


Springer Complexity

Springer Complexity is an interdisciplinary program publishing the best research and
academic-level teaching on both fundamental and applied aspects of complex systems –
cutting across all traditional disciplines of the natural and life sciences, engineering,
economics, medicine, neuroscience, social and computer science.

Complex Systems are systems that comprise many interacting parts with the ability to
generate a new quality of macroscopic collective behavior the manifestations of which
are the spontaneous formation of distinctive temporal, spatial or functional structures.
Models of such systems can be successfully mapped onto quite diverse “real-life” sit-
uations like the climate, the coherent emission of light from lasers, chemical reaction-
diffusion systems, biological cellular networks, the dynamics of stock markets and of
the internet, earthquake statistics and prediction, freeway traffic, the human brain, or the
formation of opinions in social systems, to name just some of the popular applications.

Although their scope and methodologies overlap somewhat, one can distinguish the
following main concepts and tools: self-organization, nonlinear dynamics, synergetics,
turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos,
graphs and networks, cellular automata, adaptive systems, genetic algorithms and com-
putational intelligence.

The two major book publication platforms of the Springer Complexity program are
the monograph series “Understanding Complex Systems” focusing on the various appli-
cations of complexity, and the “Springer Series in Synergetics”, which is devoted to the
quantitative theoretical and methodological foundations. In addition to the books in these
two core series, the program also incorporates individual titles ranging from textbooks
to major reference works.

Editorial and Programme Advisory Board

Dan Braha, New England Complex Systems Institute and University of Massachusetts Dartmouth, USA

Péter Érdi, Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian Academy of
Sciences, Budapest, Hungary

Karl Friston, Institute of Cognitive Neuroscience, University College London, London, UK

Hermann Haken, Center of Synergetics, University of Stuttgart, Stuttgart, Germany

Janusz Kacprzyk, System Research, Polish Academy of Sciences, Warsaw, Poland

Scott Kelso, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA

Jürgen Kurths, Nonlinear Dynamics Group, University of Potsdam, Potsdam, Germany

Linda Reichl, Center for Complex Quantum Systems, University of Texas, Austin, USA

Peter Schuster, Theoretical Chemistry and Structural Biology, University of Vienna, Vienna, Austria

Frank Schweitzer, System Design, ETH Zurich, Zurich, Switzerland

Didier Sornette, Entrepreneurial Risk, ETH Zurich, Zurich, Switzerland



Understanding Complex Systems

Founding Editor: J.A. Scott Kelso

Future scientific and technological developments in many fields will necessarily
depend upon coming to grips with complex systems. Such systems are complex in
both their composition – typically many different kinds of components interacting
simultaneously and nonlinearly with each other and their environments on multiple
levels – and in the rich diversity of behavior of which they are capable.

The Springer Series in Understanding Complex Systems series (UCS) pro-
motes new strategies and paradigms for understanding and realizing applications
of complex systems research in a wide variety of fields and endeavors. UCS is
explicitly transdisciplinary. It has three main goals: First, to elaborate the concepts,
methods and tools of complex systems at all levels of description and in all scientific
fields, especially newly emerging areas within the life, social, behavioral, economic,
neuro- and cognitive sciences (and derivatives thereof); second, to encourage novel
applications of these ideas in various fields of engineering and computation such as
robotics, nano-technology and informatics; third, to provide a single forum within
which commonalities and differences in the workings of complex systems may be
discerned, hence leading to deeper insight and understanding.

UCS will publish monographs, lecture notes and selected edited contributions
aimed at communicating new findings to a large multidisciplinary audience.



Marco Thiel · Jürgen Kurths ·
M. Carmen Romano · Alessandro Moura ·
György Károlyi
Editors

Nonlinear Dynamics
and Chaos: Advances
and Perspectives

123



Editors
Marco Thiel
Institute of Complex Systems and
Mathematical Biology
University of Aberdeen
King’s College, Meston Building
AB24 3UE Aberdeen
United Kingdom
m.thiel@abdn.ac.uk

M. Carmen Romano
Institute of Complex Systems and
Mathematical Biology
University of Aberdeen
King’s College, Meston Building
AB24 3UE Aberdeen
United Kingdom
m.roman@abdn.ac.uk

György Károlyi
UCB Magyarorszag KFT
Hüvösvölgyi ut 54
1021 Budapest
Hungary
karolyi@tas.me.bme.hu

Jürgen Kurths
Potsdam Institute for Climate Impact
Research (PIK)
Telegrafenberg A31
14473 Potsdam
Juergen.Kurths@pik-potsdam.de

Alessandro Moura
Institute of Complex Systems and
Mathematical Biology
University of Aberdeen
King’s College, Meston Building
AB24 3UE Aberdeen
United Kingdom
a.moura@abdn.ac.uk

ISSN 1860-0832 e-ISSN 1860-0840
ISBN 978-3-642-04628-5 e-ISBN 978-3-642-04629-2
DOI 10.1007/978-3-642-04629-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010925336

c© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: WMXDesign, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



This book is dedicated to Celso Grebogi,
who has been a constant source of inspiration
and encouragement to those who know him.



Preface

This book is a collection of papers contributed by some of the greatest names in the
areas of chaos and nonlinear dynamics. Each paper examines a research topic at the
frontier of the area of dynamical systems. As well as reviewing recent results, each
paper also discusses the future perspectives of each topic. The result is an invaluable
snapshot of the state of the field by some of the most important researchers in the
area.

The first contribution in this book (the section entitled “How did you get into
Chaos?”) is actually not a paper, but a collection of personal accounts by a number
of participants of the conference held in Aberdeen in September 2007 to honour
Celso Grebogi’s 60th birthday. At the instigation of James Yorke, many of the most
well-known scientists in the area agreed to share their tales on how they got involved
in chaos during a celebratory dinner in Celso’s honour during the conference. This
was recorded in video, we felt that these accounts were a valuable historic document
for the field. So we decided to transcribe it and include it here as the first section of
the book.

The dynamics of maps on the complex plane provide some of the most striking
examples of chaos and fractal invariant sets in dynamics, and has been of great
importance to the field because they are amenable to rigorous treatment. The first
paper in the book is R. Devaney’s investigation of the dynamical properties of
singularly-perturbed complex maps. He investigates Julia sets and other related sets
which arise in maps with a pole, and classifies their dynamics.

One of the most exciting developments in recent years is the application of
dynamical systems techniques to complex networks of interacting components, each
having their own internal dynamics, and each being coupled to other nodes. P. Ash-
win, G. Orosz and J. Borresen review how complex dynamics can arise even in
simple, fully symmetric and globally coupled networks. They make the important
point that not only the network topology (which is usually emphasised in the liter-
ature), but also the properties of the coupling function are crucial to determine the
system’s global dynamics.

Fluid dynamics is an area that has always had a close relation with chaos. The
motion of particles advected by time-dependent flows is a prime example of a
chaotic system, and chaotic advection has been observed in many beautiful experi-
ments. Most of the existing theoretical work considers advected particles as having
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viii Preface

vanishing size, even though it is known that their finite size can have considerable
consequences for their dynamics. J. Cartwright et al. review the dynamics of finite-
size particles in chaotic flows. This is the first published review of this important
subject.

Hamiltonian dynamics occupies a special place in the area of dynamical systems,
because of its applications to classical mechanics, celestial mechanics, physics and
other areas. In many Hamiltonian systems, there is a clear separation of slow and
fast degrees of freedom, and it is common practice to model the effects of the fast
variables by noise and damping, which results in a Langevin equation for the slow
degrees of freedom. However, the rigorous mathematical foundations for this are not
well-established. R. MacKay proposes a rigorous way to derive a Langevin equation
for Hamiltonian systems, by assuming that the fast variables have an Anosov mixing
dynamics.

In their contribution, A. Politi and A. Torcini review the concepts of stable chaos,
that is, the presence of irregular behaviour even though the dynamics is still locally
stable. Although the irregular behaviour is transient in these cases, the transient’s
lifetime diverges in the thermodynamic limit, which makes stable chaos relevant
for out-of-equilibrium statistical mechanics. The authors emphasise the connection
between stable chaos and the spatio-temporal chaos shown by a class of cellular
automata.

Chaotic transients are also the topic of the next paper, by Y.-C. Lai. He reviews
the subject of superpersistent chaotic transients, which refers to the extremely long
lifetimes of some systems near bifurcations. He explains the dynamical origins of
these long lifetimes, and how they are related to the riddling bifurcation and riddled
basins. He also discusses the occurrence of transients in spatially extended systems,
and the application of these concepts to the motion of particles in fluid flows.

One of the biggest current topics of research in the field of dynamical systems
is synchronisation, and the next three papers are all concerned with this fascinating
subject. The paper by P. Read and A. Castrajón-Pita investigates the possibility of
synchronisation in spatio-temporal systems, focusing on the Earth’s climate system.
They make a good case for the possibility of the existence of synchronised oscil-
lations in weather patterns. Experiments are performed in fluid-dynamical systems
which are analogues of major components of our planet’s weather system, and syn-
chronisation is indeed observed.

Many of the systems in which the concept of synchronisation is important
are noisy, especially biological systems at the cellular level. It is therefore very
important to understand how synchronisation works in the presence of noise. R.
Ramaswami et al. give an overview of stochastic synchronisation, giving a number
of examples including chemical reactions and gene regulation networks.

Synchronisation was first discovered due to the observation by Christian Huy-
gens that two clocks connected to the same wooden beam eventually synchronise
their oscillations. A. Pogromski, D. Rijlaarsdam and H. Nijmeijer present an experi-
mental setup which allows a thorough exploration of the synchronisation of mechan-
ical systems, in the spirit of Huygens’s original observation but in a much more
controlled way. Their setup allows the coupling between two mechanical oscillators
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to be controlled, and thus makes it possible to study different kinds of synchronisa-
tion phenomena, such as the synchronisation of pendula, rotating objects, etc. They
describe results of synchronisation experiments with two Duffing oscillators and
with two rotating disks.

The control of chaos is one of many areas to which Celso Grebogi has fundamen-
tal contributions. G. Riga, S. Lenci and J. M. T. Thompson’s paper reviews the OGY
theory of controlling chaos from a historical perspective, and discusses applications
in mechanics and related fields. They compare and contrast the OGY strategy based
on stabilising a single periodic orbit of the chaotic set with a global method of trying
to stabilise the overall system dynamics.

Since the seminal embedding theorems by Takens and others, time-series anal-
ysis has been an important area within dynamical systems. Closing the book is R.
Stoop and M. Christen’s investigation on methods to extract regular patterns from
time-series with noisy background. This is a crucial problem in neuroscience and
other fields, and one in which traditional methods, such as power-spectrum and
related procedures, usually fail. They propose a method based on staircase-like
structures in the correlation plot, and derive a number of analytical results on their
method, which suggest that their method is very promising in applications.

The contributions in this book cover a broad range of topics within the large
area of dynamical systems and chaos, and they range from pure mathematics to
real-world applications. They show that our field is as exciting as ever, and has a
brilliant future ahead of it.

In September 2007, a conference was held in Aberdeen, Scotland, to celebrate
the 60th birthday of Celso Grebogi. The list of invited speakers, among them many
of the contributors to this book, reads like a “who’s who” of the areas of dynamical
systems and chaos. This conference was the first time so many great names in the
field have been gathered together in a single event in decades, and it presented a
unique opportunity to assess the present state of the area and its future directions. It
was felt by many of the participants of that event that a book with in-depth surveys
of important topics in the field was timely, and this was the driving force for putting
together this volume.

Aberdeen, UK György Károlyi, Jürgen Kurths, Alessandro Moura,
April 2010 Marco Thiel, M. Carmen Romano
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How Did You Get into Chaos?

Abstract In the celebratory dinner honouring Celso Grebogi’s 60th birthday, a
number of scientists in the area of chaos were asked by James Yorke to tell the
tale about how they got involved in the field. Since all the participants have played
crucial roles in the development of the subject, their stories give unique insights into
the historical development of dynamical systems and chaos. We have transcribed
their tales here.

James Yorke (Institute for Physical Sciences and Technology, University
of Maryland, USA) – I would like to talk about the history of chaos, or my
history of chaos. And to me, it seems like I have always known about chaos
in the following sense. When I was in high school, I read several books by
Norbert Wiener. Norbert Wiener wrote very technical books, which I could not read,
but he also wrote non-technical books, in which he covered topics like the gas laws.
So when I was in high school, I tried to show – understand this is “tried”, I did not
seem to do anything – I tried to show that maximal distribution was invariant under
collisions. And so I didn’t do anything on that but it prepared me for chaos. So
that’s my story. Where’s Harry? Come on up, Harry. Harry is going to tell his story.
I guess, some people have volunteered, twisting their arms a bit, but I am going to
ask as many people who want to comment briefly on how they got into chaos, what
was the motivation. And Harry is number one – Harry.

Harry Swinney (Department of Physics, University of Texas at Austin,
USA) – In 1974, Jerry Gollub was at Haverford College and I was at the City
College of New York. Jerry had a fellowship to go on leave, and said he would
like to come up to City College, where we could do an experiment together. We
talked about the kinds of experiments we might do, and finally decided to study
a transition from one state to another in a non-equilibrium system. We chose the
flow between concentric cylinders with the inner one rotating [the Couette-Taylor
system] because we had read an interesting 1965 Journal of Fluid Mechanics paper
by Don Coles in which he had studied the transition to time-dependent flow from
the time-independent Taylor vortices that form in this system.

We were interested in understanding transitions that would occur with increas-
ing Reynolds number. We found a 1943 paper by Lev Landau about sequences of

M. Thiel et al. (eds.), Nonlinear Dynamics and Chaos: Advances and Perspectives,
Understanding Complex Systems, DOI 10.1007/978-3-642-04629-2_1,
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2 How Did You Get into Chaos

transitions in fluids. Landau said that as you increased the Reynolds number of
a fluid, one would generically go from a time-independent state to one that was
time-dependent with a single characteristic frequency describing its motion. With
further increase in the Reynolds number, there would be a second frequency that
would appear at a well-defined Reynolds number, then another transition with a
third characteristic frequency, etc. Each new transition would occur at a well-defined
Reynolds number and would bring in a frequency that was incommensurate with the
previous frequencies. After a number of such transitions, one would have a flow with
many characteristic incommensurate frequencies. That would be a very complicated
flow, and that’s what Landau called turbulence.

Coles’ paper described the transition from time-independent Taylor vortices to
vortices that have waves travelling around the cylinder; that is, the flow had a single
characteristic frequency. Coles went on to say that as you increase the rotation speed
of the cylinder, the flow becomes more complex, apparently in the way that Landau
had predicted. Gollub and I scoured the literature to see if there was more evidence
for a sequence of transitions to turbulent flow characterised by many frequencies,
and we couldn’t find any papers where the frequencies were actually measured.
[James Yorke- You have two more minutes. Laughing in audience.] I’m just getting
started. [Laughter]

I knew how to measure frequencies because I had the good fortune in 1960–1962
to work for the National Security Agency, where I learned about Fourier transforms
and power spectra, because NSA was interested in analysing signals from certain
places. I learned about the Nyquist theorem and how to get a good signal to noise
ratio.

Gollub and I needed to compute Fourier transforms, but they were costly to com-
pute with the limited computers we had. I had a friend who worked at Bell Labs who
told me about an algorithm called the fast Fourier transform that had been developed
by Cooley and Tukey. He got me deck of punched IBM cards with the Cooley –
Tukey algorithm, which Gollub and I used to compute Fourier transforms of our
data. We found a single fundamental frequency for the wavy vortex flow studied
by Coles. As we cranked up the speed of the inner cylinder, we saw at a higher,
well-defined Reynolds number a second frequency appeared in the power spectrum.
This was just as we expected from Landau’s paper. Then we cranked up the speed
of the inner cylinder further and looked for a third frequency to come in, but instead
we found the spectrum became noisy. We published a paper on the transition to
turbulence in Physical Review Letters, saying that there appeared one frequency
and then a second frequency, and then just noise, no more discrete frequencies.

Joel Lebowitz at Yeshiva University, not far from the City College of New York,
heard about our work and called me and said “I have a visitor here at Yeshiva who
might be interested in that experiment.” So he brought this French fellow to our lab;
his name was David Ruelle. Audience–Belgian. Harry Swinney- a Belgian, working
in France. And Ruelle said: “You have seen evidence of behaviour described by a
strange attractor.” We didn’t know what a strange attractor was, but that sounded
good.

Then we heard of a professor named James Yorke at the University of Maryland,
who was studying non-periodic behaviour in deterministic systems, and I called him
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up. [Jim, do you remember?] [James Yorke – No.] [Laughter] Jerry Gollub and I got
on a train to Maryland; this was September 1975. I never had gone to talk shop with
a real mathematician before. [Laughter] We presented our data to Professor Yorke,
and he said, “That’s chaos.” [Laughter, applause].

James Yorke – So my second volunteer, if you walk over here.

Floris Takens (Department of Mathematics, University of Groningen, The
Netherlands) – Thank you. I was ordered yesterday to be a volunteer here and to say
something about how I was involved in this chaos business. Well, I come from the
other side, from mathematics. I had just finished my thesis in differential topology
and decided to move to dynamical systems. This subject at that time was hardly
existing in the Netherlands so I decided to spend a year at IHES, Bures-sur-Ytette
in France. There were some foreign visitors there, like Steve Smale, Mike Shub,
Charles Pugh, and others. I started to learn dynamical systems there. There were
seminars and a course on catastrophe theory, and things like that. Thom asked me to
give a lecture at this seminar on the Hopf bifurcation. At that time, this bifurcation
was generally unknown, but I had just started and Thom was such a famous person.
So I said, of course, I will do that, but can you tell me what it is? He said, well it is
not so well known though Hopf published this paper in ’42, and of course, he lived
in Germany and at that time. The mail didn’t work so well at that time for some
reason which I don’t remember. So he gave me a paper and said, “Well, Hopf did it
in an analytic way, try to do it more geometric.” So I tried to do that, I gave a lecture,
and then Ruelle came up to me and said, “Do you know why Hopf was interested in
this?” And I said, “No.” And now I refer back to the previous speaker and say that
Hopf’s idea was the bifurcation from one frequency to second frequency, and so on.
Well, I have also followed in that period a course on hyperbolic dynamics by Mike
Shub in his version of French [laughter], and so a new ideology of talking about
being generic and being non-generic, especially being non-generic, started to be
considered. So I said, “Well, but on a two torus, having parallel flow is non-generic
and on the three torus, you probably can have quite a bit more.” So then it was Ruelle
who said, “Well, this is important. Even if this idea about turbulence is wrong, it is
important to publish it.” So that was the paper where we first introduced the word
“strange attractor.” I don’t know and he doesn’t know either who was the first one
to invent that word and, hence, we should share the responsibility. The continuation
of that story is what you have heard by the previous speaker. It finally got noticed
by physicists, and finally, even noticed that this had been already discovered before
by Lorenz. Well, that was my way of getting entangled by chaos. It is a pity that
Ruelle, who has been mentioned already twice, is not here. [Applause]

James Yorke – Other volunteers. Peter Grassberger.

Peter Grassberger (Department of Physics and Astronomy, University of
Calgary, Canada) – Before I entered university, I didn’t read books by Norbert
Wiener, but I read books by Schrödinger, Heisenberg, and others as such. My
idea, when I entered university, was that you have to solve the great riddles of the
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universe, and everything else is just between stamp collecting and measuring the
viscosity of, well, whatever. So I never contemplated doing anything else, but I was
interested in most things. So I tried very hard to work in particle physics, but it
was tough with these very brilliant guys and with these very few ideas. Whenever
there was a new idea, even the third or maybe the fifth idea on the market, then
immediately people jumped on it and I had to run after them. It was frustrating. But
then I had an idea about something I could do and which was different. I do not
want to go into the details, but anyhow, I learned that sometimes there are some
leads. You can just follow a path and you just have to let yourself go. Then you
end up in a different field. Once I sneaked out of particle physics that way, I felt
suddenly, “Oh! The whole world has opened!”. Before I had done this, just a few
months before, I was in Nice. There was this guy who was supposed to have done
a very tough work on renormalization, really field theory, you know, many pages of
calculations. But he was good-looking, he liked the girls . . . In Nice, you have the
beach ... Suddenly some seminars by him were announced. And these seminars were
about the parabola. You take the parabola, iterate it and then, you get renormaliza-
tion and ..., you can guess. At that moment, I didn’t realize that this was something
for me. But it was fascinating, weird, completely different from the serious stuff a
German professor was supposed to work on. It was a very unusual thing. Then later,
after I had this experience that I could break out of my cage, I said, “Oh, God!”.
I freed up, came back and read Mandelbrot’s book, which was also weird. I had
this idea that you can measure fractal dimensions, and after that, there were some
other ideas, and in that way I was dragged in. First we did something about the
Feigenbaum attractor and this idea came: “Why don’t we measure the dimension
of strange attractors?” And then we came up with further ideas. Okay, that’s it. I
should say one more thing: in the life of every man a moment comes where chaos
takes over. I have the luck that I can do it professionally. [Applause]

Edward Ott (Institute for Research in Electronics and Applied Physics,
University of Maryland, USA) – Chaos is also called deterministic randomness
and is associated with the difficulty of forecasting the future. My entry into chaos
was chaotic in that sense. So, how did I get into chaos? Well, I was working in
plasma physics, and in the United States you can’t survive as an academic researcher
unless you have contracts. And when you have a contract, you have a contract mon-
itor. I had a contract and a contract monitor. One day I was going to a scientific
meeting and I got on the plane, and by random chance, I was assigned a seat next
to my contract monitor. His name was Oscar Manley, and he was reading a paper
by Mikhail Rabinovich. I asked him what it was on, and he told me that it was on a
strange attractor. As Takens in his remarks said, that is sort of a bewitching term. If
you’ve never heard it before, it sounds really exotic. And indeed, as Oscar described
it, it did sound like something I should get to know. So I eventually started to read
that paper, and that led to my first paper on dissipative chaos. (I had been working
on Hamiltonian chaos before that.) Another examples of randomness in my career in
getting started in chaos came when I moved from Cornell, where I was for 11 years,
to the University of Maryland. At the University of Maryland, we had a Physics
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Department which had undergone rapid expansion. It had expanded so much that
there was no room for me as a new faculty member in the Physics Building. So they
put me in some other building off in a corner of the campus. It wasn’t a building that
just had physicists in it; it also had people like Jim Yorke, whose office was very
close to mine. And we started talking. We would talk at the end of almost every day,
and we decided that we should collaborate in research. So, my associating with Jim
was another aspect of randomness. We decided we would try to get some contract
money to do the research that we were thinking of. We submitted a proposal to Oscar
Manley at DOE, and it was funded. One of the things the proposal provided for was
a postdoc to work with us. And so we were saying, okay, let’s hire our postdoc.
But at the same time, there was a plasma physicist at the University of Maryland
who had hired Celso Grebogi to work with him. Celso was about to come, and this
fellow came to me and said, “Hey, I hired this guy but now I realize I have no money
to pay him.” [Laughter] “So could you help me out?” And so we hired Celso and
that’s how our chaos group got started. Thus my start in dissipative chaos research
is an example of chaos and randomness where the associated random events have
far reaching effects that are very unpredictable. [Applause]

James Yorke – About 80 papers completed, among the three of us. [Applause]

Lou Pecora (Naval Research Laboratory, Washington, USA) – Jim asked me
earlier to speak to you, and I told him, “Well, I got interested because I took a
course,” and he said, “That’s really boring. I don’t want to have you stand up there
and talk about that.” Then after talking to some people at the table, I thought that I
could tell you about how I got involved in synchronising chaotic systems, because I
think that is an interesting story. So, where I work is the Naval Research Lab. To do
something there, it is not good enough if it is interesting. They want to see you do
something that can be applied, “Why are you doing that and what is it good for?” So
Tom Carroll and I, Tom’s my colleague, we said, “Well this really interesting stuff –
nonlinear dynamics, chaos – what could we do with this?” One of the first things
we thought about, is “Wouldn’t it be nice if you could synchronise two chaotic
systems?”. You could maybe communicate with them or do something like that. We
thought that if we could do that, it would be great, but we didn’t have a clue of how to
do it. And so, we spent a good part of the month of December really knocking down
each other’s ideas on how to do this. We went to, at that point, a dynamics-based
conference in Houston in January, and came home. I remember being exhausted. I
came home and my daughter, who was about 6 months old, woke up in the middle
of the night. I couldn’t sleep. I told my wife, “I will get up, I’ll feed her.” And I am
sitting there feeding her and I’m thinking, “You know, you could drive a Duffing
with a sine wave and put the sine wave in the Duffing, and you could drive a Lorenz
with a Lorenz.” I just remember being so tired and thinking, “I hope I remember
that tomorrow morning.” I put my daughter down and went to sleep. I should have
written it down. But I did remember it. At that point, the only thing I could do was
to say “This is an interesting idea. Drive one system with another.” I did a couple
of logistic maps and they worked. We proposed it at the Naval Research Lab and



6 How Did You Get into Chaos

they liked it. They had no idea what we were talking about, but it looked sexy
and sometimes sexy wins. Then I realized that I had got to solve some differential
equations at this point because we had really got to show this is for real chaotic
systems like Rössler and Lorenz. So, I thought, “Next thing, I go into the lab, now
that we have the money to do this, and I am going to do that.” Except that I have three
kids and my oldest son came down with chickenpox. And if you don’t know what
chickenpox is – it’s probably something else in another language. It’s a childhood
disease that’s usually not fatal but you gotta stay home. My wife had to work, so
I stayed home. This was before we had computers in our house and I stayed there
thinking, “I’ve got to get in there and do this.” Human psychology is a funny thing.
As soon as I got the idea, the first thing I thought of was, “Oh my God, someone
is going to do it before me.” Of course, I hadn’t thought of that until now, but you
suddenly get panicky when this happens because you are sure somebody is going to
beat you to the punch. So I stayed home for 2 weeks with my son. He got better, I
started to go in, and my second son got sick. Finally, I ended up having my daughter
also getting sick. All three kids got sick. I spent 2 months at home and I could not get
started. I was worried somebody was going to scoop us. That was my own problem.
Nonetheless, our paper came out and I felt good about it because we had beaten
everybody. Only later did I realize that we weren’t the first people to synchronise
chaotic systems. This is a kind of interesting. Somebody said today, “You think you
did it first but if you look at the literature, which you probably should have done a
little bit more, you find somebody else that had done something before you.” So I
think our paper was good because we suggested applications and I think that’s why
it’s done well. But before us–our paper was published in 1990 – there was a paper in
1989 by Rul’kov et al. on synchronising chaotic systems, except they didn’t suggest
a use for it. But that’s a Russian that had beat us. But before that, there was a very
nice paper by Valentin Afraimovich, Misha Rabinovich and Verichev in 1986 syn-
chronising stochastic systems, basically synchronising two Duffing systems. And
in true Russian form, they also built a circuit like we did. The Russian theorists
also can build circuits, which is really good. So we found this out later and I found
out also that Arkady Pikovsky, who is here, in 1984, published Interaction of Two
Chaotic Attractors and strange attractors, which was basically synchronising chaotic
systems. So if you’re a Russian now, you’re feeling really good because the Russians
have scooped everybody. But I actually found in 1983 there were three papers by
Japanese researchers, Fujisaka and Yamada, who had synchronised chaotic systems.
That’s the earliest I know of. So I was already scooped and I didn’t know it. This is
kind of a lesson maybe to young people. Even if you are scooped, sometimes you
can make something out of it. So that’s not an introduction to chaos, but it is funny
how things can just work out pretty well, and in the end that paper worked out pretty
well for us. [Applause]

Itamar Procaccia (Department of Chemical Physics, The Weizmann
Institute of Science, Rehovot, Israel) – So if you just squeeze my hand, I will
take my revenge out and tell you what happened to the first paper that we sent
for publication. So this was when Peter Grassberger visited me for a few months
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for sabbatical and we wrote this little letter with a program of about five lines that
described how to find the correlation dimension of a strange attractor. And we sent
it for publication and it was rejected by two referees, who said this makes no sense.
We got it back and the reasons were very clear. Apparently, we were a little bit
late on the stage and people already knew everything. So we got two papers that
had been published a couple months before. One was, I think, a paper by the Santa
Cruz crowd, Farmer, etc., those who had determined that the dimension cannot be
computed in finite time. These were the Santa Cruz people. It was new. But there
was another paper, by Jim Yorke and I can’t remember who else, saying that there
are only two types of dimensions – the box dimension and the information dimen-
sion, and nothing else can exist. And then, we came up with a dimension we called
the correlation dimension, which was obviously different. It was obviously a lower
bound to both. So the paper was rejected. I remember that it was really quite a
struggle. At some point, one referee said that since it had been shown that it cannot
be like that, then we must be cheating if we get the result that we claim. Then the
idea was: “Let’s send them the program.”

James Yorke – You should understand that the referee might have been inter-
preting what he said perhaps incorrectly and then imposing it upon him.

Itamar Procaccia – I will consider this as an explanation. And you want to
insinuate that you were not the referee, I understand. [Laughter] Anyway, the end
was that we had to send the program in. We sent the program in, it was five lines
long or something like this, and asked the referee “Please, run the program yourself
and see that you get this number”. And that is how it went. I think this was my
first example of writing a paper that was rejected immediately and then it had about
2,000 citations. But it was not the last time. I think by now I probably have enough
statistics to claim that all the best papers cannot be published without a lengthy
struggle. And you know Jim, thank you for being the referee or not being the referee.
[Laughter]

James Yorke – In the face of history of chaos, a large amount of the basic papers
were rejected, at least the first time around, partly because they were sometimes
only half-baked, but also because they didn’t follow the usual trend. People wanted
only the best papers, which meant slight changes in most of the literature.

Michael Berry (H H Wills Physics Laboratory, Bristol, UK) – The organisers
of this delightful celebration for Celso have persuaded me to reminisce about my
involvement with the beginnings of what has come to be called “quantum chaos”
(though since that phenomenon is hard to find I much prefer the term “quantum
chaology”, which describes what we really do).

In 1972, Kate Mount and I wrote a review article on semiclassical approxima-
tions–what I now call prehistoric semiclassical mechanics: mostly WKB theory.
Towards the end of the writing, I encountered papers by Martin Gutzwiller and
was tremendously impressed by them and praised them in the review because he
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explicitly considered non-integrable systems. I don’t think Gutzwiller had thought
about chaos at that time and it wasn’t mentioned in our review.

The publishers sent our article to be reviewed by Ian Percival. When I met him, he
told me that he had just spent a year in the USA where he had encountered the work
of “a wonderful Russian mathematician called Vladimir Arnol’d who is making
very spectacular discoveries about a phenomenon that underlies those papers by
Gutzwiller that you feature in your article. It’s called chaos, and you should learn
about it.” Percival had already come to the view that associated with chaos there
should be a different kind of quantum state. He called it the irregular spectrum, and
published a paper about it in 1973–the first paper explicitly about quantum chaology,
for which he deserves credit. It had a big influence on me, though not for several
years.

Then I encountered the writings of Joseph Ford: a great man, a passionate man,
an infuriating man, a lovely man. What a pity Joe is no longer with us. He called
himself the evangelist of chaos and that is a very good description. From his papers
I finally and fully realized the importance of what had been achieved by Arnold and
also Yakov Sinai and Boris Chirikov in classical chaos, and determined to under-
stand the impact this would have on quantum mechanics, that Percival had alerted
me to. The best way to learn a new subject is to give lectures about it, so I gave a
graduate lecture course in Bristol, based on the papers of those pioneers.

Attending my lectures was Michael Tabor, an intellectual refugee from the wastes
of theoretical chemistry (as he and I put it in those days). He was very excited and
wanted to work with me. But I told him: “I don’t have much time, because we’ve just
bought a new house, and I’ve promised to decorate it.” A few weeks after moving
in, there was a knock on the door. It was Tabor: “I’ve come to put my paint brush
where my mouth is.” So we spent the summer up a ladder, painting and thinking
about chaos and quantum physics and we published three papers.

Meanwhile I was bold enough to send the notes for my lectures to Joe Ford. I
was overwhelmed when he called me from Georgia; in those days, an international
phone call was fairly unusual. In his wonderful southern accent, he arranged for the
notes to be published in the proceedings of a meeting I had not attended, and invited
me to the first international meeting on chaos, that he was organising with Giulio
Casati in Como. This was 1977; I went there with Tabor.

At the meeting, I had the idea that the quantum stationary states of classically
chaotic systems would have the structure of Gaussian random functions with a local
coarse-grained intensity given by the classical microcanonical ensemble. André
Voros was also at the meeting, and had a similar idea, but we published separately.
Later, we learned that Alexander Shnirelman had published the microcanonical part
of the idea a few years earlier.

A year before the Como meeting, Tabor and I had understood that random-matrix
theory should give a good description of the statistics of energy levels in the irregular
spectrum. This was as a result of the suggestion from my colleague Balazs Gyorffy
that this subject–until regarded as a branch of nuclear physics, might be relevant to
chaos. George Zaslavsky had had a similar idea in 1974, but unfortunately he did
not identify the central feature; universality. Tabor and I published a brief account
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of the envisaged random-matrix connection in one of our papers. This was taken up
by Steven McDonald and Alan Kaufman, who we then met in Como; they made
the first computations to check the idea (with the stadium quantum billiard). About
7 years later, the definitive and very influential statement of the connection was
made, and supported by more accurate numerics, by Oriol Bohigas, Marie-Joya
Giannoni, and Charles Schmidt, who knew much more than me about random
matrices.

In a separate development, the head of the theory group in Bristol, John Ziman,
a condensed-matter physicist with whom I never worked but who was something
of a mentor to me, had shown me the papers on period-doubling by Robert May
and by Jim Yorke. In Como I met Mitchell Feigenbaum, who made such a spec-
tacular contribution by explaining the universality of these phenomena in terms of
renormalization. My encounter with Giulio Casati soon led to discussions about the
Aharonov-Bohm effect, and thus, indirectly, through connections I will not elaborate
here, to the geometric phase in 1983. That Como meeting was unforgettable!

Ziman also showed me the book by René Thom on Catastrophe theory, thereby
inspiring another major chapter in my scientific life (universal diffraction decoration
of waves near caustics), but that too is another story.

Several years later, Alfredo Ozorio de Almeida, who had been my undergrad-
uate student in the 1960s and my graduate student in the early 1970s, and my
colleague John Hannay, made a major discovery about universality in the distri-
bution of the long periodic orbits that appear in Gutzwiller’s representation of the
irregular spectrum. This became the basis of my 1985 understanding of the origin
of random-matrix universality, and, equally important, how random-matrix theory
fails for correlations between distant energy levels–an understanding that has been
so ably developed and deepened by Jonathan Keating and Eugene Bogomolny, and
most recently by Martin Sieber and Fritz Haake and others.

It was in the early 1980s (I do not remember the year) that I visited Maryland
and first met the very creative classical chaos group of Jim Yorke, Edward Ott, and
of course Celso Grebogi, who soon became a friend. I congratulate him today on
reaching sixty: no younger person’s age has more distinct prime factors. [Applause]

Giulio Casati (Center for Nonlinear and Complex Systems, Universitá dell’
Insubria, Como, Italy) – My story is very simple and very short. My interest in
chaos started when I just graduated, back to 1971. As a young Italian boy, I decided
to look at the first work of Fermi, and the last work of his life. I don’t know if you
are aware of it, but they both refer to what is now called nonlinear dynamics. The
first work is difficult to understand and is about quasi-ergodic theory. The last work
is much more simple, even though profound, and it is the famous Fermi-Pasta-Ulam
model. There were also two other persons most influential to me: one was Joe Ford,
already mentioned by Michael Berry, and another one in Siberia, Boris Chirikov.
This is how I entered the field. I just want to say that Chirikov is the person to
be remembered since he has been one of the main pioneers in nonlinear dynam-
ics and chaos. He has been also one of the last representative of the old ’Russian
intellighenzia’. Thank you Mike for remembering him. [Applause]
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Valentin Afraimovich (Universidad Autónoma de San Luis Potosí, Mexico) –
I am Valentin Afraimovich from Russia, and in Russia we were surrounded by
chaos. A former student from Andronov, N. N. Bautin, told us a story that he
(Bautin) was trying to get a grant from the Ministry to work on a clock pendulum.
He waited for long time for some burocrats at the Ministry. Over the wall there were
some plaster mouldings that oscillated. He started to calculate how many oscilla-
tions per minute he observed. It was non-periodic behaviour. This was 1958. After
that, he came home and created models of the dynamics of this device, which is
called Gipp’s pendulum. From the beginning we knew that there were some man-
made devices which behaved non-periodically. That helped me very much when I
started to do mathematical analysis of chaotic oscillations. [Applause]

Robert MacKay (Mathematics Institute, University of Warwick, UK) – Hi.
I think I first encountered the theory of chaos after my second year as an under-
graduate. My father pointed me to the now famous paper by Robert May in Nature
in ’76. I thought it was cute, interesting. The next encounter with chaos was in my
final year (Part III) when I had to do an essay, and one of the topics was “Period
three implies chaos”. But I thought this didn’t look serious enough material, so I
did something else (waves in inhomogeneous atmospheres). Sorry Jim. Then the
third encounter with chaos was as a beginning PhD student in Princeton Plasma
Physics Lab in ’78. We each did an experimental project in the first year. The person
I was assigned to proposed we look at drift waves in a device called QED (quiet
energetic dense). You destabilise them by turning up the magnetic field because
that reduces the Larmor radius, and it produced a beautiful periodic spectrum. But
I wanted to see what would happen if we turned up the field further, and what I
found was a 2-frequency quasiperiodic spectrum. I turned even further and found
frequency-locking and turned up even further, and found a broadband spectrum. We
didn’t know about the work of Swinney. Anyway, here was the two-frequency route
to chaos under my eyes, but I didn’t interpret it that way at the time, and my advisor
didn’t know what to make of it and switched me to something else (verifying the
dispersion relation for whistler waves). The fourth encounter with chaos was in var-
ious graduate courses. Princeton was a fantastic place to be a graduate student. I had
courses from John Krommes and Arthur Wightman, and people like that, containing
aspects of Hamiltonian chaos theory (and applications like chaotic advection well
before Aref’s famous paper). And then a bunch of us graduate students discovered
that we were all interested in nonlinear dynamics. So we formed a reading group
and read up on some papers. One week, we drove my car to the New York Academy
of Sciences conference on Nonlinear Dynamics in December ’79 and wow, I hardly
understood a thing but I was fascinated and felt this was the area I would like to work
in. Then, after that, we decided to go to John Mather’s course, where I learnt many
topics in dynamical systems theory over two and half years, culminating in what is
now called Aubry-Mather theory. But before we got to that topic, I heard a seminar
by John Greene in Spring ’80 on his overlap criterion for the breakup of tori, and I
thought this was fascinating. So I asked if he had anything similar for me to work
on, and he said yes; he was playing around with period doubling in area-preserving
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maps, and invited me to join in. That was my beginning in research in chaos. But
I would like to add two other encounters. Firstly, I took a practical course in elec-
tronics in Spring ’79 and sometime in the next 2 years made an electronic circuit to
demonstrate period-doubling sequences and chaos, like Chua’s circuit, except that
I made mine before Chua had invented his. I made another one to demonstrate the
2-frequency route to chaos, and demonstrated both at a PPL open day in November
’81 under the banner “Bifurcations Live!”. Secondly, I was fortunate to be accepted
for the ’81 Les Houches summer school on Deterministic Chaos, where I learnt a
huge amount and encountered my future wife. Thanks. [Applause]

James Yorke – OK, changing gears. I do want to make a couple of remarks
about Celso. Celso, not about the scientist, but about his personality. Everybody
knows about him as a great experimenter of foods. He’ll try anything. He’ll come to
you and say, “Here try this, you gotta try this!” And you try it, and you say, “Yah,
this is terrible!” He says, “Yes, isn’t it!” [Laughter] I wrote down in my computer
an event that occurred 10 years ago. After Celso had been in the United States for
over 15 years; 20 days from now it will be exactly 10 year when Celso experienced
this fine American food, Diet Coke. [Laughter] Now I hate to think of the idea that
he will be in Scotland without experiencing the great products of Great Britain. So
I have brought him one . . . Celso, where are you? Come on up. What we have here
is a great product from England called a Yorkie bar. [Laughter] And I didn’t want
him to miss out on Yorkie bars. So I have brought three; one for you, one for your
son, and one for your wife, because none of you should miss out on this wonderful
product. [Applause] At this time, I hand the proceedings over to Celso.

Itamar Procaccia – Please, I have to say something, I have to say something.

James Yorke – Please.

Itamar Procaccia – This of course reminds me of this wonderful meeting in
Italy, in Como, when we went together. And as you know, Jim is extremely Ameri-
can. So he comes to me and he asks me, “Is the water safe in this country?” [Laugh-
ter] “No, absolutely not! Don’t touch it!” Then I had the pleasure of seeing you walk
in with a Diet Coke for breakfast, lunch, and dinner. [Laughter]

James Yorke – I wrote my first paper on chaos when Andy Lasota, a Polish
mathematician, visited Maryland. We worked on many projects. One project was on
one-dimensional maps which were expanding. And he had the whole theory worked
out on how to do it, except he couldn’t quite make it work. So I was able to do the
algebra to make it work and we got our first paper in 1973 on expanding maps and
chaos. So that was my first chaos paper.

Celso Grebogi (Institute for Complex Systems and Mathematical Biology,
University of Aberdeen, UK) – I wrote something that I should say tonight, but
now it does not sound it right in view of how this evening is unfolding. Jim, what is
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so typical of him, had this wonderful idea for us to recount how we did start working
on chaos. It is proper for me then to relate too my first encounter with chaos. I went
to Berkeley as a post-doc in September 1978 to work with Allan Kaufman. As a side
comment, I will be back in Berkeley in 2 weeks for the Kaufmanfest to commemo-
rate Allan’s 80th. I should also mention that I am deeply grateful for Allan and his
wife Louise for taking the time and making the effort to come to Aberdeen to be
with us. Back to chaos, when I got in Berkeley in 1978, Allan has just received from
Boris Chirikov an advanced copy of his path-breaking paper which was eventually
published in Physics Reports in 1979. In order to go over the paper, Allan set up
round table discussion sessions that met every Thursday, for the whole afternoon.
The people present were Allan’s group, his former associates–some of them were
then working at Lawrence Livermore Lab., and some people from the Physics and
Math. Departments. As a curiosity, often a bright and young looking fellow would
come to the meetings and would answer all the difficult mathematical aspects of the
paper; soon we found out that he was Alan Weinstein. Oscar Lanford was another
person that often helped us with the mathematics of the theory of dynamical sys-
tems, especially the ergodic theory aspects. Those sessions were later enlarged with
the inclusion of Jerrold Marsden, and led to the discussion and development of major
projects in dynamics, especially the conservative one. Those were wonderful years
in which I learned some of the mathematics of chaotic dynamics; I spent 3 years
in Berkeley before moving to Maryland. Ed Ott has already told you the story of
when I got there and initiated the collaboration with him and Jim. It remains for
me to express to each one of you how deeply gratified and honoured I am for your
presence at this Conference.



Singular Perturbations of Complex Analytic
Dynamical Systems

Robert L. Devaney

Abstract Our goal in this paper is to describe the dynamical behavior of singular
perturbations of complex dynamical systems. Singular perturbations occur when a
pole is introduced into the dynamics of a polynomial. In this paper, we consider the
simplest possible case: start with the map z �→ zn where n > 1 and then add a pole
at the origin. For simplicity, we consider the case of maps of the form zn +λ/zn. We
then describe some of the many ways Sierpinski curve Julia sets arise in this family.
We also give a classification of the dynamics on these sets and describe the intricate
structure that occurs around the McMullen domain in the parameter plane for these
maps. Finally, we discuss some of the major differences between the cases n = 2
and n > 2.

1 Introduction

Our goal in this paper is to describe the behavior of singularly perturbed complex
analytic dynamical systems. By a singular perturbation we mean the following. Sup-
pose we have a complex analytic map F0 which, for simplicity, we will assume to
be a polynomial of degree d. Consider the new map Fλ obtained by adding a pole at
a ∈ C so that

Fλ(z) = F0(z) + λ

(z − a)m

where λ ∈ C is a parameter. The map Fλ is a singular perturbation of F0 as soon as
λ �= 0 since the degree of the map changes from d to d + m. As a consequence, the
dynamical behavior of Fλ is much richer than that of F0, although some portions of
the dynamics of F0 persist depending upon the location of the pole a.
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The reason for the interest in singular perturbations arises from Newton’s method.
Suppose we are applying Newton’s method to find the roots of a family of polyno-
mials Pλ which has a multiple root at, say, the parameter λ = 0. For example,
consider the especially simple case of Pλ(z) = z2 + λ. When λ = 0 this polynomial
has a multiple root at 0 and the Newton iteration function is simply N0(z) = z/2.
However, when λ �= 0, the Newton iteration function becomes

Nλ(z) = z2 − λ
2z

= z

2
− λ

2z

and we see that, as in the family Fλ, the degree jumps as we move away from λ = 0.
In addition, instead of just having a globally attracting fixed point at the origin, after
the perturbation, the dynamical behavior of Nλ become much richer.

For simplicity, in this paper, we will consider the simplest possible case where
F0(z) = zn and n ≥ 2. So the dynamics of F0 are well understood. If |z| < 1, the
orbit of z tends to the attracting fixed point at the origin under iteration of F0. If
|z| > 1, the orbit of z tends to ∞ which is also an attracting fixed point for F0 in the
Riemann sphere. On the circle |z| = 1, the map is well known to be chaotic; this set
is the Julia set of F0, which will be defined below.

For most of this paper, the singularly perturbed family will be of the form

Fλ(z) = zn + λ

zn

where again n ≥ 2. So the attracting fixed point at the origin is replaced by a pole,
just as in the Newton’s method example above.

We remark that we could equally well consider the case where the degree of
perturbation is d �= n, but the case d = n has some special symmetries that make
this case easier to understand.

The principal goal of this paper is to give a survey of some of the many recent
results concerning the dynamical and parameter planes for the family Fλ. A sub-
theme in this paper is to show that the case where n = 2 is quite different from
the case where n > 2. Indeed, this lower degree family of maps turns out to have
much more complicated dynamical behavior than the case where n > 2. Another
subtheme is to describe some of the interesting topological spaces that arise as the
Julia sets of the maps Fλ.

2 Preliminaries

Consider the family of maps

Fλ(z) = zn + λ

zn

where n > 2. The Julia set of Fλ, denoted by J(Fλ), is defined to be the set of
points at which the family of iterates of Fλ fails to be a normal family in the sense
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of Montel. There are many other equivalent definitions of the Julia set. For example,
the Julia set is the closure of the set of repelling periodic points of Fλ, and, in our
special case, it is also the boundary of the set of points whose orbits escape to ∞.
As a consequence, the Julia set is the set of points on which Fλ behaves chaotically,
since arbitrarily close to any point in J(Fλ) there is both a repelling periodic point
and a point whose orbit escapes to ∞. The complement of the Julia set is called the
Fatou set.

There are a number of critical points for Fλ. One critical point occurs at ∞, which
is always a fixed point. A second critical point occurs at the origin, which is mapped
directly to ∞. A straightforward computation shows that there are 2n other critical
points for Fλ given by cλ = λ1/2n. These are the free critical points for Fλ. Despite
the fact that there are 2n free critical points, there are only two critical values given
by vλ = ±2

√
λ. However, there really is only one free critical orbit since, when n

is even, both of the critical values are mapped to the same point. When n is odd, the
orbits of the two critical values behave symmetrically under the map z �→ −z. Thus
this family of maps, like the quadratic polynomial family, is a natural one-parameter
family of maps. The parameter plane (the λ-plane) is then a record of the behavior
of the free critical orbit, just as in the case of the Mandelbrot set. There are also 2n
prepoles at the points pλ = ( − λ)1/2n, i.e., Fλ(pλ) = 0.

Here is one reason why the case n = 2 is so different from the case n > 2.
Consider the second iterate of the critical points. We compute

F2
λ(cλ) = 2nλn/2 + 1

2nλ(n/2)−1
.

When n > 2, it follows that F2
λ(cλ) → ∞ as λ→ 0. But when n = 2, the second

iterate of cλ reduces to 4λ + 1/4, so F2
λ(cλ) → 1/4 as λ → 0. The reason this is

significant will become clear in the next section.
Let Cλ be the circle given by |z| = |λ|1/2n. Note that Cλ contains all of the critical

points and the prepoles. A straightforward computation shows that Fλ maps Cλ 2n
to 1 onto the straight line connecting the two critical values. We call Cλ the critical
circle and its image the critical line. This is not the case for the family zn + λ/zd

with n �= d, so this is one of the reasons why we deal only with the case n = d. One
may also check that any other circle centered at the origin is mapped n to 1 onto
an ellipse whose foci are ±vλ. Also, the straight ray connecting 0 to ∞ and passing
through cλ (a critical ray) is mapped 2 to 1 onto the straight ray connecting either vλ
or −vλ to ∞ and extending the critical line. Similarly, each straight ray connecting
0 to ∞ and passing through pλ (a prepole ray) is mapped 1 to 1 onto the straight
line passing through the origin and perpendicular to the critical line.

The maps Fλ have additional symmetries. Let ω be a primitive 2nth root of unity.
Then we have that Fλ(ωz) = ωnFλ(z). Hence the orbits of points of the form ωjz
all behave “symmetrically” under iteration of Fλ. For example, if Fi

λ(z) → ∞, then
Fi
λ(ωkz) also tends to ∞ for each k. If Fi

λ(z) tends to an attracting cycle, then so
does Fi

λ(ωkz). However, the cycles involved may be different depending on k and,
indeed, they may even have different periods. Nonetheless, all points lying on this
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set of attracting cycles are of the form ωjz0 for some z0 ∈ C. Another symmetry is
given by the involution Hλ(z) = √

λ/z. Here we have Fλ(Hλ(z)) = Fλ(z).
When |z| is large, the term λ/zn in the formula for Fλ is negligible, so Fλ(z) ≈ zn

near ∞. Consequently, the point at ∞ is a superattracting fixed point for Fλ and
it is well known that Fλ is conjugate to z �→ zn in a neighborhood of ∞, so we
have an immediate basin of attraction Bλ at ∞. Since Fλ has a pole of order n at 0,
there is an open neighborhood of 0 that is mapped n to 1 onto a neighborhood of ∞
in Bλ. If the entire basin of ∞ is disjoint from this neighborhood around the origin,
then there is a open set about 0 that is mapped n to 1 onto Bλ, and this entire set
is disjoint from Bλ. This set is called the trap door, since any orbit that eventually
enters Bλ must do so by passing through the trap door. We denote the trap door
by Tλ.

Using the symmetry Fλ(ωz) = ωnFλ(z), it is straightforward to check that Bλ, Tλ,
and J(Fλ) are all symmetric under z �→ ωz. We say that these sets possess 2n-fold
symmetry. In particular, since the critical points are arranged symmetrically about
the origin, it follows that if one of the critical points lies in Bλ (resp., Tλ), then all
of the critical points lie in Bλ (resp., Tλ). Also, the map Hλ interchanges Bλ and Tλ
and preserves both the Julia and the Fatou set.

For other components of the Fatou set, the symmetry situation is somewhat dif-
ferent: either a component contains ωjz0 for a given z0 in the Fatou set and all j ∈ Z,
or else such a component contains none of the ωjz0 with j �= 0 mod 2n. See [1] for
a proof of this fact.

3 The Escape Trichotomy

For the well-studied family of quadratic maps Qc(z) = z2 + c with c a complex
parameter there is the well known Fundamental Dichotomy:

1. If the orbit of the only free critical point 0 tends to ∞, then the Julia set of Qc is
a Cantor set;

2. If the orbit of 0 does not tend to ∞, then the Julia set is a connected set.

In this section we discuss a similar result for Fλ that we call the Escape Tri-
chotomy. Unlike the family of quadratic maps Qc, there exist three different “ways”
that the critical orbit for Fλ can tend to infinity. If the critical orbit tends to infinity,
then all of the critical values must lie in either Bλ, Tλ, or some of preimages of Tλ.
These three different possibilities lead to the three distinct types of Julia sets for Fλ
that comprise the Escape Trichotomy.

Theorem 1 (The Escape Trichotomy) Suppose n ≥ 2 and that the orbits of the free
critical points of Fλ tend to ∞. Then:

1. If one of the critical values lies in Bλ, then J(Fλ) is a Cantor set and Fλ | J(Fλ) is
a one-sided shift on 2n symbols. Otherwise, the preimage Tλ is disjoint from Bλ.
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2. If one of the critical values lies in Tλ �= Bλ, then J(Fλ) is a Cantor set of simple
closed curves (quasicircles), all concentric about the origin. This case does not
occur when n = 2.

3. If one of the critical values lies in a preimage of Bλ that is different from Tλ, then
J(Fλ) is a Sierpinski curve.

If the critical orbits never escape to ∞, then J(Fλ) is a connected set.

Several Julia sets illustrating this trichotomy and drawn from the family where
n = 4 are included in Fig. 1.

A Sierpinski curve is a very interesting topological space. By definition, a
Sierpinski curve is a planar set that is homeomorphic to the well-known Sierpinski

a. λ = 0.23 b. λ = 0.04

c. λ = –0.12

Fig. 1 Some Julia sets for z4 + λ/z4: if λ = 0.23, J(Fλ) is a Cantor set; if λ = 0.0006, J(Fλ) is a
Cantor set of circles; and if λ = 0.125i, J(Fλ) is a Sierpinski curve
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carpet fractal. But a Sierpinski curve has an alternative topological characterization:
any planar set that is compact, connected, locally connected, nowhere dense, and has
the property that any two complementary domains are bounded by disjoint simple
closed curves is known to be homeomorphic to the Sierpinski carpet [2]. Moreover,
such a set is a universal planar set in the sense that it contains a homeomorphic copy
of any compact, connected, one-dimensional subset of the plane.

We remark that the second part of the Escape Trichotomy was first proved by
McMullen [3]. He showed that this result only holds if n > 2 and λ is sufficiently
close to 0. Indeed, the critical values can never lie in Tλ when n = 2 for |λ| small
since the image of vλ tends to 1/4 as λ→ 0. When n > 2, the image of vλ tends ∞
as λ→ 0.

In Fig. 2, we show the λ plane in the case n = 4. The outer region in this image
consists of λ-values for which J(Fλ) is a Cantor set and is called the Cantor locus.
The central disk is the McMullen domain in which J(Fλ) is a Cantor set of simple
closed curves. The region between these two sets is called the connectedness locus
as the Julia sets are always connected when λ lies in this region. The other disks in
the connectedness locus correspond to Sierpinski holes in which the corresponding
Julia sets are Sierpinski curves.

Fig. 2 The parameter plane
when n = 4

4 Proof of the Escape Trichotomy

In this section we provide a rough sketch of the proof of the Escape Trichotomy
Theorem.

First let vλ be one of the critical values of Fλ and assume vλ ∈ Bλ. So ±vλ both
lie in Bλ. Let ±γ be two symmetric and disjoint curves lying in Bλ and connecting
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±vλ to ∞. Let μj be the 2n preimages of ±γ for j = 1, . . . ,2n. One checks easily
that each μj lies in Bλ, extends from 0 to ∞, and contains a single critical point.
Hence Bλ and Tλ are not disjoint. Let U be a neighborhood of ∞ that contains ±γ
and is 2n-fold symmetric. We may choose U so that U meets each μj in a single
arc. Let V = Hλ(U) where we may assume that U and V are disjoint. Then both
U and V lie in Bλ as do the μj. So J(Fλ) lies in the complement of the union of
U, V , and the μj, which is a collection of 2n simply connected sets, I1, . . . ,I2n. It
follows easily that each of the Ij is mapped univalently onto a region that contains
all of the Ik. Then standard techniques from complex dynamics show that the set of
points whose orbits remain for all time in the union of the Ik is a Cantor set and the
restriction of Fλ to this set is conjugate to the one-sided shift map on 2n symbols.
This Cantor set is J(Fλ).

For case 2, we have by assumption that Bλ and Tλ are disjoint open disks and all
of the critical points lie in F−1

λ (Tλ). We claim that F−1
λ (Tλ) is an open annulus A.

To see this note that F−1
λ (Tλ) cannot be a collection of 2n disjoint disks, for, in such

a case, each of the disks would be mapped at least 2 to 1 onto Tλ. Therefore there
would be at least 4n preimages of any point in Tλ, contradicting the fact that the
degree of Fλ is 2n. Hence at least two of the preimages of Tλ must intersect. But
then, by symmetry, all of these preimages must intersect so the preimage of Tλ is a
single open connected set. But then the Riemann – Hurwitz formula implies that A
must be an annulus that contains all of the critical points.

Now A lies in the annular region that separates Bλ and Tλ and divides this region
into two closed subannuli, Ain and Aout. Then Fλ takes each of these annuli as an
n to 1 covering onto the entire complement of Bλ ∪ Tλ. This implies that there are
a pair of subannuli that are mapped onto A, one of which lies in each of Ain and
the other in Aout. Continuing, one shows that F−j

λ (Tλ) consists of 2j−1 open, disjoint
subannuli, each of which lies in the Fatou set. The complement of the union of all
of these annuli (together with Bλ and Tλ) is then the Julia set which can be shown
to be a Cantor set of simple closed curves.

Incidentally, the above argument indicates why this case cannot happen when
n = 2. Since Ain and Aout are each mapped as 2 to 1 coverings of the annulus
C − {Bλ ∪ Tλ}, it follows that the modulus of each of these subannuli is exactly
half of the modulus of the bigger annulus. This implies that there is no room in
C − {Bλ ∪ Tλ} for any other sets, eliminating the possibility of the existence of A
and further preimages of Tλ. So vλ cannot lie in Tλ when n = 2.

We now describe the final case of the Escape Trichotomy where the critical val-
ues have orbits that eventually escape through the trap door, but the critical values
themselves do not lie in Tλ. In this case the Julia set is a Sierpinski curve. To show
this, we need to verify the five properties that characterize a Sierpinski curve. It
turns out that four and a half of these preperties are trivial to show. First and second,
since we are assuming that the critical orbit eventually enters the basin of ∞, we
have that the Julia set is given by C − ∪F−j

λ (Bλ). That is, J(Fλ) is C with countably
many disjoint, simply connected, open sets removed. Hence J(Fλ) is compact and
connected. Third, since J(Fλ) �= C, it is known that J(Fλ) cannot contain any open
sets, so J(Fλ) is nowhere dense. Fourth, since the critical orbits all tend to ∞ and
hence do not lie in or accumulate on J(Fλ), it follows that Fλ is hyperbolic on J(Fλ)
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and standard arguments show that J(Fλ) is locally connected (see [4]). Hence J(Fλ)
fulfills the first four of the conditions to be a Sierpinski curve.

To finish proving that J(Fλ) is a Sierpinski curve we need to show that the bound-
aries of Bλ as well as all of the preimages of Bλ are simple closed curves and that
these boundary curves are pairwise disjoint. Now, since Bλ is a simply connected
component of the Fatou set, it follows that the boundary of Bλ is locally connected.
However, this boundary may have pinch points as in the case of quadratic Julia sets
such as the basilica or Douady’s rabbit. This is the only non-standard portion of the
proof. However, assuming these boundaries are indeed simple closed curves, they
cannot intersect because any such intersection point would necessarily be a critical
point. This follows because, for some high power k, Fk

λ takes both of these curves
to the boundary of Bλ, so the orbit of any intersection point must pass through a
critical point since Fk

λ is locally 2 to 1 there. For the proof that these boundaries are
simple closed curves, we refer to [1].

5 Classification of Escape Time Julia Sets

As can be seen in Fig. 2, there are a large number of Sierpinski holes in the parameter
planes for these maps. We say that such a hole has escape time κ if, for each λ in the
hole, the critical orbits land in Bλ at iteration κ . A parameter λ is called the center
of the Sierpinski hole if the orbit of the critical points of Fλ all land on the point at
∞ rather than tend to ∞. The following result is proved in [5, 6].

Theorem 2 There is a unique center of each Sierpinski hole. Moreover, there are
exactly (n − 1)(2n)κ−3 Sierpinski holes with escape time κ in the parameter plane.

The proof of this result uses quasiconformal surgery techniques to show that there
is a unique center of each Sierpinski hole. Given this, the equation for the centers of
the holes, namely Fκ−1

λ (cλ) = 0, is easily seen to reduce to a polynomial equation
of degree (n − 1)(2n)κ−3, and so the roots of this equation are all distinct.

As an example of the above count of Sierpinski holes, when n = 3 there are
2 Sierpinski holes in the parameter plane with escape time 3, 12 holes with escape
time 4, 432 Sierpinski holes with escape time 6, and 120, 932, 352 holes with escape
time 13. All of the parameters from this large collection of holes thus have Julia sets
that are homeomorphic, so the natural question is: are the dynamics on these Julia
sets the same?

The answer to this question is given in [7]:

Theorem 3 (Escape Time Conjugacy) Let

Fλ(z) = zn + λ

zn
and Fμ(z) = zn + μ

zn

where λ and μ are parameters that lie in Sierpinski holes.

1. If λ and μ lie in the same Sierpinski hole, then Fλ and Fμ are topologically
conjugate on their Julia sets;
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2. If λ and μ lie in Sierpinski holes with different escape times, then Fλ and Fμ are
not topologically conjugate on their Julia sets;

3. Suppose λ and μ are centers of different Sierpinski holes that have the same
escape time. Let α be a primitive (n − 1)st root of unity. Then Fλ and Fμ are
topologically conjugate on their Julia sets if and only if, for some integer j,

• μ = α2jλ, or
• μ = α2jλ.

Therefore, if λ and μ are parameters lying in different Sierpinski holes whose
escape times are the same, then Fλ and Fμ are topologically conjugate on their
Julia sets if and only if the centers of these Sierpinski holes have the above
property.

The proof of the first part of this theorem follows by quasiconformal surgery
techniques. The second part follows from the fact that any conjugacy between Fλ
and Fμ must take ∂Bλ to ∂Bμ, ∂Tλ to ∂Tμ, and the kth preimages of ∂Tλ to the
corresponding preimages of ∂Tμ. But the preimages of Tλ and Tμ containing the
critical points are special: their boundaries are mapped 2 to 1 onto their images, and
these are the only preimages of ∂Tλ and ∂Tμ that have this property. Hence, two such
conjugate maps must have the same escape times. Finally, for part three, it suffices
to consider the maps that are the centers of the corresponding holes. But these maps
are “critically finite” in the sense that all of the critical orbits eventually land on
the fixed point at ∞. By Thurston’s Theorem [8], in the orientation preserving case,
two such maps can be conjugated by a Möbius transformation. But such a conjugacy
must then take ∞ to ∞ (since ∞ is the only superattracting fixed point) and 0 to
0 (since 0 is the only preimage of ∞). It follows that the conjugacy must be of the
form z �→ αz. Then, comparing coefficients in the conjugacy equation

αFλ(z) = Fμ(αz)

shows that αn−1 = 1 andμ = α2λ. In the case of an orientation reversing conjugacy,
it is easy to check that Fλ is conjugate to Fλ via z �→ z, so this gives all of the
possible conjugate centers of Sierpinski holes.

This result allows us to give a precise count of the number of different conjugacy
classes of escape time Sierpinski curves, because only those holes that are symmet-
ric under rotation by successive squares of a primitive (n − 1)st root of unity or by
complex conjugation have the same dynamics.

Theorem 4 (Number of Conjugacy Classes) The number of topological conjugacy
classes of escape time Sierpinski curve Julia sets with escape time κ is given by

1. (2n)κ−3 if n is odd;
2. (2n)κ−3/2 + 2κ−4 if n is even.

For example, when n = 3, we have seen that there are exactly 432 Sierpinski
holes in this family with escape time 6, but there are only 216 different conjugacy
classes of such maps. Similarly, there are 120, 932, 352 Sierpinski holes with escape
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time 13 but only 60, 466, 176 different conjugacy classes, so clearly there is a great
variety of different dynamical behaviors on these escape time Sierpinski curve Julia
sets.

The reason for the different number of conjugacy classes when n is even and odd
comes from the fact that, when n is odd, there are no Sierpinski holes that meet the
real axis (and so have no comple conjugate holes). Along the real axis there is only
a pair of Mandelbrot sets and the McMullen domain. As a consequence, there are
always exactly n − 1 different Sierpinski holes with conjugate dynamics. See Fig. 3
for a picture of the parameter plane when n = 3. When n is even, the situation is
very different; there is always a Cantor necklace along the negative real axis (more
about this in Sect. 7). See Figs. 2 and 5 for pictures of the parameter planes when
n = 4 and n = 2.

Fig. 3 The parameter plane for the family z3 +λ/z3 and several magnifications. The central disk is
the McMullen domain M. The simple closed curves in the Theorem accumulate on the boundary
of M
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6 Structure Around the McMullen Domain

Recall that, when n > 2, if |λ| is sufficiently small, vλ lies in Tλ and J(Fλ) is a Cantor
set of simple closed curves. The entire region in the parameter plane for which this
occurs is called the McMullen domain, M. It is known [9] that M is an open,
simply connected region that is bounded by a simple closed curve. In this section
we describe some of the remarkable structure that surrounds M in the parameter
plane. Since there is no McMullen domain when n = 2, the structure we describe
below is absent in this case.

In Fig. 3 we display the parameter plane for n = 3 together with two succes-
sive magnifications around M. Note that there appears to be a collection of closed
curves surrounding ∂M that pass through more and more Sierpinski holes as these
curves approach ∂M. Closer inspection seems to indicate that these curves also pass
through small copies of Mandelbrot sets as well. This is indeed true, as the following
result was shown in [5, 10].

Theorem 5 (Rings around the McMullen domain) For each n ≥ 3, the McMullen
domain is surrounded by infinitely many simple closed curves Sk for k = 1,2, . . .
having the property that:

1. Each curve Sk surrounds M as well as Sk+1, and the Sk accumulate on the
boundary of the McMullen domain as k → ∞.

2. The curve Sk meets the centers of τ n
k Sierpinski holes, each with escape time

k + 2, where

τ n
k = (n − 2)nk−1 + 1.

3. The curve Sk also passes through τ n
k centers of baby Mandelbrot sets, and these

Mandelbrot sets and Sierpinski holes alternate as the parameter winds around
Sk.

By a center of a baby Mandelbrot set, we mean the parameter drawn from the
main cardioid of the Mandelbrot set for which the corresponding attracting cycle
is actually superattracting, i.e., one of the critical points of Fλ is periodic. It turns
out that all of these baby Mandelbrot sets are buried in the sense that they do not
touch the outer boundary of the connectedness locus in the parameter plane. Then
it is known that any parameter drawn from the main cardioid of this Mandelbrot set
has a Julia set that is also a Sierpinski curve. These Sierpinski curves are dynami-
cally very different from the escape time Sierpinski curves produced by the Escape
Trichotomy, since each has an attracting cycle whose boundary curves are disjoint
simple closed curves that are invariant under some iterate of Fλ. For an escape time
Sierpinski curve, there is only one invariant boundary curve, namely ∂Bλ. For a
proof that parameters from the main cardioids of buried baby Mandlebrot sets also
yield Sierpinski curves, see [5, 11].

Here are some of the ideas involved in the proof of the rings around M theorem.
When λ satisfies |λ| < 2−2n/(n−1), one checks easily that |vλ| < |cλ|. So the critical
circle Cλ lies in the exterior of its image, the critical line. Then there is a preimage
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of Cλ, ζ 1
λ , that lies outside of Cλ and is mapped n to 1 onto Cλ. Then there is an

outer preimage of ζ 1
λ , ζ 2

λ , that is mapped n to 1 to ζ 1
λ , and so forth. We thus find an

infinite collection of closed curves ζ k
λ moving outward from the critical circle in the

dynamical plane and having the property that each ζ k
λ contains exactly nk · 2n points

that are mapped by Fk
λ to one of the critical points in Cλ and the same number of

points that are similarly mapped to a prepole in Cλ. Now Fλ takes the interior of
Cλ to the complement of the critical line as an n to 1 covering map. So one can
consider the map φ(λ) = Fλ(vλ). This is a map that takes the parameter plane to the
dynamical plane. One can show that this map is univalent on each of the n−1 sectors
in the parameter plane bounded by the straight rays through the “spines” of the n−1
large Mandelbrot sets symmetrically arranged around the origin. Moreover, φ takes
each such sector onto C minus a pair of half-lines.

Now consider a particular kth preimage of one of the critical points lying in Cλ
that lies in ζ k

λ . Call this point uλ. Then uλ varies analytically with λ as λ ranges over
each of the sectors. So we can consider the analytic map �(λ) = φ−1(uλ). This
map takes the sector in the parameter plane to itself. Then one can show using the
Schwarz Lemma that � has a unique fixed point in this sector. This fixed point is a
parameter λ∗ for which φ(λ∗) = uλ∗ , i.e., Fλ∗ (vλ∗ ) lands on the given kth preimage
of a critical point. Then either this critical point or its negative is fixed by Fk+2

λ∗ . This
produces a center of a baby Mandelbrot set for each of the given critical points on ζ k

λ

(modulo an identification as λ winds around the origin). We similarly get centers of
Sierpinski holes by letting uλ be a preimage of a prepole instead of a critical point.

7 Cantor Necklaces

There is another structure called Cantor necklaces that occurs in both the dynamical
and parameter planes for these maps. A Cantor necklace is a planar set that is home-
omorphic to the following set. Consider the Cantor middle-thirds set lying in the
unit interval. Replace each removed open interval with a circular open disk whose
diameter is the same as the length of the removed interval and whose boundary
touches the two endpoints of the removed interval. The union of the Cantor set with
these countably many open disks is a Cantor necklace.

To see Cantor necklaces in these families of maps, we restrict for simplicity to the
case n = 2 (though the same proof works more or less verbatim when n > 2). Let
the four critical points of Fλ be denoted by c0, . . . ,c3 where the cj vary analytically
with λ and, when λ ∈ R+, c0 ∈ R+ and the other critcal points are arranged around
the origin in counterclockwise fashion. For each λ in the connectedness locus, we
may pick ν > 1 so that the circle of radius ν lies in Bλ. Let βλ be the preimage
of this circle that lies in Bλ and let τλ be the corresponding preimage in Tλ. Then
consider the following two regions I0 and I1. The set I0 is the smaller of the two
regions bounded by the critical rays through c0 and c3 and the curves βλ and τλ. Let
I1 = −I0. Then Fλ maps both I0 and I1 univalently over I0 ∪ I1. Standard techniques
from complex dynamics then show that the set of points whose orbits remain for all
time in I0 ∪ I1 is a Cantor set, just as in part 1 of the Escape Trichotomy.
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Now there is a fixed point in I0 and a preimage of this fixed point in I1 and one
checks easily that both of these points lie in ∂Bλ. Similarly, there are two preimages
of the prefixed point in ∂Tλ, and pre-preimages of these points in two preimages of
∂Tλ. Continuing in this manner, we may adjoin all of these appropriate preimages
of Tλ to the “endpoints” in the Cantor set and the resulting set is a Cantor necklace.

To see at least a portion of the Cantor necklace in the parameter plane when
n = 2, consider the region D in parameter plane that is the portion of the disk of
radius 2 centered at the origin that lies in the left half plane. Since the second iterate
of the critical point is given by the map φ(λ) = 4λ + 1/4, it follows that φ(D) is a
half disk that strictly contains D. Now, for each λ ∈ D, we can construct the Cantor
set in the dynamical plane as above. Furthermore, if λ ∈ D, then the set I1 is easily
seen to be contained in the disk D for each λ ∈ D, provided the outer radius ν < 2.
(The Cantor set construction holds even if λ is not in the connectedness locus.)

Now fix any point zλ in the Cantor set. Here zλ is a point with a given itinerary
in I0 ∪ I1, so zλ varies analytically with λ. Thus we have two maps that are defined
on D, the map φ and zλ. The map φ is invertible, so one may check easily that the
map λ �→ φ−1(zλ) takes D inside itself. By the Schwarz Lemma, this map then has
a unique fixed point in D. This point is the unique parameter for which the second
iterate of the critical points all land on the given point in the Cantor set. Hence we get
one such parameter corresponding to each point in the Cantor set, and these points
then form the Cantor set portion of the Cantor necklace in the parameter plane. To
get the other part of the necklace, we adjoin the associated Sierpinski holes just as
we did in the dynamical plane case.

One may extend this necklace to include parameters for which the critical orbits
land on the portion of the Cantor set in I0. See [12] for details. Figure 4 displays the

Fig. 4 A portion of the
Cantor necklace in the
parameter plane for the
family z2 + λ/z2. Note the
large Sierpinski hole along
the negative real axis flanked
by two smaller Sierpinski
holes which are, in turn, each
flanked by two smaller
Sierpinski holes, etc
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portion of the Cantor necklace corresponding to parameters for which the critical
orbits land on points in I1.

8 The Case n=2

As mentioned above, the situation in the case n = 2 is very different. We no longer
have a McMullen domain. Rather, the following result is shown in [12]:

Theorem 6 Suppose n = 2. Then, in every neighborhood of the origin in the param-
eter plane, there are infinitely many disjoint open sets Oj, j = 1, 2, 3, . . ., containing
parameters having the following properties:

1. If λ ∈ Oj, then the Julia set of Fλ is a Sierpinski curve, so that if λ ∈ Oj and
μ ∈ Ok, the Julia sets of Fλ and Fμ are homeomorphic;

2. But if k �= j, the maps Fλ and Fμ are not topologically conjugate on their respec-
tive Julia sets.

In Fig. 5 we display the parameter plane for the case n = 2 together with a
magnification. The large central region is not a McMullen domain; rather it is a
Sierpinski hole and it does not contain the origin.

We sketch the proof of this. We shall show that there are infinitely many open
intervals in R− in any neighborhood of the origin in parameter space in which the
critical orbit eventually escapes. These Sierpinski holes need not lie along R−; we
choose this just to simplify the proof.

Recall that, when n = 2, the four critical points and four prepoles of Fλ all lie on
the critical circle of radius |λ|1/4 centered at the origin. Also, the second image of
all of the critical points is given by

Fig. 5 The parameter plane for the family z2 + λ/z2 and a magnification centered at the origin
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F2
λ(cλ) = 4λ+ 1

4

and so λ �→ F2
λ(cλ) is an analytic function of λ that is a homeomorphism. If

−1/16 < λ < 0, then one checks easily that the critical circle is mapped strictly
inside itself. It follows that J(Fλ) is a connected set and Bλ and Tλ are disjoint. In
particular, the second image of the critical point lands on the real axis and lies in the
complement of Bλ in R.

We claim that there is an increasing sequence λ2,λ3, . . . in R− with λj → 0 and

Fj
λj

(cλj ) = 0 but Fi
λ(cλj ) > 0 for all i < j. To see this, note that, since F2

λ(cλ) = 4λ+
1/4, this quantity increases monotonically toward 1/4 as λ→ 0−. Now the orbit of
1/4 remains in R+ for all iterations of F0 and decreases monotonically to 0. Hence,
given N, for λ sufficiently small, Fj

λ(cλ) also lies in R+ for 2 ≤ j ≤ N and moreover
this finite sequence is decreasing. Now suppose β < α < 0. We have Fβ (x) < Fα(x)

for all x ∈ R+. Also, F2
β (cβ ) < F2

α(cα) < 1/4. Hence Fj
β (cβ ) < Fj

α(cα) for all j for

which Fj
β (cβ ) ∈ R+. The result then follows by continuity of Fλ with respect to λ.

Thus we have infinitely many Sierpinski holes in the parameter plane converging
to 0 in R−. Since the escape times of these Sierpinski holes are all different, it
follows that any two parameters drawn from diferent holes in this collection have
non-conjugate dynamics (as shown in Section 5).

Note that λ2 = −1/16. Using the previous observation, we may find open inter-
vals Ij about λj for j = 2, 3, . . . having the property that, if λ ∈ Ij, then Fj

λ(cλ) ∈ Tλ,

and so Fj+1
λ (cλ) ∈ Bλ. Therefore, Fn

λ(cλ) → ∞ as n → ∞, and the Escape Tri-
chotomy then shows that J(Fλ) is a Sierpinski curve.

9 Julia Sets Converging to the Unit Disk

There is another way that the case n = 2 differs sharply from the case n > 2. Here
the situation involves the structure of the Julia sets of Fλ when λ is close to 0. As
we saw above, when n > 2 and |λ| is small enough, λ lies in the McMullen domain
and so the corresponding Julia sets are always Cantor sets of concentric simple
closed curves. But when n = 2, the Julia sets vary wildly; often, but not always,
they are Sierpinski curves. For example, in Fig. 5, note that there is a copy of the
Mandelbrot set whose “tail” actually extends to the origin. Whenever λ is chosen
in this set, J(Fλ) contains small pieces that are homeomorphic to the corresponding
Julia set from the quadratic family z2 + c together with infinitely many preimages
of ∂Bλ (as well as other buried points).

In Fig. 6, note that as the parameter approaches 0, the size of the preimages of the
trap door seems to decrease and the Julia set seems to grow “larger.” This is indeed
the case, for in [13] it was shown:

Theorem 7 When n = 2, as λ → 0, J(Fλ) converges to the closed unit disk in the
Hausdorff topology. On the other hand, when n > 2, this is not the case, as the
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λ = –1/4 λ = –1/16

λ = –0.001λ = –0.01

Fig. 6 Sierpinski curve Julia sets for various negative values of λ in the case n = 2. All of these
sets are homeomorphic, but the dynamical behavior on each is very different

Fatou set always contains an annular component that contains a round annulus of
some fixed width for all λ lying in some disk about the origin.

This first part of this result is somewhat surprising, since it is well known that
Julia sets can never contain open sets unless the Julia set is the entire Riemann
sphere. So here we find Julia sets getting arbitrarily close to the unit disk as λ→ 0.
Of course, when λ = 0, there is an “implosion” and the Julia set is equal to the unit
circle, not the unit disk.

The reason why these Julia sets converge to the closed unit disk D is as follows.
Suppose that this is not the case. Then, given any sufficiently small ε > 0, we may
find a sequence of parameters λj → 0 and another sequence of points zj ∈ D such
that J(Fλj ) ∩ B2ε(zj) = ∅ for each j. Here B2ε(zj) is the disk of radius 2ε about zj.
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Since D is compact, there is a subsequence of the zj that converges to some nonzero
point z∗ ∈ D. For infinitely many parameters in the corresponding subsequence,
we then have J(Fλj ) ∩ Bε(z∗) = ∅. Hence we may assume at the outset that we are
dealing with a subsequence λj → 0 such that J(Fλj ) ∩ Bε(z∗) = ∅.

Now consider the circle of radius |z∗| centered at the origin. This circle meets
Bε(z∗) in an arc γ of length �. Choose k so that 2k� ≥ 2π . Since λj → 0, we may

choose j large enough so that
∣
∣
∣Fi
λj

(z) − z2i
∣
∣
∣ is very small for 1 ≤ i ≤ k, provided z

lies outside the circle of radius |z∗|/2 centered at the origin. In particular, it follows
that Fk

λj
(γ ) is a curve whose argument increases by at least 2π , i.e., the curve Fk

λj
(γ )

wraps at least once around the origin. As a consequence, the curve Fk
λj

(γ ) must
meet the Cantor necklace in the dynamical plane. But the boundary of this neck-
lace lies in J(Fλj ). Hence J(Fλj ) must intersect this boundary. Since the Julia set is
backward invariant, it follows that J(Fλj ) must intersect Bε(z∗). This then yields a
contradiction, and so the result follows.
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Heteroclinic Switching in Coupled Oscillator
Networks: Dynamics on Odd Graphs

Peter Ashwin, Gábor Orosz, and Jon Borresen

Abstract We review some examples of dynamics displaying sequential switching
for systems of coupled phase oscillators. As an illustration we discuss a simple fam-
ily of coupled phase oscillators for which one can find robust heteroclinic networks
between unstable cluster states. For N = 2k + 1 oscillators we show that there
can be open regions in parameter space where the heteroclinic networks have the
structure of an odd graph of order k; a class of graphs known from permutation
theory. These networks lead to slow sequential switching between cluster states that
is driven by noise and/or imperfections in the system. The dynamics observed is
of relevance to modelling the emergent complex dynamical behaviour of coupled
oscillator systems, e.g. for coupled chemical oscillators and neural networks.

1 Introduction

Coupled phase oscillator networks provide a set of models that are very useful in
a variety of applications ranging from theoretical and computational neuroscience
[10, 11, 17, 18] to coupled chemical reactors [21]. They provide models that are
amenable to variety of approaches aimed at understanding the emergent phenom-
ena of such nonlinear dynamical systems. These approaches include “continuum
approximations” as well as detailed studies of the dynamics and bifurcations of
small numbers of oscillators; see [31] for a review. This paper reviews some recent
results on switching dynamics for small numbers of oscillators. It is also explained
how one of the dynamical structures (heteroclinic networks with odd graph struc-
tures) can be observed on scaling up to large numbers of oscillators.

The phase oscillator approach can be used in applications where the dynamics
of individual elements can be modelled as a limit cycle oscillator and that can be
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characterised by a scalar phase variable. This is particularly the case if there is weak
coupling between the oscillators, or more specifically if the timescale associated
with the coupling is much longer than the timescale associated with relaxation onto
the limit cycle [6, 10, 17]. Moreover, phase models are typically useful even far
from the weak coupling limit, especially concerning their predictions for generic
bifurcations and attractors.

Clearly, the structure of coupling between oscillators is critical to determine what
sort of dynamics is possible on a network of coupled oscillators, and there is a
vast literature looking at the topology of coupling and the influence this has on the
network dynamics; see for instance [1] and references therein. For the particular
problem of synchronization this has been investigated by many authors, allowing
for a variety of effects such as time-dependent coupling [7, 25] or delay in coupling
[19, 32]. For the main part of this paper we do not address such issues, but rather
explore the question of generic but complicated dynamics that can appear even for
very simple all-to-all (fully symmetric) coupling. Indeed, this emphasises that not
only the network structure, but also the actual coupling function is vital in determin-
ing the emergent dynamics of the system.

In this paper we review some recent work on the detailed dynamics of globally
coupled phase oscillators, concentrating on the appearance of robust heteroclinic
network attractors. These attractors manifest themselves in the dynamics as a “per-
sistent transient” of slow switching between a number of unstable states that is
driven by noise and/or imperfections. Such dynamics were first discovered in [17]
and further studies have been made in [22, 23], mostly working with large popula-
tions. In Sect. 2 we review the fundamental dynamical principles of coupled phase
oscillator systems with permutation symmetry. In Sect. 3 we discuss a detailed study
of bifurcations leading to sequential slow switching attractors and show that they are
only possible for N ≥ 4; see [4]. In Sect. 4 we present a new result arising from [8]
showing that a particular combinatorial structure can appear in the dynamics for
coupling as in [17], for open sets of system parameters and arbitrarily large N.

Consider N identical phase oscillators that are coupled identically to each other

θ̇i = ω + K

N

N
∑

j=1

g(θi − θj) , (1)

where the dot denotes differentiation with respect to time t and θi ∈ T = [0, 2π ),
i = 1 . . .N, i.e. the state space is the N-torus TN . We will use the vector notation
θ = col[ θ1, . . . , θN ]. The function g : [0, 2π ) → R is a 2π -periodic coupling func-
tion that we will assume to be smooth. We include a coupling strength parameter K
for convenience but will set this to K = 1 by rescaling time.

For a given coupling function g and number of oscillators N, the dynamics
of (1) can include a wide range of behaviours including in-phase (synchronous)
oscillations, antiphase oscillations, and indeed arbitrarily complex partially syn-
chronized cluster states that are stable [29]. However, system (1) can give much
more complicated dynamics than just stable clustering. If the cluster states are of



Heteroclinic Switching in Coupled Oscillator Networks 33

saddle type, robust heteroclinic connections may be found. This is because clus-
ter states may have unstable manifolds contained within the stable manifold of
another state; see, for example, [2, 17, 22]. This is not possible for the coupling
function g(ϕ) = − sin (ϕ) of the Kuramoto model [24] or the coupling function
g(ϕ) = − sin (ϕ + α) of the Kuramoto-Sakaguchi model [3], but it is possible for
slightly more complicated coupling functions.

Choosing the coupling function

g(ϕ) = − sin (ϕ + α) + r sin (2ϕ) , (2)

robust heteroclinic connections can be found that exist for open sets of parameter
values on the (α, r) parameter plane [17]. Note that this coupling can be obtained
from phase reduction of coupled Hodgkin-Huxley neurons with synaptic coupling
[18]. More general couplings are considered for example in [12, 29]. We remark that
system (1) can have highly nontrivial behaviour even for the Kuramoto coupling
function if the frequencies are made non-identical; see [33]. In Sects. 3 and 4 we
study the dynamics of certain parameter regimes for coupling (2), to illuminate the
dynamics of system (1) and to better understand the graph structure of a possible
heteroclinic network as N increases.

2 Dynamics and Bifurcations with SN Symmetry

Here we review techniques from dynamical systems and bifurcation theory with
symmetry [16, 15, 26, 27], noting that (1) is symmetric under all permutations of
coordinates. In other words the dynamics is equivariant under the set SN of permu-
tations acting by

σ (θ1, · · · , θN) = (θσ (1), · · · , θσ (N)) . (3)

In addition to this, the system (1) has a symmetry given by translation of all
components by the same phase shift: for all ρ ∈ [0, 2π ) we have invariance under

ρ(θ1, · · · , θN) = (θ1 + ρ, · · · , θN + ρ) , (4)

meaning that the system has symmetry SN × S1. This has many dynamical con-
sequences, the most obvious of which is that there will be an in-phase or fully
synchronized solution

θi(t) = Ωt + r, (5)

for i = 1, · · · , N where Ω = ω + g(0) and r is constant. This solution may or may
not be an attractor depending on its linear stability.

Another consequence of symmetry is that there will be a number of invariant
subspaces forced by the symmetry; the most general of these being the “rotating
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block” structures discussed in [6, 9]. We will focus on a particular case here; the M
cluster states, for 1 ≤ M ≤ N.

We define an M-cluster partition A = {A1, . . . , AM} of {1, . . . , N} to be a partition
such that

{1, . . . , N} =
M
⋃

p=1

Ap , (6)

where the Ap are pairwise disjoint sets (Ap ∩ Aq = ∅ if p �= q). Summing up the
cluster sizes ap = |Ap| gives

M
∑

p=1

ap = N . (7)

Denoting the phase of the p-th cluster by ψp, i.e. defining ψp: = θi = θj =
θk = . . . such that {i, j, k, . . .} ⊂ Ap we obtain

ψ̇p = ω + 1

N

M
∑

q=1

aq g(ψp − ψq) , (8)

for p = 1, . . . , M. The dynamics in such a subspace can be very complex, but ini-
tially we investigate simple clustering behaviour

ψp = Ω t + φp , (9)

for p = 1, . . . , M, where Ω ∈ R+ and φp ∈ T. Since θ describes the phases of
oscillators, (9) describes a periodic orbit in the state space of those oscillators.

Note that typical points in such a cluster state have symmetries obtained by all
permutations within a cluster, i.e. an M-cluster state with partition A will have in
terms of spatial symmetries

Sa1 × · · · × SaM . (10)

If there are any spatiotemporal symmetries these must be of the form of some
cyclic permutation of clusters of equal size: they must be a semidirect product of
permutations with the cycling

(

Sa1 × · · · × Sa�

)k ⊗ Zk , (11)

where the M = k� clusters permuted in groups of � and k (a1 + · · · + a�) = N [6].
Note that the S1 action is such that one can reduce the full dynamics of (1) to the
dynamics of the phase differences and a translation on the S1 orbit (group orbit).
This means that, for example, the periodic orbits of (1) can be found by examining
equilibria of the phase differences.
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Linearisations of systems near equilibria with symmetries have structure forced
upon them by the presence of symmetry; they must be block-diagonal with respect
to the isotypic decomposition of the tangent space with respect to the group that
fixes the equilibrium (the isotropy subgroup of the equilibrium). As a consequence,
generic bifurcations with any symmetry group will have a centre manifold on which
the action of the isotropy subgroup is an irreducible representation (irrep) [15, 16].
The permutation action of SN on TN neatly splits into two irreps, one which is a
1-dimensional trivial action and one which is an irreducible (N − 1)-dimensional
action. (There are other nontrivial irreps for SN but they do not appear in (1).) More-
over, the nontrivial irrep corresponds precisely to the phase difference coordinates.

The generic SN symmetry breaking bifurcations for the nontrivial irrep have been
studied and classified; see, for example, [15]. However, the topology of the torus
TN can and does easily associate local symmetry breaking bifurcations with global
bifurcations, as we will see in Sect. 3; see also [3, 6]. Typically, SN symmetry break-
ing bifurcation from a stable fully symmetric state will result in a system with no
nearby stable branches after bifurcation; this is associated in our system with global
bifurcations that may lead to a stable cluster state or (only for N ≥ 4) a robust
heteroclinic attractor.

Note that periodic solutions of (1) with symmetry (11) can be interpreted in terms
of cluster states in state space; for instance,

• SN corresponds to in-phase solutions θk = Ωt + γ , k = 1, . . . , N
• ZN corresponds to anti-phase or “splay phase” solutions θk = Ωt + γ + 2kπ/N,

k = 1, . . . , N
• (SN/2)2 ⊗ Z2 corresponds to antiphase solutions such as θk = Ωt + γ , θk+N/2 =
Ωt + γ + π , k = 1, . . . , N/2

where Ω ∈ IR+ and γ ∈ Tj see (5) and (9).
Finally, we note that symmetry means that cluster states will appear in conjugate

families; if a particular clustering is realised as a periodic orbit then so will all
permutations of that clustering. This means that subspaces with conjugate isotropy
subgroups will support identical dynamics.

3 Bifurcations for Three and Four Globally
Coupled Oscillators

Returning to the specific system (1, 2), one can calculate the bifurcation behaviour
in detail for small numbers of oscillators; this was done for N = 3 and N = 4 in
[3] and here we briefly summarise some of the results, in particular with the aim of
identifying where heteroclinic networks appear in parameter and state space.

Figure 1 shows the bifurcation diagram for N = 3 in the (r,α) plane and Table 1
describes briefly each of the lines of codimension-one bifurcations (both reproduced
from [3]). The bifurcation diagram is shown surrounded by phase portraits in the
(θ1 − θ2, θ1 − θ3) ∈ [0, 2π )2 plane.
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Fig. 1 Bifurcation curves in the (r,α) parameter plane for system (1) with coupling (2) in case of
N = 3 (reproduced from [3]). The phase portraits are shown for (θ1 − θ2, θ1 − θ3) ∈ [0, 2π )2.
The codimension-one bifurcations are listed in Table 1. Note that there are heteroclinic/homoclinic
cycles only on the lines BE, ED and HCD for N = 3. There are codimension-two bifurcations:
A – cusp point; E – interaction of transcritical homoclinic and saddle-node homoclinic; D –
interaction of saddle-node heteroclinic and saddle connection heteroclinic; H – degenerate Hopf
bifurcation of antiphase

Moving on to the case for N = 4 oscillators, there are 12 invariant regions corre-
sponding to points on T4 that lift to the set

{(θ1, θ2, θ3, θ4) : θσ (1) ≤ θσ (2) ≤ θσ (3) ≤ θσ (4) ≤ θσ (1) + 2π}. (12)

for permutations σ ∈ S4. Figure 2 illustrates one of these invariant tetrahedra plotted
in the (θ1 − θ2, θ1 − θ3, θ1 − θ4) ∈ [0, 2π )3 space.

In Fig. 3 a bifurcation diagram is shown for the case N = 4 in the (r,α) plane,
while Table 2 lists the codimension-one bifurcations (both reproduced from [3]).
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Table 1 The letters label the curves of codimension-one bifurcations for N = 3 illustrated in Fig. 1
(reproduced from [3])

ID Pitchfork bifurcation on invariant lines
BEGH Transcritical bifurcation at 0
HFAED Saddle-node bifurcation on invariant lines
BE Transcritical homoclinic bifurcation
ED Saddle-node homoclinic bifurcation
BD Saddle-node of limit cycles
HCD Saddle connection heteroclinic bifurcation
DJ Pitchfork bifurcation
DK Saddle-node bifurcation
DL Saddle-node bifurcation

Observe that there is a similar set of bifurcations as in Fig. 3. In particular, for r
small and −π/2 < α < π/2 we have stable in-phase solutions while for r small
and π/2 < α < 3π/2 we have stable antiphase solutions. For both N = 3 and
N = 4 the point (r,α) = (0,π/2) acts as an “organizing centre” for a number of
lines of bifurcations that coincide at this point. Note that the Kuramoto-Sakaguchi
coupling function (Eq. (2) with r = 0) is highly degenerate at the point α = π/2.

In the shaded region BEDTLV of Fig. 3, the dynamics consists of robust hetero-
clinic cycles between symmetrically related cluster states with S2 × S2 symmetry.

�2

�2
�4

S2 × S2

S3 × S1

(S2)2 ⊗

Fig. 2 Diagram showing one of the invariant regions (12) in state space for N = 4 oscillators
(reproduced from [3]). This shows the relationship between the subspaces with differing symme-
tries. The point at the centre is the antiphase solution with Z4 symmetry and the faces of the
invariant tetrahedron is made of points with S2 symmetry
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Fig. 3 Bifurcation diagram for N = 4 oscillators in the (α, r) plane (adapted from [3]); see Table 2
for a description of the bifurcation curves. There are robust heteroclinic cycles between 2-cluster
states in the shaded region outlined by BEDTLV . These cycles are attractors to the left of the line
BM. There is a complicated sequence of bifurcations in the near vicinity of point D that not is
discussed here in detail

These cycles are attracting to the left of the curve BM. The S2 × S2
symmetry corresponds to 2-cluster states where each cluster contains two oscilla-
tors. For example, the partition

A = {{1, 2}, {3, 4}} , (13)

gives [ a1, a2 ] = [ 2, 2 ] and the corresponding cluster phases can be defined as

ψ1: = θ1 = θ2 ,

ψ2: = θ3 = θ4 .
(14)

Table 2 A list of codimension-one bifurcations for N = 4 that are illustrated in Fig. 3 (reproduced
from [3])

BEGH Transcritical-pitchfork bifurcation at 0
BQ Inverse pitchfork bifurcation of saddles at the point with (S2)2 ⊗ Z2 symmetry
BV Pitchfork/heteroclinic bifurcation of solutions with symmetry S2 × S2 (in transversal

to S2 × S2 direction)
BM Hopf bifurcation of antiphase points Z4 and change of stability of robust heteroclinic

cycles
HAED Saddle-node bifurcation to solutions with symmetry S3 × S1
IFGD Transcritical bifurcation of solutions with symmetry S3 × S1
DK Saddle connection bifurcation (not heteroclinic) in subspace with symmetry S2
DJ Transcritical bifurcation of solutions with symmetry S3 × S1
DTL Saddle-node bifurcation inside tetrahedra on S2 plane
BTR Pitchfork bifurcation of limit cycles within tetrahedron
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Investigating the simple clustering behaviour (9) in these subspaces one may find
the cluster states

[ψ1,ψ2 ] = Ω t + [ a, b ] , [ψ1,ψ2 ] = Ω t + [ b, a ] , (15)

where only the phase difference a − b can be determined. By droppingΩt we intro-
duce the notation

P1 = [ a, a, b, b ] , P2 = [ b, b, a, a ] , (16)

for these cluster states.

S3 × S1

S3 × S1

S3 × S1

S2 × S2

P1

P2

Γ1

Γ2

Γ1

P1 P2

P3

P4

Γ1

Γ2

Γ3

Γ4

V 1 V 2

V 3

V 4

(a)

(b) (c)

Fig. 4 Heteroclinic cycles for N = 4 oscillators. Panel (a) shows the detailed dynamics involving
the saddle cluster states P1, P2 (16) (adapted from [3]). The cycle between states P1, P2 (16) and the
cycle between states P3, P4 (17) are shown schematically in panel (b). Panel (c) represents the net-
work as an undirected graph where the vertices V1, . . . ,V4 correspond to cluster states P1, . . . , P4
and edges are drawn between them when heteroclinic connections exist. The parameters are from
the shaded area BEDTLV in Fig. 3
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One may find that the clusters with phase b are unstable to perturbations that split
the oscillators and there exist heteroclinic orbits Γ1 and Γ2 that connect P1 and P2.
Figure 4a illustrates this dynamics in state space (adapted from [3]). One may also
find a similar cycle between the 2-cluster states

P3 = [ a, b, a, b ] , P4 = [ b, a, b, a ] . (17)

corresponding to the partition

Ã = {{1, 3}, {2, 4}} . (18)

The heteroclinic cycles are sketched in Fig. 4b and the corresponding graph
structure of the network is shown in Fig. 4c. The vertex Vm represents the cluster
state Pm and vertices are connected by edges when there are heteroclinic connec-
tions between the corresponding cluster states. Observe that there exist switching
dynamics between cluster states but the network structure is trivial: the heteroclinic
network splits into two disconnected components. For N ≥ 5 the network becomes
connected and much more complex as will be shown in the next section.

4 Heteroclinic Networks for Odd Numbers of Oscillators

Here we consider some of the scaling properties of the robust heteroclinic networks
discussed in the previous section, for more larger numbers of oscillators. As noted in
[8] for odd numbers of oscillators, N = 2k + 1 (k ≥ 2), one can obtain open regions
of parameter space in which there are heteroclinic networks with the structure of
an odd graph; in this paper we characterise this statement in detail and find the
corresponding regions in parameter space numerically.

An odd graph of order k is a family of partition-defined graphs defined as follows.
Let the vertex Vm represent a possible 2-cluster partition Am = {

Am
1 , Am

2

}

of N =
2k +1 when

[

am
1 , am

2

] = [ k, k +1 ]. We call such partitions [ k, k +1 ] cluster states;
they clearly have Sk × Sk+1 symmetry. There are m = 1, . . . , N!/(k!(k + 1)!) such
vertices. We say there is an edge from a vertex Vm to a vertex Vn if

An
1 ⊂ Am

2 , (19)

i.e. if the larger cluster of Am contains the smaller cluster of An. This graph is highly
connected and each vertex has k+1 outgoing edges corresponding to which element
in Am

2 that is not in An
1. The high level of connectivity of these graphs has resulted in

suggestions to use the structure for fault-tolerant networks; see, for example, [14].
Examples of odd graphs of orders k = 3 and k = 4 are shown in Fig. 5.

We demonstrate that for system (1) with coupling (2) and any odd N = 2k + 1,
k = 2, 3, . . . there is an open sets of parameters near r = 0 and α = π/2 such
that there is a heteroclinic network that contains the structure of an odd graph of
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k = 3,  N = 7

V 1

V 2

V m

V n

V1

V m

n

k = 4,  N = 9

V

Fig. 5 Odd graphs of order k = 3 and k = 4; these structures are robustly present in hetero-
clinic networks of the coupled oscillator system (1) with coupling function (2) for N = 7 and
N = 9 oscillators, respectively. The number of vertexes are 35 and 126, respectively, and they are
presented in an analogous way to Fig. 4c

order k. This network is robust to perturbations of the coupling function g that are
sufficiently small in the C2 norm.

First, we show that two distinct families of [ k, k + 1 ] cluster states may exist.
We call these ab cluster states and cd cluster states, as will be clarified in Sect. 4.1;
see also [2]. The ab cluster states are unstable to perturbations of the smaller cluster
while the cd cluster states are unstable to perturbations of the larger cluster. Then we
show that there may be heteroclinic connections from ab cluster states to cd cluster
states and also from cd cluster states to ab cluster states. This means that apply-
ing perturbations to the appropriate (unstable) clusters one may navigate from a ab
cluster state to another ab cluster state through a cd cluster state. Such navigation
between the m-th and n-th ab cluster states is possible if and only if there is an edge
between vertices Vm and Vn on the corresponding odd graph of order k; see Fig. 5.
Notice that the odd graphs are not directed graphs: in fact if it is possible to navigate
from the m-th ab cluster state to the n-th one, then it is possible to navigate the other
way, through a different cd cluster state.

4.1 Existence, Stability and Connections of [ k, k + 1 ]
Cluster States

Consider the 2-cluster partition

A1 = {{1, . . . , k}, {k + 1, . . . , 2k + 1}} (20)
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so that [ a1, a2 ] = [ k, k + 1 ] (that is indeed a [ k, k + 1 ] cluster state) and define the
cluster phases as

ψ1: = θ1 = . . . = θk ,

ψ2: = θk+1 = . . . = θ2k+1 .
(21)

From (8), the equations for the time evolution of the cluster phases become

ψ̇1 = ω + 1

N

(

a1 g(0) + a2 g(ψ1 − ψ2)
)

,

ψ̇2 = ω + 1

N

(

a1 g(ψ2 − ψ1) + a2 g(0)
)

.
(22)

Considering the periodic orbit (9) and introducing the notation φ: = φ1 − φ2
formula we have

0 = a1(g(0) − g( − φ)) + a2(g(φ) − g(0)) (23)

to determine the phase difference φ.
Linearizing (22) one may obtain the tangential stability which has a trivial eigen-

value λ1 = 0 and a tangential eigenvalue

λ2 = 1

N

(

a1 g′( − φ) + a2 g′(φ)
)

, (24)

corresponding to perturbations that do not split either of the clusters. The lineariza-
tion of (1) gives the transverse eigenvalues

λ3 = 1

N

(

a1 g′(0) + a2 g′(φ)
)

,

λ4 = 1

N

(

a1 g′( − φ) + a2 g′(0)
)

,
(25)

where λ3 corresponds to splitting of the cluster of k and has multiplicity k − 1
while λ4 corresponds to splitting of the cluster of k + 1 and has multiplicity k.

Note that the dynamics in subspace (21) corresponding to partition A1 is effec-
tively one-dimensional. Defining the variable ψ : = ψ1 − ψ2 and subtracting the
second equation from the first one in (22) results in

ψ̇ = 1

N

(

a1(g(0) − g( − ψ)) + a2(g(ψ) − g(0))
)

. (26)

There is an equilibriumψ(t) ≡ φ determined by (23) while the related eigenvalue
is given by (24). Substituting (2) and N = 2k +1 into (26) and considering the large
k limit we have
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ψ̇ = − cosα sinψ + r sin (2ψ) + O
( 1

2k + 1

)

. (27)

Now consider the 2-cluster partition

A2 = {{k + 2, . . . , 2k + 1}, {1, . . . , k + 1}} (28)

for which [ ã1, ã2 ] = [ k, k + 1 ] and the corresponding cluster phases can be
defined as

ψ̃1: = θk+2 = . . . = θ2k+1 ,

ψ̃2: = θ1 = . . . = θk+1 .
(29)

The evolution of these phases are still given by (22) so one may find the same
equilibria with the same stability properties as for partition A1 (20).

According to (19), since {k + 2, . . . , 2k + 1} ⊂ {k + 1, . . . , 2k + 1} then on
the odd graph of order k there is an edge connecting the vertices V1 and V2 (that
represent the partitions A1 (20) and A2 (28), respectively). We show that there is a
heteroclinic connection from the ab cluster state with partition A1 to the cd cluster
state with partition A2 and that there is a connection from the cd cluster state with
partition A2 to the ab cluster state with the same partition. Thus one may navigate
from the ab cluster state with partition A1 to the ab cluster state with partition A2

through the cd cluster state with partition A2.
Thus, we are interested in parameter regions where A, B and C hold:

A There exist two different cluster states in the subspace (21) such that

[ψ1,ψ2 ] = Ω t + [ a, b ] , [ψ1,ψ2 ] = Ω t + [ c, d ] , (30)

that are both [ k, k + 1 ] cluster states with partition A1 (20). They are called ab
and cd cluster states and by dropping the Ω t we loosely say that in a ab cluster
state k oscillators have phase a and k + 1 oscillators have phase b while in a cd
cluster state k oscillators have phase c and k +1 oscillators have phase d. Indeed,
only the phase differences

φab = a − b , φcd = c − d , (31)

can be determined from (23) and by symmetry, such periodic orbits exist for all
other [ k, k + 1 ] cluster states with different partitions (e.g. with A2 (28)).

B We require that the ab cluster states are unstable to perturbations of the larger
cluster of b-s and the cd cluster states are unstable to perturbation of the smaller
cluster of c-s while all other perturbations decay. This can be characterised in
saying that we wish to find α, r such that for ab cluster states we have λ2 < 0,
λ3 < 0, λ4 > 0 while for cd cluster states we have λ2 < 0, λ3 > 0, λ4 < 0; see
(24) and (25).
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C We wish to find a subregion of A, B in parameter space such that there is a
heteroclinic connection from the ab cluster state with partition A1 (20) to the
cd cluster state with partition A2 (28) and a heteroclinic connection from the cd
cluster state with partition A2 to the ab cluster state with partition A2.

Steps A, B above are routine in terms of root finding and then evaluating the
stabilities but step C is more complex. Note that (similarly to the N = 4 case in
Fig. 4a) there is an additional [ k, k + 1 ] cluster state in the subspace (21) but that is
unstable against tangential perturbations (λ2 > 0) and hence does not appear in the
heteroclinic network.

First let us search for the ab → cd heteroclinic connection by examining the
partition

B1 = {{1, . . . , k}, {k + 1}, {k + 2, . . . , 2k + 1}} , (32)

that corresponds to (by abuse of notation) [ b1, bs, b2 ] = [ k, 1, k ]. Defining the
cluster phases as

ψ1: = θ1 = . . . = θk ,

ψs: = θk+1 ,

ψ2: = θk+2 = . . . = θ2k+1 ,

(33)

leads to

ψ̇1 = ω + 1

N

(

b1 g(0) + bs g(ψ1 − ψs) + b2 g(ψ1 − ψ2)
)

,

ψ̇s = ω + 1

N

(

b1 g(ψs − ψ1) + bs g(0) + b2 g(ψs − ψ2)
)

,

ψ̇2 = ω + 1

N

(

b1 g(ψ2 − ψ1) + bs g(ψ2 − ψs) + b2 g(0)
)

,

(34)

see (8). Notice that for ψs = ψ2 one obtains a [k, k + 1] cluster state with partition
A1 (20) and (21), While for ψs = ψ1 a[k, k + 1] cluster state with partition A2

(28) and (29) is obtained. One can numerically verify that there exists a heteroclinic
connection between the ab cluster state [ψ1,ψs,ψ2 ] = Ω t + [ a, b, b ] and the cd
cluster state [ψ1,ψs,ψ2 ] = Ω t + [ d, d, c ]. Figure 6 shows such connections for
k = 10 (N = 21) with parameters α = 1.52 and r = 0.1. To eliminateΩ t the phase
differences ψ1 − ψs and ψs − ψ2 are used.

Now let us search for the cd → ab connection by examining the partition

B2 = {{k + 2, . . . , 2k}, {2k + 1}, {1, . . . , k + 1}} , (35)

that corresponds to [ b̃1, b̃s, b̃2 ] = [ k − 1, 1, k + 1 ]. Now defining the cluster
phases as
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ψ1−ψs

ψs−ψ2

ψ̃2−ψ̃s

ψ̃s− ψ̃1

φab

φcd

2π−φab

2π−φcd

Fig. 6 Heteroclinic connections (thick curves) connecting ab and cd cluster states (dots) for k = 10
(N = 21). The figure shows that one may navigate from the ab cluster state with partition A1 (20)
to the ab cluster state with partition A2 (28) through the cd cluster state with partition A2, that
is, the sequence of connections ab → cd → ab corresponds to an edge between the vertices V1

and V2 (representing A1 and A2) on the odd graph of order k, see Fig. 5. Additional trajectories
(thin curves) demonstrate that the connections are attracting, that is, the heteroclinic connections
are sinks within the relevant subspaces. The parameters are α = 1.52 and r = 0.1 correspond to
the cross in Fig. 7d

ψ̃1: = θk+2 = . . . = θ2k ,

ψ̃s: = θ2k+1 ,

ψ̃2: = θ1 = . . . = θk+1 .

(36)

leads to the same set of equations as (34) for ψ̃p-s but with the current set of b̃p-s.
Note that for ψ̃s = ψ̃1 a [ k, k + 1 ] cluster state is obtained with partition A2 (28)
and (29).

We can numerically verify that there exist heteroclinic connections between the
cd cluster state [ ψ̃1, ψ̃s, ψ̃2 ] = Ω t+[ c, c, d ] and the ab cluster state [ ψ̃1, ψ̃s, ψ̃2 ] =
Ω t + [ a, a, b ] as shown in Fig. 6 for k = 10 (N = 21) with parameters α = 1.52,
r = 0.1. Now the phase differences ψ̃s − ψ̃1 and ψ̃2 − ψ̃s are used to represent the
connection. Note that in Fig. 6 only the plane spanned by ψ1 −ψs and ψs −ψ2 and
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Fig. 7 In (α, r) parameter space the white region IV shows where the N = 2k +1 oscillator system
(1, 2) has a heteroclinic network between [ k, k+1 ] cluster states with the structure of the odd graph
of order k for (a) k = 2, (b) k = 3, (c) k = 5, (d) k = 10, (e) k = 20 and (f) k = 30. The other
regions indicated are as follows. Dark grey region 0 – neither cluster state exists; light green region
I – only ab cluster states exist; and light blue region II – only cd cluster states exist; red region
III – both type of cluster states exist but connections are missing. Note that the white region is open
(confirming that the cycle is robust) but becomes smaller and moves towards (α, r) = (π/2, 0) on
increasing k. The cross in panel (d) corresponds to the simulation in Fig. 6
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the plane spanned by ψ̃s − ψ̃1 and ψ̃2 − ψ̃s are used by the dynamics; the plane
spanned by ψ1 − ψs and ψ̃s − ψ̃1 is transverse to the dynamics.

For values of parameters α, r and k where A, B hold one may run finite time
simulations of system (34) and determine whether the above described ab → cd
and cd → ab connections exist. In this way the existence of a heteroclinic network
equivalent in structure to an odd graph of order k can be it verified numerically.
This could in principle be done to a finite precision, provided that a bound on the
errors is also calculated. In Fig. 7, a 100 × 100 mesh is used over the parameter
regime α ∈ (1.2, 1.7), r ∈ (0, 0.2) and at each mesh-point it is checked whether the
conditions A, B and C are satisfied for k ranging from k = 2 (N = 5) up to k = 30
(N = 61).

Region IV (white) shows where A, B and C hold while region III (red) shows
where only A, B hold but not C. Regions I (light green) and II (light blue) are where
A, B are only partially satisfied, i.e. only ab or cd cluster states exist, respectively.
Finally, considering parameters from region 0 (dark grey) no condition hold, that
is no cluster states can be found. Observe that the white region IV shrinks as k
increases.

Although this is not a rigorous proof that the odd graph structure is present for
arbitrary (finite) k, it does suggest a means of verifying this. It may be possible to
analytically prove the existence of an open non-empty region in the (α, r) parameter
plane satisfying A, B and C by using rigorous singular perturbation methods with a
small parameter ε = 1/k.

5 Discussion

We have shown that remarkably complicated bifurcations and structures may emerge
in the dynamics of (1). In particular, robust heteroclinic networks can appear that
lead to slow sequential switching between cluster states. We found that the number
of oscillators needs to satisfy N ≥ 5 to give rise to nontrivial robust switching
dynamics between cluster states. The reason for this is that 5 is the minimum number
where there is a nontrivial asymmetric partition, namely a [2, 3] cluster state. Such
a state has two clusters of differing size that can have different transverse stabilities,
and this permits a nontrivial switching between different 2-cluster partitions. In gen-
eral for N = 2k + 1 oscillators, we determined parameter regimes where [k, k + 1]
cluster states are connected to form a heteroclinic network with the structure of
an odd graph of order k. We remark that for N ≥ 7 the odd graph heteroclinic
network is only a subnetwork of the full attracting heteroclinic network. The full
network includes connections not just between cluster states of type [k, k + 1] but
also between cluster states of type [k − 2m, k + 2m + 1] for a variety of m. Up to
now we have only scratched the surface of the combinatorial complexity that may
exist in such networks.

We note that it is possible to find rather different heteroclinic structures for a
variety of different coupling functions. For example, considering
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g(ϕ) = − sin (ϕ + α) + r sin (2ϕ + β) , (37)

and N = 2k + 1 (N ≥ 5), it is possible to find robust heteroclinic cycles between
[k, k, 1] cluster states for open sets of parameters [5, 28, 34]. We also remark that
(1) does not have any sort of variational structure or global Lyapunov function for
general choices of g (although it may do for specific cases of interest [11]). Lack of
variational structure is clearly a necessary condition for the existence of heteroclinic
connections in the dynamics.

On preserving the coupling structure but breaking the permutation symmetry by
making the oscillators non-identical, the dynamics can still be efficiently explained
with reference to the heteroclinic network [28, 34]. Moreover, for strong nonlinear
coupling, one can explain extreme sensitivity to detuning of the frequencies of oscil-
lators. This is where arbitrarily small differences in the frequencies give rise to loss
of frequency locking and this depends apparently on the presence of robust hetero-
clinic attractors that are topologically non-trivial on TN [4]. On breaking the sym-
metry of coupling structure by removing connections, the dynamics can be much
more rich; see, for example [13, 30] and references within. However, heteroclinic
connections between unstable states may still exist even when the coupling is not
all-to-all leading to sequential switching [1, 20].

The switching dynamics occurring in networks provides some promising mod-
els for a variety of phenomena, especially for neural applications where synchrony
tends to be frustrated due to the competing requirements of efficiency (a neural code
needs a minimum of energy to be maintained) and robustness (a neural code should
be insensitive to removal or malfunction of individual cells). Particular applications
that may be of relevance to the models presented here include finite-state computa-
tion [2] and spatio-temporal code generation [28, 34].
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Dynamics of Finite-Size Particles in Chaotic
Fluid Flows

Julyan H.E. Cartwright, Ulrike Feudel, György Károlyi, Alessandro de
Moura, Oreste Piro, and Tamás Tél

Abstract We review recent advances on the dynamics of finite-size particles
advected by chaotic fluid flows, focusing on the phenomena caused by the inertia
of finite-size particles which have no counterpart in traditionally studied passive
tracers. Particle inertia enlarges the phase space and makes the advection dynamics
much richer than the passive tracer dynamics, because particles’ trajectories can
diverge from the trajectories of fluid parcels. We cover both confined and open
flow regimes, and we also discuss the dynamics of interacting particles, which can
undergo fragmentation and coagulation.

1 Introduction and Overview

A correct formulation of the problem of the motion of finite-size particles in
fluid flows has presented difficult challenges for generations of fluid dynamicists.
Although in principle this problem is “just” another application of the Navier–
Stokes equation, with moving boundary conditions, a direct solution of the fluid
dynamical equations is not only very difficult, but also not very illuminating. So
from the nineteenth century onwards efforts were made to find the appropriate
approximations which allow one to write the equations of motion of small rigid
particles in a given flow in the form of ordinary differential equations, regarding
the flow’s velocity field as given. Some very subtle issues are involved in making
the right kinds of approximations and assumptions in a self-consistent way, and a
number of incorrect results appeared in the early literature. The issue was finally
resolved when Maxey and Riley [1] wrote down the equations of motion for a small
spherical rigid particle advected by a (smooth) flow and Auton et al. [2], following
Taylor’s work [3], corrected the form of the added-mass term.
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The Maxey-Riley equations allow the global dynamics of a single advected finite-
size particle to be investigated with the techniques of dynamical systems theory.
The dynamics of advected particles in fluid flows have been a favourite subject of
investigation of chaos and related complex dynamical regimes since the pioneering
work of Aref [4], but all the early works assumed that the particles’ size and their
inertia could be neglected – the passive tracer assumption. Finite size results in
inertia, which introduces a new richness to the dynamics, since finite-size particles
are no longer enslaved to the motion of the flow surrounding them – they have their
own dynamics, distinct from that of the fluid. A whole new world of challenges and
possibilities opens up to dynamicists once finite size and inertia are considered. This
gives this subject a great importance from the theoretical point of view alone; not
to mention its practical importance: polluting particles suspended in the atmosphere
and plankton organisms floating in the ocean are just a few of the systems whose
understanding involves the theory of the dynamics of finite-size particles in complex
flows.

This chapter presents an overview of the subject of the dynamics of finite-size
particles in chaotic flows, focusing on a few chosen topics of current research. The
choice of topics reflects the authors’ own research interests; we make no apologies
for that: we in no way claim this to be an exhaustive review on this area. But we do
think the topics we cover here give the reader a good idea of what is going on in this
exciting area of research.

We first introduce the Maxey-Riley equation in Sect. 2. Its assumptions and range
of validity are discussed, as well as some of its basic consequences; but we do not
show the derivations. The dynamics of finite-size particles can often be understood
by using the simpler dynamics of passive tracers as a starting point. In Sect. 3 we
discuss the chaotic advection of non-inertial tracers, and also introduce some of the
flows which will be used as examples in later sections.

The dynamics of non-interacting finite-size particles is the subject of Sects. 4
and 5. Section 4 deals with confined flows, whereas Sect. 5 focuses on open flows.
These two kinds of flow have very different long-time behaviours, which lead to
quite distinct particle dynamics. In these sections, we focus especially on the new
phenomena caused by the particles’ inertia, which are not present in the case of
passive tracers. The challenging and very important topic of interacting finite-size
particles is covered by Sect. 6, which reviews recent results on the processes of
fragmentation and coagulation of finite-size particles. Finally, in Sect. 7, we make
some remarks on the future directions of this research area.

2 Motion of Finite-Size Particles in Fluid Flows

When studying the motion of particles advected by fluid flows, it is commonly
assumed that one can consider the particles as passive tracers, with negligible
mass and size. This amounts to neglecting the particles’ inertia, and assuming that
they take on the velocity of the surrounding fluid, instantaneously adapting to any
changes in the fluid velocity. If u is the (possibly time-dependent) fluid’s velocity
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field, and denoting by r(t) the position of a particle, the passive tracer assumption
implies that r satisfies the differential equation:

ṙ(t) = u(r(t),t). (1)

The passive tracer assumption is extensively used in fluid dynamics [5, 6], and it
is a good approximation in a number of cases. There are many situations, however,
where it does not apply, and we need to take into account the fact that particles have
finite sizes and masses (for reviews see [7–9]). Finite-size particles are not able
to adjust their velocities instantaneously to that of the fluid, and in addition their
density may be different from that of the fluid. Therefore, in general the particle
velocity differs from the fluid velocity. This means that the dynamics of finite-size
particles is far richer and more complex than that of passive tracers.

2.1 The Maxey-Riley Equation

In order to study the dynamics of finite-size particles advected by chaotic flows, we
need to have a simple formulation of the equations of motion of the advected parti-
cles. The problem is that finite-size particles are actually extended objects with their
own boundaries. The rigorous way to analyse their dynamics would involve solving
the Navier–Stokes equation for moving boundaries, with all the complications this
implies. The partial differential equations resulting from this approach would be
very difficult to solve and analyse; and as dynamicists, we would like to have the
particle’s motion described by ordinary differential equations, similar to Eq. (1).
Fortunately, an approximate differential equation for the motion of small spherical
particles in flows may be written down [1, 2]. If a particle has radius a and mass mp,
its motion is given to a good approximation by the Maxey-Riley equation:

mpv̇ = mf
D

Dt
u(r(t),t) − 1

2
mf

(

v̇ − D

Dt

[

u(r(t),t) + 1

10
a2∇2u(r(t),t)

])

−6πaρf νq(t) + (mp − mf )g − 6πa2ρf ν

∫ t

0
dτ

dq(τ )/dτ√
πν(t − τ )

, (2)

where

q(t) ≡ v(t) − u(r(t),t) − 1

6
a2∇2u.

Here r(t) and v(t) ≡ dr(t)/dt are the position and velocity of the particle, respec-
tively, and u(r,t) is the undisturbed flow field at the location of the particle. mf

denotes the mass of the fluid displaced by the particle, and ν is the kinematic vis-
cosity of the fluid of density ρf ; g is the gravitational acceleration.

The derivative
Du
Dt

= ∂u
∂t

+ (u · ∇)u (3)
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is the total hydrodynamical derivative, taken along the path of a fluid element,
whereas

du
dt

= ∂u
∂t

+ (v · ∇)u (4)

is taken along the particle’s trajectory.
The first term on the right-hand side is the acceleration of the fluid element in

position r(t) at time t and represents the force exerted on the particle by the undis-
turbed fluid. The second term represents the added-mass effect, which accounts for
the fact that when the particle moves relative to the fluid, it displaces a certain
amount of fluid with it; the result is that the particle behaves as if it had additional
mass. The third and fourth terms represent the Stokes drag caused by the fluid’s
viscosity and the buoyancy force, respectively. The integral is called the Basset-
Boussinesq history term, and arises from the fact that the vorticity diffuses away
from the particle due to viscosity [10, 11]. The terms involving the factor a2∇2u are
the so-called Faxén corrections [94], and they account for the spatial variation of
the flow field across the particle.

Equation (2) is valid for small particles at low particle Reynolds numbers Rep.
This Reynolds number is calculated by using the particle size as the length scale,
and the relative velocity between particle and neighbouring fluid as the velocity
scale: Rep = a|v − u|/ν. This implies that for Eq. (2) to be a valid approximation,
the initial velocity difference between particle and fluid must be small [1]. Another
condition is that the velocity difference across the particle – more precisely, the shear
Reynolds number ReΓ = a2Γ/ν � 1, where Γ is the typical velocity gradient in
the flow – must be small [1].

If the typical length over which the velocity field changes appreciably is much
larger than the particle radius a, the Faxén corrections can be neglected. Since the
Basset-Boussinesq history term also describes the effect of viscosity (just like the
Stokes drag), in a minimal model it can also be neglected. These approximations
simplify tremendously the equations of motion. The history term would be espe-
cially problematic to analyse, since it depends on the entire past history of the
particle, and it means the dynamics described by Eq. (2) has an infinite-dimensional
phase-space. By neglecting it, Eq. (2) is an ordinary differential equation (and not
an integro-differential equation), which can be studied with the techniques presently
available to dynamical systems theory.

Using these approximations, we redefine the variables by

r → rL, v → vU, u → uU, t → L

U
t,

where L and U are the typical length and velocity scales of the flow. The new vari-
ables are all dimensionless. In these new variables, we get the following dimension-
less equation of motion:

r̈(t) = 1

St
(u(r(t),t) − ṙ(t) + Wn)+ 3

2
R

D

Dt
u(r(t),t), (5)
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where n is a vertical unit vector pointing downwards, and the dimensionless param-
eters are

St−1 = 6πaρf νL
(

mp + 1
2 mf

)

U
, R = mf

mp + 1
2 mf

, W = mp − mf

6πaνρf U
g, (6)

with g = |g|. The parameter St measures the damping intensity and is called the
Stokes number, the dimensionless decay time in the velocity difference between
particle and fluid due to the Stokes drag. The limit of St → 0 corresponds to the case
of point particles with no inertia (since mf and mp are proportional to a3). It is in this
limit that the passive tracer equation (1) holds. R is the mass ratio parameter. R < 2

3
corresponds to aerosols (particles heavier than the fluid), and R > 2

3 corresponds to
bubbles (particles lighter than the fluid). W is the scaled particle settling velocity for
still fluid. Note that W/St is the dimensionless buoyancy force, which is independent
of the particle size. Unless otherwise noted, we shall use Eq. (5) for the remainder
of this work to describe the dynamics of finite-size particles.

2.2 General Features of the Dynamics of Finite-Size Particles

Finite-size particles have very different dynamics from that of passive tracers, which
follow the same dynamics as fluid parcels. Mathematically, this is expressed by the
fact that Eq. (5) is a second-order differential equation, compared with Eq. (1) which
is of first order. An immediate consequence of this is that the finite-size dynamics
given by Eq. (5) possesses a 2n-dimensional phase-space, where n is the dimension
of the configuration space. Thus, in a planar flow a finite-size particle is described
by a dynamical system with four degrees of freedom. In contrast, for non-inertial
particle dynamics the phase-space is two-dimensional.

Another difference is that the finite-size dynamics is dissipative, even in incom-
pressible flows, and the phase-space volume contracts at the rate n/St, which is
always positive. Contrast this to the non-inertial case, in which the phase-space vol-
ume coincides with the spatial volume, which renders the dynamics conservative for
incompressible flows. The dissipative character of the finite-size dynamics raises the
possibility of the existence of attractors in phase-space, which is not possible in the
non-inertial case. This has crucial consequences for the global dynamics of particles
in chaotic flows, as we shall see in later sections.

The density of an advected particle relative to the surrounding fluid plays a cru-
cial role in its dynamics. This is incorporated in the parameter R in Eq. (5). Using a
perturbative analysis valid in the limit of small particle sizes, Maxey has shown [12]
that if particles have higher density than the fluid (aerosols, with R < 2

3 ), they tend to
move away from regions of high vorticity, such as the centres of eddies. This effect
can be intuitively understood as the result of a centrifugal force acting on the particle
and pushing it away from a highly-rotating region. Conversely, particles with lower
density than the fluid (bubbles, with R > 2

3 ) tend to move towards high-vorticity
regions. So bubbles tend to agglomerate in the centres of vortices. These effects are
totally absent in the non-inertial case.
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3 Chaotic Advection of Passive Tracers

In order to understand properly the dynamics of finite-size particles in chaotic flows,
we must first understand the simpler dynamics of passive tracers. In this section
we review passive advection of particles from the viewpoint of dynamical-systems
theory. In the approximation of passive advection, the particles are considered to be
massless and of negligible size. They take on the velocity of the fluid flow instan-
taneously, and their motion is given by Eq. (1). The flows we shall consider here
are typically laminar, i.e., the velocity field u is assumed to be smooth, although
time-dependent. We briefly discuss the case of turbulent flows in the concluding
Section.

3.1 Properties of Passive-Tracer Chaotic Advection

The velocity field of the fluid, described by the right-hand side of (1), is typically a
non-linear function of the position and time. This implies that even if the flow itself
is relatively simple and non-turbulent, the solutions of (1) can become chaotic, a
phenomenon named chaotic advection by Aref [4]. This is an essential difference
between the Eulerian description of fluid motion, which is concerned with the prop-
erties of the velocity field of the fluid, and the Lagrangian description, which is
concerned with the trajectories of the fluid elements. It is argued in [13] that the
advection in any flow with a fluid Reynolds number high enough to generate a time
dependent velocity field around an obstacle displays chaos.

The stretching and folding action of the chaotic dynamics acting on a set of initial
conditions in the phase space, which coincides with the configuration space, can be
seen directly through the behaviour of a blob of dye injected into the fluid. As a

Fig. 1 Surface patterns downstream of the flow-through of a power plant. Loch Faskally, Scotland,
photo taken by Gy. Károlyi. The scale is approximately 2 m
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result, an initially compact blob of particles will trace out a complex filamentary
structure; a real-world example is shown in Fig. 1. In most examples in the area
of dynamical systems, these complex patterns are hidden in a high-dimensional
abstract phase space; here they become visible to the naked eye, and can be pho-
tographed in experiments [14, 15].

We assume throughout this work that the fluid is incompressible. As a con-
sequence, the motion of passively advected particles is volume preserving, hence
the motion of passive tracers is similar to Hamiltonian dynamics, where the phase
space volume is conserved during motion [16]. This property is unique to passively
advected particles.

Advection in two-dimensional (r = (x,y), u = (ux,uy)) and incompressible flows
represents an important subclass of chaotic advection systems. Incompressibility
implies that there exists a stream function Ψ (x,y,t) so that the velocity components
can be written as

ux(x,y,t) = −∂Ψ (x,y,t)

∂y
, uy(x,y,t) = ∂Ψ (x,y,t)

∂x
. (7)

Substituting this into (1) we obtain the equation of motion for a particle advected
in 2D in terms of the stream function:

dx

dt
= −∂Ψ (x,y,t)

∂y
,

dy

dt
= ∂Ψ (x,y,t)

∂x
. (8)

These equations have a clear Hamiltonian structure, variable x playing the role
of the position, y playing the role of the conjugate momentum, and Ψ (x,y,t) playing
the role of the Hamiltonian function [17, 18].

If the flow is stationary, that is, the stream function Ψ does not depend explicitly
on time, the particle trajectories coincide with the level curves of Ψ , called stream-
lines [17, 18]. From a dynamical point of view, passive advection in a stationary,
incompressible 2D flow is a one-degree-of-freedom Hamiltonian system, which is
always integrable. In most realistic situations, however, Ψ is not independent of
time, in which case we have a one-degree-of-freedom system with a time-dependent
Hamiltonian. Such driven systems typically exhibit chaotic motion [19, 20]: the
advected particles move in an unpredictable way and display a great sensitivity to
initial conditions. Even a very simple time dependence, for example periodicity, is
enough to generate chaotic particle motion: no turbulence is necessary for complex
particle trajectories. This phenomenon is often called Lagrangian turbulence, in
contrast to the spatiotemporal complexity of a flow field, which is referred to as
Eulerian turbulence.

Flows can be divided into two main classes: they can be either open or closed.
A flow is closed if it is confined within a bounded domain. A flow is consid-
ered open if there is a net current flowing through the region of observation and
if fluid elements cannot return there from the outflow region. A typical example
of closed flow is mixing in a batch reactor without in- or outflow; an example
of an open flow is the fluid motion in a channel or river in the presence of an
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obstacle. In open flows, most trajectories are unbounded, and most particles escape
the observation region in a finite time. In closed flows, the particles cannot escape
the bounded region. Therefore chaotic behaviour, if it occurs, is persistent in closed
flows. Such flows reveal structures commonly found in usual Hamiltonian systems,
with chaotic regions coexisting with regular islands. Advected particles, if they
start from an initial position in the chaotic region, roam the whole chaotic region,
whereas particles within a regular island remain inside forever. The boundaries
of these islands, formed by Kolmogorov-Arnold-Moser (KAM) tori, are impene-
trable to outside particles. In the chaotic regions, particles initiated close to each
other deviate exponentially along the unstable foliation of unstable fixed points.
This unstable foliation is dense in the chaotic regions, and governs the stretch-
ing and folding of dye blobs. When stretching of a dye blob starts, a filamentary
structure emerges, which becomes space-filling in the limit of long times. Thus,
persistent chaos and transient filamentary structures are features found in closed
flows.

The chaotic motion of passively advected particles in open flows takes a differ-
ent form. Typical particles escape the observation region in finite time, but there
is a fractal set of particle trajectories confined within a finite region, e.g. in the
vicinity of the wake in a flow around an obstacle. These non-escaping orbits form
a non-attracting chaotic set, a chaotic saddle [19, 20], which governs the motion
of particles in its vicinity. This chaotic set, although it consists of unstable orbits
and has measure zero, gives rise to extreme sensitivity of the dynamics to initial
conditions. The stable manifold of the chaotic saddle separates the initial condi-
tions leading to different final states of the particles (such as where they leave the
region of observation). The unstable manifold of the chaotic saddle is traced out
by the particles that spend long times in the vicinity of the saddle. Because the
unstable manifold is a filamentary fractal, the pattern traced out by a blob of dye
takes on a complex shape, shadowing the fractal structure of the unstable mani-
fold. Advection thus leads to transient chaos owing to particles leaving the region
of observation, and to persistent filamentary structures traced out by the advected
particles.

In the following subsections some paradigmatic flows, both open and closed,
are reviewed. These flows will be used later to illustrate the motion of finite-size
particles.

3.2 The Convection and Cellular Flow Models

The convection flow is a simple two-dimensional incompressible flow represent-
ing vortices or roll cells with oscillating velocity magnitude. It was introduced by
Chandrasekhar [21] as a solution to the Bénard problem and has been used since
then in many studies involving active and passive particles [22, 23]. The flow is
defined on a unit cell, but one may study the motion of finite-size particles on an
infinite spatial domain using periodic boundary conditions. The convection flow is
particularly interesting to investigate the principles of particle motion in the ocean
and in the atmosphere since it contains both vortices (convection cells) and linear
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uprising/sinking regions, and can hence be considered as an idealisation of realistic
atmospheric and oceanic flows. The flow is given by the stream function

ψ(x,y,t) = [1 + B sin (ωt)]
1

k
sin (kx) sin (ky). (9)

Here it is assumed that the characteristic velocity U0 = 1 and the characteristic
length scale of the flow L = 1, and we set k = 2π accordingly. The parameters
B and ω denote the amplitude and the frequency of the oscillation of the vortical
velocity magnitude, respectively.

A special feature of the flow described by Eq. (9) it that the non-inertial advection
dynamics remains nonchaotic even in the time-dependent case. In this flow chaotic
advection can only be the consequence of finite-size effects.

To illustrate the flow field we show a snapshot of the velocity field in Fig. 2.
This flow field with the parameters B = 2.72, ω = π is used later for all results
concerning coagulation and fragmentation processes (cf. Sect. 6).

We also consider a slightly modified version of the convection flow, the cellular
flow model. This is a two-dimensional incompressible flow representing a lattice of
oscillating vortices or roll cells. The flow is defined by the stream function

ψ(x,y,t) = 1

k
cos (kx + B sin (ωt)) cos (ky). (10)

The flow is defined in the x,y ∈ [ − π/2,π/2] domain with periodic boundary
conditions, and k is set to 1.

Let us first consider the simplest case where the time dependence is suppressed,
by setting B = 0. Thence ψ is a constant of motion, which implies that real fluid
elements follow trajectories that are level curves of ψ . This is illustrated in Fig. 3a.
For B �= 0, the equations of motion for fluid element or passive tracer are given by
(7) and the trajectories differ from the streamlines. An example is shown in Fig. 3b,
where the Poincaré section of the particle motion is illustrated. The positions of
many particles are plotted at integer multiples of the flow period. Some of the

Fig. 2 Snapshot of the
velocity field of the
convection flow at t = 0
computed from the stream
function (9)
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(a) (b)

Fig. 3 The cellular flow, Eq.(10). ( a) The passively advected particles exhibit regular motion if the
flow is time-independent (B = 0, k = 1). The trajectories of 30 particles with randomly selected
initial positions are shown. (b) Chaotic behaviour in the time-dependent flow (B = 0.3, k = 1,
ω = 2.72224). Snapshots of 200 particles with randomly selected initial conditions are shown at
integer multiples of the flow’s period

passively advected particles exhibit regular motion; they trace out the closed curves
visible in the figure. The rest of the particles fill out the chaotic region. This makes
the cellular flow different from the convective flow in that the passive particle motion
in the cellular flow, due to the oscillating vortex centres, can be chaotic for B �= 0.

3.3 The Von Kármán Vortex Street

The open flow around an obstacle is a classical problem in fluid mechanics [14, 24].
We consider a viscous incompressible flow around a cylinder of radius R0. Far away
from the obstacle the flow is expected to be uniform. We label the longitudinal flow
direction by x, and the transverse direction by y.

Denoting by U the velocity for x → ±∞, the Reynolds number associated with
this flow can be defined as

Re = 2R0U/ν, (11)

where ν is the fluid’s kinematic viscosity. For Re sufficiently small, the flow is sta-
tionary. When Re passes a critical value Rec ≈ 80, the stationary solution of the
Navier-Stokes equation becomes unstable, and the flow becomes time-periodic with
some period T .

Vortices are created in the wake of the cylinder, detach from it and drift down-
stream. They gradually weaken owing to the viscosity, until after some distance they
vanish. New vortices are shed from the surface of the cylinder at intervals of half a
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Fig. 4 Streamlines for the flow around a cylinder at two different times, separated by one quarter
of the full period T of the flow. The vortex shedding is clearly visible

period T/2, alternately above and below the middle of the cylinder (see Fig. 4). By
this process, a von Kármán vortex street is formed behind the cylinder. For simplic-
ity we assume that the lifetime of each detached vortex equals one period T .

An analytical model for the flow in the von Kármán vortex street has been pro-
posed [25, 26], which fits well the results of the direct numerical calculation for
Re = 250 [27]. In this model, the stream function ψ(x,y,t) is explicitly given, and
we shall use this kinematic model in what follows. This model serves thus as an
ideal paradigm for a large class of open chaotic flows and has been widely used to
study different aspects of transient chaotic advection (see e.g., [28–30]).

The stream function ψ(x,y,t) can be directly used in Eq. (1) to find the motion
of passively advected particles in the von Kármán flow by numerical integration. To
appreciate the importance of the unstable manifold of the chaotic saddle, we place
a dye droplet of particles upstream into the flow and follow the deformation of the
shape of this droplet. Assume that the initial droplet overlaps with the stable mani-
fold of the saddle. Particles that fall exactly on the stable manifold hit the saddle and
never leave it. Neighbouring points, however, only approach the saddle; they stay
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in its neighbourhood for a while, but sooner or later they leave the wake along the
unstable manifold. Thus, we conclude that tracer particles that do not leave a region
of observation in the wake too rapidly, must trace out the unstable manifold. In
other words, the unstable manifold of the chaotic saddle is a “quasi-attractor” of the
tracer dynamics: particles accumulate on it while being advected away. In numerical
simulations with a finite number of particles, the manifold serves as a (periodically
moving) template, which becomes gradually emptied as more and more particles
escape through the outflow.

Figure 5 shows the evolution of a droplet in the von Kármán flow. First the droplet
becomes stretched and folded and later it becomes clear that it traces out a moving
fractal object, the unstable manifold. Though a few particles are still visible, the
region is almost emptied in the last panel; this is a consequence of the finite number
of particles used in the simulation.

Note that the von Kármán vortex street is not a particular property of cylindrical
obstacles. Most (approximately) two-dimensional flows past an obstacle have this
property, provided that their Reynolds number is in the appropriate range. Thus, von
Kármán vortices are found in many real situations [31–33].
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Fig. 5 Time evolution of a droplet of 20,000 tracers in the von Kármán flow shown at different
dimensionless times t
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4 Inertial Effects in Closed Chaotic Flows

The most general description of the dynamics of finite-size particles presents an
enormous richness of phenomena (see, for example, [7, 9, 34–40]). It is character-
istic of the dynamics that invariant surfaces in the model without inertia are bro-
ken up. For example, as shown for aerosols in Fig. 6, the particles accumulate on
higher dimensional attractors instead of being confined by the closed curves shown
in Fig. 3b. Figure 6 shows the 2D projection of the attractor located in the four-
dimensional phase space of the particle dynamics.

That the invariant curves no longer exist for inertial, finite-size particles is con-
firmed in Fig. 7. Here, the periodic boundary conditions have been removed from
the cellular flow, and the particles are allowed to fly out of the x,y ∈ [ − π/2,π/2]
domain. For passive advection (not shown), the y = ±π/2 lines are impenetrable
invariant curves; the advected particles can only leave the x,y ∈ [−π/2,π/2] domain
in the x direction. As shown in Fig. 7 the invariant curves y = ±π/2 do not exist for
aerosols, which can fly out in the y direction as well.

In the time-independent case, what were invariant surfaces in the model without
inertia are transformed into spirals, owing to centrifugal forces: outward spirals for
aerosols and inward spirals for bubbles. As a consequence, heavy particles tend to
accumulate at the separatrices of the flow.

For large densities ρp � ρf , particles are no longer confined within vortices.
Stokes drag is the most important force acting in this case, since the added-mass
term becomes negligible as R → 0 in this limit (see Eq. (6)) and gravity is not
acting on the horizontal plane. So to a first approximation Eq. (5) transforms into

Fig. 6 Aerosols (R = 0.5,
St−1 = 0.04) followed in the
cellular flow. The particle
positions are shown at integer
multiples of the flow’s period
after 10 periods. The
parameters of the flow are the
same as those in Fig. 3b
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Fig. 7 Aerosols (R = 0.5,
St−1 = 0.04) followed in the
cellular flow without periodic
boundary conditions. All
particles are initiated within
the x,y ∈ [ − π/2, π/2]
domain. The particle
positions are shown at integer
multiples of the flow’s period.
The parameters of the flow
are the same as those in
Fig. 3b
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(
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and the Stokes number can be written as

St−1 = 9νρf L

2a2ρpU
.

To derive this we used mp = 4
3πa3ρp � mf in Eq. (6).

This is a highly-dissipative and singular perturbation of a Hamiltonian system,
with a four-dimensional phase space:

ẋ = px, (14)

ṗx = −St−1(px − ux(x,y,t)), (15)

ẏ = py, (16)

ṗy = −St−1(py − uy(x,y,t)). (17)

In the time-dependent case, particles tend to accumulate on a chaotic attractor
of the high-dimensional phase space. As the upper panel of Fig. 8 shows for the
cellular flow (9), the projection of the attractor on the plane of the fluid lies within
the chaotic regions of the model flow without inertia. The relative velocity fluctuates
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Fig. 8 Above: dense particles
converge to fractal structures
around a separatrix of the
flow given by Eq. (10) in the
time-independent case.
Below: in the large inertia
limit, the relative velocity of
particle and flow fluctuates
chaotically, in a
Brownian-like fashion

chaotically, due to macroscopic, non-turbulent fluctuations, that act to give the parti-
cles deterministic but Brownian-like motion, illustrated in the lower panel of Fig. 8.

4.1 Neutrally Buoyant Particles

Let us now consider whether even in the most favourable case of neutral buoyancy
a finite-sized tracer particle remains always close to a flow trajectory [41]. With this
in mind, we set ρp = ρf in Eqs. (5) and (6), which corresponds to setting W = 0
and R = 2/3:

dv
dt

= Du
Dt

− St−1 (v − u) . (18)
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In the past it has been assumed that neutrally buoyant particles have trivial
dynamics (e.g., [34, 42]), and the mathematical argument used to back this up is that
if we make the approximation Du/Dt = du/dt, which can be seen as a rescaling of
the added mass, the problem becomes very simple

d

dt
(v − u) = −St−1(v − u). (19)

Thence

v − u = (v0 − u0) exp (− St−1 t), (20)

from which we would infer that even if we release the particle with a different initial
velocity v0 to that of the fluid u0, after a transient phase the particle velocity will
match the fluid velocity, v = u, meaning that if we accept this argument, a neutrally
buoyant particle should be an ideal tracer.

Although from the foregoing it would seem that neutrally buoyant particles rep-
resent a trivial limit to Eq. (2), in the argument presented above we did not take the
correct approach to the problem, because we did not recognise that Du/Dt �= du/dt.
If we substitute Eqs. (3) and (4) for the derivatives into Eq. (18), we obtain

d

dt
(v − u) = − ((v − u) · ∇) u − St−1 (v − u) . (21)

We may then write the velocity difference between fluid particle and fluid as
q = v − u, whence

dq
dt

= −
(

−J + St−1I
)

· q, (22)

where J is the Jacobian matrix:

J =
(

∂xux ∂yux

∂xuy ∂yuy

)

. (23)

If we diagonalise matrix J we obtain the equation for the particle-fluid velocity
difference in coordinates aligned with the eigenvectors, which we denote by qD:

dqD

dt
=
(

λ− St−1 0
0 −λ− St−1

)

· qD. (24)

Therefore, if Re(λ) > St−1, qD may grow exponentially. Now λ satisfies det(J −
λI) = 0, so λ2 − trJ + detJ = 0. Since the flow is incompressible, ∂xux + ∂yuy =
trJ = 0, thence −λ2 = detJ. Given squared vorticity ω2 = (∂xuy − ∂yux)2, and
squared strain s2 = s2

1 + s2
2, where the normal component is s1 = ∂xux − ∂yuy and

the shear component is s2 = ∂yux + ∂xuy, we may write
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λ2 = −detJ = (s2 − ω2)/4 = Q. (25)

Here Q = (s2−ω2)/4 is the so-called Okubo–Weiss parameter [43, 44]. If Q > 0,
λ2 > 0, and λ is real, deformation dominates, as around hyperbolic points. If Q < 0,
λ2 < 0, and λ is complex, rotation dominates, as near elliptic points. Equation (22)
together with dr/dt = q + u defines a dissipative dynamical system

dξ/dt = F(ξ ) (26)

with ξ = (r,q). Equation (26) has constant divergence ∇ · F = −2/St in the four
dimensional phase space of ξ . While small values of St allow for large values of the
divergence, large values of St force the divergence to be small. The Stokes number
is the dimensionless decay time of the particle (see Sect. 2.1): with larger St, the
particle has more independence from the fluid flow. From Eq. (24), in areas of the
flow near hyperbolic stagnation points with Q > St−2, particle and flow trajectories
separate exponentially.

To illustrate the effects of St and Q on the dynamics of a neutrally buoyant parti-
cle, let us consider the simple incompressible two-dimensional model (10). In Fig. 9
(top left) the contours of Q are depicted. Notice that the high values of Q are around
the hyperbolic points, while negative Q coincides with the centres of vortices –
elliptic points – in the flow. Figure 9 (top right) shows the trajectory of a neutrally
buoyant particle starting from a point on a fluid trajectory within the central vortex,
but with a small velocity mismatch with the flow. This mismatch is amplified in
the vicinity of the hyperbolic stagnation points where Q is larger than St−2 to the
extent that the particle leaves the central vortex for one of its neighbours. In the end
a particle settles on a trajectory that does not visit regions of high Q, as expected
for a fluid parcel. While this effect is already seen in Fig. 9 (top right), it is more
dramatically pictured in the trajectory shown in Fig. 9 (bottom left), in which the
particle performs a long and complicated excursion wandering between different
vortices before it settles in a region of low Q. To illustrate the divergence of particle
and fluid trajectories, and the fact that particle and fluid finally arrive at an agree-
ment, in Fig. 9 (bottom right) we display the difference between the particle velocity
and the fluid velocity at the site of the particle against time for this case. Notice that
this difference seems negligible at time zero, and that it also convergences to zero
at long times, but during the interval in which the excursion takes place it fluctuates
wildly.

Even more interesting is the case of time-dependent flows: B �= 0 in our model.
As in a typical Hamiltonian system, associated with the original hyperbolic stag-
nation points, there are regions dominated by chaotic trajectories. Trajectories of
this kind, stroboscopically sampled at the frequency of the flow, are reproduced in
Fig. 10. Such trajectories visit a large region of the space, which includes the original
hyperbolic stagnation points and their vicinities where Q is large. Excluded from the
reach of such a chaotic trajectory remain areas where the dynamics is regular: KAM
tori. In our model these lie in the regions where Q < St−2. A neutrally buoyant
particle trying to follow a chaotic flow pathline would eventually reach the highly
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Fig. 9 (Top left) Contour plot illustrating magnitude of Q – lighter is higher Q – for the time-
independent model Eq. (10) (the flow is on a torus). (Top right) The separation of a neutrally
buoyant particle trajectory (thin line) from the flow (thick line) in regions of high Q allows the
particle to wander between cells. (Bottom left) After a complicated excursion, a particle (thin line)
eventually settles in a zone of low Q of the flow; a KAM torus (thick line). (Bottom right) The
velocity difference vx − ux between the particle and the flow against time

hyperbolic regions of the flow. This makes likely its separation and departure from
such a pathline, in search of another pathline to which to converge. However, conver-
gence will only be achieved if the pathline never crosses areas of high Q. Figure 10
demonstrates this phenomenon: a particle was released in the chaotic zone with a
small velocity mismatch. The particle followed the flow, until, coming upon a region
of sufficiently high Q, it was thrown out of that flow pathline onto a long excursion
that finally ended up in a regular region of the flow on a KAM torus. The regular
regions of the flow then constitute attractors of the dissipative dynamical system
Eq. (26) that describes the behaviour of a neutrally buoyant particle. The chaotic
trajectories in a Hamiltonian system are characterised by positive Lyapunov expo-
nents. The Lyapunov exponents are an average along the trajectory of the local rate
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Fig. 10 Poincaré sections of trajectories in the time-dependent flow of Eq. (10). From top left to
bottom right are shown (dots) four increasingly chaotic examples of the flow, and (crosses), the
trajectories of neutrally buoyant particles in the flows that in each case finally end up on a KAM
torus within the regular region of the flow

of convergence or divergence. Hence, for a trajectory to be chaotic, it is a necessary
condition that it visit regions of positive Q: an upper bound to Q is an upper bound
to the Lyapunov exponent.

Consider the implications of these results for two-dimensional turbulent flows,
in which Q defines three regions: in the vortex centres it is strongly negative; in
the circulation cells that surround them, strongly positive, while in the background
between vortices it fluctuates close to zero (see, e.g., [45–49]). As a result of the
dynamics, an initially uniform distribution of neutrally buoyant particles with finite
size evolves in time towards an asymptotic distribution concentrated in the inner part
of vortices where Q < 0, and with voids in the areas crossed by fluid trajectories
that visit regions where Q > St−2, as we illustrate in Fig. 11.
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Fig. 11 Small neutrally buoyant tracer particles converge to the centres of vortices in a two-
dimensional turbulent flow simulation; distribution at times (top left to bottom right) t = 1, 2,
3, 4, and 6 of particles uniformly distributed in the flow at time t = 1 [41]

Thus even with a small rigid neutrally buoyant spherical tracer particle in
an incompressible two-dimensional fluid flow the tracer trajectories can separate
from the fluid trajectories in those regions where the flow has hyperbolic stagna-
tion points. For flows with chaotic pathlines, analysis shows that the tracer will
only evolve on trajectories having Lyapunov exponents bounded by the value
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of the Stokes drag coefficient. Therefore, by making the value of this coeffi-
cient small enough, one can force the tracer to settle on either the regular KAM-
tori dominated regions or to selectively visit the chaotic regions with small Lya-
punov exponents. As well as its interest from the viewpoint of dynamical sys-
tems, this result is important to the analysis of observations and experiments
with neutrally buoyant particles both in the laboratory and in the atmosphere and
oceans.

The heuristic criterion for the departure of trajectories of neutrally buoyant par-
ticles trajectories from those of the fluid elements has been complemented by more
rigorous analysis. For example, the stability of the fluid flow manifold which is
invariant under the neutrally buoyant particle dynamics was studied in the more
general context of the perturbed invariant manifold of the non-neutral particles
[50, 51]. For neutrally buoyant particles, this analysis parallels a previous inter-
pretation of the fluid invariant manifold as a “bailout embedding” and the depar-
ture of trajectories as a “blowout bifurcation” taking place as the Stokes num-
ber is varied [52]. In both cases, it has been found that the heuristic criterion
based on the Okubo-Weiss parameter underestimates the areas of departure. Finally
noise or fluctuating forces enhance the phenomenon, as has been rigorously proved
in [53].

4.2 3D Flows and Bailout Embeddings

For incompressible two-dimensional flows, since the Jacobian matrix is traceless,
the two eigenvalues must add up to zero, which implies that they are either both
purely imaginary or both purely real, equal in absolute value and opposite in sign.
The result is that the particles can abandon the fluid trajectories in the neighbour-
hood of the saddle points and other unstable orbits, where the Jacobian eigenvalues
are real, and eventually overcome the Stokes drag, to finally end up in a regular
region of the flow on a KAM torus dominated by the imaginary eigenvalues. From
a more physical point of view, this effect implies that the particles tend to stay away
from the regions of strongest strain.

In contrast to the two-dimensional case, in time-dependent 3D flows the incom-
pressibility condition only implies that the sum of the three independent eigenvalues
must be zero. This less restrictive condition allows for many more combinations.
Triplets of real eigenvalues, two positive and one negative or vice versa, as well as
one real eigenvalue of either sign together with a complex-conjugate pair whose real
part is of the opposite sign, are possible. Accordingly, chaotic trajectories may have
one or two positive Lyapunov numbers, and a richer range of dynamical situations
may be expected.

Note that the dynamical system governing the behaviour of neutrally buoyant
particles is composed of a lower-dimensional dynamics within a “larger”, higher-
dimensional dynamics. Equation (18) can be seen as an equation for the variable
q = (v − u) which in turn defines the equation of motion (ṙ = u) of a fluid
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element whenever the solution of the former is zero. In this sense we may say that
the fluid parcel dynamics is embedded in the particle dynamics. In reference to the
fact that some of the embedding trajectories abandon some of those of the embedded
dynamics, the generalisation of this process is dubbed a bailout embedding [52].

Consider neutrally buoyant particles immersed in a flow in which each compo-
nent of the velocity vector field is sinusoidally modulated with a relative phase shift
of 2π/3 and where x, y, and z are to be considered (mod2π )

dx

dt
= (1 + sin 2π t) · (A sin z + C cos y), (27)

dy

dt
=
(

1 + sin 2π

(

t + 1

3

))

· (B sin x + A cos z),

dz

dt
=
(

1 + sin 2π

(

t + 2

3

))

· (C sin y + B cos x).

This is a modified version of the ABC flow [54]. This flow shows structures con-
sisting of a complex array of KAM sheets and tubes surrounded by chaotic volumes
[55]. Neutrally buoyant particles show a tendency to accumulate inside KAM tubes
as depicted in Fig. 12, where ten particles, initially distributed at random in the cubic
cell, are shown to end up in the interior of two of the tubes.

Fig. 12 Stroboscopic sampling (with period T=1) of the position of 10 particles initially distributed
at random in a flow described by Eq. (27) with A = 2, B = 0.4, C = 1.2. The dots represent the
positions of these particles at the strobing periods 1,000–2,000
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5 Advection of Finite-Size Particles in Open Flows

Here we concentrate on the question of how the global dynamics of advection
changes in two-dimensional open flows due to inertia. As discussed in Sect. 2, one
big difference between finite-size and non-inertial particles is that the dynamics of
the former is dissipative, which opens the possibility of the existence of attractors.
In the flow model of the von Kármán vortex street of Sect. 3.3, it has been found
that attractors are possible in the bubble regime 2/3 < R < 2. Light particles might
thus become trapped in the wake forever. For R = 1.33, St−1 = 30 there are, for
instance, three coexisting attractors [56–58]: two fixed points around the cylinder’s
surface and one at x = ∞.

To gain insight into what happens to ensembles of bubbles, the residence time
in a region around the cylinder is determined. The initial velocities were set to be
equal to the flow velocity. Figure 13 shows the result, where grey, white and black
depict increasingly long residence times. Dark regions mark permanently trapped
particles. This region corresponds thus to the basin of attraction of the two finite
attractors, which is in fact a projection of the basin structure in the full phase space
on the plane of the flow. At other inertia parameters there also exist chaotic saddles
which ensure that the approach toward the attractors, including the escape from the
wake (the approach toward the attractor at x = ∞) is a transient chaotic process.

A systematic investigation of the escape rate κ(St) from the hyperbolic parts of
this saddle shows (Fig. 14) that the escape rate is below the escape rate of fluid
parcels or passive tracers in the full range St−1 > 12. This indicates that bubbles
spend much more time in the wake than fluid particles. In the interval 14 < St−1 <

45 the escape rate vanishes indicating the presence of attractors. For St−1 in between
33 and 45 these attractors are chaotic. Beyond 45 the escape rate is positive, and it
approaches for large St−1 the value of ideal tracers.

Fig. 13 Finite-size particles
in the von Kármán flow.
Residence time for bubbles of
parameter St−1 = 30,
R = 1.33 (g = 0) at t = 0.3
mod 1. Basins of attraction of
two chaotic attractors appear
shaded dark in the plane of
the fluid. From [57]



74 J.H.E. Cartwright et al.

Fig. 14 Escape rate as a
function of the Stokes
number in the bubble regime
(R = 1.7). The horizontal line
is the escape rate for passive
tracers. From [57]

Fig. 15 Escape rate as a
function of the Stokes
number in the aerosol regime
(R = 0.5). The horizontal line
is the escape rate for passive
tracers. From [57]

The tendency is opposite for aerosol particles. The escape rate is above the escape
rate of fluid particles for any value of St, i.e. heavy particles spend much less time
in the wake than fluid particles (Fig. 15).

There is a qualitative argument explaining why bubbles tend to form attractors.
The particles are typically subject to local vortices. The centrifugal force for a par-
ticle comoving with a vortex is proportional to the density difference ρp − ρf . For
heavy particles this force pushes particles outward, but for light ones it attracts par-
ticles toward the vortex centre. The presence of this centripetal force is an important
reason for the existence of bubble attractors. The mechanism is similar to an obser-
vation of Maxey [12] according to which aerosols (bubbles) settle in the presence of
gravity faster (slower) in turbulent flows than in a fluid at rest. The explanation of
this phenomenon is the centrifugal (centripetal) effect of the turbulent vortices.

As a consequence of the dependence of the dynamics on particle parameters,
when starting from a mixture of particles of the same density but of different size,
segregation can be observed in chaotic flows consisting of a sequence of obstacles.
As an example of this type of flow, we consider an infinite chain of cylinders situated
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Fig. 16 Separation of bubbles in a chain of cylinders. The distribution of particles with R = 1.4
and St−1 = 20 St−1 = 120 coloured red and blue, respectively, after 10 time units. The initial
location is a small square with uniformly mixed particles in front of the cylinder located at the
origin. From [57]

at a distance of 8 cylinder radii from each other. The initial droplet of particles
contains a uniform mixture of particles of St−1 = 20 (red) and St−1 = 120 (blue),
and is injected into the flow in front of the cylinder centred at the origin. After
passing several cylinders, the droplet exhibits a clear separation as shown in Fig. 16.
The larger light particles (St−1 = 20) escape more slowly due to the centripetal
effect of the vortices. The flow in the cylinder chain acts therefore as a chaotic
chromatograph [57].

A work worthy of note is that of Haller and coworkers [50, 59]. They show that
for small particle sizes, i.e., for small Stokes numbers (St � 1), the dynamics of
a finite-size particle can be approximated by the dynamics on a low-dimensional
inertial manifold, which can be calculated explicitly from a given velocity field.
Following an approach of Maxey [12], they show that after a short transient time the
equation of motion of such small inertial particles can well be approximated by the
equation, termed inertial equation in [50]

ṙ(t) = u(r(t),t) + Wn + St

(
3

2
R − 1

)
D

Dt
u(r(t),t). (28)

This can formally be obtained by expanding Eq.(5) around its St = 0 solution:
ṙ(t) = u + Wn up to first order in St. The advantage of this equation becomes clear
when tracing particles backwards in time.

Finding a localised source of particle release is often of central relevance.
Such a source-inversion problem appears, for example, in locating a source of air-
transported contaminant particles. The approach based on the time-reversed integra-
tion of Eq. (5) leads to an unavoidable numerical instability due to an exponential
growth of the type exp (t/St). In contrast, the inertial equation (28) is free from this
instability. It can be solved easily in reverse time, too, and this procedure provides
with good accuracy the initial spatial coordinates of inertial particles. This has been
clearly demonstrated in the example of bubbles in the von Kármán flow [50], and
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in other realistic cases like e.g., anthrax in the wind field of an urban street canyon
[60] and aerosols in the flow of a hurricane [61].

In spite of the repelling centrifugal force for heavy particles, Vilela and Motter
showed [62] that aerosols can also be trapped by open flows under certain circum-
stances. Such aerosol attractors can exist due to a special interplay of two or more
vortices.

In the case of neutrally buoyant particles, R = 2/3, in an open chaotic flow, the
effect of inertia is to cause a dispersion of particles around the fractal structure of the
unstable chaotic set which exists for perfect tracers [63]. Since the introduction of
inertia enlarges the phase space to a 4-dimensional manifold (for 2D flows), it is no
surprise that the properties of the motion on the 2-dimensional projection to the con-
figuration space are different from its non-inertial counterpart. The important point
is that, for small Stokes numbers, the distribution of long-lived inertial particles can
still be understood in terms of the simple chaotic set of the non-inertial dynamics. In
[63], an expression is derived for the dispersion of particles around the inertia-less
chaotic set, which agrees well with numerical simulations. The main result of this
work is that inertia causes the fractal structure of the chaotic set to be lost in the
configuration space, so that below a certain scale determined by the Stokes number,
the spatial distribution becomes smooth. In the slow manifold approach of Haller
and coworkers, the slow dynamics coincides with that of infinitesimally small ideal
tracers; for W = 0, they find that ṙ(t) = u, as can also be seen from (28). There-
fore the particle dynamics should synchronise with Lagrangian tracer motion. It has
been shown [51], however, that the slow manifold has domains that repel nearby
trajectories, which explains the numerical findings of [63].

6 Coagulation and Fragmentation of Finite-Size Particles

So far we have only discussed the motion of passive finite-size particles which are
carried by the flow but do not interact with each other. But there is an increasing
interest in the investigation of the dynamics of active finite-size particles. The active
processes taken into account can be of different natures depending on the context.

In ecology these active finite-size particles, usually aerosols heavier than the
fluid, can be plankton species in a limnic or marine environment where plankton
populations change their number due to growth and death. Additionally competi-
tion and predator-prey interactions influence their dynamics. Particles of different
sizes gather along different attractors, as explained in the previous Sections, and
therefore different species are expected to occupy different niches, which promotes
the coexistence of competitors.

In chemical reactions the active finite-size particles are often bubbles (lighter
than the fluid) containing catalysts which mediate particular chemical reactions.

The example which is discussed here in more detail concerns the process of coag-
ulation and fragmentation of finite-size particles in the presence of gravity, which
plays an important role in cloud physics [64], marine snow and sediment dynamics
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[65, 66], engineering [67], planet formation [68] as well as wastewater treatment
[69]. In all the cases mentioned above particles are assumed to interact very rarely,
i.e., a kind of “dilute gas” assumption is used.

Coagulation and fragmentation are two processes which influence the size of
the particles. Coagulation can happen when two particles collide and form a larger
coagulate due to some adhesive forces [64]. Fragmentation is the break-up of a large
aggregate into a few smaller ones due to shear forces in the fluid. The dynamics
of a system including coagulation and fragmentation is more complicated than the
pure advection of finite-size particles. The difficulty lies in the different sizes of the
coagulates being advected by the fluid. Because of the dilute approximation, we can
assume that the motion of all particles follows the Maxey-Riley equation (5). Coag-
ulates of different sizes correspond to different parameters, namely different Stokes
number St and settling velocity W in these equations. Instead of one dynamical
system one has to deal with a set of dynamical systems, each of them corresponding
to a certain coagulate size. Moreover, the number of coagulates in each dynamical
system is changing continuously due to coagulation and fragmentation.

Coagulates of different size converge to different attractors [70] which can be
either fixed points, periodic motions, quasiperiodic motions on tori or chaotic attrac-
tors (cf. Fig. 17). Among the latter we find a variety of different forms from very
localised ones up to space filling attractors where coagulates are distributed over
the whole configuration space. As a consequence coagulates of different size are
located in different parts of the configuration space in the long-term limit. Hence, a
system containing coagulates of different sizes is characterised by an overlay of
different attractors possessing possibly different dynamical properties. However,
since coagulation and fragmentation happen usually on much smaller time scales
than convergence to the attractor, the overall dynamics is in general transient and
only a blurred structure of the attractors will be observable.

The same arguments apply to systems where the finite-size particles are bubbles
instead of aerosols. Bubbles and aerosols of the same size will occupy different
regions in configuration space and exhibit a different kind of dynamics. Therefore,
the dynamics of bubbles and aerosols as well as their changes (bifurcations) with

Fig. 17 Attractors for 3 different size classes in a convection flow (9) (cf. Sect. 3.2 for the flow
parameters). (a) St−1 = 7.0, (b) St−1 = 2.778, (c) St−1 = 2.253 and W = 0.4/A in all cases
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respect to variations of their size are completely different even in the case where
their sizes are identical [70]. Finally it is important to note that the form of the
attractors depends crucially on the flow [71, 62, 72].

Let us assume that there is a smallest particle in the system which cannot be
fragmented. We call it primary particle with radius a1, mass m1, Stokes number
St1 and settling velocity W1. To distinguish the different sizes of the coagulates
it is convenient to introduce a size class index α corresponding to the number of
primary particles that make up the coagulate. The radius of the coagulate is then
aα = α1/3a1, its Stokes number can be expressed as Stα = α2/3St1, and its settling
velocity is Wα = α2/3W1; here we see that W/St is independent of α, as discussed
at the end of Sect. 2.1. To derive these relations we assume that the coagulates are
spherical particles with radius aα . This assumption applies well to raindrops, while
it is a crude approximation for marine aggregates. Marine aggregates are compos-
ites of an inorganic kernel like silt or clay with organisms like algae and bacteria
attached to it which make up a fractal structure for the whole aggregate. Hence the
shape of marine aggregates is more a fractal object than a spherical one.

Coagulation results from a collision of two particles of radii ai and aj forming
a coagulate of radius a3

new = a3
i + a3

j owing to mass conservation. This implies
that the size class index of the new coagulate follows from αnew = αi + αj which
enters Stnew and Wnew. The velocity of the newly formed coagulate is determined
by momentum conservation.

The mechanisms of fragmentation are more complex. While raindrops break
apart when they reach a certain maximum size, marine aggregates split up owing
to shear forces in the fluid. In the latter case there exists a critical shear force which
has to be larger than the intrinsic binding forces of the coagulate to lead to fragmen-
tation. The strength of these binding forces can be measured in terms of a parameter
called coagulate strength. For large enough shear forces which overcome the critical
shear force a coagulate splits into two smaller ones (determined by a splitting rule,
see below). Their velocities are equal owing to momentum conservation and their
location is assumed to be directly neighbouring to each other in a random orienta-
tion. If the binding force of one of the new smaller coagulates is again smaller than
the critical shear force, then an additional break-up takes place. This way more than
two new coagulates can result from a single fragmentation event.

Implementing coagulation and fragmentation in the way described above the
dynamics of the system can be simulated for different fluid flows. For all subsequent
figures concerning coagulation and fragmentation the convection flow explained in
Sect. 3.2 is used. Similar results can be obtained for the sine shear flow [72]. In any
case one obtains a steady size distribution of coagulates where coagulation and frag-
mentation balance each other. The shape of the asymptotic size distribution depends
on several factors.

Firstly, the size distribution depends on the fluid flow. Secondly, the shape of the
size distribution is crucially dependent on the mechanism of fragmentation. While
the realization of coagulation is rather straightforward and does not influence the
shape of the size distribution, fragmentation needs a more detailed knowledge about
the break-up processes to be taken into account. Two different properties of the
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fragmentation process are important to consider: (i) what is the critical shear force
(splitting condition), how it depends on the size of the coagulate and on the intrinsic
binding strength or coagulate strength and, (ii) what is the size distribution of the
two fragments created (splitting rule).

To quantify differences in the size distributions depending on various parameters
characterising either the flow or the active processes it is convenient to define the
average size class index 〈α(t)〉 =∑α αNα(t)/N(t), where Nα(t) denotes the number
of coagulates in size class α, while N(t) is the total number of coagulates in the
system. Note that the total number of coagulates always changes in time owing
to coagulation and fragmentation. As time evolves 〈α(t)〉 is found to always reach a
limiting value α∞ though still fluctuating. This implies that a steady size distribution
sets in, which is unique, i. e., one finds the same distribution for almost all initial
conditions.

Let us now discuss the dependence of the size distribution on the details of
the fragmentation process. Unfortunately there are only a few experimental studies
devoted to the fragmentation process [73, 74]. Due to this limited knowledge about
the details of fragmentation an inverse modelling process has to be considered of
making several assumptions about fragmentation and asking which of those yield
size distributions which are qualitatively in agreement with observations. In this
way one is able to find indications for the most probable fragmentation mechanism.

Fragmentation is modelled by two different mechanisms which occur simulta-
neously: On the one hand shear forces in the fluid lead to shear fragmentation as
is typical for marine aggregates and, on the other hand, size limiting fragmentation
splits all coagulates of a predefined maximum size as is typical for rain drops. The
latter break-up process is assumed to be present in shear fragmentation as well. It
is known that larger coagulates are more fragile and, hence, fragment more easily.
In shear fragmentation the following ansatz for the critical velocity difference Δuc

across a coagulate of size aα is made:

Δuc

aα
∼ γα−1/3 (29)

where γ is the coagulate strength: a change of this parameter corresponds to consid-
ering different types of coagulates. This ansatz is also supported by Taylor [75] and
Delichatsios [76] who derived an expression for the critical velocity gradient for the
break-up of spherical liquid drops depending on surface tension and viscosity of the
drop.

Using Eq. (29) the average size class index is essentially determined by the
coagulate strength γ measuring the intrinsic binding strength of the coagulate. With
increasing γ the limiting average size class index α∞ has been found to grow in
simulations [72, 77] as

α∞ ∼ γ 1/3 (30)
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Fig. 18 Asymptotic average
size class index α∞ vs.
coagulate strength γ for
St−1
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until it reaches (at larger values of γ ) a constant finite value (Fig. 18). In the latter
interval of γ fragmentation is exclusively dominated by size limiting fragmentation
since the binding forces are too strong to allow for shear fragmentation.

In a certain intermediate range of γ where shear fragmentation dominates, all
size distributions collapse onto a master curve as shown in Fig. 19 if the steady state
size distribution is represented in a normalised form according to Nα/max (Nα) vs.
aα/α∞.

As already mentioned the splitting rule determining the size of the two frag-
ments after breaking apart is another important detail of the fragmentation process
which can possess several forms. Three different splitting rules have been taken
into account in numerical experiments to investigate their impact on the steady size
distribution of coagulates: Uniform splitting describes a break-up where the size
of the first fragment is chosen randomly from a uniform distribution between the
smallest size class index 1 and the size class index of the coagulate before splitting
αold. For large scale splitting the two fragments are of almost equal size, which
is expressed mathematically by α1 = αold/2 − |ξ | where ξ is a random number
(rounded towards the nearest integer) from a normal distribution with zero mean
and standard deviation 1, that is cut off at ±(αold − 1). Erosion corresponds to a
break-up where the size of the first fragment is much smaller than the other one, so
that α1 = |ξ | with ξ defined as for large scale splitting.

Numerical simulations show that the shape of the steady size distribution depends
crucially on the applied splitting rule. While for erosion and uniform splitting the
smallest size class contains most of the coagulates, large scale splitting yields a size
distribution with a pronounced maximum at rather small size classes and an expo-
nential decay towards larger size classes (Fig. 20). Particularly this exponential tail
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Fig. 20 Size distributions for different splitting rules (a) uniform splitting, (b) large scale splitting,
(c) erosion. The parameters are the same as in Fig. 19, γ = 80

corresponds rather well to observations of size distributions of marine aggregates
in tidal areas [78]. This can be interpreted as a strong hint that large scale splitting
might be the dominant fragmentation rule for marine aggregates in coastal waters.

The shape of the size distribution is also dependent on the velocity field of the
flow. As long as the attractors for all occurring size classes are space-filling, there
are no large qualitative differences between the limiting size distributions. Quantita-
tively, the differences are due to the shear induced by the flow field. However, if the
attractors appearing for different flows are not all space filling but differ essentially
with respect to their extension in the configuration space (localised vs. space filling)
or dynamically (periodic and quasiperiodic vs. chaotic) then large differences in the
steady state size distributions may be found.

7 Future Directions

The ubiquity and relevance of suspended particles in time-dependent flows makes it
very important to understand properly the dynamics of finite-size particle advection
in chaotic flows. This area is in active development, and the subject is the source
of many tantalising questions to scientists. We list below what we think are some
promising directions of this field.

Active inertial flows. The existing theory of active flows (that is, the dynamics of
chemical reactions or other active processes taking place in a flow) is cur-
rently formulated mainly for passive tracers [79]. However, this theory only
assumes the existence of fractal spatial distribution of the particles in the
flow, and exponential contraction towards these fractal filaments. Generally,
in case of inertial particles, as discussed extensively in this paper, the fractal
structures are present in a phase space which is higher dimensional than the
configuration space. If the projection of the phase space to the configuration
space shows a fractal distribution of particles, we can expect that the theory
developed for passive tracers holds for inertial particles as well. A major
difference, however, is that particles of different size or inertia are expected
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to occupy slightly different fractal sets. For example, in the case of species
coexistence, a recent work shows that inertia can have a dramatic effect on
the population dynamics [80], indicating that it is very important in gen-
eral active processes. The coagulation and fragmentation process of Sect. 6
is another example of an active process for which the particles’ inertia is
essential.

Non-spherical particles. Up to now most of the work has been devoted to particles
of spherical shape; Eq. (2) is only valid for spherical particles. This approxi-
mation works well in case of the formation of raindrops, but is only a rather
crude approximation in many other applications like e.g. marine aggregates,
which have a fractal-like structure. It can be expected that the non-spherical
shape of the particles has a large influence on the dynamics of the parti-
cles [81]. As an example the aggregation theory of dust particles in planet
formation has been discussed by Wilkinson et al. [68]. While fractal-like
particles have been investigated in the context of a mean field approach to
describe aggregation and fragmentation [82, 83], the consideration of such
non-spherical particles in chaotic flows is a topic of current research.

Hydrodynamical interactions between particles. By moving in the flow, particles
modify the velocity field in their vicinity, and this change may in its turn
affect the motion of another nearby particle. In this way, a hydrodynamical
interaction between particles is created which amounts to an inter-particle
force. This effect is usually neglected, but may become very important in
high particle concentrations. A particularly important question in this con-
text is how the fractal particle distributions created by chaotic advection are
affected by the inter-particle interactions [84].

Non-rigid particles. The Maxey-Riley equation assumes a rigid particle, but there
are many important cases where the “particle” is non-rigid. An example is
raindrops, or any other liquid droplets within a fluid flow [85]. The fact that
their shape is variable and depends in particular on the strain makes their
treatment challenging, but important.

Neglected terms in the Maxey-Riley equations. In numerical or analytical investi-
gations of finite-size particles in chaotic flows, the history term and the
Faxén terms of the Maxey-Riley equation are almost universally neglected by
researchers. It is important to have a more rigorous treatment of these terms
[86], and to know more precisely under what conditions one can neglect
them, and if there are particular flows for which these terms can be important.

We finish with a brief discussion on the case of particles advected by turbulent
flows. We have focused throughout this work on the case of non-turbulent (though
chaotic) flows. There is a vast literature on effects of inertia in fully developed
turbulence, an important subject for many areas. Today it is possible to investi-
gate the particle properties in turbulence at high spatial and temporal resolution.
By the appearance of advanced experimental techniques [87, 88] a direct compar-
ison of experiments and numerical simulations is available. The smallest scales in
turbulence are given by the Kolmogorov length η = (ν3/ε)1/4 and the Kolmogorov
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time τη = (ν/ε)1/2, where ε denotes the energy dissipation rate [88]. It is
natural to define a Stokes number Stη as the ratio of the Stokesian relaxation time
τ = 2a2/(9Rν) following from Eq. (2) for particles of size a to τη: Stη = τ/τη.
Note that this Stokes number differs from the one used throughout the paper which
is St = τU/L (as can be seen from (6)), i.e., the ratio of τ to the large scale
hydrodynamical time. The particle dynamics in turbulence depends on the scale
of observation.

On small scales, below the Kolmogorov lengths (in the so-called dissipative
range), the flow is smooth, and viscosity dominates. The overall situation is similar
to what has been discussed in the bulk of the paper: particles tend to accumulate on
chaotic attractors (projected to the space of the flow), and show fractal patterns. The
characteristic dimension (e.g., the Kaplan-Yorke dimension [17]) starts to deviate
(quadratically) from the dimension n of the flow as Stη takes on small but positive
values [89]. The dimension then reaches a minimum value at a Stokes number Stη1
of order one, corresponding to a strongest clustering, also called preferential concen-
tration, with a clean fractal structure. A further increase of the Stokes number leads
to an increase of dimension, which reaches again the value of n at some Stη2 > Stη1,
still of order one. Beyond this Stokes number, the attractor dimension is larger than n
in the full phase space, and its projection on the fluid is space-filling. This scenario
appears to be independent of the Reynolds number of the flow [90] but depends
smoothly on the density ratio R [91]. An important observation is that the velocity of
the particles as a function of the spatial coordinate might be multivalued. Locations
where the multivaluedness starts to develop are called caustics [89, 92, 93] and their
existence has serious consequences for collision rates of finite-size particles.

Beyond the Kolmogorov length (in the inertial range), the particle distribution
is no longer scale invariant, but it is characterised by voids spanning all scales.
Heavy particles have been found to cluster where the acceleration is large, i.e., where
pressure gradients dominate [89]. Light particles prefer to stay in regions of the
flow characterised by rotation [91]. In the inertial range, preferential concentration
appears thus to coincide with regions of certain Eulerian characteristics.

The research of the Lagrangian properties of particles in turbulence is rapidly
growing (see the review of [88]), and interesting new insights are likely to emerge.
Of particular interest is the behaviour of inertial particles in non-ideal (e.g., not fully
developed) turbulence. When a large scale flow is superimposed on ideal turbulence,
we expect that the particle dynamics on this scale becomes again similar in nature
to that on small scales, and the ideas worked out in the bulk of the paper are then
directly applicable.
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Langevin Equation for Slow Degrees of Freedom
of Hamiltonian Systems

R.S. MacKay

Abstract A way is sketched to derive a Langevin equation for the slow degrees of
freedom of a Hamiltonian system whose fast ones are mixing Anosov. It uses the
Anosov-Kasuga adiabatic invariant, martingale theory, Ruelle’s formula for weakly
non-autonomous SRB measures, and large deviation theory.

1 Introduction

Model reduction is a central theme in science. In particular, it is common to pro-
pose to replace “inessential” details of parts of dynamics by noise. This paper
addresses the question of to what extent such reduction may be justified if one starts
from a deterministic Hamiltonian systems, the agreed foundation for all classical
mechanics.

Suppose a Hamiltonian system consists of some slow degrees of freedom coupled
to a large number of fast chaotic degrees of freedom. For example, consider the con-
formation change degrees of freedom of a biomolecule coupled to its vibrations and
movement of water molecules. It is standard to model the slow degrees of freedom
by a Langevin equation, that is a stochastic differential equation where the effects of
the fast degrees of freedom have been replaced by an effective Hamiltonian system,
damping and noise.

Despite being in use now for 100 years [16], it seems to me there is not yet a
satisfactory derivation of a Langevin equation for the slow degrees of freedom. See
the reviews [11, 14] for the state of affairs. An example system which has recently
resurfaced is the “piston problem” [18].

One precursor is [8] for the case of Hamiltonians which are quadratic in the fast
degrees of freedom and subject to a continuum approximation for the distribution
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of frequencies of their normal modes. This approach was presented nicely by [31],
and treated more throughly in [28], but the crucial assumption (for the analysis) of
harmonic fast degrees of freedom seems unrealistic and overly restrictive to me.

A second precursor is the line of investigation of the sequence of papers [25, 30,
3, 13], which depends on assuming ergodicity of the fast dynamics restricted to an
energy level for frozen slow degrees of freedom, but I don’t think these papers can be
considered to make a mathematically complete derivation of a Langevin equation.
As a side-remark, ergodicity may be considered unrealistic and overly restrictive,
but perhaps true ergodicity is not really required.

This paper seeks to put more mathematical flesh on the ideas of the second
approach, under the stronger assumption that the fast dynamics is mixing Anosov
on relevant energy levels for frozen slow degrees of freedom. Although this is a yet
more restrictive assumption than ergodicity, [9] advocated that it may be reasonable
to assume that the dynamics of a large Hamiltonian system act as if mixing Anosov
on relevant energy levels (the “chaotic hypothesis”) and that results derived under
this assumption may apply more widely. It is worth noting that a two-degree of
freedom physically relevant mixing Anosov system has been constructed [12] and I
believe analogues can be made in higher degrees of freedom.

Under the mixing Anosov assumption, some nice mathematical results can be
applied, namely a formula of Ruelle for the first-order effect of weak non-autonomy
on the natural measure for a chaotic system [27], and an almost sure invariance prin-
ciple to approximate the integral of a zero-mean vector of observables for a chaotic
system by a multidimensional Brownian walk [23]. With some work I believe that
these ingredients can be put together to derive a Langevin equation for the slow
degrees of freedom. The paper sketches the main lines of the proposal.

2 Assumptions

1. Suppose (M,ω) is a symplectic manifold of large dimension 2m and H : M → R

is a smooth function (the Hamiltonian). Together they define a Hamiltonian vec-
tor field XH on M, by ω(XH ,ξ ) = dH(ξ ) for all tangent vectors ξ . Equivalently,
the symplectic form ω defines a Poisson bracket {F,G} = ω(XF ,XG) on smooth
functions F,G:M → R, and then dF(XH) = XH(F) = {F,H} for all F:M → R.
Let φt be the flow of XH .

2. Suppose N is a symplectic manifold of moderate dimension 2n, representing the
slow degrees of freedom. It will be enough to do local analysis in N, so without
loss of generality it can be considered to be a piece of R2n with local coordinate
functions Zj. Suppose π :M → N is a Poisson map, i.e. for all smooth functions
F,G:N → R, {F ◦ π ,G ◦ π}M = {F,G}N ◦ π .

3. Suppose for each Z ∈ N, the “fibre” π−1(Z) is a symplectic submanifold of
M, i.e. the restriction of ω to its tangent space is everywhere non-degenerate. It
follows that the restriction HZ of H to π−1(Z) defines a Hamiltonian vector field
XHZ on π−1(Z) (the constrained vector field). Furthermore, XHZ preserves the
2(m − n)-dimensional volume form
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ΩZ = ω∧(m−n)/(m − n)!

on π−1(Z), the level sets (H,π )−1(E,Z), and the (2m − 2n − 1)-dimensional
volume form μZ,E on (H,π )−1(E,Z) defined by μ ∧ dH = ΩZ . Denote its flow
by ψt.

4. Suppose

WZ(E): =
∫

{H≤E}
ΩZ

is finite for relevant Z,E and differentiable (actually, WZ(E) finite is not really
necessary as long as its derivative with respect to Z and E is definable). Its
E-derivative can be written as

W ′
Z(E) =

∫

H−1(E)
μZ,E.

Then μZ,E induces an invariant probability measure

λZ,E(A) = 1

W ′
Z(E)

∫

A
μZ,E

for subsets A on the level set for XHZ , which Boltzmann called an “ergode” and
Gibbs a “microcanonical ensemble”. Subscripts (Z,E) on measures μ and λ will
often be dropped. For a function g:π−1(Z) → R, its mean with respect to λ will
be written as λ(g).

5. Suppose

Vj = {Zj ◦ π ,H}

are slow compared to XHZ , in a sense to be made more precise in the next assump-
tion.

6. Suppose XHZ is mixing Anosov on the level sets for relevant E,Z. In particular,
suppose the autocorrelation of the deviation v(s) of V ◦ ψs from its mean decays
in a short time ε � 1 on the “slow” timescale, that for significant change in Z
under the mean of V .

7. Suppose the size of v (in units for the slow timescale) scales like
√
δ/ε for

some δ.
8. Suppose the temperature T > 0 is significantly higher than a value determined

by δ and the symplectic form on N, to be made explicit in Sect. 4.3.
9. Finally, suppose the heat capacity per fast degree of freedom is positive and

bounded.
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3 Aim

The aim is to show that for ε small the distribution of paths π ◦ φt(Y) for random Y
with respect to λZ0,E0 and for t in any order-one time interval, is close to that for the
solutions of a system of stochastic ordinary differential equations

dZi = (Jij − βDij)∇jF dt + σik dWk, Z(0) = Z0, (1)

with ∇jF a shorthand for ∂F
∂Zj

, J representing the Poisson bracket on N (i.e. {F,G} =
∇iFJij∇jG), β the inverse temperature for the initial energy, F:N → R the free
energy function at the given temperature,

Dij =
∫ 0

−∞
λZ,E(vi(0)vj(s)) ds, (2)

W a multidimensional Wiener process, σ any matrix function satisfying the Einstein-
Sutherland relation σσ T = D + DT , and the Klimontovich interpretation of the
stochastic differential equation.

Definitions of β, F and the Klimontovich interpretation will be recalled at the
appropriate points.

Equation (1) with Klimontovich interpretation implies Klein-Fokker-Planck equa-
tion

∂ρ

∂t
= −div (ρ(J − βD)∇F − S∇ρ) (3)

for the evolution of probability densities ρ with respect to volume ∧jdZj on N, where
S = (D + DT )/2, the symmetric part of D.

4 Strategy

The strategy of proof has six stages. First λ(V) is evaluated in terms of the micro-
canonical free energy. Secondly, the fluctuations v(t) of V from its mean are approx-
imated by a multi-dimensional white noise with covariance D + DT . Thirdly, a
correction to the ergode is derived when Z is moving, which in general yields damp-
ing. Fourthly, the effect of autonomous rather than externally imposed Z-motion is
argued to make no difference, to the order of approximation considered. Fifthly,
the ergode is approximated by the monode (canonical ensemble) for large num-
ber of degrees of freedom. Lastly, the Klimontovich interpretation is shown to be
necessary.
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4.1 Zeroth Order Mean Velocity

Anosov and Kasuga (e.g. [19]) proved that WZ(E) is an adiabatic invariant for XHZ

ergodic on energy levels, with respect to slow external change of Z, i.e. for most
trajectories the energy E(t) changes in such a way to keep WZ(t)(E(t)) ≈ w0. Define
the “microcanonical free energy” f :N → R for given w0 by

f (Z) = W−1
Z (w0). (4)

The following calculation shows that

λ(V) = J∇f . (5)

Firstly, WZ(f (Z)) = w0, so ∇W + W ′∇f = 0, i.e.

∇f = − 1

W ′ ∇W. (6)

Thus (J∇f )j = {Zj,f } = − 1
W ′ {Zj,W}. Next, the flow χu of XZj◦π preserves Ω

(because it is Hamiltonian) and the fibration π (because π is Poisson). Thus the
change of WZ(E) = ∫{H≤E}Ω from Z(0) to Z(u) along the flow χu is theΩ-measure

of the band in π−1(Z(u)) between H−1(E) and χu((H,Z)−1(E,Z(0))). The rate of
change of H along the flow χu is {H,Zj ◦ π} and we can write Ω = μ ∧ dH in a
fibre, so

{W,Zj} = −
∫

H−1(E)
{H,Zj ◦ π}μ.

Finally, λ(Vj) = 1
W ′
∫

H−1(E){Zj ◦ π ,H}μ.

Remark 1 A similar calculation with respect to the canonical ensemble eβFe−βHΩ

on π−1(Z) (Boltzmann’s “monode”) gives mean velocity J∇F, where the canonical
free energy F is defined by

e−βF(Z) =
∫

π−1(Z)
e−βHΩZ . (7)

Nevertheless, the canonical ensemble is not ergodic (energy is conserved), so it is
not clear how to proceed further (unless we just ignore the mixing requirement for
the next results).

Anosov’s averaging theorem (e.g. [19]) proves that most trajectories follow the
mean dynamics closely on short enough timescales. Thus from (5) the zeroth order
dynamics of the slow degrees of freedom is Hamiltonian with Hamiltonian function
the microcanonical free energy f . Note in particular that the zeroth order dynamics
preserves f , which is a restatement of the adiabatic invariance of WZ(E).
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I am interested in capturing effects that go beyond zeroth order, however, in par-
ticular on longer timescales where the invariance of WZ(E) breaks down. Results of
[5] address this, but not in a specifically Hamiltonian context.

4.2 Fluctuations

The fluctuations v(t) of V ◦ ψt from its mean for fixed Z produce an effect approx-
imately equivalent to white noise with covariance matrix R = ∫∞

−∞ C(t) dt, where
Cij(t) = λ(vi(t)vj(0)), provided the integral converges. This is well known but deriva-
tions vary in level of sophistication.

The simplest version is to let z(t) = ∫ t
0 v(s) ds (I denote it by z rather than Z

because this expression does not include the mean velocity of Z nor the fact that the
distribution of v changes as Z moves) and prove that

λ(zi(t)zj(t))/t → Rij

as t → +∞ (Green-Kubo formula, actually discovered by GI Taylor [29]).
Here is a proof. From the definitions of z and C, λ(zi(t)zj(t)) = ∫ t

−t (t − |u|)
Cij(u) du. So

λ(zi(t)zj(t))/t =
∫ t

−t

(

1 − |u|
t

)

Cij(u) du.

Tackle the positive and negative ranges of u separately. Convergence of the inte-
gral for R implies that given ε > 0 there is a t0 such that | ∫ t

u C(v) dv| ≤ ε for all
t ≥ u ≥ t0. Then for t ≥ t0,

∫ ∞

0
C(u) du −

∫ t

0

(

1 − u

t

)

C(u) du =
∫ ∞

t
C(u) du + 1

t

∫ t0

0
uC(u) du

+1

t

∫ t

0

∫ t

max (u,t0)
C(v) dv du.

The first and third terms are each at most ε in absolute value. The second is at
most ε as soon as t ≥ 1

ε

∫ t0
0 uC(u) du. Hence

∫ t
0

(

1 − u
t

)

C(u) du → ∫∞
0 C(u) du as

t → ∞. Similarly for u < 0 and hence the result. Note that in contrast to a statement
in [10] it is not necessary to assume 1

T

∫ T
−T |t|C(t) dt → 0 as T → ∞: it follows

automatically from
∫∞
−∞ C(t) dt <∞.

As a corollary this shows the covariance matrix to be non-negative. The covari-
ance matrix R can be written as D+DT , with D as defined in (2). Thus it also follows
that the symmetric part S of D is non-negative.

More sophisticated results use the theory of martingales: stochastic processes on
vector spaces such that the expectation of the future value given the present one is
just the present value. The best is to prove a “vector-valued almost sure invariance
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principle”, in the sense that the paths z(T) in R2n are distributed within O(Tδ) of
the distribution for the corresponding Brownian paths, for some δ < 1/2. This fol-
lows from a general result of [23] provided the fast dynamics is sufficiently rapidly
mixing (exponential suffices).

To increase the accuracy of the approximation by white noise, it could be a good
idea to iteratively improve the choice of fibration π to make C decay as fast as
possible, in particular to remove major changes in sign.

4.3 Correction to Ergode

If Z(t) is moved slowly along some path then the natural probability measure on the
moving fast system lags slightly behind the instantaneous ergode λZ,E for the given
value of w0. If we assume that WZ(E) is conserved exactly, the first order difference
can be computed by a formula of [27] (extrapolating a bit beyond his hypotheses,
but see [7] for a statement of what should suffice).

Ruelle’s formula assumes a direction of time, in the sense that the probability
distribution for the fast system is assumed to be absolutely continuous along unsta-
ble manifolds, whereas one could have asked for it along stable manifolds. Many
people regard this as justified by a hypothesis of a low entropy initial condition
for the universe [17], but hypotheses on initial conditions seem to me inadequate
to explain the direction of causality. I suspect a true explanation lies in quantum
gravity: probably a consistent theory of quantum gravity will exhibit two phases,
differing in the direction of interaction of radiation and matter. Our patch of space-
time is in one of these phases and we choose to orient time accordingly.

For a slowly varying vector field Xt on a manifold M, which at each time t is
mixing Anosov, Ruelle’s formula specifies the first order change to the expecta-
tion 〈O(t)〉 of any smooth observable O:M → R at time t from that for the frozen
system Xt:

δ〈O(t)〉 =
∫ t

−∞
〈d(O ◦ ψts)(Xs − Xt)〉 ds, (8)

where ψts is the flow of Xt from time s to time t. The term Xt can be dropped since
〈d(O◦ψts)Xt〉 is the expectation of the rate of change of a function with respect to an
invariant measure, so zero (it was included to make clear that the result is first order
in the change in the vector field). In our case, the state space π−1(Z) also changes
with time so evaluating Xs requires choosing some diffeomorphism between the
state spaces at times s and t, but the result does not depend on the choice.

Let us calculate the change in the mean of V due to slow motion of Z. For Xt

we use XHZ (t) and for the ensemble average we use λZ(t),E. Any motion of Z can
be specified as the result of a (possibly time-dependent) Hamiltonian flow on N,
with some Hamiltonian G, so Ż = J∇G. The function G lifts to G ◦ π on M and
so induces a fibre-preserving flow χ on M, which we can use to identify points of
different fibres. In particular for Xs in Ruelle’s formula we can use χ∗

tsXHZ (s), which
can be written as X(H◦χst)Z(t) . Then
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d(Vj ◦ ψts)Xs = {Vj ◦ ψts,H ◦ χst}Z(t), (9)

where {,}Z is the Poisson bracket on π−1(Z), defined via the restriction of the sym-
plectic form to the fibre. Thus Ruelle’s formula gives a time-integral of an energy-
level average of a Poisson bracket on a fibre.

Lemma 1 For symplectic manifold K with volume form Ω , Hamiltonian H, energy
level E, normalised energy level volume λE and any smooth functions F,G:K → R

for which the required integrals converge,

∫

{F,G} dλE = 1

W ′(E)

∂

∂E

(

W ′(E)
∫

{F,H}G dλE

)

. (10)

Proof For any smooth functions F,U:K → R for which the integral converges,

∫

{F,U} dΩ =
∫

dF(XU) dΩ = 0,

because it is the integral of the rate of change of F along orbits of XU with respect
to an invariant measure. Apply this to a product U = GA and use Leibniz’ rule and
antisymmetry for Poisson brackets to deduce that

∫

A{F,G} dΩ =
∫

{A,F}G dΩ . (11)

Now take A to be (a sequence of smooth approximations to) δ(E − H):

∫

δ(E−H){F,G} dΩ =
∫

{δ(E−H),F}G dΩ = −
∫

δ′(E−H){H,F}G dΩ , (12)

since {.,F} is a derivation. The right hand side can be written as

∂

∂E

∫

δ(E − H){F,H}G dΩ .

All that remains is to write δ(E − H) dΩ = W ′(E) dλ on both sides. �

Applying the lemma to (9) produces

δ〈Vj〉 = 1

W ′(E)

∂

∂E

(

W ′(E)
∫ t

−∞
ds〈{H,H ◦ χst}ZVj ◦ ψts〉

)

. (13)

Now

∂

∂s
H ◦ χst = −{H,G ◦ π}M ,
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so for times s out to some decorrelation time, which we supposed to be ε � 1
(Assumption 6), we can write to leading order

{H,H ◦ χst} = (t − s){H,{H,G ◦ π}M}Z .

Specialising to G = Zk gives {H,G ◦ π}M = −Vk. So the integral in (13) becomes

∫ t

−∞
ds (t − s)〈{H,Vk}Z(s)Vj(t)〉.

To justify this approximation properly requires some hypothesis on the rate of
decay of the correlation function of v (probably

∫ 0
−∞ |tC(t)| dt < ∞ suffices).

Now {H,Vk}Z = − dVk
ds along the flow of XHZ , so integration by parts (with again

some assumption about sufficiently rapid convergence of the autocorrelation inte-
gral) transforms the integral to

−
∫ t

−∞
ds〈(Vk(s) − 〈Vk〉)Vj(t)〉 = −Djk,

with D given by (2). Taking G to be an arbitrary linear combination of Zk yields

δ〈V(t)〉 = − (W ′D)′

W ′ J−1Ż. (14)

This result agrees with [3], except that the term “f1” which they chose to neglect
does not arise here. Perhaps I lost it through making a constant Ż approximation, or
perhaps it really gives nothing to leading order.

The derivation requires Ż to be small, since Ruelle’s formula is first order. This
is achieved for small enough ε, because the relevant notion of smallness of Ż is on
the fast timescale.

For k = m − n large, one can expect W ′ to vary much more rapidly than D with
energy E. In particular, under the assumption of Sect. 4.5 to come, W ′(E) ∼ eks(E/k),
where s(ε) is the entropy per fast degree of freedom as a function of the energy ε
per fast degree of freedom. Then (14) can be approximated by −βDJ−1Ż with

β = ( log W ′)′, (15)

the inverse (canonical) temperature (in distinction to the inverse microcanonical
temperature ( log W)′, though they should be virtually the same for large k). Thus
we obtain

Ż = J∇f − βDJ−1Ż (16)

for the mean motion of Z.
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Now invoke Assumption 8 of Sect. 2, which I’ll express explicitly as β‖DJ−1‖ �
1. Then (16) can be rewritten as

Ż = (I + βDJ−1)−1J∇f ≈ (J − βD)∇f . (17)

So the result of the correction is to modify the matrix representing the Poisson
bracket. D can have an antisymmetric component, which just changes J to a differ-
ent antisymmetric matrix (an effect called “geometric magnetism” by [3], though
it is not clear to me whether the result automatically satisfies the Jacobi identity).
Assuming β > 0, the symmetric part of D, being non-negative, produces damping
because under (17), df (Z)/dt = −β∇ifDij∇jf ≤ 0 to first order.

Ruelle’s formula could also be used to determine the first order change to the
covariance of the fluctuations from the mean velocity, but since we are considering
the fluctuations to already be first order small it does not make sense to determine
this second order effect on its own.

In principle, the effects of deviations from conservation of WZ(E) should also be
analysed; indeed, in the view of [25] they are responsible for the dissipation.

4.4 Effect of Autonomous Slow Motion

In reality Z(t) does not move along a predetermined path but is driven by
Ż = V , which depends on the choice of initial condition from λZ0,E0 . The diffi-
culties induced by back-reaction of the slow motion on the fast variables have been
addressed by Kifer in some contexts [14]. It seems reasonable to add the fluctuations
to the mean determined as above, but one ought to verify that correlations do not
cause a further change of the same order. This produces nearly the claimed result
(1), but with ∇f instead of ∇F and the interpretation of “=” unspecified.

4.5 Ergode to Monode

For large number of fast degrees of freedom, the microcanonical free energy can be
approximated by the canonical free energy (up to a possible constant), assuming a
thermodynamic limit exists for the heat capacity. Here is a derivation.

From (7), the canonical free energy for given β0 satisfies e−β0F(Z) = ∫

e−β0E

W ′
Z(E) dE, so

−β0e−β0F∇F =
∫

e−β0E∇W ′ dE.

Integrating this by parts yields
∫

β0e−β0E∇W dE, which by (6) can be written
as −β0

∫

e−β0EW ′∇f dE, where the E-dependence of f is via w0 = WZ(E). Thus

∇F =
∫

e−β0EW ′∇f dE /
∫

e−β0EW ′ dE.
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For the microcanonical ensmble at energy E, write the canonical temperature
T(E) = 1/β(E) = 1/( log W ′)′, from (15). For large k = m − n, assume the heat
capacity per degree of freedom c(ε) = 1

kT ′(kε) as a function of the energy ε per
degree of freedom is positive and bounded uniformly in k (say for simplicity that
the limit as k → ∞ exists). It follows by integration that β(E) = 1/T(E) is a
function of ε nearly independent of k, and by another integration the same for s(ε) =
1
k log W ′(kε), the entropy per degree of freedom. Then the function e−β0EW ′(E) of
E is approximately e−k(β0ε−s(ε)), which is sharply peaked around the ε0 such that

s′(ε0) = β0 (because s′′(ε) = − β2

c(ε) < 0), i.e. β(E0) = β0 . Thus ∇F for β0 is
approximated by ∇f for this E0.

4.6 Klimontovich Interpretation

The Klimontovich interpretation [15] of the stochastic differential equation is as the
limit as τ decreases to 0 of the discrete-time process

Zi((n + 1)τ ) − Zi(nτ ) = τ (Jij − βDij)∇jF + σij(Z((n + 1)τ ))wj(n) (18)

with wj(n) independent random steps of zero mean and variance τ . The distinguish-
ing feature is that σ is evaluated at the end of a step rather than at the beginning
(as for Ito) or averaged between the ends (as for Stratonovich). More formally, the
Klimontovich interpretation is defined as the Ito equation with added drift ∇jSji

where S is the symmetric part of D.
The differences between interpretations of the stochastic differential equation are

probably beyond first order, but there is a clear preference for Klimontovich inter-
pretation, because it is the only one for which the measure e−βFΩN (the marginal
on N of the canonical ensemble) is stationary if S depends on Z. This can be verified
by substitution in (3). It was also understood by Hänggi [6].

5 Case of Standard Mechanical System

If N is a cotangent bundle T∗L, the Hamiltonian has the form H(Q,P,z) = 1
2 PTM−1P+

h(Q,z) for slow degrees of freedom (Q,P) ∈ T∗L and positive definite mass matrix
M(Q), and the symplectic form is ω = ∑

j dQj ∧ dPj + ω̃ with ω̃ a symplectic
form in z (possibly depending on Q and P), then the formulae simplify. In particular
Q̇ = M−1P exactly, F takes the form F(Q,P) = 1

2 PTM−1P + G(Q) with G defined
by e−βG(Q) = ∫ e−βh(Q,z)Ω , D is independent of P, and Dij = 0 if any index refers
to a component of Q. So for the rest of this section, D denotes just its PP-block. G
is called the “potential of mean force”. Hence

d(M(Q)Q̇) = −(∇G + βDQ̇)dt + σdW. (19)
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Note that this can be derived even without making the approximation used
in (17).

This simpler form of Langevin equation permits a further reduction in the “over-
damped” case. Specifically, if D is invertible and the maximal rate of change of M,
D and G along solutions is slow compared to the slowest damping rate β‖MD−1‖−1

then P relaxes onto a slow manifold and is thereafter slaved to the motion of Q,
resulting to a good approximation in

βDijdQj = −∇iG(Q) dt + σijdWj(t), (20)

or equivalently (with T = 1/β and taking D symmetric for simplicity)

dQ = −TD−1∇G dt + 2Tσ−T dW (21)

(using Klimontovich interpretation again). For a proof see Theorem 10.1 of [24].
This is the form commonly used in biochemistry, e.g. [2, 21] and perhaps justifies
the idea of reactions following steepest descent curves on the free energy surface.
Note that it produces Smoluchowski-Fokker-Planck equation

∂ρ

∂t
= div

(

T(D−1∇G)ρ + T2D−1∇ρ
)

, (22)

with stationary measure e−βGdQ (dQ being volume on L).

6 Quantum Degrees of Freedom

Quantum mechanics can be viewed as Hamiltonian. For Hermitian operator h on
complex Hilbert space U, take the state space to be the projectivisation P(U) of U
(i.e. the set of 1D complex subspaces), endowed with the Fubini-Study symplectic
form [22], and take H(ψ) = 〈ψ |hψ〉/〈ψ |ψ〉. The resulting Hamiltonian vector field
gives Schrödinger evolution i dψ

dt = hψ .
Alternatively, take M to be the dual of the Lie algebra of Hermitian operators on

U with inner product 〈A,B〉 = Tr AB and its Lie-Poisson bracket, and H(A) = Tr hA.
This gives von Neumann evolution idA/dt = [h,A].

Thus one can incorporate quantum degrees of freedom in the above framework,
for example electronic degrees of freedom involved in the conformation change of
rhodopsin after absorbing a photon.

There is the problem however that the quantum dynamics is not Anosov, so after
all perhaps the approach of [8, 31] is more appropriate.
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7 Kinetics Out of Chemical Equilibrium

The slow state space N can be a covering space. For example, its base can repre-
sent the conformation of myosin and associated momenta, and the decks differ by
the number of ATP molecules. This is the appropriate way to view a biomolecular
system in thermal equilibrium but out of chemical equilibrium. Indeed such prob-
lems motivated the present paper [20].

8 Conclusion and Problems

A strategy has been sketched to derive a Langevin equation for slow degrees of
freedom of a Hamiltonian system, under suitable assumptions. It would be good to
carry out this programme in full.

I conclude with a few related problems for the future:

• Examine the effect of the small measure exceptional set in Anosov’s averaging
theorem.

• Obtain higher accuracy by slightly different well selected choice of Z(0).
• Determine the rank of S (degeneracies can arise only from coboundaries [4]), and

conditions for hypoellipticity (e.g. [1]).
• Attempt to extend the results beyond mixing Anosov fast dynamics.
• Try to use the theory of partial hyperbolicity, because it can lead to ergodicity

under fairly general circumstances [26].
• Adapt the approach for a constant pressure ensemble, e.g. by adding a heavy

piston under gravity.
• Investigate what to do if there is no gap in time-scales.
• Study ways in which the result fails. This would be even more interesting than

the whole current programme.
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Stable Chaos

Antonio Politi and Alessandro Torcini

Abstract Stable chaos is a generalization of the chaotic behaviour exhibited by
cellular automata to continuous-variable systems and it owes its name to an under-
lying irregular and yet linearly stable dynamics. In this review we discuss analogies
and differences with the usual deterministic chaos and introduce several tools for
its characterization. Some examples of transitions from ordered behavior to sta-
ble chaos are also analyzed to further clarify the underlying dynamical properties.
Finally, two models are specifically discussed: the diatomic hard-point gas chain
and a network of globally coupled neurons.

1 Introduction

Chaos is associated with an exponential sensitivity of the evolution to tiny perturba-
tions in the initial conditions, so that the presence of at least one positive Lyapunov
exponent is considered as a necessary and sufficient condition for the occurrence of
irregular dynamics in deterministic dynamical systems [1]. In fact, the first observa-
tion in coupled-map models of stochastic-like behaviour accompanied by a negative
maximum Lyapunov exponent came as a big surprise [2, 3]. In order to highlight the
unexpected coexistence of local stability and chaotic behaviour, the phenomenon
was called stable chaos (SC). Although the definition sounds like an oxymoron, in
practice, there is no logical inconsistency, as the irregular behaviour is a transient
phenomenon that is restricted to finite-time scales. In spite of this restriction, SC is
both a well defined and meaningful concept, because the transient duration diverges
exponentially with the system size and is therefore infinite in the thermodynamic
limit. Moreover, the stationarity of SC [3] suggests that it can represent an interest-
ing platform for studying non-equilibrium phenomena. A better understanding of
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SC can be gained by exploring the analogy with the chaotic behaviour exhibited by
elementary cellular automata [4], another phenomenon that can be formally defined
only in the thermodynamic limit. In fact, as we clarify in this review, SC is a sort of
extension of cellular-automaton dynamics to continuous-variable systems. In partic-
ular, the spreading velocity of localized perturbations, a standard indicator used to
quantify the degree of chaoticity in cellular automata, proves rather fruitful also to
characterize SC. However, in this latter case it is necessary to distinguish between
finite and infinitesimal perturbations (the latter ones cannot even be defined in cel-
lular automata, because of the discreteness of the local variable) and it is thereby
possible to define two conceptually different propagation velocities. This allows
giving a fairly general definition of SC as that of a dynamics dominated by “finite
amplitude” pertubations [5, 6].

Altogether, one can express the relevant difference between deterministic chaos
and SC by referring to the relevant flux of information: while in the former context,
information flows from the least towards the most significant digits, in the latter,
it flows from the boundaries towards the core of the system. It would be there-
fore desirable to develop a general formalism able to encompass both phenomena.
A promising idea is based on the introduction of “non democratic” norms which
attribute increasingly small weights to the sites that are increasingly “far” from the
region of interest. Although this approach allows quantifying the spatial information
flow, it can be hardly extended to account for perturbations that have locally a finite
amplitude, the analysis of which would require a genuine nonlinear treatment. In
fact, a tool like finite amplitude Lyapunov exponents (FALEs) [7] appears to be
more appropriate for characterizing SC, although it is not clear how to go beyond
the maximal exponent (for the absence of a proper scalar product definition in this
context).

As we have mentioned above, in systems with a finite number of degrees of
freedom, SC is a transient phenomenon. One might therefore think of using tools
and ideas developed for the characterization of transients such as those extensively
discussed in the nice review by Tèl and Lai [8]. One must however distinguish
between SC and standard chaotic transients (for a seminal paper on the subject,
see [9]). In the former case, the maximum Lyapunov exponent is positive and for-
mulas such as Kapral-Yorke and Pesin relations can be invoked to express some
properties of the invariant measure in terms of the Lyapunov exponents [10]. In
SC, a straightforward application of the same formulas yields manifestly useless
predictions, as they do not take into account the spatial information flow that is the
key mechanism of SC. Accordingly, one must still heavily rely on direct numerical
simulations to infer the structure of the invariant measure. Nevertheless, we suspect
that a possible common property of chaotic transients and SC is the presence of a
strange repeller. In fact, chaotic transients are almost by definition the manifestation
of trajectories evolving in the vicinity of a repeller, possibly characterized by a small
escape rate [8, 10]. This property seems to clash with the absense of unstable orbits
in most of the models exhibiting SC. However, such models are also characterized
by discontinuities in phase-space and here below we argue that their smoothing
gives birth to a web of unstable orbits. We are thereby lead to conjecture that even
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though SC is accompanied by a negative Lyapunov exponent, its very existence
requires the presence of topological chaos, i.e. of a finite topological entropy. When
and whether the resulting transient dynamics is linearly stable or unstable remains
however to be clarified.

The review is organized in the following way. In Sect. 2 we briefly introduce
the reference models that have been mostly used to characterize SC. In Sect. 3 we
properly define SC from the scaling behaviour of the transient length and discuss
its properties in terms of space-time correlations and fractal dimensions. Then, in
Sect. 4, we discuss the relationship with cellular automata by suitably encoding the
space-time pattern. In particular, we focus our attention on the indeterminacy of the
next symbol as a way to quantify the difference between the original dynamics and
that of a suitable deteministic automaton rule. We also introduce and estimate the
propagation velocity of localized perturbations. In Sect. 5, we compare SC with the
usual deterministic chaos. This is done by smoothing an otherwise discontinuous
coupled-map model and studying the dependence of standard indicators such as the
maximum Lyapunov exponent on the smoothness of the dynamic rule. As a result,
we identify two thresholds: (i) the first one separates the regions with postive and
negative Lyapunov exponent; (ii) the second, larger, threshold separates the region
where finite-amplitude perturbations propagate faster than infinitesimal ones, from
that where the two velocities coincide with one another (which is the signature of
a standard chaotic evolution). Moreover, we compute the multifractal spectrum of
the Lyapunov exponent, showing that it has a positive tail even when the average
exponent itself is negative. In Sect. 6 we discuss various order-to-chaos transitions.
In fact, the analogy with cellular automata reminds us that such rules are not neces-
sarily chaotic. The intrinsic absence of a continuous parameter makes it impossible
to investigate order-to-chaos transitions in the cellular-automata context. As this
restriction does not apply to SC, it makes sense and it is desirable to investigate the
onset of chaotic dynamics in this latter context. We first study a coupled-map lattice,
the coupling strength being the relevant control parameter. The analysis reveals the
existence of a fuzzy transition region, where regular and irregular dynamics alternate
in a complex manner [11]. A simple stochastic model is then introduced to gain
some further insight. In the new setup, the transition is of directed-percolation type
[12].

For a long time, SC has been found only in abstract mathematical models, char-
acterized by the presence of discontinuities or nearly discontinuous1 evolution rules.
This restriction has therefore casted some doubts on the physical relevance of this
phenomenon. In Sect. 7 we discuss a mechanism that can generically lead to dis-
continuities in physically meaningful contexts. The mechanisms requires just the
presence of δ-like events such elastic collisions between particles or spike emissions
by neurons. The “non-commutativity” of such events represents a genuine source of
discontinuities, which may, in turn, give rise to SC. A diatomic hard-point gas and
a network of coupled neurons are discussed in Sect. 7 as examples of such dynam-

1 See the next section for a clarification of this concept.
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ical systems. The neural network model allows us also to discuss an order-to-chaos
transition that appears to be of “standard” type (the critical region reduces to a single
point), although the universality class has not yet been identified [13]. Finally the
still open problems are briefly summarised in Sect. 8.

2 Models

Most of the numerical studies of stable chaos have been carried out in a 1D lattice
of diffusively coupled maps [14],

xi(t + 1) = (1 − ε)f (xi(t)) + ε

2

[

f (xi−1(t) + f (xi+1(t))
]

(1)

where ε ∈ [0:1] is the coupling constant and the map of the interval f is piecewise
linear,

f (x) =

⎧

⎪⎨

⎪⎩

p1x + q1 0 ≤ x ≤ xc

1 − (1 − q2)(x − xc)/η xx < x < xc + η
q2 + p2(x − xc − η) xc + η < x ≤ 1,

(2)

where xc = (1−q1)/p1. The model [5] is a continuous generalization of the systems
analysed in [2, 3], which basically correspond to η = 0, i.e. to a two-branch maps.
The map is continuous because the left and right limits in both connecting points do
coincide

(

f
(

x−
c

) = f
(

x+
c

)

, f
(

x−
c + η) = f

(

x+
c + η)). Occasionally in this review

we speak of “quasi-discontinuous” models, implying the presence of large but local-
ized (in phase-space) amplifying regions. In this context, this amounts to assuming
a small but non-zero width η for the middle branch. In next the section we restrict
our analysis to the case η = 0.

Since this model is rather artificial (no specific physical problem lies behind the
choice of f , which has been mostly selected for simplicity reasons and for coherence
with the seminal paper [15]), we find it convenient to consider a second type of
model, namely a chain of Duffing oscillators

ẍi = −γ ẋi − x3
i + D(xi−1 + xi+1) + (1 + G(t) sin 2π t/T1)xi (3)

where γ controls the dissipation, D the diffusion between nearby sites and G(t)
is the modulation amplitude that is periodically switched on and off; G = A for
mod (t,T)< T1 and zero otherwise. As discussed in [4], for T2 long enough, the Lya-
punov exponent is negative, so that the evolution must eventually converge towards
a periodic orbit, as it indeed does.
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3 Definition and Characterization of Stable Chaos

Simulations of the above defined map have revealed the existence of long-lasting
transients followed by a sudden convergence towards some periodic orbit. This
suggests, and simulations confirm, that the basin of attraction of such orbits is
so intricate that the convergence is exponential only for distances homogeneously
smaller than some threshold θ . However, since there exist many different periodic
orbits, one cannot estimate the transient length by determining the distance from
an a priori unknown final state. One can nevertheless determine the distance d(t,τ )
of the configuration {xi(t)} (i = 1, N) at time t from any previous configuration at
time τ < t. As soon as there exists a τ -value such d(tc,τ ) < θ , we can conclude that
d(t+t ′,τ+t ′) will tend to 0, indicating that the dynamics converges towards an orbit
of period t − τ . As shown in Fig. 1, the average (over different choices of the ini-
tial conditions) transient time may increase exponentially with the chain length, i.e.
with the phase space dimension. This indicates that in the thermodynamic limit, the
relevant dynamical regime is not the asymptotic periodic behavior that is practically
unreachable, but what one would naively consider a transient regime. This scenario
is reminiscent of the disordered regime in directed percolation, which, in finite sys-
tems, has necessarily a finite lifetime, as the dynamics sooner or later is absorbed by
the homogeneous state [16, 17]. Irrespective of this difficulty, the disordered regime
is a true “phase” in the statistical-mechanics sense, as it is stable in infinite systems,
i.e. when the thermodynamic limit is taken before the infinite-time limit. It should,
however, be noticed that in SC the “absorbing state” is not just a single homogenous
configuration, but may be a set of different and possibly exponentially long orbits.

A second striking character of the transient is that the maximum Lyapunov expo-
nent turns out to be negative. Like for the very existence of SC, this statement is
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Fig. 1 Average transient duration versus the chain length for the diffusively coupled lattice of maps
(2), for p1 = 2.7, q1 = 0, η = 0, q2 = 0.07, p2 = 0.1, and for the coupling strength ε = 2/3
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formally correct only under the assumption of taking first the thermodynamic limit.
In practice, it is sufficient that the transient duration is long enough to guarantee a
good statistical convergence. From the data reported in Fig. 1, one can see that this
is not a limitation at all, since already in a lattice of 100 maps, the periodic state is
practically unreachable.

The very fact that the transient is Lyapunov-stable makes it substantially dif-
ferent from the chaotic transients that have been often found and attributed to the
existence of some chaotic saddle of high dimensionality [8]. This is all the way more
surprising once we notice that the “transient” dynamics is far from regular. In fact,
simulations reveal that both spatial and temporal correlations decay exponentially.
An example is reported in Fig. 2, where we plot

C( j ) = |〈xi(t)xi+j(t)〉|
〈xi(t)2〉 , C(τ ) = |〈xi(t)xi(t + τ )〉|

〈xi(t)2〉 (4)

where 〈·〉 denotes an ensemble average
It is natural to characterize the invariant measure also in terms of its fractal

dimension. Since the whole Lyapunov spectrum is negative, one cannot invoke the
Kaplan-Yorke [18] formula to predict the number of active degrees of freedom.
Actually, such a formula would imply that the dimension is equal to zero and this
is in fact true for the asymptotic attractor. Therefore, we must rely only on direct
numerical computations. More precisely, we have decided to compute the correla-
tion dimension [19] of spatial sequences of variables [20]. In other words, we have
constructed embedding spaces of the type xi(t), xi+1(t), . . . , xi+e−1 (t), for e = 1, 2, 3.
In each case, we have counted the number of pairs of points N (e, δ) that are sep-
arated by a distance larger than � in a space of dimension e. Afterwards, we have
determined the dimension as the effective derivative, i.e.

D2(e,�) = ∂ logN
∂ log�

(5)

Fig. 2 Spatial and temporal
(smoother curve) correlations
for the same parameter values
of the single map as in Fig. 1
and ε = 0.608
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Fig. 3 Correlation dimension of the spatial embedding for ε = 0.6008 (upper panel) and ε =
0.608 (lower panel). Dotted, dashed and solid curves correspond to embedding dimension e = 1,
2, and 3, respectively

Formally, the correlation dimension is the limit of D2(e,�) for � → 0. As for
small �, N is affected by statistical fluctuations due to the finite number of points,
the relevant question is whether the limiting behaviour sets in for distances that are
numerically accessible. In Fig. 3 we report the results for two different values of
the coupling strength, ε = 0.6008 and ε = 0.608, which correspond to an ordered
and chaotic regime, respectively. Even in the ordered regime, the fractal dimension
is finite, as revealed by the plateau, whose height is independent of the embed-
ding dimension. The non-zero value of the dimension reflects the disordered spatial
structure, i.e. the existence of spatial chaos. Therefore, already from this simple case
we can conclude on the necessity to go beyond the standard Lypapunov-exponent
analysis. In the chaotic regime, the effective dimension is larger and grows with
the embedding dimension e (see lower panel in Fig. 3). However, in the absence
of theoretical arguments, we cannot definitely conclude whether the dimension will
saturate for e → ∞, indicating the existence of a low-dimensional attractor, or
whether it diverges, suggesting some form extensivity [20].

4 Relationship with Cellular Automata

The existence of a stochastic-like dynamics accompanied by an exponential con-
traction of infinitesimally close trajectories suggests an analogy with the so-called
chaotic cellular automata (CA) rules [21]. In fact, in a finite lattice, any CA rule
must eventually produce a periodic orbit, since the number of distinct states is
finite, namely BN , where B is the number of states of the local variable and N is
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Fig. 4 Two patterns generated by iterating Eq. (1) with the function f defined as in Eq. (2) with the
same parameter values as in the previous figures and coupling strength ε = 0.55 (left panel) and
0.7 (right panel). Time flows downwards; black corresponds to xi(t) < 1/2

the number of lattice sites. What makes a chaotic rule different from an ordered one
is precisely the time needed to cycle through previously visited states: such a time
is exponentially long in chaotic rules [21].

A binary representation of the dynamics observed in the the coupled map lat-
tice (1) confirms these expectations. The pattern plotted in Fig. 4 are indeed very
reminiscent of those obtained by iterating CA rules.

The relationship with CA can be put on more firm grounds, as we discuss in
the following with reference to the chain of Duffing oscillators (3). The bistable
character of the single oscillators suggests a natural way to encode the underalying
dynamics and thereby to explore possible connections with CA rules. An appropri-
ate indicator to do so is the indeterminacyΔh(m) of the symbol s ′ = si(t+1), under
the assumption that the sequence S(m) = {si−r(t), si−r+1(t), . . . , si(t), . . . , si+r(t)}, is
observed at time t (time being measured in periods of the forcing term) and where
m = 2r + 1. The indeterminacy is formally defined as [22]

Δh(m) =
∑

S

P(S(m))
∑

s′
P(s′|S(m)) log P(s′|S(m)) (6)

where the first sum extends over all sequences of length m generated by the chain
dynamics, and the second sum to the two values of the symbol s′. P(S(m)) is the
probability to observe anywhere the sequence S(m); P(s′|S(m)) is the conditional
probability that the observation of the symbol s′ at time t+1 on the site i is preceded
by the sequence S at time t in a window of length m centered around the site i. When
the knowledge of S(m) allows to perfectly predict s′, then the indeterminacy is zero.
In this case, the symbolic dynamics is perfectly equivalent to that of a CA defined
over a window of length m. In Fig. 5 we report the data for T2 = 8, 18 and 20. �h
is a non decreasing function of m, since the more we assume to know on the past,
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Fig. 5 Indeterminacy in the
chain of Duffing oscillators
(3) with γ = 0.103,
D = 0.0263, ω = 0.56,
T1 = T2/16 and T2 = 8, 18,
20 (from top to bottom)
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the smaller must be the uncertainty on the future. If �h becomes exactly equal to 0
for a finite m, then we can conclude that the dynamics is perfectly reconstructible
from a CA with a finite interaction range. In all cases we see that for m larger than
15, the curves saturate revealing the existence of a residual uncertainty. This does
neither imply that the dynamics contains some degree of stochasticity, nor that the
model has to include longer memory terms. One striking such example was dis-
cussed in [22], where Crutchifield applied this approach to the pattern generated by
an elementary CA, after it was suitably encoded. The indeterminacy of the encoded
pattern revealed the presence of a residual uncertainty even though the CA rule is
deterministic and requires only the memory of one past step, while the encoding is
even memoryless. The identification of the “optimal machine” in generic cases is a
typical example of the hardness of inverse problems.

The analogy with CA suggests to quantify the degree of chaos also in SC by
determining the velocity vF of propagation of perturbations. Let us consider two
configurations that initially differ in the interval [−r, r] and let il(t) (ir(t)) denote the
leftmost (rightmost) site where they differ more than some threshold. Accordingly,
we can define the front velocity as

vF = lim
t→∞

ir − il
2t

. (7)

Within CAs, a finite spreading velocity is considered as an evidence of chaotic
behaviour [21]. In fact, this is true also in the context of SC, as it can be seen in
Fig. 6, where we plot the spreading of an initial difference for parameter values that
correspond to ordered and irregular behaviour. There we see that the perturbation
spreads only in the latter case (see the right panel). In the CA language, the velocity
vf is often named the “Lyapunov exponent” [21]. In fact the evolution equation of
an elementary CA can be formally written as a mapping of R2 into itself,

ul(t + 1) = Fl(ul(t), ur(t)) ur(t + 1) = Fr(ul(t), ur(t)) (8)
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Fig. 6 Propagation of
initially localized
perturbations in the coupled
map lattice for the same
values as in Fig. 4. Time
flows downwards

where ur(t) = ∑

≥0 si(t)2−i, ul(t) = ∑

i<0 si(t)2i and si(t) = 0,1 (for the sake of
simplicity we refer to binary automata). In general Fl and Fr are highly singular
functions, but this does not forbids to define a sort of Lyapunov exponent from the
growth rate of an arbitrarily small perturbation δ. In practice, if two configurations
differ only in the interval [ − r, r], we can equivalently say that the representation
points in R2 are separated by a distance δ ≈ 2−r. Moreover, if the size of the spatial
region where the two configurations differ increases with a velocity vf , we can state
that the R2 distance grows as exp [(vf log 2)t], thus confirming that, apart from a
multiplicative factor, the velocity plays the role of a Lyapunov exponent. In coupled
map lattices, the local variable is continuous rather than binary, but this does not
change the substance of the argument.

5 Relationship with Deterministic Chaos

The original model where SC has been observed for the first time has a peculiarity,
namely, the discontinuity of the mapping [3]. As a result, the distance between two
arbirarily close trajectories can suddenly become of order O(1), when they find
themselves on opposite sides of the discontinuity. It is therefore reasonable to study
the continuous version of the model, i.e. to assume η �= 0 in (2). In the limit η → 0,
the map (2) reduces to the original discontinuous system.

Already at the level of the single map (i.e. without invoking any spatial coupling),
the introduction of an additional branch may drastically modify the structure of the
corresponding dynamical system. This is clear in the simple case q1 = q2 = 0,
p1 = p2 = 2. For η = 0, the topological entropy is H = ln 2, as the map corresponds
to the Bernoulli shift; however, for any arbitrarily small, but finite, η-value, the
appearance of a third branch induces a jump to H = ln 3. For the parameter values
that correspond to the SC regime discussed in the previous section, the consequence
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of a finite η-value is even more striking, as H is strictly equal to zero for η = 0, while
it is finite for η = 0+. This can be understood, by performing a slightly nonconven-
tional symbolic analysis. Let us start by recalling that for the original parameter
values, there exists a stable period-3 orbit (x1, x2, x3), whose points are ordered as
q2 < x1 < x2 < xc < xc + η < x3 < 1. Because of the third contracting branch,
the interval [x3,1] is asymptotically squeezed to a point, so that we can identify
the rightmost point x3, with the right border of asymptotically distinct trajectories.
Analogously, the interval [q2, x1] is also squeezed to zero and we can accordingly
interpret x1 as the left border of the relevant interval. Finally [xc + η, x3] is also
squeezed to zero and can be neglected as well. As a result, the relevant dynamics is
described by the mapping of I1 = [x1, x2] and I2 = [xc, xc + η]: f (I1) = I2 while
f (I2) = I1 ∪ I2. It is easy to show that the corresponding topological entropy is
the golden mean H = log [(1 + √

5)/2]. Therefore, we can at least conclude that
the introduction of a finite but arbitrarily small η induces topological chaos in an
otherwise stable environment.

In the single map, the existence of a fractal chaotic repellor can induce long
transients only for those trajectories that are carefully selected in the vicinity of
the repellor itself. It is reasonable to conjecture that in spatially extended systems,
the stable manifold of the repellor forces generic trajectories to follow an intricate
arrangement of “channels” before landing on some periodic orbits. What are, how-
ever, the dynamical properties of the lattice, when finite η-values are assumed?

First of all, it important to notice that while the topological enropy jumps
abruptely to a finite value, the Lyapunov exponent exhibits a smooth behaviour (see
Fig. 7), i.e. for sufficiently small η-values (η < η∗ < 3.10−4) it stays negative.
This implies that the phenomenon of SC is generic (in the mathematical sense),
even though the window of existence is (at least in this context) rather narrow.
More accurate information can be extracted by performing a multifractal analysis
of the Lyapunov exponent [23, 24]. In particular, we have computed the probability
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Fig. 7 Maximum Lyapunov exponent of the map lattice (2) as a function of η, while the other
parameter values are the same as in Fig. 1. The results have been obtained for N = 200, but are
practically independent of the system size
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Fig. 8 Multifractal
distribution of Lyapunov
exponents for η = 1.10−4,
where the average Lyapunov
exponent is still negative
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distribution P(λ, t) of the maximum Lyapunov exponent λ over a time span t.
For sufficiently large t, the probability P(λ, t) is expected to scale as P(λ, t) =
exp [ − G(λ)t] where G is a dynamical invariant whose operative definition is
obtained by inverting this scaling relation, G = −( log P)/t. In Fig. 8 we have
plotted the results obtained for t = 20 and 40. Even though the most probable
and average Lyapunov exponent is negative (the spectra refer to η = 10−4 < η∗),
there is a positive tail, in agreement with the conjectured existence of a web of
unstable orbits. The smoothed steps on the right of the maximum correspond to the
number of times a sample trajectory is actually visiting the expanding branch. The
two spectra do reasonably overlap, suggesting that the time t = 40 is already in the
scaling regime, although finite-size corrections are still large (notice, in fat, that the
maximum of G has to be, by definition, equal to 0).

Altogether, SC appears to be somehow complementary to the blow-out phe-
nomenon discovered in the study of synchronization transitions [25]. While analysing
the stability of the synchronization manifold, it has been discovered that in some
circumstances, the corresponding (multifractal) Lyapunov spectrum altough mostly
confined to the negative semi-axis, may exhibit a positive tail. In such a case, one
has to go beyond the linear stability analysis, because whenever the distance is
amplified, nonlinear terms are responsible for either bringing the trajectory back
towards the manifold or letting it escape away. In the context of SC, nonlinear terms
bring the trajectory back towards the “invariant manifold”, although the mechanism
is perfectly efficient only in the infinite dimensional limit.

In order to clarify the mechanisms by which nonlinearities contribute to stabi-
lizing the chaotic dynamics, it is convenient to analyse the propagation of perturba-
tions. We start by briefly recalling the concept of convective Lyapunov exponents
[26]. Given a unidimensional lattice model in the stationary regime, let us introduce
a δ-like perturbation at time t = 0 in the origin i = 0 and imagine to monitor the
perturbation amplitude wi(t). Kaneko and Deissler [26] suggested that

wi(t) = exp [ (i/t)t] (9)
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where  (v) represents the (exponential) growth rate of a perturbation in a frame
moving with the velocity v. It is a priori obvious that for v = 0, one recovers the
usual Lyapunov exponent, and that for large velocities one has to expect negative
growth rates. In fact,  (v) has a typically parabolic shape with the maximum in
zero. All velocities for which  (v) > 0 correspond to growing perturbations. The
limit velocity for linearly propagating perturbations is fixed by the marginal stability
criterion  (vL) = 0. Instead of determining directly  (v), it is more convenient to
exploit the chronotopic approach set in [27, 28], and formally introduce a perturba-
tion with a spatial amplification factor

wi(t) = e−μiui(t) (10)

In our lattice model, the evolution rule for ui(t) reads

ui(t + 1,μ) = ε

2
e−μif ′(xi−1(t))ui−1(t,μ) +

(1 − ε)f ′(xi(t))ui(t,μ) + ε

2
eμif ′(xi+1(t))ui+1(t,μ) (11)

By iterating this recursive equation with suitable boundary conditions (periodic
conditions are typically optimal, as they reduce finite-size effects), we obtain the
chronotopic growth rate λ(μ). Altogether, an infinitesimal perturbation wi(t) =
exp [λ(μ)t − μi] with a spatial growth rate μ grows in time with an exponent λ(μ).
The evolution of the initially localized perturbation is connected to λ(μ) by a Leg-
endre transform

 (v) = λ(μ) − μλ′(μ); v = λ′ (12)

In order to determine the velocity corresponding to a given μ-value, it is necessary
to compute the derivative of λ(μ). Since the numerical computation of derivates is
always affected by large numerical errors, it is convenient to perform a few more
analytical steps [27]. By introducing,

ui(t,μ+ dμ) = ui(t, i) + zi(t,μ)dμ (13)

in the recursive relation (11), we obtain an equation for the deviation zi(t,μ),

zi(t + 1,μ) = ε

2
e−μif ′(xi−1(t))(zi−1(t,μ) − ui−1(t,μ))

+ (1 − ε)f ′(xi(t))ui(t,μ) + ε

2
eμif ′(xi+1(t))(zi+1(t,μ)

− ui+1(t,μ)) . (14)

The knowledge of zi and of ui allows determining λ′. In fact, by taking the μ deriva-
tive in the definition of the chronotopic Lyapunov exponent,
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λ(μ) = 1

2
lim

t→∞
||u(t)||2

t
(15)

one obtains

λ′(μ) = lim
t→∞

u(t) · z(t)

t||u(t)||2 (16)

where · stands for the scalar product. In order to better understand the selection
process of the propagation velocity, it is convenient to go back to the evolution
of a single exponential profile wi(t) = exp [λ(μ)t − μi]. Its velocity is obviously
V(μ) = λ/μ. From the Legendre transform we have that

dV

dμ
= 1

μ

(
dλ

dμ
− λ

μ

)

= −  
μ2

. (17)

Since the perturbation velocity is identified by the equation  = 0, we see also that
it corresponds to the minimum of V(μ0). In other words, as long as the evolution is
controlled by linear mechanisms, the slowest among all possible fronts is selected.
Let us now turn our attention to fronts delimiting finite perturbations. Since even
such fronts must have a leading infinitesimal edge, vF will be vF(μ∗) for some μ∗.
It is hard to imagine that μ∗ is smaller than μ0: accordingly, either vF = vL or
vF > vL. This scenario is perfectly confirmed by the study of the model (2). Solid
and dashed curves in Fig. 9 correspond to vF and VL, respectively. There we see that
vF is strictly larger than vL for η < ηc ≈ 1.210−3, while above ηc the two coincide
within numerical accuracy. One can also notice that the linear velocity is not defined
for η < η∗, where the system is linearly stable and no propagation of infinitesimal
perturbations can occur.

As discussed in [6], the mechanism responsible for the finite difference between
vL and vF is that perturbations of increasing amplitude (starting from infinitesimal
ones) tend to propagate faster and thereby to push the corresponding front. These

Fig. 9 Linear (vL, solid
curve) and front (vF , dashed
curve) velocity versus η.
Deterministic chaos exists
only for η > η∗. Beyond ηc,
vL = vF
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results are indeed fairly general and not just restricted to the model considered in
this section [29]. Moreover, this phenomenology is conceptually equivalent to that
observed in the context of front propagation (see, e.g. fronts connecting steady states
in reaction-diffusion systems [30, 31]), that is effectively described by the famous
Fisher-Kolmogorov-Petrovsky – Piskunov equation [32].

Altogether we can conclude by stating that the front velocity proves to be a use-
ful indicator to identify the presence of SC (in spatially extended systems) from
the presence of nonlinear propagation mechanisms that cannot be accounted for by
linear stability analysis [6]. In such a sense, the results in Fig. 9 indicate that SC
persists up to the second threshold and not just to the first one [5].

6 From Order to Chaos

Once ascertained that SC is a sort of extension of CA chaos to systems characterized
by continuous variables, it is natural to investigate the possible phase transitions, a
question that cannot even be posed in CAs, where all variables are discrete. The front
propagation velocity vF provides the right tool to assess the relative stability of the
two phases. Let us, in fact, consider two initial conditions: a reference trajectory
{

x0
i

}

, and a perturbed one {xi} differing only in a finite interval −L < i < L, where
it is randomly set. If the interval where v(i) is of order O(1) increases by eating the
region where the field was initially equal to zero, we can conclude that the chaotic
phase is thermodynamically stable.

In Fig. 10 we plot the results of careful computations performed with the coupled
map lattice (1) for different values of the coupling strength ε. The ε-range has been
selected so as to include both the ordered and the chaotic phase. In fact, we see that
the front velocity is equal to zero (finite) in the left (right) part of the figure. How-
ever, these two clearly distinct phases are not separated by a point-like transition. We
find instead a fuzzy region, where chaos and order alternate in a seemingly irregular

Fig. 10 Front propagation
velocity in the coupled map
lattice (1,2) for the same
parameter values as in Fig. 1
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manner. Is this an evidence of the complexity that is sometimes invoked to exist at
the edge of chaos? Pure numerics alone is not sufficient to provide a convincing
answer to such a difficult question.

An exact formulation and solution of this problem requires to control simultane-
ously two trajectories, a task that is nearly impossible. A simpler formulation which
can nevertheless help to gain some insight on the transition consists in assuming
a random evolution for the reference trajectory, and thus reducing the problem to
that of characterizing the stochastic evolution of the difference field vi(t) [12]. In
mathematical terms, this amounts to studying the equation,

vi(t + 1) = (1 − ε)wi(t + 1) + ε

2
[wi−1(t + 1) + wi+1(t + 1))] (18)

where

wi(t + 1) =
{

vi(t)/η w.p. p = aη

avi(t) w.p. 1 − p
if vi(t) < η (19)

wi(t + 1) =
{

1 w.p. p = avi(t)

avi(t) w.p. 1 − p
if vi(t) ≥ η (20)

The stochastic 1/η amplification simulates the effect of visiting the expanding inter-
val of the map (2). The amplification saturates to take into account the boundedness
of the dynamics. This is the only element breaking the linearity of vi(t) dynamics.
Moreover, for the sake of simplicity, we assume that a uniform contraction rate a
(an assumption that is basically equivalent to set p1 = p2 < 1). At variance with the
original deterministic model, here a detailed numerical analysis of the parameter
space (a,η), reveals that ordered and chaotic phases are separated by a standard
phase transition (see Fig. 11) that belongs to the directed percolation (DP) type for

Fig. 11 Phase diagram of the
stochastic model Eq. (20) η
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small enough values of η [33] and seems to be of multiplicative noise type beyond
some critical η value [34].

Notice that this stochastic model is even more closely related to the problem of
synchronization between mutually coupled map lattices (see [35–40] for a more
detailed discussion), since the assumption of a stochastic evolution is appropri-
ate everywhere in parameter space including the critical region separating the two
phases.

In the SC context, the DP transition is the most relevant one, as it occurs precisely
in the regime where the evolution is characterized by a negative Lyapunov exponent.
DP was introduced and is usually discussed in systems where the local variable
has just two states: 0, and 1. Moreover, the dynamical rule is such that 1’s cannot
spontaneously appear in a sea of 0’s. This is the key difference with respect to the
present context, where the variable vi is continuous and thereby the 0-state is never
perfectly reached (in finite times). It is therefore necessary to introduce a threshold
to decide whether the 0-state has been reached, with the related problem of having
to clarify whether the results are truly independent of the threshold. In order to
settle this issue, we find it convenient to determine the Finite Amplitude Lyapunov
Exponent (FALE) [7]. We do so by first introducing τ (W), the average time needed
by the field norm

||w(t)|| = 1

L

L
∑

i

|wi| (21)

to become for the first time smaller than a preassigned threshold W.
The FALE can be thereby defined with reference to a sequence of exponentially

spaced thresholds Wn (Wn/Wn−1 = r < 1) as

 (Wn) = log r

τ (Wn+1 − Wn)
. (22)

In the limit r → 1

 (W) =
[

dτ (W)

d log W

]−1

. (23)

In the further limit W → 0,  (W) reduces to the usual Lyapunov exponent.
In Fig. 12, we see that the FALE while being almost equal to zero at sufficiently
large scales, becomes equal to the true Lyapunov exponent below a certain thresh-
old Wc. Accordingly, since for W < Wc, the dynamics is dominated by the usual
Lyapunov exponent, we can safely conclude that when the norm becomes smaller
than Wc, the absorbing state will be reached with probability one and this solves
the problem of an unambigious identification of the threshold. Moreover, detailed
numerical simulations have revealed that Wc decreases faster than 1/L, where L
is the system size [33]. In discrete-variable systems, the minimal non-zero value
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Fig. 12 Finite amplitude
Lyapunov exponent of the
stochastic model for two
different sets of parameter
values, both at criticality:
circles refer to � = 0.01,
L = 256, ac = 0.6055,
squares to � = 0, L = 128,
and ac = 0.6063
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that W can meaningfully take is 1/L (which corresponds to just one active site).
As Wc < 1/L, one can conclude that in this stochastic system the scaling range is
even broader than in usual discrete systems. Now a comment about the reason why
the linear stability analysis may not apply at vanishing distances. In fact, when the
above defined norm of a vector is small, the field can nevertheless be sporadically
of O(1). The behaviour of such bursts may represent an obstruction to the validity
of the linear stability analysis and this is what tells Fig. 12.

Finally, we recall that FALE have been employed to characterize single maps of
the type (2) revealing that for sufficiently small η and for some finite W, the FALE
is indeed larger (positive) than the standard Lyapunov exponent [29]. Moreover,
a generalization of the FALE to a comoving reference frame allows to formulate
a marginal stability criterion that is able to predict the velocity on both cases of
linear and nonlinear propagation [29]. Moreover, coupled maps (2) with η = 0 have
been also analyzed by Letz and Kantz [41] who introduced an indicator similar to
the FALE (i.e. able to quantify the growth rate of non infinitesimal perturbations).
This indicator turns out to be negative for infinitesimal perturbations and becomes
positive for finite perturbations. This means that a sufficiently large perturbation
can propagate along the system due to nonlinear effects. This confirms previous
observations for marginally stable systems [6].

7 More Realistic Models

In order to test how general stable chaos is, it is natural to start by asking when dis-
continuities or quasi-discontinuities can be expected to arise in the physical world.
In fact, we have seen that the source of indeterminacy is the sudden amplification
of the distance between two nearby trajectories, once they fall on opposite sides
of a discontinuity. In such a case, no matter how small the initial distance is, the
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Fig. 13 Separation between
two nearly equal trajectories
of a point particle colliding
elastically against the floor.
The distance
δ = sqrt(δy2 + δv2) is plotted
versus time 0 1 2
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separation is suddenly amplified to a value of O(1), that is determined by the size
of the discontinuity.

Before exploring the possible occurence of such phenomena, it is important to
stress that the discontinuity we are referring to is not a discontinuity in time of
the type associated, e.g., to collisions. A δ-like collision induces an abrupt change
of a variable (specifically, the velocity), but this affects the difference between two
nearly identical trajectories only for a short (infinitesinal) time lapse, after which the
trajectories come close again. This is illustrated in Fig. 13, where we have plotted
the time evolution of a point-like particle bouncing elastically on the floor. In the
lower panel the time evolution of the Euclidean distance is represented: only within
the short time window between the collisions of the two trajectories with the floor,
the relative distance becomes of order O(1). This is at variance with the map lattice
model (1, 2), where the distance, once amplified, remains large.

In the following two subsections, we illustrate some arguments supporting the
idea that a natural source of such a type of discontinuities is associated with an
exchange between non-commuting δ-like events.

7.1 A Hamiltonian Model: Diatomic Hard-Point Chain

Before introducing the model, it should be remarked that in Hamiltonian systems,
conservation of volumes implies that the maximum Lyapunov exponent cannot be
negative; at most, all Lyapunov exponents are exactly equal to zero. In fact, the
Hamiltonian version of SC is the world of marginally stable and yet ergodic models
and it often goes under the name of pseudochaos (see, e.g. [42]). Here, we are mostly
interested in emphasizing the analogies with SC and for this reason the diatomic
hard point gas (HPG) turns out to be rather appropriate also for its relationship with
billiard-like models, that are often invoked in the analysis of pseudochaos.

The diatomic HPG is a unidimensional system of point-like particles with masses
m and M that alternate along a line and undergo elastic collisions. In the limit
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m = M, the model is perfectly integrable, since the velocities of the two particles
involved in any collision are simply interchanged. Therefore there is no mechanism
leading to a diffusion in velocity space. However, as soon as the masses are assumed
to be different, all numerical simulations suggest that the dynamics is ergodic. On
the other hand, it is easy to convince oneself that the maximum Lyapunov exponent
is still exactly equal to zero. The argument is pretty straightforward [43]: since the
collision rule is linear,

u′ = (m − M)u + 2Mv

m + M
(24)

v′ = 2mu − (m − M)v

m + M
(25)

both real- and tangent-space dynamics follow the same rule. As a result, the kinetic
energy conservation (

∑

i miv2
i = E, where mi = m or M, depending on the parity

of i) translates into the conservation of a suitably weighted Euclidean norm of the
perturbation field, namely,

∑

i miδv2
i . This means that the Euclidean norm of any

vector is conserved, irrespective of its direction, so that all Lyapunov exponents are
equal to zero.

In the absence of deterministic chaos, which is, therefore, the source of the
stochastic-like behaviour exhibited by diatomic HPG chains? As illustrated in
Fig. 14, we argue that the source are the discontinuities occurring around, e.g.,
three-body collisions. Let us consider an initial condition like that in the left panel
of Fig. 14: it gives rise to a sequence of three collisions, 1−2, 2−3, 1−2 before the
particles separate out. By shifting the position of the central particle (this is equiva-
lent to moving the initial xi variable in the CML), we pass to the condition depicted
in the right panel, which gives rise to the collisions 2 − 3, 1 − 2, 2 − 3. Accordingly,
the sequence of two-body collisions changes abruptly in correspondence of a three-
body collision, when the three particles find themselves in the same place at the
same time. As a consequence of this sudden modification, the three final velocities
differ in the two cases, as it can be appreciated by comparing the two panels in

Fig. 14 Evolution of two
nearly equal set of initial
condition in a diatomic
hard-point gas. By slightly
shifting the position of the
middle particle, the final
velocities change abruptly
when passing across the
three-body collision
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Fig. 14. Only in the limit case of equal velocities, there is no discontinuity, since the
final set is the same for both sequences. In the former case, when starting from the
sequence v1, v2, v3, one passes first to v2, v1, v3, then to v2, v3, v1, and finally to v3,
v2, v1. One can easily verify that the final state is the same in the latter case too.

The model dynamics can be further clarified by exploring the analogy with bil-
liard models. The connection was first discovered in [44], where the authors con-
sidered the slightly different model of hard rods. Here, we illustrate the relatively
simple case of a gas of two particles P1 and P2 bounded to move between two fixed
barriers Bl and Br, located in x = 0 and x = 1, respectively. The linear position of
the two particles can be represented as the position of a point-particle in the plane
and the constraints 0 ≤ x1 ≤ x2 ≤ 1 imply that the motion is restricted to the
triangular region depicted in Fig. 15. Collisions with the two mutually orthogonal
edges correspond to collisions with either the left or the right barrier, while those
with the diagonal correspond to interparticle collisions. Finally, the three angular
points correspond to the only two possible three-body collisions, BlP1P2, P1P2Br

and to the synchronous occurrence of the two-body collisions BlP1 and P2Br. In
the equal mass case, there is a perfect correspondence between hard point gas and
the triangular billiard. Accordingly, we can invoke the conjecture raised in [45] that
billiards with rational angles (expressed in π units) are necessarily ergodic. The
crucial difference that appears as soon as the two masses are assumed to differ
from one another is that in the billiard-like representation, the mass itself assumes a
vectorial character. In particular, incoming and outgoing velocities are not mutually
symmetric in correspondence of a collsion with the diagonal. However, the most
relevant consequence is the appearance of true discontinuities. This is illustrated by
comparing two nearby trajectories which undergo a different sequence of collisions.
In the left panel of Fig. 15, which refers to equal masses, we see that the small dif-
ference in the initial velocity generates a slow linear increase of the mutual distance.
In the right panel, which refers to M = 2m, the two trajectories, although starting
from the same initial conditions, drastically separate out and find themselves very
far apart after as few as 5 collisions (see the arrows).

Fig. 15 Billiard-like representation of the dynamics of a chain of two particles moving in an inter-
val with reflecting boundaries. Horizontal and vertical axes correspond to the coordinates of the
first and second particle respectively. Two slightly different trajectories are plotted in each panel
until the 5th collision. Left and right panels correspond to m = M, and M = 2m, respectively
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7.2 Neural Networks

A perhaps more interesting example of a model exhibiting stable chaos is a network
of leaky-integrate-and-fire neurons, where exponentially long transients have been
identified in various set-ups [46–48, 13]. By following [13], the model dynamics for
a network of N neurons can be written as a set of N differential equations

v̇i = c − vi − (vi + w)
N
∑

j=1

∑

m

gijδ
(

t − t(m)
j

)

(26)

where the connectivity matrix gij is defined as

gij =
{

G/�i if i and j are coupled

0 otherwise,
(27)

�i is the number of neurons that are connected to the ith neurons, and G is the cou-
pling strength. Here, we will limit to consider the case of inhibitory coupling, that,
in these notations, corresponds to a positive G value. All variables are dimensionless
and suitably rescaled: the “membrane potential” vi ∈ [ − ∞, 1] whenever reaches
the limit value vj = 1, is reset to 0 and a δ-spike is thereby emitted and received by
all the connected neurons. The parameter c controls the relaxation velocity, while w
quantifies indirectly the dependence of the effect of the spike on the instantaneous
value of the membrane potential.

When all connections are active, the dynamics rapidly converges towards a sta-
tionary state characterized by a sequence of evenly spaced spikes (this is a so called
splay state [49, 50]). In the presence of disorder, such as, e.g., a small fraction of ran-
domly broken links, the evolution may signficantly differ, depending on the coupling
strength G. Below a certain critical value, there is still a fast convergence towards
an ordered state where the neurons fire in a fixed order (in agreement with Jin’s
theorem [51]); for sufficiently large coupling constants, the average (over different
realizations of the disorder) transient length T is exponentially large with the number
of neurons [13]. This is illustrated in Fig. 16, where we have plotted the average
transient for different system sizes: squares and circles correspond to G = 0.5 and
1.8, respectively. The solid lines are the result of a linear and an exponential fit,
respectively. The exponential increase of the transient is a clear indication of SC,
since at the same time, the maximum Lyapunov exponent (after removing the zero
exponent corresponding to a shift along the trajectory) is definitely negative (as
shown in [13]).

Which is the source of such long transients? In between the spikes, the single
potentials relax independently towards c (a value that is not reached, since c > 1).
Therefore, like in the diatomic hard point gas, the evolution is piecewise linear and
one can derive an analytic expression for the map as rigorously done in [13]. In
the absence of jumps between different branches, the dynamics would be globally
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Fig. 16 Transient length for
the neural network model
(26) for c = 2, w = 4/7 and
5% of broken links. Squares
(circles) correspond to
G = 0.5 and (G = 1.8). The
solid lines have been obtained
by means of a linear and
exponential fit, respectively
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stable; the negativity of the Lyapunov exponent is a reminiscence of such a stability.
However, like in the previous cases, there are discontinuities associated with abrupt
changes in the firing order of the neurons. Let us indeed consider two neurons i
and j such that gji = 0, while gij �= 0 and consider two different initial conditions:
(i) vi(0) = vj(0) − ε, (ii) vi(0) = vj(0) + ε. A schematic view of the evolution
is presented in Fig. 17, where the solid line corresponds to the dynamics of the
ith-neuron, while dashed and dotted line denote the former and latter trajectories,
respectively. There, one can see that for times larger than t2 the two trajectories
are separated by a finite distance, as a result of a discontinuity in the dynamical
law. This is due to the dependence of the inhibitory effect of a spike on the actual
value of v (see the multiplicative factor (u + w) in Eq. (26)). Being the size of the
discontinuity of the same order of the coupling strength (O(1/N)), one might argue
that this is negligible for N large enough. This is not the case, because it has to
be compared with the changes induced by the smooth dynamics in between two

Fig. 17 Evolution of two
neurons with nearly the same
potential and asymmetric
coupling: neuron i couples to
j, but not vice versa. The
dotted line corresponds to the
evolution of neuron i; solid
(dashed) curve corresponds
to the evolution of neuron j in
case its action potential is
initially smaller (larger) than
that of neuron j time
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consecutive spikes that is of the same order. Moreover, the distance between the two
trajectories is even amplified to O(1) in the time interval [t1, t2]. As t2 − t1 is, by
definition of the same order of the interspike interval, this effect too is, in principle,
nonnegligible.

More recently, stable and yet irregular behaviour has been reported also in the
context of a slightly different neural network, where the spike are assumed to be
received with a finite delay τ and the spike effects are independent of v (see [47]).
From the point of view of discontinuities, this latter property inhibits a persistent
amplification of distances between nearby trajectories. Nevertheless, the finite-time
amplification mechanism is still present and the very fact that long-stable transients
have been observed is an indication that it lasts enough to yield “avalanches” and
thereby to a self-sustained irregular behaviour. However, one should also notice that
“discontinuities” are a necessary but not sufficient condition for the onset of SC.

8 Conclusions

In the present Review we have thoroughly discussed the phenomenon of stable
chaos, a type of irregular behaviour occurring in deterministic systems that man-
ifests itself as an exponentially (with the system size) long and stationary transient.
SC differs from usual chaos in that it is characterized by negative Lyapunov expo-
nents, but still reatins some features that are reminiscent of deterministic chaos. In
fact, by smoothing out the discontinuities present in the most typical SC models,
induces the multifractal spectrum of the maximum Lyapunov exponent to extend to
positive values. This, in turn, suggests that topological chaos (i.e. a strictly positive
topological entropy) is a prerequisite for the observation of SC. However, we have
shown that linear stability analysis does not to provide a convincing description of
relevant properties such as the propagation of finite perturbations. In this respect,
a promising indicator is represented by the finite amplitude Lyapunov exponent,
although there are conceptual difficulties in extending this approach beyond the
maximum exponent.

A further interesting question concerns the transition from ordered behaviour to
SC. A detailed numerical analysis of a coupled-map lattice reveals the existence of
a fuzzy region, where behaviour that is neither strictly ordered nor clearly chaotic
has been detected. Is this just a difficulty due to strong finite size effects, or this
phenomenon hides the presence of a genuinely “complex” (uncomputable) evolu-
tion? In an almost globally-coupled neural network, the transition appears to be a
standard point-like phenomenon, whose universality class is however still unclear.

The most important question concerns the generality of SC. All models where
SC has been observed do possess strong localized nonlinearities that may reduce to
true discontinuities in phase space. The first models where SC has been observed
are somehow artificial systems with no direct relationship with the physical world.
However, the discussion of the diatomic hard point gas and of the network of pulse
coupled neurons, has contributed to clarify that discontinuities may spontaneously
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emerge in models characterized by the presence of non communting “δ-like” events
(such as two-body collisions or spike emissions). Moreover, since we have seen that
SC survives a smoothing of the coupled-map model, we may also conjecture that
the same holds true in these latter contexts, once we assume finite collision times or
finite pulse-widths.

Acknowledgements We would like to acknowledge those who have collaborated with us on this
problem over the years: R. Bonaccini, F. Cecconi, M. Cencini, F. Ginelli, P. Grassberger, R. Kapral,
S. Lepri, R. Livi, G.L. Oppo, and R. Zillmer. Moreover, we wish to thank M. Timme, M. Wolfrum,
and S. Yanchuk for recent useful discussions. This work has been partly carried out with the support
of the EU project NEST-PATH-043309.

References

1. E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130 (1963).
2. J. P. Crutchfield and K. Kaneko. Are attractors relevant to turbulence ? Phys. Rev. Lett., 60,

2715 (1988).
3. A. Politi, R. Livi, G. L. Oppo, and R. Kapral. Unpredictable behaviour in stable systems.

Europhys. Lett., 22, 571 (1993).
4. R. Bonaccini and A. Politi. Chaotic-like behaviour in chains of stable nonlinear oscillators.

Physica D, 103, 362 (1997).
5. A. Politi and A. Torcini. Linear and nonlinear mechanisms of information propagation. Euro-

phys. Lett., 28, 545 (1994).
6. A. Torcini, P. Grassberger, and A. Politi. Error propagation in extended systems. J. Phys., A27,

4533 (1995).
7. E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani. Growth of noninfinitesimal

perturbations in turbulence. Phys. Rev. Lett., 77, 1262 (1996); Predictability in the large: an
extension of the concept of Lyapunov exponent. J. Phys., A30, 1 (1997).

8. T. Tél and Y. -C. Lai. Chaotic transients in spatially extended systems. Phys. Rep., 460, 245
(2008).

9. C. Grebogi, E. Ott, and J. A. Yorke. Fractal basin boundaries, long-lived chaotic transients,
and unstable-unstable pair bifurcation. Phys. Rev. Lett., 50, 935 (1983).

10. E. Ott. Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993).
11. F. Cecconi, R. Livi, and A. Politi. Fuzzy phase transition in a 1D coupled stable-map lattice.

Phys. Rev. E, 57, 2703 (1998).
12. F. Ginelli, R. Livi, and A. Politi. Emergence of chaotic behaviour in linearly stable systems.

J. Phys. A Math. Gen., 35, 499 (2002).
13. R. Zillmer, R. Livi, A. Politi, and A. Torcini. Desynchronization in diluted neural networks.

Phys. Rev. E, 74, 036203 (2006).
14. I. Waller and R. Kapral. Spatial and temporal structure in systems of coupled nonlinear oscil-

lators. Phys. Rev. A, 30, 2047 (1984); K. Kaneko. Period-doubling of Kink–Antikink patterns,
quasiperiodicity in antiferro-like structures and spatial intermittency in coupled logistic lattice.
Prog. Theor. Phys., 72, 980 (1984).

15. L. A. Bunimovich, R. Livi, G. Martinez-Mekler, and S. Ruffo. Coupled trivial maps. Chaos, 2
283 (1992).

16. P. Grassberger. Directed percolation: Results and open problems. In: S. Puri and S.
Dattagupta (Eds.) Nonlinearities in Complex Systems. Narosa Publishing House, New Delhi
(1997).

17. H. Hinrichsen. Nonequilibrium critical phenomena and phase transitions into absorbing states.
Adv. Phys., 49, 815 (2000).



128 A. Politi and A. Torcini

18. J. L. Kaplan and J. A. Yorke. Chaotic behavior of multidimensional difference equations. Lect.
Not. Math., 13, 730 (1979).

19. P. Grassberger and I. Procaccia. Characterization of strange attractors. Phys. Rev. Lett., 50,
346–349 (1983).

20. P. Grassberger. Information content and predictability of lumped and distributed dynamical
systems. Phys. Scr., 40, 346 (1989).

21. S. Wolfram. Theory and Applications of Cellular Automata, Advanced Series on Complex
Systems. World Scientific, Singapore (1986).

22. J. P. Crutchfield. Unreconstructible at any radius. Phys. Lett. A, 171, 52 (1992).
23. R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani. On the multifractal nature of fully developed

turbulence and chaotic systems. J. Phys. A Math. Gen., 17, 3521 (1984).
24. G. Boffetta, M. Cencini, M. Falcioni, and A. Vulpiani. Predictability: a way to characterize

complexity. Phys. Rep., 356, 367 (2002).
25. A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization : A Universal Concept in Nonlin-

ear Sciences. Cambridge University Press, Cambridge (2002).
26. R. J. Deissler and K. Kaneko. Velocity-dependent Lyapunov exponents as a measure of chaos

for open-flow systems. Phys. Lett., A119, 397 (1987).
27. A. Politi and A. Torcini. Periodic orbits in coupled Henon maps: Lyapunov and multifractal

analysis. Chaos, 2, 293 (1992).
28. S. Lepri, A. Politi, and A. Torcini. Chronotopic Lyapunov analysis: (I) a comprehensive char-

acterization of 1D systems. J. Stat. Phys., 82, 1429 (1996); Chronotopic Lyapunov analysis:
(II) towards a unified approach. J. Stat. Phys., 88, 31 (1997); Entropy potential and Lyapunov
exponents. Chaos, 7, 701 (1997).

29. M. Cencini and A. Torcini. Linear and nonlinear information flow in spatially extended sys-
tems. Phys. Rev. E, 63, 056201 (2001).

30. W. van Saarloos. Front propagation into unstable states: Marginal stability as a dynamical
mechanism for velocity selection. Phys. Rev. A, 37, 211 (1988); Front propagation into unsta-
ble states. II. Linear versus nonlinear marginal stability and rate of convergence. Phys. Rev. A,
39, 6367 (1989).

31. U. Ebert and W. van Saarloos. Front propagation into unstable states: universal algebraic con-
vergence towards uniformly translating pulled fronts. Phys. D, 146, 1 (2000).

32. R. A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7, 355 (1937);
A. N. Kolmogorov, I. Petrovsky, and N. Piscounov. Etude de l’equation de la diffusion avec
croissance de la quantité de matiére et son application a un probleme biologique. Bull. Univ.
Moscow Ser. Int., A1, 1 (1937).

33. F. Ginelli, R. Livi, A. Politi, and A. Torcini. On the relationship between directed percolation
and the synchronization transition in spatially extended systems. Phys. Rev. E, 67, 046217
(2003).

34. M. A. Muñoz. Multiplicative noise in non-equilibrium phase transitions: a tutorial. In: E.
Korutcheva and R. Cuerno (Eds.) Advances in Condensed Matter and Statistical Mechanics.
Nova Science Publishers, New York, p. 37 (2004).

35. L. Baroni, R. Livi, and A. Torcini. Transition to stochastic synchronization in spatially
extended systems. Phys. Rev. E, 63, 036226 (2001).

36. V. Ahlers and A. Pikovsky. Critical properties of the synchronization transition in space-time
chaos. Phys. Rev. Lett., 88, 254101 (2002).

37. F. Bagnoli and F. Cecconi. Synchronization of non-chaotic dynamical systems. Phys. Lett. A,
282, 9 (2001).

38. F. Ginelli, V. Ahlers, R. Livi, D. Mukamel, A. S. Pikovsky, A. Politi, and A. Torcini. From
multiplicative noise to directed percolation in wetting transitions. Phys. Rev. E, 68, 065102(R)
(2003).

39. F. Bagnoli and R. Rechtman. Synchronization universality classes and stability of smooth
coupled map lattices. Phys. Rev. E, 73, 026202 (2006).

40. M. Cencini, C. J. Tessone, and A. Torcini. Chaotic synchronizations of spatially extended
systems as non-equilibrium phase transitions. Chaos, 18, 037125 (2008).



Stable Chaos 129

41. T. Letz and H. Kantz. Characterization of sensitivity to finite perturbations. Phys. Rev. E, 61,
2533 (2000).

42. P. Castiglione, M. Falcioni, A. Lesne, and A. Vulpiani. Chaos and Coarse Graining in Statis-
tical Mechanics. Cambridge University Press, Cambridge (2008).

43. P. Grassberger, W. Nadler, and L. Yang. Heat conduction and entropy production in a one-
dimensional hard-particle gas. Phys. Rev. Lett., 89, 180601 (2002); P. Grassberger, W. Nadler,
and L. Yang. Heat conduction and entropy production in a one-dimensional hard-particle gas.
nlin.CD/0203019v1

44. S. L. Glashow and L. Mittag. Three rods on a ring and the triangular billiard. J. Stat. Phys.,
87, 937 (1997).

45. G. Casati and T. Prosen. Mixing property of triangular billiards. Phys. Rev. Lett., 83, 4729
(1999).

46. A. Zumdieck, M. Timme, T. Geisel, and F. Wolf. Long chaotic transients in complex networks.
Phys. Rev. Lett., 93, 244103 (2004).

47. S. Jahnke, R. -M. Memmesheimer, and M. Timme. Stable irregular dynamics in complex
neural networks. Phys. Rev. Lett., 100, 048102 (2008).

48. R. -M. Memmesheimer. Precise spike timing in complex neural networks. PhD thesis, Gottin-
gen University, Göttingen (2007).

49. S. H. Strogatz and R. E. Mirollo. Splay states in globally coupled Josephson arrays: analytical
prediction of Floquet multipliers. Phys. Rev. E, 47, 220 (1993).

50. R. Zillmer, R. Livi, A. Politi, and A. Torcini. Stability of the splay state in pulse-coupled
networks. Phys. Rev. E., 76, 046102 (2007).

51. D. Z. Jin. Fast convergence of spike sequences to periodic patterns in recurrent networks. Phys.
Rev. Lett., 89, 208102 (2002).



Superpersistent Chaotic Transients

Ying-Cheng Lai

Abstract Superpersistent chaotic transients are characterized by the following scal-
ing law for its average lifetime: τ∼ exp [C(p − pc)−χ ], where C > 0 and χ > 0
are constants, p ≥ pc is a bifurcation parameter, and pc is its critical value.
As p approaches pc from above, the exponent in the exponential dependence
diverges, leading to an extremely long transient lifetime. Historically the possibility
of such transient raised the question of whether asymptotic attractors are relevant to
turbulence.

Superpersistent chaotic transients were first discovered by Grebogi et al. in
1983. In their seminal work, unstable – unstable pair bifurcation was identified as
the dynamical mechanism for the transients. In this Review this bifurcation and
how it leads to superpersistent chaotic transients will be described. The occur-
rence of the transients in spatially extended dynamical systems will then be exem-
plified. Superpersistent chaotic transients associated with the riddling bifurcation
that creates a riddled basin of attraction will be discussed, and the effect of noise
on the transient lifetimes will be addressed. Finally, application to a physical
problem, advection of finite-size particles in open hydrodynamical flows, will be
demonstrated.

1 Introduction

Chaotic transients in low-dimensional dynamical systems are typically character-
ized by an algebraic scaling law of its average lifetime τ with some parameter
variation [1, 2]:

τ ∼ (p − pc)−h, p > pc, (1)
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where h > 0 is the algebraic scaling exponent. There exists, however, another dis-
tinct class of transient chaos – superpersistent chaotic transients that are character-
ized by the following scaling law for their average lifetime [3, 4]:

τ ∼ exp [C(Δp)−χ ], (2)

where Δp = p − pc, p is a system parameter, C > 0 and χ > 0 are constants. As p
approaches the critical value pc from above, the transient lifetime τ becomes super-
persistent in the sense that the exponent in the exponential dependence diverges.
This type of chaotic transients was conceived to occur through the dynamical mech-
anism of unstable – unstable pair bifurcation, in which an unstable periodic orbit in
a chaotic attractor collides with another unstable periodic orbit on the basin bound-
ary [3, 4]. The same mechanism causes the riddling bifurcation [5] that creates a
riddled basin [6], so superpersistent chaotic transients can be expected at the onset
of riddling. The transients were also identified in a class of coupled-map lattices,
leading to the speculation that asymptotic attractors may not be relevant for turbu-
lence [7]. Noise-induced superpersistent chaotic transients were demonstrated [8]
in phase synchronization [9] of weakly coupled chaotic oscillators. Signatures of
noise-induced superpersistent chaotic transients were also found [10] in the advec-
tive dynamics of inertial particles in open fluid flows [11].

Section 2 describes unstable – unstable pair bifurcation and explains why the
bifurcation can lead to a superpersistent chaotic transient. Section 3 demonstrates
the presence of the chaotic transient at the riddling bifurcation. The next topic is
superpersistent chaotic transient in a coupled-map lattice system (Sect. 4). The phe-
nomenon of noise-induced superpersistent chaotic transients is described in Sect. 5.
An application to advective dynamics of inertial particles in open chaotic flows is
presented in Sect. 6.

2 Unstable – Unstable Pair Bifurcation

Unstable – unstable pair bifurcation has been identified as the generic mechanism
for superpersistent chaotic transients [3–5]. One can imagine two unstable periodic
orbits of the same periods, one on the chaotic attractor and another on the basin
boundary, as shown in Fig. 1a. In a noiseless situation, as the bifurcation parameter
p reaches a critical value pc, the two orbits coalesce and disappear simultaneously,
leaving behind a “channel” in the phase space through which trajectories on the
chaotic attractor can escape, as shown in Fig. 1b. The chaotic attractor is thus con-
verted into a chaotic transient, but the channel created by this mechanism is typically
extremely narrow [3–5]. Suppose on average, it takes time T for a trajectory to travel
through the channel in the phase space so that it is no longer on the attractor, we
expect T to be infinite for p = pc but, for p > pc the time becomes finite and
decreases as p is increased from pc. For p above but close to pc, the tunneling time
can be long. As we will argue below, we expect T to increase at least algebraically
as �p is decreased.
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Chaotic transientChaotic attractor

Basin boundary

(a) (b)

Unstable−unstable
pair

Fig. 1 (a) For p < pc, a chaotic attractor, the basin boundary, and the pair of unstable periodic
orbits. (b) For p > pc, escaping channel created by an unstable-unstable pair bifurcation that
converts the originally attracting motion into a chaotic transient

From Fig. 1a, we see that if the phase space is two dimensional, the periodic orbit
on the attractor is a saddle and the one on the basin boundary is a repeller. This can
arise if the map is noninvertible. Thus, the unstable-unstable pair bifurcation can
occur in noninvertible maps of at least dimension two, or in invertible maps of at
least dimension three (or in flows of dimension of at least four).

Let λ > 0 be the largest Lyapunov exponent of the chaotic attractor. After an
unstable – unstable pair bifurcation the opened channel is locally transverse to the
attractor. In order for a trajectory to escape, it needs to spend at least time T(�p)
at the location of the opening on the attractor centered about the mediating periodic
orbit involved in the bifurcation, stipulating that the trajectory must come to within
distance of about exp [ − λT(�p)] from this orbit. The probability for this to occur
is proportional to exp [ − λT(�p)]. The average time for the trajectory to remain on
the attractor, or the average transient lifetime, is thus

τ ∼ exp [λT(�p)]. (3)

We see that the dependence of T(�p) on �p, which is the average time that tra-
jectories spend in the escaping channel, or the tunneling time, is the key quantity
determining the scaling of the average chaotic transient lifetime τ .

To obtain the scaling dependence of the tunneling time T(�p) on �p, we note
that, since the escaping channel is extremely narrow, for typical situations where
λ > 0 and T(�p) large, the dynamics in the channel is approximately one dimen-
sional along which the periodic orbit on the attractor is stable but the orbit on the
basin boundary is unstable for p < pc (Fig. 1a). This feature can thus be captured
through the following simple one-dimensional map:

xn+1 = x2
n + xn + p, (4)

where x denotes the dynamical variable in the channel and p is a normalized bifur-
cation parameter with critical point pc = 0 (we thus write T(p)). For p < pc = 0,
the map has a stable fixed point xs = −√−p and an unstable fixed point xu = √−p.
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These two collide at pc and disappear for p > pc, mimicking an unstable-unstable
pair bifurcation.

Since T(p) is large, map (4) can be approximated in continuous-time as

dx

dt
≈ x2 + p. (5)

Suppose the root of the channel is at x = 0 and its length is l. The tunneling time is
given by

T(p) ≈
∫ l

0

dx

x2 + p
∼ p−1/2. (6)

Substituting Eq. (6) into Eq. (3), we obtain

τ (p) ∼ exp (C0p−1/2), (7)

where C0 > 0 is a constant. We see that as p approaches the critical value pc = 0
from above, the average transient lifetime diverges in an exponential-algebraic way,
giving rise to a superpersistent chaotic transient.

To give a concrete example, we use the class of two-dimensional maps con-
structed by Grebogi et al. [3, 4]:

θn+1 = 2θn mod 2π , (8)

zn+1 = azn + z2
n + β cos θn,

where a and β are parameters. Because of the Z2
n term in the z-equation, for large

zn we have |zn+1| > |zn|. There is thus an attractor at z = +∞. Near z = 0,
depending on the choice of the parameters, there can be either a chaotic attractor
or none. For instance, for 0 < β � 1, there is a chaotic attractor near z = 0 for
a < ac = 1 − 2

√
β and the attractor becomes a chaotic transient for a > ac [3]. The

chaotic attractor, its basin of attraction, and part of the basin of the infinity attractor
are shown in Fig. 2.

Following the same argument leading to the scaling law (7), one can see that the
map system (8) allows for superpersistent for a > ac. In particular, for a < ac there
are two fixed points: (θ1,z1) = (0,zb) and (θ2,z2) = (0,zc), where zc,b = (1 − a ±
r)/2 and r = √

(1 − a)2 − 4β. The fixed points (0,zb) and (0,zc) are on the basin
boundary and on the chaotic attractor, respectively. They coalesce at a = ac. For
a > ac, a channel is created through which trajectories on the original attractor can
escape to the attractor at infinity. At the location of the channel where θ = 0, the
z-mapping can be written as

zn+1 − zn = (a − 1)zn + z2
n + β.
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Fig. 2 For the two-dimensional map model (8), a chaotic attractor near z = 0, its basin of attrac-
tion (blank), and the basin of the attraction of the attractor at z = + ∞ (black). From [3] with
permission

Letting δ = z − z∗, where z∗ is the minimum of the quadratic function of z on the
right-hand side, we have

δn+1 = δn + δ2
n + b, (9)

where b ≡ √
β(a − ac) + [(a − ac)/2]2. For a > ac, we have b ≈ √

β(a − ac). In
the continuous-time approximation, the dynamics in δ can be described by dδ/dt =
δ2 + b. Thus the time T required to tunnel through the escaping channel is

T ≈ 1

b1/2

∫ ∞

0

dδ

δ2 + 1
= π

2b1/2
.

Since the θ -dynamics is uniformally chaotic with Lyapunov exponent λ = ln 2 > 0,
the probability for a trajectory to fall in the opening of the channel and to stay near
there in the θ -direction for consecutively T iterations is proportional to e−T ln 2. For
a > ac, the average chaotic transient time is thus given by

τ ∼ eT ln 2 ≈ e(π ln 2/2)b−1/2 ≈ exp [C(a − ac)−1/2], (10)

where C = π ( ln 2)β−1/4/2 is a positive constant. Thus for a > ac the algebraic
exponent in the scaling of the tunneling time with the parameter variation assumes
the value of 1/2, as shown in Fig. 3.
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Fig. 3 For the
two-dimensional map model
(8), an example of the
numerically obtained scaling
law for superpersistent
chaotic transient. From [3]
with permission

3 Riddling Bifurcation and Superpersistent Chaotic Transients

The presence of symmetry in a dynamical system often leads to an invariant sub-
space where, in the absence of symmetry-breaking or random perturbations, a tra-
jectory originated in the invariant subspace remains there forever. Situations can also
arise where a chaotic attractor lies in the invariant subspace. One common example
is the system of coupled, identical chaotic oscillators. The synchronization manifold
is naturally a low-dimensional invariant subspace in the full phase space. If another
attractor exists outside the invariant subspace, riddling can occur in the sense that
the basin of the chaotic attractor in the invariant subspace is riddled with holes of
all sizes that belong to the basin of the other attractor. Imagine the situation where
all unstable perioic orbits embedded in the chaotic attractor are stable with respect
to perturbations in the direction transverse to the invaraint subspace. In this case,
almost all initial conditions in the vicinity of the invariant subspace lead to trajec-
tories that end up asymptotically on the chaotic attractor. Riddling bifurcation [5]
refers to the situation where, when a system parameter changes, an unstable periodic
orbit (usually of low period) [12] embedded in the chaotic attractor, becomes trans-
versely unstable. As pointed out in Ref. [5], an immediate physical consequence of
the riddling bifurcation is that, when there is a small amount of symmetry-breaking,
an extraordinarily low fraction of the trajectories in the invariant subspace diverge.
This means that a typical trajectory would spend an extremely long time in the vicin-
ity of the chaotic attractor before approaching the other coexisting attractor. The
average lifetime of the chaotic transient versus the amount of symmetry-breaking
was shown [5] to obey the scaling law for superpersistent chaotic transients.

In a two-dimensional phase space, the invariant subspace is a line. In this case,
the onset of riddling is determined by a saddle-repeller bifurcation (eigenvalue +1)
[3, 4]. A chaotic attractor in the invariant line is typically one-dimensional. Let xp be
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Fig. 4 (a) Unstable saddle
fixed point in the invariant
subspace and two repellers
off the invariant subspace for
p < pc (before the
saddle-repeller pitchfork
bifurcation). (b) Tongue
structure formed for p > pc,
after the onset of riddling.
Trajectories originated from
initial conditions inside the
tongues escape the invariant
subspace

an unstable fixed point embedded in the chaotic attractor in the invariant subspace.
The unstable point is stable transversely to this subspace, as shown in Fig. 4a. Rid-
dling occurs when xp loses its transverse stability as a parameter p passes through
a critical value pc. The loss of transverse stability is induced by the collision at
p = pc of two repellers r+ and r−, located symmetrically with respect to the invari-
ant subspace, with the saddle at xp (a saddle-repeller pitchfork bifurcation). These
two repellers exist only for p ≤ pc, as shown in Fig. 4a. For p > pc, the saddle
xp becomes a repeller, and the two original repellers r+ and r− off the invariant
subspace no longer exist.

Due to nonlinearity, a “tongue” opens at xp, allowing trajectories near the invari-
ant subspace to escape for p > pc, as shown in Fig. 4b. Each preimage of xp also
developes a tongue simultaneously. Since the preimages of xp are dense in the invari-
ant subspace, an infinite number of tongues open simultaneously at p = pc, indi-
cating that initial conditions arbitrarily close to the invariant subspace can approach
another attractor. Trajectories in the chaotic attractor, however, remain there even for
p > pc, since the subspace in which the chaotic attractor lies is invariant and each
tongue has a zero width there. But trajectories near the chaotic attractor have a finite
probability of being in the open and dense set of tongues. The basin of attraction
for the chaotic attractor is then a Cantor-set of leaves of positive Lebesgue measure,
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signifying riddling. Physically, since the onset of riddling induces the supernarrow
tongues near the invariant subspace, superpersistent chaotic transient arises [3, 4].

To give an example, consider the following general class of dynamical systems
[5]:

xn+1 = f(xn), (11)

yn+1 = σ + pg(xn)yn + high order odd terms of yn,

where x ∈ RN (N ≥ 1), y ∈ RM (M ≥ 1), f(xn) is a map with a chaotic attractor in
the invariant subspace yn = 0, g(xn) = 1 at some unstable periodic orbit of f(xn),
p is a system parameter, and pg(xn) is assumed to be positive. We call σ ≥ 0 the
symmetry-breaking parameter. Notice that for initial y0 ≥ 0 and σ ≥ 0, trajectories
have yn ≥ 0 for all times. The following two-dimensional version of Eq. (11) can
be analyzed [5]:

xn+1 = axn(1 − xn), (12)

yn+1 = σ + pe−b(x−xp)2
yn + y3

n,

where, for σ = 0, y = 0 defines the invariant subspace as a trajectory with y = 0 will
remain so forever, and a,b > 0 are parameters. The symmetry-breaking parameter is
with respect to the symmetry y → −y. Thus, the dynamics in the invariant subspace
is described by the logistic map xn+1 = axn(1 − xn) for which chaotic attractors
occur for parameter values in a positive Lebesgue measure set [13].

An analysis similar to these in Sect. 2 leads to the following scaling law for the
average transient lifetime with respect to the symmetry-breaking parameter σ :

τ ∼ exp [Kσ−2/3], (13)

where K is a positive constant proportional to the Lyapunov exponent of the chaotic
logistic map. An example of the scaling is shown Fig. 5, a plot of log10 τ ver-
sus σ−2/3. Note that the exponent 2/3 is a consequence of the y3 term in the
y−dynamics. If the y3 term is replaced by, say, a y2 term, then the exponent would
be 1/2. Thus, the exponent 2/3 is specific to the two-dimensional map model
Eq. (12).

The escaping behavior of trajectories, once they have fallen into the tongue, can
be seen by monitoring their traces in the phase space before they reach y = 1. Since
the tongues are supernarrow at p = pc, it is numerically convenient to examine the
case where p > pc. Figure 6 shows the last 50 points for 600 trajectories before they
reach y = 1, where p = 1.18 and σ = 0.005. It can be seen there is a “mushroom-
shape” (tongue) crowd of trajectory points in the phase space located above the fixed
point xp. The thick solid curves in Fig. 6 represent the envelope of the tongue. These
curves can be derived analytically by considering the escaping dynamics in the
vicinity of xp. Specifically, after a trajectory falls into the escaping channel located
at xp, its dynamics can be approximated by: (1) (xn+1 − xp) ≈ (2 − a)(xn − xp);
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Fig. 5 Average transient time
τ versus the
symmetry-breaking
parameter σ for
0.01 ≤ σ ≤ 0.04 at
p = pc = 1. The parameters
are a = 3.8 and b = 5.0 in
Eq. (12). The plot is log10 τ

versus σ−2/3. From [5] with
permission

Fig. 6 Mushroom-shaped
phase-space regions
(tongues) through which
trajectories escape the y = 0
chaotic attractor for p = 1.18
and σ = 0.005. From [5]
with permission

and (2) yn+1 ≈ σ + pyn + y3. Let zn ≡ |xn − xp|, the x−dynamics becomes:
zn+1 = |2 − a|zn = (a − 2)zn. For p close to pc and σ small, the z− and y−
dynamics can be approximated by

dz/dt = ρz, (14)

dy/dt = σ + (p − 1)y + y3,
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where ρ = a − 3. The following formula for the edge of the tongue for σ = 0 and
p > 1 can then be obtained:

z =
(

y
√

(p − 1) + y2

)ρ/(p−1)

, for p > pc = 1. (15)

The solid curves in Fig. 6 are (xp ± z), respectively. In principle, additional terms
such as cxy (c is constant) in the dy/dt equation should be considered, but this has
negligible effect on the results [5]. In more general cases where the system does not
have a skew-product structure, one should also consider terms in the x−equation
such as σy, σy2 or even higher-order terms in y. But for y small (near the invariant
subspace) one has σy � y. Thus, these terms have negligible effect on the properties
of the escaping tongues.

4 Superpersistent Chaotic Transients in Spatiotemporal Systems

An approach to studying spatially extended dynamical system is to examine vari-
ous spatial patterns and their dynamical evolution. In a turbulent state, the pattern
evolution appears random but statistical quantities usually converge for all practical
time scales [14]. Situations can occur where, after a long time, the system falls onto
a low-dimensional attractor. In this case, the high-dimensional, turbulent behavior
may be only a transient. It is not possible to determine whether the observed “turbu-
lence” is transient unless the asymototic time regime is reached. If the transient time
is much longer than any physically realizable time, the system is effectively turbu-
lent, regardless of the nature of the asymptotic attractor. In this sense, attractors are
not relevant to turbulence. Crutchfield and Kaneko [7] recognized the possibility of
extremely long transient in spatiotemporal dynamical systems. They demonstrated,
by using a prototype model, that the attractor can typically be low-dimensional but
the transient dynamics can be high-dimensional and complicated. As the system size
N is increased, the transient time can grow exponentially or even faster, as follows:

τN ∼ exp (CNα), (16)

where C > 0 and α ≥ 1. We see that the transient is superpersistent in the limit
N → ∞. The case of α ≤ 1 where the growth of the transient time is exponen-
tial or slower with N was referred to as type-I transient turbulence, while the case
α > 1 as type-II transient turbulence [7]. One example of Type-I transient turbu-
lence is chaotic defect motion in coupled map lattices where the relaxation time
for disappearance of the complex patterns increases at most exponentially with the
system size. For type-II transient turbulence, the pattern evolution typically appears
turbulent and high-dimensional.

To demonstrate superpersistent chaotic transients in spatially extended dynam-
ical systems, Crutchfield and Kaneko [7] used the following coupled-map-lattice
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model in which both time and space are discrete but the dynamical variables are
continuous:

xi
n+1 = 1

2r + 1

r
∑

j=−r

f
(

xi+j
n

)

, i = 0, . . . ,N − 1, (17)

where n and i are discrete time and space, respectively, f (x) is a nonlinear map
governing the local dynamics, and r is a parameter defining the range of spatial
coupling. For nearest-neighbor coupling, r = 1. Crutchfield and Kaneko chose the
following piecewise linear map, the “dripping handrail” model, for f (x):

f (x) = sx + ω (mod1), (18)

where s and ω are parameters. The local dynamics thus consists of an increase of ω
with each iteration but when the dynamical variable x exceeds a threshold xdrop =
(1 − ω)/s, a sudden decrease from unity occurs. Physically, the coupled map lattice
system Eq. (17) represents a simplified model of a dripping fluid layer, where the
local map f (x) models the dynamics of an isolated drop. The map f (x) can actually
generate complicated dynamics such as chaos and it was also used to study the
dynamics of the stirred Belousov – Zhabotinsky chemical reaction [15].

Crutchfield and Kaneko suggested that both type-I and type-II transient turbu-
lence are due to the complex, hierarchical phase space structure and the transient
relaxation can be regarded as a sequence of transitions through a hierarchy of
subbasins. These subbasins are subspaces of a basin separated by walls through
which a trajectory cannot pass except at portals. In particular, for type-I transient
turbulence, the phase space is organized as a hierarchy of subbasins of decreasing
dimension. Patterns near the attractor move in relatively low-dimensional subbasins,
while those far away from the attractor in high-dimensional subbasins. The collision
and annihilation of two defects correspond to an orbit moving from one subbasin to
another. Some constant spatial length L can then be defined for the portal, which
is determined by the defect size and the local geometry of the annihilation process.
The phase-space volume of the portal is thus V ∼ cL, where c < 1 is the relative size
of the portal with respect to the size of the subbasin. Since the number of defects
in a random initial pattern is proportional to N, the probability for the sequence of
transitions down through the hierarchy is PN ∼ cNL. Assuming the dynamics within
each subbasin is ergodic, the average transient lifetime is

τN ∼ P−1
N ∼ c−NL ≡ (c̄)NL, (19)

where c̄ = 1/c > 1. For type-II transient turbulence, numerical evidence suggests
that the patterns are generally complex during the transient epoch but occasionally
they can be quite uniform. This implies that the underlying subbasins may consist of
long tenrils passing through the neighborhood of the final attractor that corresponds
to a simple, uniform pattern. That is, a trajectory can be relatively close to the attrac-
tor at some time but most times it moves away from it in order to find the correct
path to actually reach the attractor. The subbasin hierarchy can be approximated
by a direct product of the local basin structure at each spatial site. The number
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of subbasins is proportional to Nγ , where γ measures the density of the tendrils.
Since there are no localized annihilation events, passage through a portal is spatially
global. The probability p of passing a portal is thus p ∼ cN . The total probability
of passing all portals to reach the final attractor is the product of Nγ such local
probabilities. The average transient time is

τN ∼ c−N1+γ ≡ (c̄)N1+γ
, (20)

which increases faster than exponentially with system size.

Fig. 7 For the coupled-map
lattice system Eqs. (17) and
(18), a typical space-time
diagram with site amplitude
{

xi
n

}

plotted from black to
white for a 128-site, spatially
periodic lattice. From [7]
with permission

Fig. 8 Example of
hyperexponential scaling of
the average transient lifetime
for the coupled-map lattice
system Eqs. (17) and (18).
From [7] with permission
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A typical evolution of the lattice from a random initial condition is shown in
Fig. 7, which is somewhat irregular but it eventually settles down to a uniform
pattern. The scaling of the average transient lifetime in the coupled-map lattice
system Eqs. (17) and (18) is hyperexponential, as shown in Fig. 8, where log τN
versus (N − 1)3 is plotted (together with a linear fitting) for N = 1, . . . ,47. The
hyperexponential growth in the transient lifetime means that transient spatial chaos
is in principle unsimulatable on finite-state machines for lattices of large size. For
turbulence this means that the final attractor may never be observed and thus irrela-
vant for practical purposes.

5 Noise-Induced Superpersistent Chaotic Transients

In the general setting where an unstable-unstable pair bifurcation occurs, noise
can induce superpersistent chaotic transients preceding the bifurcation. Consider,
in the noiseless case, a chaotic attractor and its basin of attraction. When noise is
present, there can be a nonzero probability that two periodic orbits, one belonging
to the attractor and another to the basin boundary, get close and coalesce tempo-
rally, giving rise to a nonzero probability that a trajectory on the chaotic attractor
crosses the basin boundary and moves to the basin of another attractor. Transient
chaos thus arises. Due to noise, the channels through which trajectory escapes the
chaotic attractor open and close intermittently in time. The probability of escape
is extremely small because escaping through the channel requires staying of the
trajectory in a small vicinity of the opening of the channel consecutively for a finite
amount of time, which is an event with extremely small probability. In this sense, the
channel must be “super” narrow [3–5], leading to a superpersistent chaotic transient.
The creation of the channel by noise and the noisy dynamics in the channel are thus
the key to understanding the noise-induced transient behavior.

There are two regimes of interest. In the subcritical case, there is a chaotic attrac-
tor and no escaping channel exists in the absence of noise. In this case, the channel is
induced by noise and it opens and closes randomly in time. In the supercritical case,
the channel is open and there is already a superpersistent chaotic transient. The pres-
ence of noise affects the deterministic dynamics in the channel. In both cases, the
dynamics in the channel can be regarded as being driven by a stochastic force and,
hence, it can be modeled by a stochastic differential equation, the solution to which
gives the tunneling time through the channel. Apparently, this time depends on the
noise amplitude. The dependence, in combination with the small probability for a
trajectory to move to the opening of the channel and to stay there for the duration
of the tunneling time, gives the scaling of the average lifetime of the superpersistent
chaotic transients with the noise amplitude.

Let ε be the noise amplitude. To obtain the scaling dependence of the tunneling
time T(ε) on ε, we use the following one-dimensional map:

xn+1 = xk−1
n + xn + p + εξ (n), (21)
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where k ≥ 3 is an odd integer so as to generate a pair of fixed points with different
unstable dimension, pc = 0, and ξ (n) is a Gaussian random process of zero mean
and unit variance. If the tunneling time is T � 1, Eq. (21) can be approximated by

dx

dt
= xk−1 + p + εξ (t), (22)

For p < 0, the deterministic system for Eq. (22) has a stable fixed point xs =
−|p|1/(k−1) and an unstable fixed point xu = |p|1/(k−1), but there are no more fixed
points for p > 0, as shown in Fig. 9. Let xr = xs for p < 0 and xr = 0 for p ≥ 0,
and let Tk

p be the tunneling time. A properly formulated first-passage-time problem

for this one-dimensional stochastic process yields the scaling of Tk
p with the noise

amplitude ε [16, 17].
Let P(x,t) be a probability density function of the stochastic process governed by

Eq. (22), which satisfies the Fokker – Planck equation [18, 19]:

∂P(x,t)

∂t
= − ∂

∂x
[(xk−1 + p)P(x,t)] + ε2

2

∂2P

∂x2
. (23)

Let l be the effective length of the channel in the sense that a trajectory with x > l is
considered to have escaped the channel. The time required for a trajectory to travel
through the channel is equivalent to the mean first passage time T from xr to l.
Focusing on a trajectory that escapes eventually, we assume that, once it falls into
the channel through xr, it will eventually exit the channel at x = l without returning

Fig. 9 For the prototype
model Eq.+ (21), (a) the
stable and unstable fixed
points for the subcritical
cases (p < 0), and (b) the
supercritical case (p > 0).
From [17] with permission

(a) (b) 

xs 

xu 

H(x) H(x) 
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to the original chaotic attractor. This is reasonable considering that the probability
for a trajectory to fall in the channel and then to escape is already exponentially
small and, hence, the probability for any “second-order” process to occur, where a
trajectory falls in the channel, moves back to the original attractor, and falls back
in the channel again, is negligible. For trajectories in the channel there is thus a
reflecting boundary condition at x = 0:

[

P(x,t) − ∂P

∂x

]

|x=xr = 0. (24)

That trajectories exit the channel at x = l indicates an absorbing boundary condition
at x = l:

P(l,t) = 0. (25)

Assuming that trajectories initially are near the opening of the channel (but in the
channel), we have the initial condition

P(x,xr) = δ (x − x+
r

)

. (26)

Under these boundary and initial conditions, the solution to the Fokker – Planck
equation yields the following mean first-passage-time [18, 19] for the stochastic
process (22):

Tk
p(ε) = 2

ε2

∫ l

xr

dy exp [ − bH(y)]
∫ y

xr

exp [bH(y′)]dy′ (27)

where H(x) = (xk + kpx) and b = 2/(kε2).
The double integral in Eq. (22) can be carried out [16, 17] for the three distinct

cases: critical (p = 0), supercritical (p > 0), and subcritical (p < 0). The results can
be summarized as follows.

• For the small noise regime (ε � εc ∼ |p|k/(2(k−1))),

Tk
p(ε) ∼

⎧

⎪⎨

⎪⎩

p−(k−2)/(k−1), p > 0,
ε−(2−4/k), p = 0,

|p|−(k−2)/(k−1) exp
( |p|k/(k−1)

ε2

)

, p < 0.
(28)

• For the large noise regime (ε � εc),

Tk
p(ε) ∼ ε−(2−4/k). (29)
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These laws imply the following scaling laws for the average lifetime of the chaotic
transients in various regimes:

• For the small noise regime (ε � εc ∼ |p|k/(2(k−1))),

τ k
p (ε) ∼

⎧

⎨

⎩

exp [p−(k−2)/(k−1)], p > 0,
exp [ε−(2−4/k)], p = 0,
exp
(|p|−(k−2)/(k−1) exp [|p|k/(k−1)/ε2]

)

, p < 0.
(30)

• For the large noise regime (ε � εc), we have

τ k
p (ε) ∼ exp (ε−(2−4/k)). (31)

The general observation is that for large noise (ε � εc), the transient is normally
superpersistent. For small noise, three behaviors arise depending on the bifurcation
parameter p: constant (independent of noise) for the supercritical regime, normally
superpersistent for the critical case, and extraordinarily superpersistent for the sub-
critical regime in the sense of scaling in (30) (for p < 0). Numerical support for
these distinct scaling behaviors can be found in [16, 17].

6 Application: Advection of Inertial Particles in Open
Chaotic Flows

The phenomenon of superpersistent chaotic transients finds application in fluid
dynamics. It has been known that ideal particles of zero mass and size follow the
velocity of the flow and, as such, the advective dynamics can be described as Hamil-
tonian [20, 21] in the physical space for which chaos can arise but not attractors.
In an open Hamiltonian flow, ideal particles coming from the upper stream must
necessarily go out of the region of interest in finite time. However, the inertia of the
advective particles can alter the flow locally [22]. As a result, the underlying dynam-
ical system becomes dissipative for which attractors can arise and, hence, particles
can be trapped permanently in some region in the physical space [23, 24]. This
phenomenon was demonstrated in a model of two-dimensional flow past a cylin-
drical obstacle [11]. This result has implications in environmental science where
forecasting aerosol and pollutant transport is a basic task, or even in defense where
the spill of a toxin or biological pathogen in large-scale flows is of critical concern.
The possibility that toxin particles can be trapped in physical space is particularly
worrisome. It is thus interesting to study the structural stability of such attractors
[10]. In particular, can chaotic attractors so formed be persistent under small noise?
It was found [10] that in general, the attractor is destroyed by small noise and
replaced by a chaotic transient, which is typically superpersistent. For small noise,
the extraordinarily long trapping time makes the transient particle motion practi-
cally equivalent to an attracting motion with similar physical or biological effects.
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This finding suggests a way to directly observe superpersistent chaotic transients in
laboratory experiments.

For an ideal, passive particle of zero inertia and zero size advected in a flow,
the particle velocity v is the flow velocity u which, in a two-dimensional physical
space, is determined by a stream function Ψ (x,y,t): ux = ∂Ψ/∂y and uy = −∂Ψ/∂x.
For particles of finite size, viscous friction arises and, as such, their velocities differ
from those of the fluid. Consider a spherical particle of radius a and mass mp, and
fluid of dynamic viscosity μ and element mass mf , the equation of motion of the
advective particle is [22]

mp
dv
dt

= mf
du
dt

− (mf /2)

(
dv
dt

− du
dt

)

− 6πaμ(v − u), (32)

where on the right-hand side, the first term is the fluid force from the undisturbed
flow field, the second term is the force due to the added mass effect, and the third
represents the Stokes drag. While in principle, the fluid velocity u is disturbed by
the particle motion, if the particle sizes are relatively small and their concentration
is low, u can be considered as unchanged [11]. For convenience, one can introduce
the mass ratio parameter

R = 2ρf

ρf + 2ρp

and the inertial parameter

A = R
2
9 (a/L)2Re

,

where ρp and ρf are the densities of the particle and of the fluid, respectively, L is a
typical large-scale mixing length, and Re is the Reynolds number. The equation of
motion can then be casted into a dimensionless form. To simulate random forcing
due to flow disturbance or other environmental factors, we add terms εξx(t) and
εξy(t) to the force components in the x- and y-directions, where ξx(t) and ξy(t) are
independent Gaussian random variables of zero mean and unit variance, and ε is the
noise amplitude. The final equation of motion under random perturbations is

dv
dt

− 3R

2

du
dt

= −A(v − u) + εξ (t), (33)

where ξ (t) = [ξx(t),ξy(t)]T . Inertial particles are aerosols if 0 < R < 2/3 and they
are bubbles if 2/3 < R < 2. The limit A → ∞ corresponds to the situation of ideal
particles (passive advection).

A convenient numerical framework to study the advective dynamics of inertial
particles [11] is the open flow model of the von Kármán vortex street in the wake
of a cylinder of radius r, located at (x,y) = (0,0). A time-periodic stream function
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Ψ (x,y,t) (period Tf = 1 in a standard dimensionless form) governing the motions of
vortices in the background flow of velocity u0 can be constructed explicitly from the
solutions of the two-dimensional viscous Navier-Stokes equations for the geometry
of a circle of radius r in the middle of an infinite channel of width w = 4r [25].
The Reynolds number is Re ≈ 250. The flow velocity u(x,y,t) can be obtained from
Ψ (x,y,t), allowing the particle motions to be computed.

In Ref. [11], it was shown that attractors can be formed in the bubble regime.
It is thus convenient to focus on this regime, e.g., by fixing R = 1.47 and A = 30.
There are three attractors [11]: two chaotic and one at x = ∞. The chaotic attractors
are located near the cylinder (but not stuck on it): one in y > 0 and another in y < 0.
To gain insight into what might happen to the attractors under noise, the basins of
attraction of these attractors can be examined [10]. Figure 10 shows the basins of
attraction of the two chaotic attractors (light blue and yellow, respectively), where
the blank region denotes the basin of the attractor at infinity. Note that the phase
space is five-dimensional, so what is shown in Fig. 10 is in fact a two-dimensional
slice of the basin structure in the full phase space, which corresponds to the phys-
ical space. Near the cylinder, the basin boundaries among the three attractors are
apparently fractal.1 Because of the explicit time dependence in the stream function
and therefore in the flow velocities, the attractors and their basins move oscillato-
rily around the cylinder. The remarkable feature is that in the physical space, there
are time intervals during which the attractors come close to the basin boundaries.
Thus, under noise, we expect permanently trapped motion on any one of the two
chaotic attractors to become impossible. In particular, particles can be trapped near

Fig. 10 Basins of attraction
of two chaotic attractors
(light blue and yellow,
respectively) in the absence
of noise. The blank region
denotes the basin of the
attractor at x = ∞. From [10]
with permission x

y

−2 −1 0 1

−1

0

1

1 Note that Fig. 10 represents a plot of initial conditions. For both Hamiltonian and inertial parti-
cles, those with long lifetime are close to the stable foliations of the nonattracting chaotic set. It
is known that, for a general Hamiltonian system, under weak dissipation, the stable foliations are
converted into the basin boundaries between the coexisting attractors [26], which are fractals.
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the cylinder, switching intermittently between the two originally chaotic attractors,
but this can last only for a finite amount of time: eventually all trajectories on these
attractors escape and approach the x = ∞ attractor. That is, chaos becomes transient
under noise.

To understand the nature of the noise-induced transient chaos, one can distribute
a large number of particles in the original basins of the chaotic attractors and exam-
ine the channel(s) through which they escape to the x = ∞ attractor under noise
[10]. Figure 11a, b, c show, for three instants of time (t, t+Tf /4, and t+Tf /2, respec-
tively), locations of an ensemble of particles in the physical space. Due to the sym-
metry of the flow [25], the particle trajectories at t and t+Tf /2 are symmetric to each
other with respect to the x-axis, as can be seen from Fig. 11a, c. While there are par-
ticles still trapped in the original attractors, many others are already away from the
cylinder. Since this is a two-dimensional projection of a five-dimensional dynamics,
some fractal-like features overlap. The channels through which they escape are a set
of thin openings surrounding the cylinder and extending to one of the vortices in the

Fig. 11 (a–c) At three
different instants of time,
Tf /4 apart, locations of the
temporally trapped and
escaping particles in the
physical space. From [10]
with permission
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Fig. 12 Scaling of the
average lifetime of the
trapped chaotic particles
versus the noise amplitude.
From [10] with permission
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flow. After wandering near the vortex, particles go to the x = ∞ attractor. Because
of the time-dependent nature of the flow, in the physical space the locations of these
openings vary in time, but the feature that they are narrow is common. For a fixed
noise amplitude, numerically it was found that the lifetimes of the particles near the
cylinder obey an extremely slow, exponentially decaying distribution, from which
the average lifetime τ is obtained. Figure 12 shows τ versus the noise amplitude ε
on a proper scale. A least-squares fit gives τ ≈ exp [3.3ε−0.55]. Note that for ε = 0,
there is an attracting motion so that τ diverges. Figure 12 suggests, however, the way
that τ diverges follows the superpersistent transient scaling law as ε is decreased.

Theoretically, the observed noise-induced superpersistent chaotic transient and
the scaling behavior in Fig. 12 can be explained by using the approach in Sect. 5.
Since the phase space in a two-dimensional fluid problem is exactly the config-
uration (or physical) space, the result exemplified by Fig. 12 implies that it may
be possible to observe superpersistent chaotic transients in physical space. It was
suggested [10] that the flow system used for experimental study of chaotic scattering
[27] could be used for this purpose.

7 Conclusions

In conclusion, an unstable – unstable pair bifurcation can generate a narrow channel
through which trajectories originally on a chaotic attractor can escape, converting
attracting motion into a transient. The average transient lifetime depends exponen-
tially on the time required for a trajectory to pass the channel, which in turn depends
on quantities such as the parameter difference, symmetry-breaking parameter, and
noise amplitude etc., typically algebraically. As a result, a superpersistent chaotic
transient arises. The transients can accompany phenomenon such as the onset of
riddled basins and the stability of attractors formed by inertial particles advected
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in hydrodynamical fluid flows. Such transients are also expected to be common in
spatially extended dynamical systems.2
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Synchronization in Climate Dynamics and Other
Extended Systems

Peter L. Read and Alfonso A. Castrejón-Pita

Abstract Synchronization is now well established as representing coherent
behaviour between two or more otherwise autonomous nonlinear systems subject to
some degree of coupling. Such behaviour has mainly been studied to date, however,
in relatively low-dimensional discrete systems or networks. But the possibility of
similar kinds of behaviour in continuous or extended spatiotemporal systems has
many potential practical implications, especially in various areas of geophysics.
We review here a range of cyclically varying phenomena within the Earth’s cli-
mate system for which there may be some evidence or indication of the possibil-
ity of synchronized behaviour, albeit perhaps imperfect or highly intermittent. The
exploitation of this approach is still at a relatively early stage within climate science
and dynamics, in which the climate system is regarded as a hierarchy of many cou-
pled sub-systems with complex nonlinear feedbacks and forcings. The possibility
of synchronization between climate oscillations (global or local) and a predictable
external forcing raises important questions of how models of such phenomena can
be validated and verified, since the resulting response may be relatively insensitive
to the details of the model being synchronized. The use of laboratory analogues
may therefore have an important role to play in the study of natural systems that can
only be observed and for which controlled experiments are impossible. We go on to
demonstrate that synchronization can be observed in the laboratory, even in weakly
coupled fluid dynamical systems that may serve as direct analogues of the behaviour
of major components of the Earth’s climate system. The potential implications and
observability of these effects in the long-term climate variability of the Earth is
further discussed.
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1 Introduction

In recent years, the study of synchronization phenomena in nonlinear systems has
made a number of significant advances in various areas of physics, engineering and
the life sciences [1]. The first documented example of synchronization was reported
as long ago as 1665 by Christiaan Huygens, who noted the tendency of a pair of
pendulum clocks, mounted on a common support, eventually to synchronize the
phase of their oscillations, even if they would adopt slightly different swing periods
if isolated from each other. The two pendula were “coupled” by the common support
which was moving in a way which was hardly perceptible to Huygen’s eyes but
strong enough for the pendula to “feel” each other, i.e. the two pendula were effec-
tively interacting through small vibrations in the support. Later on, it was concluded
that these small vibrations produced the synchronization of the two pendula.

Synchronization is a phenomenon that nowadays is usually treated as a regime
in which two, or more, coupled periodic or even chaotic systems exhibit correlated,
and sometimes even identical, oscillations. A key feature is that at least one of the
systems is sufficiently nonlinear that external perturbations can affect its natural
oscillation frequency and hence its phase. The applied coupling is therefore able to
systematically modify the behaviour of the perturbed system to result in a regime in
which its phase of oscillation is locked into a coherent relationship with that of the
perturbing system (and vice versa in the case of two-way coupling).

Since the first investigations of synchronization phenomena, several different
types of synchronization have been identified and studied. These include situa-
tions where the locking of both the phase and amplitude of the systems may be
less than perfect. Such partially synchronized states include phase synchronization,
lag synchronization, complete synchronization, intermittent and imperfect (phase)
synchronization, and so-called generalized synchronization [1, 3]. It has been sug-
gested that all these different synchronization states are in fact related to each other
and are different manifestations of the same universal phenomenon. However, the
relationship between them is still not well understood or clarified [4].

In this paper we examine aspects of the climate of the Earth to which ideas related
to synchronization might apply. Much effort is put into trying to understand the
complexities of the climate system and its dynamical evolution by the scientific
community, and to develop models for predicting its behaviour and response to
various perturbations, both natural and anthropogenic. The possible tendency for
certain sub-systems within such a complex dynamical network to develop even par-
tially synchronized behaviour could have major implications for its future evolution.
So it is of increasing importance for nonlinear dynamical theory to play a full role
in advancing our understanding of the impact of both transient and continuous per-
turbations on systems as complex as the climate. Section 2 therefore reviews some
aspects of climate variability that can be viewed as representing quasi-periodic or
chaotic oscillations, potentially subject to synchronization with external or internal
perturbations. In Sect. 3 we further develop these ideas in the context of models
of so-called teleconnections, representing various forms of correlated behaviour
observed in the climate between regions that are geographically distant. Section 4
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goes on to consider some simple model systems that may provide some useful
insights into a new class of possible synchronized states in extended systems anal-
ogous to the climate, coupled via the large-scale axisymmetric components of their
circulation. Finally, we offer some concluding remarks and an outlook for further
research in Sect. 5.

2 Climate Cycles and Teleconnections

The origin of oscillations and cyclic behaviour in the weather and circulation of the
atmosphere and oceans has long been of interest to scientists, as well as to those
involved in weather-sensitive industries such as agriculture and fisheries. These
roughly cyclic oscillations typically vary on time scales from a few weeks to decades
and even millennia and longer intervals. They may also either occur across the globe,
or focussed in particular geographical areas. In the latter case, however, the influence
of a localised disturbance may be still detectable in remote locations. This is known
in the climatological literature as a “teleconnection”. We examine examples of these
types of phenomenon in this section, with particular reference to situations where
nonlinear synchronization may play a role.

2.1 Cyclic Variations in Climate Variables

On some of the longest timescales amenable to quantitative study, the onset and
retreat of major glaciations is perhaps the best known example of a cyclic cli-
mate phenomenon. Information gleaned from deep ice cores at both polar ice caps
show that the volume of the Earth’s polar ice sheets has varied considerably dur-
ing the past million years or so from its present configuration, with advancing and
retreating glaciation of the mid-latitude regions of both hemispheres taking place
with a repeat period of around 100 kyrs. These cyclic glaciations appear to be a
comparatively recent phenomenon in geological terms, associated with a gradual
cooling of the entire planet since the relatively warm Eocene period, some 55 Myrs
ago [5]. A particularly notable feature of these recent glaciation cycles, however,
is their apparent relationship to cyclic variations in the Earth’s orbit and rota-
tion, known as the Milankovitch cycles after their Serbian discoverer in the early
twentieth century. Detailed analyses have indicated a degree of apparent synchro-
nization in the phase of the advance and retreat of glaciations with certain com-
ponents of the Milankovitch cycles, which mostly include periods of between 18
and 41 kyrs. However, the degree of synchronization continues to be controver-
sial [6], not least because the glaciations are dominated by a roughly 100 kyr
period which lies outside the main band of orbital and rotational periodicities. It
remains unclear, therefore, whether the Milankovitch orbital/rotation cycles force
the observed glaciations or merely act as the “pacemaker” [7] of oscillations that
would take place with or without such external forcing.
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On much shorter timescales, commonly cited examples of cyclic behaviour in
the climate system include the El Niño/Southern Oscillation (ENSO), the Quasi-
biennial Oscillation (QBO) in the Earth’s stratosphere, the North Atlantic Oscilla-
tion/Arctic Oscillation (NAO/AO) and the so-called “zonal index cycle”. ENSO is
perhaps the best known of the interannual climate cycles in the troposphere. It is
related to the extent of an accumulation of relatively cool water close to the ocean
surface off the coast of equatorial South America, the presence of which is main-
tained by coupled circulation patterns in both the Pacific Ocean and the overlying
atmosphere. Fluctuations in this coupled circulation leads to occasional weakening,
which allows the cold upwelling in the oceans to spread westwards and cause the
tropical ocean temperature across the equatorial Pacific to cool significantly. Such
episodes (known as El Niño events) recur on timescales of 3–6 years, which appear
to be mainly determined by the time it takes equatorially trapped Kelvin and Rossby
waves in the ocean to cross the Pacific. The shift in ocean surface temperatures
then lead to significant changes in seasonal climate at many locations across the
globe. A particular feature of El Niño events is their tendency to occur at particular
times of year (particularly around December – January, hence the name “El Niño”
meaning the Christ child), suggesting at least a partial synchronization with the
seasonal cycle. The basic mechanism that sets the timescale of the Southern Oscil-
lation, however, is not directly affected by the seasonal cycle. But this appears to be
another case where an astronomical cycle acts as a partial “pacemaker”, modifying
the phase of particular features within an otherwise free (though almost certainly
chaotic) oscillation.

The stratospheric QBO is another example, in which the annual cycle plays the
role of a partial pacemaker. The oscillation manifests itself as a cyclic reversal of
the prevailing east – west wind in the tropics at altitudes above 10–15 km above
the surface, with a recurrence period of around 24–29 months. It is now widely
understood to be a form of relaxation oscillation, driven by the rectification of
upward-propagating waves originating in the convectively active troposphere [8],
with the timescale set by the mean intensity of the convective forcing. This appears
to be a ubiquitous form of oscillation in planetary atmospheres, since similar types
of behaviour have now been identified in the stratospheres of Jupiter [9], Saturn [10]
and even Venus [11], though on somewhat different timescales. But for the Earth the
seasonal cycle itself modulates this convective forcing, allowing the possibility for
nonlinear phase-locking effects to modify the onset of wind reversals, which tend to
take place at preferred times of the year [12].

The so-called “index cycle” is among the shortest timescale cyclic phenomena
in the climate system, being representative of a class of phenomena known as
“intraseasonal oscillations”. This was first noted in the northern mid-latitude cir-
culation over the Atlantic Ocean [13], and appears as a tendency for the main east –
west jet stream in the upper troposphere (at altitudes of around 10 km) to alternate
between a fast, relatively undisturbed state and a more undulating, “blocked” con-
figuration, in which travelling waves are of much larger amplitude but relatively
slowly moving. This alternation occurs roughly cyclically at certain times of year
on timescales of around 30–50 days, though because of the disturbances to the
circulation associated with the contrast between continents and oceans it is often
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difficult to discern. The term “index cycle” refers to a statistical index – the “zonal
index”, defined as a measure of the average east-west (zonal) wind between 35◦
and 55◦N – from which timeseries could be constructed that showed evidence for
cyclic behaviour, though this often appeared to be highly chaotic. There is a similar
phenomenon discernible also in the southern hemisphere, where continentality has
a much weaker influence on the circulation than in the north. Although the latter
has been rather less intensively studied, it does reveal this type of cyclic behaviour
more clearly (see Fig. 1) than in the northern hemisphere [14]. This is of particular
interest, because it appears to represent a nonlinear oscillation associated with cyclic
exchanges of energy (potential and kinetic) between travelling baroclinic cyclone
waves and the zonally-symmetric component of the circulation. Such wave-zonal
flow interactions are the dominant form of nonlinear interactions involving large-
scale atmospheric waves, a point we return to in Sect. 3.2.

Fig. 1 Sequence of 200 mb geopotential height contours over the southern hemisphere during the
summer of 1979, illustrating the alternating of the circulation between “westerly” and “blocked”
states during the southern “index cycle”. Figure adapted from [14]
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2.2 Teleconnections

Cyclic phenomena such as the glaciation cycles appear to manifest themselves on a
global scale, so can be regarded as oscillations of the entire climate system virtually
worldwide. Other types of climate cycles and variations, however, appear to be more
confined to particular geographical regions, although their influence may be felt
further afield in other parts of the world.

The North Atlantic Oscillation is one example of such a regional phenomenon
that has been studied for almost 200 years [15]. It appears in the form of statistically
correlated fluctuations in time between widely separated points spanning the North
Atlantic basin, commonly applied to variability on monthly and longer timescales.
Such long term, correlated fluctuations are known as “teleconnections”, though the
origin and mechanisms for these phenomena are often difficult to determine. But
with the development of the large-scale global observing network for weather pre-
diction and climate studies, the study of teleconnection phenomena has revealed a
number of recurrent and persistent patterns that vary on timescales ranging from
the intraseasonal (30–80 days) to the interdecadal. In the case of the NAO, this
appears to comprise a combination of fluctuations that include the zonal index cycle
mentioned above, on intraseasonal timescales and with a spatial distribution that is
largely symmetric about the pole (a so-called “annular mode”) and a more complex
pattern of correlation that recurs on interannual timescales [16].

Such complex spatial patterns of correlation often appear to take on a charac-
ter akin to a standing wave pattern. This has led to a widely accepted paradigm
within climate science of a quasi-linear mechanism for teleconnections that involves
the excitation and propagation of large-scale Rossby waves from a specific source
region. The source might consist, for example, of an unusually warm patch of ocean
surface, brought about by anomalies in the ocean circulation which, if persistent,
may lead to a standing wave pattern aligned along great-circle paths across the
globe [17]. The simplest case under this scenario is that the temporal correlation
of atmospheric variables between two points in space is due to the fact that these
two locations are along the “track” of a major atmospheric anomaly.

Another widely discussed interpretation within meteorology and climate for
exciting these kinds of correlated fluctuations is to regard them as an aggregation
of quasi-stochastic weather events through either a physical or statistical low-pass
filter [18]. Such an approach largely involves the application of linear dynamics,
much like the effect of noise on a resonant oscillatory system.

There is, however, one further type of teleconnection that has been identified
recently and that is not easily explained in terms of linear dynamics. This involves
the identification of phase-synchronized behaviour of regional weather events, that
would seem to imply a nonlinear phase-locking mechanism between geographi-
cally separated meteorological phenomena without recourse to any external forcing.
Teleconnections between middle latitude blocking of the Northern and Southern
hemispheres, for example, have been diagnosed in climate data [19], manifested as
a small but significant tendency for such blocking to occur simultaneously in both
the northern and southern hemispheres. This was found to be the case, even though
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the events considered singly in each hemisphere appear to be chaotic in time. The
blocked states essentially represent a particular phase in the respective zonal index
cycles of the two hemispheres, as introduced in the previous subsection. However,
the mechanism for producing such correlated behaviour between two hemispheres,
often at quite different points in their respective seasonal cycles, is far from clear.

3 Models and Mechanisms for Teleconnection
and Synchronization

In the previous section we have introduced a number of phenomena within the
Earth’s climate system in which cyclic, though usually chaotic, oscillatory behaviour
is observed. The origin of such cyclic behaviour is often difficult to determine, how-
ever, and so it is helpful to appeal to simplified models in order to evaluate possi-
ble mechanisms. Where synchronized behaviour between two or more oscillatory
phenomena is observed, then two distinct questions arise: (a) does the oscillation
in one system owe its sole origin to that of the other? or (b) are the two cyclic
oscillations sustainable independently but simply brought into a synchronized state
through some form of weak coupling? If the latter, how weak and/or intermittent
can this coupling be in order to exhibit observable synchronization?

3.1 Distinguishing Synchronized Models from Observations?

Where the perturbation is a highly predictable external process, such as the astro-
nomical orbit/rotation cycles invoked for the Milankovitch cycles of glaciation, the
forcing or synchronization is clearly a unidirectional problem, in which the external
forcing influences the climate system and not vice versa. In this case, it remains
controversial as to whether the glaciation cycles would continue in the absence
of cyclic variations in orbit and rotational parameters. Because of the very large
timescales involved, it is not feasible to make use of comprehensive physical climate
models to investigate this problem. Instead, it is necessary to appeal to much simpler
models, based typically on energy balance considerations for the land, oceans and
cryosphere to represent the integrated response of the Earth on such long timescales.
Such low-order models may be very crude in comparison to the real Earth system.
Even so, various authors have sought to draw conclusions from studies using low-
order energy-balance models in which the actual variation in solar heating at high
latitudes due to orbital forcing is applied. An example of such a study is illustrated
in Fig. 2, which shows the result of applying various forms of weak orbital forcing
to a very simple nonlinear energy balance climate model [20].

A major difficulty has emerged, however, in that a wide variety of models appear
able to come into synchronization with the applied orbital forcing [20] (see Fig. 2)
with little apparent sensitivity to the details of the model itself. The resulting “pre-
diction” for ice volume variations then seems able to reproduce the observed varia-
tions, provided only that the representation of glaciation in the model is nonlinear.
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Fig. 2 An illustration of phase locking to Milankovitch forcing. The gray curve is a timeseries of
the proxy δ18O record representing the observed variations of global temperature; the thin color
curves are ice volume time series from different model runs by Tziperman et al. [20] using different
initial conditions. (a) A model run with no Milankovitch forcing. (b) Model forced by and phase
locked to Milankovitch forcing (65◦N summer insolation). (c) Model run forced by and phase
locked to an artificial, periodic 40 kyr forcing. (d) Model forced by obliquity variations only. (e)
Model forced by precession only. (f) Same as (b) but in the presence of noise. Figure from [20]
with permission

Though clearly encouraging as an indication that even weak Milankovitch perturba-
tions in insolation can lead to synchronized glaciation cycles, this result also demon-
strates that simple comparisons between forcing input and model predictions are not
sufficient to distinguish between even major classes of models very effectively—a
clear consequence of synchronization within a dissipative nonlinear system.

The situation where synchronization occurs between two autonomous, chaotic
components of the climate system may therefore be even more difficult and sub-
tle to elucidate. In the synchronized blocking case introduced above, and also in a
related study [21] that considers coupling between nearby longitudinal sectors in
the same hemisphere, attempts to model this phenomenon have made use of sim-
plified numerical models of flow in a hemispheric channel. Each hemisphere was
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represented as a separate model, and coupling between the hemispheres or sectors
was then introduced by adding a heuristic diffusive coupling between pairs of spatial
harmonics. For their study, however, Duane & Tribbia [21, 22] chose to couple only
selected pairs of wavenumber modes that explicitly excluded |K| < k0, where K is
the total wavenumber K2 = k2 + l2, k0 is a constant and k and l are the respective
wavenumbers in the zonal and meridional directions. Such a restricted coupling
reflects the common teleconnection paradigm discussed above, which postulates
trains of Rossby-Haurwitz waves as the conduit for dynamical information across
the globe, although there is as yet no direct evidence for this mechanism in observa-
tions for this mode of coupling in coupled blocking events. Nevertheless, the models
thus formulated were able to show evidence for correlated (or, in the case of two sec-
tors, anti-correlated) blocking events between hemispheres or sectors in a manner
that was at least qualitatively comparable to the observations. However, in light of
the remarks given above concerning the Milankovitch forcing, an ability of a given
model to reproduce synchronized behaviour does not guarantee that it represents the
correct physics of the basic oscillation or coupling without further evidence.

3.2 Zonally Symmetric Coupling

Motivated in part by studies over many years of quasi-periodic and chaotic “index
cycles” in laboratory experiments [23, 24], we have investigated synchronization
effects in a baroclinically unstable channel in which we make the opposite assump-
tion to [22] and [21], coupling only via the lowest wavenumber zonally-symmetric
components of the flow [25]. Like the study of [21], this work relies on the use of a
quasigeostrophic (QG) two-layer formulation of baroclinic and/or barotropic insta-
bility. Since the first studies of baroclinic waves in the atmosphere, the two-layer
model has played an important role. It was proposed more than 50 years ago to
encapsulate in the simplest way some of the principal features of the middle latitude
atmospheric circulation. Since then, it has been widely used in studies of baroclinic
instability [26–29]. The basic model is a two-layer quasi-geostrophic system, for-
mulated in Cartesian geometry, and permits just one zonally propagating wave with
barotropic and baroclinic components. Hence it is arguably the simplest possible
representation of such a system.

A schematic diagram of the two-layer system is shown in Fig. 3, commonly
known as the “Phillips-Pedlosky” two-layer model [26–29]. It consists of two super-
posed fluids confined to a rotating, rectangular, and zonally periodic channel. By
convention, layer 1 is at the top and layer 2 is at the bottom. The height of the
channel is D, with width L. It was developed using Cartesian co-ordinates, where
x, y and z are used respectively to denote displacements along the channel, across
the channel, and vertically. Periodic boundary conditions are applied in x. The cor-
responding velocities are un,vn and wn, where n = 1,2 refers to the upper and lower
layer respectively. The densities of the upper and lower layer are ρ1 and ρ2, with
ρ2 > ρ1. The analysis carried out by [30, 31] was conducted in a reference frame
that moved with the zonal velocity, (u1 + u2)/2, of the mean flow. Therefore, both
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Fig. 3 The two-layer model considered in this project: two immiscible fluids of densities ρ1 and ρ2
with ρ1 < ρ2. The fluids are in relative motion, with velocities of +U/2 and −U/2 respectively.
The channel has height D, width L and is rotating at a constant angular velocity Ω

the upper and lower layers appear to be in uniform motion along the channel in this
frame of reference, with respective velocities of +U/2 and −U/2, becoming +1/2
and −1/2 in non-dimensional terms. In the absence of motion, the fluid layers are
assumed here to have equal depths of D/2. To simulate the experimental conditions,
the fluid is confined vertically between two rigid planes representing a base and a
lid. The kinematic viscosity within both layers is assumed to be equal.

For maximum simplicity, a 5-dimensional version of the model was considered
[30, 31], representing a spectrally highly truncated formulation that describes the
interaction of a single baroclinic wave and a zonal flow. The basic 5-dimensional
model equations can also be represented in complex form as a 3-equation formula-
tion (1), in which the first equation in the complex variable X describes a barotropic
travelling wave component, the next equation in Y (also complex) represents the
baroclinic travelling wave (with the same zonal wavenumber) and the third compo-
nent Z represents the (real) amplitude of the baroclinic zonal flow component. The
resulting system of equations is almost identical to the well known 3-component
complex Lorenz equations [31].

Ẋ = −σX + σY ,

Ẏ = RX − aY − XZ,

Ż = −bZ + 1

2

(

X∗Y + XY∗) ,

(1)

where σ and b are real numbers signifying the Prandtl number of the fluid, and
the aspect ratio of the system respectively, and R (the “Rayleigh number”) and a are
complex parameters (in contrast to the original complex Lorenz equations).

In the study by [25], an external periodic forcing was added (via the baro-
clinic zonal velocity component) to this model in order to allow the generation
of various degrees of synchronized states, depending on the frequency detuning
between the natural amplitude modulation oscillation of the system and the forcing.
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Investigations were carried out in the three principal flow regimes that the model
exhibited, a steady amplitude wave regime, an amplitude-modulated (quasi-periodic
amplitude vacillation or AV) regime and a chaotic amplitude-modulated regime.

In the steady regime, amplitude resonance at certain forcing frequencies was
found, in which the initial unperturbed travelling wave solution grew in amplitude
as certain frequencies in the perturbation were approached. In the AV regime with
relatively small amplitudes of forcing, classical “Arnol’d tongues” and synchroniza-
tion were found, in which the natural frequency of amplitude modulation within the
model became phase-locked to that of the external perturbation. This implies that the
amplitude variations in the travelling wave became entrained with the zonally sym-
metric forcing. Such entrainment was only possible because of the strongly nonlin-
ear wave-zonal flow interaction that underlies the basic instability that sustains the
growth of the travelling wave. The translation speed and frequency of the travelling
wave were not directly modulated by the external perturbation, but were affected
indirectly by the perturbation though not explicitly phase-locked. With moderate
forcing amplitudes in this regime, period doubling cascades were found, leading
ultimately to an induced or enhanced chaotic state.

An interesting aspect of these results was the clear ability of the system to phase
lock to harmonics of the applied perturbation frequency. Thus, in Figs. 4 and 5 we
see evidence of locked states in frequency ratios corresponding to period 2, 3 and
so on up to period 8, although the frequency width of such high order synchronized
states is then very narrow.

Fig. 4 Maximum and minimum zonal flow amplitudes, Xmin and Xmax, as a function of pertur-
bation frequency γ for forcing amplitude ε = 0.005 for the amplitude vacillation regime in the
periodically perturbed model of [25]
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Fig. 5 The amplitude vacillation regime: plot of frequency-locked regions in the periodically per-
turbed model of Eccles et al. [25]. Period 1 +, period 2 +, period 3 o, period 4 +, period 5 o, period
6 o, period 7 �, period 8 +. Note the fields have not been contoured as they are highly complex
and contouring may give a misleading impression

In contrast, when the system was run in a chaotic, amplitude-modulated regime
(when unperturbed), the introduction of periodic forcing was able to suppress this
chaotic behavior at particular regions in the parameter space, via a form of open-loop
chaos control. Thus, despite employing a very restricted form of coupling that only
perturbs the zonally symmetric component of the flow, there was clearly enough
nonlinearity and dissipation within the system to exhibit a fairly full range of partial
and complete synchronization phenomena.

More recently, the approach of [25] has been extended to allow for the coupling
of two non-identical 5-dimensional baroclinic channel models, effectively repre-
senting the zonally-symmetric coupling of two hemispheres or zonal sectors [32].

The interaction between the two models was achieved by introducing a linear
coupling term in the response or slave system, in the case of a master-slave config-
uration or in both models in the case of mutual or bidirectional configuration. This
coupling term is proportional to the difference between the different variables of the
system of the form:

dX1

dt
= G(X1) + η1E(X2 − X1), (2a)

dX2

dt
= G(X2) + η2E(X1 − X2). (2b)

where E is the matrix that determines the linear combination of the components
of X1,2 that will be used to couple the systems, and η1 and η2 are the coupling
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strengths. If η2 = 0 (the same applies for η1 = 0) a typical master-slave configu-
ration is obtained. On the other hand, if η2 = η1 a symmetrical mutual coupling is
achieved. So far, we have only used these two configurations. The de-tuning between
the systems was produced by having different values for the rotational Froude num-
ber, F1,2.

By choosing

E =
⎛

⎝

0 0 0
0 0 0
0 0 1

⎞

⎠

and taking into consideration the 3-equation formulation of our uncoupled systems
(1) we introduce a zonally symmetric coupling on the Z component of the system.
Although this approach is formally ad hoc, it is noteworthy that it has the same form
as Newton’s law of cooling dT/dt = K(T0 − T), which is appropriate for forced
convective heat transfer. The latter is essentially how the thermal boundary condi-
tions are maintained in typical baroclinic annulus experiments. This is therefore,
a form of coupling that will directly link the amplitudes of the baroclinic zonally
symmetric flow components of the two systems.

Investigations using the master-slave configuration (η1 = 0) [32] have demon-
strated the ability of this simple system to exhibit various degrees of synchro-
nization in both periodic and chaotic states. It was also found that the frequency
range over which synchronized states were found, for low and moderate coupling
strengths, increased with increasing η, following an Arnol’d tongue-like behaviour.
Larger coupling strengths led to period-doubling and higher order (2:1) phase
synchronization.

This system has also proved fruitful for the application of the auxiliary system
approach [33] as a means of seeking evidence for generalised synchronization, in
the form of yet another degree of synchronization. It was generally found that larger
values of η are needed to cross the boundary from phase synchronized states to fully
synchronized states in the generalised sense. It was also found that larger coupling
strengths were needed to obtain phase synchronization in chaotic regimes than in
periodic ones. Some investigations were also carried out by coupling the system in
mixed states, i.e. the master system was run in a region in parameter space where
the dynamics was periodic, while the slave system was in a chaotic one. This can be
interpreted as a direct extension of the periodically forced system mentioned above
and described by Eccles et al. [25]. Likewise, phase synchronization and signs of
chaos control and chaos-destroying synchronization were also found.

For the bidirectional coupling case (η1 = η2), signatures of mutual synchroniza-
tion such as imperfect phase synchronization (Fig. 6) and complete phase synchro-
nization were detected [32] in both periodic and chaotic regimes. Complex effects
such as oscillation quenching were also found, which do not have an equivalent in
the unidirectionally coupled systems. In this case, in contrast to the previous sce-
nario of unidirectional coupling, both sub-systems are affected by the coupling, and
the observed amplitude modulation frequencies of the two systems were brought
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Fig. 6 Behaviour of a mutually (symmetric) coupled system in a chaotic state, for which Fa = 13,
Fb = 13.55, and η = 0.02. (a) Time series for system 1 (black line) and system 2 (green line);
(b) Lissajous figure from plotting Za(t) against Zb(t); (c) Frequency spectra for system 1 (black
line) and system 2 (green line); (d) Phase difference �φ(t) between Z of the system 1 and system
2. Notice that system 2 loses one cycle against system 1 at around Time= 4,600 in (a) and its
correspondent phase slip in (d); this is a clear signature of imperfect phase synchronization

together to oscillate at a common frequency. In this configuration, it was found
that the synchronized regions in the coupling-strength/de-tuning diagram (shown in
Fig. 7 for the chaotic case) are quite symmetrical. It is also observed that relatively
large coupling strengths are needed to reach full phase synchronization for relatively

Fig. 7 The chaotic modulated amplitude vacillation regime: diagram of synchronized regions in
the mutually coupled model developed in [32]. Unsynchronized •, imperfect phase synchronized
(phase slips) •, phase synchronized •, oscillation quenching •
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small de-tunings (when compared to the master-slave situation). It was also found
that, for moderate coupling and detuning, there was a region between unsynchro-
nized behaviour and oscillation quenching which exhibited imperfect synchroniza-
tion (shown as black dots in Fig. 7). To the knowledge of the authors this is some-
thing that has not been reported before. Apart from this imperfectly locked region,
the synchronization regime diagram of our system looks similar to others reported
in the literature, such as in [2].

Investigations of mixed states showed (at least for the chosen set of parameters)
that moderate coupling strengths stabilized and synchronized the systems (e.g. the
periodic system remained in a periodic regime while the chaotic system switched
to a periodic regime), whilst with relatively strong coupling the periodic system
became chaotic, but the synchronized state was preserved. It would be of interest to
investigate whether this behaviour is found more generally in other systems, such as
in coupled Rössler and/or Lorenz systems.

4 Laboratory Analogues of Zonally-Symmetric
Synchronization

Low order mathematical models of the type discussed in the previous section can
provide a great deal of useful insight into the range of possible phenomena that
a real physical system might exhibit, provided that physical system can be rea-
sonably assumed to behave as if it was a finite-dimensional dynamical system.
For a spatially-extended system, however, such as in a fluid or other continuum,
this assumption of restricted dimensionality is by no means guaranteed. For these
kinds of system (which, of course, include geophysical systems such as the Earth’s
atmospheric and oceanic circulation), it is important, therefore, to investigate the
applicability of insights obtained from low-dimensional systems with some care.

One approach to this question is to conduct carefully-controlled experiments in
the laboratory on fluid flows that encapsulate at least some of the basic physical
attributes of spatially-extended geophysical systems. Such experiments are not as
easy to implement and control as simplified numerical models, but at least allow the
possibility of testing some of the broader implications of simple model studies in a
more physical context. Given the difficulties raised above concerning the ambiguity
of simple comparisons between model simulations of synchronized behaviour and
observed responses in geophysical systems, the capability of laboratory systems to
conduct repeatable experiments to test particular model hypotheses can be a partic-
ular strength.

4.1 Periodic Perturbations

In the present context of baroclinic zonal index cycles, experimental work on
externally-perturbed synchronization has recently been performed [34] using a mod-
ified version of the so-called thermally driven, rotating baroclinic annulus [23, 24].
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Fig. 8 Atmospheric equivalent of the baroclinic annulus experiment

As shown schematically in Fig. 8, this system consists of a cylindrical annulus of
a working fluid confined between two coaxial, thermally-conducting cylinders that
are rotated at uniform angular velocity Ω about their common (vertical) axis of
symmetry. The combined effect of differential heating (�T) in the horizontal direc-
tion and uniform background rotation leads to the formation of a zonally-symmetric
baroclinic jet flow around the annulus that may become unstable to travelling baro-
clinic waves under suitable conditions. The system has been extensively studied
over many years and is well known to exhibit a wide range of flow regimes under
steady rotation and applied thermal contrast�T , including pure, axisymmetric flow,
steady amplitude travelling waves, periodic amplitude modulated waves and a range
of more complex spatiotemporal flows, culminating in forms of geostrophic tur-
bulence. Under weakly unstable conditions, however, the simple low-dimensional
mathematical system discussed in the previous section appears to provide a reason-
able qualitative model for the first few bifurcations from axisymmetric flow in the
experiment.

Like the simple model study discussed in the previous section, the investiga-
tion of [34] was focused on the study of the frequency entrainment of the natu-
ral amplitude vacillation of the baroclinic wave by an external, zonally-symmetric,
cyclic forcing produced by periodically varying the temperature contrast between
the inner and outer sidewalls of the annulus. When the forcing was applied to
quasi-periodic amplitude-modulated wave regimes, phase locking and frequency
entrainment between the applied forcing and the natural frequency of the amplitude
modulation was found in a form that closely resembles what was seen in the simple,
low-order model of [25]. The frequency range over which such locked states were
found varied with the amplitude of the applied forcing, producing a classical Arnol’d
tongue (see Fig. 9).

When the detuning was increased, sporadic phase slips and eventually a quasi-
periodic behavior was found. Synchronization was even found when forcing was
applied with twice the period of the natural modulation frequency. This is illus-
trated in Fig. 10, which shows the onset of phase-locking with the response occur-
ring at twice the frequency of the imposed forcing. It was therefore concluded
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Fig. 9 Parametric variation of partial and complete phase synchronization between the periodic
forcing and temperature amplitude of m = 3 as a function of amplitude ε and frequency ω of
the forcing, close to the 1:1 ratio between forcing and the natural vacillation frequencies in the
experiment of [34]. Dotted lines represent boundaries between different synchronized states: PS
denotes full phase synchronization, PPS partial phase synchronization, and NS unsynchronized
behavior. Different symbols denote different experimental runs

that synchronization of the natural amplitude modulation frequency by zonally-
symmetric external forcing is readily achieved, even in the presence of experimental
noise and fluctuations in experimental control, suggesting that such synchronized
states are robust and potentially observable in nature.

Fig. 10 (a) Extract of the temperature variation of the baroclinic wave (continuous line) and the
imposed external forcing (broken line). (b) Time variation of the phase difference �φ between the
external forcing and the amplitude modulation of m = 3, for periodic forcing with ε = 0.6 K and
period τ = 400 s. Natural vacillation period τv = 180 s
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4.2 Mutual Synchronization Experiments

If we regard the thermally-driven rotating annulus system as a well established ana-
logue of mid-latitude cyclogenesis in large-scale atmospheric and oceanic flow, the
externally forced experiment discussed above can be considered, to some extent,
to emulate an effect that seasonal forcing may have on the dynamics of large-scale
planetary waves in the atmosphere. A pair of thermally coupled annulus experi-
ments could then be interpreted as analogous to a “complete” planet, where both
hemispheres or two sectors of the same hemisphere (represented by each annulus,
cf. Fig. 11) are solely interacting through the equatorial/tropical regions, in the same
spirit as Duane et al. (1999).

At the time of writing, this work is still ongoing, although a number of prelim-
inary experiments so far, where either the coupling strength or the de-tuning were
varied, have showed clear signs of phase synchronization. In the same way as in
the numerical work presented above, synchronization was studied in both periodic
and chaotic regimes as well as in mixed states. By varying the mismatch between
the systems (by setting slightly different temperature contrasts in each system) we
could move from completely uncorrelated behaviour between the two sub-systems,
to imperfectly phase-synchronized states (phase slips) and finally to fully synchro-
nized regimes (though the latter was found only in the periodic case). An exam-
ple of these experimental results showing phase synchronization, visible here via a
Lissajous plot, is shown in Fig. 12. The parameters for this particular experiment are,
in terms of the thermal Rossby number (!) and Taylor number (Ta), !M = 0.656,
!S = 0.643, and TaM = TaS = 3.778 × 106, where

! = gα�TD

"2L2
, (3)

Fig. 11 Left: Schematic diagram of the two coupled annuli via the circulating water of the outer
circuit. (a) Uncoupled, (b) Strongly coupled, and (c) its geophysical equivalent. Arrows represent
interhemispheric coupling
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Fig. 12 Two temperature signals originating from the coupled system are shown in (a) and its
corresponding Lissajous figure in (b) (master system is shown in a solid line and slave system in a
dashed line). Introduction of the coupling between the systems adjusts the frequencies and phases,
although the amplitudes remain different. A circular structure in the coupled case in the Lissajous
plot is typical of two signals at the same frequency and a constant phase shift

g is the acceleration due to gravity, α the thermal expansion coefficient, D the depth
of the annulus, L the gap width and

Ta = 4"2L5

ν2D
. (4)

The subindexes “M” and “S” stand for master or slave systems respectively.
Although the coupling used so far in our experiments is quite schematic when

compared with explicit geophysical analogues such as in a baroclinic, midlatitude
storm zone in the atmosphere or oceans, there is no reason to believe that the occur-
rence of synchronization effects is particularly sensitive to the precise way in which
the “slave” system is perturbed by the “master”, so long as the influence is coherent
and mainly via the zonal mean flow (or at least on a larger scale than that of the
propagating waves).

The key result, however, is that a clear route to synchronization is found in a
real system of fully-developed baroclinic waves, even via relatively weak, zonally-
symmetric coupling.

5 Discussion

It is now widely recognized that a thorough understanding of the environment and
climate of the Earth, and the development of methods to predict its future behaviour
and responses to changes in factors such as atmospheric composition and exter-
nal forcing, requires a holistic consideration of the entire Earth system. Such an
approach views the Earth in terms of a hierarchical ensemble of distinct sub-systems
(the troposphere, stratosphere, oceans, cryosphere, land surface and biosphere, for
example), all mutually interacting via complex coupling and feedback processes
and subject to time-varying external forces (such as the diurnal and annual cycles,
and other external processes on longer timescales). Even within these subsystems,
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such as in the general circulation of the atmosphere itself, distinct circulation sys-
tems and sub-processes can be identified, each of which will interact with other
components of the general circulation on various space and time scales, leading to
complex behaviours which may be very difficult to predict. Such a view of the Earth
System underpins many modern approaches to modelling the Earth’s present and
past climates, and more recently also to evaluating socio-economic and ecological
responses to such changes.

In a system as complex as the Earth, interactions between sub-systems are likely
themselves to be highly complex, intermittent and nonlinear, presenting enormous
challenges to the modelling community to represent accurately and realistically. In
this context, a knowledge and understanding of generic interactions between dynam-
ical systems in the presence of nonlinearity is vital to guide the future development
of modelling strategies. Until recently, the approach of the climate science com-
munity has tended to focus upon methods based on linearised theory to guide the
formulation of modelling and theoretical interpretations of observed phenomena.
Until very recently (early ∼2000 s), for example, linear cross-correlation techniques
have formed the main analysis tools in the study of atmospheric teleconnection pat-
terns, although these essentially only compare the amplitude fluctuations in climate
records.

However, methodologies deriving from nonlinear systems are beginning to be
more widely recognized, amongst which are those pertaining to synchronized net-
works and coupled systems. References [35, 36], for example, have shown that
nonlinear phase analyses, developed from the study of simple, nonlinear synchro-
nized systems, can reveal more subtle connections between systems when applied
to detect correlations between “teleconnected” atmospheric phenomena, such as El
Niño and the Indian Monsoon, or rainfall patterns over Oxford and Vienna linked
to the NAO. They have demonstrated that some subtle entrainments and coherence
associated with higher order synchronization are invisible to conventional correla-
tion techniques and that, in general, nonlinear phase analysis produced better quan-
titative results, in particular in the estimation of the phase lag/difference between
two oscillatory phenomena. It is likely, therefore, that there are many other cyclic
phenomena in which some subtle but significant degrees of synchronization could
be revealed if studied with modern time series tools based on the phase analysis and
phase synchronization approaches. The existence of such synchronization effects
may have a strong influence on the behaviour of the system and its potential pre-
dictability.

The potential implications of synchronized behaviour, either due to external per-
turbations or associated with mutual interactions of internal, though geographically
separated, components of the climate system may be very substantial, both with
regard to the potential predictability of the system (even if it behaves chaotically)
and to the interpretation of comparisons between model predictions and observa-
tions. The latter especially emphasises the need for careful and repeatable experi-
mentation, as well as more straightforward operational forecast verification against
ongoing synoptic analyses of observations.

The possibility that synchronization, and the coupling that leads to associated
phase-locking, could itself vary with time is another factor that is only just beginning
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to receive attention. But two recent studies [35, 37] have indicated that the onset
of synchronization between disparate climate signals can be stimulated by discrete
events, such as a major volcanic eruption.

In the immediate future, it would now seem timely to begin to concentrate
on somewhat less well studied examples of climate cycles, including those with
timescales that are more closely analogous to those in our laboratory experiments.
One possible candidate, and perhaps closest in concept to the experimental ana-
logue presented in [32, 34], is the application of synchronization diagnostics to
intraseasonal cyclic oscillations in the tropics and extra-tropics. Cyclic variations
at tropical latitudes in the troposphere are typically dominated by the well known
Madden-Julian oscillation (MJO), with a timescale of around 40–50 days [38, 39].
This oscillation is thought to arise from a coupled atmosphere-ocean wave, ener-
gised by atmospheric convection, whose distribution is influenced by patterns in
tropical sea surface temperatures (SSTs). However, the detailed mechanism for its
occurrence is still not well reproduced in most large-scale atmospheric models, and
appears to entail the interaction of processes on a wide range of different scales.
This is probably one reason why modelling the MJO has been difficult, and some
recent attempts using so-called “aquaplanet” models are just starting to be able to
reproduce it, [40]. Oscillations on similar timescales (20–60 days) are also evident
in mid-latitude observational timeseries, as revealed, for example, in those of atmo-
spheric angular momentum by [41]. However, it remains unclear as to what relation,
if any, these mid-latitude cycles have to the MJO, and what are the mechanisms for
such interactions.

In Fig. 13 we show a plot of the latitude-frequency dependence of observed
atmospheric angular momentum over a 10 year time interval. This is close to
what our idealized, zonally-symmetrically coupled experiment aims to emulate:
two mid-latitude (interacting) zones where zonally-symmetric atmospheric cyclic
phenomena are developing on a 10–100 day timescale, i.e. somewhat longer than
the timescale of individual weather events. In this figure, one can observe that the
dominant feature at tropical latitudes is the Madden – Julian Oscillation, with an
average period of approximately 50 days. It is also possible to identify various other
intraseasonal oscillations in the extra-tropics. For example, in the Southern hemi-
sphere (around 40◦S), an oscillation with a period of around 50–60 days is clear.
Also, both hemispheres have evident oscillations with periods of approximately 43
days. Other oscillations at several other time scales are also recognizable, such as a
feature with a period of ∼ 20 days in the Northern Hemisphere and another with a
period of 30–31 days in both hemispheres. Even though some of these extra-tropical
oscillations have periods very similar to the MJO, it is not yet clear whether or not
those phenomena are at all connected. Synchronization diagnostics applied to time-
series of MJO and these extra-tropical intraseasonal indices (similar to those used
to produce Fig. 13), for example, could reveal the existence and nature of such a
relation and any subtle or intermittent coherence more clearly than in previous work.

With regard to the climate system in general, it is also pertinent to ask why evi-
dence for synchronization in the atmosphere and oceans is not more widespread?
It is possible that this lack if evidence is due in part to the use of only linear cor-
relation methods in most studies to date. Imperfect and intermittent forms of phase



174 P.L. Read and A.A. Castrejon-Pita

Fig. 13 Latitude-frequency dependence of observed atmospheric angular momentum, as shown by
a contour plot of power spectral density. Taken from [41]

synchronization (showing characteristic phase slips), and higher order synchroniza-
tion states could therefore be underlying the dynamics of some atmospheric phe-
nomena, but have yet to be convincingly detected. There are, for example, roughly
quasi-biennial oscillations in both the stratosphere (the well-known QBO, see [8])
and in the upper ocean/troposphere (called the Tropospheric Biennial Oscillation,
or TBO, [42]), yet they rarely seem to stay entrained or in phase for very long (see
for example [43, 44]). This suggests either that the dynamical coupling between the
two processes may be very weak or it may not be constant in time, and therefore,
perhaps, active only during part of the year. Such a situation would probably pro-
duce frequent phase slips that may be hard to detect as coherent synchronization by
traditional methods.

The possible consequences of such an intermittent coupling for the observability
of synchronization is another aspect of the problem that could be studied fruitfully
within a laboratory experiment such as the coupled rotating annulus system dis-
cussed above. Such an extension to the experimental study could allow the quantifi-
cation of the signature of such a scenario, and hopefully assist in devising a strategy
for its detection in climate data.
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Stochastic Synchronization

Ram Ramaswamy, R.K. Brojen Singh, Changsong Zhou, and Jürgen Kurths

Abstract The manner in which deterministic nonlinear dynamical systems syn-
chronize differs significantly from the analogous phenomenon in stochastic systems.
In this brief review, we discuss the basic issues pertaining to synchrony in the pres-
ence of stochasticity. This issue has gained in importance in recent years in part due
to the study of finite systems. In particular, biological processes at the cellular and
sub cellular level are subject to large fluctuations and nevertheless exhibit significant
temporal correlations over a wide range of time-scales. The emergence and main-
tenance of stochastic synchrony is thus of fundamental importance, and we discuss
some illustrative cases.

1 Introduction

Synchronization has been a major theme of studies in nonlinear science since the
1990s. The realization that appropriate coupling can cause deterministic chaotic
dynamical systems to completely synchronize [1, 2] catalyzed a number of appli-
cations notably those that dealt with communication [3] and control [4]. The major
developments in the study of synchronization in nonlinear systems have been sum-
marized in a recent monograph [5] where the different forms of synchrony that
are currently realized are discussed in detail. When all the variables of two cou-
pled systems vary identically, they are said to be in complete synchrony [5]. The
dynamics can be in phase, out of phase, or with a time delay, in which case it is
termed lag synchrony [6]. In phase synchrony [7], the amplitudes are uncorrelated
but the phases are locked with respect to each other, and when the variables have a
unique functional relation to one another, the systems are said to display generalized
synchronization [8].
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Recognition of the importance of extending these concepts to stochastic dynam-
ical systems has come from two distinct streams of research. The first deals with
synchrony in the presence of (usually experimental) noise, and considerable effort
has gone into showing that many of the mechanisms for synchronization are robust
to external noise [9]. The second, which is more fundamental, deals with the process
of synchronization in systems that are subject to intrinsic noise [10], where the evo-
lution of the systems themselves is contingent on stochastic dynamical processes.

Important examples of this latter class are biological systems which exhibit syn-
chrony at macroscopic as well as microscopic scales [11–13]. Detailed studies of
cooperative behaviour at the cellular (or even higher) level, and of the dynamics
of subcellular processes in the past several years has established that stochasticity
plays an important role in many biological phenomena [14–16]. Similarly, some of
the most spectacular instances of synchrony in nature also come from biology: entire
populations of fireflies are known to flash synchronously [17] and a population of
cells, say yeast, can be made to divide synchronously [18]. The manner in which
such synchrony arises can be traced in different cases to different causes: inter-
organism communication or quorum sensing [19] being two well known means.
The existence of circadian clocks in organisms ranging from cyanobacteria [20] to
mammals [21] and the consequent adjustment of internal processes to the day –
night cycle suggests that there are a variety of different mechanisms that can be
effective in synchronizing stochastic systems.

Extensive studies of deterministic dynamical systems, largely in the past two
decades, have shown that in general, synchronization occurs in one of the following
scenarios.

• The simplest is when identical dynamical systems are mutually weakly coupled
[22], usually linearly. The case of nonlinear coupling has also been considered,
more as a consequence of the manner in which specific systems may interact- for
instance, the coupling of neurons [23].

• Chaotic synchronization is most commonly associated with one-way coupling,
the so-called “master-slave” scenario [2]: one of the systems drives the other and
is consequently unaffected by the dynamics of the response (see Fig. 1 for an
example).

• A third situation is when two identical systems are subject to an common drive.
In this case the two systems exhibit mutual synchronization and their response to
the drive is termed generalized synchrony [8].

As has also been extensively studied in the past decades, the systems under consid-
eration need not be identical; the synchronization phenomenon persists under a fair
level of parameter mismatch.

For stochastic systems, the above definitions – indeed the basic notions – need to
be modified and in the past few years, a number of different studies have addressed
this issue, both from the point of view of uncovering the essential strategies by
which systems can synchronize, to quantitative and analytical studies on the effect
of noise and stochasticity on the dynamics.

The term stochastic synchronization has itself been used quite variably in the
literature, although always in reference to dynamical systems where the evolution
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has a noise-governed component [24, 25]. This can be either additive or multi-
plicative noise, and common examples of where these considerations are of impor-
tance is in neuronal dynamics or in other biological systems. Almost any exper-
imental situation has some level of noise that is unavoidable. Given this context,
therefore, it is also commonly associated with the phenomenon of stochastic res-
onance, and a number of studies have discussed the parallels between the two
phenomena [26].

Two of the central issues that are germane to the notion of synchrony in stochastic
systems were already pointed out over 40 years ago by Stratonovich [27]. One is
that stochastic systems can properly only show phase synchronization rather than
complete synchronization, and the other, that inherent fluctuations can interfere with
the maintenance of synchronization: stochastic systems can drift in and out of phase
synchrony if the noise is sufficiently intense.

What does it mean for stochastic systems to synchronize? Consider deterministic
nonlinear oscillators for which a phase can be defined quite generally. Two such
coupled oscillators have the equations of motion

dxi

dt
= Fi(x, α) + εGi(xi, xj), i, j = 1,2. (1)

The phase synchronized state can then be defined rigorously by first defining phases
φi(t) for the two (sub)systems, and requiring that they maintain a constant well-
defined phase difference as a function of time. Clearly, something analogous can be
defined for stochastic dynamics as well so long as there is first a sense of oscillation,
and secondly, a phase-like variable. Fortunately, in a number of stochastic systems,
these conditions are met.

The present subject is one whose scope is vast, with potential applicability in
disciplines ranging from nanoscience [28] to economics [29]. In this review, how-
ever, we will confine our attention to the following aspects: (i) What is the effect
of noise on synchrony, and (ii) how can stochastic systems be coupled in order that
they synchronize.

In the following section, we describe measures for the detection of synchrony in
stochastic systems before proceeding to discuss noise-induced synchronization in
Sect. 3. Section 4 is devoted to the analysis of different mechanisms for the coupling
of stochastic systems in order to cause them to synchronize. Examples from the
recent literature that pertain to systems and synthetic biology are reviewed. The
article concludes with a summary in Sect. 5.

2 Measures for Stochastic Synchronization

We first address the issue of how the synchronization of stochastic signals may
be detected (or judged). In general, quantitative measures for assessing the syn-
chronization of any two different signals, say s1(t) and s2(t), are commonly based
on the distance between them, or on some function of this distance, ds1,s2 (t) =
||s1(t) − s2(t)||. In the synchronous state, the signals are identical and ds1,s2 → 0,
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and the trajectory of the coupled system is confined to a lower dimensional sub-
space, the synchronization manifold [5]. In situations where phase synchronization
obtains, one considers the phases of the two signals, namely φ1(t) and φ2(t), and
phase locking is achieved when

Δφ = mφ1(t) − nφ2(t) = Constant. (2)

The above definitions which are inspired by the study of linear or nonlinear oscil-
lators can be extended to the case of chaotic signals as well although there may or
may not be a sense of “phase” or indeed of “oscillation”. Indeed, as shown by Gabor
[30], given any signal sj(t), it is possible to define its phase through the so-called
analytical signal approach. The Hilbert transform of sj(t) is given by

s̃j(t) = 1

π
PV
∫ +∞

−∞
sj(t)

t − τ dτ (3)

where PV denotes the Cauchy principal value. The instantaneous phase φj(t) and
amplitude Aj(t) can then be defined through the following identity,

sj(t) + is̃j(t) = Aj(t) exp iφj(t). (4)

When the signals s1(t) and s2(t) are the outcomes of stochastic processes, the
above definitions need adaptation. The distance between the two signals is unlikely
to be zero but is bounded within a limit that depends on the level of stochasticity,
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Fig. 1 Chaotic synchronization of two Rössler oscillators within the master-slave coupling sce-
nario. Starting from different initial conditions in the phase space, the trajectories of two systems,
shown in (a) and (b) rapidly synchronize, converging onto the synchronization manifold as shown
in (c). Standard parameters are taken1, and the coupling is as indicated in [2]

1 In standard notation [5] the parameters of the two Rössler oscillators are a = 0.2, b = 0.2,
c = 5.7, and the drive variable is y.
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and thus the nature of synchronization in the presence of stochasticity is in a sense
blurred. It is often clearer to judge phase synchrony since the Hilbert phase can be
computed in a straightforward manner, but as already indicated by Stratonovich [27]
the phase difference between two signals can also drift owing to intrinsic noise [10].

One may also use the idea of a similarity function, namely

S(τ ) =
√

〈[s2(t + τ ) − s1(t)]2〉
〈

s2
1(t)
〉 〈

s2
2(t)
〉 (5)

or its generalizations [6] to examine whether this quantity reaches a sufficiently
low minimum for specific τ ; this would allow for the detection of lag synchrony
between stochastic signals. Some (but not all) studies of stochastic systems have
used the above criteria which can clearly provide suitable quantitative measures for
detecting synchronization.

3 The Effect of Stochasticity on Synchrony

As discussed above, there are a number of common coupling scenarios through
which two systems might synchronize [5]. Further, the nature of the synchrony itself
can be complete [2], phase [7], lag [6], or generalized [8]. To judge the robustness
of the synchronization, it is customary to subject the coupled systems to external
perturbations such as additive noise [5]. This is crucial if the synchrony is to be
detected in experiments, and its importance has been appreciated in most of these
studies. Within a master-slave setting, noise or drift in the drive can induce simi-
lar drift in the response, although synchronization in this scenario is very robust,
persisting till high levels of noise [31].

There is another source of stochasticity in this context. Practically speaking, two
systems can never be identical, and thus when considering an ensemble of coupled
systems, this dispersion in system parameters should also be taken into account. It
has been shown that in general, the deviation from synchrony depends on both the
degree to which the parameters are not identical, the strength of the noise, and its
correlation properties.

In general, in a population of N oscillators,

Ẋi= F(Xi) + εG(X) + σξ i(t), i = 1, . . . , N (6)

will synchronize for appropriate coupling G, for sufficiently large ε. When noise
ξ of amplitude σ is added to each unit of an assembly of synchronized oscillators
the usual effect is to cause desynchronization [32, 33] if the noise is uncorrelated,
namely if 〈ξi(t)ξj(t)〉 = 0 for i �= j. The behaviour is different, depending on what
the dynamics of the noise-free system is: when this is periodic, the effect is less
pronounced than when the motion is chaotic.
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Fig. 2 Convergence of chaotic orbits in the logistic mapping x → 4x(1 − x) + η under identical
additive noise η. The distance of two trajectories subject to the same uniform random noise dis-
tributed in the interval [−W,W] is computed, subjecting these to successively increasing noise (see
[34] for details). The average distance between pairs of trajectories decreases with time, displaying
increased order under the influence of additive noise

A surprising result is that when uncoupled systems (ε = 0) are subject to iden-
tical noise, ξi ≡ ξ , this leads, somewhat counterintuitively, to increased ordering.
The operative caveat is that the uncoupled systems should be identical as well, but
starting with studies of mappings and flows that were subject to stochastic modu-
lation [34], a considerable body of work has been built up to show that this effect
is robust. An instance of synchronization by common noise of chaotic orbits in the
logistic map is shown in Fig. 2 (after [34]). As consequence of noise-induced order
is that uncoupled systems that are subject to identical noise will respond in the same
ordered state, namely they will synchronize, and a number of studies have addressed
the mechanisms underlying noise-induced synchrony.

This effect, of noise-induced complete synchronization of identical chaotic sys-
tems, has led to some controversy. The conclusion that strong enough noise can
synchronize chaotic systems appears oxymoronic, and explanations ranged from
finite precision effects to the role of bias, namely the nonzero mean of applied noise.
However, as shown by Zhou and Kurths [35], the mechanism leading to complete
synchronization by a common additive noise is the existence of a region in the
phase space where there is significant contraction. Further, if the nature of stochastic
modulation is such that a given system can occasionally explore those regions of
phase space that give rise to negative local Lyapunov exponents, namely converging
dynamics, then noise will be able to induce statistical phase synchronization.

Shown in Fig. 3 are the Lyapunov exponents as a function of noise intensity in
model chaotic oscillators subject to common noise [35]. In the case of Rössler oscil-
lators, there is no significat contraction region, so noise induced synchrony cannot
be realized here (Fig. 3a, c), unlike the Lorenz case (Fig. 3b, d). Noise-induced
synchronization is very likely to be observed in homoclinic chaotic systems: in such
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Fig. 3 The largest Lyapunov exponents λ1 and average synchronization error between two oscil-
lators with common noise as a function of the noise intensity D. (a) and (c) In the case of two
Rössler oscillators, there is no noise-induced synchrony, while in (b) and (d) two Lorenz systems
synchronize for D ≥ 31. From [35]

systems, chaotic trajectories pass by an unstable fixed point (a saddle), leaving the
fixed point along the unstable manifold, and reinject along a strongly contracting sta-
ble manifold. By adding low amplitude noise, synchronization of two such identical
systems can easily be realized since the orbit spends a smaller fraction of the time
along the unstable manifold. As a result, noise not only induces synchronization
between the oscillators, but can also enhances temporal coherence of the dynamics
[36]. This is shown in Fig. 4 for a model laser system for which both theory and
experiment are possible. Noise-enhanced coherence can improve the response and
synchronization to a periodic external drive [37]. The nontrival effects of added
noise have been demonstrated in a chaotic spiking neuronal model [38] in addition
to the homoclinic chaotic CO2 laser [36, 37].

In weakly coupled chaotic dynamical systems (namely when the coupling alone
is itself not strong enough to induce significant synchronization) external noise
may enhance synchronization. For example, in two coupled nonidentical chaotic
oscillators, the phases of the oscillators can be correlated, but this phase-locking
is disrupted when the chaotic trajectories approach unstable periodic orbits that
have very different periods. In this case, a suitable amount of noise may prevent
the systems approaching such “unlocking” orbits. In this manner, phase slips can be
avoided, effectively enhancing synchronization (see Fig. 5). Such a noise-induced
effect has been shown in both numerical simulations of the Rössler oscillators as
well as experiments with electrochemical oscillators [39].

In an ensemble of weakly coupled oscillators, correlated noise can generate sig-
nificant collective oscillations that are not available just from the coupling alone
[40, 41]. Coherence of the collective oscillation is maximal at an intermediate
noise level (as in the case of stochastic resonance; see below) depending on the
coupling parameters. Similar mechanisms have been shown to operate in causing
synchronization in spatially extended systems [42], and indeed noise enhanced col-
lective synchronization could have meaningful applications, for instance in har-
vesting energy from turbulent oceanic waves using coupled oscillatory electrical
generators.
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Fig. 4 Time series of output intensities (arbitrary units) of two laser models x1 (solid lines) and y1
(dotted lines) with identical parameters, a common noise at various intensities and an independent
noise (intensity D1 = 0.0005 ∼ intrinsic noise level). Note that that the spiking interval becomes
shorter and more regular, and at the same time, the two lasers obtain synchronization in the pres-
ence of a sufficient amount of common noise. Left panel: model system, right panel: experiment.
From [37]

An alternate viewpoint considers noise-induced synchrony as a manifestation of
generalized synchronization between the oscillators and the noise [43]. Recall that
a response system, say with variables Y, is termed in generalized synchrony with a
drive (with variables X) when the dynamics of the response is a unique function of
the drive, namely

Y = �(X). (7)

It is not clear how far this holds when the drive itself is a stochastic variable,
especially since the phenomenon persists when there is both common as well as
independent noise, as was demonstrated recently in a study of an ensemble of uncou-
pled oscillators subject to both forms of noise [44]. The dynamics of each oscillator
is given by
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Fig. 5 Noise-enhanced phase locking in two weakly coupled Rössler chaotic oscillators. (a) Phase
difference vs. time for different noise intensity D. (b) Average duration of phase-locking epochs vs.
D for different coupling strength ε. The standard deviation is shown with error bars for coupling
ε = 0.0205. From [38]

Ẋi= F(Xi) + εG(Xi)ξ (t) + σH(Xi)ηi(t), (8)

and it was shown that irrespective of details of the dynamics, for sufficiently weak
noise, synchronization and phase coherence always results.

Noise-induced synchronization has features of similarity with the general phe-
nomenon of stochastic resonance (SR) [45], the amplification of weak signals due
to noise. SR, first described by Benzi, Sutera and Vulpiani [46] has been invoked in
a number of studies of systems subject to noise. A linear response theory is adequate
in its analysis, for the case of weak noise, and when the dynamics of the system can
be modeled by two states, with noise induced switching between them, then SR has
also been described as a stochastic synchronization of the switching with the noise-
indeed, as a phase coherence that is increased as a consequence of noise [45].

4 The Emergence of Synchrony in Stochastic Systems

When considering the dynamics of microscopic systems, the nature of fluctuations
may be large enough to preclude a purely deterministic description of the phenom-
ena. Examples can be drawn from a number of fields, in particular from biology:
cellular or subcellular processes typically involve a small number of molecules
interacting in a finite volume. Indeed, a stochastic formulation of chemical kinetics
has been developed since the 1950s [47]. A detailed consideration of fluctuations
is germane when dealing with confined geometries of any kind- biological cells or
nanoscale reactors. On this scale, the variation of dynamical quantities is governed
by stochastic evolution, and the system is properly described through the master
equation formalism [48].

In the typical case one may consider a set of variables X1, X2, . . . , XN that
undergo M possible “reactions”.
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Xi + Xj + · · · kμ→ Xα + Xβ + . . . , μ = 1, . . . , M. (9)

Depending on the process at hand, the variables Xi can correspond to actual
molecular species, or can be defined more generally. The kμ’s are the rates of the
different channels, and the instantaneous configuration of the system, C is defined
by specifying the values of the different variables, namely X1, X2, . . . , XN .

Denoting the configurational probability at time t by P(C;t), the evolution of the
system is governed by the master equation

dP(C, t)

dt
= −

∑

C′
P(C, t)WC→C′ +

∑

C
P(C′, t)WC′→C (10)

where the W’s are transition probabilities depending on the stochastic processes that
are possible [48]. Solving the master equation gives a specific trajectory in the phase
space of the problem, but since the system is stochastic, any particular realization
starting from some C0 will only give a probabilistic description of the system as it
travels through the phase space. Although solving the master equation is typically
very difficult, for specific systems both analysis and Monte Carlo simulations can be
carried out [49, 50]. In the limit of large volumes and large numbers of the different
species, it can be shown rigorously that the above master equation reduces to the
usual mass-action kinetics laws, with additional noise terms that inversely depend
on the system volume. This gives the so-called chemical Langevin equation [51], a
set of coupled stochastic differential equations of the general form

dXi(t)

dt
=

M
∑

j=1

sjiaj(X(t)) +
M
∑

j=1

sjiaj(X((t))1/2γj(t) (11)

where the γj(t)’s are statistically independent uncorrelated Gaussian white noise
while the sij are stoichiometric factors particular to the reaction channels at hand,
with aj’s being related to the “reaction” propensities [49]. When the noise can be
ignored completely, this reduces to the usual mass-action kinetic equations,

dXi(t)

dt
=

M
∑

j=1

sjiaj(X(t)),i = 1, . . . , N. (12)

However, it is in the limit of small systems that stochasticity plays a major role,
and thus the dynamical evolution via Eq. (10) is relevant. Given two such simi-
lar noninteracting stochastic systems, their dynamics will be totally uncorrelated.
However, a number of coupling strategies that bring about stochastic synchrony
between the two have been discussed in the recent literature [52]. For convenience
if the variables of the two systems are indicated with and without primes, then the
configurations are C ≡ (X1, X2, · · · , XN) and C′ ≡ (X′

1, X′
2, · · · , X′

N

)

respectively.
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1. When directly coupled the two systems have a variable in common, say Xi ≡
X′

i . Then the dynamics of the remaining variables Xj and X′
j (for all j) become

essentially identical. It can be shown that in the limit of large volumes when the
master equation reduces to the corresponding mass-action kinetic laws, namely
a set of deterministic coupled differential equations, this becomes similar to the
master-slave coupling discussed by Pecora and Caroll [2].

2. In exchange coupling, the two systems are linked by the additional stochastic
processes,

Xi
c→ X′

i (13)

X′
i

c′→ Xi (14)

where c and c′ are the respective transition rates. Synchronization in the other
variables, namely between Xj and X′

j (for all j) occurs when the rates c and c′
are sufficiently large. In the large volume limit, this essentially corresponds to
bidirectional diffusive coupling.

3. Global or mean-field coupling is another effective strategy to couple two or
more similar systems through a common variable. This provides a “mean-field”
through which the different systems communicate, causing the remaining vari-
ables to exhibit synchrony [53, 54].

While these are not the only means through which stochastic systems can syn-
chronize, a number of recent studies have discussed applications that exploit one or
the other of the above. In the remainder of this section we discuss some representa-
tive cases.

A simple example is afforded by the coupling of two chemical oscillators [52].
The Brusselator [55] is the set of reactions

A1
c1→ X

A2 + X
c2→ Y + A3

2X + Y
c3→ 3X

X
c4→ A4. (15)

and for appropriate choices of the elementary rates, the ci’s, the dynamics of the
variables X and Y in the above system is on a noisy limit-cycle [49].

Consider two such Brusselators (with primed and unprimed variables distin-
guishing them). In the case of direct coupling X ≡ X′, namely the species X is
common to both subsystems. With exchange coupling, as indicated above there is
an additional channel,

X
c→ X′ (16)

X′ c′→ X (17)
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Fig. 6 Phase synchrony in directly coupled Brusselators. There is 10% mismatch in the reaction
constants c2 = 50 and c′

2 = c2 + 5, and the other parameters are c1 = c′
1 = 16 × 5,000,

c3 = c′
3 = 0.00005 and c4 = c′

4 = 16 × 5. Adapted from [52]

through which the subsystems communicate. As has been shown [52] for coupled
Brusselators or for more complex genetic oscillators (that are appropriate models
for actual circadian oscillators [56, 57]) with either form of the coupling scheme,
the variables Y and Y ′ will phase synchronise even for a high level of parameter
mismatch. Shown in Fig. 6 is a representative case of phase synchrony: although
the volumes of the coupled systems are quite different and the fluctuations are large,
the variables of the two systems are highly correlated in their variation although the
amplitudes clearly differ considerably.

Exchange coupling is effective only above a threshold exchange rate, namely
for sufficiently large c and c′ in Eq. (16) and (17). Thus if one examines the phase
difference, �φ between the two coupled oscillators, this should become zero only
above a critical value of the coupling. Shown in Fig. 7 are results for the above
system, showing that for low coupling the phase difference between the systems
drifts, becoming zero only for large c. Indeed, such an effect had been noted in an
earlier simulation of such systems using the chemical Langevin equations [58, 51].

Mean-field coupling has been extensively examined in a related setting [59]. A
biological phenomenon that essentially uses such a mean-field is quorum sensing,
namely the (concentration-dependent) activation of specific genetic switches by sig-
naling molecules that are themselves produced by other genes. Early studies that
suggested that such forms of coupling could give rise to synchrony included a study
of globally coupled repressilators [60], a model regulatory network with a quorum-
sensing module [61], as well as a more abstract circadian model pertaining to the
multinuclear organism Neurospora crassa [54]. In this model, one of the species is
the cytosolic clock gene mRNA denoted M and a clock protein denoted PC. The
nuclear proteins are denoted P(i)

N the superscript indicating which cell it is from.
The dynamics of the individual nuclear genetic oscillators are synchronized as a
consequence of terms of the form
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Fig. 7 The drift of the phase difference between two exchange-coupled Brusselators. The inset
shows the variation of the slope as a function of the coupling strength, namely the exchange reac-
tion rate c = c′. Adapted from [52]

dPC

dt
∼ F(M, PC) + k

N
∑

i=1

P(i)
N (18)

in the evolution equations, where N is the number of nuclei, F contains the func-
tional dependence particular to this model, and k is the coupling of the mean field
provided by the nuclear proteins [54]. A more specific model of such coupling is via
the process of quorum sensing, effected in a scheme (see Fig. 8) elaborated by Zhou,
Chen and Aihara [61] who showed that extracellular noise common to all cells can
effectively induce collective dynamics and stochastic synchronization.

Fig. 8 Cellular communication is provided by the diffusing AI dimers in the extracellular environ-
ment; AI is synthesized by the protein LuxI, production of which is inhibited by the AI2 − LuxR2
tetramer which is itself formed from the AI dimer and the LuxR dimer. (Courtesy of the authors
[61])
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5 Discussion and Summary

In this chapter we have addressed two aspects of stochastic synchronization. The
first is to do with the inducement of synchrony by stochasticity, namely the manner
in which systems can exploit the ordering effects of noise so as to achieve syn-
chronous dynamics. This is of relevance in a variety of biological settings where
the synchronization of systems can arise through their being subject to a common
noise or other external perturbations [62]. As has often been pointed out, in ecology,
the environment can play a great role in bringing synchrony to different populations
over large geographical regions. Experiments have been carried out, particularly
in neuronal systems, and show that this is particularly important for information
processing since a group of neurons can respond collectively to common synaptic
events.

A second focus has been on the synchronization of systems with intrinsic noise.
These studies are again of relevance to biological systems and indeed to any micro-
scopic finite system. Recent applications have been to the study of synchrony in
genetic oscillators and other networks, and a particularly interesting recent exper-
iment uses these ideas to synchronize chemical oscillators in a nanoscale environ-
ments [63].

Synchrony is one the most visible effects of coupling between nonlinear dynam-
ical systems [22]. It is also ubiquitous [5], and is a very general means through
which temporal organization arises in complex systems [64]. Its persistence—or
enhancement—in the presence of both internal and external noise is thus of impor-
tance both from fundamental as well as applications points of view.

Acknowledgement It is a pleasure to dedicate this article to Celso Grebogi who has been a major
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Experimental Huygens Synchronization
of Oscillators

Alexander Pogromsky, David Rijlaarsdam, and Henk Nijmeijer

Abstract We present an experimental set-up that allows to study both controlled
and uncontrolled synchronization between a variety of different type of oscillators.
The setup consists of two fully actuated mass-damper-spring oscillators mounted
on an actuated platform. By means of different types of feedback realized through
computer controlled actuation it is possible to demonstrate different synchroniza-
tion phenomena, i.e. synchronization of pendula, synchronization of Duffing oscil-
lators, synchronization of rotating bodies, etc. Two experiments are presented where
uncontrolled synchronization between two types of identical oscillators is investi-
gated. First, uncontrolled synchronization between two Duffing oscillators is investi-
gated and second, uncontrolled synchronization between two coupled rotating disks
is discussed.

1 Introduction

In the 17th century the Dutch scientist Christiaan Huygens observed a peculiar
phenomenon when two pendula clocks, mounted on a common frame, seemed to
“sympathize” as he described it [1]. What he observed was that both clocks adjusted
their rhythm towards anti-phase synchronized motion. This effect is now known as
frequency or Huygens synchronization and is caused by weak interaction between
the clocks due to small displacements of the connecting frame. In [2–5] an extended
analysis of this phenomenon is presented. In [6] the authors present an experimental
study of Huygens synchronization and finally, in [7, 8] a study of the uncontrolled
as well as the controlled Huygens experiment is presented.

Many more cases of synchronization have been identified in nature and tech-
nology around us [9, 10]. Two striking examples in biology are the synchronized
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flashing of fireflies [11] or synchronization of neurons in the brain when performing
perceptual tasks. Other examples of synchronization can be found in [12, 13]. Using
synchronization it is possible to stabilize the frequency of a high power generators
and there are more other applications we are unable to mention in this paper.

Three centuries after Huygens the phenomenon of synchronizing driven pendula
is, to our best knowledge, repeated twice experimentally. In the first research by
Bennett, Schatz, Rockwood and Wiesenfeld [2], one has tried to accurately repro-
duce the findings of Huygens in an experimental setup consisting of two pendu-
lum clocks attached to a free moving cart. The results of this experiment confirm
the documented observations of Huygens. A rather simple but interesting experi-
ment is described by Pantaleone [3], where the synchronization of two metronomes
is discussed, which are coupled by a wooden board rolling on soda cans. The
metronomes in this setup would synchronize most of the time with in phase
oscillations.

In this paper we present an experimental set-up [4] that allows to study both
controlled and uncontrolled synchronization between a variety of different oscil-
lators. In Sects. 2 and 3 we outline the goal of the experimental set-up based on
our previous experiments. In Sect. 4 the set-up is introduced and we present the
dynamical properties of the system. Furthermore, we present the means by which
we are able to modify these properties to represent a variety of different oscillators.
Next, in Sect. 5, we present an experiment of the synchronization of two Duffing
oscillators. We analyze the stability of the synchronization manifold and continue
with numerical and experimental results. Section 6 presents an experiment where
the set-up is adjusted to behave like two rotating eccentric discs which are coupled
through a third disc mounted on a common axis. Conclusions and future research
are presented in Sect. 7.

2 Synchronization of Pendulum Clocks

Before giving the description of a new experimental set-up we briefly outline exper-
imental studies performed on a simple set-up that consists of two metronomes
located on a common beam. Analysis of those experiments motivated us to develop a
new set-up that will be described in the subsequent sections. The experimental setup
consists of two metronomes coupled by a platform which can translate horizontally.
The metronomes are made by Wittner, type Maelzel (series 845). The platform is
suspended by leaf springs, which allows a frictionless horizontal translation. A pho-
tograph of the experimental setup is given in Fig. 1.

Several experiments are performed in order to gain experience with the dynamics
of the system. Parameters which can be varied in the experiment are the mass of the
platform, the mass and frequency of the metronomes and the amount of damping in
the system.

With different parameters the experiments show different phenomena: anti-
phase synchronization (see Fig. 2), an intermediate (neither anti- nor in-phase
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Fig. 1 Photograph of the
setup

synchronization) regime with a large amplitude difference of the angles of the
metronomes and finally in-phase synchronization (see Fig. 3), for details, see [6].

Though it was possible to demonstrate different synchronization regimes with
such a relatively simple set-up, the experiments revealed difficulties that are unavoid-
able for this set-up. First of all, the experiments showed that the results depend
heavily on the escapement mechanism used in the metronomes. This mechanism
forces pendulums to oscillate and behave like pendulum clocks. Those mechanisms
are relatively difficult to model and their parameters vary for different metronomes
causing non-identical synchronization. To change the damping parameter the leaf
springs should be replaced and hence the whole set-up should be mechanically
rebuilt that resulted in that some experiments are quite difficult to repeat with the
same results. Moreover, the set-up allows to perform experiments with only one type
of oscillators—pendulums, while Huygens’ synchronization can be observed for
different types of oscillators, not necessarily pendulums. Analyzing these problems
it was proposed to design and to build a new synchronization set-up that would be
free of those disadvantages.

Fig. 2 Anti-phase
synchronization. Difference
of phases of the oscillators
versus time
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Fig. 3 In-phase
synchronization. Difference
of phases of the oscillators
versus time

3 The Goal of the Experimental Set-Up

Starting from the work of Huygens synchronization phenomena attracted attention
of many researchers due to its numerous applications, see e.g. [9, 12, 13]. It turns
out that the synchronous behavior can be observed in many practical situations and
it demonstrates a certain degree of robustness, that is certain approximate synchro-
nization can happen even if the synchronizing oscillators are not identical. More-
over, understanding of this phenomenon is far from being complete. For example,
Christian Huygens observed synchronous behavior of pendulum clocks attached to
a common support beam—this effect can be explain by modeling the beam as a
one-degree of freedom solid body as is the case in the simple set-up of the previous
section, while, to our best knowledge, no attempt was made to analyze this situa-
tion taking into account the beam flexibility, reported by Huygens. To discover new
aspects of the synchronization phenomenon it would be useful not only to focus
on mathematical models and/or computer simulation but also to perform practical
experiments to validate the theoretical findings. Moreover, the experiments can also
indicate new and interesting directions for theoretical analysis. Since the synchro-
nization can be observed in a variety of different systems it is interesting to have
an experimental set-up that can be used to observe and analyze the synchronous
behavior for rather different systems. This set-up is useful for both educational and
research purposes.

To meet this objective it was decided to design an electro-mechanical set-up in
such a way that its mechanical counterpart is capable to model common features
of the synchronizing systems – two one-degree of freedom oscillators mounted
on a one-degree of freedom common support body (beam, or platform), while by
actuating the oscillators and the beam via computer-controlled feedback it would
be possible to mimic a variety of different controlled/uncontrolled synchronizing
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systems. To this end, the mechanical part was designed as linear as possible, while
all the nonlinearities necessary to observe the synchronization are implemented by
the electrical part of the set-up. Such a design allows to perform numerous experi-
ments on different systems with limited implementation costs.

The main objectives of the experimental studies are

• To observe experimentally synchronous behavior in a variety of different mechan-
ical systems

• To analyze robustness of the synchronization in a real environment
• To find common features of the synchronizing systems on the uniform experi-

mental platform

4 The Experimental Set-Up

In order to experimentally study synchronization between coupled oscillators a set-
up consisting of two oscillators, mounted on a common frame has been developed
(see Figs. 4 and 5). The parameters of primary interest are presented in Table 1. The
set-up contains three actuators and position sensors covering all degrees of freedom.

Fig. 4 Photograph of the
set-up
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Fig. 5 Schematic representation of the set-up
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Table 1 Parameters in
experimental set-up

Oscillator 1 Oscillator 2 Frame/beam
Mass m m M
Stiffness κ1( · ) κ2( · ) κ3( · )
Damping β1( · ) β2( · ) β3( · )

Furthermore, although the masses of the oscillators (m) are fixed, the mass of the
connecting beam (M) may be varied by a factor 10. This allows for mechanical
adjustment of the coupling strength. A schematic representation of the set-up is
depicted in Fig. 5 and the equations of motion of the (ideal) system are:

mẍ1 = −κ1(x1 − x3) − β1(ẋ1 − ẋ3) + F1 (1)

mẍ2 = −κ2(x2 − x3) − β2(ẋ2 − ẋ3) + F2 (2)

Mẍ3 = κ1(x1 − x3) + κ2(x2 − x3) (3)

−κ3(x3) + β1(ẋ1 − ẋ3) + β2(ẋ2 − ẋ3) − β3(ẋ3)

+F3 − F1 − F2,

where m, M ∈ R>0 and xi ∈ R, i = 1,2,3 are the masses and displacements of
the oscillators and the beam respectively. The functions κi:R �→ R, βi : R �→ R

describe the stiffness and damping characteristics present in the system. Fi are the
electric actuator forces that may be determined such that the experimental set-up
models a large variety of different dynamical systems (see Sect. 4.1).

The stiffness and damping in the real system are found to be very well approxi-
mated by:

κi(qi) =
5
∑

j=1

kijq
j (4)

βi(q̇i) = biq̇i, (5)

where q1 = x1 − x3, q2 = x2 − x3 and q3 = x3. The values of kij and bi ∀ i =
1,2,3 have been experimentally obtained and will be used to modify the systems’
properties in the sequel.

4.1 Adjustment of the System Properties

In order to experiment with different types of oscillators, the derived properties
(stiffness and damping) are adjusted. Note that, since we know the damping and
stiffness present in the system and since we can fully measure the state of the sys-
tem, we may adjust these properties, using actuators, to represent any dynamics
we want. This allows modeling of different types of springs (linear, cubic) and any
other desired effect within the limits of the hardware. In the next part of this paper
we present two examples of this type of modulation. The system is first adapted
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to analyze synchronization between Duffing oscillators and secondly to analyze the
synchronizing dynamics of two coupled rotating eccentric discs under the influence
of gravity.

5 Example 1: Coupled Duffing Oscillators

In this section experimental results with respect to two synchronizing Duffing oscil-
lators are presented. After introducing the dynamical system analysis of the limit-
ing behaviour of the system is presented. Finally, both numerical and experimental
results are presented and discussed.

5.1 Problem Statement and Analysis

Consider the system as depicted in Fig. 6, where

κd(qi)

m
= ω2

0qi + ϑq3
i (6)

where qi = xi − x3 and constants ω0, ϑ ∈ R>0.
The system under consideration represents two undriven, undamped Duffing

oscillators coupled through a third common mass. The set-up depicted in Fig. 5
can be adjusted to model this system by defining the actuator forces as:

Fi = κi(qi) + βi(q̇i) − κd(qi), i = 1,2 (7)

F3 = 0 (8)

Where F3 = 0 is chosen because, in the original set-up, the beam already models
the situation as depicted in Fig. 6 (linear stiffness and damping) fairly accurately.
The equations of motion of the resulting system are linear:

x3

b

k3

x1

kd

x2

kd

M

mm

Fig. 6 Schematic representation of the set-up modeling two coupled Duffing oscillators
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mẍ1 = −κd(x1 − x3) (9)

mẍ2 = −κd(x2 − x3) (10)

Mẍ3 = κd(x1 − x3) + κd(x2 − x3) − kx3 − bẋ3, (11)

where k,b ∈ R>0 are the stiffness and damping coefficients of the beam.
Before continuing with the experimental and numerical results the system’s limit-

ing behaviour is analyzed. In order to do so the notion of anti-phase synchronization
needs to be defined. We call the solutions of x1(t) and x2(t) asymptotically synchro-
nized in anti-phase if they satisfy the following ralation

lim
t→∞ ||x1(t) − ασ( T

2

)x2(t)|| = 0, (12)

with α a scale factor and σ( T
2

) a shift operator over half an oscillation period (T).
Respectively, if instead of the previous relation it follows that

lim sup
t→∞

||x1(t) − ασ( T
2

)x2(t)|| ≤ ε, (13)

for some small ε > 0, we say that the solutions are approximately asymptotically
synchronized in anti-phase.

It can been shown that the dynamics of the oscillators in (9), (10) and (11) con-
verges to anti-phase synchronization as t → ∞.

To prove this claim consider the system (9), (10) and (11). To analyze the limit
behaviour of this system, the total energy is proposed as a candidate Lyapunov
function:

V = 1

2

3
∑

i=1

miẋ
2
i +

3
∑

i=1

ξi∫

0

κi(s) ds, (14)

where m1 = m2 = m, m3 = M, ξi = xi − x3, i = 1,2, ξ3 = x3, κi(qi) = κd(qi) and
κ3 = kx3. Calculating the time derivative of V along the solutions of the system (9),
(10) and (11) yields:

V̇ = −bẋ2
3. (15)

Hence, we find V̇ ≤ 0 and the system may be analyzed using LaSalle’s invariance
principle.

Equation (15) implies that V is a bounded function of time. Moreover, xi(t) is a
bounded function of time and will converge to a limit set where V̇ = 0. On this limit
set ẋ3 = ẍ3 = 0, according to (15). Substituting this in system (9), (10) and (11)
yields x3 = 0 on the system limit set. Substituting x3 = ẋ3 = ẍ3 = 0 in (11) shows:

κd(x1) = −κd(x2) (16)
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Since κd is a one-to-one, odd function, this implies:

x1 = −x2 (17)

Finally, substituting x1 = −x2 in (9) and (10) yields:

ẋ2 = −ẋ1. (18)

Summarizing, it has been shown that any solution of (9), (10) and (11) will converge
to anti-phase synchronized motion according to definition the given definition.

The next paragraph will present numerical and experimental results that support
the analysis provided in this section.

5.2 Experimental and Numerical Results

In order to experimentally investigate the synchronizing behaviour of two coupled
Duffing oscillators the set-up has been modified as specified in the previous sec-
tion. The oscillators are released from an initial displacement of −3 and −2.5 mm
respectively (approximately in phase) and allowed to oscillate freely.

Figure 7 shows the sum of the positions of the oscillators and the position of
the beam versus time. As becomes clear from Fig. 7, approximate anti-phase syn-
chronization occurs within 40 s. Furthermore, Fig. 8 shows the limiting behaviour
of both oscillators and the beam. Although the amplitudes of the oscillators dif-
fer significantly, the steady state phase difference is 1.01π . The most probable
cause for the amplitude difference is the fact that the oscillators are not exactly
identical. As a result, the beam does not come to a complete standstill, although
it oscillates with an amplitude that is roughly ten times smaller than that of the
oscillators.

In addition to the experimental results, numerical results are provided in Figs. 9
and 10. The parameters in the simulation are chosen as shown in Table 2. The results
presented in Figs. 9 and 10 correspond to the experimental results provided in Figs. 7
and 8 respectively. Although the oscillation frequencies of the oscillators are almost
equal (within 5%) in the simulation and the experiment, the final amplitudes of the
oscillators differs by a factor 15. This is due to the fact that in the experiment the
damping is over-compensated, resulting in larger amplitudes of the oscillators. In the
numerical simulation almost exact anti-phase synchronization with equal oscillator
amplitudes is achieved.

Finally, note that some of the differences between the experimental and simu-
lation results may be coped with by tuning either the parameters of the numerical
simulation or those of the set-up itself. The question of identifying a model can
thus be reversed to tuning the parameters of the set-up rather than those of the
model.
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Fig. 7 Experimental results: (top) Sum of the displacements of both oscillators. (bottom) Displace-
ment of the connecting beam
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Fig. 8 Experimental results: Steady state behaviour of the system. Top: Displacement of the oscil-
lators ( − x1, − x2). Bottom: Displacement of the connecting beam
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Fig. 9 Numerical results: (Top) Sum of the displacements of both oscillators. Bottom:
Displacement of the connecting beam
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Fig. 10 Numerical results: Steady state behaviour of the system. Top: Displacement of the oscilla-
tors ( − x1, − x2). Bottom: Displacement of the connecting beam
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Table 2 Parameters in
numerical simulation ωo = 15.26 ϑ = 8.14 M = 0.8

m = 1 k = 1 b = 5

6 Example 2: Two Coupled Rotary Disks

Next to the synchronization of Duffing oscillators we investigated synchronization
in a system of coupled rotating discs as depicted in Fig. 11. First the dynamics of
the system will be specified in more detail and next experimental results will be
presented.

Fig. 11 Schematic
representation of the set-up
modeling two coupled
rotating elements
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θ3

θ2

k k

k3

b

g

1 2 3

3
m m

M

6.1 Problem Statement

Consider the system as depicted in Fig. 11. This system consists of three discs. Discs
1, 2 represent the oscillators and disc 3 is connected to both other discs by torsion
springs with stiffness k. Each of the discs has an eccentric mass at a distance �i from
it’s center (�1 = �2 = �). Furthermore the middle disc is coupled to the world by a
torsion spring with stiffness k3 and a torsion damper with constant b. The rotation
of the discs is represented w.r.t. the world by the angles θi. The equations of motion
of the system depicted in figure 11 are:

θ̈i = −ϑi (k (θi − θ3)+ δi sin θi) , i = 1,2 (19)

θ̈3 = ϑ3

⎛

⎝

2
∑

j=1

k
(

θj − θ3
)

−k3θ3 − b3θ̇3 − δ3 sin θ3
)

, (20)

with ϑi = 1
m�2

i +Ji
and δi = mig�i. The modification to the set-up is now more

involved than in the previous example. First of all, the translation coordinates xi
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should be mapped to rotation angles θi. Secondly, in case of the Duffing oscillator
the actuation forces F1 and F2 are meant to act on both the oscillators and the con-
necting mass. In the situation depicted in Fig. 11 the actuation force generated to
model the coupling between the oscillator discs and the middle disc by means of
the torsion spring should again act on the oscillators and the connecting beam in our
set-up. However, the part of the actuation force that models the influence of gravity
on the oscillators should only act on the oscillators and not on the connecting beam,
since in Fig. 11 the gravity on discs 1 and 2 exerts a force only on the corresponding
disc and not directly on the middle mass.

In order to adjust the set-up in Fig. 5 to model the system in Fig. 11 the actuator
forces are defined as:

Fi = κi(qi) + βi(q̇i) − ϑi (ηi + gi) ,i = 1,2 (21)

F3 = κ3(x3) − ϑ3 (η3 + g3)− g̃( · ), (22)

with κi(qi) and βi(q̇i) as defined (4,5), ηi = k (θi − θ3) , i = 1,2, gi = δi sin θi and

g̃ =
2∑

j=1
ϑigi. Damping is left to be the natural damping of the beam in the set-up.

Furthermore, translation is mapped to rotation angles according to: θi = π
2

xi
x$i

, with

x$i is the maximal displacement of the oscillators and the beam, assuring ± 90◦ turns
in the rotation space.
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Fig. 12 Experimental results: (Top) Sum of the rotation angles of the outer discs. Bottom: Rotation
angle of the connecting disc
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Fig. 13 Experimental results: Steady state behaviour of the system. Top: Outer discs ( − θ1, − θ2).
Bottom: Connecting disc

6.2 Experimental Results

Experimental results, are presented in Figs. 12 and 13. It becomes clear that approxi-
mate anti-phase synchronization occurs after about 20 s, like in the Huygens’ pendu-
lum set-up. Again complete synchronization does not occur because the oscillators
are not identical. In addition Fig. 13 shows the steady state behaviour of the rotating
system, from which the approximate anti-phase synchronized behaviour becomes
immediately clear.

7 Conclusions

We presented a set-up capable of conducting synchronization experiments with a
variety of different oscillators. Two sets of experimental results were provided that
show the potential of this set-up. First we modeled and experimentally obtained
synchronization between two coupled Duffing oscillators. Second, we showed that
it is possible to model systems with rotating dynamics and to effectively model the
local influence of gravity in this case.

In addition to studying uncontrolled synchronization the set-up has the potential
to study controlled synchronization. Furthermore, we aim to model the Huygens
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set-up and perform controlled and uncontrolled synchronization experiments with
this type of dynamical system.
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Controlling Chaos: The OGY Method,
Its Use in Mechanics, and an Alternative
Unified Framework for Control
of Non-regular Dynamics

G. Rega, S. Lenci, and J.M.T. Thompson

Abstract In this chapter we review the development of the control of chaos theory
subsequent to the seminal paper by Ott, Grebogi and Yorke in 1990. After summa-
rizing the main characteristics of the OGY method, we analyze and discuss various
applications in several fields of mechanics. We then illustrate the main aspects of an
alternative control method which aims at controlling the overall system dynamics
instead of stabilizing a single periodic orbit, as the OGY method does. The two
methods are both based on the modern idea of exploiting the chaotic properties of
systems, instead of simply eliminating chaos.

This paper is one of a collection written in honour of Celso Grebogi, on the occasion
of his 60th birthday. So we have thought it appropriate to start with short personal
reminiscences by two of the present authors.

Some personal remarks by Michael Thompson.
Thinking back to my first encounters with chaos in the early 1980’s, I remember that
the work of “Grebogi, Ott and Yorke” soon became indelibly etched on my mind.
Interested by some unexpected subharmonic resonances that had been observed
when oil tankers were moored to articulated off-shore towers, I had modelled the
system as a driven impact oscillator. This exhibited a lot of fascinating nonlinear
phenomena, including what David Rand (at Warwick University) told me were
chaotic motions: about which I had to do some very rapid reading! My first pub-
lication about the chaos in this impacting system [1] appeared in 1982 which was,
interestingly, the year of Celso’s first major paper on chaos [2]. The latter, authored
by Grebogi, Ott and Yorke, was a seminal paper dealing with the bifurcational crises
of chaotic attractors: to date it has attracted 483 citations. It became one of my
standard references in, for example, my paper on the design of compliant off-shore
structures [3].

Having linked up with Bruce Stewart at the Brookhaven National Laboratory,
New York, our book [4] entitled Nonlinear Dynamics and Chaos (Thompson and
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Stewart, published by John Wiley) appeared in 1986. Key references at the end of
this book included Celso’s second paper on crises [5] (838 cites)), and his work on
quasi-periodicity of order three [6] (76 cites).

I next turned my attention to the chaotic phenomena that triggered the escape
from a potential well, publishing in 1989 a paper in the Proceedings of the Royal
Society [7] which itself has attracted 120 citations. In this work I found it necessary
to reference six papers by Celso including [5] described above. A paper of partic-
ular significance to me, by McDonald et al. [8] (351 cites), was on fractal basin
boundaries which I warned could seriously decrease the integrity of engineering
systems.

From this spectacular start, Celso’s career has gone from strength to strength,
and he is now on the distinguished ISI List of Highly Cited Researchers. Meanwhile
the writers of the present paper note with special pleasure and satisfaction that the
paper entitled Controlling Chaos [9] published by Ott, Grebogi and Yorke in 1990
has been selected by the American Physical Society as one of the milestone pieces
of research from the last 50 years. This puts Celso (alongside many Nobel Prize
winners) in the list of milestone contributors which has been created by the society
to celebrate the 50 years of Physical Review Letters. Not surprisingly, this paper of
1990 is Celso’s most highly referenced work, having been cited 2,711 times.

After seeing his early papers in print, I soon enjoyed meeting Celso at many inter-
national conferences throughout the world: and now, I am delighted and honoured
to be getting to know Celso and his family very well indeed because we both hold
Sixth Century Chairs at the University of Aberdeen (his full-time, mine part-time).

Some personal remarks by Giuseppe Rega.
I first met Celso Grebogi at the IUTAM Symposium on Nonlinearity and Chaos
in Engineering Dynamics organized by Michael Thompson at University College
London, 1993. Within a top level specialty meeting of scientists from engineering
mechanics working on nonlinear dynamics and their applications, Celso was invited,
from a different environment, to mark a conscious and widespread transition from
the traditional asymptotic/numeric treatment of nonlinear dynamics problems fol-
lowed within the community of mechanicians, to a more modern and integrated
approach relying additionally on geometric and experimental methods. Celso fully
succeeded in his own task, by providing the attendees with a clear feeling of the
importance of a dynamical systems approach to nonlinear/chaotic dynamics in engi-
neering and by introducing the newly developed concept and technique of chaos
control. Since then Celso has become for the engineering community the most
appropriate and acclaimed scientist for knowledge transfer from Physics as well
as for cross-fertilization between Physics and Engineering.

Within his extraordinary number of achievements on cutting edge issues in
dynamical systems theory and applications and assuming an engineering mechan-
ics scholar’s viewpoint, I just mention two items. (i) All dynamical systems sci-
entists from engineering have become familiar with concepts like sudden change
bifurcations in chaotic attractors and basin boundary metamorphoses by reading
Celso and co-authors’ papers; (ii) the OGY method paved the way for a modern and
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comprehensive notion of control of chaos, including its suppression, enhancement
or use, which is of major importance for practical applications.

In the last decade, Celso’s interests meaningfully spread to include problems
of dissipative dynamics typically occurring in engineering applications. His former
interests towards applications of chaos and control to, e.g., plasma and laser sys-
tems or communication, evolved to include such typical systems and problems in
mechanics as pendula, ship capsizing, impact and dry friction oscillators, fluidized
beds, hydrodynamical flows, suspension bridge models, and spacecraft steering.

Within the scientifically fertile and prestigious Maryland group, Celso gave fun-
damental contribution as regards both the scientific aspects and the worldwide pro-
motion of knowledge on chaotic dynamics and their applications. His broadminded-
ness and capability in cross-disciplinary relationships allowed him to play a role of
most visible and internationally recognized scientist by neighbouring scientific com-
munities dealing with complexity. A capability to lead and motivate research groups
and disseminate knowledge to companion communities and wider non-specialists’
audiences that were fully confirmed when he moved to the University of Sao Paulo
and, more recently, to the University of Aberdeen.

1 Controlling Chaos: A Hot Topic at the Change
of the Millennium

Among various other research topics which attracted the attention of researchers in
the 20 years across the change of the Millennium, control of nonlinear dynamics
and chaos is certainly one of the most important and well identified, developed at
lenght from a few seminal ideas and methods, and yet far from being exhausted.

The quality of papers published on this topic cannot be judged by numbers or
quantitative indicators, and indeed we found, as in other research fields, both very
good – seminal, indeed – and poor works. However, numbers provide an understand-
ing on the “impact” of this discipline on the advancement of science, engineering,
practice and, more generally, of knowledge. Thus, in the certainly incomplete list of
references we quote:

• 8 books [10–17] by the most important publishers;
• 9 journal special issues [18–26] of the most renowned scientific journals;
• 13 review or survey papers [27–39] in leading international scientific journals.

Even more impressive is the number of articles and conference papers published
on the subject. According to “Scopus” (www.scopus.com), looking for “control
of chaos” in the title, abstract or keywords, on 3 February 2009 we got 7,526 papers,
with a growing rate of papers published per year. This extends the data of Fradkov
et al. [33] who refer to 2,700 papers published in peer-reviewed journals up to the
year 2000, with more than a half in 1997–2000.

One interesting aspect of the “control of chaos” discipline is the cross-
disciplinarity, which is a consequence of the cross-disciplinarity of its parent,
the “chaos theory.” Thus, we have papers from mathematics, physics, chemistry,
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biology, medicine, economics, and various fields of engineering (see Sect. 3 for
more details related to mechanical engineering and structural dynamics).

The starting point of the theory and applications of “chaos control” is unani-
mously considered to be the work of Ott, Grebogi and Yorke [9]. Actually, other
works aimed at “suppressing chaos” in some systems appeared at about the same
time or earlier (e.g., [40, 41]), but the seminal idea of exploiting the chaotic
behaviour of systems in order to control their dynamics was first undoubtedly
presented in the OGY paper. It represents a major improvement with respect to
other points of view on the matter, independently pursued within different scientific
communities (of mathematicians, physicists and engineers): in fact, it marks the
fundamental passage from analysis to synthesis of chaotic properties, just based
on the knowledge and exploitation of the dynamical systems theory deeply studied
in the past.

Since then, control of nonlinear dynamics and chaos – intended in a broad sense –
has become a hot trans-disciplinary research topic, as shown not only by the already
mentioned great number of scientific publications but also by its increasing popu-
larity within the environment of non-technical chaos connoisseurs.

In most of the works on the subject, the 1990 OGY paper is quoted along with
some of the articles, aimed at improving and discussing the original idea or pursuing
possible relevant applications, successively published by the same group of authors,
with further collaborators, or by independent scientists. Without any attempt at com-
pleteness, one can mention, e.g., [42–47], in the first group, and [48–53] in the
second group.

Yet, as already said, various underlying notions of chaos control stay in the
background of the research activity in the field. In line with some first attempts,
in their papers several authors aim at merely removing chaos, by means of classical
control techniques [54], empirical methods [55], or other clever approaches [56].
These works are also referred to as “control of chaos”, although in this matter some
authors, and we agree with them, prefer the name “suppression of chaos” (e.g.,
[36, 57–59]), which focuses on the effects of control rather than on the under-
lying skill of the control method. Thus, today, one refers to chaos control both
when

1. chaotic transients and/or attractors are eliminated “tout court,” even if the tools
employed to eliminate chaos have nothing to do with it, and when

2. typical properties of chaotic dynamics are involved in the control process, irre-
spective of the actual tools being employed to control the system and, indeed, of
its actual response.

This twofold control aspect is already clearly highlighted in Linder and Ditto
[36], when they assert that “... some techniques merely suppress or remove chaotic
behavior ... others actually exploit chaotic behavior ...”.

Within the latter, more general and modern, perspective, the capability to exploit
typical properties of dynamical systems undergoing chaotic behaviours in order
to control the system response actually refers to either suppressing or enhanc-
ing chaos (the so called anti-control of chaos), or even using it, based on the
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specific goal of the considered technique, on the system at hand, and on the area of
interest [38].

Another basic issue is concerned with whether the dynamical phenomenon to be
controlled by whatever “chaos control” technique has to be intended as “chaos” in
a strict sense or, rather, as any kind of complex behaviour of a dynamical system,
which may have different aspects according to whether a theoretical or a practi-
cal viewpoint is adopted. In the former, dynamical systems oriented, perspective,
one can think of, e.g., any global bifurcational event possibly entailing complex
behaviour of the system, of the relevant escape from a safe subset (a potential well
or a basin of attraction) in parameter control space, or of the synchronization of
different oscillators. In the latter, application-oriented, perspective, the kind and
meaning of the “complex” phenomenon of interest is dictated by the practical goal
to be attained.

In view of this extended notion of chaos control, no relevant exhaustive classi-
fication seems to be yet available, although some earlier interesting attempts have
been made. For example, Chen and Dong [10] proposed a classification based on
various tools employed in the control process (parameter-dependent approaches,
open-loop strategies, engineering feedback control, adaptive control, intelligent con-
trol, etc.), while Fradkov’s “Chaos Control Bibliography (1997–2000)” [33] also
contains a classification of the various applications in science and engineering.
Recent classifications basically distinguish between feedback (or close-loop) and
non-feedback (or open-loop) control techniques.

A more phenomenologically based classification relies on the ascertainment of
how one can statically or dynamically modify either the system parameters – which
represents the most basic form of passive control at the design stage – or the excita-
tion, to attain the control goal. In particular,

1. the OGY’s method [9],
2. some classical methods (CM) of control theory [60],
3. the “control by system design” (CSD) [28],
4. the “parametric variation methods” (PVM) [10],

aim at somehow modifying the system. Note that also the OGY method could be
classified as a PVM, but it has some specific features and we prefer to keep it sepa-
rate.

In turn, methods acting on the excitation include

1. classical methods where a properly modified input (periodic or aperiodic, open-
loop or feedback) is applied to the system (CM) [54, 56, 60, 61];

2. the “control through operating conditions” (COC) [28] based on modifying the
frequency and/or the amplitude of the excitation;

3. the methods based on either combining parametric and external excitations
(PEE) [41], or applying weak periodic perturbations (WPP) [17], or modifying
the shape of the excitation (SE) [40, 62, 63].

Obviously, different methods are expected to give different performances, at least
theoretically. Thus, one has methods aimed at:
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1. stabilizing an unstable zone of parameter space (CSD, COC, PVM);
2. moving away from (previously known) chaotic zones (CSD, COC);
3. stabilizing a given, erratic solution (CM, OGY);
4. overall regularizing the system dynamics, irrespective of single solution

behaviour (PEE, WPP, SE).

It is the authors’ opinion that these latter distinctions are very important from a
practical point of view because they suggest the use of the most appropriate control
method fitting prescribed technical requirements.

Focusing the attention on the exploitation of chaotic behavior, there is even
another possible classification, which seems not pursued in the literature, where
various methods can be grouped according to the chaotic properties involved in the
control. In this respect, one can distinguish methods based on

1. the properties of the saddles embedded in the chaotic attractor (OGY);
2. the ergodicity of the chaotic attractor (for example, all methods where a prelim-

inary targeting step [46, 64, 65] is followed by the application of control tools in
the neighborhood of the chosen control area belong to this class);

3. the sensitivity to initial conditions [45];
4. the occurrence of homo/heteroclinic bifurcations (PEE, WPP, SE).

Besides the formulation of different techniques for chaos control, the nearly
two decades straddling the change of the Millennium have seen also a large num-
ber of relevant applications to mathematical, physical, biological, and engineering
systems, within different technical fields. Of course, no attempt is made herein to
comprehensively report on them. In contrast, consistent with one of the goals of this
chapter, attention is focused on applications of chaos control in mechanics although,
at a first sight, they could appear relatively few and of only minor importance.

Up to the authors’ knowledge, earlier review papers explicitly devoted to this
topic date back to 1993 [28]. The authors report on the newly developed (at that
time) OGY method, and propose to control a mechanical system by either changing
the forcing characteristics (e.g. the excitation frequency) – with the aim of moving
away from a previously known chaotic region – or modifying any system property,
such as inertia or stiffness. All of the proposed techniques fall in the area of “sup-
pressing” chaos, and while being illustrated with reference to a Duffing oscillator
(possibly equipped with also a tuned mass damper), they do not actually refer to
specific issues associated with the mechanical nature of the systems.

A recent survey of the application of various methods of chaos control to mechan-
ical systems [35] reports quite a long list of mechanical systems or processes for
which control of nonlinear dynamics and chaos has been addressed in the literature,
furnishing at least one reference for each of them. The list includes pendulums,
beams and plates, systems with friction and/or impacts, spacecraft, vibroformers,
microcantilevers, ship oscillations, tachometers, rate gyros, Duffing oscillators,
robot-manipulator arms, earthquake civil engineering, milling processes, whirling
motions under mechanical resonance, and systems with clearance. The items in
the list highlight the quite scattered nature of the work in terms of the mechanical
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complexity and variety of the systems, of the involved dynamical processes, and of
specific control goals.

Indeed, choosing a proper framework within which to organize, present and dis-
cuss the state of art in the field is not an easy task because, depending on various
application fields, mechanics is concerned (i) with both discrete (finite-dimensional)
and continuous (infinite-dimensional) dynamical systems, (ii) with their possibly
reliable low-dimensional models, and (iii) with a considerable richness of dynam-
ical processes and phenomena to be possibly controlled. Though being mechanics
mostly concerned with large scale systems traditionally analyzed and designed via
linear techniques, a large amount of research made in the last 30 years has high-
lighted a cornucopia of nonlinear dynamic phenomena, including chaotic responses,
along with their importance in mechanical and structural applications. Yet, regular
nonlinear phenomena of such a variety of systems are already quite complicated in
themselves, and as such exhibit a major importance in the real world of mechanics.
As a matter of fact, the question of how important and pervasive chaotic phenomena
are in the behavior of mechanical/structural systems, is still to be answered. Accord-
ingly, it is quite difficult to select studies devoted to chaos control in mechanics in
a strict sense, whereas the topic has to be intended in the wider sense of control
of dynamical complexity, and is often addressed in the literature within the more
general area of control of nonlinear, wanted or unwanted, phenomena.

On the other hand, the inherent complexity of systems from mechanical science
and engineering poses the challenging problem of identifying proper reduced order
models able to reliably describe the ensuing rich nonlinear dynamics; an issue which
becomes even more demanding if one is interested in dealing with possibly complex
nonregular response of the actual system and with its control. This basically entails
one major consequence and one question.

1. A large majority of research works on control of chaos in mechanics is concerned
with (relatively simple) archetypal nonlinear oscillators often representing ideal-
izations of more involved discrete systems encountered in real mechanical engi-
neering or minimal discretized representations – according to some reduction
technique – of the infinite-dimensional continuous systems typical of structural
engineering. This also entails that in most research papers the interest is focused
on the control technique – or on other dynamical or control aspects transversal
and unifying with respect to other scientific/technological fields – rather than on
the actual mechanical peculiarities of the considered systems.

2. Even being convinced of the significance of nonregular dynamics – and of their
control – for real mechanical/structural systems, how representative of their
actual behavior are the chaotic regimes highlighted for such reference archetypal
oscillators? Of course, this is a general point arising in any modeling and reduc-
tion problem, but it is felt to have a special meaning in mechanics owing to the
above mentioned inherent complexity of the involved large-scale systems. The
only possibility to clarify this issue consists in highlighting the actual occurrence,
and the features, of chaotic response in experimental (mechanical and structural)
systems, in developing refined theoretical and numerical models of the actual
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system, and in cross-validating the two approaches. In this respect, considerable
research is going on to highlight occurrence and features of chaos in experimen-
tal and/or refined theoretical models, but relatively little is yet done as regards
their control.

Altogether, considering such a rich and intriguing framework which encom-
passes several aspects, the objective and organization of this chapter can be stated
as follows.

The major role played by the OGY method in establishing the basic philosophy
of chaos control is recognized in Sect. 2, along with its improvements, extensions
and applications.

The use of OGY method for chaos control in mechanics is systematically
addressed in Sect. 3, by identifying distinguishing classes of systems and appli-
cations, and by discussing them in the framework both of the capabilities and of
some limitations of the method.

Then, a substantially alternative technique – according to the previously men-
tioned classification criteria – is presented in Sect. 4. It consists of an overall
procedure for controlling the non-regular dynamics of systems triggered by the
occurrence of homoclinic or heteroclinic bifurcations, which is discussed in its
generic/non-generic features and with regard to a number of applications to systems
of interest in nonlinear structural dynamics and engineering.

2 The Paradigmatic OGY Method for Chaos Control

The OGY method was first formulated in the celebrated work by Ott et al. [9]. A
web-based search on “Scopus” looking back to the year 1998 (i.e., only 10 years
back from now, instead of 18) already furnishes more than 2,300 articles citing
the original OGY paper, with many of them also citing various other papers con-
cerned with the method and published in the following years. In fact, the scien-
tific literature in the area registered the publication of a great number of papers,
co-authored either by one of the original authors with collaborators or by other
scientists somehow related with the University of Maryland Chaos Group, for the
whole decade of the Nineties. These papers provided explanations, clarifications,
extensions and improvements on the theoretical and computational aspects of the
method, as well as a great number of experimental implementations, applications in
a wide variety of technical fields – ranging from mechanical systems to electronics,
laser technology, chemical reactions, heart tissues, communications –, and modifi-
cations/refinements aimed at overcoming some observed limitations or drawbacks.
The number of papers ensuing from the original one is so large that it makes no sense
to list or report on them. A similar reasoning can be done as regards the theoretical
and practical aspects of the method, which are somehow summarized in most – if
not all – of the articles subsequently published by different authors and concerned
with OGY control of chaos.
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Quite soon the method became popular also within the less strictly technical
literature, as witnessed by a number of articles appeared, e.g., in Nature [47], Non-
linear Science Today [66] and Physics Today [67]. In both the hard and soft science
respect, one could even run the risk to somehow compare, though to a lower scale,
the paradigmatic role played by the OGY method in the area of control of chaos at
the round of the Millennium with the revolutionary role played by chaos in the area
of nonlinear science in the second half of the XX century!

Based on previous points, no analytical description of how the method works is
reported herein. Yet, to the sole purpose of properly frameworking the discussion
on the use of OGY control of chaos in mechanics, successively made in Sect. 3, a
brief summary of the main qualitative features of the method is provided following
the updated – though popular – exposition given in Ott [68].

Two fundamental aspects of chaos are:

1. The exponential sensitivity of orbits to small perturbations.
2. A very complex orbit structure making possible many different motions in the

same system at fixed parameter values.

Actually, these are not independent properties, but rather two sides of the same
“chaos coin”. The first property, typically quantified by the largest Lyapunov expo-
nent, refers to the difficulty in the prediction of sufficiently distant future states of
the system, while the second property, most often quantified by an entropy measure,
refers to the fact that chaotic attractors often have embedded within them an infinite,
dense set of unstable periodic orbits. While chaos is commonly viewed as undesir-
able, these properties can also be of great benefit in certain situations where one
wishes to control the system dynamics. In particular, if the system is sufficiently
well characterized and noise is not too large, then the first property implies that
relatively large changes in the eventual location of orbit points can be made using
only small changes in a control variable, while the second property implies that the
dynamical changes so produced may be very diverse, leading to a situation with a
great deal of flexibility. The two methods that are useful in utilizing chaos in an
effective way are

1. control, namely the feedback stabilization of selected unstable orbits embedded
in the attractor, and

2. targeting, namely the rapid steering of a chaotic orbit to the vicinity of a desired
point in phase space.

Here control means feedback control, i.e., measurements of the state of the sys-
tem are regularly taken, and, based on them, some controllable parameter (or set of
parameters) is adjusted so as to achieve some goal. The desirable goals may vary,
and different types of goals lead to qualitatively different control problems. Apart
from those of interest for specific applications, general goals include:

1. Given a steadily running chaotic system, how can one improve its time averaged
performance? Here performance is defined with reference to the specific function
the system is meant to carry out.
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2. Given a chaotic system in a given state at some specific time, how can one nudge
the subsequent orbit to evolve rapidly from its current state to a different target
location in state space ?

For the first goal, the complex orbit structure is most relevant; for the second
goal, exponential sensitivity is most relevant. In all cases, the fundamental attributes
of chaos imply that the control goals can be potentially achieved by use of only
small controlling perturbations. Thus, one consequence of chaos is that control can
be accomplished with low-energy/low-force controllers.

In order to see how this might be done, one first refers to the infinite number
of unstable periodic orbits (UPOs) embedded within typical chaotic attractors. If
one had the ability to perfectly place an initial condition on any chosen one of these
UPOs, then an infinite number of different types of motion could be achieved. More-
over, if no noise were present in the system, such motions would ideally continue
indefinitely in time.

The performance of a system, in general, depends on its state and its history.
Let x(t) denote the system state as a function of time t. Assume that the perfor-
mance P of some steadily running process can be given as the time average of
some quantity f that is a function of the system state P = 〈f (x(t))〉, where the
angle brackets denote a time average. For each UPO, a different state trajectory
xi(t) results, where the subscript i labels the particular UPO. Consequently, each
unstable periodic orbit i will have associated with it a performance Pi = 〈f (xi(t))〉,
and these performance values will typically be different for each i. Moreover, it
can be shown that, under suitable conditions, the performance Pc for the chaotic
orbit is a weighted average of the performances Pi attained by the periodic orbits.
The implication of this is that some of the Pi will be larger than Pc. If the system
can be controlled to such a periodic orbit, then the system performance will be
improved.

The next question is how to control the system so that it follows the chosen
UPO rather than the chaotic orbit xc(t). One way of doing this is to wait until
the ergodic uncontrolled chaotic orbit xc(t) comes close to the desired UPO, and
then give it a small kick to place it on or very near the UPO. Due to several fac-
tors (system noise, our inability to kick the orbit to a precise location, an imper-
fect knowledge of precisely where the desired orbit lies), the kicked orbit will
not be exactly on the desired UPO. Since the UPO is unstable, the system orbit
will begin to move away from it. As soon as this is discerned, a small kick can
be reapplied to reposition the system orbit closer to the desired UPO. By doing
this continually, the orbit can be kept close to the desired UPO indefinitely. Note
that for small noise and inaccuracy, the size of the kicks required to maintain the
system orbit near the desired UPO is correspondingly small, approaching zero for
the noiseless, absolutely accurate case. Thus, in many situations, the goal can be
achieved with small controls. In comparison, one should note that in other propor-
tional feedback control schemes where the targeted state might not be a part of the
intrinsic dynamics, large controlling signals might be needed even if the system is
noiseless.



Controlling Chaos: The OGY and an Alternative Control Method 221

Two issues that must be considered for such implementations are

1. how to determine and locate UPOs embedded in a chaotic attractor, and
2. how to make the small controlling kicks.

Determining UPOs If a very accurate analytical model of the system is available,
then standard numerical techniques (e.g., Newton’s method applied to the fixed
point equation of the n times iterated map) can be applied to determine UPOs.
However, in many cases of experimental interest, an analytical model of the system
under study may not be available. In such cases, it is still possible to determine UPOs
purely from data by recording the trajectory of a free-running (i.e., uncontrolled)
chaotic orbit. The idea is to use state space embedding and attractors reconstruction
techniques [69]. Techniques for finding UPOs from data have been discussed by So
et al. [70] and by Pierson and Moss [71], among others.

Another issue is how many UPOs on the chaotic attractor need to be determined.
Hunt and Ott [72] showed that it is seldom necessary to determine a very large
number of UPOs since maximal performances typically occur on low period UPOs,
which are limited in number.

UPO Controlling Algorithms Having chosen a suitable UPO embedded within
the attractor, it remains to specify how the small controls should be programmed to
maintain the system orbit on the chosen UPO. Several ideas have been proposed to
accomplish this:

• The original OGY technique employed in Ott et al. [9] is to use the control to
place the orbit on or near the stable manifold of the desired UPO.

• Romeiras et al. [73] discuss use of the “pole-placement” technique, which is
standard in control theory.

• Dressler and Nitsche [74] and So and Ott [75] show how UPO control can be
implemented using only time-series measurements of a single scalar state vari-
able.

• Socolar et al. [76] present a technique particularly useful for the control of very
fast dynamics.

Targeting refers to the control goal of quickly bringing an orbit to some desired
location in state space. The basic idea is that since chaos is exponentially sensitive
to small orbit perturbations, such orbit perturbations become large in a relatively
short time. Moreover, if the perturbations are very carefully chosen, then there is the
hope that the orbit can be efficiently directed to the target using only small controls.
Several techniques for achieving this goal have been formulated [46, 77–79].

A number of improvements and modifications of the OGY control, aimed at
overcoming some of the associated limitations, will be mentioned in the following
section in connection with use of the method, or of any of its many variants, for
control of chaos in mechanical systems. It will be shown how the method works
well, both numerically and experimentally, for a considerable number of relatively
simple systems and models. Yet, one major problem is concerned with the extent
of the impact that the method can have for chaos control in real world applications.
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This is linked with the general problem, mentioned in Sect. 1, of how much reliably
representative of actual systems behaviour are the nonlinear dynamic phenomena
and their control as evidenced for substantially archetypal models: in this sense, all
possible limitations, if any, are not to be abscribed to the sole OGY method.

3 Use of OGY Method for Control of Chaos in Mechanics

Two features of a chaotic system make it a candidate for OGY control [80]: (i) the
presence within the strange attractor of one or more unstable fixed points of the
saddle-node type, to be possibly stabilized, and (ii) an accessible system parameter
through which an applied control input changes the location of the unstable fixed
point in the phase plane, adjusting it in such a way to ensure that the trajectory
returns to the vicinity of the original one.

In theory, the OGY method is a “black box” technique that can be applied to
any system possessing these two attributes, even to experimental systems for which
no accurate analytical or numerical model exists. Indeed, it is not necessary to
have a mathematical model to achieve the control goal since all control parameters
may be resolved from time series analysis with the assistance of delay coordinate
embedding techniques [81, 82]. Yet, the method does not seem to work well when
a relatively large influence of noise exists as in usual experimental applications (see
[83] for a feedback controlled pendulum), although it has been applied successfully
to several experimental models [47].

Also, some features of the method, such as considering a local linear return map
in the region around the unstable fixed point to be stabilized and applying small
control forces to ensure that the oscillator continually returns to the region of phase
space described by such a map, may render the control ineffective or impractical
for some sensitive systems. This can occur, e.g., if the true dynamics change too
quickly in the region of interest, if the region of linear validity is too small for some
unstable fixed points, or if the unstable eigenvalue is so large that points near the
fixed point are swept away very quickly and tend not to return to the linear region
[84]. Moreover, since control only begins when the trajectory enters for the first time
the region where the linear map applies, it can happen that for some chaotic systems
this may take thousands of cycles, depending on the effect of the control parameter
on the estimated location of the perturbed fixed point and on the size of the linear
capture region. So, the OGY method, which is locally linear, may not be practical
for all chaotic systems.

Another issue related to control of chaotic attractors is the existence of a some-
times long chaotic transient before the system settles onto the stabilized orbit. This
transient arises because time-dependent parameters can only be effectively applied
to stabilize an orbit when the system falls within a narrow region around it. For
typical initial conditions the system wanders chaotically and since the attractor
is ergodic it will eventually fall sufficiently close to the fixed point to be stabi-
lized. The length of the chaotic transient for randomly chosen initial values has
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an exponential distribution. To reduce the necessary time for stabilizing the tar-
get orbit, the OGY method was modified by Shinbrot et al. [46] (SOGY method)
by exploiting the extreme sensitivity of a chaotic attractor to tiny perturbations
in initial conditions to rapidly direct a system from a given initial state to a
desired one. Overall, this targeting approach provides a way of directing trajec-
tories from any initial conditions to the desired fixed point, and is shown to be quite
successful.

There are other improvements of the OGY method aimed at overcoming some
of its original limitations, as for example control of high periodic and high unstable
UPO [85, 86] and control using time delay coordinates [74, 75, 87]. In this respect,
it is worth mentioning how many of the presently available techniques aiming at
controlling chaos by stabilizing UPOs represent some interpretation or extension of
the original OGY method.

3.1 The Pendulum System

The mathematical pendulum is the archetypal nonlinear oscillator in mechanics.
Accordingly, it has been considered for validating chaos control techniques, testing
their effectiveness and comparing them. As regards OGY-based control methods,
besides several numerical applications, also a number of experimental applications
have been concerned with nonlinear pendulums [85, 87–89], as well as a double
pendulum [90].

Starrett and Tagg [88] controlled chaos in a pendulum with vertically driven pivot
over a range of driving frequencies and damping levels by using two variations on
the OGY method, namely by proportional adjustments of damping for fixed time
intervals or by proportional time intervals for fixed levels of damping, and with the
eddy-current damping as control parameter.

Baker [91] studied the control of a chaotic damped driven pendulum (with one
external excitation) by using OGY method for stabilizing an UPO through a feed-
back mechanism that periodically adjusts the damping parameter of the pendulum.

A number of papers/applications used some kind of “OGY-like” methods. For
example, based on an optimal control algorithm “belonging to the parameter vari-
ation techniques introduced in [9]” and minimizing the distance between a chaotic
trajectory and a desired periodic orbit [92], Bishop et al. [93] realized flexible con-
trol of tumbling chaos in a parametrically excited pendulum by stabilizing it onto
a variety of oscillating or rotating periodic states, located via coupled symbolic-
numerical dynamics, by small adjustments of the driving frequency.

Several authors compared the capability and efficiency of various techniques by
referring to the (mathematical) pendulum, with the interest being focused rather on
the former than on the latter.

Yagasaki and co-workers investigated chaos control for a pendulum subjected
to feedforward and feedback control. Yagasaki and Uozumi [89] showed that the
chaotic dynamics resulting from transverse intersection between the stable and
unstable manifolds can be stabilized to the target saddle-type periodic orbit by
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using OGY and SOGY methods. Since the former method required a very long
time for stabilization of the targets and the latter was not effective when model-
ing errors existed, Yagasaki and Uozumi [48] developed another approach where
nonlinear approximations are used for the chaotic dynamical system and for the
stable manifold of the target. It also includes the OGY method as a special case
and is no more than just the pole placement technique. Yagasaki and Uozumi [49]
applied the method to the pendulum equation with the assistance of the delay coor-
dinate embedding techniques [69], proving that the time necessary for stabilization
is reduced, whereas Yagasaki and Yamashita [94] obtained a faster stabilization of
the considered UPO without using delay coordinate embedding techniques, even
when some modeling errors or the influence of noise exist.

Wang and Jing [95] applied the Lyapunov function method to design a controller
able to convert the chaotic motion of a pendulum to any periodic orbit in a shorter
time than that required by OGY-based methods (much shorter than OGY but also
shorter than SOGY) for the same parameter values and initial conditions. In partic-
ular, the Lyapunov method is able to overcome a difficulty arising when employ-
ing even modified versions of OGY method, which make use of the generalized
Poincaré map, for stabilizing higher-periodic orbits, namely the unclearly specified
stability directions – which play a basic role in the control procedure – around a
multiple saddle solution.

Alasty and Salarieh [96] designed a non-linear feedback controller to stabilize
arbitrary desired periodic orbits such as period-one, period-two, period-four orbits
and more in a chaotic pendulum, and showed that the major advantage of this
method is its shorter chaotic transient time compared with other methods such as
OGY.

A variation of the discrete OGY technique called semi-continuous control (SCC)
method, proposed by Hübinger et al. [85] and extended by DeKorte et al. [87], was
considered by Pereira-Pinto et al. [97] to stabilize unstable periodic orbits – identi-
fied by the closed-return method – in a nonlinear pendulum with torsional stiffness
and damping. In implementing the control, two different situations were considered,
first, if either all state variables are available, as it happens when considering signals
generated by numerical integration of a mathematical model based on experimen-
tally identified parameters, or, second, just a scalar time series obtained from an
experimental setup. In the second situation, state space reconstruction is used with
the method of delay coordinates [69]. Of course, experimental data is associated
with noise contamination which is unavoidable in cases of data acquisition, so that
the effect of noise on control techniques is an important point to be analyzed in order
to ascertain their robustness, which is an essential aspect to the controllability of a
dynamical system. By analyzing the effect of noise on the controlling procedure the
authors defined some relevant limitations. Nonetheless, the possibility of using this
approach to control chaotic behavior in mechanical systems was confirmed.

Working on the same line, Pereira-Pinto et al. [98] proposed the use of “extended
state observers” – which is a tool from control theory for determining non-observed
states of a dynamical system – to perform the state space reconstruction from one
scalar time series, instead of using the delay coordinate method. Again, they suc-
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cessfully applied this technique in the framework of the semi-continuous control of
chaos of the nonlinear pendulum.

3.2 Smooth Archetypal Oscillators

Since the very first formulation of the OGY method, a number of authors considered
some kind of magneto-elastic beam as the archetypal experimental model for control
of chaos in smooth mechanics.

The practicality of the method to lock a system response onto specific peri-
odic orbits embedded in a chaotic attractor and move it from one periodic orbit
to another was first demonstrated by Ditto et al. [99] for a chaotically oscillating
magneto-elastic ribbon, whose effective Young’s modulus is sensitive to small mag-
netic fields. By providing a time-dependent perturbation to the applied field (based
on the position of the beam), Ditto et al. could stabilize the ribbon onto period-1 and
period-2 orbits.

Referring to the classical experimental magneto-mechanical oscillator consisting
of a mass attached to a cantilevered elastic beam [100], which exhibits a double-well
potential and a two-dimensional Poincaré map, Moon et al. [101] used the “occa-
sionally proportional feedback” technique developed by Hunt [102] as an extension
of the OGY method to stabilize the system onto a period-one motion.

Also stimulated by that classical experiment, Dressler et al. [103] demonstrated
the tracking of an UPO in a horizontally cantilevered, periodically driven, elastic
bronze ribbon. Stabilization of the UPO at each tracking step is performed via the
local control method, which is a variant of OGY. Starting with feedback control
vectors extracted from the analysis of the experimental data at each tracking step,
the location of the UPO is redetermined using an adaptive orbit correction that
exploits the applied control signal and the actual trajectory of the system. In this
way, the UPO is tracked over a broad parameter regime where the chaotic attractor
has disappeared and another periodic orbit has become stable.

A physical system made of a magnetoelastic metal ribbon was also considered
by Ding et al. [104], along with a pair of coupled Duffing oscillators with periodic
forcing, to demonstrate the viability in practical applications of a method of chaos
control in high dimensions. Using small time-dependent perturbations of a single
system parameter, the method achieves control by stabilizing a desired unstable
periodic orbit with any number of unstable directions, which is a situation where
the OGY method does not succeed. At the same time it is shown how, also in situ-
ations (e.g., just one stable and one unstable direction) where the low dimensional
control is effective, a higher dimensional implementation may prove to be more
efficient.

In turn, a number of numerically oriented works were devoted to controlling
chaos in smooth nonlinear systems such as the escape and/or Duffing oscillators,
via some variants of the OGY method.

Investigating the possibility to control chaos in a temporally irregular envi-
ronment, Ding et al. [43, 105] considered the softening Duffing oscillator driven
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by an irregular excitation as a model of ship rolling under lateral ocean waves.
Heuristically incorporating a short-term monitoring and prediction feature of the
future evolution of the environment into the OGY-SOGY control scheme, the
authors were able to stabilize a period one orbit and prevent the ship capsizing
that would occur, in absence of control, upon the boundary crisis of a chaotic
attractor.

One interesting topic addressed in [54] is the comparison of the OGY method
with respect to other control techniques, which is very useful because it permits
one to judge the good/bad performances of the method, and the range of its appli-
cability. More precisely, Sifakis and Elliott [54] considered four different control
techniques applied to the classical Duffing oscillator: (i) open-loop periodic per-
turbation method, which consists in adding a periodic perturbation to the system
excitation, (ii) continuous delayed feedback method, i.e., the Pyragas [56] method,
(iii) the Hunt method [102, 106], and eventually (iv) the OGY method [9]. As to
the first technique, in [54] the perturbation is chosen empirically by a trial-and-error
procedure, whereas in other works it is optimally determined on the basis of a theo-
retical analysis relying on system dynamical properties [37].

3.3 Vibro-Impact and Friction Systems

Impact is often undesired in engineering systems, for it causes excessive fatigue,
noise, or even direct failure. As a consequence, systems are designed to avoid
operating conditions that are conducive to impact, where possible. Of course, the
proper choice of system parameters at the design stage represents the most basic
form of passive control. However, in many cases, the engineer is not given the
opportunity to completely define and specify all system characteristics before man-
ufacture. Unforeseen changes in the operating environment, damage from exter-
nal forces, or modified system requirements can lead to unexpected and unwanted
responses, such as a multiple impacting chaotic motion, to be possibly suppressed
with a control technique. In fact, the reduction of impacting events is a poten-
tially important practical benefit of using chaos control in the mechanical context
[107].

Kalagnanam [108] applied the OGY algorithm to a spring-mass system that
impacts with a sinusoidally vibrating table. Besides stabilizing its chaotic attractor
on period-1 and period-2 orbits using small perturbations of the driving frequency,
he demonstrated the ability to switch the chaotic system between the two orbits
by controlled time dependent perturbations. Moreover, since the system exhibits
long chaotic transients before settling onto the stabilized orbit, he exploited the
exponential sensitivity of a chaotic system to small perturbations to control the
duration of such a transient via the SOGY approach [46], which uses chaos to
direct trajectories to targets and drastically reduces the average length of the chaotic
transient.

Begley and Virgin [80] showed how, using the adjustable friction force as the
control parameter, the linear map approximation of the OGY method may work in
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a two-sided impact-friction oscillator for stabilizing either an ideally non-impacting
response or a single-impact response corresponding to an UPO embedded in the
chaotic attractor. Actually, while showing that, in mostly ideal cases, very little addi-
tional control effort (corresponding to low-energy effective control) is required for
stabilization by the OGY method once the system locks onto the unstable orbit, they
also discussed how in different practical situations the control of many other UPOs
may be unattainable: this happens, for example, if a significant experimental noise
is such as to push the system out of the linear region after control is established, or
if large unstable eigenvalues, which are in fact common in impact systems due to
substantial stretching of the phase space at impact, do occur.

One important point for vibro-impact systems is that the temporal evolution of
the dynamical variables consists of smooth motions governed by a linear differential
equation interrupted by a series of non-smooth impacts, with the trajectories being
thus discontinuous in phase-space. Due to discontinuities, the hard part of the OGY
control process, which applies only tiny perturbations on an available control param-
eter, is how to determine the value of parameter perturbation. For that, using the
analytical solution of the differential equation and the impact rule, a transcendental
(impact or discontinuity) map has to be determined, with the dynamical variables
being computed at the impact instants. Referring to a fundamental discontinuity
map with a square root singularity in the Jacobian, the so-called Nordmark map
[109] that captures universal properties of impact oscillators near grazing, Casas
and Grebogi [42] applied the OGY technique to select particular trajectories with
a desired sequence of impacts and stabilized an unstable periodic orbit with one
impact per period, involved in the grazing bifurcations, by adjusting slightly the
parameter related to the external force. In turn, de Souza and Caldas [110], consider-
ing an impact oscillator or an impact-pair system with the amplitude of excitation as
control parameter, used a transcendental map to specify the parameter perturbation
needed to implement the OGY method for stabilizing an UPO embedded in the
chaotic attractor.

Also for impact systems, a number of works were just explicitly “motivated”
by OGY control or used some kind of “OGY-like” methods. Thus, Bishop et al.
[111] developed a control strategy to stabilize period-1 impacting motions in an
impacting driven beam undergoing complex motion associated with grazing bifur-
cations, as the driving frequency is varied. Galvanetto [112] adapted to non-smooth
systems a controlling algorithm previously developed for smooth systems [92], and
used it for finding UPOs of a stick-slip system made of a chain of blocks on a
moving belt and for stabilizing them by small changes of one or more control
parameters.

Motivated by the need to understand the nature of some nonlinear resonances in
complex, multiactuated, servo-hydraulic structural engineering applications,
Gutiérrez and Arrowsmith [113] analyzed the control of a mathematical model of
the laboratory setup of a double-impacting system, studying the stability of low-
order impact resonances in the context of the application of control techniques using
displacement feedback. Preservation or annihilation of experimental and analyti-
cal resonant periodic orbits was realized via control schemes based on the OGY
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method, showing how the dissipative nature of impact resonances makes it possible
to apply a low-dimensional analysis.

It is also worth mentioning that vibro-impact systems with oscillating parts col-
liding with rigid walls or with other vibrating components may have important
practical applications. This is the case of impact dampers, where the vibration of
a primary system is controlled by the momentum transfer through collisions with a
secondary loose mass which bounces back and forth [114]. Impact dampers are used
to control high-amplitude oscillations, such as those typically occurring in chaotic
motion, and hence can be regarded as devices for controlling chaos in mechanical
engineering systems [115], as in cutting tools, turbine blades, and chimneys. No
direct application of the OGY method seems to have been made in this respect,
to the authors’ knowledge. However, de Souza et al. [116] studied the control of
chaotic impacts of a vibrating cart driven by a non-ideal motor, obtained by adding
an impact damper consisting of a bouncing particle. The transfer of momentum
which follows each collision between the particle and the walls attached to the cart is
responsible for an effective coupling so that the motion of the cart can be controlled
by the bouncing motion of the particle. With a very small value (about 0.5%) of
the ratio between the masses of the bouncing particle and the cart, chaotic attractors
are replaced by two stable trajectories with a kind of stabilization “resembling that
achieved by the OGY technique”. Of course, from the technical point of view, the
smaller the ratio of the masses, the easier it is to install such impact dampers in
engineering systems like turbine blades and cutting tools. The authors also pointed
out how, with respect to previous studies [114], the value of this ratio is considerably
lowered due to the non-ideal character of the forcing, which is a consequence of its
limited energy supply.

Dry friction in mechanical oscillators can also lead to chaotic dynamics under
periodic forcing. Moon et al. [117] demonstrated control and anti-control of chaos,
namely stabilizing an UPO in a strange attractor or driving the system into a chaotic
state near a periodic motion, in an experimental dry-friction oscillator obtained by
adding lateral titanium friction plates to the cantilevered elastic beam with attached
mass considered for control in Moon et al. [101]. Anti-control is often beneficial
in engineering devices such as robotic manipulators or cutting tools for normal
machining of metals, where it corresponds to adding small noise or dither onto
periodic oscillations, e.g., to break static friction or to avoid hysteretic behavior.
Control and anti-control were based again on the “occasionally proportional feed-
back” technique [102], and were effected by changing the normal force of the dry
friction element via a magnetic actuator.

3.4 Coupled Mechanical Systems

A number of coupled systems have been studied for control by using OGY-like
methods.

Considering a kicked double rotor system made of two connected massless rods,
Feudel et al. [118] exploited its ability to access many different coexisting states,
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combined with its sensitivity and flexibility, to gear the dynamics toward a specific
periodic behaviour. They used a simple feedback control scheme making use of
perturbations smaller than those of the standard OGY, and also smaller than the
noise amplitude.

In a tutorial paper devoted to controlling chaos in a dynamical system consti-
tuted by two coupled dynamos, Agiza [119] also dealt with suppression of chaotic
behavior to one of the UPOs embedded within the attractor but this was realized by
nonfeedback or a delay feedback control method which does not require finding the
UPO to be stabilized but needs its period only.

Control and stabilization of an UPO of a chaotic system using a fuzzy system
constructed on OGY method were investigated in Alasty and Salarieh [96], who
applied the method to a Bonhoeffer-van der Pol oscillator representing a model of
a two degree-of-freedom system kept in a fluid flow. Attention is focused to the
advantages to be possibly obtained via fuzzification rather than on the application.
It turns out that the transient response time and the control effort for stabilizing the
period-4 unstable orbit with fuzzy-OGY controller are much less than with pure
OGY control. This is due to the fact that when using fuzzy control the perturba-
tion signals applied to the system are not sensible to the distance from the fixed
point of the periodic trajectory in phase space. Fuzzification of OGY perturbing
signal causes a smoother perturbing signal in larger domains of time and Poincaré
section. The main role of a fuzzy system is to make a control perturbing signal in
the points which are far from the fixed point, while in the near vicinity of fixed
point the perturbation made by the fuzzy system is similar to that made by the pure
OGY controller. Robustness of controlled system against random disturbances also
increases with fuzzy-OGY controller. Comparable favorable features are exhibited,
to a certain extent, by a fuzzy-Pyragas controller with respect to the pure Pyragas
one.

A number of mechanical systems are actually high-dimensional, as it happens,
e.g., in robotics. Underactuated manipulators arise in a number of important appli-
cations such as free-flying space robots, hyper-redundant manipulators, snake-like
robots, and manipulators with structural flexibility, among others. An important goal
in manipulator control is to perform tasks involving the exact tracking of some
desired trajectory. After a proper analysis of the particular device dynamics, exact
tracking depends on the nature of the designed control algorithm. The absence of
an actuator transforms the robot into an underactuated device that may lead to a
malfunction of the system, to an erroneous tracking of the desired trajectory and in
some cases to instability. Moreover, underactuated robots may exhibit rich dynami-
cal behaviors including chaos [120, 121].

In addressing these issues, González-Hernández et al. [120, 121] dwelled on
some limitations of earlier control techniques for stabilization of periodic orbits,
including the OGY one, which are designed for systems described by three differ-
ential equations yielding two-dimensional Poincaré or Lorenz maps and are only
capable of imposing a particular dynamics for stabilization. Overall, they noticed
how a general framework for control of higher-dimensional systems is not yet estab-
lished.
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In their paper, the authors aim at controlling higher-dimensional systems and at
imposing a desired dynamics for stabilization. They report on the use of the Lorenz,
instead of the Poincaré, map for the local identification of the dynamics around
the UPOs in a chaotic attractor, claiming that its use allows for better identification
schemes and avoids ill-conditioned identification problems [122]. As a first stage
for achieving stabilization of periodic orbits embedded in higher-dimension chaotic
attractors, based on system measurements, they propose a framework for designing
flexible control laws which still belongs to the class of parameter perturbation meth-
ods. Flexibility means the capability to impose arbitrary dynamics with the proposed
control law, which is applied to the so called Pendubot, namely an underactuated
robotic system with two links. The proposed method offers a way to control chaotic
systems without any prior knowledge of their dynamics, and needs a measure of
only one of the system variables and the availability of a system parameter which
can play the role of a control input.

3.5 Targeting in Astrodynamics

Besides strict suppression of chaos, one important outcome of the OGY approach
to chaos control has been the flexible and efficient exploitation of the complexity
inherent in the chaotic dynamics for their technological uses. In particular, the inher-
ent exponential sensitivity of chaotic time evolutions to tiny perturbations has been
exploited for targeting, i.e. for rapidly directing a system to a desired accessible state
[46]. Major relevant achievements have been obtained in the field of astrodynamics,
particularly related to the important and timely issue of spacecraft transfer, to be
realized with a low consumption of propellant or energy.

In general, controlling and targeting in chaotic Hamiltonian systems – which are
the situations faced in astrodynamical problems related to spacecraft transfer – are
not easy to accomplish. Besides the coexistence of interwoven chaotic and quasi-
periodic regions, the phase space is divided into layered components, which are
separated from each other by Cantori [123]. Typically, a trajectory initialized in one
layer of the chaotic region wanders in that layer for a long period of time before it
crosses the Cantori to wander in the next layer. Several targeting strategies have been
proposed to overcome these difficulties, e.g., using small perturbations [124] to drive
a trajectory from an unstable periodic orbit located inside a chaotic scattering region
to a target point outside it, which is a major problem [125], and then applying in the
“controllable region” a method of control of chaos derived from OGY [126]. Macau
[127] applied the overall procedure to a Hamiltonian system in a “soft” chaotic
Hamiltonian evolution, i.e., targeting in the planar, circular, restricted three-body
problem which models the dynamics of a spacecraft moving in the Earth-Moon
system and is a special case of the full three-body problem, where one of the masses
is taken to be infinitesimal and has no influence on the two primaries which are on
circular orbits.

A review of the relevancy and efficiency of the OGY strategy of chaos control
to spacecraft steering in different Hamiltonian situations is presented in Macau and
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Grebogi [44], who also reported on the Hill problem governing the encounter phe-
nomenon of two light bodies describing circular orbits around a heavy central body.
In this case, the unstable periodic orbits embedded in a non-attracting chaotic invari-
ant set related to chaotic scattering are exploited for in-orbit stabilization, namely to
keep one satellite in orbit around the other [128].

It is worth stressing the importance and efficiency of control of chaos and tar-
geting techniques as regards low-energy spacecraft transfer and in-orbit stabiliza-
tion. Indeed, since the lifetime of an automatic space exploration mission is mainly
defined by the amount of fuel it can carry, the direct benefits of chaotic transfer in
astrodynamics are twofold, i.e., either allowing a spacecraft to go farther in explor-
ing the limits of our Solar System, or saving the amount of fuel, which entails a
larger amount of scientific instrumentation in the payload, since the liftoff capacity
of a launch vehicle is limited. These techniques can also be used to rescue space-
crafts that end up in a wrong trajectory accidentally, due to defects in the launch
phase.

3.6 Atomic Force Microscopy

Atomic force microscopy (AFM) is widely used for nano-scale material charac-
terization and surface inspection in engineering applications. Indeed, as an imaging
tool, AFM is capable of resolving surface features at the atomic level for conducting
and non-conducting samples, and it is currently used in many imaging applications
ranging from biological systems to semiconductor manufacturing.

The mechanism of AFM basically depends on the interaction of a micro-cantilever
with surface forces. The tip of the micro-cantilever interacts with the surface through
a surface-tip interaction potential. One approach to measure the surface forces
is to monitor the deflection of the micro-cantilever through a photodiode. This
approach is named “contact mode”. Another approach termed “tapping mode” is
performed by vibrating the micro-cantilever close to its resonance frequency, at
a constant driving amplitude, and monitoring the changes in its effective spring
constant.

As reported in the introduction of Arjmand et al. [129], a micro-cantilever in tap-
ping mode may exhibit chaotic behaviour in some regions of its physical parameters
(damping value, excitation amplitude and frequency, average tip-sample distance),
as observed experimentally [130] and verified theoretically [131] and numerically
[132]. Yet, chaotic behavior is highly undesirable for AFM performance because it
entails inaccurate measurements and low resolution of the achieved sample topog-
raphy. Accordingly, it is always required to eliminate the possibility of chaotic
motion of the micro-cantilever either by changing the AFM operating conditions
to a region of parameter space where regular motion is assured or by designing an
active controller that stabilizes the system on one of its UPOs. Arjmand et al. [129]
developed a nonlinear delayed feedback control algorithm to stabilize the AFM
micro-cantilever on its first-order UPO, as well as a delayed feedback control via
sliding mode scheme for chaos elimination.
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In turn, Misra et al. [133] documented a variety of dynamical systems-based,
control-theoretic analytical, computational and experimental tools for exploiting the
natural oscillating dynamics of the cantilever in tapping-mode operation of AFMs.
In particular, they applied different OGY-based feedback strategies to the AFM can-
tilever dynamics described by a lumped-parameter model in which the spatial shape
of the vibrating beam is approximated by its first fundamental mode of vibration.
By imposing discrete changes in the vertical offset between the cantilever support
and the sample surface based on an estimated linearization of the system dynamics
about a dynamically generated reference trajectory, they aimed at maintaining a
desired oscillation amplitude of the cantilever and, indirectly, at extracting informa-
tion during surface scanning of the sample profile. Three different control schemes,
full-state feedback, estimated-state feedback and partial-state feedback, are exam-
ined in terms of their capability of stabilizing unstable periodic oscillations, reduc-
ing the extent of transient dynamics in the vicinity of stable periodic oscillations,
and maintaining a desired periodic oscillation while scanning the sample surface
at fairly high lateral speeds, under the influence of a train of disturbance inputs in
the form of surface profile variations. Numerical results document increases in the
speed of surface scanning, while preventing undesired transitions between different
cantilever oscillations, as well as successful use of (in the absence of control) unsta-
ble cantilever oscillations that achieve tapping-mode operation with relatively small
contact velocities and short duration of contact.

4 An Alternative Unified Framework for Control of Non-regular
Dynamics of Mechanical Systems

One characteristic of the OGY method is that it exploits the chaotic properties of
systems to achieve some desired performances, which in the specific case is the
stabilization of an unstable saddle embedded in the chaotic attractor.

There are several other methods which likewise exploit the chaotic performances
of dynamical systems to obtain certain goals, although they refer to different features
with respect to the OGY method. Among them, an important role is played by the
methods aimed at eliminating, or shifting in parameters space, a given homoclinic
or heteroclinic intersection which triggers unwanted dynamical phenomena [17, 37,
41, 134].

The objective of eliminating the homoclinic bifurcation can be reached in various
manners, namely,

1. by adding a controlling parametric excitation to an uncontrollable external exci-
tation, or viceversa [41];

2. by modifying the excitation by adding controlling terms to a given uncontrollable
one. This can be done, for example, by adding single or multiple subharmonics or
superharmonics (or even ultra-subharmonics) to a given harmonic term [17, 37],
and even by choosing these added terms in an optimal way [37];

3. by modifying the parameters of the system.
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The last case is trivial from a theoretical point of view, and it is mentioned only
because it can have some interest from a practical point of view. It just requires one
to identify the chaotic region in the parameters space, and to change the parameters
to stay outside that region.

The first two cases, on the other hand, are not very different from a concep-
tual point of view. The differences are mainly (but not uniquely) technical: the
common idea is that of adding controlling terms to eliminate a given, unwanted,
homo/heteroclinic intersection. So, we can describe just one of them, and we
will illustrate the technique developed by Lenci and Rega in a series of papers
[26, 37, 62, 63, 107, 135–146].

Any kind of control method based on the elimination of homoclinic or hete-
roclinic intersections, or better on shifting or eliminating the global bifurcations
through which complex dynamics appear, requires various steps, both of theoretical
and practical nature. Although they can be supported by analytical arguments, herein
they are mostly discussed at a phenomenological level with the aim of introducing
the general ideas and features of the method, usually not reported in regular publi-
cations, and of highlighting its overall framework. Of course, the various technical
aspects can be found in the specific papers.

4.1 Single Degree-of-Freedom Systems

With the aim of capturing the key features without redundancies we refer to single
degree-of-freedom (d.o.f.) models, which describe the dynamics of simple mechan-
ical systems or of reduced order models of complex structures.

This choice may appear very restrictive at a first glance, but it is not. In fact,
in general, the additional structure due to the higher dimensionality does not add
any significant element to the control ideas and to the theoretical apparatus, but
contributes mainly technical difficulties, which we want to by-pass because they are
not due to the control, or can possibly add new resources, thus enlarging instead of
reducing the applicability of control.

For example, in large dimensions, it may be difficult to practically measure the
distance between stable and unstable manifolds, which is necessary to detect the
considered bifurcation. This implies that it may be difficult to practically apply
control to those structures, but this does not affect the theoretical characteristics
of control, and the possibility of its application. What can instead occur is to take
advantage of the complexity of the structure to look for further properties of the
control, which add to those investigated with single d.o.f. models.

According to the previous considerations, the generic system which will be con-
sidered is governed by the ordinary differential equation

ẍ + f1(x) + f2(x,ẋ) + f3(x,t) = 0, (1)

whose solution x(t) represents the status of the system. Four terms, which are the
main “components” of a common mechanical system, occur in Eq. (1): inertia, ẍ,



234 G. Rega et al.

conservative elastic restoring force, f1(x), dissipation or damping, f2(x,ẋ), and exter-
nal or parametric excitation, f3(x,t). Note that in general the term f2(x,ẋ) may also
provide a negative damping, i.e. it can pump energy into the system. However, in this
work, we will consider only standard mechanical systems where f2(x,ẋ) dissipates
energy.

When f2 and f3 vanish, the system (1) is Hamiltonian, or “conservative”. In this
case, the Hamilton function H(x,ẋ) = ẋ2/2 + ∫ f1(x)dx is constant along orbits.
In mechanical language H is the total energy, sum of the kinetic K(ẋ) = ẋ2/2
and potential V(x) = ∫

f1(x)dx energy. The terms f2 and f3 represent two different
kinds of modifications, or perturbations, of an Hamiltonian system: those which
extract energy from the system, and those which pump energy into the system,
respectively.

More difficult situations can of course be found in the reality, but the case (1) is
sufficient for our purposes.

4.2 Different Kinds of Global Bifurcations

The first consideration, less obvious than what might be thought, concerns the rel-
evance of the global bifurcations for the complex behavior. In fact, we can have
two different situations: bifurcations not directly related to a specific outcome in
the system dynamics, and bifurcations immediately causing a strong variation in the
response.

While actually being the same dynamical phenomenon, there are strong differ-
ences between the two classes of bifurcations. The former usually triggers chaotic
mechanisms, such as, for example, the creation of a chaotic saddle, which do not
immediately, and dramatically, influence the response, but which constitute the nec-
essary pre-requisites for successive routes to chaos. Their effects are hidden behind
the visible outcome, but they are not negligible, even from a practical point of view.

Remarkable examples of this case are the homoclinic or heteroclinic orbits of
hilltop saddles of Hamiltonian systems. Their invariant manifolds usually surround
potential wells where the important part of the dynamics occurs, and constitute a
barrier against the penetration of trajectories from out-of-well attractors eroding
the well. Once this barrier has been broken by the global bifurcation, the (chaotic)
effects can penetrate the well and, sooner or later, become visible. From the one side,
this permits deeper understanding of the dynamical mechanisms involved in the
event, especially with respect to safe well erosion [146, 147], and from the other side
it permits detailed and specific investigations, to be followed by smart application
of the control method.

Due to the underlying Hamiltonian nature, these bifurcations can be usually
detected analytically by the Melnikov method [48] or even directly in closed form.
This is important because it permits a more general application of the control
method [62, 137].

The second class of bifurcations is involved in specific boundary or interior
crises, and determines sudden appearance/disappearance or enlargement of chaotic
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attractors or sudden modifications of their basins of attraction. Thus, their elimina-
tion directly entails elimination of the crises, with immediate, visible, effects [136].
These are the situations where the class of control methods discussed in this section
are very effective. Here in fact even a small control leads to remarkable results, and,
e.g., the chaotic attractor can be easily removed/created.

The drawback consists in the fact that these bifurcations are rarely related to
hilltop saddles, and commonly cannot be easily detected or even discovered. In fact,
it can (and actually does) occur that the saddle S directly responsible of a crisis is
hidden by other, possibly more robust, saddles with an heteroclinic connection with
S. This can generate an heteroclinic tangle [148], which makes any attempt to detect
the saddle and its invariant manifolds a challenge from a practical (i.e. numerical)
point of view, and even a somehow questionable theoretical issue.

In the most fortunate cases where, in spite of previous difficulties, the detection is
possible, it usually requires long, time consuming, and systematic numerical investi-
gations, which are cumbersome and do not permit a full understanding of control or
its full exploiting. Thus, the application of control is less general than in the former
case.

However, it should be clear that, strictly speaking, the detection of the saddles
and of their manifolds, which is a necessary pre-requisite for applying control, is
not a part of the control method, which can actually be developed, in its general
lines, without any reference to a specific situation (and even, in some cases, without
references to any specific systems). The ability of detecting the global bifurcations
directly responsible for the observed crises simply provides a more powerful pos-
sibility of eliminating/creating chaos by a straightforward application of a control
method.

The previous considerations explain why we will deal with homoclinic or het-
eroclinic bifurcations of hilltop saddles (but see also [136] where the control is
applied to a numerically detected homoclinic bifurcation of a non-hilltop saddle).
In fact, although they are involved in boundary or interior crises only in some situa-
tions, they are relatively easy to be analytically detected by the Melnikov or similar
method, thus permitting a detailed development of the most important aspects of
control, without reference to any specific situation. To support this choice, we fur-
ther underline that the considered global bifurcations trigger the dynamical events
eventually leading to chaos, so that its elimination is useful in any case.

4.3 Distance Between Stable and Unstable Manifolds

From a practical point of view, the key to applying any kind of control based on the
elimination of homoclinic or heteroclinic bifurcations is the detection of distance
between the stable and unstable manifolds.

To illustrate the main properties, we refer to an homoclinic bifurcation of a nearly
Hamiltonian system (Fig. 1), i.e., a conservative system with small perturbations,
which is supposed to have a saddle point with an homoclinic orbit. The major aim
is that of verifying whether the homoclinic orbit survives or not when damping and
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excitation, here seen as perturbations, are added. The objective of this section is
indeed determining the distance between perturbed stable and unstable manifolds.

In the absence of perturbations, the stable and unstable manifolds of the saddle
coincide because they are constrained to have the same energy (Fig. 1a).

4.3.1 Effect of Damping

When damping is added to the Hamiltonian system, the coinciding stable and unsta-
ble manifolds – which still exist – split away from each other (Fig. 1b). In fact, the
saddle does not change energy (being a fixed point), the unstable manifold loses
energy in forward time (and asymptotically approaches an attractor different from
the saddle), and the stable manifold increases its energy backward in time (as it must
approach the saddle as t → +∞ and its energy decreases forward in time). Thus,
a homoclinic loop is no longer energetically possible and, on appropriate Poincaré
maps, usually the stroboscopic one, there is a non zero distance between stable
and unstable manifolds. It is easy to realize that this distance is proportional to the
damping amplitude, herein denoted by εδ, and that in the case of small damping, it
is approximately constant along a sufficiently short interval (Fig. 1b).

-1

1

1.8-0.2 x

saddle

x

homoclinic loop

x

stable manifoldunstable manifold

-1

1

1.8-0.2

saddle

x

x

stable manifoldunstable manifold

intersection points

B

C

D

A

s

-1

1

1.8-0.2

saddle

x

x

x

stable manifoldunstable manifold

intersection points

B

C

D

A

-1

1

1.8-0.2

saddle

(a) (b)

(c) (d)

εγ (ω) (ωs)a cos1 1

εδa0

Fig. 1 Schematic illustration of the distances between stable and unstable manifolds in an homo-
clinic bifurcation of a nearly Hamiltonian system. (a) Hamiltonian case; (b) damped case; (c)
harmonically excited case, excitation frequency = ω; (d) superharmonically excited case, excitation
frequency = 2ω
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4.3.2 Effect of Excitation

The second standard perturbation is the excitation f3(x,t), which is assumed to be
periodic in time with angular frequency ω and zero mean value (a constant exci-
tation simply shifts the reference/equilibrium point of the system). Furthermore,
it is initially supposed to be harmonic and state independent or “external,” namely,
f3(x,t) = εγ1 sin (ωt), εγ1 measuring the excitation amplitude. The extension to state
dependent “parametric” excitations can be obtained by referring to the so called
equivalent external excitation in the evaluation of the manifolds distance, as shown
in [137].

Both the definitions of the amplitudes εδ and εγ1 are left somehow vague up to
now, but the physical intuition is sufficient for the purposes of the present section.
We only stress that they are small by the introduction of the dimensionless smallness
parameter ε.

The excitation affects the invariant manifolds by producing an oscillating dis-
tance on the Poincaré map, as shown in Fig. 1c, where some of the primary inter-
section points (P.I.P., see [148]) are marked by A, B, C and D. Note that, according
to common sense, the wavy pattern of the excitation produces a wavy pattern of the
distance, and this is confirmed by Fig. 1d, which shows that doubling the frequency
of the excitation doubles the number of P.I.P.

For what concerns the magnitude of the distance, it is clear that it is directly
proportional to the excitation amplitude, and that for small amplitudes it depends
linearly on it. Moreover, comparison of Figs. 1c and 1d shows that the magnitude
of the distance also depends on ω, and in the particular case of Fig. 1 it (rapidly)
decreases with increasing ω. In other cases it can instead increase with ω, but any-
way the magnitude of the distance strongly depends on the excitation frequency.

4.3.3 The Perturbed Manifold Distance

Based on the previous considerations, and focusing attention on the interval A−B−
C−D of Fig. 1c, d, we can write the distance between stable and unstable manifolds
in the following approximate way (see Fig. 1b, c):

d(ωs) = εδa0 + εγ1a1(ω)g(ωs), (2)

where s is an arc length parameter (Fig. 1c), a0 and a1(ω) are a constant and a func-
tion depending on the specific dynamical system, and ε stresses that the assumed
linearity with respect to δ and γ1 holds only for small damping and excitation
amplitudes. The smallness is also tacitly assumed in the additive form of the dis-
tance. Finally, in Eq. (2) g(ωs) is the oscillating part of the distance. It is due to
the periodic excitation, and like it, it has zero mean value and is periodic with the
same frequency. Since the excitation is harmonic and with small amplitude, it is
possible to approximate g(ωs) with an harmonic function, e.g., g(ωs) = cos (ωs).
Using cosine instead of sine has an unessential technical reason, linked to the choice
of the point for which s = 0 (Fig. 1).
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Equation (2) captures two opposite effects suggested by the physical intuition,
according to which damping gives a positive distance, thus contributing to manifolds
non-intersection, whereas harmonic excitation gives an oscillating distance, thus
contributing to manifolds intersection.

4.3.4 More General Excitation and Damping.

The extension of the previous consideration to the case of a non-harmonic, but still
periodic and external, excitation

f3(x,t) = ε

N
∑

j=1

γj sin (jωt + Ψj) =

= εγ1

N
∑

j=1

(
γj

γ1

)

sin (jωt + Ψj) = εγ1f (ωt), (3)

is straightforward. In fact, by using the linearity, consequence of the smallness of
the amplitudes, we have that

d(ωs) = εδa0 + ε
N
∑

j=1

γja1(jω) cos (jωs + Ψj) =

= εδa0 + εγ1a1(ω)
N
∑

j=1

γja1(jω)

γ1a1(ω)
cos (jωs + Ψj) =

= εδa0 + εγ1a1(ω)h(ωs), (4)

More generally, the extension to arbitrary – but small – damping f2(x,ẋ) and exci-
tation f3(x,t) leads to an expression of the distance with the same structure as (4).
The differences are only of technical nature, and appear in the expressions of a0 and
a1(ω), and therefore in a different relation between the Fourier coefficients of the
excitation and those of the distance between the manifolds. In fact, it is not difficult
to accept that a generic periodic excitation gives an oscillating distance, and that the
shape of this oscillation is due to the shape of the excitation in a way which can be
computed, at least in principle. Therefore, from now on we will refer directly to (4)
without specifying the nature of the system, of the damping and of the excitation,
which indeed are “hidden” behind (4). A schematic representation of this distance
is reported in Fig. 2. The constant part due to damping and the oscillating part due
to the excitation are clearly shown.

Equations (3) and (4) are written in the last forms because we assign εγ1 the
role of overall excitation amplitude, while the remaining functions f (m) and h(m)
measure the shape of the excitation and its effects on the manifolds distance. Note
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Fig. 2 The schematic illustration of the distance between stable and unstable manifolds

that, by definition, both f (m) and h(m) are 2π -periodic and f1 = h1 = 1, while
hj = γj

γ1

a1(jω)
a1(ω) (fj and hj are the Fourier coefficients of the respective functions).

Furthermore, Ψ1 represents an unessential phase shift, and can be assumed equal to
zero without loss of generality (it is sufficient to consider Ψ̂j = Ψj − jΨ1 instead
of Ψj).

4.3.5 Reference (Natural) and Controlling Excitations

The previous assumption of considering a general (although still periodic) excita-
tion is important for the development of control, and is now briefly discussed. In
fact, if one wants to operate by modifying the excitation, for example, by adding
to a given natural excitation a properly designed controlling excitation, as done in
classical control [60], one must have clearly in mind that the natural excitation can-
not be touched, otherwise the problem becomes trivial. In other words, one must
have a reference, unchangeable, excitation with respect to which to measure the
improvements due to the control. On the contrary, it is trivial to change the excitation
in order to get a desirable dynamical response: it is sufficient to look at the behavior
chart of the system and chose the excitation (or its parameters) which provides the
desired response. E.g., whatever the reference excitation is, if we are able to change
its amplitude it is obvious that we can easily move from chaotic to non-chaotic
response regimes.

In this chapter, where only periodic excitations are considered, the reference is
the harmonic excitation, which is the most natural and intuitive. Thus, we implicitly
think of the excitation as made of two parts,

f3(x,t) = εγ1 sin (ωt) + εf̂3(x,t) = εγ1{sin (ωt) + f̄3(x,t)}, (5)
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In general, the two parts have their own amplitudes, but we find it useful to refer
to a unique excitation amplitude, as done in the last expressions of (3), (4) and now
in (5), where the overall excitation is just that of the reference excitation. Other
choices are possible in principle, but the present one seems to be the most natural in
the field of the proposed control method.

Within the framework of periodic excitations, the choice of the harmonic one as
the reference excitation is not restrictive. In fact, if another reference excitation is
chosen, then Eq. (5) becomes

f3(x,t) = εγ1{ f3,ref(x,t) + f̄3,cont(x,t)}, (6)

where once more the amplitude of the reference excitation has been singled out and
interpreted as the overall amplitude. By equating the two expressions of f3(x,t) given
in (5) and (6) we get,

f̄3,cont(x,t) = sin (ωt) − f3,ref(x,t) + f̄3(x,t), (7)

so that if we know the control excitation f̄3(x,t) in the case of harmonic reference
excitation, then we know the control excitation f̄3,cont(x,t) corresponding to any ref-
erence excitation f3,ref(x,t).

4.3.6 Energetic Derivation of Perturbed Manifolds Distance

The expression (4) is previously obtained by qualitative considerations. In spite of
this, it provides exact information, because it gives the same manifolds distance as
computed by the Melnikov method [148]. Furthermore, it can be derived by energy
arguments as follows (see [149] for similar reasonings).

An (hypothetic) homoclinic orbit xh(t) is possible if and only if the sum of the
total energy Ed dissipated by damping and of the total energy Ep pumped by the
excitation is zero. These energies are given by, respectively,

Ed =
∫ +∞

−∞
f2[xh(t),ẋh(t)]ẋh(t)dt,

Ep =
∫ +∞

−∞
f3[xh(t),t]ẋh(t)dt. (8)

Let us define the “energetic distance” d = Ed + Ep, so that a condition for xh(t) to
be an homoclinic orbit is

d =
∫ +∞

−∞
f2[xh(t),ẋh(t)]ẋh(t)dt +

∫ +∞

−∞
f3[xh(t),t]ẋh(t)dt = 0. (9)

Remark. An alternative, but equivalent, way to obtain (9) is the following. Multiply
the field equation (1) by ẋh(t) and integrate in time from t = −∞ to t = +∞. We
get H(+∞)−H(−∞)+d = 0, where H is the Hamilton function. Since the orbit is
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homoclinic, it approaches the same saddle for t = ±∞ , so that H(+∞) = H(−∞)
and d = 0 follows.

If d �= 0 the guessed xh(t) cannot be an homoclinic orbit. Recalling [148] that an
homoclinic intersection between stable and unstable manifolds implies the existence
of an homoclinic orbit, it is possible to conclude that if we are able to show that no
solutions of (1) exist satisfying (9) and approaching the same saddle at infinity, then
the manifolds keep disjoint and there is no homoclinic intersection. In other words,
there is a link between the manifolds distance and the energetic distance, as they
simultaneously vanish in the case of homoclinic intersection. By varying a system
parameter, an homoclinic bifurcation occurs when both become zero for the first
time.

The Eq. (9) holds in general, and it is an useful check for a guessed homoclinic
solution. We specialize it to the considered case of a nearly Hamiltonian system.
The unperturbed (Hamiltonian) system has an homoclinic orbit x0(t−s) (see Fig. 1),
where t is the real time and s an arbitrary phase shift introduced because the refer-
ence system is autonomous (see Eq. (1) with f2 = f3 = 0). Let the perturbations f2
and f3 be small, say of the order of ε (f2 → εf2 and f3 → εf3, see, e.g., Eq. (5)).
Then, it is natural to assume that, under certain regularity conditions, any solution
of the perturbed system is ε-close to the solution of the unperturbed one to which it
is expected to converge when ε → 0. Accordingly, we assume

xh(t) = x0(t − s) + εx1(t) + ..., (10)

where x1(t) no longer contains the arbitrary phase because it is a solution of a non-
autonomous system.

Inserting (10) in (9) we get

d(s) = ε{
∫ +∞

−∞
f2[x0(t − s), ẋ0(t − s)] ẋ0(t − s)dt

+
∫ +∞

−∞
f3[x0(t − s),t]ẋ0(t − s)dt} + ...

= ε{
∫ +∞

−∞
f2[x0(t), ẋ0(t)]ẋ0(t)dt

+
∫ +∞

−∞
f3[x0(t), t + s]ẋ0(t)dt} + ..., (11)

namely, d(s) = ε{constant+periodic function of s}+higher order ε-terms. It is impor-
tant to stress that this expression requires only the knowledge of the unperturbed
homoclinic orbit x0(t), and that the constant part of (11) is due to the damping
f2(x,ẋ), while the periodic part of (11) is clearly related to the periodicity in time
of the excitation f3(x,t).

It is immediate to check that (11) and (4), which have been obtained under the
same hypothesis of nearly Hamiltonian system, not only simultaneously vanish
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in the case of homoclinic intersection, but they also have the same mathematical
structure and the same functional dependence on the perturbations. It is then pos-
sible to conclude that the latter provides the searched energetic justification of the
former.

On the basis of the previous considerations we can even obtain formulas for
a0, a1(ω) and h(ωs), which are the key elements of (4), by a direct comparison. It
is easy to check that they provide the same expression of the classical Melnikov
method [148], so that they are exact in the asymptotic sense.

4.3.7 Minimum Manifolds Distance

Independent of its phenomenological derivation, its physical meaning or its exact
calculation by the Melnikov or other methods, we have found that to look for homo-
clinic intersections we have to search the zeros of the distance (4).

First, we note that, as we are interested in the zeros of (4) and not in its sign, it is
possible to assume a0 > 0 without loss of generality. Then, the distance is an oscil-
lating function around a constant positive value, as schematically shown in Fig. 2.
From this picture and from (4) it is seen that the distance d(ωs) has zeros if and only
if its minimum

d = min
m∈[0,2π ]

{d(m)} = εδa0 + εγ1a1(ω) min
m∈[0,2π ]

{h(m)}
= εδa0 − εγ1a1(ω)M (12)

is negative. When d is equal to zero for the first time by varying a governing param-
eter, for example the excitation amplitude, an homoclinic bifurcation occurs.
Remark. The expression (12) is useful in the case in which a0 and a1(ω) have the
same sign. If, on the other hand, they have a different sign, then we must consider

d = min
m∈[0,2π ]

{d(m)} = εδa0 + εγ1a1(ω) max
m∈[0,2π ]

{h(m)}
= εδa0 + εγ1a1(ω)M (13)

instead of (12).

In the expression (12) a key role is played by the number

M = M

(
γj

γ1
,Ψj

)

= − min
m∈[0,2π ]

{h(m)} =

= − min
m∈[0,2π ]

{
N
∑

j=1

(
γj

γ1

)
a1(jω)

a1(ω)
cos (jm + Ψj)}. (14)

It is positive, because h(m) has zero mean value, and it does not depend on the
overall excitation amplitude εγ1, which is singled out in (12). Indeed, it is just this
property which suggested the previous choice of the overall excitation amplitude.
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While being independent of the excitation amplitude, M is instead strongly
dependent on the shape of h(m) and, consequently, on the shape of the excitation.
The most important property of M is that it summarizes in a unique number this
dependence, or, equivalently, it summarizes the contribution of the superharmonics
added to the reference harmonic excitation (see Eq. (5)).

In the case of the harmonic excitation we have h(m) = cos (m), so that M = 1.
This number therefore represents a reference value for M. In fact, we can distinguish
between three families of periodic excitations: those for which M = 1, M < 1 and
M > 1. The first class is equivalent to the harmonic excitation for what concerns
the homoclinic bifurcations. The second class is useful in the problem of control,
as we will see in the sequel, while the latter can be used in the case of anti-control
[141].

4.4 Influence of the Parameters on the Manifolds Distance

The most important result of the previous section, which is summarized by the
expressions (12), is that the minimum distance between the stable and unstable
manifolds has been computed as a function of the governing parameters. Roughly
speaking, we can distinguish between various families of parameters.

The first family is constituted by the mechanical system parameters such as mass,
linear and nonlinear stiffnesses, etc. In (12) they are embedded in the definitions of
a0 and a1(ω). For a given mechanical oscillator they are known, while they can
be modified in the design process. Their influence cannot be discussed in general,
because (i) it strongly depends on the mechanical characteristics of the system (hard-
ening vs. softening, etc.), and (ii) it depends on how a0 and a1(ω) depend on the
mass and stiffnesses, and this considerably varies from system to system, as it can
be seen by comparing the expressions obtained for different oscillators [37].

The second family consists of the main parameters of the perturbations, such as
damping and excitation amplitude and frequency, which are instead singled out in
(12). Also these parameters can be considered as data, for a given problem, or can
be modified during the design. In the considered case of small perturbations, damp-
ing and excitation amplitude influence linearly the minimum distance (12), and so
their effects can be easily understood. In particular, note that when the damping is
zero with non zero excitation, d is always negative, namely, there is always homo-
clinic intersection in almost Hamiltonian systems (Fig. 1c, d). On the contrary, with
damping and without excitation d is always positive so that there is no homoclinic
intersection at all (Fig. 1b).

More involved is the influence of the excitation frequency. In this respect, we can
only infer that limω→0 a1(ω) = 0, because ω = 0 corresponds to static excitation
which does not pump energy into the system, and that limω→∞ a1(ω) = 0, because
when the frequency is very high, only the time average of the excitation actually
forces any given inertial system: but since the excitation is periodic, the average
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is zero, so that the system is basically not forced, and the oscillating term in the
distance disappears.

The last family we consider is constituted by the excitation shape parameters
γj/γ1 and Ψj, which are the key ingredients for the forthcoming analysis. Their
influence on the minimum distance is summarized by the number M, which basically
plays the role of an interface between the excitation shape and d. Not only are these
parameters very important in the control method which is the object of this section
(because they are allowed to vary for control design purposes), but they are also the
less common because usually the excitation is considered as harmonic (sinusoidal).
Thus, they deserve special attention.

Actually, the dependence of d on M is linear, and thus it is trivial. The non
trivial point is instead the (nonlinear) dependence of M on γj/γ1 and Ψj. The
things are quite involved because the dependence of M on γj/γ1 is modulated by
the factors a1(jω)

a1(ω) appearing in the definition of hj. Since these factors are system
dependent, because so is a1(s), we cannot discuss in general the dependence of
M on γj/γ1.

What we can do in a unified way, i.e. without referring to a specific mechanical
system, is to analyze the dependence of M on hj (and on Ψj). To illustrate this fact
by an example, we consider N = 2, i.e. a single added superharmonic. The function
M(h2,Ψ2) = − minm∈[0,2π ]{cos (m) + h2 cos (2m + Ψ2)} is plotted in Fig. 3, from
which we see that both h2 and Ψ2 strongly influence M. More precisely, we clearly
see that there are regions for which M < 1, which will be useful for control, and
regions for which M > 1, which are useless (dangerous indeed) with respect to the
control features. These conclusions are general and hold also for the case N > 2.

4.5 Homoclinic Bifurcation Thresholds

The multidimensional parameters space can be divided in two regions, accord-
ing to whether the manifolds minimum distance is positive, corresponding to non
intersecting, or detached, manifolds, or the minimum distance is negative, corre-
sponding to intersection. The boundary between these two regions, i.e., the locus
of points d = 0, corresponds to manifolds tangency, namely, to the homoclinic,
or heteroclinic, bifurcation. In fact, crossing this boundary the manifolds become
intersecting (or detach, according to the direction of crossing).

The detection of this boundary is crucial for the control method based on the
elimination of the homoclinic or heteroclinic bifurcations. In fact, the method can
also be interpreted as aimed at shifting this boundary in a certain direction, usually
toward higher excitation amplitudes.

It is common to represent the bifurcation threshold in terms of excitation ampli-
tude, namely, to solve d = 0 with respect to γ1. As a matter of fact, this is one of
the reasons why we pay a lot of attention to the definition of a proper excitation
amplitude along this section.
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Fig. 3 The function M(a,b), where a = h2 =
(
γ2
γ1

)
a1(2ω)
a1(ω) ∈ [0,0.65] and b = Ψ2 ∈ [0,π ]

The solution of d = 0 represents the critical excitation amplitude threshold for
which the homoclinic or heteroclinic bifurcation takes place, and it will be denoted
by γ1,cr. If the distance can be expressed by (12) the computation of the critical
threshold is trivial:

γ1,cr = δa0

a1(ω)

1

M
. (15)

The simplicity of the previous expression is obviously a consequence of the lin-
ear nature of the distance with respect to γ1, which however no longer holds in
more general cases, such as, for example, those in which the manifolds distance is
computed numerically [136]. Here, the solution of d = 0, while being conceptu-
ally simple, requires an extra computational effort consisting of solving a nonlinear
algebraic equation. Furthermore, the equation is known only in a discrete set of
points, and this is another element of difficulty.

In any case, irrespective of how the critical excitation amplitude has been
computed, exactly, like in piece-wise linear systems [62, 140], by a perturbative
approach, like in (15), or numerically, this value is eventually a function of all the
other parameters of the system.

It is interesting that the excitation shape enters the expression (15) only by
means of the single number M, which evidently summarizes also in this respect
the effects of the superharmonics added to the basic harmonic excitation. Of course,
this property is not expected to hold in general, and in other cases the dependence
of γ1,cr upon the excitation shape is more involved.
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We remark that both the minimum distance d (through Eq. (12)) and the homo-
clinic bifurcation threshold γ1,cr (through Eq. (15)) are inversely proportional to
the excitation shape parameter M, i.e., the smaller M, the larger d and γ1,cr. The
influence of the other parameters is complex, and in general it is far from linear.
In fact, only the damping δ enters linearly in (15), this being a consequence of its
smallness.

In general, not even a qualitative estimate is possible a priori. For example, for
some mechanical systems the critical threshold of the homoclinic bifurcation of
the hilltop saddle tends to a finite value when the excitation frequency tends to
zero (e.g., the inverted pendulum between lateral barriers [62]) while in others it is
unbounded (e.g., the Helmholtz oscillator [137]). This is a consequence, or perhaps
a source, of the fact that chaotic behaviour – which is strongly related to global
bifurcations – is not monotonic with respect to any parameter.

A special situation occurs for the class of excitations having M = 1, which
includes the harmonic excitation. Since it is considered as the reference one, we
indicate by γ h

1,cr = δa0
a1(ω) the corresponding critical threshold. According to this

definition, Eq. (15) can be written in the equivalent form

γ1,cr = γ h
1,cr

1

M
. (16)

This expression has the advantage of splitting into two independent parts the main
dependences of γ1,cr upon the system parameters. In fact, γ h

1,cr contains all informa-
tion regarding the mechanical system, such as mass, stiffness, etc., and the reference
excitation, such as its kind (i.e., external, parametric, etc.) and frequency, while M
contains information only on the excitation shape (or on the controlling part of the
excitation).

This property does not hold in more general situations, for example when the
critical threshold is computed by numerical methods without any assumptions on
the smallness of the excitation amplitude. Here all the parameters of the systems are
strongly coupled, and it is not possible to single out the dependence on the excitation
shape.

When the excitation is periodic, irrespective of being harmonic (i.e., sinusoidal)
or not, external or parametric, etc., it is usual to draw the critical amplitude as a
function of the excitation frequency, for fixed values of all the other parameters. An
example referring to the Helmholtz oscillator [137] is reported in Fig. 4. Here the
excitation is periodic, and accordingly, the critical threshold is γ h

1,cr.
From Fig. 4 it is clear how the parameters subspace is divided in the two regions

of homoclinic intersection and homoclinic detachment. The first one is the region of
the so-called “Melnikov chaos,” where various manifestations of chaos are expected:
some of them, such as fractal basin boundaries, sensitivity to initial conditions, etc.,
will certainly occur, although to a different extent, while others, such as the chaotic
attractors, are only theoretically feasible, but not necessarily exist in the whole
region. When chaos – in all its manifestations – is considered as an undesirable
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event, this region must be regarded as unfeasible, or dangerous, and care is needed
in staying sufficiently far away from it.

The region of Melnikov chaos is “unbounded” and convex in Fig. 4. There are
no reasons to believe that these properties are general, and both bounded and/or non
convex sets of homoclinic intersection are expected to occur, at least in principle.
Even non-connected sets are possible.

4.6 Control Ideas

So far we have obtained all the necessary prerequisites for application of the control
method, i.e., we have related the manifolds minimum distance d and the homoclinic
(or heteroclinic) bifurcation threshold γ1,cr to the system parameters, and we are
now in a position to describe the control ideas.

There are two conceptually different approaches, which however in some cases
are equivalent and yield the same control implementation.

In a fixed situation, namely, for a given system, given operational conditions and,
therefore, given system parameters, one can be interested in eliminating the stable
and unstable manifolds intersection by the action of control. This entails acting on
the system in such a way that the minimum manifolds distance passes from nega-
tive to positive. Global bifurcations are not directly involved in this case, although
assuming that there is a continuous passage from the uncontrolled (intersection,
negative distance) to the controlled (no intersection, positive distance) system, obvi-

0
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δ

region with

homoclinic

intersections

1,cr

γ
1,cr
h

region without
homoclinic

intersections

Fig. 4 The critical threshold γ h
1,cr as a function of the excitation frequency ω, for the Helmholtz

oscillator [137]
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ously there is an intermediate condition in which the distance is zero, corresponding
to a homoclinic (or heteroclinic) bifurcation.

This approach can be of interest in specific situations, and when an overall pic-
ture of the control properties is not needed. Accordingly, only a “local” analysis is
required.

For varying system parameters (e.g., the excitation amplitude), on the other hand,
one can be interested in shifting the homoclinic (or heteroclinic) bifurcation thresh-
old in parameters space by the control action. Herein, the global bifurcation becomes
the key point, and in principle the analysis is more complete and, consequently,
more difficult. Practically this approach is aimed at modifying the regions of non
homoclinic bifurcation of Fig. 4 by changing their boundaries.

By comparing the two approaches, one notes that the former is the most nat-
ural when the control is considered from a dynamical system point of view, as it
involves only topological properties, while the latter is the most natural when the
control is considered from an engineering point of view, because it concerns also
practical aspects, such as the behaviour in parameters space, which have important
consequences in terms of system response.

Actually, if the two control targets (manifolds distance and critical excitation
amplitude) have the same dependence on problem parameters, the two approaches
are practically equivalent, though remaining conceptually distinct. An important
example is that in which we consider the homoclinic bifurcations of nearly Hamilto-
nian systems, detected by the Melnikov method (see previous sections), and assume
the shape of the excitation as control action. We have shown in (12) and (14) that
the minimum distance and the homoclinic bifurcation threshold, respectively, are
both inversely proportional to the shape parameter M, so that in both cases control
entails decreasing M.

In more general cases, such as those in which the distance is computed numer-
ically without any specific restriction on the system, the two approaches remain
distinct also from a practical point of view, and in principle they lead to practically
different results, although similar qualitative behaviours are expected in common
situations.

4.7 Gains and Saved Region

To quantify the improvement of control with respect to the reference (harmonic)
excitation in terms of homoclinic bifurcation threshold, it is useful to introduce the
so-called gain

G = γ1,cr

γ h
1,cr

= 1

M
, (17)

which is the ratio between the critical threshold with control and the critical thresh-
old in the reference case.
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With this definition, we can reformulate the control idea by saying that it consists
in increasing the gain by varying γj and Ψj.

The region γ h
1,cr(ω) < γ1 < γ1,cr(ω) = Gγ h

1,cr(ω) is the zone of parameters
space where arbitrary periodic excitations are theoretically effective in eliminating
homoclinic chaos (with respect to the harmonic excitation), and it has been called
saved, or controlled, region [37]. Thus, another, equivalent, point of view about
the control method is that it is aimed at obtaining a saved region in the excitation
amplitude-frequency parameters space.

The saved region for Helmholtz systems, whose homoclinic bifurcation threshold
is depicted in Fig. 4, is reported in Fig. 5 in the case of an ω-independent value of the
gain G. From this picture it is evident how the saved region is obtained by shifting
the homoclinic bifurcation threshold toward higher excitation amplitudes.

4.8 Optimal Control and Optimization Problems

In the previous sections it has been established that the control method consists in
varying the shape of the excitation in order (i) to increase the distance between stable
and unstable manifolds, or (ii) to increase the homoclinic bifurcation threshold, or
(iii) to obtain a saved region. It is natural to do these operations in a clever way,
i.e., by choosing among all admissible excitations the one which maximizes the
considered target function (d, γ1,cr or the magnitude of the saved region). This point
represents the second keystone of the considered control method, and is discussed
in this section.
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homoclinic

intersections

1,cr
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region

γ
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γ
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region without

homoclinic
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Fig. 5 The saved region for the Helmholtz oscillator [137] of Fig. 4
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In both cases (i) and (ii), pursuing the objective to maximize the manifolds dis-
tance or the homoclinic critical threshold entails increasing the gain G introduced in
(17). But choosing among all admissible excitations the one which maximizes the
gain leads to the optimization problem

Problem P0. Maximize G by varying the Fourier coefficients γj and Ψj of the exci-
tation,

whose solution provides the best or optimal excitation. Since increasing G entails
decreasing M = 1/G, and decreasing the positive number M entails increasing

−M = min
m∈[0,2π ]

{h(m)},

it is possible to rewrite problem P0 in its extended form:

Problem P0’. Maximize minm∈[0,2π ]{h(m)} by varying the coefficients γj and Ψj of

h(m) =∑N
j=1

(
γj
γ1

)
a1(jω)
a1(ω) cos (jm + Ψj).

4.8.1 Universal Optimization Problem

It is useful to reformulate problem P0 in the following equivalent form:

Problem P1. Maximize minm∈[0,2π ]{h(m)} by varying the Fourier coefficients hj and
Ψj of h(m) = cos (m) +∑N

j=2 hj cos (jm + Ψj).

The key advantage in passing from problem P0 to problem P1 is that the latter
is system-independent, i.e. universal. This can be ascertain by noticing that in P0
the system-dependent function a1(ω) is present, while it disappears in P1, where
the variable coefficients γj are “replaced” by the variable system-independent coef-
ficients hj.

Note that the function a1(ω) not only is system dependent, but in general it also
depends on the specific homoclinic orbit considered in systems having more than
one homoclinic intersection.

Being universal, problem P1 can be solved just once, and its solution is univer-
sally valid, namely, it is not necessary to solve problem P1 for each specific system.

To illustrate the solution of problem P1, let us first consider the simplest case
N = 2, i.e., the excitation is constituted by the basic harmonic plus one controlling
superharmonic. This case can be handled manually [137]. In fact, the optimal choice
is Ψ2 = 0, and

M(h2) = − min
m∈[0,2π ]

{h(m)}
= − min

m∈[0,2π ]
{cos (m) + h2 cos (2 m)}

= min

{

1 − h2,h2 + 1

8h2

}

, (18)
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so that G(h2) = 1/M(h2). This function is depicted in Fig. 6, from which we infer
that

GN=2
optimal = max

h2
{G(h2)} = √

2, (19)

this maximum being attained for h2 = √
2/4.

The cases with more superharmonics are conceptually similar, but computation-
ally more difficult, and they have been solved numerically after having proved that
the condition Ψj = 0 is still optimal [37]. The results are reported in Table 1, which
also shows that for N → ∞ the solution h(m) tends to a well defined limit consti-
tuted by a positive Dirac delta of amplitude π at m = 0 plus the constant function
−1/2 (whose Fourier coefficients are in fact hj = 1 and Ψj = 0). It is proved in
[26, 62] that this last function actually represents the mathematical solution of the
optimization problem in the case of an infinite number of superharmonics.

Table 1 The numerical results of various optimization problems with increasing number of super-
harmonics

N GN
optimal h2 h3 h4 h5

2 1.4142 0.353553
3 1.6180 0.552756 0.170789
4 1.7321 0.673525 0.333274 0.096175
5 1.8019 0.751654 0.462136 0.215156 0.059632
... ... ... ... ... ...
∞ 2 1 1 1 1

1.5 1.5

1.5

1.5– 0.5

– 0.5

h

1
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Fig. 6 The function G(h2) in the case of a single superharmonic (N = 2)
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Fig. 7 Different optimal functions h(m) for N = 2, ..., 5

Examples of optimal h(m) are reported in Fig. 7 from which it is clear that the
optimal solution is characterized by the presence of multiple coinciding minima. It
is also possible to foresee the convergenge of that family of solutions to the limit
solution for N → ∞ discussed above.

4.8.2 From the Universal Optimal Solution to the Real Optimal Excitation

The link between the optimal solutions obtained in the previous point and the real
optimal excitation to be applied to the structure is represented by the relations

γj = hjγ1
a1(ω)

a1(jω)
, (20)

so that the optimal excitation can be written as

f3(x,t) = εγ1a1(ω)
N
∑

j=1

hj

a1(jω)
sin (jωt), (21)

which, when compared with (5) provides the optimal controlling excitation

f̄3(x,t) = a1(ω)
N
∑

j=2

hj

a1(jω)
sin (jωt). (22)

In (21) and (22) there are the “universal” coefficients hj, which can be taken from
Table 1 and do not need to be recalculated each time, and the function a1(ω) which is



Controlling Chaos: The OGY and an Alternative Control Method 253

instead system dependent and thus changes when the control is applied to different
cases.

The previous consideration further underlines one interesting, and useful, aspect
of the proposed control method. In fact, upon solving the difficult part, namely the
solution of the mathematical optimization problem, the operator is just left with the
“technical” problem of computing the function a1(ω) which can be “easily” done by
looking at the manifolds behaviour, as discussed in the previous sub-sections. This
makes the application of the control method straightforward.

Another issue arises when passing from the universal solution to practical appli-
cations. In fact, for technical reasons it may be useful to have some limitations on the
optimal solution (for example, one can ask that |γj| < |γ1|, or that maxt∈[0,T]{f̄3(x,t)}
< const., etc.). These requirements can be introduced as constraints in the optimiza-
tion problem P1. While not introducing special conceptual difficulties (although
more sophisticated tools may be required to search for the optimal solution), these
constraints are usually system dependent, so that the optimization problem turns
into a non universal one, which is not generic and has to be solved separately for
each system. This makes the application of the control method much more involved.
Constrained optimization problems have been solved in [137].

4.9 Extended (“Global”) and Localized (“One-Side”) Application
of Control

In many mechanical systems, such as symmetric oscillators, there is more than one
homoclinic bifurcation which is relevant for complex dynamics and needs to be
controlled (i.e., eliminated or shifted in parameter space).

In this situation, the presence of two or more homoclinic orbits permits a choice
between different control strategies. Indeed, we can:

1. control only one (e.g., the right or the left in symmetric systems) homoclinic
bifurcation, irrespective of what happens to the others,

2. control simultaneously two or more of them (e.g., the right and the left in sym-
metric systems),

3. control simultaneously all of them.

The choice 1 (called “one-side control” [37]) is aimed at obtaining a topologically
localized control, and can be pursued by applying the points of the previous sec-
tion separately to each homoclinic loop. Of course, in this case we will have an
optimal excitation for each homoclinic intersection to be removed, and since these
are system- and orbit-dependent, there is no hope that the optimal excitation able to
remove one homoclinic intersection also succeeds in removing the other homoclinic
intersections (indeed, the non-controlled homoclinic bifurcation threshold is usually
lowered).

The choice 2 is aimed at controlling an extended part of the phase space, while
the choice 3 is aimed at controlling the whole phase space, and thus it has been
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called “global control” [37]. They require further considerations, as a consequence
of the fact that in this case we want to control simultaneously more homoclinic
intersections, i.e., we have to spread the resources available for optimization over
different undesired events.

The first characteristic property of this case is that the underlying optimization
problem is no longer universal, apart from the special case of symmetric systems
with two symmetric homoclinic loops. Unfortunately, things are even more com-
plex, and different approaches/strategies are possible. A detailed description of the
whole scenario is reported in [139] with reference to the Helmholtz – Duffing oscil-
lator. Some main results are summarized in the following.

4.9.1 Global Control of Gains

Aiming at controlling simultaneously more homoclinic bifurcations, we have to
monitor the control target (distance d or homoclinic bifurcation threshold γ1,cr) of
each homoclinic loop. From a mathematical point of view this goal can be obtained
by controlling the minimum value among all bifurcations, which guarantees that all
critical thresholds will not be reduced.

Since both the distance and the homoclinic bifurcation thresholds are propor-
tional to the gain G, the first possible approach consists of maximizing the minimum
gain, which yields the following optimization problem:

Problem P2. Maximize G = min{G1,G2,...,GL} by varying the Fourier coefficients
γj and Ψj of the excitation.

In the problem P2 we have that Gk = 1/Mk and

Mk = − min
m∈[0,2π ]

⎧

⎨

⎩

N
∑

j=1

(
γj

γ1

)
ak

1(jω)

ak
1(ω)

cos (jm + Ψj)

⎫

⎬

⎭
, (23)

where k = 1,2,..,L is the number of homoclinic bifurcations to be controlled simul-
taneously, and ak

1(ω) is the function corresponding to the k-th homoclinic loop. Note
that in general all Mks are distinct from each other.

The (unavoidable) presence of the functions ak
1(ω) in problem P2 shows that it is

system-dependent.
In [139], where only the case L = 2 is considered, this problem has been named

“global control without symmetrization,” because the homoclinic bifurcation thresh-
olds γ k

1,cr, which are distinct in the reference case, remain distinct also in the optimal
case. In the same paper the optimization problem has been solved in some specific
cases, showing that

1. the optimal gain is much lower than that obtained in the “one-side control” (see
Table 1);

2. at the optimum, the condition G1 = G2 is attained.
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Roughly speaking, property 1 is a consequence of the fact that now the control
“efforts” are spread over more homoclinic orbits, instead of being concentrated on
a single one. This property is expected to be general, contrary to property 2 which
is expected not to be satisfied, especially in the presence of more homoclinic loops.

4.9.2 Global Control of Homoclinic Bifurcation Thresholds

In the previous strategy the homoclinic bifurcation thresholds remain distinct after
the application of control. It could be desirable to have a control providing, or
attempting to provide, the same homoclinic bifurcation thresholds, even at the price
of reducing some of them with respect to the values for harmonic excitation. This
consideration leads to another optimization problem:

Problem P3. Maximize γ1,cr = min
{

γ 1
1,cr, γ

2
1,cr,..., γ

L
1,cr

}

by varying the Fourier

coefficients γj and Ψj of the excitation,

where

γ k
1,cr = δak

0

ak
1(ω)

1

Mk
. (24)

Note that, contrary to the previous case, now also the different expressions ak
0 are

taken into account – and this further stresses how also this case is system-dependent.
In [139] this problem has been called “global control with symmetrization.”

For increasing control “resources,” the optimization problem works in the fol-
lowing way. It increases the lowest value of γ k

1,cr, say γ 3
1,cr, until it reaches the

subsequent lowest value (which could be lowered – with respect to the harmonic
case – during this first phase), say γ 5

1,cr. Then, it increases simultaneously γ 3
1,cr and

γ 5
1,cr, until they reach the subsequent lowest value (again, possibly decreased), and

so on. This process ends when:

1. The “resources” for control finish after having equalized all the γ k
1,cr. This case

has been named “global control with achieved symmetrization” in [139], and the
optimal solution is characterized by γ 1

1,cr = γ 2
1,cr = ... = γ L

1,cr, which represents
a desired circumstance.

2. The “resources” for control finish before having equalized all the γ k
1,cr. This case

has been named “global control with pursued symmetrization” in [139].

Of course, the former case is expected when the homoclinic bifurcations of the
different loops under harmonic excitation are close to each other, as occurs, for
example, for weakly asymmetric systems.

The latter case, on the other hand, is expected when the reference homoclinic
bifurcations are very different from each other; a limit situation is represented by
the case in which the reference homoclinic bifurcation thresholds are so different
that control uses all its resources to increment the lowest value, so that in this case
this approach coincides with the “one-side control.”
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4.10 On the Application of the Control Methods to Archetypal
Single-d.o.f. Systems

In the previous sub-sections, a phenomenological analysis of the homoclinic and
heteroclinic bifurcations of the invariant manifolds of a saddle triggering the occur-
rence of complex events in dynamical systems has been presented for a generic,
periodically excited, oscillator, along with the basic idea and the objective of their
control, and some ensuing optimization problems.

The next issue consists in applying the control method to specific nonlinear oscil-
lators. This has been the subject of a number of research papers [62, 63, 107, 135–
146] which the reader is referred to for the details of successful application. Herein,
we just aim at giving an overview of some main characterizing features of the
considered systems. In this respect, it is important to refer to a suitable number
of archetypal oscillators with a well-defined mathematical character and such to
reliably describe the physical behaviour of real systems in engineering science and
mechanics. Of course, their presentation and discussion has to be suitably organized.
Indeed, nonlinear oscillators can be classified based on different viewpoints, accord-
ing to whether the focus is preferably on dynamical or control aspects, while paying
attention – in any case – to the characterizing features of physical world applications
and to the associated computational aspects.

Herein, with the aim of stressing the mechanics environment wherein this chap-
ter – devoted to exploiting system dynamics for control purposes – has nurtured,
we choose to assume a basically mechanical viewpoint with the associated dynamic
phenomena in the background, by highlighting those features of the considered sys-
tems which entail more meaningful control aspects. Within this overall scheme,
systems are categorized according to different features, namely whether they are
(i) smooth or non-smooth, whether they are characterized by (ii) single-well or
multi-well potentials, by (iii) softening or hardening behaviour, by (iv) symmetric
or asymmetric characteristics, also considering the occurrence or non-occurrence of
a system natural frequency, and whether the technical interest is towards their (v)
transient or steady response. Of course the necessary attention is also payed to the
characterizing mechanical phenomena to be possibly controlled.

In terms of formulation and implementation of the dynamically based control
strategy, a second viewpoint pays due attention to those geometrical and compu-
tational aspects which play a fundamental role in describing and understanding
the system dynamics and in evaluating the performance of the control procedure,
respectively. In this respect, the most meaningful alternatives are concerned, on one
side, with dealing with either (i) homoclinic or heteroclinic manifolds, and with
controlling either (ii) overall or local bifurcational events; on the other side, with
the possibility to develop an (i) approximate or exact bifurcation analysis, and to
implement a (ii) mainly theoretical or purely numerical control strategy. Of course,
strong cross-correlations do occur amongst several of the above mentioned classi-
fication criteria. They are however believed to maintain their own interest in the
aim of schematically organizing a quite rich and involved scenario of mechanical
systems as well as of comparing the respective dynamic behaviours.
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4.10.1 Smooth vs. Non-smooth Systems

Smoothness or non-smoothness are a basic property of mechanical systems with
important consequences as regards their mathematical description and dynamical
characterization. Thus, they are assumed as a first criterion to distinguish between
two broad classes of systems.

Due to the occurrence of discontinuities in either the displacement or the veloc-
ity, non-smooth systems exhibit a further enriched pattern of response classes and
local/global bifurcations with respect to the already involved scenario of smooth
systems, along with some main novelties in the dynamics features.

In terms of the proposed control, the main difference is that in smooth systems the
homoclinic bifurcation cannot be computed analytically, not even for the homoclinic
orbits of hilltop saddles. The only analytical results are obtained by perturbative
approaches, as the Melnikov method [148] or the method illustrated in Sect. 4.3.
For the piece-wise linear systems, instead, the homoclinic bifurcation threshold can
be computed exactly, and this allows a more detailed application of control.

A number of fully nonlinear oscillators with continuous-type nonlinearities, of
either exact (such as the mathematical pendulum) or approximate, polynomial-
kind (such as the Duffing [136, 138], Helmholtz [137], Helmholtz-Duffing [139]
oscillators, a micromechanical system [142]) nature, have been considered. The
latter mostly – though not exclusively – describe the nonlinear single-mode, non-
internally resonant, dynamics of a number of smooth infinite-dimensional systems
of interest in structural and engineering mechanics.

Two piecewise linear oscillators have been dealt with, i.e. the impacting inverted
pendulum [26, 62, 135, 107] and the rocking rigid block [63, 140, 141], to be
intended, respectively, as paradigmatic models for non-smooth nonlinear dynamics
of mathematical/mechanical significance or more practical interest.

4.10.2 Single-Well vs. Multi-Well Potentials

Depending on the energy imparted to the system through the initial conditions or the
excitation amplitude, as well as on the values of other control parameters, two main
issues are of considerable practical importance for a mechanical system, namely (i)
the possibility to have the system actually working within the range of operating
conditions which it has been designed for, and (ii) the loss of technical performance
or structural integrity ensuing from the system getting off its foreseen operational
regime.

In dynamical terms, it is possible to restrict ourselves to systems characterized by
the existence of either a single-well or a (possibly) multi-well potential, for which
two different critical situations may occur, namely,

1. the motion does develop on a small scale in the phase space, being actually
restricted within a sole, i.e. the foreseen, potential well, however with dynamical
features other than the wanted ones, as it may occur due to any in-well bifurcation
of the system dynamics to a different periodic regime or to an aperiodic regime;
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2. the motion does develop on a large scale in the phase space, i.e. also beyond
the invariant manifolds of the hilltop saddle which delimit the working potential
well and organize the whole system dynamics.

The occurrence of either a single-well or a multiple well has a considerable influ-
ence as regards various dynamics, bifurcation, and control issues.

4.10.3 Softening vs. Hardening Systems

The distinction between hardening and softening systems reflects the intrinsic math-
ematical/mechanical character of the system constitutive law and the associated
dynamic effects occurring for finite amplitude motions. It mostly pertains to the
large scale motions arising upon the global bifurcation of the hilltop saddle man-
ifolds, which can occur in both single-well and multiple-well systems, and it is
actually concerned with the kind of out-of-well attractor onto which the system
settles down upon overcoming the bounding invariant manifolds, i.e. after escaping
from the potential well. Again, two basically different situations can occur.

1. Though being no more restricted within the reference well, the overall system
dynamics still remains bounded. This is the case where, after escape, the motion
develops entirely within a neighbouring, bounded, well, or it wanders around,
e.g., two wells, the reference and a neighbouring one. Scenarios of this kind
may occur in multi-well hardening systems and are usually unpleasant from the
application viewpoint, yet not destructive. Aperiodic motion scattered between
adjacent wells, or the so called cross-well chaos, are indeed classes of motion
pertaining to such after-escape non-destructive regimes, and are quite common
in several (e.g., two-well Duffing-type [136, 138, 139]) systems. Of course,
such kinds of unwanted dynamics may need to be avoided or somehow con-
trolled. However, technical situations can be devised wherein realizing alternat-
ing dynamic regimes between the reference well and an adjacent one can even be
desirable: let us think, e.g., of the shift between oscillating (in-well) and rotat-
ing (out-of-well) regimes in a planar pendulum subjected to vertical harmonic
(i.e. parametric) excitation of its support [150].

2. The system dynamics escapes to “infinity”. This is the case where, after escape,
the motion is theoretically unbounded, and practically corresponds to the sys-
tem settling down onto an attractor far away and completely different from the
designed one or, in other terms, to the definitive system failure. Mechanical situa-
tions of reference in this respect are, e.g., the capsizing of a rolling ship in ocean
waves [7, 137, 151], the overturning of a rocking rigid block under periodic
acceleration of its basement [140, 141], or the pull-in phenomenon occurring in a
microelectromechanical system [142] to be used as a resonator or sensor device,
which corresponds to the microbeam collapse onto the electrically charged sub-
strate. However, there are again technical situations wherein realizing a regime
nominally “at infinity” is highly desirable: think, e.g., of the pull-in dynamics of
the microbeam in a MEMS to be used as a switch device.
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It is also worth stressing two more meaningful points. (a) Both the two different
escape situations just illustrated are actually characterized, from a topological view-
point, by a progressive erosion process of either a single in-well basin of attraction
or of the whole collection of in-well basins. Yet, the degree of loss of dynamical
integrity [146, 147] and the criticality of the final outcomes are considerably differ-
ent in the two cases. (b) The scenario of bounded/unbounded dynamical regimes of a
given system in the excitation parameters space can be influenced by the occurrence
or non-occurrence of a system natural frequency, the former case naturally entail-
ing a possibility of resonant excitation condition. This may meaningfully affect the
(major or minor) system sensitivity, in terms of loss of dynamical integrity, to the
variation of a leading bifurcation parameter.

4.10.4 Homoclinic vs. Heteroclinic Bifurcations

As already discussed, the occurrence of a generic underlying bifurcational event,
i.e. of the global, homoclinic or heteroclinic, bifurcation of a (possibly) hilltop
saddle governing the whole system dynamics (or most of it), is the necessary pre-
requisite for developing a generic approach to control – or design – of mechanical
systems. Yet, several distinct topological situations do occur for different oscilla-
tors. By way of example, in the phase portrait one can have (i) one homoclinic
orbit surrounding the unique potential well, like in Helmholtz-type softening oscil-
lators [137], (ii) two homoclinic orbits surrounding two separate wells, joined
through the intermediate hilltop saddle, like in Duffing-type hardening oscillators
[136, 138, 139] – in both cases irrespective of the nature of the system being smooth
or non-smooth –, or (iii) one couple of heteroclinic orbits, each one connecting the
two organizing hilltop saddles, which surround the unique potential well, like in the
Duffing-type softening oscillators or in the rocking block [63, 140, 141]. Of course,
more involved phase portraits, characterized by the occurrence of both homoclinic
and heteroclinic orbits, may also occur.

While in the case of a single (homoclinic) unperturbed manifold there is only
one possible global bifurcation corresponding to the tangency of the split perturbed
manifolds, in the case of two distinct (either homoclinic or heteroclinic) unperturbed
manifolds the global bifurcations can occur either simultaneously or separately,
depending on the values of some varying perturbation parameter. And this has very
important consequences in terms of control, as we have seen above.

It is worth mentioning how, in a given system, the homo/heteroclinic bifurca-
tion of the invariant manifolds of an hilltop saddle – i.e, of a globally organizing
saddle – does represent the main bifurcational event governing the transition of
system dynamics from a small scale to a large scale regime. Yet, as a rule, other
local saddles (up to possibly infinitely many) also exist within each potential well,
as a consequence of either the instability of a single in-well periodic solution or of
the onset of a chaotic saddle born at a previous homo/heteroclinic bifurcation of the
coexisting hilltop. Though being secondary bifurcational events, the intersections
of the invariant manifolds of a local saddle may also entail meaningful changes of
system dynamics, either on the small scale (i.e., in-well) regime or on the large
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scale (i.e., cross-well) regime. The first one may correspond, e.g., to the transition
from a locally periodic to a locally complex (in-well chaos) response. The second,
usually as a consequence of the involvement in the global bifurcational event of also
the hilltop saddle due to some heteroclinic connection, may correspond, e.g., to the
transition from in-well to cross-well chaos which occurs according to any “turning
around” topological mechanism (see, e.g., [152]).

Before addressing the control issue in various possible situations, two more
dynamical issues, which are also representative of major mechanical differences,
are mentioned.

4.10.5 Symmetric vs. Asymmetric Systems

The symmetry or asymmetry in the force-displacement relationship of the underly-
ing mechanical system do reflect themselves in distinguishing features in the poten-
tial and the unperturbed phase space of the associated nonlinear oscillators.

This distinction deserves attention mostly from a dynamical systems point of
view. Focusing on the more “dangerous” softening oscillators, let us think of the
difference – under symmetric excitation – between a single-well potential with one
escape direction (the smooth Helmholtz oscillator or the non-smooth monolater-
ally unconstrained rocking block) or with two asymmetric escape directions (the
Helmholtz-Duffing oscillator), on one side, and a single-well potential with two
symmetric escape directions (the Duffing oscillator or the bilaterally unconstrained
rocking block), on the other side. The solely or prevailing sensitivity to escape
ensuing from the asymmetry feature, respectively associated with the occurrence
of either one single hilltop saddle or of two hilltop saddles of different energy level,
does correspond, in the various cases, to weaker, asymmetric, mechanical features
in the background.

In contrast, the symmetry entails, e.g., in softening systems – such as the Duffing
or the rigid block oscillators – that the potential well is surrounded by a couple of
heteroclinic orbits which become a unique heteroclinic loop connecting two equal
energy hilltop saddles in the presence of imperfections, whereas in hardening sys-
tems – such as the two-well Duffing oscillator – the two homoclinic bifurcations
occur simultaneously for all symmetric excitations.

Moreover, still thinking in dynamical terms, it must be underlined how, apart
from some pathological situations, symmetric oscillators are structurally unstable
and can be considered as particular cases of asymmetric oscillators, though they
are not always a limit, in an appropriate sense, of the latter (see, e.g., the softening
Helmholtz-Duffing equation in [137]).

4.10.6 Transient vs. Steady Dynamics

The dynamics, as well as the control, perspectives are quite different depending on
whether the mechanical interest in the background technical application is towards
the transient or the steady system response. In the problem of ship capsize, for
example, it has been emphasised that short-term transient behaviour is particularly



Controlling Chaos: The OGY and an Alternative Control Method 261

important [153]. As a matter of fact, there are situations where a temporary escape
from the potential well may be unessential for the system operating effectiveness,
whereas it has to be strictly avoided in other practical situations. The transient
regime is very important and governs the whole system performance in the non-
linear dynamics due to short-term excitations (such as those associated with impact
forces or seismic loads), while the steady state dynamics are apparently of major
interest in the presence of stationary, long-term, excitations. Moreover, the transient
regime has obviously as minor importance as shorter it is (like it occurs, e.g., in
highly damped systems) while it becomes crucial when it is long (e.g., in highly
deformable systems).

All of the previous mechanical, bifurcational, and dynamical distinguishing fea-
tures have meaningful influences on the realizable control scenarios.

4.10.7 Overall vs. Localized Control

Among various possible categorization perspectives, the broad one in this subsection
title basically distinguishes between overall and localized control, and seems to be
a rather comprehensive, as well as comparatively useful, one. As a matter of fact,
it strictly depends on the two previously addressed, distinct, aspects of the whole
problem, namely (i) the main or secondary character of the bifurcational event of
interest, and (ii) the large or small scale nature of the ensuing dynamics.

As already said, the global bifurcations of the manifolds of a hilltop saddle are
main events organizing the system dynamics on a large scale. Nonetheless, in terms
of control, a basic distinction does apply as to the possibility (or the interest) to
control the global bifurcations, and the ensuing system dynamics, over the whole
phase space or just one meaningful part of it. Yet, within this general framework,
different situations must be considered.

1. The pursued distinction makes actually full sense only in systems exhibiting
(at least) two separate homoclinic orbits, organized by one intermediate hilltop
saddle and surrounding two clearly identified topological regions in the phase
space, which correspond to the two potential wells: this is the case, e.g., of the
Duffing-type (smooth or non-smooth) hardening oscillators. In such systems,
one can aim at controlling only one of the two homoclinic bifurcations, which
also entails controlling the dynamics in one clearly identified part of the phase
space: for apparent reasons, this topologically localized control strategy has been
termed “one-side control” in Sect. 4.9. Alternatively, one can aim at controlling
both the two homoclinic bifurcations, which clearly corresponds to controlling,
on average, the dynamics in the whole phase space: this topologically overall
control strategy naturally has been termed “global control” in Sect. 4.9.

2. A similar distinction applies to the escape systems which exhibit two separate
heteroclinic orbits connecting two organizing hilltop saddles and surrounding
a unique potential well: this is the case of the Duffing-type softening oscilla-
tor or of the rocking block. Yet, herein, the distinction is considerably weaker
from the application viewpoint. Indeed, also in such systems one can aim at
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controlling either only one of the two heteroclinic bifurcations, thus realizing
a “one-side control,” or both heteroclinic bifurcations, thus realizing a “global
control.” However, the former strategy no more entails controlling the dynamics
in one clearly identified part of the phase space or, in other terms, it no more
produces a topologically localized control. What actually happens is that the
perturbed heteroclinic loop responsible for complex dynamic phenomena (such
as a chaotic saddle and the ensuing horseshoe dynamics) actually breaks down,
but the heteroclinic intersection of the non-controlled orbit still allows for the
penetration of tongues of the basin of attraction of the infinity into the in-well
bounded basins, which may ultimately result in a much earlier system failure.

3. The third case of interest, within the large scale dynamics ensuing from one
main bifurcational event, is concerned with all escaping situations characterized
by only one homoclinic orbit, which delimits a clearly defined part of the phase
space: this is the case of all Helmholtz-type softening oscillators [137]. For con-
sistency with the previously adopted terminology, controlling the solely possible
homoclinic bifurcation corresponds to realizing a “one-side control,” which in
this case actually entails controlling the sole topologically meaningful part of
the system phase space.

The second distinction between overall and localized control is concerned with
the secondary bifurcational events possibly associated with local saddles, and with
the ensuing system dynamics. It refers to the possibility, and the interest, to control
not so much the global bifurcations of the invariant manifolds of the hilltop saddle
organizing the whole dynamics as those of the manifolds of some non-hilltop saddle
governing the dynamics within a restricted area of the phase space and making sense
in specific technical situations. Yet, at least two schematically different situations
may occur, again.

1. If the secondary event entails the onset of a localized – though possibly com-
plex – dynamics on a small scale (e.g., in-well chaos), only the “one-side con-
trol” (from the large scale dynamics perspective mentioned at last point 3) can
of course be applied.

2. If, on the contrary, due to the involvement of also the hilltop saddle through an
heteroclinic connection, the secondary bifurcational event entails a large scale
dynamics (think, e.g., of the transition from a single-well to a cross-well chaos
in a specific hardening Duffing oscillator), one can again distinguish between
different control strategies (i.e., “global” vs. “one-side”) along the lines previ-
ously discussed.

Yet, there is a fundamental difference with respect to the hilltop saddle manifolds
bifurcation. Indeed, while in this case there can be a very useful chance to develop
an analytical, either exact or approximate, treatment [63], no analytical tools are
usually available to detect specific homo/heteroclinic bifurcations of other saddles
playing an only locally dominant role in the dynamics. In such cases, the lack of
mathematical tools requires adopting a fully numerical approach, wherein both the
invariant manifolds and their bifurcations are detected through computer simula-
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tions [136], with obvious restrictions in terms of both generality and applicability
of the procedure.

4.10.8 System-Independent vs. System-Dependent Controls

With reference to the control scenario on the large scale, it is also worth mentioning
some further, very important, control aspects associated with realizing a “one-side”
or “global” control as well as with considering hardening symmetric or asymmetric
systems.

They basically consist in the occurrence of meaningful generic (or sub-universal)
features of the mathematical problems of optimization governing the cases of “one-
side control” of whatever (softening or hardening) systems and of “global con-
trol” of hardening symmetric systems, which also entail very desirable system-
independent solutions. This is in contrast with the non-generic optimal “global” con-
trol of hardening asymmetric systems, whose solutions are indeed system-dependent
and may actually aim at different outcomes of the controlled dynamics, which are
strictly associated with the existing asymmetry features.

4.10.9 Finite- vs. Infinite-Dimensional Systems

Finally, the very important issue of the finite- vs. infinite- dimensionality of the
system has to be mentioned. The matter was already addressed in Sect. 1, when
dwelling on the reliability of the reduced order models usually employed for ana-
lyzing the nonlinear dynamics and control of mechanical and structural systems.

In the framerwork of the present control method, from a technical point of
view, detecting the unwanted global bifurcation may be quite difficult in infinite-
dimensional systems, both analytically and numerically, especially because the
manifolds are no longer 1D.

Referring to a buckled beam with variable boundary conditions, it has been
shown [143] how the (minimal) reduced order model is able to provide the same
homoclinic bifurcation threshold and the same optimal control as the actual infinite-
dimensional system in the background, although this is accomplished in an exact
way or with a practically acceptable approximation depending on some problem
characteristics. However, in all cases, the correct infinite-dimensional analysis may
add useful new resources for control purposes, thus enlarging the potentiality of
the method. For example, in infinite-dimensional systems one can determine and
use also the “optimal” spatial shape of the controlling excitation, in addition to the
optimal temporal one solely obtainable in single d.o.f. systems [143].
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Detection of Patterns Within Randomness

Ruedi Stoop and Markus Christen

Abstract The identification of jittered regular signals (=“patterns”) embedded in
a noisy background is an important and difficult task, particularly in the neuro-
sciences. Traditional methods generally fail to capture such signals. Staircase-like
structures in the log–log correlation plot, however, are reliable indicators of such
signal components. We provide a number of applications of this method and derive
an analytic relationship between the length of the pattern n and the maximal number
of steps s(n, m) that are observable at a chosen embedding dimension m. For integer
linearly independent patterns and small jitter and noise, the length of the embedded
pattern can be calculated from the number of steps. The method is demonstrated to
have a huge potential for experimental applications.

1 Introduction and Overview

After many years of developing the theoretical fundamentals, dynamical systems
have recently started to come up with a rich range of applications, notably in bio-
logical systems [1–3]. Characteristic signals of these systems often consist of a mix
of regular and noisy signal components. Signals that the neurosciences focus on are
the so-called neuronal spike trains, where a neuronal firing event is reduced to a
time marker. Since any signal can be characterized by temporal markers, the situa-
tion we deal with is a very general one, including, e.g., return-times of dynamical
systems and similar observables. Event-marker signals that will serve as illustrative
examples in the further development are displayed in Fig. 1.

It has been speculated that spike trains from nervous systems, in particular the
human brain, fall into this class of mixed regular-noisy signals [4–14]. As a main
generation principle, they are believed to originate from neurons that are mostly
driven by complex processes, but occasionally get recruited by more locally defined,
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Fig. 1 Temporal event marker signals. (a) Length-1 pattern (no jitter). (b) Length-5 pattern
{40,27,16,9,4,1} (no jitter; pattern will be the guiding example in the main theorem’s proof). (c)
Length-6 pattern {5,24,37,44,59} (with random jitter uniformly drawn from [ −6.4,6.4]; pattern is
used for Fig. 5d. (d) Length-3 pattern {2,25,10} (no jitter, with 25% of the intervals contributed by
random spikes uniformly drawn from [0,100]; pattern is used for Fig. 2b

simpler circuits of regular firing. Similar signal characteristics may result from neu-
ronal multi-electrode recordings, where signals from different (randomly, regularly,
or in a mixed mode firing) sources arrive at an electrode. After spike sorting by
which the events of relevance on the time axis are defined, we may be left with
regular signal components embedded in a noisy background.

Both parts of such signals could play equally important roles in cortical signal
processing and computation [15]. Here, however, we will be primarily interested
in the regular components and how they can reliably be extracted from the data.
Past approaches dealing with this task contained several critical tuning parameters,
expressing expectations of how the pattern to be searched for should look like, ren-
dering it difficult to assess the validity of the obtained results. This may be one of
the reasons why mostly patterns of relatively short length (1–5) have been identified
[7, 10], although it may rightfully be argued that information-bearing signals in neu-
roscience cannot be too long, as actions on relatively short time scales are generally
required. In [16], a method for a fast and unbiased detection of patterns in noisy
contexts was proposed that does not share these shortcomings. The method is based
upon the observation that in the presence of patterns, in the correlation integral plots
used for the evaluation of fractal dimensions [17–21], step-like structures emerge.
The method works with very modest data size of the kind obtainable in most exper-
imental contexts in neuroscience, and has, in principle, no pattern length limitation.
In the presence of a noisy signal component or jitter, the traditional Fourier method,
e.g., quickly fails, whereas the characteristic decrease of the number of steps with
the embedding dimension is conserved, even for strong noise components. As the
only difference from the noise-free case, the most prominent step reappears in a
weakened form at multiples of the pattern length, a phenomenon that is simple
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Fig. 2 Comparison of the proposed method [16] with the Fourier approach, using as a paradigm
the pattern {2,25,10} with jitter of ±1 % of the smallest interval. Counter-clockwise: ISI-pattern,
power spectrum, log–log plot. (a) Time series constructed of the pattern only: Both methods pre-
dict correctly a pattern of length 3 (arrows). (b) Time series composed of (whole) patterns and
from intervals uniformly randomly distributed in [0,100], so that 25% of all intervals are random:
Fourier fails, whereas the log–log plot shows the characteristic decrease of steps with on large step
remaining at dimensions 3–8 (arrow). (c) Same as (b) with now 75% of the spike originating from
the random process. Fourier fails, whereas the clearest step at dimension 3 indicates a pattern of
length 3 (arrow). See also Figs. 3 and 7
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to understand along the proof of the main theorem given below. The comparison
between our method and the traditional Fourier (power spectrum) approach provided
in Fig. 2, illustrates these facts.

The derivation of an analytical relationship between pattern length, embedding
dimension and number of steps observed, is the main content of this contribution.
To make our contribution self-contained, we will proceed as follows. First, we will
review the log–log correlation integral method, then point out how the presence of
patterns leads to steps in the log–log correlation integral plot, before we arrive at the
focus of the present paper, the precise relationship between the length of a pattern
embedded in a noisy environment, and the number of maximally identifiable log–log
steps. For the analytical derivation of the optimally observable number of steps, we
will start with patterns of integer linear independence and absence of noise. Because
such experimental conditions are generally not met even on a qualitative level, the
relationship is formulated in terms of an upper bound on the number of observable
steps.

2 Log–log Steps in the Correlation Integral

Consider an arbitrary scalar time series of measurements {xi}, i = 1 . . . L. From this
data, embedded points ξ (m)

k are constructed as

ξ
(m)
k = {xk, xk+1, . . . , xk+(m−1)}, (1)

where m is called the embedding dimension [22, 23]. This coordinate-delay con-
struction is standard in nonlinear dynamics [19, 20]. Its purpose is to reconstruct the
complete underlying (in general: high-dimensional) dynamics from partial, usually
scalar, measurements. The reconstruction of the phase space is generically success-
ful if for a sufficiently large data set a sufficiently high embedding dimension is
chosen [19, 20]. Using the embedded points, the correlation integral [17, 19–21] is
calculated as

C(m)
N (ε) = 1

N(N − 1)

∑

i �=j

θ
(

ε −
∥
∥
∥ξ

(m)
i − ξ (m)

j

∥
∥
∥

)

, (2)

where θ (x) is the Heavyside function (θ (x) = 0 for x ≤ 0 and θ (x) = 1 for x > 0)
and N is the number of embedded points (N ≤ L − m + 1). The correlation integral
C(m)

N (ε) averages the probability of measuring a distance smaller than ε between

two randomly chosen points ξ (m)
i and ξ (m)

j . In practical applications, log C(m)
N (ε) is

plotted against log ε (the so-called log–log plot). The correlation dimension d(m)
C is

defined as the limit d(m)
C = limε→0

log C(m)
N (ε)

log ε [17, 19, 20]. If an embedding dimen-

sion m > 2d(m)
C is chosen, the slope of log C(m)

N (ε) versus log ε for small ε provides
a good estimate of the correlation dimension.
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For the evaluation of the distances, any norm could be used. Instead of the “nat-
ural” Euclidean norm, we will mainly use the maximum norm, in order to simplify
numerical computations and theoretical arguments. Degeneracies introduced by this
choice are removed upon the addition of a small amount of noise. For an approach
extracting fractal dimensions from noisy time series (which is not one of our goals),
see [24].

We first demonstrate how the presence of patterns leads to a step-like behavior
of the log–log correlation dimension plots. Patterns manifest themselves as a clus-
tering of the embedded data. For the calculation of C(m)

N (ε), an embedded point ξ (m)
0

is chosen at random. As the radius ε of its neighborhood U
(

ξ
(m)
0 ,ε

)

is enlarged,

we keep track of the number of points that fall into this neighborhood. If a point
newly entering the neighborhood belongs to a cluster, upon a small enlargement of
ε, many points will join. That is, the number of points C(m)

N (ε) quickly increases

with ε. Once the cluster size is reached, fewer points are recruited, and C(m)
N (ε)

increases but slowly. In this way, step-like structures emerge. The denser the clus-
tering regions, the more prominent the step-like structure. To demonstrate this effect,
artificial (noise-free) time series were constructed from a repetition of a sequence
of length n. The series were then embedded (using embedding dimension m) and
the correlation integrals were evaluated. The results shown in Fig. 3 demonstrate
a clean emergence of stairs, the number of which increases with the length of the
embedded pattern n, and decreases with the embedding dimension m. In the pres-
ence of patterns, the step-like behavior emerges stably even for a few hundred scalar
measurements. If in an experiment single trials generate less data than needed (say,
in neuroscience, because of adaptation), data from several trials under identical con-
ditions can be concatenated. Although in this case the embedded data will contain
some points that violate the continuous dependence on time, this has normally no
statistical influence.

Fig. 3 Correlation integral of time series generated by a repeated sequence of length n. (a)
Emergence of steps in the log–log plot of C(m)

N (ε)) (m = 2, n = 3, pattern {1, 2, 4}, maximum
norm ε rescaled). (b) Decrease of the number of steps with increasing embedding dimension m
(m = 1 ,.., 8 , n = 5)
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The basis of the relationship between number of steps s, pattern length n and
embedding dimensions m is provided by the following Proposition.

Proposition 1 The number of correlation-dimension log–log steps s(n, m) generated
from an embedded repeated pattern, equals the number of distinct distances among
the embedded points using the maximum norm.

Proof For the correlation integral, all n(n−1)
2 distances between points are calculated,

where classes of equal distances {ε1,ε2, . . . ,εκ } are generated. Locally, around a
point ξ (m)

0 in the embedding space, C(m)
N (ε,xk) changes whenever ε ∈ {ε1,ε2, . . . ,εκ}.

As this is true for any point, also for the averaged correlation integral C(m)
N

(

ε,ξ (m)
0

)

the number of steps is s(n,m) = κ . This proves the proposition. �

3 Noiseless Single Patterns and Beyond

After having shown that the presence of patterns is reflected in the emergence of
log–log correlation integral steps, our next goal is an estimate of the pattern length
from the number of steps. That this might be achievable is motivated by the follow-
ing argument. Using the maximum norm, the distance between two points in the
embedding space is defined as the maximum of the component differences. As the
dimensionality of the embedding space is increased, ever more of the possible dif-
ferences will be present. A few large differences will, however, prevent the smaller
ones from winning the competition for the maximum. As a consequence, the number
of steps s(n, m) obtained for a pattern of length n can be expected to decrease with
increased embedding dimension m. That this indeed is the case is demonstrated in
Fig. 3b.

The precise way how this decay proceeds depends on the pattern length n.
For toy systems, the maximal number of occurring steps s(n, m) can be com-
puted numerically as follows. A time series generated by repeating a sequence of
length n composed of elements {x1, . . . , xn}, generates distinct coordinate differ-
ences dij: = |xi − xj|. By shifting a window of length m along the time series, we
repeatedly generate embedded points of embedding dimension m. On the set of the
generated points, the maximum norm induces classes of equal distances, the number
of which equals s(n, m). Unfortunately, this numerical calculation quickly exhausts
computing time, calling for an analytical way to compute s(n, m). The values of
s(n, m) that can be corroborated with the help of a desktop computer are shown
in Table 1. In Fig. 7 we demonstrate how for the toy system generated from the
sequence {5, 24, 37 44, 59}, the correlation integral method is able to reproduce the
decrease of s(n,m) predicted by Table 1: In embedding dimension m = 1, all ten
possible differences are detected. As m increases towards 5, the number of steps
decreases in accordance with Table 1, before remaining constant for m > 5.

In experimental applications, one might expect more than one pattern to be
present in a time series. This leads to complications in the application of s(n,m). If,
for the simplest case, one single step emerges in the log–log plot, this could either be
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Table 1 s(n, m) for n, m = 1, . . . ,10

m\n 1 2 3 4 5 6 7 8 9 10

1 0 1 3 6 10 15 21 28 36 45
2 0 1 2 4 8 12 18 24 32 40
3 0 1 1 3 6 9 15 20 28 35
4 0 1 1 2 4 7 12 16 24 30
5 0 1 1 2 2 5 9 13 20 25
6 0 1 1 2 2 3 6 10 16 21
7 0 1 1 2 2 3 3 7 12 17
8 0 1 1 2 2 3 3 4 8 13
9 0 1 1 2 2 3 3 4 4 9
10 0 1 1 2 2 3 3 4 4 5

due to one pattern composed of length two, or to two “patterns” of length one each.
A greater number of steps, as obtained from a multitude of patterns, will further
complicate this problem. Once the presence of patterns is indicated and precise
alternatives for the patterns are posed by the method, the existence/non-existence
of a particular alternative, can be corroborated by direct methods that under such
conditions are justified. The number of steps predicted by s(n, m) is reliable up to
very strong noise components (this will be demonstrated in Fig. 7) or up to the
point where the jitter of the pattern conflicts with its nature. Even in very difficult
conditions, the method is able to indicate the presence of patterns, where s(n,m) can
still serve as a guideline for further processing (see the final discussion).

4 Analytical Derivation of s(n, m)

For the analytical derivation of s(n, m) we start from a time series {xi}i=1...N gener-
ated by the repetition of a pattern of length n. The pattern is supposed to be general
in the sense that the elements {x1, . . . , xn} yield n(n − 1)/2 distinct coordinate dif-
ferences dij = |xi − xj| (=“integer linear independence”)). Embedded points are
generated by the shift of a window of length m along the data series {xi}i=1...N . As
was previously pointed out, on the set of the embedded points the maximum norm
induces classes of equal distances, the number of which equals s(n, m). The goal of
the rest of this paper is to analytically compute s(n, m).

We start by calculating the number of different distance vectors. Since different
distance vectors will not necessarily imply different distances between points, this
is but a preliminary task that can be achieved without specifying the metric. Using
this information, we will calculate the number of different distances, specifying the
maximum norm as the relevant one.

We will focus on the case m ≤ n (case m > n is trivial). As an example of
n = 4,m = 3, we start with the repeated sequence {x1, x2, x3, x4}, which generates
the time series

{x1, x2, x3, x4, x1, x2, x3, x4, x1, x2, x3, x4, x1, x2, ..}. (3)
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By the embedding process in m = 3, we obtain the set of embedded points

{{x1, x2, x3}, {x2, x3, x4}, {x3, x4, x1}, {x4, x1, x2}}.

The distance vector components dij between the embedded points then become

|{x1, x2, x3} − {x2, x3, x4}| = |{x1 − x2,., x3 − x4}| = :{d12, d23, d34}, (4)

|{x2, x3, x4} − {x3, x4, x1}| = |{x2 − x3,., x4 − x1}| = :{d23, d34, d41},
|{x3, x4, x1} − {x4, x1, x2}| = |{x3 − x4,., x1 − x2}| = :{d34, d41, d12},

where | . | indicates the componentwise ‘absolute value’ operation. The emerging
distance vectors can be collected in the form of a 2-torus:

D(n) =

d12 d13 · · · · · · · · · d1n

d23 d24 · · · · · · d2n d21
... · · · · · · · · · · · · ...

d(n−1)n d(n−1)1 · · · · · · · · · d(n−1)(n−2)
dn1 dn2 · · · · · · dn(n−2) dn(n−1)

d12 d13 · · · · · · · · · d1n

d23 d24 · · · · · · d2n d21
... · · · · · · · · · · · · ...

d(n−1)n d(n−1)1 d(n−1)2 · · · d(n−1)(n−3) d(n−1)(n−2)

. (5)

In the distance matrix, distance vectors in an m-dimensional embedding space
are represented by sub-columns of dimension m. As an illustration, for n = 5 we
obtain

D(5) =

d12 d13 d14 d15
d23 d24 d25 d21
d34 d35 d31 d32
d45 d41 d42 d43
d51 d52 d53 d54

d12 d13 d14 d15
d23 d24 d25 d21
d34 d35 d31 d32
d45 d41 d42 d43

.

Because of the two-torus nature of D, it is no surprise that by starting the columns
at arbitrary positions we observe the occurrence of repeated sub-columns (above,
locations leading to repetitions are shown in blue), even though we have requested
that dij �= dkl, unless ij =kl or kl =ji.

We will call the upper part of D(n) the top rectangle and the lower part of D(n) the
bottom rectangle. In the top rectangle, the triangle defined by the edges d12, d1n and
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d(n−1)(n) will be called the left triangle; the triangle defined by the edges dn1, d21
and dn(n−1) will be called the right triangle (see Fig. 4). It is worthwhile keeping in
mind that the indices ij of dij do not reflect the position of dij.

Using these notations, we will prove the following proposition:

Proposition 2 The set of distinct sub-columns of dimension m (m ≤ n arbitrary but
fixed) of the difference matrix, is equivalent to the set of sub-columns starting in the
left triangle of the difference matrix. Consequently, their number is given by

Ω: = n(n − 1)

2
. (6)

Proof Sub-columns starting in the left triangle are distinct. We will show that all
sub-columns that start in the right triangle or in the bottom rectangle, are equivalent
to a sub-column starting in the left triangle. We split the proof into three steps. Due
to the construction of the difference matrix, it is obvious that all sub-columns that
lie completely inside the bottom rectangle have a counterpart in the top rectangle.
Sub-columns starting in the bottom rectangle are therefore repeating sub-columns.
Moreover, since dij = dji, all sub-columns that lie completely inside the right trian-
gle have a counterpart in the left triangle and therefore are repeating sub-columns.

For sub-columns that cross the border between the rectangles and/or between
the triangles it suffices to show that all sub-columns starting in the right triangle
and crossing the border between top and bottom rectangle, have a counterpart that
starts in the left triangle. To this end we consider the borders between rectangles
and triangles (border T and border B, and border L and border R, respectively,
see Fig. 4). Since dij = dji, the elements of border R (dn,1, . . . , d2,1) reappear
at the border B (d1,2, . . . , d1,n), in reversed order. Also the elements of border L
(dn−1,n, . . . ,d1,n) appear at the border T (dn,1, . . . , dn,n−1), also in reversed order.
Sub-columns starting in the right triangle and crossing from T to B have always a
counterpart sub-column starting in the left triangle and crossing from L to R.

left triangle

right triangle
top rectangle

bottom rectangle

subcolumn

border L

border R

border T
border B

Fig. 4 Partition of the difference matrix (see text)
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For all sub-columns that either start in the right or in the bottom rectangle, there is
therefore a sub-column starting in the left triangle. Consequently, the set of distinct
sub-columns can be obtained by counting the sub-columns of the left triangle, the
number of which evaluates to n(n−1)

2 . This proves the proposition. �

It has already been pointed out that distinct sub-columns do not necessarily imply
distinct point distances. To count the number of distinct distances we will use the
maximum norm, which considerably simplifies the arguments. Evaluation of the
maximum norm amounts to the determination of the largest element from the sub-
column. As the differences dij are all distinct, they can be ordered according to size,
with d̄ij denoting the largest element. For m ≥ 2, d̄ij will appear in several distinct
sub-columns that all lead to the same distance. Moreover, the explicit decrease of
s(n,m), for n fixed and m increasing, depends on the specific order of the dij in the
difference matrix. Therefore, only an upper bound s(n,m) of the number of distinct
distances can be given. To determine this bound we consider an order of dij that
maximizes the number of observable steps.

Proposition 3 The number of distinct distances between the embedded points is
maximal if the elements of the columns in the left triangle are monotonously decreas-
ing (increasing)

d12 d13 · · · d1(n−1) d1n

∨ ∨ · · · ∨
d23 d24 · · · d2n

∨ ∨ · · ·
...

...
...

∨ ∨
d(n−2)(n−1) d(n−2)n

∨
d(n−1)n

. (7)

Proof It suffices to prove Proposition 3 for monotonously decreasing distance ele-
ments. First we will show that there exists a sequence (a1, . . . ,an) with the required
ordering of the differences. Then we will show that this ordering leads to a maximal
number of distinct distances.

We proceed by construction: For the series an−ι = 2ι for ι = l , . . . , n − 1, we
obtain distinct nonzero differences dij = |ai − aj|. For two consecutive elements in
the l-th column of the left triangle, we obtain

dn−(ι+1), n−(ι+1−l) − dn−ι, n−(ι−l) = (8)

|an−(ι+1) − an−(ι+1−l)| − |an−ι − an−(ι−l)| =
|(2ι+1 − 1) − (2ι+1−l − 1)| − |(2ι − 1) − (2ι−l − 1)| =



Detection of Patterns Within Randomness 281

ι
∑

p=ι−l+1

2p −
ι−1
∑

p=ι−l

2p =

2ι − 2ι−l > 0.

The constructed sequence therefore has the desired ordering within column l. By
construction, the elements dij of the difference matrix are distinct and nonzero, so
that they can be ordered according to size. We first focus on sub-columns that lie
entirely within the left triangle. We will show that for a maximal number of distinct
point distances, d̄ij of each column must be located in the first row.

Consider in the left triangle a column l and assume that d̄ij is in row i, with
1 < i ≤ n − l. Then, for 2 ≤ m ≤ i, there are up to m sub-columns starting in row
i−m+1 and lying completely in the left triangle, that include d̄ij. As a consequence,
they will generate the identical (maximal) distance. Only when d̄ij is located in the
first position of column l, it will be in precisely one sub-column, and the number
of distinct distances will be maximal, see Fig. 5a. In order to generate a maximal
number of distances, the elements dij must therefore have the requested ordering.

We now consider sub-columns that start in the left triangle but extend to the right
triangle and possibly also to the bottom rectangle (see Fig. 4). Again, the number of
distinct distances would be maximal, if all elements in every row of the difference
matrix would take over the ordering of the top triangle. Unfortunately, this is not
possible, since there are constraints among the elements of the matrix. However,
the desired ordering of the elements dij can also be achieved in the columns of the
right triangle, since dij = dji. Moreover, if we only consider sub-columns starting in
the left triangle with dimension is not larger than m, the desired ordering is also be
achieved by the sub-column elements of the bottom rectangle, since in this part of
the bottom rectangle, the left triangle is repeated.

The obstruction against the desired monotonous decrease of dij emerges at the
borders {T , B} and {L, R}. We will show that despite these potential disruptions of
the ordering, the number of distinct distances between the embedded points will be
maximal. We deal with the two borders separately.

For reasons of simplicity, we first deal with the {T , B}-border, considering later
the impact of an additional disruption of the monotonous ordering at the {L, R}-
border. By construction of the matrix, the biggest element d̄ij of a column in the
left triangle will show up again in the bottom rectangle, so that in each column at
some point, the monotonous decrease of the values dij will be disrupted. If the order
of the elements dij is according to the Proposition 3, the disruption happens at the
{T , B}-border.

We argue that despite this disruption, the ordering to the Proposition 3 will be
optimal. Consider a column l of the left triangle with largest element d̄ij. This ele-
ment will repeat in the bottom rectangle. Independently of the position of d̄ij in the
left triangle, the number of intermediate dij between the two locations d̄ij is n − 1.
An element d̄ij in the bottom rectangle can therefore only be part of a sub-column,
if the latter’s dimension m is large enough (except for the first few columns of the
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(a) (b)

Fig. 5 Illustration of the proof of Proposition 3 (pointsize represents size of dij): (a) If the order-
ing of the elements of the difference matrix is according to the proposition, each location of a
sub-column of dimension 3 results in a new distance. If, however, the largest element is placed in
the third place, all sub-columns result in the same distance. (b) The disruption of the monotonous
decrease at the border {T , B} only affects sub-columns of a large dimension m (in the given exam-
ple, for m = 6 only one distance each for the optimal and the suboptimal case). For sub-columns
with smaller m, the ordering within the left triangle is relevant (for m = 5 in the given example we
obtain two distances in the optimal case, and one in the suboptimal case). The distinction of the
cases is similar to the one expressed by k (Eq. (10))

difference matrix). Therefore, the position of d̄ij in the left triangle is crucial in order
to maximize the number of distinct distances. As has been shown before, in order to
achieve this, d̄ij needs to be at the first position in the column (see Fig. 5b).

A monotonous decrease of dij beyond the {L,R}-border would require all of the
following inequalities to be fulfilled:

d(n−1)n > dn1, d(n−2)n > d(n−1)1, . . . , d1n > d21. (9)

Due to the dependencies between the element of the matrix, this cannot be satisfied.
Consider for example the first and the last column of the top rectangle. From a
monotonous decrease in the last column of the top rectangle it would follow that
d1n > dn(n−1), contradicting the first inequality. Continuing in this way by com-
paring the second column with the second-last column, etc., it becomes obvious
that in the chain of inequalities (9), either the first or the second part of the chain
can be fulfilled, but not both of them. Since the left triangle sub-columns starting
in the first columns contain more {T ,B}-border elements than those starting in the
last columns, for obtaining a maximal number of distinct distances, the fulfillment
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of the second part of (9) should be aimed at. This is achieved by the proposed
ordering.

The distinction between the two cases is given by the row number k such that
the top sub-rectangle containing the first k rows is monotonously ordered. k is
evaluated as

k =
{

n/2 : even n
(n − 1)/2 : odd n .

(10)

This proves the proposition. �
As an example consider the repeated pattern generated from the sequence (40,27,

16,9,4,1) (n = 6) with distance matrix

13 24 31 36 39
11 18 23 26 13
7 12 15 24 11
5 8 31 18 7
3 36 23 12 5
39 26 15 8 3
13 24 31 36 39
11 18 23 26 13
7 12 15 24 11
5 8 31 18 7
3 36 23 12 5

.

For this pattern, from Eq. (10) we obtain k = 3, implying a monotonous behav-
ior in the first three (sub)columns of the left triangle {13,11,7,5,3}, {24,18,12,8},
{31,23,15}, and in the last two columns of the top rectangle {36,26,24,18,12,8},
{39,13,11,7,5,3}. Elements of the left triangle are in bold type.

Proposition 4 Given an embedded time series generated from a repeated pattern
(x1, . . . ,xn). If the ordering of the associated difference matrix in the left triangle is
according to Proposition 3, the number of distinct distances will be maximal and
given by

s(n, m) = Ω −Λ+Π − Υ + Γ , (11)

where

 = k(m − 1), (12)

+ = i(i + 1)

2
where

n even: i = m − k − 1 if m > k + 1 else i = 0
n odd: i = m − k − 2 if m > k + 2 else i = 0,
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ϒ =
{ i(i+1)

2 if m > k + 2 and i = m − k − 2
0 else,

- =
{

1 n:even ∧ m > k
0 else.

Proof For the calculation, we start from the number of distinct difference sequences
that start in the left triangle Ω = n(n−1)

2 (Eq. (6)), among which, however, there
will be some multiply generated distances. If the elements dij are ordered accord-
ing to Proposition 3, obvious multiply generated distances are those from 1, . . . , k-
subcolums crossing the {L,R}-borders, because in each column of the top rectangle,
the R-border elements provide the largest elements. Therefore, most sub-columns
starting in the first k columns of the left triangle and containing elements of the
R-border yield distances identical to those from sub-columns starting in the columns
k+1, . . . , n−1. By the term “most” we indicate, that for n even and m > k, a special
case needs to be analyzed (to be included in the term Γ , see below). Similarly, for
k + 1, . . . , n − 1, the B-border elements provide the largest components.
 : In order to count the number of sub-columns of dimension m containing ele-

ments of the left triangle as well as R-border elements, we first also accept sub-
columns of dimension m that potentially ’stick out’ of the matrix (see Fig. 6a). The
number of these dij-positions covered is  : = k(m − 1), with k as in Proposition 3,
Eq. (10). The equal number of subcolums (starting at these positions) does not lead
to new distances and therefore needs to be subtracted from Ω .
+: In  we also counted a number + of virtual sub-columns (that “stick out” of

the matrix and are therefore of a virtual nature). Their number depends on whether

(a) (b)

Fig. 6 Proposition 4 illustrated: (a) Counting subcolumnns crossing the {L, R}- and {T, B}-borders:
 counts subcolumns until column k that contain elements of the R border, including some
“stick-out” subcolumns. Expression + counts the number of stick-out subcolumns. Circles mark
the positions of non-existing subcolumns (n = m = 7). ϒ counts the subcolumns in column k + 1
that cross the {T, B}-border. Larger subcolumn elements are indicated by larger dots. (b) Special
case accounted for by -. For n = 6, the subcolumns in the k’th column with dimension m > 3
generates a distinct distance, whereas for n = 7, the subcolumn of dimension m > 4 fails to do so.
Open circles: Locations of the two elements of identical largest size. For n even they are in the
same column d1(k+1)
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n is even or odd. One easily derives that+ has the value+ = i(i+1)
2 , where for even

n, i = m − k − 1 (and m > k + 1), and for odd n, i = m − k − 2 (and m > k + 2).
This number has to be added to Ω −Λ.
ϒ : Now we consider sub-columns starting from the left triangle of columns with

numbers k + 1, . . . ,n − 1. In these columns, a monotonous decrease of dij can
be achieved until the {T ,B}-border is reached. Therefore, sub-columns starting in
columns l = k + 1, . . . ,n − 1 of the left triangle containing B-border elements yield
a distance already obtained by sub-columns starting from the first row in column l
(see Fig. 6a). Thus, their number is ϒ = i(i+1)

2 , where i = m − k − 2 and m > k + 2.
ϒ needs to be subtracted from Ω − ++.
-: Finally, we take into account the special case n even and m > k. Due to

construction, the largest element in the k-th matrix row is the element d1(k+1), which
appears in row number 1 and k + 1. Sub-columns starting in the left triangle with
m ≥ k + 1 therefore all yield the same distance (see Fig. 6b). This shortcoming can
be compensated for by a term -: = 1 for even n and m > k and Γ : = 0 else. Γ has
to be added to Ω −Λ+Π − Υ .

We now have taken into account all sub-columns crossing the {L, R}- and the
{T ,B}-border in the difference matrix, showing which one of them generate already
generated distances. This proves the proposition. �

Proposition 5 For m > n, the number of distinct distances equals s(n,m = n) (and
is therefore independent from m).

Proof Consider sub-columns of length m = n starting in the left triangle. Due to
the periodicity of the sequence (a1, . . . ,an), for m > n, dij-elements entering a sub-
column from below are already contained in the sub-column. Therefore, no new
maximal dij can enter these sub-columns, so that s(n,m) cannot change any more.
This proves the proposition. �

5 Main Theorem

Collecting all terms, we arrive at the following result: The maximal number of steps
s(n,m) emerging in a log-log plot of a time series from a repeated pattern of length
n in embedding space dimension m has the expression

n even: s(n,m) =
⎧

⎨

⎩

n(n−m)
2 : 1 ≤ m ≤ n

2
n(n−m)+2m−n

2 : n
2 < m ≤ n

n
2 : m > n,

(13)

n odd: s(n,m) =
{ n(n−m)+m−1

2 : 1 ≤ m ≤ n
n−1

2 : m > n
(14)
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Using this analytic expression, we obtain the table of the maximal number of
observable steps s(n,m) as presented in Table 1.

6 Discussion and Outlook

We have investigated how the number of steps s emerging in the log–log correlation
integral plot of time series generated from repeated patterns depends on the the
length of the pattern n and the embedding dimension m. We were able to derive
and prove an analytical relationship between the three quantities. That this relation-
ship continues to hold for mixed noise-pattern signals, for noise components where
alternative methods fail or are inconclusive, has been demonstrated in Fig. 2. Up
to strong noise components, the derived formula allows for a direct determination
of the pattern length (and the associated length scales) if only one integer linearly
independent pattern is present in the time series. As in applications these conditions
may be violated or difficult to verify (e.g. more than one pattern might be present),
the result was formulated as a statement on the maximal number of observable steps.

A final point of interest not discussed so far is the influence of jitter on the
repeated patterns. In general, jitter modifies the density of the point clusters in the
embedding space and, therefore, the distribution of the distances. In the log-log plot
this primarily leads to a smearing of the steps (some consequences thereof have
already been investigated in [16]). A pattern will always emerge in the embedded
time series in its most genuine form (it is neither cut into pieces, nor spoiled by
foreign points) if the embedding dimension equals the pattern length (n = m). In
the case of absence of a noise component, the decrease of steps fully stops at n = m,
whereas in the presence of a noise component, the steps repeat at multiples of n, in
a softened fashion. As a consequence, the most prominent step can be expected to
yield a reliable indicator of the pattern length.

That this is indeed the case is demonstrated in our final example, where to the
series generated from the sequence {5,24,37,44,59} (cf. Table 1), jitter was added.
For the following, we define the strength of the jitter as the ratio of the interval size
from which we uniformly sample the jitter, over the shortest interval of the pattern.
The results (Fig. 7b–f) demonstrate that the pattern length can be reliably estimated
up to a jitter strength of 512% (Fig. 7e), as the most pronounced step still appears
at m = 5. The number of steps for m < 5, however, are affected by the jitter: For
m = 1, for example, 9 steps are identifiable at 8% jitter (Fig. 7b), 7 steps at 32%
(Fig. 7c) and 3 steps at 128% (Fig. 7d). The step-like structure disappears if the jitter
reaches the size of the largest element of the pattern (Fig. 7f). Thus, the criterion that
the most pronounced step appears at m = n, still yields a valuable indicator for the
pattern length at strong jitter.

In experimental applications, one might have more than one pattern in a time
series. This complicates the expression for s(n, m). If, for the simplest case, one
single step emerges in the log–log correlation integral plot, this could either be due
to one pattern composed of length two, or to two “patterns” of length one each.
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Fig. 7 Step number decrease with increasing embedding dimension, in the presence of background
noise (n = 5, m = 1, . . . ,8). Upper row: ISI pattern, lower row: log-log plots (a) For m = 1 we find
10 steps, in agreement with Table 1. Panels (b)-f): Noise levels 8, 32, 128, 512 and 1,024%. Despite
the step number decrease, the clearest step always emerges for n = 5, indicating the presence of a
pattern of length 5
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A greater number of steps, as obtained from a multitude of patterns, further com-
plicates the situation. Fortunately, even in this case, the method is able to provide
the correct information on the length of the ingredients for a mixture of linearly
independent patterns, notably even in the presence of very general kinds of back-
ground noise [16]. For covering these non-optimal cases and conditions, the Main
Theorem was formulated as a statement on the maximal number of observable steps
for a repeated pattern. It is worth emphasizing that once the presence of patterns
is evident and suggestions of patterns have been obtained by our method, their
existence/non-existence can be confirmed by direct methods. If based on the insight
provided by our method, the direct methods are better justified and more efficient.

To illustrate the potential of the approach, we briefly mention one recent exper-
imental application.1 In this experiment, motor neuron re-aggregates of spherical
extension of 120–150 μm size were cultivated on a 2-D micro-electrode array, where
the spacing between electrodes is 200 μm and the electrode diameter is 30 μm. The
neurons form a network, of which the electrodes acquire the extracellular potentials
fluctuations (Fig. 8a). On the other side of the chip, muscle cells are cultivated.
Applying our approach to spike trains derived from extracellular potentials data, we
found that during in vitro day 3, at one particular electrode a pattern of length 5
was present (Fig. 8b). At all other investigated electrodes, in contrast, only noisy
signals were detected (Fig. 8c). The firing frequency at the pattern generating site
was significantly lower than the frequencies at the other electrodes. After day 5,
the pattern vanished. These findings suggest that a potential for a pattern generator
is initially built up at this site, but then is discarded during further development.
Experimental efforts now attempt to clarify the origin of the pattern generator and
its conditions of sustainability.

In our contribution, we have unvealed how patterns account for the emergence
of steps in Log–log correlation integrals plots. Moreover, we have shown that these
steps provide the basis for an efficient and robust identification of patterns present
within noise, on all scales of the signal, where the latter property is facilitated
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Fig. 8 (a) Motor neuron re-aggregates of spherical extension of 120–150 μm, cultivated on a 2-D
micro-electrode array. (b) Signal with a temporal pattern, (c) essentially noise (see text)

1 Data and Fig. 8a by courtesy of the Swiss Materials Science Institute EMPA of St. Gallen,
Dr. A. Bruinink and A. Osh
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by the log–log scale display. The proposed tool will be beneficial in particular in
the biological, medical and applied technical sciences, where currently a strong
focus is on the dissection of signals into noise and patterns and on multiscale
modeling.
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