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Abstract. Very often it is difficult to develop mechanistic models for pavement geotechnical 
engineering problems due to its complex nature and uncertainty in material parameters. The 
difficulty in mechanistic analysis has forced the engineers to follows certain empirical corre-
lations. The artificial neural network (ANN) is being as an alternate statistical method, map-
ping in higher-order spaces, such models can go beyond the existing univariate relationships.  
The applications of ANNs in pavement geotechnical engineering problems is mostly limited 
to constitutive modeling, with few applications on prediction of soil layer properties using 
Falling Weight Deflectometer (FWD), prediction of swelling potential and compute the re-
maining life of flexible pavements. However, ANN is considered as a ‘Black box’ system 
being unable to explain interrelation between inputs and output. The ANNs also have inher-
ent drawbacks such as slow convergence speed, less generalizing performance, arriving at 
local minimum and over-fitting problems. Recently support vector machine (SVM) is being 
used due to its, better generalization as prediction error and model complexity are simultane-
ously minimized.  SVM is based on statistical learning theory unlike ANNs (biological 
learning theory). The application of SVM in pavement geotechnical engineering is very 
much limited and to best of the knowledge such methods have not been applied to pavement 
geotechnical engineering. However, engineering application of numerical methods is a sci-
ence as well as an art. This juxtaposition is based on the fact that even though the developed 
algorithms are based on scientific logic and belong to the special branch of applied mathe-
matics, their successful application to new problems is problem oriented and is an art. As no 
method can be the panacea to solve all problems to the last details, their application to new 
areas needs critical evaluation. With above in view, an attempt has been made to develop the 
art of applying the above artificial intelligence techniques (ANN and SVM) to different 
pavement engineering problems such as prediction of compaction characteristics, permeabil-
ity, swelling potential, coefficient of subgrade reaction etc. The parameters associated with 
the model developments are discussed in terms of guide line for its future 

1   Introduction 

The pavement geotechnical engineering is a complex problem involving three 
phase system. The difficulty in mechanistic analysis and uncertainty in soil  
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parameters has forced the engineers to follows certain empirical correlations. Po-
tential of artificial neural network (ANN) has been realized as an alternate tool to 
handle such cases and have been successfully applied in various complex prob-
lems. The ANN is being as an alternate statistical method, for solving certain 
types of problems too complex, too poorly understood, or too resource-intensive 
to tackle using more-traditional computational methods. The ANN is capable of 
mapping in higher-order spaces, and such models can go beyond the existing uni-
variate relationships.  The applications of ANNs in pavement geotechnical engi-
neering problems is mostly limited to constitutive modeling (Ghaboussi 1992), 
with a few applications on prediction of soil layer properties using Falling Weight 
Deflectometer (FWD) (Meier and  Rix 1994), prediction of swelling potential 
(Najjar et al. 1996) and compute the remaining life of flexible pave-
ments(Abdallah et al. 2000). However, ANN is considered as a ‘Black box’ sys-
tem being unable to explain interrelation between inputs and output. The ANNs 
also have inherent drawbacks such as slow convergence speed, less generalizing 
performance, arriving at local minimum and over-fitting problems.  

The biggest challenge in successful application of ANN is when to stop training. 
If training is insufficient then the network will not be fully trained, where as if 
training is excessive then it will memorize the training patter or learn noise. When 
the numbers of data points are scanty the training set is driven to a very small 
value, but when new data is presented to the network the error is too large which is 
known as overfitting.  The network needs to be equally efficient for new data dur-
ing testing or validation, which is called as generalization. There are different  
methods for generalization like early stopping or cross validation (Basheer 2001; 
Shahin et al. 2002, Das and Basudhar 2006). In case of early stopping criteria the 
error on the validation/testing set is monitored during the training process and the 
training is stopped when the error on the testing set begin to rise.  In cross valida-
tion an independent test set is used to asses the performance of the model at various 
stages of learning. However, this method is not suitable if data points are scanty.  

Recently machine learning algorithms like support vector machine (SVM) and 
relevance vector machine (RVM) are being used due to its, better generalization as 
prediction error and model complexity is simultaneously minimized.  The SVM 
and RVM are based on statistical learning theory unlike ANNs (biological learn-
ing theory). The application of SVM and RVM in geotechnical engineering is very 
much limited and to best of the knowledge such methods have not been applied to 
pavement geotechnical engineering. Engineering application of numerical meth-
ods is a science as well as an art. This juxtaposition is based on the fact that even 
though the developed algorithms are based on scientific logic and belong to the 
special branch of applied mathematics, their successful application to new prob-
lems is problem oriented and is an art.  As no method can be the panacea to solve 
all problems to the last details, their application to new areas needs critical evalua-
tion. There are no fixed rules for developing an ANN model, even though a gen-
eral framework can be followed based on previous successful applications in such 
problems. With above in view some of problems related to pavement geotechnical 
engineering are discussed as follows with introduction to the methodology used. 
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2   Methodology 

2.1   Basic Principles of Artificial Neural Network  

A typical structure of ANN consists of a number of processing elements or 
neurons that are usually arranged in layers; an input layer, an output layer and one 
or more hidden layers (Figure 1). The input from each processing element in the 
previous layer is multiplied by an adjustable connection weight (wji). At each 
neuron, the weighted input signals are summed and a threshold value (bj) is added. 
The combined input (Ij) is then passed through a nonlinear transfer function {f()} 
to produce the output of processing element. Hence the output (yk) from the output 
node can be written as Equation (1).   
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The ‘learning’ or ‘training’ process in ANN in general, is a nonlinear optimization 
of an error function. The aim of the training is to minimize the error function to 
get the optimized weight vectors. This is equivalent to the parameter estimation 
phase in conventional statistical models. The most commonly used error function 
is the mean squared error (MSE) function. The error associated with weights and 
sigmoid function is a highly non-linear optimization with many local minima.  
Local and global optimization methods are carried out for finding out the weight 
vectors.  As the characteristic of traditional nonlinear programming based optimi-
zation method are initial point dependent, the results obtained using back propaga-
tion algorithm are sensitive to initial conditions (weight vector) (Shahin et al. 
2002).  The use of global optimization algorithms like genetic algorithm and simu-
lated annealing though being widely used in other field of engineering (Morshed 
and Kaluarachchi 1998), in geotechnical engineering use of GA for training ANN 
is limited (Goh 2002; Goh et al. 2005). In recent past another heuristic global  
optimization called differential evolution (DE), introduced by Storn and Price 
(1995) is being used successfully in aerodynamics shape optimization and  
mechanical design.  

The steepest descent algorithm and Levenberg-Marquardt (LM) algorithm 
which are gradient search algorithms are mostly used in ANNs applied to geo-
technical engineering problems (Das 2005).  The magnitudes of the weights and 
biases (parameters) are responsible for the poor generalization of the ANN rather 
than the number of network parameters.  

In the present study, the ANN models are trained with differential evolution 
and Bayesian regularization method and are defined as DENN and BRNN respec-
tively. The results are compared with that obtained from commonly used Leven-
berg-Marquardt trained neural networks (LMNN) to discuss the prediction  
efficiency of the networks. The above neural network models have been devel-
oped using MATLAB tool boxes (Math Works 2001). A brief description about 
the BRNN and DENN is presented here for completeness. 
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Fig. 1. Typical architecture of a Neural Network 

 

2.1.1   Bayesian Regularization Neural Network (BRNN)  
The most commonly used error function is the mean squared error (MSE) function. 
In LMNN, overfitting is due to unbounded values of weights (parameters) during 
minimization of the error function, mean square error (MSE). The other method 
called as regularization, in which the performance function is changed by adding a 
term that consist of mean square error of weights and biases as given below. 

MSWγ)(1MSEγMSEREG −+=                                      (2) 

Where MSE is the mean square error of the network, γ is the performance ratio 
and  
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This performance function will cause the network to have smaller weights and 
biases there by forcing networks less likely to be overfit. The optimal regulariza-
tion parameter λ is determined through Bayesian framework (Demuth and Beale 
2000) as the low value of λ will not adequately fit the training data and high value 
of it may result in over fit. The number of network parameters (weights and  
biases) are being effectively used by the network can be found out by the above 
algorithm. The above combination works best when the inputs and targets area 
scaled in the range [-1, 1] (Demuth and Beale 2000). The above neural network 
models have been developed using MATLAB tool boxes (Math Works Inc. 2001).  
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2.1.2   Differential Evolution Neural Network (DENN) 
The training of the feed-forward BPNN using DE optimization is known as differ-
ential evolution neural network (DENN) (Ilonen et al. 2003). The DE optimization 
is a population based heuristic global optimization method. Unlike other evolu-
tionary optimization, in DE the vectors in current populations are randomly sam-
pled and combined to create vectors for next generation. The real valued cross 
over factor and mutation factor governs the convergence of the search process. 
The detail of DENN is available in Ilomen et al. (2003). However, the DENN has 
not been applied in geotechnical engineering. In the present study, DENN  
has been implemented using the MATLAB (Math Works Inc. 2001) modeling  
environment. 

In the present study single hidden layer is used and number of hidden layer 
neuron was obtained by trial and error. In the present study, the generalization was 
given priority and hence, the model with minimum error for the testing data  
was considered. The best ANN model was obtained with three neurons in the  
hidden layers.  

2.2   Support Vector Machine 

Support Vector Machine (SVM) has originated from the concept of statistical 
learning theory pioneered by Boser et al. (1992). This study uses the SVM as a re-
gression technique by introducing a ε-insensitive loss function. In this section, a 
brief introduction on how to construct SVM for regression problem is presented. 
More details can be found in many publications (Boser et al. 1992; Cortes and 
Vapnik 1995; Gualtieri et al. 1999; Vapnik 1998). There are three distinct charac-
teristics when SVM is used to estimate the regression function. First of all, SVM 
estimates the regression using a set of linear functions that are defined in a high 
dimensional space. Secondly, SVM carries out the regression estimation by risk 
minimization where the risk is measured using Vapnik’s ε-insensitive loss func-
tion. Thirdly, SVM uses a risk function consisting of the empirical error and a  
regularization term which is derived from the structural risk minimization (SRM) 

principle. Considering a set of training data )}
l

y,
l

(x),....,1y,1{(x , nRx ∈  , 

ry ∈ . Where x is the input, y is the output, RN  is the N-dimensional vector space 

and r is the one-dimensional vector space.  
The ε-insensitive loss function can be described in the following way 

( ) 0yεL =  for ( ) εyxf <−  otherwise ( ) ( ) εyxfyεL −−=                     (4) 

This defines an ε tube (Figure 2) so that if the predicted value is within the tube 
the loss is zero, while if the predicted point is outside the tube, the loss is equal to 
the absolute value of the deviation minus ε. The main aim in SVM is to find a 

function ( )xf  that gives a deviation of ε from the actual output and at the same 

time is as flat as possible. Let us assume a linear function 
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( ) ( ) bw.xxf +=  nRw ∈ , rb ∈                                   (5) 

Where, w = an adjustable weight vector and b = the scalar threshold. Flatness in 
the case of (5) means that one seeks a small w. One way of obtaining this is by 

minimizing the Euclidean norm
2

w . This is equivalent to the following convex 

optimization problem 

 

 
 

Fig. 2. Prespecified Accuracy ε and Slack Variable ξ in support vector regression [Schol-
kopf (1997)]. 
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The above convex optimization problem is feasible. Sometimes, however, this 
may not be the case, or I also may want to allow for some errors. Analogously to 
the “soft margin” loss function (Bennett and Mangasarian 1992) which was used 
in SVM by Cortes and Vapnik (1995).As shown in the Figure 2, the parameters 
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iξ  are slack variables that determine the degree to which samples with error 

more than ε be penalized. In other words, any error smaller than ε does not re-
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points have a value of zero for the loss function. The slack variables (
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been introduced to avoid infeasible constraints of the optimization problem (6).  
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The constant 0<C<∞ determines the trade-off between the flatness of f and the 
amount up to which deviations larger than ε are tolerated (Smola and Scholkopf 
2004). This optimization problem (7) is solved by Lagrangian Multipliers (Vapnik 
1998), and its solution is given by 
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iα  are the Lagrangian Multipliers and nsv is 

the number of support vectors. An important aspect is that some Lagrange multi-

pliers (αi,
*
iα ) will be zero, implying that these training objects are considered to  
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Fig. 3. Concept of nonlinear regression. 

 
be irrelevant for the final solution (sparseness). The training objects with nonzero 
Lagrange multipliers are called support vectors.    

When linear regression is not appropriate, then input data has to be mapped into 
a high dimensional feature space through some nonlinear mapping (Boser et al. 
1992) (see Figure 3). The two steps that are involved are first to make a fixed 
nonlinear mapping of the data onto the feature space and then carry out a linear 
regression in the high dimensional space. The input data is mapped onto the fea-

ture space by a map Ф(see Figure 3). The dot product given by ( ) ( )jx.ΦixΦ is 

computed as a linear combination of the training points. The concept of kernel  
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Fig. 4. Architecture of Support Vector Machine (Haykin, 1999). 
 
 

function [ ( ) ( ) ( )jx.ΦixΦjx,ixK = ] has been introduced to reduce the computa-

tional demand (Cristianini and Shawe-Taylor 2000, Cortes and Vapnik 1995). So, 
equitation (5) becomes written as 
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Some common kernels have been used such as polynomial (homogeneous), 
polynomial (non homogeneous), radial basis function, Gaussian function, sigmoid 
etc for non-linear cases. Figure 4 shows a typical architecture of SVM. 



314 P. Samui, S.K. Das, and T.G. Sitharam 
 

The successful application of SVM models depends upon suitable parameters 
like type of kernel function and the parameters C and ε is obtained by trial and er-
ror. A large C assigns higher penalties to errors so that the regression is trained to 
minimize error with lower generalization while a small C assigns fewer penalties 
to errors; this allows the minimization of margin with errors, thus higher general 
zation ability. If C goes to infinitely large, SVM would not allow the occurrence 
of any error and result in a complex model, whereas when C goes to zero, the re-
sult would tolerate a large amount of errors and the model would be less complex. 
With regards to the selection of ε if ε is too large, too few support vectors are se-
lected which leads to a decrease of the final prediction performance. If ε is too 
small, many support vectors are selected which leads to the risk of overfit-
ting(Thissen et al. 2004). To train the SVM model, three types of kernel function 
have been used: They are 

 
1. Polynomial 
2. Radial basis function  
3. Spline 

3   Prediction of Swelling Pressure of Expansive Soil 

Expansive soil and bedrock underlie more than one third of world’s land surface. 
Each year, damage to buildings, roads, pipelines, and other structures by expan-
sive soils is much higher than damage that are caused by floods, hurricanes, torna-
does, and earthquakes combined Jones and  Holtz (1973). The estimated annual 
cost of damage due to expansive soils is $1000 million in the USA, £150 million 
in the UK, and many billions of pounds worldwide Gourley et al. (1993). How-
ever, as the hazards due to expansive soils develop gradually and seldom present a 
threat to life, these have received limited attention, despite their severe effects on 
the economy. Much of the damage related to expansive soils is not due to a lack of 
appropriate engineering solutions but to the non recognition of expansive soils and 
expected magnitude of expansion early in land use and project planning. The 
damage to foundation on expansive soil can be avoided / minimized by proper 
identification, classification, quantification of swell pressure and provision of an 
appropriate design procedure. Swelling potential of clayey soil is a measure of the 
ability and degree to which such a soil might swell if its environments were 
changed in a definite way. Hence, the expansive soil is classified based on its po-
tential for swelling.  However, there is not a definite expression of swell potential 
for classification of expansive soils (Nelson and Miller 1992). Holtz (1959) re-
ferred to swell potential as the volume change of air-dried undisturbed sample, 
whereas, Seed et al. (1962) defined it as change in volume of a remoulded sample. 
Though factors like clay content, Atterberg’s limits and mineral types are found to 
affect the swelling potential, the available literature presents contradicting results. 
McCormack and Wilding (1975) observed that for soil dominated by illite, clay 
content to be as reliable in predicting swelling potential, where as Yule and 
Ritchie (1980) and Gray and Allbrook (2002) reported, there being no relationship  
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between clay percentage and soil swelling. The cation exchange capacity (CEC), 
saturation moisture and plastic index (PI) are also important indices for estimation 
of swelling potential Gill and Reaves (1957). Parker et al. (1977) concluded swell 
index and PI as superior to other indices.  

The swelling pressure depends upon various soil parameters such as mineral-
ogy, clay content, Atterberg’s limits, dry density, moisture content, initial degree 
of saturation, etc along with structural and environmental factors. The parameters 
are interrelated in a complex manner, and it is difficult to model and analyze ef-
fectively taking all the above aspects into consideration. However, it can be meas-
ured easily with relevant data pertaining to soil, structure and environment. So 
various statistical/empirical methods have been attempted to predict the swelling 
pressure based on index properties of soil (Das 2002).  

4   Results and Discussion 

The data from various sources available in literature (Aciroyd et al. 1988;  Savana 
et al. 1978; Abdujauwad 1994; Abdujauwad et al. 1994) are taken with input pa-
rameters, natural moisture content (wn), dry density (γd), LL, PI, clay fraction (CF) 
and swelling pressure (SP) as output.  The total number of data points considered 
is 230 out of which 167 are taken for training and 63 are taken for testing. The da-
ta is normalized between 0 to 1. The maximum, minimum, average and standard 
deviation for the data used are shown in Table 1 and it can be seen that it covers a 
wide range of values.  The successful application of a method depends upon the 
identification of suitable input parameters. Table 2 shows the cross correlation be-
tween the inputs and output, it can be seen that CF, LL, PI are found to be impor-
tant input parameters.  

The results of different ANN models using the above parameters are shown in  
Table 3. The correlation coefficient (R) and root means square error (RMSE) are 
mostly for performance criteria evaluation of ANN models. However, R is a  

 
Table 1. Parameters of the data considered for the present study 

 

  

wn (%) γd (kN/m3) LL PI Clay  
Fraction 

Swelling 
pressure 
(kN/m2) 

Maximum    63.90 15.70    193.00 165.00 97.00 805.00 

Minimum 2.70 1.04 26.00 12.00 19.00 3.00 

Average 18.31 9.33 90.74 59.06 41.19 122.61 

Std Dev. 9.58 5.89 47.77 43.42 14.04 140.90 
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Table 2. General performance of different neural network models. 
 

Training data Testing data ANN models 

R E R E 
Overfitting 

ratio 

DENN 0.95 0.91 0.87 0.75 1.37 

BRNN 0.98 0.96 0.90 0.79 2.12 

LMNN 0.95 0.90 0.88 0.74 1.43 

SVM 0.98 0.96 0.94 0.88 1.40 

 
biased parameter and sometimes, higher values of R may not necessarily indicate 
better performance of the model because of the tendency of the model to be biased 
towards higher or lower values (Das and Basudhar 2006), the coefficient of effi-
ciency (E) is also considered. The E is defined as  

1E
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and SPm, 
____

mSP and SPp are the measure, average and predicted swelling pressure 

respectively. The E value compares the modeled and measured values of the vari-
able and evaluates how far the network is able to explain total variance in the data 
set. The overfitting ratio is defined as the ratio of RMSE for testing and training 
data and it defines the generalization. It can be seen that comparing the values of 
R and E values for training and testing data, BRNN is found to better than DENN 
and LMNN. However, DENN is having good generalization with small overfitting 
ratio, followed by LMNN and BRNN.  

The RMSE value only defined the efficiency of a model as overall; however 
MAE can reveal the presence of regional areas of poor prediction. Figure 5 and 6 
show the value of MAE, AAE and RMSE for different ANN models for training 
and testing data respectively.  
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Fig. 5. Comparison of prediction capabilities of ANN models for training data. 
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Fig. 6. Comparison of prediction capabilities of ANN models for testing data. 

 
It can be seen that for training data BRNN is having lowest values of MAE, 

AAE and RMSE. However, for testing data AAE is comparable for all the meth-
ods, but based on MAE and RMSE values BRNN performs better than DENN and 
LMNN. Hence, based on different statistical performance criteria for the present 
study it can be concluded that BRNN is better followed by DENN and LMNN.  
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The ANN is considered as a ‘Black box’ system due to insufficient explana-
tions to the weight vectors, but methods like Garson’s algorithm and connection 
weight approach have been used utilizing the weight vector to identify the impor-
tant input vectors (Das and Basudhar 2006). Such a study also made here to com-
pare the above two methods in identifying the important parameters. Table 3 
shows the ranking of important input parameters as calculated from Garson’s al-
gorithm and connection weight approach with the weights obtained from DENN, 
BRNN and LMNN.  It can be seen from that the ranking of important input pa-
rameters as obtained by Garson’s algorithm and Connection weight approach are 
different for BRNN and LMNN, where as for DENN the ranking of 1st and 2nd pa-
rameters are same by both the methods.  

Table 5 presents the results of SVM models developed and based on R and E 
values SVM model with radial basis kernel function (SVM-R) found to be more 
efficient compared to models developed with other kernel functions (SVM-P and 
SVM-S). From Table 5, it is clear that SVM model employs 65 to 75 % (radial ba-
sis function=74.85%, Polynomial kernel=65.26% and spline kernel = 66.46%) of 
the training patterns as support vectors. So, SVM is remarkable in producing an 
excellent generalization level while maintaining the sparsest structure. Sparseness 
means that a significant number of the weights are zero (or effectively zero), 
which has the consequence of producing compact, computationally efficient mod-
els, which in addition are simple and therefore produce smooth functions. In 
SVM, support vectors represent prototypical examples. The prototypical examples 
exhibit the essential features of the information content of the data, and thus are 
able to transform the input data into the specified targets. Figure 7 and 8 show the 
value of MAE, AAE and RMSE for different SVM models for training and testing 
 
 

 
 

Fig. 7. Comparison of prediction capabilities of SVM models for training data. 
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Fig. 8. Comparison of prediction capabilities of SVM models and for testing data 

 
 

data respectively.  It can be seen that for training data SVM-R is having lowest 
values of MAE, AAE and RMSE. In comparison to ANN models SVM-R model 
is found to better than all the ANN models. The use of the SRM principle in defin-
ing cost function provided more generalization capacity with the SVM compared 
to the ANN, which uses the empirical risk minimization principle. SVM uses only 
three parameters (radial basis function: σ, C and ε;  polynomial kernel: degree of 
polynomial, C and ε; spline kernel: C and ε ).  In ANN, there are a larger number 
of controlling parameters, including the number of hidden layers, number of hid-
den nodes, learning rate, momentum term, and number of training epochs, transfer 
functions, and weight initialization methods. Obtaining an optimal combination of 
these parameters is a difficult task as well. Another major advantage of the SVM 
is its optimization algorithm, which includes solving a linearly constrained quad-
ratic programming function leading to a unique, optimal, and global solution  
compared to the ANN. In SVM, the number of support vectors has determined by 
algorithm rather than by trial-and-error which has been used by ANN for deter-
mining the number of hidden nodes. 

In this study, a sensitivity analysis has been carried out to extract the cause and 
effect relationship between the inputs and outputs of the SVM model. The basic 
idea is that each input of the model is offset slightly and the corresponding change 
in the output is reported. The procedure has been taken from the work of Liong et 
al. (2000). According to Liong et al. (2000), the sensitivity (S) of each input pa-
rameter has been calculated by the following formula  

100
N

1i inputin%Change

outputin%Change

N

1
S ×∑

=
= ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
                                     (11) 

 
 



320 P. Samui, S.K. Das, and T.G. Sitharam 
 

Table 4. Relative importance of different input parameters 
 

Garson’s algorithm Connection weight  
approach 

Ranking of inputs as per 
relative importance 

Ranking of inputs as per 
relative importance 

Ranking of 
inputs as  
per relative 
importance 

Input  
Parameters 

DENN BRNN LMNN DENN BRNN LMNN SVM-R 
wn 5 5 4 4 4 4 3 

γd 3 3 3 5 3 3 2 
LL 2 1 1 2 2 2 4 
PI 1 2 2 1 1 1 1 
CF 4 4 5 3 5 5 5 

 
Table 5. General performance of SVM for different kernels 

 

Training performance  Testing performance Kernel C ε 

Correlation 
coefficent 

(R) 

Coefficient of
determination

(E) 

Correlation 
coefficent 

(R) 

Coefficient of 
determination 

(E) 

Number 
of  

support 
vector 

Radial basis 
function, 

width(σ) = 
2.6 

20 0.009 0.979 0.958 0.941 0.887 125 

Polynomial, 
degree = 2 

10 0.01 0.865 0.726 0.652 0.018 109 

Spline 4 0.01 0.890 0.768 0.859 0.657 112 

 
Where N is the number of data points. The analysis has been carried out on the 
trained model for radial basis function by varying each of input parameter, one at 
a time, at a constant rate of 20%. The result of the above analysis is also presented 
in Table 4. It is observed that similar to ANN analysis using connection weight 
approach PI is found to be more important parameters followed by γd and wn.  

5   Conclusions 

The different ANN techniques and SVM model examined here have shown the 
ability to build accurate models with high predictive capabilities for prediction of 
swelling pressure of soil from the inputs; natural moisture content (wn), dry den-
sity (d), liquid limit (LL), plasticity index (PI) and clay fraction (CF). Based on 
different statistical performance criteria, the Bayesian regularization neural net-
work (BRNN) model found to be more efficient compared to DENN and LMNN. 
However, the DENN model found to better in terms of generalization. The per-
formance of the developed SVM model is better than the developed ANN models. 



Application of Soft Computing Techniques to Expansive Soil Characterization 321
 

The ranking of important input parameters found to be consistent as per connec-
tion weight approach for the ANN model considered here. However, while using 
Garson’s algorithm the ranking found to be different for different ANN models. 
Developed ANN and SVM models have the advantage that once the model is 
trained, it can be used as an accurate and quick tool for predicting swelling pres-
sure without a need to perform any manual work such as using tables or charts. 
Comparison between the ANN and SVM model indicates that SVM model is  
superior to ANN model for predicting swelling pressure.  
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