
System Models for Goal-Driven

Self-management in Autonomic Databases

Marc Holze and Norbert Ritter

University of Hamburg, Department of Informatics,
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
{holze,ritter}@informatik.uni-hamburg.de

http://www.informatik.uni-hamburg.de/

Abstract. Self-managing databases intend to reduce the total cost of
ownership for a DBS by automatically adapting the DBS configuration
to evolving workloads and environments. However, existing techniques
strictly focus on automating one particular administration task, and
therefore cause problems like overreaction and interference. To prevent
these problems, the self-management logic requires knowledge about the
system-wide effects of reconfiguration actions. In this paper we therefore
describe an approach for creating a DBS system model, which serves as
a knowledge base for DBS self-management solutions. We analyse which
information is required in the system model to support the prediction
of the overall DBS behaviour under different configurations, workloads,
and DBS states. As creating a complete quantitative description of exist-
ing DBMS in a system model is a difficult task, we propose a modelling
approach which supports the evolutionary refinement of models. We also
show how the system model can be used to predict whether or not busi-
ness goal definitions like the response time will be met.

1 Introduction

For several years, researchers and DBMS vendors have developed self-manage-
ment functions for particular DBMS components or administration tasks. Thus,
commercial DBMS today typically provide an index advisor, autonomic mem-
ory management, and automated maintenance functions. These self-management
approaches usually follow the feedback control loop (FCL) pattern, where a
controller continuously monitors a resource via sensors, analyses the observed
information, and immediately performs necessary reconfigurations via effectors.

Already at an early stage of autonomic DBS technology development it has
been noticed [1] that adding FCLs to a DBS entails severe problems. These
problems are primarily caused by the fact that the FCLs lack knowledge about
the components they manage: First, they cannot predict the performance effect
of planned reconfigurations on the managed resource. Autonomic memory man-
agement, for example, “guesses” the required memory adaptations in small steps
of fixed size. This trial-and-error bears the risks of overreaction, because DBS
reconfigurations may require a long time before the reconfigurations take effect.

J.D. Velásquez et al. (Eds.): KES 2009, Part II, LNAI 5712, pp. 82–90, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.informatik.uni-hamburg.de/

System Models for Goal-Driven Self-management in Autonomic Databases 83

Second, the FCLs lack knowledge about the system-wide effects of their reconfig-
urations. For example, an autonomic connection management may increase the
number of DB agents to improve the overall system throughput. However, this
decision may also affect the performance of other components, as it reduces the
memory available for the system buffer. The lack of knowledge about side-effects
causes interference between the decisions of the FCLs. Third, the relationship
between the performance of the managed component and system-wide goals
(e.g. response time, availability) is unknown to the FCLs (goal-independency).
Knowledge about the relationship to system goals would allow the FCLs to re-
strict expensive reconfiguration analyses to situations when they are actually
required.

In this paper we present an approach towards system-wide, goal-driven DBS
self-management. In particular, we identify the knowledge that is required to
prevent the problems of overreaction, interference and goal-independency. We
propose the usage of a system model, which serves as a centralized knowledge
base for the self-management logic. By choosing the graphical modelling language
SysML for the system model, our approach is designed to be used for existing
DBMS. We show how knowledge about both the structure and the behaviour of
the DBMS can be expressed in this model, and how the system model can be
extended by objective functions that can be evaluated against goal definitions.

The paper is structured as follows: Section 2 discusses the necessary system
model contents and the relevant goal types. In Section 3 we describe how a system
model can be created for existing DBMS, using IBM DB2 as an example. The
objective functions for the goal-driven optimization is subject of Section 4. We
discuss related work in Section 5 before we conclude with an outlook in Section 6.

2 Goal-Driven Self-Management

In order to reduce the operation and maintenance costs, DBS should automat-
ically consider the users’ performance requirements (goals) during query pro-
cessing, e.g. by treating queries with high priority preferentially. However, as no
existing DBMS provides this functionality, our objective is to create an external
self-management logic, which can be applied to existing DBMSs. Hence, meet-
ing the goals must be accomplished by using the existing configuration options
of a DBMS only. For this purpose, it is essential for the self-management logic
to maintain a system-wide view on the DBS. As shown in Fig. 1, the workload
and the state of the DBS must be continuously monitored by a self-management
logic. The workload provides information on how a DBS is used in its particular
environment (e.g. CPU usage, SQL trace). The state information refers to inter-
nal characteristics like the average response time or the accuracy of optimizer
statistics. The self-management logic must compare the current state of the DBS
to the goals defined by a DBA, and start a reconfigurations analysis when there
is a risk of missing the goals. For the decision on which reconfigurations will meet
the goals under the current workload, the self-management logic needs detailed
knowledge about the DBS. We refer to this knowledge as the system model.

84 M. Holze and N. Ritter

database system

self-management logic

sensor sensor

state

goals

system
model

effector

knobs

effector

phys. design
workloadDBA

Fig. 1. DBS Self-Management Overview

From the knowledge stored in the system model, it must be possible to decide
how the computing resources must be shared amongst the DBMS components.
In addition, the self-management logic must be able to assess configuration alter-
natives (access paths, number of bufferpools, tablespace design, ...) in a specific
environment. So the system model must comprise two main parts: a Hardware
Model describing the available computing resources, and a DBMS Model describ-
ing the DBMS components and their behaviour. It is the task of self-management
logic to evaluate the knowledge stored in the system model in order to decide
which reconfigurations are necessary to meet the goals. Hence, the system model
must also comprise goal functions. These functions must quantitatively describe
the values expected for the goals response time, throughput, CPU/disk usage,
availability, and operation costs, depending on the DBS configuration.

3 System Model

In the following, we describe our approach for storing the knowledge for DBS
self-management in a system model. Section 3.1 first identifies the necessary
model contents, before Section 3.2 describes the selected modelling technique.

3.1 Model Contents

As described in Section 2, the system model stores knowledge about the structure
of the DBMS and the available hardware. The DBMS model is hierarchically
structured (see Fig. 2), where every level refines the component structure. For
every component the sensors, effectors and constraints must be defined:

As the sensor data must be read and interpreted by the self-management logic,
the DBMS model must describe how the sensor value can be retrieved (avail-
ability, e.g. from system catalogue). Furthermore, the meaning of the sensor
information (semantics, e.g. counter, or high water mark), and its type (work-
load or state) have to be defined. For effectors it is necessary to describe their
type (e.g. configuration parameter, physical design, maintenance function) and
whether they can be manipulated online (changeability). The effector values of
DBMS components in many cases may not be changed arbitrarily, but are subject
to constraints. For example, there usually are rules for the allowed values (do-
mains). In addition, configuration parameters of one component may depend on
configuration values of another component (dependencies). The most important
constraints for the automatic deduction of reconfiguration actions is the descrip-
tion of the expected behaviour of the component. It must be described in terms

System Models for Goal-Driven Self-management in Autonomic Databases 85

DBMS

... Lock Mgr Buffer Pool

Lock List Deadlock
Detector...

Constraints
Domains
Dependencies
Behaviour

Effectors
Changeability
Type

Sensors
Availablility
Semantics
Type

Server

CPU MemoryDiscs I/ONetwork

DBMS Model

Hardware Model

Fig. 2. DBMS- and Hardware-Model

bdd DB2 Model [Structural Composition]

«block»
Connection Mgr

«block»
Rel. Data Services

«block»
Data Mgmt Services

: Agent: Catalog : Optimizer

: Run-Time Interpreter

: Table Mgr

: Index Mgr

: Data Protection Services

: Lock Mgr : Logging
: Bufferpool Mgr

«block»
Operating System Services

Fig. 3. DB2 Structure Example

of a mathematical model of the component, which quantifies the performance
of the component depending on its sensor and effector values. Only then it is
possible for the self-management logic to predict the effects of reconfigurations.

It is important to note that the description of the logical and physical design
of a DBS is not part of the DBMS model. This information is instead available
from the system catalogue as sensor information, and it can be adapted via
effectors in order to influence the performance of the DBMS components.

The hardware information in the system catalogue usually does not provide in-
formation on the performance characteristics and costs of using a particular piece
of hardware. However, this information will be required by the self-management
logic in order to minimize computation cost, while meeting the performance
goals. Hence, a separate hardware model must be maintained. This model will
also allow the explicit representation of resource competitions between DBMS
components (illustrated as dotted arrows in Fig. 2).

3.2 DBMS System Modelling

Due to the complexity of today’s commercial DBMSs, a complete and exact
mathematical model of the system behaviour is not feasible. But as noted by
Weikum et al. in [1], even an approximate, coarse-grained model would be a step
ahead. Hence, our approach towards a system model is to create a model outside
of the self-management logic. In contrast to implementing the knowledge about
the system structure and behaviour directly in the logic, placing it in a separate
model has the advantage that it can be easily extended, refined and adapted. So
a very coarse-grained model can be created in a first step, containing the most
important components, a subset of their actual sensors and effectors, and an
approximated quantification of their behaviour. After this model has proven to
sufficiently well predict the system behaviour, it should be refined incrementally.

For the definition of a system model we have chosen the SysML modelling lan-
guage [2], because it allows the representation of all the required model contents
identified in Section 3.1. SysML has been designed to support the specification,

86 M. Holze and N. Ritter

bdd DB2 Model [Sensors and Effectors]

«block»
Connection Mgr

«block»
Data Mgmt Services

connections_top : ConnTopSensor
appl_cur_cons : ApplSensor

max_appls : MaxApplEffector
maxcagents : MaxAgentsEffector

tb_reorg_req : ReorgSensor
logical_reads : LogReadsSensor

create_index : IndexEffector
bufferpool_sz :
BufferpoolEfector

«block»
ConnTopSensor

source : Availablility = SystemMonitor
meaning : SensorValue = HighWaterMark
type : SensorType = Workload

Counter
HighWaterMark
CurrentValue

«enumeration»
SensorValue

Fig. 4. Sensors/Effectors Example

bdd DB2 Model [Constraints]

«constraint»
DBS Memory

«constraint»
Agent Memory

{dbs_mem =
db_global_mem +
num_agents * agent_mem }

agent_mem =
sort_heap + stmt_heap +
appl_heap + query_heap

«constraint»
Hitratio Prediction

{pred_hitratio = 1 - e
- k * size

}

«constraint»
Appl Queuing Time

{ queueing_time =
1 / (a * max_agents – b* appls) –
1 / (a * max_agents) }}

Fig. 5. DB2 Constraints Example

analysis, design, and validation of a broad range of systems and systems-of-
systems, including hardware, software, information, and processes aspects [3].
For the definition of the structure of the system as well as the constraints on
effector values we use block definition diagrams and internal block diagrams. For
the quantification of the system behaviour we employ parametric diagrams.

We illustrate the usage of SysML for the definition of DBS system models
by describing an exemplary model for IBM DB2. A coarse-grained structural
model of DB2 is given in terms of a SysML block definition diagram in Fig. 3. It
shows the hierarchical structure of the main DB2 components: The Connection
Manager handles the connections to client applications by assigning Agents to
them, which execute the SQL statements in the DBS for the client. The agent
passes the statements to the Relational Data Services, where execution plans
are created for them using the Optimizer and System Catalog. These plans are
executed in the Run-Time Interpreter, where they use the Table Manager and
Index Manager components of Data Management Services to retrieve the data.
The Table Manager and Index Manager request the necessary pages from the
Bufferpool Manager, which accesses the files on disk via the Operating System
Services. Isolation and Durability are ensured by the Data Protection Services.

The block diagrams in Fig. 3 are well suited to depict the structural composi-
tion of a DBMS. For the definition of the components’ sensors and effectors we
use an additional block definition diagram. Examples for sensor and effector def-
initions of DBMS components are given in Fig. 4. The Connection Manager, for
example, has a sensor connections top for the highest observed number of client
connections. Every sensor and effector has to be represented by a separate block
in the model, as specific characteristics must be stored (e.g. ConnTopSensor).

In addition to the structural information about DBMS components, the DBMS
model has to describe the effectors’ domain constraints, dependencies, and the
component behaviours. For these purposes the SysML ConstraintBlock element
is used. The left part of Fig. 5 shows an example for two constraints DBS Mem-
ory and Agent Memory, which define the dependencies between the sizes of
different memory areas. It shows that the memory available in the DBS global
memory (e.g. bufferpools) depends on the number of agents. The right part of

System Models for Goal-Driven Self-management in Autonomic Databases 87

par DB2 Constraints

ConnectionManager.
connections_top

ConnectionManager.
maxcagents

:Appl Queuing Time

:Agent Memory

Memory.
available

...

:Global Memory

... DMS.bp_size ...

:DBS Memory

Fig. 6. Constraints Instances

bdd DB2 Model [Goals]

«constraint»
Response Time

«constraint»
Agent Provisioning Time

{resp_t = agent_prov_t +
stmt_compile_t +
stmt_exec_t }

agent_prov_t = appl_queue_t
+ agent_assign_t

«constraint»
Agent Assign Time

par DB2 Constraints [Goals]

: Response Time

... ...: Agent Prov Time

... : Appl
Queuing Time

: Agent Assign
Time

ConnectionMgr.
POOL_T

ConnectionMgr.
CREATE_T

ConnectionMgr.
maxcagents

ConnectionMgr.
connections_top

Fig. 7. Objective Functions Example

Fig. 5 depicts two examples for the quantification of the behaviour of DBMS
components: The Hitratio Prediction quantifies the expected hitratio for buffer-
pools depending on their size. The average time applications have the wait for
an agent is approximated by Application Queuing Time.

To evaluate the knowledge about dependencies and component behaviour in a
DBMS, the parameters of the constraints have to be mapped to the correspond-
ing sensors and effectors. This task is the subject of the SysML parametric
diagram shown in Fig. 6. A self-management logic evaluating this model would
find that the expected application queuing time could be reduced by increasing
the number of agents (maxcagents). However, as this effector is also subject to
the DBS Memory constraint, the logic would have to find a trade-off.

4 Objective Functions

The system model described in Section 3 serves as a knowledge base for the self-
management logic. It predicts the behaviour of the system under different DBS
configurations. However, in order to decide whether or not the goals defined by a
DBA will be met, the description of the system behaviour must be related to the
goal definitions. Hence, we extend the system model by objective functions. These
are modelled as additional constraints and represent the business goals response
time, throughput, resource usage, availability and operation cost. Each of these
objective functions must quantitatively describe how its value depends on the
DBS configuration. The block definition diagram in Fig. 7 illustrates an example
for a Response Time constraint, which is quantified as the sum of the waiting
time for an agent (agent prov t), the time required to determine an execution
plan (stmt compile t) and the time for executing the plan (stmt exec t). In order
to be able to actually predict the goal values, these objective functions must be
refined until they depend only on sensor and effector values. For this purpose
it is possible to either re-use the component behaviour descriptions, or add new

88 M. Holze and N. Ritter

constraints. An example for objective function refinement is described for the
response time goal in Fig. 7: In the block definition diagram we first define two
additional constraints Agent Provisioning Time and Agent Assign Time (time
for assigning an agent depending on whether or not an agent is available in the
pool). These constraints are then used in the parametric diagram in a hierarchy
of constraint instances, which define how the response time depends on a set
of sensor and effector values. As shown in this example, the objective function
constitutes the top of the constraint hierarchy, whereas the leaf nodes must be
sensors and effectors described in the system model.

With the objective functions being defined in the system model, the task
of self-management is to find an optimal set of effector values such that the
function values are minimized (e.g. response time, operation cost) or maximized
(throughput, availability). So the challenge of self-management is to find an op-
timal set of effector values for several, possibly opposing, objective functions.
Generally speaking, the self-management has to determine an optimal configu-
ration x for an objective vector F (x) = (f1(x), . . . fk(x)), where f1(x) to fk(x)
define objective functions. In addition, it has to take into account the constraints
on effector values. Finding a solution to this type of problem is the subject of
multi-objective optimization (e.g. [4]).

5 Related Work

Research in the area of self-managing database systems focuses on the automa-
tion of individual administration tasks like memory management ([5]) or on-line
index selection [6]. These autonomic functions do not consider relationships to
other autonomic managers, side-effects, or high-level goals. Recently, also works
on meeting response-time goals for multiple service classes in DBS have been
published ([7], [8]). These approaches strictly focus on admission control for
queries, and do not consider the adaptation of the DBS configuration.

Models with quantitative descriptions of the managed resource behaviour by
now have only been used for bufferpool management in DBS. These models are
used to predict the bufferpool hit ratio ([9], [10]) depending on the bufferpool
size, thus allowing the definition of target service times for individual page re-
quests. Brown et al. extend their bufferpool hit ratio prediction model in [11]
by making the simplified assumption that there is a linear dependency between
the hit ratio and the overall DBS response time. Unlike our approach, all quan-
titative models for DBS strictly focus on the bufferpool component, and do take
into account the influence of the other DBS components and configuration pa-
rameters on the overall DBS perfomance.

The Common Information Model [12] provides standardized management of
IT systems, independent of the manufacturer and technology. Among others,
CIM defines an abstract model for database systems. However, the CIM da-
tabase system model only describes general information about the DBS, like
the instance name, version, the responsible DBA, and the current values of

System Models for Goal-Driven Self-management in Autonomic Databases 89

configuration parameters. The internal structure of the DBMS and a quantitative
description of the system behaviour are not part of the model.

The IBM Autonomic Computing Toolkit (ACT) [13] stores information about
the resource managed by an autonomic manager in a resource model. This re-
source model uses CIM classes to define the properties of resources, and stores
additional information like check cycles, thresholds, and dependencies. However,
reconfigurations cannot be automatically derived from the model, but a decision
tree script must be provided, which implements this knowledge.

In order to realize self-management of complex IT infrastructures, rule-based
frameworks like Accord [14] and iManage [15] have been developed. Like the
ACT, these frameworks require the system administrator to define a set of
actions and the conditions under which they are fired. The same approach is
taken in policy management frameworks like [16]. So the decision about which
reconfigurations have to be performed in order to meet business goals is not
derived from a quantitative behaviour description. To overcome this limita-
tion the Accord framework has been extended with a Limited-Look-Ahead-
Controller [17]. However, the controller is limited to the optimization of a single
objective function, and does not allow the creation and refinement of a system
model.

In the area of web service composition there has been research on the usage
of multi-objective optimization in order to meet SLAs, e.g. in [18] and [19]. De-
pending on the QoS requirements, multiple concrete web services are composed
to realize an abstract business process. Compared to databases, the objective
functions for web service composition are rather simple and the configuration
alternatives are limited. However, the results show that using multi-objective
optimization for meeting business goals is a feasible approach, and therefore
encourage our research in applying these techniques to databases.

6 Conclusions

Currently the knowledge about the sensors and effectors in a DBS, the rules that
apply to their values, and their expected effect on the system behaviour is either
documented in manuals or the experience of the DBA. Representing this knowl-
edge in a system model allows the creation of a system-wide self-management
logic, which can consider the dependencies between reconfiguration actions. In
addition, the quantitative description of the system behaviour can be used to
ensure that business goals are met. As creating an exact quantitative model of
today’s complex DBMSs is a difficult task, we have proposed a graphical mod-
elling approach, which allows the step-wise refinement of a coarse grained system
model. In the future we are going to realize various coarse-grained system models
for different DBMSs and evaluate the accuracy of their behaviour predictions.
By comparing the different system models, we are going to identify similarities
and common concepts, which will allow us the proposal of a domain-specific
modelling language for DBS system models.

90 M. Holze and N. Ritter

References

1. Weikum, G., et al.: Self-tuning Database Technology and Information Services:
from Wishful Thinking to Viable Engineering. In: Bernstein, P.A., et al. (eds.) Proc.
of the 28th Intl. Conf. on Very Large Data Bases, pp. 20–31. Morgan Kaufmann,
San Francisco (2002)

2. Weilkiens, T.: Systems Engineering with SysML/UML, 1st edn. Morgan Kauf-
mann, San Francisco (2008)

3. Object Management Group: Systems Modeling Language. 1.1 edn. (2008)
4. Coello, C., et al.: Evolutionary Algorithms for Solving Multi-Objective Problems,

2nd edn. Springer, Heidelberg (2007)
5. Storm, A.J., et al.: Adaptive Self-Tuning Memory in DB2. In: Dayal, U., et al.

(eds.) Proc. of the 32nd Intl. Conf. on Very Large Data Bases, pp. 1081–1092.
ACM Press, New York (2006)

6. Bruno, N., Chaudhuri, S.: An Online Approach to Physical Design Tuning. In:
Proc. of the 23rd Intl. Conf. on Data Engineering, pp. 826–835. IEEE Computer
Society Press, Los Alamitos (2007)

7. Krompass, S., et al.: Quality of Service-enabled Management of Database Work-
loads. IEEE Data Eng. Bull. 31(1), 20–27 (2008)

8. Niu, B., et al.: Workload adaptation in autonomic DBMSs. In: Erdogmus, H., et
al. (eds.) Proc. of the, Conf. of the Center for Advanced Studies on Collaborative
Research, p. 13. IBM Press (2006)

9. Tran, D.N., et al.: A new approach to dynamic self-tuning of database buffers.
ACM Transactions on Storage 4(1), 1–25 (2008)

10. Chung, J.Y., et al.: Goal-oriented dynamic buffer pool management for database
systems. In: Proc. of the 1st Intl. Conf. on Engineering of Complex Systems, pp.
191–198. IEEE Computer Society Press, Los Alamitos (1995)

11. Brown, K.P., et al.: Goal-Oriented Buffer Management Revisited. In: Jagadish,
H.V., Mumick, I.S. (eds.) Proc. of the ACM SIGMOD Intl. Conf. on Management
of Data, pp. 353–364. ACM Press, New York (1996)

12. Distributed Management Task Force: Common Information Model (CIM) Infras-
tructure. 2.5.0a edn, Specification (2008)

13. IBM Corporation: A Practical Guide to the IBM Autonomic Computing Toolkit.
1st edn., Redbook (2004)

14. Liu, H., Parashar, M.: Accord: a programming framework for autonomic applica-
tions. IEEE Trans. on Systems, Man, and Cybernetics 36(3), 341–352 (2006)

15. Kumar, V., et al.: iManage: Policy-Driven Self-management for Enterprise-Scale
Systems. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007. LNCS,
vol. 4834, pp. 287–307. Springer, Heidelberg (2007)

16. Bhide, M.: et al.: Policy Framework for Autonomic Data Management. In: Proc.
of the 1st Intl. Conf. on Autonomic Computing, pp. 336–337. IEEE CS Press, Los
Alamitos (2004)

17. Bhat, V.: et al.: Enabling Self-Managing Applications using Model-based Online
Control Strategies. In: Proc. of the 3rd Intl. Conf. on Autonomic Computing, pp.
15–24. IEEE Computer Society Press, Los Alamitos (2006)

18. Wada, H., et al.: Multiobjective Optimization of SLA-aware Service Composition.
In: Proc. of the IEEE Congress on Services - Part I, pp. 368–375. IEEE CS Press,
Los Alamitos (2008)

19. Chang, W.C., et al.: Optimizing Dynamic Web Service Component Composition
by Using Evolutionary Algorithms. In: Skowron, A., et al. (eds.) Proc. of the
IEEE/WIC/ACM Intl. Conf. on Web Intelligence, pp. 708–711. IEEE CS Press,
Los Alamitos (2005)

	System Models for Goal-Driven Self-management in Autonomic Databases
	Introduction
	Goal-Driven Self-Management
	System Model
	Model Contents
	DBMS System Modelling

	Objective Functions
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

