. Thus, in [2], jobs became only between 1.2 and 1.5 times
faster by running another process on a second AMD-Opteron core. Potentially
high resource contention on hyperthreaded CPUs from processes of the same ap-
plication with same resource requirement (such as the cache) were shown before
in [8][9]. In other cases, resource sharing per node can provide a benefit rather
than performance degradation: intra-node communication through shared mem-
ory and cache may be faster than inter-node communication which is a benefit
if a large percentage of messages are transferred via intra-node communication
[4] (50% of the messages were found to be intra-node).

Thus, the LOMARC scheduler [17] matches jobs with complementary charac-
teristics at job start times, while partially reordering the waiting queue to find
suitable matches. The work in [19] proposes a scheduler which space-partitions
each node into one half for memory-bound and one half for the other jobs.

Fairness is discussed in several papers. The work in [12] measures overall
fairness (in retro) of a job scheduler by considering the actual start time of a
job vs. its virtual start time without effects from later arriving jobs. The slack
approach in [18] tries to maintain relative fairness among jobs by dynamically
calculating possible delays in the presence of different job priorities.

3 Machine and Application Model

We assume that the target machine is a cluster with multiple multi-core CPUs
per node. Though multiple CPUs and multiple cores per node can significantly
increase performance, they do not simply multiply the performance by the num-
ber of CPUs/cores due to the contention effects on shared resources, but rather
typically provide less performance gain than additional nodes. Processes running
on the same node share the network, disk, and the memory. Processes running
on the same CPU additionally share the memory access paths and potentially
the cache. In regards to the cache, some multi-core CPUs share the L2 cache
(such as the Intel Core Duo, IBM POWER5, and Ultra SPARC T1/T2), whereas
other multi-core CPUs have private L2 caches per core (AMD Opteron, Intel Ita-
nium, IBM POWER6, and Ultra SPARC IV). We model the contention effects
as application slowdown (Section 4.9), and differentiate between CPU and core
slowdowns, with CPU slowdowns typically being lower. This also implies that
the allocation to CPUs and cores matters if fewer processes run per node than
there are CPUs/cores available. In the few cases where resource sharing among
processes of the same application provides a benefit, the slowdown would turn
into a speedup.
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We assume that jobs and workload have the following characteristics:

– Jobs consist exclusively of processes (no threads) which is still the dominant
approach applied by users [2].

– Upon job submission, the number of processes (the job size) is specified but
the allocation to nodes, CPUs, and cores is left to the scheduler. The number
of processes is therefore fixed (no molding in the sense of changing the job
size).

– Runtime estimation and sufficient characteristics information to calculate
slowdowns are available, provided by users, historical databases, or com-
pilers. General research progress made by compilers, application profilers,
and by prediction from historical information suggests that roughly correct
runtime estimation by the system is becoming realistic for future schedulers
(see e.g. [3]). More optimistic is the assumption about slowdown estimations
being available which is farer in the future. This assumption helps to explore
possible benefits obtainable from such information and its exploitation in
advanced space/time-sharing job schedulers.

– The workload includes a large percentage of serial jobs and of parallel jobs
with power-of-two sizes, as observed in the analysis of job traces [10]. Also
bursts of submissions (submission of jobs with potentially similar character-
istics in close time proximity) are possible.

4 G-LOMARC-TS Scheduling Algorithm

4.1 Scheduling Objectives

Terms used in the following discussion of formulas are listed and explained in
Table 1.

The objective of the scheduler is to obtain best possible utilization in phases
of high load, while keeping fairness acceptable. Higher utilization in high-load

Table 1. Terms used throughout formulas in paper

Term Meaning
Si Size (all processes) of Job i
Ti Runtime of Job i if scheduled individually with 1 process per node
PPNi Number of processes of Job i per node
Tmakespan Total runtime of workload
M Machine size in number of nodes
Ncore Number of cores per node
Ucore Core utilization
Unode Node utlization
Ugain Utilization gain for comparison of node usage
Rest,i Estimated response time of Job i in FCFS order at submission time
Ri Response time of Job i
Fslack Slack factor used for fairness check
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phases likely leads to better average response times [13]. Under utilization, we
understand, as the basic metric, core utilization which relates the number of cores
used to a certain time span. The other possible metric for utilization, namely
node utilization, considers the number of nodes used. Note, that overall/average
core utilization remains equal to the submitted load, independent of the schedul-
ing policy, as long as the scheduler is not saturated (i.e. can handle the offered
load and jobs do not queue up). Schedulers with little utilization support would
delay jobs until phases with lower load, whereas the machine may be idle or
very lowly loaded in such phases for schedulers with high utilization support.
However, nodes are saved if jobs are better packed onto the cores per node, i.e.
if cores are better utilized in high-load phases. This subsequently reduces node
utilization.

Thus, we make improvement in core utilization in phases of high load the
primary objective and fairness a constraint. This requires to formally define
high-load phases, core and node utilization, utilization gain, fairness, and the
scheduler impact on fairness–which we do in the following.

To formalize utilization, we assume that Nwait is the number of jobs in the
waiting queue, NH is a threshold for rating as high load, tpi is a time period
between load changes (due to job termination, job start, and slice switches), and
tl, tj , and tk are certain time points of load changes, uni and uci are the number
of used nodes and used cores, respectively, during the time period tpi. High-load
phases PhaseH are defined as:

PhaseH,l = [tl with Nwait ≥ NH && Nwait < NH for tl−1, tj with Nwait < NH

&& any tkbetween l andj has Nwait ≥ NH ] (1)

Node utilization Unode, is the percentage of used-nodes time over the makespan.

Unode =
∑

i in time periods
(tpi ∗ uni)/(Tmakespan ∗ M) (2)

Core utilization Ucore, is the percentage of used-cores time over the makespan.

Ucore =
∑

i in time periods
(tpi ∗ uci)/(Tmakespan ∗ M ∗ Ncore) (3)

Then, Ucore during a high-load phase is the percentage of used-cores time over
this phase, and Unode during a high-load phase is the percentage of used-nodes
time over this phase.

Utilization gain Ugain (for details, see Section 4.6) is measured as the fraction
of saved usage of nodes and used as the metric per individual scheduling decision.
As discussed above, saving nodes corresponds to higher core utilization.

In regards to fairness, there exist different definitions of fairness in the lit-
erature. We consider any delay versus the response time without reordering
and coscheduling as a negative impact on fairness. Since our scheduling is basi-
cally FCFS with conservative backfilling, estimation of response times via sim-
ulation at submission time is possible, and we record the estimated response
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Fig. 1. Utilization gain with G-LOMARC-TS from increased core utilization for Job 1
to Job 6 (left) compared to space sharing (right)

times (Rest,i). Fairness is then provided by limiting the response-time changes
to Rmax,i (response time can increase due to the matchmaking reordering), cal-
culated via slack factor (Fslack):

Rmax,i = Fslack ∗ Rest,i (4)

Finally, we define our objective as maximizing core utilization Ucore during
high-load phases PhaseH , while maintaining Ri ≤ Rmax,i. The optimization
is approximated by heuristics, making per-job-group decisions, and calculating
utilization gain per decision.

Figure 1 shows how high core utilization leads to saved nodes usage if 6 jobs
are scheduled by our G-LOMARC-TS compared to space sharing (note that for
Job 6, number of processes per job per node (PPN) is 2 with G-LOMARC-TS
and 4 with space sharing; i.e, the node requirements are different under the two
scheduling schemes).

4.2 General G-LOMARC-TS Scheduling Idea

Our G-LOMARC-TS supports both space sharing and semi time sharing which
we define more precisely as follows:

– Space sharing: Resources are allocated in a dedicated manner, but the ma-
chine (its ”space”) is shared, i.e., different parallel jobs may potentially run
at the same time if resource requirements permit them to be allocated to
different subsets of compute nodes.
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Fig. 2. Coscheduling processes of different parallel jobs per node

– Semi time sharing: The CPUs/cores per SMP node of a cluster are allocated
to different jobs as illustrated in Figure 2. Semi time sharing does not share
and switch the core as done under standard time sharing. However, other
resources like memory, network, disk and potentially caches (Section 3) are
simultaneously shared. Since all cores remain responsive to communication,
no coordination of parallel processes is required as necessary under standard
time sharing.

Processes of the same job have similar characteristics, contention on certain re-
sources is very likely for these processes if they share resources on the same
node. However, different jobs may have different characteristics and comple-
mentary resource usage, leading to less contention. Thus, our G-LOMARC-TS
scheduler supports the option of coscheduling, i.e. scheduling processes from dif-
ferent applications on the same nodes, see Figure 2. To make such coscheduling
effective, job combinations with high complementary resource usage should be
created. This does typically not apply if only pairing the first 2 jobs in the wait-
ing queue. Rather the scheduler needs to search among waiting and running
jobs for suitable matches. This means lookahead in the waiting queue vs. FCFS
order. If jobs move ahead by being coscheduled with the first job in the waiting
queue, typically the runtimes increase (due to contention). This delays the first
and other jobs originally in front of the coscheduled ones in the queue. Run-
times also increase for running jobs if waiting jobs are coscheduled with them.
Thus, the matchmaking leads to partial reordering of the waiting queue and
potential delays for running and waiting jobs. This is the reason why we need to
include the fairness criterion as described in Section 4.1 to avoid severe delays
or push-backs for individual jobs.

However, in some cases the processes of the same job may run well together
and may even benefit from intra-node communication (Section 3). In such cases,
space sharing is the better option. Thus, our scheduler supports both coschedul-
ing and individual scheduling.

In regards to coscheduling, the simplest approach is pairing two jobs as applied
in the original LOMARC scheduler. However, sizes of jobs can be very different.
Therefore grouping multiple jobs for coscheduling can increase the chance for
utilization gain. We have the following cases of forming groups: 1) matching
a waiting job with several other waiting jobs, 2) matching a waiting job with
several running jobs, and 3) matching a running job with several waiting jobs.
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4.3 Time vs. Space Scheduling

In the following, we explain the space sharing and semi time sharing options
of G-LOMARC-TS in more detail. Space and semi time sharing can involve
different numbers of processes of the same job per node if we have more than 2
cores per node. For example, with 4 cores per node, we can have 1 or 2 processes
per job per node with semi time sharing, and we can have 1, 2, or 4 processes per
node per job with space sharing. Which number is chosen depends on the self
slowdown caused by resource contention of processes of the same job (details are
discussed in Section 4.9). If the self slowdown is severe, fewer processes per node
per job are meaningful. If the self slowdown is low or if there is even speedup,
more processes per node per job are better. For space sharing, the number of
processes per node is always chosen to utilize the space well, balancing runtime
with used cores by employing a threshold on acceptable self slowdown.

In our scheduler, short jobs are only scheduled via space sharing because short
jobs are not considered worth the effort of matchmaking. Otherwise, decisions
between space and semi time sharing are made adaptively when trying to sched-
ule the first job in the waiting queue. If the workload is low in the sense that
all jobs fit into the machine with one process per node, space sharing is more
beneficial because obtaining the best runtimes per job. A special case is that
there may not be enough space to schedule a job under space sharing but it may
be possible to start the job by coscheduling it with running jobs. Otherwise,
whether space or semi time sharing is applied depends on which option provides
better utilization gain for the current scheduling decision.

If a job’s self slowdown is low, it may benefit more with space sharing where
only self slowdown involves. However, if a job can find matched jobs with com-
plementary resource requirements and consequently with low coscheduling slow-
down caused by processes of different jobs (described in Section 4.9), it may gain
more with semi time sharing.

4.4 Scheduling Algorithm

The main part of the G-LOMARC-TS scheduling algorithm is shown in Figure
3. The algorithm description is generalized to work with any number of cores per
node (though our evaluation uses 4 cores per node). The scheduler tries different
scheduling possibilities: space sharing and semi time sharing matching the first
waiting job with other waiting jobs or running jobs. Space sharing is used if the
load is low. Serial jobs are treated specially as described in Section 4.5, before
attempting other forms of coscheduling. Then, the 3 forms of semi time sharing
(Case 1 to Case 3) and space sharing with full usage of all cores per node (Case
5) are compared. The option with the highest utilization gain is selected. If all
of the latter options fail, space sharing with partial usage of the cores per node
(Case 4) is applied.

For coscheduling, groups are formed. A group is composed of a primary job
and one or multiple matched jobs. The primary job can be the first waiting job
or a running job. (Details about forming groups are described in 4.5.)
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Then, the first waiting job can be scheduled/coscheduled in the following
ways:

– Case 1 (semi time sharing): coscheduled in a group with the first waiting
job as the primary job and several other waiting jobs as matched jobs (one
waiting : multiple waiting).

– Case 2 (semi time sharing): coscheduled in a group with the first waiting job
as the primary job and several running jobs as matched jobs (one waiting :
multiple running).

– Case 3 (semi time sharing): coscheduled in a group with a running job as
the primary job and several waiting jobs including the first one as matched
jobs (one running : multiple waiting).

– Case 4 (space sharing): scheduled individually with PPN = 1 or 2 or 4 ...
or M − 2

– Case 5 (space sharing): scheduled individually with PPN = M .

A similar algorithm is applied when attempting to backfill jobs. However, only
Case 1, Case 4, and Case 5 are applied.

Note that groups of jobs are scheduled as a whole and adding individual jobs
later is not considered. Nevertheless, a job may be matched more than once over
its runtime since the group may be disbanded and the job become an individual
job again. Disbandment of a group happens under the following conditions:

– The primary job terminates, while at least one matched job is still running.
– All matched jobs terminate, while the primary job is still running.

This also means that the scheduler makes no attempt to add jobs to a running
group if some of the matched jobs terminate.

4.5 Group Formation

Forming groups is an NP-complete problem due to the many possibilities to
combine jobs with different runtimes and sizes and due to slowdowns depending
on the job combination. To make the problem tractable, we apply intelligent
heuristics to form groups.

As mentioned above, a group is composed of a primary job and one or multiple
matched jobs which may be waiting or running jobs. Per node, only two jobs are
coscheduled (one is the primary job, the other one is one of the matched jobs).
If the primary job is a running job, we choose of the least delayed jobs (since
coscheduling implies slowdown).

After the primary job has been decided, the matched jobs are selected with
the following steps (if the primary is the first waiting job, the matched jobs are
running or other waiting jobs; if the primary is a running job, the matched jobs
are waiting jobs):

1. Pre-selection: If a job and the primary job do not slow down each other
severely (less than a threshold), the job is selected as a candidate for matched
jobs.
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Fig. 4. ”Window” with shape of primary job sliding over first block to search for a set
of matched jobs

2. Sorting: Candidate jobs are sorted in increasing order of delay if they are
running jobs; if they are waiting jobs, their original FCFS order is kept. Then
the sorted candidate jobs are divided into blocks, and the jobs per block are
sorted in decreasing order of their remaining runtime.1

3. First block: A ”window” with the same node requirements as the primary
job ”slides” over the first block (see Figure 4). Each time, the set of jobs
within the window’s range is selected as matched jobs (though we permit the
aggregated node requirements of the matched jobs to be slightly larger than
the window). The set with the highest utilization gain achieved is selected
as the best group. Likely, most of the matched jobs in the best group are
from the first block if including the fairness constraint.

4. Other blocks: If the primary job is not coscheduled over all its nodes (there
is still space left) in the best group, jobs from the remaining blocks may be
added if this leads to an increase in utilization gain. Each new group which
increases the utilization gain is stored.

5. Purify: Matched jobs which slow down the primary job most but do not
contribute to the utilization gain are removed from the group.

6. Fairness check: A group which causes any other job to be delayed severely
(more than Rmax) is discarded. Groups kept in Step 4 are tested for fairness
in decreasing order of utilization gain until a group passes the check.

4.6 Utilization-Gain Calculation

If the cores per node are better utilized (more processes running per node, fewer
idle cores), fewer nodes will be used to run a specific number of jobs. Thus, as
discussed in Section 4.1, this means that high core utilization leads to saved node
usage. Utilization gain is calculated as the ratio of saved nodes to used nodes
which we first explain on the basis of the example shown in Figure 5. Figure 5
(left) shows the resource requirements of Job 1, 2 and 3 when no coscheduling
scheme is applied, i.e. the runtime does not have any slowdown. Figure 5 (right)
1 The order could also be chosen as least delayed vs. their estimated response time

but experimental results show virtually no difference.
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Fig. 5. Node usage of Job 1 to Job 3 with space sharing (left) and semi time sharing,
i.e. coscheduled (right)

shows a group formed by these three jobs with Job 3 as the primary job and Job
1 and 2 as matched jobs. In this group, each job has two processes per node, i.e.,
the node requirement is half of its process number and the runtime is extended
by the slowdown. After Tg time, Job 3 in the group finishes running and the
group is consequently disbanded. All the work of Job 2 and 3 is done during the
group execution and part of the work of Job 1 is done. Let us assume that, in
order to do the same amount of work, Job 1 has to spend T1 time without any
coscheduling scheme, Job 2 spends T2, and Job 3 spends T3. We compare the
node usage of the group to the sum of the node usages of the three jobs without
coscheduling and calculate the utilization gain Ugain of the group as

Ugain = (T1 ∗ S1 ∗ Ncores + T2 ∗ S2 ∗ Ncores + T3 ∗ S3 ∗ Ncores −
Tg ∗ S3 ∗ Ncores/2) / (Tg ∗ S3 ∗ Ncores/2)

= (T1 ∗ S1 + T2 ∗ S2 + T3 ∗ S3 − Tg ∗ S3/2)/(Tg ∗ S3/2) (5)

To generalize the calculation for all groups, we assume that a primary Job A
coschedules with N matched jobs (Job 1, 2, 3, ... Job n). Suppose that SLA,i is
the slowdown of Job A when A coschedules with Job i; SLi,A is the slowdown
of Job i when it coschedules with A. There are Q time periods tq (1 ≤ q ≤ Q)
during the coscheduling of the jobs between changes in the coscheduling status
(jobs terminating). Q ≤ N because the group is disbanded if all matched jobs or
the primary job have terminated. To make the formula easier to understand, and
without loss any generalization, we assume that the sum of the node requirements
of all matched jobs is less than or equal to that of the primary job (the real
algorithm permits that the node requirement of the matched jobs is slightly
greater than the primary job).

In each time period q, there are Fq matched jobs running and the indexes
of the matched jobs are x1, x2, x3, ..., xFq . SLq (1 ≤ q ≤ Q) is the maximum
slowdown of Job A when A coschedules with the matched Fq jobs running in
time period q. Then, SLq = max{SLA,x1, SLA,x2, . . . , SLA,xFq

} and the sum of
all time periods ttotal is ttotal =

∑
1≤q≤Q tq.
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Then, the general formula for calculating the utilization gain is:

Ugain = (
∑

1≤q≤Q

(
∑

i in[x1,x2,...,xFq ]

(tq ∗ Si/SLi,A) + tq ∗ SA/SLq) −

ttotal ∗ SA/PPNA) / (ttotal ∗ SA/PPNA) (6)

Note that utilization gain is defined as a relative gain. This means that match-
ing shorter jobs is given preference if other parameters are the same. Experimen-
tal results show that this gives a minor benefit vs. using absolute gain though it
does not make any substantial difference.

4.7 Incorporation into Scojo-PECT

Scojo-PECT [5] employs preemption to support scheduling of shorter jobs even
in the presence of long-running. Scojo-PECT preempts jobs to swap space which
is easy to support in the machine environment and avoids the memory pressure
which gang scheduling imposes. Scojo-PECT does not require hard-to-support
checkpointing but subsequently imposes the constraint that preempted jobs are
later restarted on the same resources as migration is not possible without check-
pointing [14]. To make preemption to disk affordable and avoid that jobs are
delayed because of problems to get access to their resources again, Scojo-PECT
employs coarse-grain time slices and preempts all jobs. Jobs are sorted according
to job type based on their runtime (we currently support short, medium, and
long jobs), and scheduled in different virtual machines with a time slice per job
type / virtual machine. The slice time for each job type is determined on the
basis of typical job-type mixes and the administrator’s policies and can be recal-
culated in regular time intervals. One slice for each type is scheduled per time
interval (since short jobs backfill into other slices in most cases, their slice is only
scheduled if short jobs are waiting), and the slice times can be decided at the
beginning of each interval. This permits controlling the resource allocation via
different policies at different times of the day or via adaptive allocation which
considers the current load of the machine [13]. In the context of this paper, the
relative slice times are kept static.

Jobs per job type are scheduled in FCFS. Additionally, the typical backfilling
is applied. Backfilling means that jobs can move ahead in the queue if they do not
delay other jobs as specified by the backfilling approach. Scojo-PECT can either
use EASY or conservative backfilling. In the presented work, we use conservative
backfilling which requires that none of the jobs in the queue are delayed.

Since the separation of jobs into different types is likely to increase the frag-
mentation because job sizes and job runtimes tend to be correlated, Scojo-PECT
employs additionally safe non-type slice backfilling. This means that preempted
or waiting jobs of a different type may be backfilled into a slice-with this back-
filling only being valid until the end of the slice-if they do not delay any job of
the slice type or of their own type according to the backfilling approach applied.

If setting time slices (resource shares) for equal service, Scojo-PECT pro-
vides similar service to medium and long jobs as standard space sharing with
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priorities but improves overall response times by about 50% by serving short jobs
better [5].

The basic framework remains to be Scojo-PECT, and G-LOMARC-TS is ap-
plied per virtual machine. Only jobs of the same type are matched, though
non-type slice backfilling is still applied. Thus, G-LOMARC-TS schedules jobs
per virtual machine and does not even need to know about the existence of time
slices. Groups are preempted and resumed as well as non-type slice backfilled
like individual jobs. By representing this at job level, groups remain transpar-
ent to Scojo-PECT. FCFS is kept as basic scheduling order per virtual machine
with constrained reordering as discussed above. The FCFS scheduling order and
the compressed (keeping backfilled jobs in their backfill position even if jobs
terminate earlier than estimated) conservative backfilling permit estimation of
response times via simulation. As explained in Section 4.1, the estimated re-
sponse times and the slack factor define the constraints.

4.8 Basic Job Creation

For the evaluation of our scheduler, we use the Lublin-Feitelson statistical work-
load model [8] which is the best available synthetic workload model (it includes
power-of-two sizes, sequential jobs, correlations between runtimes and sizes, and
varying inter-arrival times at different times of the day). Though the Lublin-
Feitelson workload model was derived from statistical evaluation of 3 real-life
workload traces, it generalizes the workload generation to the point that differ-
ent machine sizes can be chosen. However, the Lublin-Feitelson model assumes
that applications are run with 1 process per compute node though we need to
model a hierarchical structure with multiple cores and subsequently the possibil-
ity of multiple processes per node. Thus, using the number of nodes as machine
size would create a load which is too low. Multiplying the number of nodes by
the number of cores per node would create a machine load which is too high
because the additional cores add less performance gain than independent nodes
[2]. Our goal is to create a workload with a similar load (utilization) and simi-
lar job/size characteristics as the original workload to have a similarly realistic
model of the real world. In detail this means:

– Keep the runtimes of jobs the same, while letting jobs double or quadruple
the number of processes by exploiting several cores per node or leaving the
process number unchanged, depending on the modeled self slowdown (see
Section 4.9 for definitions of SLscr and SLsno). If the self slowdown of having
4 processes per node is less than a threshold MAX SL (Table 6), the job
size is quadrupled. If the self slowdown of having 2 processes per node is
less than a smaller threshold SELF SL 2 (Table 6), the job size is doubled.
Thus, we adjust to both multiple cores per node and subsequent resource
contention. Note that the modification of the workload corresponds to our
model of space sharing as defined in Section 4.3 and used for the evaluation.

– Keep the percentage of serial jobs the same.
– Keep the percentage of power-of-two size jobs the same.
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Note that the proper modification of the workload can be verified (which we
did) by checking the average response times or average relative response times
which should remain similar to the combination of the original machine and
workload model if applying space sharing per virtual machine.

The rationale for our modification is that with more cores being available,
users would likely run applications with more processes and tackle larger problem
sizes. Moreover, since average runtimes were found to depend on the relative work
submitted to the machine and not on the shape of the jobs, this is one of the
feasible options of adjustment [13].

The detailed modification applied per job is described in the following formula
(nSize is the new size and oSize is the original size):

nSize =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

oSize oSize = 1 || (SLsno > SELF SL 2
&& SLscr ∗ SLsno > MAX SL)

oSize ∗ 2/SLsno oSize > 1&&SLsno ≤ SELF SL 2
&& SLscr ∗ SLsno > MAX SL

oSize ∗ 4/SLscr/SLsno oSize > 1&&SLscr ∗ SLsno ≤ MAX SL

(7)

4.9 Slowdown Modeling

As mentioned above, competition on shared resources like memory, network,
disk, caches (if cache shared among cores) causes slowdown. This not only applies
if different applications share resources (coscheduling slowdown SLcos) but also
if processes of the same application share resources per node. Slowdowns can
differ depending on whether the processes run on different CPUs (node self
slowdown SLsno) or different cores of the same CPU (core self slowdown SLscr).
For simplification, we include any relative runtime changes due to changing the
number of nodes used by exploiting different numbers of cores/CPUs per node
in the self slowdown. We also include any potential memory contention in the
slowdowns (analysis of workload traces from [7] suggests that typically 95% of
the jobs need ≤ 50% of the memory per node, i.e. that memory contention is
not a major issue if only 2 jobs are coscheduled). Slowdowns depend on the
applications’ characteristics in regards to the usage of resources and require
proper slowdown metrics. Since resource usage characteristics are not available
and would already require assumptions and since the slowdown metric goes
beyond the scope of this paper, we chose to directly model slowdowns statistically
based on available experimental data.

To derive the statistical distribution of slowdowns, we took data from differ-
ent experimental sources. Thus, we used data from [2] which investigates the
performance gain from using dual-core vs. single-core AMD nodes in the Cray
Red Storm system at Sandia National Laboratories. If comparing the normal-
ized grind times of the PARTISN benchmark (the only benchmark with all data
needed) for the same number of processes on single-core CPUs (Tsingle) and
dual-core CPUs (Tdual), we obtain the slowdown as SLscr = 2 ∗ Tdual/Tsingle.
The calculated slowdowns are shown in Table 2 (showing only machine sizes
relevant to our simulation).
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Table 2. SLscr calculated from data for the PARTISN benchmark in [2]

Benchmark and 32P/16N vs. 64P/32N vs. 128P/64N vs. 256P/128N vs.
configuration 32P/32N 64P/64N 128P/128N 256P/256N
Diffusion: 243 problems 1.31 1.46 1.30 1.42
Transport: 243 problems 1.05 1.19 1.00 1.16
Diffusion: 483 problems 1.61 1.51 1.48 1.57
Transport: 483 problems 1.29 1.15 1.09 1.21

Table 3. SLscr and SLsno for NAS benchmarks, as measured in [15]. * means that
the application could not be run on 8 nodes but needed to run on 9 nodes.

Allocation of 16 processes to nodes IS EP FT CG LU BT* MG SP*
8N vs. 16N, multi-core per node 1.37 1.05 1.27 1.04 1.08 1.11 1.22 1.47
8N vs. 16N, multi-CPU per node 1.35 1.05 1.16 0.99 0.99 1.00 1.01 1.01

From [15], we also obtained data for SLscr by investigating several NAS bench-
marks. Though the experiments only involved 8 and 16 nodes, the data range
is similar. The same paper also measured SLsno shown in Table 3. Because the
data for SLscr is similar to Table 2, we consider SLsno from Table 3 to be gen-
erally valid. Note that the data in Table 2 shows that slowdowns are not very
sensitive to job size but more dependent on problem size and the problem itself.
The latter two, however, are exactly what we capture with a statistical model.

For data in regards to SLcos, we refer to [21] which investigates the coschedul-
ing slowdown for combinations of NAS benchmarks and combinations of synthetic
benchmarks (withdifferent communicationpatterns,different communicationper-
centages and different message sizes), run on 8, 32, and 64 nodes.

Taking the data from Table 2, Table 3, and from [21] (for SLcos) as the typical
spread of possible slowdowns, we calculated the distribution of slowdowns and
classified them into different ranges as shown in Table 4.2 For example, in regards
to SLscr, 17% of the data above falls into the range [1.2, 1.3).

Table 4. Modeled distribution of slowdowns

range SLscr SLsno SLcos

[0.9, 1.0) 0% 25% 0%
[1.0, 1.1) 25% 45% 68%
[1.1, 1.2) 17% 12% 17%
[1.2, 1.3) 17% 5% 7%
[1.3, 1.4) 13% 13% 3%
[1.4, 1.5) 17% 0% 2%
[1.5, 1.6) 8% 0% 1%
[1.6, 1.7) 3% 0% 1%
[1.7, 1.8) 0% 0% 1%

2 Minor adjustments of rounded values are done to obtain 100%.
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To simplify the modeling and the slowdown calculation, processes of the same
job are currently allocated to cores of different CPUs per node, while processes of
different jobs are allocated to the cores of the same CPU. This captures the most
frequent cases that processes of the same job run better on different CPUs rather
than on the cores of the same CPU (future extensions toward more differentiated
performance considerations are possible). If there are Ncore processes of the same
job, they occupy all cores in a node.

5 Experimental Results

5.1 Experimental Set-up

We perform the evaluation via discrete event simulation with the workload model
described in Section 4.8. Each test with the Lublin-Feitelson workloadmodel is run
with 3 random workloads (each 10,000 jobs) and results are averaged. The cluster
used in the simulation has two dual-core CPUs (4 cores totally) per node. Table 5
shows the characteristics of the workloads. Workload W1 is the workload created
with the original slightly adjustedLublinparameters (since our scheduler currently
involves 5% overhead,3 we have reduced the workload in our scheduler vs. the orig-
inal workload by 5% via slightly increasing the inter-arrival times). We also test a
busier Workload W2 which sets the α parameter in the inter-arrival time distribu-
tion to a smaller value and subsequently creates shorter inter-arrival times.

In regards to response-time estimation, we apply an adjustment by a factor
of 0.75 to reflect that the estimates do not consider the benefits from non-type
slice backfilling and coscheduling and jobs therefore run on average faster than
estimated.

The parameters of Scojo-PECT are set to 30% relative time share for medium
jobs and 70% relative time share for long jobs, 60 sec overhead per time slice

Table 5. Workload characteristics

Parameter Value
W1 (normal load) α = 10.33 → Load = 10.6
W2 (high load) α = 9.83 → Load= 13.0
Machine size M 128
Percentage of short jobs NS 64%
Percentage of medium jobs NM 19.5% (54% of medium and long)
Percentage of long jobs NL 16.5% (46% of medium and long)
Work of short jobs WS 0.5%
Work of medium jobs WM 26.0%
Work of long jobs WL 73.5%
Percentage of serial jobs 24%
Percentage of jobs with power-of-two sizes 75%

3 If jobs continue to run in the next slice, they do not actually need to be preempted but
this reduction in overhead is currently not considered.
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for preemption/resumption of the jobs, and 1h intervals for scheduling one short
(optional), one medium and one long time slice. Jobs are classified as short if
their runtime is ≤ 10 minutes, as medium if their runtime is ≤ 3 hours, and as
long otherwise.

To evaluate the performance of our algorithm, we compare to the following
approaches:

– SSP : Standard space sharing (only one job per node with 1, 2 or 4 processes,
depending on the self slowdown as discussed in Section 4.3)

– GLTS: full group and time/space sharing G-LOMARC-TS

PPN =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 jobsize = 1 || (SLsno > SELF SL 2
&& SLscr ∗ SLsno > MAX SL)

2 jobsize > 1&&SLsno ≤ SELF SL 2
&& SLscr ∗ SLsno > MAX SL

4 jobsize > 1&&SLscr ∗ SLsno ≤ MAX SL

(8)

– CST : Only coscheduling and matchmaking two jobs, while taking the best
suitable match

– CSTWS: Only coscheduling and matchmaking two jobs, while taking the
first match

We also experiment with different variants of G-LOMARC-TS:

– FBO: Only matchmaking in the first block
– NS: No sorting per block
– NH : No sorting and no blocks, while selecting the first suitable group

All scheduling approaches use conservative backfilling to support prediction.
Table 6 shows all scheduler parameters used in our experiments.

Table 6. Scheduler parameters used in the experiments

Parameter Value Explanation
MAX SL 1.25 Maximum slowdown that a job should experience
SELF SL 2 1.12 Maximum self slowdown with 2 processes of a job

per node
MIN UTILGAIN 0.45 Minimum utilization gain a group should achieve
BLOCK SIZE 16 Number of jobs per block
MATCHED LARGER 0.125 X − Y ≤MATCHED EXCEED PRIM ∗ Y

if X is the sum of the node requirements of all
matched jobs and Y is the node requirement of
the primary job

RUNNING RPIM NUM 8 Number of running jobs which are considered
as primary jobs

MATCHED LONGER 3,000 Maximum time in seconds by which a matched
job can be longer than the the primary job in a
group

Fslack 1.5 Maximum slack factor for a job
NH 12 Threshold rating high-load phases
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We use the following metrics for comparison:

– Average bounded relative response time4(RR): response time in relation to
pure runtime (without time slicing) while using cut-offs for very short jobs
(only relevant for all-job evaluation)

– Core utilization Ucore during high-load phases (see Section 4.6)

5.2 General Performance Results

The performance results (measured in RR) for G-LOMARC-TS compared to
space sharing (SSP ) and matchmaking for only two jobs (CST and CSTWS)
are shown in Figure 6. The results show that the full algorithm of G-LOMARC-
TS (GLTS) compared to SSP performs by 34.9% better for medium jobs, by
53.2% for long jobs, and 35.5% for all jobs. Note that this means that long jobs
benefit more. Compared to matching only two jobs with best match (CST ),
the improvement is 19.4% for medium jobs, 16.1% for long jobs, and 13.9%
for all jobs. Compared to matching only two jobs with the first suitable match
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Fig. 6. RR for different schedulers and G-LOMARC-TS variants with Workload W1

4 The bounded relative response time is often called bounded slowdown. We avoid this
term to avoid confusion with the slowdown due to resource contention.
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(CSTWS), the improvement is 28.6% for medium jobs, 31.5% for long jobs, and
23.2% for all jobs. This demonstrates that G-LOMARC-TS significantly im-
proves average relative response times and that group matchmaking contributes
significantly to the improvements.

Looking into the details of group matchmaking, we find an average of 2.5 jobs per
group and about 1,500 (slightly depending on the concrete workload) groups being
formed. Since the number of matched jobs is decided by the size of the primary job,
on average, a job cannot match with many other jobs, and there are cases with only
two jobs in a group as well as groups with more jobs. However, as discussed, we still
obtain a significant improvement from group matchmaking. Since only medium
and long jobs are coscheduled and they account for 36% of all jobs, this means that
41.7% of the jobs that are eligible for coscheduling actually run in a group. Though
not shown, the relative results for response times look similar.

Looking into the effect on different job sizes for GLTS compared to SSP , we
find that job size has some impact on the benefits obtained. Medium-sized jobs
(between 10% and 50% of machine size) gain most: about 40% for medium jobs
and about 60% for long jobs, whereas narrow and wide jobs gain less (about
25% for narrow medium, 35% for wide medium and 45% for both narrow and
wide long jobs). The likely explanation is that medium-sized jobs are easier to
match with primary jobs than wide jobs and, thus, gain on average more. Narrow
jobs may not gain much because the Lublin-Feitelson workload model does not
include bursts, i.e. matching groups of serial jobs does not come fully into effect.
However, narrow and wide jobs still experience a significant benefit (which also
applies to maximum RR and 95% percentiles).

Figure 7 shows core utilization for high-load phases. We see that GLTS im-
proves core utilization by 26.8% vs. SSP and by 6.0% and 10.1% vs. CST and
CSTWS. This demonstrates that the source of the relative response time im-
provements is the increased core utilization in high-load phases and that the
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Fig. 7. Core utilizations during high-load phases for different schedulers and G-
LOMARC-TS variants with Workload W1
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increase vs. SSP is significant. Due to saved nodes from better core utilization
in high-load phases, overall node utilization decreases by about 9%, with more
improvement for long jobs (10%) than for medium jobs (4%).

In regards to fairness, the distribution of delays shows that on average jobs
finish at their predicted response time. The 75% percentile is a delay factor of
1.3 for both M and L jobs and the 95% percentile is a factor of 1.4. Thus, the
scheduler meets its goal of supporting fairness well.

Finally, we present results for the CM5 trace of the Feitelson workload archive
[6] in Figure 8 and Figure 9. The results show similar relative benefits, i.e. confirm
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Fig. 8. RR for different schedulers an G-LOMARC-TS variants with CM5 trace
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the usefulness of the G-LOMARC-TS scheduler. The CST and CSTWS variants
perform poorly for long jobs which means that group matchmaking is even more
beneficial for the CM5 trace than for the Lublin-Feitelson workload.

5.3 Impact of Different Heuristics and Machine Load

Figure 6 and Figure 8 also include results of several variants of G-LOMARC-TS.
However, we do not see much impact from using the full matchmaking algorithm
(GLTS) vs. simplifications which only match within the first block (FBO), do
not sort (NS), or only selecting the first suitable group (NH). The reason is
that the number of candidate jobs for matchmaking is less than 4 in 85% of the
cases.

For Lublin-Feitelson Workload W2, the situation looks different. The results
in Figure 10 show that GLTS achieves the best results with optimum group size.
NH does not depend on block size and is better than GLTS with small and
large block size for medium jobs but becomes significantly worse than GLTS
with optimum block size. FBO is much worse than GLTS if the block size is
small (because fewer jobs are considered) and becomes similar to GLTS if block
sizes are large enough. NS is especially worse than GLTS for the optimum block
size. Notable is that the optimum block size is 12 for both medium and long jobs.
If the block size is too small, not enough matching candidates are available in
the first block and more jobs are selected from the other blocks. If the block size
is too large, jobs may be matched from the end of the first block. In both cases,
jobs from further down the queue may move ahead and delay the jobs further
up in the queue. Under Workload W2, the average group size is 2.6 (almost
unchanged) but about 2,000 groups are formed which is about 25% more than
for the basic workload. This is due to the fact that the waiting queues become
longer and more matching candidates are available.

SPP cannot even handle Workload W2 and jobs queue-up as shown by an
increased makespan–which is not the case for G-LOMARC-TS. Correspondingly,
with SPP , the average relative response times become 17.5 (medium jobs), 36.74
(long jobs), and 10.65 (all jobs) which is much longer than G-LOMARC-TS.
This demonstrates that our scheduler not only runs significantly better if the
workload is normal (W1) but also can handle a much higher workload (W2)
since the increased utilization makes it possible to run more jobs over the same
time period.

5.4 Fairness vs. Utilization

Next we investigate the trade-off between optimization for highest utilization
gain and fairness by running the G-LOMARC-TS with different slack factors.
The results are shown in Figure 11. If the slack factor is low, more possible
groups are rejected which leads to higher average relative response times. With
increasing slack factor, more groups pass the fairness check and average relative
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response times improve. This is true up to a certain slack factor from which on
the results become approximately equal. This can be explained by most suitable
groups pass the check if the slack factor reaches a certain value. As can be seen
from the figure, the threshold is Fslack = 1.5 (used in all experiments above).
Thus, larger slack factors than that certain value make no sense. Smaller slack
factors may be chosen if fairness is rated higher than relative response times.

6 Summary and Conclusion

We have presented the G-LOMARC-TS scheduler which incorporates both space
sharing and semi time sharing on clusters with multi-core nodes. G-LOMARC-
TS employs group matchmaking and constraints the matchmaking by fairness
to individual jobs. G-LOMARC-TS is integrated with the coarse-grain preemp-
tive Scojo-PECT scheduler by applying G-LOMARC-TS per virtual machine
managed in Scojo-PECT. Relative response times and core utilization are sig-
nificantly improved with G-LOMARC-TS. At the same time, node utilization is
decreased by packing the jobs better onto cores per node, and the scheduler can
therefore handle heavier workloads than space sharing per virtual machine, i.e.
increase the saturation point. The results also demonstrate that group match-
making contributes significantly to the improvements.
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Abstract. Virtual machines have become an important approach to
provide performance isolation and performance guarantees (QoS) on
cluster servers and on many-core SMP servers. Many-core CPUs are
a current trend in CPU design and require jobs to be parallel for ex-
ploitation of the performance potential. Very promising for batch job
scheduling with virtual machines on both cluster servers and many-core
SMP servers is adaptive scheduling which can adjust sizes of parallel
jobs to consider different load situations and different resource avail-
ability. Then, the resource allocation and resource partitioning can be
determined at virtual-machine level and be propagated down to the job
sizes. The paper investigates job re-sizing and virtual-machine resizing,
and the effects which the efficiency curve of the jobs has on the result-
ing performance. Additionally, the paper presents a simple, yet effective
queuing-model approach for predicting performance under different re-
source allocation.

Keywords: adaptive job scheduling, molding, utilization, prediction,
queuing model.

1 Introduction

Virtual machines (VMs) have become an important approach in resource pro-
visioning and providing quality-of-service on cluster servers and shared-memory
servers [8]. Shared-memory servers will likely gain more significance with the
emergence of many-core CPUs as a trend in CPU design to reduce power con-
sumption and to continue performance growth of CPUs in spite of physical limits
imposed on the performance improvement of individual cores [17]. Thus, we will
likely see CPUs with tens of cores in the near future. To exploit the performance
of many-core CPUs per individual program, parallelization of applications will
be a must [24]. (System) virtual machines support to safely share servers among
different applications or user groups, and are likely to become more important on
many-core servers with large numbers of cores. Virtual machines provide func-
tional separation (with potentially even different operating systems) but also a
framework for performance guarantees (QoS) if controlling resource allocation
among virtual machines. We assume in the following that resource allocation
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is realized via partitioning the available cluster nodes or cores among the dif-
ferent virtual machines, with potentially dynamically changing partition sizes.
Furthermore, per virtual machine, jobs are assumed to be scheduled with space
sharing, i.e. dedicated allocation of CPUs. Our experimental analysis is based
on cluster workloads but would easily translate to many-core servers that are
run with batch scheduling.

If resource allocation per virtual machine changes over time, this has implica-
tions on suitable sizes of parallel jobs. Adaptive job scheduling which can adjust
job sizes according to the current load and resource availability is already well
investigated in the literature and will likely become an important approach for
scheduling not only on cluster servers but also on many-core/virtual-machine
servers. Adaptive job scheduling may mean deciding the job size at start time
(molding jobs) or adjusting it at runtime (malleable jobs). Though the latter is
more flexible it requires special support in the runtime system of the application,
whereas start-time adaptation was found to be applicable to the majority of jobs
[3]. In this paper, we therefore only consider size adaptation at job start-time.

The presented work studies the effects of changing the (virtual) machines
size and the size allocation of the jobs, including the effects of the jobs’ effi-
ciency/scalability curve. The evaluations are mainly done by keeping the origi-
nal scheduler unchanged and adjusting all job sizes equally, i.e. without looking
into specific scheduling contexts. This permits investigation of effects indepen-
dent of the scheduling algorithm, whereas previous research mixed efficiency
and scheduler considerations. Thus, as one of the contributions, this paper
looks separately into the benefits obtained from size changes under constant
efficiency (work-conserving adaptation) and different levels of efficiency changes
(non-work-conserving adaptation). The experiments were performed with 1) a
standard scheduler and FCFS and priority policies and 2) with our Scojo-PECT
preemptive scheduler [5][20][19] which can assign different priorities to different
job type (currently defined on the basis of runtimes) via different time shares
but is FCFS per job type. Though benefits may be expected from mere reduc-
tion in sizes by easier fitting of jobs and smart scheduling approaches, the results
demonstrate that the change in efficiency and subsequently work load constitutes
the dominating performance factor.

2 Related Work

Most adaptive approaches apply molding only. The approach of Cirne and
Berman [3] molds jobs at the time of job submission, whereas later research
showed performance improvements [23] by setting limits for the maximum job
size in dependence on the current system load and on the job’s size requests and
by making decisions at job start time rather than submission time. Both ap-
proaches applied the Downey scalability model [4] which describes typical appli-
cation scalability/efficiency curves and includes the possibility to model different
scalability by modifying the corresponding scalability factor σ. In [23], the eval-
uations of the proposed adaptive scheduling algorithm were done with different
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σ values. However, in our work, we not only test different efficiency but sepa-
rate efficiency effects from the scheduling algorithm. Most of these approaches
exploit adaptation with the goal to adapt to varying system load. The approach
by Naik et al. [13] also adapts resource allocation at runtime and attempts to
schedule all jobs from the queue, though setting a limit for medium and long
jobs to keep space for short jobs. Other approaches apply limits on job sizes in
relation to machine size to keep space for future arrivals [9][15]. In addition to
load adjustments, some approaches additionally try to reduce fragmentation in
dependence on the specific resource/scheduling situation [14][22].

The two basic approaches to decide about the job sizes are resource-based
partitioning and efficiency-based partitioning [6]. Resource-based partitioning
typically comes in the form of EQUI partitioning which means assigning the
same number of resources to each job. This approach yields suboptimal per-
formance in the general case as it does not consider how well the jobs use the
resources [2][12]. Efficiency-based partitioning exploits the efficiency character-
istics of the applications and allocates more resources to jobs that make better
use of them, which typically leads to the overall best results [2][12]. Similar to
resource-based partitioning, efficiency-based partitioning may be applied in the
form of providing equal efficiency to all jobs in the system (EQUI-EFF).

3 Work-Conserving and Non-Work-Conserving Job-Size
Adaptation—Myths and Reality

3.1 Space Sharing and Scojo-PECT Time Sharing

For our experiments, we use a standard space-sharing scheduler which employs
either a FCFS policy or priority scheduling. Priorities are based on runtime
classes, and classes with shorter runtime receive higher priority. To avoid starva-
tion, the implementation which is used here ages jobs to the next higher priority
level if their wait time exceeds 10 times their runtime.

Scojo-PECT [5] employs preemption to support scheduling of shorter jobs in
the presence of longer-running jobs. Scojo-PECT preempts jobs to swap space
which is easy to support in the machine environment. This avoids the memory
pressure which gang scheduling imposes and the hard-to-support checkpointing
which is necessary for migration. However, Scojo-PECT subsequently imposes
the constraint that preempted jobs are later restarted on the same resources. To
make preemption to disk affordable and to avoid that jobs are delayed because of
problems in getting access to their resources again, Scojo-PECT employs coarse-
grain time slices that preempt all jobs. Jobs are sorted per job class/type, and
slices associated with job types. The slice time for each job type is determined
on the basis of typical job-type mixes and the administrator’s policies and can
be recalculated in regular time intervals. One slice for each type is scheduled per
interval (since short jobs backfill into other slices in most cases, their slice is only
scheduled if short jobs are waiting), and the slice times can be decided at the
beginning of each interval. This permits controlling the resource allocation via
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different policies at different times of the day or via adaptive allocation which
considers the current load of the machine [19]. In the context of this paper, the
relative slice times of different job classes are kept static. Jobs per job type are
scheduled in FCFS, and either EASY or conservative backfilling is applied. Since
the separation of jobs into different types is likely to increase fragmentation be-
cause job sizes and job runtimes tend to be correlated, Scojo-PECT employs
additionally safe non-type slice-backfilling. This means that preempted or wait-
ing jobs of a different type may be backfilled into a slice–with this backfilling
only being valid until the end of the slice–if they do not delay any job of the slice
type or any of their own type jobs according to the backfilling approach applied.
In [5] and [20], this optimization is shown to be crucial for good performance.

All schedulers are configured to support 3 job classes based on their runtime:
short (S), medium (M), and long (L) jobs. The original classification is kept if
resizing the jobs. We use A to denote results for all jobs. The backfilling approach
applied is for all schedulers conservative backfilling.

3.2 Test Setup

Thus, the following schedulers were tested:

– Standard space-sharing with FCFS (FCFS)
– Standard space-sharing with priorities (Prio10)
– Scojo-PECT coarse-grain time sharing with separation of job types (PECT )

The parameters of Scojo-PECT were set to 30% relative time share for M jobs
and 70% for L jobs, 60 sec overhead per time slice for preemption/resumption
of the jobs, and 1 h time intervals for scheduling one S (optional), one M , and
one L time slice. Jobs are classified as S if they run ≤ 10 minutes, as M if they
run ≤ 3 hours, and as L otherwise.

The schedulers were tested with the Lublin-Feitelson workload model [10],
setting the original machine size Mz to 128 CPUs, and with the CM5 trace
from the Feitelson workload archive [7]. The Lubin-Feitelson model creates one
process per node. The CM5 trace has 32 CPUs per node and sizes only come
in multiple of 32 (i.e. do not differentiate the use per node)—thus, all sizes
(including the original machine size measured in 1024 CPUs) were divided by
32 to map them to the model of one process per node. In each test run, 10,000
jobs were simulated.

Job size was modified by certain factors FA in the range between 1.5 and 0.3.
For the basic tests without modification of the scheduling algorithm, the same
FA was applied to all jobs per experiment. Job sizes were always rounded up.
Note that the Lublin-Feitelson model creates about 25% serial jobs which never
change their size. The jobs with maximum size never grow beyond this size and
can only become smaller. The job sizes and corresponding runtimes created by
the Lublin-Feitelson model or the trace were taken as the original sizes/runtimes
with FA=1.0. Runtimes are considered to be correct estimates.

An efficiency model was built on top of the created workload and the following
efficiency parameters tested:
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– Equal efficiency for all resource allocations, which means that the jobs can
be size adapted in a work-conserving manner (WC)

– Efficiency described via typical efficiency speedup curves, which were mod-
eled with a simple phase-wise linear approximation between pairs of 4 sizes:
a) 1, b) 0.5 * original size, c) original size, and d) min {2 * original size,
machine size}, using efficiencies of
1. 1, 0.8, 0.65, and 0.4 (E1)
2. 1, 0.75, 0.65, and 0.5 (E2)
3. 1, 0.7, 0.65, and 0.6 (E3)

This is similar to the idea of Secvik’s modeling approach presented in [16] and
sufficient for the purpose of our experiments to only study the principle effects
of different efficiencies. With the same argument, the efficiency is assumed to be
the same for all jobs. In other work, we develop efficiency/scalability models for
applications on multi-core CPUs [11].

For tests with different resource allocation to virtual machines, the original
machine size is modified by a factor FM , while still using the job sizes and run-
times generated for the original machine sizes, adjusted by specified FA factor.
Resizing of virtual machines is assumed to be done without any performance
impact (slowdown) from other virtual machines which may share the server.

Throughout the paper, the evaluation uses average bounded relative response
times RR (often called bounded slowdowns in the literature1). RR which relates
response times to runtimes is calculated vs. the pure runtime of the job (without
time slicing) and always vs. the original runtime without size modification. In
some cases, average response times are shown. We found that the relative effect
of the changes which we study were almost identical for R and RR, and RR is
shown for reasons of how this research evolved. With RRA denoting bounded
relative response times under adaptive resource application, the graphs evaluate
relative worsening, i.e. RRA/RR − 1, if FA > 1, and relative improvement, i.e.,
RR/RRA − 1, if FA < 1 to obtain a balanced presentation (rather than one end
providing results in the range [0,1] which are hard to differentiate).

3.3 Formal Results for Work-Conserving and Non-Work-Conserving
Job Re-shaping

Before presenting the results of the experiments, below some simple theoretical
considerations are presented to help explain some effects in the experiments.

Theorem 1. We assume that all job runtimes T are equal, have equal original
size Sz with Sz = Mz (machine size), and constant and equal efficiency under
different sizes. Additionally, we assume off-line scheduling of a fixed set of jobs.
This means that jobs can be reshaped in a work-conserving manner. NJ is the
number of jobs resized to fit together into memory rather than being scheduled
serially, and N is the overall number of jobs in the system, NG = N/NJ the

1 The term slowdown is avoided in this paper since it is also used for contention effects
under time sharing.
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number of groups under re-shaping, then serial scheduling gives average response
times φR of

φRSerial = T ∗ (
∑

i=1,N

i)/N = T ∗ (N ∗ (N + 1)/2)/N = T ∗ (N + 1)/2 (1)

and re-shaped-job adaptive scheduling gives

φRAdaptive,WC = NJ ∗ T ∗ (
∑

i=1,NG

i)/NG (2)

If rewriting (1) for better comparison, this gives:

φRSerial = T ∗ (
∑

i=1,NJ

i)/NJ + NJ ∗ T ∗ (
∑

i=1,NG−1

i)/NG (3)

Proof. Under serial scheduling, the first job’s response time is T , the second one
has a wait time W of T and a runtime of T , i.e. a response time of R = T +W =
2T , etc., which means that φRSerial = (

∑
i=1,N (i ∗ T ))/N = T ∗

∑
i=1,N i/N

(q.e.d.)
Under reshaping, the runtime per job changes to NJ ∗ T . The response time

is equal for all the jobs in the group, with the first group having an average
response time of NJ ∗ T , the second group a wait time of NJ ∗ T and a runtime
of NJ ∗ T , i.e. an average response time of 2 ∗ NJ ∗ T , etc., which means that
φRAdaptive,WC = (

∑
i=1,NG

(iNJ ∗ T ))/NG = NJ ∗ T ∗
∑

i=1,NG
i/NG (q.e.d.)

However, the runtime of the overall group is equal to the sum of the serial
runtimes of those jobs, i.e. the average wait time for the next group of jobs is
the same under both approaches. Thus, (1) can be transformed into (3).

Comparing (2) and (3) shows that the term NJ ∗ T ∗ (
∑

i=1,NG−1 i)/NG is
common. Thus, for large NG, the difference becomes small. However, the differ-
ence can matter if NG is very small. This means high load makes the difference
insignificant, whereas low load makes it relevant. In regards to the detailed dif-
ference, the remaining term in (2) is tr,Serial = T ∗ (

∑
i=1,NJ

i)/NJ and the
remaining term in (3) is tr,Adaptive,WC = NJ ∗T . Thus, tr,Serial < tr,Adaptive,WC

for NJ > 1 since (NJ +1)/2 < NJ for NJ > 1. This means that serial scheduling
performs typically slightly better and that, for small NG, the difference between
serial and adaptive scheduling is more significant if NJ is larger.

Theorem 2. If reshaping is non work-conserving, i.e. jobs run with better effi-
ciency if becoming smaller or lower efficiency if becoming larger, the runtimes are
affected by the change in efficiency E, with EFA=1.0 being original and EFA=X

the efficiency after adaptation:

φRAdaptive,E = NJ ∗ T ∗ EFA=1.0/EFA=X ∗ (
∑

i=1,NG

i)/NG (4)

φRAdaptive,E = NJ ∗ T ∗ EFA=1.0/EFA=X +

NJ ∗ T ∗ EFA=1.0/EFA=X ∗ (
∑

i=1,NG−1

i)/NG (5)
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If comparing (3) and (4), tr,Serial = T ∗ (
∑

i=1,NJ
i)/NJ is not necessarily less

than tr,Adaptive,E = NJ ∗T ∗EFA=1.0/EFA=X since (
∑

i=1,NJ
i)/NJ = (NJ +1)/2

may not be less than EFA=1.0/EFA=X ∗ NJ if NJ is small and EFA=X is much
better than EFA=1.0. Thus, as can be easily seen from the formulation in (5),
with larger NG, adaptation reduces average response time by approximately
EFA=1.0/EFA=X .

Thus, if assuming EFA=0.5 = 0.8 and EFA=1.0 = 0.65 (which corresponds to
E1), NJ = 2, and N = 2 (TG = 1)), φRAdaptive,E = EFA=1.0/EFA=0.5 ∗ NJ =
1.625, whereas φRSerial = 1.5. φRSerial can be expected to be better than
φRAdaptive,E under low load and to be increasingly worse with increasing load
which is shown with the following calculations:

– NJ = 2 and N = 4 (TG = 2): φRSerial = 2.5 and φRAdaptive,E = 1.625∗1.5 =
2.4375 which means that adaptation is already slightly better

– NJ = 2 and N = 6 (TG = 3):
φRSerial = 3.5 and φRAdaptive,E = 1.625 ∗ 2 = 3.25

– NJ = 2 and N = 100 (TG = 50):
φRSerial = 50.5 and φRAdaptive,E = 1.625 ∗ 25.5 = 41.4 which means their
ratio (1.21) is already close to the ratio of the efficiencies (1.23).

The writing as presented in (5) shows average runtime φT as the first term and
average wait time φW as the second term. As can be seen from comparison to
(2), with reshaping, φT becomes longer by NJ ∗ EFA=1.0/EFA=X and φW is
reduced by EFA=1.0/EFA=X . The latter dominates for larger NG.

In realistic scheduling, we face additionally packing problems, different run-
times and sizes, and potentially different efficiency. Moreover, submissions are
dynamic. However, the above considerations give some basic clues about the
expected performance behavior.

3.4 Experimental Results for Work-Conserving and
Non-Work-Conserving Job Re-shaping

Before showing adaptation results which mostly look into relative performance
under different adaptation, a note about absolute performance under FA = 1.0.
If setting resource shares for equal service, Scojo-PECT provides similar service
to M and L jobs as the priority scheduler but improves overall response times
by about 45% by serving S jobs better. The simple FCFS scheduler performs by
about 60% worse for all jobs and by about 20% worse if only considering M and
L jobs.

In the following, we investigate performance under different job re-shaping,
while keeping the machine size at original size. Note that only the sizes of all
jobs are changed and no special adaptive scheduler is used.

In regards to re-shaping, we can expect that

– If decreasing jobs sizes, the smaller sizes might provide better options for
packing. If increasing job sizes, packing possibilities might worsen.
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– A counter effect under work-conserving re-shaping as per (3) shows in phases
of low load, while performance is approximately the same if the load is very
high.

– Improvements under non-work-conserving re-shaping according to (4) show
if reducing the job sizes, while performance is worsened if increasing the job
sizes.

In our experiments, we explored the corresponding aggregate effects on RR for
the 3 schedulers FCFS, Prio10, and PECT . The results are shown in Figure 1,
Figure 2, Figure 3, and Figure 4, differentiated for M , L, and A jobs.

As we can see, under work-conserving re-shaping, the sizes make no relevant
difference in regards to RR if scheduling with FCFS or PECT (though RR is
shown, the same applies to R). Obviously any effects from better packing and
extended wait times under low load cancel each other out, though improvements
in packing might have been expected to make more of a difference. For Prio10,
smaller sizes provide a benefit of up to a factor of 1.4.

The likely explanation is that packing and backfilling do not behave signifi-
cantly different and that mostly the load of the jobs in the system matters (which
is further investigated in Section 6.1.

Since, however, the overall load and the length of the queue may matter,
Figure 5 shows results for the original load L1 with U = 0.76, and for reduced
workloads L2 with U = 0.66 and L3 with utilization U = 0.56 (loads are modified
by increasing interarrival times via the α parameter from 10.33 to 10.65 and
10.9). Figure 5 also includes results for the interarrival times being changed
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Fig. 1. RR improvement for Lublin-Feitelson workload under FCFS with different
efficiency, shown over different size-modification factors
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Fig. 2. RR improvement for Lublin-Feitelson workload under Prio10 with different
efficiencies, shown over different size-modification factors

to exponential without daily cycles which significantly reduces average queue
lengths φQsystem of jobs in the system (waiting or running) though they are
almost independent of FA (φQsystem is about 13 for M and 31 for L with L1;
about 5 for M and 15 for L with L3; and reduces to about half if interarrival times
are exponential without daily cycles). However, the RR results are all similar.
Even if queue lengths become shorter, FA only changes the number of jobs fitting
into the machine by maximally a factor of 2 (NJ = 2), i.e. (NJ + 1)/2 = 1.5
which means that the difference for small NG is low. Thus, the results behave
as expected for the theoretic consideration that were done for the simple off-line
case with equal job sizes.

Finally, since conservative and EASY backfilling may have different effects
with job reshaping, Figure 6 compares results for conservative and EASY back-
filling. Work-load conserving reshaping provides a little, though not very relevant
benefit under EASY backfilling (because of being able to push some shorter jobs
ahead) but overall the relative improvements are very similar. Thus, the effect
of the backfilling approach has no major impact.

In all experiments shown, non-work-conserving job re-shaping with all factors
FA < 1.0 would suggest an improvement in R and RR which is indeed the case.
The improvements are higher if the efficiency improvement is higher, i.e. best for
E1 and lowest for E3. If looking at R from the theoretic consideration in (5),
E1,FA=0.5/E1,FA=1.0 = 0.8/0.65 = 1.23. The real improvements due to higher ef-
ficiency should be lower since not all jobs change sizes (such as serial jobs always
remaining serial). However, the measured RL improves by a factor of 2.28 and the
measured RM by a factor of 1.67. Correspondingly, the measured RRL improves
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Fig. 3. RR improvement for Lubin-Feitelson workload under PECT with different
efficiencies, shown over different size-modification factors
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Fig. 4. RR improvement for CM5 trace under FCFS and PECT with work-conserving
and with E1 efficiency, shown over different size-modification factors
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Fig. 5. RR improvement for FA = 0.5 vs. FA = 1.0 with different loads, and either
standard interarrival times of model or exponential interarrival times without daily
cycles (Exp)

by a factor of 2.34, RRM by a factor of 1.65, and RRA by a factor of 1.65. Thus,
the changes in R and RR are almost identical. The higher-than-expected benefits
may be partially due to better packing but likely also to less queue-up of work in
the systems, as will be discussed in Section 6.1. To check the effect of the load on
the improvements, again lower Loads L2 and L3 were tested (see Figure 5). Load
L2 and L3 also show improvements though they are relatively lower than for L1
This can be explained by less difference in the work queuing up. Indeed, if looking
at average wait times, they are—if changing from FA = 1.0 to FA = 0.5 and using
L1—reduced from 9.3h to 2.4h for M jobs and from 33h to 7.4h for L jobs, which
is much more than the predicted factor of 1.23 from (4).
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Fig. 6. RR improvement for FA = 0.5 vs. FA = 1.0 under conservative and EASY
backfilling, for PECT , Prio10, and FCFS with WC and E1 efficiency

Looking at the effect on runtimes, the change from FA is limited: with FA =
1.0, φT is 4.55h for M and 7.3h for L jobs and, with FA = 0.5 and E1, φT is
5.9h for M and 10.3h for L jobs—which is a factor of 1.3 for M and a factor
of 1.41 for L jobs. Predicted would be a factor of 1.625 for both (from 2 ∗
EFA=1.0/EFA=0.5) = 2 ∗ 0.65/0.8 = 1.625) for adaptable jobs. With 25% serial
jobs this reduces to a factor of 1.47. However, the lower load, especially for M
jobs, also makes more non-type slice backfilling possible which improves service
and reduces runtimes more than expected.

4 Adaptive Scheduling with Efficiency and Load
Considerations

4.1 Scheduling with Adaptation to Load

As seen in Section 3.4, non-work-conserving scheduling provides significant bene-
fits already from improved efficiency. Note that the scheduler simply re-shaped all
jobs. In the following, we put more intelligence into the scheduler (Scojo-PECT)
to consider different load situations and create a truly adaptive scheduler. The
adaptive scheduler is applied separately and independently per job type M and
L. Since FA = 0.5 performed best in the basic experiments, we use this factor in
the following experiments with an adaptive scheduler. Adaptation is performed
according to the following steps:

1. The resource needs are calculated as the sum of the sizes of all waiting jobs
(assuming that ideally all jobs should be allocated). The factor used for
adaptation Fdyn,A in the dynamic scheduling context is then adjusted as

max(Ftry,A, FA,min) ≤ Fdyn,A ≤ min(Ftry,A, FA,max) (6)

with FA,min = 0.5 and FA,max = 1.0 in the following.
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Fig. 7. RR for PECT with static FA = 0.5, with (AllA) and without (AllA noB)
application of the same factor to backfilled jobs, and for adaptive PECT with dy-
namic FdynA between FA,min = 0.5 and FA,max = 1.0, with (LoadA) and without
(LoadA noB) application to backfilled jobs

2. All jobs of a specific job type which the scheduler tries to fill into the machine,
are then reshaped by Fdyn,A unless the jobs are relatively long-running in
their own jobs class. Thus, if the original job runtime is > 45 min (M jobs)
or > 7 h (L jobs), the factor FA,min is used for reshaping.

The results of applying this approach (called LoadA) are shown in Figure 7.
The improvement is relatively low. However, not adapting backfilled jobs made
a difference and best results were obtained if combining both, load adaptive re-
sizing and keeping the original size for backfilling (LoadA noB). However, the
improvements are still moderate. (Note that further improvements may be ob-
tained by looking at each scheduling situation in detail to reduce fragmentation.
However, previous work [22] suggests that the improvements would be minor.)

The obtained moderate additional improvements with dynamic job-size adap-
tation suggest that a substantial part of the benefits obtained in previous re-
search with adaptive schedulers may been due to improved efficiency.

5 Job Re-shaping for Virtual Machines of Adaptive Size

In the following, we show results from changing the size of the machine by a
factor FM which corresponds to different resource allocation to virtual machines
if partitioning core numbers among them. At the same time, the sizes of the
jobs per virtual machines are adjusted by a static factor FA. We tested resulting
virtual-machine sizes of 96, 112, 144, and 160 nodes, using the Lublin-Feitelson
workload for 128 nodes and E1 efficiency. The results are shown in Figure 8.

The sizes delivering similar results as FA = 1.0 does for 128 nodes are FA = 0.5
(still somewhat higher) for 96 nodes, FA = 0.75 for 112 nodes, FA = 1.07 for
144 nodes, and FA = 1.21 for 160 nodes. The results demonstrate that certain
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Fig. 8. RR with different resizing of the machine combined with different re-shaping
of the workload, using PECT and E1
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performance (QoS) can be kept over different resource allocations per virtual
machine if re-shaping the jobs accordingly.

The sizes delivering similar results as FA = 1.0 does for 128 nodes are FA = 0.5
(still somewhat higher) for 96 nodes, FA = 0.75 for 112 nodes, FA = 1.07 for
144 nodes, and FA = 1.21 for 160 nodes. The results demonstrate that certain
performance (QoS) can be kept over different resource allocations per virtual
machine if re-shaping the jobs accordingly.

6 Predicting R under Varying Resource Allocation

6.1 Dependence of R and RR on Utilization

Trying to generalize the performance in dependence on different virtual machine
sizes, different job-reshaping factors, and different efficiencies, Figure 9 and Fig-
ure 11 plot RR and Figure 10 and Figure 12 plot R in dependence on the mea-
sured utilization for the corresponding test runs. Though M and L jobs perform
differently, we observe a clear correlation between relative response times and
utilization per job type. The correlation is stronger for L jobs but still reason-
ably clear for M jobs. This permits the conclusion that utilization changes from
running jobs at better efficiency are the major source of improvements in adap-
tive job scheduling and that utilization makes a good predictor for performance
if changing virtual-machine and job sizes (cf. (5)).
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Fig. 9. RR for PECT and E1, E2, and E3 with different FA, shown over corresponding
measured utilization
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Fig. 11. RR for PECT and E1 with different virtual-machine sizes and different FA,
shown over corresponding measured utilization

This is a nice property since utilization is easy to predict if knowing the
efficiency changes and the mix of the sizes (especially the percentage of serial
jobs), as utilization corresponds to the submitted load (work over time).
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Fig. 12. R for PECT and E1 with different virtual-machine sizes and different FA,
shown over corresponding measured utilization

The explanation of the response times not matching the simplified off-line
case is that we are dealing with dynamics in interarrival times, daily cycles, job
runtimes, and job sizes which can temporarily lead to very long queues. Thus,
the proper approach is a queuing model which, however, is hard to establish due
to the many contributing statistical distributions.

6.2 A Simple Predictive Model

If knowing queue lengths, response times can be predicted via Little’ Law which
is independent of the specific statistical distributions and the scheduling policies
and says that

φQsystem = λ ∗ φR (7)

with λ being the average arrival rate and φQsystem the average number of jobs
in the system (waiting and running). However, the law applies to a single-server
system. We approximate the packing of multiple jobs into the machine as a
variation of service time to obtain a single-server model. This simplification
appears to be feasible, considering the predictions shown in Figure 13.

The results show a few cases of prediction from the standard model and the
exponential interarrival times without daily cycles. As we can see, the predictions
are very accurate—a little too high for the standard interarrival model and a
little too low for the exponential interarrival model.

Our final goal is predicting response times for different resource allocations FA

and different FM from a base resource allocation which in our case is FA = 1.0
and Mz = 128. As mentioned above, the change in utilization can be directly
calculated from the workload. Since the queuing model can capture the multi-
node server behavior, we use an M/G/1 model to predict R from the utilization,
which means
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Fig. 13. Real and predicted R (from Qsystem) for PECT and E1 with different FA.
Both standard model and exponentially distributed interarrival times without daily
cylces are shown.

φQsystem = U + U2(1 + C2
S)/(2 ∗ (1 − U))) (8)

With this simplified model, all variations of daily cycles, sizes, backfilling, and
runtimes are mapped to the variation coefficient of the service time C2

S . The
concrete parameter is obtained from fitting the curve for FA = 1.0 which reflects
predicting from a base-case allocation.

The results from applying this simple prediction approach based on (7) and
(8) to our workload are shown in Figure 14 and Figure 15.
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Considering that the actual R curves shows some irregularities, the prediction
is a good fit (and worked better than all more detailed models tried). However,
the curves match a little less well if utilization decreases and would be completely
off if utilization increases beyond 0.9. The reason is that variation increases with
lower utilization and decreases with very high utilization. For utilization beyond
0.9, the wait times are in the order of days, i.e. daily cycles have little impact, and
backfilling opportunities can be expected to saturate. However, the extremely
long wait times make such allocations anyway undesirable. Thus, the simple
prediction model works well for practically relevant cases.

7 Summary and Conclusion

The paper has presented extensive experiments for investigating the effects on
response times that were obtained if merely reshaping all jobs statically to run
with smaller sizes (and correspondingly longer runtimes), with or without chang-
ing the (virtual) machine size. The results show that under fixed machine size
and FCFS scheduling, the results surprisingly remained the same if reshaping the
jobs in a work-conserving manner. However, significant benefits were obtained
if jobs reshaped to smaller size ran at higher efficiency. Any further benefits
obtained from an adaptive scheduler which makes context-dependent decisions
and decides job sizes dynamically at job start time according to the machine
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load were relatively small. Thus, most of the benefit from adaptive schedulers
appear to be due to efficiency gains.

Simple formulas looking at the off-line schedules of a series of jobs can only
partially explain the effects from different resource allocation but dynamic mea-
surement of system utilization proves to show a strong correlation to the obtained
response times under varying virtual-machine and job-size adjustments. A simple
queuing model was presented which can, in the range of typical system utiliza-
tion, effectively predict average response times under varying resource allocation
for both different job sizes and different virtual-machine sizes.

References

[1] Barsanti, L., Sodan, A.C.: Adaptive Job Scheduling via Predictive Job Resource
Allocation. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2006. LNCS,
vol. 4376, pp. 115–140. Springer, Heidelberg (2007)

[2] Chiang, S.-H., Vernon, M.K.: Dynamic vs. Static Quantum-Based Parallel Proces-
sor Allocation. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1996 and JSSPP
1996. LNCS, vol. 1162, pp. 200–223. Springer, Heidelberg (1996)

[3] Cirne, W., Berman, F.: When the Herd is Smart-Aggregate Behavior in the se-
lection of Job Request. IEEE Trans. on Par. and Distr. Systems 14(2), 181–192
(2003)

[4] Downey, A.: A Model for Speedup of Parallel Programs. Technical Report CSD-
97-933, Univ. of California Berkeley (January 1997)

[5] Esbaugh, B., Sodan, A.C.: Coarse-Grain Time Slicing with Resource-Share Con-
trol in Parallel-Job Scheduling. In: Perrott, R., Chapman, B.M., Subhlok, J., de
Mello, R.F., Yang, L.T. (eds.) HPCC 2007. LNCS, vol. 4782, pp. 30–43. Springer,
Heidelberg (2007)

[6] Feitelson, D.G., Rudolph, L., Schwiegelsohn, U., Sevcik, K.C., Parsons, W.: The-
ory and Practice in Parallel Job Scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg
(1997)

[7] Feitelson Workload Archive,
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

(last retrieved January 2008)
[8] Foster, I., Tuecke, S.: The Different Faces of IT as Service. ACM Queue, 27–34

(July/August 2005)
[9] Ghosal, D., Serazzi, G., Tripathi, S.K.: The Processor Working Set and Its Use

in Scheduling Multiprocessor Systems. IEEE Trans. Software Engineering 17(5),
443–453 (1991)

[10] Lublin, U., Feitelson, D.G.: The Workload on Parallel Supercomputers-Modelling
the Characteristics of Rigid Jobs. Journal of Parallel and Distributed Comput-
ing 63(11), 1105–1122 (2003)

[11] Machina, J., Sodan, A.C.: Predicting Cache Needs and Cache Sensitivity for Ap-
plications in Cloud Computing on CMP Servers with Configurable Caches. In:
Workshop on System Management Techniques, Processes, and Services (SMTPS)
of IPDPS, Proc. IPDPS, Rome, Italy. IEEE, Los Alamitos (2009)

[12] McCann, C., Zahorjan, J.: Processor Allocation Policies for Message Passing Par-
allel Computers. In: Proc. SIGMETRICS Conf. Measurement & Modeling of Com-
puter Systems, May 1994, pp. 208–219 (1994)

http://www.cs.huji.ac.il/labs/parallel/workload/logs.html


Adaptive Scheduling for QoS Virtual Machines 279

[13] Naik, V.K., Setia, S.K., Squillante, M.K.: Processor Allocation in Multipro-
grammed Distributed-Memory Parallel Computer Systems. Journal of Parallel
and Distributed Computing 46(1), 28–47 (1997)

[14] Parsons, E.W., Sevcik, K.C.: Implementing Multiprocessor Scheduling Disciplines.
In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1997 and JSSPP 1997. LNCS,
vol. 1291, pp. 166–192. Springer, Heidelberg (1997)

[15] Rosti, E., Smirni, E., Serazzi, G., Dowdy, L.W.: Analysis of Non-Work-Conserving
Processor Partitioning Policies. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS
1995 and JSSPP 1995. LNCS, vol. 949, pp. 165–181. Springer, Heidelberg (1995)

[16] Sevcik, K.C.: Characterization of Parallelism in Applications and Their Use in
Scheduling. Performance Evaluation Review 17, 171–180 (1989)

[17] Sodan, A.C., Machina, J., Deshmeh, A., Macnaughton, K., Esbaugh, B.: Paral-
lelism in Multithreaded and Multicore CPUs. Conditionally accepted for IEEE
Computer

[18] Sodan, A.C.: Dynamic Job Scheduling for Computational Grids. In: Grid Com-
puting Research Progress. Nova Science Publisher, Inc., Hauppauge (2008)

[19] Sodan, A.C.: Autonomic Share Allocation and Bounded Prediction of Response
Times in Parallel Job Scheduling for Grids. In: Workshop on Adaptive Grid Com-
puting (NCA-AGC), Proc. IEEE Int. Symp. on Network Computing and Appli-
cations (NCA), Cambridge, Mass., July 2008, pp. 307–314 (2008)

[20] Sodan, A.: Service Control and Service Prediction with the Preemptive Parallel
Job Scheduler Scojo-PECT. Submitted to journal

[21] Sodan, A.C., Lan, L.: LOMARC Lookahead Matchmaking for Multiresource
Coscheduling on Hyperthreaded CPUs. IEEE Trans. on Parallel and Distributed
Systems 17(11), 1360–1375 (2006)

[22] Sodan, A.C., Huang, X.: Adaptive Time/Space Sharing for Workload Adaptation
and Fragmentation Reduction. IJHPCN 4(5/6), 256–269 (2006)

[23] Srinivasan, S., Subramani, V., Kettimuthu, R., Holenarsipur, P., Sadayappan, P.:
Effective Selection of Partition Sizes for Moldable Scheduling of Parallel Jobs. In:
Sahni, S.K., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp.
174–183. Springer, Heidelberg (2002)

[24] Sutter, H.: The Free Lunch is Over-A Fundamental Turn Toward Concurrency in
Software. Dr. Dobb’s Journal 30(3) (March 2005)

[25] Weinberg, J., Snavely, A.: Symbiotic Space-Sharing on SDSC’s DataStar System.
In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2006. LNCS, vol. 4376, pp.
192–209. Springer, Heidelberg (2007)



Limits of Work-Stealing Scheduling
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Abstract. The number of applications with many parallel cooperating
processes is steadily increasing, and developing efficient runtimes for their
execution is an important task. Several frameworks have been developed,
such as MapReduce and Dryad, but developing scheduling mechanisms
that take into account processing and communication requirements is
hard. In this paper, we explore the limits of work stealing scheduler,
which has empirically been shown to perform well, and evaluate load-
balancing based on graph partitioning as an orthogonal approach. All
the algorithms are implemented in our Nornir runtime system, and our
experiments on a multi-core workstation machine show that the main
cause of performance degradation of work stealing is when very little
processing time, which we quantify exactly, is performed per message.
This is the type of workload in which graph partitioning has the potential
to achieve better performance than work-stealing.

1 Introduction

The increase in CPU performance by adding multiple execution units on the
same chip, while maintaining or even lowering sequential performance, has ac-
celerated the importance of parallel applications. However, it is widely recognized
that shared-state concurrency, the prevailing parallel programming paradigm on
workstation-class machines, is hard and non-intuitive to use [1]. Message-passing
concurrency is an alternative to shared-state concurrency, and it has for a long
time been used in distributed computing, and now also in modern parallel pro-
gram frameworks like MapReduce [2], Oivos [3], and Dryad [4]. However, message
passing frameworks also have an increasing importance on multi-core architec-
tures, and such parallel program runtimes are being implemented and ported to
single multi-core machines [5–8].

In this context, we have experimented with different methods of scheduling
applications defined by process graphs, also named process networks, which ex-
plicitly encode parallelism and communication between asynchronously running
processes. Our goal is to find an efficient scheduling framework for these multi-
core parallel program runtimes. Such a framework should support a wide range
of complex applications, possibly using different scheduling mechanisms, and
use available cores while taking into account the underlying processor topology,
process dependencies and message passing characteristics.

E. Frachtenberg and U. Schwiegelshohn (Eds.): JSSPP 2009, LNCS 5798, pp. 280–299, 2009.
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Particularly, in this paper, we have evaluated the work-stealing load-balancing
method [9], and a method based on graph partitioning [10], which balances the
load across CPUs, and reduces the amount of inter-CPU communication as well
as the cost of migrating processes. Both methods are implemented and tested
in Nornir [8], which is our parallel processing runtime for executing parallel
programs expressed as Kahn process networks [11].

It has been theoretically proven that the work-stealing algorithm is optimal
for scheduling fully-strict (also called fork-join) computations [12]. Under this
assumption, a program running on P processors, 1) achieves P -fold speedup in its
parallel part, 2) using at most P times more space than when running on 1 CPU.
These results are also supported by experiments [13, 14]. Saha et al. [14] have
presented a run-time system aimed towards executing fine-grained concurrent
applications. Their simulations show that work-stealing scales well on up to 16
cores, but they have not investigated the impact of parallelism granularity on
application performance. Investigation of this factor is one of the contributions
of this paper.

In our earlier paper [8] we have noted that careful static assignment of pro-
cesses to CPUs can match the performance of work-stealing on finely-granular
parallel applications. Since static assignment is impractical for large process net-
works, we have also evaluated an automatic scheduling method based on graph
partitioning by Devine et al. [10], which balances the load across CPUs, and
reduces the amount of inter-CPU communication as well as the cost of process
migration. The contributions of this paper on this topic are two-fold: 1) show-
ing that graph partitioning can sometimes match work-stealing when workload
is very fine-grained, and 2) an investigation of variation in running time, an
aspect neglected by the authors.

Our main observations are that work stealing works nice for a large set of work-
loads, but orthogonal mechanisms should be available to address the limitations.
For example, if the work granularity is small, a graph partitioning scheme should
be available, as it shows less performance degradation compared to the work-
stealing scheduler. The graph-partitioning scheme succeeds in decreasing the
amount of inter-CPU traffic by a factor of up to 7 in comparison with the work-
stealing scheduler, but this reduction has no influence on the application running
time. Furthermore, applications scheduled with graph-partitioning methods ex-
hibit unpredictable performance, with widely-varying execution times between
consecutive runs.

The rest of this paper is structured as follows: in section 2 we describe the
two load-balancing strategies and compare our work-stealing implementation to
that of Intel’s Threading Building Blocks (TBB),1 which includes an industrial-
strength work-stealing implementation. In section 3 we describe our workloads,
methodology and present the main results, which we summarize and relate to
the findings of Saha et al. [14] in section 4. We conclude in section 5 and discuss
broader issues in appendices.

1 http://www.threadingbuildingblocks.org/

http://www.threadingbuildingblocks.org/


282 Ž. Vrba et al.

2 Dynamic Load-Balancing

We shall describe below the work-stealing and graph-partitioning scheduling
methods. We assume an m : n threading model where m user-level processes
are multiplexed over n kernel-level threads, with each thread having its own
run queue of ready processes. The affinity of the threads is set such that they
execute on different CPUs. While this eliminates interference between Nornir’s
threads, they will nevertheless share their assigned CPU with other processes in
the system, subject to standard Linux scheduling policy.2

2.1 Work Stealing

A work-stealing scheduler maintains for each CPU (kernel-level thread) a queue
of ready processes waiting for access to the processor. Then, each thread takes
ready processes from the front of its own queue, and also puts unblocked pro-
cesses at the front of its queue. When the thread’s own run queue is empty, the
thread steals a process from the back of the run-queue of a randomly chosen
thread. The thread loops, yielding the CPU (by calling sched yield) before
starting a new iteration, until it succeeds in either taking a process from its own
queue, or in stealing a process from another thread. All queue manipulations
run in constant-time (O(1)), independently of the number of processes in the
queues.

The reasons for accessing the run queues at different ends are several [15]: 1) it
reduces contention by having stealing threads operate on the opposite end of the
queue than the thread they are stealing from; 2) it works better for parallelized
divide-and-conquer algorithms which typically generate large chunks of work
early, so the older stolen task is likely to further provide more work to the
stealing thread; 3) stealing a process also migrates its future workload, which
helps to increase locality.

The original work-stealing algorithm uses non-blocking algorithms to imple-
ment queue operations [9]. However, we have decided to simplify our scheduler
implementation by protecting each run queue with its own lock. We believed
that this would not impact scalability on our machine, because others [14] have
reported that even a single, centralized queue protected by a single, central lock
does not hurt performance on up to 8 CPUs, which is a decidedly worse situa-
tion for scalability as the number of CPUs grows. Since we use locks to protect
the run queues, and our networks are static, our implementation does not ben-
efit from the first two advantages of accessing the run queues at different ends.
Nevertheless, this helps with increasing locality: since the arrival of a message
unblocks a proces, placing it at the front of the ready queue increases probability
that the required data will remain in the CPU’s caches.

Intel’s TBB is a C++ library which implements many parallel data-structures
and programming patterns. TBB’s internal execution engine is also based on
2 It is difficult to have fully “idle” system because the kernel spawns some threads

for its own purposes. Using POSIX real-time priorities would eliminate most of this
interference, but would not represent a realistic use-case.
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work-stealing, and it uses a non-blocking queue which employs exponential back-
off in case of contention. However, the scheduler is limited to executing only
fully-strict computations, which means that a process must run to completion,
with the only allowed form of blocking being waiting that children processes
exit.3 Thus, the TBB scheduler is not applicable to running unmodified process
networks, where processes can block on message send or receive.

2.2 Graph Partitioning

A graph partitioning algorithm partitions the vertices of a weighted graph into
n disjoint partitions of approximately equal weights, while simultaneously min-
imizing the cut cost.4 This is an NP-hard problem, so heuristic algorithms have
been developed, which find approximate solutions in reasonable time.

We have implemented in Nornir the load-balancing algorithm proposed by
Devine et al. [10]. This is one of the first algorithms that takes into account not
only load-balance and communication costs, but also costs of process migration.
The algorithm observes weights on vertices and edges, which are proportional to
the CPU time used by processes and the traffic volume passing across channels.
Whenever a significant imbalance in the CPU load is detected, the process graph
is repartitioned and the processes are migrated. In our implementation, we have
used the state-of-art PaToH library [16] for graph and hypergraph partitioning.

When rebalancing is about to take place, the process graph is transformed
into an undirected rebalancing graph, with weights on vertices and edges set
such that the partitioning algorithm minimizes the cost function given by the
formula αtcomm + tmig. Here, α is the number of computation steps performed
between two rebalancing operations, tcomm is the time the application spends on
communication, and tmig is time spent on data migration. Here, α represents a
trade-off between good load-balance, small communication and migration costs
and rebalancing overheads; see appendix B for a broader discussion in the context
of our results.

Constructing the rebalancing graph consists of 4 steps (see also figure 1):

1. Vertex and edge weights of the original graph are initialized according to the
collected accounting data.

2. Multiple edges between the same pair of vertices are collapsed into a single
edge with weight α times the sum of weights of the original edges.

3. n new, zero-weight nodes, u1 . . . un, representing the n CPUs, are introduced.
These nodes are fixed to their respective partitions, so the partitioning al-
gorithm will not move them to other partitions.

4. Each node uk is connected by a migration edge to every node vi iff vi is a
task currently running on CPU k. The weight of the migration edge is set
to the cost of migrating data associated with process vi.

3 For example, the reference documentation (document no. 315415-001US, rev. 1.13)
explicitly warns against using the producer-consumer pattern.

4 Sum of weights of edges that cross partitions.
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Fig. 1. An example of transforming a process graph into a rebalancing graph with
α = 1. Current partitions are delimited by ovals and distinguished by nodes of different
colors.

For the initial partitioning phase, performed before the network starts run-
ning, the process graph is transformed into an undirected graph as described
above, but with small differences: 1) unit weights are assigned to channels
and processes, as the actual CPU usage and communication intensities are not
known, and 2) the additional CPU nodes (uk) and migration edges are omitted.
Partitioning this graph gives an initial assignment of processes to CPUs and is
a starting point for future repartitions.

Since our test applications have quickly shifting loads, we have implemented a
heuristic that attempts to detect load imbalance. The heuristic monitors the idle
time τ collectively accumulated by all threads, and invokes the load-balancing
algorithm when the idle time has crossed a preset threshold. When the algorithm
has finished, process and channel accounting data are set to 0, in preparation for
the next load-balancing. When a thread’s own run-queue is empty, it updates the
collective idle time and continues to check the run-queue, yielding (sched yield)
between attempts. Whenever any thread succeeds in dequeuing a process, it sets
the accumulated idle time to 0.

After repartitioning, we avoid bulk migration of processes. It would require
locking of all run-queues, migrating processes to their new threads, and unlock-
ing run-queues. The complexity of this task is linear in the number of processes in
the system, so threads could be delayed for a relatively long time in dispatching
new ready processes, thus decreasing the total throughput. Instead, processes
are only reassigned to their new threads by setting a field in their control block,
but without physically migrating them. Each thread takes ready processes only
from its own queue, and if the process’s run-queue ID (set by the rebalanc-
ing algorithm) matches that of the thread’s, the process is run. Otherwise, the
process is reinserted into the run-queue to which it has been assigned by the
load-balancing algorithm.

3 Comparative Evaluation of Scheduling Methods

We have evaluated the load-balancing methods on several synthetic benchmarks
which we implemented and run on Nornir. The programs have been compiled as
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Fig. 2. Topology of the machine used for experiments. Round nodes are cores, square
nodes are NUMA memory banks. Each CPU has one memory bank and two cores
associated with it.

64-bit with GCC 4.3.2 and maximum optimizations (-m64 -O3 -march=opteron).
Since PaToH is distributed in binary-only form, these flags have no effect on the
efficiency of the graph-partitioning code. The benchmarks have been run on an
otherwise idle 2.6 GHz AMD Opteron machine with 4 dual-core CPUs (see fig-
ure 2), 64 GB of RAM, running linux kernel 2.6.27.3. Each experiment has been
repeated 10 consecutive times, with collection of accounting data turned on.

3.1 Description of Workloads

Figure 3(a) shows a process network implementing an H.264 video-encoder, and
it is only a slight adaptation of the encoder block diagram found in [17]. The
blocks use an artificial workload consisting of loops which consume the amount
of CPU time which would be used by a real codec on average. To gather this
data, we have profiled x264, an open-source H.264 encoder, with the cachegrind
tool and mapped the results to the process graph. Each of P, MC and ME stages
has been parallelized as shown in figure 3(b) because they are together using over
50% of the processing time. The number of workers in each of the parallelized
stages varies across the set {128, 256, 512}.

k-means is an iterative algorithm used for partitioning a given set of points
in multidimensional space into k groups; it is used in data mining and pattern
recognition. To provide a non-trivial load, we have implemented the MapReduce
topology as a process network (see Figure 3(c)), and subsequently implemented
the Map and Reduce functions to perform the k-means algorithm. The number
of processes in each stage has been set to 128, and the workload consists of
300000 randomly-generated integer points contained in the cube [0, 1000)3 to be
grouped into 120 clusters.

The two random networks (see figure 3(e) for an example) are randomly
generated directed graphs, possibly containing cycles. To assign work to each
process, the workload is determined by the formula nT/d, where n is the num-
ber of messages sent by the source, T is a constant that equals ∼ 1 second of
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Fig. 3. Process networks used for benchmarking

CPU-time, and d is the work division factor. In effect, each message sent by
the source (a single integer) carries w = T/d seconds of CPU time. The work-
load w is distributed in the network (starting from the source process) with
each process reading ni messages from all of its in-edges. Once all messages
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are read, they are added together to become the t units of CPU-time the pro-
cess is to consume before distributing t to its no forward out-edges. Then, if a
process has a back-edge, a message is sent/received, depending on the edge di-
rection, along that channel. As such, the workload w distributed from the source
process will equal the workload w collected by the sink process. Messages sent
along back-edges do not contribute to the network’s workload; their purpose
is solely to generate more complex synchronization patterns. We have used two
networks: RND-A has 239 nodes, 364 edges and no cycles; RND-B has 213 nodes,
333 edges and 13 cycles. The work division factor has been varied over the set
{1, 10, . . . , 10000, 20000, . . . , 90000}.

In the ring benchmark, n processes, 0 . . .n−1, are created and connected into
a ring topology (see figure 3(f)); in our benchmark we have used n = m = 1000.
Process 0 sends an initial and measures the time it takes to make m round-
trips, while other processes just forward messages and do no other processing
otherwise.

The scatter/gather network has a single central process (p0) connected to
n worker processes (see Figure 3(d)). The central process scatters m messages
to the workers, each performing a set amount of work w for each message. When
complete, a message is sent from the worker process to the central process, and
the procedure is repeated for a given number of iterations. This topology cor-
responds to the communication patterns that emerge when several MapReduce
instances are executed such that the result of the previous MapReduce operation
is fed as the input to the next. We have fixed n = 50 and varied the work amount
w ∈ {1000, 10000, 20000, . . . , 105}.

3.2 Methodology

We use real (wall-clock) time to present benchmark results because we deem
that it is the most representative metric since it accurately reflects the real time
needed for task completion, which is what the end-users are most interested in.
We have also measured system and user times (getrusage), but do not use them
to present our results because 1) they do not reflect the reduced running time
with multiple CPUs, and 2) resource usage does not take into account sleep time,
which nevertheless may have significant impact on the task completion time.

In the Kahn process network formalism, processes can use only blocking reads
and can wait on message arrival only on a single channel at a time. However,
to obtain more general results, we have carefully designed the benchmark pro-
grams so that they execute correctly even when run-time deadlock detection and
resolution is disabled. This is an otherwise key ingredient of a KPN run-time
implementation [8], but it would make our observations less general as it would
incur overheads not present in most applications.

The benchmarks have been run using 1, 2, 4, 6, and 8 CPUs under the work-
stealing (WS) and graph-partitioning policies (GP). For the GP policy, we have
varied the idle-time parameter τ (see section 2.2) from 32 to 256 in steps of 8.
This has generated a large amount of raw benchmark data which cannot be fully
presented in the limited space. We shall thus focus on two aspects: running time
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and amount of local and remote communication, i.e., the number of messages
that have been sent between the processes on the same (resp. different) CPU.
For a given combination of the number of CPUs, and work division, we compare
the WS policy against the best GP policy.

We have evaluated the GP policy by varying the idle time parameter τ over a
range of values for each given work division d. A point in the plot for the given
d corresponds to the experiment with the median running time belonging to the
best value of τ . The details of finding the best τ value are somewhat involved,
and are therefore given in appendix.

Computing the median over a set of 10 measurements would generate arti-
ficial data points.5 In order to avoid this, we have discarded the last of the 10
measurements before computing the median.

Since a context-switch also switches stacks, it is to be expected that cached
stack data will be quickly lost from CPU caches when there are many processes
in the network. We have measured that the cost of re-filling the CPU cache
through random accesses increases by ∼ 10% for each additional hop on our
machine (see figure 2). Due to an implementation detail of Nornir and Linux’s
default memory allocation policy, which first tries to allocate physical memory
from the same node from which the request came, all stack memory would end
up being allocated on a single node. Consequently, context-switch cost would
depend on the node a process is scheduled on. To average out these effects, we
have used the numactl utility to run benchmarks under the interleave NUMA
(non-uniform memory access) policy, which allocates physical memory pages
from CPU nodes in round-robin manner. Since most processes use only a small
portion of the stack, we have ensured that their stack size, in the number of pages,
is relatively prime to the number of nodes in our machine (4). This ensures that
the “top” stack pages of all processes are evenly distributed across CPUs.

3.3 Results

The ring benchmark measures scheduling and message-passing overheads of
Nornir. Table 1 shows the results for 1000 processes and 1000 round-trips, to-
talling 106 [send → context switch → receive] transactions. We see that GP per-
formance is fairly constant for any number of CPUs, and that contention over
run-queues causes WS performance to drop as the number of CPUs increases
from 1 to 2. The peak throughput in the best case (1 CPU, no contention)
is ∼ 750000 transactions per second. This number is approximately doubled,
i.e., transaction cost halved, when accounting mechanisms are turned off. Since
detailed accounting data is essential for GP to work, we have run also WS ex-
periments with accounting turned on, so that the two policies can be compared
against a common reference point.

The k-means program, which executes on a MapReduce topology, is an exam-
ple of an application that is hard to schedule with automatic graph partitioning.

5 Median of an even number of points is defined as the average of the two middle
values.
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Table 1. Summary of ring benchmark results (1000 processes and 1000 round-trips).
tn is running time on n CPUs.

t1 t2 t4 t6 t8
GP 1.43 1.65 1.78 1.58 1.71
WS 1.33 2.97 2.59 2.66 2.86

If the idle time parameter τ is too low, repartitioning runs overwhelmingly of-
ten, so the program runs several minutes, as opposed to 9.4 seconds under the
WS method. When the τ is high enough, repartitioning runs only once, and
the program finishes in 10.2 seconds. However, the transition between the two
behaviours is discontinuous, i.e., as τ is slowly lowered, the behaviour suddenly
changes from good to bad. Because of this, we will not consider this benchmark
in further discussions.

From figure 4 it can be seen that the WS policy has the least median run-
ning time for most workloads ; it is worse than the GP policy only on the ring
benchmark (not shown in the figure; see table 1) and the RND-B network when
work division is d ≥ 30000. At this point, performance of message-passing and
scheduling becomes the limiting factor, so the running time increases proportion-
ally with d. On the H.264 benchmark, the GP policy shows severe degradation
in performance as the number of workers and the number of CPUs increases.
The root cause of this is the limited parallelism available in the H.264 network;
the largest speedup under WS policy is ∼ 2.8. Thus, the threads accumulate idle
time faster than load-balancing is able to catch-up, so repartitioning and process
migration frequently takes place (90 – 410 times per second, depending on the
number of CPUs and workers). The former is not only protected by a global lock,
but its running time is also proportional with the number of partitions (CPUs)
and the number of nodes in the graph, as can be clearly seen in the figure.

As the RND-B benchmark is the only case where GP outperforms WS (when
d > 30000), we have presented further data of interest in figure 5. We can see that
WS achieves consistently better peak speedup and at lower d than GP, achieving
almost perfect linear scalability with the number of CPUs. Furthermore, we can
see that the peak GP speedup has no correlation with peaks and valleys of the
proportion of locally sent messages, which constitute over 70% of all message
traffic on any number of CPUs. We can also see that the proportion of local
traffic under WS decreases proportionally with the increase in the number of
CPUs.

Furthermore, we see that WS achieves peak speedup at d = 100, which is
the largest d value before message throughput starts increasing. Similarly, the
peak speedup for GP is at d = 1000, which is again at the lower knee of the
message throughput curve, except on 8 CPUs where the peak is achieved for
d = 10000. At d ≥ 30000, the throughput of messages under the GP policy be-
comes greater than throughput under the WS policy, which coincides with upper
knee of the throughput curve and the point where speedup under GP speedup
becomes greater than WS speedup.
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Fig. 4. Median running times for WS and GP policies on 1,2,4,6 and 8 CPUs
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RND−B speedup over 1 CPU
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Fig. 5. Further data on RND-B benchmark. The local traffic ratio is calculated as
l/(l + r) where l and r are volume of local and remote traffic. Message throughput is
calculated as (l + r)/t, t being the total running time.
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Scatter−gather running time
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Fig. 6. Performance of the scatter/gather benchmark under WS scheduler. Note that
the scale on the x-axis is non-linear and non-uniform.

Figure 6 shows the running time of the scatter/gather benchmark for the
WS policy on 1 – 8 CPUs. The maximum speedup (7.1 on 8 CPUs) is achieved
for d = 100 and drops sharply for d > 1000; at d = 20000 the speedup on 8 CPUs
is nearly halved. Thus, we can say that WS performs well as long as each process
uses at least 100μs of CPU time per message, i.e., as long as the computation-to-
communication ratio is ≥∼ 75. When this ratio is smaller, communication and
scheduling overheads overtake, and WS suffers drastic performance degradation.

Figure 7 uses the box-and-whiskers plot6 to show the distribution of running
times and number of repartitionings achieved for all benchmarked τ values of
GP policy. The plots show the running time and the number of repartitions for
the RND-B benchmark on 8 CPUs and d = 1000. From the graphs, we can
observe several facts:

– WS has undetectable variation in running time (the single line at τ = 0),
whereas GP has large variation.

– The number of repartitionings is inversely-proportional with τ , but it has no
clear correlation with either variance or median running times.

– When τ ≥ 72, the minimal achieved running times under the GP policy
show rather small variation.

We have thus investigated the relative performance of GP and WS policies, but
now considering the minimal real running amongst all GP experiments for all
values of τ . The graphs (not shown) are very similar to those of figure 5, except
that GP speedup is slightly (< 2% on 8 CPUs) larger.
6 This is a standard way to show the distribution of a data set. The box’s span is from

the lower to the upper quartile, with the middle bar denoting the median. Whiskers
extend from the box to the lowest and highest measurements that are not outliers.
Points denote outliers, i.e., measurements that are more than 1.5 times the box’s
height below the lower or above the upper quartile.
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RND−B distribution of running times
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Fig. 7. Illustration of GP variance in running time for RND-B on 8 CPUs and d = 1000,
which is one step past the WS peak speedup. x-axis is the value of the idle time
parameter τ for the GP policy. τ = 0 shows the results for WS.

4 Discussion

In the previous section we have analyzed performance of applications running
under graph-partitioning and work-stealing schedulers. WS has been formally
proven to be optimal only for the restricted class of fully-strict computations,
but it nevertheless gives best performance also on our benchmark programs,
none of which is fully-strict. We can summarize our findings as follows:

– WS gives best performance, with speedup almost linearly proportional with
the number of CPUs, provided that 1) there is enough parallelism in the
network, and 2) the computation to communication ratio, which directly
influences scheduling overheads, is at least ∼ 75.

– GP and WS show similar patterns in running time, but GP never achieves
the same peak speedup as WS.

– There exists an optimal work division d at which the largest speedup is
achieved; this granularity is different for WS and GP.

– Increasing d beyond peak speedup leads to a sharp increase in message
throughput. This increase quickly degrades performance because message-
passing and context-switch overheads dominate the running time.

– GP has large variance in running time; neither the median running time nor
its variance is correlated with the idle time parameter τ .

– GP achieves a greater proportion of local traffic than WS, and this ratio falls
very slightly with the number of CPUs. The proportion of local traffic under
WS falls proportionally with the number of CPUs.

– We have not found any apparent correlation between locality and running
time or speedup.
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Regarding GP, there are two main obstacles that must be overcome before it can
be considered as a viable approach for scheduling general-purpose workloads on
multi-processor machines:

– Unpredictable performance, as demonstrated by figure 7.
– The difficulty of automatically choosing the right moment for rebalancing.

As our experiments have shown, monitoring the accumulated idle time over all
CPUs and triggering rebalancing after the idle time has grown over a threshold
is not a good strategy. Thus, work-stealing should be the algorithm of choice for
scheduling general-purpose workloads. Graph partitioning should be reserved
for specialized applications using fine-grained parallelism, that in addition have
enough knowledge about their workload patterns so that they can “manually”
trigger rebalancing.

Saha et al. [14] emphasize that fine-grained parallelism is important in large-
scale CMP design, but they have not attempted to quantify parallelism granu-
larity. By using a cycle-accurate simulator, they investigated the scalability of
work-stealing on a CPU having up to 32 cores, where each core executes 4 hard-
ware threads round-robin. The main finding is that contention over run-queues
generated by WS can limit, or even worsen, application performance as new
cores are added. In such cases, applications perform better with static partition-
ing of load with stealing turned off. The authors did not describe how did they
partition the load across cores for experiments with work-stealing disabled.

We deem that their results do not give a full picture about WS performance,
because contention depends on three additional factors, neither of which is dis-
cussed in their paper, and all of which can be used to reduce contention. Con-
tention can be reduced by 1) overdecomposing an application, i.e., increasing
the total number of processes in the system proportionally with the number of
CPUs; by 2) decreasing the number of CPUs to match the average parallelism
available in the application, which is its intrinsic property; or 3) by increasing
the amount of work a process performs before it blocks again. The first two fac-
tors decrease the probability that a core will find its run-queue empty, and the
third factor increases the proportion of useful work performed by a core, during
which it does not attempt to engage in stealing.

Indeed, our H.264 benchmark shows that even when the average parallelism
is low (only 2.8), the WS running time on 6 and 8 cores does not increase
relative to that on 4 CPUs, thanks to overdecomposition. If there were any
scalability problems due to contention, the H.264 benchmark would exhibit slow-
down similar to that of the ring benchmark.

5 Conclusion and Future Work

In this paper, we have experimentally evaluated performance of two load-
balancing algorithms: work-stealing and an algorithm by Devine et al., which
is based on graph-partitioning. We have used as the workload a set of synthetic
message-passing applications described as directed graphs. Our experimental re-
sults confirm the previous results [13, 14] which have reported that WS leads
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to almost linear increase in performance given enough parallelism, and expand
those results by identifying limitations of WS. We have and experimentally found
the lower threshold of computation to communication ratio (∼ 75), below which
the WS performance drops sharply. GP suffers the same performance degra-
dation, but the overall application performance may (depending on the exact
workload) be slightly better in this case than under WS. The presented numbers
are specific to our implementation; we would expect the threshold of computa-
tion to communication ratio to increase under less-efficient implementations of
work-stealing, and vice-versa.

GP never achieved the same peak speedup as WS, but this is not its biggest
flaw. The main problem with GP is its instability – running times exhibit a
great variance, and the ratio of worst and best running time can be more than
4, as can be seen in figure 7. In our research group, we are currently investigating
alternative approaches to load-balancing, which would yield results that are more
stable than those obtained with today’s methods based on graph-partitioning.

As opposed to the large variance of running time under GP, the proportion
of local traffic in the total traffic volume is stable and shows only a very mild
decrease as the number of CPUs increases. On 8 cores, the proportion of local
traffic was at least 70%. On the other hand, proportion of local traffic under WS
decreases proportionally with the increase in the number of CPUs. On 8 cores,
the proportion was at most 18%. For most work division factors, GP had ∼ 8
times larger proportion of local traffic than GP. Contrary to our expectations, the
strong locality of applications running under GP does not have a big impact on
the running time on conventional shared-memory architectures. One of possible
reasons for this is that our workloads are CPU-bound, but not memory-bound, so
GP effectively helps in reducing only the amount of inter-CPU synchronization.
However, the overhead of inter-CPU synchronization on our test machine is very
low, so the benefits of this reduction become annihilated by the generally worse
load-balancing properties of GP.

Nevertheless, we believe that this increase in locality would would lead to
significant savings in running time on distributed systems and CPUs with more
complex topologies, such as Cell, where inter-CPU communication and process
migration are much more expensive than on our test machine. However, prac-
tical application of GP load-balancing in these scenarios requires that certain
technical problems regarding existing graph partitioning algorithms, described
in appendix, be solved.

Ongoing and future activities include evaluations on larger machines with
more processors, possibly also on Cell, and looking at scheduling across ma-
chines in a distributed setting. Both scenarios have different topologies and inter-
connection latencies. In a distributed scenario, we envision a two-level scheduling
approach where GP will be used to distribute processes across nodes, while WS
will be used for load-balancing within a single node.

We have also found weaknesses in an existing, simulation-based results about
WS scalability [14]. Based on the the combined insight from theirs and our
results, we have identified a new, orthogonal dimension in which we would further
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like to study WS performance characteristics: the relation between the number
of processes in the system and the number of CPUs. Ultimately, we would like
to develop an analytical model of WS performance characteristics, which would
take into consideration the number of processes in the system, work granularity
(which is inversely proportional with the amount of time a CPU core spends on
useful work), as well as the system’s interconnection topology.
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A Selecting the Best GP Result Set

To evaluate the GP policy, we have varied the idle time parameter τ over a
range of values for each given work division d. A single result set consists of 10
measurements for a given combination of d and τ . We cannot choose the best
τ for a given d by simply selecting the τ having the lowest average (or median)
running time. The reason is that consecutive runs of an experiment with the
same combination of d and τ can have high variance.

To choose the best τ for a given d, we compare all result sets against each
other and select the set s(τ) which compares smaller against the largest number
of other sets. Formally, for a fixed d, we choose τ as follows:

τ = min(arg max
τ∈T

|{τ ′ ∈ T : (τ ′ �= τ) ∧ (s(τ) < s(τ ′))}|)

where |X | denotes cardinality of set X , T = {8, 16, . . . , 256} is the set of τ values
over which we evaluated the GP policy, and s(τ) is the result set obtained for the
given τ . To compare two result sets, we have used the one-sided Mann-Whitney
U-test [18]7 with 95% confidence level; whenever the test for s(τ) against s(τ ′)
reported a p-value less than 0.05, we considered that the result set s(τ) comes
from a distribution with stochastically smaller [18] running time.
7 Usually, the Student’s t-test is used. However, it makes two assumptions, for which

we do not know whether they are satisfied: 1) that the two samples come from a
normal distribution 2) having the same variance.

http://www.vcodex.com/files/h264_overview_orig.pdf
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B Migration Cost

α is just a scale factor expressing the relative costs of communication and migra-
tion, so it can be fixed to 1, and tmig scaled appropriately; in our experiments
we have used α = 1 and tmig = 16. This is an arbitrary low value reflecting the
fact that our workloads have low migration cost because they have very light
memory footprint. Since load-imbalance is the primary reason for bad perfor-
mance of GP, another value for tmig would not significantly influence the results
because graph partitioning first establishes load-balance and then tries to reduce
the cut cost. Nevertheless, even such a low value succeeds in preventing that a
process with low communication volume and CPU usage is needlessly migrated
to another CPU.

Workloads with a heavy memory footprint could benefit if the weight of their
migration edges is a decreasing function c(tb) of the amount of time tb a process
has been blocked. As tb increases, the probability that CPU caches will still
contain relevant data for the given process decreases, and the cost of migrating
this process becomes lower.

C NUMA Effects and Distributed Process Networks

We have realized that the graph-partitioning model described in section 2 does
not always adequately model application behavior on NUMA architectures be-
cause it assumes that processes migrate to a new node together with their data.
However, NUMA allows that processes and their data reside on separate nodes,
which is also the case in our implementation. Nevertheless, the model describes
well applications that use NUMA APIs to physically migrate their data to a new
node. Furthermore, the graph-partitioning algorithm assumes that the commu-
nication cost between two processes is constant, regardless of the CPUs to which
they are assigned. This is not true in general: for example, the cost of commu-
nication will be ∼ 10% bigger when the processes are placed on CPUs 0 and 7
than when placed on CPUs 0 and 2.

These observations affect very little our findings because of three reasons:
1) the workloads use little memory bandwidth, so their performance is limited
by message-passing, context-switch and inter-CPU synchronization overheads,
2) NUMA effects are averaged out by round-robin allocation of physical pages
across all 4 nodes, 3) synchronization cost between processes assigned to the
same CPU is minimal since contention is impossible in this case.

In a distributed setting, load-balancing based on graph models is relevant
because of several significant factors: processes must be migrated together with
their data, high cost of data migration, and high cost of communication between
processes on different machines. Indeed, we have chosen to implement Devine’s
et.al. algorithm [10] because they have measured improvement in application
performance in a distributed setting. The same algorithm is applicable to running
other distributed frameworks, such as MapReduce or Dryad.
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D Graph Partitioning: Experiences and Issues

Nornir measures CPU consumption in nanoseconds. This quickly generates large
numbers which PaToH partitioner [16] used in our experiments cannot handle,
so it exits with an error message about detected integer overflow. Dividing all
vertex weights by the smallest weight did not work, because it would still happen
that the resulting weights are too large. To handle this situation, we had two
choices: run the partitioning algorithm more often, or aggressively scale down all
vertex weights. The first choice made it impossible to experiment with infrequent
repartitionings, so we have used the other option in our experiments: all vertex
weights have been transformed by the formula w′ = w/1024 + 1 before being
handed over to the graph partitioner. This loss of precision, however, causes an
a priori imbalance on input to the partitioner, so the generated partitions have
worse balance than would be achievable if PaToH internally worked with 64-bit
integers. This rounding error may have contributed to the limited performance
of GP load-balancing, but we cannot easily determine to what degree.

As exemplified above, the true weight of an edge between two vertices in the
process graph may depend on which CPUs the two processes are mapped to. This
issue is addressed by graph mapping algorithms implemented in, e.g., the Scotch
library [19]. However, SCOTCH does does not support pinning of vertices to
given partitions, which is the essential ingredient of Devine’s algorithm. On the
other hand, PaToH supports pinning of vertices, but does not solve the mapping
problem, i.e., it assumes that the target graph is a complete graph with equal
weights on all edges. Developing algorithms that support both pinned vertices
and solve the mapping problem is one possible direction for future research in
the area of graph partitioning and mapping algorithms.
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Bunde, David P. 116

Cao, Yangjie 207
Colling, David 37
Coppinger, Richard 190
Corbalan, Julita 59

Espeland, H̊avard 280
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