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Abstract We review some examples of dynamics displaying sequential switching
for systems of coupled phase oscillators. As an illustration we discuss a simple fam-
ily of coupled phase oscillators for which one can find robust heteroclinic networks
between unstable cluster states. For N = 2k + 1 oscillators we show that there
can be open regions in parameter space where the heteroclinic networks have the
structure of an odd graph of order k; a class of graphs known from permutation
theory. These networks lead to slow sequential switching between cluster states that
is driven by noise and/or imperfections in the system. The dynamics observed is
of relevance to modelling the emergent complex dynamical behaviour of coupled
oscillator systems, e.g. for coupled chemical oscillators and neural networks.

1 Introduction

Coupled phase oscillator networks provide a set of models that are very useful in
a variety of applications ranging from theoretical and computational neuroscience
[10, 11, 17, 18] to coupled chemical reactors [21]. They provide models that are
amenable to variety of approaches aimed at understanding the emergent phenom-
ena of such nonlinear dynamical systems. These approaches include “continuum
approximations” as well as detailed studies of the dynamics and bifurcations of
small numbers of oscillators; see [31] for a review. This paper reviews some recent
results on switching dynamics for small numbers of oscillators. It is also explained
how one of the dynamical structures (heteroclinic networks with odd graph struc-
tures) can be observed on scaling up to large numbers of oscillators.

The phase oscillator approach can be used in applications where the dynamics
of individual elements can be modelled as a limit cycle oscillator and that can be
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characterised by a scalar phase variable. This is particularly the case if there is weak
coupling between the oscillators, or more specifically if the timescale associated
with the coupling is much longer than the timescale associated with relaxation onto
the limit cycle [6, 10, 17]. Moreover, phase models are typically useful even far
from the weak coupling limit, especially concerning their predictions for generic
bifurcations and attractors.

Clearly, the structure of coupling between oscillators is critical to determine what
sort of dynamics is possible on a network of coupled oscillators, and there is a
vast literature looking at the topology of coupling and the influence this has on the
network dynamics; see for instance [1] and references therein. For the particular
problem of synchronization this has been investigated by many authors, allowing
for a variety of effects such as time-dependent coupling [7, 25] or delay in coupling
[19, 32]. For the main part of this paper we do not address such issues, but rather
explore the question of generic but complicated dynamics that can appear even for
very simple all-to-all (fully symmetric) coupling. Indeed, this emphasises that not
only the network structure, but also the actual coupling function is vital in determin-
ing the emergent dynamics of the system.

In this paper we review some recent work on the detailed dynamics of globally
coupled phase oscillators, concentrating on the appearance of robust heteroclinic
network attractors. These attractors manifest themselves in the dynamics as a “per-
sistent transient” of slow switching between a number of unstable states that is
driven by noise and/or imperfections. Such dynamics were first discovered in [17]
and further studies have been made in [22, 23], mostly working with large popula-
tions. In Sect. 2 we review the fundamental dynamical principles of coupled phase
oscillator systems with permutation symmetry. In Sect. 3 we discuss a detailed study
of bifurcations leading to sequential slow switching attractors and show that they are
only possible for N ≥ 4; see [4]. In Sect. 4 we present a new result arising from [8]
showing that a particular combinatorial structure can appear in the dynamics for
coupling as in [17], for open sets of system parameters and arbitrarily large N.

Consider N identical phase oscillators that are coupled identically to each other

θ̇i = ω + K

N

N
∑

j=1

g(θi − θj) , (1)

where the dot denotes differentiation with respect to time t and θi ∈ T = [0, 2π ),
i = 1 . . .N, i.e. the state space is the N-torus TN . We will use the vector notation
θ = col[ θ1, . . . , θN ]. The function g : [0, 2π ) → R is a 2π -periodic coupling func-
tion that we will assume to be smooth. We include a coupling strength parameter K
for convenience but will set this to K = 1 by rescaling time.

For a given coupling function g and number of oscillators N, the dynamics
of (1) can include a wide range of behaviours including in-phase (synchronous)
oscillations, antiphase oscillations, and indeed arbitrarily complex partially syn-
chronized cluster states that are stable [29]. However, system (1) can give much
more complicated dynamics than just stable clustering. If the cluster states are of
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saddle type, robust heteroclinic connections may be found. This is because clus-
ter states may have unstable manifolds contained within the stable manifold of
another state; see, for example, [2, 17, 22]. This is not possible for the coupling
function g(ϕ) = − sin (ϕ) of the Kuramoto model [24] or the coupling function
g(ϕ) = − sin (ϕ + α) of the Kuramoto-Sakaguchi model [3], but it is possible for
slightly more complicated coupling functions.

Choosing the coupling function

g(ϕ) = − sin (ϕ + α) + r sin (2ϕ) , (2)

robust heteroclinic connections can be found that exist for open sets of parameter
values on the (α, r) parameter plane [17]. Note that this coupling can be obtained
from phase reduction of coupled Hodgkin-Huxley neurons with synaptic coupling
[18]. More general couplings are considered for example in [12, 29]. We remark that
system (1) can have highly nontrivial behaviour even for the Kuramoto coupling
function if the frequencies are made non-identical; see [33]. In Sects. 3 and 4 we
study the dynamics of certain parameter regimes for coupling (2), to illuminate the
dynamics of system (1) and to better understand the graph structure of a possible
heteroclinic network as N increases.

2 Dynamics and Bifurcations with SN Symmetry

Here we review techniques from dynamical systems and bifurcation theory with
symmetry [16, 15, 26, 27], noting that (1) is symmetric under all permutations of
coordinates. In other words the dynamics is equivariant under the set SN of permu-
tations acting by

σ (θ1, · · · , θN) = (θσ (1), · · · , θσ (N)) . (3)

In addition to this, the system (1) has a symmetry given by translation of all
components by the same phase shift: for all ρ ∈ [0, 2π ) we have invariance under

ρ(θ1, · · · , θN) = (θ1 + ρ, · · · , θN + ρ) , (4)

meaning that the system has symmetry SN × S1. This has many dynamical con-
sequences, the most obvious of which is that there will be an in-phase or fully
synchronized solution

θi(t) = Ωt + r, (5)

for i = 1, · · · , N where Ω = ω + g(0) and r is constant. This solution may or may
not be an attractor depending on its linear stability.

Another consequence of symmetry is that there will be a number of invariant
subspaces forced by the symmetry; the most general of these being the “rotating
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block” structures discussed in [6, 9]. We will focus on a particular case here; the M
cluster states, for 1 ≤ M ≤ N.

We define an M-cluster partition A = {A1, . . . , AM} of {1, . . . , N} to be a partition
such that

{1, . . . , N} =
M
⋃

p=1

Ap , (6)

where the Ap are pairwise disjoint sets (Ap ∩ Aq = ∅ if p �= q). Summing up the
cluster sizes ap = |Ap| gives

M
∑

p=1

ap = N . (7)

Denoting the phase of the p-th cluster by ψp, i.e. defining ψp: = θi = θj =
θk = . . . such that {i, j, k, . . .} ⊂ Ap we obtain

ψ̇p = ω + 1

N

M
∑

q=1

aq g(ψp − ψq) , (8)

for p = 1, . . . , M. The dynamics in such a subspace can be very complex, but ini-
tially we investigate simple clustering behaviour

ψp = Ω t + φp , (9)

for p = 1, . . . , M, where Ω ∈ R+ and φp ∈ T. Since θ describes the phases of
oscillators, (9) describes a periodic orbit in the state space of those oscillators.

Note that typical points in such a cluster state have symmetries obtained by all
permutations within a cluster, i.e. an M-cluster state with partition A will have in
terms of spatial symmetries

Sa1 × · · · × SaM . (10)

If there are any spatiotemporal symmetries these must be of the form of some
cyclic permutation of clusters of equal size: they must be a semidirect product of
permutations with the cycling

(

Sa1 × · · · × Sa�

)k ⊗ Zk , (11)

where the M = k� clusters permuted in groups of � and k (a1 + · · · + a�) = N [6].
Note that the S1 action is such that one can reduce the full dynamics of (1) to the
dynamics of the phase differences and a translation on the S1 orbit (group orbit).
This means that, for example, the periodic orbits of (1) can be found by examining
equilibria of the phase differences.
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Linearisations of systems near equilibria with symmetries have structure forced
upon them by the presence of symmetry; they must be block-diagonal with respect
to the isotypic decomposition of the tangent space with respect to the group that
fixes the equilibrium (the isotropy subgroup of the equilibrium). As a consequence,
generic bifurcations with any symmetry group will have a centre manifold on which
the action of the isotropy subgroup is an irreducible representation (irrep) [15, 16].
The permutation action of SN on TN neatly splits into two irreps, one which is a
1-dimensional trivial action and one which is an irreducible (N − 1)-dimensional
action. (There are other nontrivial irreps for SN but they do not appear in (1).) More-
over, the nontrivial irrep corresponds precisely to the phase difference coordinates.

The generic SN symmetry breaking bifurcations for the nontrivial irrep have been
studied and classified; see, for example, [15]. However, the topology of the torus
TN can and does easily associate local symmetry breaking bifurcations with global
bifurcations, as we will see in Sect. 3; see also [3, 6]. Typically, SN symmetry break-
ing bifurcation from a stable fully symmetric state will result in a system with no
nearby stable branches after bifurcation; this is associated in our system with global
bifurcations that may lead to a stable cluster state or (only for N ≥ 4) a robust
heteroclinic attractor.

Note that periodic solutions of (1) with symmetry (11) can be interpreted in terms
of cluster states in state space; for instance,

• SN corresponds to in-phase solutions θk = Ωt + γ , k = 1, . . . , N
• ZN corresponds to anti-phase or “splay phase” solutions θk = Ωt + γ + 2kπ/N,

k = 1, . . . , N
• (SN/2)2 ⊗ Z2 corresponds to antiphase solutions such as θk = Ωt + γ , θk+N/2 =
Ωt + γ + π , k = 1, . . . , N/2

where Ω ∈ IR+ and γ ∈ Tj see (5) and (9).
Finally, we note that symmetry means that cluster states will appear in conjugate

families; if a particular clustering is realised as a periodic orbit then so will all
permutations of that clustering. This means that subspaces with conjugate isotropy
subgroups will support identical dynamics.

3 Bifurcations for Three and Four Globally
Coupled Oscillators

Returning to the specific system (1, 2), one can calculate the bifurcation behaviour
in detail for small numbers of oscillators; this was done for N = 3 and N = 4 in
[3] and here we briefly summarise some of the results, in particular with the aim of
identifying where heteroclinic networks appear in parameter and state space.

Figure 1 shows the bifurcation diagram for N = 3 in the (r,α) plane and Table 1
describes briefly each of the lines of codimension-one bifurcations (both reproduced
from [3]). The bifurcation diagram is shown surrounded by phase portraits in the
(θ1 − θ2, θ1 − θ3) ∈ [0, 2π )2 plane.
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Fig. 1 Bifurcation curves in the (r,α) parameter plane for system (1) with coupling (2) in case of
N = 3 (reproduced from [3]). The phase portraits are shown for (θ1 − θ2, θ1 − θ3) ∈ [0, 2π )2.
The codimension-one bifurcations are listed in Table 1. Note that there are heteroclinic/homoclinic
cycles only on the lines BE, ED and HCD for N = 3. There are codimension-two bifurcations:
A – cusp point; E – interaction of transcritical homoclinic and saddle-node homoclinic; D –
interaction of saddle-node heteroclinic and saddle connection heteroclinic; H – degenerate Hopf
bifurcation of antiphase

Moving on to the case for N = 4 oscillators, there are 12 invariant regions corre-
sponding to points on T4 that lift to the set

{(θ1, θ2, θ3, θ4) : θσ (1) ≤ θσ (2) ≤ θσ (3) ≤ θσ (4) ≤ θσ (1) + 2π}. (12)

for permutations σ ∈ S4. Figure 2 illustrates one of these invariant tetrahedra plotted
in the (θ1 − θ2, θ1 − θ3, θ1 − θ4) ∈ [0, 2π )3 space.

In Fig. 3 a bifurcation diagram is shown for the case N = 4 in the (r,α) plane,
while Table 2 lists the codimension-one bifurcations (both reproduced from [3]).
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Table 1 The letters label the curves of codimension-one bifurcations for N = 3 illustrated in Fig. 1
(reproduced from [3])

ID Pitchfork bifurcation on invariant lines
BEGH Transcritical bifurcation at 0
HFAED Saddle-node bifurcation on invariant lines
BE Transcritical homoclinic bifurcation
ED Saddle-node homoclinic bifurcation
BD Saddle-node of limit cycles
HCD Saddle connection heteroclinic bifurcation
DJ Pitchfork bifurcation
DK Saddle-node bifurcation
DL Saddle-node bifurcation

Observe that there is a similar set of bifurcations as in Fig. 3. In particular, for r
small and −π/2 < α < π/2 we have stable in-phase solutions while for r small
and π/2 < α < 3π/2 we have stable antiphase solutions. For both N = 3 and
N = 4 the point (r,α) = (0,π/2) acts as an “organizing centre” for a number of
lines of bifurcations that coincide at this point. Note that the Kuramoto-Sakaguchi
coupling function (Eq. (2) with r = 0) is highly degenerate at the point α = π/2.

In the shaded region BEDTLV of Fig. 3, the dynamics consists of robust hetero-
clinic cycles between symmetrically related cluster states with S2 × S2 symmetry.

�2

�2
�4

S2 × S2

S3 × S1

(S2)2 ⊗

Fig. 2 Diagram showing one of the invariant regions (12) in state space for N = 4 oscillators
(reproduced from [3]). This shows the relationship between the subspaces with differing symme-
tries. The point at the centre is the antiphase solution with Z4 symmetry and the faces of the
invariant tetrahedron is made of points with S2 symmetry
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Fig. 3 Bifurcation diagram for N = 4 oscillators in the (α, r) plane (adapted from [3]); see Table 2
for a description of the bifurcation curves. There are robust heteroclinic cycles between 2-cluster
states in the shaded region outlined by BEDTLV . These cycles are attractors to the left of the line
BM. There is a complicated sequence of bifurcations in the near vicinity of point D that not is
discussed here in detail

These cycles are attracting to the left of the curve BM. The S2 × S2
symmetry corresponds to 2-cluster states where each cluster contains two oscilla-
tors. For example, the partition

A = {{1, 2}, {3, 4}} , (13)

gives [ a1, a2 ] = [ 2, 2 ] and the corresponding cluster phases can be defined as

ψ1: = θ1 = θ2 ,

ψ2: = θ3 = θ4 .
(14)

Table 2 A list of codimension-one bifurcations for N = 4 that are illustrated in Fig. 3 (reproduced
from [3])

BEGH Transcritical-pitchfork bifurcation at 0
BQ Inverse pitchfork bifurcation of saddles at the point with (S2)2 ⊗ Z2 symmetry
BV Pitchfork/heteroclinic bifurcation of solutions with symmetry S2 × S2 (in transversal

to S2 × S2 direction)
BM Hopf bifurcation of antiphase points Z4 and change of stability of robust heteroclinic

cycles
HAED Saddle-node bifurcation to solutions with symmetry S3 × S1
IFGD Transcritical bifurcation of solutions with symmetry S3 × S1
DK Saddle connection bifurcation (not heteroclinic) in subspace with symmetry S2
DJ Transcritical bifurcation of solutions with symmetry S3 × S1
DTL Saddle-node bifurcation inside tetrahedra on S2 plane
BTR Pitchfork bifurcation of limit cycles within tetrahedron
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Investigating the simple clustering behaviour (9) in these subspaces one may find
the cluster states

[ψ1,ψ2 ] = Ω t + [ a, b ] , [ψ1,ψ2 ] = Ω t + [ b, a ] , (15)

where only the phase difference a − b can be determined. By droppingΩt we intro-
duce the notation

P1 = [ a, a, b, b ] , P2 = [ b, b, a, a ] , (16)

for these cluster states.

S3 × S1

S3 × S1

S3 × S1

S2 × S2

P1

P2

Γ1

Γ2

Γ1

P1 P2

P3

P4

Γ1

Γ2

Γ3

Γ4

V 1 V 2

V 3

V 4

(a)

(b) (c)

Fig. 4 Heteroclinic cycles for N = 4 oscillators. Panel (a) shows the detailed dynamics involving
the saddle cluster states P1, P2 (16) (adapted from [3]). The cycle between states P1, P2 (16) and the
cycle between states P3, P4 (17) are shown schematically in panel (b). Panel (c) represents the net-
work as an undirected graph where the vertices V1, . . . ,V4 correspond to cluster states P1, . . . , P4
and edges are drawn between them when heteroclinic connections exist. The parameters are from
the shaded area BEDTLV in Fig. 3
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One may find that the clusters with phase b are unstable to perturbations that split
the oscillators and there exist heteroclinic orbits Γ1 and Γ2 that connect P1 and P2.
Figure 4a illustrates this dynamics in state space (adapted from [3]). One may also
find a similar cycle between the 2-cluster states

P3 = [ a, b, a, b ] , P4 = [ b, a, b, a ] . (17)

corresponding to the partition

Ã = {{1, 3}, {2, 4}} . (18)

The heteroclinic cycles are sketched in Fig. 4b and the corresponding graph
structure of the network is shown in Fig. 4c. The vertex Vm represents the cluster
state Pm and vertices are connected by edges when there are heteroclinic connec-
tions between the corresponding cluster states. Observe that there exist switching
dynamics between cluster states but the network structure is trivial: the heteroclinic
network splits into two disconnected components. For N ≥ 5 the network becomes
connected and much more complex as will be shown in the next section.

4 Heteroclinic Networks for Odd Numbers of Oscillators

Here we consider some of the scaling properties of the robust heteroclinic networks
discussed in the previous section, for more larger numbers of oscillators. As noted in
[8] for odd numbers of oscillators, N = 2k + 1 (k ≥ 2), one can obtain open regions
of parameter space in which there are heteroclinic networks with the structure of
an odd graph; in this paper we characterise this statement in detail and find the
corresponding regions in parameter space numerically.

An odd graph of order k is a family of partition-defined graphs defined as follows.
Let the vertex Vm represent a possible 2-cluster partition Am = {

Am
1 , Am

2

}

of N =
2k +1 when

[

am
1 , am

2

] = [ k, k +1 ]. We call such partitions [ k, k +1 ] cluster states;
they clearly have Sk × Sk+1 symmetry. There are m = 1, . . . , N!/(k!(k + 1)!) such
vertices. We say there is an edge from a vertex Vm to a vertex Vn if

An
1 ⊂ Am

2 , (19)

i.e. if the larger cluster of Am contains the smaller cluster of An. This graph is highly
connected and each vertex has k+1 outgoing edges corresponding to which element
in Am

2 that is not in An
1. The high level of connectivity of these graphs has resulted in

suggestions to use the structure for fault-tolerant networks; see, for example, [14].
Examples of odd graphs of orders k = 3 and k = 4 are shown in Fig. 5.

We demonstrate that for system (1) with coupling (2) and any odd N = 2k + 1,
k = 2, 3, . . . there is an open sets of parameters near r = 0 and α = π/2 such
that there is a heteroclinic network that contains the structure of an odd graph of
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k = 3,  N = 7

V 1

V 2

V m

V n

V1

V m

n

k = 4,  N = 9

V

Fig. 5 Odd graphs of order k = 3 and k = 4; these structures are robustly present in hetero-
clinic networks of the coupled oscillator system (1) with coupling function (2) for N = 7 and
N = 9 oscillators, respectively. The number of vertexes are 35 and 126, respectively, and they are
presented in an analogous way to Fig. 4c

order k. This network is robust to perturbations of the coupling function g that are
sufficiently small in the C2 norm.

First, we show that two distinct families of [ k, k + 1 ] cluster states may exist.
We call these ab cluster states and cd cluster states, as will be clarified in Sect. 4.1;
see also [2]. The ab cluster states are unstable to perturbations of the smaller cluster
while the cd cluster states are unstable to perturbations of the larger cluster. Then we
show that there may be heteroclinic connections from ab cluster states to cd cluster
states and also from cd cluster states to ab cluster states. This means that apply-
ing perturbations to the appropriate (unstable) clusters one may navigate from a ab
cluster state to another ab cluster state through a cd cluster state. Such navigation
between the m-th and n-th ab cluster states is possible if and only if there is an edge
between vertices Vm and Vn on the corresponding odd graph of order k; see Fig. 5.
Notice that the odd graphs are not directed graphs: in fact if it is possible to navigate
from the m-th ab cluster state to the n-th one, then it is possible to navigate the other
way, through a different cd cluster state.

4.1 Existence, Stability and Connections of [ k, k + 1 ]
Cluster States

Consider the 2-cluster partition

A1 = {{1, . . . , k}, {k + 1, . . . , 2k + 1}} (20)
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so that [ a1, a2 ] = [ k, k + 1 ] (that is indeed a [ k, k + 1 ] cluster state) and define the
cluster phases as

ψ1: = θ1 = . . . = θk ,

ψ2: = θk+1 = . . . = θ2k+1 .
(21)

From (8), the equations for the time evolution of the cluster phases become

ψ̇1 = ω + 1

N

(

a1 g(0) + a2 g(ψ1 − ψ2)
)

,

ψ̇2 = ω + 1

N

(

a1 g(ψ2 − ψ1) + a2 g(0)
)

.
(22)

Considering the periodic orbit (9) and introducing the notation φ: = φ1 − φ2
formula we have

0 = a1(g(0) − g( − φ)) + a2(g(φ) − g(0)) (23)

to determine the phase difference φ.
Linearizing (22) one may obtain the tangential stability which has a trivial eigen-

value λ1 = 0 and a tangential eigenvalue

λ2 = 1

N

(

a1 g′( − φ) + a2 g′(φ)
)

, (24)

corresponding to perturbations that do not split either of the clusters. The lineariza-
tion of (1) gives the transverse eigenvalues

λ3 = 1

N

(

a1 g′(0) + a2 g′(φ)
)

,

λ4 = 1

N

(

a1 g′( − φ) + a2 g′(0)
)

,
(25)

where λ3 corresponds to splitting of the cluster of k and has multiplicity k − 1
while λ4 corresponds to splitting of the cluster of k + 1 and has multiplicity k.

Note that the dynamics in subspace (21) corresponding to partition A1 is effec-
tively one-dimensional. Defining the variable ψ : = ψ1 − ψ2 and subtracting the
second equation from the first one in (22) results in

ψ̇ = 1

N

(

a1(g(0) − g( − ψ)) + a2(g(ψ) − g(0))
)

. (26)

There is an equilibriumψ(t) ≡ φ determined by (23) while the related eigenvalue
is given by (24). Substituting (2) and N = 2k +1 into (26) and considering the large
k limit we have
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ψ̇ = − cosα sinψ + r sin (2ψ) + O
( 1

2k + 1

)

. (27)

Now consider the 2-cluster partition

A2 = {{k + 2, . . . , 2k + 1}, {1, . . . , k + 1}} (28)

for which [ ã1, ã2 ] = [ k, k + 1 ] and the corresponding cluster phases can be
defined as

ψ̃1: = θk+2 = . . . = θ2k+1 ,

ψ̃2: = θ1 = . . . = θk+1 .
(29)

The evolution of these phases are still given by (22) so one may find the same
equilibria with the same stability properties as for partition A1 (20).

According to (19), since {k + 2, . . . , 2k + 1} ⊂ {k + 1, . . . , 2k + 1} then on
the odd graph of order k there is an edge connecting the vertices V1 and V2 (that
represent the partitions A1 (20) and A2 (28), respectively). We show that there is a
heteroclinic connection from the ab cluster state with partition A1 to the cd cluster
state with partition A2 and that there is a connection from the cd cluster state with
partition A2 to the ab cluster state with the same partition. Thus one may navigate
from the ab cluster state with partition A1 to the ab cluster state with partition A2

through the cd cluster state with partition A2.
Thus, we are interested in parameter regions where A, B and C hold:

A There exist two different cluster states in the subspace (21) such that

[ψ1,ψ2 ] = Ω t + [ a, b ] , [ψ1,ψ2 ] = Ω t + [ c, d ] , (30)

that are both [ k, k + 1 ] cluster states with partition A1 (20). They are called ab
and cd cluster states and by dropping the Ω t we loosely say that in a ab cluster
state k oscillators have phase a and k + 1 oscillators have phase b while in a cd
cluster state k oscillators have phase c and k +1 oscillators have phase d. Indeed,
only the phase differences

φab = a − b , φcd = c − d , (31)

can be determined from (23) and by symmetry, such periodic orbits exist for all
other [ k, k + 1 ] cluster states with different partitions (e.g. with A2 (28)).

B We require that the ab cluster states are unstable to perturbations of the larger
cluster of b-s and the cd cluster states are unstable to perturbation of the smaller
cluster of c-s while all other perturbations decay. This can be characterised in
saying that we wish to find α, r such that for ab cluster states we have λ2 < 0,
λ3 < 0, λ4 > 0 while for cd cluster states we have λ2 < 0, λ3 > 0, λ4 < 0; see
(24) and (25).
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C We wish to find a subregion of A, B in parameter space such that there is a
heteroclinic connection from the ab cluster state with partition A1 (20) to the
cd cluster state with partition A2 (28) and a heteroclinic connection from the cd
cluster state with partition A2 to the ab cluster state with partition A2.

Steps A, B above are routine in terms of root finding and then evaluating the
stabilities but step C is more complex. Note that (similarly to the N = 4 case in
Fig. 4a) there is an additional [ k, k + 1 ] cluster state in the subspace (21) but that is
unstable against tangential perturbations (λ2 > 0) and hence does not appear in the
heteroclinic network.

First let us search for the ab → cd heteroclinic connection by examining the
partition

B1 = {{1, . . . , k}, {k + 1}, {k + 2, . . . , 2k + 1}} , (32)

that corresponds to (by abuse of notation) [ b1, bs, b2 ] = [ k, 1, k ]. Defining the
cluster phases as

ψ1: = θ1 = . . . = θk ,

ψs: = θk+1 ,

ψ2: = θk+2 = . . . = θ2k+1 ,

(33)

leads to

ψ̇1 = ω + 1

N

(

b1 g(0) + bs g(ψ1 − ψs) + b2 g(ψ1 − ψ2)
)

,

ψ̇s = ω + 1

N

(

b1 g(ψs − ψ1) + bs g(0) + b2 g(ψs − ψ2)
)

,

ψ̇2 = ω + 1

N

(

b1 g(ψ2 − ψ1) + bs g(ψ2 − ψs) + b2 g(0)
)

,

(34)

see (8). Notice that for ψs = ψ2 one obtains a [k, k + 1] cluster state with partition
A1 (20) and (21), While for ψs = ψ1 a[k, k + 1] cluster state with partition A2

(28) and (29) is obtained. One can numerically verify that there exists a heteroclinic
connection between the ab cluster state [ψ1,ψs,ψ2 ] = Ω t + [ a, b, b ] and the cd
cluster state [ψ1,ψs,ψ2 ] = Ω t + [ d, d, c ]. Figure 6 shows such connections for
k = 10 (N = 21) with parameters α = 1.52 and r = 0.1. To eliminateΩ t the phase
differences ψ1 − ψs and ψs − ψ2 are used.

Now let us search for the cd → ab connection by examining the partition

B2 = {{k + 2, . . . , 2k}, {2k + 1}, {1, . . . , k + 1}} , (35)

that corresponds to [ b̃1, b̃s, b̃2 ] = [ k − 1, 1, k + 1 ]. Now defining the cluster
phases as
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ψ1−ψs

ψs−ψ2

ψ̃2−ψ̃s

ψ̃s− ψ̃1

φab

φcd

2π−φab

2π−φcd

Fig. 6 Heteroclinic connections (thick curves) connecting ab and cd cluster states (dots) for k = 10
(N = 21). The figure shows that one may navigate from the ab cluster state with partition A1 (20)
to the ab cluster state with partition A2 (28) through the cd cluster state with partition A2, that
is, the sequence of connections ab → cd → ab corresponds to an edge between the vertices V1

and V2 (representing A1 and A2) on the odd graph of order k, see Fig. 5. Additional trajectories
(thin curves) demonstrate that the connections are attracting, that is, the heteroclinic connections
are sinks within the relevant subspaces. The parameters are α = 1.52 and r = 0.1 correspond to
the cross in Fig. 7d

ψ̃1: = θk+2 = . . . = θ2k ,

ψ̃s: = θ2k+1 ,

ψ̃2: = θ1 = . . . = θk+1 .

(36)

leads to the same set of equations as (34) for ψ̃p-s but with the current set of b̃p-s.
Note that for ψ̃s = ψ̃1 a [ k, k + 1 ] cluster state is obtained with partition A2 (28)
and (29).

We can numerically verify that there exist heteroclinic connections between the
cd cluster state [ ψ̃1, ψ̃s, ψ̃2 ] = Ω t+[ c, c, d ] and the ab cluster state [ ψ̃1, ψ̃s, ψ̃2 ] =
Ω t + [ a, a, b ] as shown in Fig. 6 for k = 10 (N = 21) with parameters α = 1.52,
r = 0.1. Now the phase differences ψ̃s − ψ̃1 and ψ̃2 − ψ̃s are used to represent the
connection. Note that in Fig. 6 only the plane spanned by ψ1 −ψs and ψs −ψ2 and



46 P. Ashwin et al.

1.2 1.3 1.4 1.5 1.6 1.7
0

0.05

0.1

0.15

0.2

1.2 1.3 1.4 1.5 1.6 1.7

1.2 1.3 1.4 1.5 1.6 1.7
0

0.05

0.1

0.15

0.2

1.2 1.3 1.4 1.5 1.6 1.7

1.2 1.3 1.4 1.5 1.6 1.7
0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

1.2 1.3 1.4 1.5 1.6 1.7

α

r

α

r

α

r

α

r

α

r

α

r

k = 2, (N = 5) k = 3, (N = 7)

k = 10, (N = 21)k = 5, (N = 11)

k = 30, (N = 61)k = 20, (N = 41)

II

IV

II

III

IV

II

III

IV

II

III

IV

I0

I0

I0 II

III

IV

II

III

IV

(a) (b)

(c)

(e)

(d)

(f)

Fig. 7 In (α, r) parameter space the white region IV shows where the N = 2k +1 oscillator system
(1, 2) has a heteroclinic network between [ k, k+1 ] cluster states with the structure of the odd graph
of order k for (a) k = 2, (b) k = 3, (c) k = 5, (d) k = 10, (e) k = 20 and (f) k = 30. The other
regions indicated are as follows. Dark grey region 0 – neither cluster state exists; light green region
I – only ab cluster states exist; and light blue region II – only cd cluster states exist; red region
III – both type of cluster states exist but connections are missing. Note that the white region is open
(confirming that the cycle is robust) but becomes smaller and moves towards (α, r) = (π/2, 0) on
increasing k. The cross in panel (d) corresponds to the simulation in Fig. 6
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the plane spanned by ψ̃s − ψ̃1 and ψ̃2 − ψ̃s are used by the dynamics; the plane
spanned by ψ1 − ψs and ψ̃s − ψ̃1 is transverse to the dynamics.

For values of parameters α, r and k where A, B hold one may run finite time
simulations of system (34) and determine whether the above described ab → cd
and cd → ab connections exist. In this way the existence of a heteroclinic network
equivalent in structure to an odd graph of order k can be it verified numerically.
This could in principle be done to a finite precision, provided that a bound on the
errors is also calculated. In Fig. 7, a 100 × 100 mesh is used over the parameter
regime α ∈ (1.2, 1.7), r ∈ (0, 0.2) and at each mesh-point it is checked whether the
conditions A, B and C are satisfied for k ranging from k = 2 (N = 5) up to k = 30
(N = 61).

Region IV (white) shows where A, B and C hold while region III (red) shows
where only A, B hold but not C. Regions I (light green) and II (light blue) are where
A, B are only partially satisfied, i.e. only ab or cd cluster states exist, respectively.
Finally, considering parameters from region 0 (dark grey) no condition hold, that
is no cluster states can be found. Observe that the white region IV shrinks as k
increases.

Although this is not a rigorous proof that the odd graph structure is present for
arbitrary (finite) k, it does suggest a means of verifying this. It may be possible to
analytically prove the existence of an open non-empty region in the (α, r) parameter
plane satisfying A, B and C by using rigorous singular perturbation methods with a
small parameter ε = 1/k.

5 Discussion

We have shown that remarkably complicated bifurcations and structures may emerge
in the dynamics of (1). In particular, robust heteroclinic networks can appear that
lead to slow sequential switching between cluster states. We found that the number
of oscillators needs to satisfy N ≥ 5 to give rise to nontrivial robust switching
dynamics between cluster states. The reason for this is that 5 is the minimum number
where there is a nontrivial asymmetric partition, namely a [2, 3] cluster state. Such
a state has two clusters of differing size that can have different transverse stabilities,
and this permits a nontrivial switching between different 2-cluster partitions. In gen-
eral for N = 2k + 1 oscillators, we determined parameter regimes where [k, k + 1]
cluster states are connected to form a heteroclinic network with the structure of
an odd graph of order k. We remark that for N ≥ 7 the odd graph heteroclinic
network is only a subnetwork of the full attracting heteroclinic network. The full
network includes connections not just between cluster states of type [k, k + 1] but
also between cluster states of type [k − 2m, k + 2m + 1] for a variety of m. Up to
now we have only scratched the surface of the combinatorial complexity that may
exist in such networks.

We note that it is possible to find rather different heteroclinic structures for a
variety of different coupling functions. For example, considering
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g(ϕ) = − sin (ϕ + α) + r sin (2ϕ + β) , (37)

and N = 2k + 1 (N ≥ 5), it is possible to find robust heteroclinic cycles between
[k, k, 1] cluster states for open sets of parameters [5, 28, 34]. We also remark that
(1) does not have any sort of variational structure or global Lyapunov function for
general choices of g (although it may do for specific cases of interest [11]). Lack of
variational structure is clearly a necessary condition for the existence of heteroclinic
connections in the dynamics.

On preserving the coupling structure but breaking the permutation symmetry by
making the oscillators non-identical, the dynamics can still be efficiently explained
with reference to the heteroclinic network [28, 34]. Moreover, for strong nonlinear
coupling, one can explain extreme sensitivity to detuning of the frequencies of oscil-
lators. This is where arbitrarily small differences in the frequencies give rise to loss
of frequency locking and this depends apparently on the presence of robust hetero-
clinic attractors that are topologically non-trivial on TN [4]. On breaking the sym-
metry of coupling structure by removing connections, the dynamics can be much
more rich; see, for example [13, 30] and references within. However, heteroclinic
connections between unstable states may still exist even when the coupling is not
all-to-all leading to sequential switching [1, 20].

The switching dynamics occurring in networks provides some promising mod-
els for a variety of phenomena, especially for neural applications where synchrony
tends to be frustrated due to the competing requirements of efficiency (a neural code
needs a minimum of energy to be maintained) and robustness (a neural code should
be insensitive to removal or malfunction of individual cells). Particular applications
that may be of relevance to the models presented here include finite-state computa-
tion [2] and spatio-temporal code generation [28, 34].
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