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Preface 

 
The term “soft computing” applies to variants of and combinations under the four 
broad categories of evolutionary computing, neural networks, fuzzy logic, and 
Bayesian statistics. Although each one has its separate strengths, the complemen-
tary nature of these techniques when used in combination (hybrid) makes them a 
powerful alternative for solving complex problems where conventional mathe-
matical methods fail.  

The use of intelligent and soft computing techniques in the field of geome-
chanical and pavement engineering has steadily increased over the past decade 
owing to their ability to admit approximate reasoning, imprecision, uncertainty 
and partial truth. Since real-life infrastructure engineering decisions are made in 
ambiguous environments that require human expertise, the application of soft 
computing techniques has been an attractive option in pavement and geomechani-
cal modeling. 

The objective of this carefully edited book is to highlight key recent advances 
made in the application of soft computing techniques in pavement and geome-
chanical systems. Soft computing techniques discussed in this book include, but 
are not limited to: neural networks, evolutionary computing, swarm intelligence, 
probabilistic modeling, kernel machines, knowledge discovery and data mining, 
neuro-fuzzy systems and hybrid approaches. Highlighted application areas include 
infrastructure materials modeling, pavement analysis and design, rapid interpreta-
tion of nondestructive testing results, porous asphalt concrete distress modeling, 
model parameter identification, pavement engineering inversion problems, sub-
grade soils characterization, and backcalculation of pavement layer thickness and 
moduli. 

This book belongs to the “Studies in Computational Intelligence (SCI)” series 
published by Springer Verlag. Each chapter contained in this book has been peer-
reviewed by at least two anonymous referees to assure the highest quality. The 
valuable contributions of the following individuals in assisting with the review 
process are greatly appreciated: Sunghwan Kim (Iowa State University), Roger W. 
Meier (The University of Memphis), Fwa Tien Fang (National University of Sin-
gapore), P. Chris Marshall (Golder Associates Inc.), Abhisek Mudgal (Iowa State 
University), and Amit Pande (Iowa State University). 



Preface 
 

VI 

Researchers and practitioners engaged in developing and applying soft comput-
ing and intelligent systems principles to solving real-world infrastructure engi-
neering problems will find this book very useful. This book will also serve as an 
excellent state-of-the-art reference material for graduate and postgraduate students 
in transportation infrastructure engineering. 

 
August 13, 2009 
 

Kasthurirangan (Rangan) Gopalakrishnan 
Ames, Iowa 

 
 

 
 
 

 



About This Book 

The use of intelligent and soft computing techniques in the field of geomechanical 
and pavement engineering has steadily increased over the past decade owing to 
their ability to admit approximate reasoning, imprecision, uncertainty and partial 
truth. Since real-life infrastructure engineering decisions are made in ambiguous 
environments that require human expertise, the application of soft computing 
techniques has been an attractive option in pavement and geomechanical model-
ing. The objective of this carefully edited book is to highlight key recent advances 
made in the application of soft computing techniques in pavement and geome-
chanical systems. Soft computing techniques discussed in this book include, but 
are not limited to: neural networks, evolutionary computing, swarm intelligence, 
probabilistic modeling, kernel machines, knowledge discovery and data mining, 
neuro-fuzzy systems and hybrid approaches. Highlighted application areas include 
infrastructure materials modeling, pavement analysis and design, rapid interpreta-
tion of nondestructive testing results, porous asphalt concrete distress modeling, 
model parameter identification, pavement engineering inversion problems, sub-
grade soils characterization, and backcalculation of pavement layer thickness and 
moduli. Researchers and practitioners engaged in developing and applying soft 
computing and intelligent systems principles to solving real-world infrastructure 
engineering problems will find this book very useful. This book will also serve as 
an excellent state-of-the-art reference material for graduate and postgraduate stu-
dents in transportation infrastructure engineering. 

Written for 

Researchers and practitioners engaged in developing and applying soft computing 
and intelligent systems principles to solving real-world geomechanical and pave-
ment engineering problems. 

Keywords 

Pavement engineering; artificial intelligence; artificial neural networks; evolution-
ary computing; genetic algorithms; particle swarm optimization; shuffled complex 
evolution; support vector machines; data mining; rough set; neuro-fuzzy; decision 
trees; genetic polynomial; relief ranking filter; extended Kalman filter. 
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Rapid Interpretation of Nondestructive Testing Results 
Using Neural Networks 

Imad N. Abdallah1 and Soheil Nazarian2 

1 Center for Transportation Infrastructure Systems,  
University of Texas at El Paso, El Paso, Texas  
emadn@utep.edu 

2 Center for Transportation Infrastructure Systems,  
University of Texas at El Paso, El Paso, Texas  
nazarian@utep.edu 

Abstract. Artificial neural network tools for structural pavement evaluation have been de-
veloped to facilitate the determination of the integrity of existing flexible pavements. With 
the onset of the movement toward more mechanistic pavement design, such as Mechanistic 
Empirical Pavement Design Guide, nondestructive testing techniques play a major role to 
determine properties of pavement structures.  Conventional methods such as backcalculat-
ing the layer properties are complex and either require a significant computational effort 
and/or frequent operator intervention.  Studies are presented that show the power of artifi-
cial neural networks to estimate pavement layer properties and allow for capabilities in  
developing pavement performance curves and for estimating and monitoring remaining life. 

1   Introduction 

Many highways agencies are attempting to incorporate this new design process in 
the state-of-practice.  Currently, nondestructive testing (NDT) devices such as the 
Falling Weight Deflectometer (FWD) and the Seismic Pavement Analyzer (SPA) 
are available for collecting field data.  Each of these technologies provides support 
to the design process.  These tools have significantly contributed to pavement 
maintenance and rehabilitation strategies. 

In this chapter, a discussion of the conventional use of NDT data is described, 
followed by an overview of the use of the artificial neural networks to supplant the 
conventional methods. Finally, two studies are presented to demonstrate the power 
of incorporating ANN in pavement evaluation. 

2   Conventional Analysis of NDE Programs Using FWD and 
SPA 

2.1   Estimating Modulus of Pavement Layers Using Falling Weight 
Deflectometer 

The Falling Weight Deflectometer is the most popular NDT device.  As shown in 
Figure 1a, the FWD applies an impulse load to the pavement and seven or more  
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Fig. 1. Falling Weight Deflectometer and MODULUS backcalculation program. 

sensors measure the deflections of the pavement. The deflections obtained from 
the sensors are analyzed to determine the layer moduli of the pavement using a 
backcalculation algorithm. 

Several tools are available in the market that use the FWD data to backcalculate 
the pavement layer moduli.  The determination of pavement moduli using the static 
layer elastic backcalculation method is, by far, the most widely used procedure 
(Bush, 1980; Lytton, et al., 1985; Uzan, et al., 1988) [1-3]. The application of lay-
ered theory for in-situ material characterization requires the estimation of only one 
unknown parameter, the modulus of each layer. MODULUS (see Figure 1b,  
Liu and Scullion, 2001 [4]) is an example of a backcalculation tool used by several 
agencies including TXDOT.   

2.2   Estimating Modulus of Pavement Layers Using Seismic Methods 

The Seismic Pavement Analyzer is a trailer-mounted, nondestructive testing device, 
as shown in Figure 2a. The SPA is similar in size to the FWD. However, the SPA 
uses more transducers with higher frequencies and more sophisticated interpreta-
tion techniques. The measurement is rapid. A complete testing cycle at one point 
takes less than one minute (lowering sources and receivers, making measurements, 
and withdrawing the equipment). A detailed discussion on the background of the 
device can be found in Nazarian et al. (1995) [5]. Its operating principle is based on 
generating and detecting stress waves in a layered medium. Several seismic testing 
techniques are combined.   

The SPA is mainly designed to determine the variation in modulus with depth 
and to diagnose the structural condition of pavements. The SPA records the pave-
ment response produced by high- and low-frequency pneumatic hammers on five 
accelerometers and three geophones. The equipment has been used in several  
 



Rapid Interpretation of Nondestructive Testing Results Using Neural Networks 3
 

 

Fig. 2. Seismic Pavement Analyzer 

applications such as analyzing pavement conditions in project-level surveys, diag-
nosing specific distress precursors to aid in selecting a maintenance treatment, and 
monitoring pavement conditions after construction as a quality control tool. 

The Spectral-Analysis-of-Surface-Waves (SASW) method is used in the SPA 
to determine the modulus profiles of pavement sections by measuring the disper-
sive nature of surface waves. The procedure includes collecting data, determining 
a experimental dispersion curve, and obtaining the stiffness profile (see Figure  
2b and 2c). The SASW result, namely the linear-elastic modulus profile, is further 
incorporated into an algorithm that accounts for the nonlinear behavior of the 
pavement materials under actual truck traffic. The algorithm is referred to as an 
equivalent-linear analysis method. Further information on this process can be 
found in Abdallah et al. (2003) [6]. 
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3   Limitation of Conventional Methods 

In its simplest definition, backcalculation is an iterative process that requires  
varying a set of moduli until a best match between the measured and calculated 
quantities is obtained. The problem with the backcalculation process is the  
non-uniqueness of the results.  A good match between the measured and estimated 
values for any of the methods above does not guarantee that the backcalculated 
moduli are reasonable for that section and, as a consequence, the remaining life of 
the section could be grossly under or over estimated. This process requires an  
experienced analyst. 

4   Artificial Neural Network 

The use of ANN is not new in pavement engineering. Several applications have al-
ready been published in the literature. For example, Gucunski et al. (1998) [7], 
Kim and Kim (1998) [8] and Meier and Rix (1998) [9] implemented of neural 
networks in pavement engineering. Some of the early applications include: 1)  
parameter determination, such as the pavement section moduli; 2) assessment of 
the condition of the pavement and 3) selection of maintenance strategies. Develop-
ing a successful ANN model requires several steps as discussed below. 

4.1   Generating a Database 

To generate a database for any system or model, the input and output parameters 
to be used in the development process and the tools for generating them need to be 
identified. ANN models should be ideally developed based on actual field data. As 
pertained to pavement evaluation, a comprehensive database where the data has 
passed through a rigorous quality assurance process is difficult to obtain. The cost 
associated with carrying out extensive testing for this purpose is tremendous and 
the process is rather difficult. A synthetic database, where the output and possibly 
input parameters are generated from a numerical model is the next ideal process. 
A synthetic database allows for flexibility in considering a wide possible range for 
pavement profiles to cover all the possible conditions. 

Figure 3 presents the process of generating a synthetic database that can be 
used in training, testing, or validating the ANN models. Assume the ANN model 
to be developed requires deflection data as input and pavement performance as 
output.  The possible ranges of the input parameters have to be defined first.  A 
Monte Carlo simulation (Ang and Tang, 1984) [10] is then conducted using the 
following assumptions: 1) the variables (e.g., thickness and modulus) are not cor-
related and 2) these variables are uniformly distributed.  

After defining the pavement variables, the input and output parameters are simu-
lated. For example, the deflection profiles can be determined using any layered 
elastic program for each pavement section. The output parameters (e.g. critical 
stresses and strains under typical traffic loads can be determined using the same 
layered elastic program. Based on the critical strains, the remaining life can then  
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Fig. 3. Process of Developing a Synthetic Database 

 
be calculated from well-established pavement performance models. The main  
performance parameters are typically fatigue cracking and rutting. Once both the 
input and output parameters are available for each pavement section, a database is 
ready to be preprocessed to develop ANN models.   

4.2   Data Mining 

Data processing or data mining has been recognized as one of the most important 
aspect of developing ANN models. Data mining can consume up to 70% of the 
time used to develop a neural network model. Figure 4 presents the results of two  
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Fig. 4. Effect of Data Preprocessing on ANN Model. 

 
ANN models; one trained with the raw data and the other trained with pre-
processed data.  The accuracy gained by pre-processing of the data is evident. 

Even though ANN modeling is very powerful and is able to map highly nonlin-
ear processes, data mining activities are prudent before training to ensure robust 
and realistic models. The three general data mining approaches used are: a) corre-
lation analysis, b) evaluation of data sparseness, and c) data transformation  
(see Figure 5). If some of the input variables are highly correlated, then the model 
may lack enough independent information. On the other hand, if the input parame-
ters have no correlation to the output a priori, the chance of developing a robust 
model is small. Correlation analysis can be used to optimize the number of inde-
pendent input parameters (especially when a large number of input parameters are 
used) and ensure that the input and output parameters are reasonably correlated.  

Data sparseness is defined as uneven and fractionated distribution of the input 
and output parameters. As shown in Figure 5, the distribution of the deflections is 
not even and clustered. In many cases, the data should be mined to ensure that the 
range of data is presented evenly in training the ANN model. In this example, since 
the deflection data is calculated, there is no control to populate the entire range of  
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Fig. 5. Process for Data Preprocessing. 
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deflections. However, for the ranges where the data is denser than others, the num-
ber of exemplars can be reduced so that the variable has a more even distribution.  
This will provide for a better training set when developing the ANN model.  

Data transformation also provides a means to improve the data quality of the in-
put and output variables to ensure that the ANN learning process is not inhibited. In 
data transformation, the variables are subjected to mathematical transformations 
before being used in the training of ANN models. A combinatorial analysis can be 
conducted to select a suitable set of transformations for each of the input and output 
variables. The transformation algorithm generates hybrid or offspring variables 
based on the original input and output variables. These offspring variables are  
intended to exhibit more linear and smoother characteristics than the original vari-
ables.  The selection of candidate variables from the pool of variable transformation 
can be done in many activities. A genetic algorithm can be implemented to choose 
the best set of transformations. The criterion used to select the transformations is 
the minimization of the root mean square (RMS) error. Gucumski et al. (2000) [11] 
and Abdallah et al. (2000a) [12] provide more information regarding the transfor-
mation process. 

The next process is to generate the databases to be used for training testing and 
validating the ANN model. With a synthetic database, the number of examples is 
usually not an issue. However, the selection of examples for each database is  
important. To inhibit bias in the data, a random number generator can be used to 
scatter the examples and ensure that the entire range of pavement section is equal-
ly represented in each file. In most instances the database is divided into three sets 
with usually 7-3-1 ratio for training, testing and validating, respectively. Gener-
ally, the larger the database is, the more comprehensive the trained models will be. 
One concern with a large training database is the possibility of the so-called “over-
training” the model, which deprives it from generalization.  

4.3   ANN Models 

Figure 6 graphically shows a model for an ANN and its main components. In gen-
eral, an ANN consists of at least three layers of interconnected processing  
elements (PEs): (1) input, (2) hidden, and (3) output layers. The number of PEs in 
the input layer is the same as the number of input variables defined to predict the 
desired output. The PEs in the output layer represent the output parameters to be 
predicted. One or several layers of PEs are incorporated in hidden layers. The 
number of hidden PEs within these layers is decided by trial and error depending 
on the complexity and nonlinearity of the problem. 

In most types of ANN, the PEs between two adjacent layers are usually inter-
connected. The strength of each connection is expressed by a numerical value 
called a weight. The weights are determined through a “training” process by pre-
senting input and output examples to the network. The ANN is supposed to learn 
the relationship between the input and the output by adapting the weights of the 
connections.   



Rapid Interpretation of Nondestructive Testing Results Using Neural Networks 9
 

 
Fig. 6. Components of an Artificial Neural Network. 

 
 
The popular backpropagation model was implemented in all applications pre-

sented in this chapter.  Training of a backpropagation neural network involves the 
forward and backward transfer of information as detailed by Smith (1993) [13] 
amongst others.   

The main interactions between the developer and the software include introduc-
ing noise (uncertainty) in the data to simulate measurement uncertainties, selecting 
the evaluation function used in training, characterizing the closeness between the 
desired and actual outputs, and sometimes selecting the reasonable variable trans-
formations of the inputs and outputs.  

The appropriateness of the model is carried out usually subjectively to either a 
maximum acceptable root mean square (RMS) errors or a minimum acceptable 
coefficient of correlation between the calculated and desired output of the ANN 
model. In cases where several ANN models exhibited similar RMS errors and  
coefficients of correlation, the number of hidden nodes can be a deciding factor. 
The fewer the nodes used in the hidden layer, the more general and stable the 
model will be.  Using too many nodes increases the complexity of the model and 
may increase the risk of over-training the model.  Once the network is trained, the 
model is then tested and validated. Once it has been validated, the development 
process is completed.   

4.4   Limitation 

The two main limitations of the ANN models are that (1) the model does not have 
the ability to extrapolate beyond the range of parameters used in training and (2) 
the development of robust models is time consuming.  The first limitation can be 
overcome by carefully selecting the training set.  The second limitation only af-
fects the model developers and not the users. 

5   Case Studies 

Two case studies are presented that show the power of ANN to replace or improve 
the conventional analyses.   
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5.1   Use of ANN to Improve the Seismic Inversion Process 

An algorithm for the rapid reduction of the SASW data was developed where both 
thickness and modulus of each pavement layer in a three-layer pavement system 
were estimated. Five individual ANN models were developed, three models to es-
timate moduli of the three layers and two to estimate the thickness of the asphalt 
concrete (AC) and base layers. Based on experience, this process ensures that the 
model accuracy and architecture are only influenced by only one output variable. 
To evaluate the accuracy of each m odel and to ensure that no over-training was 
carried out, a validation database of 250 cases (that were not used in training and 
testing the model) was used. Depending on the validation results, the developed 
models can be used either directly to substitute backcalculation or they can be 
used as a first approximation in traditional backcalculation process.   

As an example, Figure 7a presents the quality of the model for estimating the 
thickness of the AC layer. An upper-lower bound of 10% of the desired value is 
plotted to help visualize the accuracy of the model’s predictions. Only a few data 
points fall outside those bounds. The histogram of the errors, as shown in Figure 7b,  

 

 
 

Fig. 7. Results of ANN Model for Predicting the Thickness of AC. 
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Table 1. Results of ANN Models Based on the Percentage of Data 
 

Cumulative % of Results Based  on Absolute Error 
ANN Model Layer 

Architecture 
(I/H/O)a 

1% 2% 5% 10% 20% 50% 

AC (15/30/1) 17% 35% 63% 86% 96% 100% 
Thickness 

Base (19/14/1) 3% 6% 17% 32% 64% 91% 

AC (10/28/1) 45% 74% 96% 100% - - 

Base (13/25/1) 12% 22% 50% 75% 91% 99% Modulus 

Subgrade (14/28/1) 9% 16% 37% 66% 88% 99% 

a – (I/H/O) are the processing elements in input, hidden layer and output respectively. 
 
 

indicates that 86% of the data is predicted with an error of less than 10%. The results 
of this model are encouraging enough that perhaps this ANN model can replace the 
backcalculation process. Table 1 contains the information about all five models.  
The architecture of the models changes, even though the original input parameters to 
all models is the same. Four models can be considered satisfactory since they esti-
mate their respective output with an accuracy of better than 20% in 88% of the 
cases. The base thickness model is not satisfactory because of the limited resolving 
power of dispersion data. Therefore, additional training of this model would not im-
prove performance by much. Other information would be necessary for developing a 
better ANN model for base thickness.   

To demonstrate the use of these neural networks in analysis of SASW data, a 
pavement section in El Paso, Texas was tested. Fifteen points were collected using 
the SPA. The data from the SPA was analyzed using the following three ap-
proaches: a) Traditional backcalculation, b) ANN models and c) ANN models as a 
first estimate to the traditional back-calculation. In the third process, the outcome 
of the ANN was considered as the a priori information (a.k.a. seed value) for 
backcalulation process.    

The estimated moduli of the AC base and subgrade layers from different proc-
esses are compared in Figure 8. The ANN results show more consistency along 
the pavement section. Overall, the moduli from the ANN seem slightly greater for 
the AC layer and subgrade layers and smaller for the base layer. 

Another observation is that the results from the ANN model showed overlap 
with results to the traditional method when used as a first estimate to the tradi-
tional inversion process. 

In Figure 9 the results of the thickness of the AC layer are presented. The results 
of the ANN model are consistent throughout the pavement section. Since the results 
of the ANN model for predicting base thickness showed only 64% of the data hav-
ing less than 20% error, no model was selected for the base layer thickness. 
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Fig. 8. Comparison of ANN Predicted Modulus Results with Traditional Method. 

 
These encouraging results are significant and are an indication that the ANN 

modeling tool shows a lot of promise in the analysis of SASW data and could per-
haps be a tool that would reduce expert intervention. 

Overall, the developed ANNs represent a significant step to moving the ad-
vancement of the SASW inversion process one step closer to fully automating  
the process. This study is also a good illustration of capabilities of artificial  
neural networks in building tools for a real time evaluation of pavements. 
Nazarian et al. (2004) [14] provides more detail on this study showing how  
the use of ANN can become more and more important to quality control and 
evaluation of pavements. 
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Fig. 9.  Comparison of ANN Predicted Thickness Results with Traditional Method. 

 

5.2   Use of ANN in Pavement Performance 

As part of a research study conducted for the Texas Department of Transportation, 
work was carried out to evaluate the structural integrity of the pavement using the 
Falling Weight Deflectometer. The standard process consists of backcalculating 
the moduli of the layers, estimating the critical strains from the backcalculated 
moduli, estimating the remaining life of the pavement from these strains and  
finally predicting the performance of the pavement with time. The major short-
coming with the traditional backcalculation process is the non-uniqueness of the 
estimated moduli that may yield vastly different critical strains from the same de-
flection basin. A series of ANN models were developed to directly predict the 
critical strains for more reliable estimation of the pavement performance as shown 
in Figure 10. The inputs to these ANN models where only the best estimates of the 
thickness of each layer and the surface deflections obtained from a FWD. As such, 
the backcalculation process is eliminated.   

The results of the ANN models are presented in Table 2 for three and four layer 
flexible pavement systems. The models were separated into thin and thick layers 
of asphalt-concrete. An additional model to predict the depth to bedrock was de-
veloped. The results in Table 2 clearly show the goodness of fit of all the models 
based on their absolute errors.   

The failure limits shown in the figure represents the maximum damage level 
that can be tolerated before the pavement is repaired. In this study, the failure was 
defined as 0.5 in. of rutting, or 45% area of the wheel path for fatigue cracking, as 
recommended by the Asphalt Institute. The performance curve can be developed 
with at least two points. The first point is the results of the ANN model and is set 
from the time the FWD testing was conducted. The second is assumed at the be-
ginning of the pavement development, no damage to the pavement. In addition, if 
condition survey is conducted at the time of the FWD testing, a third point can be 
incorporated into the function. Furthermore, the instantaneous estimation of an 
ANN model allows for the flexibility of incorporating a probabilistic algorithm  
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Fig. 10. Summary of Methodology Used to Describe Service Life of a Pavement 
 

 
into the process. The process allows for thickness and deflection variability to be 
incorporated in the input for a more realistic estimation of the pavement perform-
ance. Further detail on the development of the performance curve is documented 
in Abdallah et al. (2000b) [16]. 

This algorithm was validated with real data based on a site located in Texas, 
which was trafficked to failure using a Mobile Load Simulator (MLS). The site 
was also tested with FWD and condition survey collected at predetermined load 
applications. The advantage of this site was that this site was trafficked to failure 
so that all the pavement performance history is documented. The validation proc-
ess was carried out in two steps. The first step was to verify that the theoretical  
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Table 2. Summary and Performance of ANN Models for Flexible Pavement Systems 

 
Cumulative % of Results 
Based on Absolute Error ANN 

Models 
Parameter Architecture 

(I/H/O)a 
1% 5% 10% 20% 

Tangential Strain 40/25/1 58 92 97 99 

T
hi

n 
A

C
 

Compressive Strain 40/24/1 49 89 95 98 

Tangential Strain 42/50/1 66 99 - - 

Compressive Strain 42/42/1 67 98 - - 

T
hi

ck
 

A
C

 

AC Modulus 42/30/1 28 82 95 99 

3-
L

ay
er

s 

Depth to Bedrock 39/31/1 39 87 96 99 

Tangential Strain 45/12/1 23 83 95 99 

T
hi

n 
A

C
 

Compressive Strain 41/7/1 25 66 81 91 

Tangential Strain 40/30/1 66 95 98 - 

Compressive Strain 43/10/1 62 99 - - 

T
hi

ck
 

A
C

 

AC Modulus 45/30/1 25 79 93 99 

4-
L

ay
er

s 

Depth to Bedrock 43/30/1 21 68 89 97 

a – (I/H/O) are the processing elements in input, hidden layer and output respectively. 

 
remaining lives reported by the ANN models and those calculated by the conven-
tional method were reasonably similar. The second step consisted of comparing 
the predicted remaining lives and performance curve with those observed at the 
site. In the second stage, the impacts of site-related and material-related variability 
were also considered. 

5.3   Comparison of ANN Results with Conventional Methods  

The results after the application of predetermined number of axles are shown in 
Figure 11 along four transverse lines of the testing area.  The two methods yield 
fairly close results. The remaining lives along the centerline (see Figure 11b) are 
independent of the MLS loading. This is a desirable outcome, indicating that the 
constant decrease in the remaining lives along the two wheel-paths is primarily 
due to the damage of the pavement during loading and is not related much to the 
environmental condition during the MLS loading.   

In general, results of this study indicate that in most cases the ANN models can 
estimate the remaining lives at least as well as a trained design engineer. Since the 
ANN models yield the results almost instantaneously and without requiring any 
engineering judgment, it seems reasonable to use the ANN models.   
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Fig. 11. Comparison of Fatigue Cracking Remaining Lives from ANN Models and Con-
ventional Method 

 
 



Rapid Interpretation of Nondestructive Testing Results Using Neural Networks 17
 

 
 

Fig. 12. Comparison of Actual Rutting Performance Curve with Calculated Ones at 20,000 
Repetitions Using Several Strategies 

 
The progression of rutting from the ANN is compared with the actual perform-

ance data in Figure 12. The PPC when the FWD deflections collected at 20,000 axle 
repetitions was used alone under-predicts the performance of the pavement. On the 
other hand, when the condition survey alone was used alone, the performance of  
the pavement is significantly over predicted. However, when the deflections and  
the condition survey are combined, the PPC follows the actual performance of the 
pavement fairly well.    

Summary 

The artificial neural network technology has proved to be a feasible and practical 
for developing models to assess the integrity of pavements using data that is read-
ily available to pavement engineers. This is particularly advantageous because 
other approaches require information from laboratory tests, making the assessment 
more tedious and time-consuming. The ANN technology represents a significant 
step toward automating many processes in pavement design and analysis since it 
allows for building tools for a real time evaluation of pavements. One advantage 
of the ANN models over traditional approaches is that the remaining life can be 
calculated without having to backcalculate the elastic moduli of each pavement 
layer.  Another advantage of the ANN models is its inherent capabilities for incor-
porating uncertainty without sacrificing processing time.  
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“Far better an approximate answer to the right question, which is often 
vague, than the exact answer to the wrong question, which can always be 
made precise.” John Tukey, Statistician (1915-2000) 

Abstract. A wide range of important problems in pavement and geomechnical engineering 
can be classified as inverse problems. In such problems, the observational data related to 
the performance of a system is known, and the characteristics of the system that generated 
the observed data are sought. There are two general approaches to the solution of inverse 
problems: deterministic and probabilistic. Traditionally, inverse problems in pavement and 
geomechanical engineering have been solved using a deterministic approach, where the  
objective is to find a model of the system for which its theoretical response best fits the ob-
served data. In this approach, it is implicitly assumed that the uncertainties in the problem, 
such as data and modeling uncertainties, are negligible, and the “best fit” model is the solu-
tion of the problem. However, this assumption is not valid in some applications, and these 
uncertainties can have significant effects on the obtained results. In this chapter, a general 
probabilistic approach to the solution of the inverse problems is introduced. The approach 
offers the framework required to obtain uncertainty measures for the solution. To provide 
the necessary background of the approach, few essential concepts are introduced and then 
the probabilistic solution is formulated in general terms using these concepts. Monte Carlo 
Markov Chains (MCMC) and its integration with Neighborhood Algorithm (NA), a re-
cently developed global optimization and approximation algorithm, are introduced as com-
putational tools for evaluation of the probabilistic solution.  Finally, the presented concepts 
and computational tools are used to solve inverse problems in Falling Weight Deflectome-
ter (FWD) backcalculation and seismic waveform inversion for shallow subsurface charac-
terization. For each application, the probabilistic formulation is presented, solutions  
defined, and advantages of the probabilistic approach illustrated and discussed.  

1   Introduction 

A wide range of problems in pavement and geomechnical engineering involves 
solution of inverse problems. In such problems, the observational data regarding 



22 R. Hadidi and N. Gucunski 
 

the performance of a system is known and the information about the system is 
sought. Examples of inverse problems are interpretation of nondestructive testing 
data, determination of material constitutive parameters from laboratory or field 
tests, model calibration, etc.  

There are two general approaches to the solution of inverse problems: determi-
nistic and probabilistic. In the deterministic approach, which has been historically 
used for applications in civil engineering (Santamarina and Fratta 1998), the objec-
tive is to find the model of a system for which its theoretical response best fits the 
observed data. The obtained best fit model is then generally considered to be the 
solution of the inverse problem. This approach provides a single model as the solu-
tion of the problem, implying that uncertainties in the inputs to the problem (i.e. the 
observed data and the theoretically calculated model predictions) are not consid-
ered. However, uncertainties are always present, and their effects on the obtained 
results need to be considered.  The probabilistic approach to the solution of inverse 
problems, a new approach in pavement and geomechnical engineering, provides the 
framework and mathematical techniques required for obtaining the solution of the 
inverse problem and evaluating uncertainty measures (Tarantola, 2005).  

Introduction and application of the probabilistic approach to problems in pave-
ment and geomechnical engineering is the main focus of this chapter. To provide 
the necessary background of the approach, few essential concepts are initially in-
troduced and afterwards the probabilistic solution is formulated in general terms us-
ing these concepts. Monte Carlo Markov Chains (MCMC) and its integration with 
Neighborhood Algorithm (NA), a recently developed global optimization and ap-
proximation algorithm, are introduced as computational techniques for evaluation 
of the probabilistic solution. Finally, the presented concepts and computational 
techniques are used to solve example inverse problems of Falling Weigh Deflecto-
meter (FWD) backcalculation and seismic waveform inversion for shallow subsur-
face characterization. For each application, the probabilistic formulation is pre-
sented and solutions obtained, and advantages of the probabilistic approach  
illustrated and discussed. 

2   Probabilistic Solution of the Inverse Problem 

An inverse problem is a mathematical problem where the objective is to obtain  
information about a parameterized system from observational data, theoretical  
relationships between system parameters and data, and any available a priori in-
formation.  To be able to mathematically formulate the probabilistic solution of an 
inverse problem, there are a few essential concepts that need to be introduced.  
A detailed description of the concepts presented herein can be also found in other 
references (Menke 1984, Parker 1994, Tarantola 2005). 

2.1   Uncertainty 

The concept of uncertainty, as it is related to “simple measurements”, is a very fa-
miliar and accepted concept in engineering, and represents the effect of uncertainties 
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in a measurement process. For example, a weight measurement has an uncertainty 
based on the type of the scale, measurement environment, and the care exercised in 
performing the measurement.  Simple uncertainty measures in engineering are often 
shown with an interval around a measurement value (e.g. 100 +/-1 gram).  These 
uncertainties often accompany results of measurements.  The concept of uncertainty 
should not be confused with the concept of error. Error refers to the difference be-
tween the true value of a quantity subject to measurement, called measurand, and 
measurement results. A measurement can unknowingly be very close to the un-
known value of the measurand, thus having a negligible error; however, it may have 
a large uncertainty. Since the exact value of a measurand can never be evaluated, er-
ror is an abstract concept, which cannot be quantified. However, uncertainty is a 
measure that can be quantified for every measurement.   

Any inverse problem can be viewed as a “complex measurement” (Tarantola 
2005), where the parameters of interest in the problem are evaluated indirectly by 
measurement of another set of parameters and establishing the theoretical relation-
ship between these two sets of parameters. In principle, there is no fundamental dif-
ference between a “simple measurement” and a “complex measurement”. In fact, 
the measurements that are considered simple are simple forms of inverse problems. 
For example, a measurement of the weight by a scale is a simple inverse problem. 
In this problem, the parameter of interest, the weight of an object, is evaluated indi-
rectly by measuring the displacement of a spring. The theoretical relationship link-
ing the observed parameter (deflection) to the parameter of interest (weight) is a 
simple linear relationship, which is often solved using a calibrated gauge.  

Generally speaking, there are uncertainties associated with any measurement, 
including the complex measurements, which should be presented with the meas-
urement results. These uncertainties are the result of the uncertainties in observed 
data as well as the uncertainties in the theoretical relationship linking the observed 
data and the parameters of interest. In simple measurements, the theoretical rela-
tionship between the observed data and parameters of interest is usually simple 
and often do not contribute significantly to the uncertainty of a measurement. 
Therefore, characterization of uncertainties in the observed data is enough to un-
derstand the uncertainties in the measurement process. However, in complex 
measurements, in addition to data uncertainties, the uncertainties in the theoretical 
relationship can be substantial. Additionally, depending on the problem, the map-
ping of the data uncertainty to the parameters of interest can produce significant 
uncertainties, which should be quantified. The probabilistic approach to inverse 
problems provides the structure necessary to evaluate the uncertainties in complex 
measurements. This approach can be viewed as a generalization of the familiar 
concept of quantifying uncertainties in simple measurements. 

2.2   State of Information 

In the probabilistic approach, any information about the problem, including the so-
lution of the problem, is expressed by probability distributions that are interpreted 
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using the concept of the state of information. The state of information is an intuitive 
concept associated with the concept of probability. In addition to the statistical in-
terpretation of probability, a probability distribution can also be interpreted as the 
subjective degree of knowledge of the true value of a given parameter. The subjec-
tive interpretation of the probability theory is usually named Bayesian, in honor of 
British mathematician Thomas Bayes (1702-1761). The Bayesian interpretation of 
probability is a very common concept in everyday life, which is used in many situa-
tions, such as in weather forecast reports. For example, the forecast predicting a 
certain probability of having precipitation presents the subjective knowledge of the 
meteorologist based on all the available information. In engineering problems, the 
subjective knowledge about any parameter may also be represented by a probability 
distribution.  If there is no specific information about the value of a parameter, this 
lack of information can also be represented by a homogeneous probability distribu-
tion, where all the possible values have the same probability. The other extreme 
situation is when the exact value of the parameter is known. This precise informa-
tion can be also represented by a Dirac delta probability distribution. In general, the 
spread of the probability distribution is an indication of how precise the knowledge 
about the underlying parameter is; the narrower the spread of the distribution, the 
more precise the information. 

2.3   Probabilistic Formulation 

For any given inverse problem, it is possible to select a set of parameters (i.e. 
parameterization) that adequately describes the system under investigation. Gen-
erally, the choice and number of system parameters is not unique. However, once 
a particular parameterization is chosen (i.e. model), it is possible to introduce a 
space of values that contains all the possible values of the system parameters. This 
abstract space is termed the model space, and is denoted by M. Individual sets of 
parameters describing a specific model, m={m1,m2,…}, are basically points in 
the model space. 

In an inverse problem, the values of parameters m are of the main interest; 
however, they are not directly measurable. The goal of the inverse problem is to 
obtain information on the values of m by making a direct observation on another 
set of parameters denoted as dobs. Similar to the concept of a model space, an  
abstract idea of a data space D can be introduced, which is the space of all con-

ceivable observed responses, such as d. The actual observed response is in fact a 
point in this space represented by dobs={dobs1,dobs2,…}. 

In the approach presented here, the density function of the probability distribu-
tion, representing the state of information on system parameters prior to the solution, 

is denoted by ρM(m) and is termed the model a priori probability. This information 
can be based on prior experience and judgment, specific measurement, or  
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theoretical considerations. Similarly, the a priori information on the observed data 
prior to the solution can be expressed as data a priori probability distribution, with a 

density function denoted by ρD(d). This probability describes the uncertainties in 
the measurement of observed data (i.e. uncertainties in simple measurements).  

The a priori information on system parameters is independent of the a priori  
information on data. This notion of independence can be used to define a joint 
probability over the joint model and data space as a product of the two marginal 
probability densities. The density function of this probability distribution is  
denoted by: 

 

ρ(m,d)=k ρM(m) ρD(d) (1)
 

where ρ(m,d) is referred to as joint a priori probability and k is normalization 
constant. This distribution can be graphically depicted as a “cloud” of probability 
centered on the observed data and a priori model, as shown in Figure 1. 

In the probabilistic approach, information contained in the theoretical relation-
ship between model parameters and data is also represented by a probability  

distribution, θ(m,d). If this relationship is exact and without any uncertainty, a 
single response will be predicted for a given model. This can be represented using 
a forward operator defined as d=g(m). However, the predictions of a theoretical 
relationship are rarely exact and there are modeling approximations involved. The 

distribution θ(m,d) represents these uncertainties, where for a given model  
parameter, a probability in the data space is predicted representing the modeling 

uncertainties. The distribution θ(m,d) is also graphically depicted in Figure 1.  
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Fig. 1. Conceptual presentation of the general probabilistic solution of an inverse problem, 
σ(m,d), as a combination of the a priori information, ρ(m,d), and information obtained from 
the forward model, θ(m,d). Darker shades indicate higher probabilities. 
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The solution of an inverse problem can be defined as a probability distribution 

combining the a priori information, ρ(m,d), with the information obtained from 

the theoretical relationship, θ(m,d). This combination can be accomplished by 
multiplication of the probability distributions (Tarantola 2005).  

The resulting probability distribution, σ(m,d), is termed a posteriori probabil-
ity distribution and is denoted by: 

 

       σ(m,d)= k θ(m,d) ρ(m,d) (2)
 

where k is a normalization constant. This multiplication and obtained distribution 
are conceptually depicted in Figure 1. As shown in the figure, the marginal prob-

ability of σ(m,d) in the model space, denoted by σM(m), is the main solution of 
the inverse problem.  

In most applications, including the applications considered in the chapter, data 
a priori and modeling uncertainties can be modeled by Gaussian probabilities.  
Assuming Gaussian uncertainties, it can be shown that the problem solution can 
be reduced to (Tarantola 2005):  

 

     σM(m)=k ρM(m) λ(m) (3)
 

where k is a normalization constant and λ(m) is the likelihood function repre-
sented by: 

 

   λ(m)=k exp(-0.5(dobs-g(m))T(CT
-1+ CD

-1)(dobs-g(m))) (4)
 

where dobs is the observed data, CD is the covariance matrix representing observa-
tional uncertainties, CT is the covariance matrix representing uncertainties in theo-
retical relationship, k is a normalization constant, and g(m) is the forward model 
operator defined earlier. This equation is adopted for numerical implementation in 
the presented examples.  

It is worthy to mention that, by inspection of these equations, it can be observed 
that the deterministic solution is a very special case of the probabilistic solution. If 
there is no a priori information (i.e. homogenous probability distribution), the 
maximum of the a posteriori probability occurs at the maximum of the likelihood 
function. Additionally, if the covariance matrices are multiplications of the iden-
tity matrix, it can be shown that the maximum of the likelihood function is the L2 
norm best fit to the observed data. This is the same solution obtained in the deter-
ministic approach. Therefore, it can be concluded that the deterministic solution is 
a very special case of the probabilistic solution. 
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3   Evaluation of Probabilistic Solution 

3.1   Analytical Evaluation 

If the a priori and forward model probability distributions are simple, it might be 
feasible to obtain a closed form analytical solution of the problem directly  
using the presented equations (e.g. Hadidi and Gucunski 2008). However, in prac-
tice, this is rarely the case and a numerical solution of the problem might be the 
only option.  

3.2   Direct Sampling Evaluation  

In cases where the a priori and/or forward model probability distributions are not 
simple, the a posteriori probability can be numerically evaluated by direct sam-
pling of the probability distribution. The direct sampling is a numerical technique 
that has as an ultimate objective randomly generating a large representative 

collection of models according to the a posteriori probability, σM(m), and then 
analyzing the sampled models to derive information about the underlying  

probability distribution. Generation of random samples according to σM(m) can 
be accomplished using Markov chains. 

A Markov chain, named after the Russian mathematician Andrey Markov 
(1856-1922), is a sequence of random samples, xn, such that the next value or 
state of the sequence depends only on the previous state (Bhat and Miller 2002). 

This dependency is mathematically described by a transition kernel, ψ(xn+1|xn), 
which is the probability distribution representing the conditional probability of 
transition to xn+1 from xn. It can be shown that, given certain conditions (Tierney 
1994), the distribution of random samples will always converge to a stationary or 

target distribution, denoted by Ψ(x). Hence, by an appropriate definition of the 

transition kernel, a set of samples according to Ψ(x) can be generated. 

Given a desired target probability, Ψ(x), one approach in the generation of 
samples according to this distribution is through application of Metropolis accep-
tance rules (Metropolis et al 1953; Hastings 1970). To define these rules, a 
Markov chain with a given state xn is considered. To move to the next state, a 
candidate state, y, is randomly generated from a uniform distribution. If the value 

of Ψ(y)>Ψ(xn), the candidate point is accepted and xn+1=y. If Ψ(y)<Ψ(xn), 
the candidate point is only accepted with a probability of Ψ(y)/Ψ(xn). Otherwise, 
the candidate point is rejected and xn+1= xn. If this sequence is repeated, it can be 

shown that the Markov chain generated in this manner will converge to Ψ(x). 
Since random numbers are involved in generation of a Markov Chain, the chain is 
often further described as a Monte Carlo Markov Chain (MCMC). A collection of 
sampled points for a two dimensional target probability distribution generated by a 
MCMC is graphically presented in Figure 2. MCMC is a very useful tool and it is  
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Fig. 2. A contour plot of two dimensional probability (left) and collected samples based on 
that probability (right) are depicted. Darker shades indicate higher probabilities. 

a very active area of statistical research. A detailed treatment of MCMC, including 
the issues of convergence and stability, is beyond the scope of this discussion and 
can be found in other references (Gelman et al. 2004). 

To obtain a numerical solution of an inverse problem, the Metropolis acceptance 
rule in a cascade form can be used to generate samples of the model space at a rate 

proportional to a posteriori probability, σM(m). In the approach based on Equation 

(3), samples of the model space, according to the a priori probabilities ρM(m), are 
initially generated using the Metropolis acceptance rules. The generation of these 
samples can be simply accomplished by starting with a random set of values and 
proceeding with generation of another random candidate, which should be accepted 

or rejected according to Metropolis rules with a target probability of ρM(m). If this 

process is repeated, a Markov chain with the target probability of ρM(m) will be 
generated. However, if the samples generated based on the target probability of 

ρM(m) are then treated as candidate samples for another set of Metropolis rules 

with the target distribution of λ(m), it can be shown that the resulting Markov chain 
from samples accepted using both Metropolis rules will have a target probability of 

ρM(m)λ(m) (Mosegaard and Tarantola 1995). Such a target distribution, according 

to Equation (3), is the a posteriori probability, σM(m). The described sampling al-
gorithm is a cascade implementation of Metropolis acceptance rules with the target 

probabilities ρM(m) and λ(m). In this algorithm, system parameters that are con-
sistent with a priori information, as well as observations, are sampled most often, 
whereas others that are incompatible with either a priori information or observa-
tional data are sampled rarely. This procedure generates a collection of samples for 
which their frequency becomes asymptotically proportional to a posteriori probabil-
ity distribution in the model space. A more comprehensive description of this proce-
dure can be found in other references (Mosegaard and Tarantola 1995). 
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3.3   Direct Sampling Evaluation with Neighborhood Approximation 

To determine the acceptance or rejection of a sample in a direct sampling technique, 
the likelihood function and in turn the forward model have to be evaluated. Because 
the number of samples generated in the direct sampling approach is large, if the for-
ward model is complex (such as a Finite Element Model), the technique becomes 
inefficient. In such cases, one desirable approach is to initially build a “good” ap-
proximation to the likelihood function (See Equation 4) using limited evaluations of 
the forward model. Such an approximation, instead of the actual likelihood function, 
can then be used to directly sample and appraise the a posteriori probability. This 
approach is implemented in this chapter using a recently developed search and ap-
proximation algorithm, referred to as Neighborhood algorithm (NA) (Sambridge 
1999a,b). As hinted, there are two distinct stages in this numerical implementation: 
the search/approximation stage and appraisal stage. 

In the search/approximation stage, the model space is searched and an approxi-
mation to the likelihood function is constructed throughout the model space. This 
stage is implemented using the NA. The Neighborhood algorithm falls in the same 
class of global optimization methods, such as simulated annealing and genetic  
algorithm, and can be directly applied to optimization problems. However, this al-
gorithm, rather than seeking a single optimal point, provides an approximation of 
the likelihood function, which is preferentially sampled more at the “good” regions 
of the space (i.e. maxima or minima points).  

The basic premise of the NA algorithm is to use previously evaluated samples 
to construct an approximation to the likelihood function throughout the model 
space and use this approximation to guide further evaluations for further refining 
the approximation. The generalized algorithm can be presented as follows: 

 
• Construct the approximate likelihood function surface from the previous 

set of inputs for which the forward model has been solved; 
• Use this approximation to generate the next set of inputs and find the 

likelihood function  value for them; 
• Repeat the above steps until an approximation with desired accuracy is 

reached. 
 

To construct an approximation using a limited number of forward model evalua-
tions, NA uses a mathematical construct known as Voronoi diagram, named after 
Georgy Voronoi (1868-1908). Given n points in the space, Voronoi diagram is a 
unique way of dividing the n-dimensional space into n unique regions called cells. 
Each cell is simply the nearest neighborhood region about one of the points, as 
measured by a particular distance measure, most often L2 norm. In NA, the ap-
proximate value of the likelihood function within each Voronoi cell is assumed to be 
constant and equal to the value of the likelihood function evaluated for the point in-
side the cell. Once the NA approximation is constructed, NA uses this approxima-
tion to guide selection of the new samples until the desired degree of accuracy is 
achieved. A typical NA approximation of a test function f(x,y)=xexp(-x2-y2) dur-
ing the progress of NA is presented in Figure 3. Details of the implementation of this 
algorithm are presented in two companion papers by Sambridge (1999a, b). 
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Fig. 3. Contour plot of f(x,y)=xexp(-x2-y2) (top left) and  NA approximation of the same 
function using Voronoi cells with 30 (top right) and 60 (bottom) random samples during the 
progress of NA. 

Once an adequate NA approximation to the likelihood function is obtained, the a 
posteriori probability distribution is evaluated in the appraisal stage using the direct 
sampling approach presented earlier. 

To illustrate the application of the presented probabilistic approach, two exam-
ples of inverse problems in pavement and geomechancial engineering are pre-
sented. Those include: 

 

• Backcalculation of FWD data, and  
• Inversion of seismic waveforms for shallow subsurface charac-

terization. 

4   Probabilistic FWD Backcalculation 

4.1   Background 

The Falling Weight Deflectometer (FWD) test, is the most widely accepted, used 
and studied technique for in-situ non-destructive evaluation of pavements. The 
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FWD test is routinely used by pavement engineers to evaluate in-situ pavement 
layer moduli. The objective of the test is to excite the pavement by an impact of a 
falling weight equivalent to those applied on by traffic and measure its response 
under those load levels (see Figure 4). During the test, the pavement deflection  
response is measured by transducers at different offsets from the load. The maxi-
mum pavement displacements at transducer locations (collectively referred to as 
the deflection bowl) or the displacement time histories at each receiver location 
are then reported as pavement response. With pavement layer thicknesses as a 
given input, the measured pavement response is then analyzed or backcalculated 
to obtain the in-situ pavement layer elastic moduli. The backcalculated pavement 
moduli are then used to design overlays, estimate remaining life of pavement sec-
tions, evaluate the load transfer efficiency of joints in rigid pavements, identify 
weak areas in the pavement structure, and perform network level monitoring. 

 

   
 
Fig. 4. Schematics of FWD test setup (left) and Dynatest® model 8000 FWD trailer (right) 

 
FWD backcalculation is mathematically an inverse problem, with in-situ pave-

ment layer moduli as its solution. Over the past few decades, numerous research-
ers have investigated different aspects of interpretation and backcalculation of 
FWD test results. Many of the important findings of these studies were summa-
rized in several volumes of American Society for Testing and Material (ASTM) 
special technical publications (ASTM 1989; ASTM 1994; ASTM 2000). The re-
view of currently available backcalculation procedures indicates that the available 
procedures follow a deterministic approach. These procedures can be broadly 
categorized as either a static or a dynamic procedure based on the type of the for-
ward model used to evaluate the theoretical response of the pavement. The prob-
abilistic approach to FWD backcalculation is a new approach introduced in this 
section. Results of synthetic FWD test are utilized to illustrate the use of the prob-
abilistic approach in FWD backcalculation. 

4.2   Probabilistic Formulation 

Using the notion of the presented generalized measurement, the FWD backcalcula-
tion can be considered as the measurement of pavement layer moduli using surface 
deflection measurements. The generalized notion of the measurement combined 
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with the tools developed in the previous section is used herein to backcalculate 
pavement layer moduli from a set of synthetic test data and to obtain uncertainty 
measures.  
 
4.2.1   Forward Model and Synthetic Pavement Response 
A linear two dimensional axisymmetric finite element forward model with absorb-
ing boundary elements was developed using ABAQUS® program for the analysis 
of the FWD test and use in the probabilistic backcalculation procedure (both static 
and dynamic procedures). Even though the pavement response to an FWD impulse 
is nonlinear, a linear model is considered in this work since linear model proce-
dures are currently the dominant form of FWD backcalculation. However, having 
introduced the general probabilistic approach, any other modeling approach can be 
easily incorporated using a different pavement model. 

The developed axisymmetric finite element model of a pavement is presented in 
Figure 5. The FWD load pulse was modeled as a time varying, spatially uniform 
load applied on a 0.15 m radius plate (Al-Khoury et al. 2001). The model boundaries 
were placed 10 m away from the impact location. To minimize numerical inaccura-
cies, the size of the elements was selected not to be larger than one half of the short-
est wavelength of the generated waves within the frequency range of interest, which 
was 0-100 Hz. The absorbing boundary elements were used at the lower and right 
boundaries of the model to reduce spurious wave reflections in the dynamic analy-
sis. Extra care was taken in the selection of a sufficiently small time step to ensure 
correct modeling of the dynamic pavement response. The material properties pre-
sented in Table 1 were assigned to the pavement layers.  

The response of the developed pavement model to loading, described by an ideal-
ized loading wavelet, was evaluated. The idealized loading wavelet and the pave-
ment response, described in terms of the deflection time histories and deflection 
bowl (obtained from the deflection histories), are presented in Figure 6. To verify 
the accuracy of the finite element analysis, the material properties of the layers were 
selected to be equal to those considered in other studies (Al-Khoury et al. 2001). 

 

 

Fig. 5. Axisymmetric ABAQUS® Finite Element meshes with absorbing boundary ele-
ments for theoretical modeling of FWD analysis. 
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Table 1. Geometrical and material properties used for numerical evaluation and verification 
of finite element results. 

Material  
Type 

Thickness  
(m) 

Material 
Model 

Elastic 
Modulus 

(MPa) 
Rayleigh  

Damping Ratio
Poisson’s  

Ratio 

Mass  
Density 
(kg/m3) 

Asphalt  
Concrete 

0.15 Linear Elastic 1000 0.001 0.35 2300 

Aggregate Base 
Course 

0.25 Linear Elastic 200 0.001 0.35 2000 

Subgrade infinity Linear Elastic 100 0.001 0.35 1500 

 

 

    

Fig. 6. (top) Time history of an idealized loading wavelet, (bottom left) predicted pavement 
surface deflection time histories from the finite element model and (bottom right) the corre-
sponding deflection bowl. 

4.2.2   Model and Data a Priori Information 
The deflection time histories and deflection bowl presented in Figure 6 were used 
as synthetic data in the backcalculation. Because the pavement system has only 
three layers, three model parameters (i.e. modulus of each layer) were included in 
the backcalculation.  
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For the pavement layer moduli, most often, there is no prior information avail-
able other than possible limits of moduli based on experience and engineering 
judgment.  

This information, or lack of more specific information for that matter, can be 
presented by a homogenous probability distribution. Homogeneous a priori prob-
ability densities considered for all pavement layer properties in this example can 
be presented in the form of: 

 

ρM(mi)=1/(mmax- mmin)            if  mmin <m< mmax 
       ρM(mi)=0                                otherwise        

 

(5)

where mmax and mmin are respectively the maximum and minimum limits of the 
value of the parameter of interest, mi. The choice of the limits of m generally de-
pends on the problem and the experience and judgment of the analyst. However, 
when in doubt, a larger interval can be selected. The data uncertainty was consid-
ered to follow a Gaussian distribution with the mean equal to the observed value 
(i.e. deflection of the pavement) and a coefficient of variation of two percent 
(Bentsen et al. 1989). Forward modeling uncertainties are discussed below. 

4.2.3   Backcalculation Results 
 

Backcalculation of Modulus Based on Deflection Bowl Measurements Using 
Linear Static Forward Model: The first set of backcalculation analyses results are 
the results of backcalculation of layer moduli based on the deflection bowl meas-
urements. Estimates of marginal a posteriori probability densities of the layer 
moduli from the backcalculation are presented in Figure 7. The forward model in 
these backcalculation analyses is the static linear finite element model. Although 
present, no modeling uncertainty was considered for the first set of analyses. 

A comparison between the observed deflection bowl and the defection bowl 
corresponding to the most probable modulus values (i.e. values representing the 
peaks of each probability, which produce the best fit) is presented in the same fig-
ure. It can be observed that, although there is a reasonably good match between 
the observed and backcalculated deflection bowls, the backcalculated layer moduli 
are very different from the values used in the generation of the synthetic data (i.e. 
the correct solution), shown with arrows on the figure. It is interesting to note that 
the values used in the generation of the data are not even among probable solu-
tions. This discrepancy is basically due to modeling uncertainties that are not  
included in the backcalculation. The synthetic observed deflection bowl, as pre-
sented in Figure 6, was generated using a linear dynamic finite element model. 
But, the backcalculation routine uses a static model to backcalculate layer moduli, 
which does not necessarily produce the same deflection bowl. Unless this discrep-
ancy in modeling is explicitly considered in the backcalculation, the final results 
will not be close to the values used in the generation of the deflection bowl. It 
should be mentioned that this approach to the FWD backcalculation is similar to 
the current dominant practice, where the results of the FWD test (a truly dynamic 
test) are summarized in terms of the deflection bowl and the backcalculation is  
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(a) (b)

(c) (d)

Correct Result
Correct Result

Correct 

Result

 
 

Fig. 7. (a, b and c) Estimates of marginal a posteriori probability densities for the layer 
moduli obtained from the probabilistic backcalculation of the deflection bowl with the 
static forward model without considering modeling uncertainties and (d) comparison of the 
backcalculated deflection bowls for the pavement section with the most probable layer 
moduli and the observed data. 

conducted using a static forward model. It is clear that in the commonly used de-
terministic approach where only the best fit model is sought (i.e. values corre-
sponding to the peaks of each probability), the solution will be very different than 
the actual values used to generate synthetic data. Based on this analysis, it can be 
observed that the static backcalculation, without consideration of the modeling 
uncertainty, may result in incorrect backcalculated values. 

As explained, in the probabilistic backcalculation, the modeling uncertainties, if 
evaluated, can be explicitly considered in the analysis. To illustrate such an  
approach, the modeling uncertainty for this analysis has been evaluated by compar-
ing the deflection bowls from static and dynamic analyses of the same pavement 
model for a range of layer moduli values. For this study the paving layer modulus 
was varied from 500 to 4000 MPa in 250 MPa intervals. The variation in the base 
and subgrade moduli was from 50 to 400 MPa in 50 MPa intervals. This resulted in 
about 960 different pavement models, which were evaluated using both static and 
dynamic models. Typical histograms and density estimates of the difference be-
tween calculated deflections from dynamic and static analyses for the first  
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Fig. 8. Typical histogram and density estimate of the absolute difference between the calcu-
lated maximum deflections from the dynamic and static analyses for receiver 1. 

 

Correct Result

(a) (b)

(c) (d)

Correct Result

Correct Result

 
 

Fig. 9. (a, b and c) Estimates of marginal a posteriori probability densities for the layer 
moduli obtained from probabilistic backcalculation of the deflection bowl with the static 
forward model that includes the modeling uncertainties and (d) comparison of the backcal-
culated deflection bowls for the pavement section with the most probable layer moduli and 
the observed data. 
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transducer from all 960 analyses are depicted in Figure 8. Similar histograms were 
also generated for other receivers. The modeling uncertainty at each receiver loca-
tion to be used as an input in the backcalculation was then evaluated by calculat-
ing the covariance of the difference between calculated deflections from dynamic 
and static analyses for each receiver. Based on this analysis, as the first estimate, a 
Gaussian distribution with a standard deviation of 0.1 mm was used to represent 
the modeling uncertainty for all receivers.  

Including the evaluated modeling uncertainties, a new set of analyses was per-
formed, which included the combined effect of data and modeling uncertainties. 
One-dimensional marginal probability densities of the layer moduli from the 
backcalculation analysis are presented in Figure 9. Based on these results, it can 
be observed that by including modeling uncertainties, the correct results are 
among the probable results of the analysis. However, due to high modeling uncer-
tainties, there is a high uncertainty in the backcalculation results represented by 
the spread of the probabilities. These results highlight the unreliability of static 
backcalculation procedures.  

 
 

(c) (d)

(b)

Correct Result

(a)

Correct Result

Correct Result

 

Fig. 10. (a, b and c) Estimates of marginal a posteriori probability densities for the layer 
moduli obtained from the probabilistic backcalculation of the deflection time history  
with the dynamic forward model and (d) comparison of the backcalculated deflection  
time histories for the pavement section with the most probable layer moduli and the  
observed data. 
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Backcalculation of Modulus Based on Deflection Time History Measurements 
Using Linear Dynamic Forward Model: Intuitively, FWD test deflection time 
histories carry significantly more information regarding the pavement than the 
discrete deflection bowl data. Therefore, it is expected that the backcalculation 
procedures based on the use of time histories will provide more reliable results. 
This in fact can be observed from the backcalculation of synthetic test results us-
ing the dynamic forward model. For this backcalculation, the data uncertainty co-
efficient of variation was selected to be two percent and no modeling uncertainty 
was considered, because the same model was used in generation of the synthetic 
results and theoretical data. Estimates of marginal a posteriori probability densities 
for the layer moduli obtained from the probabilistic backcalculation are presented 
in Figure 10. A comparison of the backcalculated deflection time histories for the 
pavement section with the most probable layer moduli and the observed data are 
also presented in the same figure. As shown, these results have much sharper 
peaks at the correct moduli values. Therefore, it can be concluded that using the 
complete deflection time histories as the data is a much more reliable approach in 
the FWD backcalculation.  

5   Probabilistic Seismic Waveform Inversion 

5.1   Background 

Elastic waves carry substantial information about the characteristics of the media 
they propagate in. The seismic evaluation techniques use the information carried by 
elastic waves to infer information about the properties of the media. These tech-
niques are generally nondestructive and are being used increasingly in engineering 
applications, such as in determination of stiffness and integrity of structural ele-
ments, evaluation of elastic moduli of soil deposits and pavement systems, void  
detection and sizing in geotechnical engineering, crack detection, etc. There are 
several techniques that are routinely used for shallow subsurface investigations, 
namely; spectral analysis of surface waves (SASW) (Nazarian, 1984), impulse re-
sponse (IR) (Reddy, 1992), impact echo (IE) (Sansalone, 1997) and multi-channel 
analysis of surface waves (MASW) (Park, Miller and Xia, 1999). However, these 
standard methods usually use a limited portion of the information carried by elastic 
waves, such as travel time, peak return frequency, or wave velocity dispersion. 
Seismic waveform inversion seeks to use the full information content of the seismic 
waveform. Its objective is to find a reasonable model, consistent with a given a pri-
ori information, for which its predicted waveforms match reasonably well the  
observed waveforms. 

This section presents the probabilistic formulation of the seismic waveform in-
version problem for evaluation of subsurface properties. Results of a synthetic 
seismic experiment are used to illustrate the application of the probabilistic  
approach in waveform inversion. It should be mentioned that the waveform inver-
sion considered here is a relatively new technique for applications in pavement 
and geomechanical engineering. The technique is a much more versatile and  
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powerful technique in comparison to the traditional techniques, such as SASW, 
MASW, IR, IE, for which their inherent assumptions limit their applicability. The 
traditional techniques generally assume that subsurface layers are horizontal, 
whereas the waveform inversion can invert virtually any type of geometry. The 
only theoretical limitation in its use would arise from the limitation in the parame-
terization and modeling of the test setup. 

5.2   Synthetic Seismic Experiment  

A hypothetical geological soil profile, as depicted in Figure 11, will be used in the 
illustration of the probabilistic inversion approach. The profile consists of horizon-
tal and inclined layers underlain by a half space or bedrock. Each layer is param-

eterized in terms of its thickness, T, compressional wave velocity, VP, density, γ, 

and poisson’s ratio ν. For the experiment presented in this section, the objective of 
the seismic test is to quantify material properties of the subsurface layers, in terms 
of their compressional wave velocities, from the waveforms recorded at the sur-
face. It is assumed that the thickness and dipping angle of the layers are available 
from other information collected at the site, such as boring logs. To achieve the 
objective, a seismic test is performed by generating an elastic wave field using a  
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Fig. 11. Schematics of the synthetic seismic waveform inversion test setup 
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known impact source and seismic waveforms are recorded at several locations 
along the surface. The recorded waveforms are then analyzed to invert the  
unknown parameters of the model. 

5.3   Probabilistic Formulation 

Using the notion of the presented generalized measurement, the waveform inver-
sion can be considered as a measurement of the subsurface properties, such as 
compressional wave velocities, from surface measurements. The generalized no-
tion of measurement combined with the tools developed in the previous section is 
used here to calculate layer properties and obtain uncertainty measures.  

5.3.1   Forward Model and Synthetic Waveform 
In general, determination of the surface response to impact loads mathematically 
falls into the area of wave propagation theory. Numerical solutions are required to 
obtain the solutions in general. However, closed form solutions and/or simplified 
techniques exist when the problem boundaries and geometry are simple. These 
simplifications, if possible, present considerable savings in terms of the computa-
tional effort.  

For the analysis in this section, a finite element forward model is used to model the 
wave propagation forward problem. A finite element model is selected as the forward 
model in the inversion of synthetic data to conserve the generality of the presented 
procedure and provide a framework for considering other classes of problems.  

 

 

Fig. 12. Finite element model with the test setup superimposed on the mesh 
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Table 2. Subsurface profile parameters in the generation of synthetic waveform inversion 
example. 

Parameter Value  Parameter Value

Vp1 80 m/s  T3 2 m 
Vp2 50 m/s  T4 2 m 
Vp3 70 m/s  ρ1 thru ρ5 1900 

Vp4 100 m/s  v 0.30 
Vp5 60 m/s  x 4 
T1 2 m  dx1 2 m 
T2 1 m  dx2 2 m 
T2’ 4 m    
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Fig. 13. Synthetic waveforms used in the inversion. 

To simulate the test and generate a set of synthetic data, the presented seismic 
test is modeled by finite elements using ABAQUS® software. The test setup can 
be described by an axi-symmetric model with an impact loading at the center.  
Explicit time integration of the equation of motion is used to obtain the solution. 
Because the strain levels during the seismic tests are small, linear elastic material 
models were considered for all layers. To accurately model the wave propagation, 
several criteria were imposed during the modeling to ensure accuracy of the simu-
lation. The element size was selected relatively small to capture short wave-
lengths, while the overall model was relatively large to allow propagation of large 
wavelengths and reduce the boundary effects. Infinite absorbing elements were 
used at the boundaries to further reduce the reflections from the boundaries.  
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Fig. 14. (a, b, c, d and e) Kernel density estimates of marginal a posteriori probabilities for 
the layer compressional wave velocities. 

The developed finite element model is presented in Figure 12. Receiver locations, 
as well as boundaries of the layers, for a typical test setup are superimposed on the 
finite element model in this figure. 

Using the developed model, a set of synthetic waveforms was generated at 
three receiver locations shown in Figure 12. The geometric and material properties 
used in the generation of synthetic data are presented in Table 2. To simulate field 
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conditions, artificial Gaussian random noise was added to the calculated wave-
forms. The waveform at each receiver is one second long and is sampled at 0.001 
second intervals. These waveforms are depicted in Figure 13 and are used as the 
synthetic data for inversion. 

5.3.2   Model and Data a Priori Information 
Uniform probability density, as presented in Equation 5, was considered for a pri-
ori probability density of all model parameters. This probability density represents 
the information on the limits of the parameters. The data uncertainty was consid-
ered by adding a Gaussian noise to the synthetic records.  

5.3.3   Results of Inversion of Synthetic Seismic Test 
The presented synthetic data was analyzed to obtain the layer compressional wave 
velocities. Kernel density estimates of one-dimensional marginal a posteriori 
probability densities for this example are presented in Figure 14. As presented, the 
inversion analysis results are very close to the target compressional wave veloci-
ties presented in Table 2. It can be observed that the inversion process has effec-
tively inverted the profile and has clearly resolved the target compressional wave 
velocities. The calculated marginal a posteriori probability densities have clearly 
the peaks at the target compressional wave velocity values, which represent very 
low uncertainties of the wave velocities. It can be observed that the waveform in-
version can solve problems where the assumptions of traditional seismic analysis 
techniques limit their application. 

6   Summary and Conclusions 

In this chapter, a general probabilistic approach to the solution of the inverse prob-
lems was introduced as a new approach to the solution of inverse problems. The 
mathematical framework required for implementation of this approach was pre-
sented in detail. Following the mathematical formulation of the approach, techniques 
for evaluation the probabilistic solution using Monte Carlo Markov Chains 
(MCMC), with and without Neighborhood Algorithm (NA) approximation, were in-
troduced and explained. The application of the presented concepts and techniques 
was then illustrated by solving two important problems in pavement and geome-
chanical engineering: FWD backcalculation and seismic waveform inversion. 

The probabilistic FWD backcalculation was introduced and formulated, and the 
results of the backcalculation of synthetic test data presented. The probabilistic 
backcalculation was then used as a tool to compare different backcalculation pro-
cedures, such as static and dynamic backcalculations. Based on the presented  
results, it was shown that the static backcalculation procedures fail to capture the 
essential dynamic nature of the test and consequently can not be relied upon for 
accurate backcalculation. The dynamic deflection time history backcalculation of-
fers the best and most reliable approach in the FWD backcalculation.  

The probabilistic formulation of a seismic waveform inversion problem for 
evaluation of shallow subsurface properties was presented. Using a set of synthetic 
data, the potential of the waveform inversion for evaluation of the subsurface  
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profiles was illustrated. It was shown that the waveform inversion is a powerful 
technique for evaluation of shallow subsurface properties, which is not limited by 
many of the assumption of other seismic techniques, such as Spectral Analysis of 
Surface Waves (SASW).  
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Abstract Interest on artificial neural networks (ANN) in infrastructure materials research 
and practice has increased in recent years. This chapter presents a review of ANN applica-
tions in characterization of infrastructure materials focusing on portland cement concrete 
(PCC) and asphalt concrete (AC) materials. The principles of ANN are briefly introduced 
and summarized. The strengths and limitations of ANN for modeling behavior of infra-
structure materials are discussed. Various applications of the ANN approach in infrastruc-
ture materials testing, analysis and design problems are discussed.  

1   Introduction 

Over the last few years or so, development of computer hardware and software has 
inspired new approaches of data processing and analysis. From among these ap-
proaches soft computing has been recognized as low cost and complete solution 
yielding analysis tool to solve complex problems in many areas of engineering. In 
recent years artificial neural networks (ANN) among soft computing have been 
applied to complex engineering problems in various relevant civil engineering ar-
eas such as pavement and geotechnical engineering, structure engineering, water 
sources and environmental engineering [Adeli 2001].  

It is well recognized that the engineering properties of materials are critical in 
the infrastructure design, construction and performance. The engineering proper-
ties of infrastructure materials have been characterized through laboratory or field 
experimental testing, which can require cost and time of testing. A number of nu-
merical modeling or physical models have been developed to estimate the engi-
neering properties of infrastructure materials as an alternative to laboratory or 
field testing. However, these models could not be able to simulate perfectly since 
the properties of infrastructure materials are influenced by a multitude of tributary 
factors and the uncertainty involved in the experimental tests. Based on data proc-
essing advantage, ANN has been used to model the properties and behaviors of in-
frastructure materials. This has demonstrated some degree of success. 

This paper highlights key advances of ANN applications in testing, analysis and 
design problems related to infrastructure materials focusing on Portland Cement 
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Concrete (PCC) and Asphalt Concrete (AC). The objective of this review is to 
promote more considerations of using ANN in infrastructure material property pre-
diction and design. The attempt has made to include those individuals who have 
made major contributions, but also the acknowledgement is provided to the efforts 
of many others who have been unintentionally overlooked. 

2   Artificial Neural Network Approach 

ANN is the computational intelligence system that simulates the behavior of the 
human brain and nervous system. The basic element in the ANN is a processing 
element, called as artificial neuron or node. Each neuron contains a very limited 
amount of local memory and performs basic mathematical operations on data 
passing through them. These neurons are highly interconnected in layers such as 
an input layer, an output layer and one or more hidden layers. The computational 
power of ANN comes from this interconnection which makes input data concur-
rently processed in artificial neurons [TRB Circular 1999]. 

An artificial neuron receives information (signal) from other neurons, processes 
it, and then relays the filtered signal to other neurons [Tsoukalas and Uhrig 1997]. 
The receiving end of the neuron has incoming signals (x1, x2, x3….and xn). Each of 
them is assigned a weight (wji) that is based on experience and likely to change 
during the training process. The summation of all the weighted signal amounts 
yields the combined input quantity (Ij) which is sent to a preselected transfer func-
tion (f), sometimes called an activation function. A filtered output (yj) is generated 
in the outgoing end of the artificial neuron (j) through the mapping of the transfer 
function. The parameters can be written as per the following equations: 
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There are several types of transfer functions that can be used, including sig-
moid, threshold, and Gaussian functions. The transfer function most often used is 
the sigmoid function because of its differentiability. The sigmoid function can be 
represented by the following equation: 
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Where ϕ  = positive scaling constant, which controls the steepness between the 
two asymptotic values 0 and 1 [Tsoukalas and Uhrig 1997]. 

The ANN performs two major functions: learning (training) and testing.  
A training data set and an independent testing data set are prepared for these func-
tions. Inputs from a training data set are presented to the input layer to start the 
propagation of data. Inside the network, weights are adjusted when data pass  
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between artificial neurons along the connections. Since interconnected neurons 
have the flexibility to adjust the weights, ANN has the ability to analyze complex 
problems. It uses a learning rule to find a set of weights such that the error is  
minimum. This process is called “learning” or “training” [Shahin et al. 2001]. The 
following are the three broad types of learning in neural network technology  
[TRB Circular 1999] 

 
• Supervised learning: system/weight is adjusted by comparing the network out-

put with a given or desired output 
• Unsupervised training: the network is trained to form categories based on simi-

larity among the data and identify irregularities in data  
• Reinforcement learning: the network attempts to learn the input-output vectors 

by trial and error through maximizing a performance function. The system can 
identify whether a given output is correct or not but cannot estimate the exact 
output 

 
Once the training phase of the model has been successfully accomplished, the 
network performance is verified by presenting independent testing datasets to the 
ANN. This process is called “testing.” Details regarding the theory and mathemat-
ics behind the ANN is available in several sources [Aleksander and Morton 1990, 
Fausett 1994, Haykin 1998, Bishop 1995, Swingler 1996]. 

There are nearly as many different types of ANN used in many areas of engi-
neering. These differ in the arrangement and degree of connectivity of their  
neurons, the types of calculations performed within each neuron, the degree of su-
pervision they receive during training, the determinism of the learning process, 
and the overall learning theory under which they operate [Mehra and Wah 1992]. 
However, certain types of ANN are more repeatedly used, either because they are 
broadly applicable to a wide variety of problems or ideally suited for a narrow 
range of problems [TRB Circular 1999]. These include hopfield nets, adaptive re-
sonance theory (ART) networks, self-organized feature maps (SOFM), back-
propagation neural networks (BPNN), feedback (sequential) neural networks 
(FBNN), counter propagation networks, radial basis function  network (RBF), and 
generalized regression neural networks (GRNN). 

BPNN is one of most ANN referred in the civil engineering application of 
ANN because of its powerfulness, versatility, and simplicity [TRB Circular 1999, 
Adeli 2001]. BPNN can be taught a mapping from one data space to another using 
a representative set of patterns/examples to be learned. The term “backpropagation 
network” actually refers to a multi-layered, feed-forward neural network trained 
using an error backpropagation algorithm [TRB Circular 1999]. The learning 
process performed by this algorithm is called “backpropagation learning” which is 
mainly an error minimization technique between the correct responses and the 
predicted outputs [Haykin 1998]. The details of BPNN have been described in 
many sources [Hegazy et al 1994, Adeli and Hung 1995, Mehrotra et al. 1997, 
Topping and Bahreininejad 1997, Haykin 1998]. 
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3   Strengths and Limitations of Artificial Neural Networks 

For modeling infrastructure materials behaviors, ANN provide an analytical alterna-
tive to classical mathematics and traditional techniques which are often limited by 
strict assumptions of normality, linearity, variable independence, etc. Since ANN 
can learn and generalize many kinds of relationships between variables and re-
sponses to provide meaningful solutions to problems even when input data contain 
errors and are incomplete [Rafiq et al 2001], it allows the user to quickly and rela-
tively easily model a phenomenon which otherwise is very difficult. ANN offers a 
number of advantages, including requiring less formal statistical training, ability to 
implicitly detect complex nonlinear relationships between dependent and inde-
pendent variables, ability to detect all possible interactions between predictor vari-
ables, and the availability of multiple training algorithms [Tu 1996]. In modeling 
of infrastructure martial behaviors, ANN is developed from experimental data on 
which it has been trained without a priori assumptions about the material behavior.  
As more experimental data are acquired about the behavior of a material, this 
ANN-based material model can be updated through a training session that in-
cludes the new data [Wu et al 1990]. 

A major drawback of ANN is its “black box” nature which lack in the ability to 
present explicit rules between the input variables and the output. In problems 
where explaining rules may be crucial, ANN is not the choice. Thus, it is the tool 
of choice when results are more important than understanding how they are ob-
tained. However, ANN can explain which inputs are more important than others 
through sensitivity analysis performed either inside the network by using the er-
rors generated from back propagation or externally by comparing the accuracy of 
the network using specific inputs. ANN may suffer from overfitting and overtrain-
ing, which takes away the ability to use the model for data not in the training set.  
These problems may be avoided by selecting a suitable architecture and by using  
a training set/control set protocol [Livingstone et al. 1997].  The development of 
ANN model requires the amount of data to provide answers close to the observed 
behaviors [Ghaboussi et al. 1991]. The ANN is not the tool of choice when there 
is scarcity or appropriate data. 

Although ANN has some limitations, these are superseded by its advantages. 
On a practical level, ANN has been considered as a promising tool for predicting 
various engineering properties of infrastructure materials. 

4   Artificial Neural Networks for Infrastructure Materials 

The application of ANN in infrastructure materials has focused on prediction of 
certain properties of materials and analyzing the relationships between a number 
of variable parameters and response properties of materials. ANN can be devel-
oped to predict certain properties of materials. Using ANN, sensitivity of certain 
properties of materials can be evaluated by changing values of input parameters.  
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4.1   Portland Cement Concrete (PCC) 

PCC is one of the most widely used infrastructure materials. PCC is a composite 
material composed of aggregates and paste. The paste consists of cement and wa-
ter. The paste glues aggregates into a rocklike mass as it hardens resulting from 
the chemical reaction of the cement and water [Kosmatka et al 2002]. The proper-
ties of concrete changes from plastic (semi-fluid) at freshly mixed concrete to 
elastic and gains strength as it hardens with age. Fresh concrete properties, espe-
cially workability, significantly affect handling concrete for fabrication and the 
hardened concrete properties. Hardened concrete properties including strength and 
durability should be within acceptable standard. 

It is well recognized that the characterization of concrete properties is important 
in the quality and cost of concrete construction. However, the characterization of 
concrete properties is more complex and uncertain with advancement of concrete 
materials such as high performance concrete (HPC) and special types of concrete 
over the past decade. This enabled some researchers to apply the ANN technique 
not only to predict properties of concrete but also of mix design. 

4.1.1   Properties of Fresh Concrete   
The properties of fresh concrete mainly considered for construction are workabil-
ity and setting. Workability of concrete is the property of freshly mixed concrete 
that determines the ease with which it can be mixed, placed, consolidated, and fin-
ished to a homogenous condition [Kosmatka et al 2002]. Workability can be 
measured by slump, compacting factor, Vebe time and rheological parameters. 
Setting is the degree to which fresh concrete has lost its plasticity and hardened by 
the continuing hydration of cement [Kosmatka et al 2002]. ANN was used in stud-
ies to characterize the workability and setting of concrete.     

Bai et al [2003] developed ANN models for workability, measured by slump, 
compacting factor and Vebe time for concrete incorporating fly ash and metakao-
lin. Three independent ANN models were developed for each of the two  
water/binder (w/b) ratios. Each of the networks had two inputs (fly ash and  
metakaolin) and one output (slump, compacting factor and Vebe time). Using de-
veloped ANN models, the effects of fly ash and metakaolin on workability were 
investigated. The results indicate that the ANN models developed are usable in 
practice to predict the workability of cement–fly ash–metakaolin. El-Chabib et al 
[2003] explored ANN to predict rheological and mechanical properties of under-
water concrete (UWC). The input vectors included the quantity values of the mix-
ture variables influencing the behavior of UWC mixtures (that is, cement, silica 
fume, fly ash, slag, water, coarse and fine aggregates, and chemical admixtures) 
and corresponding output vectors consisted of slump, slump-flow, washout resis-
tance, and compressive strength.  

Stegemann and Buenfeld [2001] used ANN to construct models for setting time 
as a function of mix composition and addition concentration for calcium aluminate 
cements. ANN models were used for representing non-linear temperature depend-
ency of setting times and generalizing it to find exponential relationships between 
setting time and addition concentration. 
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ANN models with high accuracy were also developed to predict the degree of 
cement hydration [Basma et al 1999, Park et al 2005], the rate of cement heating 
evolution, the relative humidity and the total porosity of cement [Park et al 2005]. 

4.1.2   Strength of Hardened Concrete   
Numerous studies have been explored to predict compressive strength of harden 
concrete using ANN models. The study of Wittmann and Martinola [1993] is one 
of the earliest ANN applications in connection with the prediction of concrete 
properties [Kasperkiewicz 2000]. They used BPNN to predict the compressive 
strength and the fracture parameter with water/cement (w/c) ratio and superplasti-
cizer contents as input parameters. Mukherjee and Nag Biswas [1997] also exam-
ined ANN to predict stress and strain behavior of concrete at high temperature. 
There is a nonlinear and complex relationship which makes it difficult to include 
all the contributing factors in the traditional mathematical models.  

Lai and Serra [1997] presented the BPNN models for the predictions of normal 
concrete compressive strengths using 8 input parameters (cement, fine sand, coarse 
sand, fine aggregate, coarse aggregate, cement weight, w/c, and plasticizer). They 
suggested that the neural network performance is independent of the number of 
neurons in the hidden layer in the range of 4 to 8 with 5% of precision. The effi-
ciency of ANN for predictions of normal concrete strength with high accuracy is 
also demonstrated in following studies: 

 
• The  study by Ni and Wang [2000] who used 11 input parameters (type of  

cement, w/c, dosage of water, dosage of cement, the maximum size of coarse 
aggregate, the fine modulus of sand, the sand-aggregate ratio, the aggre-
gate/cement ratio, the slump, the effect of admixtures, dosage of admixtures),  

• The study by Kim et al [2004] who used concrete mix proportion parameters as 
inputs (slump, w/c, unit water content, unit cement content, unit aggregate con-
tent, fine aggregate and admixture content),  

• The study by Gupta et al [2006] who considered concrete mix design, specimen 
geometry, curing and environmental conditions as inputs (shape and size of 
concrete specimen in terms of cross-sectional area, weight of concrete speci-
men, concrete grade, various curing techniques, curing period, average maxi-
mum temperature, average relative humidity, and average wind velocity), and  

• The study by Kewalramani and Gupta [2006] who used weight and ultrasonic 
pulse velocity (UPV) as inputs.  

 
Modified BPNN has been utilized for the prediction of compressive strengths. Yeh 
[1998a] employed a modified BPNN for modeling concrete strength with seven 
factors (w/c, water, cement, fine aggregate, coarse aggregate, maximum grain size, 
and age of testing). He added logarithm neurons and exponent neurons to  
input layer and the output layer in a standard BPNN. He also examined the effi-
ciency and accuracy of a modified BPNN’s in modeling concrete strength. The re-
sults showed that the logarithm neurons and exponent neurons in the network im-
proved the performance of the networks for modeling the strength of concrete 
significantly. Dias and Pooliyadda [2001] evaluated various input data transforms 
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for BPNN models to predict the strength and slump of ready mixed concrete and 
high strength concrete, in which chemical admixtures and/or mineral additives 
were used. They found that BPNN models trained with raw data on concrete mix 
make better predictions of strength and slump than those trained using non-
dimensional ratios. Lee [2003] developed a modular ANN model with the multiple 
architectures composed of five BPNN to provide in-place strength information. 
The single architecture of ANN cannot appropriately predict the development of 
concrete strength as the curing condition changes each time.  To solve this prob-
lem, each of the BPNN in the developed modular ANN model predicted the con-
crete strength under different curing conditions at a specific time which was 
within 24 hours after pouring or at 2nd to 28th day after pouring. This study dem-
onstrates that the use of a modular ANN model with multiple BPNN architectures 
is very efficient for predicting the compressive strength development of concrete.  

The use of alternative ANN for BPNN on prediction of compressive strength 
has been attempted. Kim et al [2005] applied probabilistic neural network (PNN) 
for predicting the compressive strength of concrete. The concrete mix proportions 
and the slump values of two types of ready mixed concrete were used as inputs. 
The study demonstrated that the PNN based models are very efficient and reason-
able prediction of the compressive strength of concrete. Fazel Zarandi et al [2008] 
investigated the applicability of the fuzzy polynomial neural network (FPNN) in 
prediction of the compressive strength of the concrete. FPNN is a combination of 
fuzzy neural networks (FNN) and polynomial neural networks (PNN). As the  
If-Part of FPNN, FNN utilizes both BP algorithm and simplified fuzzy inference 
system. As Then-Part of FPNN, PNN is combined with FNN in two connection 
points. To enhance the performance of the network, back propagation (BP) and list 
square error (LSE) algorithms were utilized for training FNN and PNN. Two dif-
ferent architectures of FPNN were developed in this study. These models have six 
input variables including concrete mix components and one output variable, i.e., 
compressive strength of concrete. The results indicated FPNN as a potential tool 
for predicting the compressive strength of concrete mix-design. 

ANN has been applied to characterize the properties of HPC, which meets the 
requirements of special combination of properties and constructability that cannot 
be achieved routinely with conventional constituents and normal mixing, placing, 
and curing procedures. The required properties of HPC include high strength, high 
modulus of elasticity, high durability, high resistance to mechanical and chemical 
attack, low permeability, volume stability, ease of placement and compaction 
without segregation. HPC can be made with selected high quality ingredients and 
optimized mixture design [Kosmatka et al 2002]. The selected materials often 
used in HPC to achieve special properties include fly ash, slag, silica fume, meta-
kaolin and etc. HPC is a highly complex material, which makes characterization 
and prediction of its behavior difficult.       

Kasperkiewicz et al [1995] presented the use of ART based networks for pre-
dicting strength properties of HPC mixes. They simplified the composition of HPC 
into six components (cement, silica, superplasticizer, and water, fine aggregate 
and coarse aggregate) and considered the 28-day compressive strength value  
as the only aim of the prediction. Obtained results indicate that the properties of 
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concrete can be effectively prediction in a neural system, in spite of data complex-
ity, incompleteness, and incoherence. Yeh [1998b], and Sergio and Mauro [1997] 
demonstrated that prediction of the strength of HPC is more accurately obtained 
through BPNN model as compared to regression analysis. Öztaş et al [2006] de-
scribed applicability of BPNN to predict the compressive strength of HSC with 
suitable workability. The input parameters of ANN model were w/c, water con-
tent, fine aggregate ratio, fly ash content, air entraining agent, superplasticizer and 
silica fume replacement. The outputs of ANN model were compressive strength 
and slump.  The results showed ANN to be a feasible tool for predicting compres-
sive strength and slump values. Sebastiá et al [2003] focused on the application of 
ANN to predict compressive strength of coal fly ash–cement mixtures using  
several input parameters including cement, aggregate, water, additives, and fly 
ash. They confirmed the application of ANN to predict the strength of fly ash–
cement mixtures. Pala et al [2007] applied BPNN models to evaluate the effects of 
fly ash and silica fume replacement content on the strength of concrete cured for a 
long-term period of time. The results of this study showed that ANN is a valuable 
tool for evaluating the effect of cementitious material on the compressive strength 
of concrete.  

4.1.3   Durability of Hardened Concrete  
The durability of concrete can be defined as the ability of concrete to resist weath-
ering action, chemical attack, freezing/thawing, and abrasion while maintaining its 
desired engineering properties for the longer life of concrete [Kosmatka et al 
2002]. The durability of concrete is seen to depend on many factors including the 
concrete ingredient, proportioning of these ingredients, interactions between in-
gredients and placing and curing practice. ANN models have been utilized to un-
derstand the effect of these factors on concrete durability.  

Haj-Ali et al [2001] utilized ANN methodology to predict the long-term expan-
sion response of concrete exposed to sulfate solution.  The inputs parameters of   
ANN models developed were time and two mixture parameters (w/c and the tri-
calcium aluminate content of the cement). The expansion of the concrete was used 
as an output of models. It is shown that ANN can effectively learn and predict  
expansion of the concrete within a practical range of the two mixture parameters. 

The study of Ukrainczyk and Ukrainczyk [2008] describes the use of an ANN 
method with fuzzy inferences to investigate the effects of the environmental con-
ditions, structure and properties of concrete on the degree of damage caused by 
steel corrosion. The damage was classified into six categories based on the type of 
remedial work necessary and used as outputs of ANN models. They suggested that 
the ANN model developed could be used to predict the extent and severity of deg-
radation in a structure during its service life, to plan the maintenance and to assist 
in the design and restoration of reinforced concrete structures. 

Peng et al [2002] focused on ANN approach using the cascade correlation algo-
rithm [Fahlman and Lebiere 1990] to predict the chloride diffusion causing  
deterioration of concrete structures. The cascade-correlation algorithm was  
 
selected because this can synthesize an appropriate architecture and train the net-
work simultaneously while back-propagation type algorithm requires a selection 
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of suitable architectures in advance by a costly trial-and-error approach for the 
network and convergence of the learning algorithm. They concluded that the cas-
cade-correlation algorithm has the potential of becoming an effective tool in the 
prediction of durability problems due to its self-constructive capacity not available 
in typical back-propagation networks.   

Parichatprecha and Nimityongskul [2009] analyzed the influence of mix pro-
portion parameters on the durability of HPC by using ANN. The data used in the 
ANN model was arranged in a format of eight input parameters, which included 
the content of ordinary portland cement (OPC), fly ash (F), silica fume (SF), water 
(W), superplasticizer (SP), coarse aggregate (CA), fine aggregate (FA) and water–
binder ratio (W/B). The one output parameter of ANN model was chloride ions 
permeability representing the durability of HPC. This study illustrated how ANN 
can be used to predict durability parameter of HPC, which is difficult with tradi-
tional regression analysis.    

4.1.4   Concrete Mix Design    
The concrete mix design or proportion is the process of determining the quantities 
of ingredient in concrete mixture to achieve the required and specified characteris-
tics of fresh and hardened concrete. In this process, engineer meets the uncertain-
ties of materials, temperature, site environmental situations, personal skillfulness, 
and errors in calculations and testing processes.  Adjustments are also made for a 
proper mix proportion. Since this kind of concrete mix proportion and adjustments 
is somewhat complicated, time-consuming, and an uncertain tasks, the develop-
ment of concrete mix design tool based on ANN methodology was tried out. 

Oh et al [1999] and Uomoto et al [1998] applied ANN to minimize the uncer-
tainties and errors of proportioning concrete mixes. Ji-Zong et al [1999] developed 
a knowledge-acquisition system based on ANN to design concrete mix. The main 
parts of the system were the mix-design model supported by the slump-prediction 
model and the strength-prediction model. This system not only makes full use of 
the mix designs but also provides the prediction of the slump and 28-day compres-
sive strength of ready-made concrete.  

Yeh [1999] presented a method of optimizing HPC mix proportion for a given 
workability and compressive strength by using ANN and nonlinear programming. 
The basic procedure of the methodology consists of three steps: (1) build accurate 
models for workability and strength using ANN and experimental data; (2) incor-
porate these models in software allowing an evaluation of the specified properties 
for a given mix; and (3) integrate the software in a nonlinear programming pack-
age allowing a search of the optimum proportion mix design. The proposed  
methodology can provide a guideline to select appropriate materials and mix  
proportions as a starting trial batch of HPC and reduce the number of trial mixes 
required.  

4.1.5   Special Types of Concrete Behaviors    
Special types of concrete are those with the extraordinary properties or those pro-
duced by unusual techniques with/without cement [Kosmatka et al 2002]. Models 
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for properties of normal concrete are not always consistent special concrete  
because of having different ingredient and production process.  ANN approach has 
been considered as alternative way to understand the properties and behavior of 
special concrete.   

Nehdi et al [2001a] investigated the use of ANN to predict the performance of 
cellular concrete mixtures. Cellular concrete is a lightweight material consisting of 
portland cement paste or mortar with a homogeneous void or cell structure created 
by introducing air or gas in the form of small bubbles during the mixing process. 
A major concern with the production of cellular concrete is achieving product 
consistency and performance predictability. Research study shows that production 
yield, foamed density, unfoamed density, and compressive strength of cellular 
concrete mixtures can be predicted much more accurately using ANN as com-
pared to existing methods. 

Nehdi et al [2001b] presented that ANN could be used to predict the perform-
ance of self-compacting concrete (SCC) mixtures effectively. SCC is highly 
workable concrete that can flow through congested structural elements under its 
own weight and adequately fill voids without segregation and excessive bleeding. 
Because of its complex mixture proportions, limited models based on traditional 
regression analysis and statistical methods have been developed to describe its 
rheological and mechanical properties. Results show that the ANN method can ac-
curately predict the slump flow, filling capacity, segregation, and compressive 
strength test results of SCC mixtures. Prasad et al [2009] demonstrated the use of 
ANN in training data on SCC with low volume of fly ash.  Models not only pre-
dicted the strength and slump of SCC (with high volume of fly ash) but also the 
strength of HPC, which is very difficult to predict otherwise. Studies by Fletcher 
and Coveney [1995] and Topçu et al[2008] indicates that ANN is promising in 
characterizing nontraditional cement based materials such as oil field cements and 
blended cements. 

ANN was also employed to predict the properties of concrete containing recy-
cled materials. Topçu and Sarıdemir [2007] utilized ANN to predict properties of 
hardened concrete containing waste crushed autoclaved aerated concrete. For 
training the networks, seven mixture proportion parameters (cement, water, sand, 
crushed stone-I, crushed stone-II, fine autoclaved aerated concrete and coarse au-
toclaved aerated concrete) were entered as input while unit weight, compressive 
strength, ultrasound pulse velocity and dynamic modulus of elasticity  values were 
the outputs. They also utilized ANN to predict the unit weight and flow property 
of the fresh concrete containing waste rubber [Topçu and Sarıdemir 2008]. For 
networks training, seven mixture proportion parameters (cement, water, sand, fine 
crushed stone, coarse crushed stone, fine rubber, and coarse rubber) were entered 
as input. Fresh concrete’s unit weight and flow table values were the outputs. Both 
the studies indicate that the use of ANN models can determine the properties of 
concrete containing recycled materials without attempting any experiments.   

4.2   Asphalt Concrete (AC) 

Asphalt is a dark brown to black cementitious material either occurring in nature 
or produced through petroleum processing. AC is a mixture of asphalt and aggre-
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gate which can be spread and compacted. Hot mix Asphalt (HMA) is AC  
produced at batch or drum–mixing facility with elevated temperature. The primary 
use of AC is road construction. 94 % of U.S road are construct with AC [Asphalt 
Institute 1989]. The proper understanding of properties and behaviors of AC is es-
sential to achieve long lasting AC pavement with desired performances. 

AC can be described as a multiphase heterogeneous material composed of a 
viscoelastic asphalt binder, irregular rigid aggregate particles in high volume frac-
tion, and small percentage of air voids.  These component materials exhibiting 
various properties contribute complex mechanical behaviors of AC characterized 
as elastic, viscoelastic, and plastic properties under different conditions such as 
temperature, load applications and aging. Therefore, it is important to understand 
the behavior of both the individual properties of AC components as well as that of 
asphalt binder and aggregate acting together.  

Since the property of AC is between the range of brittle and ductile behavior, 
it is very difficult to capture and model the complex behaviors of AC. Recently, 
some researchers have attempted to apply ANN approach in AC materials  
characterization.   

4.2.1   Rheology Properties of Asphalt Binder  
Rheology properties, the deformation and flow behaviors of asphalt binder, are im-
portant in determining asphalt pavement performance. In U.S, the measurement 
methods for rheology properties of asphalt binder have evolved from empirically 
derived tests to fundamental engineering parameters based tests to Strategic High-
way Research Program (SHRP) researches in the 1980s and 1990s.  Superpave 
(Superior Performing Asphalt Pavements) binder specification is one of final prod-
ucts of these SHRP researches and is a widespread methodology for characterizing 
asphalt binder based on engineering parameters. However, prediction of rheology 
properties of asphalt binder is particularly difficult because of the complexity of as-
phalt binder which consists of a wide variety of molecules such as paraffinics, 
naphthenics, and aromatics including heteroatoms [Michon et al 1997].    

Michon et al [1997] investigated the effects of molecules on rheological proper-
ties of bitumens using ANN approaches. BPNN with three layers was used in this 
study. Two asphalt rheological properties, m (creep slope at low temperature)  
and G*/sin δ (stiffness at high temperature) were selected as output parameters, 
whereas the average molecular parameters which characterize the hydrocarbon 
skeleton of bitumens, were the inputs. This study showed that the skeleton  
information contained in the average molecular parameters was correlated with m 
value but not with G*/sin δ. Specht et al [2007] presented modeling of asphalt-
rubber rotational viscosity by statistical analysis and ANN. The architecture of 
ANN selected was the BPNN with two hidden layers. Input data used for  
training BPNN were all elements of the complete factorial matrix including rubber  
 
content, rubber particle size and duration and temperature of mixture. The output 
was viscosity measured using rotational viscometer. The results of this study  
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indicate that the ANN method provides a best prediction of viscosity than statisti-
cal methods.  

4.2.2   Aggregate Behaviors in AC 
Aggregate in AC should provide enough shear strength to resist load application 
[Asphalt Institute 2001]. The aggregate properties that enhance internal friction 
are desired for this purpose. While these properties are empirically characterized 
in practical use, image processing combined with ANN has been applied to  
characterize these aggregate properties with respect to the performance of AC 
mixture. Wilson et al [1995] quantified the shape and texture of individual aggre-
gate particle using two dimensional image processing and classified these proper-
ties using ANN.  Kutay et al [2008] utilized three dimensional image analysis and 
ANN to determine the approximate size and location of the coarse aggregates in 
AC mixture.   

4.2.3   AC Properties and Behaviors  
Dynamic modulus (|E*|) is one of the AC stiffness measures that determines the 
strains and displacements in AC pavement structure when it is either loaded or 
unloaded. The AC stiffness can alternatively be characterized via the flexural  
stiffness, creep compliance, relaxation modulus and resilient modulus. |E*| is im-
portant AC property as it is the primary input in the new U.S. pavement design 
method, namely Mechanistic Empirical Pavement Design Guide (MEPDG) 
[NCHRP 2004]. Various |E*| predictive models have been developed over the last 
50 years to estimate |E*| as an alternative to laboratory testing, which require days 
of specimen preparation, temperature equilibration, and loading. The most widely 
used models are the Witczak [Andrei et al. 1999, Bari and Witczak 2006] and the 
Hirsch |E*| [Christensen et al. 2003] predictive models based on conventional mul-
tivariate regression analysis of laboratory test data.   

Researchers at Iowa State University (ISU) were the first to propose an ad-
vanced approach for predicting HMA |E*| using an ANN methodology [Ceylan et 
al 2007; Ceylan et al 2008; Ceylan et al 2009]. A typical four-layered (i.e., one  
input- two hidden–one output layer) BPNN architecture, as shown in Fig. 1 and 
Fig. 2, was used in development of the ANN |E*| predictive models. The eight in-
put variables of the Witczak equations reported in 1999 and 2006 were used in the 
ANN 1999 and ANN 2006 models, respectively. The four input variables of the 
Hirsch equation were used in ANN Hirsch model. These input variables are ag-
gregate gradation, mixture volumetrics, rheology properties of the asphalt binder 
(η for ANN 1999 model, |Gb

*|| for ANN 2006 and ANN Hirsch models, and δ for 
ANN 2006 model), loading frequency (f for ANN 1999 model), and one contact 
factor (Pc for ANN Hirsch model). The aggregate gradation variables for ANN 
1999 and ANN 2006 models include percent passing #200 sieve (ρ#200), percent 
retained #4 sieve (ρ#4), percent retained 9.5 mm sieve (ρ9.5mm), and percent  
 
retained 19 mm sieve (ρ19mm). The mixture volumetrics for ANN 1999 and ANN 
2006 models includes air void (Va) and effective binder content (Vbeff). The mix-
ture volumetrics for ANN Hirsh model includes voids in mineral aggregate 
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(VMA) and voids filled with asphalt (VFA). The predicted dynamic modulus |E*| 
was the sole output variable in all of the ANN models. The 8-30-30-1 architecture 
(8 inputs, 30 and 30 hidden neurons, and 1 output neurons, respectively) was cho-
sen as the best architecture for both the ANN 1999 and ANN 2006 models based 
on its lowest training and testing mean squared errors (MSEs). The error level of 
the ANN Hirsch model was minimized when the number of hidden nodes ap-
proached 40 (4-40-40-1 architecture). 
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Fig. 1. ANN 1999 and ANN 2006 models. 

 

2

1

1

X1

X2

Error

i kj

Wij

Qjk

Backpropagation of error to
update weights and biases

X3

X4

3

4

1

3

2

4

m

VMA

VFA

|Gb*|

Pc

1

3

2

4

m

|E*|

l

Rkl

Input Layer Hidden Layer Output Layer

|E*|
Predicted Observed

 
 

Fig. 2. ANN Hirsch model 
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Fig. 3. Predicted vs. measured |E*| values by the Witczak 1999 and ANN 1999 models. 
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Fig. 4. Predicted vs. measured |E*| values by the Witczak 2006 and ANN 2006 models. 

 
Fig. 3 summarizes the measured vs. predicted |E*| obtained from Witczak 1999 

and ANN 1999 models. Fig. 4 and Fig. 5 provide similar comparisons for the 
Witczak 2006/ANN 2006 and Hirsch/ANN Hirsch model pairs. 

It is clear that the ANN versions of the Witczak models (ANN 1999 and ANN 
2006) have the highest overall accuracy, followed closely by the ANN version of 
the Hirsch model (ANN Hirsch) and somewhat more distantly by the Witczak  
models and the Hirsch model. The results also indicate that the ANN-based mod-
els have a much lower tendency at the lower and/or higher |E*| spectrum provid-
ing better predictions of distresses at these spectrum. These finding from ISU 
studies [Ceylan et al 2007; Ceylan et al 2008] were agreed by the study of Sakhaei 
Far et al [2009] using more expanded database. ANN approaches have been also 
applied to predict not only alternative stiffness measurement (creep compliance) 
of AC [Zeghal 2008] but also stiffness measurements of non traditional AC (emul-
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sified AC [Ozsahin and Oruc 2008] and rubberized AC [Xiao and Amirkhanian 
2009]) to a higher degree of accuracy.  

ANN approaches has been explored to characterize volumetric nature of AC 
which are critical design and construction of AC materials. Tarefder et al [2005] 
develop BPNN with four-layer to predict permeability with five factors: (1) air vo-
ids (Va) (2) the grain size through which 10% materials pass (d10); (3) the grain 
size through which 30% materials pass (d30); (4) saturation, or the CoreLok Infil-
tration Coefficient (CIC); and (5) effective asphalt to dust ratio (Pbe /P0.075). Com-
muri and Zaman [2008] focused on using ANN to determine the desired density 
during field construction of asphalt mixes. Based on the hypothesis that a vibra-
tory compactor and the HMA mat form a coupled system with unique vibration 
properties, the measured vibrations of the compactor along with the process  
parameters such as lift thickness, mix type, mix temperature, and compaction pres-
sure were used as inputs to predict the density of the asphalt mat. Hejazi et al 
[2008] selected BPNN to identify the effect of fiber parameters (as input neurons) 
on the fiber-reinforced asphalt concrete (FRAC) properties, the specific gravity 
and the stability and flow measured by Marshall test as output neurons). Five input 
neurons (fiber length, density, finesse, percentage, and melting point) with a hid-
den layer of 15 neurons and three output neurons or units (specific gravity, stabil-
ity, and flow) formed the architecture of BPNN. All of these studies demonstrated 
that ANN is a useful approach to characterize volumetric nature of AC. 
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Fig. 5. Predicted vs. measured |E*| values by the Hirsch and ANN Hirsch models. 

5   Concluding Remarks  

Characterization of infrastructure materials is important in infrastructure design, 
construction and performance. The properties and behaviors of infrastructure ma-
terials have been characterized trough experimental tests requiring cost and time. 
By using classic mathematics and traditional techniques, various material models 
have been developed as alternative. However, most of these techniques simplify a 
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multitude of tributary factors and the uncertainty involved in the experimental 
tests with strict assumptions such as normality, linearity, variable independence, 
etc. Consequently, many mathematical or physical models fail to predict the  
complex behavior of most infrastructure materials. In contrast, artificial neural 
networks (ANN) based model is developed from experimental dataset on which it 
has been trained without a priori assumptions about the material behavior. 

It is evident from this review that ANN can provide analytical alternatives to 
classical mathematics and traditional techniques in infrastructure material prob-
lems. These include fresh portland cement concrete (PCC) properties, hardened 
PCC strength and durability, concrete mix design, special types of concrete, as-
phalt rheology properties, aggregate behavior in asphalt concrete (AC) and AC 
properties and behaviors. The application of ANN in infrastructure materials has 
been mainly focused on two tasks: (1) prediction of engineering properties, (2) 
analysis of variables effect on engineering properties. While ANN has been ap-
plied to many PCC materials problems since the 1990s, ANN applications to AC 
materials are very recent and still relative rare. Even in concrete materials, most 
applications are focused on PCC strength problems. These indicate that ANN 
could be applied to more infrastructure material problems. The feasible areas con-
sidering ANN applications to PCC include rheology properties, behavior under 
freezing and thawing, alkali and aggregate reaction, properties and behaviors of 
roller compacted concrete and other special concretes.  The feasible areas consid-
ering ANN applications to AC include Superpave binder grade, AC mix design, 
durability properties and behaviors, and recycled asphalt behaviors.  

A main barrier of application might be lack of reliable data. However, once re-
liable data is adequately available, ANN becomes a powerful and practical tool for 
various infrastructure material problems. 
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Abstract. Analysis of the mechanical properties of existing road pavements is crucial for 
pavement rehabilitation and management problems. Numerous studies have focused on de-
veloping an efficient method for determining the structural conditions of pavements. Non-
destructive testing (NDT) methods can characterize stress-strain behavior of pavement  
layers at relatively low strain levels. However, the majority of NDT techniques are based 
on measuring the deflections caused by an applied load to determine the stress-strain behav-
ior. Structural analysis techniques can also calculate deflections using material and loading 
properties where it is commonly necessary to make an inversion between measured deflec-
tions and mechanical properties using a back-calculation tool. Soft computing techniques, 
i.e. neural networks, fuzzy logic, genetic algorithms, and hybrid systems, have successfully 
been used to perform efficient and precise back-calculation analyses. This chapter explains 
the advances in pavement back-calculation methodologies based on soft computing  
approaches by presenting the concepts behind them and the fundamental advantages of 
each. An alternative utilization of soft computing techniques for pavement engineering is 
also presented. 

1   Introduction 

Structural analysis of pavement systems comprises valuable information for the 
estimation of the pavement condition and the selection of feasible rehabilitation 
and/or reconstruction strategy. Therefore, pavement engineers intend to utilize ef-
ficient and reliable methods for the determination of the physical condition of 
pavement section that is subject to evaluation. In order to decide on the physical 
condition of a pavement structure, mechanical properties of the system should be 
known. In this respect, nondestructive testing (NDT) methods emerged from the 
fact that they quickly and efficiently provide valuable information on the me-
chanical properties of a pavement structure in a nondestructive manner. NDT 
methods are typically categorized as: (i) deflection basin methods, and (ii) surface 
wave methods. Methods based on deflection rely on the measurement of surface 
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deformations caused by applied loads which can lead to correlations between sur-
face deflections and layer stiffness. Basically, the surface deflection is affected by 
loading conditions (type, magnitude, contact area, and duration), measurement lo-
cation, and layer properties (thickness, mass, and stiffness). The most common 
approaches to deflection basin testing techniques are the Benkelman beam, the 
LaCroix deflectometer, the Dynaflect road rater, the falling weight deflectometer 
(FWD), and the rolling weight deflectometer (RWD) [1-5]. The second type of 
NDT methods, i.e. surface wave methods, is based on Rayleigh waves that emerge 
by applying load and propagate through the pavement surface. In this method, the 
travel times between successive receivers are computed for different excitation 
frequencies using collected wavelength data. The procedure is also referred to as 
spectral analysis of surface waves (SASW) and depends on the phase velocities 
and the excitation frequencies [4-7]. 

Among all NDT methods, FWD is probably the most widely used technique 
because its can successfully simulate traffic loads and rapidly produce a large 
amount of data. Basically, FWD measures time-domain deflections emerging from 
the impulse load utilizing different deflection sensors which are mounted radially 
from the center of the load plate [3, 8-10]. Deflection data recorded by FWD is 
usually utilized for the backcalculation of mechanical pavement properties using 
numerical techniques. Typically, there are two calculation directions in the analy-
sis: forward and backward. In the forward process, deflections are calculated for 
traffic loads being considered, pavement structure, and initial mechanical parame-
ters using structural analyses techniques. Structural analyses, such as layered elas-
tic theory, finite element method, and finite difference method utilize stiffness 
properties of pavement layers to calculate deformations. For backward direction, 
obtained deflections are compared with measured deflections, and new mechanical 
properties are estimated by a parameter identification routine. Consequently, the 
optimization is performed until computed and measured deflections are matched 
within a predefined level of accuracy. Obviously, the iterative process is time-
consuming and requires excessive computational effort [4-5]. 

Backcalculation methods can be divided into three basic categories; i.e. static, 
dynamic, and adaptive [4]. Static and dynamic methods coincide with the type of 
loading, and require models for the structural pavement response. In this respect, 
these methods involve forward and backward calculations separately. It should be 
mentioned that, the inverse process can be performed by several techniques, such 
as the least-squares, the gradient descent method, database search, and genetic al-
gorithms [4-5, 11-14]. Adaptive processes utilize neural network (NN) and adap-
tive neuro-fuzzy inference (ANFIS) methodologies to establish an inverse map of 
the model for the structural pavement response or experimental data directly. 
Therefore, a pavement response model is not necessary in adaptive backcalcula-
tion methods, since the approach relies on the simulation of inverse mapping 
through learned target behavior via known input-output data patterns [4-5, 15-20]. 

NN methodology is a field of artificial intelligence, which is focused on build-
ing intelligent codes that mimic the learning mechanism of a human brain by  
constituting a parallel-connected network model [21-23]. In a NN model, once the  
system is trained, network can calculate output as a functional mapper using last 
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updated network parameters. This is also the reason why NNs are called by uni-
versal functional approximaters [23]. It is possible to simulate the considered  
inverse mapping in real time when NN models are used for pavement backcalcula-
tion problems [15-17]. Hence, significant savings in time and money can be 
achieved when evaluating the performance of a pavement. 

It is possible to simulate nonlinear mapping defined by a known input-output 
data, using a fuzzy inference system. This is an unconstrained optimization prob-
lem which depends on seeking the optimal model parameters. Jang [24] presented 
an adaptive network approach to solve such an unconstrained optimization  
problem, namely the adaptive neuro-fuzzy inference system (ANFIS). From the 
modeling point of view, ANFIS can also be employed for backcalculation of the 
mechanical properties of a pavement in a supervised manner [20].  

On the other hand, soft computing (SC) emerged from the fact that conven-
tional computing techniques could not solve complex problems having impreci-
sion and uncertainty. Unlike conventional computing techniques, SC methods  
focus on partial exactness through an approximation with a tolerance of impreci-
sion. SC models exploit biological processes, predicate logic, the partial belong-
ingness concept, parallel processing, and techniques which mimicking human 
mind as well as the nature. There are several methods considered in the context of 
SI, i.e. fuzzy systems, NN, evolutionary computation, swarm intelligence, ma-
chine learning, chaos theory and probabilistic reasoning [22]. 

NN and ANFIS are first SC methodologies used in backcalculation problems. 
Both techniques have potential to learn load – deformation behaviors, which are 
characterized by either synthetic (obtained via numerical analysis) or testing data. 
Therefore, developed model can be used to evaluate the pavement condition utiliz-
ing known deflection measurements. On the other hand, there is also potential for 
other SC methods for use with the backcalculation problem. In this context,  
Optimization methods (evolutionary or swarm intelligence based) can also be em-
ployed for the parameter identification process of pavement backcalculation  
problem. In simple words, if the fitness function calculates output values using a 
structural analyzing program, SC based optimization method can determine the 
model parameters. In this context, GA employed for the solution of pavement 
backcalculation problem by several researchers [13-14]. 

In the second section of this chapter, the NDT methods and pavement backcal-
culation problem are explained in detail. A comprehensive literature review is also 
included to support the main idea behind pavement analysis using NDT data. In the 
third and forth sections, NN, NN-based learning philosophy, and backpropagation 
algorithm are considered to make good understanding of NN-based learning proc-
ess. In the fifth section, fuzzy logic and ANFIS methodologies are briefly  
explained. In the sixth and seventh sections, NN and ANFIS methodologies, as 
branches of SC, are considered as powerful pavement backcalculation tools.  
Furthermore, several NN and ANFIS based backcalculation (also referred to as 
adaptive backcalculation) examples and detailed comparisons are presented in these 
sections. In the eighth section, susceptibility of SC based optimization methods are 
evaluated, and previously performed examples are explained. In the ninth section, 
pitfalls for SC based backcalculation analyses are considered in detail. In this  
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manner, several practical and guiding keypoints are underlined. Finally, in the tenth 
section, the advances in pavement backcalculation methodologies based on soft 
computing approaches and alternative utilization of soft computing techniques for 
this problem are explained. Furthermore, necessary conclusions are drawn and pre-
sented for future soft computing based pavement backcalculation analyses.  

2   Nondestructive Testing Methods and Backcalculation 

Highway engineers consider two major problems during the structural evaluation 
of a pavement structure: 

 

• How long can a pavement structure serve under estimated traffic loads? 
• What is the optimum maintenance or overlay decision for a pavement struc-

ture? 
 
Answers of these questions rely on solving an optimization problem which de-
pends on a combination of information and approaches such as material behavior, 
mechanical modeling, statistical evaluation, and economical equilibriums. In this 
context, the determination of mechanical material properties is essential in de-
scribing the problem statement. As mentioned before, NDT, by which mechanical 
properties of flexible pavement layers can be measured at low strain levels, is the 
most common approach in obtaining mechanical material properties. The philoso-
phy behinds NDT methodology is that the structural performance of the pavement 
system is inversely proportional with the amount of surface deflections observed 
by an applied load. The exception to this method is the SASW method, in which 
pavement stiffness is obtained by Rayleigh wave velocities [4-5, 6, 11, 17]. 

Fundamental variation among deflection based NDT methods comes from the 
fact that loading type and deflection measurement locations are different for each 
method. In general, applied loads are divided into three categories: static, steady-
state vibratory and time domain impulse. Static loading is the simplest case, which 
cannot simulate the nature of actual traffic loads. Benkelman Beam and La Croix 
Deflectometer are examples of such static type of loading. Obviously, dynamic 
loading is more precise and realistic in simulating the traffic affects. Steady-state 
dynamic case is the simplest way of simulating the actual effect of vehicle passing 
over a pavement. Dynaflect and Road Rater are two popular steady-state dynamic 
loading devices. In time domain impulse loading, an impulse load is applied on 
pavement surface and deflection data is recorded in time domain. Generally, there 
are several sensors to measure the deflection values on different points of pave-
ment surface. Falling Weight Deflectometer (FWD) is an impulse loading device. 
In FWD test, a falling mass applies an impact on the pavement surface, and tran-
sient deflection data is recorded by each sensor. The impulse load of FWD is  
applied with a circular plate and a rubber seal is placed between plate and pave-
ment surface in order to reduce the instant impact effect. Additionally, transient 
surface deflections are measured at different locations by sensors. Consequently, 
peak values for each sensor are used to plot deflection basin curve. A typical FWD 
result is illustrated in Figure 1 [3-5, 7, 25-28]. 
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Fig. 1. Typical FWD deflection graph 

 
On the other hand, there are a number of latest types of NDT devices for ana-

lyzing pavement structures since FWD operation is both time consuming and 
costly. Main feature of the recent devices is to measure deflection bowls at a  
certain operation speed. These devices comply with the features above are Rolling 
Dynamic Deflectometer (RDD), Rolling Weight Deflectometer (RWD), Rolling 
Deflection Testing (RDT), and High Speed Deflectograph (HSD). All of these de-
vices can accomplish continuous deflection testing in non-destructive manner. 
Based on a device evaluation [29], the RDD is a good device yet not appropriate 
for measurement at high speeds. Although the RWD has been successfully util-
ized, the device measures one deflection at a time; obviously, not suitable to  
assess the condition of pavements. The RDT also has the same feature. On the 
other hand, the RDT is the unique device available giving more than one deflec-
tion measurement at a time. In conclusion, latest types of NDT devices introduced 
above are not commercially available except the RDT. Moreover, their measure-
ment abilities seem not as accurate as FWD [29]. 

Backcalculation problems, which are also referred to as “parameter identifica-
tion problems”, are used in many scientific disciplines. Basically, it is an optimi-
zation problem performed to characterize the inverse relationship of a known 
mapping established by discrete or continuous data points. On the other hand, 
backcalculation process in pavement system is the numerical analysis of measured 
surface deflections, which is carried out for the estimation of layer stiffness pa-
rameters. In order to accomplish this, measured deflections are matched with  
calculated deflections, which are obtained by structural analyzing technique. The 
matching is continued iteratively until a close match between measured and calcu-
lated deflection values is reached [5, 11-12, 30]. Numerous backcalculation tech-
niques are developed for the pavement backcalculation problem so far. The main 
principle of all these developed methods is based on the establishment of a corre-
lation between surface deflections and layer moduli [4-5, 11-12; 31-37]. The  
fundamental discrepancies among backcalculation models are the type of forward 
response model and optimization procedure carried out for the determination of 
appropriate layer moduli. In this context, following classification is proposed for 
the backcalculation of pavement systems [5]: 
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Fig. 2. Overview of backcalculation methods [5] 

 

Referring to Fig.2, structural pavement analysis can be considered as either 
static or dynamic in its approach. Preliminary studies on backcalculation problem 
are focused on static analyses, and the inverse mapping is characterized by func-
tional, statistical, and empirical techniques. Due to the complex and nonlinear na-
ture of the problem, these initial attempts were not successful. As can be seen 
from Fig.2, optimization processes can be performed by a parameter identification 
algorithm (PIA), such as nonlinear least squares, database search (DSA), and  
genetic algorithm (GA). GA is an artificial intelligence (AI) based model-free op-
timization technique, which mimics the theory of evolution [3, 5, 12-14, 25-26, 
36-37]. Schematic illustration of static linear conventional backcalculation with is 
given in Fig.3. 

The difference between linear and nonlinear static backcalculation techniques 
are shown in Fig. 4. Similar to static linear backcalculation, stiffness of each layer 
(i.e. pavement moduli, E) is changed by a parameter identification algorithm (PIA) 
to match calculated (Δ) and measured deflections (δ). It should be noted that, 
Poisson’s ratio (ν) and thickness (h) of each layer can be considered to be constant 
when utilizing this algorithm [4-5, 12, 36]. 

Dynamic pavement response models are used in backcalculation procedures in 
order to increase the quality of the results [4-5, 32, 35-37]. In dynamic response 
analysis, loading can be either impulsive or vibratory. Deflection data can be ob-
tained in frequency domain or in time domain for impulse loads, and in steady 
state for vibratory loads. Fourier analyses are usually carried out for the transfor-
mation of the domain in order to use the dynamic loading data. Successively,  
elasto-dynamic numerical integration methods (such as Green function solution)  
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Fig. 3. Static linear backcalculation with (a) PIA-GA and (b) DSA [5] 

or dynamic FEMs are performed to calculate surface deflections. In order to re-
duce the computational complexities, material behaviors can be considered as 
nonlinear similar to the static case. Furthermore, optimization process of dynamic 
backcalculation can be performed by suitable parameter identification routine us-
ing artificial layer moduli [4-5, 37].  

Basically, dynamic response of a pavement depends on the elastic moduli, 
thickness, Poisson’s ratios, mass densities (ρ), and damping ratios (β) of each 
layer. The variations in Poisson’s ratios, mass densities, and damping ratios have 
small effects on the dynamic response of the pavement. The unknown parameters 
in a dynamic backcalculation analysis are the complex moduli (G*) and the thick-
ness of the pavements layers.  
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Fig. 4. Static nonlinear backcalculation with PIA [5] 
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Fig. 5. Schematic Representation of dynamic steady-state vibratory load backcalculation [5] 
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The complex modulus is the function of angular frequency (ω) and the three mate-
rial properties, i.e. slope of creep compliance curve (ms), internal damping ratio, 
and Young’s modulus (E). It should be noted that, creep compliance is a viscoe-
lastic property that is related with asphalt concrete (AC) layer as well as internal 
damping is the function of inertia, which is considered for base, subbase, and sub-
grade layers in elastodynamic analyses [4-5, 12, 38-40]. The viscoelastic proper-
ties of AC layer can be characterized by creep compliance defined in the time do-
main, and the dynamic complex modulus can be considered in the frequency 
domain [4-5, 28, 36-42, 43-47]. For base and subgrade layers, complex modulus is 
generally assumed to be independent from the frequency, and several material 
models, such as Kelvin and Maxwell, are utilized to characterize these layers [37-
38,48-50]. 

Loading is performed either impulsive or vibratory in dynamic structural analy-
ses. In this context, deflection data can be recorded in time domain for time  
domain impulse loadings, and in the frequency domain for steady state vibratory 
loadings. In order to use the dynamic loading data, Fourier analyses are performed 
for transformation of the domain. In Fig.5, schematical representation of dynamic 
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Fig. 6. Schematic representation of dynamic the frequency domain fitting for impulse load 
backcalculation [5] 
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Fig. 7. Schematic representation of dynamic the time domain fitting for impulse load  
backcalculation [5] 

 
backcalculation for steady-state vibratory loads is presented [4-5, 12, 37]. For im-
pulse loads as in FWD test, it is required to transform the time (t) domain data to 
the frequency (ω) domain data. In this context, there can be two possibilities, i.e. 
(a) frequency domain fitting and (b) time domain fitting. In time domain fitting, 
since computed deflections are in the frequency domain, inverse Fourier transfor-
mation should be carried out to compare calculated and measured deflections  
[4-5, 12, 37]. Details of impulse load dynamic backcalculation for both cases are 
explained in Fig.6 and Fig.7. 

In order to perform an efficient and precise backcalculation analysis, axisym-
metric layer and half-space spectral elements can be used to characterize the  
dynamic behavior of flexible pavements [51]. Spectral element technique is the 
combination of FEM with wave propagation basics. In spectral element method, 
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each layer is characterized by one element instead of subdivisions, which is its 
fundamental difference from FEM. In terms of computational requirements, this 
approach overcomes the drawback of FEM for use with inverse problems [51-52]. 
Consequently, spectral element method is powerful to simulate dynamic pavement 
response efficiently considering viscoelastic and poroelastic aspects [52-54]. 

Besides existing advantages of dynamic approach, it has several obstacles com-
ing from the complexity and time consumption problem of dynamic analyses.  
Furthermore, in many problems, it is hard to get all necessary data for dynamic 
analysis. For these reasons, in the majority of pavement backcalculation problems, 
static approaches are preferred because of their simplicity and acceptable error 
range within the scope of the considered problem. 

On the other hand, the last alternative to pavement backcalculation techniques 
is adaptive backcalculation which is performed by SC techniques, namely NN and 
ANFIS. In this type of analysis, problem is considered as one-step analysis and the 
database characterizing the target behavior is taught to the adaptive system. Su-
pervising database can be obtained either by test procedure or structural analyzing 
program. In this respect, aim of the adaptive system is only to map the inverse  
relationship directly [4, 20]. 

3   Neural Networks 

Neural networks (NN) are parallel connectionist structures, which simulate the 
working network of neurons in human brain. NN are widely used in many scien-
tific areas such as, learning, classification, simulation, forecasting, and pattern 
recognition. Basically, as in human brain, NN consist of neurons (or processing 
units), which are parallel connected to each other by synapses. Neurons consist of 
two basic parts, namely, dendrite and axon. Dendrites establish connection be-
tween two neurons, and signal processing is performed via synapses (areas where  
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messages pass). Synapses exhibit either excitatory or inhibitory attributes when 
processing the signals. Axons are long branches constituting the body of a neuron. 
Simply, a neuron is the element processing input signals and producing output 
signals. In this context, neurons increase or decrease the sum of incoming signals 
with the consideration of a bias value. In the Fig.8, schematic representation of a 
neuron is illustrated [22-23]: 

Referring again to Fig.8, input signals are accumulated (summed) after being 
incorporated with synaptic weights.  Later, total impulse is compared with bias 
term (or threshold) and activation potential (vj) is calculated. In the last step, out-
put signal is produced by the normalization of activation potential to a certain 
range ([0,1] or [-1,1]). In other words, activation potential is scaled by an activa-
tion function (ϕ) to reduce mapping range; otherwise, network may never  
converge to a solution. Mathematical representation of an artificial neuron is given 
below [23]: 

( ) ⎟
⎠

⎞
⎜
⎝

⎛ −== ∑
=

j

n

1i
ijijk bwxvy ϕϕ                                   (1) 

where, xi is input signal, wij is synaptic weight, bj is bias value, vj is activation po-
tential, ϕ () is activation potential (or induced local field), yk output signal, n is the 
number of neurons for previous layer, and k is the indice of processing neuron. 

On the other hand, the term perceptron is equated with a processing unit in-
cluding a single neuron, synaptic weights, and bias term.  In addition, perceptrons 
can classify linearly separable patterns. Multilayer perceptrons (MLPs), also re-
ferred as multi layer feedforward neural networks, involve an input layer, one or 
more hidden layer, and an output layer. Each layer has a number of perceptrons 
that are parallelly connected to previous and successive layers [23]. In Fig.9, 
schematic representation of a MLP is illustrated. Actually, there are various types 
of NN (such as, self-organizing maps and Boltzman machines), which are success-
fully used for learning complex and nonlinear mappings. Therefore, MLPs are 
also referred to as universal function approximators [23]. 

 

 

Fig. 9. Multilayer NN Structure 
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From modeling viewpoint, MLPs are successful in the solution of inverse prob-
lems. In detail, if input and output patterns are known, it is possible for NN to 
learn the inverse relation by shifting input and output spaces. In the light of this, 
the preferred NN type is MLP within the scope of this study; henceforth, MLP and 
NN are used synonymously. 

4   Learning Algorithms and Backpropagation 

The popularity of NN has begun to increase after the development of backpropa-
gation algorithm [55]. This algorithm, also known as gradient-descent backpropa-
gation, utilizes Widrow-Hoff (Delta) learning rule and free parameters (synaptic 
weights) are updated by the gradient (steepest) descent optimization technique 
[23]. In addition, error energy (generalized value of all errors in output layer) is 
calculated by a least squares based formulation. Commonly, error energy (E)  
is defined by mean of least squares as follows: 
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where, m is the number of neurons in output layer, N is number of training pat-
terns, tj

k is the target value of processing neuron. Virtually, this algorithm changes 
(updates) synaptic weight along the negative gradient of error energy functions. 
Namely, weight changes are proportional with the magnitude of error energy. In 
this manner, the local error gradient is defined by: 
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The formulation of weight update is given as: 

nnn yw δηΔ =                                              (4) 

Where, Δw is weight update, η is learning rate parameter, δn is local error gradient, 
y is output signal and n represents processing neuron. It should be noted that, learn-
ing rate varies within [0,1], and shapes the convergence trajectory in weight space. 

On the other hand, standard backpropagation algorithm may converge to local 
minima for some examples; thus, system could never be stable and oscillates for-
ever.  In order to avoid this, momentum term (α) is added to the standard formula-
tion of the algorithm [23, 55]. With the addition of momentum term, Equation 3 is 
modified as follows: 

nn1nn yww δηΔαΔ += −                                     (5) 

Where, α indicates momentum term, and varies in the range of [0, 1]. This coeffi-
cient has a stabilizing effect for optimization direction in weight space, and  
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enables the convergence to global minima instead of a local minimum. Momen-
tum modification is a heuristic approach, and became a standard for gradient-
based backpropagation [23, 56]. 

After the presentation of gradient-descent backpropagation algorithm, numer-
ous researchers focused on the development of new learning algorithms exhibiting 
better performance in terms of precision and speed. Within this context, the most 
popular learning algorithms are summarized below: 

In standard gradient descent method (with or without momentum term), the 
learning rate parameter (η) is constant throughout learning process. However, the  
optimal value of this parameter, which prevents oscillation at a local minimum, 
changes with the gradient’s location and the trajectory (path) on error surface.  
In order to overcome this obstacle, an adaptive learning rate parameter is utilized 
in gradient-descent backpropagation algorithm. Thereby, the variable learning 
rate backpropagation algorithm was developed in this way [57]. 

The variable learning rate algorithm is a heuristic approach which begins with an 
initial value of the learning rate. For successive iterations, the value of learning rate 
is either increased or decreased until the network can learn without large changes in 
error. Namely, this algorithm is an adaptive technique using delta-bar-delta meth-
odology for learning rate modification to reduce the amount of error energy. In this 
methodology, a near-optimal η value is adopted in Equation 5 as follows:  

nnn1nn yww δηΔαΔ += −                                  (6) 

where, ηn indicates variable learning rate parameter for each node. In standard 
backpropagation method, weight update is considered by the gradient descent. 
Average local error gradient (δavg

n) and convex weight factor (θc) are utilized to 
calculate learning rate update (Δηn) as follows:  
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where, ηinc is learning rate increase factor, and ηdec is learning rate decrease factor. 
As can be seen from Equation 6, learning rate increment is linear; but, decrement 
is nonlinearly applied [57]. 

Reidmiller and Braun [58] made another heuristic contribution to gradient-based 
backpropagation algorithm. Resilient backpropagation is based on the elimination 
of drawbacks of partial derivatives existing in gradient-descent approach. 

Generally, sigmoidal (logistic or hyperbolic tangent) activation functions are 
utilized in NN to compress the infinite input range into a finite output range. In 
addition, these activation functions converge to zero as the input gets large quanti-
ties; thus, a significant drawback occurs when using descent approach. Because, 
gradients may have very small magnitudes, and this may cause small changes 
throughout the adaptation of free parameters even though the parameters are far 
from their optimal values [58]. 
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In this method, the size of weight update is determined by an initial update pa-

rameter (Δ). If the signs of the derivatives with respect to synaptic weights are 
same for two successive iterations, then free parameters are increased by a factor 
(ηinc); otherwise, they are decreased by another factor (ηdec). In short, if the 
weights are oscillating, then weight changes are reduced, and visa versa. Δn is  
determined by:  
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where, Δn is update parameter. Then, the update value of weights (Δwn) is calcu-
lated using following equation [58]: 
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Apart from heuristic modifications on gradient descent based backpropagation 
algorithm, several researchers focused on the integration of better numerical opti-
mization techniques into backpropagation methodology. In general, following 
numerical optimization categories can be listed to be replaced by gradient (steep-
est) descent method [56]: 

 

• Quasi-Newton methods, 

o BFGS algorithm, 

o DFP algorithm, 

o One-step secant algorithm, 

• Conjugate gradient methods, 

o Fletcher-Reeves update, 

o Polak-Ribiere update, 

o Powell-Beale update, 

o Scaled conjugate gradient algorithm, 

• Lavenberg-Marquardt algorithm. 
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Newton’s method is a good choice for a precise optimization. Basically, Newton’s 
method utilizes the Hessian matrix of the error energy. The Hessian matrix (Hn) is 
used to adjust (update) of synaptic weights with the following formulation: 

n
1

nn Hw δΔ −−=                                              (10) 

However, the calculation of Hessian matrix is an extremely time-consuming and 
computationally inefficient process. Therefore, quasi-Newton (or secant) methods, 
which do not require the calculation of second derivatives, were developed by up-
dating the Hessian matrix at the each iteration of the algorithm. 

Quasi-Newton methods are based on the gradient concept and a quadratic error 
energy minimization. In quasi-Newton methods, apart from gradient descent method 
utilizing a linear approximation technique for weight modification, following higher 
order approximation equation is used for adjusting the synaptic weights [23]: 

Δwn = wn + 1 - wn = ηn sn                                    (11) 

In which, sn is search direction vector, and ηn is variable learning rate parame-
ter. It should be noted that, learning-rate parameter is not a constant in this equa-
tion and enables the convergence increment along searching direction. In detail, 
quasi-Newton methods, involve second-order information about the error surface 
without the consideration of Hessian matrix using following approximation [23]: 

Hn ≈ qn Δwn                                                   (12) 

Where, qn is the curvature parameter. Discrepancies among all quasi-Newton 
methods come from the iterative definition of Sn vector and ηn parameter.  There 
are several quasi-Newton methods such as Davison-Fletcher-Powell (DFP) algo-
rithm, Broyden-Fletcher-Golfarb-Shanno (BFGS) algorithm, and one step secant 
algorithm [23, 59-61]. 

Another attempt for a better optimization performance is related with conjugate 
gradient methods. They are second-order optimization methods as a member of 
the conjugate-direction methods family. In short, the conjugate-direction mini-
mizes the quadratic performance function over progressively expanding the linear 
vector space that eventually including the global minimum of performance  
function [23, 60]. 

The philosophy of conjugate gradient methods is that, although it provides the 
decreases along gradient descent direction most rapidly, this does not produce  
the fastest convergence trajectory every time. In conjugate gradient algorithms,  
the search is performed along conjugate directions that are linearly independent. In 
the conjugate-gradient methods, successive direction vectors are generated as  
conjugate versions of the successive gradient vectors of performance function. 
Furthermore, NN learning process generally requires large number of free parame-
ter adjustments. From this perspective, conjugate gradient methods are successful 
in optimization of large-scale problems [23, 56, 62]. 

In detail, conjugate gradient algorithms use an adaptive learning-rate parameter 
that determines the step size of weight update to reach the global minimum of the 
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performance function. Furthermore, the step size is adjusted separately in each 
step in accordance with the conjugate direction. This adaptation process is per-
formed by the following expression [62]: 

Δwn = wn+1 - wn = αn sn                                     (13) 

Where, αn is step size and sn is search direction vector. Searching (conjugate) di-
rection is determined by a recursive process, which using following expression: 

pn+1 = rn+1+βn pn                                               (14) 

Where, βn is scaling factor, which is the fundamental difference among conjugate 
gradient methods [23, 62]. 

It is obvious that, the conjugate gradient method is an optimization algorithm 
approximating the step size utilizing a line search routine. The objective is to  
obtain the step size by minimizing error energy along the line wn + α pn. In other 
words, line search is performed for the determination of optimal distance along 
conjugate direction. For this reason, it is necessary to utilize a line search routine 
in each step of the optimization process. Nevertheless, this is a drawback making 
the algorithm tedious to use. Under the light of this fact, Scaled Conjugate Algo-
rithm, which doesn’t require any line searching routine, was developed [62]. 
Scaled conjugate gradient algorithm combines the model trust region approach 
with the conjugate gradient approach [62]. In scaled conjugate algorithm, Hessian 
matrix should be positive and definite; nevertheless, this is proposition not valid 
for every situation. In order to avoid this danger, scalar parameters (Lavenberg 
and Marquardt parameters) are set into the algorithm. 

As mentioned before, this algorithm is only reliable within the territories of a 
small region around the searching point (model-reliable region). Actually, the extent 
of reliable region is controlled by Marquardt parameter, and the Marquardt parame-
ter is changed gradually to regulate the indefiniteness of the Hessian matrix [62].  

The last alternative numerical optimization technique that will be explained 
here is based on the Lavenberg-Marquardt second-order numerical optimization 
technique. It is a model trust region approach designed to increase the training 
speed without having to compute the Hessian matrix.  The basis of this algorithm 
is on the maximum neighborhood principle, and the least-squares optimization 
technique [23, 62]. In general, this algorithm combines the advantages of Gauss-
Newton and Steepest-Descent algorithms [63, 71]. 

In this method, Jacobian matrix, Jn, is computed through a standard backpropa-
gation technique that is less complex than computing the Hessian matrix. Mathe-
matically speaking, if the error function is in the form of sum of squares, then the 
Hessian matrix Hn can be approximated as follows: 

Hn=2 Jn
T Jn+ 3rd and higher order terms                  (15) 

Additionally, the Jacobian matrix is defined by:  
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where, Jn is the Jacobian matrix that contains first derivatives of network errors 
with  respect to the free parameters, and en is error signal vector. The Jacobian ma-
trix can be computed through a standard backpropagation technique, which is 
simpler than computing the Hessian matrix. The Lavenberg-Marquardt algorithm 
uses this approximation technique in the following Newton-like update: 

Δwn+1 = -[Jn
T Jn+λ I] -1 Jn

T en                                    (17) 

in which, I is the identity matrix, and λ is Marquardt parameter. In this method, 
Jacobian matrix is assumed to be definite, and the goal is to calculate the synaptic 
weights, when error function is minimized [23, 63, 71]. 

5   Adaptive Neuro-fuzzy Inference 

Fuzzy inference system (FIS), which establishes a functional mapping between 
input/output spaces with the help of fuzzy logic and linguistic rule-base, is a pow-
erful tool for simulating the complex behavior. In the literature, there are different 
inference techniques developed for fuzzy rule-based systems, such as Mamdani 
[64] and Sugeno [65]. Mamdani FIS is the first inference methodology, in which 
inputs and outputs are represented by fuzzy relational equations in a canonical 
rule-based form. In Sugeno FIS, output of the fuzzy rule is characterized by a crisp 
function. Typical representation of a fuzzy rule in a Sugeno FIS is given by: 

IF x is A1  AND  y is B1  THEN  z = f (x, y)               (18) 

where A and B are fuzzy sets and z is a crisp function. In Sugeno FIS, the outcome 
of each rule is a crisp value, and the result of all rules is calculated by weighted 
average. This is the major advantage of Sugeno FIS which enables a derivative 
computation possible that are important for optimization techniques. Mathematical 
definition of the inference of a Sugeno FIS (fFS) can be written as follows [66]: 
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Where, m is the number of rules, n defines the number of data points, and μA is the 
membership function of fuzzy set A. 

The simulation of the nonlinear mapping defined by known input-output data is 
an unconstrained parameter identification problem based on the searching for op-
timal model parameters that can simulate target behavior. Jang [66] presented an 
adaptive network approach to solve this unconstrained optimization problem 
which is named ANFIS. Learning process in ANFIS methodology, namely adapta-
tion of membership functions, is commonly performed by two techniques,  
i.e. backpropagation and hybrid learning algorithms. In hybrid learning algorithm,  
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consequent parameters are identified in forward computation using LSE algo-
rithm, and premise parameters are adjusted in backward computation with the help 
of backpropagation algorithm. In LSE methodology, the output of a linear model 
is expressed by [20, 67]: 

εθθθ ++++= )(...........)()( 2211 ufufufy nn               (20) 

Where, u (u1....un) is input vector, f (f1....fn) are known functions, y (y1....ym) is out-
put vector, and θ (θ1....θn) is unknown parameter vector, and error is denoted by ε. 
The objective is to find LSE (θ ) that minimizes the sum of squared error [20, 67]. 

Adaptive backcalculation, which involves using of SC techniques such as NN 
and ANFIS, is fundamentally different from traditional techniques. In adaptive 
backcalculation, two steps (forward and backward) of traditional backcalculation 
are reduced to a single step with the help of a supervised learning algorithm.  
In this respect, the system is taught by known data pattern that is derived from 
structural analyzing technique or experimental study to simulate the nonlinear 
mapping between input and output spaces. A basic illustration of an adaptive  
system is shown in Fig.10 [20]. The idea of adaptive backcalculation was first in-
troduced by Meier and Rix [15], who used NN for the SASW test data inversion 
for flexible pavement layers. Later, Meier and Rix [16] considered the susceptibil-
ity of NN for pavement moduli backcalculation utilizing FWD data. They finally 
published a complementary article comprising the dynamic aspects and the rigid 
bottom depth concepts [17]. Apart from these, several other studies were carried 
out focusing on NN-based pavement backcalculation models [18-20, 35, 68-70]. 
Schematic illustration of NN-based backcalculation model for nonlinear elastic 
material behavior and static loading is given in Fig.11a. It should be noted that, 
NN can solely learn the mapping characterized by input-output patterns; therefore, 
underlying material model and structural analysis basics do not exist in NN-based 
backcalculation. In other words, the performance of NN-based backcalculation is 
based on quality and quantity of training data [20, 68]. 

Adaptive neuro-fuzzy inference can also be used for the backcalculation of 
pavement moduli with previously determined input-output data patterns [4, 20]. 
Schematical representation of ANFIS-based backcalculation procedure is presented 

 

 
Fig. 10. Basics of Adaptive System 
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Fig. 11. Illustration of (a) NN and (b) ANFIS-Based Static Nonlinear Backcalculation [4] 

 
in Fig.11b. It should be noted that, due to the computational expense, fuzzy infer-
ence methodology is not appropriate for large number of input-output patterns. As 
an alternative to NN-based backcalculation, it can be a good choice for small 
amount of training data involving considerable amount of uncertainty [4, 20]. 

As mentioned before, the training process can be performed by either experi-
mental data to characterize specific test section or synthetically collected (with the 
help of a structural analyzing method) data to inversely simulate the pavement  
response model. The fundamental advantages of adaptive backcalculation meth-
odologies are that they present real-time backcalculation ability and the precise  
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results. Nevertheless, the performance of the model is solely based on the quality 
and the quantity of the training data in terms of the correct characterization of the 
relationship between input/output patterns. In this context, outliers in the training 
database as well as irrational test results in terms of material behavior basics 
should also be considered carefully for not to train the system with incorrect  
information [4, 20]. 

6   NN Based Backcalculation 

NN-based pavement backcalculation basics and keypoints are considered in the fol-
lowing example, which is provided by Goktepe et al. [72]. Several NN models are 
trained and tested with synthetic database generated by structural analyses. In this 
respect, inverse mapping of the structural analysis using layered elastic theory is  
established via NN methodology. Loading is applied with 80kN of Equivalent Sin-
gle Axle Load (ESAL) for dual wheels. The synthetic database consists of 1440 
patterns and ranges of the database are summarized in Table 1 [71]. After the gen-
eration of synthetic database, 1100 patterns were randomly selected for the training 
data set, and the remaining patterns are kept for the testing process. It should be 
stressed that, random selection methodology is the correct technique when data 
quantity is considered. Nevertheless, distribution and scatting of the data points  
 
 

Table 1. Details of the synthetic database 

Layer Thick. (cm) Elastic Modulus (MPA) Poisson's Ratio

Surface 5 - 20 1000 - 15000 0.350 

Base 15 - 50 35 – 300 0.350 

Subgrade ∞ 30 – 200 0.350 

Mean (SG) 12.459 7291 - 

Mean (BS) 32.705 162 - 

Mean (SB) - 114 - 
 

Table 2. Classification of NN models [70] 

Model  Category  Learning algorithm 

68  Steepest descent  Gradient descent with mom.

43  Steepest descent  Variable learning rate 

37  Steepest descent  Resilient backpropagation 

61  Conjugate gradient  Scaled conjugate gradient 

33  Quasi-Newton  BFGS 

42  Nonlin. least-square  Lavenberg-Marquardt  
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must be checked and evaluated in order to be sure about data characterization  
ability of the database. This practical issue is crucial for correct backcalculation 
analyses, especially when they are conducted with a limited amount of data. 

In this example, six different learning algorithms are considered for their effect 
on backcalculation analyses in terms of precision and speed. Furthermore, differ-
ent network architectures and network parameters, such as learning rate, momen-
tum term, increment factors, and Lavenberg parameter are considered to observe 
their impact as well. Summary of 284 different NN models is given in Table 2 
[71]. Apart from these, the scaling was performed in accordance with the hyper-
bolic tangential activation function and the error energy is measured by MSE 
(Mean Squared Error) based formulation as given in Eq.2. 

It is worth mentioning that it is crucial for NN based learning procedures to 
pre-process the input data and synaptic weights is crucial to obtain successful re-
sults as well as to speed up the training sessions. In this context, prior to training 
process, input data points should be normalized to a certain range, i.e. either [0, 1] 
or  [-1, 1], using an activation function, which provides similar or close values for 
out of certain range inputs so that they are considered to be same or similar by the 
NN. For the Sigmoid activation function, the following normalization expression 
can be applied to input data before training to facilitate this feature [23, 71]:     

minmax

min

xx

xX
X new −

−
=                                              (21) 

where, Xnew is normalized value, X is original value, and xmax, xmin are the maxi-
mum and the minimum values in the dataset, respectively. It should be noted that, 
normalization range is [0, 1] since Sigmoid activation function produces outputs in 
same range. On the other hand, following normalization equation can be used if 
tangential activation function is selected: 
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Another pre-processing should be performed for the selection of initial synaptic 
weights and bias values in order to achieve better NN performances. The most 
common approach for the selection of initial weight and bias values is to select 
them randomly from normal distribution curve [23]. Alternatively, Nguyen-
Widrow method can be used for the selection of initial values of synaptic weight 
and bias values. Small random values are selected as the initial weights in utilizing 
the Nguyen-Widrow algorithm. Then, the weights are modified by dividing the 
regions into small intervals. Therefore, the training process can be faster by setting 
the initial weights of the first layer by assigning each node to its own interval at 
the beginning of training. Throughout the training of the network, each hidden 
node can be adjusted to its interval size and location [72].  
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Table 3. Summary of the results of selected training and testing sessions [71] 

 Algorithm  Architecture Epoch  Tr (R2)  Ts (R2) Er1 Er2 Er3 

 GDM  70 10000  0.697  0.609 268 21 18 

 GDM  500 10000  0.746  0.633 297 19 16 

 GDM  40x40 10000  0.689  0.614 282 17 15 

 GDM  60x60 10000  0.698  0.619 204 18 17 

 VLR  40 10000  0.815  0.682 241 16 13 

 VLR  500 10000  0.791  0.597 262 17 12 

 VLR  20x30 10000  0.804  0.605 279 15 12 

 VLR  20x60 10000  0.845  0.644 271 14 11 

 RB  10x30 10000  0.923  0.824 82 10 7 

 RB  10x70 10000  0.919  0.832 74 9 8 

 RB  250x250 10000  0.920  0.814 75 10 7 

 RB  70x70x70 10000  0.925  0.813 79 11 10 

 SCG  10x60 10000  0.939  0.858 35 8 8 

 SCG  20x70 10000  0.941  0.860 41 9 8 

 SCG  70x70x70 10000  0.943  0.852 48 10 9 

 SCG  100x100x100 10000  0.942  0.855 52 9 7 

 BFGS  10x40 5443  0.937  0.867 26 6 6 

 BFGS  20x40 3847  0.939  0.871 28 5 5 

 BFGS  30x50 10000  0.940  0.872 29 7 4 

 BFGS  30x30x30 10000  0.934  0.865 22 6 5 

 LM  70 1000  0.948  0.897 17 4 2 

 LM  100 1000  0.945  0.823 19 6 3 

 LM  10x40 1000  0.947  0.893 12 5 2 

 LM  20x50 1000  0.949  0.875 14 4 2 
1, 2, 3 Max. abs. errors for AC, BS, and SG layers, respectively 

 
Results of the study showed that different learning algorithms and network 

structures may produce outputs varying within a wide range. The results of selected 
NN models are summarized in Table 3 [71]. As can be derived from Table 3, LM, 
BFGS, and SCG algorithms exhibited better performances than other techniques.  
In Fig.12, learning graphs of selected networks (GDM-40x40, VLR-20x60, RB-
10x70, SCG-20x70, BFGS-20x40, and LM-70) are shown for training and testing 
patterns separately. It can finally be concluded that the training performance of LM 
algorithm is better than other algorithms; however, testing performance of the NN 
learned with LM algorithm commences to decrease after 300 epochs.  
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Fig. 12. Visualizing the performances of selected NNs for (a) training and (b) testing  
patterns [71] 

7   Comparison of NN and ANFIS Methodologies for Pavement 
Backcalculation 

NN and ANFIS methodologies are considered for the solution of the pavement 
backcalculation problem, in the following example, which was given by Goktepe 
et.al [20]. In the first step, synthetic training and testing databases were generated 
by Finite Element Method (FEM). Then, NN and ANFIS models were trained and 
tested using the databases. In the second phase of the study, small sized and poorly 
distributed synthetic database was generated using the same methodology in order 
to investigate the role of the size and the number of training patterns in both meth-
odologies. Moreover, results of both adaptive techniques were compared with those 
of FEM and conventional backcalculation software based on least squares [71]. 
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Fig. 13. Illustration of FEM model for structural analysis [20] 

 

Fig. 14. Effect of network architecture on NN’s performance [20] 

7.1   Backcalculation with Sufficient Flexible Pavement Data 

In the first part of the analysis, synthetic training and testing data sets generated by 
FEM, involving 1250 and 250 data patterns are utilized, respectively. A three-
layered flexible pavement system is depicted in Fig.13. For loading condition, 
80kN of Equivalent Single Axle Load (ESAL) for dual wheels is applied in the 
model. Pavement layers were assumed to be linearly elastic [20]. 

In NN models, scaled conjugate gradient learning algorithm was used for 
10000 epochs. In order to choose the NN architecture, trial-and-error approach is 
used, and results of different architectures are given in Fig.14. The two learning 
parameters (λ and σ) are selected by 0.00005 and 0.00007, respectively [20]. 
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In the second part, the same database is used for ANFIS-based backcalculation. 
Input parameters were partitioned employing the grid partitioning technique for 
input variables fuzzified to 3 partitions. Gaussian membership function is chosen. 
Furthermore, the first order Sugeno FIS with linear output function was selected 
as the inference system. Consequently, hybrid learning algorithm is preferred for 
the adaption process [20]. In the rule-base, fuzzy variables were connected with  
T-norm (fuzzy AND) operators and rules were associated using max-min decom-
position technique. Training continued for over 1000 epochs and process termi-
nated by the observation of the stability in error decrement. Considering the  
computational effort and the duration of training process, ANFIS is found to be 
not appropriate for such a database.  

In the last step, MICHBACK computer program was used for same data to  
observe the performance of traditional backcalculation analysis. MICHBACK is 
traditional backcalculation software involving nonlinear least-square optimization 
technique [73]. Results of MLP, ANFIS, and MICHBACK based backcalculation 
analyses are summarized in Table 4. As can be seen from this table, NN exhibited 
better performance over other methods. Although MICHBACK is less precise 
than NN, it also produced satisfactory results. Apart from that, ANFIS was unsuc-
cessful for the considered backcalculation problem in terms of modeling ability 
and extremely high computational expense. Consequently, three methods were 
 

 
Table 4. Results of training and testing sessions [20] 

Asphalt Base Subgrade 
Method Session 

Duration 
(hour) Coef. of 

det. (R2) 
Coef. of 
det. (R2) 

Coef. of 
det. (R2) 

Training 0.92 0.97 0.92 0.96 MLP 
(9x50x40x3) Testing real-time 0.91 0.88 0.92 

Training 73 0.71 0.62 0.69 
ANFIS 

Testing 9 0.64 0.58 0.60 

Training 0.27 0.94 0.90 0.91 
MICHBACK 

Testing 0.14 0.92 0.87 0.90 
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Fig. 15. Scatter plots of AC layer for training data (a) NN, (b)MICHBACK, (c)ANFIS [20] 
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Fig. 16. Scatter plots of AC layer for testing data (a) NN, (b) MICHBACK, (c) ANFIS [20] 
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Fig. 17. Scatter plots of base layer for training data (a)NN,(b)MICHBACK,(c)ANFIS [20] 
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Fig. 18. Scatter plots of base layer for testing data (a) NN, (b) MICHBACK, (c) ANFIS [20] 
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Fig. 19. Scatter plots of subgrade for training data (a) NN, (b) MICHBACK, (c) ANFIS [20] 
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Fig. 20. Scatter plots of subgrade for testing data (a) NN, (b) MICHBACK, (c) ANFIS [20] 

 
tested with 250 unseen data patterns. Results of this session are given in Table 4. 
It can be derived from the table that NN exhibited poorer performance in the test-
ing session when comparing to the training session. NN is the most successful 
when backcalculation from a large amount of data. It also has a real-time backcal-
culation ability. In order to illustrate the modeling performance for pavement lay-
ers, scatter graphs between calculated and target deflections are shown from 
Fig.15 to Fig.20, respectively [20]. 

7.2   Backcalculation of Incomplete Pavement Data 

Goktepe et al. [20] also carried out another comparative analysis to evaluate the 
performances of considered methodologies, specifically on incomplete flexible 
pavement data. In this context, there may not be a large amount of data or the data 
distribution may not be uniform for the proper characterization of the behavior. 
Therefore, it may be misleading to prefer NN over other methods for backcalcula-
tion under such conditions. In other words, NN method is quite sensitive to the 
quality and the quantity of data, and network cannot produce meaningful  
outcomes for unrecognized inputs [20, 68]. In order to evaluate this, another hypo-
thetical flexible pavement system was designed, and input-output data points were 
constrained intentionally. The summary of model parameters for this analysis is 
given in Table 5. The numbers of training and testing patterns are 76 and 24,  
respectively [20]. 

Table 5. Ranges of training and testing variables for the second analysis [20] 

Layer Thickness  (m) Young's Modulus (MPa) Poisson's Ratio 

Surface 0.10 (fixed) 1000 - 15000 0.35 (fixed) 

Base 0.30 (fixed) 35 – 300 0.40 (fixed) 

Subgrade 15.00 (fixed) 30 – 200 0.45 (fixed) 

FWD deflections (δ0, δ1, δ2, δ3, δ4) 
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Table 6. Results of second training and testing sessions [20] 

Asphalt Base Subgrade 
Method Session 

Duration 
(hour) Coef. of 

det. (R2) 
Coef. of 
det. (R2) 

Coef. of 
det. (R2) 

Training 0.12 0.89 0.85 0.88 
MLP (9x50x40x3) 

Testing real-time 0.68 0.61 0.71 

Training 0.68 0.90 0.88 0.90 
ANFIS 

Testing 0.02 0.81 0.80 0.82 

Training 0.09 0.92 0.87 0.89 
MICHBACK 

Testing 0.04 0.91 0.85 0.87 
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Fig. 21. Scatter plots of AC layer for 2nd train data (a)MLP,(b)MICHBACK,(c)ANFIS [20] 
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Fig. 22. Scatter plots of AC layer for 2nd test data (a) MLP, (b) MICHBACK, (c) ANFIS [20] 

In Table 6, results of training and testing sessions are given. Contrary to the 
first analysis, ANFIS model exhibited better performance than NN. Especially for 
testing session, NN-based backcalculation exhibited poorer performance on  
unrecognized data patterns than ANFIS-based backcalculation. Scatter graphs be-
tween calculated and measured deflections for AC layer are given in Fig.21  
and Fig.22 [20]. 

In summary, NN-based backcalculation results in the poorest performance of 
all methods considered. Although training results are not quite different, outcomes  
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of testing session indicate that NN is unsuccessful for testing session, and fails for 
unrecognized patterns.  ANFIS model exhibited better performance than NN, but 
slightly poorer performance when compared with MICHBACK [20]. 

8   Susceptibility of SC Based Optimization Methods in 
Pavement Backcalculation Problems 

As mentioned before, SC based optimization methods (evolutionary or swarm in-
telligence based) can also be employed for parameter identification process of a 
pavement backcalculation problem. In other words, if the fitness function calculates 
output values using a structural analyzing program, SC based optimization method 
can determine the model parameters. In this context, GA is employed for the solu-
tion of pavement backcalculation problem by several researchers [13, 74-77]. 

GA, a field of AI and SC, is a powerful heuristic searching technique using the 
evolution theory’s “survival of the fittest” rule. From a mathematical point of 
view, GA is a direct search method to find exact or approximate solutions to 
global optimization problems. GA is also a branch of evolutionary computation 
which has a unique searching ability for problems involving many local minima, 
complex constraints, and/or nonlinear objective functions. Therefore, they can be 
employed for the solution of complex optimization problems [13]. Due to the the-
ory of evolution, the evolution usually commences from a random population and 
happens in next generations. Due to the theory of evolution, the fitness of every 
individual in the population is evaluated, multiple individuals are elected from the 
current population, and the population is modified (mutated) to generate new 
offsprings [76-77]. 

Methodologically, finite number of solution alternatives is created and per-
formances of different solutions are compared with each other in the first step. 
Free parameters are first represented by genes that are in the form of binary 
strings. It should be noted that solutions are represented in binary as strings (0 and 
1); nevertheless, other encodings can also be used. Parent solution, which is char-
acterized by a set of genes, is referred to as chromosome. In the successive steps, a 
new parent solution, also referred to as offspring, is iteratively generated utilizing 
the previous parent solution. Offspring is generated with three-phased process, i.e. 
(a) reproduction, (b) crossover, and (c) mutation. In the reproduction, different 
possible solution alternatives are created and tested with fitness (objective) func-
tion’s output. Basically, the fitness function measures the success of the solution 
numerically. In crossover, a part of the good solution is selected from solution al-
ternatives, and unselected choices are eliminated. In mutation process, offsprings 
are obtained. Commonly, GA is terminated when either a maximum number of 
generations or a predefined fitness level is reached [13, 74-77]. Flow chart of a 
typical GA is presented in Fig. 23. 
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Fig. 23. Flow chart of the Genetic Algorithm 

 

The first application of GA in pavement backcalculation problem is performed 
by [13]. In essence, pavement mechanical parameters are identified by GA ap-
proach to result in measured deflection values. Although GA gives precise results, 
computational expense is higher than classical optimization techniques [13, 14, 
36, 74-77]. In the studies utilizing GA approach for pavement backcalculation 
problem, following conclusions were drawn: 

 
• Accuracy of GA based backcalculation is higher than conventional techniques. 

Especially, conventional backcalculation techniques may lead to misleading re-
sults because of the premature convergence and local optima problems. 

• Large populations should be used for the model parameters. 
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• Major advantage of GA-based pavement backcalculation is when the layer 
number increases. For flexible pavements and subgrade system having higher 
number of layers (for example, more than 4 layers) GA-based backcalculation 
gives accurate and efficient results. For lower layered systems, computational 
expense of GA-based backcalculation is open to question. 

9   Pitfalls for SC Methods in the Backcalculation 

After the development of backpropagation algorithm, NN has emerged in several 
engineering disciplines. In this context, numerous studies were performed to  
employ NN methodology in material science due to its universal approximation 
ability and powerful learning attributes. In many studies, as an alternative to tradi-
tional statistical approaches such as regression analysis, the relationships between 
input/output spaces were established via NN learning process and their results on 
unseen data were evaluated. Rather than summarizing the behavior characterized 
by learning data, NN can produce meaningful outcomes for unseen data as a mod-
eling tool. In essence, utilization of NN in pavement backcalculation problem is 
based on learning the relationship between defections (or other measured parame-
ters) and pavement system; therefore, it can produce outcomes as a functional 
mapper in real time. Thereby, the performance of NN-based pavement backcalcu-
lation (or any material modeling process) is fundamentally based on the quantity 
and the quality of the data [4, 68]. Nevertheless, modeling data may have such de-
ficiencies as: 

 
• Model data may be insufficient to characterize the target behavior in terms of 

scatting and/or quantity.  
• The data may be misleading in terms of ranges should be covered. Therefore, it 

would be uncertain how NN produce outcomes for unseen input data which is 
out of the range of supervising input data. 

• There may be noise in the modeling data. Consequently, outliers in the data 
must be considered and/or filtered carefully. 

• Because of several reasons, the best fit to existing modeling data may be irra-
tional in terms of material behavior. Therefore, the best fit may not be the best 
backcalculation result considering the behavior of the data. 

• Model data includes certain amount of measurement uncertainty. High amount 
of uncertainty may result in undesirable mistakes is modeling process. 

• Sequence of modeling data may be not appropriate for efficient training. In 
other words, similar data points could be successively as data groups; thus, the 
uniformity of data sequence and training efficiency would be problematic. 

 
As a result of the factors explained above, the model data may be misleading to 
establish the target relationship correctly. These drawbacks are especially major 
for the backcalculation analyses performed by test data. In case of using a syn-
thetic training data, the aim of adaptive methods is only to characterize the inverse 
mapping of a structural analyzing software. It should be noted that, this drawback 
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is valid for all adaptive backcalculation methods using SC techniques. Therefore, 
following precautions should be taken before and after the training process to de-
velop a proper adaptive backcalculation model. 

 
• Scatter of the modeling data must be observed and evaluated before training. 

Therefore, necessary data plots and statistics should be drawn and performed 
before training sessions. The validity, the modeling ranges, and the precision of 
the backcalculation analysis must be considered under the light of these evalua-
tions. If possible, necessary corrections, such as gathering new information and 
changing modeling ranges, must be carried out at this stage. 

• After necessary scatter plots are drawn, outliers should be determined. Such noisy 
data should be removed or rechecked for a proper training process. This is espe-
cially important for modeling the data obtained by in-situ or laboratory tests. 

• Considering the basics and the theories of structural analysis, irrational or 
meaningless relationships, which were identified by adaptive technique, must 
be realized. It may be necessary to prefer classical methods or forced adaptive 
models for such incoherent mappings. 

• Uncertainty analysis could be carried out for the determination of measurement 
uncertainty; however, this is useful in understanding the precision of the model 
as well as to comprehend the boundaries of NN-based (or adaptive) modeling 
in terms of its data-driven philosophy. In other words, NN methodology cannot 
be considered as a structural analyzing tool as FEM or layered elastic theory, 
and its success depends on the quality and the quantity of the input database. 

•  The data sequence should be evaluated before training. In order to remove this 
NN-based problem, training mode, i.e. batch, sequential, etc., should be con-
sidered carefully and/or the data points can be chosen randomly again. 

 
On the other hand researchers implemented several solutions for the drawbacks of 
GA-based pavement backcalculation problem [13, 14, 74]. The following prob-
lems and solutions can be listed: 

 
• If small amount of populations are chosen for the model parameters, precision 

of the model decreases. This should be evaluated during the model develop-
ment, and large populations should be used. 

• Accuracy is very important for any backcalculation model. More accurate 
model is mostly preferred by analyzers. However, it must be considered that 
excessive level of precision may be meaningless when dealing with the amount 
of uncertainty in pavement systems and soil substructure.  

• For lower layered systems, even though there is no considerable accuracy ad-
vantage, computational expense of GA-based backcalculation is higher than 
traditional methods. 

• There is an automation problem with GA-based pavement backcalculation. 
This can be overcome by Dynamic Parameterless Genetic Algorithm (DPGA). 
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10   Conclusions 

This chapter addresses the advances in pavement back-calculation methodologies 
based on SC approaches by presenting the concepts behind them and the funda-
mental advantages of each.  In this context, following conclusions can be drawn 
from this study: 

 
• Adaptive backcalculation methods, developed by SC methodologies, can per-

form real-time backcalculation analyses as a functional mapper. However, there 
is no underlying mechanical background in these techniques; therefore, they 
must be applied carefully. It should be stressed that adaptive backcalculation is 
not an alternative to theoretical structural analyzing techniques, such as FEM, 
and elasto-dynamic theory. 

• ANFIS is appropriate for limited amount of data including considerable uncer-
tainty. For large training databases, NN looks much more promising than 
ANFIS. 

• Utilization of NN and ANFIS enables real-time backcalculation analyses. Fur-
thermore, two phases of the backcalculation problem, namely structural analy-
sis and the parameter identification (or optimization), reduces one phase, and 
the relationship can be established directly. 

• Precision of adaptive backcalculation models using soft computing techniques 
are outstanding. However, the level of precision should be considered with the 
level of uncertainty in the problem.  

• Especially for backcalculation analyses performed to model test results, soft 
computing based backcalculation methods looks promising. Nevertheless, there 
are several pitfalls for adaptive backcalculation methods due to the nature of 
the SC methodologies. These advantages and drawbacks must be taken into ac-
count carefully before and after the modeling process. 

• From practical viewpoint, adaptive methods using SC techniques cannot give a 
simple formulation to the analyzer. The NN and ANFIS methods, can give sev-
eral matrices as a result of training sessions, and calculations can be conducted 
using the matrices and algebraic operations. However, this drawback can be 
overcome by developing graphical user interfaces including necessary routines 
and training values. 

• Optimization technique is also a complementary issue for pavement backcalcu-
lation problems. Preference of an optimization algorithm is important in terms 
of speed and precision of the analysis. In this context, GA gives good opportu-
nity for pavement systems having more layer numbers without sacrificing from 
the precision.  
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ANFIS  adaptive neuro-fuzzy inference system 
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IFFT  inverse fast Fourier Transform 
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k  indice of processing neuron 
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Abstract. The main goal of this study was to discover knowledge from data about Porous 
Asphalt Concrete (PAC) roads to achieve a better understanding of the behavior of them and 
via this understanding improve pavement quality and enhance its lifespan. The knowledge 
discovery process includes five steps, being understanding the problem, understanding the 
data, data preparation, data mining (modeling), and the interpretation/evaluation of the re-
sults of the models. At the moment, almost 75% of the Dutch motorways network has a PAC 
top layer. The main damage of PAC is raveling, which is when the top layer of the road loses 
stones. The SHRP-NL databases provided ten years of material property data from PAC 
roads. The data for climate and traffic were obtained from databases of the Royal Dutch Me-
teorological Institute (KNMI) and the Ministry of Transport and Water Management, respec-
tively. Due to the low number of data points (74 data points), an extensive variable selection 
was performed using eight different methods to determine the four or five most influential 
input variables and consequently reduce the input dimension. These methods were decision 
trees, genetic polynomial, artificial neural network, rough set theory, correlation based vari-
able selection with bidirectional and genetic search, wrappers of neural network with genetic 
search, and relief ranking filter.  The modeling step resulted in 8 intelligent models which 
were developed using two prediction techniques, being artificial neural networks and support 
vector machines and two rule-based techniques, being decision trees and rough set theory. 
Taking the low number of data points into account, the prediction models showed a good 
performance (R2 = 0.95). The rule based models were transparent and easy to interpret but 
performed less. 

1   Introduction 

In many fields, data are being collected at a dramatic speed. By themselves data 
mean nothing. To extract useful information (knowledge) from the rapidly growing 
volumes of data, usage of computational theories and tools is necessary. Employing 
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these tools to extract knowledge from data is both scientific and economic. For in-
stance, data we capture about our environment are the basic evidence we use to 
build scientific theories and models of the universe we live in. Business use data as 
well, for example, to gain competitive advantage, increase efficiency, and provide 
more valuable services to customers. This scientific/economical process of extract-
ing knowledge from data is called knowledge discovery. Different tools can be 
used for mining data in order to discover knowledge, but the newest generation of 
tools belongs to the field of artificial intelligence (AI). AI based tools attempt to 
mimic the human intelligence. Because of their ability to solve complex problems, 
they rapidly replace the classical statistical tools during the last decades. 

Data are almost always gathered for a specific problem that we attempt to  
understand and solve. The problem considered in this dissertation are related to 
porous asphalt concrete road pavements. This road pavements are extensively 
used in the Netherlands. The goal of this study was to discover knowledge about 
PAC road pavements using AI-based techniques to achieve a better understanding 
of the behavior of these road pavements and via this understanding improve their 
quality and enhance their lifespan.  

Artificial intelligence and pavement engineering are two completely different 
fields. The experts from one field have little knowledge about the other one. There-
fore, after thorough consideration, it was decided to explain the basics of both 
fields to make the dissertation readable for the readers from both fields. 

The remainder of the chapter is organized as follows: Section 2 gives an over-
view of the knowledge discovery process, including its five steps. This section 
also explains AI and machine learning. After a brief literature review from 70 
studies in Section 3, Section 4 deals with the approach of this study, including  
description of machine learning techniques being used in this study. Section 5 dis-
cusses the problem of PAC and its main damage, being raveling. Section 6  
explains which data sources are used for this study. The choices made regarding 
mixture properties, climatic and traffic data are discussed in this section. From 
Section 7 to 12, different steps of knowledge discovery for PAC data are given. 
Section 7 includes data cleaning and data scaling and variable selection. For vari-
able selection (determination of the most influential variables) in this study, eight 
different methods are employed : decision trees, genetic polynomial, artificial neu-
ral network, rough set theory, correlation based variable selection with bidirec-
tional and genetic search, wrappers of neural network with genetic search, and  
relief ranking filter.  According to literature study (Section 3), none of the existing 
studies have employed so many variable selection methods. Section 8 formulates 
the data mining question with the four/five selected variables. Sections 9 to 12 
presents the result of data mining using four techniques, respectively: artificial 
neural networks and support vector machines, decision trees, and rough set theory. 
It should mentioned that this study is the first which uses support vector machine 
for road pavement problems. The summary and conclusions of the results are 
given in Section 13. 
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2   Artificial Intelligence Based Knowledge Discovery 

2.1   Knowledge Discovery from Data, Data Mining 

Knowledge discovery is the nontrivial process of identifying valid, novel, poten-
tially useful, and ultimately understandable patterns in data (Fayyad et al 1996). 
The term process implies that knowledge discovery comprises many steps.  
Nontrivial means that some search is involved and that it is not a straightforward 
computation of predefined quantities like computing the average value of a set of 
numbers. Here, data are a set of observations (measurements, cases, etc.), and pat-
tern is an expression describing a subset of data or a model applicable to the sub-
set of data (pattern ≈ model). Hence, extracting a pattern designates fitting a 
model to data, finding structure from data, or in general, making any high-level 
description of a set of data. The discovered pattern should be valid for new data 
with some degree of certainty. In many cases, it is possible to define measures of 
certainty (for example, estimated prediction accuracy for new data). A pattern is 
considered to be knowledge if its measure of certainty exceeds some threshold 
(pass the evaluation phase). 

Knowledge discovery is an interactive and iterative process, involving numer-
ous steps with many decisions made by the user. Figure 1 (Fayyad et. al., 1996) 
shows the steps involved in knowledge discovery.  

 

 

 

Fig. 1. The steps of knowledge discovery. 
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A detailed explanation of these steps is given by many researchers (Brachman 
and Anand 1994; Fayyad et al. 1996; Aboney et al. 2005; Cios et al 2007). To 
make these steps clear for the reader of this dissertation, a brief review of each 
step is given here: 

Understanding the problem. First, an understanding of the application domain 
and the relevant prior knowledge should be developed. 

Understanding the data. In the second step, the target database(s) is created by 
selecting the proper dataset, or focusing on subsets of variables per data samples, 
on which discovery is to be performed. 

Data preparation. The third step concerns deciding which data will be used as 
input for the subsequent step (data mining). It involves sampling, running correla-
tion and significance tests, and data cleaning, which includes checking the  
completeness of data records, removing or correcting for noise and missing val-
ues, etc. The cleaned data may be further processed by variable selection and  
extraction algorithms to reduce variable dimensionality. The main idea of variable 
selection is to choose a subset of input variables by eliminating variables with lit-
tle or no predictive information. Variable selection can significantly improve the 
comprehensibility of the resulting models and often build a model that generalizes 
better to unseen data points. Further, it is often the case that finding the correct 
subset of predictive variables is an important problem in its own right (Dy and 
Brodley 2004). Finally, data preparation may include data transformation such as 
scaling of data.  

Data mining (modeling). This is an important and time consuming step, which 
can be divided into three sub-steps: 
 

4.1) Determination of data mining task. In this step, we should determine what 
kind of task we want to carry out with data mining. The most common data min-
ing tasks are classification and regression.  

- Classification: It is learning a function that maps (classifies) a data item into 
one of several predefined classes (Weiss and Kulikowski 1991). Examples of clas-
sification methods used as part of knowledge discovery applications include the 
classifying of trends in financial markets (Apte and Hong 1996) and the automated 
identification of objects of interest in large image databases (Fayyad et al. 1996).   

- Regression: It is learning a function that maps a data item to a real-value  
prediction variable. There are many regression applications. Some examples are 
predicting the amount of biomass present in a forest given remotely sensed mi-
crowave measurements, estimating the probability that a patient will survive given 
the results of some diagnostics tests, or predicting consumer demand of a new 
product as a function of advertising expenditure.                 

Other possible data mining tasks are as follows: 
 
- Clustering: Identification of a finite set of categories or clusters to describe the 

data. Closely related to clustering is the method of probability density estimation. 
Clustering quantizes1 the available input-output data to get a set of prototypes and 
use the obtained prototypes (signatures, templates, etc.) as model parameters. 

                                                           
1 Quantization is the procedure of constraining something from a continuous set of values to 

a discrete set. 
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- Summation: finding a compact description for a subset of data, e.g. the deriva-
tion of summary for association of rules and the use of multivariate visualization 
techniques. 

- Dependency modeling: finding a model which describes significant depend-
encies between variables (e.g. learning of belief networks). 

- Change and Deviation Detection: Discovering the most significant changes in 
the data from previously measured or normative values. 

 
4.2) Choosing the data mining algorithm(s). The next sub-step is to select algo-
rithms for searching patterns in the data (fit a model to data). This includes decid-
ing which parameters may be appropriate and matching a particular algorithm 
with the overall criteria of the knowledge discovery (e.g. the end-user may be 
more interested in understanding the model than in its predictive capabilities.) One 
can identify three primary components in any data mining algorithm: model repre-
sentation, model evaluation, and search. 

- Model representation is the language used to describe the discoverable pat-
terns. If the representation is too limited, then no amount of training time or  
examples will produce an accurate model for the data. Note that a more powerful 
representation of models increases the danger of overfitting the training data re-
sulting in reduced prediction accuracy on unseen data. Overfitting simply means 
that the model fits to each single data point in the dataset (Figure 2(b)) instead of 
finding a general pattern from data (Figure 2(a)). It is important that the data 
analysis fully comprehend the representational assumptions which may be inher-
ent in a particular technique.  

- Model evaluation criteria are qualitative statements or fit functions of how 
well a particular pattern (a model and its parameters) meets the goals of the 
knowledge discovery. For example, predictive models can often be evaluated by 
testing their prediction accuracy using a part of the dataset, which is called test set. 
Descriptive models can be evaluated along the dimensions of predictive accuracy, 
novelty, utility, and understandability of the fitted model. 

- Search method consists of two components, being parameter search and 
model search. Once the model representation and the model evaluation criteria are 
fixed, then the data mining problem has been reduced to purely an optimization 
task. This task is to find the parameters/models for the selected category which  
optimize the evaluation criteria given the observed data and the fixed model repre-
sentation. Model search occurs as a loop over the parameter search method 
(Aboney et al. 2005).  

 
4.3) Data mining. In this sub-step the algorithm chosen in the step 4.2 with the se-
lected model parameters will be applied to the data. 

Evaluation/Interpretation of mined pattern (model). This includes understand-
ing the results, checking whether the discovered knowledge is novel and interest-
ing, interpretation of the results by domain experts, and checking the impact of the 
discovered knowledge. Only approved models are retained, and the entire process 
is revisited to identify which alternative actions could have been taken to improve 
the results. A list of errors made in the process is prepared. Interpretation involves 
visualization of the extracted patterns and models or visualization of the data 
given the extracted model.  
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(a)                                                                       (b) 

Fig. 2. Fitting a model to data (a) and model overfitting (b). 

2.2   Artificial Intelligence, Machine Learning 

As mentioned before, data mining is an important step in knowledge discovery. 
The major distinguishing characteristic of data mining is that it is data driven, as 
opposed to other approaches that are often model driven. The heart of data mining 
is to find a good model from the data, which at the same time is easy to under-
stand. We need to keep in mind, however, that almost always we will look for a 
compromise between model completeness and model complexity. 

The earliest data mining tools dealing with data analysis were statistical tools. 
With the advent of the computer, the level of application of statistics increased. In 
parallel, other disciplines began to develop tools for data analysis, with different 
aims and objectives from statistics. In statistics, problems have been dealt from the 
perspective of inference, which was always at the base of statistics. However, new 
tools appeared on the scene originally not with the aim of analyzing data per se, 
but rather with the aim of simulating the way natural intelligent systems work, and 
then with the simple aim of building systems which could learn. In other words, it 
was attempted to create intelligent systems with learning ability for data mining. 

These attempts resulted in the field artificial intelligence (AI), which is now a 
collection of several intelligent analytical tools. Dictionaries define intelligence as 
the ability to comprehend, to understand and profit from experience, or having the 
capacity for thought and reason (especially to a high degree). In a technical level, 
often, the techniques and algorithms that can learn from data are characterized as 
intelligent. Learning means acquiring knowledge about a previously unknown or 
hardly-known system or concept. The human capability of learning, generalizing, 
memorizing, and predicting is the foundation of any AI system. AI has many sub-
fields but one of the broadest sub-field of AI is machine learning.  

Machine learning (ML) concerns a collection of techniques that develop models, 
which learn from data. Learning from data can result in rules, functions, relations, 
equation systems, probability distributions, and other knowledge representations. 
The results explain data and can be used for supporting decisions concerning  
the underlying process (e.g., forecasting, diagnostic, control, validation, and  
simulations). 
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Fig. 3. A taxonomy of machine learning techniques. 

As mentioned before, the most common data mining tasks are classification and 
regression. In machine learning, several techniques are used for classification and 
regression. Figure 3 shows the ML techniques that are most frequently mentioned 
in literature (Kononenko and Kutar 2007). 

3   Literature Review 

In this study, 10 traditional (Table 1) and 60 intelligent based studies (Tables 2 
and 3) on knowledge discovery from pavement data were reviewed from the  
perspective of knowledge discovery for each of its five steps. The problems inves-
tigated by all reviewed studies were focused on cracking, rutting, roughness, and 
stiffness of pavement layers. The problem which received little attention was rav-
eling, with only one publication on raveling of dense asphalt concrete and no  
 

Table 1. Studies on traditional knowledge discovery. 

Index Name of author(s) Year Problem 

1 Carey and Irick 1960 Serviceability 

2 Way and Eisenberg 1980 Cracking, Roughness 

3 Parsley and Robinson 1982 Cracking, Roughness 

4 Geipot 1982 Cracking, Roughness 

5 Lytton et al. 1982 Cracking, Roughness 

6 Karan and Haas 1976 Pavement maintenance 

7 Butt et al. 1994 Pavement maintenance 

8 Li et al. 1996 Pavement deterioration rate 

9 Huang 1997 Pavement deterioration rate 

10 Hong and Wang 2003 Pavement deterioration rate 
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Table 2. Studies on application of intelligent techniques for the knowledge discovery from 
cracking, rutting, roughness, and stiffness/elastic modulus of pavements. 

Index Name of author(s) Year Problem 

1 Hoffman and Chou 1994 Cracking, Rutting, Roughness 

2 Eldin and Senouci 1996 Cracking, Rutting, Roughness 

3 Hsu and Tsai 1997 Cracking, Rutting, Roughness 

4 Roberts and Attoh-Okine 1998 Cracking, Rutting, Roughness 

5 Loia et al. 2000 Cracking, Rutting, Roughness 

6 Attoh-Okine 2002 Cracking, Rutting, Roughness 

7 Chang et al. 2003 Cracking, Rutting, Roughness 

8 Mu-yu and Shao-yi 2003 Cracking, Rutting, Roughness 

9 Yang et al. 2003 Cracking, Rutting, Roughness 

10 Chang et al. 2004 Cracking, Rutting, Roughness 

11 Nakatsuji et al. 2005 Cracking, Rutting, Roughness 

12 Karlaftis & Loizos 2006 Cracking, Rutting, Roughness 

13 Terzi 2006 Cracking, Rutting, Roughness 

14 Bosurgi et al. 2007 Cracking, Rutting, Roughness 

15 Terzi 2007 Cracking, Rutting, Roughness 

16 Kaur and Pulugurta 2007 Cracking, Rutting, Roughness 

17 Meier and Rix 1995 Stiffness/Elastic modulus 

18 Ferregut et al. 1999 Stiffness/Elastic modulus 

19 Kaur and Chou 1999 Stiffness/Elastic modulus 

20 Kim et al. 2000 Stiffness/Elastic modulus 

21 Abdallah et al. 2001 Stiffness/Elastic modulus 

22 Saltan et al. 2002 Stiffness/Elastic modulus 

23 Terzi et al. 2003 Stiffness/Elastic modulus 

24 Bredenhann and van de Ven 2004 Stiffness/Elastic modulus 

25 Goktepe et al. 2004 Stiffness/Elastic modulus 

26 Reddy et al. 2004 Stiffness/Elastic modulus 

27 Ceylan et al. 2005a Stiffness/Elastic modulus 

28 Ceylan et al. 2005b Stiffness/Elastic modulus 

29 Chang et al. 2006 Stiffness/Elastic modulus 

30 Goktepe and Altun 2006 Stiffness/Elastic modulus 

31 Gopalakrishnan et al. 2006 Stiffness/Elastic modulus 

32 Rakesh et al. 2006 Stiffness/Elastic modulus 

33 Saltan and Sezgin 2006 Stiffness/Elastic modulus 

34 Burak and Altun 2007 Stiffness/Elastic modulus 
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Table 2. (continued) 
 

Index Name of author(s) Year Problem 

35 Ceylan et al. 2007 Stiffness/Elastic modulus 

36 Demir 2007 Stiffness/Elastic modulus 

37 Guclu and Ceylan 2007 Stiffness/Elastic modulus 

38 Lee et al. 2007 Stiffness/Elastic modulus 

39 Loizos et al. 2007 Stiffness/Elastic modulus 

40 Ozashin and Oruc 2007 Stiffness/Elastic modulus 

41 Saltan and Terzi 2007 Stiffness/Elastic modulus 

42 Pekcan et al. 2007 Stiffness/Elastic modulus 

Table 3. Studies on application of intelligent techniques for the knowledge discovery from 
raveling, cracking, rutting, and roughness. 

Index Name of author(s) Year Problem 

43 Thube and Thube  2007 Raveling 

44 Kaur and Tekkedil 2000 Rutting 

45 Tarefder et al. 2005 Rutting 

46 Chou et al. 1994 Cracking 

47 Meignen et al. 1997 Cracking 

48 Lou et al. 1999 Cracking 

49 Lee and Lee 2003 Cracking 

50 Avila et al. 2004 Cracking 

51 Lea and Harvey 2004 Cracking 

52 Mei et al. 2004 Cracking 

53 Rababaah et al. 2005 Cracking 

54 Bray et al. 2006 Cracking 

55 Xiao et al. 2006 Cracking 

56 Huang et al. 2007 Cracking 

57 Ozbay and Laub  2001 Roughness 

58 Aultman-hall et al. 2004 Roughness 

59 Bayrak et al. 2004 Roughness 

60 Choi et al. 2004 Roughness 

 
studies on raveling of porous asphalt concrete. Not enough attention was given to 
the discussion of missing data and outliers. Moreover, for variable selec-
tion/reduction only 4 studies used variable selection despite the importance of this 
step. Two used PCA for variable reduction, one ANN for variable selection, and 
another one rough set theory. Concerning the data mining technique, it was  
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noticed that about 60% of the reviewed studies have applied artificial neural net-
works, none of the studies applied support vector machines, and only a few em-
ployed techniques such as decision tree/regression trees or rough set theory. About 
18% of the studies used a hybrid technique which was mainly some combination 
of neural network, genetic algorithm, or fuzzy sets. Next to that, the  
number of techniques which extract/generate rules from pavement data was con-
siderably low. Also, most of the studies apply only one technique (except for the 
hybrid studies), while running a number of techniques on the data and comparing 
their results can lead us to very relevant information about the problems being in-
vestigated. Concerning the parameter model/selection, the simplest version of 
cross validation, hold-out, was used. Despite the high reliability of K-fold and 
leave-one-out cross validation, only a few researcher tried these methods. This can 
be blamed on the fact that they are computationally expensive methods. Moreover, 
despite the fact that many studies employed an artificial neural network, an opti-
mal parameter selection for this powerful prediction/analysis technique was miss-
ing in many of these studies. Considerable performance improvement can be 
gained by a correct parameter selection. Finally, for implementation of data min-
ing, the software MATLAB was used most of the time.  

The majority of studies in the literature review have used a separate testing data-
set to test the performance of the model. Almost none of the studies have analyzed 
the influence of input variables on the data mining step. This analysis could reveal 
relevant information for instance about the reasons for the pavement problem. 

4   Approach 

Based on the industrial needs/academic importance of the PAC problem the ap-
proach for this study was determined. The pictorial summary of this approach is 
presented in Figure 4. 

Selecting the most important input variables is done with different techniques. 
Comparing their results allows determining whether there was consistency in the 
variable selection of different methods. If that is the case, the most often selected 
variables are then used for modeling purposes. Figure 5 shows the variable selec-
tion methods which are used in this study. 

In this study, the parameter and model selection is done using cross validation. 
The cross validation method uses a part of the training set, which is called the 
validation set, to find the best model or the best parameters. Because for a lower 
number of data points (around 100 or less), leave-one-out cross validation delivers 
the most reliable results, this method is employed. 

4.1   Data Mining Techniques 

As mentioned before, this study applies four machine learning methods, being  
artificial neural network, support vector machines, decision trees, and rough set 
theory. To give an impression of these techniques, brief descriptions of them are 
given hereafter.  
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Fig. 4. The research approach. 

4.1.1   Artificial Neural Network  
An artificial neural network (ANN) (Engelbrecht 2007) is a layered network of arti-
ficial neurons (ANs). Each AN receives signals from input variables or from other 
ANs, gathers these signals and, when needed, transmits a signal to all connected 
ANs. Figure 6(a) is a representation of an artificial neuron. Input signals are  
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Fig. 5. The variable selection methods. 

 

(a)                                                                                    (b) 

Fig. 6. Illustration of an artificial neuron (a) and a three layer artificial neural network (b). 

inhibited or excited through negative or positive numerical weights associated with 
each connection to the AN. The strength of an existing signal is controlled via a 
function, referred to as the activation function, which calculates the output signal of 
the AN. The role of this function is to bring nonlinearity to ANN. An ANN may 
consist of an input layer, hidden layer(s), and an output layer. ANs in one layer are 
connected, fully or partially, to the ANs in the next layer. A typical ANN structure 
is depicted in Figure 6(b). ANN can be employed for different data mining tasks 
such as regression and classification as well as for variable selection in the data 
preparation step of knowledge discovery. 

4.1.2   Support Vector Machines  
Support vector machines (SVM) (Bishop and Tipping 2003) ultimately make pre-
dictions based on the following function 
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The key feature of the SVM is that, in the binary classification case (only two 
classes available), its target function attempts to minimize a measure of error on 
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the two classes by a separating plane ( ( , )f x w ). To calculate the margin, two pa-

rallel planes, one on each side of the separating plane, which are "pushed up 
against" the data points of two classes. These data points are called support vec-
tors. Intuitively, a good separation is achieved by the plane that has the largest 
margin to the neighboring data points of both classes, since in general the larger 
the margin the better the performance of the SVM. This is an effective mechanism 
leading to good generalization because the training depends only on a subset of 
data points, namely the support vectors that lie on the margin. Next to this, SVM 

uses the kernel trick (kernel = ( , ))iK x x which makes the SVM construction in-

dependent on the dimensionality of the input space. Kernels are generally highly 
nonlinear functions such as a radial basis function, a two-layer neural network or a 
high degree polynomial, which enables SVM to solve complex nonlinear prob-

lems. Vector iw is the orientation of the separating plane and b is the offset of the 

plane from the origin. Both iw and b are automatically calculated during the con-

struction of the separating plane. Figure 7 shows the structure of an SVM with 
three inputs for a classification task. SVMs have also been extended for regression 
application. 

4.1.3   Decision Trees  
Decision trees (DT) (Jang et al. 1997) partition the input space of a dataset into 
mutually exclusive regions, each of which is assigned a label, a value, or an action 
to characterize its data points. The decision tree mechanism is transparent and we 
can follow a tree structure easily to explain how a decision is made. Therefore, the 
decision tree has been used extensively in machine learning. It is perhaps the most 
highly developed technique for partitioning data into a collection of decision rules. 
 

 

                

 
 

Fig. 7. An example of a support vector machine. 
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A decision tree is a tree structure consisting of internal and external nodes con-
nected by branches. An internal node is a decision making unit that evaluates a 
decision function to determine which child node to visit next. In contrast, an ex-
ternal node, also known as a leaf or terminal node, has no child nodes and is asso-
ciated with a label or value that characterizes the given data that lead to it being 
visited. Decision trees used for classification problems are often called classifica-
tion trees, and each terminal node contains a label that indicates the predicted 
class. In the same way, decision trees used for regression problems are often 
called regression trees, and the terminal node labels may be constants or equations 
that specify the predicted output value of a given input.  

4.1.4   Rough Set Theory 
FS is the first theoretical treatment of the problem of vagueness and uncertainty, 
and has many successful implementations. FS is, however, not the only theoretical 
logic that addresses these concepts. Pawlak (1991) developed a new theoretical 
framework to work with vague concepts and uncertainty, which is called rough set 
theory (RST) (Engelbrecht 2007). While RST is somewhat related to fuzzy set 
theory, there are major differences.  RST is based on the assumption that some in-
formation or knowledge about the data is initially available. This is contrary to 
fuzzy set theory where no such prior information is assumed. The basic idea of 
rough sets rests in the discernibility between data points. If two data points are in-
discernible over a set of variables, it means that if their output variables have the 
same value the input variables should be the same as well. RST is a desirable 
technique for real-world applications because of its robustness to situations where 
data is incomplete. RST clarifies the set-theoretic characteristics of classes over 
combinational patterns of the variables. In doing so, RST also performs automatic 
variable selection by finding the smallest set of input variables necessary to dis-
cern between classes. Therefore RST can also be used for variable selection in the 
data preparation step of knowledge discovery.  

4.2   Variable Selection Methods 

Figure 5 showed the variable selection methods. A brief explanation about these 
methods will be given hereafter. 

4.2.1   Regression Trees 
After creating a regression tree, the variable present at the root node of the tree can 
be seen as the most important variable. The variables close to top nodes are the 
more important ones. 

4.2.2   Genetic Polynomial Regression 
One of the methods used in this study was the hybrid method combining genetic 
algorithms and polynomial models. This method is introduced by Maertens et al. 
(2006). The method selects a subset of relevant input variables such that the data 
are well approximated by a polynomial model structure represented by Equation 

(2). In this equation, 0a  and ia are constant coefficients. 
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The genetic algorithm evolves ‘in parallel’ a large number of (e.g. 100) of 

model structures with p  different 
thd order polynomial terms that are selected 

from n  potential input variable ( )selX n . The parameters are determined by the 

least-square method2 and the fitness value of every model structure is calculated 
from the corresponding root mean square error3 (RMSE). 

If one of the n  regressor variables from the selection ( )selX n is not present in 

any of the polynomial terms d
is , it is removed from the regressor set and the pro-

cedure is repeated with a smaller number of regressor 1n −  until the desired 

minimal number minn of input is reached. In case all n  candidate variables are 

present in the p  regressor combinations d
is , the number of polynomial terms is 

reduced to 1p −  and the genetic polynomial regression process is repeated. At 

the end, a subset of minn variables is retrained from the initial set of totaln  poten-

tial input variables. 
The user has to choose the initial number of polynomial terms (typi-

cally 1.5  to 2total totalp n n≈ ) and the final number of regressors minn (selected 

variables). A large initial set of polynomial terms and a low final number of re-
gressor variables will imply large calculation times, but will reduce the need for 
repetitions of the selection algorithm. A large polynomial degree d will increase 
the calculation time and should be avoided to prevent overfitting ( d = 2 is there-
fore typically used). Figure 8 gives an overview of the backward selection proce-
dure as implemented in MATLAB. 

4.2.3   Artificial Neural Network 
A commonly used method, which is called weighted weight factor (WWF), seeks 
for relative importance of the input variables for the output variable in an artificial 
neural network. In this way, the most relevant input variables can be chosen and 
the rest can be removed or a subset of n  most important variables can be selected. 
The WWF approach works as follows: once the training of the neural network is 
completed, the relative importance of the input x  on the output y is computed by 

using the information encapsulated in the weight matrix. Assume for example a 
three layer neural network as depicted in Figure 9, which is composed of an input 
 

                                                           
2 Least square is a method of fitting data. The best fit in this method is when the model has 

the lowest sum of squared error.  
3 For calculation of RMSE, the sum of the square of the deviations of data points from their 

true position should be calculated (the difference between actual output and the predicted 
output) and then be divided by the total number of data points. 
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Fig. 8. Layout of the genetic polynomial regression process (after Maerten et al. 2006). 

layer, a hidden layer and an output layer. Without loss of generality only two input 
variables, three neurons in the hidden layer, and one output variable are consid-
ered here. The computation is done in a forward direction as indicated below. The 
importance of each input variable for the output variable is evaluated for each neu-
ron in the hidden layer. 

The relative importance of input 1x  on 1y is evaluated as follows: 

Step1: Compute the influence of 1x  on 1y , using the first neuron path, 1h  
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Fig. 9. Three layer artificial neural network, an example for calculating weighted weight 
factor. 

Step2: Compute the influence of 1x  on 1y , using the second neuron path, 2h  
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Step3: Compute the influence of 1x  on 1y , using the third neuron path, 3h  
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Step4: Compute the overall influence of 1x  on 1y , using all the neurons path. 
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 (6) 

The same procedure can be applied for the input variables in the neural net-
work. This is a nonlinear variable selection. The search strategy of this method is 
heuristic; it has a multivariate variable generation and has a random direction in  
its search.  
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4.2.4   Rough Set Theory 
The basic idea of rough sets rests in the discernibility4 between data points. RST 
clarifies the set-theoretic characteristics of classes over combinational patterns of 
the variables. In doing so, RST also performs automatic variable selection by find-
ing the smallest set of input variables necessary to discern between classes.  

4.2.5   Correlation Based Variable Selection Using Bidirectional Search and 
Genetic Search 

The central hypothesis of this method is that good variable sets contain variables 
that are highly correlated with the output, yet uncorrelated with each other. This is 
a filter variable selection with correlation as measure and a heuristic search strat-
egy. In this dissertation, both bidirectional and genetic (random) search direction 
are used for this method. 

4.2.6   Wrapper of Artificial Neural Network Using Genetic Search 
This is another hybrid algorithm, combining neural network and genetic algo-
rithm. In a wrapper model after variable selection, a learning algorithm is used. 
The learning algorithm used in this wrapper method is an artificial neural network. 
As mentioned before, variable selection for neural networks is multivariate.  
The optimal subset of variables is searched here using a genetic algorithm. This 
method combines the strength of artificial neural networks and genetic algorithms 
for finding the optimal variable subset.  

4.2.7   Relief Ranking Filter 
This is a filter model which ranks variables according to their separating power” 
in the context of other variables". The Relief algorithm (Kira and Rendell 1992) 
uses an approach based on the nearest-neighbor algorithm. Using a nearest-
neighbor algorithm, for each data point, the closest data point with the same out-
put (nearest hit) and the closest data points with a different output (nearest miss) 
are selected. The score of the ith variable/variable is computed as the average over 
all examples of the magnitude of the difference between the distance to the nearest 
hit and the distance to the nearest miss, in projection on the ith variable. 

5   Problem of Porous Asphalt Concrete 

Since the late 1980s, single layer porous asphalt concrete (PAC) is widely used on 
Dutch motorways. Later, two-layer PAC was developed in the Netherlands as well 
(DWW 2005). PAC is used as top layer on pavements. It is a mixture consisting of 
crushed stone, crushed sand, filler with 25% calcium hydroxide, and bitumen with 
penetration grade 70/100. The composition of PAC should satisfy the specifica-
tions given in Table 4 (CROW 2005). As can be seen in Table 4, standard PAC 
has a maximum grain size of 16 mm. 

                                                           
4 If two data points are indiscernible over a set of variables, it means that if their output 

variable has the same value the input variable should be the same as well. 
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Table 4. Gradation of porous asphalt concrete 0/16. 

Sieve size [mm] Desired mass %  
on sieve 

Minimum mass % 
on sieve 

Maximum mass %  
on sieve 

C16 - 0 7 

C11.2 - 15 30 

C8 - 50 65 

C5.6 - 70 85 

2 85 - - 

0.063 95.5 - - 
 

 

 
Fig. 10. Comparison of noise production by different types of top layers. 

 
According to CROW (2005), the bitumen content should be at least 4.5% by 

mass on top of 100% aggregate. This means that 4.5 kg of bitumen should be 
added on top of 100 kg of aggregate. The traditional single layer PAC is a uni-
formly graded asphalt mixture with a minimum air void content of 20% after 
compaction. Such a high air voids content allows surface water to quickly pene-
trate into and drain through the PAC layer, offering considerably reduced splash 
and spray and improved visibility. The open structure of the surface also reduces  
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Table 5. The average construction and maintenance costs for DAC and PAC layer. 

Type of top layer The average construction costs 

(€€  per m2) 

The average maintenance costs 

(€€  per m2) 

DAC 19 1.18 

PAC 23 2.16 

 
the noise level produced by the tires rolling over the pavement surface and it is for 
this reason why PAC is so extensively used in the Netherlands. Figure 10 (Mole-
naar et al. 2006) shows the noise levels produced by different top layers. 

In 2007, almost 75% of the Dutch motorways network has a PAC top layer. 
Another advantage of PAC is its high resistance to rutting (permanent deforma-
tion) due to its stone skeleton and its location as upper layer in the pavement struc-
ture. Porous asphalt has one major drawback, which is its limited lifespan. PAC is 
also more expensive than dense asphalt concrete (DAC). The construction costs of 
PAC are 21% higher than those of DAC and its maintenance costs are 83% higher 
than the DAC maintenance costs (See Table 5). The construction costs presented 
in Table 5 include the costs of preparation, administration, control and tax.  
The maintenance costs include the variable maintenance costs meaning the costs 
of (partly) replacing the top layer (Hofman et al. 2005). 

5.1   Lifespan of Porous Asphalt Concrete 

The lifespan of a PAC mixture depends on different variables like traffic loads, 
environmental effects, the composition of the mixture, the characteristics of the 
different mixture components and the production and laying process. Because of 
its high voids content, PAC is sensitive for damage due to mechanical (traffic) and 
environmental effects. The most dominant damage type is raveling which implies 
that aggregate particles get loose from the pavement surface and are whipped off. 
A more detailed description of raveling will be given later on. However, PAC is 
very resistant to permanent deformation (rutting). 

Traffic loads on the slow lane are heavier than those on the fast lanes. As a re-
sult, the slow lane needs maintenance earlier. Often these lanes are the first where 
the PAC layer is replaced lane wide. On a later moment in time, the PAC layer 
needs to be replaced over the entire pavement width (slow and fast lanes).  
Furthermore, it should be mentioned that raveling occurs the earliest on locations 
where higher shear stresses occur (e.g. in curves). 

In 2003 the Directorate-General for Public Works and Water Management has 
defined the following average lifespan of PAC (Molenaar and Miradi 2004): 

 
Slow lane: 
Average lifespan before repair equals 9.8 years; 
Average lifespan after repair equals 7.5 years; 
Other lanes: 
Average lifespan before repair equals 15.4 years; 
Average lifespan after repair equals 13.8 years; 
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Fig. 11. Cumulative lifespan distribution as determined by the RHED. 

The lifespan of PAC top layers is rather variable. Data from the Road and Hydrau-
lic Engineering Division (RHED) of the Ministry of Transport, Public Works and 
Water Management show that the lifespan can be anywhere between 4 and 16 
years. This is shown in Figure 11 as RHED lifespan curve.  

Up to a reduction of 20% of the maintenance costs could be achieved as well as 
a reduction of 10% of the delay hours due to maintenance works, when the aver-
age lifespan of PAC could be extended with only a few years. 

As has been stated before, PAC top layers show a significant amount of varia-
tion in lifespan. Not only the variation between road sections is large but also a 
significant variation within a section can occur. This latter has to do with the 
variation in quality within one section. Investigations by Meerkerk (2004) have 
shown that a significant variation in mixture composition can occur during con-
struction. The result of his research showed a remarkable amount of variation in 
bitumen and voids content over a rather short transversal as well as longitudinal 
distance. The variation in voids content over the width of the paved lane seems to 
be as large as the variation in voids content in longitudinal direction. Meerkerk not 
only observed a striking variation in the bitumen content, he also found a signifi-
cant variation in the properties of the recovered bitumen.  

This leads to the conclusion that detailed information on the location, extent 
and severity of raveling as well as detailed information on the mixture composi-
tion and bitumen characteristics will be necessary in order to be able to capture the 
causes of raveling initiation and progression. 
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Fig. 12. Raveling of porous asphalt concrete (left) means that the pavement surface looses 
aggregate particles (right). 

 

 

Fig. 13. Raveling of porous asphalt concrete on a Dutch motorway. 

5.2   Raveling 

As mentioned before, raveling is the most dominant type of damage of PAC top 
layers. Raveling means that the pavement surface looses aggregate particles  
(Figure 12) resulting in a rough texture and so in an increased noise level.  
Furthermore, raveling might result in windscreen damage (the loose particles on 
the road surface can hit the cars’ windscreen) which may lead to dangerous traffic 
conditions.  

The reason for raveling is the loss of bond between the aggregate particle  
and the bitumen coating. A large number of conditions can lead to raveling, varying 
from traffic loads and environmental effects to insufficient strength of the material. 
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The “strength” is influenced by the mixture composition, which can be rather 
variable. Furthermore the “strength” is affected in a negative way due to aging of 
the bituminous mortar making it brittle and sensitive to cracking.  

Figure 13 shows raveling as observed on a specific motorway in the Nether-
lands. As one can observe, aggregate particles are being whipped off in the right-
hand wheel track (indicated by means of the red arrow) and are swept towards the 
hard shoulder of the pavement (indicated by means of the yellow arrow). 

6   Data 

6.1   SHRP-NL Database 

After evaluating different databases, it was concluded that SHRP-NL database is 
the only available database which contains all information this study needed for 
knowledge discovery about raveling of porous asphalt concrete. 

The Strategic Highway Research Program in the Netherlands (SHRP-NL) has 
been performed between 1990 and 2000. It has been inspired by the SHRP pro-
gram established in 1984 by the U.S government. The database provided by the 
SHRP-NL research program is called the SHRP-NL database. 

The SHRP-NL database contains 34 PAC sections of 300 m. Because each sec-
tion has three subsections of 100 m, a total of 102 subsections are available. It 
should be noted that although the specifications allow a minimum void content of 
20%, lower void contents were observed on a number of sections. 

As mentioned before, raveling severity was characterized by α% L(light), β% 
M(moderate) and γ% S(severe). The meaning of categories light, moderate and se-
vere is explained in Table 6. 

Table 6. The categories for severity of raveling. 

Severity of raveling Percentage of stone loss per m2 

Light 6 – 10 

Moderate 11 - 20 

Severe >20 

 
Some data management was needed in order to arrive to a logical input data set. 

For instance, it had to be decided whether the amount and severity of the raveling 
observed should be transformed into one single condition indicator or that the rav-
eling should be treated as % light, % moderate and % severe. It was decided to use 
the Meq variable being defined as the “equivalent amount of moderate damage”. 
This variable is calculated as follows 

( ) % % %ra ra raMeq raveling L M Sα β γ= + +
  

                (7) 

where 
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( )Meq raveling     =  equivalent amount of moderate raveling, 

% ,% ,%ra ra raL M S =  percentage of light, moderate and severe raveling, 

, ,α β γ             =  weighing factors. 

 
Use of a single condition indicator allows easy comparisons and rankings to be 

made of the pavement condition. The most important reason to use the Meq vari-
able to describe the amount and severity of the damage was the fact that available 
inspection and performance models are based on Meq (Sweere et al. 1996). After 
extensive investigation, the weighting factors used in the CROW system were 
chosen. It is recalled that in the CROW system, the following values are used: 

0.25, 1, 5α β γ= = =     (8) 

These values were used to calculate Meq in this study.  

6.2   Mixture Composition 

For each test section, information was available on: 
 

gradation, 
density, 
bitumen content, 
void content, 
type of aggregate used. 
 

With respect to the gradation it was concluded that it doesn’t make sense to in-
clude all the information available about the percentage passing the individual 
sieve sizes. It was concluded that the gradation could be characterized by means of 
the %fine and %coarse material and the D50 and the Cu of the coarse fraction. The 
following variables were taken as input. 

 
D50  = sieve size through which 50% of the coarse material passes, 
D60  = sieve size through which 60% of the coarse material passes, 
D10  = sieve size through which 10% of the coarse material passes, 
Cu  = coefficient of uniformity = D60 / D10, 
% fine  = percentage of material passing the 2 mm sieve, 
% coarse  = percentage of material on the 2 mm sieve. 
 

The %fine and %coarse are introduced as variables since it appeared from other 
investigations that the particles smaller than 2mm in diameter don’t contribute to 
the formation of the stone skeleton in a porous asphalt mixture. This means that, 
together with the bitumen they form the mortar. The stone skeleton is character-
ized by taking the D50 and Cu of the coarse fraction. 

The data of material composition was unfortunately not available for all data 
points. For some unclear reason the material data of 18 sections of 100 m was not 
present in the SHRP-NL database. At this stage the dataset for porous asphalt  
concrete contained 84 data points. 
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6.3   Traffic Data 

An extensive search was done to find traffic information for all test sections at the 
library of the Ministry of Transport and Water Management. The information after 
1986 was digitally available; traffic information from 1986 was taken from reports 
on traffic counts (Rijkswaterstaat, 1980, 1981, 1982, 1983, 1984, 1985). 

In road engineering, it is a well-known fact that the number of the vehicles only 
gives a poor representation of the loads actually applied to the pavement. Axle 
load distributions should be available to quantify correctly the damaging effect of 
traffic. Such information however was not available. The only way to estimate the 
damaging effect of the truck traffic was to estimate the number of trucks and mul-
tiply this number by the damaging effect per truck. This later number can be  
retrieved from the Standard specifications CROW (2005). The last question to 
solve was to determine the amount of truck traffic from the total amount of traffic. 
Information on the relation between percentage of truck traffic and traffic intensity 
was not available for two lane roads. Most of the provincial roads are two lane 
roads. All in all, we had to deal with such a number of uncertainties that it had to 
be concluded that the predictions about the number of vehicles that have passed 
the various test sections is rather weak. Since the information on percentage of 
truck traffic as well as the information on the damaging effect per truck was weak, 
it was decided not to estimate the number of equivalent axle loads for each test 
section but to use the total traffic number. 

To calculate the cumulative traffic intensity for each test section the following 
calculations were done. The cores in SHRP-NL project were taken from the right 
hand lane of the test section. The right hand lane also has the heaviest traffic in-
tensity. Therefore, we were interested to calculate the cumulative amount of traffic 
on this lane. The traffic intensity in the dataset was the total traffic intensity in 
both directions.  The right hand lane traffic intensity was not directly available and 
needed to be calculated. To do so, it had to be calculated which portion of the total 
traffic is traveling on the right hand lane. It was noticed that the right hand lane 
traffic intensity was available for the recent years (2005 and later). Therefore, it 
was decided to calculate the proportion for 2005 and generalize this to other years. 
For the cases that the traffic intensity of the right hand lane was not available, the 
average of proportion of other sections was used. Furthermore, the traffic meas-
urements were not always done during the entire year. Therefore, in calculating 
the cumulative amount of traffic, the total intensity of each year was first divided 
by the number of days in which the measurements have been done. This gave the 
intensity for one day and could then be multiplied by 365 to calculate the intensity 
of the entire year. The next was to calculate the sum of intensities of different 
years. Finally, this sum was multiplied by the proportion of right hand lane to 
other lanes. This can be summarized as follows: 

∑
=

=
NCY

CYi i

i

D

TI

TIOY

TIR
CITR 365

         (9) 

where 
 



132 M. Miradi, A.A.A. Molenaar, and M.F.C. van de Ven 
 

 CTIR  = the cumulative traffic intensity on the right hand lane for the  
                           test section within N years from construction. 
TIR              = the traffic intensity on the right hand lane for year 2005, 
TIOY  = the traffic intensity of all lanes for year 2005, 

iTI         = traffic intensity of the ith year for a specific test section, 

CY              = the construction year (construction year) of the test section, 
NCY             = N year after the construction year of the test section, 

iD                 = the number of days the traffic intensity has measured during  

                           ith year (in many cases the traffic intensity has been measured  
                           for less than 365 days). 

6.4   Climate Data 

The SHRP-NL database didn’t contain information on annual rainfall, solar radia-
tion etc. Furthermore, no information is available on the weather and working 
conditions during construction. Therefore, it was decided to gather climatic data 
for the test sections using other resources. The most reliable and complete  
resource is the Royal Netherlands Meteorological Institute (KNMI). KNMI has 
climate data digitally available from 1951 for all weather stations of the Nether-
lands, including minimum, maximum and mean temperature, duration of sunshine, 
average cloud cover, relative atmospheric humidity, precipitation in 24 hours and 
its duration, maximum and mean of wind speed, and mean air pressure. Further-
more, the mentioned climate data were available for almost each single day from 
1951. This made it possible to calculate very accurate cumulative climate factors.  

After thorough consideration, four climate variables were chosen as climate 
factors, being calculated as shown in Equations 10 to 15. These variables are  
cumulative number of cold days, cumulative number of warm days, sunshine  
duration in months May through September in hours, and cumulative amount of 
precipitation in mm. 

365

1 1

( , )
N

i j

CCDN CD year i day j
= =

= = =∑∑       (10) 

( , ) 1  ( ( 0))

( , ) 0  ( ( 0))

CD year i day j if Min DT

CD year i day j if Min DT

= = = ≤⎧
⎨ = = = >⎩

  (11) 
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365

1 1

( , )
N

i j

CRN R year i day j
= =

= = =∑∑                      (14) 

365

1 1

( , )
N

May September
i j

CUVN UV year i day j−
= =

= = =∑∑     (15) 

where 
CCDN           =   the cumulative number of cold days for N years after the  
                                 construction year, 

( )Min DT   =   the minimum daily temperature, 

( )Max DT    =   the maximum daily temperature, 

CWDN            =   the cumulative number of warm days for N years after the  
                                 construction year, 
CRN         =   the cumulative amount of precipitation (mm), 
CUVN   =   the cumulative duration of sunshine for N years after the  
                                 construction date, 

 ( , )R year i day j= =    =   the amount of precipitation in jth day of year i, 

. .( , )M SUV year i day j−= =   =   the duration of sunshine on jth day of year i  

                                         (only for  days in months May through September).    

6.5   Final Dataset 

After explaining the background on knowledge discovery, machine learning tech-
niques, and data, from this point on, it is possible to discuss the knowledge  
discovery process from pavement data raveling of porous asphalt concrete. In last 
section, it became clear that Meq of raveling is the output variable. the final data-
set for raveling of porous asphalt concrete, contained 13 input variables and 84 
data points. Table 7 gives a detailed list of all these 13 variables. 
 
One important remark should be made before the results are being described. 
For this study, it was decided to let the data speaks for itself. This means that no 
qualitative knowledge from road experts was used for the selection of e.g., input 
parameters. The opinion of expert was only asked after completion of a certain 
step in the knowledge discovery process. 
 
Concerning the input variables, the climate and traffic related input variables (the 
last five variables in Table 7) are all cumulative variables, being calculated for a 
certain number of years after construction (e.g. 5 years after construction). After 
ample consideration, it was decided to develop models that predict the amount of 
raveling five and eight years after construction. The reason for choosing five years 
was to perceive early appearance of raveling. Eight years after construction was 
considered to be important since in a number of contracts, contractors have to 
guarantee a proper performance of PAC top layers for at least 7 years. It should be  
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Table 7. 13 Input variables for raveling of PAC obtained from SHRP-NL dataset. 

Index Input variables Unit/types 

1 Mixture density kg/m3 

2 Bitumen content Mass percentage on 100% aggregate 

3 Void content Percentage 

4 Type of stone Four types: Crushed siliceous river gravel, 
Porphyry, Greywacke/ Greyquartsite,  
Greywacke 

5 Percentage of fine aggregate Mass percentage passing the 2 mm sieve 

6 Percentage of coarse aggregate Mass percentage on the 2 mm sieve 

7 CU (Coefficient of uniformity) D60/D10
5 

8 D50 Sieve size through which 50% of the coarse 
material passes 

9 Cumulative number of warm days days 

10 Cumulative number of cold days days 

11 Cumulative duration of sunshine hours 

12 Cumulative amount of rain mm 

13 Cumulative amount of traffic - 

 
noticed that the SHRP-NL dataset contained only 10 years of measurements. For 5 
data points, the raveling five and eight years after construction was not available 
because these section were older than eight year at the beginning of the SHRP-NL 
project. As a result, 79 data points were available in the final dataset for raveling 
of PAC. 

7   Data Preparation 

As mentioned before, data preparation includes data cleaning, variable selec-
tion/reduction, and data scaling. This section discusses how the data of raveling of 
PAC is prepared to be used for the next step, data mining. Before data preparation, 
as mentioned before, the number of data points available in the dataset was 79. 

7.1   Data Cleaning 

To clean the data, the dataset is checked for missing values, wrong types, and out-
liers. Checking the SHRP-NL dataset showed that there were no wrong types or 
missing values in the final dataset for both Meq raveling five and eight years after 
construction.  

An outlier is a data point that lies outside the overall pattern of a distribution. 
Using an statistical method (Renze 2008), it was investigated if the dataset  
 

 

                                                           
5 Dx = Sieve size through which x% of the coarse material passes. 
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Fig. 14. The number of data points for each type of stone. 

contained outliers. This method calculates two values called the inner fence and 
the outer fence. The data points falling outside of these fences are the outliers. 
The only difference is that the outer fence creates a larger window for non-
outliers and as a result determines less data points as outliers. 

The investigation showed that the input variable Type of Stone and the output 
variable Meq of raveling contained outliers. Hereafter, it is explained how these 
outliers are determined. 

For Type of Stone, the number of data points for each type is visualized in  
Figure 14. As can be seen, the total number of data points with stone types Pro-
phyry and Greywacke/Greyquartsite is five. The presence of these few data points 
in the training set will perhaps result in a less generalized model. In other words, 
use of these data points can result in a lower performance of the trained model and 
might very well confuse the learning process. For this reason, it was decided to  
delete the five data points containing the two mentioned types of stone to improve 
the quality of models. After deleting five data points from the dataset, 74 data 
points were left. 

For Meq of raveling, the same statistical method was used to determine the out-
liers. It had to be decided if the inner fence or outer fence outliers should be taken 
into account. If the inner fence is used, a large number of data points are deter-
mined as outliers (For raveling eight years after construction, about 15% of data 
are above inner fence). If these data points would be eliminated, a low number of 
data points would stay in the dataset. This is less desirable because the SHRP-NL 
dataset is already a rather small dataset and each data point is a valuable one. 
Therefore, it was decided to choose the outer fence outliers, falling three times the 
interquartile above the third quartile For Meq raveling five years after construc-
tion, the outer fence was 4.62 + 3*4.62 = 18.5. There were no data points, having  
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                                     (a)                                                                               (b) 

Fig. 15. Determination of outliers for Meq of raveling five (a) and eight (b) years after  
construction. 

a Meq raveling larger than 18.5 and therefore no outliers were determined for Meq  
five years after construction. The outer fence is shown in Figure 15(a) as a dotted 
line. Concerning Meq raveling eight years after construction, the value of outer 
fence was 13.11 + 3*11.24 = 46.83. As can be seen in Figure 15(b), five  
data points fall above this outer fence. Figure 15(b) shows the outer fence  
value with a dotted line and the outliers with circles around them. Now that the 
outliers have been determined, the question is if they should be eliminated from 
the dataset. 

Doubting about deleting these outliers has two reasons. The most obvious  
reason is that the dataset at this point contained only 74 data points and after delet-
ing another five data points as outliers, only 69 data points will be left. Another 
reason is that although the outliers have been determined with a statistical method, 
one is never certain whether these points are really measurement faults or if they 
contain important information which could make the problem distribution more 
complete. 

To be able to decide about these five data points, more information was neces-
sary, for instance the name and location of the road from where the data points 
were obtained and the mixture properties of the asphalt layer of those roads. The 
result of the search is shown in Table 8. The location of two of the outliers was on  
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Table 8. The information about the outliers including their location and their mixture  
properties. 

SHRP-
NL ID 

Section Meq raveling 8 
years after  
construction 

Location Mixture  
density 

Bitumen  Voids  
content 

Type of stone 

1107 1 114 A12 20636 4.57 16.48 Crushed siliceous river 
gravel 

1107 2 163 A12 2086 5.2 15 Crushed siliceous river 
gravel 

1107 3 88 A12 2080 4.6 15.3 Crushed siliceous river 
gravel 

5063 1 123 A1 21379 4.410 15.511 Greywacke 

5063 2 55 A1 2127 4.4 15.5 Greywacke 

 
A1 highway close to the city of Apeldoorn with a moderate traffic intensity  
(see the map in Figure 16(a)) and the location of the other three data points is on 
A12 highway close to the city of Gouda with a high traffic intensity (see the map 
in Figure 16(b)). As can be seen in Figure 16(b), the test section number (1107) 
has been crossed off the map. This is because the road section was replaced in 
1993 and therefore was partly present in the SHRP-NL project. However, in 1993 
this section was eight years old and it was therefore included in the dataset for 
raveling eight years after construction. 

Table 8 shows that the mixture density of the five identified outliers is much 
higher than the standard given for porous asphalt and the voids content is much 
lower on section 1107 the bitumen content was also high. However, the obvious 
deviation from standard properties of porous asphalt concrete cannot be seen as a 
reason to delete these outliers from the dataset because there are more data points 
in the dataset deviating from the standard mixture properties. Moreover, due to a 
higher bitumen content and mixture density in these sections, road engineers ex-
pect them to have a longer lifespan and less damage than has been observed. To 
decide about these data points, extra information about these sections could help. 
However, this additional information was not available. 

                                                           
 6 For test section with SHRP-NL ID 1107, average of mixture density is 2075 and the range 

is [2023, 2133]. 
 7 For test section with SHRP-NL ID 1107, average of bitumen content is 4.7 and the range 

is [4.4, 5.1]. 
 8 For test section with SHRP-NL ID 1107, average of voids content is 15.7 and the range is 

[13.2, 18.6]. 
 9 For test section with SHRP-NL ID 5063, average of mixture density is 2132 and the range 

is [2088, 2156]. 
10 For test section with SHRP-NL ID 5063, average of bitumen content is 4.4 and the range 

is [4.3, 4.5]. 
11 For test section with SHRP-NL ID 5063, average of voids content is 15.5 and the range is 

[14.7, 17.2]. 
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                                   (a)                                                                           (b) 

Fig. 16. Location of SHRP-NL test section with ID number 5063 nearby the city of Apel-
doorn (a) and the test section with ID number 1107 nearby the city of Gouda (b). 

 
On one hand, the so called outliers are valuable for this study due to the lack of 

data. On the other hand, it is not known that if they are kept in the dataset, how 
they would influence the model performance. To solve this problem, an experi-
ment was conducted. In the experiment, the outliers were deleted one for one, each 
time a model was developed using ANN technique and the model performance 
was compared with the previous one. This was continued until the outliers in the 
dataset did not negatively influence the performance of the model any more. One 
can wonder in which order the outliers should be deleted. The outlier which lies 
furthest from other points is expected to have the most negative influence on the 
model. Therefore, each time the outlier furthest from other points will be deleted. 
The results of this experiment are shown in Figures 17 and 18. 

As Figure 17(a) shows, the R2 of the ANN model trained with the dataset in-
cluding all outliers is 0.53. This means that including all outliers in the model will 
result in a low performance. In the next step, the outlier with the largest Meq value 
(163) was eliminated from the dataset and the ANN model was trained again. This 
model had an R2 of 0.58 (Figure 17(b)), which is still a poor performing model. In 
the next step, next to the first outlier, the outlier with the second largest Meq value 
(123) was deleted and the model was trained again. This time, the R2 of the ANN 
model increased considerably (0.96) (see Figure 18(a)), showing that the model 
performs very well. It seemed that only the two mentioned outliers needed to be 
deleted from dataset. To be certain, an ANN model using the dataset excluding all 
five outliers was trained (see Figure 18(b)). The R2 of this model is the same as the 
one excluding the two extreme outliers (0.96) (see Figure 18(a)). Therefore, it was 
decided to use the dataset excluding only the first two outliers with an Meq value 
of 163 (the road test section located on A12) and an Meq value of 123 (the road 
test section located on A1), resulting in a dataset with 72 data points. 
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(a) 

 

(b) 

Fig. 17. The performance of trained ANN model using all data points (a) and using all data 
points except the one with Meq raveling value of 163 (b). 
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(a) 

 

(b) 

Fig. 18. The performance of trained ANN model ANN with all data points excluding the 
ones with Meq of 163 and 123(a) and using the dataset excluding all five outliers (b). 
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7.2   Variable Selection 

One important basic step in each type of problem is to determine the input vari-
ables that influence the performance of the model the most. As it was stated in the 
literature study, little attention has been given to variable selection/reduction 
methods by researchers working on pavement performance modeling and the few 
researchers, who employed these methods, used only one method at the same 
time. However, it should be noticed that using one type of variable selection 
method will not give strong evidence that the inputs selected are the most influen-
tial ones. A better approach would be to apply a number of variable selection algo-
rithms to the dataset and then compare the variables selected by these algorithms. 
In case there are some input variables selected repeatedly by different algorithms, 
it can be concluded that those are the most influential input variables. This is a 
time-consuming and difficult approach. However, because it is believed that using 
this approach will result in a more reliable selection of input variables, it was em-
ployed in this study.  

Eight different input selection methods were employed to select the most influ-
ential input variables:  

 
regression trees, 
genetic polynomial regression,  
artificial neural network (weighted weight factor method),  
rough set theory,  
correlation based subset selection using bidirectional search,  
correlation based subset selection using genetic search,  
wrapper of artificial neural network using genetic search, and  
relief ranking filter.  
 

Before applying these methods, it was necessary to decide how many variables 
should maximally be selected. Because of the presence of variables representing 
material properties, climate, and traffic, a minimum of three variables was needed. 
However, eight of the input variables are related to the material properties, includ-
ing two subgroups of mixture composition and gradation variables. As a result, 
more than one material related input variable was needed to model the problem. 
At the same time, because of the small number of data points, it was desirable to 
use the smallest number of input variables. Taking all these aspects into account, it 
was decided to choose a maximum of five most influential variables. Table 9 
summarizes the result of all methods applied, to Meq (raveling) five years after 
construction, selecting a maximum of five input variables from the 13 variables 
listed in Table 7. In the setting column of Table 9, it can be seen that the cross 
validation method leave-one-out was used constantly. This method is suitable for 
small datasets (with less than 100 data points). 
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Table 9. The five most important input variables for Meq (raveling) five years after con-
struction. 

 
Method Setting Variable 1 Variable 2  Variable 3 Variable 4 Variable 5 

Regression 

trees 

Leave-one-out  

cross validation 

Bitumen 

content 

Traffic Cold days  Voids  

content 

%Coarse 

 

Genetic  

polynomial 

Polynomial  

degree = 3 

Bitumen 

content 

Traffic Cold days %Coarse 

 

Voids 

content 

Artificial  

neural network 

(WWF) 

Leave-one-out  

cross validation 

Bitumen 

content 

Traffic Voids con-

tent 

Cold days %Coarse 

 

Rough sets 2-class output Bitumen 

content 

    

Correlation-

based subset 

selection  

(bidirectional 

search) 

Greedy stepwise 

search 

Leave-one-out  

cross validation 

Bitumen 

content 

Traffic Cold days   

Correlation-

based subset 

selection (ge-

netic search) 

Genetic Search 

Leave-one-out  

cross validation 

Bitumen 

content 

Traffic Voids con-

tent 

Cold days %Coarse  

Wrappers of 

ANN (genetic 

search) 

Genetic Search  

Leave-one-out  

cross validation  

Bitumen 

content 

    

Relief ranking 

filter 

K=20 

Nearest neighbor 

(equal influence) 

Leave-one-out 

cross validation 

Bitumen 

content 

Traffic Cold days   

 
Table 9 shows that for Meq 5 years after construction, bitumen content was se-

lected by all methods as the most influential input variable and Traffic by all ex-
cept one. The other three variables, determined by most methods, were Cold days, 
Voids content, and percentage of Coarse. The same approach was used for ravel-
ing eight years after construction, leading to the results shown in Table 10. 

As can be seen in Table 10, Voids content and Bitumen content are the two 
most influential input variables for Meq 8 years after construction. Next to them, 
Cold days, Coarse percentage, and Density were selected by a majority of meth-
ods as influential input variables. 

In the sake of completeness, it is recalled that the variables type of stone, 
amount of rainfall, amount of sunshine, and most of gradation parameters were 
not selected by any of the variable selection methods (see Tables 9 and 10). 
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Table 10. The five most important input variables for Meq(raveling) eight years after  
construction. 

Method Setting Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 

Regression 

trees 

Leave-one-out  

cross validation 

Bitumen 

content 

Voids content Cold days %Coarse Density 

Genetic  

polynomial 

Polynomial  

degree = 3 

Voids  

content 

Bitumen  

content 

Cold days %Coarse 

 

Density 

Artificial neural 

network 

(WWF) 

Leave-one-out  

cross validation 

Voids  

content 

Cold days Bitumen 

content 

%Coarse Traffic 

Rough Sets  3-class output Bitumen 

content 

Voids content    

Correlation-

based subset  

selection  

(bidirectional 

search) 

Greedy stepwise 

search 

Leave-one-out  

cross validation 

Voids  

content 

Bitumen  

content 

Cold days D50 Density 

Correlation-

based subset  

selection  

(genetic search) 

Genetic Search 

Leave-one-out  

cross validation 

Voids  

content 

Bitumen con-

tent 

Density Cold days D50 

Wrappers of 

ANN (genetic 

search) 

Genetic Search  

Leave-one-out  

cross validation  

Voids  

content 

    

Relief ranking 

filter 

K=20 

Nearest 

neighbor 

Leave-one-out  

cross validation 

Cold days Voids content Bitumen 

content 

Warm 

days 

Density 

 
Considering the order of variables importance/influence, it should be noticed that 
not all methods make it possible to determine the exact importance of ranking. 
Two of the methods, which give a rather clear ranking of input variables, are ge-
netic polynomial regression and artificial neural network (weighted weight  
factor). The ranking of these two methods are shown in Figure 19 (genetic poly-
nomial) and 7 (artificial neural network) for both Meq raveling five and eight 
years after construction. 

Figure 19 shows the number of iterations that each input variable is present in 
the model during 100 iterations. As can be seen for Meq raveling five years after 
construction, Bitumen is present in the model in all 100 iteration while for eight 
years after construction Voids content stayed in the model for about 90 iterations. 
The variable with the lowest presence in the model for raveling 8 years after con-
struction is Traffic, which was present in the model only for five iterations. 
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(a) 

 

(b) 

Fig. 19. The five most important input variables for raveling five years after construction 
(a) and raveling eight years after construction (b) determined by Genetic polynomial. 

 

 



Knowledge Discovery and Data Mining Using Artificial Intelligence  145
 

 

(a) 

 

(b) 

Fig. 20. The five most important input variables for raveling five years after construction 
(a) and raveling eight years after construction (b) determined by artificial neural network. 
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The ANN input selection is presented in Figure 20. This figure shows that for 
raveling 5 years after construction the input variables Bitumen, Traffic and Cold 
days are the most important ones. For raveling 8 years after construction, Voids 
content, Bitumen, and Cold days contribute most. 

For road experts, it was very interesting to observe that Cold days is important 
for both Meq raveling five and eight years after construction while Traffic is not 
important for Meq raveling eight years after construction. 

Based on the result of different input selection methods, listed in Table 9 and 
10, the five most influential input variables for both raveling five years after con-
struction and eight years after construction are easy to determine. For raveling five 
years after construction (results of Table 9), the five input variables Bitumen, Traf-
fic, Cold days, Voids content, and Coarse percentage were selected for final mod-
eling. For raveling eight years after construction, a close look into the results 
shown in Figures 6 and 7 learns that Traffic is not an important factor anymore. 
Therefore, it can be excluded from the input variables. It means that the modeling 
can be done using four input variables. These four variables are Voids content,  
Bitumen, Coarse percentage, and Cold days. 

7.3   Data Scaling 

As mentioned before, all variables are numerically continuous except for the in-
put variable Type of stone, which is a categorical one. Initially database included 
four types of stones (see Table 7) but when the outliers were deleted only two 
types were left. In the previous section, the results of variable selection (Tables 9 
and 10) showed that Type of stone was not included in the five most influential 
input variables. As a result, all variables that need to be scaled are numerical  
one. The numerical input variables and the output variable were scaled to the 
range of [-1..1]. 

8   Data Mining and Evaluation/ Interpretation of Models 

In the last two steps of the knowledge discovery process, being data mining and 
evaluation/interpretation of the mined pattern (model), a specific technique with 
certain parameters is used to develop a model from the data (find a pattern in data) 
and the result of the model is examined (Figure 1). From the discussion so far, it 
became clear that data mining for raveling of porous asphalt concrete will be per-
formed on a dataset with 72 data points, with the output variable Meq raveling five 
or eight years after construction and the selected four respectively five input vari-
ables. This can be summarized as follows  
 

5 ( ,  ,  ,  , )Meq f Bitumen Voids content Coarse percentage Cold days Traffic=  

        (16)  
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8 ( ,  ,  ,  )Meq f Bitumen Voids content Coarse percentage Cold days=  (17) 

where Meq5Rav and Meq8Rav are the Meq raveling five and eight years after con-
struction, respectively. As explained before, four machine learning techniques are 
employed in the data mining step: artificial neural networks, support vector ma-
chines, decision trees, and rough set theory. The next four sections discuss the last 
two steps of data mining for raveling of porous asphalt concrete using each of the 
four mentioned techniques. 

9   Data Mining Using Artificial Neural Network 

In this section, the models developed for raveling five and eight years after con-
struction are called Meq5Rav_ANN and Meq8Rav_ANN, respectively. Before starting 
with data mining, the dataset was partitioned into two subsets: a training set (85% 
of data points) and a test set (15% of data points). A part of the training set is used 
for the cross validation. The size of this part depends on the type of cross valida-
tion method being used. 

9.1   Parameter Determination for ANN 

The first step in data mining is to determine the parameters needed for the tech-
niques applied. The parameters necessary to develop an ANN model are type  
of activation function, number of hidden neurons, type of learning algorithm, 
learning rate, and momentum (Haykin 1999).  

According to the universal approximation theorem, one hidden layer is suffi-
cient to solve many problems (Haykin 1999). Therefore, the number of hidden 
layers was set to one. To estimate the number of hidden neurons, a 10-fold cross 
validation was employed. The calculated training and cross-validation errors of 12 
neural networks with 1 to 12 hidden neurons are shown in Figure 21. The number 
of hidden neurons resulting in the lowest validation error is the optimal number of 
hidden neurons, which is in this case three for both Meq5Rav_ANN and 
Meq8Rav_ANN models. Consequently, the optimal architecture for both models is 
one hidden layer containing three hidden neurons. Using the mentioned architec-
ture, different types of activation functions were tried. The hyperbolic tangent 
gave the lowest prediction error and therefore it was chosen as the activation func-
tion for both hidden and output layers. 

Concerning the other three parameters, the investigation showed that the learn-
ing algorithm batch backpropagation with a learning rate of 0.1 and a momentum 
of 0.3 for Meq5Rav_ANN model resulted in the best performance. For 
Meq8Rav_ANN model, a batch backpropagation algorithm performed the best with 
a learning rate of 0.1 and a momentum of 0.2. 

 



148 M. Miradi, A.A.A. Molenaar, and M.F.C. van de Ven 
 

  

                                         (a)                                                               (b) 

Fig. 21. Determination of the optimal number of hidden neurons for model Meq5Rav_ANN 
(a) and Meq8Rav_ANN (b). 

9.2   Modeling Using ANN 

After parameter determination, Meq5Rav_ANN and Meq8Rav_ANN models were 
only trained using the parameters mentioned above. They were tested using the 
test set. The training, cross validation, and testing errors for both models are 
shown in Table 11. The cross validation method leave-one-out was used to calcu-
late the cross validation error. The reason for using leave-one-out was that the 
dataset is small (number of data points less than 100). As mentioned before, the 
number of data points after data cleaning was 72. For the leave-one-out method, 
72 data points formed the training set and one data point the validation set, repeat-
ing this 71 times each time using another single data point as validation set. 

From the results given in Table 11 shows that Meq5Rav_ANN and Meq8Rav_ANN 
models with four/five input parameters perform better than the models which were 
developed earlier using all input variables (Miradi and Molenaar, 2005). This is 
most likely the result of reducing the input dimension. The prediction plot of the 
training and test set for these models are shown in Figures 22 and 23, respectively. 
In these figures, the x-axis of the plots shows the actual Meq of raveling while the 
y-axis shows the predicted Meq. The line on the plot is called the line of equality. 
The closer the points are located to the line of equality, the better the prediction. 

Table 11. The result of model Meq5Rav_ANN and Meq8Rav_ANN. 

Model Training error Cross validation er-
ror 

Testing error R-square 

Meq5Rav_ANN 0.55 0.61 0.24 0.95 

Meq8Rav_ANN 2.70 2.88 4.01 0.94 
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(a) 

   
(b) 

Fig. 22. Prediction of Meq(raveling) five years after construction by model Meq5Rav_ANN 
for the training set (a) and the test set (b). 
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(a) 

 
(b) 

Fig. 23. Prediction of Meq(raveling) eight years after construction by model Meq8Rav_ANN 
for training set (a) and testing set (b). 
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9.3   Evaluation/Interpretation of ANN Models 

Figure 22 (a) shows that the prediction made by the Meq5Rav_ANN model in the 
range of [0, 4] is less accurate for the training set. This is because of the dis-
cernibility of some data points. Discernibility of data points means that although 
the input variables of those data points are identical, their output (Meq raveling) is 
not the same. This is due to the fact that although some road samples are taken 
from the same test section, the raveling observed on the three subsections within 
that section. This means that their material properties, climate circumstances, and 
the traffic load are the same but the raveling observed on the subsections is not the 
same. Since the data contain this variability, some error tolerance should be al-
lowed. As can be seen in Figure 23 (b), this also applies to model Meq8Rav_ANN 
for the range [0, 15]. 

One of the tools used for the interpretation of the ANN result is the response 
graph. A response graph displays the response of the model output as one input 
variable is varied while other input variables are held constant. The constant value 
for each variable is the average value of that variable in the dataset. The average 
value for Bitumen content was 4.3, for Voids content 18.8, for Coarse percentage 
was 83.1, for Cold days was 329, and for Traffic was 22,538,978. This graph is 
called a response graph because it is the response to the different values of the  
selected input variable. Figure 11 shows the result of this investigation into all five 
input variables of model Meq5Rav_ANN. 

As can be seen in Figure 24(a), if Bitumen content < 4%, the Meq raveling 5 
years after construction is between 1 and 10. Bitumen content ≥ 4% causes no rav-
eling. Figures 24(b) and 24(c) show that by increasing Voids content or Coarse 
percentage the Meq raveling 5 years after construction increases. Figure 24 (d) 
shows that if Cold days > 310, then the Meq raveling 5 years after construction is 
between 0 and 3. Finally Figure 24(e) shows that if traffic increases, the raveling 
increases as well. It should be noticed that the above if-then rules are valid  
only when the input variable present in the rule is varied and other variables are 
held constant. 

The response graphs shown in Figure 11 are in agreement with practical ex-
perience. As can be seen in Figure 24(b), the value of Voids content is between 
13% and 24%. The void content of PAC is around 20% and a road section with a 
void content less than 17% cannot be rated as PAC anymore. The presence of 
these low void contents clearly indicates that something must have gone wrong 
during construction.  

When one compares the response graphs presented in Figure 24, one should 
pay attention to the y-axis. It can be seen that for input variables Bitumen content 
and Traffic, changes in their value cause larger changes in the Meq of raveling 
(between 0 and 10) comparing to other variables. For the other four input vari-
ables, the Meq raveling increases up to a maximum of 6. 
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(a)                                                            (b) 

   

(c)                                                                        (d) 

 

(e) 

Fig. 24. Response graph of the input variables bitumen content (a), voids content (b), 
coarse percentage (c), cold days (d), and traffic (e) for model Meq5Rav_ANN. 

The response of model Meq8Rav_ANN to its four input variables is shown in 
Figure 25. As was the case for raveling five years after construction, when re-
sponse graph deals with one input, it holds other variables constant. The constant  
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(a)                                                                           (b) 

   

(c)                                                                                  (d) 

Fig. 25. Response graph of the three input variables Bitumen content (a), Voids content (b), 
and Cold days (c) for model PMeq8_ANN. 

value for each variable is the average value of that variable in the dataset. The av-
erage value for Bitumen content was 4.3, for Voids content 18.8, for Coarse per-
centage was 83.1, for Cold days was 515.  

Figure 25 (a) clearly shows that Bitumen content < 3.95% causes Meq of ravel-
ing between 11 and 38. If 3.95% ≤ Bitumen content between ≤ 4.60%, then Meq of 
raveling is between 0 and 11. Figure 25(b) shows that when Voids content is be-
tween 13% and 20% raveling does not vary that much (between 8 and 10). How-
ever, if Voids content > 20%, the amount of Meq of raveling is between 10 and 21. 
Figure 25(c) shows that if the 82.5% ≤ Coarse percentage ≤ 83.5%, the Meq value 
will be about 8. In the case Coarse percentage > 83.5%, Meq raveling is  
between 13 and 35. From Figure 25(d), it can be concluded that if the eight year 
cumulative number of Cold days > 554 days, the raveling will increase fast to a  
maximum of 64 but if Cold days ≤ 554, Meq raveling eight years after construction  
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stays very low (around 2). As in the Meq5Rav_ANN model, the if-then rule for each 
input variable is valid under the condition that that variable is varied and the rest 
are held constant. 

Next to ANN, support vector regression is also employed for data mining in 
this dissertation. The next section will describe the development process of data 
mining using SVR for Meq of raveling five and eight years after construction. 

10   Data Mining Using Support Vector Regression 

In this section, the models extracted from the data using support vector regression 
for raveling five and eight years after construction are called Meq5Rav_SVR and 
Meq8Rav_SVR, respectively. 

10.1   Parameter Determination for SVR 

The first step in SVR modeling is to determine the optimal modeling parameters. 
Concerning the kernel type, pre-investigation showed that the radial basis kernel 
function showed the highest performance. 

Parameter C is one of the necessary parameters for SVR modeling. Due to the 
use of a radial basis kernel function, its parameter, γ, should also be determined. 
Using a 10-fold cross validation grid search, the optimal value of parameter γ was 
searched between 1 and 20 for models Meq5Rav_SVR and Meq8Rav_SVR.  

As can be seen in Figure 26(a) and 26(b), for both Meq5Rav_SVR and 
Meq8Rav_SVR,  γ =18 showed the lowest error (lowest point in the graph) and as a 
result, 18 is the optimal value for γ (γ = 3 is also optimal but results in slightly 
more error than γ = 18). The determination of parameters C and γ is done in paral-
lel. It means that for each value of γ, parameter C is calculated for the whole 
range. This explains the many dots on Figure 26. A better way of presenting the 
result is a 3D plot. However, due to presence of many combinations of C and γ 
(many dots on the plot), it would be difficult for the reader to observe which value 
results in the lowest performance error. Therefore it was decided to plot the results 
as 2D plots. 

As was done for γ, a 10-fold cross validation grid search was performed to de-
termine the optimal value for parameter C. Looking at values between 1 and 250, 
the value C = 30 showed the lowest error for model Meq5Rav_SVR and was there-
fore chosen as the optimal value (see Figure 27 (a)). As can be seen in Figure 
27(b), for model Meq8Rav_SVR, the optimal value for C was 40. The final parame-
ters used in SVR modeling are summarized in Table 12. 
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(a) 

     

(b) 

Fig. 26. Cross validation grid search for selection of optimal value of parameter γ of radial 
basis kernel function for models Meq5Rav_SVR (a) and Meq8Rav_SVR (b). 
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(a) 

 
(b) 

Fig. 27. Cross validation grid search for selection of optimal value of parameter C for mod-
els Meq5Rav_SVR (a) and Meq8Rav_SVR (b). 
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Table 12. The setting for SVR models Meq5Rav_SVR and Meq8Rav_SVR. 

Parameter Value for model 
Meq5Rav_SVR 

Value for model 
Meq8Rav_SVR 

SVM type Epsilon SVR Epsilon SVR 

Kernel type Radial basis Radial basis 

 18 18 

C 30 40 

 

Table 13. The number of support vectors, weights of the inputs, and the bias of the models 
Meq5Rav_SVR and Meq8Rav_SVR. 

Parameter Value for model Meq5Rav_SVR Value for model Meq8Rav_SVR 

Number of support vec-
tors 

49 58 

Weights W(Bitumen) = 832.48 
W(Voids content) = 1,179.3 
W(%Coarse) = 1,313.2 
W(Cold days) = 829.1 
W(Traffic) = 357.1 

W(Bitumen) = -5,471.8 
W(Voids content) = 1,132.0 
W(%Coarse) = 970.3 
W(Cold days) = 2,226.6 

Bias -3.1 -7.9 
 

Table 14. The quality measures for SVR models Meq5Rav_SVR and Meq8Rav_SVR. 

Measure Value for model Meq5Rav_SVR Value for model Meq8Rav_SVR 

RMSE of test set 2.9 6.4 

R-square 0.97 0.87 
 

10.2   Modeling Using SVR 

Using the parameters given in Table 12, the SVR models Meq5Rav_SVR and 
Meq8Rav_SVR were trained using LibSVMLearner. Developing an SVR model re-
sults in finding some parameters: support vectors, weights, and bias. Table 13  
reports these parameters for the Meq5Rav_SVR and Meq8Rav_SVR models. 

10.3   Evaluation/Interpretation of SVR Models 

To evaluate the SVR models, the trained models were tested using the test set. As 
shown in Table 14, the RMSE of the test set for models Meq5Rav_SVR and 
Meq8Rav_SVR were 2.9 and 6.4, respectively. The R-square of Meq5Rav_SVR model 
is higher than Meq8Rav_SVR (0.97 against 0.87). Comparing the results of Tables 11 
and 14, it can be seen that ANN has a higher prediction performance for this spe-
cific problem. The prediction plot of SVR models, Meq5Rav_SVR and Meq8Rav_SVR  
 

 



158 M. Miradi, A.A.A. Molenaar, and M.F.C. van de Ven 
 
 

 

(a) 

 
 

(b) 

Fig. 28. Prediction of Meq(raveling) five years after construction by model Meq5Rav_SVR 
(a) and (raveling) eight years after construction by model Meq8Rav_SVR (b). 
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(a) 

 
(b) 

Fig. 29.  The amount of Meq(raveling) five years after construction caused by the interac-
tion between bitumen content and voids content (a) and  bitumen content and traffic (b). 

are shown in Figures 28(a) and 28(b). As was the case in the ANN plots, the x-axis 
gives the actual output (either Meq five years after construction or Meq eight years 
after construction) and the y-axis gives the output, predicted by the SVR models. 
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(a) 

 
(b) 

Fig. 30. The amount of Meq(raveling) eight years after construction caused by the interac-
tion between bitumen content and voids content (a) and bitumen content and percentage of 
coarse (b). 

In Figure 28(b), one data point is predicted very poorly. This data point has 
been marked with a black circle. It is interesting to know why this data point lies 
so far from the general pattern of prediction. Looking into the material properties 
of this data point, it became clear that the data point has a Bitumen content of 3.8, 
a Void content of 19.3, a Coarse percentage of 84.1, and a number of Cold days of 
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555. The data point has the lowest bitumen content in the whole dataset and there-
fore this data point is a rather unique one in the dataset. If the model does not have 
similar examples to learn from, the new combination of input variables is less easy 
to predict. This is most likely the explanation for the poor prediction of this spe-
cific data point. 

One of the tools used for interpretation of the results is the color contour, which 
shows how the interaction between two input variables influences the output vari-
able while other input variables are held constant (the average of that variable in 
the dataset). By using color contours, it is possible to investigate how much ravel-
ing is caused by the interaction between each two input variables. In this way, the 
values of input variables which cause a large amount of raveling can be identified. 
For model Meq5Rav_SVR with five input variables 10 interactions are possible.  
The number of interactions is 6 for the Meq8Rav_SVR model with four input vari-
ables. Examples of these interactions are given in Figures 29 and 30. The figures 
are self explaining. 

11   Data Mining Using Regression Trees 

11.1   Parameter Determination for Regression Trees 

Another technique which is used in this dissertation for data mining is regression 
trees (RT). Regression trees are decision trees generated for regression purposes. 
The tree structure of these models, especially of the binary trees, is directly inter-
pretable by users in the form of if-then rules. The models developed using regres-
sion trees for Meq raveling five and eight years after construction are called 
Meq5Rav_RT and Meq8Rav_RT. The modeling with RT includes two stages, being 
the generation of the tree and pruning the tree. It should be determined how far the 
generated tree should be pruned. This is done using a 10-fold cross validation 
method for both Meq5Rav_RT and Meq8Rav_RT (Figure 31). 

11.2   Modeling Using RT 

As shown in Figure 31, for raveling five years after construction the optimal tree 
has six terminal nodes (Figure 31(a)) and the one for raveling eight years after 
construction has two terminal nodes (Figure 31(b)). As a result, the tree of model 
Meq5Rav_RT was pruned until six terminal nodes were present in the tree. This is 
shown in Figure 32(a). The pruned tree of model Meq8Rav_RT with three terminal 
nodes can be seen in Figure 32(b). In regression trees, the input variable on top of 
the tree is the most important input variable. Figure 19 shows that Bitumen content 
is the most important input variable for raveling of PAC.  

11.3   Evaluation/Interpretation of RT Models 

Although the structure of the tree is clear and the rules can be discovered by the 
reader, the generated rules for Meq raveling five years after construction 
(Meq5Rav_RT) and Meq raveling eight years after construction (Meq8Rav_RT) are 
given hereafter: 
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(a) 

 
(b) 

Fig. 31.  The optimal number of terminal nodes for pruning of models Meq5Rav_RT (a) and 
Meq8Rav_RT (b). 
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                                       (a)                                                                          (b) 

Fig. 32. The optimal pruned tree for models Meq5Rav_RT (a) and Meq8Rav_RT (b). Note 
that the terminal nodes (the fold black circles) show the value of Meq. 

 

Meq5Rav_RT: 
IF Bitumen content < 3.95 THEN Meq raveling 5 years after construction = 9.2 
IF Bitumen content ≥ 3.95 AND Traffic ≥ 6E7  
THEN Meq raveling 5 years after construction = 4.95 
IF Bitumen content ≥ 3.95 AND Traffic < 6E7 AND Coarse percentage ≥ 84.8 
THEN Meq raveling 5 years after construction = 10.75 
IF Bitumen content ≥ 3.95 AND Traffic < 6E7 AND Coarse percentage < 80.85 
THEN Meq raveling 5 years after construction = 2.85 
IF 3.95 ≤ Bitumen content < 4.75 AND Traffic < 6E7 AND 80.85 ≤ Coarse 
percentage < 84.8 
THEN Meq raveling 5 years after construction = 0.57 
IF Bitumen content ≥ 4.75 AND Traffic < 6E7 AND 80.85 ≤ Coarse percent-
age < 84.8 
THEN Meq raveling 5 years after construction = 5 
 

Meq8Rav_RT: 
IF Cold days <554 AND Bitumen content < 4.45  
THEN Meq raveling 8 years after construction = 6.5 
IF Cold days < 554 AND Bitumen content ≥ 4.45  
THEN Meq raveling 8 years after construction = 1.5  
IF Cold days ≥ 554 THEN Meq raveling 8 years after construction = 13.5  
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Table 15. Accuracy of RST classification, upper and lower approximation for model 
Meq5Rav_RST. 

Class Number of data 
points 

Number of lower 
approximation 

Number of 
higher approxi-
mation 

Accuracy 
(Leave-one-
out) 

NoneLow 51 40 57 74.51% 

LowModerate 21 21 15 71.34% 

12   Data Mining Using Rough Sets Theory 

12.1   Parameter Determination for Rough Sets Theory 

This section applies the rough sets theory method to develop models Meq5Rav_RST 
and Meq8Rav_RST. The first step in applying RST is to classify the output variable 
to discrete classes. Because of the low number of data points for Meq5Rav_RST, it 
was decided to classify the output variable to only two classes: NoneLow (0 ≤ 
Meq5 ≤ 5) and LowModerate (5 < Meq5 ≤ 13.5). The reason for choosing these 
specific classes is that the output needs to be classified into the classes which 
show the severity of the damage and, at the same time, contain enough data points. 
This is due to the fact that a class with a low number of data points will not per-
form well. The upper limit of Meq of raveling five years after construction is 13.5 
because the maximum value of this variable in the dataset is 13.5.  

Due to the large range of the output variable,  Meq raveling eight years after 
construction was classified into three discrete calsses, being NoneLow (0 ≤ Meq8 ≤ 
14), LowModerate (14 < Meq8 ≤ 34), and ModerateSevere (34 < Meq8 ≤ 114).  

12.2   Modeling Using Rough Sets Theory 

The second step in RST is to calculate the lower and upper approximation for each 
class. The result of this calculation for Meq of raveling five years after construc-
tion is shown in Table 15. Next to that, as can be seen in Table 15, the accuracy of 
classes NoneLow and LowModerate have been calculated using leave-one-out 
cross validation. The classification accuracy of class LowModerate is lower. This 
is perhaps because of the low number of data points in this class (21 data points).  

Table 16 gives the lower and upper approximation for Meq of raveling eight 
years after construction. As can be seen, the accuracy of classification of all 
classes was also determined using leave-one-out cross validation. 

RST is well suited to identify the most significant input variable by computing 
Reducts and Core. Thus, given the data, six Reducts were calculated for Meq of 
raveling five years after construction: 
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R1 = { Bitumen content, %Coarse}          
R2 = {Bitumen content, Voids content, %Coarse}  
R3 = { Bitumen content, Voids content}   
R4 = {Bitumen content, %Coarse, Cold days}       
R5 = {Bitumen content, %Coarse, Traffic} 
R6 = {Bitumen content, Voids content, Traffic} 
 

Intersecting all Reducts leads us to Core, which is in this case Bitumen content. 
Then the classification rate using only the Core variable (Bitumen content) was 
calculated, being 18% (total of both classes). This means although Bitumen con-
tent is the most important input variable for Meq of raveling five years after con-
struction, the other four input variables are still significant for a reasonable quality 
of the models. The Reducts were also generated for Meq of raveling eight years af-
ter construction, resulting in three Reducts:  

R1={ Voids content, Bitumen content, Cold days } 
R2={Voids content, Coarse} 
R3={Voids content, Coarse, Cold days} 

The intersection of the Reducts, the Core, was Voids content for Meq of raveling 
eight years after construction.  

12.3   Evaluation/Interpretation of RST Models 

In the next step, MODLEM2 algorithm was used to generate a set of if-then rules, 
i.e., the set does not contain any redundant rules. For Meq of raveling five years 
after construction, the induced set contained 6 rules, where four rules correspond 
to class NoneLow and two rules to class LowModerate. All rules were supported 
by at least four data points. The number of data points supporting a rule is also 
called the strength of that rule. Rules related to class NoneLow, have a minimum 
strength of six and a maximum of 36. From the two rules related to class Low-
Moderate, one has the strength of six and the other one the strength of four. This 
shows that the rules belonging to class LowModerate are less strong rules (sup-
ported by less data points). Table 17 shows the rules and their strength.  

Table 18 shows the RST rules generated for Meq of raveling eight years after 
construction. As can be seen the maximum and minimum strength of the rules is 
lower than the one from Meq of raveling five years after construction (26 and three 
comparing to 36 and four). In total, nine rules were generated, five related class  
 

Table 16. Accuracy of RST classification for model Meq8Rav_RST. 

Class Number of 
data points 

Number of lower  
approximation 

Number of 
higher  
approximation 

Accuracy 
(Leave-one-out) 

NoneLow 25 14 36 60.00% 

LowModerate 31 18 42 61.29% 

ModerateSevere 12 9 18 83.33% 
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Table 17. RST rules generated for Meq5Rav_RST using MODLEM2 algorithm and their 
strength. 

RST rule Strength 

IF (Bitumen content ≥ 3.95) AND (Cold days < 310) THEN (Meq5 = NoneLow) 36 

IF (Bitumen content ≥ 3.95) AND (Voids content < 18.3%) AND (%Coarse < 84.8) 

                                                                                        THEN (Meq5 = NoneLow) 

33 

IF (Cold days < 310) THEN (Meq5 = NoneLow) 12 

IF (Voids content < 20.6%) THEN (Meq5 = NoneLow) 11 

IF(Traffic < 7.5E7)  THEN (Meq5 = NoneLow) 6 

IF (Bitumen content < 3.95) AND (Voids content > 20.6%) 

                                                                                 THEN (Meq5 = LowModerate) 

6 

IF (Voids content > 20.6%) AND (Cold days > 310) 

                                                                                 THEN (Meq5 = LowModerate) 

4 

 

Table 18. RST rules generated for Meq8Rav_RST using MODLEM2 algorithm and their 
strength. 

RST rule Strength 

IF (Voids content < 20.6) AND (Cold days < 554) THEN (Meq8 = NoneLow) 26 

IF (82.5 ≤ Coarse < 83.5) AND (Cold days < 554) THEN (Meq8 = NoneLow) 24 

IF (Voids content < 20.6) THEN (Meq8 = NoneLow) 16 

IF (Coarse ≥ 80.7) AND (Cold days < 474) THEN (Meq8 = NoneLow) 14 

IF (Coarse < 84.7) THEN (Meq8 = NoneLow) 9 

IF (Bitumen content < 3.95) AND (Cold days ≥ 554) THEN (Meq8 = LowModerate) 4 

IF (Voids content ≥  20.6) AND (Coarse < 80.7) AND (Cold days ≥ 554)  

                                                                                  THEN (Meq8 = LowModerate) 

3 

IF (Bitumen content < 4.1) AND (Coarse < 80.7) THEN (Meq8 = LowModerate) 3 

IF (Voids content ≥  22) THEN (Meq8 = ModerateSevere) 3 

 
NoneLow, three to LowModerate, and one to class ModerateSevere. The maximum 
strength of rules for class NoneLow was 26, for class LowModerate 4 and for class 
ModerateSevere 3.  

13   Summary and Conclusions 

This study carried out the process of knowledge discovery for raveling of porous 
asphalt concrete in the Netherlands. The results were demonstrated in the form of 
graphs and plots of the mined models for raveling five and eight years after  
construction.  
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Table 19. Comparison of results of ANN and SVR models. 

Model Testing error R-square 

Meq5Rav_ANN 0.24 0.95 

Meq5Rav_SVR 2.9 0.97 

Meq8Rav_ANN 3.26 0.94 

Meq8Rav_SVR 6.4 0.87 
 

Table 20. Interpretation of results of ML techniques for raveling five years after construction. 

IF THEN  Method 

Bitumen < 4 0 < Meq5 ≤ 10 ANN 

Bitumen ≥ 4 Meq5 = 0 ANN 

Cold days < 310 Meq5 = 0 ANN 

Cold days ≥ 310 0 < Meq5 ≤ 3 ANN 

   

3.95 ≤ Bitumen ≤ 4.75 0 ≤ Meq5 ≤ 5 SVR 

4 ≤ Bitumen < 4.4 AND Traffic < 5E7 0 ≤ Meq5 ≤ 5 SVR 

3.95 ≤ Bitumen < 4.7 AND Traffic < 1.6E7 0 ≤ Meq5 ≤ 5 SVR 

Bitumen < 3.95 6 ≤ Meq5 ≤ 9 SVR 

Bitumen ≥ 4.7 6 ≤ Meq5 ≤ 9 SVR 

   

Bitumen  < 3.95 Meq5 = 9.2 RT 

Bitumen  ≥ 3.95 AND Traffic ≥ 6E7 Meq5 = 4.95 RT 

Bitumen  ≥ 3.95 AND Traffic < 6E7 AND %Coarse ≥ 84.8 Meq5 = 10.75 RT 

Bitumen  ≥ 3.95 AND Traffic < 6E7 AND %Coarse < 80.85 Meq5 = 2.85 RT 

3.95 ≤ Bitumen < 4.75 AND Traffic < 6E7  

                                    AND 80.85 ≤ %Coarse < 84.8 

Meq5 = 0.57 RT 

Bitumen ≥ 4.75 AND Traffic < 6E7  

                        AND 80.85 ≤ %Coarse < 84.8 

Meq5 = 5 RT 

   

Cold days < 310 0 ≤ Meq5 ≤ 5 RST 

Voids content < 20.6% 0 ≤ Meq5 ≤ 5 RST 

Traffic < 7.5E7 0 ≤ Meq5 ≤ 5 RST 

Bitumen ≥ 3.95 AND Cold days < 310 0 ≤ Meq5 ≤ 5 RST 

Bitumen ≥ 3.95 AND Voids content < 18.3%  

                         AND %Coarse < 84.8 

0 ≤ Meq5 ≤ 5 RST 

Bitumen < 3.95 AND Voids content > 20.6 5 < Meq5 ≤ 13.5 RST 

Voids content > 20.6% AND Cold days > 310 5 < Meq5 ≤ 13.5 RST 
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A detailed explanation of knowledge discovery steps, being data preparation, 
data mining, and evaluation/interpretation of the results is given. In the data prepa-
ration, an extended variable selection was performed to choose a maximum of five 
input variables. Reduction of the input dimension was needed due to the low num-
ber of data points available (after preparation 72 data points). For the data mining 
step of knowledge discovery, four ML based techniques were used: artificial neural 
network, support vector machine, regression trees, and rough set theory. The pre-
diction power of ANN and SVR were tested on a small part of the dataset, which is 
called the test set. The test results of ANN and SVR are summarized in Table 19. 

As can be seen in the table, there is not much difference between the ANN and 
SVR models for Meq raveling five years after construction. However, ANN per-
forms better than SVR for Meq raveling eight years after construction. The results 
of the other two techniques (regression tree and rough set theory) were in the form 
of if-then rules. For evaluation of the models, different tools were employed such 
as scatter plots, color contours, and response graphs. A summary of the interpreta-
tion of the results of all four techniques is given in Table 20 for raveling five years 
after construction. 

Having the results of different techniques reported in Table 20, the question 
now is “can some common conclusions be drawn by the different methods about 
any of the input variables?” To answer this, graphs can be made from the results 
of all techniques about a specific variable. For instance, Figure 33 shows the re-
sults of ANN, SVM, RT, and RST for the input variable Bitumen content. 

 

 

Fig. 33.  The result of different methods for the input variable “Bitumen content”. The out-
put of all techniques is Meq (raveling) 5 years after construction. 
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Fig. 34.  The result of different methods for the input variable “Traffic for Meq (raveling) 5 
years after construction (this values are valid under condition that 3.95 ≤ Bitumen < 4.75). 

Figure 33 shows that all techniques agreed on the fact that a bitumen content 
lower than 3.95% causes a high amount of raveling during the first five years af-
ter construction. It also can be concluded that a bitumen content between 3.95% 
and 4.75 causes an amount of raveling that is limited to Meq = 5. Therefore a  
bitumen content in that range is recommended. 

Figure 34 shows the result of methods SVM, RT, and RST for input variable 
Traffic intensity. The figure shows that RST and SVM agree that if the bitumen 
content is between 3.95 and 4.75%, a cumulative traffic intensity five years after 
construction less than 5E7 will results in a maximum raveling of Meq = 5. 

Furthermore, the results of both ANN and RST show that if the cumulative 
number of cold days < 310, then low amount of raveling five years after construc-
tion will occur (Meq between 0 and 5).  

It is not possible to give similar graphs for all input variables. These variables 
appear in combination with other variables (Table 20) and not individually.  
Table 21 shows the results of models for raveling eight years after construction in 
the form of if-then rules. 

Also for Meq raveling eight years after construction (Table 21), the question is 
again if the results of different techniques imply the same conclusions about any 
of the input variables.  

ANN and SVR show again that Bitumen content ≤ 3.95 is not recommended. Next 
to that, ANN and RST declare that using a maximum of 20 to 22% of voids content in 
the PAC mixture can avoid high amount of raveling. Further, taking the ANN and RT  
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Table 21. Rules generated by different methods for raveling eight years after construction. 

IF part of the rule THEN part of the rule Method 

Bitumen < 3.95% 12 ≤ Meq8 < 38 ANN 

3.95% ≤ Bitumen < 4.60% 0 ≤ Meq8 ≤ 12 ANN 

Voids content > 20% 10 ≤ Meq8 ≤ 21 ANN 

82.5 ≤ %Coarse < 83.5 Meq8 ≈ 8 ANN 

%Coarse > 83.5 13 ≤ Meq8 ≤ 35 ANN 

Cold days ≥ 554 2 ≤ Meq8 ≤ 64 ANN 

Cold days < 554 Meq8 ≈ 2 ANN 

   

4.15% ≤ Bitumen ≤ 4.60% 0 ≤ Meq8 ≤ 14 SVR 

82.5 ≤ %Coarse < 83.5 AND Bitumen > 3.95 0 ≤ Meq8 ≤ 14 SVR 

Cold days ≥ 554 AND Bitumen < 4.10 15 ≤ Meq8 ≤ 34 SVR 

Cold days < 554 AND Bitumen > 3.95 0 ≤ Meq8 ≤ 14  

Bitumen < 3.95% 15 ≤ Meq8 ≤ 34 SVR 

Bitumen > 4.65% 35 ≤ Meq8 ≤ 114 SVR 

   

Cold days < 554 AND Bitumen < 4.45 Meq8 = 6.5 RT 

Cold days < 554 AND Bitumen ≥ 4.45 Meq8 = 1.5 RT 

Cold days ≥ 554 Meq8 = 13.5  

   

Voids content < 20.6 AND Cold days < 554             0 ≤ Meq8 ≤ 14 RST 

82.5 ≤ %Coarse < 83.5 AND Cold days < 554 0 ≤ Meq8 ≤ 14 RST 

Voids content < 20.6 0 ≤ Meq8 ≤ 14 RST 

%Coarse ≥ 80.7 AND Cold days < 474 0 ≤ Meq8 ≤ 14 RST 

%Coarse < 84.7 0 ≤ Meq8 ≤ 14 RST 

Bitumen content < 3.95 AND Cold days ≥ 554 14 < Meq8 ≤ 34 RST 

Voids content ≥  20.6 AND %Coarse < 80.7  

                                  AND Cold days ≥ 554 

14 < Meq8 ≤ 34 RST 

Bitumen content < 4.1 AND %Coarse < 80.7 14 < Meq8 ≤ 34 RST 

Voids content ≥  22 34 < Meq8 ≤ 114 RST 

 
rules into account, it can be concluded that Cold days ≥ 554 results in moderate rav-
eling. Finally, it seems that ANN, SVR, and RST recommend the percentage of 
coarse material to be between 82.5 and 83.5 in order to keep raveling low. 

In general, the presence of the input variable Bitumen content in the results of 
all techniques for both raveling five and eight years after construction shows the 
importance of this input variable for raveling. Another general point to notice is 
that Traffic is strongly present in the first five years after construction but is less 
important for eight years after construction. This may imply that heavy traffic 
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causes raveling mainly in the first few years of the lifespan of the porous asphalt. 
It was also noticeable that a high number of Cold days after both models of  
five and eight years after construction of PAC layers cause raveling. Finally, the 
results showed that an optimum Coarse percentage will avoid an excessive 
amount of raveling.  
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Abstract. Efficient and economical methods are important in determination of the struc-
tural properties of the existing flexible pavements. An important pavement monitoring  
activity performed by most highway agencies is the collection and analysis of deflection 
data. Pavement deflection data are often used to evaluate a pavement’s structural condition 
non-destructively. It is essential not only to evaluate the structural integrity of an existing 
pavement but also to have accurate information on pavement structural condition in order to 
establish a reasonable pavement rehabilitation design system. Pavement structural adequacy 
is often evaluated by calculating elastic modulus of each layer using the so-called “backcal-
culation”. Backcalculating the pavement layer properties is a well-accepted procedure for 
the evaluation of the structural capacity of pavements. The ultimate aim of the backcalcula-
tion process from Nondestructive Testing (NDT) results is to estimate the pavement mate-
rial properties. Using backcalculation analysis, flexible pavement layer thicknesses together 
with in-situ material properties can be backcalculated from the measured field data through 
appropriate analysis techniques. In this study, adaptive neural based fuzzy inference system 
(ANFIS) is used in backcalculating the pavement layer thickness and moduli from deflec-
tions measured on the surface of the flexible pavements. Experimental deflection data 
groups from NDT are used to show the capability of the ANFIS approaches in backcalcu-
lating the pavement layer thickness and moduli, and compared each other.  

Keywords: Backcalculation, Nondestructive Testing, Adaptive neural based fuzzy infer-
ence system, Flexible pavements. 

1   Introduction 

Highway pavements are generally constructed in the form of flexible pavements. 
Flexible pavements are layered systems with better materials on top and inferior 
materials at the bottom. Starting from the top, the pavement consists wearing 
course, base and sub-base layers. The base material may be a bituminous mix or a 
granular material, depending on the number of heavy vehicles on the considered 
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section of the road. However, local and cheaper materials can be used as a sub-
base layer on top of the subgrade (Huang, 1993). Repeated applications of vehicle 
loads, weather conditions and other factors decrease the serviceability of the 
pavement. For this reason, a maintenance program should be set up to decide 
when and where to carry out maintenance works. The most difficult aspect is to 
determine the remaining life of the pavement. In order to determine the remaining 
life, the pavement should be analyzed structurally with material properties for 
each layer being elastic modulus, Poisson’s ratio and thickness of layer. 

The response of a multilayered flexible pavement to the load of a vehicle is 
complex. The variety of possible geometries, materials, layer interfaces, loads, 
weather effects, etc. make the prediction of pavement behavior a challenging task. 
In order to study the response of the entire sites are usually instrumented with de-
flection, strain, pressure, temperature and humidity sensors. Data obtained from in 
situ measurements are used to validate and develop theoretical models. Using  
the models it is possible to predict the response of pavements under different con-
ditions, thus helping to improve design, extended pavement life and reduce main-
tenance costs (Arraigada et al., 2008). Due to the combined influence of traffic 
loading and environment, the structural condition of pavement deteriorates with 
time. Studies on structural damage, which usually result in functional deterioration 
are important for the highway engineer to plan the maintenance/strengthening 
strategies to extend the life of pavements, and provides valuable information to a 
highway agency for proper work planning and budged allocation (Reddy and 
Veeraragavan, 1997; Madanat et al., 2002). One of the most important tasks of 
highway officials and engineers is the maintenance of deteriorating existing high-
way system. Deflection has the virtue of being much simpler to measure and 
would be expected to show a broad correlation with performance. Due to in-
creased magnitude of wheel load, tire pressure, and traffic load repetitions, the 
pavement deterioration starts taking place much earlier than the anticipated design 
life and steps have to be undertaken the existing pavement with suitable overlay 
material and thickness so as to extend the service life to the required period. The 
appropriate timing to carry out maintenance/rehabilitation is crucial; if delayed, 
the road structure may fail beyond any scope of restoration (Reddy and Veerara-
gavan, 1997). There are two major modes of flexible pavement structural failure – 
fatigue cracking and rutting. These failure modes are a result of tensile strain  
cycles in the asphalt concrete layer and stress cycles on the subgrade surface. The 
pavement structural capacity deteriorates with time (or traffic) due to the fatigue 
of pavement materials and other types of pavement distress (Hassan et al., 2003). 

Nowadays, applied pavement is the most popular area of engineering science. 
During these days, guesswork has been replaced by reliable methods for evaluat-
ing, designing, managing, and maintaining pavements. Precise Nondestructive 
Testing (NDT) equipments have been developed for determining pavement struc-
tural condition. Hence, we can say that pavement construction and maintenance 
practices based on trial and error or tradition have been replaced by science. 
Pavement design and management can now be based on factual information gath-
ered with specialized equipment. 
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Among nondestructive deflection measurement methods, commercially avail-
able devices are the Benkelman Beam, Dynaflect, Road Rater, Falling Weight De-
flectometer (FWD), Rolling Weight Deflectometer (RWD) and Rolling Dynamic 
Deflectometer (RDD). In the last 15-20 years, the Benkelman Beam and Dynaflect 
have been applied successfully to many projects all over the world (Chang et al., 
2002).  

In recent years, one of the most important and promising research field has 
been “Heuristics from Nature”, an area utilizing some analogies with natural or 
social systems and using them to derive non-deterministic heuristic methods and 
to obtain very good results. Artificial Neural Network (ANN) and Fuzzy Logic 
Approach (FLA) methods are among the heuristic methods. 

Artificial neural networks (ANN) are valuable computational tools that are in-
creasingly being used to solve resource-intensive complex problems as an alterna-
tive to using more traditional techniques (Ceylan et al., 2004). Ceylan employed 
ANN in the analysis of concrete pavement systems and developed ANN-based de-
sign tools that incorporated the state-of-the-art finite element solutions into routine 
practical design at several orders of magnitude faster than those sophisticated fi-
nite element programs (Ceylan, 2002). Meier and Rix (1994 and 1995) and Meier 
et al. (1999) firstly attempted to backcalculate the pavement layer properties using 
ANN. Also, the first author (Saltan et al., 2002) and the authors of the paper (Sal-
tan and Terzi, 2004; Saltan and Terzi, 2005) used the ANN approach in backcal-
culating pavement layer properties. From these studies, it can be said that there are 
several advantages to using ANN for NDT evaluation of highway flexible pave-
ments. The mathematical simplicity of ANN makes them computationally effi-
cient (Meier and Rix, 1994). 

Jang (1993) first proposed the adaptive neural based fuzzy inference system 
(ANFIS) method and applied its principles successfully to many problems. It iden-
tifies a set of parameters through a hybrid learning rule combining the back-
propagation gradient descent error digestion and a least squares method. It can be 
used as a basis for constructing a set of fuzzy IF-THEN rules with appropriate 
membership functions in order to generate the preliminary stipulated input-output 
pairs.  

Kaur and Chou (1999) applied the Neuro-Fuzzy techniques for modeling the 
highway pavement performance prediction. Also, Göktepe et al (2005) used the 
ANFIS methodology for backcalculating the mechanical properties of flexible 
pavements. 

The main purpose of this paper is to develop an ANFIS methodology for esti-
mating the layer thickness and moduli values by considering seven deflection data. 

2   Backcalculation of Pavement Layer Thickness 

The highway maintenance engineer wishes to determine the structural integrity  
of a road pavement by nondestructive means (McMullen et al., 1986). It is essen-
tial not only to evaluate a structural integrity of existing pavement but also to  
have accurate information on pavement surface conditions in order to establish  
a reasonable pavement rehabilitation design system (Inoue and Matsui, 1990). 
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Nondestructive Testing (NDT) of asphalt concrete pavements is one of the most 
useful and cost-effective methods developed by engineers to assist in the man-
agement of pavements (Zhou et al., 1990). NDT enables the use of a mechanistic 
approach for pavement design and rehabilitation because in-situ material proper-
ties may be backcalculated from the measured field data through appropriate 
analysis techniques (Kang, 1998). NDT conducted on pavement surfaces are also 
used in the design of pavement overlays. Pavement is not destroyed and the test is 
relatively quick. If the FWD is used, then stress levels comparable to those antici-
pated for truck loadings can be obtained. The backcalculation procedure is an  
inverse operation of knowing the pavement characteristics and estimating the de-
flections due to an applied load (Hassan et al., 2003). Estimation of layer elastic 
mechanical characteristics by the use of pavement surface deflections and back-
calculation computer programs has been rapid (Mahoney et al., 1993). In order to 
backcalculate reliable values, it is essential to accomplish several deflection tests 
at different locations along a highway section having relating uniform layer thick-
nesses (Uzan et al., 1998). Pavement structural properties may be generally stated 
in terms of moduli values which is key element in pavement analysis and evalua-
tion procedures (Zhou et al., 1990). The backcalculation of layer properties from 
surface deflection measurements is of considerable importance for the accurate 
evaluation and design of overlays and the management of existing pavements 
(Harichandran et al., 1993). Deflections obtained from the FWD are used to back-
calculate the layer material properties, which are elastic modulus, Poisson's ratio 
and layer thicknesses. Flexible pavement layer thicknesses must also be known to 
get realistic results. Layer thicknesses can be obtained by coring the flexible 
pavement. Although laboratory testing of core samples yields much valuable in-
formation to assess pavement layer conditions, the required traffic control and 
time delay lowers the value of the service to the general public (Chang et al., 
2002). But it is important that nondestructive tests are carried out on flexible 
pavements for preventing to be damaged.  

In order to analyze flexible pavements, individual layers are characterized by 
their characteristic parameters (elasticity moduli – E1, E2, …, En, Poisson’s Ratios 
- μ1, μ2, …, μn and the layer thicknesses- h1, h2, …, hn of the layers above sub-
grade) (Rakesh et al., 2006). 

Elastic modulus is one of the most important mechanical properties of asphalt 
concrete mixes because it is related to the strength of asphalt concrete and thus the 
pavement distress resistance (Li et al., 1999). The thickness of pavement layers is 
an important parameter used in Pavement Management System (PMS). Thickness 
data are used for pavement condition assessment, performance predictions, selec-
tion of maintenance strategies and rehabilitation treatments, basic quality assess-
ment, and as input to overlay thickness design. Pavement thickness is usually  
determined from direct testing such core samples, nondestructive testing such as 
radar, or historical records such as pavement network database (Attoh-okine  
and Roddis, 1998). Due to limitations in the backcalculation software, and the  
limited time available to perform backcalculation activities in a production envi-
ronment, pavement layer thicknesses are generally assumed to be constant over 
the pavement section under test. This is seldom the case. Pavement layer thickness 
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variations result from various construction and maintenance details, even under 
specially controlled conditions. By considering the layer thicknesses as unknown 
parameters, layer thicknesses can also be backcalculated as well as layer moduli 
(Wang and Lytton, 1993).  

Pavement structural evaluation analysis has long been a problem for pavement 
engineers. Previous approaches concentrated on statistical formulae mostly based 
on regression analysis to predict the performance. These equations illustrate the 
effects of various factors on the performance of pavements. These equations are 
valid only under certain conditions and should not be used if the actual conditions 
are different. Besides, this approach is very cumbersome and time consuming in 
terms of the calculation and in terms of the acquisition of the data required for do-
ing the calculations (Kaur and Chou, 1999). 

"Backcalculation" is a mechanistic evaluation of pavement surface deflection 
basins generated by various pavement deflection devices. Backcalculation takes a 
measured surface deflection and attempts to match it (to within some tolerable er-
ror) with a calculated surface deflection generated from an identical pavement 
structure using assumed layer stiffnesses (moduli). The assumed layer moduli in 
the calculated model are adjusted until they produce a surface deflection that 
closely matches the measured one. The combination of assumed layer stiffnesses 
that results in this match is then assumed to be near the actual in situ moduli for 
the various pavement layers. The backcalculation process generally refers to an it-
erative procedure and normally done with computer software. NDT and backcal-
culation processes are well-accepted procedures for the evaluation of structural 
capacity of the flexible pavements. 

The backcalculation of pavement moduli from surface deflection measurements 
using nondestructive tests has been used for more than four decades to assess and 
manage existing pavements and to design overlays. Unfortunately, the backcalcu-
lated pavement moduli lack the accuracy in spite of the existence of many back-
calculation programs employing different backcalculation procedures and algo-
rithms (Alkasawneh, 2007). 

A basic flowchart (patterned after Lytton, 1989) that represents the fundamental 
elements in all known backcalculation programs is shown as Figure 1. Briefly, 
these elements include (http://training.ce.washington.edu/wsdot/): 

• Measured deflections. Includes the measured pavement surface deflections 
and associated distances from the load.  

• Layer thicknesses and loads. Includes all layer thicknesses and load levels 
for a specific test location.  

• Seed moduli. The seed moduli are the initial moduli used in the computer 
program to calculate surface deflections. These moduli are usually esti-
mated from user experience or various equations.  

• Deflection calculation. Layered elastic computer programs are generally 
used to calculate a deflection basin.  

• Error check. This element simply compares the measured and calculated 
basins. There are various error measures which can be used to make such 
comparisons (more on this in a subsequent paragraph in this section).  
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• Search for new moduli. Various methods have been employed within the 
various backcalculation programs to converge on a set of layer moduli 
which produces an acceptable error between the measured and calculated 
deflection basins.  

• Controls on the range of moduli. In some backcalculation programs, a 
range (minimum and maximum) of moduli are selected or calculated to 
prevent program convergence to unreasonable moduli levels (either high  
or low).  

 
Fig. 1. Backcalculation Flowchart (http://training.ce.washington.edu/wsdot/) 

In general, backcalculation is a laborious process, requiring a high degree  
of skill, and the results are known to be moderately to highly dependent on the  
individual doing the backcalculation. This comes about for a number of reasons, 
including the lack of a consensus standard addressing all aspects of the backcalcu-
lation process. 

Measurement of an impulse deflection wave by the FWD appears to have 
emerged as the coming method of structural pavement evaluation. A weight of 
known magnitude is dropped from different heights, creating various levels of im-
pulse loads. The pavement structure responds by a dynamic wave of deflections 
which spreads outward from the centre under the load. The peaks of this deflection 
wave are measured at several points by sensors called geophones. One of the sen-
sors is placed in the centre, accessible through a hole in the disk, and the others at 
various distances outside the disk. The outer sensors are placed on the pavement 
surface by lowering a boom. The measured deflections generated by the FWD test 
load represent a deflection bowl or basin such as it may occur under a passing  
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wheel load of corresponding magnitude and speed and of similar distribution area 
of tire contact pressure (Inoue and Matsui, 1990; Jung, 1990). 

The ultimate aim of the backcalculation process from NDT results is to esti-
mate the pavement material properties and layer thicknesses. The backcalculation 
procedure finds the set of parameters corresponding to the best fit to the measured 
deflection bowls. It is important to obtain the layer thicknesses through in-situ de-
flection test data equally non-destructively. 

Maximum precision is needed from the backcalculation procedures, and more 
realistic models will reduce the size of systematic errors. This will make it possi-
ble to predict the remaining life of a pavement realistically in the field immedi-
ately after it has been tested. 

Elastic layered programs used in asphalt pavement analysis assume linear elas-
ticity. Pavement geo-materials do not, however, follow linear type stress-strain 
behaviour under repeated traffic loading. In effect, nonlinear stress sensitive re-
sponse of unbound aggregate materials and fine-grained subgrade soils has been 
well established. Unbound aggregates exhibit stress hardening and fine-grained 
soils show stress softening type behaviour. When these geo-materials are used as 
pavement layers, the layer stiffnesses, i.e., moduli are no longer constant but func-
tions of the applied stress state. Pavement structural analysis programs that take 
into account nonlinear geo-material characterization need to be employed to more 
realistically predict pavement responses needed for mechanistic based pavement 
design (Ceylan et al., 2004).  

Current basin-matching programs fall into two broad groups. Most programs 
employ gradient search techniques to adjust the pavement layer moduli iteratively 
until the theoretical and experimental deflection basins agree within a specified 
tolerance. Required inputs include experimental deflection measurements and 
pavement layer thicknesses. The iterative solution technique also requires an ini-
tial estimate of the solution (seed moduli) and a range of moduli to constrain the 
solution. A second approach is to interpolate within a database of theoretical ba-
sins. A database of theoretical basins is generated for prescribed pavement layer 
thicknesses by parametrically varying the pavement layer moduli within expected 
ranges (Meier and Rix, 1994; Meier and Rix, 1995). 

The main problems that any classical backcalculation procedure faces are con-
vergence, accuracy, and the number of layers in the backcalculation program. 
The selection of the seed moduli controls the convergence of the backcalculation 
procedure to pavement moduli that minimizes the mean square error (objective 
function) between the measured deflection basin and the backcalculated deflec-
tion basin using the backcalculated moduli. It is known that more than one solu-
tion can satisfy the objective function criterion in backcalculating the pavement 
moduli due to the multimodal nature of the backcalculation search space where 
many local optima exist. In turn, the arrival at local optima will lead to “inaccu-
rate” pavement moduli that can be as twice as the “accurate” value. On the other 
hand, the maximum number of layers than can be used in any backcalculation 
program does not exceed 5 layers with recommendations to use layers to reduce 
the error associated with the backcalculation process. In some cases, increasing 
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the number of the layers in the backcalculation process is desirable to obtain 
more representative variation of the moduli with depth (Alkasawneh, 2007).  

3   Nondestructive Test Devices for Pavement Structural 
Evaluation 

Structural evaluation of pavement deflection response using Non Destructive Test 
(NDT) data has been growing since the introduction of the Benkelman Beam at 
the Western Association of State Highway Organizations (WASHO) Road Test in 
1952 is a simple device that operates on the lever arm principle. The Benkelman 
Beam is used with a loaded truck - typically 80 kN (18,000 lb) on a single axle 
with dual tires inflated to 480 to 550 kPa (70 to 80 psi). Measurement is made by 
placing the tip of the beam between the dual tires and measuring the pavement 
surface rebound as the truck is moved away. The Benkelman Beam is low cost but 
is also slow, labor intensive and does not provide a deflection basin (Figures 2 and 
3) (http://training.ce.washington.edu/wsdot/). Developments in analytical tech-
niques, coupled with improved deflection measurement capabilities, have resulted 
in the current so-called backcalculation techniques widely employed in pavement 
evaluation. 

 

Fig. 2. Benkelman Beam Schematic (http://training.ce.washington.edu/wsdot/) 

Calculation of load-related pavement surface deflections of specific points, us-
ing material properties of pavement layers (modulus, Poisson’s ratio, and thick-
ness), is well established (Noureldin, 1993). Of the different load responses 
(stress, strain, and deflection), only surface deflections are measured easily. 
Pavement deflection is the basic response of the structural system (surface-base-
subgrade) to the applied load. It is used frequently as an indicator of pavement 
structural capability and performance potential. Surface deflection measurements 
are rapid, relatively cheap, and nondestructive (Garg and Thompson, 1999). 
Pavement deflection is measured through a series of velocity transducers at vari-
ous distances from the baseplate, and the data can be used to backcalculate in situ 
pavement layer properties. This information can in turn be used in pavement  
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Fig. 3. Benkelman Beam in Use (http://training.ce.washington.edu/wsdot/) 

structural analysis to determine the bearing capacity, estimate the remaining life, 
and calculate an overlay requirement over a desired design life (Wang and Lytton, 
1993). The Falling Weight Deflectometer (FWD) was first introduced in France in 
1970s to test the flexible road networks. It has since gained increasing acceptance 
as one of the most effective methods for evaluating flexible roads (Karadelis, 
2000). In order to simulate the truck loading on the pavement, a circular mass is 
dropped from a certain height on the pavement. The height is adjusted according 
to the desired load level. Underneath the circular plate a rubber pad is mounted to 
prevent shock loading. Seven geophones are generally mounted on the trailer (the 
number of geophones can change). When the vertical load is applied on the pave-
ment, the geophones collect the deflection data. The duration and magnitude of the 
force applied is representative of the load pulse induced by a truck moving at 
moderate speeds (Garg and Thompson, 1999). FWD is commonly used in many 
countries. Structural evaluation of road pavements using the Falling Weight De-
flectometer (FWD) is essential tool of Pavement Management System (PMS) all 
over the world. 

Benkelman beam and Dynaflect (Figure 4) which are most commonly used de-
vices in the developing countries, give the information about underneath the centre 
of circular mass (i.e. these devices give one deflection data in each measurement) 
whereas the FWD (Figure 5) gives the information about other six points (or more 
points) which are away from the circular plate. Therefore, the effect of the wheel 
loading can also be seen in other points. 

A FWD is a device that applies an impulsive load to a pavement surface and the 
deflection response is recorded at a series of radial points. The level of impact 
load, loading duration, and area are adjusted in such a way that it corresponds to  
 



186 M. Saltan and S. Terzi 
 

 

Fig. 4. Dynaflect in use (http://training.ce.washington.edu/wsdot/) 

 

Fig. 5. FWD Application (http://training.ce.washington.edu/wsdot/) 

the actual loading by a standard truck moving on an in-service road. The impul-
sive load is sensed by load cells and the shape of the deflection profile is captured 
by a number of geophones. The basic aim of Nondestructive Evaluation by FWD 
measurements is to estimate the in situ layer characteristic parameters when the 
deflection profile is given – this is called a backcalculation problem. The problem 
of backcalculation of layer moduli of asphalt pavement from FWD data is indeed 
a complex one (Sharma and Das, 2007). 

Except these equipments, Rolling Weight Deflectometer (RWD) and Rolling 
Dynamic Deflectometer (RDD) are newly developed testing devices. RWD is a 
trailer-mounted device that continuously measures maximum pavement deflec-
tions under a load wheel under moving conditions. The RWD collects deflections 
at highway speeds of 70 to 80 kph under a 40 kN wheel loads (Briggs et al., 
2000). On the other hand, the RDD measures continuous deflection profiles rather 
than deflections at discrete points. The RDD is a truck-mounted deflectometer, 
which applies large cyclic loads to the pavement and measures cyclic deflections 
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as it moves along the pavement. Thus, rather than measuring deflections at dis-
crete locations, the RDD continuously measures the deflection profile along the 
entire pavement (Bay and Stokoe, 2000). 

4   Adaptive Neural-Based Fuzzy Inference System 

Various fuzzy inference system (FIS) types are studied in the literature and each 
one is characterized by consequent parameters. In this section a brief description 
of adaptive neural-based fuzzy inference system (ANFIS) model principles are 
presented. 

ANFIS applications and properties are investigated, and number of methods is 
proposed for partitioning the input space and hence addresses the structure identi-
fication problem. Fundamentally, ANFIS is a graphical network representation of 
Sugeno-type fuzzy systems, endowed by neural learning capabilities. The network 
is comprised of nodes and with specific functions, or duties, collected in layers 
with specific functions (Tsoukalas and Uhrig, 1997). 

In order to illustrate ANFIS’s representational strength, the neural fuzzy con-
trol systems are considered based on the Tagaki-Sugeno-Kang (TSK) fuzzy rules 
whose consequent parts are linear combinations of their preconditions. The TSK 
fuzzy rules are in the following forms: 

 ,...: 2211
j

nn
jjj AisxANDANDAisxANDAisxIFR                             

 n
j

n
jjj

j xaxaxaafyTHEN ++++== ...22110        (4.1) 

where xi’s (i = 1,2,…n) are input variables, y is the output variable (pavement ser-
viceability ratio), Ai

j are linguistic terms of the precondition part with membership 
functions μA1

j (xi), (j = 1, 2,…, n) a1
j ЄR are coefficients of linear equations fi (x1, 

x2,…, xn). To simplify the discussion it is necessary to focus on a specific Neuro-
Fuzzy Controller (NFC) of this type called ANFIS. 

Let us assume that the fuzzy control system under consideration of two inputs 
x1 and x2 and one output y and that the rule base contains two TSK fuzzy rules as 
follows: 
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In TSK fuzzy system, for given input values x1 and x2, the inferred output y* is 
calculated by the following formula 

( ) ( )212211
* / μμμμ ++= ffy              (4.4) 

where μj are firing strengths of Rj, j=1, 2, and they are given by the equation be-
low, 

)()( 21
21

xx jj AAj μμμ += ,        j=1, 2            (4.5) 

If product inference is used, the corresponding ANFIS architecture is shown in 
Figure 6, where node functions in the same layers are of the type described below.  
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Fig. 6. Structure of ANFIS (a) Fuzzy inference system (b) Equivalent ANFIS (Jang, 1993) 

This is an ANFIS architecture where the following meanings can be attached to 
each layer. 

Firstly, every node in this layer implies an input and it just passes external sig-
nals to the next layer,  

Layer 1. Every node in this layer acts as a membership function )( iA
xj

i
μ , and its 

output specifies the degree to which the given xi satisfies the quantifier Ai
j. Gener-

ally, )( iA
xj

i
μ is selected as bell-shaped with a maximum membership degree 

equal to 1 and minimum equal to zero, such as 
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j
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i

j
i

bj
i

j
iiiA

xx σμμ −−=             (4.7) 

where {m1
j,σ1

j,bi
j} is the parameter set to be tuned. In fact, continuous and piece-

wise differentiable functions, such as commonly used trapezoidal or triangular 
membership functions, are also qualified candidates for node functions in this 
layer. Parameters in this layer are referred to as precondition parameters, 

Layer 2. Every node in this layer is labeled П and multiplies the incoming signals 

)()( 21
21

xx jj AAj μμμ +=  and sends the product out. Each node output repre-

sents the firing strength of a rule,  
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Layer 3. Every node in this layer is labeled by N and calculates the normalized fir-
ing strength of a rule. That is the jth node calculates the ratio of the jth rule’s firing 
strength of all the rules’ firing strengths as,  

( ) ( )( )21
21

/ xx jj AAjj μμμμ +=              (4.8) 

Layer 4. Every node j in this layer calculates the weighted consequent value as, 

( )22110 xaxaa jjj
j ++μ              (4.9) 

where jμ  is the output of layer 4 and { }jjj aaa 210 ,, is the set to be tuned. Parame-

ters in this layer are referred to as consequent parameters,  

Layer 5. The only node in this layer is labeled as Σ, and it sums all incoming sig-
nals to obtain the final inferred result for the whole system (Lin and Lee, 1995).  

5   Development of the ANFIS Model 

Fuzzy modeling is a system identification task, which involves two phases: struc-
ture identification and parameter estimation. Structure identification includes the 
issues such as selecting relevant input variables, choosing a specific type of fuzzy 
inference system, determining the number of fuzzy rules, their antecedents and 
consequents, and determining the type and number of membership functions. De-
termining the optimum number and form of fuzzy rules is the most crucial step 
and various algorithms have been developed to automate this process, such as k-
means clustering, fuzzy C-means clustering, and subtractive clustering. The sub-
tractive clustering method was used in here. This method assumes each data point 
as a potential cluster center and calculates a measure of the likelihood that each 
data point would define the cluster center, based on the density of surrounding 
data points. The steps of the fuzzy model algorithm can be summarized as: (1) se-
lect the data point with the highest potential to be the first cluster center, (2) re-
move all data points in the vicinity of the first cluster center as determined by the 
range of influence (radius), and (3) iterate on this process until all the data are 
within the radii of a cluster center.  

Range of influence indicates the radius of a cluster when the data space is con-
sidered as a unit hypercube. Acceptable values for radii are usually between 0.2 
and 0.5. A small cluster radius will usually yield many small clusters in the data, 
resulting in many rules and vice versa. In multi-dimensional data, different radii 
may be specified for each dimension. If the same value is applied to all data di-
mensions, each cluster center will have a spherical neighborhood of influence with 
the given radius.  

Squash factor is the factor used to multiply the radii values that determine the 
neighborhood of a cluster center, so as to squash the potential for outlying points 
to be considered as part of that cluster. High values, e.g. 20, are used to find clus-
ters that are far from each other.  

Accept ratio sets the potential, as a fraction of the potential of the first cluster 
center, above which another data point will be accepted as a cluster center. High 
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values are used to accept data points that have a very strong potential for being 
cluster centers.  

Reject ratio sets the potential, as a fraction of the potential of the first cluster 
center, below which a data point will be rejected as a cluster center. High value, 
like 0.7 is used to reject all data points without a strong potential. Another impor-
tant step is parameter optimization, or fine-tuning of parameter values to best fit 
the input–output data set. Neural network learning techniques can automate this 
tuning process and this is a strong motivation for the development of neuro-fuzzy 
system. ANFIS is a new inference system that incorporates Sugeno type fuzzy in-
ference system into adaptive neural networks structure (Akbulut et al., 2004). Ta-
ble 1 shows the used parameters in the model. These parameters were found in the 
results of various applications.  

Table 1. Model parameters 

Model parameters Value 

Range of influence  0.05 

Squash factor 1.25 

Accept ratio 0.5 

Reject ratio 0.15 

Highway flexible pavements have some characteristics such as layer elastic 
modulus, layer Poisson ratio, layer thickness, and surface deflections against dy-
namical traffic loading. Among these characteristics, surface deflection values are 
especially important for evaluating the structural properties of the highway flexi-
ble pavements. A typical flexible pavement in which wearing course, base layer 
and subgrade exist was chosen for the study (Figure 7).  
 

 

 

 

 

 

 

 
 

Fig. 7. A typical flexible pavement used in the analysis 

E1, v1,   Wearing Course               h1 

E2, v2   Base Course                h2 

E3, v3   Subgrade                ∞ 
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In this study, two models were established which estimate the layer thickness 
and moduli from surface deflection values of a flexible pavement from using 
ANFIS. Seven surface deflection values at different locations were used as input. 
Layer thickness and moduli were used as output variables in first and second 
model respectively. Data sets included 114 different data configurations. These 
data sets are obtained from the earlier studies of the first author by using axially 
symmetric finite element software, SDUFEM (Saltan, 1999).  

The models are incorporating the effects of seven input parameters used to 
simulate the pavement layer thickness and moduli. The schematic of the architec-
tures of ANFIS used in here are shown in Figures 8 and 9.  

 

Fig. 8. The schematic of the architectures of ANFIS for layer moduli 

 

Fig. 9. The schematic of the architectures of ANFIS for layer thickness 
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ANFIS models are trained by using approximately 80% of the data and tested 
using the rest of the data. Prior to execution of the model, standardization, xi

1, on 
the data, Xi (i = 1, 2, …, n) is done according to the following expression such that 
all data values fall between zero and 1. 

( ) ( )minmaxmin
1 / XXXXx ii −−=            (5.1) 

where the Xi is the actual value and the Xmax and Xmin are the maximum and the 
minimum of the measurement values. Such standardization procedure renders the 
data also into dimensionless form. Furthermore, standardization removes the arbi-
trary effects of similarity between objects or variables. Membership function types 
for inputs are selected as Gauss-bell whereas it is linear for the output.  

5.1   Layer Thickness Model Properties  

The membership functions plots of deflections are shown in Figures 10, 11, 12, 
13, 14, 15, and 16. The membership functions plot of layer thickness is shown in 
Figure 17. 

 

Fig. 10. The membership functions plots of deflection 1 (loading center) 

 

Fig. 11. The membership functions plots of deflection 2 (30.5 cm distance from center) 
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Fig. 12. The membership functions plots of deflection 3 (61 cm distance from center) 

 

Fig. 13. The membership functions plots of deflection 4 (91.5 cm distance from center) 

 

Fig. 14. The membership functions plots of deflection 5 (122 cm distance from center) 
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Fig. 15. The membership functions plots of deflection 6 (152.5 cm distance from center) 

 

Fig. 16. The membership functions plots of deflection 7 (183 cm distance from center) 

 

Fig. 17. The membership functions plots of layer thickness 
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Fig. 18. Comparison of the estimated values (MLR) and desired values for training set for 
layer thickness 
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Fig. 19. Comparison of the estimated values (MLR) and desired values for testing set for 
layer thickness 

Multiple linear regression model (MLR) is also developed to estimate layer 
thickness for the same training and testing data set. The results are given in Fig-
ures 18 and 19. 

Comparison of between obtained and ANFIS model for layer thickness are 
given in Figures 20 and 21 for training and testing sets, respectively. As can be  
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Fig. 20. Comparison of the estimated values (ANFIS) and desired values for training set for 
layer thickness 

 

Fig. 21. Comparison of the estimated values (ANFIS) and desired values for testing set for 
layer thickness 

seen from the figures, ANFIS model gives the satisfactory pavement surface layer 
thickness prediction.  

As seen from the figures, ANFIS gives excellent results than MLR values for 
layer thickness estimation.  
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5.2   Layer Moduli Model Properties 

The membership functions plots of deflections are shown in Figures 22, 23, 24, 25, 26, 
27 and 28. The membership functions plot of layer moduli are shown in Figure 29. 

 
Fig. 22. The membership functions plots of deflection 1 (loading center) 

 
Fig. 23. The membership functions plots of deflection 2 (30.5 cm distance from center) 

 
Fig. 24. The membership functions plots of deflection 3 (61 cm distance from center) 
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Fig. 25. The membership functions plots of deflection 4 (91.5 cm distance from center) 

 
Fig. 26. The membership functions plots of deflection 5 (122 cm distance from center) 

 
Fig. 27. The membership functions plots of deflection 6 (152.5 cm distance from center) 
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Fig. 28. The membership functions plots of deflection 7 (183 cm distance from center) 

 
Fig. 29. The membership functions plots of layer moduli 

 
Fig. 30. Comparison of the estimated values (MLR) and desired values for training set for 
layer moduli 
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Fig. 31. Comparison of the estimated values (MLR) and desired values for testing set for 
layer moduli 

Also, multiple linear regression model (MLR) is developed to estimate layer 
moduli for the same training and testing data set. The results are given in Figures 
30 and 31.  

Comparison of between obtained and ANFIS model for layer moduli are given 
in Figures 32 and 33 for training and testing sets, respectively. As can be seen  
 

 

Fig. 32. Comparison of the estimated values (ANFIS) and desired values for training set for 
layer moduli 
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Fig. 33. Comparison of the estimated values (ANFIS) and desired values for testing set for 
layer moduli 

from the figures, ANFIS model gives the satisfactory pavement surface layer 
moduli prediction.  

As seen from the figures above, ANFIS gives excellent results than MLR val-
ues for layer moduli estimation. 

6   Conclusions 

In the present study, two ANFIS models have been presented for determining 
flexible pavement surface layer thickness and moduli. The models were estab-
lished by using ANFIS approach. ANFIS approach provides a fundamentally dif-
ferent way to backcalculate pavement layer thickness and moduli from FWD de-
flection basins. Unlike conventional approaches that backcalculate layer thickness 
and moduli by attempting to march theoretical and experimental deflection basins, 
ANFIS model simply maps deflection basins into their corresponding layer thick-
ness and moduli. Results show that wearing course thickness and moduli of flexi-
ble pavement regression values of the models are extremely acceptable. 

Some models used for this type of problems are based on some simplifying as-
sumptions that cannot reflect the reality. Solutions of the problems which do not 
have a formula or function about the solution can be easily and realistically per-
formed using these approaches presented here. 

Multiple linear regression model (MLR) is also performed both layer thickness 
and moduli estimation in the study so as to compare with ANFIS results. Same 
data set is utilized for the two different modeling techniques. Comparing the  
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models, performance of the MLR models fall into lower limit in view of the litera-
ture while ANFIS models give excellent estimation performance. 

Based on the obtained results, it may be concluded that the proposed ANFIS 
model can assist and guide to meet highway pavement engineer requests. The 
model can be effectively used for the backcalculation of the layer thickness and 
moduli of the flexible pavements. 
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Abstract. The primary purpose of this study is to demonstrate the applicability of the ge-
netic algorithm (GA) to solve nonlinear optimization problems encountered in asphalt 
pavement design. The fundamentals of the GA are briefly discussed, and four case studies 
are presented. The first case study is an example showing the backcalculation of layer 
moduli with deflection data from a falling weight deflectometer and a layered-elastic pro-
gram. The second case study demonstrates how to construct the master curve, either from a 
mix flexural frequency sweep test or from a binder rheometer test, and how to apply that 
master curve in pavement design. The third case shows how to apply the GA to characterize 
the binder discrete relaxation spectrum with a generalized Maxwell solid model. The last 
case study illustrates how to apply the GA to define the mix fatigue damage process of a 
flexural controlled-deformation beam fatigue test and the permanent shear strain accumula-
tion process of a controlled-load repetitive simple shear test with constant height using a 
three-stage Weibull approach, and how to apply the three-stage Weibull approach in pre-
dicting pavement performance. The results indicate that the GA is promising and successful 
in resolving the nonlinear optimization problem although the GA presents some difficulty 
in terms of computing efficiency in the case study of backcalulation of layer moduli. 

1   Introduction 

The Genetic Algorithm (GA) has long been used as an optimization tool in resolv-
ing numerical problems, especially the problem of nonlinear optimization. How-
ever, little has been done to apply GAs to asphalt pavement design until recently. 
The backcalculation of pavement layer moduli, design of pavement structures, and 
scheduling of pavement maintenance operations are the major applications of 
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GAs. This paper presents the use of GAs for the backcalculation of pavement 
moduli focused in the sensitivity analysis of GAs, the characterization of mix mas-
ter curve, the binder relaxation spectrum, and the material performance models of 
asphalt concrete using three-stage Weibull approach. 

Kameyama et al. developed a method for backcalculating pavement layer 
moduli from surface deflections with the GA [1], with the deflections calculated 
by layered-elastic theory as the input condition. FWA et al. [2] stressed that al-
though the strength of the GA-based methods for backcalculation lies in its supe-
rior global search ability, its computation time needs to be reduced before the 
method can be considered for routine backcalculation analysis in practice. The GA 
has replaced traditional calculus methods used to search for best-fit stiffness pro-
files of in situ pavement systems based on non-destructive test methods [3]. 

GAs have been used by Liu and Wang [4] for design of flexible pavement 
structure and by Hadi and Arfiadi [5] for design of rigid structures. 

Shekharan used GAs to develop solutions to pavement deterioration models [6], 
and Attoh-Okine presented the application of the GA in predicting roughness pro-
gression in flexible pavements [7]. GAs have been merged with artificial neural 
networks and fuzzy logic to efficiently identify the distresses to be treated [8]. The 
advantages of such approaches in the design of decision support systems have 
been described by Loia et al. [9]. 

The GA is a technique inspired by the Darwinian theory of survival of the fit-
test [10]. It mimics the natural process of evolution to develop an optimum solu-
tion. GAs operate on a set of randomly generated solutions. For each of the solu-
tions, the values of fitness function, which indicate the proximity of the solution to 
the optimum solution, are evaluated. The solutions with good fitness values are 
combined in an attempt to produce a better solution set. Replacing solutions with 
poor fitness with new solutions completes one iteration, or generation of the algo-
rithm. This process is repeated until a sufficiently good fit is obtained. 

The general procedure to conduct a GA analysis is [11]: 

1. Define the problem. The parameter definition and fitness function associated 
with the problem should be clearly identified before conducting a GA-based 
analysis. The rest of the GA procedure is to find an optimum set of parame-
ters— that is, a good gene—that minimize the fitness function. Intuitively, the 
residual sum of squares (RSS) is a good choice for the fitness function, given 
that the objective is to have the measurements and predictions as close as pos-
sible to model fitting. 

2. Generate N (even number) genetic starting strings. From the problem defini-
tion, a total of p parameters ),,3,2,1( tpttt K  are selected to construct a gene 

string (or gene). A gene 
iΛ  consists of values { })()(

3
)(

2
)(

1 ,,,, i
tp

i
t

i
t

i
t SSSS K  of p pa-

rameters, which are generated by using a uniform distribution over a specified 
range of each parameter. A gene pool is defined as a set of genes, that is, 
{ }NΛΛΛ ,,, 21 K : 
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Gene #1: { })1()1(
3

)1(
2

)1(
11 ,,,, tpttt SSSS K=Λ   

Gene #2: { })2()2(
3

)2(
2

)2(
12 ,,,, tpttt SSSS K=Λ  

………… 
 
Gene #N: { })()(

3
)(

2
)(

1 ,,,, N
tp

N
t

N
t

N
tN SSSS K=Λ  

 
3. Compute the fitness of each gene: ( ) ( ) ( )NΛΛΛ ΠΠΠ ,,, 21 K . Fitness is the term 

used to measure the goodness of fit of the problem-specified fitness function 
( )iΛΠ . Most of time, it is appropriate to define the fitness function as the RSS 

of the response variables. 
4. Rank the genes according to fitness: **

2
*
1 ,,, NΛΛΛ K . 

5. Mate nearest ranked pairs (produce offspring). The offspring 
iΘ  is generated 

as a linear combination of its parents’ genes as indicated as follows. The reason 
to have even number of genes (Step 2) is clear. 

 

( ) *
2

)1(*
1

(1)
1 1 ΛΛ Φ−+Φ≡Θ  

 
( ) *

2
)2(*

1
(2)

2 1 ΛΛΘ Φ−+Φ≡  

 
………… 
 

( ) *)1(*
1

)1(
1 1 N

N
N

N-
N ΛΛΘ −

−− Φ−+Φ≡  

 
( ) *)(*

1
)( 1 N

N
N

N
N ΛΛΘ Φ−+Φ≡ −  

 

where, )()( ii Aφ=Φ  and 10 )( ≤≤ iφ  (a random number from uniform distribu-

tion). Here, A is set at 2 . If A ≤ 1 then there is no mutation. 
6. Check design range (or constraints): ( ) +− ≤≤ 111 t

i
tt SSS ; … ; ( ) +− ≤≤ tp

i
tptp SSS , where 

−
tiS  is the left constraint and +

tiS  the right constraint. If the variable is out of 

range, set equal to (or preferably a little less than) constraint. It was found that 
the precision of the solution was affected by the range specified for each  
parameter. A broad parameter range is suggested for a novice with limited 
knowledge of the parameter. An experienced user is able to narrow down the pa-
rameter range to increase the probability of finding the optimum solution. If an 
inappropriate range is specified, it could lead to a local (or restrained) optimum. 

7. Discard the bottom M (< N) genes. 
8. Repeat with top N – M gene pool plus M new genes. 

Several issues can be addressed regarding the GA: 

1. The size of gene pool (or gene size), the number of generations, and the num-
ber of discarded genes for each generation run are going to affect the computa-
tional time and precision of the solution. 
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2. Because of the superior global search ability of GA-based method for a nonlin-
ear problem, to obtain a more accurate solution, GA can be run first and the 
Newton algorithm, which is a gradient-based iteration method for solving a 
root-finding problem [12], can be used to refine GA solutions. However, con-
ducting the GA alone with more generations or with a larger gene pool will 
also give a satisfactory solution. 

3. The GA is a simple and powerful algorithm for solving the nonlinear optimiza-
tion problem with constraints regardless of its disadvantages: (a) computational 
inefficiency with respect to time (not always the case) and (b) input of appro-
priate parameter range. 

The generalized GA-based procedure is worth keeping in mind. In the follow-
ing sections, four case studies of GA application are demonstrated. These cases 
begin with the problem definition and follow with numeric examples to explain 
how the GA works. 

2   Case 1: Backcalculation of Layer Mouduli Using FWD Data 

The FWD has been widely used to characterize pavement response. A variety of 
approaches have been used to backcalculate elastic moduli that minimize the dif-
ference between the measured peak surface deflections from the FWD and deflec-
tions calculated using a static model of the FWD on a pavement characterized by 
layer elastic theory—for example, MODULUS [documented by J. Uzan in Ap-
pendix E: MODULUS User’s Guide of NCHRP Report 327 [13]—or the Ode-
mark-Boussinesq approach—for example, ELMOD [14, 15] or CalBack [16]. An 
alternative is to use the GA approach to find an optimum set of layer moduli that 
minimizes the RSS of the difference between measured and calculated peak sur-
face deflections. As indicated in Figure 1a, an FWD was used on a three-layer 
pavement structure to characterize the layer moduli. The surface deflection was 
instrumented at various distances. According to the GA procedure outlined previ-
ously, the follwing term are defined: 

• Parameters—Three layer moduli (modulus of asphalt concrete 
acE , modulus of 

aggregate base 
abE , and modulus of subgrade 

sgE ). 

• Fitness Function— ( ) minˆ 2
=−=∑

i
ii DDRSS , where 

iD  is the FWD deflection 

at ith position and 
iD̂  is the corresponding deflection calculated from the lay-

ered-elastic program (ELSYM5). 

Application of the GA procedures for this problem includes the following: 

1. Specify ranges of parameters. 
2. Generate genes. 
3. Calculate pavement response and evaluate the fitness function. 
4. Rank and mate genes. 
5. Discard bad genes and replace with new genes. 
6. Repet Steps 1 through 5 until the specified number of generations is completed. 
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The ranges of parameters (
acE , 

abE , and 
sgE ) were determined according to 

the user’s own experience and judgment. For each gene in a gene pool, ELSYM5 
was used to calculate the pavement response—in this case the surface deflec-
tion

iD̂ —and then the fitness function was evaluated. According to the evaluated 

fitness, the parent genes were ranked and then mated to generate better offspring. 
The mated genes with larger fitness were discarded and replaced with the new 
genes generated randomly by using the uniform distribution constrained by their 
specified ranges as in Step 2. The whole process was iterated until the specified 
number of generations was completed. 

This example FWD deflection basin was measured at 15.6°C pavement surface 
temperature. Figure 1a schematically illustrates the FWD configuration, problem 
definition, and the pavement structure. The properties and parameter ranges of this 
three-layer pavement system are as follows: 

 

Layer 
Thickness 

(mm) 

Poisson’s 

ratio 

Parameter range 

(MPa) 

    

Asphalt concrete 100 0.35 2,068 to 3,447 

Aggregate base 400 0.40 345 to 1,379 

Subgrade  0.45 69 to 345 
 
Figure 1b presents the backcalculation result when a heavy FWD load (54.6 

kN) is applied to the pavement. As indicated in Figure 1b, the calculated response 
is quite satisfactory compared with the measured deflections. In this case, the 
nonlinearity of the stress-dependent subgrade was not considered. However, the 
nonlinearity can be resolved with a finite element program as the stress-strain en-
gine and following the same GA procedure as presented here. 

An analysis of variance (ANOVA) was conducted to evaluate the effects of 
gene size, number of generations, and the FWD loading levels on the parameter 
variation. Each factor has three levels. The experimental design was: 

• Load factor [H(54.6 kN), M (39.1 kN), and L (22.3 kN)]. 
• Genes factor( 500, 1,000, and 2,000); and 
• Generations factor (50, 100, and 200). 

For each combination of factor levels, 10 replicates were conducted for a total 
of 270 GA runs. The number of discarded genes was half the total number of 
genes. Figure 2 presents the design plots of mean of layer moduli and the coeffi-
cient of variation (CV) of layer moduli. 

Several findings of ANOVA can be addressed as follows: 

1. The mean of 
acE  is sensitive to the gene size and number of generations. On 

the contrary, the means of 
abE  and 

sgE  are relatively insensitive. The mean of  

acE  is positively proportional to the load level. However, the means of 
abE  and 

sgE  are negatively proportional to the load level. 
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Fig. 1. (a) Schematic of FWD and pavement structure (AC: asphalt concrete) and (b) sur-
face deflection fitting results after 50 generations with 500 genes. 

2. In general, all three parameters (
acE , 

abE , and 
sgE ) share a common tendency: 

the bigger the genes and the higher the number of generations, the lower the CV 
of the moduli (i.e., the smaller the modulus variation in all three parameters). 

3. For the asphalt concrete layer, the lower the loading level, the lower the CV of 
moduli. Conversely, for the aggregate base and subgrade layers, the low load-
ing level causes a higher CV than the high loading level. 



Case Studies of Asphalt Pavement Analysis/Design  211
 

  
21

40
.0

21
60

.0
21

80
.0

m
ea

n 
of

 E
ac

Eac (MPa): mean

Factors

H

L

M
1000

2000

500

100

200

50

load genes generations

0.
01

8
0.

02
0

0.
02

2
0.

02
4

m
ea

n 
of

 c
vE

ac

Eac: coefficient of variation

Factors

H

L

M

1000

2000

500

100

200

50

load genes generations

 

56
0

58
0

60
0

62
0

m
ea

n 
of

 E
ab

Eab (MPa): mean

Factors

H

L

M

10002000
500 10020050

load genes generations

 

0.
00

9
0.

01
0

0.
01

1
0.

01
2

m
ea

n 
of

 c
vE

ab

Eab: coefficient of variation

Factors

H
L

M

1000

2000

500

100

200

50

load genes generations

 

20
2

20
4

20
6

20
8

21
0

21
2

21
4

m
ea

n 
of

 E
sg

Esg (MPa): mean

Factors

H

L

M

10002000
500 100200

50

load genes generations

 

0.
00

40
0.

00
45

0.
00

50
m

ea
n 

of
 c

vE
sg

Esg: coefficient of variation

Factors

H

L

M

1000

2000

500

100

200

50

load genes generations

(a) (b)

(c) (d)

(e) (f)

 
21

40
.0

21
60

.0
21

80
.0

m
ea

n 
of

 E
ac

Eac (MPa): mean

Factors

H

L

M
1000

2000

500

100

200

50

load genes generations

0.
01

8
0.

02
0

0.
02

2
0.

02
4

m
ea

n 
of

 c
vE

ac

Eac: coefficient of variation

Factors

H

L

M

1000

2000

500

100

200

50

load genes generations

 

56
0

58
0

60
0

62
0

m
ea

n 
of

 E
ab

Eab (MPa): mean

Factors

H

L

M

10002000
500 10020050

load genes generations

 

0.
00

9
0.

01
0

0.
01

1
0.

01
2

m
ea

n 
of

 c
vE

ab

Eab: coefficient of variation

Factors

H
L

M

1000

2000

500

100

200

50

load genes generations

 

20
2

20
4

20
6

20
8

21
0

21
2

21
4

m
ea

n 
of

 E
sg

Esg (MPa): mean

Factors

H

L

M

10002000
500 100200

50

load genes generations

 

0.
00

40
0.

00
45

0.
00

50
m

ea
n 

of
 c

vE
sg

Esg: coefficient of variation

Factors

H

L

M

1000

2000

500

100

200

50

load genes generations

(a) (b)

(c) (d)

(e) (f)
 

Fig. 2. Design plots of means and CVs of three parameters (
acE , 

abE , and 
sgE ) showing 

effects of load level, gene size, and number of generations. 

4. On average, the magnitude of the CV of the asphalt concrete layer is about two 
times that of the aggregate base layer and about four times that of the subgrade 
layer. 

5. One can certainly conclude from the ANOVA that the bigger the size of genes 
and generations, the smaller the modulus variation. However, a trade-off exists 
between the computational time and the modulus variation. The computational 
time is a considerable disadvantage for the backcalculation of layer moduli  
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because the layered-elastic program needs to be called up whenever the fitness 
of a gene is calculated. 

In spite of the GA’s superior global search ability, computation efficiency is 
still its Achille’s heel when compared to other backcalulation programs, such as 
ELMOD and CalBack, or the method using the Kalman filter [17]. However, the 
accuracy of moduli obtained through these various approaches still needs to be 
verified with in situ measured stress-strain data.  

3   Case2: Master Curve and Its Application 

The complex modulus master curve obtained from flexural frequency sweep tests, 
which are considered nondestructive tests, is a useful tool to characterize the ef-
fects of loading frequency and temperature on the initial stiffness of an asphalt 
mix. A function that describes flexural stiffness as a function of temperature and 
time of loading can be used for pavement design. 

Flexural frequency sweep tests are conducted mostly from 15 to 0.01 Hz at 
three or four temperature levels. Under the assumption that asphalt mix is a time-
temperature-rheologically simple material, the curves can be shifted horizontally 
(or vertically if necessary) relative to one of the test temperatures to obtain the full 
spectrum of complex moduli. The ratio of relaxation times at different tempera-
tures is termed as 

Ta . The temperature shift factor 
Taln  is expressed in the form 

( ) ( )refrefT TTCTTCa −+−−= 21 /ln , where 
1C  and 

2C  are two constants [18]. 

The questions then are what should be the horizontal (or vertical if necessary) dis-
tances and how should the goodness of fit be measured? 

The most intuitive measure to set up the fitness function is RSS, while compar-
ing the observed dependent variable data (

iy ) with the corresponding predicted 

values (
iŷ ). With limited knowledge about the shifted master curve—no exact 

mathematical function is known—the generalized additive model with spline fit-
ting becomes the best candidate to calculate the predicted 

iŷ  for fitness function 

[19]. In this case, the parameters and fitness function are defined as follows: 

• Parameters—Horizontal shifts 1S , 
2S , and 

3S (Figure 3a). 

• Fitness function— ( ) minˆ 2 =−=∑ ii yyRSS , where 
iy  is the measured com-

plex modulus and 
iŷ  is the fitted complex modulus. 

As an example, Figure 3a presents the flexural frequency sweep test results for 
a typical California mix with asphalt from a Valley source. The flexural frequency 
sweep test results presented here are a summary from two flexural fatigue test set-
ups, namely conventional (without support) for temperatures of 5, 20, and 30°C 
and modified (with support) for temperatures of 20, 30, and 40°C [20]. “With sup-
port” means an aluminum support is placed beneath the specimen to prevent the 
creep effect from occurring because of specimen self-weight while it is subjected  
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Fig. 3. (a) Parameter definition and flexural frequency sweep test results at 5oC, 20oC, 
30oC, and 40oC and (b) intermediate fitting result (freq: frequency). 

to high temperatures. The loading frequencies used are 15, 10, 5, 2, 1, 0.5, 0.2, 
0.1, 0.05, 0.02, and 0.01 Hz. The upper limit of 15 Hz is a constraint imposed by 
the capacity of the test machine. The general principles for conducting frequency 
sweep tests are “quick to slow in loading frequency and hot to cold in temperature 
(if one beam is used).”  The temperatures were set at 40, 30, 20, and 5°C. 
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Fig. 4. (a) Fitting results after 50 generations with 100 genes and gamma fitting afterward 
and (b) temperature-shifting relationship with a gamma-type fitting (freq: frequency). 

Taking the *E  master curve as an example, the parameters to be fit are the 
horizontal shifts for different temperatures—that is, { }321 ,, SSS=Λ . In this case, 

three parameters were defined (as indicated in Figure 3a), 1S  shifting to the right 
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and 
2S  and 

3S  shifting to the left according to the reference temperature 20°C. 

The shifting is signed: positive to the right and negative to the left. Figure 3b illus-
trates an intermediate fitting result with a set of parameters {3.5, -2.5, -4.0}, which 
results in a RSS of 1.825. After 50 generations (100 genes at each generation), an 
optimum parameter set {5.0248, -2.9213, -5.2120} with RSS 0.169 produced a 
quite satisfactory shifting result, as indicated in Figure 4a. No function was speci-
fied for the complex modulus master curve. Instead, a generalized additive model 
with spline fitting was used to calculate RSS. However, for the purpose of further 
analysis, gamma fitting was suggested for the master curve as well as the time-
temperature shifting relationship. 

The main purpose in conducting the gamma nonlinear fitting of the data of fre-
quency sweep tests is to find a suitable mathematical function that can represent 
the relationship of the complex modulus and reduced loading frequency at a refer-
ence temperature. The gamma distribution function with shape parameter n (a 
positive number) and scale parameter β is expressed in the following form [21]: 

⎪⎩

⎪
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<
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where F(x) is the gamma distribution function and m is an index number. 
The characteristics of distribution function are 

• The values of y range from 0 to 1,  
• The x values start from zero, and  
• The y value is asymptotic to 1 as x increases.  

These aspects of a distribution function are employed in constructing the 
nonlinear fitting. 

The modified gamma fitting of *E  master curve has the following formulation: 

( )
⎟⎟
⎠
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where x = reduced loading frequency (Hz) in natural logarithm and A, B, C, and D 
are mathematically determined coefficients. 

The modified gamma fitting of temperature-shifting relationship has the same 
formulation as used in the *E master curve but with 1=n , 0=D  and can be ex-
pressed as follows: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−⋅=

B

TT
AaLn ref

T exp1  

where ( )TaLn  is the temperature shift factor, A and B are the mathematically de-

termined coefficients, and 
refT  is the reference temperature (20oC). 



216 B.-W. Tsai, J.T. Harvey, and C.L. Monismith 
 

Figure 4 demonstrates the appropriate nonlinear fit by using the modified 
gamma fitting for the master curve and the time-temperature shifting relationship. 
The advantage of using the gamma function is to provide a specified continuous 
mathematic function that is easy to incorporate into programming and calculation. 
In a discrete sense, using the spline function when estimating the GA parameters 
can do the same job. 

The major purpose of finding the master curve and the time-temperature shift 
factor is to correct the loading frequency and temperature effects when conducting 
a pavement performance prediction.  

As an example, Figure 5 indicates the way to correct the initial stiffness with 
various loading frequencies and temperatures. The general steps to calculate inter-
polatively the initial stiffness at the loading frequency ω and temperature T are as 
follows: 

1. Find the temperature difference with respect to the reference temperature. 
2. Map the temperature difference through the time-temperature relationship func-

tion to obtain the shift factor (Figure 5a). 
3. Locate the loading frequency ω in Figure 5b; add up the signed shift factor; and 

then map through the master curve function to obtain the corrected stiffness. 

For example, suppose that the temperature at the bottom of asphalt concrete 
layer is 25°C, which is 5°C greater than the reference temperature 20°C; hence, 
from Figure 5a the time-temperature relationship we have 452.1ln −=Ta . By 

adding this value with the in situ loading frequency, for example, 10 Hz in this 
case, we then have the corrected initial stiffness at 25°C and 10 Hz as illustrated in 
Figure 5b. Notice that for a specified loading frequency, the correction moves to 
the left at higher temperature (relative to the reference temperature) and moves to 
the right at lower temperature. 

With the GA, it is relatively easy to incorporate the parameters for vertical 
shifts and conduct the same Gamma nonlinear fitting procedure to the shifted mas-
ter curve. For this GA application, the computational time is not an issue because 
no serious calculation is involved as in the modulus-backcalulation case. 

4   Case 3: Discrete Relaxation Spectrum of Asphalt Binder 

Characterization or modeling of asphalt binder properties often requires the re-
laxation time spectrum, )(tG , instead of using the dynamic moduli, ( )ω′G and 

( )ω′′G , which are easy to measure from the dynamic shear rheometer test in the 

frequency domain. In addition, the relaxation model in the time domain is easier to 
interpret than in the frequency domain. The relaxation spectrum not only enables 
conversion of time to frequency (or vice versa) but also yields information about 
molecular structure. The GA provides a relatively easy and powerful way to solve 
the parameters of a discrete relaxation spectrum

ig , 
iλ  of a generalized Maxwell 

solid model by fitting dynamic mechanical data. Instead of reinventing the wheel 
theoretically in the field of asphalt rheology, the main point of this GA application  
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Fig. 5. (a) Temperature shift factors at ToC and 25oC and (b) initial stiffness correction at 
ToC and 25oC at loading frequency of 10 Hz. 

is to demonstrate the relatively intuitive way to find the parameters of relaxation 
spectrum.  

The relaxation modulus, )(tG , of a generalized Maxwell solid model can be 

written as a discrete set of exponential decays as follows [19]: 
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Fig. 6. RSS convergence trends of 10 GA replicates against generations, with a 12-unit 
generalized Maxwell solid model. 

( ) ( )∑
=

λ−+=
N

i
iie tgGtG

1

exp  

The formulation consists of the equilibrium modulus 
eG  which is finite and 

greater than 0 for solids and N relaxation modes defined by their relaxation 
strengths 

ig  and their relaxation times
iλ . The dynamic moduli, storage modulus 

G ′  and loss modulus G ′′  can be expressed as follows: 

( ) ( )
( )∑

= ωλ+
ωλ

+=ω′
N

i i

i
ie gGG

1
2

2

1                                                   
(1)

 

( )
( )∑

= ωλ+
ωλ

=ω′′
N

i i

i
igG

1
21                                                  

(2)
 

Hence, the problem definition for GA application is to find the parameters of a 
discrete relaxation spectrum by simply fitting Equations 1 and 2 to G′ and G ′′  
data. Because the ranges of parameters might be over several decades, it is sug-
gested that the ratio residual ( ) 1ˆ −′ω′ jj GG  be used instead of the normal resid-

ual ( ) jj GG ˆ ′−ω′ . As before, it is necessary to minimize RSS to obtain the optimum 

model. It should be remembered that the G′ and G ′′ curves need to be satisfied si-
multaneously by the same set of parameters; so, RSS is the sum of squares of ratio 
residuals of G′ and G ′′ . For GA application, the following are defined: 
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Fig. 7. (a) Plots of master curves of shear complex modulus G*, storage modulus G′ , and 
loss modulus G ′′  with PG64-22 asphalt binder and (b) G′  and G ′′ fitting results using a 12-
unit generalized Maxwell solid model. 

• Parameters—The model contains 12 +N  parameters including N pairs of 
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Fig. 8. (a) Discrete relaxation spectrum plot of relaxation strengths gi versus relaxation λi 
and (b) calibrated relaxation modulus G(t) (12-unit generalized Maxwell solid model was 
used). 

In this case, a total of 10 GA runs was conducted with a gene size of 1,000, 
5,000 generations, and 600 discarded genes. A 12-unit generalized Maxwell solid 
model was adopted in this demonstration case (i.e., a total of 25 parameters). The 
asphalt binder studied here was a PG64-22. The convergence trends of RSS of 
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these 10 GA runs present similar patterns as indicated in Figure 6. The RSS stabi-
lizes around 2,000 generations. It indicates that the result cannot be better off if 
more than one run is simulated. This statement is also verified by the fitting results 
of G′  and G ′′  data presented in Figure 7b. Because the fitting results of 10 repli-
cates are so close, the fitted lines overlap each other in Figure 7b. 

Figure 7a presents the shifted master curves (also using GA) for complex 
modulus, storage modulus, and loss modulus. Baumgaertel and Winter [22] sug-
gested that,  

• the initial number of relaxation models be chosen empirically between 1 and 2 
decades and  

• the negative 
ig  values be deleted, which is not necessary in GA analysis be-

cause one can specify the 
ig  range.  

At the beginning, nothing was known about the magnitudes of 
ig  and 

iλ ; thus, 

a broad range (10-9 to 109) was specified for each 
ig  and the range of 

iλ  was 

specified over 3 decades and with 2 decades of overlap. The total range of 
iλ  was 

in the range 10-7 to 107. The equilibrium modulus 
eG  was set in the range 0 to  

108. The detail parameter range is listed in Table 1. Table 1 also lists the statistical 
summary of the 10 GA runs. 

As indicated in Figure 7b, other than the phenomenon that the loss modulus G ′′  
has a wavy fitting at the high frequencies, the fitting results for G ′  and G ′′  data 
are quite satisfactory and consistent for all 10 replicates. This waviness phenome-
non was also reported by Stastna et al. in their inspection of the Maxwell model 
[23]. The average RSS is about 0.898, the standard deviation is about 0.0504, and  
 

Table 1. Statistical summary and parameter input range of GA application in discrete re-
laxation spectrum 

 

ig  (Pa) 
iλ  (sec) 

Parameter Range Parameter Range i 
μ σ CV 

begin end 
μ σ CV 

begin end 

1 1.768E+08 1.111E+06 0.006 1E-09 1E+09 8.226E-07 1.145E-08 0.014 1E-07 1E-04 

2 7.730E+07 1.071E+05 0.001 1E-09 1E+09 3.179E-05 1.371E-06 0.043 1E-06 1E-03 

3 2.735E+07 9.542E+05 0.035 1E-09 1E+09 9.668E-04 6.406E-05 0.066 1E-05 1E-02 

4 5.586E+06 3.650E+05 0.065 1E-09 1E+09 2.057E-02 3.397E-03 0.165 1E-04 1E-01 

5 8.668E+05 1.593E+05 0.184 1E-09 1E+09 2.609E-01 4.708E-02 0.180 1E-03 1E+00 

6 1.214E+05 4.107E+04 0.338 1E-09 1E+09 3.181E+00 2.433E+00 0.765 1E-02 1E+01 

7 3.029E+04 3.861E+04 1.275 1E-09 1E+09 1.599E+01 6.111E+00 0.382 1E-01 1E+02 

8 2.384E+03 7.710E+02 0.323 1E-09 1E+09 1.019E+02 1.830E+01 0.180 1E+00 1E+03 

9 1.941E+02 3.892E+01 0.200 1E-09 1E+09 6.547E+02 6.622E+01 0.101 1E+01 1E+04 

10 8.390E+00 9.254E-01 0.110 1E-09 1E+09 5.626E+03 3.308E+02 0.059 1E+02 1E+05 

11 1.149E-01 4.721E-02 0.411 1E-09 1E+09 4.072E+05 1.601E+05 0.393 1E+03 1E+06 

12 6.965E-02 4.099E-02 0.588 1E-09 1E+09 5.449E+06 1.134E+06 0.208 1E+04 1E+07 

Ge 1.029E-01 4.868E-02 0.473 0E+00 1E+08      

RSS 8.979E-01 5.041E-02 0.056        
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the CV is 0.056. Figure 8a plots 
ig versus 

iλ  to construct a discrete relaxation  

spectrum. Note that noisy discrepancies occur at high relaxation times. The same 
disturbance is also observed in the plot of relaxation modulus )(tG  shown in Fig-

ure 8b; in addition, an obvious discontinuity happens around 4,000 seconds.  
The fitting results indicate that using the GA approach in solving the discrete 

relaxation spectrum is quite promising. The GA approach can not only avoid the 
potential ill-condition problems while solving a system of equations, but also en-
courage novices in their attempts to solve the question easily and intuitively with-
out any advance knowledge. The fitting results also suggest that, practically, no 
benefit can be achieved if more than one run is simulated. In addition, computa-
tional time is not an issue for a GA approach for this type of problem. 

5   Case 4: Three-Stage Weibull Approach and Its Application 

Fatigue cracking and rutting have long been recognized as the two major distress 
types occurring in asphalt concrete pavement. To characterize asphalt-aggregate 
mixes relative to these two distresses, the Strategic Highway Research Program 
(SHRP) project has recommended the flexural controlled-stress/strain (or con-
trolled-load/deformation) beam fatigue test for fatigue response [24] and the  
repetitive simple shear test with constant height (RSST-CH) for measuring perma-
nent deformation chacteristics [25]. The fatigue damage process (or stiffness dete-
rioration process) and the permanent deformation accumulation process are the 
two most important material properties which can be used in mechanistic-
empirical models to predict the pavement performance. The three-stage Weibull 
approach introduced here can express these two distress processes with one com-
mon formulation. 

5.1   Three-Stage Weibull Approach 

A three-stage Weibull fatigue curve is a three-stage stiffness deterioration curve 
representing flexural fatigue damage formulated by the Weibull distribution func-
tion. The stiffness ratio (SR) at repetition n, which is defined as the ratio of stiff-
ness at repetition n relative to the initial stiffness (determined roughly after 50 
repetitions), is utilized as an index for characterizing the stiffness deterioration 
process. The use of stiffness ratio as an index has several advantages including: 

1. Stiffness is easy to measure both in the laboratory and in the field, and 
2. Stiffness is often used as an input for layered-elastic programs for pavement 

analysis, thus making it useful for programming fatigue performance simula-
tions. 

The stiffness deterioration curve obtained from the flexural controlled-
deformation beam fatigue test, especially in the crack initiation phase, can be ade-
quately expressed as a two-parameter one-stage Weibull distribution function with 
the following form: 

( )βα−= nSR exp  or ( ) nSR lnlnlnln β+α=−  
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Fig. 9. Definition of a Weibull fatigue curve in three stages: Stage I—heating and reaching 
of temperature equilibrium under initial repetitions, Stage II—crack initiation developing, 
and Stage III—crack propagation. 

where SR is the stiffness ratio, n is number of the loading repetitions, and α, β are 
the experiment-determined coefficients. 

However, the one-stage Weibull equation does not appear to represent the dam-
age process when: 

1. The fatigue test has a prolonged initial phase; 
2. The fatigue tests are conducted beyond a certain stiffness ratio threshold at 

which the fatigue cracks start to propagate or at the fatigue damage slows down 
as seen in certain mixes with modified binders. 

Therefore, to describe the stiffness deterioration process in all three stages, an 
alternative is necessary. One of the approaches that serves this purpose is the ap-
plication of the two-stage Weibull distribution function suggested by Jiang [26], 
with extension to a three-stage Weibull distribution function [27]. This extended 
distribution function has the following form: 

( )
( )( )
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⎪
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The equation consists of six fundamental parameters, 
1α , 

2α , 
3α , 

1β , 
2β , and 

3β , and four derivative parameters, 
1n , 

2n , 
1γ , and 

2γ  (as illustrated in Figure 9). 

The equation needs to comply with the continuity conditions at 
1n  and 

2n : 

1. 
21 SRSR =  and 

n

SR

n

SR

∂
∂

=
∂

∂ 21 , when 
1nn = . 

2. 
32 SRSR =  and 

n

SR

n

SR

∂
∂

=
∂

∂ 32 , when 
2nn = . 

With a series of mathematical manipulations, for the given 
1α , 

2α , 
3α , 

1β , 

2β , and 
3β , the four parameters 

1n , 
2n , 

1γ , and 
2γ  can be calculated sequentially 

as follows: 
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To fit the values of the parameters for a three-stage Weibull equation to a flex-
ural controlled-deformation beam fatigue test using the GA, it is necessary to re-
solve the six fundamental parameters, 

1α , 
2α , 

3α , 
1β , 

2β , and 
3β . Following the 

GA procedure outlined previously, the following are defined: 

• Parameters—Six Weibull fundamental parameters 
1ln α , 

2ln α , 
3ln α , 

1β , 
2β , 

and 
3β . 

• Fitness Function— ( ) minˆ 2 =−=∑
i

ii yyRSS , where 
iy  is the measured value 

of ( )SRlnln −  and 
iŷ  the corresponding fitted value. 

The GA procedures for this problem include the following: 
1. Specify the ranges of parameters, 

1ln α , 
2ln α , 

3ln α , 
1β , 

2β , and 
3β . 

2. Define a gene, which is a set of these six parameters that are generated ran-
domly by using the uniform distribution constrained by their specified ranges. 

3. For each gene in a gene pool, calculate the four derivative parameters, 
1n , 

1γ , 

2n  and 
2γ , and then evaluate the fitness function. 

4. Rank the genes according to fitness, mate the ranked genes, abandon the bad 
genes, and then replace the discarded genes with new genes. 
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5. Repeat Step 2 through Step 4 until the specified number of generations is 
reached. 

A systematic method for determining the initial estimate for the three-stage 
Weibull fitting is used. Figure 10a plots ( )SRlnln −  versus nln  for a laboratory-

mixed laboratory-compacted PG64-10 mix with 6.2 percent air-void content and 
5.0 percent binder content tested at 10 Hz, 20oC, and 200 microstrain. The follow-
ing steps are required to determine the three-stage Weibull parameters: 

1. Find the asymptotic regression lines for both stages I and III and the regression 
line for stage II in the plot of ( )SRlnln −  versus nln . These intercepts and 

slopes of linear regression lines are the initial estimates of 
1ln α , 

2ln α , 
3ln α , 

1β , 
2β , and 

3β (Figure 10b). 

2. Calculate 
1n , 

1γ , 
2n  and 

2γ  sequentially. 

3. Plot the fitting result with the real data and change the values of the parameters 
if modification is necessary (Figure 10c). 

4. Fit with the GA using an appropriate program—for example, FORTRAN (Fig-
ure 10d). 
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Fig. 10. Parameter estimation of a three-stage Weibull fatigue equation: (a) original data, 
(b) initial guess of Weibull parameters, (c) initial Weibull fit, and (d) final Weibull fit by 
using GA. 
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The parameter properties of the three-stage fatigue Weibull curves can be 
summarized as follows: 

• 
1β , 

2β , and 
3β  > 0 

• 
1ln α , 

2ln α  and 
3ln α < 0 
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The definition of a three-stage Weibull shear curve (as presented in Figure 11) 
is similar to the definition of fatigue, except the permanent shear strain (PSS), 
rather than the stiffness ratio (SR), is used as the response variable to characterize 
the mix’s rutting performance. The three-stage Weibull shear curve is generally a 
mirror image of a Weibull fatigue curve along the x-axis. 
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Fig. 11. Definition of a Weibull shear curve in three stages. 

The parameter properties of the three-stage Weibull shear curve can be summa-
rized in the following: 

• 
1β , 

2β , and 
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5.2   Application of Three-Stage Weibull Approach: Material Specification 

One feasible application of using the Weibull parameters obtained from the GA is 
to establish the material performance specifications for fatigue cracking and rut-
ting of asphalt concrete mixes. 

The laboratory testing data used in the following discussion includes a total of 
172 fatigue tests and a total of 177 RSST-CH tests subjected to various testing 
conditions and material properties [28]. The mix types include, conventional 
dense-graded asphalt concrete with AR4000 binder (AR4000-D), rubberized as-
phalt concrete with gap gradation (RAC-G), and dense-graded and gap-graded 
mixes with MB4 [meeting the Caltrans MB4 specification (2003)], MB15 (meet-
ing the MB4 specification and containing 15 percent recycled tire rubber), and 
MAC15 (Southern California Green Book specification containing 15 percent re-
cycled tire rubber) modified binders. All fatigue and RSST-CH tests were fit with 
a three-stage Weibull curve using the GA to obtain the optimized Weibull pa-
rameters. The three-stage Weibull parameters were then collected and statisti-
cally analyzed.  

It was found that the use of parameters 
22 βαLn  and 

33 βαLn , the intercepts 

divided by slopes of a Weibull curve at stages II and III respectively, to character-
ize both fatigue and rutting performance seems to be very promising and rational 
especially from the point of view of mixes with polymer-modified or rubberized 
binder. The conventional two-point fatigue life modeling considers only initial 
(50th load repetitions) and end (50 percent stiffness reduction) points and neglects 
the fatigue damage process. For mixes using polymer-modified or rubberized 
binders, the traditional fatigue life definition of 50 percent loss of initial stiffness 
does not capture the improved crack propagation resistance of mixes; in addition, 
test duration to reach 50 percent stiffness reduction is very long and thus not fea-
sible. Hence, to accurately characterize the fatigue performance of these mixes, 
the fatigue damage process becomes important. 

Figures 12 and 13 illustrate the performance contour plots of fatigue [fatigue 
life (Nf) in natural logarithm] and shear [cycles to 5 percent permanent shear strain 
(pct5) in natural logarithm] test results as well as the overall mean of each mix. 
The plots indicate that the contour line values appear to be a linear combination of 
the 

33 βαLn and 
22 βαLn  parameters. It is then suggested that the 

33 βαLn and 

22 βαLn  parameters can be used for characterizing both fatigue and shear per-

formance in a very consistent way, with increasingly negative values correspond-
ing to improved performance for both fatigue tests and RSST-CH tests. 

5.2.1   Rationales for Selecting Lnα3/β3 and Lnα2/β2 Parameters 
The rationale for selecting 

22 βαLn  and 
33 βαLn  as the parameters to specify the 

fatigue/rutting performance of asphalt-aggregate mixes is based on the following  
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Fig. 12. Identificaiton of fatigue performance by using 

33 βαLn and 
22 βαLn  parameters. 

-65

-55

-45

-35

-25

-15

-5

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10

Lnα2/β2

L
n

α 3
/ β

3

AR4000
RAC
MAC15
MB15
MB4

6

8

10

12

14

16

Ln(pct5)

12

10
10

10

12

16

8 8

MB4
MB15

MAC15

AR4000

RAC

(Mean Position)
-65

-55

-45

-35

-25

-15

-5

-55 -50 -45 -40 -35 -30 -25 -20 -15 -10

Lnα2/β2

L
n

α 3
/ β

3

AR4000
RAC
MAC15
MB15
MB4

6

8

10

12

14

16

Ln(pct5)

12

10
10

10

12

16

8 8

MB4
MB15

MAC15

AR4000

RAC

(Mean Position)

 
Fig. 13. Identification of shear performance by using 

33 βαLn and 
22 βαLn  parameters. 

hypothesis: “Stages II and III of a three-stage Weibull fatigue/shear curve are critical 
in determining the fatigue/rutting performance.” 

The following facts are provided to support the hypothesis: 

1. Based on the observations from the summary boxplots of SR and accumulated 
PSS at separation points 

1n  and 
2n  as respectively plotted in Figures 14 and 15,  

it was found that (1) the deterioration of stiffness ratio at 
1n  (i.e., stage I) is  
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Fig. 14. Summary boxplots of stiffness ratios at stages I and II separations points [Note: (1) 

1@ nSR  in grey and 
2@ nSR  in dark and (2) stn400 and stn700 represent 400 and 700 mi-

crostrain]. 
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Fig. 15. Summary boxplots of permanent shear strain at stages I and II separation points 
[Note: (1) 

1@ nPSS  in grey and 
2@ nPSS  in dark and (2) the values of 70, 100, and 130 

are test shear stress level in kPa]. 
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relatively small when compared with the deterioration of stages II and II; like-
wise, the accumulated permanent shear strain at 

1n  (i.e., stage I) is around 1 

percent which is smaller than that accumulated at stages II and III; (2) with  
the exception of limited amount of tests, the stiffness ratio and accumulated 
permanent shear strain at 

2n  do not cross the lines of SR = 0.5 and 5 percent 

permanent shear strain. Hence, the use of the fundamental Weibull parameters 
associated with stages II and III seems to be appropriate to characterize fatigue 
and shear performance. 

2. Given that the intercepts and slopes of each stage (
1ln α , 

2ln α , 
3ln α , 

1β , 
2β , 

and 
3β ) can be used to determine the full Weibull curve, If stages II and III are 

dominant, then the parameters
2ln α , 

3ln α , 
2β , and 

3β  should be considered as 

fundamental parameters. 
3. The performance contour plots shown in Figures 12 and 13 indicate that the use 

of 
33 βαLn and 

22 βαLn parameters issues a very consistent pattern for fa-

tigue and shear performance: the more negative the values of 
33 βαLn  and 

22 βαLn , the better the fatigue and shear performance. Figure 16, supported 

by Equations 3 through 6, schematically illustrates two shear (RSST) cases and 
two fatigue (FAT) cases at stage III verifying this statement. Sub-indices out-
side brackets indicate test results subjected to conditions 1 and 2; the horizontal 
lines represent the 5 percent permanent shear strain and SR = 0.5. 

 
Case I (RSST): ( ) ( ) 02313 <β=β ; ( ) ( ) 0lnln 2313 >α>α  (Figure 16a) 
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( )
( ) 0
lnln
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β
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<
β
α

⇒   ⇔   ( ) ( )21 5ln5ln pctpct >  (3) 

 
Case II (RSST): ( ) ( ) 0lnln 2313 >α=α ; ( ) ( )23130 β>β>  (Figure 16b) 

( )
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( ) 0
lnln

23

23

13

13 <
β
α

<
β
α

⇒   ⇔   ( ) ( )21 5ln5ln pctpct >  (4) 

Hence, the more negative the ratio of the 
33 βαLn , the larger the 5ln pct  value 

for the RSST-CH test results. 
 
Case III (FAT): ( ) ( ) 02313 >β=β ; ( ) ( )2313 lnln0 α>α>  (Figure 16c) 
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Case IV (FAT): ( ) ( ) 0lnln 2313 <α=α ; ( ) ( ) 02313 >β>β  (Figure 16d) 
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β
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<
β
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⇒   ⇔   ( ) ( )12 lnln NfNf >  (6) 

Hence, the more negative the ratio of the 
33 βαLn , the larger the Nfln  value for 

the fatigue test results. 
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Fig. 16. Schematic interpretation between 
33 βαLn  and ( )5pctLn / ( )NfLn : (a) Case I 

(RSST) — ( ) ( ) 02313 <β=β  and ( ) ( ) 0lnln 2313 >α>α , (b) Case II (RSST) —

( ) ( ) 0lnln 2313 >α=α  and ( ) ( )23130 β>β> , (c) Case III (FAT) — ( ) ( ) 02313 >β=β  and 

( ) ( )2313 lnln0 α>α> , and (d) Case IV (FAT) — ( ) ( ) 0lnln 2313 <α=α  and 

( ) ( ) 02313 >β>β . 

5.3   Application of Three-Stage Weibull Approach: Pavement Performance 
Prediction 

The use of mechanistic-empirical methods in predicting in situ pavement perform-
ance has recently mushroomed in the pavement design community. Proper deter-
mination of material performance models of asphalt concrete using laboratory test 
results is a critical element to ensure the success of the mechanistic-empirical 
method. The three-stage Weibull approach introduced here can express not only 
the fatigue damage process but also the permanent shear strain accumulation proc-
ess in one common formulation. 

Tsai, et al. have demonstrated the applicability and effectiveness of the inte-
grated two-stage Weibull approach in the fatigue pavement performance of asphalt 
concrete mixes [29, 30]. An integrated two-stage (stages II and III) Weibull model 
was established to take into account both crack initiation and crack propagation of 
laboratory flexural controlled-deformation beam fatigue tests at various testing  
 



232 B.-W. Tsai, J.T. Harvey, and C.L. Monismith 
 

conditions and material properties. Correction factors which calibrate the labora-
tory testing results and in situ pavement performance were obtained by comparing 
the simulated stiffness deterioration curve with the in situ stiffness deterioration 
utilizing accelerated pavement testing facilities—a Heavy Vehicle Simulator 
(HVS). Deflection data from multi-depth deflectometers (MDD) were used to 
back-calculate the stiffness deterioration of asphalt concrete based on the Ode-
mark-Boussinesq method. Figure 17 presents the simulation results with the opti-
mum correction factors and indicates the integrated two-stage Weibull approach is 
quite promising in fatigue pavement performance prediction. 

0

0.2

0.4

0.6

0.8

1

1.2

0 200000 400000 600000 800000 1000000 1200000

Repetitions

B
ac

k-
ca

lc
u

la
te

d
 S

ti
ff

n
es

s 
R

at
io

0

1

2

3

4

5

6

7

C
ra

ck
 D

en
si

ty
 (

m
/m

2)

AC Stiffness Ratio

Crack Density

Case 5: Decreased AV, Rep-Hardening,
Uniform Wander, φ* = 0.000215

Case 12: Constant AV, Rep-Hardening,
No-Wander, φ* = 0.000989

CAL/APT HVS MB Project: Section 571

 

Fig. 17. The optimum predicted stiffness deterioration curve for cases 5 and 12 [27]. 

By applying the same conceptual method as that used with the integrated 
Weibull approach, Tsai et al. [31] have proposed a “recursive” modification to the 
linear sum of cycle ratios cumulative damage hypthesis (sometimes called Miner’s 
law) to calibrate the fatigue surface cracking with accelerated pavement testing 
data obtained from the HVS. The main concept in the “recursive” Miner’s law is 
to update the fatigue-resistant capacity at θth traffic application by multiplying a 
correction function, ( )ββ− θαφ−φexp , where α and β are two distress-oriented 
structure deterioration parameters, θ is the cumulative traffic applications, and φ  
is the correction factor. Hence, for the in situ fatigue performance, the original 
Miner’s law, 1=∑

i

i

N

n , can be modified to have a recursive formulation as  
follows: 
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As can be seen in Figure 18, the predicted evolution curves fit reasonably well 
with the observed surface cracking evolution curves of the HVS testing sections. 
Of great importance is that Tsai et al. have concluded that the correction factor 
should be a function of distress-oriented structure deterioration parameters associ-
ated with the whole pavement structure rather than the deterioration parameters of 
the asphalt concrete mix.  
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Fig. 18. Predicted fatigue surface cracking evolutions on HVS testing sections [28]. 

Coleri et al. have confirmed that the integrated Weibull approach is a successful 
and reliable method for predicting the in situ rutting performance of flexible 
pavements [32]. As illustrated in Figure 19, four HVS test sections [Sections 
582RF (AR4000), 583RF (MB4), 584RF (MB4), and 585RF (MAC15)] with dif-
ferent overlays were analyzed. The general testing conditions are as follows: 

• Tire pressure: 720 kPa 
• Tire load: 60 kN 
• Center-to-center distance between wheels: 360 mm 
• Temperature: 48±5oC 
• Air-void content: 8±1% 

The comparison of the fitted Weibull curves with the HVS test results for all 
sections is given in Figure 19, with two permanent deformation accumulation 
mechanisms: PSS hardening and repetition-hardening mechanisms. The results of  
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Fig. 19. Cross sections and HVS test results compared with calibrated Weibull model 
curves: (a, b) Section 582RF (AR4000), (c, d) Section 583RF (MB4), (e, f) Section 584RF 
(MB4), and (g, h) Section 585RF (MAC15) [29] [Note: Layer thickness is in mm]. 
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the analysis prove that the integrated Weibull approach is quite satisfactory for in 
situ rutting performance prediction. 

6   Findings and Discussions 

From the preceding case studies, satisfactory results can be achieved by using the 
GA in solving the nonlinear optimization problems encountered in pavement de-
sign without finalizing the solutions by the Newton method. 

Several findings are addressed below: 

1. To conduct a GA-based application, the parameters and fitness functions 
should be clearly identified and defined. 

2. Computational time is the primary problem of GAs. It is especially obvious 
when serious computation is involved, as in the case of backcalculation of layer 
moduli. This is because the number of times the layered-elastic program or fi-
nite element program is called up grows quickly as the gene size and number of 
generations increases. If, as in Case 2, 3, or 4, a one-time mathematical calcula-
tion is all that is required, the computational time is completely acceptable. It 
was found that the computational time of GAs dependends on how the number 
of genes, the number of parameters, the number of generations, and the speci-
fied range of each parameter are defined. Therefore, a trade-off usually exists 
between gene size and the number of generations. 

3. One of the advantages of using the GA is that a user with expertise can specify 
the appropriate parameter range while a novice can input the parameter range 
with a conservative guess for the range. Either situation can lead to the same 
results. However, an incorrect specified parameter range could lead to an incor-
rect local optimum solution. 

4. As a general rule, the bigger the gene size and number of generations, the 
smaller the variation in the predicted parameters, computational efficiency not-
withstanding. 

5. With an appropriate gene size and number of generations, no extra benefit is 
added if more GA replicates are conducted. To choose the appropriate gene 
size and number of generations to provide satisfactory results, it is necessary 
for users to go through a trial-and-error procedure. 

Generally speaking, the GA is an intuitive and powerful tool to solve the 
nonlinear optimization problems, although in some cases, for example in Case 1, 
the computational time is barely tolerable. To apply the GA successfully, extreme 
caution must be used with regard to two issues. First, the inappropriate or incor-
rect parameter input range could lead to an incorrect local optimum solution, and 
thus a rather wide parameter range is required if no knowledge is available to de-
velop a reasonable initial guess for the parameters. Second, the parameters and fit-
ness function need to be defined clearly at the beginning. In addition, judgment is 
needed to determine input and to evaluate output.  

Regardless of the computation time of certain GA applications, several tasks, 
especially in model fitting, could be worthy to focus in the future: 
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• Apply the GA approach developed here to extend the data base of mix master 
curves and binder relaxation spectra of various mixes and binders. 

• Apply the GA approach in searching the nonlinear models of distress-oriented 
structure deterioration parameters as a function of traffic loading and environ-
ment covariates. 

• Apply the GA approach in establishing the asphalt mix performance specifica-
tions for fatigue cracking and rutting, especially for mixes with modified or 
rubberized binders. 

Acknowledgements 

This research was sponsored by the California Department of Transportation (Cal-
trans) as part of the work of the University of California Pavement Research Cen-
ter. The authors wish to thank Caltrans for support. The opinions and conclusions 
expressed in this paper are those of the authors and do not necessarily represent 
those of Caltrans. 

References 

[1] Kameyama, S., Himeno, K., Kasahara, A., Maruyama, T.: Back-calculation of Pave-
ment Layer Moduli using Genetic Algorithms. In: Eighth International Conference on 
Asphalt Pavements (1997) 

[2] Fwa, T.F., Tan, C.Y., Chan, W.T.: Backcalculation Analysis of Pavement-Layer 
Moduli Using Genetic Algorithm. Transportation Research Record: Journal of the 
Transportation Research Board, No. 1570, Transportation Research Board of the Na-
tional Academies, Washington, D.C., 134–142 (2008) 

[3] Hunaidi, O.: Evolution-Based Genetic Algorithms for Analysis of Non-destructive 
Surface Wave Tests on Pavements. NDT & e International 31(4), 273–280 (1998) 

[4] Liu, M.-Y., Wang, S.-Y.: Genetic Optimization Method of Asphalt Pavement Based 
on Rutting and Cracking Control. Journal Wuhan University of Technology, Materi-
als Science Edition 18(1), 72-75 (2003) 

[5] Hadi, M.N.S., Arfiadi, Y.: Optimum Rigid Pavement Design by Genetic Algorithms. 
Computers & Structures 79(17), 1617–1624 (2001) 

[6] Shekharan, A.R.: Solution of Pavement Deterioration Equations by Genetic Algo-
rithms. Transportation Research Record 1699, 101–106 (2000) 

[7] Attoh-Okine, N.O., Appea, A.K.: Predicting Roughness Progression Models in Flexi-
ble Pavements—An Evolutionary Algorithm Approach. In: Intelligent Engineering 
Systems through Artificial Neural Networks. ASME, Fairfield, NJ, USA, vol. 8, pp. 
845–853 (1998) 

[8] Sundin, S., Braban-Ledoux, C.: Artificial Intelligence-Based Decision Support Tech-
nologies in Pavement Management. Computer-Aided Civil & Infrastructure Engi-
neering 16(2), 143–157 (2001) 

[9] Loia, V., Sessa, S., Staiano, A., Tagliaferri, R.: Merging Fuzzy Logic, Neural Net-
works, and Genetic Computation in the Design of a Decision-Support System. Inter-
national Journal of Intelligent Systems 15(7), 575–594 (2000) 



Case Studies of Asphalt Pavement Analysis/Design  237
 

[10] Sait, S.M., Youssef, H.: Iterative Computer Algorithms with Application in Engineer-
ing: Solving Combinatorial and Optimization Problems. IEEE Computer Society 
Press, Los Alamitos (1999) 

[11] Zohdi, T.I.: Multiscale Modeling and Design of New Materials: Theoretical and Nu-
merical Analyses, Class note for ME-290B, University of California, Berkeley (2003) 

[12] Burden, R.L., Faires, J.D.: Numerical Analysis, 4th edn. PWS-KENT Publishing 
Company (1989) 

[13] Lytton, R.L., Germann, F.P., Chou, Y.J., Stoffels, S.M.: NCHRP Report 327: Deter-
mining Asphaltic Concrete Pavement Structural Properties by Nondestructive Test-
ing. TRB, National Research Council, Washington, D.C (1990) 

[14] ELMOD Version 5.1.54. Dynatest International, Glostrup, Denmark 
[15] Ullidtz, P.: Modelling Flexible Pavement Response and Performance. Polyteknisk 

Forlag, Oslo, Norway (1998) 
[16] Lu, Q., Ullidtz, P., Basheer, I., Ghuzlan, K., Signore, J.M.: CalBack: Enhancing Cal-

trans Mechanistic-Empirical Pavement Design Process with New Backcalculation 
Software. Journal of Transportation Engineering, ASCE 135(7) (2009) 

[17] Choi, J.W., Wu, R., Pestana, J.M.: Application of Constrained Extended Kalman Fil-
ter Moduli Backcalculation. In: CD-ROM for the 86th Annual Meeting of the Trans-
portation Research Board, Washington, D.C (2007) 

[18] Ferry, J.D.: Viscoelastic Properties of Polymeric Material. Wiley, New York (1980) 
[19] Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models, 1st edn. Chapman and 

Hall, Boca Raton (1990) 
[20] Tsai, B.-W.: High Temperature Fatigue and Fatigue Damage Process of Aggregate-

Asphalt Mixes. Ph.D. Dissertation, University of California, Berkeley (2001) 
[21] Stone, C.J.: A Course in Probability and Statistics. Duxbury Press, Pacific Grove 

(1996) 
[22] Baumgaertel, M., Winter, H.H.: Determination of Discrete Relaxation and Retarda-

tion Time Spectra from Dynamic Mechanical Data. Rheologica Acta 28, 511–519 
(1989) 

[23] Stastna, J., Zanzotto, L., Berti, J.: How Good Are Some Rheological Models of Dy-
namic Material Functions of Asphalt? Journal of the Association of Asphalt Paving 
Technologists 66, 458–485 (1997) 

[24] Tayebali, A.A., Deacon, J.A., Coplanz, J.S., Harvey, J.T., Fin, F.N., Monimith, C.L.: 
Fatigue Respone of Asphalt-Aggregae Mixes. Report SHRP-A-404. SHRP. National 
Research Council, Washington, D.C (1994) 

[25] Sousa, J.B., Deacon, J.A., Weissman, S., Harvey, J.T., Monismith, C.L., Leahy, R.B., 
Paulsen, G., Coplantz, J.S.: Permanent Deformation Response of Asphalt-Aggregate 
Mixes. Report SHRP-A-415. SHRP, National Research Council, Washington, D.C 
(1994) 

[26] Jiang, R., Murthy, D.N.: Reliability Modeling Involving Two Weibull Distributions. 
Reliability Engineering and System Safety 47, 187–198 (1995) 

[27] Tsai, B.-W., Harvey, J.T., Monismith, C.L.: Using the Three-Stage Weibull Equation 
and Tree-Based Model to Characterize the Mix Fatigue Damage Process. In: Trans-
portation Research Record: Journal of the Transportation Research Board, No. 1929, 
Transportation Research Board of the National Academies, Washington, D.C, pp. 
227–237 (2005) 

 
 



238 B.-W. Tsai, J.T. Harvey, and C.L. Monismith 
 

[28] Jones, D., Tsai, B.-W., Ullidtz, P., Wu, R., Harvey, J.T., Monismith, C.L.: Reflective 
Cracking Study: Second-Level Analysis Report. California Department of Transpor-
tation, and Pavement Research Center, University of California, UC Davis and UC 
Berkeley (2007) 

[29] Tsai, B.-W., Harvey, J.T., Monismith, C.L.: Two-Stage Weibll Approach for Asphalt 
Concrete Fatigue Performance Preidction. Journal of the Association of Asphalt Pav-
ing Technologists 73, 623–655 (2004) 

[30] Tsai, B.-W., Bejarano, M.O., Harvey, J.T., Monismith, C.L.: Prediction and Calibra-
tion of Pavement Fatigue Performance Using Two-Stage Weibull Approach. Journal 
of the Association of Asphalt Paving Technologists 74, 697–732 (2005) 

[31] Tsai, B.-W., Harvey, J.T., Monismith, C.L., Bejarano, M.O.: Calibration of Fatigue 
Surface Cracking Usng Simplified Recursive Miner’s Law. Journal of the Association 
of Asphalt Paving Technologists 76, 693–735 (2007) 

[32] Coler, E., Tsai, B.-W., Monismith, C.L.: Pavement Rutting Performance Prediction 
by Integrated Weibull Approach. In: Transportation Research Record: Journal of the 
Transportation Research Board, No. 2087, Transportation Research Board of the Na-
tional Academies, Washington, D.C., pp. 120–130 (2008) 



K. Gopalakrishnan et al. (Eds.): Intel. & Soft Comp. in Infra. Sys. Eng., SCI 259, pp. 239–253. 
springerlink.com                                                        © Springer-Verlag Berlin Heidelberg 2009 

Extended Kalman Filter and Its Application in 
Pavement Engineering 

Rongzong Wu1, Jae Woong Choi2, and John T. Harvey3 

1 University of California Pavement Research Center, Department of Civil and 
Environmental Engineering, University of California at Davis, One Shields Ave, Davis, CA 
95616, U.S.A. 
rzwu@ucdavis.edu 

2 MMI Engineering, 475 14th Street, Suite 400, Oakland, CA, 94612-1940, U.S.A. 
jaewoong27@hotmail.com 

3 University of California Pavement Research Center, Department of Civil and 
Environmental Engineering, University of California at Davis, One Shields Ave, Davis, CA 
95616, U.S.A. 
jtharvey@ucdavis.edu 

Abstract. Kalman filter is a signal processing technique that estimates the state of a dynamic 
system from a series of noisy measurements. It is used in a wide range of engineering 
applications from radar to computer vision. This chapter demonstrates the application of a 
model identification procedure based on extended Kalman filter (EKF) and weighted global 
iteration (WGI) technique in pavement engineering. In particular, EKF-WGI is used to 
perform layer moduli back-calculation from falling weight deflectometer (FWD) data and to 
identify model parameters for Generalized Maxwell Model for hot mix asphalt using 
frequency sweep test data. In both cases, EKF-WGI is shown to provide consistent results 
that are independent of the seed values for both linear and nonlinear problems. It is believed 
that EKF-WGI provides an efficient, consistent and robust tool for optimization that has 
many potential applications. 

Keywords: Kalman filter, weighted global iteration, falling weight deflectometer, layer 
moduli back-calculation, model parameter identification, generalized Maxwel model. 

1   Introduction 

The Kalman filter is one of the most well-known mathematical tools that can be 
used for estimation from noisy measurements. It is named after Rudolph E. Kalman, 
who in 1960 published his famous paper describing a recursive solution to the 
discrete-data linear filtering problem [1]. The Kalman filter is essentially a set of 
mathematical equations that implement a predictor-corrector type estimator that is 
optimal in the sense that it minimizes the estimated error covariance - when some 
presumed conditions are met. Since the time of its introduction, the Kalman filter 
has been the subject of extensive research and application, particularly in the area of 
autonomous or assisted navigation. This is likely due in large part to advances in 
digital computing that made the use of the filter practical, but also to the relative 
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simplicity and robust nature of the filter itself. Rarely do the conditions necessary 
for optimality actually exist, and yet the filter apparently works well for many 
applications in spite of this situation [2]. More details on the Kalman filter can be 
found in [3-9]. In addition, for many years University of North Carolina (UNC) has 
maintained a web site dedicated to the Kalman filter [10]. Among other things, 
readers are strongly encouraged to check out the introduction paper on Kalman 
Filter listed at the website. The paper provides an excellent starting point for 
understanding how Kalman Filter works. 

One of the early applications of Kalman Filter was the trajectory estimation and 
control problem for the Apollo project. The Kalman Filter was successfully 
conducted as a part of onboard guidance during Apollo program [11]. Since then, it 
has been widely used as a core part of navigation system in aircraft, ships, and 
spacecraft [11-13]. The Kalman Filter is also used for predicting the likely future 
courses of dynamic systems that people are not likely to control, such as the 
tracking object in machine vision [14], parameter estimation of freeway traffic 
model [15], or predicting the prices of traded commodities [16]. In addition to that, 
it has been widely used as a main part of control in manufacturing process, 
automation, and robotics [17, 18]. The focus of this chapter is the application of 
Kalman Filter in pavement engineering. 

Pavement engineers are commonly faced with the parameter identification 
problems. Specifically, when a model is developed to describe a certain type of 
phenomenon, the model parameters need to be determined based on some measured 
data. Typically, these models are non-linear. A weighted global iteration procedure 
based on extended Kalman filter (EKF-WGI) has been developed for this purpose 
by engineers in other fields of civil engineering. 

EKF-WGI was first used for estimating parameters of a running load and beam 
system and a hysteretic restoring system of non-degrading type [19]. Since then, 
several researchers adopted this method to earthquake engineering for estimating 
material properties and also applied to structure health monitoring [20-22]. 
Especially, Loh and Tsaur [20] applied the EKF-WGI algorithm for identifying 
parameters in an equivalent linear system, a bilinear hysteretic restoring system and 
a system with stiffness degradation effect. Koh et al. [23] extensively used the 
proposed method for estimating dynamic properties of 3-D structure system by 
using the ‘ improved condensation’ method. 

Although EKF-WGI has been extensively applied in other fields, its application 
in pavement engineering has been relatively rare. The purpose of this chapter is to 
evaluate the performance of EKF-WGI when used to solve some common model 
identification problems in pavement engineering. It is hoped that this will spark 
more interest in the procedure and lead to many more applications in pavement 
engineering. 

In the following sections, EKF-WGI is first introduced and then two examples 
are included to show its application: layer stiffness back-calculation and regression 
of Generalized Maxwell Model parameters for hot mix asphalt (HMA). 
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2   Model Identification Procedure Based on the Extended 
Kalman Filter 

2.1   The Kalman Filter Method 

The Kalman Filter is a mathematical tool for finding the best estimate for the state 
of a system in a discrete time process that is governed by a linear stochastic 
differential equation (i.e., [1]). The filter is essentially described by the state and 
measurement equations given by: 

(State equation)                      (2.1) 
(Measurement equation)              (2.2) 

where subscripts k-1 and k indicate time steps,  is the state vector describing the 
current state of the system,  is the measurement vector that includes observable 
quantities that depend on the current state vector, matrix  is the dynamic 
coefficient matrix relating the state vectors between subsequent time steps and 
matrix  is the measurement sensitivity matrix relating the measurement vector to 
the state vector (e.g., [9], [24]). The vectors  and  represent the inherent system 
and measurement noise respectively, and they are considered independent 
processes with normal (i.e., Gaussian) distributions of zero mean and covariance 
matrices  and , respectively:  

(Noise Information)             (2.3) 

where  indicates a random quantity following normal distribution with 
mean a and covariance matrices b. In the Kalman Filter, there are two estimates for 
the state vector : the mean  and the error covariance matrix  defined as: 

                                                                   (2.4) 

                                   
(2.5) 

where  denotes the “expected” value. The Kalman filter operates by 
propagating estimates for the state vector , from some given initial values at time 
step 0 up to the current time step k using time update (predictor) and measurement 
update (corrector). In other words, a sequence of estimates for  and  values are 
obtained by repeating time updates and measurement updates. 

Time update for step  provides the a-priori estimates based on the measurement 
information up to time step , while measurement update provides a-posteriori 
estimates based on the measurement information at time step . A two-subscript 
system is introduced to distinguish between these two sets of estimates. 
Specifically, the a-priori time estimates for step  are denoted as  and 

, while the a-posteriori measurement estimates are denoted as  and 
. Time updates are calculated by the following equations: 

                            (2.6) 

                     (2.7) 
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With the additional measurement at step , the time updates are corrected using the 
following equations: 

               (2.8) 

                                   (2.9) 

where  is the identity matrix. The equation above shows that the a-priori estimate 
 is corrected by , which is a combination of the Kalman 

Gain,  and the difference in expected and actual measurements: 
. The Kalman Gain is calculated by: 

                (2.10) 

Derivation of these equations can be found in the introduction paper listed on the 
UNC website [10]. 

2.2   The Extended Kalman Filter Methodology 

In the extended Kalman filter (EKF), the state transition and observation models 
need not be linear functions of the state but may instead be (differentiable) 
functions: 

(State equation)                 (2.11) 
(Measurement equation)          (2.12) 

where  is a function relating state vectors between subsequent time steps and  is 
a function relating the measurement vector to the state vector. Matrices  and  
are in turn replaced by the Jacobians evaluated with current predicted states. This 
process essentially linearizes functions  and  around the current estimate: 

          (2.13) 

                 (2.14) 

2.3   Model Parameter Identification Using EKF 

When the EKF is used for model parameter identification, state vector is essentially 
a collection of all of the parameters needed to be identified. Since model parameters 
do not change between different measurements, the state equation can be 
simplified: 

(State equation)                                (2.15) 
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which implies  and  is constant for all time steps. The model function  
that links model parameters to observed quantities typically remains nonlinear. 

2.4   EKF with Weighted Global Iteration Procedure for Model Parameter 

Identification 

The EKF method can sometimes converge very slowly when the system equations 
(2.11) and (2.12) are highly nonlinear. To improve numerical stability, the iterative 
use of EKF was introduced for model identification applications. This method uses 
all the measurement data available and applies the EKF iteratively until the model 
parameters converge. The same set of measurement information is used repeatedly 
for measurement update process. Between iteration steps, the estimates, mean and 
covariance at the end of current time step are used for initial guess for next iteration 
step. Therefore, a better estimation can be obtained at the end of each iteration step 
[25]. This approach was successfully used to identify the hydrodynamic coefficient 
matrices associated with non-linear drag and linear inertia forces of an offshore 
structure subjected to wave forces [26].  

The iterative use of EKF can be further improved by applying a global weight to 
the a-posteriori estimates of  for each iteration [19]: 

                                            (2.16) 

This simple modification proposed by [19] has been shown to increase the rate of 
convergence and effectively prevents oscillation of the solution. The modified 
procedure is called EKF with weighted global iteration (EKF-WGI) procedure. 

The proposed method has been used for estimating parameters of a running load 
and beam system and a hysteretic restoring system of non-degrading type [19]. 
Since it was introduced, several researchers adopted this method to earthquake 
engineering for estimating material properties and also applied to structure health 
monitoring [20-22, 27-33]. Especially, Loh and Tsaur [20] applied the EKF-WGI 
algorithm for identifying parameters in an equivalent linear system, a bilinear 
hysteretic restoring system and a system with stiffness degradation effect. Koh et al. 
[23] extensively used the proposed method for estimating dynamic properties of 
3-D structure system by using the “improved condensation” method. 

2.5   Applying Constraints 

The standard EKF method estimates the mean of the state vector over the infinite 
domain [-∞, +∞]n. When the method is used to estimate (or identify) physical 
quantities, such as material parameters for a constitutive law, it is necessary to 
constrain the state vector by performing appropriate variable transformations. For 
example, material parameters are usually bounded (e.g., positive stiffness) or exist 
within a prescribed range (e.g., Poisson’s ratio). A positive constraint can be 
enforced by applying an exponential transformation: 
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                                                (2.17) 
and a range constraint on interval [a, b] can be enforced by applying an inverse 
tangent transformation: 

                              (2.18) 

3   Layer Moduli Back-Calculation with EKF-WGI 

The EKF-WGI procedure for model parameter identification is now applied to 
perform layer stiffness back-calculation using Falling Weight Deflectometer 
(FWD) data. FWD is one of the popular devices for measuring surface deflection. It 
applies an impulse load on the pavement surface and measures surface deflections 
from horizontally arrayed geophones. Usually, seven geophones are used for 
capturing surface deflections. Layer moduli can be back-calculated by finding a set 
of moduli that allows calculated deflections to match with the measured ones, with 
known layer thicknesses. 

Layer moduli back-calculation is a model parameter identification problem. 
Layer moduli form the state vector , surface deflections form the observation 
vector . The model function  corresponds to the displacement engine that links 
pavement structure to surface deflections. In this work, the expected surface 
deflection was calculated using multi-layer elastic theory, which assumes that all 
layers are linear elastic. Despite the complex nonlinear behavior of materials in real 
situations, multi-layer elastic theory captures pavement response reasonably well 
and is widely used in pavement engineering for the benefit of computational 
simplicity. In this study, an open source program called LEOP for layer elastic 
theory is used [34] to calculate pavement response. Accordingly, the function  
represents LEOP. It certainly can be any of the many displacement calculation 
programs. The Jacobian of  over , i.e., matrix , is determined using numerical 
differentiation with the central difference scheme. 

While adapting EKF-WGI for back-calculation of layer moduli, the following set 
of parameters were used: 

 with  mm, essentially a very small number; 
with  mm, to represent the accuracy in deflection 

measurements; 
 with  (mm2); and 

 
Note that  has physical meanings and should be set appropriately based on the 

capacity of the specific FWD, while other parameters are numerical parameters and 
can be set somewhat arbitrarily as long as the procedure works. Convergence 
criterion is defined through the maximum error between the measured and 
estimated surface deflections: 

                                  (3.1) 

Convergence is achieved when  is satisfied.  was set to 0.5 
during this study. 
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Table 1. Performance of the back-calculation procedure based on EKF-WGI* 

Case 

No. 

Layer Moduli 

(MPa) 

Seed Moduli 

(MPa) 

Converged Moduli

(MPa) 

Number of 

Iterations 

Max. Rel. Error 

in Moduli (%) 

1a 5000, 250, 60 100 for all 4997, 250, 60 6 0.12 

1b 5000, 250, 60 1000 for all 4997, 250, 60 11 0.12 

1c 5000, 250, 60 10000 for all 5003, 251, 60 7 0.47 

1d 5000, 250, 60 1000, 200, 100 5014, 253, 60 4 1.24 

2a 5000, 30000, 60 100 for all 4974, 30114, 60 7 0.52 

2b 5000, 30000, 60 1000 for all 4990, 30009, 60 6 0.20 

2c 5000, 30000, 60 10000 for all 4997, 30012, 60 11 0.11 

2d 5000, 30000, 60 1000, 10000, 100 4993, 30027, 60 5 0.14 
*: Layer thicknesses: 150 mm, 300 mm and semi-infinite 

The performance of the EKF-WGI procedure is evaluated using simulated FWD 
deflection data using the LEOP program. Specifically, a 40 kN circular load with 
radius of 150 mm is applied and surface deflections are “measured” at radial 
distances of 0, 203, 304, 457, 610, 914, and 1524 mm from the center of the loading 
plate. The back-calculation program is written in Matlab [35] because of its strong 
support for matrix operations. 

To illustrate the effectiveness of EKF-WGI, a three-layer pavement system is 
used. The layer thicknesses and moduli are listed in Table 1. Two types of pavement 
structures are evaluated: a typical flexible pavement (cases 1a to 1d) and a typical 
composite pavement (cases 2a to 2d). Four different combinations of seed moduli 
were used to evaluate their impact on the resulting back-calculated moduli. 

As shown in Table 1, the EKF-WGI procedure successfully back-calculated 
accurate layer moduli for both structure types and all the selections of seed values. 
Using different seed moduli only affects the number of iterations required to reach 
convergence, while the resulting moduli are not affected. For both structures, using 
seed values that better match the actual moduli led to faster convergence. 

Table 2. Iteration history for Case 2b 

Time Step 

(k) 

Layer Moduli 

(MPa) 

Maximum Error in Surface Deflection 

 (mm) 

Note 

0 1000, 1000, 1000 1.157E-1  

1 998, 988, 963 1.149E-1  

2 2677, 2180, 21 3.933E-1  

3 4018, 6744, 41 1.140E-1  

4 5414, 15770, 57 2.141E-2  

5 4753, 29247, 60 1.154E-3 Converged 

6 4990, 30009, 60 1.082E-6 Final Update 
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An example of the iteration process is shown in Table 2 for case 2b (defined in 
Table 1). The table shows a fast and stable iteration history without oscillation even 
though the seed moduli are quite different from the true moduli. 

Although the examples presented here demonstrated a stable and objective 
back-calculation procedure, the ultimate test for EKF-WGI should be done using 
actual FWD data. This will however be left for further publications. Another 
question remains to be answered is the performance of EKF-WGI for models with 
strong nonlinearity. This will be investigated in the next section. 

4   Nonlinear Model Parameter Identification with EKF-WGI 

To evaluate its behavior in nonlinear systems, EKF-WGI is now used to identify 
General Maxwell Model (GMM) parameters for hot mix asphalt (HMA) using 
stiffness data measured from beam bending frequency sweep tests [36]. An 
n-branch GMM composed of one elastic in parallel with n-1 Maxwell element can 
be fully defined by the following 2n-1 parameters: 

 Relaxation times for the n-1 Maxwell elements:  for i=1 to n-1; 
 Stiffness of the springs for the n-1 Maxwell elements: Ei for i=1 to n-1; and  
 The spring stiffness for the elastic branch:  

Under sinusoidal loading with angular frequency of , the storage and loss 
modulus for a GMM unit can be calculated as: 

• (Storage modulus)             (4.1) 

• (Loss modulus)               (4.2) 

where: 

                                      
(4.3) 

and: 

                                       
(4.4) 

The amplitude of complex modulus, , can then be calculated as the root of the 

sum of squares of  and : 

                                            (4.5) 

and the phase angle is: 

                                                 
(4.6) 
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Frequency sweep tests are typically conducted under different temperatures. To 
account for the effect of temperature on HMA stiffness,  needs to be converted to 
reduced angular frequency following the Mechanistic Empirical Pavement Design 
Guide (MEPDG) developed under NCHRP 1-37A project [37]. Considering the 
fact that loading time  and Equation 2.2.4 in MEPDG: 

                   (4.7) 

where subscript red indicates reduced quantity and ref indicates quantities for 
reference temperature, aT is the temperature shift factor, and  is the viscosity. 
Viscosity for a given temperature can be calculated using Equation 2.2.5 in 
MEPDG: 

                                         (4.8) 

where A and VTS are constants and  is Rankine temperature. In this study, 
A=10.5254 and VTS= - 3.5047 assuming a 40-50 penetration grade for RTFOT 
binder. The reference temperature is chosen to be 20°C. 

Frequency sweep data for a dense graded HMA with PG 64-10 binder are used 
here to evaluate the performance of EKF-WGI in identifying all of the unknown 
parameters. The frequency sweep test results are listed below in  

Table 3 and Table 4 for amplitude of the complex moduli and phase angles 
respectively. Apparently, the tests were performed under 10, 20 and 30°C with twp 
replicates for each temperature. 

Based on past experiences, an eight-branch GMM is used here to characterize the 
HMA stiffness. The relaxation times are predetermined as: 

 for i=1 to 7                                 (4.9) 

The remaining unknowns include the following n+1 quantities: Ei (i=1 to n-1), 
 and aT. These unknowns form the state vector for this parameter identification 

problem. Exponential transformation was used to enforce positive definite 
constraints for all of the unknowns. 

There are several possible choices for the measurement quantities for this 
problem: (a).  alone; (b).  and phase angle ; and (c).  and . In this 
study, the measurement vector include both the storage and lost moduli for all of the 
loading temperatures and angular frequencies, i.e., option (c) is chosen. This 
provides a more complete set of model response and at the mean time maintains 
better uniformity within the measurement vector. 

After some trial runs, it was found that the following set of parameters allows 
EKF-WGI to reach a solution that matches the calculated and measured 
measurement quantities: 

 with  MPa, essentially a very small number; 
 with  MPa, to represent the accuracy in modulus 

measurements; 
 with  MPa2; and 
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Table 3. Measured amplitude of the complex moduli for a dense graded PG 64-10 HMA 
tested under different temperatures. (Unit: MPa) (Note: header indicates specimen name and 
testing temperature) 

Frequency 

(Hz) 

641013A2 

10°C 

64101A2 

10°C

64103C1 

20°C 

64106B2 

20°C

64105A2 

30°C

641013A1 

30°C 

0.01 3,089 2,839 908 924 232 204 

0.02 3,772 3,519 1,234 1,289 291 282 

0.05 4,674 4,442 1,737 1,806 461 420 

0.1 5,501 5,257 2,232 2,307 626 595 

0.2 6,397 6,159 2,857 2,886 869 826 

0.5 7,546 7,270 3,784 3,751 1,312 1,243 

1 8,473 8,219 4,620 4,477 1,722 1,663 

2 9,331 9,171 5,496 5,215 2,292 2,195 

5 10,506 10,251 6,758 6,296 3,171 3,014 

10 11,463 11,183 7,672 7,122 3,931 3,724 

15 12,330 12,092 8,458 7,753 4,433 4,189 

Table 4. Measured phase angles for the a dense graded PG 64-10 HMA (Unit: Degree). 
(Note: header indicates specimen name and testing temperature) 

Frequency 

(Hz) 

641013A2 

10°C 

64101A2 

10°C

64103C1 

20°C 

64106B2 

20°C

64105A2 

30°C

641013A1 

30°C 

0.01 28 30 43 38 47 55 

0.02 27 28 41 36 50 48 

0.05 24 25 38 34 48 47 

0.1 19 20 34 30 44 46 

0.2 19 20 33 29 43 43 

0.5 17 17 29 26 41 41 

1 15 15 26 23 37 37 

2 13 14 23 21 35 34 

5 12 12 20 18 31 31 

10 12 12 19 17 28 28 

15 11 11 19 15 27 27 
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Table 5. Effect of seed values on identified model parameters using eight-branch GMM 

Case No. 1 2 3 4 

Seed Ei (MPa) 1,000 10,000 1,000 1,000 

Seed aT 2.0 2.0 1.0 5.0 

E1 3,558 5,991 37,928 16 

E2 4,305 4,012 636 21,996 

E3 3,248 3,256 3,291 0 

E4 3,063 3,061 3,065 3,974 

E5 3,155 3,155 3,154 3,019 

E6 2,236 2,236 2,236 2,310 

E7 1,329 1,329 1,329 1,312 

329 329 329 332 

aT 1.092 1.092 1.092 1.067 

RMS 0.268 0.268 0.268 0.270 

The most critical option above is the global weight . It was found that  has to 
be small in order for the EKF-WGI procedure to run properly. Although  should 
match the measurement accuracy for loss and storage moduli, it was found that as 
long as it is non-zero changing its value only affects  and , i.e., the spring 
stiffnesses for the two Maxwell Elements with shortest relaxation times in the 
eight-branch GMM unit. 

The convergence test here is defined based on the RMS (root mean square) of 
relative error in measurement quantities. In particular: 

  (4.10) 

where m is the total number of stiffness measurements and equals 66 for this 
specific set of data. Convergence is achieved when  or RMS is 
not decreasing anymore over the last four iterations. 

A sensitivity study was carried out to evaluate the effect of seed values on the 
identified model parameters. The results for eight-branch GMM unit are shown in 
Table 5. The table indicates that: 

Changing seed Ei from 1,000 to 10,000 only causes changes in identified E1  
and E2; 

Changing seed aT from 2.0 to 1.0 only causes changes in identified E1 and E2; 
Changing seed aT from 2.0 to 5.0 only causes changes in identified E1, E2, E3  

and aT. 
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Table 6. Effect of seed values on identified model parameters using six-branch GMM 

Case No. 1 2 3 4

Seed Ei (MPa) 1,000 10,000 1,000 1,000

Seed aT 2.0 2.0 1.0 5.0

E1 3,950 3,950 3,951 3,950 

E2 2,908 2,908 2,908 2,909 

E3 3,196 3,196 3,196 3,196 

E4 2,229 2,229 2,229 2,229 

E5 1,330 1,330 1,330 1,330 

328 328 328 328 

aT 1.084 1.084 1.084 1.084 

RMS 0.266 0.266 0.266 0.266 

No. of Iterations 19 23 18 23 
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Fig. 1. Comparison of measured and calculated amplitude of complex modulus 

For all of the cases evaluated, the final RMS are not significantly affected by 
changes in E1 and E2; 

Based on these results, it is believed that the first two branches in the 
eight-branch GMM are not needed because they do not have significant effect on 
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the overall stiffness of the GMM unit. Accordingly, a six-branch GMM unit is used 
instead to characterize the HMA stiffness. The relaxation times are changed to: 

 for i=1 to 5                               (4.11) 

The effects of seed values on identified model parameters for the six-branch 
GMM unit are shown in Table 6. As shown in the table, the identified model 
parameters practically are not dependent on the seed values at all. 

The comparison between measured and calculated amplitude of complex  
moduli with six-branch GMM unit is shown in Fig. 1, which indicates excellent fit 
between them. 

5   Summary and Conclusions 

In this chapter, a model parameter identification procedure based on the extended 
Kalman filter and a weighted global iteration (EKF-WGI) technique is presented. 
The procedure was adapted to perform layer moduli back-calculation using falling 
weight deflectometer (FWD) data and model parameter identification for 
Generalized Maxwell Model (GMM) from frequency sweep test data on hot mix 
asphalt (HMA). In both applications, EKF-WGI was successively applied although 
some of the options controlling EKF-WGI procedure need to be individually 
adjusted for each application. 

Based on the results obtained in this chapter, EKF-WGI can provide seed-value 
independent results for both linear problems (e.g., layer moduli back-calculation) 
and non-linear problems (e.g. GMM model parameter identification) as long as the 
model parameters are significant. For the GMM case in particular, the relaxation 
times of the Maxwell Elements needs to be appropriately selected. It is believed that 
EKF-WGI provides an objective and robust algorithm for general model parameter 
identifications and has many more potential applications besides the examples 
shown here. 
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Abstract. Over the years, several techniques have been proposed for back-calculation of 
pavement layer moduli which involves searching for the optimal combination of pavement 
layer stiffness solutions in an unsmooth, multimodal, complex search space. In recent years, 
researchers are actively deriving inspiration from nature, biology, physical systems, and so-
cial behavior of natural systems for developing computational techniques to solve complex 
optimization problems. Some well-known nature-inspired meta-heuristics, which are basi-
cally high-level strategies that guide the search process to efficiently explore the search 
space in order to find (near-) optimal solutions, include, but are not limited to: Genetic  
Algorithms (GA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), Shuf-
fled Complex Evolution (SCE), etc. Potential applications of such nature-inspired hybrid 
optimization approaches to pavement backcalculation are conceptually illustrated in this 
chapter which take advantage of the combined efficiency and accuracy achieved by inte-
grating advanced pavement numerical modeling schemes, computational intelligence based 
surrogate mapping techniques, and stochastic nature-inspired meta-heuristics with global 
optimization strategies using a system-of-systems approach. 

1   Introduction 

The Falling Weight Deflectometer (FWD) is a Non-Destructive Test (NDT) de-
vice used by pavement engineers to evaluate the structural condition of roads and 
to determine the moduli or stiffness of pavement layers. In the field, the pavement 
deflection basins are obtained from the FWD measurements which require the use 
of backcalculation type structural analysis to determine pavement layer stiffnesses 
and as a result estimate pavement remaining life. The accuracy of pavement 
strength estimation from FWD measurements is particularly important since it im-
pacts the design of pavement overlay thickness. The process of backcalculation 
involves comparison of FWD measured deflections with computed deflections 
(using a pavement response model) through an iterative optimization procedure to 
determine the representative pavement layer moduli which could have produced 
the measured FWD deflections. Over the years, several static, dynamic, and adap-
tive techniques have been proposed for backcalculation of pavement layer moduli 
and each has its own pros and cons. In recent years, nature-inspired heuristics are 
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becoming popular for solving engineering optimization problems. In this chapter, 
potential applications of such nature-inspired hybrid optimization approaches to 
pavement backcalculation are conceptually illustrated.  

2   Concept and Implementation 

Backcalculation of pavement layer moduli from FWD deflections can be treated 
as a global optimization problem where the objective is to determine the unknown 
pavement layer moduli that minimize the difference between measured and com-
puted deflections. Thus the objective (fitness) function or the cost function for the 
proposed hybrid optimization approach is the difference between measured FWD 
deflections (see Fig. 1) and computed pavement surface deflections. In this paper, 
the implementation of the hybrid optimization approach is discussed for a three-
layered flexible pavement structure although it can be used for other pavement 
types with varying number of layers owing to its flexible and integrated modular 
systems approach. A typical three-layered flexible pavement structure consists of 
Hot-Mix Asphalt (HMA) surface layer, a granular base layer consisting of un-
bound aggregates, and the bottommost layer consisting of subgrade soils. 
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Fig. 1. Illustration of Falling Weight Deflectometer (FWD) test. 

In the proposed hybrid optimization approach (see Fig. 2), a trained Neural 
Networks (NN) serves as a surrogate forward pavement response model that has 
learned the mapping between pavement layer elastic moduli and resulting pave-
ment surface deflections for a variety of case scenarios generated using a 2-D axi-
symmetric pavement finite element program [Raad and Figueroa 1980].  

The NN module is an important component of the hybrid optimization scheme 
which significantly reduces the computational time required for forward calcula-
tion of deflections for each of the individuals in the generation. A brief discussion 
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on the NN background is first presented followed by details related to the devel-
opment of NN based surrogate forward models incorporated into hybrid optimiza-
tion scheme. 

NNs are parallel connectionist structures constructed to simulate the working 
network of neurons in human brain. They attempt to achieve superior performance 
via dense interconnection of non-linear computational elements operating in paral-
lel and arranged in a pattern reminiscent of a biological neural network. The  
perceptrons or processing elements and interconnections are the two primary ele-
ments which make up a neural network. A single perceptron is mathematically 
represented as follows [Haykin 1999]: 
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where xi is input signal, wij is synaptic weight, bj is bias value, vj is activation po-
tential, φ() is activation function, yk output signal, n is the number of neurons for 
previous layer, and k is the index of processing neuron. 

Multilayer perceptrons (MLPs), frequently referred to as multi-layer feedfor-
ward neural networks, consist of an input layer, one or more hidden layer, and an 
output layer. For a given training data consisting of input-output vectors, values of 
synaptic weights in a MLP are iteratively updated by a learning algorithm to ap-
proximate the target behavior. This update process is usually performed by back-
propagating the error signal layer by layer and adapting synaptic weights with re-
spect to the magnitude of error signal [Goktepe et al. 2006]. Rumelhart et al 
[1986] presented the first backpropagation (BP) learning algorithm for use with 
MLP structures.  

In the BP learning algorithm, the error energy used for monitoring the progress 
toward convergence is the generalized value of all errors that is calculated by the 
least-squares formulation and represented by a Mean Squared Error (MSE) as fol-
lows [Haykin 1999]: 
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where M is the number of neurons in the output layer and P represents the total 
number of training patterns. Other performance measures such as the Root Mean 
Squared Error (RMSE), Average Absolute Error (AAE), etc. are also used. 

An NN-based forward calculation procedure was developed to map the relation 
between input layer thicknesses and moduli and output surface deflections for 
passing on to the GA module during fitness evaluation. The goal is to simulate 
FWD loading using a numerical model for a wide variety of layer thicknesses and 
combinations of layer moduli encountered in the field resulting in a comprehen-
sive synthetic solution set. A 2-D axi-symmetric FE program [Raad and Figueroa 
1980] commonly used in the structural analysis of flexible pavements was  
employed to generate a comprehensive synthetic database of moduli-deflection  
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solutions for wide ranges of layer thicknesses and layer moduli. Numerous re-
search studies have validated that this FE model [Raad and Figueroa 1980]  
provides a realistic pavement structural response prediction for both highway and 
airfield pavements by incorporating stress-sensitive geomaterial models, the typi-
cal hardening behavior of nonlinear unbound aggregate bases and softening nature 
of subgrade soils under increasing stress states, and Mohr-Coulomb failure criteria 
to limit material strength [Gomez-Ramirez et al. 2002]. 

The synthetic database of FE solutions constituted the training and testing sets 
for developing NN-based models for rapid forward analysis of flexible pavements. 
A generic three-layer flexible pavement structure consisting of Hot-Mix Asphalt 
(HMA) surface layer, unbound aggregate base layer, and subgrade layer was mod-
eled using the FE software [Raad and Figueroa 1980]. The top surface HMA layer 
was characterized as a linear elastic material with Young’s Modulus, EHMA, and 
Poisson ratio, ν. The K-θ model [Hicks and Monismith 1971] was used as the non-
linear characterization model for the unbound aggregate layer: 

 
n

R KE θ=                                                         (3) 
 

where ER is resilient modulus (MPa), θ = σ1 + σ2 + σ3 = σ1 + 2σ3 = bulk stress, 
and K and n are multiple regression constants obtained from repeated load triaxial 
test data on granular materials. Based on the work reported by [Rada and Witczak 
1981], K and n model parameters can be correlated to characterize the non-linear 
stress dependent behavior with only one model parameter. Thus, good quality gra-
nular materials, such as crushed stone, show higher K and lower n values, whereas 
the opposite applies for lower quality aggregates. 

Fine-grained subgrade soils were modeled using the commonly used bi-linear 
resilient modulus model [Hoffman and Thompson 1982]: 
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where ERi is the breakpoint resilient modulus, σd is the breakpoint deviator stress 
(σd = σ1 - σ3), σdi is the breakpoint deviator stress, and K1 and K2 are statistically 
determined coefficients from laboratory tests. ERi can be used to classify fine-
grained subgrade soils as being soft, medium or stiff. 

Thus, HMA modulus, EHMA, granular base K-θ model parameter K, and the sub-
grade break-point resilient moduli, ERi, were used as the layer stiffness inputs for 
all the FE runs. The 40-kN wheel load was applied as a uniform pressure of 552 
kPa over a circular area of radius 150 mm simulating the FWD loading. A com-
prehensive FE synthetic database was generated by varying the HMA layer thick-
ness (in the range of 75 to 700 mm), aggregate base layer thickness (in the range 
of 100 to 550 mm), EHMA (in the range of 6.9 to 41.5 GPa), K (in the range of 21 to  
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82 MPa), and ERi (in the range of 7 to 105 MPa) for NN training and testing. Inde-
pendent datasets were used for NN training and testing. 

Details related to the development of optimal NN configuration for forward 
analysis can be found in [Gopalakrishnan and Thompson 2004]. In this study, the 
5-40-40-6 architecture was chosen as the best architecture for the NN forward 
model based on its lowest training and testing MSEs for all six deflection output 
variables. The five inputs correspond to three layer stifnesses, HMA layer thick-
ness and base layer thickness. Average Absolute Errors (AAEs) were calculated as 
sum of the individual absolute relative errors divided by the number of independ-
ent testing patterns (1,500 in this case). 
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Where i is the ith testing pattern among n testing patterns. The AAE values for 
ANN predicted output deflections were in the range of 0.2% – 0.4% with R2 val-
ues above 0.999, indicating proper training and excellent prediction performance 
of the ANN surrogate forward calculation model.  

Such NN forward surrogate models integrated into the inversion process offer a 
number of advantages over the traditional methods, due to their generalization  
capabilities, massive parallelism and potential to offer real-time solutions, thus 
making them perfect tools for rapidly analyzing the routinely collected FWD de-
flection data.  

The Stochastic Global Optimization (SGO) algorithm (GA, PSO, SCE, etc.), in 
essence, finds the optimal values of the NN inputs (pavement layer moduli) itera-
tively such that the corresponding values of the network outputs (deflections) 
match the measured pavement surface deflections to minimize the differences be-
tween the measured and computer deflections. Although the error-minimization 
deflection-based objective function can be defined in a number of ways, a simple 
objective function representing sum of the squared differences between measured 
and computed deflections as shown in Equation 1 was selected for this study 
(where n = 6): 
 

                                              (6) 
 
The hybrid optimization framework was implemented in MATLAB. The input va-
riables include six FWD measured surface deflections at 300-mm radial offsets 
starting from the center of the FWD loading plate, HMA surface and base layer 
thicknesses and the corresponding min-max ranges of pavement layer moduli. In 
the following sections, the individual SGO algorithms and their corresponding re-
sults are discussed for two nature-inspired optimization strategies. 
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Fig. 2. Hybrid stochastic global optimization scheme for backcalculation 

3   Stochastic Global Optimization (SGO) 

3.1   Genetic Algorithms (GAs) 

A significant number of previous research studies have employed GAs optimiza-
tion strategy in backcalculating the mechanical properties of flexible pavement 
systems [Fwa et al. 1997, Reddy et al. 2002, Park et al. 2007, Alkasawneh 2007, 
Peckcan et al. 2008, Gopalakrishnan 2009, etc.]. Genetic algorithms are a part of 
evolutionary computing, a rapidly growing area of artificial intelligence. Catego-
rized as global search heuristics, GAs use techniques inspired by evolutionary  
biology such as inheritance, mutation, selection, and crossover (also called  
recombination). Being robust search and optimization techniques, GAs are find-
ing applications in a number of practical problems where calculus-based search 
methods are inefficient in searching for the optimal solution in a complex multi-
modal search space [Davis 1987, Goldberg 1989, Srinivas and Patnaik 1994, Hol-
land 1975]. 

GAs begin with an initial random population of possible solutions to the prob-
lem and employs survival-of-the-fittest and exploitation of old knowledge in the 
gene pool to improve each generation’s ability to solve the problem through a 
four-step process involving fitness evaluation, reproduction, recombination, and 
reproduction. After representing the optimization problem variables in suitable en-
coding mechanisms referred to as chromosomes, a set of trial solutions (often 
called as individuals) are generated and are forced to evolve towards an acceptable 
solution through the following four-step process [Frenzel 1993]: 
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• Fitness Evaluation: The mechanism for evaluating the fitness of indi-
viduals in the population in each generation is provided by the objective 
function, the function to be optimized. This fitness value is used in the 
next step in determining how many offsprings will be generated from any 
particular chromosome. 

• Reproduction: In this step, a new population is created based upon the 
evaluation of the current one by taking advantage of the survival-of-the-
fittest strategy, i.e., fitter solutions survive, while weaker ones perish. 
The two most popular methods, of calculating the number of offsprings 
that each chromosome will be allocated, are ratioing and ranking.  

• Recombination: Reproduction simply produces multiple copies of exist-
ing chromosomes whereas recombination combines chromosomes from 
the population and produces new chromosomes while maintaining many 
of the features of the previous generation. The most common method for 
recombination is crossover. Subsections of two chromosomes randomly 
selected from the population are swapped about a randomly chosen cros-
sover point governed by a specified crossover probability or rate. This is 
based on the assumption that the population as a whole contains the an-
swer to the optimization problem and only by combining chromosomes 
will the best solution be found. 

• Mutation: Mutation is only treated as a secondary genetic operator with 
the role of restoring lost genetic material. Under the assumption that the 
initial population didn’t contain all the information necessary to solve the 
problem, new information is injected into the population by most ran-
domly changing a fixed number of bits every generation based upon a 
specified mutation probability. 

The GA module implemented in this study is capable of using either a floating 
point representation or a binary representation. First, the starting population is 
randomly generated. Each individual in the population, representing a set of 
pavement layer moduli, is passed on to the NN module for computing deflections 
which are then passed back to the GA module for fitness evaluation. Using the fit-
ness function (Eq. 6), the GA module performs simulated evolution to determine 
the fitness of the solution strings. 

In the current GA implementation [Gopalakrishnan 2009], it is possible to use a 
variety of crossover and mutation functions which include arithmetic crossover, 
heuristic crossover, simple crossover for crossover operator and boundary muta-
tion, multi-non-uniform mutation, non-uniform mutation, and uniform mutation 
for mutation operator. Similarly, the implemented selection schemes include: rou-
lette wheel, normalized geometric select, and tournament [Houck et al. 1995]. 
Based on literature review, the current study was conducted using the normalized 
geometric selection scheme with a probability of 0.08, arithmetic crossover and 
non-uniform mutation operators with variable probabilities. The size of the popu-
lation and generation size were set to 80 and 100, respectively. 
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3.2   Particle Swarm Optimization (PSO) 

PSO is a type of artificial intelligence method based on the collective behavior of 
decentralized, self-organized systems, has been proved to be an efficient method 
for many global optimization problems and in some cases it does not suffer the 
difficulties encountered by other evolutionary computation techniques. The PSO 
concept introduced by Kennedy and Eberhart [1995] draws its roots from artificial 
life (A-life), bird flocking, fish schooling, swarming theory, as well as genetic al-
gorithms and evolutionary programming. Although it was originally introduced 
for optimization of nonlinear continuous functions, many advances in PSO devel-
opment has enabled it to handle a wide class of complex engineering and science 
optimization problems.  

Similar to GAs, a population of potential solutions to the problem under con-
sideration is used to probe the search space in PSO. However, each individual of 
the population in PSO has an adaptable velocity (position change), according to 
which it moves in the search space. Moreover, each individual has a memory, re-
membering the best position of the search space it has ever visited [Eberhart and 
Shi 1998]. The movement of the individual is thus an aggregated acceleration  
towards its best previously visited position and towards the best individual of a 
topological neighborhood. Since the “acceleration” term was mainly used for  
particle systems in Particle Physics [Reeves 1983] and the term “swarm” for de-
scribing population, this algorithm was named as Particle Swarm Optimization. In 
essence, PSO employs a swarm of particles or possible solutions that fly through 
the feasible solution space to explore optimal solutions. 

Two variants of the PSO algorithm were developed: one with a global neigh-
borhood (Gbest model), and one with a local neighborhood. Each particle moves 
towards its best previous position and towards the best particle in the whole 
swarm, according to the global variant. In contrast, each particle moves towards 
its best previous position and towards the best particle in its restricted neighbor-
hood, according to the local variant [Eberhart et al. 1996].  

The global variant PSO algorithm, which is the most standard one, is described 
as follows. Suppose that the search space is D-dimensional, then the i-th particle 
of the swarm can be represented by a D-dimensional vector, Xi = (xi1, xi2, …, xiD)T. 
The velocity (position change) of this particle, can be represented by another  
D-dimensional vector Vi = (vi1, vi2,…, viD)T. The best previously visited position of 
the i-th particle is denoted as Pi = (pi1, pi2, …, piD)T. Defining g as the index of the 
best particle in the swarm (i.e., the g-th particle is the best), and let the super-
scripts denote the iteration number. Each particle updates its position based on its 
own best exploration, best swarm overall experience, and its previous velocity 
vector according to the following two equations [Eberhart et al. 1996] which de-
fine the initial version of the PSO algorithm: 

 

             (7) 

                                                                       (8) 
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where d = 1, 2,…,D; i = 1, 2,…,N, and N is the size of the swarm; c is a positive 
constant, called acceleration constant; r1, r2 are random numbers, uniformly dis-
tributed in [0, 1]; and n = 1, 2,…, determines the iteration number. The perform-
ance of each particle is measured according to a pre-defined fitness function or  
objective function, which is related to the problem under consideration. 

3.3   Shuffled Complex Evolution (SCE) 

The SCE algorithm developed at the University of Arizona is reported to be an ef-
ficient global optimization method that can be used to handle non-linear problems 
with high-parameter dimensionality [Duan et al. 1992, Duan et al. 1993, Duan et 
al. 1994, Muttil and Liong 2004]. It consists of all the four principles for global 
optimization: the controlled random search, the implicit clustering, the complex 
shuffling, and the competitive evolution.  

In SCE methodology, the search for the optimal solution begins with a randomly 
selected complex of points spanning the entire feasible space. The implicit cluster-
ing helps to concentrate the search in the most promising of the regions.  The use of 
complex shuffling provides a freer and more extensive exploration of the search 
space in different directions, thereby reducing the chances of the search getting 
trapped in local optima. Three of these principles are coupled with the competitive 
complex evolution (CCE) algorithm, which is a statistical reproduction process 
employing the complex geometric shape to direct the search in the correct direc-
tion. The synthesis of these concepts makes the SCE algorithm not only effective 
and robust, but also flexible and efficient [Nunoo and Mrawira 2004].  

The SCE control parameters should be determined in advance to achieve the 
required exploration process. These parameters include the number of points in a 
complex (m), the number of points in a sub complex (q), the number of complexes 
(p), the number of consecutive offspring generated by each sub complex (α), and 
the number of steps in-evolution taken by each complex (β). Duan et al [1994] 
provides guidelines for proper selection of these parameters.  

The basic algorithm for SCE described by Duan et al [1993] can be outlined as 
follows: 

1. An initial population of points is sampled randomly from the feasible solution 
space (Ω) in the real space (Rn).   

2. The selected population is partitioned into one or more complexes, each con-
taining a fixed number of points. 

3. Each complex evolves according to a competitive complex evolution (CCE) 
algorithm. 

4. The entire population is periodically shuffled and points are reassigned to 
complexes to share the information from the individual complexes. 

5. Evolution and shuffling are repeated so that the entire population is close to 
convergence criteria, and are stopped if the convergence criteria are satisfied.      

The CCE algorithm is a sub-route in SCE algorithm. CCE algorithm employs 
the downhill simplex method [Nelder and Mead 1965] in generating offsprings. 
The simplex method facilitates evolution of each complex independently in an 
improvement direction. 
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4   Preliminary Findings 

Hypothetical data covering wide ranges of layer thicknesses and FWD deflections 
commonly encountered in the field were first used to evaluate the prediction accu-
racy of the developed hybrid stochastic global optimization schemes. A total of 
about 150 datasets were independently selected from the comprehensive synthetic 
FE solutions database to assess the prediction performance. The performance of 
hybrid SGO approach in backcalculating flexible pavement layer moduli is re-
ported in Figs. 3 to 5. All three SGO methodologies were found to be efficient and 
robust for backcalculation application. As shown in the plots, in all three cases, the  
 

 
Fig. 3. Backcalculation of pavement moduli using hybrid Genetic Algorithms (GAs) 
approach [Gopalakrishnan 2009] 

  

Fig. 4. Backcalculation of pavement moduli using hybrid Particle Swarm Optimization 
(PSO) approach 
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Fig. 5. Backcalculation of pavement moduli using hybrid Shuffled Complex Evolution 
(SCE) approach 

150 SGO backcalculation predictions fell on the line of equality for the two pave-
ment layer moduli thus indicating proper training and very good performance of 
the proposed hybrid backcalculation model. 

5   Concluding Remarks  

Backcalculation of pavement layer moduli is an ill-posed inverse engineering 
problem, where the unknown mechanical properties of the pavement structure are 
determined from the field-measured surface deflection profile generated by the 
system subjected to impulse (FWD) loading. Majority of the commercial backcal-
culation programs do not account for the non-linear response of pavement geo-
materials under applied loading and employ an iterative optimization approach 
which is known to suffer from limitations such as dependency on the initial seed 
moduli and the possibility of local minimum solutions. 

This chapter presented that the development of a new hybrid Neural Networks 
(NN)-Stochastic Global Optimization (SGO) approach for the backcalculation of 
pavement layer moduli. For the first time, efficient SGO techniques like PSO and 
SCE were applied to inversion of pavement non-destructive test deflection data 
and backcalculation of HMA layer moduli and stress-dependent, non-linear sub-
grade moduli. The developed hybrid scheme combines the robustness of SGO in 
global optimization with the computational efficiency of NNs. This allows the hy-
brid model to facilitate real-time non-destructive evaluation of pavement systems 
and makes it a very attractive alternative for handling the backcalculation prob-
lem. It was demonstrated using hypothetical data that the proposed hybrid back-
calculation approach can successfully predict the flexible pavement surface layer 
moduli and non-linear subgrade moduli. 
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Abstract. A combined laboratory and modeling study was undertaken to develop a data-
base for common subgrade soils in Oklahoma and to develop relationships or models that 
could be used to estimate resilient modulus (MR) from commonly used subgrade soil prop-
erties in Oklahoma. Sixty-three soil samples from 14 different sites throughout Oklahoma 
are collected and tested for the development of the database and models. Additionally, 
thirty-four soil samples from 3 different sites, located in Rogers and Woodward counties, 
are collected and tested to evaluate the developed models. The routine material parameters 
selected in the development of the models include moisture content (w), dry density (γd), 
plasticity index (PI), percent passing No. 200 sieve (P200), and unconfined compressive 
strength (Uc). Bulk stress (θ) and deviatoric stress (σd) are used to identify the state of 
stress. A total of four, two regression models, namely, Polynomial and Factorial, and two 
feedforward-type artificial neural network (ANN) models, namely, Radial Basis Function 
Network (RBFN) and Multi-Layer Perceptrons Network (MLPN) are developed. A com-
mercial software, STATISTICA 7.1, is used to develop these models. The strengths and 
weaknesses of the developed models are examined by comparing the predicted MR values 
with the experimental values with respect to the R2 values. An evaluation of the four mod-
els indicate that for the combined development and evaluation datasets, the MLPN model is 
a good model for evaluating MR from the selected routinely determined properties. In order 
to illustrate the application of the developed model, the AASHTO flexible pavement design 
methodology is used to design asphalt concrete pavement sections.  

1   Introduction 

Empirical design methods for flexible pavement structures are primarily based on 
the equations that were developed largely from the AASHO Road Tests conducted 



270 P. Solanki, M. Zaman, and A. Ebrahimi 
 

in 1950’s. These methods fail to reflect the dynamic nature of traffic loads. There-
fore, the mechanistic design methods referred to as the “AASHTO Guide for De-
sign of Pavement Structure” (AASHTO 1986) recommended the use of resilient 
modulus (MR), a dynamic-strength parameter, to characterize the flexible pave-
ment materials. The MR accounts for the cyclic nature of vehicular traffic loading, 
and is defined as the ratio of deviatoric stress to recoverable elastic strain.  

Several laboratory and field procedures are currently either used or evaluated 
for determining a design MR value of subgrade soil. Direct laboratory methods 
used for evaluating MR during the past two decades include resonant column, tor-
sional shear, gyratory, and repeated load triaxial testing (AASHTO 1986, Kim and 
Stokoe 1992, George 1992, Kim et al.1997). Among these testing procedures, the 
MR from repeated load triaxial test (RLTT) is used most frequently because of the 
repeatability of test results and its representation of field stress in controlled labo-
ratory environments. RLTT is conducted in the laboratory on remolded or undis-
turbed samples according to different AASHTO test methods of which AASHTO 
T307 is used frequently (AASHTO 2004). The AASHTO T307 test method can be 
a time consuming and expensive test method, particularly for small projects.  

In the new 2002 AASHTO guide, which is currently in the evaluation stage, a 
hierarchical approach is used to determine different design inputs including MR 
(AASHTO 2004). It requires the evaluation of the engineering properties of sub-
grade soils in laboratory or field to pursue a Level-1 (most accurate) design. For a 
Level-2 (intermediate) design, however, the design inputs are user selected, possi-
bly from agency database or from limited testing program or could be estimated 
through correlations (AASHTO 2004).  A Level-3 design, which is the least accu-
rate and generally not recommended, uses only the default values. For Level-2 de-
signs, a regression model for MR can be very useful as it provides the designer 
with significant flexibility in obtaining the design inputs for a project.  

2   Objectives 

The primary objective of this study is to develop a database and correlations or 
models for MR of some commonly encountered subgrade soils in Oklahoma for 
Level-2 pavement design applications. Generally, there are two different modeling 
options, namely regression models and artificial neural networks (ANN). Both 
stress (deviatoric stress and bulk stress) and routine soil properties (unconfined 
compressive strength, dry density, moisture content, gradation, and Atterberg  
limits) are employed in developing these models. In this study, two regression 
models, namely, Polynomial and Factorial, were developed. In addition, two feed-
forward-type ANN models, namely, Radial Basis Function Network (RBFN) and 
Multi-Layer Perceptrons Network (MLPN), were generated. A commercial soft-
ware, STATISTICA 7.1, was used to develop these models. The strengths and the 
weaknesses of the developed models were examined using additional MR test re-
sults that were not used in the development of these models. The models devel-
oped in this study are expected to be useful in the Level 2 designs of pavements in 
Oklahoma.   
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3   Review of Previous Studies 

3.1   Regression Models 

Several pertinent studies have previously been undertaken to develop empirical 
correlations to estimate MR values in terms of other soil properties. One of the 
commonly used models to represent MR is the power model (see e.g. Dunlap 1963, 
Seed et al. 1967, Thompson and Robnett 1976, Moossazadeh and Witczak1981, 
May and Witczak 1981, Uzan 1985, Farrar and Turner 1991, Yau and Quintus 
2002, NCHRP 2003, Hopkins at el. 2004, Rahim and George 2004, and Khazano-
vich et al. 2006). Dunlap (1963) proposed the following correlation for MR:  

MR = k1(σ 3/Pa)
k2                                                                                                            (1) 

where, σ3 is confining pressure, Pa is a reference pressure (e.g., atmospheric pres-
sure) and k1 and k2 are regression coefficients.  

A number of researchers (see e.g., Dingquing and Shelig 1994, Gomes and Gil-
let 1996, Paute and Hornych 1996, Rada and Witczak 1981, Raad et al. 1992 and 
Zaman et al. 1994) have utilized other soil property indices to estimate MR. For 
example, Drumm et al. (1990) developed two regression models for MR of fine-
grained soils as a function of deviator stress and soil-index properties, namely, 
percentage passing No. 200 sieve (P200), plasticity index (PI), dry density (γd), and 
unconfined compressive strength (Uc). A relatively small (twenty-two) number of 
these samples were used in developing these models.  

In a similar study, Lee et al. (1997) investigated the MR of cohesive soils, main-
ly clayey subgrade soils, with RLTT.  Specimens were compacted using standard 
and modified proctor methods at near optimum moisture content (OMC) in a mold 
with a diameter of 38 mm (1.5 in) and a height of 100 mm (4.0 in). It was seen 
that the custom-compaction results were in close agreement with the maximum 
dry density (MDD) and the optimum moisture content (OMC) from the standard 
and modified Proctor tests. Regression analyses were conducted to obtain a rela-
tionship between MR and the stress in unconfined compressive strength test caus-
ing 1% strain (SU1.0%) in laboratory compacted specimens.  The relationship be-
tween MR and SU1.0% for a given soil was found to be unique regardless of 
moisture content and compaction effort.  The results showed that the MR and 
SU1.0% vary with the moisture content in a similar manner. Furthermore, four dif-
ferent compactive efforts were used in that study, but a single relationship be-
tween MR and SU1.0% was obtained, as presented in equation (2): 

MR = 695.4 (SU1.0%) – 5.93 (SU1.0%)2                                                            (2) 

where, MR = resilient modulus at maximum axial stress of 41.4 kPa and confining 
pressure of 20.7 kPa; and SU1.0% = stress causing 1% (strain kPa) in conventional 
UC test. 

Moreover, the relationship was similar for different cohesive soils, indicating 
that it may be applicable for different types of clayey soils.  The limited data sug-
gested that the same correlation might be used to estimate the MR for both labora-
tory and field compacted conditions.  
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In a field study, Yau and Von Quintus (2002) proposed the following correla-
tion using the MR data obtained from the Long Term Pavement Performance 
(LTPP) test sections: 

MR = k1 Pa (θ/Pa)
k2 [(τoct/Pa)+1]k3                                                                    (3) 

where, τoct is the octahedral shear stress, and k1, k2, and k3, are the regression con-
stants. Yau and Quintus (2002) expressed these regression constants as a function 
of moisture content, dry density, optimum dry density, liquid limit, percent silt, 
percent clay, and percent passing different sieve sizes. The soils were classified 
into three different groups (coarse grained sandy soils, fine grained silty soils, and 
fine grained clayey soils), and the regression constants were developed for each 
soil type.  

Using data from six different pavement sections in Minnesota, Dai and Zollars 
(2002) suggested a similar model that used deviatoric stress (σd) as a stress vari-
able instead of τoct. Also, they used only one sieve size (#200) instead of multiple 
sieve sizes used by Yau and Quintus (2002), and included PI and degree of satura-
tion as model variables.  

In Minnesota, Khazanovich et al. (2006) used MR results for 23 samples from 
several locations and evaluated the regression constants for use in the mechanistic-
empirical-based pavement designs. However, because the mineralogical and textural 
characteristics of soils in Oklahoma are different than those in Minnesota, those re-
sults may not be directly used for pavements in Oklahoma for a Level 2 design. 

In a recent study, Malla and Joshi (2008) used long-term pavement perform-
ance information for 259 test specimens for developing model consisting bulk 
stress (θ) and τoct relating to soil properties such as moisture content (w), OMC, γd, 
MDD, liquid limit (LL), and PI. Predictions models were developed by conducting 
multiple linear regression analysis using computer software SAS.  

3.2   Artificial Neural Network (ANN) Models 

ANN has become an important modeling technique due to its success in many en-
gineering applications including geotechnical engineering problems (see e.g., TRB 
1999, Najjar et al. 2000, Shahin et al. 2004).  One of the common artificial neural 
networks in use currently is the feedforward network.  As evident from its name, a 
feedforward network only allows the data flow in the forward direction (Zurada 
1992, Fausett 1994, Ripley 1996, StatSoft Inc. 2006).  Based on the architecture, a 
number of feedforward networks are available such as multilayer perceptrons, ra-
dial basis function, probabilistic neural networks, generalized regression neural 
networks, and linear networks (TRB 1999, Shahin et al. 2004, StatSoft  Inc. 2006,  
Sharma and Das  2008, Far et al. 2009). 

ANN contains a number of simple, highly interconnected processing elements, 
known as “nodes” or “units.” In a typical processing element, each input connec-
tion has a weighting value. With the weighting value, input data and bias value, a 
net input is described into the processing element.  Then, a transfer function  
provides an output from the net input. Finally, a single output is produced and 
transmitted to other processing elements (Skapura 1996, Najjar et al. 2000, Shahin 
et al. 2001).  
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The weights between the processing elements are adjusted during the “training 
or learning” phase. In the training process, a number of epochs are performed in 
the network.  After each epoch, the weights are adjusted and a sum of mean 
squared error between target and output values is calculated.  The training process 
stops when the sum of mean squared error is minimized or falls within an accept-
able range (Shahin et al. 2001, Shahin et al. 2004). 

Different algorithms can be used to train a network.  In general, the training al-
gorithms can be divided into two types: supervised and unsupervised.  The super-
vised algorithms adjust the weights and the thresholds using the input and target 
output values, while the unsupervised algorithms only use the input values.  The 
supervised training algorithms include back propagation, conjugate gradient de-
scent, Levenberg-Marquardt, Pseudo-inverse, etc. (Mehrotra et al. 1996, Shahin et 
al. 2004, StatSoft Inc. 2006).  

A number of researches have utilized ANN technique in pavement applications.  
For example, Meier et al. (1996) augmented a computer program, WESDEF, with 
ANN models to backcalculate pavement layer moduli. The ANN models were 
trained to compute the layer moduli (MR) from falling weight deflectometer 
(FWD) data from flexible pavements (Meier et al. 1996).  

In a recent study, Sharma and Das (2008) used ANN models to backcalculate 
layer moduli with better accuracy compared with other software, namely, 
EVERCALC and ExPaS. In another recent pavement application, Far et al. (2009) 
utilized ANN for estimating the dynamic modulus of asphalt concrete. The results 
showed that the predicted and measured dynamic modulus values are in close 
agreement using ANN models.  

4   Sources and Characteristics of Subgrade Soils 

In the present study, a total of 97 bulk soils samples were collected from 16 differ-
ent counties in Oklahoma. Of these, 63 samples from 14 different counties were 
used in the development of the regression models and are collectively referred to 
as the “development dataset.” These sites were located in Adair, Alfalfa, Choctaw, 
Delaware, Greer, Jefferson, Kingfisher, Lincoln, Major, McClain, Noble, Ok-
fuskee, Osage, and Rogers counties in Oklahoma. The remaining 34 soils from 
two different counties namely, Rogers and Woodward counties, were used for the 
evaluation of the regression models. Data for these soils are collectively referred 
to as the “evaluation dataset.” A majority of soils in the development dataset was 
lean clay and lean clay with sands (Table 1). A majority of soils in the evaluation 
dataset, on the other hand, was lean clay, lean clay with sand and sandy lean clay. 
Bulk samples of different soil series, primarily from the B-horizon and the C-
horizon, were collected from each site following the standard sampling method for 
pedological and geological soil survey (FHWA 2002, AASHTO 2004). 
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Table 1. Summary of USCS soil classification results for the development and evaluation 
dataset 

Number of Soils 
Soil Classification Development 

Dataset 
Evaluation 

Dataset 
Unified Soil Classification System (USCS)  

Fat clay CH 2 1 
Fat clay with sand CH 0 1 
Sandy fat clay CH 1 0 
Lean clay CL 23 8 
Lean clay with sand CL 22 8 
Gravelly lean clay CL 2 0 
Sandy lean clay CL 8 10 
Sandy lean clay with 
gravel 

CL 0 2 

Silty clay with sand CL-ML 1 0 
Sandy silty clay CL-ML 1 3 
Clayey Sand SC 1 1 
Clayey Sand with 
gravel 

SC 2 0 

Total : 63 34 

5   Laboratory Testing and Results 

The laboratory testing program included routine laboratory tests, namely grain 
size distribution (AASHTO T11 and AASHTO T27), Atterberg limits (AASHTO 
T89 and AASHTO T90) and standard proctor (ASTM D698), as well as resilient 
modulus (AASHTO T307) and unconfined compression (AASHTO T208). Using 
the proctor test results, two samples were prepared for each soil with different 
compaction conditions. One of these samples was compacted at the optimum 
moisture content (OMC) and 95% of the maximum dry density (MDD). For the 
other sample, the moisture content and dry density were set at 2% wet of OMC, 
representing the Oklahoma DOT in-construction stage requirements (Ebrahimi 
2006). Specimens having a moisture variation of more than ±0.5 percent from the 
targeted moisture content and dry density less than 95% of MDD were discarded 
and new samples were compacted, evaluated and tested. Thus, a total of 126 MR 
tests were conducted for 63 soils used in the development dataset. Likewise, 68 
MR tests were conducted for 34 soils in the evaluation dataset. A static compaction 
method (a modified version of the double plunger method) was used in sample 
preparation (AASHTO 2004). The unconfined compressive strength (UC) test was 
conducted on the same sample, following the MR testing.  It is assumed that since 
the MR strain is in the range of 1/ten thousand (mm/mm) the influence of MR test 
on the UCS test would be negligible (Ebrahimi 2006). 
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Table 2. Basic statistical parameters for different soil properties 

Dataset No. of 
Soils 

Mean 
Me-
dian 

Min. Max. 
Std. 
Dev. 

Skewness 
Kurto-
sis 

Liquid Limit (LL) 
Development 63 34. 33.0 21 67 10.0 1.11 1.20 
Evaluation 34 36. 35.0 24 52 8.4 0.18 -1.16 

Plastic Limit (PL) 
Development 63 16. 15.0 9 27 3.5 1.11 1.48 
Evaluation 34 15. 14.5 12 21 2.7 0.56 -1.00 

Plasticity Index (PI) 
Development 63 18. 17.0 7 43 8.4 0.97 0.63 
Evaluation 34 20. 21.5 6 36 8.9 -0.03 -1.22 

Percent Passing No. 4 Sieve 
Development 63 98. 100. 73. 100 6.4 -3.47 10.79 
Evaluation 34 97. 100. 79. 100 4.8 -2.77 7.89 

Percent Passing No. 10 Sieve 
Development 63 96. 99.9 47. 100 9.3 -3.64 14.40 
Evaluation 34 95. 99.3 74. 100 6.7 -1.87 3.05 

Percent Passing No. 40 Sieve 
Development 63 93. 97.3 39. 99. 10.5 -3.27 12.38 
Evaluation 34 88. 92.2 49. 100 11.4 -1.82 3.53 

Percent Passing No. 200 Sieve 
Development 63 78. 83.0 36. 98. 15.0 -1.05 0.37 
Evaluation 34 74. 74.8 37. 94. 13.1 -0.49 0.27 

Group Index (GI) 
Development 63 13. 13.0 1 39 8.6 0.81 0.58 
Evaluation 34 14. 13.0 1 31 9.6 0.29 -1.36 

Specimen Moisture Content (%)*  
Development 126 17. 17.2 10. 25. 3.0 0.39 -0.14 
Evaluation 68 17. 17.5 11. 22. 2.9 -0.24 -0.94 

Specimen Dry Density (kg/m3)* 
Development 126 16 1658 140 187 106. -0.26 -0.44 
Evaluation 68 16 1676 154 186 74.8 0.40 -0.60 

Unconfined Compressive Strength (kPa)* 
Development 126 20 193. 50. 443 70.8 0.68 0.50 
Evaluation 68 16 159. 56. 357 64.4 0.78 0.81 

*Specimens compacted at OMC and OMC+2% for each soil 
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A summary of the basic regression parameters for liquid limit, plastic limit, 
plasticity index, percentage passing #4 sieve, #10 sieve, #40 sieve, #200 sieve, 
group index, specimens moisture content, dry density and UC is listed in Table 2. 
Further regression details of different parameters (i.e. liquid limit, plastic limit, 
plasticity index, percentage passing #4, #10, #40, #200 sieve, specimens moisture 
content, dry density and UC) used in this study are given in Ebrahimi (2006).  

Montgomery et al. (2006) recommended that datasets deviating from normal 
distribution would not affect the outcome of the analysis and the results would not 
be critically affected. Hence, in this study kurtosis and skewness were determined 
to select the input parameter for regression modeling. Kurtosis parameter is an in-
dicator of heaviness of the tail. A perfectly normal distribution of data has a kurto-
sis of zero. A positive kurtosis is an indication of more observations on the tail end 
of the distribution curve, while a negative kurtosis is an indication of fewer obser-
vations on the tail end of the distribution curve. Skewness is a measure of distribu-
tion of the data. A skewness of zero indicates perfectly normal distribution of data. 
Negative value of skewness indicates the data skewed left and positive value indi-
cates the data skewed right. 

5.1   Atterberg Limits  

The results from the liquid limit (LL) tests for the development dataset range from 
21 to 67 with a mean of 34.5 and a standard deviation of 10.0. The range of LL for 
evaluation dataset is from, 24 to 52 with a mean of 36.5 and a standard deviation 
of 8.4. Table 2 presents the basic regression parameters for the two sets of data. 
Based on the skewness parameter, the LL values for the evaluation dataset (i.e., 
0.18) are more normally distributed than the development dataset (i.e., 1.11).  On 
the other hand, based on the kurtosis parameter, the LL data for development data-
set and evaluation dataset are not distributed similarly. The development dataset 
has more data on the tail end with a kurtosis of 1.20. On the other hand, the evalu-
ation dataset has less data on the tail end with a kurtosis of –1.16.  These results 
indicate that the LL data are not perfectly normally distributed; however, the  
deviation is small and therefore, normally distributed theories may be applied in 
regression analysis.  

Plastic Limit (PL) for the development dataset has a mean of 16.1 and a stan-
dard deviation of 3.5.  The PL for the development dataset ranges from 9 to 27. 
The results for the evaluation dataset show a mean of 15.5 and a standard devia-
tion of 2.7. The evaluation dataset ranges from 12 to 21 in PL values. The basic 
regression parameters for the two sets of data are presented in Table 2. The basic 
regression parameters and the figure show that the distributions for both datasets 
are close to normally distributed. The skewness of the development and the evalu-
ation datasets are 1.11 and 0.56, respectively, which are close to zero. Moreover, 
the kurtosis of the development and the evaluation datasets are also close to zero. 
The kurtosis of the development and the evaluation datasets are 1.48 and –1.00, 
respectively.   

The PI values for the development dataset ranged from 7 to 43, with a mean of 
18.4 and a standard deviation of 8.4 (Table 2).  Although the overall regression 
indicators for the evaluation dataset were comparable to those of the development 
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dataset, the corresponding values for the Rogers County soils were significantly 
different from the Woodward County soils. Overall, the Rogers County soils were 
closer to the soils in the development dataset.  From Table 2, the skewness and 
kurtosis for both datasets were negligible, so the distributions of the PI for both 
datasets may be considered normal. PI was used as an input parameter in the de-
veloped models. 

5.2   Grain Size Distribution 

Following specifications by the Oklahoma Department of Transportation (ODOT 
2000), only selected sieves (#4, #10, #40, and #200) were used in the grain size 
distribution tests. Table 2 presents the grain size distribution results in terms of 
percent passing 4.75 mm (#4), 2.00 mm (#10), 0.425 mm (#40), and 0.075 mm 
(#200). The skewness (-1.87 to –3.64) and kurtosis (3.05 to 14.4) values of #10 
sieve for both datasets were fairly high, indicating that these results are not nor-
mally distributed. Similar trends were observed for #4 and #40 sieves (Table 2). 
For #200 sieve, however, the overall skewness (-0.49 to –1.05) and kurtosis (0.27 
to 0.37) values were much smaller, indicating that these data could be assumed 
normally distributed. Thus, from the grain size distribution tests, only percent 
passing #200 sieve (P200) was used as an input parameter in the regression and 
ANN models. 

5.3   Group Index (GI) 

The GI values for the development dataset range from 1 to 39.  The mean and 
standard deviation for the GI values are 13.2 and 8.6.  The range of GI for the 
evaluation dataset is from 1 to 31, with a mean of 14.6 and a standard deviation of 
9.6.  The basic regression parameters for the two sets of data are presented in Ta-
ble 2.  The distribution of the GI values may be considered normally distributed 
since the deviation is small (Figure 4-19). The skewness of the development and 
the evaluation datasets are 0.81 and 0.29, respectively. The kurtosis values of the 
development and the evaluation datasets are 0.58 and -1.36, respectively. These 
values are close to the normal distribution values (i.e. 0).  

5.4   Moisture Content (w) 

After completion of the MR test, the w of the tested specimen was evaluated, and 
used as an input parameter in the regression and ANN models. The moisture con-
tents for the development dataset ranged from 10.5% to 25.3%, with a mean of 
17.4% and a standard deviation of 3.0%. The w values for the evaluation dataset 
were in the range of 11.4% to 22.4%, with a mean of 17.3% and a standard devia-
tion of 2.9%. The skewnesses of w data for the development and the evaluation 
datasets were 0.39 and –0.24, respectively.  The corresponding kurtosis values 
were -0.14 and –0.94, respectively. These values indicate that the moisture content 
data were also approximately normally distributed. 
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Table 3. Basic statistical parameters for resilient modulus at each sequence for develop-
ment and evaluation datasets 

Resilient Modulus (MPa) Sequence 
No. 

Confining 
Pressure 

(kPa) 

Axial 
Stress 
(kPa) Mean Minimum Maximum 

Standard 
Deviation 

Development Dataset (126 Specimens) 
1 41.4 13.8 298.6 54.6 2042.3 347.6 
2 41.4 27.6 86.8 34.5 229.0 31.7 
3 41.4 41.4 72.3 24.6 163.8 28.2 
4 41.4 55.2 63.4 24.3 155.7 28.0 
5 41.4 68.9 57.9 20.7 152.6 26.8 
6 27.6 13.8 269.4 41.9 2160.8 341.2 
7 27.6 27.6 84.1 28.7 245.9 33.2 
8 27.6 41.4 70.6 23.2 159.5 28.6 
9 27.6 55.2 63.2 22.3 151.7 28.3 

10 27.6 68.9 58.3 20.9 149.2 27.0 
11 13.8 13.8 312.4 36.1 1892.2 393.3 
12 13.8 27.6 93.3 23.7 979.9 87.9 
13 13.8 41.4 76.9 19.8 727.9 65.9 
14 13.8 55.2 63.9 19.6 159.8 29.6 
15 13.8 68.9 59.4 18.2 190.9 29.3 

Evaluation Dataset (68 Specimens) 
1 41.4 13.8 172.8 58.1 409.1 89.7 
2 41.4 27.6 80.9 28.2 131.3 21.9 
3 41.4 41.4 66.4 19.6 122.1 24.6 
4 41.4 55.2 54.5 17.2 117.8 21.2 
5 41.4 68.9 49.0 16.1 104.4 19.1 
6 27.6 13.8 161.8 57.1 494.2 93.1 
7 27.6 27.6 79.0 33.9 136.7 22.9 
8 27.6 41.4 64.2 22.7 121.0 24.4 
9 27.6 55.2 53.5 18.8 115.9 21.2 

10 27.6 68.9 49.4 16.8 106.2 19.6 
11 13.8 13.8 190.8 54.1 826.4 146.3 
12 13.8 27.6 80.4 36.2 135.7 23.4 
13 13.8 41.4 64.9 23.9 126.0 25.1 
14 13.8 55.2 53.8 19.4 116.3 21.7 
15 13.8 68.9 49.8 17.3 107.4 20.0 
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5.5   Dry Density (γd) 

The γd values for the development dataset were in the range of 1404.2 kg/m3 (87.7 
pcf) to 1872.6 kg/m3 (116.9 pcf), with a mean of 1658.0 kg/m3 (103.5 pcf) and a 
standard deviation of 106.7 kg/m3 (6.7 pcf). The corresponding range for the 
evaluation dataset was 1544.7 kg/m3 (96.4 pcf) to 1862.9 kg/m3 (116.3 pcf), with a 
mean of 1689.2 kg/m3 (105.5 pcf) and a standard deviation of 74.8 kg/m3 (4.7 
pcf). For the both datasets, the γd values were normally distributed. 

5.6   Unconfined Compressive Strength (UC) 

The Uc of soils in the development dataset varied between 50.9 kPa (7.38 psi) and 
443.5 kPa (64.3 psi), with a mean of 204.7 kPa (29.7 psi) and a standard deviation 
of 70.8 kPa (10.3 psi).  The Uc values of the evaluation dataset had a smaller range 
(56.5 kPa to 357.7 kPa or 8.2 psi to 51.9 psi) and lower mean (166.4 kPa or 24.1 
psi) than that of the development dataset. The standard deviation (95.9 kPa or 13.9 
psi) for the Woodward County soils, however, was relatively high. The skewness 
and kurtosis for the development dataset were 0.68 and 0.50, respectively. The 
corresponding skewness and kurtosis for the evaluation dataset were 0.78 and 
0.81, respectively. Overall, the Uc values were normally distributed. 

5.7   Resilient Modulus 

The MR test results for the development and the evaluation datasets are presented 
in Table 3. For the development dataset, a very high standard deviation, more than 
340 MPa (49.3 ksi), is seen for the loading sequences 1, 6, and 11. A high stan-
dard deviation (more than 89 MPa or 12.9 ksi) is also observed for the evaluation 
dataset for the same loading sequences. For each of these loading sequences, the 
applied axial stress is the lowest (13.8 kPa or 2 psi), resulting in very small defor-
mation of the sample that are difficult to measure due to electrical noise. As a re-
sult, the MR values for these loading sequences were not used in developing the 
regression model.  

6   Development of Models 

6.1   Regression Models 

In the present study, mainly two regression models were developed, namely, poly-
nomial, and factorial. The MR values were predicted using the evaluation dataset 
and then compared to the experimental MR values. The R2 and F values were util-
ized as the basis of comparing the developed models in regard to the goodness of fit 
and significance of the model, respectively (FHWA 2002, Tarefder et al. 2005). For 
each model, the experimental and the predicted MR/Pa values were compared for 
the overall development dataset. Three specimens (MA-3B, NO-7A and OS-1B) 
were selected randomly for additional comparisons, so as to represent a wide range 
of scenarios (best, worst, and intermediate). For each specimen, both model pre-
dicted and experimental MR values were plotted as a function of deviatoric stress.  
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Fig. 1. Comparison of Experimental and Predicted MR/Pa for Development Dataset: Poly-
nomial Model 

6.1.1   Polynomial Model  
A polynomial model includes the basic components of a multiple linear regression 
model with the addition of higher order effects for the independent variables. Al-
though a second order model may be adequate for many problems, a general poly-
nomial model can have higher than second order terms (Carmichael and Stuart 
1978, Ebrahimi 2006). In polynomial regression, higher order terms are added to 
the model to determine if they increase the associated R2 significantly (Sokal  
and Rohlf 1995, Myers et al 2001, Montogomery et al. 2006). However, in most 
cases, polynomial models of orders greater than three are not practical (Sokal and 
Rohlf 1995).       

Using the polynomial modeling option in STATISTICA 7.1, the resulting sec-
ond order polynomial model is given by the following equation: 

MR/Pa = 15.8002 + 2.9994 w – 7.4142 w2 – 18.3291 (γd/γw) + 5.4596 (γd/γw)2  
+ 0.02191 PI –0.0003142 PI2 – 0.3705 P200 –0.009229 P200

2 
  + 0.2628 (Uc/ Pa) –0.01050(Uc/ Pa)

2 –2.0332(σd/ Pa) +1.62950(σd/ Pa) 
2  

     -0.01181 (θ/Pa) + 0.004735(θ/Pa)
2     (4) 
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The R2 and F values for this model were found to be 0.4858 and 101.02, re-
spectively. To examine if a higher order model was desired, a third order polyno-
mial regression model was developed for the same development dataset. The R2 
and F values for the third order polynomial model changed to 0.4101 and 254.75, 
respectively.  Specifically, the R2 value for the third order polynomial regression 
model was worse than the corresponding values for both the multiple regression 
and the second order polynomial regression models. Also, the F value increased 
from the second order to the third order polynomial regression model indicating 
that the second order polynomial model was a better model (Sokal and Rohlf 
1995, Fernandez-Juricic et al. 2003).  

Figure 1 presents a comparison of experimental and the MR/Pa values back-
predicted by the second order polynomial model. The model’s performance per-
taining to three selected specimens MA-3B, NO-7A, and OS-1B is illustrated in 
Figures 2, 3, and 4, respectively. The MR results from these specimens covered the 
full range of MR response for the development dataset.  Specimen NO-7A shows 
the best prediction, followed by specimen OS-1B. Specimen MA-3B shows the 
worst back-prediction. The soil classification results for these specimens indicate 
lean clay with AASHTO classification of A-6(10), A-6(16) and A-6(21) for OS-
1B, NO-7A, and MA-3B, respectively.  The Uc results for OS-1B, NO-7A, and 
MA-3B were 161 kPa (23.3 psi), 272 kPa (39.4 psi), and 310 kPa (45.1 psi), re-
spectively (Ebrahimi 2006). Thus, even though these soils are all classified as A-6 
soils, their unconfined compressive strengths were quite different.  
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Fig. 2. Resilient modulus from experiment and polynomial model: specimen MA-3B 
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Fig. 3. Resilient modulus from experiment and polynomial model: specimen NO-7A 
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Fig. 4. Resilient modulus from experiment and polynomial model: specimen OS-1B 
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Fig. 5. Comparison of experimental and predicted MR/Pa for development dataset: factorial 
model 

Overall, it was observed that the MR values increased with increasing uncon-
fined compressive strength.  This may have been a contributing factor for the three 
specimens exhibiting different levels of correlations between the experimental and 
predicted MR. 

6.1.2   Factorial Model  
Similar to the polynomial model, a factorial model also includes the components 
of a multiple regression model. However, instead of considering higher order ef-
fects of the independent variables, it accounts for interactions among different va-
riables in the model. Different levels of interactions may be incorporated such as 
interactions between two variables, among three variables, and so on (i.e. w×γd, 
PI×Uc×σd, w× γd×PI×σd×θ, etc.).  A full-factorial regression model consists of all 
possible products of the independent variables.  Moreover, a factorial regression 
model can be fractional (i.e., fractional exponent) (see e.g., Myers et al. 2001, 
Montgomery et al. 2006).   

A full-factorial model is used in the present study.  With seven independent va-
riables and all possible products of the independent variables, the factorial model 
is a long equation with 128 terms. All the regression constants for this model  
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Fig. 6. Resilient modulus from experiment and factorial model: specimen MA-3B 
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Fig. 7. Resilient modulus from experiment and factorial model: specimen NO-7A 
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Fig. 8. Resilient modulus from experiment and factorial model: specimen OS-1B 

were determined using STATISTICA 7.1. The resulting equation of the FM is pre-
sented in Appendix.  The R2 and F values for the FM were 0.6595 and 23.74, re-
spectively.  The R2 is significantly higher than those for the previous models 
(0.4858).  Significant observation was also made by the decrease of the F value 
from 101.02 for polynomial model to 23.74 for factorial model. Figure 5 shows a 
plot of experimental versus predicted MR/Pa values for factorial model. Figures 6, 
7, and 8 present a comparison of the back-predicted MR values against deviatoric 
stress for specimens MA-3B, NO-7A, and OS-1B. As expected, the factorial mod-
el predicted the resilient modulus values of specimen NO-7A very closely, while 
the prediction for specimen MA-3B is much worse. Furthermore, because of the 
improvement in R2 and F values both the goodness of fit of the model and the sig-
nificance model the observations between the experimental and predicted values 
are closer. It may therefore be assumed at this point that since the F-value is 23.74 
and it is the lowest F value, the factorial model is the most significant regression 
model for the development dataset. 

6.2   Artificial Neural Network Models 

In the present study, two feedforward-type ANN models, namely, Radial Basis 
Function Network (RBFN) and Multi-Layer Perceptrons Network (MLPN), were 
generated. A commercial software, STATISTICA 7.1, was used to develop these 
neural network. In the present application, the input layer consists of seven nodes, 
one node for each of the independent variables, namely w, γd, PI, P200, Uc, σd, and 
θ.  The output layer consists of one node, representing MR. For each ANN model 
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developed, a trial and error approach was used to find the number of nodes in the 
hidden layer(s), in search of the optimum model.  After the architecture was set, 
the development dataset was fed into the model for training.  To examine the 
strengths and weaknesses of the developed models, the predicted MR values were 
compared with the experimental values with respect to the R2 values. Thus, a 
higher R2 value was considered a better fit of the development dataset. Previously, 
several researchers have used R2 as an indicator of model performance (Tarefder 
et al., 2005; Rankine and Sivakugan, 2005). 

6.2.1   Radial Basis Function Network (RBFN) 
The radial basis function network (RBFN) divides the modeling space using hy-
perspheres. The centers and radii are used to characterize these hyperspheres.  The 
RBFN units respond non-linearly to the distance of points from the center repre-
sented by a radial unit. The response surface of a single radial unit is the Gaussian 
(bell-shaped) function, peaked at the center, and descending outwards (Haykin 
1994, Bishop 1995, Statsoft Inc. 2006). Therefore, the RBFN has three layers, 
namely input, hidden, and output layers. The hidden layer consists of radial units.  
It models the Gaussian response surface. The two most common methods for as-
signing the center of the radial units are sub-sampling and K-Means algorithm 
(Bishop, 1995; Statsoft, Inc., 2006).  
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Fig. 9. Comparison of experimental and predicted MR/Pa for development dataset: radial 
basis function network (RBFN) model 
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Fig. 10. Resilient modulus from experiment and radial basis function network (RBFN) 
model: specimen MA-3B 
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Fig. 11. Resilient modulus from experiment and radial basis function network (RBFN) 
model: specimen NO-7A 
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Fig. 12. Resilient modulus from experiment and radial basis function network (RBFN) 
model: specimen OS-1B 

The RBFN model has one hidden layer.  A trial and error approach was used to 
determine the optimum number of node in the hidden layer.  Following this ap-
proach, the optimum number of node in the hidden layer was found to be 100.  
The R2 value of the RBFN model is 0.6284, which is much better than the poly-
nomial model (0.4858) and similar to factorial model (0.6595). Figure 9 shows an 
overall comparison between experimental and predicted MR/Pa values for this 
model. Figures 10, 11, and 12 presents the back-prediction of the experimental MR 
values against the deviatoric stress for specimens MA-3B, NO-7A, and OS-1B, re-
spectively. The results are much encouraging for all three specimens and the 
RBFN model back-predicted the MR values in both low and high range of MR val-
ues. This improvement in back-prediction may be attributed to the use of hyper-
spheres in the RBFN model in the form of Gaussian (bell-shaped) function-type 
response surface (Haykin 1994, Bishop 1995, Bors 2001, Yildirim and Ozyilmaz 
2002). 

6.2.2   Multi-Layer Perceptrons Network (MLPN) 
The MLPN is one of the popular network architecture in use today (Rumelhart and 
McClelland 1986, Bishop 1995, Narayan, 2002). The MLPN consists of an input 
layer, a number of hidden layers, and an output layer.  In each of the hidden lay-
ers, the number of node can be varied. Due to the number of layers and the num-
ber of nodes in each layer, the MLPN can adjust the architecture of the network 
based on the complexity of a problem.  In STATISTICA 7.1, the MLPN has up to  
 



Regression and ANN Modeling of Resilient Modulus of Subgrade Soils 289
 

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5

Pr
ed

ict
ed

 M
R
/P

a
(×

10
3 )

Experimental MR/Pa (× 103)

R2 = 0.5744

Equality Line

 
Fig. 13. Comparison of experimental and predicted MR/Pa for development dataset: multi-
layer perceptrons network (MLPN-2) model  

three hidden layers available. Each of the nodes in the network performs a biased 
weighted sum of their inputs and passes this activation level through a transfer 
function to produce its output. The weights and biases in the network are adjusted 
using a training algorithm. The training algorithms available in STATISTICA 7.1 
are back propagation, conjugate gradient descent, quasi-Newton, and Levenberg-
Marquardt (Statsoft Inc. 2006). 

In the present study, three MLPN models, henceforth referred to as MLPN-1, 
MPLN-2, and MLPN-3 models, were developed with different number of hidden 
layers in each model. The number of nodes in each of the three hidden layers was 
set at six, based on a trial and error approach. The R2 values of the MLPN models 
were found to be 0.5733, 0.5744, and 0.5587 for one, two and three hidden layers, 
respectively, indicating that the MLPN-3 might have reached over-learning or 
over-fitting (Bishop 1995). These R2 values indicate that all three MLPN models 
are expected to better correlate the MR/Pa values than the polynomial model 
(0.4858), but the MLPN models were somewhat worse than the factorial (0.6595) 
and the RBFN (0.6284) models. Figure 13 shows a comparison between the ex-
perimental and predicted values of MR/Pa values for the MLPN-2 model. Figures 
14, 15, and 16 presents the back-prediction of the experimental MR against the  
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Fig. 14. Resilient modulus from experiment and multilayer perceptrons network (MLPN-2) 
model: specimen MA-3B 
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Fig. 15. Resilient modulus from experiment and multilayer perceptrons network (MLPN-2)  
model: specimen NO-7A 
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Fig. 16. Resilient modulus from experiment and multilayer perceptrons network (MLPN-2)  
model: specimen OS-1B 

deviatoric stress for the MLPN-2 model for specimens MA-3B, NO-7A, and OS-
1B, respectively. The overall predictive quality is slightly worse than the RBFN 
model, but much better than the polynomial model.  

6.3   Comparative Performance of Different Models 

Table 4 presents a summary of the R2 results for all the four models developed 
here (polynomial, factorial, RBFN, and MLPN-2).  The R2 values ranged from 
0.4858 to 0.6595, the polynomial model exhibiting the lowest R2 value and the 
factorial model exhibiting the highest.  In general, better correlations are observed 
in the low range of the MR/Pa values (about 1,000).  With increased MR/Pa, values 
(beyond 1,000) the differences between the experimental and the predicted values 
increase. This observation may be due to the distribution of dataset.  Only 140 
MR/Pa values out of 1512 MR/Pa values (approximately 9%) are in the upper range 
of 1,000. The remaining 91% of the MR/Pa values for this study are in the lower 
range of the development dataset. As a result models appear to exhibit difficulty in 
back-predicting a majority of the resilient modulus values in the dataset that are in 
the lower range of the MR/Pa values (Myers et al. 2001, Montgomery 2006, Stat-
soft Inc. 2006).  In the process of lowering the overall error, the back-predicted 
values in the higher range of MR/Pa values usually become less than the experi-
mental values (i.e., under-prediction) and the back-prediction in the lower range 
increase (i.e., over-prediction). The next step in this study is to evaluate the  
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Table 4. Summary of the regression modeling results 

Polynomial Factorial RBFN MLPN-2 Type of Dataset 

R2 F R2 F R2 F R2 F 

Development  0.4858 101.02 0.6595 23.74 0.6284 NA 0.5744 NA 

Evaluation (Overall) 0.5200 NA 0.3634 NA 0.4938 NA 0.5848 NA 

Evaluation (WOE) 0.6212 NA 0.0962 NA 0.0251 NA 0.6308 NA 

Evaluation (ROE) 0.5523 NA 0.4021 NA 0.5557 NA 0.6026 NA 

WOE: Woodward county; ROE: Rogers county; RBFN: Radial basis function network; 
MLPN: Multi-layer perceptrons network; NA: Not applicable 

developed models using a different set of data that were not used in the develop-
ment phase (Bishop 1995, Hill and Lewicki 2006). 

7   Evaluation of Models 

The evaluation dataset were separated into soils from Woodward County and 
Rogers County.  Separate comparisons were made for the Woodward County soils 
(WOE-4B) and the Rogers County soils (ROE-20B), and a comparison was made 
for both counties together (henceforth called “combined evaluation dataset”). This 
provides different views on the prediction quality and the importance of datasets 
on regression analysis (Montgomery et al. 2006, Myers et al. 2001). Additionally, 
a comparison was made between the differences in the R2 values of the develop-
ment dataset and the evaluation dataset.   

7.1   Evaluation of Factorial Model  

The R2 value of the combined evaluation dataset was only 0.3634. Figure 17 
shows a comparison of the experimental and predicted MR/Pa values for the com-
bined evaluation dataset.  Even though the overall R2 value for the development 
dataset was 0.6595, it dropped significantly to 0.3634 for the evaluation dataset 
(Table 4).  The soils from Woodward County (WOE-4B) have the worst predic-
tions with a R2 value of 0.0962.  The full factorial model considered here contains 
128 terms in the function, it may be considered a complex function.  Therefore, it 
is possible that the factorial model over-fitted the development dataset and caused 
a poor prediction in the evaluation dataset (Hill and Lewicki 2006, Montgomery et 
al. 2006).  In the case of present dataset, it appears that the full factorial model has 
created a condition known as too much wiggle (Sokal and Rohlf 1995, Fernandez-
Juricic et al. 2003).  Too much wiggle occurs when the equation has too many 
terms and tries to fit to as many data point as possible.  The percent difference in 
the R2 between the development dataset and the Woodward County and Rogers 
County evaluation datasets are 85% and 39%, respectively.   
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Fig. 17. Comparison of experimental and predicted MR/Pa for combined evaluation dataset: 
factorial model 

7.2   Evaluation of Second Order Polynomial Model 

The second order polynomial model predicted the MR/Pa values with a R2 value of 
0.5200.  A plot of the experimental and predicted MR/Pa values is given in Figure 
18.  The results show that the Woodward County (WOE-4B) and the Rogers 
County soils (ROE-20B) have R2 values of 0.6212 and 0.5523, respectively. The 
R2 values for Woodward and Rogers Counties were approximately 27% and 6.2% 
higher than the R2 value for the development dataset. This indicates that the sec-
ond order polynomial model is capable of predicting the MR values of the Wood-
ward and Rogers County soils reasonably well, as compared to factorial model. 

7.3   Evaluation of RBFN Model 

The RBFN model predicted the MR/Pa values of the combined evaluation dataset 
with an R2 value of 0.4938. Figure 19 shows a comparison of the prediction qual-
ity of the RBFN model for the combined evaluation dataset. The R2 for the Rogers 
County soils was 0.5557, compared to only 0.0251 for the Woodward County 
soils.  Although the R2 value of the Woodward County soils was very small, it did  
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Fig. 18. Comparison of experimental and predicted MR/Pa for combined evaluation dataset: 
polynomial model 

not have as much influence on the overall R2 because of the fewer soils involved 
(5 compared to 29 for Rogers County). Overall, prediction for the Rogers County 
specimen (ROE-20B) is excellent, while that for the Woodward County specimen 
(WOE-4B) shows significant difference. 

7.4   Evaluation of MLPN-2 Model 

The R2 of the combined evaluation dataset for the MLPN-2 model was found to be 
0.5848 (Figure 20).  The corresponding R2 values for the selected Rogers County 
and the Woodward County specimens were found to be 0.6026 and 0.6308, re-
spectively. Figure 20 also presents the predicted MR values against the deviatoric 
stress for specimens WOE-4B (Woodward County) and specimen ROE-20B 
(Rogers County). The MLPN-2 model predicted the MR values for specimen 
(ROE-20B) very well; some difference was observed for specimen WOE-4B.  For 
both specimens, the predicted MR values were higher than the experimental  
values. Overall, the MLPN-2 model appears to be the best model for the present 
(development and evaluation) datasets. 
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Fig. 19. Comparison of experimental and predicted MR/Pa for combined evaluation dataset: 
radial basis function network (RBFN) model  
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Fig. 20. Comparison of experimental and predicted MR/Pa for combined evaluation dataset: 
multilayer perceptrons network (MLPN-2) model 
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8   Pavement Design 

To demonstrate the application of developed model in pavement design, typical 
pavement sections are designed based on the MR values obtained experimentally 
as well as the MR values predicted by the selected model. The designed sections 
are then compared and evaluated.  The model used in the pavement design is the 
Multilayer preceptrons network with two hidden layers (MLPN-2), which was de-
termined to be the best prediction model in the present study.  In this demonstra-
tion exercise, three different subgrade soils are selected – one (WOE-4B, SH 3) 
from Woodward County and two (ROE-3A, SH 20 and ROE-20B, SH 88) from 
Rogers County. A design MR value is predicted using the MLPN-2 model based 
on the commonly used properties for each selected soil.  DARWin 3.1, pavement 
design software is utilized to determine the design thicknesses.  DARWin 3.1, one 
of the AASHTO softwares, implements the pavement design models presented in 
the 1993 AASHTO Design Guide. In this software, the structural design (struc-
tural number and thickness of each layer) of an asphalt pavement is based on the 
predicted subgrade MR values. Finally, the structural numbers and the asphalt 
pavement thicknesses are calculated based on the experimental MR values. A 
comparison of these results is presented in this chapter. 

8.1   Resilient Modulus for Pavement Design 

The predicted and experimental resilient modulus values for the three selected 
soils are presented in Table 5. It is seen that the experimental MR values for soils 
WOE-4B and ROE-20B are lower than the corresponding predicted values.  An 
opposite trend is seen for the third soil, ROE-3A.  The maximum difference be-
tween the experimental and predicted MR values for soil WOE-4B is 19.94 MPa 
(2,892 psi).  The maximum differences for soils ROE-3A and ROE-20B, however, 
are much lower - 9.86 MPa (1,430 psi) and 7.28 MPa (1,056 psi), respectively. 

Table 5. Subgrade resilient moduli for pavement design  

Resilient Modulus Specimen ID and  
Location Experiment Predicted (MLPN-2) 

WOE-4B SH 3,  
Woodward County 

38.34 MPa  
(5,560 psi) 

58.29 MPa  
(8,452 psi) 

ROE-3A SH 20,  
Rogers County 

81.72 MPa  
(11,850 psi) 

71.86 MPa  
(10,420 psi) 

ROE-20B SH 88,  
Rogers County 

64.18 MPa  
(9,306 psi) 

71.46 MPa  
(10,362 psi) 

8.2   Design Parameters 

Before one can proceed with the design, there are several design parameters that 
need to be determined or assumed (AASHTO 2002, Huang 2004). These include  
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Table 6. Pavement design parameters 

Parameter Value 

Design Period (years) 20 

Two-Way Traffic (ADT) 11,378 

Number of Lanes in Design Direction 2 

Percent of All Trucks in Design Lane 80% 

Percent Trucks in Design Direction 50% 
Percent Heavy Trucks (of ADT) FHWA 
Class 5 or Greater 

3% 

Average Initial Truck Factor (ESALs/truck) 2.338 

Annual Truck Volume Growth Rate 1.5% 

Total Calculated Cumulative ESALs 2,664,208 

Reliability Level 80% 

Overall Standard Deviation 0.49 

Initial Serviceability 4.2 

Terminal Serviceability 3.0 
 

design period, traffic data, reliability, and serviceability. The design period for the 
selected pavements is assumed to be 20 years.  The initial two-way traffic for this 
design is assumed to as 11,378 with 3% of the traffic being heavy trucks (FHWA 
Class 5 or greater) (Yoder and Witczak 1975, AASHTO 1986, Huang 2004).  The 
equivalent single axle load (ESAL) is calculated from the information presented in 
Table 6. The ESAL for the present application is found to be 2,664,208.  The pro-
gram determines the ESAL load based on the vehicle type, design period and 
growth factor. Table 6 presents the reliability (80% with a standard deviation of 
0.49) and serviceability values used in this design application. These values are 
based on the recommendations by the AASHTO Design Guide (AASHTO 1986).  
The initial and final serviceability values of the pavement are assumed as 4.2 and 
3, respectively. These are typical values obtained from the AASHO Road Test 
(Yoder and Witczak 1975, Huang 2004).  These design parameters were kept con-
stant for all three soils. Only the subgrade MR values are changed and their influ-
ence on the structural numbers and the design thickness is examined. 

8.3   Pavement Design Results 

Based on the design parameters selected in the preceding section, structural num-
bers and pavement thicknesses are calculated using DARWin 3.1 for each resilient 
modulus.  The design results are summarized in Table 7. As expected, the design  
structural numbers of soils WOE-4B and ROE-20B from experimental MR values 
are higher than the design structural numbers from the predicted MR values.  For 
the experimental MR values, the design Structural Numbers (SN) are 4.72, 3.44,  
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Table 7. Pavement design results 

Specimen ID Design Structural 
Number (SN) 

Required Asphalt 
Thickness 

WOE-4B (Experiment) 4.72 27.18 cm (10.7 in.) 

WOE-4B (MLPN-2) 3.98 23.11 cm (9.1 in.) 

ROE-3A (Experiment) 3.44 19.81 cm (7.8 in.) 

ROE-3A (MLPN-2) 3.64 21.08 cm (8.3 in.) 

ROE-20B (Experiment) 3.82 22.10 cm (8.7 in.) 

ROE-20B (MLPN-2) 3.65 21.08 cm (8.3 in.) 

and 3.82 for soils WOE-4B, ROE-3A, ROE-20B, respectively.  For the predicted 
MR values, the corresponding design SN are 3.98, 3.64, and 3.65.   

In order to convert the design structural number to actual pavement thickness, a 
flexible pavement section (Asphalt Concrete, AC) is considered.  In an AC pave-
ment, the entire SN is converted to AC. Based on a typical value of 0.44 for the 
asphalt layer coefficient (AASHTO 1986), the required asphalt thickness can be 
determined by dividing the structural number by the asphalt layer coefficient.  
Table 7 presents the required AC thickness for the calculated SN pertaining to ex-
perimental MR and predicted MR.   

It is evident that for soil WOE-4B the required AC thickness is under-predicted 
by 4.07 cm (1.6 in), (approximately 15%).  It should be noted that the WOE-4B 
soil was from western Oklahoma and the MLPN-2 model was developed with no 
soil from that part of the state.  So, this level of difference in pavement thickness 
may be justifiable. On the other hand, for soils ROE-3A and ROE-20B the differ-
ences in the required AC thickness are 1.27 cm (0.5 in), (approximately (-6%) and 
1.02 cm (0.4 in), (approximately (+5%), respectively.  Both of these soils are from 
eastern Oklahoma, and the predicted MR values and the corresponding pavement 
design thicknesses are closer to the values obtained from the experimental MR. 
Overall, the design thicknesses are fairly comparable, indicating that the MLPN-2 
model is capable of predicting the design MR values based on routine soil proper-
ties, for pavement design applications.   

9   Summary and Conclusions 

A total of four, two regression and two artificial neural network (ANN) models, 
were developed in this study to correlate resilient modulus with routine properties 
of subgrade soils and state of stress. These models included: polynomial (regres-
sion), factorial (regression), RBFN (ANN), and MLPN (ANN) models. A data-
base was developed, containing grain size distribution, Atterberg limits, standard 
Proctor, unconfined compression and resilient modulus results for 98 soils from 
16 different counties in Oklahoma. Of these, 64 soils were used in development, 
and the remaining 34 soils from two different counties were used in the evalua-
tion of the developed models. The plasticity index, moisture content, dry density, 
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unconfined compressive strength, and resilient modulus results all exhibited 
normal or near normal distribution, with low skewness and kurtosis values. The 
distribution of percent passing data, however, were heavily skewed for all sieve 
sizes, except for percent passing #200 sieve data that exhibited near normal dis-
tribution. Overall, the Rogers County soils were characteristically closer to the 
development dataset than the Woodward County soils. To examine the strengths 
and weaknesses of the developed models, the predicted MR values were com-
pared with the experimental values with respect to the R2 values. Thus, a higher 
R2 value was considered a better fit of the development dataset. The following 
points highlight the assessments and evaluations of these models: 

1. A second order polynomial multiple regression model was developed for the 
development dataset.  The R2 and F values for this model were found to be 
0.4858 and 101.02, respectively. Second order polynomial showed the R2 val-
ues for the evaluation dataset (Roger County (0.5523), Woodward County 
(0.6212), and combined dataset (0.5200)) were relatively high, indicating that 
this model is comparatively a good model for the combined datasets (develop-
ment and evaluation). 

2. One of the most complicated models considered in this study was a full facto-
rial model.  This model had 126 terms, and the R2 and F values for the devel-
opment dataset was found to be 0.6595 and 23.74, respectively.  Based on these 
values and not considering the evaluation dataset, this model appeared to be the 
best regression model.  However, the R2 values for the evaluation dataset (Rog-
er County (0.4021), Woodward County (0.0962), and combined dataset 
(0.3634)) were relatively low, indicating that even this model was not a good 
model for the combined datasets (development and evaluation).  A high R2 val-
ue (0.4021) for the Rogers County soils is an indicator that these soils are simi-
lar to those in the evaluation dataset.   

3. For the RBFN model, with one hidden layer, the R2 value for the development 
dataset improved further (0.6015). Also, the back predicted response (MR as a 
function of deviatoric stress) for three selected specimens (MA-3B, NO-7A, 
and OS-1B) showed significant improvements. A better R2 and improvements 
in back-prediction may be attributed to the use of hyperspheres in the RBFN 
model in the form of Gaussian (bell-shaped) function-type response surface in 
this model. 

4. The number of hidden layers in the MLPN models in STATISTICA can range 
from one to three.  In the present study, three separate MLPN models (MLPN-
1, MPLN-2, and MLPN-3) were developed with different number of hidden 
layers in each model.  The R2 values of the MLPN models were found to be 
0.5733, 0.5744, and 0.5587 for one, two and three hidden layers, respectively, 
indicating that the MLPN-3 might have reached over-learning or over-fitting. 
Overall, the MLPN-2 model performed well. 

5. Although the RBFN model had higher R2 than the MLPN-2 model for the de-
velopment dataset, its predictive capability for the Woodward County soils was 
poor (R2 of 0.0251). A lower R2 value for the Woodward County soils partly 
results from the differences in the characteristics of these soils, as noted previ-
ously. The MLPN-2 model did a much better job in predicting the resilient 



300 P. Solanki, M. Zaman, and A. Ebrahimi 
 

modulus of subgrade soils in the evaluation dataset (overall R2 = 0.5848), in-
cluding the Woodward County soils (R2 = 0.6308). 

6. For both selected specimens (WOE-4B and ROE-20B) from the evaluation  
dataset, the MLPN-2 model under-predicted the MR values. This may be a po-
tential concern in pavement design applications where lower thicknesses may 
result from using the predicted MR values in design. 

7. Overall, the MLPN-2 model was found to be the best model for the present de-
velopment and evaluation datasets. This model as well as the other models 
could be refined using an enriched database.  

8. The MLPN-2 model was used to present the application of developed model in 
pavement design.  Based on a reliability of 80%, the differences in the percent 
calculated Structural Number for three cases were found to be 15% for Wood-
ward County and 6% and 4% for Rogers county. It is, therefore, possible to 
predict the MR for pavement design with a reasonable degree of certainty.   
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APPENDIX: Equation of Factorial Model 

MR/Pa = 13.2514795 – 438.31923*w – 13.311426*γd + 2.41669221*PI + 27.2918109*P200 
– 35.722370*Uc – 11.240229*σd + 85.5626222*θ + 278.441637*w*γd – 
16.168513*w*PI – 1.0992907*γd*PI + 14.4631546*w*P200 – 9.7399663*γd*P200 – 
1.7766282*PI*P200 + 332.908859*w*Uc + 23.0157253*γd*Uc – .01410921*PI*Uc + 
38.7543639*P200*Uc + 799.099567*w*σd + 31.3535709*γd*σd – 3.3563515*PI*σd – 
69.037455*P200*σd – 47.303113*Uc*σd – 279.93578*w*θ – 38.643251*γd*θ – 
1.0518368*PI*θ – 84.485170*P200*θ – 29.795776*Uc*θ – 106.57364*σd *θ + 
9.15134484*w*γd*PI – 28.679440*w*γd*P200 + 21.1200089*w*PI*P200 + 
.662040611*γd*PI*P200 – 200.60637*w*γd*Uc + 2.75148494*w*PI*Uc – 
.02351306*γd*PI*Uc – 244.11931*w*P200*Uc – 25.359274*γd*P200*Uc – 
1.2799791*PI*P200*Uc – 588.87015*w*γd*σd + 15.1565883*w*PI*σd + 
.481801078*γd*PI*σd – 218.18881*w*P200*σd + 10.1638379*γd*P200*σd + 
2.36460454*PI*P200*σd – 45.492450*w*Uc*σd + 12.7119527*γd*Uc*σd + 
3.45466718*PI*Uc*σd + 73.1347282*P200*Uc*σd + 115.117756*w*γd*θ + 
7.15819491*w*PI*θ – .16922596*γd*PI*θ + 319.715817*w*P200*θ + 
37.2140312*γd*P200*θ + .456277589*PI*P200*θ + 87.1036047*w*Uc*θ + 
12.8403258*γd*Uc*θ + .470678587*PI*Uc*θ + 17.7135930*P200*Uc*θ + 
117.516534*w*σd*θ + 45.1075781*γd*σd*θ + 4.48108267*PI*σd*θ + 
123.422308*P200*σd*θ + 69.9906302*Uc*σd*θ – 11.825725*w*γd*PI*P200 – 

2.1155135*w*γd*PI*Uc + 149.381038*w*γd*P200*Uc + .461733179*w*PI*P200*Uc + 
.843999848*γd*PI*P200*Uc – 3.1294192*w*γd*PI*σd + 277.350974*w*γd*P200*σd – 

14.172917*w*PI*P200*σd + .525633666*γd*PI*P200*σd + 98.7215822*w*γd*Uc*σd – 

15.964519*w*PI*Uc*σd – 1.1448209*γd*PI*Uc*σd – 169.47515*w*P200*Uc*σd – 

22.778234*γd*P200*Uc*σd – 2.0574402*PI*P200*Uc*σd – 1.1780048*w*γd*PI*θ – 

136.19640*w*γd*P200*θ – 5.5904934*w*PI*P200*θ + .582825521*γd*PI*P200*θ – 
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32.417984*w*γd*Uc*θ – 4.4154766*w*PI*Uc*θ – .03434428*γd*PI*Uc*θ – 

35.024894*w*P200*Uc*θ – 5.1994910*γd*P200*Uc*θ + .197336556*PI*P200*Uc*θ + 
12.9337904*w*γd*σd*θ – 14.637167*w*PI*σd*θ – 1.4228429*γd*PI*σd*θ – 

175.26170*w*P200*σd*θ – 51.332213*γd*P200*σd*θ – 4.4923407*PI*P200*σd*θ – 

150.22381*w*Uc*σd*θ – 29.716170*γd*Uc*σd*θ – 2.2982062*PI*Uc*σd*θ – 

70.820468*P200*Uc*σd*θ + 0.00000000*w*γd*PI*P200*Uc + 
0.00000000*w*γd*PI*P200*σd + 5.73119283*w*γd*PI*Uc*σd + 
0.00000000*w*γd*P200*Uc*σd + 9.80008993*w*PI*P200*Uc*σd – 

.05009087*γd*PI*P200*Uc*σd + 0.00000000*w*γd*PI*P200*θ + 
1.92867824*w*γd*PI*Uc*θ + 0.00000000*w*γd*P200*Uc*θ + 
1.30268945*w*PI*P200*Uc*θ – .38745801*γd*PI*P200*Uc*θ + 
3.36590974*w*γd*PI*σd*θ + 0.00000000*w*γd*P200*σd*θ + 
11.4488598*w*PI*P200*σd*θ + 1.17782173*γd*PI*P200*σd*θ + 
31.7684321*w*γd*Uc*σd*θ + 5.85679607*w*PI*Uc*σd*θ + 
.607338016*γd*PI*Uc*σd*BS + 128.506165*w*P200*Uc*σd*θ + 
26.8574361*γd*P200*Uc*σd*θ + 1.63623868*PI*P200*Uc*σd*θ + 
0.00000000*w*γd*PI*P200*Uc*σd + 0.00000000*w*γd*PI*P200*Uc*θ + 
0.00000000*w*γd*PI*P200*σd*θ + 0.00000000*w*γd*PI*Uc*σd*θ  + 
0.00000000*w*γd*P200*Uc*σd*θ + 0.00000000*w*PI*P200*Uc*σd*θ + 
0.00000000*γd*PI*P200*Uc*σd*θ – 4.6975464*w*γd*PI*P200*Uc*σd*θ 
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Abstract. Very often it is difficult to develop mechanistic models for pavement geotechnical 
engineering problems due to its complex nature and uncertainty in material parameters. The 
difficulty in mechanistic analysis has forced the engineers to follows certain empirical corre-
lations. The artificial neural network (ANN) is being as an alternate statistical method, map-
ping in higher-order spaces, such models can go beyond the existing univariate relationships.  
The applications of ANNs in pavement geotechnical engineering problems is mostly limited 
to constitutive modeling, with few applications on prediction of soil layer properties using 
Falling Weight Deflectometer (FWD), prediction of swelling potential and compute the re-
maining life of flexible pavements. However, ANN is considered as a ‘Black box’ system 
being unable to explain interrelation between inputs and output. The ANNs also have inher-
ent drawbacks such as slow convergence speed, less generalizing performance, arriving at 
local minimum and over-fitting problems. Recently support vector machine (SVM) is being 
used due to its, better generalization as prediction error and model complexity are simultane-
ously minimized.  SVM is based on statistical learning theory unlike ANNs (biological 
learning theory). The application of SVM in pavement geotechnical engineering is very 
much limited and to best of the knowledge such methods have not been applied to pavement 
geotechnical engineering. However, engineering application of numerical methods is a sci-
ence as well as an art. This juxtaposition is based on the fact that even though the developed 
algorithms are based on scientific logic and belong to the special branch of applied mathe-
matics, their successful application to new problems is problem oriented and is an art. As no 
method can be the panacea to solve all problems to the last details, their application to new 
areas needs critical evaluation. With above in view, an attempt has been made to develop the 
art of applying the above artificial intelligence techniques (ANN and SVM) to different 
pavement engineering problems such as prediction of compaction characteristics, permeabil-
ity, swelling potential, coefficient of subgrade reaction etc. The parameters associated with 
the model developments are discussed in terms of guide line for its future 

1   Introduction 

The pavement geotechnical engineering is a complex problem involving three 
phase system. The difficulty in mechanistic analysis and uncertainty in soil  
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parameters has forced the engineers to follows certain empirical correlations. Po-
tential of artificial neural network (ANN) has been realized as an alternate tool to 
handle such cases and have been successfully applied in various complex prob-
lems. The ANN is being as an alternate statistical method, for solving certain 
types of problems too complex, too poorly understood, or too resource-intensive 
to tackle using more-traditional computational methods. The ANN is capable of 
mapping in higher-order spaces, and such models can go beyond the existing uni-
variate relationships.  The applications of ANNs in pavement geotechnical engi-
neering problems is mostly limited to constitutive modeling (Ghaboussi 1992), 
with a few applications on prediction of soil layer properties using Falling Weight 
Deflectometer (FWD) (Meier and  Rix 1994), prediction of swelling potential 
(Najjar et al. 1996) and compute the remaining life of flexible pave-
ments(Abdallah et al. 2000). However, ANN is considered as a ‘Black box’ sys-
tem being unable to explain interrelation between inputs and output. The ANNs 
also have inherent drawbacks such as slow convergence speed, less generalizing 
performance, arriving at local minimum and over-fitting problems.  

The biggest challenge in successful application of ANN is when to stop training. 
If training is insufficient then the network will not be fully trained, where as if 
training is excessive then it will memorize the training patter or learn noise. When 
the numbers of data points are scanty the training set is driven to a very small 
value, but when new data is presented to the network the error is too large which is 
known as overfitting.  The network needs to be equally efficient for new data dur-
ing testing or validation, which is called as generalization. There are different  
methods for generalization like early stopping or cross validation (Basheer 2001; 
Shahin et al. 2002, Das and Basudhar 2006). In case of early stopping criteria the 
error on the validation/testing set is monitored during the training process and the 
training is stopped when the error on the testing set begin to rise.  In cross valida-
tion an independent test set is used to asses the performance of the model at various 
stages of learning. However, this method is not suitable if data points are scanty.  

Recently machine learning algorithms like support vector machine (SVM) and 
relevance vector machine (RVM) are being used due to its, better generalization as 
prediction error and model complexity is simultaneously minimized.  The SVM 
and RVM are based on statistical learning theory unlike ANNs (biological learn-
ing theory). The application of SVM and RVM in geotechnical engineering is very 
much limited and to best of the knowledge such methods have not been applied to 
pavement geotechnical engineering. Engineering application of numerical meth-
ods is a science as well as an art. This juxtaposition is based on the fact that even 
though the developed algorithms are based on scientific logic and belong to the 
special branch of applied mathematics, their successful application to new prob-
lems is problem oriented and is an art.  As no method can be the panacea to solve 
all problems to the last details, their application to new areas needs critical evalua-
tion. There are no fixed rules for developing an ANN model, even though a gen-
eral framework can be followed based on previous successful applications in such 
problems. With above in view some of problems related to pavement geotechnical 
engineering are discussed as follows with introduction to the methodology used. 
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2   Methodology 

2.1   Basic Principles of Artificial Neural Network  

A typical structure of ANN consists of a number of processing elements or 
neurons that are usually arranged in layers; an input layer, an output layer and one 
or more hidden layers (Figure 1). The input from each processing element in the 
previous layer is multiplied by an adjustable connection weight (wji). At each 
neuron, the weighted input signals are summed and a threshold value (bj) is added. 
The combined input (Ij) is then passed through a nonlinear transfer function {f()} 
to produce the output of processing element. Hence the output (yk) from the output 
node can be written as Equation (1).   
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The ‘learning’ or ‘training’ process in ANN in general, is a nonlinear optimization 
of an error function. The aim of the training is to minimize the error function to 
get the optimized weight vectors. This is equivalent to the parameter estimation 
phase in conventional statistical models. The most commonly used error function 
is the mean squared error (MSE) function. The error associated with weights and 
sigmoid function is a highly non-linear optimization with many local minima.  
Local and global optimization methods are carried out for finding out the weight 
vectors.  As the characteristic of traditional nonlinear programming based optimi-
zation method are initial point dependent, the results obtained using back propaga-
tion algorithm are sensitive to initial conditions (weight vector) (Shahin et al. 
2002).  The use of global optimization algorithms like genetic algorithm and simu-
lated annealing though being widely used in other field of engineering (Morshed 
and Kaluarachchi 1998), in geotechnical engineering use of GA for training ANN 
is limited (Goh 2002; Goh et al. 2005). In recent past another heuristic global  
optimization called differential evolution (DE), introduced by Storn and Price 
(1995) is being used successfully in aerodynamics shape optimization and  
mechanical design.  

The steepest descent algorithm and Levenberg-Marquardt (LM) algorithm 
which are gradient search algorithms are mostly used in ANNs applied to geo-
technical engineering problems (Das 2005).  The magnitudes of the weights and 
biases (parameters) are responsible for the poor generalization of the ANN rather 
than the number of network parameters.  

In the present study, the ANN models are trained with differential evolution 
and Bayesian regularization method and are defined as DENN and BRNN respec-
tively. The results are compared with that obtained from commonly used Leven-
berg-Marquardt trained neural networks (LMNN) to discuss the prediction  
efficiency of the networks. The above neural network models have been devel-
oped using MATLAB tool boxes (Math Works 2001). A brief description about 
the BRNN and DENN is presented here for completeness. 
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Fig. 1. Typical architecture of a Neural Network 

 

2.1.1   Bayesian Regularization Neural Network (BRNN)  
The most commonly used error function is the mean squared error (MSE) function. 
In LMNN, overfitting is due to unbounded values of weights (parameters) during 
minimization of the error function, mean square error (MSE). The other method 
called as regularization, in which the performance function is changed by adding a 
term that consist of mean square error of weights and biases as given below. 

MSWγ)(1MSEγMSEREG −+=                                      (2) 

Where MSE is the mean square error of the network, γ is the performance ratio 
and  
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=
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2
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n

1
MSW                                                        (3)   

This performance function will cause the network to have smaller weights and 
biases there by forcing networks less likely to be overfit. The optimal regulariza-
tion parameter λ is determined through Bayesian framework (Demuth and Beale 
2000) as the low value of λ will not adequately fit the training data and high value 
of it may result in over fit. The number of network parameters (weights and  
biases) are being effectively used by the network can be found out by the above 
algorithm. The above combination works best when the inputs and targets area 
scaled in the range [-1, 1] (Demuth and Beale 2000). The above neural network 
models have been developed using MATLAB tool boxes (Math Works Inc. 2001).  
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2.1.2   Differential Evolution Neural Network (DENN) 
The training of the feed-forward BPNN using DE optimization is known as differ-
ential evolution neural network (DENN) (Ilonen et al. 2003). The DE optimization 
is a population based heuristic global optimization method. Unlike other evolu-
tionary optimization, in DE the vectors in current populations are randomly sam-
pled and combined to create vectors for next generation. The real valued cross 
over factor and mutation factor governs the convergence of the search process. 
The detail of DENN is available in Ilomen et al. (2003). However, the DENN has 
not been applied in geotechnical engineering. In the present study, DENN  
has been implemented using the MATLAB (Math Works Inc. 2001) modeling  
environment. 

In the present study single hidden layer is used and number of hidden layer 
neuron was obtained by trial and error. In the present study, the generalization was 
given priority and hence, the model with minimum error for the testing data  
was considered. The best ANN model was obtained with three neurons in the  
hidden layers.  

2.2   Support Vector Machine 

Support Vector Machine (SVM) has originated from the concept of statistical 
learning theory pioneered by Boser et al. (1992). This study uses the SVM as a re-
gression technique by introducing a ε-insensitive loss function. In this section, a 
brief introduction on how to construct SVM for regression problem is presented. 
More details can be found in many publications (Boser et al. 1992; Cortes and 
Vapnik 1995; Gualtieri et al. 1999; Vapnik 1998). There are three distinct charac-
teristics when SVM is used to estimate the regression function. First of all, SVM 
estimates the regression using a set of linear functions that are defined in a high 
dimensional space. Secondly, SVM carries out the regression estimation by risk 
minimization where the risk is measured using Vapnik’s ε-insensitive loss func-
tion. Thirdly, SVM uses a risk function consisting of the empirical error and a  
regularization term which is derived from the structural risk minimization (SRM) 

principle. Considering a set of training data )}
l

y,
l

(x),....,1y,1{(x , nRx ∈  , 

ry ∈ . Where x is the input, y is the output, RN  is the N-dimensional vector space 

and r is the one-dimensional vector space.  
The ε-insensitive loss function can be described in the following way 

( ) 0yεL =  for ( ) εyxf <−  otherwise ( ) ( ) εyxfyεL −−=                     (4) 

This defines an ε tube (Figure 2) so that if the predicted value is within the tube 
the loss is zero, while if the predicted point is outside the tube, the loss is equal to 
the absolute value of the deviation minus ε. The main aim in SVM is to find a 

function ( )xf  that gives a deviation of ε from the actual output and at the same 

time is as flat as possible. Let us assume a linear function 
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( ) ( ) bw.xxf +=  nRw ∈ , rb ∈                                   (5) 

Where, w = an adjustable weight vector and b = the scalar threshold. Flatness in 
the case of (5) means that one seeks a small w. One way of obtaining this is by 

minimizing the Euclidean norm
2

w . This is equivalent to the following convex 

optimization problem 

 

 
 

Fig. 2. Prespecified Accuracy ε and Slack Variable ξ in support vector regression [Schol-
kopf (1997)]. 
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Minimize:
2

w
2

1
 

Subjected to: ( ) εbiw.xiy ≤+− , i = 1, 2,..., l 

( ) εiybiw.x ≤−+ , i = 1, 2,...,l                                            (6) 

The above convex optimization problem is feasible. Sometimes, however, this 
may not be the case, or I also may want to allow for some errors. Analogously to 
the “soft margin” loss function (Bennett and Mangasarian 1992) which was used 
in SVM by Cortes and Vapnik (1995).As shown in the Figure 2, the parameters 

i
ξ , *

iξ  are slack variables that determine the degree to which samples with error 

more than ε be penalized. In other words, any error smaller than ε does not re-

quire
i
ξ , *

iξ and hence does not enter the objective function because these data 

points have a value of zero for the loss function. The slack variables (
i
ξ , *

iξ ) has 

been introduced to avoid infeasible constraints of the optimization problem (6).  
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The constant 0<C<∞ determines the trade-off between the flatness of f and the 
amount up to which deviations larger than ε are tolerated (Smola and Scholkopf 
2004). This optimization problem (7) is solved by Lagrangian Multipliers (Vapnik 
1998), and its solution is given by 
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, αi, 
*
iα  are the Lagrangian Multipliers and nsv is 

the number of support vectors. An important aspect is that some Lagrange multi-

pliers (αi,
*
iα ) will be zero, implying that these training objects are considered to  

 



312 P. Samui, S.K. Das, and T.G. Sitharam 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Concept of nonlinear regression. 

 
be irrelevant for the final solution (sparseness). The training objects with nonzero 
Lagrange multipliers are called support vectors.    

When linear regression is not appropriate, then input data has to be mapped into 
a high dimensional feature space through some nonlinear mapping (Boser et al. 
1992) (see Figure 3). The two steps that are involved are first to make a fixed 
nonlinear mapping of the data onto the feature space and then carry out a linear 
regression in the high dimensional space. The input data is mapped onto the fea-

ture space by a map Ф(see Figure 3). The dot product given by ( ) ( )jx.ΦixΦ is 

computed as a linear combination of the training points. The concept of kernel  
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Fig. 4. Architecture of Support Vector Machine (Haykin, 1999). 
 
 

function [ ( ) ( ) ( )jx.ΦixΦjx,ixK = ] has been introduced to reduce the computa-

tional demand (Cristianini and Shawe-Taylor 2000, Cortes and Vapnik 1995). So, 
equitation (5) becomes written as 
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Some common kernels have been used such as polynomial (homogeneous), 
polynomial (non homogeneous), radial basis function, Gaussian function, sigmoid 
etc for non-linear cases. Figure 4 shows a typical architecture of SVM. 
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The successful application of SVM models depends upon suitable parameters 
like type of kernel function and the parameters C and ε is obtained by trial and er-
ror. A large C assigns higher penalties to errors so that the regression is trained to 
minimize error with lower generalization while a small C assigns fewer penalties 
to errors; this allows the minimization of margin with errors, thus higher general 
zation ability. If C goes to infinitely large, SVM would not allow the occurrence 
of any error and result in a complex model, whereas when C goes to zero, the re-
sult would tolerate a large amount of errors and the model would be less complex. 
With regards to the selection of ε if ε is too large, too few support vectors are se-
lected which leads to a decrease of the final prediction performance. If ε is too 
small, many support vectors are selected which leads to the risk of overfit-
ting(Thissen et al. 2004). To train the SVM model, three types of kernel function 
have been used: They are 

 
1. Polynomial 
2. Radial basis function  
3. Spline 

3   Prediction of Swelling Pressure of Expansive Soil 

Expansive soil and bedrock underlie more than one third of world’s land surface. 
Each year, damage to buildings, roads, pipelines, and other structures by expan-
sive soils is much higher than damage that are caused by floods, hurricanes, torna-
does, and earthquakes combined Jones and  Holtz (1973). The estimated annual 
cost of damage due to expansive soils is $1000 million in the USA, £150 million 
in the UK, and many billions of pounds worldwide Gourley et al. (1993). How-
ever, as the hazards due to expansive soils develop gradually and seldom present a 
threat to life, these have received limited attention, despite their severe effects on 
the economy. Much of the damage related to expansive soils is not due to a lack of 
appropriate engineering solutions but to the non recognition of expansive soils and 
expected magnitude of expansion early in land use and project planning. The 
damage to foundation on expansive soil can be avoided / minimized by proper 
identification, classification, quantification of swell pressure and provision of an 
appropriate design procedure. Swelling potential of clayey soil is a measure of the 
ability and degree to which such a soil might swell if its environments were 
changed in a definite way. Hence, the expansive soil is classified based on its po-
tential for swelling.  However, there is not a definite expression of swell potential 
for classification of expansive soils (Nelson and Miller 1992). Holtz (1959) re-
ferred to swell potential as the volume change of air-dried undisturbed sample, 
whereas, Seed et al. (1962) defined it as change in volume of a remoulded sample. 
Though factors like clay content, Atterberg’s limits and mineral types are found to 
affect the swelling potential, the available literature presents contradicting results. 
McCormack and Wilding (1975) observed that for soil dominated by illite, clay 
content to be as reliable in predicting swelling potential, where as Yule and 
Ritchie (1980) and Gray and Allbrook (2002) reported, there being no relationship  
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between clay percentage and soil swelling. The cation exchange capacity (CEC), 
saturation moisture and plastic index (PI) are also important indices for estimation 
of swelling potential Gill and Reaves (1957). Parker et al. (1977) concluded swell 
index and PI as superior to other indices.  

The swelling pressure depends upon various soil parameters such as mineral-
ogy, clay content, Atterberg’s limits, dry density, moisture content, initial degree 
of saturation, etc along with structural and environmental factors. The parameters 
are interrelated in a complex manner, and it is difficult to model and analyze ef-
fectively taking all the above aspects into consideration. However, it can be meas-
ured easily with relevant data pertaining to soil, structure and environment. So 
various statistical/empirical methods have been attempted to predict the swelling 
pressure based on index properties of soil (Das 2002).  

4   Results and Discussion 

The data from various sources available in literature (Aciroyd et al. 1988;  Savana 
et al. 1978; Abdujauwad 1994; Abdujauwad et al. 1994) are taken with input pa-
rameters, natural moisture content (wn), dry density (γd), LL, PI, clay fraction (CF) 
and swelling pressure (SP) as output.  The total number of data points considered 
is 230 out of which 167 are taken for training and 63 are taken for testing. The da-
ta is normalized between 0 to 1. The maximum, minimum, average and standard 
deviation for the data used are shown in Table 1 and it can be seen that it covers a 
wide range of values.  The successful application of a method depends upon the 
identification of suitable input parameters. Table 2 shows the cross correlation be-
tween the inputs and output, it can be seen that CF, LL, PI are found to be impor-
tant input parameters.  

The results of different ANN models using the above parameters are shown in  
Table 3. The correlation coefficient (R) and root means square error (RMSE) are 
mostly for performance criteria evaluation of ANN models. However, R is a  

 
Table 1. Parameters of the data considered for the present study 

 

  

wn (%) γd (kN/m3) LL PI Clay  
Fraction 

Swelling 
pressure 
(kN/m2) 

Maximum    63.90 15.70    193.00 165.00 97.00 805.00 

Minimum 2.70 1.04 26.00 12.00 19.00 3.00 

Average 18.31 9.33 90.74 59.06 41.19 122.61 

Std Dev. 9.58 5.89 47.77 43.42 14.04 140.90 
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Table 2. General performance of different neural network models. 
 

Training data Testing data ANN models 

R E R E 
Overfitting 

ratio 

DENN 0.95 0.91 0.87 0.75 1.37 

BRNN 0.98 0.96 0.90 0.79 2.12 

LMNN 0.95 0.90 0.88 0.74 1.43 

SVM 0.98 0.96 0.94 0.88 1.40 

 
biased parameter and sometimes, higher values of R may not necessarily indicate 
better performance of the model because of the tendency of the model to be biased 
towards higher or lower values (Das and Basudhar 2006), the coefficient of effi-
ciency (E) is also considered. The E is defined as  
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and SPm, 
____

mSP and SPp are the measure, average and predicted swelling pressure 

respectively. The E value compares the modeled and measured values of the vari-
able and evaluates how far the network is able to explain total variance in the data 
set. The overfitting ratio is defined as the ratio of RMSE for testing and training 
data and it defines the generalization. It can be seen that comparing the values of 
R and E values for training and testing data, BRNN is found to better than DENN 
and LMNN. However, DENN is having good generalization with small overfitting 
ratio, followed by LMNN and BRNN.  

The RMSE value only defined the efficiency of a model as overall; however 
MAE can reveal the presence of regional areas of poor prediction. Figure 5 and 6 
show the value of MAE, AAE and RMSE for different ANN models for training 
and testing data respectively.  
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Fig. 5. Comparison of prediction capabilities of ANN models for training data. 
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Fig. 6. Comparison of prediction capabilities of ANN models for testing data. 

 
It can be seen that for training data BRNN is having lowest values of MAE, 

AAE and RMSE. However, for testing data AAE is comparable for all the meth-
ods, but based on MAE and RMSE values BRNN performs better than DENN and 
LMNN. Hence, based on different statistical performance criteria for the present 
study it can be concluded that BRNN is better followed by DENN and LMNN.  
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The ANN is considered as a ‘Black box’ system due to insufficient explana-
tions to the weight vectors, but methods like Garson’s algorithm and connection 
weight approach have been used utilizing the weight vector to identify the impor-
tant input vectors (Das and Basudhar 2006). Such a study also made here to com-
pare the above two methods in identifying the important parameters. Table 3 
shows the ranking of important input parameters as calculated from Garson’s al-
gorithm and connection weight approach with the weights obtained from DENN, 
BRNN and LMNN.  It can be seen from that the ranking of important input pa-
rameters as obtained by Garson’s algorithm and Connection weight approach are 
different for BRNN and LMNN, where as for DENN the ranking of 1st and 2nd pa-
rameters are same by both the methods.  

Table 5 presents the results of SVM models developed and based on R and E 
values SVM model with radial basis kernel function (SVM-R) found to be more 
efficient compared to models developed with other kernel functions (SVM-P and 
SVM-S). From Table 5, it is clear that SVM model employs 65 to 75 % (radial ba-
sis function=74.85%, Polynomial kernel=65.26% and spline kernel = 66.46%) of 
the training patterns as support vectors. So, SVM is remarkable in producing an 
excellent generalization level while maintaining the sparsest structure. Sparseness 
means that a significant number of the weights are zero (or effectively zero), 
which has the consequence of producing compact, computationally efficient mod-
els, which in addition are simple and therefore produce smooth functions. In 
SVM, support vectors represent prototypical examples. The prototypical examples 
exhibit the essential features of the information content of the data, and thus are 
able to transform the input data into the specified targets. Figure 7 and 8 show the 
value of MAE, AAE and RMSE for different SVM models for training and testing 
 
 

 
 

Fig. 7. Comparison of prediction capabilities of SVM models for training data. 
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Fig. 8. Comparison of prediction capabilities of SVM models and for testing data 

 
 

data respectively.  It can be seen that for training data SVM-R is having lowest 
values of MAE, AAE and RMSE. In comparison to ANN models SVM-R model 
is found to better than all the ANN models. The use of the SRM principle in defin-
ing cost function provided more generalization capacity with the SVM compared 
to the ANN, which uses the empirical risk minimization principle. SVM uses only 
three parameters (radial basis function: σ, C and ε;  polynomial kernel: degree of 
polynomial, C and ε; spline kernel: C and ε ).  In ANN, there are a larger number 
of controlling parameters, including the number of hidden layers, number of hid-
den nodes, learning rate, momentum term, and number of training epochs, transfer 
functions, and weight initialization methods. Obtaining an optimal combination of 
these parameters is a difficult task as well. Another major advantage of the SVM 
is its optimization algorithm, which includes solving a linearly constrained quad-
ratic programming function leading to a unique, optimal, and global solution  
compared to the ANN. In SVM, the number of support vectors has determined by 
algorithm rather than by trial-and-error which has been used by ANN for deter-
mining the number of hidden nodes. 

In this study, a sensitivity analysis has been carried out to extract the cause and 
effect relationship between the inputs and outputs of the SVM model. The basic 
idea is that each input of the model is offset slightly and the corresponding change 
in the output is reported. The procedure has been taken from the work of Liong et 
al. (2000). According to Liong et al. (2000), the sensitivity (S) of each input pa-
rameter has been calculated by the following formula  

100
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Table 4. Relative importance of different input parameters 
 

Garson’s algorithm Connection weight  
approach 

Ranking of inputs as per 
relative importance 

Ranking of inputs as per 
relative importance 

Ranking of 
inputs as  
per relative 
importance 

Input  
Parameters 

DENN BRNN LMNN DENN BRNN LMNN SVM-R 
wn 5 5 4 4 4 4 3 

γd 3 3 3 5 3 3 2 
LL 2 1 1 2 2 2 4 
PI 1 2 2 1 1 1 1 
CF 4 4 5 3 5 5 5 

 
Table 5. General performance of SVM for different kernels 

 

Training performance  Testing performance Kernel C ε 

Correlation 
coefficent 

(R) 

Coefficient of
determination

(E) 

Correlation 
coefficent 

(R) 

Coefficient of 
determination 

(E) 

Number 
of  

support 
vector 

Radial basis 
function, 

width(σ) = 
2.6 

20 0.009 0.979 0.958 0.941 0.887 125 

Polynomial, 
degree = 2 

10 0.01 0.865 0.726 0.652 0.018 109 

Spline 4 0.01 0.890 0.768 0.859 0.657 112 

 
Where N is the number of data points. The analysis has been carried out on the 
trained model for radial basis function by varying each of input parameter, one at 
a time, at a constant rate of 20%. The result of the above analysis is also presented 
in Table 4. It is observed that similar to ANN analysis using connection weight 
approach PI is found to be more important parameters followed by γd and wn.  

5   Conclusions 

The different ANN techniques and SVM model examined here have shown the 
ability to build accurate models with high predictive capabilities for prediction of 
swelling pressure of soil from the inputs; natural moisture content (wn), dry den-
sity (d), liquid limit (LL), plasticity index (PI) and clay fraction (CF). Based on 
different statistical performance criteria, the Bayesian regularization neural net-
work (BRNN) model found to be more efficient compared to DENN and LMNN. 
However, the DENN model found to better in terms of generalization. The per-
formance of the developed SVM model is better than the developed ANN models. 
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The ranking of important input parameters found to be consistent as per connec-
tion weight approach for the ANN model considered here. However, while using 
Garson’s algorithm the ranking found to be different for different ANN models. 
Developed ANN and SVM models have the advantage that once the model is 
trained, it can be used as an accurate and quick tool for predicting swelling pres-
sure without a need to perform any manual work such as using tables or charts. 
Comparison between the ANN and SVM model indicates that SVM model is  
superior to ANN model for predicting swelling pressure.  
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