


Lecture Notes in Computer Science 5500
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



François Bry Jan Małuszyński (Eds.)
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Preface

This volume in the LNCS series State-of-the-Art Surveys gives an overview of the
main results achieved by the Network of Excellence REWERSE on “Reasoning
on the Web” (http://rewerse.net). REWERSE was funded by the European
Commission and Switzerland within the “6th Framework Programme” (FP6),
in the period of March 1, 2004 through February 29, 2008.

In the beginning of 2004, the World Wide Web Consortium (W3C) was still
working on the Web Ontology Language (OWL) and accepted its definition as
a W3C Recommendation in April 2004. This work was part of the Semantic
Web initiative aiming at the development of knowledge-based Web technologies.
There was a consensus that rules will also play an important role in the Semantic
Web. This issue was not yet on the W3C agenda but became the focus of REW-
ERSE research. The objective of REWERSE was to define and to implement
a coherent family of Web rule languages with well-defined semantics allowing
reasoning on the Web. Another line of research focused on the development of
support technologies for Semantic Web languages, such as component models or
verbalization in controlled English. An important objective was also to demon-
strate the usefulness of the Semantic Web techniques in real-life applications,
particularly in bioinformatics. Members of REWERSE also participated in the
work of the W3C Rule Interchange Format (RIF) Working Group, which was
created in late 2005. Its goal is to develop a format for the interchange of rules
in rule-based systems on the Semantic Web.

The research results of REWERSE appeared in over 400, mostly peer re-
viewed, publications in leading journals, international conferences and in the
public deliverables accessible at http://www.rewerse.net/deliverables.html. The
objective of this volume is to give a coherent perspective of the main topics and
results of REWERSE. The material is organized in eight chapters. Each of the
chapters addresses one of the main topics of REWERSE. The topics are highly
relevant for the Semantic Web research.

Each chapter:

• Includes a state-of-the-art survey on the addressed topic; however, the level
of details is limited and the interested reader is referred to the respective
REWERSE publications

• Presents in a clear and cohesive way REWERSE contributions on the topics
of the chapter, with indication of the development after REWERSE end,
whenever applicable

• Provides an extensive bibliography and pointers to further literature.

Chapter 1 addresses the issue of combining rules and ontologies, thus the issue
of integrating the ontology layer and the rule layer of the Semantic Web. The
presentation of the state of the art is done using a classification of the approaches
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introduced in REWERSE. In the REWERSE work, presented in more detail, the
integration is achieved by extending rules with queries to OWL ontologies. Three
languages of this kind considered in REWERSE are dl-programs, HEX, and HD-
rules. Their implementations are based on the hybrid reasoning principle: they
re-use reasoners of the underlying rules languages and of OWL.

Chapter 2 discusses the issue of adapting query languages to the different
Web formats instead of defining a specialized query language, for each format.
The REWERSE contribution is the first truly versatile Web query language,
Xcerpt, which enables access to multiple Web formats. Xcerpt can nevertheless
be implemented as efficiently as a specialized language such as XQuery that is
restricted to tree-shaped XML data. This result was achieved by developing a
formal foundation for any Web query language, called CIQLog. The semantics
of XQuery, XPath, Xcerpt, and SPARQL (as well as most other Web query
languages) can be expressed conveniently in CIQLog. For CIQLog queries, a
query algebra, called CIQCAG, was defined that specifies an evaluation method
for CIQLog queries and thus queries in any of the above languages. CIQCAG
significantly advances the current frontier of highly scalable (linear time) tree
queries by defining a new class of data graphs (a proper superclass of trees and
queries) that can be evaluated as efficiently as tree data. Furthermore, CIQCAG
scales to arbitrary shapes of trees and data, yet provides for each restricted class
the same or better complexity than all previous approaches.

Chapter 3 addresses the issue of evolution and reactivity in the Semantic
Web. This concerns the vision of an active Web, where data sources evolve
autonomously and react to events. In 2004, when the REWERSE project started,
this topic was not yet explored in the context of the Semantic Web.

The REWERSE contribution presented in this chapter is a general framework
for reactive Event-Condition-Action rules in the Semantic Web over heteroge-
neous component languages and the concrete homogeneous language XChange
developed in this framework. The Xcerpt language discussed in Chapter 2 was
re-used in this development as the query language for the conditions of the ECA
rules.

Chapter 4 discusses rule-based policy representations and reasoning. Policies
are used for protecting security and privacy in the context of the Semantic
Web. The chapter makes a synthetic survey of the state of the art, comparing 12
relevant policy languages according to 10 criteria. The REWERSE work resulted
in the Protune framework, presented in the chapter in more detail.

Chapter 5 discusses the question of suitable component models for Semantic
Web languages. Such languages include ontology languages, data and metadata
query languages, and Web-service workflow languages. As learned from years
of experience in the development of complex software systems, languages de-
ployed to practice arguably need to support some form of component-based
development. Components enable higher software quality, better understand-
ing and reusability of already developed artifacts. Any component approach
contains an underlying component model, a description detailing what are
valid components and how they can interact. With the plethora of languages



Preface VII

developed for the Semantic Web, the question of their underlying component
models was first addressed in REWERSE. The chapter presents a language-
driven component model specification approach proposed by REWERSE. In this
approach, a component model can be (automatically) generated in a given base
language (actually, its specification, e.g., its grammar). As a consequence one
can provide components for different languages and simplify the development of
software artifacts used on the Semantic Web. The techniques presented in this
chapter are illustrated by their application to the language Xcerpt of Chapter 2.

Chapter 6 addresses the issue of natural language support for the users of
Semantic Web languages. Such languages have a very technical focus and fail
to provide good usability for users with no background in formal methods. The
chapter argues that controlled natural languages like Attempto Controlled En-
glish (ACE) can solve this problem and discusses the work done in REWERSE
on this topic. ACE is a subset of English that can be translated into various
logic-based languages, among them the Semantic Web standards OWL and
SWRL. It is accompanied by a set of tools, namely, the parser APE, the At-
tempto Reasoner RACE, the ACE View ontology and rule editor, the semantic
wiki AceWiki, and the Protune policy framework discussed in Chapter 4. The
applications cover a wide range of Semantic Web scenarios, which shows how
broadly ACE can be applied.

Chapter 7 addresses the issue of searching for relevant information on the
Web, in particular the search of the biomedical literature. It gives a synthetic
comparison of existing biomedical search engines and presents in more detail the
semantic search engine GoPubMed, which was developed by REWERSE mem-
bers. GoPubMed uses the background knowledge of existing ontologies to index
the biomedical literature. The chapter discusses how the semantic search can
contribute to overcome the limits of classic keywords-based search paradigms.

Chapter 8 discusses the use of ontologies and standards for information inte-
gration in bioinformatics. It describes properties of the different types of data
sources, ontological knowledge and standards that are available on the Web.
Moreover, it discusses how this knowledge can be used to support integrated
access to multiple biological data sources, and presents an integration approach
that combines the identified ontological knowledge and standards with tradi-
tional information integration techniques. The work in REWERSE that has
been done on ontology-based data source integration, ontology alignment and
integration using standards is discussed in more detail.

The authors and the editors gratefully acknowledge the contributions of the
external reviewers. They helped improve the original submissions. The authors
and the editors are also grateful to Uta Schwertel for her help in the initial phase
of the publication process.

March 2009 François Bry
Jan Ma�luszyński
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Abstract. The purpose of this chapter is to report on work that has
been done in the REWERSE project concerning hybrid reasoning with
rules and ontologies. Two major streams of work have been pursued
within REWERSE. They start from the predominant semantics of non-
monotonic rules in logic programming. The one stream was an extension
of non-monotonic logic programs under answer set semantics, with query
interfaces to external knowledge sources. The other stream, in the spirit
of the AL-log approach of enhanced deductive databases, was an exten-
sion of Datalog (with the well-founded semantics, which is predominant
in the database area). The former stream led to so-called non-monotonic
dl-programs and hex-programs, and the latter stream to hybrid well-
founded semantics. Further variants and derivations of the formalisms
(like a well-founded semantics for dl-programs, respecting probabilistic
knowledge, priorities, etc.) have been conceived.

1.1 Introduction

The purpose of this chapter is to report on the work that has been done in
REWERSE on hybrid reasoning with rules and ontologies. The importance of
rules and ontologies for Web applications is reflected by the World Wide Web
Consortium’s1 (W3C) proposal of the layered architecture of the Semantic Web,
including the ontology layer and the rule layer. The ontology layer of the Se-
mantic Web was quite developed already at the REWERSE start in 2004. In
the same year, W3C adopted the Web Ontology Language (OWL) recommen-
dation [32]. On the other hand, the rule layer was a topic addressed by many
researchers but was not yet official subject of W3C activities.
1 http://www.w3.org/

F. Bry and J. Maluszynski (Eds.): Semantic Techniques for the Web, LNCS 5500, pp. 1–49, 2009.
� Springer-Verlag Berlin Heidelberg 2009

http://www.w3.org/
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Integration of the rule layer with the ontology layer is necessary for rule-
based applications using ontologies, like data integration applications. It can be
achieved by combining existing ontology languages with existing rule languages,
or by defining new languages, expressive enough to define ontologies, rules and
their interaction. An important issue in combination of ontology languages and
rule languages based on logics is the semantics of the combined language, as a
foundation for development of sound reasoners. The REWERSE work reported
in this chapter focused on hybrid reasoning, where the reasoner of the combined
language reuses the existing reasoners of the component ontology language and
rule language.

Motivated by the need for hybrid reasoning with rules and ontologies, two ma-
jor streams of work have been pursued within REWERSE. They start from the
predominant semantics of non-monotonic rules in logic programming. The one
stream was an extension of non-monotonic logic programs under answer set se-
mantics, with query interfaces to external knowledge sources. The other stream,
in the spirit of the AL-log [33] approach of enhanced deductive databases, was
an extension of Datalog (with the well-founded semantics, which is predomi-
nant in the database area). The former stream lead to so-called non-monotonic
dl-programs and hex-programs, and the latter stream to hybrid well-founded se-
mantics. Further variants and derivations of the formalisms (like a well-founded
semantics for dl-programs, respecting probabilistic knowledge, priorities, etc.)
have been conceived.

To put the REWERSE work in a broader perspective, the chapter begins
with a concise introduction to the Resource Description Framework (RDF) layer,
which sets the standard for the data model for the Semantic Web, to the RDF
Schema, seen as a simple ontology language, and to OWL. We then discuss
rule languages considered in integration proposals and present a classification of
the major approaches to integration which uses the terminology of [4,81]. The
remaining part of the chapter surveys the REWERSE work on hybrid integration
of rules and ontologies.

1.2 Overview of Approaches

This section gives a brief survey of the approaches to combine or integrate rea-
soning with rules and ontologies on the Web. It starts with a brief introduction
to the underlying formalisms of the Semantic Web, followed by discussion on
the rule languages considered in integration proposals. Finally, a classification
of the integration proposals is presented. For a more comprehensive survey, the
interested reader is referred to [40].

1.2.1 RDF and RDF Schema

The Resource Description Framework (RDF) defines the data model for
the Semantic Web as labeled, directed graphs. An RDF dataset (that is, an RDF
graph) can be viewed as a set of the edges of such a graph, commonly represented
by triples (or statements) of the form:
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Subject Predicate Object
where

– the edge links Subject , which is a resource identified by a URI or a blank
node, to Object , which is either another resource, a blank node, a datatype
literal, or an XML literal ;

– Predicate, in RDF terminology referred to as property, is the edge label.

The next example, originating from [40], illustrates the main concepts of RDF.

Example 1. Take a scenario in which three persons named Alice, Bob, and
Charles, have certain relationships among each other: Alice knows both Bob
and Charles, Bob just knows Charles, and Charles knows nobody.

For encoding the information that “a person called Bob knows a person called
Charles” we need a vocabulary including concepts like ”person” and ”name”. We
can adopt the so-called FOAF (friend-of-a-friend) RDF vocabulary [84]. Then
the statement can be given by the following RDF triples:

_:b rdf:type foaf:Person, _:b foaf:name "Bob", _:b foaf:knows _:c,
_:c rdf:type foaf:Person, and _:c foaf:name "Charles",

where the qualified names like foaf:Person are shortcuts for full URIs like
http://xmlns.com/foaf/0.1/Person, making usage of namespace prefixes from
XML, for ease of legibility. For instance, the triple

_:b foaf:name "Bob"

expresses that “someone has the name Bob.” _:b is a blank node and can be
seen as an anonymous identifier. In fact, the name for a blank node is meaningful
only in the context of a given RDF graph; conceptually, blank node names can
be uniformly substituted inside an RDF graph without changing the meaning of
the encoded knowledge.

RDF information can be represented in different formats. One of the most
common is the RDF/XML syntax.2. The much simpler Turtle3 representation is
adopted in SPARQL, the W3C standard language for querying RDF data. The
information of the example can be encoded in Turtle as follows:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

_:a rdf:type foaf:Person .

_:a foaf:name "Alice" .

_:a foaf:knows _:b .

_:a foaf:knows _:c .

_:b rdf:type foaf:Person .

_:b foaf:name "Bob" .

_:b foaf:knows _:c .

_:c rdf:type foaf:Person .

_:c foaf:name "Charles" .

2 http://www.w3.org/TR/rdf-syntax-grammar/
3 http://www.w3.org/TeamSubmission/turtle/

http://xmlns.com/foaf/0.1/Person
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/turtle/
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@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://www.mat.unical.it/~ianni/foaf.rdf>

a foaf:PersonalProfileDocument.

<http://www.mat.unical.it/~ianni/foaf.rdf> foaf:maker _:me .

<http://www.mat.unical.it/~ianni/foaf.rdf> foaf:primaryTopic _:me .

_:me a foaf:Person .

_:me foaf:name "Giovambattista Ianni" .

_:me foaf:homepage <http://www.gibbi.com> .

_:me foaf:phone <tel:+39-0984-496430> .

_:me foaf:knows [ a foaf:Person ;

foaf:name "Axel Polleres" ;

rdfs:seeAlso <http://www.polleres.net/foaf.rdf>].

_:me foaf:knows [ a foaf:Person ;

foaf:name "Wolfgang Faber" ;

rdfs:seeAlso <http://www.kr.tuwien.ac.at/staff/faber/foaf.rdf>].

_:me foaf:knows [ a foaf:Person ;

foaf:name "Francesco Calimeri" ;

rdfs:seeAlso <http://www.mat.unical.it/kali/foaf.rdf>].

_:me foaf:knows [ a foaf:Person .

foaf:name "Roman Schindlauer" .

rdfs:seeAlso <http://www.kr.tuwien.ac.at/staff/roman/foaf.rdf>].

Fig. 1. Giovambattista Ianni’s personal FOAF file

A Turtle shortcut notation like

_:a rdf:type foaf:Person ;

foaf:name "Alice" ;

foaf:knows _:b ;

foaf:knows _:c .

is a condensed version of the first four triples stated before.
Other common notations for RDF are N-Triples4 and Notation 35.

Figure 1 shows some information about one of the authors of this article ex-
tracted from RDF data that are available on the Web. RDF defines a special
property rdf:type,6 abbreviated in Turtle syntax by the “a” letter. It allows the
specification of “IS-A” relations, such as, for instance,

<http://www.mat.unical.it/~ianni/foaf.rdf> a foaf:PersonalProfileDocument.

in Figure 1 links the resource <http://www.mat.unical.it/~ianni/foaf.rdf> to
the resource foaf:PersonalProfileDocument via rdf:type.

4 http://www.w3.org/2001/sw/RDFCore/ntriples/
5 http://www.w3.org/DesignIssues/Notation3.html
6 short for the full URI http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/1999/02/22-rdf-syntax-ns
type
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Types supported for RDF property values are URIs, or the two basic types,
viz. rdf:Literal and rdf:XMLLiteral. Under the latter, a basic set of XML
schema datatypes are supported.

The RDF Schema (RDFS) is a semantic extension of basic RDF. By giv-
ing special meaning to the properties rdfs:subClassOf and rdfs:subPropertyOf,
to rdfs:domain and rdfs:range, as well as to several types (like rdfs:Class,
rdfs:Resource, rdfs:Literal, rdfs:Datatype, etc.), RDFS allows to express sim-
ple taxonomies and hierarchies among properties and resources, as well as do-
main and range restrictions for properties.

The semantics of RDFS can be approximated by axioms in FOL, see e.g. [82].
Such a formalization can be used as a basis for RDFS reasoning, where the truth
of a given triple t in a given RDF graph G under the RDFS semantics is decided.

1.2.2 The Web Ontology Language OWL

The next layer in the Semantic Web stack serves to formally define domain
models as shared conceptualizations, called ontologies [55]. The Web Ontology
Language OWL [32] is used to specify such domain models. The W3C document
defines three languages OWL Lite, OWL DL, and OWL Full, with increasing
expressive power. The first two are syntactic variants of expressive but decid-
able description logics (DLs) [8]. In particular, OWL DL coincides with with
SHOIN (D) at the cost of imposing several restrictions on the usage of RDFS.
These restrictions (e.g., disallowing that a resource is used both as a class and an
instance) are lifted in OWL Full which combines the description logic flavor of
OWL DL and the syntactic freedom of RDFS. For in-depth discussion of OWL
Full, we refer the interested reader to the language specification [32].

Table 1. Mapping OWL DL Property axioms to DL and FOL

OWL property axioms as RDF triples DL syntax FOL short representation

〈P rdfs:domain C〉 � � ∀P−.C ∀x, y.P (x, y) ⊃ C(x)
〈P rdfs:range C〉 � � ∀P.C ∀x, y.P (x, y) ⊃ C(y)
〈P owl:inverseOf P0〉 P ≡ P−

0 ∀x, y.P (x, y) ≡ P0(y, x)
〈P rdf:type owl:SymmetricProperty 〉 P ≡ P− ∀x, y.P (x, y) ≡ P (y, x)
〈P rdf:type owl:FunctionalProperty 〉 � � � 1P ∀x, y, z.P (x, y) ∧ P (x, z) ⊃ y = z

〈P rdf:type owl:InverseFunctionalProperty 〉 � � � 1P− ∀x, y, z.P (x, y) ∧ P (z, y) ⊃ x = z

〈P rdf:type owl:TransitiveProperty 〉 P+ � P ∀x, y, z.P (x, y) ∧ P (y, z) ⊃ P (x, z)

While RDFS itself may already be viewed as a simple ontology language,
OWL adds several features beyond RDFS’ simple capabilities to define hierar-
chies (rdfs:subPropertyOf, rdfs:subClassOf) among properties and classes.7 In
particular, OWL allows to specify transitive, symmetric, functional, inverse, and
inverse functional properties. Table 1 shows how OWL DL property axioms can
7 As conventional in the literature, we use “concept” as a synonym for “class”, and

“role” as a synonym for “property.”
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Table 2. Mapping of OWL DL Complex Class Descriptions to DL and FOL

OWL complex class descriptions∗ DL syntax FOL short representation

owl:Thing � x = x

owl:Nothing ⊥ ¬x = x

owl:intersectionOf (C1 . . . Cn) C1 � · · · � Cn C1(x) ∧ · · · ∧ Cn(x)
owl:unionOf (C1 . . . Cn) C1 � · · · � Cn C1(x) ∨ · · · ∨ Cn(x)
owl:complementOf (C) ¬C ¬C(x)
owl:oneOf (o1 . . . on) {o1, . . . , on} x = o1 ∨ · · · ∨ x = on

owl:restriction (P owl:someValuesFrom (C)) ∃P.C ∃y.P (x, y) ∧ C(y)
owl:restriction (P owl:allValuesFrom (C)) ∀P.C ∀y.P (x, y) ⊃ C(y)
owl:restriction (P owl:value (o)) ∃P.{o} P (x, o)

owl:restriction (P owl:minCardinality (n)) � nP ∃y1 . . . yn.

n∧
k=1

P (x, yk)∧
∧
i<j

yi �=yj

owl:restriction (P owl:maxCardinality (n)) � nP ∀y1 . . . yn+1.

n+1∧
k=1

P (x, yk)⊃
∨
i<j

yi =yj

∗For reasons of legibility, we use a variant of the OWL abstract syntax [91] in this table.

be expressed in DL notation and in FOL. RDF triples S P O are represented
here as P (S, O), since in description logics (and thus in OWL DL), predicate
names and resources are assumed to be disjoint.

Moreover, OWL allows the specifications of complex class descriptions to be
used in rdfs:subClassOf statements. Complex descriptions may involve class
definitions in terms of union or intersection of other classes, as well as restrictions
on properties. Table 2 gives an overview of the expressive possibilities of OWL
for class descriptions and its semantic correspondences with description logics
and first-order logics.8 Such class descriptions can be related to each other using
rdfs:subClassOf, owl:equivalentClass, and owl:disjointWith keywords, which
allow us to express description logic axioms of the form C1 � C2, C1 ≡ C2, and
C1 � C2 � ⊥, respectively, in OWL.

Finally, OWL allows to express explicit equality or inequality relations be-
tween individuals by means of the owl:sameAs and owl:differentFrom properties.

For details on the description logic notions used in Tables 1 and 2, we refer
the interested reader to, e.g., [8].

The next, more expressive, iteration of OWL (version 2)9 is developed by
W3C. According to the proposal OWL2 will be based on the decidable descrip-
tion logic SROIQ [60]. It will support additional features such as acyclic com-
position of properties, qualified number restrictions, and possibility to declare
symmetry, reflexivity, or disjointness for properties.

Example 2 (Ontologies in Description Logics). A simple ontology about publi-
cations available online at http://asptut.gibbi.com/sandbox/reviewers.rdf
includes OWL statements which can be represented by the following DL axioms:

8 We use a simplified notion for the first-order logic translation here—actually, the trans-
lation needs to be applied recursively for any complex DL term. For a formal specifi-
cation of the correspondence between DL expressions and first-order logic, cf. [8].

9 http://www.w3.org/TR/owl2-syntax/

http://asptut.gibbi.com/sandbox/reviewers.rdf
http://www.w3.org/TR/owl2-syntax/
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∃ex :title.� � ex :Paper (1)

∃ex :title−.� � xsd :string (2)

ex :isAuthorOf − ≡ dc:creator (3)
ex :Publication ≡ ex :Paper � ∃ex :publishedIn .� (4)

� � � 1 ex :publishedIn− (5)
ex :Senior ≡ foaf :Person � � 10 ex :isAuthorOf � (6)

∃ex :isAuthorOf .ex :Publication

The axioms express the following information: ex :title is a datatype property
on ex :Papers that takes strings as values (axioms (1) and (2)). Furthermore, the
property ex :isAuthorOf is the inverse of the property dc:creator (axiom (3)).
Next, the ontology defines in (4) a class ex :Publication which consists of all the
papers which have been published, and in (5), we state that ex :publishedIn to
be an inverse functional property (i.e., every paper is published in at most one
venue). An ex :Senior researcher (6) is defined as a person who has at least ten
papers, some of which are published.

1.2.3 Rule Languages for Integration

The rule languages considered in integration proposals are usually extensions of
Datalog. Generally, rules have a form of “if” statements, where the predecessor,
called the body of the rule, is a Boolean condition and the successor, called the
head, specifies a conclusion to be drawn if the condition is satisfied.

In Datalog, the condition of a rule is a conjunction of zero or more atomic
formulae of the form p(t1, . . . , tm) where p is an m-ary predicate symbol and
t1, . . . , tm are terms which are constant symbols or variables.10 The head of a
rule is an atomic formula (atom). For example, the rule

auntOf (X, Y ) ← parentOf (Z, Y ), sisterOf (X, Z)

states that X is an aunt of Y if Z is a parent of Y and X is this parent’s
sister. The semantics of Datalog associates with every set of rules (rulebase)
its least Herbrand model (see, e.g., [90]), where each ground (i.e., variable-free)
atom is associated with a truth value true or false. The least Herbrand model
is represented as the set of all atoms assigned to true. These are all the ground
atoms which follow from the rules interpreted as implications in FOL. For ex-
ample, the least Herbrand model of the rulebase consisting of the rule above
and of the facts parentOf (tom, john), sisterOf (mary, tom) includes the formula
auntOf (mary, john). On the other hand, auntOf (mary, tom) does not follow in
this rulebase. Datalog with negation uses this to conclude ¬auntOf (mary, tom).
Datalog rulebases constitute a subclass of logic programs. The latter use FOL

10 In logic programming, atomic formulae may in addition include terms built with
n-ary function symbols.
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terms, not necessarily restricted to constants and variables. Proposals for inte-
gration of rules and ontologies are mostly based on the following extensions of
Datalog (which apply also to logic programs):

– Datalog with negation-as-failure, where the body may additionally in-
clude negation-as-failure (NAF) literals of the form not a where a is an atom.
Intuitively, a NAF literal not a is considered true if it does not follow from
the program that a is true. For example, happy(john) can be concluded from
the rulebase

happy(X) ← healthy(X), not hungry(X)
healthy(john) ←

Two commonly accepted formalizations of this intuition are the stable model
semantics and the well-founded semantics (see the survey [11]), which are
introduced in more detail in Section 1.3. These semantics differ in their view
of a belief state as a single classical model in which each atomic fact is either
true and false, versus a three-valued model in which each fact is either true,
false or unknown.

– Extended Datalog. This extension (see extended logic programs in [11])
makes it possible to state explicitly negative knowledge. This is achieved
by allowing negative literals of the form −p, where “−” is called the strong
negation connective, in the heads of rules as well as in the bodies. In addition
NAF literals are also allowed in the bodies. For example the rule

−healthy(X) ← hasFever(X)

allows to draw an explicit negative conclusion.
– Rulebases with priorities. Datalog rulebases employing strong negation

may be inconsistent, i.e., may allow to draw contradictory conclusions. For
example, the rules

fly(X) ← bird(X)
bird(Y ) ← penguin(Y )

−fly(X) ← penguin(X)
penguin(tweety) ←

allow to conclude fly(tweety) and −fly(tweety). In Defeasible Logic [2] and
in Courteous Logic Programs [54], the user is allowed to specify a priority
relation on rules of the rulebase to resolve contradictions in the derived
conclusions.

– Disjunctive Datalog (see Disjunctive Logic Programs in [11]) admits dis-
junction of atoms in rule heads, and conjunction of atoms and NAF literals
in the bodies, e.g.,

male(X) ∨ female(X) ← person(X).

A commonly used semantics of Disjunctive Datalog rulebases is an extension
of Answer Set Semantics.
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The rule languages are supported by implementations which make it possible to
query and/or to construct the models of rulebases.

1.2.4 Rule Interchange Format RIF

While there are already standard languages for ontologies viz. RDFS and OWL
(which are becoming increasingly used), there is no standard for a rules lan-
guage available yet.Many rules languages and systems have been proposed, and
they offer varying features to reason over Semantic Web data. The Rule Inter-
change Format (RIF) working group of W3C is currently developing a standard
exchange format for rules on the Web [13,12]. The Rule Interchange Format Ba-
sic Logic Dialect (RIF-BLD) [12] proposed by the group is basically a syntactic
variant of Horn rules, which most available rule systems can process.

1.2.5 Approaches to Integration

Integration of a given rule language with a given ontology language is usually
achieved by defining a common extension of both, to be called the integrated
language. Alternatively, one can adopt an existing knowledge representation lan-
guage expressive enough to represent rules and ontologies. As OWL is a standard
ontology language the ontology languages considered in integration proposals are
usually its subsets. The approaches can be classified by the degree of integration
of rules and ontologies achieved in the integrated language (see e.g. [4,81]).

Heterogeneous Integration. In this approach, the distinction between rule
predicates and ontology predicates is preserved in the integrated language. Inte-
gration of rules and ontologies is achieved by allowing ontology predicates in the
rules of the integrated language. Assume for example that an ontology classifies
courses as project courses and lecture courses.

Project 	 Lecture = Course

It also includes assertions like Lecture(cs05), Project(cs21) or Course(cs32)
(e.g. for courses including lectures and projects). The assertions indicate offered
courses. A person is considered a student if he/she is enrolled in an offered lec-
ture or project. This can be expressed by the following rules, using the ontology
predicates

student(X) ← enrolled(X, Y ),Lecture(Y )
student(X) ← enrolled(X, Y ),Project(Y )

In addition, the rulebase includes enrollment facts, e.g., enrolled(joe, cs32). The
extended language allows thus to define ontologies using the constructs of the
ontology language and the rulebases with rules referring to the ontologies. An
extended rulebase together with an ontology is called a hybrid knowledge base.
In heterogeneous approaches, implementations are often based on the hybrid
reasoning principle, where a reasoner of the ontology language is interfaced with
a reasoner of the rule language to reason in the integrated language.
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Two kinds of heterogeneous approaches can be distinguished:

– Loose coupling. In this approach, the body of a rule may contain queries to
the ontology. A ground set of rules with ontology queries can be reduced to a
set of rules without ontology predicates. If the answer to a ground ontology
query is positive the query is removed from the rule, otherwise the rule is
removed from the set. The semantics of knowledge bases with loose coupling
is based on this idea.
With loose coupling applied to the example above, it cannot be concluded
that Joe is a student. This is because neither Lecture(cs32) nor Project(cs32)
can be derived from the ontology.
Examples of loose coupling include:

– dl-programs [46,43,47,42] combining (disjunctive) Datalog with nega-
tion under answer set semantics with OWL DL. So-called dl-queries,
querying the ontology, are allowed in rule bodies. They may also refer
to a variant of the ontology, where the set of its assertions is modified
by the dl-query. This enables bi-directional flow of information between
rules and ontologies. This work was partly supported by REWERSE and
is discussed in more detail in Section 1.3.2.

– HEX-programs [44] extending logic programs under the answer set
semantics with support for higher/order and external atoms. This work
was partly supported by REWERSE and is discussed in more detail in
Section 1.3.3.

– TRIPLE [101] a rule language with the syntax inspired by F-logic which
admits queries to the ontology in rule bodies.

– SWI Prolog11 a logic programming system with a Semantic Web library
which makes it possible to invoke RDF Schema and OWL reasoners from
Prolog programs.

– Tight integration. In this approach, a semantics for the integrated lan-
guage is given which defines models of hybrid knowledge bases by referring
to the semantics of the original rule language and to the FOL models of the
ontology. For example, tight integration of Datalog (without negation) with
a Description Logic can be achieved within FOL by interpreting Datalog
rules as implications. In this semantics, student(joe) is a logical consequence
of the example hybrid knowledge base. As Course(cs32) is an assertion of
the ontology, it follows by the axiom Project 	 Lecture = Course that in
any FOL model of the ontology Project(cs32) or Lecture(cs32) is true. As
enrolled(joe, cs32) is true in every model so the premises of at least one of
the implications

student(joe) ← enrolled(joe, cs32),Lecture(cs32)
student(joe) ← enrolled(joe, cs32),Project(cs32)

must be true in any model. Hence student(joe) is concluded.
11 http://www.swi-prolog.org/

http://www.swi-prolog.org/
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Examples of tight integration include:

– AL-log [33] and CARIN [68], classical works on integrating Datalog
with a family of Description Logics under the FOL semantics.

– DL+log [97] and its predecessor r-hybrid knowledge bases [96] integrat-
ing Disjunctive Datalog under Answer Set Semantics with OWL DL. For
each FOL model of the ontology, the rules of the knowledge base are re-
duced to rules of Disjunctive Datalog, with stable models defined by the
Answer Set Semantics. Similar to DL+log is the approach of [57]. The
guarded hybrid (g-hybrid) knowledge bases introduced therein integrate
so-called guarded programs with ontologies in a particular DL close to
OWL DL.

– Hybrid Rules [39] integrating logic programs under the well-founded
semantics with OWL DL. For each FOL model of the ontology, the rules
of the knowledge base are reduced to a logic program with the model
defined by the well-founded semantics. This work was done within REW-
ERSE and is reported in more details in Section 1.3.4.

– Tightly Coupled dl-Programs [73] combine disjunctive logic pro-
grams under the answer set semantics with description logics. They are
based on a well-balanced interface between disjunctive logic programs
and description logics, which guarantees the decidability of the resulting
formalism without assuming syntactic restrictions. They faithfully ex-
tend both disjunctive programs and description logics. We refer to [73]
for a detailed comparison to the above loosely coupled dl-programs.

The theoretical foundations developed by studying integration of ontologies with
variants of Datalog provide a basis for further extensions. This includes dealing
with uncertain and inconsistent knowledge, and using integrated Datalog-based
languages as condition languages for ECA-rules.

Homogeneous Integration. The integrated language makes no distinction
between rule predicates and ontology predicates. It includes the original rule
language and the original ontology language as sublanguages. The integration is
to be faithful in the sense that the sublanguages should have the same seman-
tics as the respective original languages. Homogeneous integration is difficult
to achieve since usually ontology languages are based on FOL and rule lan-
guages often support non-monotonic reasoning. An interesting related question
is if existing proposals for heterogeneous integration can be embedded into more
expressive logical languages.

Examples of homogeneous integration include:

– DLP (Description Logic Programs) [53], a language obtained by
intersection of a Description Logic with Datalog rules interpreted as FOL
implications. DLP has a limited expressive power, but a DLP ontology can be
compiled into rules and easily integrated into a rulebase of a more expressive
rule language. For example Sweet Rules12 combine DLP and Datalog with

12 http://sweetrules.projects.semwebcentral.org/

http://sweetrules.projects.semwebcentral.org/
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strong negation and priorities. The technique of compiling ontologies to rules
is also used in DR-Prolog [3] based on Defeasible Logic [2].

– SWRL (Semantic Web Rule Language)13 extending OWL DL with
rules interpreted as FOL implications. Thus SWRL is based on FOL and
does not offer nonmonotonic features, such as negation-as-failure. SWRL is
undecidable. More recent works define decidable subsets of SWRL: Descrip-
tion Logic Rules [66] and ELP [67].

– F-logic [62] extending classical predicate calculus with the concepts of ob-
jects, classes, and types. It is expressive enough to represent ontologies, rules
and their combinations [61].

– Hybrid MKNF Knowledge Bases [85,87] take Lifschitz’s bimodal Logic
of Minimal Knowledge and Negation as Failure (MKNF) [69] as a basis of
faithful integration of Description Logic with Disjunctive Datalog. In addi-
tion, more recent results define the well-founded semantics for a subclass of
Hybrid MKNF KBs [63,64].

– Extended RDF Ontologies [1] is an extension of RDF graphs with rules
which admits NAF and strong negation. A stable model semantics defined
for ERDF extends the semantics of RDF Schema. It is based on the partial
logic of [56] and supports both closed-world and open-world reasoning.

The issue of embedding existing heterogeneous approaches into unifying logics
was addressed by several authors. In particular, [31] shows how the Quantified
Equilibrium Logic can be used for embedding heterogeneous approaches, like
DL+log and g-hybrid knowledge bases. The first-order autoepistemic logic [65]
is considered as a unifying framework for integration of rules and ontologies
in [29,30]. The latter paper shows how dl-programs, r-hybrid knowledge bases
and hybrid MKNF knowledge bases can be embedded in this logic.

1.3 Hybrid Rules and Ontologies in REWERSE

In this section, we give a brief exposition of work that has been done in REW-
ERSE regarding the combination of rules and ontologies. In fact, this problem
has been approached in different ways, aiming at the support of different seman-
tics and operability of the combination.

The main achievements are combinations for the two standard semantics
of non-monotonic logic programs to date that were already mentioned in
Section 1.2.3, viz. the stable model semantics [50] (which is called answer set
semantics [52] in the version where strong negation is supported), and the well-
founded semantics [103].

The stable model semantics [51] associates with each rulebase some (possi-
bly zero) two-valued Herbrand models called stable models (or answer sets).
Intuitively, a model is stable, if it can be recreated by applying the rules of the
program starting from facts, where negation-as-failure in rule bodies is evaluated

13 http://www.w3.org/Submission/SWRL/

http://www.w3.org/Submission/SWRL/
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with respect to that model. Formally, stable models may be defined by using the
famous Gelfond-Lifschitz reduct [51].

The well-founded semantics [103] instead associates with a rulebase a unique
(three-valued) Herbrand model, called the well-founded model of P , in which
each ground atom is assigned one of three logical values true, false or unknown.
Intuitively, the facts of a program should be true, and the ground atoms which
are not instances of the head of any rule should be false. This information can
be used to reason which other atoms must be true and which must be false in
any Herbrand model. Such a reasoning gives in the limit the well-founded model,
where the truth values of some atoms may still be undefined.

The properties and relationships between stable and well-founded semantics
are well-understood and explored, and we do not embark on this issue here
but refer to the literature, cf. [10]. We mention, though, that for a large class
of programs relevant in practice (so-called stratified programs [11]), the two
semantics coincide.

However, the different nature of the two semantics, and the available methods
and algorithms for program evaluation in them is important with respect to
possible combinations with ontologies. Indeed, the stable model semantics as a
multiple-models semantics has to cope with several possible outcomes (that is,
with nondeterminism in the evaluation), while the well-founded semantics as
a canonical model semantics is determined; this makes it also more amenable
to use proof-oriented methods for evaluation. In line with this, well-founded
semantics engines (e.g., XSB) may be top-town oriented, while stable model
engines, by current technology, are very much bottom up oriented (e.g., DLV and
Smodels).

Within REWERSE, combinations of rules and ontologies have been developed
that fall into the heterogeneous integration class described in Section 1.2.5. More
in detail, non-monotonic dl-programs [46,43] and the more general hex-programs
[44] have been developed in order to have a loose coupling of OWL ontologies
with nonmonotonic logic programs under the answer set semantics, while Hybrid
Rules (HD-rules) have been developed in order to tightly couple OWL ontologies
with nonmonotonic logic programs under the well-founded semantics.

The combinations faithfully extend the underlying logic programming seman-
tics, and prototypes have been implemented that build on existing standard
reasoning engines for logic programs and OWL ontologies. In fact, they were the
first implementations of this kind, giving REWERSE a lead in the realization of
expressive non-monotonic combinations of rules and ontologies. An application
within REWERSE was a tool for computing credentials from rule-based policy
specifications, based on the engine for hex-programs.

In the following subsections, we briefly present the two streams of work that
have been carried out by the groups in Linköping and Vienna, respectively. For
space reasons, we must confine to the essential aspects and conveying the flavor;
more details are available in the background publications.
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1.3.1 Extensions of Expressive Non-monotonic Logic Programs by
DL-Programs and HEX-Programs

The first stream of work for combining rules and ontologies in REWERSE was
directed towards the stable models and answer set semantics, and led to two
formalisms: dl-programs and hex-programs.

The development of dl-programs was motivated by providing an extension
to ordinary logic programs that allows one to couple a logic programming en-
gine and description logic reasoner in a meaningful way. However, apart from
the usual software engineering problems in coupling heterogeneous systems, the
real challenge consisted in a smooth semantic integration, given that logic pro-
grams and OWL ontologies are based on rather different semantic grounds which
are difficult to bridge (cf. [40]). To overcome this problem, as described in Sec-
tion 1.2.5 non-monotonic dl-programs foster a loose integration, which takes an
interfacing view where the logic program rules and the OWL ontologies can
exchange information in terms of extensional data through so called description-
logic atoms (dl-atoms), which may appear in the logic program. In a nutshell,
such atoms can update and query an ontology, i.e., information can flow in both
directions of the integrated knowledge bases.

This concept appeared to be quite fruitful and allows an easy definition of
the semantics of dl-programs, by generalizing the stable model resp. answer set
semantics of ordinary logic programs in a natural way. Furthermore, abstraction
of description logic atoms to generic external atoms (which is somewhat related
to the notion of generalized quantifiers in logic) opened the door to combine
ordinary logic programs not only with ontologies, but with (in principle) any kind
of external software via an interface at the extensional level. In particular, this
facilitates to access and combine data and information in different formats (e.g.,
in OWL and RDF simultaneously), and to “out-source” parts of computations
from the logic program to external functions, which can use tailored and problem-
specific methods; the rules in the logic program then serve the role to generate
different scenarios (e.g., by making guesses) and constrain solution candidates,
for which the results of different computations might be suitably combined.

It turned out that such capabilities were useful for a problem of credential
computation in rule-based policy specifications, and that a prototype for this
task could be easily built on top of a prototype implementation of hex-programs.

1.3.2 DL-Programs

Description logic programs (dl-programs), which had been introduced in [46],
are a novel type of hybrid knowledge bases combining description logics and
logic programs. They form another contribution to the attempt in finding an
appropriate formalisms for combined rules and ontologies for the Semantic Web.

Roughly speaking, dl-programs consist of a normal logic program P and a
description logic knowledge base (DL-KB) L. The logic program P might contain
special devices called dl-atoms. Those dl-atoms may occur in the body of a rule
and involve queries to L. Moreover, dl-atoms can specify an input to L before
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querying it, thus in dl-programs a bidirectional data flow is possible between the
description logic component and the logic program.

The way dl-programs interface DL-KBs allows them to act as loosely coupled
formalism. This feature brings the advantage of reusing existing logic program-
ming and DL system in order to build an implementation of dl-programs.

In the following, we provide the syntax of dl-programs and an overview of the
semantics. An in-detail treatise is given in [43].

Syntax of DL-Programs. Informally, a dl-program KB = (L, P ) consists
of a description logic knowledge base L and a generalized normal program P ,
which may contain queries to L. Roughly, such a query asks whether a specific
description logic axiom is entailed by L or not.

We first define dl-queries and dl-atoms, which are used to express queries to
the description logic knowledge base L. A dl-query Q(t) is either

– a concept inclusion axiom F or its negation ¬F , or
– of the forms C(t) or ¬C(t), where C is a concept and t is a term, or
– of the forms R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are terms.

A dl-atom has the form

DL[S1op1p1, . . . , Smopm pm; Q](t) , m ≥ 0, (7)

where each Si is either a concept or a role, opi ∈ {�, −∪, −∩}, pi is a unary resp.
binary predicate symbol, and Q(t) is a dl-query. We call p1, . . . , pm its input
predicate symbols. Intuitively, opi = � (resp., opi = −∪) increases Si (resp., ¬Si)
by the extension of pi, while opi = −∩ constrains Si to pi.

A classical literal (or simply literal) l is an atom p or a negated atom −p with
a rule predicate symbol (hence not a predicate symbol of L). A dl-rule r has the
form

a ← b1, . . . , bn, not bn+1, . . . , not bm, (8)

where a is a literal and any literal b1, . . . , bm may be a dl-atom. We define H(r) =
a and B(r) = B+(r) ∪B−(r), where B+(r) = {b1, . . . , bn} and B−(r) = {bn+1,
. . . , bm}. If B(r) = ∅ and H(r) �= ∅, then r is a fact. A dl-program KB = (L, P )
consists of a description logic knowledge base L and a finite set of dl-rules P .

The next example will illustrate main ideas behind the notion of dl-program.

Example 3. An existing network must be extended by new nodes (Fig. 2). The
knowledge base LN contains information about existing nodes (n1, . . . , n5) and
their interconnections as well as a definition of “overloaded” nodes (concept
HighTrafficNode), which are nodes with more than three connections:

≥ 1 wired � Node; � � ∀wired .Node; wired = wired−;
≥ 4 wired � HighTrafficNode ; n1 �= n2 �= n3 �= n4 �= n5;

Node(n1); Node(n2); Node(n3); Node(n4); Node(n5);
wired(n1, n2); wired(n2, n3); wired(n2, n4);
wired(n2, n5); wired(n3, n4); wired(n3, n5).
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Fig. 2. Hightraffic network

In LN , only n2 is an overloaded node, and is highlighted in Fig. 2 with a criss-
cross pattern.

To evaluate possible combinations of connecting the new nodes, the following
program PN is specified:

newnode(x1 ). (9)
newnode(x2 ). (10)
overloaded (X) ← DL[wired � connect ;HighTrafficNode ](X). (11)
connect(X, Y ) ← newnode(X), DL[Node](Y ), (12)

not overloaded (Y ), not excl(X, Y ).
excl(X, Y ) ← connect(X, Z), DL[Node](Y ), Y �= Z. (13)
excl(X, Y ) ← connect(Z, Y ),newnode(Z),newnode(X), Z �= X. (14)
excl(x1 , n4). (15)

Rules (9)–(10) define the new nodes to be added. Rule (11) imports knowledge
about overloaded nodes in the existing network, taking new connections already
into account. Rule (12) connects a new node to an existing one, provided the latter
is not overloaded and the connection is not to be disallowed, which is specified by
Rule (13) (there must not be more than one connection for each new node) and
Rule (14) (two new nodes cannot be connected to the same existing one). Rule
(15) states a specific condition: Node x1 must not be connected with n4.

Semantics of DL-Programs. Two different semantics have been defined for
dl-programs, the (strong) answer-set semantics [46] and the well-founded seman-
tics [47]. The former extends the notion of Gelfond-Lifschitz reduct incorporating
the presence of dl-atoms: dl-programs can have, in general, multiple answer sets.
The latter extends the well-founded semantics of [103] to dl-programs. The well-
founded semantics is based on an appropriate notion of greatest unfounded set
which embraces the presence of dl-atoms, and assigns a single three-valued model
to every logic program.
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More formally, given a consistent set I of classical literals (using the constants
in P and L), I satisfies (i) a classical ground literal l, denoted I |=L l, iff l ∈ I,
and (ii) a dl-atom a = DL[λ; Q](c) with input list λ = S1op1p1, . . . , Smopmpm,
denoted I |=L a, iff L ∪ λ(I) |= Q(c), where λ(I) =

⋃m
i=1 Ai(I) and

– Ai(I) = {Si(d) | pi(d) ∈ I}, for opi = �;
– Ai(I) = {¬Si(d) | pi(d) ∈ I}, for opi = −∪;
– Ai(I) = {¬Si(d) | pi(d) ∈ I does not hold}, for opi = −∩.

Given a ground dl-rule r, we define (i) I |=L B(r) iff I |=L l for all l ∈ B+(r) and
I �|=L l for all l ∈ B−(r), and (ii) I |=L r iff I |=L H(r) whenever I |=L B(r).
We say that I is a model of KB = (L, P ), or I satisfies KB , denoted I |= KB ,
iff I |=L r for all r in the grounding of P , ground(P ).

Strong answer sets can then be defined as follows. The Gelfond-Lifschitz trans-
form of a dl-program KB = (L, P ) relative to consistent set I of ground literals
for P is the dl-program KBI = (L, P I), where P I is obtained from ground(P )
by (i) deleting every rule r with I |=L l for some l ∈ B−(r) (ii) deleting all
literals not bi from all remaining rules. Assuming that all dl-atoms a that occur
in P I are monotone (i.e., I |=L a implies I ′ |=L a, for all consistent sets I ⊆ I ′ of
ground literals for P ), I is a strong answer set of KB iff it is a minimal model
(w.r.t. set inclusion) of KBI . For more details, see [43].

Example 4. As specified by the strong answer set semantics of dl-programs, the
program (LN , PN ) in Example 3 has four strong answer sets (we show only atoms
with predicate connect): M1 = {connect(x1, n1), connect(x2, n4), . . . }, M2 =
{connect(x1, n1), connect(x2, n5), . . . }, M3 = {connect(x1, n5), connect(x2, n1),
. . . }, and M4 = {connect(x1, n5), connect(x2, n4), . . . }. Note that the ground
dl-atom DL[wired � connect ;HighTrafficNode ](n2) from rule (3) is true in any
partial interpretation of PN . According to the proposed well-founded semantics
for dl-programs in [47], the unique well-founded model of (LN , PN ) contains thus
overloaded(n2 ).

Features and Properties of DL-Programs. The strong answer set semantics
of dl-programs is nonmonotonic, and generalizes the stable semantics of ordinary
logic programs. In particular, satisfiable positive dl-programs (programs without
default negation and −∩ operator) have a least model semantics, and satisfiable
stratified dl-programs have a unique minimal model which is iteratively described
by a finite sequence of least models. Similarly, the well-founded semantics for
dl-programs is a generalization of the well-founded semantics for ordinary logic
programs. The two generalized semantics preserve some of the relationships that
the answer set semantics and the well-founded semantics for normal programs
have. In particular, given a knowledge base KB = (L, P ), the well-founded model
of KB is contained in the set of cautious consequences of KB under strong answer
set semantics [47,42]. Also, the two notions coincide in case stratified programs
are considered.

The computational complexity of the formalism does not dramatically increase
for dl-programs compared to normal logic programs: under strong answer set
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semantics, deciding satisfiability of general dl-programs over SHIF(D) DL-KBs
is NEXP-complete, and PNEXP-complete if the DL-KB is in SHOIN (D). dl-
programs have been generalized to a framework for incorporation of arbitrary
knowledge sources other than description logic bases (see Section 1.3.3).

Applications. The bidirectional flow of knowledge between a description logic
base and a logic program component enables a variety of possibilities. A major
application for dl-programs is nonmonotonic reasoning on top of monotonic sys-
tems. We will present two flavors: default logic [95] and closed world assumption
(CWA) [94]. Both reasoning applications can be implemented in dl-programs to
support nonmonotonic reasoning for description logics.

We will give an example on how to implement default reasoning on top of
ontologies. Since description logics are fragments of first-order logic, Reiter’s
default logic over description logics can be realized in dl-programs (cf. also ter-
minological default logics [9]).

Let Δ = 〈L, D〉 be a default theory, where

L =
{

redWine � ¬whiteWine , lambrusco � sparklingWine � redWine,
sparklingWine(veuveCliquot), lambrusco(lambrusco di modena)

}

and

D =
{

sparklingWine(X) : whiteWine(X)
whiteWine(X)

,
whiteWine(X) : servedCold (X)

servedCold (X)

}
.

The embedding of Δ into a dl-program KBdf = (L, P ) is demonstrated next.
Let P be the program

inwhiteWine(X) ← not outwhiteWine(X) (16)
outwhiteWine(X) ← not inwhiteWine(X) (17)
inservedCold(X) ← not outservedCold(X) (18)

outservedCold(X) ← not inservedCold(X) (19)
fail ← DL[λ′;whiteWine ](X), outwhiteWine (X), not fail (20)
fail ← DL[λ′; servedCold ](X), outservedCold(X), not fail (21)

g1(X) ← DL[λ; sparklingWine ](X), notDL[λ′; ¬whiteWine ](X) (22)
g2(X) ← DL[λ;whiteWine ](X), notDL[λ′; ¬servedCold ](X) (23)

fail ← notDL[λ;whiteWine ](X), inwhiteWine (X), not fail (24)
fail ← DL[λ;whiteWine ](X), outwhiteWine (X), not fail (25)
fail ← notDL[λ; servedCold ](X), inservedCold(X), not fail (26)
fail ← DL[λ; servedCold ](X), outservedCold(X), not fail (27)
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corresponding to the default rules in D, where λ and λ′ are update lists of
form whiteWine �g1, servedCold �g2 and whiteWine � inwhiteWine , servedCold �
inservedCold , respectively. Intuitively, the predicates inwhiteWine and inservedCold

encode that an individual is a member of concept whiteWine and servedCold ,
resp. Similarly, outwhiteWine and outservedCold are used to state that an individual
is not a member of these concepts. The rules (16)–(19) guess an extension of those
predicates, whereas (20) and (21) check whether the guessed model is compliant
with the ontology L. Rules (22) and (23) are used to test the applicability of
the defaults in D, and (24)–(27) then check whether the guess agrees with the
semantics of default logic. In order to have models that agree with the conclusions
of L, λ and λ′ take over the task to communicate the current world view of P to
the ontology L. Under strong answer set semantics, the above program has, as
expected, among its cautious consequences the facts inwhiteWine (veuveCliquot)
and outwhiteWine(lambrusco), which correctly denotes the fact that sparkling
wines are white by default. Above encoding has been improved in [28], where
various translations from default logic over description logic into cq-programs
(see also Section 1.4.3) are given and further analyzed.

A second line of nonmonotonic reasoning is Reiter’s CWA [95]. In this rea-
soning principle, we can infer the negative fact ¬p(c) from a first-order theory T
whenever we are unable to prove the positive fact p(c) from T . The CWA of a the-
ory T , denoted CWA(T ), is defined as the set of all literals {¬p(c) | T �|= p(c)}.

Take, for instance, the DL knowledge base

L = {apple � fruit , fruit(williams)}

describing that apples are fruits, and that williams is a particular fruit. The
above knowledge base L leaves open whether williams is an apple or not. Closing
L by means of CWA enables us to deduce that CWA(L) |= ¬apple(williams),
i.e., under CWA we can infer that williams is not an apple.

A particular encoding of above reasoning task in dl-programs is accomplished
by the rule

apple(X) ← notDL[apple ](X) ,

where apple is a fresh predicate. Given L, we can now infer apple(williams).
A well-known drawback of the CWA is that it faces inconsistency in case of

disjunctive information. Let L′ = {apple 	 pear (williams)}, i.e., williams is an
apple or a pear. Under CWA, we can infer that williams is neither an apple nor
a pear, which is inconsistent with our assertion in L′. The extended closed-world
assumption (ECWA) is a refined version of CWA, which is able to treat cases
like the one above in a reasonable manner. Full details on CWA and ECWA in
dl-programs is given in [43].

1.3.3 HEX-Programs

hex-programs [45] are declarative nonmonotonic logic programs with support for
external knowledge and higher-order disjunctive rules. In spirit of dl-programs,
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they allow for a loose coupling between general external knowledge sources and
declarative logic programs through the notion of external atoms, which take
input from the logic program and exchange inferences with the external source.
In addition, meta-reasoning tasks may be accomplished by means of higher-order
atoms. hex-programs are evaluated under a generalized answer-set semantics,
thus are in principle capable of capturing many proposed extensions in answer-
set programming.

Syntax of HEX-Programs. Let C, X , and G be mutually disjoint sets whose
elements are called constant names, variable names, and external predicate names,
respectively. Unless explicitly specified, elements from X (resp., C) are denoted
with first letter in upper case (resp., lower case), while elements from G are prefixed
with the “&” symbol. We note that constant names serve both as individual and
predicate names.

Elements from C∪X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms; n ≥ 0 is the arity of the atom.
Intuitively, Y0 is the predicate name, and we thus also use the more familiar
notation Y0(Y1, . . . , Yn). The atom is ordinary, if Y0 is a constant.

For example, (x, rdf :type, c), node(X), and D(a, b), are atoms; the first two
are ordinary atoms.

An external atom is of the form

&g[Y1, . . . , Yn](X1, . . . , Xm) , (28)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and output
lists, respectively), and &g ∈ G is an external predicate name. We assume that
&g has fixed lengths in(&g) = n and out(&g) = m for input and output
lists, respectively. Intuitively, an external atom provides a way for deciding the
truth value of an output tuple depending on the extension of a set of input
predicates: in this respect, an external predicate &g is equipped with a function
f&g evaluating to true for proper input values.

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βm, notβm+1, . . . , notβn , (29)

where m, k ≥ 0, α1, . . . , αk are atoms, and β1, . . . , βn are either atoms or external
atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r), where
B+(r) = {β1, . . . , βm} and B−(r) = {βm+1, . . . , βn}. If H(r) = ∅ and B(r) �= ∅,
then r is a constraint, and if B(r) = ∅ and H(r) �= ∅, then r is a fact; r is ordinary,
if it contains only ordinary atoms. A hex-program is a finite set P of rules. It is
ordinary, if all rules are ordinary.

We next give an illustrative example.



Hybrid Reasoning with Rules and Ontologies 21

Example 5 ([44]). Consider the following hex-program P :

subRelation(brotherOf , relativeOf ). (30)
brotherOf (john , al). (31)
relativeOf (john , joe). (32)
brotherOf (al ,mick). (33)
invites(john , X) ∨ skip(X) ← X �= john , &reach[relativeOf , john ](X). (34)
R(X, Y ) ← subRelation(P, R), P (X, Y ). (35)
someInvited ← invites(john , X). (36)
← not someInvited . (37)
← &degs [invites ](Min ,Max ),Max > 2. (38)

Informally, this program randomly selects a certain number of John’s relatives
for invitation. The first line states that brotherOf is a subrelation of relativeOf ,
and the next three lines give concrete facts. The disjunctive rule (34) chooses
relatives, employing the external predicate &reach. This latter predicate takes
in input a binary relation e and a node name n, returning the nodes reachable
from n when traversing the graph described by e (see the following Example 7).
Rule (35) axiomatizes subrelation inclusion exploiting higher-order atoms; that
is, for those couples of binary predicates p, r for which it holds subRelation(p, r),
it must be that r(x, y) holds whenever p(x, y) is true.

The constraints (37) and (38) ensure that the number of invitees is between 1
and 2, using (for illustration) an external predicate &degs from a graph library.
Such a predicate has a valuation function f&degs where f&degs(I, e,min,max)
is true iff min and max are, respectively, the minimum and maximum vertex
degree of the graph induced by the edges contained in the extension of predicate
e in interpretation I.

Semantics of HEX-Programs. In the sequel, let P be a hex-program. The
Herbrand base of P , denoted HBP , is the set of all possible ground versions of
atoms and external atoms occurring in P obtained by replacing variables with
constants from C. The grounding of a rule r, grnd(r), is defined accordingly,
and the grounding of program P is given by grnd(P ) =

⋃
r∈P grnd(r). Unless

specified otherwise, C, X , and G are implicitly given by P .

Example 6 ([44]). Given C = {edge, arc, a, b}, ground instances of E(X, b) are
for instance edge(a, b), arc(a, b), a(edge, b), and arc(arc, b); ground instances of
&reach[edge, N ](X) are all possible combinations where N and X are replaced
by elements from C, for instance &reach[edge, edge](a), &reach[edge, arc](b),
&reach[edge, edge](edge), etc.

An interpretation relative to P is any subset I ⊆ HBP containing only atoms.
We say that I is a model of atom a ∈ HBP , denoted I |= a, if a ∈ I.

With every external predicate name &g ∈ G, we associate an (n+m+1)-ary
Boolean function f&g assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1,
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where n = in(&g), m = out(&g), I ⊆ HBP , and xi, yj ∈ C. We say that I ⊆ HBP

is a model of a ground external atom a = &g[y1, . . . , yn](x1, . . . , xm), denoted I |=
a, if and only if f&g(I, y1, . . . , yn, x1, . . . , xm) = 1.

Example 7 ([44]). Let us associate with the external atom &reach a function
f&reach such that f&reach(I, E, A, B) = 1 iff B is reachable in the graph E
from A. Let I = {e(b, c), e(c, d)}. Then, I is a model of &reach[e, b](d) since
f&reach(I, e, b, d) = 1.

Note that in contrast to the semantics of higher-order atoms, which in essence
reduces to first-order logic as customary (cf. [98]), the semantics of external
atoms is in spirit of second order logic since it involves predicate extensions.

Considering example 5, as John’s relatives are determined to be Al, Joe, and
Mick, P has six answer sets, each of which contains one or two of the facts
invites(john , al), invites(john , joe), and invites(john ,mick ).

Let r be a ground rule. We define (i) I |= H(r) iff there is some a ∈ H(r) such
that I |= a, (ii) I |= B(r) iff I |= a for all a ∈ B+(r) and I �|= a for all a ∈ B−(r),
and (iii) I |= r iff I |=H(r) whenever I |= B(r). We say that I is a model of
a hex-program P , denoted I |= P , iff I |= r for all r ∈ grnd(P ). We call P
satisfiable, if it has some model.

Given a hex-program P , the FLP-reduct of P with respect to I ⊆ HBP ,
denoted fPI , is the set of all r ∈ grnd(P ) such that I |= B(r). I ⊆ HBP is an
answer set of P iff I is a minimal model of fPI .

In principle, the truth value of an external atom depends on its input and
output lists and on the entire model of the program. In practice, however, we
can identify certain types of input terms that allow to restrict the input interpre-
tation to specific relations. The Boolean function associated with the external
atom &reach[edge, a](X) for instance will only consider the extension of the
predicate edge and the constant value a for computing its result, and simply
ignore everything else of the given input interpretation.

Features and Properties of HEX-Programs. As mentioned above, hex-
programs are a generalization of dl-programs, consisting indeed in a form of cou-
pling of rules with arbitrary external computation sources, within a declarative
logic-based setting. The higher-order features are similar to those of HiLog [26],
i.e., the semantics of this high-order extension is still within first-order logic.

The semantics of hex-programs conservatively extends ordinary answer-set
programs, and it is easily extendable to support weak constraints [17]. External
predicates can define other ASP features like aggregate functions [48]. Compu-
tational complexity of the language depends on external functions. The former
is however not affected if external functions evaluate in polynomial time.

The dlvhex prototype,14 an implementation of hex-programs, is based on a
flexible and modular architecture. The evaluation of the external atoms is re-
alized by plugins, which are loaded at run-time. The pool of available external
predicates can be easily customized by third-party developers.
14 http://www.kr.tuwien.ac.at/research/systems/dlvhex/

http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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Applications. hex-programs have been applied in many applications in differ-
ent contexts. Hoehndorf et al. [59] showed how to combine multiple biomedical
upper ontologies by extending the first-order semantics of terminological knowl-
edge with default logic. The corresponding prototype implementation of such
kind of system is given by mapping the default rules to hex-program. Fuzzy
extensions of answer-set programs and their relationship to hex-programs are
given in [88,58]. The former maps fuzzy answer set programs to hex-programs,
whereas the latter defines a fuzzy semantics for hex-programs and gives a trans-
lation to standard hex-programs. In [89], the planning language Kc has been
introduced which features external function calls in spirit of hex-programs.

REWERSE has related applications, where a rule-based solution for solving
credential selection problems (see below) was discussed. We also refer the reader
to Chapter 3, which is devoted to reasoning about policies.

As stated in [16], selecting an “appropriate” set of credentials for satisfying
trust negotiation tasks is an important problem. Since users typically want to
disclose as little sensitive information as possible, an “appropriate” set of cre-
dentials is the least sensitive set of credentials needed to obtain a service. This
minimization effort is referred to as the credential selection problem [16], which
will be explained in the following.

In a nutshell, each participant in a rule-based policy specification environ-
ment expresses its policies by logic programs, and credentials provided by the
requesting client are encoded by facts. The combination of the policies and a set
of credentials should satisfy the given authorization request of the client.

More formally, a credential selection problem (CSEL) consists of

– a finite, stratified logic program P , representing the server’s and client’s
policies,

– a goal G modeling the authorization requested by the client,
– a finite set of integrity constraints IC , representing forbidden combinations

of credentials,
– a finite set of ground facts C, representing the portfolio of credentials and

declarations of the client, and
– a sensitivity aggregation function sen : 2C → Σ, where Σ is a finite set (of

sensitivity values) partially ordered by �.

A solution for the credential selection problem is a set S ⊆ C such that

1. P ∪ S |= G,
2. P ∪ S ∪ IC is consistent, and
3. sen(S) is minimal among all S which satisfy 1. and 2.

Expressing this kind of credential selections is a valuable application for hex-
programs. The next example from [99] shows how to encode a CSEL instance in
a hex-program. The stratified program P is encoded in Server policy.
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Server policy
% if resource is public, no authentication is necessary

allow(download,Resource) :- public(Resource).

% user may download if she has a subscription and is authenticated

allow(download,Resource) :- authenticated(User),

hasSubscription(User,Subscription),

availableFor(Resource,Subscription).

% user may download if she has paid and is authenticated

allow(download,Resource) :- authenticated(User),

paid(User,Resource).

% user is authenticated, if she has a valid credential

authenticated(User) :- valid(Credential),

attr(Credential,name,User).

% a selected credential is valid, if its type is trusted

valid(Credential) :- selectedCred(Credential),

attr(Credential,type,T),

attr(Credential,issuer,CA),

isa(T,id),

trustedFor(CA,T).

% types that are ids, i.e., a hierarchy of identifiers

isa(id,id).

isa(ssn,id).

isa(passport,id).

isa(driving_license,id).

The goal G as fact resource(“paper01234 .pdf ”), the set C of the client’s creden-
tials, and (implicitly by credSens) the set Σ = {1, 2, 4} of sensitivity values is
given below in Client example.

Client example
hasSubscription("John Doe",law_basic).

hasSubscription("John Doe",computer_basic).

availableFor("paper01234.pdf",computer_basic).

% the client requests this goal G

resource("paper01234.pdf").

% credential authorities and their ID types

trustedFor("Open University",id).

trustedFor("Visa",id).

trustedFor("UK Government",ssn).

% next are three credentials and their

% associated properties and sensitivities
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credential(cr01).

attr(cr01,type,id).

attr(cr01,name,"John Doe").

attr(cr01,issuer,"Open University").

credSens(cr01,1).

credential(cr02).

attr(cr02,type,ssn).

attr(cr02,name,"John Doe").

attr(cr02,issuer,"UK Government").

credSens(cr02,2).

credential(cr03).

attr(cr03,type,id).

attr(cr03,name,"John Doe").

attr(cr03,issuer,"Visa").

credSens(cr03,4).

The final part of the CSEL is given below, encoding the minimal sen(S) of
credentials S ⊆ C, which satisfies the program. The solution is given as ground
facts with predicate sens. We make use of the external atom &policy , whose
associated Boolean function f&policy(I, p, n) = 1 iff n =

∑
p(c,i)∈I i. That is,

in a model of the program encoding our CSEL, polSens(s) holds the sum s of
sensitivity values i from all ground sens(c, i) atoms.

Optimization rules
% open a search space

selectedCred(X) v -selectedCred(X) :- credential(X).

sens(C,S) :- selectedCred(C), credSens(C,S).

% remove models that don’t accomplish the goal

:- not allow(download,R), resource(R).

% compute model sensitivity

polSens(S) :- &policy[sens](S).

% select least sensitive model

:∼ polSens(S). [S:1]

The solution is given in the abridged answer set
{sens(cr01 ,1), polSens(1), . . .}, which specifies that credential cr01 is suf-
ficient for achieving the goal G and is the least sensitive one among the
possible subsets of the credentials C. Note that the program makes use of the
weak constraint construct :∼ polSens(S). [S:1], whose intuitive meaning is
adding a cost s to answer sets in which polSens(s) holds, and then selecting
optimal answer sets by minimizing the costs (for an in-detail account on weak
constraints (in hex-programs) we refer to [17,99]).
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1.3.4 Extensions of Well-Founded Semantics by Hybrid
Well-Founded Semantics

This section gives an introduction to the REWERSE work on tight integration
presented in [39,38]. This work developed a framework for hybrid combination of
normal logic programs under the well-founded semantics with various theories of
the FOL. The hybrid programs defined in this way extend faithfully both normal
programs and the underlying theories. The framework gives principles of imple-
mentation showing how a rule engine supporting the well-founded semantics of
normal programs can be combined with a reasoner for the underlying theory to
get a reasoner for the hybrid programs which is sound w.r.t. their declarative
semantics. The implemented instance of the framework was the language of HD-
rules [38,37], integrating Datalog with negation and OWL DL. The framework
itself is not restricted to Datalog; compound terms are permitted in addition to
constants.

To present this work we first illustrate on an example the well-founded se-
mantics of normal programs. Then we discuss the syntax and the declarative
semantics of the hybrid programs. Finally we explain the principles of the oper-
ational semantics.

The Well-Founded Semantics. The well-founded semantics associates with a
normal logic program a unique 3-valued Herbrand model, called its well-founded
model. For the Herbrand base H of a program denote ¬H = { ¬a | a ∈ H }.
Then a 3-valued Herbrand interpretation I of P is a subset of H ∪¬H such that
for no ground atom A both A and ¬A are in I. Intuitively, the set I assigns the
truth value t (true) to all its members. Thus A is false (has the truth value f)
in I iff ¬A ∈ I, and ¬A is false in I iff A ∈ I. If A �∈ I and ¬A �∈ I then the
truth value of A (and that of ¬A) is u (undefined). The truth value of compound
formulae is defined in a usual way. For instance the truth value of F1 ∧ F2 is t
if the truth values of both F1 and F2 are t, it is f if the truth value of some of
them is f , and it is u if some of them has the truth value u and none has f . The
notation I |=3 F will be used to denote that a formula F is true in a 3-valued
interpretation I.

We illustrate the notion of the well-founded model by some examples. Several
(equivalent) formal definitions can be found elsewhere, see for instance [102,5,49].

Example 8. The well-founded model of program { p ← p; q ← ¬p; r ← q, ¬r } is
{¬p, q }. Informally, the value of p is false independently from the values of q, r
(as p is defined by a single rule p ← p). From ¬p we derive q (by rule q ← ¬p).
However neither r nor ¬r can be derived. The program does not have stable
models.

Example 9. A two person game consists in moving a token between vertices
of a directed graph. Each move consists in traversing one edge from the actual
position. Each of the players in order makes one move. The graph is described by
a database of facts m(X, Y ) corresponding to the edges of the graph. A position
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ee

ffbb aa cc

dd

Fig. 3. The game graph

X is said to be a winning position X if there exists a move from X to a position
Y which is a losing (non-winning) position:

w(X) ← m(X, Y ), ¬w(Y )

Consider the graph in Fig. 3 and assume that it is encoded by the facts m(bb, aa),
m(aa, bb), . . . , m(ee,ff ) of the program. Now ff is a losing position – there is no
move from ff . This is reflected by the well-founded model of the program; in the
model w(ff ) is false, as no program rule has a ground instance w(ff ) ← . . . with
a true body (as the program contains no fact of the form m(ff , t)). Thus ee is a
winning position: w(ee) is true, due to rule instance w(ee) ← m(ee,ff ), ¬w(ff ).
Similarly, w(cc) is true and w(dd) is false. However each of aa, bb is neither
winning nor losing, from each of them the player has an option of moving to the
other one. Literals w(aa), w(bb) have value u in the well-founded model of the
program. The model contains the following literals with the predicate symbol w:
w(cc), w(ee), ¬w(dd ), ¬w(ff ).

The program has two stable models, in each of them w(aa) and w(bb) have
the opposite logical values (and the values of w(cc), w(ee), w(dd), w(ff ) are the
same as those in the well-founded model).

The previous sections considered logic programs under the stable model seman-
tics (or, more generally, answer set semantics). Both semantics coincide for a
wide class of programs relevant in practice, including the stratified programs.
The well-founded model of such a program is 2-valued, and it is its unique sta-
ble model. Usually the pragmatics of knowledge representation is different for
the two semantics. With the answer set semantics, each stable model represents
a solution to a problem. With the well-founded semantics, the solutions are
represented by consequences (i.e. answers) of the program.

Hybrid Programs. Informally, a hybrid program consists of a set of axioms
T , called external theory and of a generalized normal program P , which may
contain formulae of the language of T , called constraints15 in the bodies of the
rules.

More precisely, one considers a first-order alphabet including, as usual, dis-
joint alphabets of predicate symbols P , function symbols F (including a set of

15 This term is used due to similarities with constraint logic programming [83].
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constants) and variables V . Following the heterogeneous approach to integra-
tion, it is assumed that P consists of two disjoint sets PR (rule predicates) and
PC (constraint predicates). The atoms and the literals constructed with these
predicates are called respectively rule atoms (rule literals) and constraint atoms
(constraint literals). The bodies of the rules of normal programs over alphabets
PR, F , V may now be extended with constraints over alphabets PC , F , V . (It is
also allowed that the set of function symbols of the external theory T is a subset
of F .) In a particular instance of the framework one has to be specific about the
kind of formulae allowed as constraints of the rules.

A hybrid rule has the form

a ← c, b1, . . . , bn, (39)

where c is a constraint over PC , F , V and b1, . . . , bn are rule literals. If con-
straints allow quantifiers, some variables may not be free in a rule. A safeness
restriction on the syntax of rules introduced in [36] for discussing semantic issues
is somewhat elaborate. A sufficient condition for a rule to be safe is that each
its free variable has to appear in a positive rule literal.

A hybrid program is a pair (P, T ) where P is a set of hybrid rules and T is a
set of axioms over PC , F , V . A hybrid program is said to be safe if all its rules
are safe.

Remember that we deal with two kinds of negation: the classical negation of
FOL and nonmonotonic negation of the rules. The former is applied to (formulae
containing only) constraint predicates, and the latter only to (atoms with) rule
predicates. So the same symbol ¬ can be used to denote both.

The following example [39] shows a safe hybrid program with constraints
referring to an ontology.

Example 10. Consider a classification of geographical locations. For example the
classification may concern the country (Finland (Fi), Norway (No), etc.), the
continent (Europe (E), etc.), and possibly other categories. We specify a clas-
sification by axioms in a DL logic. The ontology provides, among others, the
following information

– subclass relations (T-box axioms): e.g. (Fi � E);
– classification of some given locations represented by constants (A-box ax-

ioms). For instance, assuming that the positions of Example 9 represent
locations we may have: bb is a location in Finland (Fi(bb)), cc is a location
in Europe (E(cc)).

Now the ontology will be used as an external theory for a program. We describe a
variant of the game from Example 9, with the rules subject to additional restric-
tions (see Fig. 4). Assume that the positions of the graph represent geographical
locations described by the ontology. The restrictions will be expressed as onto-
logical constraints added in rule bodies. For instance let constraints be added to
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¬E(ff )

ffbb aa cc

dd ee

¬Fi(ff )

Fig. 4. The modified game graph

the facts m(ee,ff ) and m(cc,ff ):

w(X) ← m(X, Y ), ¬w(Y )

m(bb, aa)
m(aa , bb)
m(aa , cc)
m(cc, dd)
m(dd , ee)

m(cc,ff ) ← ¬Fi(ff )
m(ee,ff ) ← E(ff )

Intuitively, this would mean that the move from ee to ff is allowed only if ff
is in Europe and the move from cc to ff – only if ff is not in Finland. These
restrictions may influence the outcome of the game: ff will still be a losing
position but if the axioms of the ontology do not allow to conclude that ff is
in Europe, we cannot conclude that ee is a winning position. However, we can
conclude that if ff is not in Europe then it cannot be in Finland. Thus, at least
one of the conditions E(ff ), ¬Fi(ff ) holds. Therefore cc is a winning position: If
E(ff ) then, as in Example 9, ee is a winning position, dd is a losing one, hence
cc is a winning position. On the other hand, if ¬Fi(ff ) the move from cc to ff
is allowed in which case cc is a winning position.

An example employing non-nullary function symbols is given in [37].

Declarative Semantics. The declarative semantics of hybrid programs is de-
fined as a generalization of the well-founded semantics of normal programs; it
refers to the (2-valued) models of the external theory T of a hybrid program.
Given a hybrid program (P, T ) we cannot define a unique well-founded model of
P since we have to take into consideration the logical values of the constraints in
the rules. However, for any given model M of T one can consider the well-founded
model of the normal program P/M obtained by replacing the constraints in the
rules by their logical values in M .

More precisely, let ground(P ) be the set of ground instances of the hybrid
rules in P . Then P/M is the normal program obtained from ground(P ) by

– removing each rule constraint C which is true in M (i.e. M |= C),
– removing each rule whose constraint C is not true in M , (i.e. M �|= C).

The well-founded model of P/M is called the well-founded model of P based on M .
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A formula F (over PR, F , V) holds (is true) in the well-founded semantics of a
hybrid program (P, T ) (denoted (P, T ) |=wf F ) iff M |=3 F for each well-founded
model M of (P, T ).

We say that F is false in the well-founded semantics of (P, T ) if (P, T ) |=wf
¬F , and that F is undefined if the logical value of F in each well-founded model
of (P, T ) is u. Notice that there is a fourth case: if F does not have the same
logical value in all well-founded models of P then F is neither true, nor false,
nor undefined. Notice that the negation in the rule literals is nonmonotonic, and
the negation in the constraints is that from the external theory, thus monotonic.

Example 11. For the hybrid program (P, T ) of Example 10 we have to consider
models of the ontology T . For every model M0 of T such that M0 |= E(ff )
the program P/M0 includes the fact m(ee,ff ). The well-founded model of P/M0
includes thus the literals ¬w(ff ), w(ee), ¬w(dd ), w(cc) (independently of whether
M0 |= Fi(ff )).

On the other hand, for every model M1 of the ontology such that M1 |=
¬Fi(ff ) the program P/M1 includes the fact m(cc,ff ). The well-founded model
of P/M1 includes thus the literals ¬w(ff ), w(cc) (independently of whether M1 |=
E(ff ) ).

Notice that each of the models of the ontology falls in one of the above dis-
cussed cases. Thus, w(cc) and ¬w(ff ) hold in the well-founded semantics of the
hybrid program, while w(ee), ¬w(ee), w(dd) and ¬w(dd) do not hold in it (pro-
vided that the logical value of E(ff ) is not the same in all the models of T ). The
logical value of w(aa) and that of w(bb) is u in each well-founded model of the
program. Thus w(aa) and w(bb) are undefined in the well-founded semantics of
the program, and w(dd ) and w(ee) are not (they are neither true, nor false, nor
undefined).

Consider a case of hybrid rules without negative rule literals. So the non-
monotonic negation does not occur. Such rules can be seen as implications of FOL
and treated as axioms added to T . For such case the well-founded semantics and
the logical consequence |= of FOL are similar. They are not equivalent, as the well-
founded semantics deals only with Herbrand models of the rules. However they
coincide in the following sense. (1) For any ground rule atom A if (P, T ) |=wf A
then P ∪ T |= A. The reverse implication does not hold16. (2) Assume that only
such interpretation domains are considered in which each element is a value of a
ground term, and the values of distinct terms are distinct. Then A is true in all
models of P ∪ T iff (P, T ) |=wf A, for any rule atom A.

As the well-founded semantics of normal programs is undecidable, so is the
well-founded semantics of hybrid programs. It is however decidable for Datalog
hybrid programs with decidable external theories.

The declarative semantics of hybrid programs is based on Herbrand models of
the rules. Thus it treats distinct terms as having distinct values. The syntactic
16 As a counterexample take P = { p ← q(x), r(x); r(x) ←} and T = { ∃x.q(x) }.

P ∪ T |= p but (P, T ) �|=wf p, as there exist models of T in which each ground atom
q(t) is false.
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equality of the well-founded semantics may be different from the equality of the
external theory. This may lead to strange consequences. For instance consider
a hybrid program (P, T ), where P = { p(a) }. Both p(a) and ¬p(b) hold in the
well-founded semantics of (P, T ), even if T implies that a = b. One may avoid
such anomalies by requiring that – speaking informally – terms which are equal
according to T are treated in the same way by the rules of P . For more details
the reader is referred to [36]. To avoid technical difficulties let us require that, in
what follows, the external theory satisfies the axioms of the free equality theory
(CET, Clark equality theory [27]). Thus ground terms have the same values (in
a model of T ) iff they are syntactically equal.

Operational Semantics. In this section we present the operational semantics
[39,36] of hybrid programs. The semantics is a basis for implementation; a proto-
type implementation has been described in [38,37]. Our presentation is informal.
For a precise description the user is referred to [39,36].

Like in logic programming, the task of a computation is to find instances of
a given goal formula G which are true in the well-founded semantics of a given
program. Similarly to logic programming, the operational semantics is defined in
terms of search trees. It is based on the idea of constructive negation presented
in [34,35]. In that work the only constraint predicate was the equality and the
constraint theory was the free equality theory (CET) [27].

The operational semantics is similar to SLDNF- and SLS-resolution [70,93],
extended by handling constraints originating from the hybrid rules. For an input
goal a derivation tree is constructed; its nodes are goals. Whenever a negative
literal is selected in some node, a subsidiary derivation tree is constructed. In
logic programming an answer to a goal is a binding for goal variables. In hy-
brid programs an answer is a constraint satisfiable in a given theory T . Thus, to
develop an implementation it is necessary to have a constraint solver for T . How-
ever, the constraint solver is only used as a black box deciding the satisfiability
of a given constraint.

A hybrid goal (shortly: goal) has the form

c, b1, . . . , bm

where m ≥ 0, each bi is a rule literal and c is a constraint, called the constraint
of the goal. The definition of safeness and the sufficient condition for safeness
applies also to hybrid goals.

The computation is controlled by a selection function which selects a rule
literal in a goal. If the selected literal is positive the goal is resolved, as usual, by
matching the selected rule literal with the head of a renamed variant of a hybrid
rule of the program. However, the unification is replaced by adding a constraint
to the derived goal. More precisely, consider a goal G = c, L, b, L′ and a rule
r = h ← c′, K, such that no variable occurs both in G and r. The goal

G′ = b=h, c, c′, L, K, L′

is said to be derived from G by r, with the selected atom b, if the con-
straint b=h, c, c′ is satisfiable. As usual, several rules of the program may
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match the selected atom and give rise to different computations, visualized by a
tree with nodes labeled by goals and edges representing the derivation steps. A
goal c with no rule literals is called successful (and ends a successful branch of
the tree).

Consider such a tree with root G, with no negative literal selected. Let us
denote by c|G the constraint ∃ . . . c, where the quantified variables are those
variables of c that do not occur (free) in G. Then by an answer of the tree we
mean any constraint (c1 ∨ . . .∨ cn)|G, where c1, . . . , cn are some of the successful
leaves of the tree. Every answer, speaking informally, implies G in the well-
founded semantics of the program. (A precise formulation is given later on.)
The most general answer is the disjunction of all the successful leaves. If the
Herbrand universe is infinite, the set of (the constraints of) successful leaves
may be infinite and the most general answers may not exist.

The negation of the most general answer is a negative answer of the tree; it
implies ¬G in the well-founded semantics of the program. Less general negative
answers may be obtained without constructing the whole tree. By a cross-section
we mean a set F of tree nodes such that each successful branch has a node in F . If
c1, . . . , cn are the constraints of the goals of a cross-section then ¬((c1∨. . .∨cn)|G)
is a negative answer. We skip here a definition of negative answers corresponding
to infinite cross-sections. Each negative answer implies that the root G is false.

In the general case negative literals may be selected in the tree, and we have
to deal with three logical values t, u, f . Due to this we introduce two kinds of
trees, t-trees and tu-trees. A t-tree tells when its root G is t (in the well-founded
semantics of the program). Speaking informally, each answer of the t-tree implies
G. A tu-tree tells when its root G is t or u; G being t or u implies some answer of
the tree. Thus each negative answer of the tu-tree implies ¬G. We are interested
in the answers of t-trees and the negative answers of tu-trees.

The two kinds of trees differ by the treatment of negative selected literals.
In a t-tree, when a negative literal ¬b is selected in a goal G′ = c, L, ¬b, L′
then a subsidiary tu-tree for c, b is constructed, and some its negative answer
d is obtained. The literal ¬b is replaced by d. If the resulting constraint c, d is
satisfiable then the obtained goal G′′ = c, d, L, L′ is the (only) child of G′ in the
t-tree. Otherwise (c, d unsatisfiable) G is a leaf. (An informal justification is that
d implies that ¬b is t.) One may avoid constructing the subsidiary tu-tree; then
G′ does not have a child (as d = ¬c is a trivial negative answer of any tu-tree
for c, b, and c, ¬c is unsatisfiable).

In a tu-tree, when a negative literal ¬b is selected in a goal G′ = c, L, ¬b, L′
then a subsidiary t-tree for c, b is constructed, and some its answer c′ is obtained.
The literal ¬b is replaced by the negation d = ¬c′ of c′. If c, d is satisfiable
then the obtained goal G′′ = c, d, L, L′ is the (only) child of G′ in the tu-tree.
Otherwise G′ is a leaf. (An informal justification is that c′ implies ¬b being f ;
hence ¬b being t or u implies d.) One may avoid constructing the subsidiary
tu-tree; then G′ has G′′ = c, L, L′ as its child (as c′ = false is a trivial answer
of any t-tree).
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To avoid circularity (e.g. a t-tree for p refers to a tu-tree for q, and the latter
tree refers to the former) ranks are assigned to the trees, similarly as it is done
in the definitions of SLDNF- and SLS-resolutions [70,93].

We now illustrate the operational semantics of hybrid programs by an exam-
ple. In the example we apply certain simplifications to the tree nodes.17 The
same example without the simplifications is presented in [39,36].

Example 12. Consider the hybrid program of Example 10. A query w(cc) can
be answered by constructing the following trees: a t-tree for w(cc), a tu-tree for
w(dd), a t-tree for w(ee), and a tu-tree for w(ff ); of ranks 3, 2, 1, 0 respectively.
In the goals with more than one rule literals, the selected one is underscored.

w(cc)
|

m(cc, Y ), ¬w(Y )
/ \

¬Fi(ff ), ¬w(ff ) ¬w(dd)
| |

¬Fi(ff ) E(ff )

w(dd )
|

m(dd , Y ′), ¬w(Y ′)
|

¬w(ee)
|

¬E(ff )

w(ee)
|

m(ee, Y ′′), ¬w(Y ′′)
|

E(ff ), ¬w(ff )
|

E(ff )

w(ff )
|

m(ff , Y ′), ¬w(Y ′)

The empty cross-section of the tu-tree for w(ff ) provides a negative answer true,
the t-tree for w(ee) has an answer E(ff ), the tu-tree for w(dd) has a negative
answer E(ff ) (the cross-section consisting of the leaf), and the t-tree for w(cc)
has an answer ¬Fi(ff ) ∨ E(ff ) (which in T is equivalent to true).

An implementation of hybrid programs based on the described ideas is presented
in [38,37]. The operational semantics makes it possible to employ an existing
constraint solver (e.g. a description logic reasoner) and treat it as a black box.
Also, construction of t-trees and tu-trees can be implemented on top of a Prolog
system with the well-founded semantics. Thus the costs of implementation is
rather low. We also mention that – similarly as in CLP – it is not necessary to
check satisfiability of the constraint for each tree node. The answers (negative
answers) of trees obtained in such way are logically equivalent to those described

17 Any constraint may be replaced by an equivalent one. In any node C, L of a t-
or tu- tree for G, the constraint C of the node can be replaced by C|G,L. Instead
of referring to a lower rank tree for C, A, a tree for (C|A), A can be used. Also, a
goal may be replaced by a logically equivalent one (e.g. X=a, p(X) by X=a, p(a)).
These modifications do not change the (negative) answers of the trees. This is rather
obvious in the particular example; we omit a formal justification for a general case.
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above. This provides an opportunity to decrease the interaction with the con-
straint solver, and to improve efficiency. The prototype of [38,37] invokes the
solver once, after having constructed the main tree.

For safe hybrid programs the operational semantics is sound w.r.t. to the
well-founded semantics. More precisely if (P, T ) is a safe hybrid program and
G = c0, L a goal then for any substitution θ

1. if c is an answer of a t-tree for (P, T ) and G, and T |= cθ then (P, T ) |=wf Lθ;
2. if c is a negative answer of a tu-tree for (P, T ) and G, and T |= cθ then

(P, T ) |=wf ¬Lθ.

The safeness condition may be abandoned, if additional restrictions are imposed
on the existential quantifier used in constraints see [36] for details). This is
related to the fact that constraints are interpreted on arbitrary domains, without
assuming that each element of a domain is represented by ground term, while
the well-founded semantics defines a Herbrand model.

In the general case, the operational semantics is not complete. The reason
is that only finite constraint formulae are used as (negative) answers. However
the method is complete in the case of Datalog, with safe rules and goals. More
precisely, assume that the Herbrand universe is finite. Consider a safe program
(P, T ) and a safe goal G = c0, L. For any grounding substitution θ for the
variables of G such that c0θ is satisfiable

1. if (P, T ) |=wf Lθ then there exists a t-tree (of a finite rank) for G with an
answer c such that T |= cθ;

2. if (P, T ) |=wf ¬Lθ then there exists a tu-tree (of a finite rank) for G with a
negative answer c such that T |= cθ.

A stronger result, which includes independence from the selection rule, also
holds.

1.4 Variants and Extensions of the Basic Formalisms

In this section, we discuss some variants and extensions of the above basic for-
malisms, which have been crafted in order to make them more versatile or to
overcome some restrictions. More specifically, we summarize extensions of the
basic formalisms that allow for handling uncertainty and vagueness. We also
describe an extension of loosely coupled dl-programs by (unions of) conjunctive
queries as dl-atoms and disjunctions in rule heads (called cq-programs).

From a more general perspective, during the recent years, handling uncer-
tainty and vagueness has started to play an important role in Semantic Web
research. A recent forum for approaches to uncertainty reasoning in the Seman-
tic Web is the annual Workshop on Uncertainty Reasoning for the Semantic
Web (URSW). There also exists a W3C Incubator Group on Uncertainty Rea-
soning for the World Wide Web. The research focuses especially on probabilistic
and fuzzy extensions of description logics, ontology languages, and formalisms
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integrating rules and ontologies. Note that probabilistic formalisms allow to en-
code ambiguous information, such as “John is a student with the probability
0.7 and a teacher with the probability 0.3”, while fuzzy approaches allow to
encode vague or imprecise information, such as “John is tall with the degree
of truth 0.7”. Formalisms for dealing with uncertainty and vagueness are espe-
cially applied in ontology mapping, data integration, information retrieval, and
database querying. Vagueness and imprecision also abound in multimedia infor-
mation processing and retrieval, and are an important aspect of natural language
interfaces to the Web.

We first consider extensions of dl-programs by probabilistic uncertainty, and
we then discuss fuzzy extensions. We finally focus on cq-programs.

1.4.1 Probabilistic DL-Programs

We now summarize the main ideas behind loosely and tightly coupled probabilis-
tic dl-programs, introduced in [71,74,75,19] and [18,22,20,21], respectively. For
further details on the syntax and semantics of these programs, their background,
and their semantic and computational properties, we refer to the above works.

Loosely coupled probabilistic dl-programs [71,74,75] are a combination of
loosely coupled dl-programs under the answer set and the well-founded semantics
with probabilistic uncertainty as in Bayesian networks. Roughly, they consist of
a loosely coupled dl-program (L, P ) under different “total choices” B (they are
the full joint instantiations of a set of random variables, and they serve as pair-
wise exclusive and exhaustive possible worlds), and a probability distribution
μ over the set of total choices B. One then obtains a probability distribution
over Herbrand models, since every total choice B along with the loosely coupled
dl-program produces a set of Herbrand models of which the probabilities sum
up to μ(B). As in the classical case, the answer set semantics of loosely coupled
probabilistic dl-programs is a refinement of the well-founded semantics of loosely
coupled probabilistic dl-programs. Consistency checking and tight query process-
ing (i.e., computing the entailed tight interval for the probability of a conditional
or unconditional event) for in such probabilistic dl-programs under the answer
set semantics can be reduced to consistency checking and query processing in
loosely coupled dl-programs under the answer set semantics, while tight query
processing under the well-founded semantics can be done in an anytime fashion
by reduction to loosely coupled dl-programs under the well-founded semantics.
For suitably restricted description logic components, the latter can be done in
polynomial time in the data complexity. Query processing in the special case of
stratified loosely coupled probabilistic dl-programs can be reduced to computing
the canonical model of stratified loosely coupled dl-programs. Loosely coupled
probabilistic dl-programs can especially be used for (database-oriented) proba-
bilistic data integration in the Semantic Web, where probabilistic uncertainty is
used to handle inconsistencies between different data sources [19].

Example 13. A university database may use a loosely coupled dl-program (L, P )
to encode ontological and rule-based knowledge about students and exams. A
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probabilistic dl-program KB = (L, P ′, C, μ) then additionally allows for encod-
ing probabilistic knowledge. For example, the following two probabilistic rules
in P ′ along with a probability distribution on a set of random variables may
express that if two master (resp., bachelor) students have given the same exam,
then there is a probability of 0.9 (resp., 0.7) that they are friends:

friends(X, Y ) ← given same exam(X, Y ),DL[master student (X)],
DL[master student(Y )], choicem ;

friends(X, Y ) ← given same exam(X, Y ),DL[bachelor student(X)],
DL[bachelor student(Y )], choiceb .

Here, we assume the set C = {{choicem,not choicem}, {choiceb,not choiceb}} of
values of two random variables and the probability distribution μ on all their four
joint instantiations, given by μ : choicem,not choicem, choiceb,not choiceb �→
0.9, 0.1, 0.7, 0.3 under probabilistic independence. For example, choicem, choiceb

is associated with the probability 0.9×0.7 = 0.63. Asking about the entailed tight
interval for the probability that john and bill are friends can then be expressed
by a probabilistic query of the form ∃(friends(john , bill))[R, S], whose answer
depends on the available concrete knowledge about john and bill (whether they
have given the same exams, and are both master or bachelor students).

Tightly coupled probabilistic dl-programs [18,22] are a tight combination of dis-
junctive logic programs under the answer set semantics with description logics
and Bayesian probabilities. They are a logic-based representation formalism that
naturally fits into the landscape of Semantic Web languages. Tightly coupled
probabilistic dl-programs can especially be used for representing mappings be-
tween ontologies [20,21], which are a common way of approaching the semantic
heterogeneity problem on the Semantic Web. In this application, they allow in
particular for resolving inconsistencies and for merging mappings from differ-
ent matchers based on the level of confidence assigned to different rules (see
below). Furthermore, tightly coupled probabilistic description logic programs
also provide a natural integration of ontologies, action languages, and Bayesian
probabilities towards Web Services. Consistency checking and query process-
ing in tightly coupled probabilistic dl-programs can be reduced to consistency
checking and cautious/brave reasoning, respectively, in tightly coupled disjunc-
tive dl-programs. Under certain restrictions, these problems have a polynomial
data complexity.

Example 14. The two correspondences between two ontologies O1 and O2 that
(i) an element of Collection in O1 is an element of Book in O2 with the proba-
bility 0.62, and (ii) an element of Proceedings in O1 is an element of Proceedings
in O2 with the probability 0.73 (found by the matching system hmatch) can be
expressed by the following two probabilistic rules:

O2 : Book(X)← O1 : Collection(X) ∧ hmatch1;
O2 : Proceedings(X)← O1 : Proceedings(X) ∧ hmatch2.

Here, we assume the set C = {{hmatchi,not hmatchi} | i ∈ {1, 2}} of values of
random variables and the probability distribution μ on all joint instantiations
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of these variables, given by μ : hmatch1,not hmatch1, hmatch2,not hmatch2 �→
0.62, 0.38, 0.73, 0.27 under probabilistic independence.

Similarly, two other correspondences between O1 and O2 (found by the match-
ing system falcon) are expressed by the following two probabilistic rules:

O2 : InCollection(X)← O1 : Collection(X) ∧ falcon1;
O2 : Proceedings(X)← O1 : Proceedings(X) ∧ falcon2,

where we assume the set C′ = {{falcon i,not falcon i} | i ∈ {1, 2}} of values
of random variables and the probability distribution μ′ on all joint instantia-
tions of these variables, given by μ′ : falcon1,not falcon1, falcon2,not falcon2 �→
0.94, 0.06, 0.96, 0.04 under probabilistic independence.

Using the trust probabilities 0.55 and 0.45 for hmatch and falcon, respectively,
for resolving inconsistencies between rules, we can now define a merged mapping
set that consists of the following probabilistic rules:

O2 : Book(X)← O1 : Collection(X) ∧ hmatch1 ∧ sel hmatch1;
O2 : InCollection(X)← O1 : Collection(X) ∧ falcon1 ∧ sel falcon1;
O2 : Proceedings(X)← O1 : Proceedings(X) ∧ hmatch2;
O2 : Proceedings(X)← O1 : Proceedings(X) ∧ falcon2,

Here, we assume the set C′′ of values of random variables and the probability
distribution μ′′ on all joint instantiations of these variables, which are obtained
from C ∪ C′ and μ · μ′ (which is defined as (μ · μ′)(B B′) = μ(B) · μ′(B′), for
all joint instantiations B of C and B′ of C′), respectively, by adding the val-
ues {sel hmatch1, sel falcon1} of a new random variable along with the prob-
abilities sel hmatch1, sel falcon1 �→ 0.55, 0.45 under probabilistic independence,
for resolving the inconsistency between the first two rules.

1.4.2 Fuzzy DL-Programs

We next briefly describe loosely and tightly coupled fuzzy dl-programs, which
have been introduced in [72,76] and [78,80], respectively, and extended by prob-
abilities in [77] and by a top-k retrieval technique in [79], respectively. All these
fuzzy dl-programs have natural special cases where query processing can be done
in polynomial time in the data complexity. For further details on their syntax
and semantics, background, and properties, we refer to the above works.

Towards dealing with vagueness and imprecision in the reasoning layers of the
Semantic Web, loosely coupled (normal) fuzzy dl-programs under the answer set
semantics [72,76] are a generalization of normal dl-programs under the answer
set semantics by fuzzy vagueness and imprecision in both the description logic
and the logic program component. This is the first approach to fuzzy dl-programs
that may contain default negations in rule bodies. Query processing in such fuzzy
dl-programs can be done by reduction to normal dl-programs under the answer
set semantics. In the special cases of positive and stratified loosely coupled fuzzy
dl-programs, the answer set semantics coincides with a canonical least model
and an iterative least model semantics, respectively, and has a characterization
in terms of a fixpoint and an iterative fixpoint semantics, respectively.
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Example 15. Consider the fuzzy DL knowledge base L of a car shopping
Web site, which defines especially (i) the fuzzy concepts of sports cars
(SportsCar ), “at most 22 000�” (LeqAbout22000 ), and “around 150 horse
power” (Around150HP), (ii) the attributes of the price and of the horse power
of a car (hasInvoice and hasHP , respectively), and (iii) the properties of some
concrete cars (such as a MazdaMX5Miata and a MitsubishiES ). Then, a loosely
coupled fuzzy dl-program KB = (L, P ) is given by the set of fuzzy dl-rules P ,
which contains only the following fuzzy dl-rule encoding the request of a buyer
(asking for a sports car costing at most 22 000� and having around 150 horse
power), where ⊗ may be the conjunction strategy of, e.g., Gödel Logic (that is,
x ⊗ y = min(x, y) for all x, y ∈ [0, 1], used to evaluate the logical connectives ∧
and ← on truth values):

query(x) ←⊗ DL[SportsCar ](x) ∧⊗ DL[∃hasInvoice .LeqAbout22000 ](x)∧⊗
DL[∃hasHP .Around150HP ](x) ≥ 1 .

The above fuzzy dl-program KB = (L, P ) is positive, and has a minimal model
MKB , which defines the degree to which some concrete cars in the DL knowledge
base L match the buyer’s request, for example,

MKB (query(MazdaMX5Miata)) = 0.36 , MKB (query(MitsubishiES)) = 0.32 .

That is, the MazdaMX5Miata is ranked top with the degree 0.36, while the
MitsubishiES is ranked second with the degree 0.32.

Towards an infrastructure for additionally handling uncertainty in the reason-
ing layers of the Semantic Web, probabilistic fuzzy dl-programs [77] combine
fuzzy description logics, fuzzy logic programs (with stratified default-negation),
and probabilistic uncertainty in a uniform framework for the Semantic Web.
Intuitively, they allow for defining several rankings on ground atoms using
fuzzy vagueness, and then for merging these rankings using probabilistic un-
certainty (by associating with each ranking a probabilistic weight and building
the weighted sum of all rankings). Such programs also give rise to important
concepts dealing with both probabilistic uncertainty and fuzzy vagueness, such
as the expected truth value of a crisp sentence and the probability of a vague
sentence.

Example 16. A loosely coupled probabilistic fuzzy dl-program is given by a suit-
able fuzzy DL knowledge base L and the following set of fuzzy dl-rules P , mod-
eling some query reformulation/ retrieval steps using ontology mapping rules:

query(x)←⊗ SportyCar (x) ∧⊗ hasPrice(x, y1) ∧⊗ hasPower(x, y2) ∧⊗

DL[LeqAbout22000 ](y1) ∧⊗ DL[Around150HP ](y2) ≥ 1 , (40)

SportyCar (x)←⊗ DL[SportsCar ](x) ∧⊗ scpos ≥ 0.9 , (41)

hasPrice(x, y)←⊗ DL[hasInvoice ](x, y) ∧⊗ hipos ≥ 0.8 , (42)

hasPower(x, y)←⊗ DL[hasHP ](x, y) ∧⊗ hhppos ≥ 0.8 , (43)

where we assume the set C = {{scpos, scneg}, {hipos, hineg}, {hhppos, hhpneg}}
of values of random variables and the probability distribution μ on all joint
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instantiations of these variables, given by μ : scpos, scneg , hipos, hineg, hhppos,
hhpneg �→ 0.91, 0.09, 0.78, 0.22, 0.83, 0.17 under probabilistic independence. Rule
(40) is the buyer’s request, but in a “different” terminology than the one of
the car selling site. Rules (41)–(43) are so-called ontology alignment mapping
rules. For example, rule (41) states that the predicate “SportyCar” of the
buyer’s terminology refers to the concept “SportsCar” of the selected site with
probability 0.91.

The following may be some tight consequences of the above probabilistic fuzzy
dl-program (where for ground atoms q, we use (E[q])[L, U ] to denote that the
expected truth value of q lies in the interval [L, U ]):

(E[query(MazdaMX5Miata)])[0.21, 0.21] , (E[query(MitsubishiES)])[0.19, 0.19] .

That is, the MazdaMX5Miata is ranked first with the degree 0.21, while the
MitsubishiES is ranked second with the degree 0.19.

Tightly coupled fuzzy dl-programs under the answer set semantics [78,80] are
a tight integration of fuzzy disjunctive logic programs under the answer set
semantics with fuzzy description logics. From a different perspective, they are
a generalization of tightly coupled disjunctive dl-programs by fuzzy vagueness
in both the description logic and the logic program component. This is the
first approach to fuzzy dl-programs that may contain disjunctions in rule heads.
Query processing in such programs can essentially be done by a reduction to
tightly coupled disjunctive dl-programs. A closely related work [79] explores
the problem of evaluating ranked top-k queries. It shows in particular how to
compute the top-k answers in data-complexity tractable tightly coupled fuzzy
dl-programs.

Example 17. A tightly coupled fuzzy dl-program KB =(L, P ) is given by a suit-
able fuzzy DL knowledge base L and the set of fuzzy rules P , which contains
only the following fuzzy rule (where x ⊗ y = min(x, y)):

query(x)←⊗ SportyCar (x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHorsePower (x, y2)∧⊗
LeqAbout22000 (y1) ∧⊗ Around150 (y2) � 1 .

Informally, query collects all sports cars, and ranks them according to whether
they cost at most around 22000� and have around 150HP. Another fuzzy rule
involving also a negation in its body and a disjunction in its head is given as
follows (where �x= 1 − x and x ⊕ y = max(x, y)):

Small(x)∨⊕Old(x) ←⊗ Car(x) ∧⊗ hasInvoice(x, y)∧⊗
not�GeqAbout15000 (y) � 0.7 .

This rule says that a car costing at most around 15 000� is either small or old.
Notice here that Small and Old may be two concepts in the fuzzy DL knowledge
base L. That is, the tightly coupled approach to fuzzy dl-programs under the
answer set semantics also allows for using the rules in P to express relationships
between the concepts and roles in L. This is not possible in the loosely coupled
approach to fuzzy dl-programs under the answer set semantics in [72,76], since
the dl-queries there can only occur in rule bodies, but not in rule heads.
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1.4.3 CQ-Programs

An extension for dl-programs are cq-programs [41], which allow for expressing
(union of) conjunctive queries (U)CQ over description logics in the dl-atoms,
and disjunctions in the head of the rules.

This approach for hybrid reasoning with rules and ontologies is following the
loose coupling approach, i.e., it is a heterogeneous integration that differentiates
between logic programming predicates and description logic concept and roles.
cq-programs benefit of some of the advantages of the loose coupling approach,
such as the possibility of immediate integration of existing solvers for the imple-
mentation of the language. Also, the clear separation of the involved components
enables the possibility of designing a modular architecture, as may be imagined.

In contrast with dl-programs, the cq-program combination is tighter in a sense
that it allows to existentially quantify over unknown individuals that are implicit
in a DL knowledge base.

Example 18. Consider the following simplified version of a scenario in [86].

L =

⎧⎪⎪⎨
⎪⎪⎩

hates(Cain ,Abel), hates(Romulus,Remus),
father (Cain ,Adam), father (Abel ,Adam),
father � parent ,
∃father .∃father−.{Remus}(Romulus)

⎫⎪⎪⎬
⎪⎪⎭

P = {BadChild (X) ← DL[parent ](X, Z), DL[parent ](Y, Z), DL[hates ](X, Y )}
Apart from the explicit facts, L states that each father is also a parent and that

Romulus and Remus have a common father. The single rule in P specifies that an
individual hating a sibling is a BadChild . From this dl-program, BadChild (Cain)
can be concluded, but not BadChild (Romulus).

Instead of P , let us use
P ′ = {BadChild (X) ← DL[parent(X, Z), parent(Y, Z), hates(X, Y )](X, Y )},

where the body of the rule is a CQ {parent(X, Z), parent(Y, Z), hates(X, Y )}
to L with distinguished variables X and Y . We then obtain the desired result;
that is, we can derive the fact BadChild (Romulus).

The semantics of the cq-programs is in spirit of dl-programs, and mainly differs in
the generalized entailment notion for cq-atoms, which extend that of dl-atoms.
Informally, a cq-atom α is in form DL[λ; q](X), where q can be a union of
conjunctive queries with output variables X, while λ represents a list of modifiers
for the description logic base L at hand, with the same meaning given in dl-
programs. The CQ-extension adds additional expressiveness to dl-programs, as
is evident by results that show an increase in complexity from NEXP to 2-EXP
for the description logic SHIF(D).

A further plus of this extension is that it opens the floodgates for exploiting
optimizations in dl-programs, via a technique able to produce rewritten pro-
grams where the computational burden can be shifted to and from one of the
two reasoners at hand. For instance, conjunctions of atoms can be computed,
whenever semantically equivalent, on the description logic base side instead that



Hybrid Reasoning with Rules and Ontologies 41

on the logic program side. In [41], several forms of optimizing rewriting rules have
been defined to rewrite DL-queries in rule bodies to more efficient ones. Experi-
mental results comparing unoptimized to rewritten programs show a substantial
performance improvement.

1.5 Conclusion

In this chapter, we have briefly shown work that has been done in REWERSE
on the issue of combining rules and ontologies. To this end, we have first given
an overview of different combination approaches, which have been systematically
grouped into a classification that takes different degree of integration and of rules
and ontologies into account.

We have then presented the two streams of genuine approaches which have
been pursed in REWERSE by the groups in Vienna and Linköping, respec-
tively, to give meaningful and expressive combinations that faithfully generalize
the stable models and the well-founded semantics of logic programs, respectively,
leading to nonmonotonic combinations of rules and ontologies whose prototype
implementations reflected the state of the art in this area. Furthermore, sev-
eral extensions to these approaches have been briefly discussed, which address
needs such as handling probabilistic information, fuzzy values, or more expressive
queries to ontologies than simple instance checks or consistency tests.

While the work on combinations of rules and ontologies in REWERSE has bro-
ken new ground and was fruitfully taken up by other groups within REWERSE
but also outside (in particular, hex-programs and dlvhex have found applica-
tions in various contexts), its impact on the development of the rules layer of
the Semantic Web, and in particular to emerging standards, has yet to materi-
alize. The reason is that, different from ontologies, the standardization of rules
that is targeted by the RIF working group of the W3C (see Section 1.2.4) is a
formidable challenge, given that there are very many notions of rules and their
semantics; this is one of the reasons that, at the time of this writing, merely
a compromise for a core rule dialect (RIF-BLD) is what has been achieved so
far; features such as negation (even stratified one) have been targeted in more
comprehensive packages, but not realized so far. We expect that stable models
and the well-founded semantics will be the premier semantics reflected in a RIF
standard for non-monotonic negation that is beyond stratified negation in logic
programs, and that the ideas and concepts which have been developed in the
REWERSE streams will impact on the definition of possible interfacing between
rules and ontologies in the emerging standards.

At present, the issue of combining rules and ontologies for the Semantic Web
is not regarded to be satisfactorily solved; a number of different approaches have
been made so far, but they all have some features that do not suggest them to
be regarded the ultimate solution to the problem; let alone that perhaps there
is no single, “universal” such solution, but a range of different solutions which
cater different features and needs that have to be fulfilled in different contexts.

This already manifests in different types of rules; in REWERSE, the focus was
on logic-based rules, but other rule types such as production rules are equally
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important and require different treatment; in fact, an integration of production
rules and ontologies with bidirectional information flow is an interesting subject
for future work, in which the operational and logical semantics of the rules and
the ontology, respectively, have to be bridged. The OntoRule project will within
the “7th Framework Program” (FP7) of the EU Commission target business
rules and policies, and will to a great deal be based on a lower layer that inte-
grates production rules and ontologies, aside with logic programming rules. By
way of this project, results of REWERSE will migrate more towards practical
exploitation and into commercial rules engines.

In order to make expressive combinations of rules and ontologies available for
deployment to applications, a number of research tasks remain to be pursued.

Currently, we lack extended case studies and large scale examples beyond the
toy examples that have been considered in the seminal papers that introduced
the approaches. Such case studies might provide helpful insight and give some
guidance in the development of a “gold standard” for rules plus ontologies. At
the least, required constructs in the language, be they just syntactic sugar or
really increasing the expressiveness of a formalism, should be identifiable in this
way. The trouble is, however, to single out a set of representative cases, which is
by no means trivial. A benchmark suite would be very valuable and, if carefully
composed, undoubtedly an important step forward.

Another issue are complex data structures, and realizations of the combi-
nations beyond the Datalog fragment. Indeed, in practice one needs to handle
complex data that are aggregations of other data, such as records, lists, sets,
etc. Such data structures can be modeled in many logic programming systems
using function symbols, and support in terms of explicit syntax is offered. They
can also be modeled in the hybrid well-founded semantics (Section 1.3.4) and
its implementations; this approach deals with function symbols of arbitrary ari-
ties. However, in the current solvers for stable model and answer set semantics,
function symbols are largely banned because they are a well-known source of un-
decidability, even in rather plain settings; only more recently, work on decidable
classes and prototype implementations of stable models semantics with func-
tion symbols has been carried out (cf. [15,14,24,100] and references therein), and
function symbols also increasingly attract attention as a modeling construct. The
DLV-Complex system [23,24] aims at providing functions symbols in a decidable
setting, giving support to lists and sets along with libraries for their manipula-
tions. It remains to see how logic programs in this setting can be combined with
ontologies; semantically, the gap between rules and ontologies widens by the use
of such function symbols, and decidability issues has to be reconsidered.

An obvious task is the development of better algorithms and efficient im-
plementations. The current prototype implementations serve more as proofs of
concept and experimental testbeds, but are not largely optimized. There is a lot
of room for improvement, even though the optimization methods are expected to
be tailored to a particular semantics and implementation setting. The intertwin-
ing of a rules and an ontology engine, as done in the prototype implementations
of dl-programs and HD-rules, imposes specific requirements that can not be
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easily transferred to other implementations. Developing an integrated engine
that processes rules and ontologies en par is an interesting issue; whether a
conversion of logic programs into ontology axioms or vice versa a mapping of
ontologies into logic programming rules is a viable approach remains to be ex-
plored. This, however, may work well for fragments of combinations in which
such conversions are easily possible.

In close connection to the previous issue are semantic and computational prop-
erties of combinations. There is clearly a trade-off between the expressiveness
of a formalism on the one hand and its intrinsic complexity on the other. If we
expect to have fast reasoning over knowledge bases with large extensional part,
comprising millions (or even billions) of facts, then naturally the reasoning tasks
per se must not have high intrinsic complexity. For this reason, it is important
to have an understanding of the complexity characteristics of combinations, to
know about fragments with tractable and low complexity (just polynomial time
as such might not be sufficient for practical applications, if the data volume is
large), and to respect such characteristics in implementations in a way that easy
instances are solved with little effort while more computation time is spent on
harder instances. Recent research on rules and conjunctive query answering over
description logics from the lower expressiveness end like EL and EL++ [6,7], or
DL-Lite [25,92] may be here a starting point.

Finally, an important issue is also to combine knowledge sources beyond rules
and ontologies. Indeed, a rule base and an ontology may be just two components
in an information system that consists of many other components that are in
different formats. And while throughout this chapter, the rules and the ontol-
ogy have been considered as more or less integral parts of one description, this
picture may no longer be valid if the components are independently conceived
and autonomous, like they happen to be in a peer to peer system. In such a
case, also the viewpoint of semantic combination should be rather different, and
incorporating trust is an important requirement.
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66. Krötzsch, M., Rudolph, S., Hitzler, P.: Description logic rules. In: Ghallab, M.,
Spyropoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.) ECAI 2008 - 18th Euro-
pean Conference on Artificial Intelligence, Patras, Greece, July 21-25. Frontiers
in Artificial Intelligence and Applications, vol. 178, pp. 80–84. IOS Press, Ams-
terdam (2008)
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Encyclopedia of Database Systems. Springer, Heidelberg (2009)

82. Marin, D.: A formalization of RDF. Technical Report TR/DCC-2006-8, TR Dept.
Computer Science, Universidad de Chile (2006)

83. Marriott, K., Stuckey, P.J., Wallace, M.: Constraint logic programming. In: Hand-
book of Constraint Programming. Elsevier, Amsterdam (2006)

84. Miller, L., Brickley, D.: The Friend of a Friend (FOAF) Project (since 2000),
http://www.foaf-project.org/

85. Motik, B., Rosati, R.: A faithful integration of description logics with logic pro-
gramming. In: IJCAI 2007, Proceedings of the 20th International Joint Conference
on Artificial Intelligence, pp. 477–482 (2007)

86. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. J.
Web Sem. 3(1), 41–60 (2005)

87. Motik, B., Rosati, R.: Closing semantic web ontologies. Technical report,
University of Manchester (2006) (version March 7, 2007),
http://web.comlab.ox.ac.uk/people/Boris.Motik/pubs/

mr06closing-report.pdf

http://www.foaf-project.org/
http://web.comlab.ox.ac.uk/people/Boris.Motik/pubs/mr06closing-report.pdf
http://web.comlab.ox.ac.uk/people/Boris.Motik/pubs/mr06closing-report.pdf


Hybrid Reasoning with Rules and Ontologies 49

88. Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: Computing Fuzzy Answer Sets
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Abstract. Exposing not only human-centered information, but machine-
processable data on the Web is one of the commonalities of recent Web trends.
It has enabled a new kind of applications and businesses where the data is used
in ways not foreseen by the data providers. Yet this exposition has fractured the
Web into islands of data, each in different Web formats: Some providers choose
XML, others RDF, again others JSON or OWL, for their data, even in similar
domains. This fracturing stifles innovation as application builders have to cope
not only with one Web stack (e.g., XML technology) but with several ones, each
of considerable complexity.

With Xcerpt we have developed a rule- and pattern based query language that
aims to give shield application builders from much of this complexity: In a single
query language XML and RDF data can be accessed, processed, combined, and
re-published. Though the need for combined access to XML and RDF data has
been recognized in previous work (including the W3C’s GRDDL), our approach
differs in four main aspects: (1) We provide a single language (rather than two
separate or embedded languages), thus minimizing the conceptual overhead of
dealing with disparate data formats. (2) Both the declarative (logic-based) and the
operational semantics are unified in that they apply for querying XML and RDF in
the same way. (3) We show that the resulting query language can be implemented
reusing traditional database technology, if desirable. Nevertheless, we also give a
unified evaluation approach based on interval labelings of graphs that is at least
as fast as existing approaches for tree-shaped XML data, yet provides linear time
and space querying also for many RDF graphs.

We believe that Web query languages are the right tool for declarative data
access in Web applications and that Xcerpt is a significant step towards a more
convenient, yet highly efficient data access in a “Web of Data”.

2.1 Introduction

The one undeniable trend in the development of the Web has been a move from human-
centered information to more machine-processable data. This trend is a part of most
visions for the future of the Web, may they be called “Web 2.0”, “Semantic Web”,
“Web of Data”, “Linked Data”. There is a reason that this trend underlies so many
of the visions for a future Web: With machine-processable data, other agents than the
owner or publisher of data can create novel applications, e.g., by using the data in a
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context never envisioned by the data owner, by presenting it in different ways or media,
or by enhancing or mixing it with other data.

Unfortunately, though machine-processable data is called for by many of these vi-
sions, they do not agree on the data format. For human-centered information, HTML
has clearly dominated the Web. For machine-processable data, Web 2.0 APIs and pub-
lishers tend to use XML, JSON, or YAML, Semantic Web publishers RDF and/or OWL.
This way, application designers are either impeded from using data published in, say,
RDF, if they are used to data in, say, XML or they have to cope with not only one
(already fairly complex) stack of Web technologies but several.

The need for a more integrated, easier access to Web data has been recognized: For in-
stance, the W3C has proposed a means of accessing XML data as RDF (GRDDL [54]).
Other approaches integrate existing RDF query languages into XML query languages
(XSPARQL [7], [79]) or vice versa ([60], SPAT1. In this work, we present a different
answer to this problem: a single, unified language, called Xcerpt, that can query both
XML and RDF with the same ease. Previous approaches require the user to learn (a)
an XML (usually XPath or XQuery), (b) an RDF query language (usually SPARQL),
and (c) how concepts from RDF and XML are mapped to each other, if at all. In our
approach, we first develop a query language flexible enough to deal with most Web data
(in the spirit of, though with quite different focus and result than [138]). Then we only
have to teach the user how to query RDF resp. XML with that query language, reusing
as much of the data and query concepts between the two settings as possible. Not only
does this reduce the learning curve for the user considerably, it also makes it easy to
extend the approach with further Web formats such as JSON, YAML, or Topic Maps.

We introduce Xcerpt in Sections 2.3.1 and 2.3.2 after a brief recall of the basics of
the two Web formats considered here, XML and RDF, in Section 2.2.

But defining a language for unified access to XML and RDF is just how the story
begins. For the approach to be feasible, we require two more ingredients: 1. a simple
semantics that is nevertheless versatile enough to cover the specifics of both XML and
RDF. 2. an evaluation engine that is competitive to engines specialized to XML or RDF
data only.

In Sections 2.4.1 to 2.4.4 we propose two different ways to define the (declarative)
semantics of Xcerpt: The first uses a modified form of simulation to describe which
queries match what data. It is flexible enough to deal with queries on XML and RDF
data and can be defined very concisely. We show in Section 2.4.2 and 2.4.3 how to adapt
the (well-founded) semantics of rule programs with negation to use simulation rather
than term equality/instantiation.

This gives an easy, straightforward definition of the semantics of Xcerpt. However,
the disadvantage is that required notion of simulation is not as well studied as term
equality and not supported by existing database or rule technologies. Therefore, we
show in Section 2.4.4 how Xcerpt can be translated into standard Datalog with nega-
tion and value invention (Datalog¬new) which can be evaluated by most SQL-database
engines and many rule engines. Not only do we show how to translate Xcerpt into
Datalog¬new, but we do the same for XPath, XQuery, and SPARQL, thus establishing a
uniform formal foundation for all these languages (that we exploit in Section 2.5.1 for

1 http://www.w3.org/2007/01/SPAT/

http://www.w3.org/2007/01/SPAT/
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a unified evaluation engine for all these languages). Moreover, we use the translation
to prove several complexity and expressiveness features. Most importantly, we show
that full Xcerpt is unsurprisingly Turing-complete, that stratification does not limit the
expressiveness of Xcerpt, and identify a decidable fragment (weakly-recursive Xcerpt).

For Datalog¬new and thus for Xcerpt, whether on XML or RDF data, we define a novel
evaluation algorithm and indexing scheme in Section 2.5.1, thus turning to the second of
the two missing ingredients, the competitive evaluation engine. We show how to extend
tree labeling schemes (such as the pre/post-encoding [81]) to graph data in a novel
way: Where previous such approaches [6,151,48,145] can not guarantee linear time and
space evaluation of acyclic conjunctive queries on interesting super-classes of trees, our
approach exhibits such a class: the continuous-image graphs. On this significant super-
class of trees we can still maintain linear time and space evaluation. The basic idea of
the approach is a generalized interval labeling together with (most importantly) a novel
join algorithm for intermediary answers represented by intervals.

Together with the results from Section 2.4.4, we thus obtain a surprisingly large
linear time and space fragment of Xcerpt, viz. (weakly-recursive) acyclic Xcerpt on
continuous-image graphs, a novel super-class of trees. The same also applies to, e.g.,
SPARQL.

To complete the evaluation of Xcerpt, we not only need an efficient evaluation engine
for Xcerpt queries, but for Xcerpt rules. Section 2.5.2 gives a first step towards such a
rule engine for Xcerpt. It introduces simulation unification as an extended, more flexible
form of unification that is adapted to Xcerpt’s notion of simulation discussed above.
Based on simulation unification, we show how subsumption can be exploited to define
an efficient resolution with tabling for locally stratified Xcerpt programs.

To summarize, the theme of this chapter is the investigation of how to address the
increasing number of diverse data formats being introduced on the Web. We suggest as
a solution, Xcerpt,

1. a versatile query language that allows access to both XML and RDF in the same
language, sharing concepts as much as possible (Section 2.3– 2.3.3). It is comple-
mented by

2. a versatile declarative semantics based on a form of simulation adapted to Web
data that is easy to understand, yet can be translated to standard database and rule
technology, as can XPath, XQuery, and SPARQL (Section 2.4– 2.4.4). For that
semantics (and thus for Xcerpt, XPath, XQuery, and SPARQL), we propose

3. a versatile evaluation algorithm that is able to provide the best-known complexity
for acyclic conjunctive queries on tree-shaped XML data, manages to maintain that
complexity for many RDF graphs, and yet can also operate on arbitrary graphs
(Section 2.5.1). We extend that evaluation algorithm towards a full versatile rule-
based query language for the Web like Xcerpt by illustrating how resolution with
tabling can be adapted to use

4. a versatile form of subsumption based on simulation unification for determining
where previously computed answers to a sub-query can be reused for further sub-
queries (Section 2.5.2).
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The structure of this chapter follows the four perspectives on addressing the rising
amount of Web data formats: data, query language, semantics, and evaluation. While
the parts on data and query are to some extent necessary for understanding the parts
on semantics and evaluation, the latter two are fairly independent. It is not necessary
to understand the details of the semantics for the evaluation or vice versa. We discuss
querying XML and RDF in separate sections (Section 2.3.1 and 2.3.2) and refer to
the sub-language of Xcerpt used for XML access as Xcerptxml, to that used for RDF
access as Xcerptrdf. In both sections we highlight where specific concepts are needed
and where the same concept can be used for both XML and RDF access.

Related Work. To keep the parts fairly self-contained and to avoid overly long prelimi-
naries, we decided to address related work in each part separately.

In particular, Section 2.3.4 compares Xcerpt, in particular its features for access-
ing RDF, with SPARQL, the W3C proposal for querying RDF and a number of its
extensions. Section 2.4.4 gives a brief comparison of the challenges when translating
Xcerpt to Datalog¬new, i.e., to existing database and rule technology, compared to XPath,
XQuery or SPARQL. For the evaluation, we extensively compare our approach with ex-
isting labeling schemes for tree and graph data in Section 2.5.1. The basic principles of
the evaluation algorithm are discussed in the context of related work in Section 2.5.1.

As pointed out there are a number of previous approaches to integrating XML and
RDF access. These can be divided in two categories: Approaches such as GRDDL
[57] use two separate query languages to first transform data from one format in the
other and then to query only in the latter format. The advantage of this approach is
that existing language engines can be used as is. The second kind of approaches is
exemplified by XSPARQL [128] and [79]: Here one of the languages is embedded into
the other, providing an interface between the two languages (of varying sophistication).
The advantage is that we can now transfer results in both directions, the disadvantage
is that new query engines or rather involved query translations are needed2.

For both approaches there are two main shortcomings:

1. The user has to learn two different query languages that were designed entirely
separate.

2. Since the language engines remain entirely separate, these approaches first trans-
form all data (without respect to what is actually queried), then load all trans-
formed data in the second query engine, only then it is filtered by the conditions
of the queries in the target format. Thus, there is no chance for goal-driven query
evaluation and even static propagation of query conditions from queries in the tar-
get format to the transformation queries are very hard due to the starkly varying
semantics of the two languages involved.

Though Xcerpt and Xcerptrdf still require the use to learn some concepts specific to
XML or RDF, they are design to share concepts where possible. Furthermore, we use
a unified semantics thus allowing for full static cross-format optimization and a unified
evaluation allowing for dynamic cross-format optimization.

Neither the above approaches not Xcerpt addresses integrating also queries on (OWL)
ontologies, e.g., in the style of [62]. Though this is certainly an important issue, it is out

2 In Section 2.4.4 we illustrate a first step towards a translation approach.
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of the scope of this chapter. We believe that some of the discussed issues apply also
in that context (in particular, the treatment of blank nodes in RDF in the semantics and
evaluation of Xcerpt), but there are many more issues when considering even conjunctive
queries on ontologies that would need addressing.

2.2 Versatile Data

2.2.1 Extensible Markup Language (XML)

XML [28] is, by now, the foremost data representation format for the Web and for
semi-structured data in general. It has been adopted in a stupendous number of appli-
cation domains, ranging from document markup (XHTML, Docbook [150]) over video
annotation (MPEG 7 [110]) and music libraries (iTunes3) to preference files (Apple’s
property lists [9]), build scripts (Apache Ant4), and XSLT [95] stylesheets. XML is also
frequently adopted for serialization of (semantically) richer data representation formats
such as RDF or TopicMaps.

XML is a generic markup language for describing the structure of data. Unlike in
HTML (HyperText Markup Language), the predominant markup language on the web,
neither the tag set nor the semantics of XML are fixed. XML can thus be used to derive
markup languages by specifying tags and structural relationships.

The following presentation of the information in XML documents is oriented along
the XML Infoset [56] which describes the information content of an XML document.
The XQuery data model [67] is, for the most parts, closely aligned with this view of
XML documents.

Following the XPath and XQuery data model, we provide a tree shaped view of XML
data. This deviates from the Infoset where valid id/idref links are resolved and thus the
data model is graph, rather than tree shaped. This view is adopted in some XML query
languages such as Xcerpt [40] and Lorel [3], but most query languages follow XPath
and XQuery and consider XML tree shaped.

XML in 500 Words. The core provision of XML is a syntax for representing hierar-
chical data. Data items are called elements in XML and enclosed in start and end tags,
both carrying the same tag names or labels. <author>...</author> is an example
of such an element. In the place of ‘. . . ’, we can write other elements or character data
as children of that element. The following listing shows a small XML fragment that
illustrates elements and element nesting:

<bib xmlns:dc="http://purl.org/dc/elements/1.1/">
2 <article journal="Computer Journal" id="12">

<dc:title>...Semantic Web...</dc:title>
4 <year>2005</year>

<authors>
6 <author>

<first>John</first> <last>Doe</last> </author>

3 http://www.apple.com/itunes/
4 http://ant.apache.org/

http://www.apple.com/itunes/
http://ant.apache.org/
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8 <author>
<first>Mary</first> <last>Smith</last> </author>

10 </authors>
</article>

12 <article journal="Web Journal">
<dc:title>...Web...</dc:title>

14 <year>2003</year>
<authors>

16 <author>
<first>Peter</first> <last>Jones</last> </author>

18 <author>
<first>Sue</first> <last>Robinson</last> </author>

20 </authors>
</article>

22 </bib>

In addition, we can observe attributes (name, value pairs associated with start tags)
that are essentially like elements but may only contain character data, no other nested
attributes or elements. Also, by definition, element order is significant, attribute order
is not. For instance

<author><last>Doe</last><first>John</first></author>

represents different information than the author element in lines 6–9, but

<article id="12" journal="Computer Journal">...</article>

represents the same element information item as lines 2–15.
Figure 1 gives a graphical representation of the XML document that is referenced

in preceding illustrations. When represented as a graph, an XML document without
links is a labeled tree where each node in the tree corresponds to an element and its
type. Edges connect nodes and their children, that is, elements and the elements nested
in them, elements and their content and elements and their attributes. Since the visual
distinction between the parent-child relationship can be made without edge labels and
since attributes are not addressed or receive no special treatment in the research pre-
sented in this text, edges will not be labeled in the following figures.

Elements, attributes, and character data are XML’s most common information types.
In addition, XML documents may also contain comments, processing instructions
(name-value pair with specific semantics that can be placed anywhere an element can
be placed), document level information (such as the XML or the document type dec-
larations), entities, and notations, which are essentially just other kinds of information
containers.

On top of these information types, two additional facilities relevant to the information
content of XML documents are introduced by subsequent specifications: Namespaces
[26] and Base URIs [109]. Namespaces allow partitioning of element labels used in a
document into different namespaces, identified by a URI. Thus, an element is no longer
labeled with a single label but with a triple consisting of the local name, the namespace
prefix, and the namespace URI. E.g., for the dc:title element in line 3, the local
name is title, the namespace prefix is dc, and the namespace URI (called “name” in
[56]) is http://purl.org/dc/elements/1.1/. The latter can be derived by
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Fig. 1. Visual representation of sample XML document

looking for a namespace declaration for the prefix dc. Such a declaration is shown in
line 1: xmlns:dc="http://. . . It associates the prefix dc with the given URI in the
scope of the current element, i.e., for that element and all elements contained within
unless there is another nested declaration for dc, in which case that declaration takes
precedence. Thus, we can associate with each element a set of in-scope namespaces,
i.e., of pairs namespace prefix and URI, that are valid in the scope of that element. Base
URIs [109] are used to resolve relative URIs in an XML document. They are associ-
ated with elements using xml:base="http://. . . and, as namespaces, are inherited
to contained elements unless a nested xml:base declaration takes precedence.

The above features of XML are covered by most query languages. Additionally some
languages (most notably XQuery) also provide access to type information associated via
DTD or XML Schema [66]. These features are mentioned below where appropriate but
not discussed in detail here.

2.2.2 Resource Description Framework (RDF)

As the second preeminent data format on the Semantic Web, the Resource Description
Format (RDF) [108,101,85] is emerging. RDF is, though much less common than XML,
a widespread choice for interchanging (meta-) data together with descriptions of the
schema and, in contrast to XML, a basic description of its semantics of that data.

Not to distract from the salient points of the discussion, we omit typed literals (and
named graphs) from the following discussion.

RDF in 500 Words. RDF graphs contain simple statements about resources (which,
in other contexts, are be called “entities”, “objects”, etc., i.e., elements of the domain
that may partake in relations). Statements are triples consisting of subject, predicate,
and object, all of which are resources. If we want to refer to a specific resource, we
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use (supposedly globally unique) URIs, if we want to refer to a resource for which we
know that it exists and maybe some of its properties, we use blank nodes which play the
role of existential quantifiers in logic. However, blank nodes may not occur in predicate
position. Finally, for convenience, we can directly use literal values as objects.

RDF may be serialized in many formats (for a recent survey see [20]), such as RD-
F/XML [15], an XML dialect for representing RDF, or Turtle [13] which is also used
in SPARQL. The following Turtle data represents roughly the same data as the XML
document discussed in the previous section:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
2 @prefix dct: <http://purl.org/dc/terms/> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

4 @prefix bib: <http://www.edutella.org/bibtex#> .
@prefix ex: <http://example.org/libraries/#> .

6 ex:smith2005 a bib:Article ; dc:title "...Semantic Web..." ;
dc:year "2005" ;

8 ex:isPartOf [ a bib:Journal ;
bib:number "11"; bib:name "Computer Journal" ] ;

10 bib:author [ a rdf:Bag ;
rdf:_1 [ a bib:Person ;

12 bib:last "Smith" ; bib:first "Mary" ] ;
rdf:_2 [ a bib:Person ;

14 bib:first "John" ; bib:last "Doe" ] ] .

Following the definition of namespace prefixes used in the remainder of the Turtle
document (omitting common RDF namespaces), each line contains one or more state-
ments separated by colon or semi-colon. If separated by semi-colon, the subject of the
previous statement is carried over. E.g., line 1 reads as ex:smith2005 is a (has rdf:type)
bib:Article and has dc:title “. . . Semantic Web. . . ”. Lines 3–4 show a blank node: the
article is part of some entity which we can not (or don’t care to) identify by a unique
URI but for which we give some properties: it is a bib:Journal, has bib:number “11”,
and bib:name “Computer Journal”.

Figure 2 shows a visual representation of the above RDF data, where we distinguish
literals (in square boxes) and classes, i.e., resources that can be used for classifying other
resources, and thus can be the object of an rdf:type statement (in square boxes with
rounded edges) from all other resources (in plain ellipses).

What sets RDF apart from XML and justifies its role as the data format for the
Semantic Web is that RDF data comes with attached meaning, that allows us to infer
additional knowledge beyond what is stated explicitly. Query languages are usually
expected to behave consistent w.r.t. some form of RDF entailment (e.g., simple, full, or
RDFS entailment), i.e., graphs equivalent under the respective entailment yield the same
answers. Simply stated, rather than just consulting the actual RDF data for answering
a query, we might also need to consider additional, inferred triples depending on the
form of entailment chosen. E.g., when querying for resources of type bib:Publication
we might also want to return bib:Articles if we have the additional information that
bib:Article is a sub-class of bib:Publication. SPARQL, e.g., is designed to be agnostic
of the particular entailment used: it can be used to query RDF data under any of the
above mentioned entailment forms.
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Fig. 2. Visual representation of sample RDF graph

In the following, we assume familiarity with the notion of RDF entailment, interpre-
tation, model, as well as the RDFS semantics from [85].

2.3 Versatile Queries

With the rise of a plethora of different semi-structured Web formats, versatility [32]
has become the central requirement for web query languages. Besides the well-known
and ubiquitous formats HTML, XML and RDF, there are quite a lot of less familiar
formats such as RDFa [5,4] for embedding RDF information in HTML pages, the mi-
croformats [98] geo, hCard, hCalendar, hResume, etc., the ISO-standard Topic Maps
[74,123]. We call a web query language format versatile, if it can handle, merge or
transform data in different formats within the same query program. The need for in-
tegrating data from different formats has been acknowledged by partial solutions such
as GRDDL [57,149,72], hGRDDL [4] and XSPARQL [7]. All these solutions have in
common that they try to solve the problem of web data integration by applying a mix of
already established technologies such as XSLT transformations, DOM manipulations,
and a combination of XML and RDF query languages such as XQuery and SPARQL.
It is thus unsurprising that understanding these solutions requires a large background
knowledge of the employed technologies, and that the methods are much more compli-
cated than they could be if a format-versatile language particularly geared at integrating
data from different web formats was employed.
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Besides format versatility, we distinguish two other kinds of versatility: schema and
representational versatility. A web query language is called schema versatile, if it can
handle and intermediate between different schemata (i.e. schema heterogeneity) on the
Web. Usage of different schemata for representing similar data is very common and
well-studied in the field of data integration [146,106]. Since the Web is being en-
hanced with structured and semantically rich data, data integration on the Web [102]
has also received considerable attention and has spurred the growth of ontology align-
ment [117,63,64] research. Schema heterogeneity on the Web is encountered whenever
two ontologies describe the same kind of information on the Web, but employ different
languages for this end.

Finally, representational heterogeneity is encountered in XML dialects such as RD-
F/XML, where the same information is represented differently due to the use of syn-
tactic sugar notations – e.g. for rdf:type arcs or for the concise notation of literals,
URIs or RDF containers. Moreover, representational heterogeneity is present in any
XML dialect that does not enforce any order of the information that it provides, since
for serialization an arbitrary order must be chosen. We call a language representational
versatile, if it can query data agnostic of the representational variant chosen.

In this and the following sections, we show how the design of Xcerpt query terms,
construct terms and rules has lead to a versatile language with respect to all three is-
sues – format, schema and representation. This section starts out by looking at Xcerpt
from an abstract point of view, its relationship to logic programming and the interface
defined by Xcerpt terms. In Section 2.3.1, we introduce the sub-language of Xcerpt for
querying, construction and transformation of XML, called Xcerptxml. It is introduced
along the example of harvesting search results and microformat information of personal
profile pages of a social network. In Section 2.3.2, Xcerpt’s RDF querying capabilities,
referred to as Xcerptrdf, are presented with special emphasis on treating RDF speci-
fies such as containers, collections and reifications. Finally, in Section 2.3.3, we present
a use-case on combining microformat information harvested with Xcerptxml and RDF
data queried with Xcerptrdf, thus combining versatile querying in XML and RDF.

Xcerpt Terms from an Abstract Point of View: Simulation, Substitutions, and Applica-
tion of Substitution Sets. Xcerpt is a rule and pattern based language inspired by logic
programming, but with significantly richer querying capabilities that are necessitated
by the semi-structured nature of data on the Web.

In contrast to Prolog unification, Xcerpt uses a more involved kind of unification
called simulation unification5 to extract bindings of logical variables from Web data.

While Prolog rules consist of possibly non-ground terms in the head and the body of
a rule, Xcerpt distinguishes between construct terms and query terms to be used in the
heads and the bodies of rules, respectively. This differentiation is necessary because the
semi-structured nature of data on the Web requires expressive query constructs – such
as descendant, subterm negation, optionality – only in the query part of a rule (i.e. in
the query terms), and constructs for reassembling the data – such as grouping – only in
the construction part (i.e. the construct terms). Additionally, Xcerpt offers data terms as
an abstraction of XML (and thus also HTML) and RDF data. Xcerpt terms fulfill the

5 The term simulation is derived from graph simulation as defined in [1].
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following three properties: (i) any data term is also a query term, (ii) any data term is
also a construct term, and (iii) the intersection between the set of construct terms and
query terms is exactly the set of data terms, where some subterms may be substituted
by variables.

Also Prolog differentiates between terms and ground terms and facts. In Prolog it
holds that any ground term is a fact (i.e. data). In Xcerpt, however, a term may very well
be ground, but still be only an incomplete description of data – i.e. a query. Xcerpt terms
are formally – but, for the sake of brevity, not in their entirety – defined in Section 2.4.1.

The differences between Prolog Unification and Simulation unification can be briefly
summarized as follows:

– Non-Symmetry of simulation unification. Whereas Prolog unification is a symmetric
operation on two generally non-ground terms, Xcerpt simulation unfication is a
non-symmetric relation having a query term as the first argument, and a construct
term as the second.

– Different types of variables. While Prolog Unification only allows for one single
type of variable that will bind to any type of term, Xcerpt differentiates between
different types of variables. Obviously the types of variables also differ with the
data format that is being queried (XML, RDF, Topic Maps, Microformats, etc).
When querying XML data, Xcerpt distinguishes between term variables, that bind
to an entire XML fragment and label variables, that bind to a qualified or local
name only.6

– Notations for querying incomplete data. Due to the almost schemaless nature of
data on the Web, Xcerpt terms must be able to incompletely specify or describe
the data that is being searched for. These notations include optionality of subterms,
subterms at arbitrary depth and negated subterms and are introduced in detail in
Section 2.3.1.

– Substitution sets instead of substitutions. While in Prolog one can find a single most
general unifier for two terms t1 and t2 up to variable renaming, this is not true for
Xcerpt. Simulation unification between two Xcerpt terms xt1 and xt2 results in a
set of substitutions (that may very well contain only a single substitution or none at
all), which is due to the richer kind of simulation and the deeper structure of data
found on the Web. Imagine, for example, a biological database in XML format on
the Web that contains data about enzymes and chemical reactions they catalyze.
Although the database may be contained in a single XML document, the query for
all pairs of enzymes and catalyzed reactions should, obviously, return more than a
single tuple.

Feature unification [94,93], i.e. unification between feature terms, has been investi-
gated in linguistics to aid automatic translation of natural language texts. Feature terms
are used as an abstract representation of text, and are similar to semi-structured expres-
sions as far as they can be arbitrarily nested as XML documents, may contain nodes that
are entirely represented by their properties (just as RDF blank nodes), and in that the

6 Variables for term identifiers and for XML attributes are not considered in this survey for the
sake of brevity.
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order of subterms may or may not be relevant. In contrast to simulation unification, fea-
ture unification is symmetric, and feature terms do not provide constructs for specifying
incompleteness in depth or different types of variables. Finally, feature unification does
not return sets of variable bindings but serves to translate text from one natural language
to another.

Matching or – in Xcerpt terminology – simulating queries with data is only one of
two steps in the transformation of semi-structured data. Just as Prolog, but more conse-
quently (because of aggregation), Xcerpt clearly separates extraction of data (the data is
bound to variables within rule bodies) and construction of new data (reassembling the
data by application of substitution sets to rule heads).7 This separation contrasts with
XML query languages such as XQuery and XSLT, in which querying and construc-
tion is intertwined. Construction of new data with rule based languages is achieved by
applying a substitution to a term. As mentioned above, however, Xcerpt does not deal
with ordinary substitutions, but with substitution sets, and moreover, it differentiates
between different kinds of terms. Therefore, we must be more specific: Construction
of new data in Xcerpt is achieved by applying sets of substitutions to construct terms.
The step from single substitutions to substitution sets allows the introduction of group-
ing constructs and aggregations to rule-based web querying. In the absence of grouping
and aggregation constructs, application of substitution sets does not result in a single
Xcerpt term, but in a set of terms (which may very well be unary or even empty).

The above discussion of Xcerpt terms can be summarized by the following interface
(written as a functional type signature) of an Xcerpt term:

simulates :: QueryTerm→ConstructTerm→ Bool (1)

simulation uni f y :: QueryTerm→ConstructTerm→ S ubstitutionS et (2)

apply substitution set :: S ubstitutionS et→ConstructTerm→ [DataTerm] (3)

The function simulates returns true for a query term q and a construct term t if and only
if the substitution set returned for simulation uni f y(q, t) is non-empty. In addition to
three above mentioned functions, a function which decides the subsumption relation-
ship between two Xcerpt query terms is required if an optimized tabling algorithm for
backward chaining evaluation of a multi-rule program is to be used. For more informa-
tion about the subsumption relationship between Xcerpt query terms see Section 2.5.2.

In Section 2.3.1, we informally introduce the XML processing capabilities of Xcerpt,
Xcerptxml terms, Xcerptxml simulation unification and the application of substitution
sets to Xcerptxml terms. In Section 2.3.2 we do the same for Xcerptrdf.

2.3.1 XML Queries—Examples and Patterns

A large number of query languages for XML data have been proposed in the past. They
range from navigational languages such as XSLT [96] XQuery [142], their common

7 Queries against a single Prolog rule, such as the append rule, may indeed be used to achieve
both: concatenation of lists and finding components of a list. Still, querying is performed by
matching rule bodies with terms, and data construction by filling in bindings for variables in
rule heads.
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subset XPath [19], and Quilt [47] (the predecessor of XQuery) over pattern based lan-
guages such as XML-QL [58], UnQL [41] and Xcerpt to visual query languages such
as visXcerpt [17], XQBE [12] and XML-GL [46]. For a comprehensive survey over
XML query languages, their expressive power and language constructs, see [14], for a
comparison of Lorel, XML-QL, XML-GL, XSL and XQL see [23].

In this section, we introduce the XML processing capabilities of Xcerpt, taking Web
search results, personal profile pages from the LinkedIn social network and FOAF doc-
uments as a running example. With this data, the following task will be accomplished:

– We will extract links to LinkedIn profile pages from search results of the Google
search engine. These search results are wrapped within deeply nested HTML which
primarily serve presentation purposes, and snippets of text extracted from the in-
dexed pages. By matching among others class and id attributes, only the relevant
links will be extracted.

– From the profile pages relevant data of the curriculum vitae of the persons is
identified and extracted by exploiting the microformat vocabularies hresume,
hcalendar and hcard which are integrated into the HTML pages for semantic
enrichment of the textual content.

– Finally, FOAF documents are queried to find additional information not present
in the LinkedIn profile. Since FOAF is an RDF format that may be serialized in
RDF/XML, we will discuss the syntactic XML structure of these documents and
their correspondence to Xcerptrdf query terms in this section, but use Xcerptrdf to
query their contents in Section 2.3.2.

Xcerptxml Data and Rules. This section introduces Xcerptxml data terms, that ab-
stract from XML documents, ignoring XML specifities such as processing instructions,
comments, entities and DTDs. Xcerptxml terms are introduced to allow a more concise
representation of XML data that can be extended to form queries and construct patterns
to be used in rules.

Rules are written in a similar fashion to Datalog or Prolog rules, and have the fol-
lowing general form:

CONSTRUCT <CONSTRUCTTERM> FROM <QUERY> END

Xcerpt queries are enclosed between the FROM and END keywords and are matched
– in Xcerpt terminology simulated – with data. Due to Xcerpt’s answer closedness
(see Definition 1 for details), data may also be used as queries. To see how XML is
represented as Xcerpt data, consider the FOAF document in Listing 1.1 and the corre-
sponding Xcerpt data term in Listing 1.2.

FOAF is an acronym for “Friend-Of-A-Friend”, which is a vocabulary for specify-
ing relationships among people, their personal information such as adresses, education
and contact information. FOAF is primarily an RDF vocabulary, and is therefore se-
mantically richer than plain XML data, but most FOAF documents are serialized in
RDF/XML. Therefore, FOAF documents serialized in RDF/XML can be queried or
transformed syntactically (on the XML level) or semantically (on the RDF level). While
this section deals with syntactic transformations of Web data, semantic queries, trans-
formations and reasoning using Xcerptrdf are discussed in Section 2.3.2.
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<rdf:RDF xmlns:rdf="http://www.w3 ... rdf-syntax-ns#"
2 xmlns:rdfs="http://www.w3 ... rdf-schema#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"
4 xml:base="http://www.example.com/">

<foaf:PersonalProfileDocument
rdf:about="descriptions/Bill.foaf">

6 <foaf:maker rdf:resource="#me"/>
<foaf:primaryTopic rdf:resource="#me"/>

8 </foaf:PersonalProfileDocument>
<foaf:Person rdf:ID="me">

10 <foaf:givenname>Bill</foaf:givenname>
<foaf:mbox_sha1sum>5e22c ... 35b9</foaf:mbox_sha1sum>

12 <foaf:depiction rdf:ID="images/bill.png"/>
<foaf:knows>

14 <foaf:Person>
<foaf:name>Hillary</foaf:name>

16 <foaf:mbox_sha1sum>1228 ... 2f5</foaf:mbox_sha1sum>
<rdfs:seeAlso rdf:ID="descriptions/Hillary.foaf"/>

18 </foaf:Person>
</foaf:knows>

20 </foaf:Person>
</rdf:RDF>

Listing 1.1. A friend-of-a-friend document

1 declare namespace rdf "http://www.w3 ... rdf-syntax-ns#";
declare namespace rdfs "http://www.w3 ... rdf-schema#";

3 declare namespace foaf "http://xmlns.com/foaf/0.1/"
declare xml-base "http://www.example.com/"

5

rdf:RDF [
7 foaf:PersonalProfileDocument

(rdf:about="descriptions/Bill.foaf") [
foaf:maker (rdf:resource="#me"),

9 foaf:primaryTopic (rdf:resource="#me") ],
foaf:Person (rdf:ID="#me") [

11 foaf:givenname [ "Bill" ],
foaf:mbox_sha1sum [ "5e22c ... 35b9" ],

13 foaf:depiction (rdf:ID="images/bill.png"),
foaf:knows [

15 foaf:Person [
foaf:name [ "Hillary" ],

17 foaf:mbox_sha1sum [ "1228 ... 2f5" ]
rdfs:seeAlso (rdf:ID="descriptions/Hillary.foaf") ] ] ]

]

Listing 1.2. A friend-of-a-friend-document written as an Xcerpt data term
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Listings 1.1 and 1.2 exhibit an overwhelming similarity. Therefore, we will only
quickly discuss the points in which the data term representation deviates from the XML
serialization. While attributes are given as name value pairs inside of opening tags
in an XML document, they are given in round braces following a qualified name in
Xcerptxml. Moreover, the beginning and end of an element are specified by opening
and closing brackets (or braces). Namespace prefixes are declared outside of the data
terms, which disallows redefinition of namespace prefixes. Nevertheless all XML doc-
uments conforming to the Namespace recommendation [25] can also be represented as
an Xcerptxml data term. Finally, text nodes are enclosed within quotation marks in order
to be differentiated from empty element nodes.

Xcerptxml Queries: Pattern-based Filtering of Search Results. Consider the task of
finding people and their curriculum vitae who study or have studied at the university of
Munich. Searching for the term “LinkedIn” and “Munich” with a decent search engine
returns among other search results links to pages of personal profiles of persons living
in that city. The following Xcerpt query can be used to filter out other links in the search
result page of Google.8

html{{
2 desc div((id="res"))[[

h2((class="hd")){ "Search Results" },
4 desc h3((class="r")){{

or(
6 a((href=var Link as /.*linkedin\.com\/in\//)){{ }},

a((href=var Link as /.*linkedin\.com\/pub\//)){{ }}
8 )

]]
10 }}
}}

The following features of Xcerpt must be explained to understand the above query:
(in)completeness in breadth for elements and attributes, incompleteness in depth, logi-
cal variables, regular expressions and query term disjunction.

– Curly braces are used to specify subterm relationship between an element and an-
other element or a text node. The query h2{ "Search Results"} finds h2 el-
ements with an enclosed text node with text "Search results". Double curly
braces signify that more subterms may be present than are specified. If more than
one subterm is specified within double curly braces, they must be mapped in an in-
jective manner, i.e. they may not match with the same subterm of the data. This in-
jectivity requirement can be avoided by using triple curly braces {{{ }}}. Square
parentheses may be used instead of curly braces, if the order of the subterms ap-
pearing in the query is relevant. In the presence of zero or one subterm only, using
square brackets or curly braces has the same semantics. A query that uses double or
triple braces or brackets is termed incomplete in breadth, a query with single braces
or brackets only is termed complete in breadth.

8 We make use of the fact that all LinkedIn profile pages start either with
http://www.linkedin.com/pub/ or http://www.linkedin.com/in/

http://www.linkedin.com/pub/
http://www.linkedin.com/in/
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– XML Attributes and values are given in round parentheses directly following ele-
ment names. Attribute names are followed by an “=” sign and by an attribute value
in quotation marks. Double parentheses may be used to state that there may be more
attributes present in the data than specified in the query. Since XML attributes are
always considered to be unordered, there is no way of expressing an ordered query
on attributes in Xcerpt. In case of double parentheses, the attributes are said to be
specified incompletely in breadth.

– The desc keyword has the same semantics as the XPath descendant axis: The sub-
term following the desc may either be a direct child of the surrounding term or
nested at arbitrary depth within one of the children. A term using the desc keyword
is termed incomplete in depth, the other terms are said to be completely specified in
depth. As the example above shows, incompleteness significantly eases query au-
thoring, since requires only a very basic knowledge about the structure underlying
the queried data.

– Logical variables are used to extract information from an HTML or XML docu-
ment. In Xcerptxml terms, variables may bind either to entire XML elements, in
which case they are called term variables, to the labels of elements only (label
variables), to entire attributes (attribute variables) or to the values of attributes
only(label variables). Variables may additionally feature a variable restriction ini-
tiated with the as keyword. Variable restrictions serve to lay a restriction on the
possible bindings of variables.

– Regular expressions are delimited by the sign ’/’ and can be used at the place of
labels to restrict the set of XML names that are matched by an Xcerptxml query
term. The query term /ab*/, for example, will match with the labels a, ab, abb,
etc. only.

– Queries may be composed using the boolean connectives and, or, and not which
have the same intuitive semantics as in logic.

Mining Semantic data from Microformats embedded in personal profiles. Let us
now turn to the second task of our use case. Having identified relevant URIs from the
results of a search engine query, we now exploit microformats as a semantic enrichment
for HTML pages to gather additional knowledge from web pages.

LinkedIn uses the microformats hcalendar, hresume, hcard, hAtom, and XFN to se-
mantically enrich the contents of their pages. Unfortunately, the use of microformats
has not been standardized, but evolves over time. Moreover, there is no underlying for-
mal data model for microformat data as in RDF or XML. Microformats primarily use
the XML attribute names class and rel for semantic information. In contrast to RDF,
microformats do not use namespaces or globally unique identifiers, which makes it hard
or sometimes even impossible to find out the exact semantics of an HTML fragment en-
riched by microformats. For example, both the hresume and the hcalendar specifications
make use of a tag called summary for specifying either the summary of one’s experience
gained during a professional career or the summary of an event description.9 With this

9 Consult the descriptions of these microformats available online
http://microformats.org/wiki/hresume and
http://microformats.org/wiki/hcalendar for details.

http://microformats.org/wiki/hresume
http://microformats.org/wiki/hcalendar
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deficiency in mind, the importance of query languages that transform semantic infor-
mation embedded in HTML pages into a more precise RDF dialect becomes even more
obvious. The fragment of a personal profile in Listing 1.3 pictures the use of microfor-
mats on LinkedIn and serves as further example data in this section.10 One can observe
that finding the semantic information within the HTML markup requires knowledge
about the microformat standards, and that using the class attribute both for identifying
elements to be formatted by stylesheets and for microformat predicate names is against
the principle of separation of concerns coined by Dijkstra in [59].

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US"
lang="en-US">

2 <head><title>John Doe - LinkedIn</title></head>
<body>

4 <div class="hresume">
<div class="profile-header">

6 <div class="masthead vcard contact portrait">
<h1 id="name">

8 <span class="fn n">
<span class="given-name">John</span>

10 <span class="family-name">Doe</span>
</span>

12 </h1>
</div>

14 </div>
<div id="experience">

16 <h2>John Doe Experience</h2>
<ul class="vcalendar">

18 <li class="experience vevent vcard">
<h3 class="title">Research assistant</h3>

20 <h4 class="summary">
<a href="...">University of Munich</a>

22 </h4>
<p class="organization-details">(Research industry)</p>

24 <p class="period">
<abbr class="dtstart" title="2000-02-01">February

2000</abbr> until
26 <abbr class="dtstamp"

title="2008-11-24">Present</abbr>
<abbr class="duration" title="P8Y10M">(8 years 10

months)</abbr>
28 </p>

</li>
30 </ul>

</div>
32 </body>
</html>

Listing 1.3. A simplified personal profile page with embedded semantic information

The following Xcerpt query extracts the first and last name of a Person, if she has
some experience as a research assistant in some organization in Munich. Aside from
that, the query extracts the duration of the working relationship between the person and
the organization if present. Unlike other query subterms, the relevant subterm for the

10 The majority of the HTML markup serving presentation purposes and also most of the irrele-
vant content has been stripped out to shorten the presentation.
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duration is marked optional, which means that the whole query is still successfull, if the
optional subquery fails to match. Optional matching of subterms is only suitable if the
subterm contains variables, and has also been proposed for SPARQL and other query
languages. In contrast to SPARQL, however, the order of optional subterms within a
query does not have any effect on the query result – see [70] for a more detailed discus-
sion of this issue.

Listing 1.3 makes use of abbreviations for displaying information about the start, end
and duration of an event. The actual date or duration is hidden within an XML attribute
value that is meant for computational processing. 11

1 html{{
body{{

3 desc{{
desc /.*/((class="given-name")){ var FirstName },

5 desc /.*/((class="family-name")){ var LastName }
}},

7 desc /.*/((class=/.*experience.*/")){{
/.*/((class="title")){ "Research assistant" },

9 /.*/((class="summary")){ /.*Munich.*/ },
optional /.*/((class="period")){{

11 /.*/((class="duration" title=var Duration)){{ }}
}}

13 }
}}

15 }}

Listing 1.4. Finding research assistants from some organization in Munich

Listing 1.4 highlights the pecularities of matching HTML document with embedded
microformat information. While element names have almost no relevance, the values
of the class attributes is of primary importance. When querying plain HTML data, or
XML dialects such as XMLSchema or DocBook, however, the role of the attributes will
be less important, but element names will occur more often in the query. Another issue
in extracting microformat information from documents is that the values of class at-
tributes are often space separated lists of microformat predicate names such as vcard
contact portrait. Up until now, Xcerpt has no specialized means for accessing
these atomic strings in the attribute values, which results in excessive use of regular
expressions. Therefore, it may be beneficial to invent a domain specific language or
at least a class of query patterns that are specifically suited for querying microformat
information and which would allow a less verbose notation of the query in Listing 1.4.
In the following Section, we introduce the class of Xcerptrdf query terms, which are
geared at native and concise RDF querying.

11 This convention was proposed by Tantek Çelik on his blog
(http://tantek.com/log/2005/01.html#d26t0100) since humans prefer dates
in a natural language description over a formal and concise notation, and may also deduce
some information from the context.

http://tantek.com/log/2005/01.html#d26t0100
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2.3.2 RDF Queries—Examples and Patterns

In this section, the RDF processing capabilities of Xcerpt – united under the term
Xcerptrdf – such as data, query and construct terms particularly geared towards RDF
are introduced by example. This section is structured in four parts. In Section 2.3.2
Xcerptrdf data terms as a convenient way for representing RDF data are introduced. In
Sections 2.3.2 and 2.3.2, Xcerptrdf query and construct terms are introduced as syntac-
tic extensions to data terms. Section 2.3.4 compares Xcerptrdf to SPARQL, which is by
far the most prominent RDF query language today.

Representation of RDF Graphs as Xcerptrdf Data Terms. Many serializations for
RDF Data have been proposed (RDF/XML, Notation3, Turtle, NTriples, etc.), with
their inventors pursuing a set of partially competing goals: On the one hand, (i) RDF
serializations are supposed to be as short as possible, on the other hand, (ii) an optimal
serialization should have a canonical and unique representation for each RDF graph
– put more formally, there should be an isomorphism between the set of RDF graphs
and the set of RDF graph serializations. Moreover, RDF serializations should be (iii)
interchangeable between software systems on the Web, and at the same time (iv) easy
to author and read by humans.

RDF/XML was proposed by the W3C with the first and the third aim in mind. Due
to the encoding of RDF in XML, RDF/XML is easily exchanged over the Web, and
standard XML tools, such as XPath, XQuery, XSLT processors and XML Schema val-
idators can be used to process this serialization. Furthermore, the RDF/XML syntax
allows for a plethora of syntactic sugar notations that significantly reduce the verbosity
of an XML encoding of data. Unfortunately, RDF/XML does not perform well in the
second and fourth discipline, i.e. it is not canonical, and it is not easy to read and write
by humans. Due the availability of the syntactic sugar notations, there are many dif-
ferent possibilities for encoding the same RDF graph, which makes parsing XML/RDF
into a set of triples a major challenge, and also requires more background knowledge
about the serialization format by the user than other serializations do.

Notation3 was also proposed by the W3C with the first and fourth reason in mind.
Due to its non-XML serialization format and some short hand notations, it is easier
to read and write for human users, and is also quite dense in comparison with other
serialization formats. Notation3 does not perform well, however, taking only the second
and third end into account.

Turtle being a subset of Notation3, and NTriples being a minimal subset of Turtle
(and thus also of Notation3), NTriples does not provide any short hand notations and is
thus significantly more verbose and redundant than Notation3. Still, it is quite readable
for human users and can be easily read into or serialized from a relational database con-
taining only one single relation for all triples in an RDF graph12. Due to its simplicity,
NTriples comes pretty close to fulfilling the second aim: An RDF graph being a set of
triples, its possible NTriples serializations only differ in the order of the triples and in
the naming of the blank nodes.

With Xcerptrdf data terms, we introduce yet another format for serializing RDF
graphs. Besides the common goals stated above, Xcerptrdf data terms were invented

12 This is a common schema for RDF stores.
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with three other goals in mind: (a) compatibility with Xcerptxml data terms, (b) ex-
tensibility to query terms involving variables and incompleteness constructs13, and (c)
support for RDF specificities such as containers and collections14.

Consider the RDF graph displayed as an XML/RDF document in Listing 1.1 and as
an Xcerptxml data term in Listing 1.2. Its representation as an Xcerptrdf data term is as
follows:

declare namespace rdf "http://www.w3 ... rdf-syntax-ns#";
2 declare namespace rdfs "http://www.w3 ... rdf-schema#";
declare namespace foaf "http://xmlns.com/foaf/0.1/"

4 declare namespace ex "http://www.example.org/"

6 ex:descriptions/Bill.foaf {
rdf:type → foaf:PersonalProfileDocument,

8 foaf:maker → ex:#me,
foaf:primaryTopic → ex:#me {

10 rdf:type → foaf:Person,
foaf:givenname → "Bill",

12 foaf:mbox_sha1sum → "5e22c ... 35b9",
foaf:depiction → base:images/bill.png,

14 foaf:knows {
_:SomePerson {

16 rdf:type → foaf:Person,
foaf:name → "Hillary",

18 foaf:mbox_sha1sum "1228 ... 2f5"
rdfs:seeAlso → base:descriptions/Hillary.foaf

20 } } } }

Listing 1.5. A friend-of-a-friend-document written as an Xcerptrdf data term

As another example consider Figure 6 from the RDF Primer [107]. Its representation
as an Xcerptrdf term is as follows:

declare namespace exterms "http://www.example.org/terms/"
2 declare namespace exstaff "http://www.example.org/staffid/"

4 exstaff:85740 {
exterms:address → _:A {

6 !http://www.example.org/terms/city → "Bedford",
exterms:street → "1501 Grant Avenue",

8 exterms:state → "Massachusetts",
exterms:postalCode → "01730"

10 }
}

Listing 1.6. Example from the W3C RDF Primer in Xcerptrdf notation

13 Any Xcerptrdf data term is per se also an Xcerptrdf query.
14 This last point has already been partially addressed by XML/RDF.



70 F. Bry et al.

Similar to RDF/XML, Notation3, Turtle and SPARQL, Xcerptrdf data terms can be
abbreviated using namespace prefixes in qualified names. Full URIs are distinguished
from qualified names by prefixing an exclamation mark, blank nodes by the prefix _:,
and literals by quotation marks.

In the RDF graph above, multiple statements have the blank node _:A as their com-
mon subject, which is factored out in the Xcerptrdf serialization. In many cases RDF
statements do not only share the subject, but also the predicate, in which case also the
predicate can be factored out:

declare namespace ex "http://www.example.org/"
2 declare namespace foaf "http://xmlns.com/foaf/0.1/"

4 ex:anna { foaf:knows → (ex:bob, ex:chuck) },

Xcerptrdf also supports the factorization of properties only, objects only, predicate
and object, subject and object, and of all three elements – subject, predicate and object,
in which case there will be one Xcerptrdf term for each RDF triple. Factoring out the
predicate only could be used, for example, to represent a clique of friends, in which
every member knows every other member and herself:

(ex:anna, ex:bob, ex:chuck) {
2 foaf:knows → (ex:anna, ex:bob, ex:chuck) },

The RDF graph in Listing 1.6 has only a single node without incoming edges, and
therefore the choice of the root of the Xcerptrdf term is trivial. RDF graphs may, how-
ever, have multiple nodes without incoming edges or none at all, or may even be entirely
disconnected. In the case of no nodes without incoming edges, one can arbitrarily pick
a root node for the Xcerptrdf term representation, but in the case of multiple nodes with-
out incoming edges, and in the case of a disconnected RDF graph, the graph cannot be
serialized as a single Xcerptrdf term, but only as a conjunction of terms. Therefore, the
keyword RDFGRAPH is introduced:

RDFGRAPH {
2 ex:anna { foaf:knows → ex:bob },

ex:chuck { foaf:knows → ex:bob }
4 }

RDF Schema is a specification that “describes how to use RDF to describe RDF
vocabularies” [113]. It therefore provides a set of URIs, with a semantics defined by
RDFS entailment rules, and which are in popular use for defining new RDF ontolo-
gies. Xcerptrdf provides shorthand notations for the most common ones among them:
rdf:type, rdfs:range, rdfs:domain, rdf:Property and rdfs:Resource.

ex:name { is [ex:Person → ex:Name] }

The Xcerptrdf term above is a shorthand for the following Xcerptrdf term:

1 ex:name {
rdf:type → rdf:Property,

3 rdfs:domain → eg:Person,
rdfs:range → eg:Name

5 }
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If the domain and/or the range of a predicate shall be left unrestricted, then the
restricting classes can be simply omitted as in the Xcerptrdf term eg:name{ is

[eg:Person → ] }. In Xcerptrdf this expands to the following term:15

ex:name {
2 rdf:type → rdf:Property,

rdfs:domain → eg:Person,
4 }

Besides the RDFS vocabulary, RDF distinguishes a set of URIs for expressing reifi-
cation of RDF statements and containers and collections of Resources in RDF bags,
sequences, alternatives or lists. Xcerptrdf provides syntactic sugar notations both for
reifications on the one hand and RDF containers and collections on the other hand.
Consider the following Xcerptrdf term:

ex:bob { ex:believes →
2 _:Statement1 { < ex:anna{ foaf:knows → ex:bob } >
}

The Xcerptrdf term enclosed in angle brackets is a reified statement, and thus the
entire term is equivalent to the following, significantly more verbose one:

1 ex:bob { ex:believes →
_:Statement1 {

3 rdf:type → rdf:Statement,
rdf:subject → ex:anna,

5 rdf:predicate → foaf:knows,
rdf:object → eg:tim

7 }
}

Whereas bags, sequences and alternatives are termed as RDF containers, and are
considered to be open (i.e. there may be other elements in the container, which are not
specified in the present RDF graph), RDF collections (i.e. RDF lists) are considered to
be completely specified. However, this intuitive semantics is in no way reflected within
the RDF/S model theory. When using only Xcerptrdf shorthand notations for represent-
ing RDF graphs featuring RDF containers, collections or reification, one can be sure to
respect this intuitive semantics. Xcerptrdf provides the reserved words bagOf, seqOf,
altOf and listOf to reduce the verbosity serializing RDF containers and collections. To
represent a research group, one might chose the following Xcerptrdf term, which would
expand to four triples.

_:Group1 { bagOf{ eg:anna, eg:bob, eg:chuck } }

Xcerptrdf Query Terms. Just as in Xcerptxml, Xcerptrdf data terms are augmented
with constructs for specifying incompleteness to yield Xcerptrdf query terms. Such

15 Note that under the RDFS entailment rules, also the triple ex:name
rdfs:range-→ rdf:Resource would be implied. Xcerptrdf, however, does not
enforce the RDFS semantics, since RDF/S entailment rules can be easily encoded in Xcerptrdf

itself.
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Table 1. Syntax of Xcerptrdf data terms

term = node | node ’{’ arc (’,’ arc)* ’}’ | reification
node = blank | uri | literal | qname
arc = uri ’→’ term | container | collection
blank = attvalueW3C
literal = ’"’ char* ’"’ | ”’” char* ”’”
uri = ’!’ uriW3C
qname = qnameW3C
collection = bag | sequence | alternative
container = ’listOf’ ’{ }’ | ’listOf’ ’{’ term (’,’ term)* ’}’
bag = ’bagOf’ ’{ }’ | ’bagOf’ ’{’ term (’,’ term)* ’}’
sequence = ’seqOf’ ’{ }’ | ’seqOf’ ’{’ term (’,’ term)* ’}’
alternative = ’altOf’ ’{ }’ | ’altOf’ ’{’ term (’,’ term)* ’}’
reification = ’<’ term ’>’

constructs include the use of logical variables, subterm negation, subterm optionality,
incompleteness in breadth and qualified descendant. While originally invented for XML
processing, these constructs are also beneficial for querying RDF graphs as exemplified
in Example 1.7. The query extracts variable bindings for all Persons and their nick
names within an RDF graph, who know some Person with nick name ’Bill’, who in
case do not know any other Person named ’Hillary’. As in Xcerptxml, the optional

keyword is used to bind the nick name to the variable var Nick whenever possible,
but does not cause the query to fail if the nick name is not present. Also the semantics of
double curly braces and the without keyword is analogous to Xcerptxml. In Listing 1.7,
the scope of the without and optional keyword is explicitly given by round paren-
theses. The scope of a without or optional does not have to be the entire subterm
following the keyword, but may also be restricted to the edge only. Table 2 gives an
intuition of the exact semantics of without with varying scopes by providing example
data that does or does not simulate with the given query terms. The intuitive semantics
for optional can be described by similar examples, but is left unspecified here for the
sake of brevity. Note, however, that optional subterms are only useful if they contain
variables for extracting data.

var Person{{
2 optional (foaf:nick → var Nick),

rdf:type → foaf:Person,
4 foaf:knows → _:X{{

foaf:nick → ’Bill’, rdf:type → Person,
6 without (

foaf:knows → {{ _:Y{{ foaf:nick → ’Hillary’ }} }}
8 )

}}
10 }}

Listing 1.7. An Xcerptrdf query term
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Table 2. Query term simulation with different scopes for without

query term simulating data terms non-simulating data terms

a{{ without (b→) c }} a{ d→ c} a{ b→ c}
a{ b→ e, d→c } a{ b→ d, b→ c }

a{ b→ d }
a{{ without (b→ c) }} a{ } a{ b→ c }

a{ b→ d } a{ b→ d, b→ c }
a{{ b→ without c }} a{ b→ d } a{ b→ c }

a{ e→ c, b→ f } a{ }
a{{ b→ without c {{ a{ b→ c } a{ b→ c{ d→ e } }

d→ e }} }} a{ b→ c{ d→ f } } a{ }
a{{ b→ (without c) {{ a{ b→ f{ d→ e } } a{ b→ f }

d→ e }} }} a{ b→ c }

Although the Xcerptxml constructs for specifying incomplete queries mentionend
above retain their semantics in Xcerptrdf, there are some different requirements in XML
and RDF processing that are also reflected in the way that Xcerptrdf variables are used
in Xcerptrdf query terms.

An obvious difference between matching RDF graphs and matching XML docu-
ments is that while extracting entire subtrees from an XML document is a very common
task, extracting entire RDF subgraphs from an RDF graph is less frequently used, since
this may often result in the whole RDF graph being returned. Therefore, the default
variable binding mechanism in Xcerptrdf is not subgraph extraction but label extrac-
tion. Therefore, the most common form of variables used in Xcerptrdf query terms are
node and predicate variables. Node and predicate variables are written using the key-
word var. A node (predicate) variable binds to a single node (arc) of the queried graph.
graph variables are identified by the keyword graphVar and bind – similarly to Xcerptxml

term variables – to entire subgraphs. Finally, CBD-variables (identified by the keyword
cbdVar) bind to concise bounded descriptions16.

Another difference is that once an RDF node in an RDF graph has been identified by
a query and has been bound to a variable, the very same node can be easily recovered
in a subsequent query, since both URI nodes and blank nodes are uniquely named in an
RDF graph, whereas an XML Document may very well contain multiple nodes having
the same tag name and even the same content. XQuery and Xcerpt 2.0 deal with this
problem by introducing node identity for XML elements and attributes, thereby allow-
ing the comparison of variable bindings not only by deep equality, but also by shallow
equality [69]. This distinction is not necessary in RDF processing, since the value of a
node is already a global (in the case of resources) or local (in the case of blank nodes)
identifier.

16 http://www.w3.org/Submission/CBD/

http://www.w3.org/Submission/CBD/
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For the representation of complex values, however, the simplistic data model of RDF
graphs as sets of triples is not well-suited. Here, blank nodes are used to group atomic
attributes of a node together to form a complex attribute. Often, these complex attributes
shall be selected together and collected in a single variable binding. This need has been
addressed by the W3C consortium with the introduction of a concept known as Concise
Bounded Descriptions. Xcerptrdf supports concise bounded descriptions by providing a
special kind of variable which does not bind to the value of a node, nor to the subgraph
rooted at the node, but to the concise bounded description associated with that node.
Table 3 gives an example driven overview of the different types of variables in Xcerptrdf

and their binding mechanisms.

Table 3. Query term simulation with variables for nodes, predicates, graphs and concise bounded
descriptions

query term data term substitution set

var X a{ b→ c } { { X �→ a } } (1)

a{{ b→ var O }} a{ b→ c, b→ :X } { { O �→ c }, { O �→ :X } } (2)

a{{ var P→ var O }} a{ b→ c, b→ e } { { P �→ b, O �→ c },
{ P �→ b, O �→ e } } (3)

graphVar G a{ b→ c } { { G �→ a{ b→ c } } } (4)

graphVar G as g{{ }} a{ b→ c} { { } } (5)

a{{ graphVar G }} a{ b { a }, c } { { G �→ b{ a { b, c } } } } (6)

graphVar G a{ b→ c} { { G �→ a{ b→ c },
as var L L �→ a } } (7)

cbdVar G :X{ b→ c{ d→ e } } { { G �→ :X{ b→ c } } } (8)

cbdVar G :X{ b→ :Y{ d→ e } } { { G �→
:X{ b→ :Y{ d→ e } } } }

} } (9)

Rows 1 and 2 show the simulation of a simple Xcerptrdf variable in subject and
object position. Compare the binding of the graph variable G in row 4 with the one of
the label variable X in row 1 under simulation with the same data term. Row 3 shows
a variable in predicate position, row 5 a graph variable with a restriction, which has
the same semantics as in Xcerptxml (since the label g of the restriction does not appear
within the data, the substitution set is empty).

An interesting case is row 6. Since the queried graph d is not a tree, but a graph, the
binding for variable G is not a subterm of d, but a subgraph.

Row 7 shows the contemporary use of a graph and label variable, and rows 8 and 9
illustrate the semantics of variables for concise bounded descriptions.

Table 4 shows the syntax of Xcerptrdf query terms as a context free grammar with ter-
minal symbols in single quotes and the usual semantics of the meta-symbols * + ? and
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Table 4. Syntax of Xcerptrdf query terms

term ::= ’desc’? node | ’desc’? node ’{{’ arc (’,’ arc)* ’}}’ |
’desc’? reification

node ::= blank | uri | literal | qname | variable | graphVar | cbdVar
variable ::= ’var’ varname
varname ::= [A-Z][A-Za-z0-9*]
graphVar ::= ’graphVar’ varname | ’graphVar’ varname as term
cbdVar ::= ’cbdVar’ varname | ’cbdVar’ varname as term
arc ::= uri ’→’ term | rpe ’→’ term | container | collection
blank ::= attvalueW3C
literal ::= ’"’ char* ’"’ | ”’” char* ”’”
uri ::= ’!’ uriW3C
qname ::= qnameW3C
collection ::= bag | sequence | alternative
container ::= ’listOf’ ’{{ }}’ | ’listOf’ ’{{’ term (’,’ term)* ’}}’
bag ::= ’bagOf’ ’{{ }}’ | ’bagOf’ ’{{’ term (’,’ term)* ’}}’
sequence ::= ’seqOf’ ’{{ }}’ | ’seqOf’ ’{{’ term (’,’ term)* ’}}’
alternative ::= ’altOf’ ’{{ }}’ | ’altOf’ ’{{’ term (’,’ term)* ’}}’
reification ::= ’<’ term ’>’

|. The nonterminal symbols uriW3C, attvalueW3C and qnameW3C correspond to
the syntactic definition of URIs, attribute values and qualified names in the W3C recom-
mendation for XML[27]. The non-terminal symbol rpe denotes an Xcerptrdf regular
path expression, whose definition is omitted in this contribution for the sake of brevity.

Xcerptrdf Construct Terms and Rules. Consisting of a query part and a construct part,
pure Xcerptrdf rules serve to transform RDF data. The query part is used to extract data
from an RDF graph into sets of sets of variable bindings, also called substitution sets,
and the construct part is used to reassemble these variable bindings within construct
patterns, substituting bindings for variables.

Table 5 describes how substitution sets are applied to Xcerptrdf construct terms to
yield Xcerptrdf data terms. Apart from the different kinds of variable bindings allowed
in Xcerptrdf substitution sets, the algorithm differs from the application of Xcerptxml

substitution sets to Xcerptxml terms in the following ways:

– In accordance with the most famous RDF query languages such as SPARQL [141]
and RQL [92,29], URIs are treated as unique identifiers within an RDF graph and
do not have any object identity besides the identity given by the URI itself. This
convention has as an implication that a substitution set applied to different construct
terms may result in semantically equivalent data terms. To see this consider rows 1
and 5 in Table 5. Although the Xcerptrdf construct terms are syntactically different,
the data terms resulting from the application of the substitution set are equivalent
RDF graphs. As a result, the use of all within construct terms made up of URIs only
does not change the semantics of a rule.
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Table 5. Application of substitution sets to Xcerptrdf construct terms

substitution set construct term Xcerptrdf result

{ { O �→ c }, { O �→ d } } a{ b→ var O } a{ b→ c }
a{ b→ d } (1)

{ { O �→ c }, { O �→ d } } :X{ b→ var O } :X1{ b→ c }
:X2{ b→ d } (2)

{ { S �→ c }, { S �→ d} } var S{ b→ a } c{ b→ a }
d{ b→ a } (3)

{ { S �→ c }, { S �→ d} } var S{ b→ :X } c{ b→ :X1 }
d{ b→ :X2 } (4)

{ { O �→ c }, { O �→ d } } a{ all b→ var O } a{ b→ c, b→ d } (5)

{ { O �→ c }, { O �→ d } } :X{ all b→ var O } :X{ b→ c, b→ d } (6)

{ { O �→ c }, { O �→ d } } a{ b→ var O{ e→ f } } a{ b→ c{ e→ f } }
a{ b→ d{ e→ f } } (7)

{ { G �→ a{ b→ c } } } graphVar G a{ b→ c } (8)

{ { G �→ a{ b→ c } } } d{ e→ graphVar G } d{ e→ a{ b→ c } } (9)

– Just as RDFLog [33,34], but unlike SPARQL and other RDF query languages,
Xcerptrdf supports arbitrary construction of blank node identifiers. While the ma-
jority of RDF query languages does not allow blank node construction at all or
only blank nodes depending on all universally quantified variables of a rule (see
[34] for details), Xcerptrdf and RDFLog support also construction of blank nodes
that depend only on some or none of the universally quantified variables of a rule.
RDFLog does this by explicit quantifier alternation, Xcerptrdf on the other hand
achieves the same goal by using Xcerpt’s all grouping construct. To see the dif-
ference consider rows 2 and 6 in Table 5. In row 2 the construct contains the free
variable var O, whereas in row 6 the construct term does not contain any free vari-
able. Thus in the first case, the substitution set is divided into two substitution sets
according to the binding of variable var O, and each of the substitution sets is ap-
plied to the construct term. In the second case, however, the substitution set is not
divided at all, but applied as a whole to the construct term.

Special care must be taken that the result of the application of a substitution set to
an Xcerptrdf construct term is again an RDF graph. Guaranteeing that pure Xcerptrdf

programs convert RDF graphs into valid RDF graphs allows easy composition of Xcerpt
programs.

Providing the same input and output format for a language is a feature of many
modern query languages and is usually referred to as answer closedness. Popular XML
query languages in general are only weakly answer closed – which means that they al-
low for easy authoring of programs that again produce valid XML documents, but that it
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still is possible to generate non-XML data. A notable exception to this rule is Xcerptxml,
which is strongly answer closed in the sense that every outcome of an Xcerptxml pro-
gram is an XML fragment. On the other hand, the W3C languages XPath, XQuery and
XSLT can also be used to output non-XML content such as PDF, Postscript, or comma
separated values.

Definition 1 (Answer Closedness). A web query language is called answer closed, if
the following conditions are fulfilled:

1. data in the queried format can be used as queries
2. the result of queries is again in the same format as the data

A web query language is called weakly answer closed, if condition (2) is possible; it is
called strongly answer closed, if condition (2) is always enforced.

The assurance of answer closedness in Xcerptrdf must take the following two thoughts
into account:

– Abidance of RDF triple constraints. The evaluation of query terms may bind node
variables to literals or blank nodes. RDF graphs, however, do not allow literals in
subject or predicate position or blank nodes in predicate position.

– Abidance of RDF graph constraints. Xcerptrdf supports four different kinds of vari-
ables: node variables, predicate variables, graph variables and concise bounded de-
scription variables. In general, it is only safe to substitute variables in construct
terms by bindings of variables of the same type. Depending on the data, bindings
for node, graph and concise bounded description variables may degenerate to plain
URIs, and therefore it may be safe to substitute them for predicate or node vari-
ables.

With the above two restrictions in mind, there are three different possibilities for imple-
menting answer closedness in Xcerptrdf.

– Static Checking of Bindings: Before an Xcerptrdf program is run, it is checked that
predicate variables in the construct term are also used as predicate variables in the
query term, and the same for graph variables, node variables and CBD variables.
To be more precise, the semantics of graph and CBD variables only differ within
the query term, and thus a CBD variable binding may be substituted for a graph
variable in the construct term. Moreover, the binding of a predicate variable may
be substituted for a label variable in the construct term, since predicate variables
always bind to URIs. On the other hand, bindings of node variables, may not be
substituted for predicate variables. While static checking of variable bindings en-
sures that all terms constructed by Xcerptrdf programs are valid RDF graphs, certain
tasks, such as using URIs of nodes of a source graph in predicate position in the
target graph, are impossible to achieve with this technique.

– Dynamic Checking of Variable Bindings: Dynamic checking of variable bindings
is a sensible choice if there is reason to assume that the query author has some
knowledge about the data to be queried. It is more flexible than static checking in
the sense that a larger number of tasks can be realized, but is less reliable in the
sense that runtime errors may occur.
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Table 6. Application of substitution sets to Xcerptrdf construct terms with casting of variable
bindings

substitution set construct term Xcerptrdf result

{ { V �→ :X } } a{ var V→ b }
{ { V �→ :X } } a{ var V→ b, c→ d } a{ c→ d }
{ { V �→ ’literal1’ } } a{ var V→ b, c→ d } a{ c→ d }
{ { G �→ a{ b→ c } } } graphVar G{ d→ e } a{ b→ c, d→ e }
{ { G �→ a{ b→ c } } } d{ var G→ e } d{ a→ e }
{ { G �→ :X{ b→ c } } } d{ var G→ e } :X{ b→ c }
{ { L �→ ’literal1’ } } a{ b→ { var L{ c→ d } } a{ b→ :X { c→ d },

b→ ’literal1’ }

– Casting of Variable Bindings unites the best of static checking of variable bindings
(i.e. no runtime errors) and dynamic checking of variable bindings (i.e. a higher
degree of flexibility). Consider the sources of runtime errors that may occur with
dynamic checking of variable bindings – examples for each case are given in Table 6.

• A literal or blank node bound to a node variable is substituted for a predicate
variable in a construct term. Such triples are simply omitted from the resulting
RDF graph.

• A subgraph bound to a CBD or graph variable is substituted for a node variable
in a construct term. In this case the subgraph rooted at the occurrence of the
node variable in the construct term and the binding of the variable are merged.

• A subgraph g rooted at a URI u and bound to a graph variable is substituted for
a predicate variable in a construct term. The graph g is cast to u.

• A subgraph g rooted at a blank node b and bound to a graph variable or CBD
variable is substituted for a predicate variable. Since blank nodes may not ap-
pear in subject positions, the resulting triple is not included in the Xcerptrdf

result.
• A literal lit is substituted for a node variable L appearing in subject position

in the construct term. In this case a fresh blank node B is substituted for the
variable instead of the literal. If L additionally appears in object position, also
the literal itself is substituted for L, but the triples containing lit in subject
position are omitted.

Since the last alternative gives an operational semantics to programs which would be
either considered invalid under the first approach or would throw runtime errors under
the second, Xcerptrdf favors the casting of variable bindings. We acknowledge, how-
ever, that the first approach may make more sense for unexperienced users in that it is
easier to understand, and that the second approach may uncover errors in the authoring
of Xcerptrdf programs, which would pass unnoticed by the third approach.
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2.3.3 Rules—Separation of Concern and Reasoning

Having introduced queries for both XML and RDF data, this section combines both
features to realize the truly versatile use case already sketched in Section 2.3.1. Starting
out from the result pages for the terms “LinkedIn Munich” of a popular Web search
engine, links to relevant LinkedIn profile pages are extracted by the use of rich XML
query patterns with logical variables. In a second step, the profile pages are retrieved
and semantic microformat information is exploited to gather reliable information about
the users. Finally, in a third step, this information is enriched by semantic information
from FOAF profiles in RDF format using the RDF processing capabilities of Xcerpt.

In this use case Xcerpt’s capability of handling XML query terms and RDF construct
terms in the same rule (and the other way around) comes in particularly handy. As in
pure XML querying and in pure RDF querying, the interface between querying and
construction is a substitution set. Substitution sets generated by XML query terms dif-
fer in the allowed variable types from substitution sets generated by RDF query terms.
As a result, there must either be a way to transform XML substitution sets to RDF
substitution sets and reversely, or the application of XML substitution sets to RDF con-
struct terms and the application of RDF substitution sets to XML construct terms must
be defined. While both ways are feasible, we present here the first alternative, since it is
less involved.

Xcerptxml Query Terms and Xcerptrdf Construct Terms and vice versa in the Same
Rule. Note that it is Xcerpt’s underlying principle of clear separation of querying and
construction that allows for, e.g, an XML query term in a rule body and an RDF con-
struct term in the head of the same rule. The applicability of this design principle re-
mains untouched if further types of query and construct terms are introduced (e.g. for
topic maps or queries aimed at specific microformats or at pages of a Semantic Wiki).
The only requirement for these new types of queries and construct terms are the defini-
tion of the following four algorithms: (1) a simulation algorithm matching queries with
data and returning a substitution set (a set of set of variable bindings),17 (2) an applica-
tion algorithm for substitution sets that fills in bindings for logical variables occuring in
a construct term18, (3) a mapping from variable bindings in the new format to variable
bindings in the other formats (until now only XML and RDF) and finally (4) a mapping
from XML and RDF variable bindings to variable bindings in the new format.

The following list defines informally the mapping of XML bindings to RDF and
reversely.

– The Xcerptrdf URI !http://www.example.org/#foo is mapped to the
Xcerptxml qualified name eg:#foo with the namespace prefix eg bound to
the namespace http://www.example.org/. We adopt the convention that the
Xcerptrdf URI is split into namespace and local name at the last ’/’, but other
methods are also conceivable.

– The Xcerptrdf blank node _:B is mapped to the Xcerptxml element name _:B.

17 See Tables 2 and 3 for an informal description of this algorithm for Xcerptrdf.
18 Table 5 gives the relevant ideas for this algorithm in Xcerptrdf.
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– The Xcerptrdf literal “some literal” maps to the Xcerptxml text node “some lit-
eral”19.

– The Xcerptrdf qualified name eg:anna is mapped to the Xcerptxml qualified name
eg:anna. An appropriate namespace binding is added to the Xcerptxml term. Im-
plementations may choose to expand the qualified name to a URI u, and map u
instead.

– The Xcerptrdf term a{ b → c } maps to the Xcerptxml term a{ b{ c

} } in correspondance to past work on querying XML serializations of
RDF with Xcerpt [21]. Similarly, the Xcerptrdf term _:X{ a → b{ c →
‘‘another literal’’ } } is mapped to the Xcerptxml term _:X{ a { b {

c { ‘‘another literal’’ } } } }.
– The Xcerptrdf shorthand notation ex:name{ is [ex:Person → ex:Name ] }

is expanded to its corresponding unabbreviated term as introduced in Section 2.3.2.
Then this longer notation is mapped to an Xcerptxml term as described above.

– The Xcerptrdf reification term a{ believes → _:S{ < b{ c → d } } is
mapped to the Xcerptxml term a { believes _:S { xcrdf:reification

{ b { c { d } } } } } with the namespace prefix xcrdf bound to
http://www.xcerpt.org/xcrdf.

– The Xcerptrdf term _:X { bagOf { a, b, c } } is mapped to the Xcerptxml

term _:X { xcrdf:bag { a, b, c } }. Expansion to the normalized RDF
syntax and applying the standard mapping to Xcerptxml terms could also be in-
troduced. The choice of the conversion is, however, not of primary importance,
as long as all information present in the Xcerptrdf term is preserved. Additional
transformation rules can be easily written to change the XML outcome and be pro-
vided as an Xcerptxml module (See [11] for more about Xcerpt modules). Xcerptrdf

sequences, alternatives and lists are treated in the same manner.
– The Xcerptxml qualified name eg:a is mapped to the Xcerptrdfqualified name eg:a

and the binding for the namespace prefix eg is preserved.
– The Xcerptxml unqualified name a is mapped to the Xcerptrdfqualified

name xcxml:a with the namespace prefix xcxml bound to the namespace
http://www.xcerpt.org/xcxml. Note that the RDF graph data model does
not allow for local names other than blank nodes. The unqualified name is not
mapped to a blank node to avoid naming conflicts with other resources that may be
contained in the resulting RDF Graph.

– The Xcerptxml term eg:a[ eg:b, eg:c ] is mapped to the Xcerptrdf term
eg:a{ xcxml:child → eg:b, xcxml:child → eg:c }, and the binding
for the namespace prefix eg is preserved. Note that since RDF graphs are always
considered to be unordered, Xcerptrdf does not provide square brackets, and the
information about the order is lost in this mapping. Encodings of XML terms as
RDF graphs that preserve the order are conceivable.

– The Xcerptxml term eg:a(id="2"){ eg:b } is converted to the Xcerptrdf

term eg:a{ xcxml:child → eg:b }, i.e. XML attributes are not mapped to
Xcerptrdf terms. Attribute names and values may, however, also be inserted into an

19 We leave the details of treating typed RDF literals and literals with a language tag as future
work.

http://www.xcerpt.org/xcrdf
http://www.xcerpt.org/xcxml
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RDF graph by binding them to label variables. Also in this case, a different kind of
mapping may be chosen, but it turns out that for the applications considered in this
report, this simple mapping suffices.

Transforming LinkedIn embedded Microformat information to DOAC and FOAF
Reconsider the Xcerptxml query term in Listing 1.4. It extracts bindings for the variables
FirstName, LastName and Duration. It is easy to construct RDF data from those
variable bindings with an Xcerpt rule featuring the construct term in Listing 2.3.3.

declare namespace doac "http://ramonantonio.net/doac/0.1/"
2 declare namespace foaf "http://xmlns.com/foaf/0.1/"

4 _:Person {
rdf:type → foaf:Person,

6 foaf:firstName → var FirstName,
foaf:surname → var LastName,

8 all doac:experience → _:Exp {
doac:title → "Research Assistant",

10 doac:duration → var Duration
}

12 }

Note the semantics of the all construct in Listing 2.3.3. The all construct serves to
collect a set of variable bindings within a data term to be constructed. The number of
data terms generated for construct term c preceded by an all construct depends on the
set of free variables inside of c, and the substitution set which is applied to the con-
struct term. A variable v is free within a term t, if it does not occur within the scope
of an all construct inside of t. Thus the variable Duration is free within the term
doac:duration ..., but not inside of the entire construct term of Listing 2.3.3. The
set of free variables in the term c :=doac:experience → _:Exp { ... } follow-
ing the all keyword is the unary set {Duration}. The substitution set applied to the
construct term is thus separated according to the bindings of the variable Duration

only. Then each of the resulting substitution sets is applied to c independently and in-
cluded as a subterm of the outermost foaf:Person label. Whenever a substitution set
is applied to a term with a blank node, a new instantiation of this blank node is created,
as showcased in Table 5. This is a major difference to application of substitution sets to
terms starting with URIs.

Alternatively, one might want to create a single RDF bag enumerating the work-
ing relationships a person has had. This could be achieved by the following Xcerptrdf

construct term:

_:Person {
2 rdf:type → foaf:Person,

foaf:firstName → var FirstName,
4 foaf:surname → var LastName,

_:Experiences {
6 bagof {

all _:Exp {
8 doac:title → var Title,
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doac:duration → var Duration
10 }

}
12 }
}

Once the microformat information from the LinkedIn page is transformed to the
more precise RDF representation at the aid of this rule, it can be combined with RDF
data located anywhere on the Web. These FOAF documents can be discovered in a very
similar fashion as has been done for the LinkedIn profile pages in Section 2.3.1.

Since LinkedIn does not provide the hash sums of email-addresses or other globally
unique identifiers for persons within their profile pages, combining the extracted RDF
information will rely on simple joins over the names of people, which is not particularly
reliable – see [99] for an overview of the problems that may occur.

With OpenID [131] becoming the de facto standard for distributed authentication and
single-sign-on on the Web and with the largest corporations involved in online activities
such as Google, Yahoo, Microsoft, etc already joining the bandwagon, it seems likely
that also LinkedIn will provide an open identifier within its profiles. Also the exten-
sion of the FOAF vocabulary to provide for OpenIDs within FOAF profiles is already
discussed. In the presence of this information, the combination of the collected micro-
format data and other RDF resources can easily and reliably achieved using Xcerptrdf.

2.3.4 State of the Art: The SPARQL Query Language and Its Extensions

With the publication of the SPARQL W3C recommendation on January 2008, SPARQL
has become the first query language that has been standardized by a major standard-
ization body. In contrast to most other languages that have been proposed for RDF
querying, SPARQL is, due to its triple syntax, quite easy to understand and use for
programmers familiar with relational query languages.

In this section, SPARQL is introduced by example, its semantics according to [124]
is recapitulated, and several extensions to SPARQL are presented. Throughout the pre-
sentation, the commonalities and differences to Xcerptrdf are highlighted.

A SPARQL query consists of the three building blocks pattern matching part, so-
lution modifiers and output. In addition there are four different kinds of query forms.
Arguably the most popular one is the select query form, which is inspired by SQL and
returns so-called solution sets, the counterpart of Xcerpt substitution sets in SPARQL.
An example of a select query is given in Listing 1.8. In case of a select query, the
output part of the query is a selection of distinguished variables, i.e. the specification
of the variables of interest in the query. If no variable bindings are of interest, the ask
query form is to be used. It simply gives a yes/no answer to the question if a given
query pattern is entailed by the RDF graph being queried. A useful query form for RDF
graph transformations is the construct query form, which does not return single values,
but entire RDF graphs as a result. There are, however certain limitations to the blank
node construction (in database theory termed value invention) in the SPARQL con-
struct query form, see [39].A final query form is given by the describe key word which
pays attribute to the fact that a blank node identifier returned as a variable binding in
a SPARQL ask-query is somewhat useless, since it only asserts the fact that something
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exists, and cannot be reused in a follow-up query to extract further information about
the resource in question. When using the describe query form, not only single iden-
tifiers are returned as variable bindings, but also descriptions of resources. The exact
nature of a resource description is left unspecified in the SPARQL recommendation, but
a sensible solution would be the one of Concise Bounded Descriptions [143].

The SPARQL query form which is most similar to Xcerptrdf rules is the construct
query form. Xcerptrdf does not distinguish between query forms, but is strongly answer
closed in the sense that every Xcerptrdf data term is also a Xcerptrdf query, and in that
every result of an Xcerptrdf query is again an RDF graph. While SPARQL construct
queries are answer closed, the remaining query forms are not. However, SPARQL ask
and select queries can be simulated by construct queries. Similarly, boolean queries
can be formulated in Xcerptrdf by interpreting the empty RDF graph as false and all
other RDF graphs as true, and tuple-generating queries can be expressed in Xcerptrdf

by wrapping the tuples within RDF containers or similar constructs. Describe queries
are expressed in Xcerptrdf by using concise-bounded-description variables.

All four SPARQL query forms make use of the pattern matching part, which is de-
scribed next.

SPARQL graph patterns. SPARQL is weakly answer closed in the sense that any
RDF graph is also a valid SPARQL graph pattern. But only in the case of the construct
query form, also the result of a SPARQL query is again an RDF graph. The syntax of
SPARQL graph patterns resembles the one of Turtle, but is augmented with variables.
Listing 1.8 (from [141]) shows a query to retrieve the name and email address of persons
within an RDF graph using the FOAF vocabulary. With the term graph pattern, one
refers to the set of triples within curly braces in lines 4 to 5. The select-clause serves
to specify the distinguished variables of the query. Any variable appearing within the
graph pattern, but not within the select-clause is called a non-distinguished variable.
The terms distinguished and non-distinguished variables have thus the same meaning
as in conjunctive queries in database theory.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox

3 WHERE
{ ?x foaf:name ?name .

5 ?x foaf:mbox ?mbox }

Listing 1.8. A simple SPARQL query

SPARQL allows the selection of variables that do not appear within the graph pattern
as shown in Listing 1.9. The empty query pattern matches with any RDF graph, and the
variable ?x in the select clause does not appear within the query pattern. In database
theory, such rules are said to violate the principle of range-restrictedness. In fact the
intuitive semantics of non-range-restricted rules is unclear and varies from one language
to another. While according to [141] Listing 1.9 is supposed to return a single solution
with no binding for the variable ?x, unbound variables are forbidden within construct
clauses of SPARQL queries. In Prolog, on the other hand, the non ground fact p(X)
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simply remains uninstantiated and can be unified with ground bodies of other queries
such as p(a).

SELECT ?x
2 WHERE {}

Listing 1.9. A non-range-restricted SPARQL query matching with arbitrary RDF graphs

Since queries such as the one in Listing 1.9 can also be expressed with the SPARQL
ask query form, and since SPARQL does not allow any kind of rule-chaining, non-
range-restricted queries do not add to the expressive power of the SPARQL language,
but cause the semantics of the language to be more complex than it needs to be.

The graph pattern in Listing 1.8 is termed a basic graph pattern. It consists of two
triple patterns, which are ordinary RDF triples except that subject, predicate and object
may be replaced by SPARQL variables. Basic graph patterns may contain filter expres-
sions in addition to a set of triple patterns. Filter expressions use the boolean predicates
‘=’, ‘bound’, ‘isIRI’ and others to construct atomic filters. Additionally the logical
connectives ‘&&’ for logical conjunction, ‘||’ for logical disjunction and ‘!’ for logical
negation are used to construct compound filters from atomic ones. Atomic and com-
pound filters are used to eliminate sets of variable bindings that do not fulfill the filter
requirements.

Besides basic graph patterns, SPARQL provides group graph patterns that may either
be unions of graph patterns, optional graph patterns or named graph patterns. Unions
of graph patterns are similar to disjunctions in the bodies of rules in logic program-
ming. For the query to succeed, only one of the graph patterns in the union must be
successful, and the solution sets from all graph patterns in the union are collected to
yield the solution set for the union. Optional graph patterns are patterns that may bind
additional variables besides the ones present in the non-optional parts of a graph pat-
tern, not causing the entire query to fail if the optional graph pattern fails. In contrast
to unions of graph patterns, the non-optional part is obliged to match. Named graph
patterns are introduced into the SPARQL language, because Semantic Web databases
may hold multiple RDF graphs, each identified by a URI. To explain the concept of
querying named graphs in SPARQL, the notion of a dataset must be introduced. A
dataset is a pair (d,N) where d is the default graph to be queried, and N is a set of
named graphs. Datasets are specified by the FROM and FROM NAMED clauses in
SPARQL. Whereas the default graph is the merge of all RDF graphs specified in the
FROM clause, the FROM NAMED clauses specify the set N of named graphs, and re-
main unmerged. The GRAPH key word must subsequently be used to refer to named
graphs in a WHERE clause as Listing 1.10 (taken from [127]) illustrates.

SELECT ?N WHERE { ?G foaf:maker ?M .
2 GRAPH ?G { ?X foaf:name ?N } }

Listing 1.10. Querying named graphs in SPARQL

As [127] points out, the query in Listing 1.10 is somewhat unintuitive, since
SPARQL engines compliant with the W3C specification will search for answers to the
triple pattern ?X foaf:name ?N only in named graphs, but not in the default graph.
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The notion of named graphs is discussed in more detail in [45], and can be compared
to grouping XML data in XML documents.

Blank nodes in SPARQL graph patterns. Blank nodes in SPARQL graph patterns
act in the same way as non-distinguished variables, and therefore cannot be used to
reference specific blank node identifiers within an RDF graph. Hence, one could substi-
tute an arbitrary blank node for the variable ?x in Listing 1.8 and still obtain the same
result.20

Before proceeding, we will quickly discuss this treatment of blank nodes in
SPARQL. When issuing a query with a blank node, newcomers to the SPARQL lan-
guage may have five different expectations in mind:

– Syntactic equality: The blank node in the query is supposed to match only with the
data that uses exactly the same blank node identifier, as it is the case for URIs in
graph patterns. While this is a valid desire, it would fall into the domain of syntactic
processing of RDF data. A query on two equivalent RDF graphs should obviously
return equivalent answers. But what is a sensible notion of equivalence in this con-
text? As with all data items in information processing, one may introduce several
equivalence relationships for RDF graphs. One such equivalence relationship is
bi-entailment, and it is arguably the most sensible one for RDF graphs. Another
such equivalence relationship would be syntactic equality, and there is certainly the
necessity to compare RDF graphs for syntactic equality, but then we could also sim-
ply consider them as plain text files and run a UNIX diff command to test them
for equality. With the decision for syntactic equality for blank nodes in queries, one
would obtain different results for equivalent RDF graphs (under bi-entailment), and
for this fact the decision of SPARQL not to use syntactic equality is a sensible one.

– Treatment as non-distinguished variables: The blank node is supposed to act as a
non-distinguished variable as explained above. One minor problem with this under-
standing is that there are two alternative ways of specifying the same query, which
may be confusing for new-comers to the language. Another more important issue
with this solution is that while SPARQL remains answer closed in the sense that any
RDF graph can be used as a SPARQL query, the answer to such a query would not
only be graphs that are equivalent or contain an equivalent graph, but also graphs
that are more specific. The simple SPARQL graph pattern _:X a b will also return
true on the RDF graph a b c.

– Banning of blank nodes within queries: As the inclusion of blank nodes within
queries does not add expressive power to SPARQL graph patterns, an obvious ap-
proach is to ban blank nodes from graph patterns. This approach has the advantage
that SPARQL users cannot be fooled to assume a different semantics of blank nodes
in graph patterns other than non-distinguished variables. On the other hand, this ap-
proach has the obvious drawback that SPARQL is not answer closed in the sense
that an RDF graph containing blank nodes cannot be viewed as a SPARQL query.

– Treatment as ordinary variables: Since blank nodes are viewed as existentially
quantified variables in RDF graphs, one might view them as plain variables in

20 Note that one could not use a blank node at the place of the other two variables in Listing 1.8,
since they are distinguished.
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queries as well, and specify in the select-clause if they are to be treated as distin-
guished variables or non-distinguished variables. This solution has the plain advan-
tage that any RDF graph can be viewed as a query, but shares the same deficiencies
with respect to answer closedness as treating them as non-distinguished variables.
Clearly this approach would mean that there is no longer the necessity for SPARQL
variables.

– Matching blank nodes only: A final intuition query authors may have in mind is
that blank node identifiers in queries must be mapped to blank node identifiers in
the data only. None of the above approaches can express this semantics. The graph
pattern _:X b c would thus return true when evaluated on the graphs _:X b c

and _:Y a b, but it would not match with a b c. Thus with answer closedness in
mind, this approach ensures that an RDF graph q considered as a SPARQL query
only matches with RDF graphs that are equivalent or have a subgraph equivalent to
q. The major drawback of this solution is, however, that the same query may once
return true for an RDF graph g1 and false for an equivalent (under bi-entailment)
RDF graph g2. To see this, consider again the query _:X b c and the graphs g1 :=
_:Y b c, a b c and a b c. Under the light of this deficiency and with the avail-
ability of the filter predicate isBlank in SPARQL that can be used for imitating
this blank node semantics, it is a good choice not to adopt this treatment of blank
nodes in SPARQL graph patterns.

Testing RDF Graphs for Equivalence in SPARQL. None of the above solutions are
completely satisfactory in that they do not allow the specification of a query q that
returns true on exactly the equivalence class Σ⇔(g) induced by RDF bi-entailment for
an arbitrary graph g containing a blank node.

Note that SPARQL query patterns cannot express the above query even in the ab-
sence of blank nodes. Consider the RDF graph g a b c consisting of a single triple.
Evaluating g as a SPARQL query pattern will yield all RDF graphs that contain g, but
there is no way of expressing a query that will find all equivalent graphs.

In other words, a SPARQL basic graph pattern q returns true on an RDF graph g iff
g rdf-entails21 n(q) where the normalization operator n replaces variables in q by blank
nodes (multiple occurrences of the same variable by the same blank node identifier,
and distinct variables by distinct blank nodes, that do not occur anywhere else in q).
Hence, with basic SPARQL graph patterns it is only possible to demand that something
be entailed by the graph g to be queried, but not to restrict the entailments of g. The
development of the language Xcerptrdf, on the other hand, is influenced by the assump-
tion that query authors would like to both demand some entailments from a graph as
well as demand that something is not entailed by it.

There is, however, the possibility to express such queries in SPARQL at the aid of
optional graph patterns, SPARQL filter constructs, and the SPARQL bound predicate.
The query in Listing 1.11 only returns true for the one-triple graph a b c. For all other
graphs it returns false. The graph pattern first ensures that the triple a b c is in fact
contained in the RDF graph. Secondly it uses an optional pattern to find other triples

21 There are different variants of RDF entailment. In this section we mean simple RDF entailment
when when speaking of RDF entailment only.
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in the graph. The filter inside the optional pattern makes sure that the optional pattern
does not match with a triple other than a b c. The second filter expression makes sure
that the optional graph pattern was unsuccessful by testing for a binding of the variable
?x.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 ASK
WHERE { a b c .

4 OPTIONAL { ?x ?y ?z
FILTER ( ?x != a || ?y != b || ?z != c )

6 }
FILTER (!bound(?x))

8 }

Listing 1.11. A query that only matches with a graph consisting of a single triple (a b c)

Before proceeding to the study of the complexity and semantics of SPARQL, we will
quickly discuss how to test for equivalence with RDF graphs containing blank nodes.
Consider the graph g = _:X b c . a b d . consisting of two triples only with a
single occurrence of a single blank node. When formulating a SPARQL query to return
true on exactly the set of RDF graphs equivalent to g, one first needs to test for the
presence of the two triples and then for the absence of triples that are different from
the two ones given in the graph. While the query in Listing 1.12 is all but trivial to
figure out, testing graphs for equivalence in SPARQL becomes even more complex in
the presence of multiple occurrences of the same blank node identifier, since in this case
it does not suffice to test for the absence of single triples only, but one has to test for the
absence of multiple triples connected via blank nodes.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 ASK
WHERE {

4 a b c .
?blank b d

6 OPTIONAL { ?x ?y ?z
FILTER ( ( ?x != a || ?y != b || ?z != c ) ) &&

8 ( !(isBlank(_?x1)) || ?y1 != b || ?z != d ) )
}

10 FILTER (!bound(?x1))
}

Listing 1.12. A query that only matches with a graph consisting of a single triple (a b c)

Obviously the queries in Listing 1.11 and 1.12 are much more complicated than they
need to be. This is due to the absence of explicit negation in SPARQL, a design decision
that makes implementation easier and circumvents the non-monotonicity of negation as
failure.

Semantics and Complexity of SPARQL. [124] recursively defines the semantics of
SPARQL query patterns in terms of relational algebra operators as follows:
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– The semantics [[t]]G of a possibly non-ground triple t evaluated over an RDF graph
G is the set of mappings μ such that the domain of μ is the set Var(t) of variables in
t and the application μ(t) of the mapping μ to t is in G. The application of a mapping
μ to a triple pattern t is simply the triple pattern with the variables in t replaced by
their bindings in μ.

– The semantics [[(P1 AND P2)]]G of a conjunction of query patterns evaluated over
the RDF graph G is defined as the set {[[P1]] �� [[P2]]} = {μ1 ∪μ2 | μ1 ∈ [[P1]],μ2 ∈
[[P2]],μ1 and μ2 are compatible} of unions of compatible pairs of mappings of P1

and P2. In this context two mappings are termed compatible if they coincide on the
bindings of their common variables. The semantics of the conjunction can thus be
thought of as the natural join over the relations defined by the conjuncts.22

In [127] the notion of compatibility of pairs of mappings is refined to brave com-
patibility, cautious compatibility and strict compatibility. While in the absence of
unbound variables within mappings, all three notions of compatibility coincides,
in the presence of unbound variables, only the brave compatibility coincides with
compatibility as understood by [124].

– Two mappings σ1 and σ2 are bravely compatible if they coincide on the bind-
ings of their common bound variables. Brave compatibility hence does not re-
strict the bindings of variables that are unbound in either σ1, σ2 or both.

– σ1 and σ2 are cautiously compatible if for all common variables – no matter if
bound or unbound – the bindings coincide.

– σ1 and σ2 are strictly compatible if they are cautiously compatible and if addi-
tionally there is no common variable of σ1 and σ2 which is unbound in both.

– The semantics of a graph pattern [[P1 OPT P2]]G including an optional construct
over an RDF graph G is defined as the left outer join between [[P1]] and [[P2]].

– Finally the semantics [[P1 UNION P2]] of a union of two graph patterns is defined
as the union of [[P1]] and [[P2]].

[124] extend the semantics to SPARQL queries including filter expressions and show
some important properties of SPARQL queries:

– Generally the expressions

(P1 AND (P2 OPTIONAL P3))

and

(P1 AND P2)OPTIONAL P3))

are not semantically equivalent, but they are equivalent for the class of well-defined
graph patterns introduced in the same work.

– In the presence of optional patterns, AND is only commutative for well-designed
graph patterns.

Some results on the complexity of query evaluation in SPARQL from [124] are the
following:

22 Note that the terms relation and sets of mappings can be used interchangeably here.
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– The combined complexity of SPARQL graph patterns involving only AND and
FILTER expressions is in O(|P| · |D|) where |D| is the size of the data and |P| is the
size of the query. This result is based on the assumption that the application of a
mapping μ to a triple t is achieved in a constant amount of time, independently of
the number of variables in μ.

– The combined complexity of SPARQL graph patterns involving AND, FILTER and
UNION is NP-complete. The proof is by polynomial reduction of the satisfiability
problem of propositional logic formulas in conjunctive normal form to SPARQL
queries.

– The combined complexity of SPARQL graph patterns including AND UNION and
OPTIONAL is PSPACE-complete, independently of the presence or absence of
FILTER expressions.

– The data complexity of SPARQL graph patterns is in LOGSPACE.

Extensions of SPARQL. SPARQL being the most popular RDF query language and
the only one which has been standardized by some standardization organization such
as the W3C, it has received considerable attention from the research community. Its
expressiveness and complexity has been formally studied, and as a result of its lim-
ited expressiveness, extensions of SPARQL in different directions have been proposed.
With the absence of path expressions in SPARQL, nSPARQL[125] has been suggested
to enhance the expressive power of SPARQL into this direction. The necessity of com-
bined processing of XML and RDF has been acknowledged by XSPARQL[7], an exten-
sion of XQuery to RDF processing at the aid of SPARQL WHERE and CONSTRUCT
clauses. Just as SQL allows the deletion and insertion of data and creation of new ta-
bles, SPARQL update [140] and SPARLQ+23 extend SPARQL with facilities to manip-
ulate and create RDF graphs. Finally [44], [127] and [136] eliminate the restriction of
SPARQL to single rules by allowing possibly recursive multi-rule programs.

nSPARQL. nSPARQL[125] is an extension of SPARQL to support arbitrary-depth
navigation in SPARQL queries. It arose from the need to answer queries for finding all
nodes reachable from a given node via a given predicate name, a disjunction of predicate
names or simply for finding all transitively connected nodes. The syntax of nSPARQL is
heavily influenced by the syntax of XPATH, and nSPARQL borrows the notions of axes,
node tests, reverse axes, step expressions, and path predicates from XPATH. While path
expressions in XPATH evaluate to a set of nodes of an XML document, path expressions
in nSPARQL evaluate to a set of pairs of nodes within of an RDF graph. This is due to
the fact that XPATH expressions are always evaluated with respect to a context node,
while this is not necessarily the case for nSPARQL expressions.

The following examples illustrate the syntax and semantics of nSPARQL path ex-
pressions evaluated over an RDF graph G:

– next::a allows the navigation from one node in an RDF graph to another node
via an edge labelled a in a composed nSPARQL path expression. It evaluates to all
pairs of nodes connected via a predicate labeled a: {(x,y) | (x,a,y) ∈ G}. The axis
next−1 can be used to navigate in the reverse direction.

23 http://arc.semsol.org/home

http://arc.semsol.org/home
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– edge::a allows the navigation from a node x to an edge y within an RDF graph,
if the graph contains the triple (x,y,a). It evaluates to {(x,y) | (x,y,a) ∈G}. The axis
edge−1 is used to navigate from predicates of triples to their subjects.

– node:a allows the navigation from an edge x to a node y if the corresponding triple
has subject a. It evaluates to {(x,y)|(a, x,y) ∈ G}. node−1 is used for navigating in
the reverse direction.

– nSPARQL path expressions are combined just like XPATH step expressions by the
/ sign: The nSPARQL expression next::a/next::b finds pairs of nodes con-
nected via two triples with predicate names a and b over an arbitrary intermediate
node. The URI of the intermediate node can be checked by using the self axis:
next::a/self::c/next::b.

– The evaluation of nested nSPARQL path expressions is more complex. The seman-
tics of edge::[exp] is given by {(x,y) | ∃z,w.(x,y,z) ∈G∧(z,w) ∈ [[exp]]G}, where
[[exp]]G is the semantics of exp over G. Nested path expressions including the axes
self, next and node are similarly involved.

SPARQLeR. A different approach for extending SPARQL with regular path expres-
sions is taken by the language SPARQLeR described in [104]. In contrast to nSPARQL,
entire paths are bound to so-called path variables, which are distinguished from ordi-
nary SPARQL variables in that they are prefixed by % instead of ?. The bindings of path
variables are themselves represented as RDF sequences, which allows to put further re-
strictions on the bindings in SPARQL WHERE clauses, as the following example from
[104] demonstrates:

CONSTRUCT %path
2 WHERE { r %path s . %path rdfs:_1 p . }

Listing 1.13. A simple SPARQLeR path query

The query in Listing 1.13 finds all directed paths between a resource r and a re-
source s that have p as the first predicate. Bindings for the path variable %path in the
above query are of the form p1,n1, p2,n2, . . . , pi,ni, pi+1, such that the triples (r, p1,n1),
(n1, p2,n2), . . ., (ni−1, pi,ni) and (ni, pi+1, s) are in the queried graph. Since these bind-
ings are represented as RDF sequences (as exemplified in Listing 1.14), triples in the
same WHERE clause can be used to put restrictions on the bindings to path variables.

_:Path1 rdfs:_1 p1,
2 _:Path1 rdfs:_2 n1,
_:Path1 rdfs:_3 p2,

4 ...

Listing 1.14. The RDF representation of bindings to SPARQLeR path variables

Since bindings to SPARQLeR path variables are represented as RDF sequences rep-
resented by blank nodes, the use of path variables within SELECT query forms hardly
makes sense. Imagine Listing 1.13 with the SELECT keyword at the place of the CON-
STRUCT keyword. The result of this query is a list of blank nodes generated by the
SPARQLeR query generator, which means that the only information returned is the
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number of paths found within the queried graph. To deal with this inconvenience,
SPARQLer introduces a list operator that extracts all resources from the paths. In
the case of multiple bindings for a path variable, however, the application of the list
operator merges the resources from all paths into a single list, thereby preventing the
user from recognizing the actual paths.

SPARQLeR provides a second method for constraining paths at the aid of a ternary
regex method to be used within FILTER clauses of SPARQLeR queries. The first
argument to this method is the name of the path variable whose bindings are to be
constrained, the second one is a regular path expression, and the third are options spec-
ifying whether the path must be directed, if it must be made up of schema classes,
instances, or literals, and if rdfs:subPropertyOf inferencing is to be considered.
SPARQLeR regular path expressions allow alternatives, concatenation, Kleene’s star,
wildcards, negations and reverse predicates. The SPARQLeR length method is used
to find paths of a minimal, maximum or exact length.

While SPARQLeR seems to be a sensible suggestion for an extension of SPARQL,
there are two obvious points of criticism:

– The fact that predicate names can be specified within path expressions, but subjects
and objects cannot, seems to be an arbitrary design choice which is not motivated
in [104].

– Representing bindings to variables as RDF sequences that are not part of the original
RDF graph and allowing these RDF sequences to be queried within the SPARQLeR
WHERE clause may be confusing for novices in that the WHERE clause is success-
fully evaluated on a graph which does not entail every single triple of the clause.

XSPARQL. [7] advocates the reuse of plain XML and HTML data of the Web as
RDF data on the Semantic Web, and vice versa and introduces the notions of lifting
– i.e. transforming “syntactic” XML data into “semantic” RDF data – and lowering
– transforming RDF data into XML. Starting out from the insight that current tools
and languages are not adequate for translating between syntactic and semantic web
data, they propose an integration of SPARQL into XQuery, which they dub XSPARQL,
together with use-cases and a formal semantics. Since it aims at being data-versatile in
the same sense as Xcerpt does, we take a closer look at XSPARQL in this section.

<relations>
2 <person name="Alice">

<knows>Bob</knows>
4 <knows>Charles</knows>

</person>
6 <knows>Charles</knows>

</person>
8 <person name="Charles/>
</relations>

Listing 1.15. XML example data

1 @prefix foaf: <...foaf/0.1/>.
_:b1 a foaf:Person;

3 foaf:name _:b2;
foaf:knows _:b3 .

5 _:b2 a foaf:Person;
foaf:name "Bob";

7 foaf:knows _:b3 .
_:b3 a foaf:Person;

9 foaf:name "Charles" .

Listing 1.16. RDF example data
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Listing 1.17 shows how the lifting task is solved in XSPARQL for the example data
given in Listings 1.15 and 1.16. In line 3 all names of persons of the XML input file
are selected. Names are either given as the name attribute of a person element or as
XML text nodes within knows elements. In order to make sure that the list $persons
contains each name exactly once, duplicates are elminitated in the where clause by
testing the absence of elements on the following axis that contain the same name. In
this way duplicates are eliminated and only the last occurrence of a name is selected.
In line 6, a numeric identifier is computed for each person which serves to construct
unique blank nodes in the SPARQL construct pattern starting at line 8. The construct
keyword is not part of the XQuery syntax, but newly introduced in XSPARQL to mark
the beginning of a SPARQL construct pattern. Inside of SPARQL construct patterns,
XQuery code is embedded within curly braces. In this way nested XSPARQL queries
are constructed. While the outer XSPARQL query (lines 3 to 10) serves to represent the
persons found in the XML source as RDF blank nodes with associated names and type,
the inner SPARQL query translates the acquaintance relationships. Note that the triples
constructed in line 18 are duplicates of the ones constructed in line 10, i.e. this line is
superflous.

declare namespace foaf="...foaf/0.1/";
declare namespace rdf="...-syntax-ns#";

3 let $persons := //*[@name or ../knows] return
for $p in $persons
let $n := if ( @p[@name] ) then $p/name else $p

6 let $id := count($p/preceding::*) + count($p/ancestor::*)
where not(exists($p/following::*[@name=$n or data(.)=$n]))
construct

9 _:b{$id} a foaf:Person;
foaf:name { data($n) }.

{ for $k in $persons
12 let $kn := if ( $k[@name] ) then $k/@name else $k

let $kid := count($k/preceding::*) + count($k/ancestor::*)
where $kn = data(//*[@name=$n/knows) and

15 not(exists($kn/../following::*[@name=$kn or
data(.)=$kn]))

construct
_:b{$id} foaf:knows _:b{$kid} .

18 _:b{$kid} a foaf:Person .
}

Listing 1.17. Lifting in XSPARQL

XSPARQL does not set out to be a query language that natively supports XML and
RDF querying in an intuitive and coherent way. Instead it explores how SPARQL can
be integrated into XQuery, how the semantics of this integration can be defined and pro-
poses an implementation on top of existing XQuery and SPARQL engines. XSPARQL
succeeds in its coherent treatment of schema heterogeneous RDF/XML files, and due
to the large expressiveness of XQuery it allows the formulation of many queries not ex-
pressible in SPARQL alone. On the other hand it suffers from the following deficiencies:
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– Intertwined querying and construction. As can be observed in Listing 1.17, there is
no clear separation of querying and construction in XSPARQL queries, a deficiency
which is inherited from XQuery. While it is clear that there are queries that cannot
be expressed by a single rule with a single query and construction pattern, this is
not the case for the query above.

– Complicated blank node construction. An RDF query language should support au-
tomatic construction of blank nodes without the need of computing blank node
identifiers within a program. Since blank node construction is essentially the same
as the introduction of skolem terms within logic programs, languages such as RD-
FLog and Xcerpt achieve the same result in a much easier and straightforward way.

– Absence of path patterns. While XSPARQL inherits the complexity of XQuery,
it suffers also from the limitations of SPARQL such as no support for containers,
collections and reification, and limited support for negation. Above all, XSPARQL
lacks rich path patterns to navigate RDF graphs at arbitrary depth, such as the ones
proposed by nSPARQL and SPARQLeR.

– Jumbling of query paradigms. Due to the popularity of XQuery as an XML query
language and SPARQL as an RDF query language, Listing 1.17 is easy to under-
stand for most people familiar with (Semantic) Web querying. For people unfa-
miliar with one or both of these languages, it may be confusing that a functional
language such as XQuery is intermingled with a rule based language such as
SPARQL. With Xcerptrdfwe introduce a purely rule based language based on the
clear design principles of Xcerpt.

SPARQL update. Similar as for the XML query language XQuery, SPARQL has been
conceived primarily as a data selection language, not as a data manipulation language.
In fact, the SELECT, DESCRIBE and ASK query forms of SPARQL can only be used
to extract parts of a graph, not to manipulate data or construct new data. The SPARQL
CONSTRUCT query form allows limited transformations between one RDF dialect to
another, but cannot be used to modify existing RDF stores. The W3C member submis-
sion SPARQL update sets out to elminate this restriction.

SPARQL update consists of two sets of directives – one for updating graphs and the
other for graph management. The set of directives for updating existing RDF graphs
with SPARQL update constists of the following seven commands:24

– The DELETE DATA FROM directive is used to delete a set of ground triples from a
named or the default graph. In the latter case, the FROM keyword is omitted.

– The INSERT DATA INTO statement is used to insert a new set of ground triples
into an existing graph identified by a URI. If the triples are to be inserted into the
default graph, then the INTO keyword is omitted.

– The MODIFY operation consists of a delete and an insert statement (see below)
issued on the same graph.

– The DELETE FROM ... WHERE operation is used to delete a set of triples from a
graph. In contrast to the DELETE DATA operation discussed above, this command

24 We only briefly sketch the commands for the sake of brevity.
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may specify the triples to be deleted in a non-ground form, i.e. with SPARQL vari-
ables bound in the WHERE clause. If the WHERE clause consists of the empty graph
pattern, this command is indeed equivalent to the DELETE DATA operation above.
In case the FROM keyword is omitted, the default graph is manipulated.

– INSERT FROM ... WHERE is the non-ground version of the INSERT DATA com-
mand. Its relationship to INSERT DATA is analogous to the relationship from
DELETE FROM ... WHERE to the DELETE DATA operation. Together with the
DELETE FROM ... WHERE operation, this operation can be used to move data
from one RDF graph to another.

– The LOAD primitive copies all RDF triples from one named graph to another named
graph or the default graph.

– The CLEAR primitive removes all triples from the default graph, or a named graph.
It can be simulated by a DELETE FROM ... WHERE operation selecting all triples
of a graph.

Graph management in SPARQL update is achieved by the two operations CREATE
GRAPH and DROP GRAPH which have the exact same semantics as the SQL opera-
tions CREATE TABLE and DROP TABLE. Only when a graph has been created by the
CREATE GRAPH operation it is available for modification by one of the seven above
mentioned manipulation directives.

To sum up, SPARQL update is a straight-forward extension of SPARQL to include
mechanisms for creating new and changing existing RDF graphs, much inspired by
SQL. The difference between the Web considered as a huge database and ordinary
databases is, however, that the Web is open and generally readable and processable
by any person or computer connected to the Internet. As a result RDF graphs will more
likely to be reasoned with and transformed than updated. Write access to RDF graphs is
restricted to the content provider, but deriving new knowledge from existing one, which
is the fundamental use case for Semantic Web use-cases, is possible for all Web users
and will be achieved with rule languages, not update languages. Under these consider-
ations, update primitives have been excluded from Xcerptrdf.

SPARQL and Rules. [127] defines translation rules for SPARQL rules to datalog
rules and thus opens up the possibility to rule chaining, i.e. the translation of multi-
ple SPARQL rules to Datalog and the combined evaluation of the resulting rule set by
a logic programming engine, thus allowing intermediate results to be constructed and
queried. This extension gives SPARQL an obvious boost in expressivity (recursion)
and affects its termination properties. In the following, the translation procedure from
SPARQL to Datalog given in [127] is quickly illustrated by an example, as it opens up
the possibility for easy implementations also of single rule SPARQL queries on top of
existing logic programming engines.

For this purpose reconsider the SPARQL query in Listing 1.18 and the RDF graph in
Listing 1.19 available via the URL http://www.example.org/bob. The result
of the translation is given in Listing 1.20.

http://www.example.org/bob
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PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 SELECT ?name ?mbox
FROM http://example.org/bob

4 WHERE
{ ?x foaf:name ?name .

6 ?x foaf:mbox ?mbox }

Listing 1.18. A simple SPARQL select-query

_:B foaf:name bob .
2 _:B foaf:nick bobby .
_:B foaf:mbox bob@example.org .

Listing 1.19. RDF Graph with some FOAF information

1 triple(S, P, O, default) :- rdf(http://example.org/bob, S, P,
O) .

answer_1( (Name, Mbox), default) :-
3 answer_2(vars(Name, X), default),

answer_3(vars(Mbox, X), default) .
5 answer_2(vars(Name, X), default) :- triple(X, foaf:name,

Name, default) .
answer_3(vars(Mbox, X), default) :- triple(X, foaf:name,

Mbox, default) .

Listing 1.20. Translation of the SPARQL query in Listing 1.18 to Datalog with external
predicates

The translation makes use of the external predicate rdf that takes four arguments: the
graph to be queried as input, and the subject, predicate and object of triples as output.
The external predicate rdf can thus be used to enumerate all triples within an RDF
graph given by the input URI. The first rule in Listing 1.20 defines the 4-ary relation
triple. In the case of multiple FROM or FROM NAMED clauses in the original SPARQL
query, the relation triple will obviously be defined by the corresponding number of
clauses. Since Listing 1.18 only contains conjunctions of triple patterns, but no UNION,
OPTIONAL or FILTER expression, the translation remains of manageable size, and we
focus the discussion of the tranlsation procedure on conjunctive triple patterns.

As can be observed in Listing 1.20, each triple pattern in the SPARQL query trans-
lates to a single Datalog rule, and each conjunction of triple patterns translates to a rule
with body atoms referencing the rules obtained by the translation of its conjuncts. As
expected, disjunctions (UNION) of triple patterns are translated to sets of rules. For
details on the tranlsation procedure, involving more complex SPARQL queries with
FILTER and OPTIONAL, the interested reader is referred to [127].

While reusing existing rule languages together with the enormous body of knowl-
edge about their semantics, evaluation methods and complexity is certainly a sensible
way for designing a rule language for the Semantic Web, the approach taken in [127] is
not completely satisfactory for the following reasons:
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– Blank node construction in rule heads has been largely ignored, especially the dif-
ferent modes of blank node construction as pointed out by [34].

– This approach inherits the weakness of SPARQL concerning negation: implicit
negation as failure is provided by the combination of the OPTIONAL directive and
the unbound predicate. For newcomers to the language this feature is hard to dis-
cover, and should be better declared as what it is.

– The expressivity of SPARQL graph patterns is limited when compared to languages
that allow possibly recursive path expressions such as Versa on RDF graphs or
Conditional XPath[112,111] and Xcerpt on XML documents. This limitation is
obviously inherited by all rule extensions to SPARQL.

– Rule extensions of SPARQL remain pure RDF query languages and therefore can-
not deal with the versatility requirements for modern Web query languages.

2.4 Versatile Semantics

Having given an informal, example-driven introduction to the language Xcerpt, its eval-
uation principles and intuitive semantics in the preceding sections, this section intro-
duces the precise semantics for Xcerpt query terms through a formal definition of query
term simulation (Section 2.4.1), and programs through an iterative fixpoint procedure
(Section 2.4.2). Previous publications on the semantics of Xcerpt have considered the
class of stratified Xcerpt programs only. Section 2.4.2 extends the semantics of Xcerpt
programs to the class of locally stratified programs, which is a true superset of the set
of stratifiable Xcerpt programs, and which is inspired by the notion of local stratifica-
tion in logic programming [52]. In Section 2.4.3 the well-founded semantics for general
logic programs is adapted to Xcerpt, thereby also giving a semantics to programs that
are not locally stratified. Although not formally proven, we argue that locally stratifi-
able Xcerpt programs have a two-valued well-founded model which coincides with the
model computed by the iterative fixpoint procedure over its local stratification.

While this section transfers the notion of local stratification and well-founded se-
mantics to Xcerpt only, the proposed method can be applied to any other rule-based
language with non-monotonic term negation and disjunction-free heads, that provides
the same interface to terms as Xcerpt does (defined in Section 2.3).

2.4.1 Simulation as Foundation for a Semantics of Versatile Queries

Simulation between Xcerpt terms is inspired by rooted graph simulation [116,86], but
is by far more involved since Xcerpt terms feature constructs for specifying incom-
pleteness in depth, breadth, and order, allow variables, regular expressions and negated
subterms. This section formally defines a subset of Xcerptxml25 variables, descendant
constructs, subterm negation, incompleteness in breadth and with respect to order, mul-
tiple variables, multiple occurrences of the same variable, and variable restrictions. In

25 Chapter 2.3 introduces both Xcerptrdf and Xcerptxml query, construct and data terms. In this
section we concentrate on Xcerptxml terms, but most of the results and design principles also
apply to Xcerptrdf terms. We write ”Xcerpt term” to denote the abstract concept of terms in
both Xcerptrdf and Xcerptxml, and ”Xcerptxml term” to refer to Xcerptxml terms only.
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comparison to full Xcerptxml query terms as described in [69,134] and for the sake of
brevity, this definition does not include term identifiers and references, non-injective
subterm specifications, optional subterms, qualified descendants, label variables, and
the new syntax for XML attributes. Based on this definition of Xcerptxml query, con-
struct and data terms, ground and non-ground query term simulation is defined as the
formal semantics for the evaluation of Xcerptxml query terms on semi-structured data.

Definition 2 (Xcerptxml query term). Query terms over a set of labels N , a set of
variablesV, and a set of regular expressions R are inductively defined as follows:

– for each label l ∈ N , l{{ }} and l{ } are atomic query terms. l is a short hand
notation for l{{ }}. The formal treatment of square brackets in query terms is
omitted in this contribution for the sake of brevity.

– for each variable X ∈ V, var X is a query term
– for each regular expression r ∈ R, /r/{{ }} and /r/{ } are query terms. /r/ is a

shorthand notation for /r/{{ }}. With L(r) we denote the set of labels matched
by r, i.e. the language defined by the regular expression.

– for each variable X ∈ V and query term t, var X as t is a query term. t is called
a variable restriction for X.

– for each query term t, desc t is a query term and called depth-incomplete or in-
complete in depth.

– for each query term t, without t is a query term and called a negated subterm.
– for each query term t optional t is an optional query term.
– for each label or regular expression l and query terms t1, . . . , tn with n ≥ 1,

q1 = l{{ t1, . . ., tn }}

q2 = l{ t1, . . ., tn }

are query terms. q1 is said to be incompletely specified in breadth, or simply
breadth-incomplete, whereas q2 is completely specified in breadth, or simply
breadth-complete.

A variable X is said to appear positively in an Xcerptxml query term q, if it is included in
q not in the scope of a without construct. It appears negatively within q if it is included
within the scope of a without construct. Note that the same variable may appear both
positively and negatively within q – e.g. X within a{{ var X, without var X }}.

Definition 3 (Xcerptxml data terms). An Xcerptxml data term is a ground Xcerptxml

query term that does not contain the constructs without, optional, desc, regular
expression and double braces.

Definition 4 (Xcerptxml construct terms). Xcerptxml construct terms over a set of
variablesV and a set of labels L are defined as follows:

– an Xcerptxml data term d over L is a construct term
– for each variable X ∈ V, var X is a construct term
– for a construct term c, all c is a construct term
– for a construct term c, optional c is a construct term
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– for a construct term c, and a sequence of variables X1, . . . ,Xk ∈ V all c group
by {X1, . . . ,Xk} is a construct term

– for a label l ∈ L and set of construct terms c1, . . . ,cn, l{c1, . . . ,cn} is a construct
term.

In the following, we let D and Q denote the set of all Xcerptxml data and query terms,
respectively.

A query term and a data term are in the simulation relation, if the query term
“matches” the data. Matching Xcerptxml query terms with data terms is very similar
to matching XPath queries with XML documents – apart from the variables and the
injectivity requirement in query terms. The formal definition of simulation of a query
term with semi-structured data is somewhat involved. To shorten the presentation, we
first introduce some notation:

Definition 5 (Injective and bijective mappings) 26

Let I := {t11 , . . . , t1k }, J := {t21 , . . . , t2n} be sets of query terms and π : I⇒ J be a mapping.

– π is injective, if all t1i , t
1
j ∈ I satisfy t1i � t1j ⇒ π(t1i ) � π(t1j ).

– π is bijective, if it is injective and for all t2j ∈ J there is some t1i ∈ I such that π(t1i ) =

t2j .

We use the following abbreviations to reference parts of a query term q:

l(q) : the string or regular expression used to build the query term. For a variable v, l(v)
is undefined.

ChildT (q) : the set of direct subterms of q
ChildT+(q) : the set of positive direct subterms (i.e. those direct subterms which are

not of the form without . . .),
ChildT−(q) : the set of negated direct subterms (i.e. the direct subterms of the form

without . . .),
Desc(q) : the set of direct descendant subterms of q (i.e. those of the from desc . . .),
S ubT (q) : the direct or indirect subterms of q, i.e. all direct subterms as well as their

subterms.
ss(q) : the subterm specification of q. It can either be complete (single curly braces) or

incomplete (double curly braces).
vars(q) : the set of variables occurring somewhere in q.
pos(q) : q′, if q is of the form without q′, q otherwise.

Definition 6 (Label subsumption). A term label l1 subsumes another term label l2 iff
l1 and l2 are strings and l1 = l2, or l1 is a regular expression and l2 is a string such that
l1 matches with l2, or l1 and l2 are both regular expressions and l1 matches with any
label that l2 matches with.

26 This definition of injectivity and bijectivity concerns the subterms – or nodes – of a query term
only. Therefore it is also referred to as node injectivity. In previous publications about Xcerpt,
we have used position injectivity instead, which concerns the edges between parent and child
terms. In the absence of references (as in Definition 4), however, node and position injectivity
are semantically equivalent. Therefore, and for the sake of simplicity, we use node injectivity
in this contribution.
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Definition 7 (Ground query term simulation). Let q be a ground query term27 and d
a data term. A relation S ⊆ (S ubT (q)∪{q})× (S ubT (d)∪{d}) is a simulation of q into
d if the following holds:

– q S d
– if q := l1{{q1, . . . ,qn}} S l2{d1, . . . ,dm} =: d then l1 must subsume l2, and there must

be an injective mapping π : ChildT+(q)→ChildT+(d) such that qi S π(qi) for all i ∈
ChildT+(q). Moreover, there must not be a q j ∈ ChildT−(q) and dl ∈ ChildT+(d) \
range(π) such that pos(q j)  dl (note the recursive reference to ‘’ here).

– if q := l1{q1, . . . ,qn} S l2{d1, . . . ,dm} =: d then l1 must subsume l2, and there must
be a bijective mapping π : ChildT+(q)→ ChildT+(d) such that qi S π(qi) for all
i ∈ChildT+(q). We impose no further requirements on the set ChildT−(q) of negated
direct subterms of q. The totality of π already ensures that there is no extension of π
to some element q j ∈ChildT−(q) such that pos(q j)  dl for some dl ∈ChildT+(d)\
range(π). Therefore the semantics of query terms is independent from the presence
of negated direct subterms within breadth-complete query terms.

– if q = desc q′ S d then q′ S d or q′ S d′ for some subterm d′ of d.

We say that q simulates into d (short: q  d) if and only if there is a relation S that
satisfies the above conditions. To state the contrary we write q � d.

Since every Xcerptxml data term is also a query term, the above definition of simulation
between a query term and a data term can be extended to a relation between pairs of
query terms. For the sake of brevity this full definition of extended ground query term
simulation is given in the appendix of [35].

The existence of a ground query term simulation states that a given data term satisfies
the conditions encapsulated in the query term. Many times, however, query authors
are not only interested in checking the structure and content of a document, but also
in extracting data from the document, and therefore query terms may contain logical
variables. To formally specify the data that is extracted by matching a query term with a
data term, the notion of non-ground query term simulation is introduced (Definition 8).
Substitutions are defined as usual, and the application of a substitution to a query term
is the consistent replacement of the variables by their images in the substitution.

Definition 8 (Non-ground query term simulation). A query term q with variables
simulates into a data term d iff there is a substitution σ : Vars(q)→D such that qσ
simulates into d.

In some cases query terms are not expressible enough or inconvenient for specifying a
query in the body of a rule. Conjunctions of query terms are needed if more than one
resource is queried and the results are to be joined. Disjunctions of query terms are
convenient to extract data from different resources and wrap them into a common XML
fragment or RDF graph. Finally the absence of data simulating with a given query term
is tested by query negation. The notion of a query combines conjunctions, disjunctions
and negations of query terms:

27 For the sake of brevity we assume that q does not contain any optional subterms.
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Definition 9 (Xcerpt query)

– an Xcerpt query term is an Xcerpt query
– for a set of Xcerpt queries q1, . . . ,qn, the conjunction C := and(q1, . . . ,qn), the dis-

junctionD := or(q1, . . . ,qn) and the negationN := not(q1) are Xcerpt queries. If
a variable X appears positively within a qi (1≤ i≤ n) then it also appears positively
within C andD, but negatively within N . If X appears nevatively within qi, it also
appears negatively within C,D andN .

Definition 10 (Xcerpt rule, goal, fact, program). Let q be a query over a set of labels
L, a set of variablesV and a set of regular expressions R and c a construct term over
L and V. Then CONSTRUCT c FROM q END is an Xcerpt rule, GOAL c FROM q END
is an Xcerpt goal, and CONSTRUCT c END is an Xcerpt fact. An Xcerpt program is a
sequence of range-restricted Xcerpt rules, goals and facts.28

The construct term c is called the head of an Xcerpt rule or goal, the query q is called
its body. An Xcerpt fact can also be written as an Xcerpt rule with an empty body. An
Xcerpt rule, goal or fact is called range restricted, if all variables that appear in its head
also appear positively in its body. In a forward chaining evaluation of a program, the
distinction between goals and facts is unnecessary. In a backward chaining evaluation,
however, the goals are the starting point of the resolution algorithm. In contrast to Logic
programming, goals are not a single term only, but an entire rule to ensure answer
closedness of Xcerpt programs. Especially for the task of information integration on
the Web, answer closedness is indispensable.

2.4.2 Rules with Negation and Versatile Queries: Local Stratification

While Section 2.4.1 defines the semantics of single query terms and queries, this section
defines the semantics of Xcerpt rules and programs. Special attention is laid on the
interplay between simulation unification and non-monotonic negation in rule bodies.

The problem of evaluating rule based languages with non-monotonic negation has re-
ceived wide-spread attention throughout the logic programming community (See [10]
and [31] for surveys). A multitude of semantics have been proposed for such languages
(program completion semantics, stable-model semantics [75], well-founded semantics
[148], inflationary semantics [105]). Especially the well-founded and stable-model se-
mantics have been found to comply with the intuition of program authors and are there-
fore implemented by logic programming engines such as XSB [133] and DLV [61].
Several classes of logic programs have been defined for which some of the above men-
tioned semantics coincide. Among these classes are definite programs, stratifiable pro-
grams, locally stratifiable programs [130] and modularly stratifiable programs [132].
The well-founded semantics and the stable model semantics coincide on the class of
locally stratifiable programs.

In the following we introduce stratifiable and locally stratifiable Xcerpt programs.
In adapting these concepts to Xcerpt, one has to pay close attention to the differences
introduced by the richer kind of unification employed.

28 Since facts and goals are a kind of rules, we refer to Xcerpt programs as a sequence of rules in
the following.
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Definition 11 (Stratification). A stratification of an Xcerpt program P consisting of the
rules r1, . . .rn is a partitioning of r1, . . .rn into strata S 1, . . . ,S k, such that the following
conditions hold:

– All facts are in S 1.
– If a rule r1 contains a positive query term q that simulates with the contstruct term

c of another rule r2, then r1 positively depends on r2, and r1 is in the same or a
higher stratum than r2.

– If a rule r1 contains a negated query term not q such that q simulates with the
construct term c of another rule r2, then r1 negatively depends on r2 and is in a
strictly higher stratum than r2.

Given the stratification of a program P, its semantics can be defined by the iterative fix-
point procedure suggested for general logic programs. For finite programs, stratification
is decidable. However, there are Xcerpt programs, such as the one in Listing 1.21, that
are not stratifiable, but which may be evaluated bottom up.

Listing 1.21 is a formulation of the single source shortest path problem over a di-
rected social graph, which is given by the facts (lines 1 to 5) in Listing 1.21 and which
is depicted in Figure 3. The program computes for each node n in a directed graph the
shortest distance to some source node s, in this case anna.

This program uses a slight extension of Xcerpt’s term syntax. The term

Acquaintance[ anna, ≤ i]

simulates with the data terms Acquaintance[ anna, j] if and only if i and j are
natural numbers and j ≤ i. Furthermore, the terms Acquaintance[ anna, ≤ i] and
Acquaintance[ anna, i] simulate with Acquaintance[ anna, > j] if and only
if i > j. The symbol ‘>’ can be interpreted as a hint by the programmer to the evaluation
engine, that a rule can only be used to derive atoms with integer values greater than a
certain natural number. The example in Listing 1.21 serves to illustrate the problems and
challenges for defining the semantics and evaluation of possibly recursive rule programs
with non-monotonic negation and rich unification. These challenges are encountered
independent of the specific kind of rich unification, be it SPARQL query evaluation,
Xcerpt query term simulation, or XPath query evaluation.

To see that Program P in Listing 1.21 is not stratifiable, consider the negated query
term not q, with q = Acquaintance [ var P, ≤ var D ] in the body of the only
rule of P. q simulates with the head h = Acquaintance [ var P, D + 1 > 0] of
the same rule. Thus the rule should be in a strictly higher stratum than itself, which is a
contradiction.

Anna Chuck

Bob

Fig. 3. Social graph corresponding to the facts in Listing 1.21
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CONSTRUCT knows[ anna, bob ] END
2 CONSTRUCT knows[ bob, chuck] END
CONSTRUCT knows[ anna, chuck ] END

4 CONSTRUCT knows[ chuck, anna ] END

6 CONSTRUCT Acquaintance[ anna, 0 ] END

8 CONSTRUCT
Acquaintance[ var P, var D + 1 ]

10 FROM
and (

12 Acquaintance[ var P’, var D ],
knows[ var P, var P’],

14 not ( Acquaintance[ var P, ≤ D ] )
END

Listing 1.21. Single source shortest path problem for the source node ’anna’

To see that P can nevertheless be evaluated in a bottom up manner, consider a ground
instance g of the recursive rule in Listing 1.21. The term constructed by the head of g
contains an integer value i which is exactly by one larger than the integer values of
terms that may simulate with (negated or positive) query terms in the body of g. Thus,
in a bottom up evaluation of the program, we may first compute the fixpoint of the
program considering only terms containing the integer value 0, followed by the fixpoint
computation for terms with the value 1, and so on. Since a valid rule application will
only construct terms containing the value n+1 using terms with values n, it may never
be the case that the body of a rule once found true is invalidated by the derivation of a
fact at a later point in time. Figure 4 visualizes the resulting stratification.

With the concept of local stratification we distinguish the class of locally stratifiable
Xcerpt programs, which is a true superset of the class of stratifiable Xcerpt programs,
and thereby introduce a more general characterization of Xcerpt programs that guaran-
tees that these programs can be evaluated by an iterative fixpoint procedure in a bottom

Fig. 4. Local stratification for Listing 1.21
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up manner. A local stratification partitions the Herbrand universe of an Xcerpt program
rather than the rules of the program into strata.

Definition 12 (Xcerpt Herbrand universe, Xcerpt Herbrand base). The Herbrand
universe of an Xcerpt program P are all Xcerpt data terms that can be constructed over
the vocabulary of P.29 Since Xcerpt programs consist only of terms without predicate
symbols, the Herbrand base of P is defined to be the same as the Xcerpt Herbrand
universe.

Note that the above definition deviates from the Herbrand universe for logic programs as
follows: While Prolog function symbols have always an associated arity, Xcerpt labels
may be used to construct terms with arbitrary many children. Thus a program over the
vocabulary V = {a} has the Herbrand universe { a{ }, a{ a }, a{ a{ a } }, a{ a,

a } . . .}. In the following discussion of the well-founded semantics we will, however,
not consider the entire Herbrand universe for computing unfounded sets, but restrict
them to the terms that occur in ground instances of the rules.

Definition 13 (Local stratification). A local stratification of an Xcerpt program P is a
partitioning of the Herband universe of P into strata such that the following conditions
hold:

– All facts in P are in stratum 1.
– If a term q appears positively within the body of a rule R in the Herbrand instan-

tiation of P, and c appears in its head, then q must be in the same or in a higher
stratum than c.

– If a term q appears negatively within the body of R and c in its head, then q is in a
strictly higher stratum than c.

– If a term q simulates into a term c, then q is in the same or in a higher stratum
than q.

The definition of local stratification of Xcerpt programs coincides with the definition of
local stratification for general logic programs in the first three points. The fourth condi-
tion is necessitated by the richer unification relation induced by simulation unification
in Xcerpt. While in logic programming two ground terms unify if and only if they are
syntactically identical, this is not true for Xcerpt terms (consider e.g. the terms a{{ }},
a[[ ]] and a{ b }).

Example 1.22 underligns the necessity of the fourth condition in Definition 13: By
Definition 13, Program P in Listing 1.22 is not locally stratifiable, but it would be, if
the last condition were not part of the definition. In fact, the semantics for P is un-
clear, and it cannot be evaluated by an iterative fixpoint procedure. Figure 5 shows the
dependency graph for Listing 1.22, which contains a cycle including a negative edge.
The dependency graph for a ground Xcerpt program simply includes all rule heads and
body literals as nodes, and all simulation relations between query and construct terms
and negative and positive dependencies of rule heads on their body literals. The depen-
dency graph for a non-ground Xcerpt program is the dependency graph of its Herbrand

29 The vocabulary of P is the set of labels appearing in P.
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Instantiation. An Xcerpt program P is locally stratifiable, if its dependency graph does
not contain any negative cycles (i.e. cycles including at least one negative edge).

CONSTRUCT a{ b } FROM not(c{{ desc b{{ }} }}) END
2 CONSTRUCT c[ b ] FROM a{{ }} END

Listing 1.22. An Xcerpt program that is not locally stratifiable

a{ b }

c[ b ]

c{{ desc b }}

a{{ }}

−

+



Fig. 5. Dependency graph for Listing 1.22

Since Listing 1.22 is not locally stratifiable, its semantics cannot be defined by a
fixpoint procedure over its stratification. Similar programs – except for the simulation
relation – have been studied in logic programming. For example, the logic program
{(a← ¬c), (c← a)} is not locally stratifiable, still the well-founded semantics of the
program is given by the empty interpretation {}. To give Xcerpt programs a semantics,
no matter if they are locally stratified or not, we adapt the well-founded semantics to
Xcerpt programs in the Section 2.4.3.

2.4.3 Rules with Negation and Versatile Queries: Well-Founded Semantics

For the sake of simplicity this section only considers Xcerpt programs without the
grouping constructs all. Moreover queries are assumed to be either simple query terms,
negations of query terms or conjunctions of positive or negated query terms. In the ab-
sence of grouping constructs or aggregate functions, a rule involving a disjunction in
the rule body can be rewritten into an equivalent set of rules that are disjunction free.
Also negations of conjunctions can be rewritten to conjunctions with only positive or
negative query terms as conjuncts.30

Definition 14 (Xcerpt literal). An Xcerpt literal is either an Xcerpt data term or the
negation not d of some Xcerpt data term d. For a set S of Xcerpt literals, pos(S )
denotes the positive literals in S , neg(S ) the negative ones.

Definition 15 (Consistent sets of Xcerpt literals). For a set of Xcerpt literals S we
denote with ¬ · S the set of terms obtained by negating each element in S . Let p and
n =not d be a positive and negative literal, respectively, and let S be a set of literals.
p and S are consistent, iff not p is not in S . n and S are consistent iff d is not in S . S
is consistent, if it is consistent with each of its elements.

30 This normalization of Xcerpt rules is similar to finding the disjunctive normal form of logical
formulae.



Four Lessons in Versatility or How Query Languages Adapt to the Web 105

Definition 16 (Partial interpretation of an Xcerpt program (adapted from [147]))
Let P be an Xcerpt program, and HB(P) its Herbrand base. A partial interpretation I
is a consistent subset of HB(P)∪¬ ·HB(P).

Definition 17 (Satisfaction of Xcerpt terms). Let I be a partial interpretation for a
program P. The model relationship between I and an Xcerpt term is defined as follows.

– Let q be a positive query term.

• I satisfies q (I � q) iff there is some data term d ∈ pos(I) with q  d.
• I falsifies q (I � q) iff for all data terms d ∈ HBP holds q  d⇒ d ∈ neg(I).
• Otherwise, q is undefined in I.

– Let q = not q′ be a negative query term.

• I satisfies q (I � q) iff for all data terms d holds q′  d⇒ d ∈ neg(I).
• I falsifies q (I � q) iff there is some data term d ∈ pos(I) with q′  d.
• Otherwise, q is undefined in I.

Definition 18 (Satisfaction of Xcerpt queries). Let I be a partial interpretation and q
a conjunction of Xcerpt terms. I satisfies q if I satisfies each conjunct in q.31

Definition 19 (Xcerpt Unfounded Sets (adapted from [147])). Let P be an Xcerpt
program, HBP its Herbrand base, and I a partial interpretation. We say A ⊆ HBP is an
unfounded set of P with respect to I if each atom p ∈ A satisfies the following condition.
For each instantiated rule R of P with head p and body Q at least one of the following
holds:

1. For some positive literal q ∈ Q holds that for all d ∈ HBP holds q  d⇒ d ∈ A∨d ∈
neg(I).

2. Some negative literal q ∈ Q is satisfied in I.

The greatest unfounded set of P with respect to an interpretation I is the union of all
unfounded sets of P with respect to I.

Definition 20 (Well-founded semantics of an Xcerpt program). The well-founded
semantics of an Xcerpt program P is defined as the least fixpoint of the operator
WP(I) := TP(I)∪¬ ·UP(I) where UP and IP are defined as follows:

– a postive Xcerpt literal l is in TP(I) iff there is some ground instance Rg of some
rule R in P with construct term l and query Q such that I � Q.

– UP(I) is the greatest unfounded set of P with respect to I.

Consider the program P in Listing 1.23. Its Herbrand base is HB(P) = {a{ }}. Starting
with the empty interpretation I0, TP(I0)= ∅, UP(I0)= ∅, and I1 :=WP(I0) = ∅= I0. Thus
the well-founded semantics of P is ∅.
31 Xcerpt rules are assumed to be in disjunctive normal form. Therefore disjunctions need not be

considered here. Satisfaction of negations is treated in Definition 17 above.
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CONSTRUCT a{ } FROM not( a{{ }} ) END

Listing 1.23. Simple Negation through recursion and simulation (A)

1 CONSTRUCT a{ } FROM not( a{{ }} ), not( b{ } ) END
CONSTRUCT a{ b } END

Listing 1.24. Simple Negation through recursion and simulation (B)

As a second example, consider program Q in Listing 1.24 with Herbrand base
HB(Q) = { a{ b }, a{ }, b{ }}. We obtain the following fix point calculation:

– I0 = ∅
– TQ(I0) = { a{ b } }
– UQ(I0) = { a{ }, b{ } }
– I1 =WQ(I0) = { a{ b }, not a{ }, not b{ } }
– TQ(I1) = { a{ b } }
– UQ(I1) = { a{ }, b{ } }
– I2 =WQ(I1) = { a{ b }, not( a{ } ), not( b{ } ) } = I1

As a final example, consider the stratified and locally stratified program R in Listing
1.25 with Herbrand universe HB(R) = { b{ }, a{ b }, a{ }, c{ c } }.
CONSTRUCT b{ } FROM not( a{{ }} ) END

2 CONSTRUCT a{ b } FROM not( c{{ }} ) END
CONSTRUCT a{ } FROM not( c{{ }} ) END

4 CONSTRUCT c{ c } END

Listing 1.25. Simple Negation through recursion and simulation (C)

We obtain the following fixpoint calculation:

– I0 = ∅
– TR(I0) = { c{ c } }
– UR(I0) = ∅
– I1 =WR(I0) = { c{ c } }
– TR(I1) = { c{ c } }
– UR(I1) = { a{ }, a{ b } }
– I2 =WR(I1) = { c{ c }, not( a{ } ), not( a{ b } ) }
– TR(I2) = { c{ c }, b{ } }
– UR(I2) = { a{ }, a{ b } }
– I3 =WR(I2) = { c{ c }, b{ }, not( a{ } ), not( a{ b } ) }
– TR(I3) = TR(I2)
– UR(I3) = UR(I2)
– WR(I3) =WR(I2)

It is immediate that the well-founded semantics of R coincides with the fixpoint
calculated over the stratification of R – a fact that is true for every locally stratified
Xcerpt program.



Four Lessons in Versatility or How Query Languages Adapt to the Web 107

Theorem 1. For a locally stratified Xcerpt program P, the well-founded semantics of
P is total and coincides with the fixpoint calculated over the local stratification of P.

In [129] the class of weakly stratified logic programs is introduced, which is a true
superset of the class of locally stratified programs and has a well-defined, two-valued
intended semantics. Put briefly, to decide whether a logic program is locally stratifiable
one considers the dependency graph constructed from the entire Herbrand instantiation
of the logic program. In contrast, the decision for weak stratification is based on the
absence of negative cycles within the dependency graph constructed from a subset of
the Herbrand interpretation. This subset excludes instantiated rules containing literals of
extensional predicate symbols that are not given in the program. The standard example
for a program that is weakly stratified but not locally stratified is the following:

win(X) : −move(X,Y)∧¬win(Y)

A position X is a winning position of a game, if there is a move from X to position
Y and Y is a losing position. As mentioned above, weak stratification depends on the
extension of extensional predicate symbols (move in the above example), and the pro-
gram above is only weakly stratifiable in the case that move has an acyclic extension.
Obviously this program can be formulated also as an Xcerpt program, and the class of
locally stratified Xcerpt programs could be extended to the class of weakly stratified
Xcerpt programs in a straight-forward manner. We leave the formal definition of weak
stratification for Xcerpt and the question on how the richer kind of unification employed
in Xcerpt affects the applicability of weak stratification for future work.

2.4.4 A Relational Semantics for Versatile Queries

Versatile queries form the central innovation of XML and RDF query languages, as
illustrated in the previous sections: They allow the query author to introduce controlled
forms of incompleteness or “don’t cares” such as “here don’t care about the order” or
“here don’t care about the path between two nodes as long as there is one”. They are
controlled in that they have to be explicitly requested by the query user and in that they
have a precise logical semantics (rather than being based on approximation or ranking
as in Web search engines).

The logical semantics of versatile queries is the focus of the following section.
Rather than directly assigning meaning to versatile Web queries using simulation
(Section 2.4.1) and investigating the affects on the semantics of rule languages build
upon such queries (Section 2.4.2 and Section 2.4.3), we show how to reduce versatile
queries to standard first-order logic, more precisely to Datalog with negation value in-
vention. This is an interesting and well understood fragment of first-order logic: though
computationally as expressive as full first-order logic it provides more controlled means
for the creation of new terms (or “complex values”) and can be easily mapped to SQL
which provides similarly constrained means for value creation.

Contributions. Casting the semantics of versatile queries in general and Xcerpt in
particular in terms of Datalog allows us to compare and contrast them with previous
database languages. In particular, we use this logical semantics of Xcerpt
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1. to study the complexity and expressiveness of Xcerpt and several sub-languages of
Xcerpt. In particular, we show that
(a) Xcerpt expresses all computable queries modulo copy removal (Section 2.4.4);
(b) the same applies already to stratified Xcerpt (Section 2.4.4);
(c) weakly-recursive Xcerpt has the combined nexptime-complete. Intuitively, a

weakly-recursive Xcerpt program is an Xcerpt program that limits recursion to
rules that do not increase either the nesting depth or the breadth. Thus we can
rearrange the program to postpone value invention to the end of query evalua-
tion and do not suffer complexity penalties for value invention (Section 2.4.4);

(d) non-recursive Xcerpt on tree data has data complexity in nc1 and program com-
plexity pspace-complete (Section 2.4.4).

2. to implement versatile queries on top of relational databases by translating them
into SQL (Section 2.4.4). For such a translation to be efficient, we also need a rela-
tional representation of versatile graph-shaped data that is both space efficient and
provides efficient access to graph properties such as edge traversal or reachability.
Such a representation (by means of a novel labeling scheme) with linear space and
time complexity for evaluating acyclic Web queries on many graphs is provided by
ciqcag, see Section 2.5.1.

3. to provide a common logical foundation for versatile queries. This allows us, as
shown in Section 2.4.4, to integrate different Web query languages such as XQuery,
SPARQL, and Xcerpt and to evaluate them with the same query engine. This dif-
fers notably from other approaches for the integration of Web query languages
where the evaluation of the integrated languages remains separate and enables
cross-language optimization and planning. Yet, thanks to the novel graph repre-
sentation with ciqcag, we can evaluate each language as efficient as the best known
approaches limited to that language.

Preliminaries

XML and RDF Data as Relational Structures. Following [16], we consider an XML
tree as a relational structure: An XML tree is considered a relational structure T over
the schema ((Labλ)λ∈Σ , Rchild, Rnext-sibling , Root). The nodes of this tree are labeled
using the symbols from Σ which are queried using Labλ (note, that λ is a single la-
bel not a label set). The parent-child relations are represented by Rchild. The order
between siblings is represented by Rnext-sibling . The root node of the tree is identified
by Root. There are some additional derived relations, viz. Rdescendant , the transitive,
Rdescendant-or-self the transitive reflexive closure of Rchild, Rfollowing-sibling , the transitive
closure of Rnext-sibling , Rself relating each node to itself, and Rfollowing the composition
of R−1

descendant-or-self ◦Rfollowing-sibling ◦Rdescendant-or-self . Each node n is also related by
Rarity to |{n′ : Rchild(n,n′)}|. Finally, we can compare nodes based on their label us-
ing � which contains all pairs of nodes with same label, based on their node identity
using = which relates each node only to itself, and based on their structure deep equal-
ity =deep which holds for two nodes if there exists an isomorphism between their
respective sub-trees. The above ignores some XML specifics such as attributes, com-
ments, or processing instructions but these can be added easily. For also allow an all-
distinct(n1, . . . ,nk) constraint as generalisation of = from two nodes to k nodes.



Four Lessons in Versatility or How Query Languages Adapt to the Web 109

For example, the XML document (using subscripts to indicate node identities)

<a>1 <b/>2 <c>3<c/>4</c> </a>

is represented as T = (Laba = {1}, Labb = {2}, Labc = {3,4}, Rchild = {(1,2), (1,3), (3,4)},
Rnext-sibling = {(2,3)}, Root = {1}) over the label alphabet {a,b,c}. All other relations can
be derived from this definition.

In some contexts, a graph view of XML data is preferable as chosen in the description
of Xcerpt in Section 2.3.1. This view does not affect the signature of the relational
structure32, but adds additional pairs of nodes to the extensions of Rchild and Rnext-sibling

and all relations derived from them. Say we want to treat ID/IDREF links like child
relations resulting from element nesting in the XML document. This adds additional
pairs of referencing and referenced node to Rchild.

In the following, we choose this graph view of XML unless explicitly stated other-
wise. We also allow unions of such structures, i.e., graphs consisting in multiple con-
nected components each with its own root node (graph view of “XML forests”).

An RDF graph can be represented similarly as a relational structure. The main dif-
ferences are the lack of order, the addition of edge labels, and the presence of node types
such as literal, blank node, and resource: An RDF graph is considered a relational struc-
ture T over the schema ((Labλ)λ∈Σ, , ,Edge,Literal,Blank,Named). As in the case
of XML, Labλ provides labels from Σ = U∪L, but labels both nodes and edges. A label
is either an URI or a literal. Nodes are typed by the three characteristic relations Edge,
Literal, Blank, and Named into edges, literals, blank nodes, and named resources. The
four sets are pairwise disjoint. Following [126], we represent labeled edges as first class
elements of the domain and provide separate relation for navigating from the source
node of an edge to that edge ( ) and from that edge to its sink ( ) node. There
are some additional derived relations, viz. Rchild = ◦ , Rλchild = ◦ Labλ ◦
and R(λ)

descendant the transitive closure of R(λ)
child. Each node n is also related by Rarity to

|{e′ : n e′)}| and each edge e to |{n′ : e n′)}|. Finally, we can compare nodes and
edges with the same equality relations as in the XML case.

For example, the following RDF graph (using subscripts to indicate node or edge
identities)

1 @prefix ex: <http://example.org/libraries/#> .
@prefix bib: <http://www.edutella.org/bibtex#> .

3 ex:smith20051 ex:isPartOf2 [3 a4 bib:Journal5 ;
bib:number6 "11"7; bib:name8 "Computer Journal"9 ] ;

is represented as T = (Labex:smith2005 = {1}, Labex:isPartOf = {2}, Labrdf:type = {4},
Labbib:Journal = {5}, Labbib:number = {6}, Lab11 = {7}, . . . , = {(1,2), (3,4), (1,6), (1,8)},
= {(2,3), (4,5), (6,7), (8,9)},Edge= {2,4,6,8}, Literal= {7,9}, Blank= {3}, Named=

{1,5}). All other relations can be derived from this definition.

Datalog with Value Invention. For investigating the formal properties of languages
with versatile queries and for implementing them in a relational database, we use

32 Though we might obviously also choose to provide both views of the XML data simultane-
ously by additional relations instead of modified extensions of the existing ones.
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Datalog with negation and value invention (short Datalog¬new) as a convenient, well-
studied fragment of first-order logic [2]. Datalog¬new extends Datalog with negation and
a means for creating new values.

Rule bodies are as in standard Datalog¬, though we also allow disjunction in rule
bodies. Rule heads are extended with conjunction and a means for value invention. We
use a value invention term new(x0, x1, . . . , xn), i.e., a function that maps each binding
tuple for the invention variables x0, . . . , xn to a unique new value. We will usually use
some unique constant c domain for x0 to distinguish different value invention terms. In
this case, we write also newc(x1, . . . , xn). It is easy to see that we can transform such
value invention terms to the notation from [2]. In addition to the simple value invention,
we also add a deep copy or clone facility. The deep clone term deep-copy(x0, x1, . . . , xn)
is also a function on the binding tuples of x0, . . . , xn that returns a unique new value t, but
also adds t to all unary relations that contain xn and a pair (t, t′) to each binary relation
containing a pair (xn, x′) where t′ = deep-copy(x0, x1, . . . , xn−1, x′).33

For convenience, we allow conditionals in the head: some part of the head may
depend on whether some variables are bound or not. A conditional rule has the form h
∧ if X then hc1 else hc2 ←− b and can be rewritten to rules without conditional
constructions as follows:

h ∧ hc1 ←− b ∧ bound(X).
2 h ∧ hc2 ←− b ∧ not(bound(X)).

Answer variables are variables that occur in the head outside of the condition of a
conditional expression.

The usual safety restrictions for Datalog¬ apply to ensure that all rules are range-
restricted, see [2]: For each negation, all answer variables must occur also in a positive
expression in the rule body. For each disjunction, all nested expressions have the same
answer variables. Finally, each answer variable must also occur in the body.

Adapting the notation of [89], we call an invention atom an atom containing new
terms. The relation name of such an atom is called an invention relation name. A rule
is a non-invention rule, if it contains no invention atom in the head, otherwise it is an
invention rule.

Logical Semantics for Xcerpt. In Section 2.4.1, we give a semantics for versatile
Xcerpt queries by using the notion of simulation. Though simulation provides us with
an intuitive, concise notion for the semantics of Xcerpt queries, it is a non-standard
notion specifically designed for Xcerpt. Here, we choose a different approach: a seman-
tics based on Datalog¬new, a well-understood and extensively investigated fragment of
standard first-order logic.

To keep the presentation focus on the salient points of the translation, we will only
consider a slightly simplified version of Xcerpt queries (a logical semantics for full
Xcerpt is given in [71,69]). Specifically, we omit optional as well as sub-term nega-
tion (without) from query terms as they can be rewritten the queries with top-level
negation (not), though potentially at exponential cost. We also omit construction of or-
dered terms, position, and label variables. Regular expressions to limited to * as label

33 For cyclic graphs, each node is cloned only once using standard memoization.
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wildcard (matching nodes with any label). For simplicity, we assume in the following
that term identifiers and variables are disjoint.

Query Terms. To gently introduce the translation for Xcerpt, we start again with a few
examples. In this section, we consider only query terms. Recall that Xcerpt query terms
serve to select data from the input graph and to provide bindings for any contained
variables. Intuitively, a query term can be seen like a pattern or example for the data
to be selected. For details on Xcerpt query terms see Section 2.3.1. The translation of
basic query terms is fairly straight-forward:

conference{{ desc paper{{ author{{}} }} }}

is translated to

1 Root(v1) ∧ Labconference(v1) ∧ Rdescendant(v1, v2) ∧ Labpaper(v2) ∧ Rchild(v2,

v3) ∧ Labauthor(v3).

We ask for root nodes (bound to v1) with label conference and their descendants (bound
to v2) with label paper. For these descendants we are also interested in authors.

The previous example contains only partial query terms with a single sub-term each.
Total query terms are translated very similarly but with an additional constraint on the
arity of the respective node. For instance, paper{ author{{ }} } (where paper is
total rather than partial as above) is translated to

Labpaper(v2) ∧ Rarity(v2, 1) ∧ Rchild(v2, v3) ∧ Labauthor(v3).

If we consider terms with more than one sub-term, we have to distinguish or-
dered and unordered terms. In an unordered term such as paper{{ author{{ }},

title{{ }} }} multiple sub-terms lead to node inequality constraints:

Labpaper(v2) ∧ Rchild(v2, v3) ∧ Labauthor(v3) ∧ Rchild(v2, v4) ∧ Labtitle(v4) ∧
v3 � v4.

In an ordered term such as paper[[ author{{ }}, title{{ }} ]] multiple sub-
terms lead to order constraints:

Labpaper(v2) ∧ Rchild(v2, v3) ∧ Labauthor(v3) ∧ Rfollowing-sibling(v3, v4) ∧ Labtitle

(v4).

Finally, Xcerpt allows multiple occurrences of query variables and requires that all
occurrences are structurally (or deep) equal. For instance, the following Xcerpt term

1 conference{{ desc paper{{ var X → author }}, var X }}

is translated to

1 Root(v0) ∧ Labconference(v0) ∧ Rchild(v0,v1) ∧ Rdescendant-or-self(v1, v2) ∧
Labpaper(v2) ∧ Rchild(v2, v3) ∧ Labauthor(v3) ∧ Rchild(v1, v4) ∧ v1 � v4
∧ v3 =deep v4.

Notice also, how we split the Rdescendant relation used above into Rchild and
Rdescendant-or-self relations to allow for the inequality constraint amidst the children of
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conference. Though in this case, we can observe that bindings of v1 and v4 can never
be the same, as bindings for v1 must be labeled paper and bindings of v4 (since it is
deep equal to v3) author. Therefore, we can simplify to

1 Root(v1) ∧ Labconference(v1) ∧ Rdescendant(v1, v2) ∧ Labpaper(v2) ∧ Rchild(v2,

v3) ∧ Labauthor(v3) ∧ Rchild(v1, v4) ∧ v3 =deep v4.

To provide an easier to grasp manner in which denote more complex Datalog¬new
expressions we introduce a graphical notation for queries (that also needed later to
define structural properties queries). The two last Datalog¬new expressions are shown in
Figure 6.
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Fig. 6. Translation of Xcerpt variables with =deep

This representation of queries as graphs is used throughout this section and
Section 2.5.1: Query variables are represented as nodes with labels. Root constraints
are denoted by an incoming arrow. Two nodes are connected if there is an atom involv-
ing the two variables. The edge is labeled with the respective relation name. Answer
variables are marked by darker rectangles whereas normal variables are indicated by
lighter circles.

Formally, we define the translation of Xcerpt query terms to Datalog¬new expressions
by means of the tqterm function shown in Table 7. Xcerpt contains two context-sensitive
features: multiple occurrences of Xcerpt variables as well as references (defined using @
and referenced using ˆ). Occurrences of Xcerpt variables and references are managed
in a environment E that contains always the Datalog variable associated with the last
occurrence of an Xcerpt variable or reference (if there is any). With E[X← v] we de-
note the assignment (possibly overwriting existing values) of X to v in E. Otherwise, the
translation function is defined by structural recursion over the Xcerpt query term gram-
mar. It returns for each Xcerpt term the Datalog¬new expression corresponding to the
given term as well as the modified environment and the top-level Datalog¬new variable.
The top-level variable is needed to express the different semantics of ordered versus
unordered term lists.
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Table 7. Translating Xcerpt query terms

query term Datalog¬new expression

tqterm(E)〈λ{{t1, . . . , tn}}〉 = (En,v′,Labλ(v′) ∧ F1 ∧ . . . ∧ Fn ∧ Rchild(v′,v1) ∧ . . . ∧
Rchild(v′,vn)∧all-distinct(v1, . . . ,vn))
where v′ new variable

(E,v,F) = tqterm(E,v′)〈t1〉
...

(En,vn,Fn) = tqterm(En−1,v′)〈tn〉
tqterm(E)〈λ{t1, . . . , tn}〉 = (E′,v′,F′ ∧Rarity(v′,n))

where (env′,v′,F′) = tqterm(E,v)〈λ{{t1, . . . , tn}}〉
tqterm(E)〈λ[[t1, . . . , tn]]〉 = (En,v′,Labλ(v′) ∧ F1 ∧ . . . ∧ Fn ∧ Rchild(v′,v1) ∧

Rfollowing-sibling(v1,v2)∧ . . .∧Rfollowing-sibling(vn−1,vn))
where v′ new variable

(E1,v1,F1) = tqterm(E,v′)〈t1〉
...

(En,vn,Fn) = tqterm(En−1,v′)〈tn〉
tqterm(E)〈λ[t1, . . . , tn]〉 = (E′,v′,F′ ∧Rarity(v′,n))

where (env′,v′,F′) = tqterm(E,v)〈λ[[t1, . . . , tn]]〉

tqterm(E)〈var X → t〉 = (E′[X← v′],v′,Q∧
⎧
⎪⎪⎨
⎪⎪⎩

(v′ =deep v′′) if (X,v′′) ∈ E
� else

)

where (E′,v′,Q) = tqterm(E,v)〈t〉
tqterm(E)〈var X〉 = (E′[X← v′],v′,

⎧
⎪⎪⎨
⎪⎪⎩

(v′ =deep v′′) if (X,v′′) ∈ E
� else

)

where v′ is a new variable

tqterm(E)〈tid@ t〉 = (E′[tid← v′],v′,Q∧
⎧
⎪⎪⎨
⎪⎪⎩

(v′ = v′′) if (tid,v′′) ∈ E
� else

)

where (E′,v′,Q) = tqterm(E,v)〈t〉
tqterm(E)〈ˆtid〉 = (E′[tid← v′],v′,

⎧
⎪⎪⎨
⎪⎪⎩

(v′ = v′′) if (tid,v′′) ∈ E
� else

)

where v′ is a new variable
tqterm(E)〈desc t〉 = (E′,v1,Rdesc-or-self(v1,v2)∧Q)

where v1 is a new variable
(E′,v2,Q) = tqterm(E,v1)〈t〉

tqterm(E)〈"string"〉 = (E,v′,Labstring(v′)∧Rarity(v′,0)
where v′ is a new variable

The translation function tqterm is given in three parts, the first showing the transla-
tion of terms with sub-term specification, the second the translation of variables and
references, and the third the remaining base cases. A term with sub-term specification
is translated by assigning a new Datalog variable v′, adding atoms for any label restric-
tion, and translating all its sub-terms. The top-level variables returned by the translation
of its sub-terms are collected and associated with v′: If it is an ordered term, the top-
level variable of the first child is connected to v′ with Rchild, the remaining chained with
successive Rfollowing-sibling relations (which imply that they are also children of v′). If
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it is an unordered term, all top-level variables are connected to v′ using Rchild and an
all-distinct constraint between all top-level variables is added.

Variables and references are translated roughly in the same way: If the environment
already contains a Datalog variable for the Xcerpt variable or reference, an equality con-
straint between the two variables is added. The environment is updated in any case (thus
only linear many equality constraints are created). Variables and references differ in the
choice of the equality: Variables result in a structural or deep equality constraints (=deep),
references in node equality constraints (=). If we also add label variables (that are omitted
here for conciseness), also label equality constraints (�) are generated, see [69].

To keep the translation concise, the resulting Datalog¬new expressions are not always
minimal. For instance, we add an atom Rchild followed by a Rdesc-or-self atom even when
there is only a single sub-term (prefixed with desc). However, it is easy to remove
these redundancies, in particular to remove all occurrences of �, Lab*, and to compact
relations where possible.

Construct Terms. Construct terms serve in Xcerpt to reassemble new graphs given
variable bindings obtained in related query terms. As above, we start with a few ex-
amples illustrating the translation of Xcerpt construct terms. The following assumes
that we have obtained an environment E from the associated query term containing the
mappings (X,v1) and (Y,v2), i.e., the representative Datalog¬new variable for the Xcerpt
variable X (Y) is v1 (v2). We also abbreviate newi(v1, . . . ,vn) with i(v1, . . . ,vn).

Again translating basic construct terms is fairly straight-forward:

1 authors{ author{ var X }, paper{ var Y, "best" } }

is translated to the following (conjunctive) Datalog¬new rule head:

1 Root(1()) ∧ Labauthors(1()) ∧ Rchild(1(), 2()) ∧ Labauthor(1()) ∧ Rchild(2(),
deep-copy3(v1)) ∧ Rchild(1(), 4()) ∧ Labpaper(4()) ∧ Rchild(4(), deep-copy

5(v2)) ∧ Rchild(4(), 6()) ∧ Labbest(6())

Graphically we denote heads of Datalog¬new rules similarly as their bodies (but in blue
hues rather than red ones). Use of query variables for copying and grouping is indicated
by dotted resp. dashed arrows. Figure 7 shows the graphical representation of the above
rule head. The rule head specifies that there is a new value to be added to the Root
relation. That same value (1()) is labeled authors and stands in Rchild relation to two
other new values. One of those is labeled author and contains a single child, the deep
copy of the query variable v1. The other is labeled paper and contains two children, one
the deep copy of the query variable v2, the other a new value labeled best.

In the translation, we only give the immediate binary relations Rchild (and
Rfollowing-sibling if considering ordered construct terms). Derived relations can be either
automatically added to each rule head or be derived by additional rules, see [69].

Beyond what is shown in the first example, the main additional feature of construct
terms is the possible presence of grouping expressed using all. The following is a simple
example of such a construct term, where all bindings of X are listed (rather than only
one as above), each wrapped in an author element which are all inside the same authors
element:

1 authors{ all author{ var X } group-by(var X) }
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This is translated very similarly as above, but now value invention (and deep copy)
terms depend on query variables. More specifically, each value invention term depends
on the grouping variables in whose scope the corresponding construct term occurs:

1 Root(1()) ∧ Labauthors(1()) ∧ Rchild(1(), 2(v1)) ∧ Labauthor(1(v1)) ∧ Rchild
(2(v1), deep-copy3(v1, v1))

Obviously, with nested groupings this becomes more involved as in the following,
final example: Here we create one pair of author and paper elements for each unique
binding of X. Within paper we group all bindings of Y for the current binding of X:

1 authors{ all( author{ var X }, paper{
all var Y group-by (Y), "best" }

3 ) group-by (X) }

The translation makes the dependence of the terms inside the second grouping on Y and
X explicit:

1 Root(1()) ∧ Labauthors(1()) ∧ Rchild(1(), 2(v1)) ∧ Labauthor(1(v1)) ∧ Rchild
(2(v1), deep-copy3(v1, v1)) ∧ Rchild(1(), 4(v1)) ∧ Labpaper(4(v1)) ∧
Rchild(4(v1), deep-copy5(v1, v2, v2)) ∧ Rchild(4(v1), 6(v1)) ∧ Labbest

(6(v1))

Formally, we define the translation from Xcerpt construct terms to Datalog¬new by
means of the function tcterm shown in Table 8. As for query terms, we use an environ-
ment E to store associations between Xcerpt query variables or references and Datalog
variables. Additionally, E also holds the current sequence of grouping variables, which
is initially empty. tcterm returns, similar to tqterm, the updated environment, the top-level
construct variable, and the Datalog¬new (conjunctive) head formula. Again, the defini-
tion is divided in three part. The first case describes the semantics of unordered terms
(ordered terms are omitted here) and empty terms. The second part that of variables
and references and the final third part that of grouping terms. Grouping terms are re-
sponsible for modifying the initially empty sequence of iteration variables E.iter: For its
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Table 8. Translating Xcerpt construct terms

construct term Datalog¬new expression

tcterm(E)〈tid@λ{t1, . . . , tn}〉 = (En,v,Labλ(v)∧Rchild(v,v1)∧C1∧ . . .∧Rchild(v,vn)∧Cn)

where v =

⎧
⎪⎪⎨
⎪⎪⎩

v′ if (tid,v′) ∈ E
id(E.iter) with id new identifier

(Ei,Ci,ni) = tcterm(Ei−1)〈ti〉 with E0 = E[tid← v]
tcterm(E)〈"string"〉 = (E,v,Labstring(v))

where v = id(E.iter) with id new identifier

tcterm(E)〈var X〉 = (E,deep-copy(E.iter,E(X)),�)

tcterm(E)〈ˆtid〉 = (E[tid← v],

⎧
⎪⎪⎨
⎪⎪⎩

v′ if (tid,v′) ∈ E
id(E.iter) with id new identifier

,�)

tcterm(E)〈all t
group-by(X1, . . . ,Xn)〉

= tcterm(E′)〈t〉
whereE′ = E with E′.iter = E.iter◦ [E(X1), . . . ,E(Xn)]

Table 9. Translating Xcerpt rules

Xcerpt Datalog¬new expression

trXcerpt〈CONSTRUCT head
FROM body END〉

= C←−Q where (E,Q) = tq(∅)〈query〉
C = tc(E)〈body〉

tc(E)〈cterm〉 = root(v)∧C where (E′,v,C) = tcterm(E)〈cterm〉
tq(E)〈and(t1, t2)〉 = (E2, (Q1∧Q2)) where (E1,Q) = tq(E)〈t1〉, (E2,Q) = tq(E1)〈t2〉
tq(E)〈or(t1, t2)〉 = (E′, ((Q1∧ vX = v1)∨ (Q2 ∧ vX = v2)))

where (E1,Q) = tq(E)〈t1〉, (E2,Q) = tq(E)〈t2〉
E′ = E2[X← vX ] for all X with (X,v1) ∈ E1, (X,v2) ∈ E2

tq(E)〈not(t)〉 = (E′,¬(Q)) where (E′,Q) = tq(E)〈t〉
tq(E)〈qterm〉 = (E′,root(r)∧Q)

where (E′,r,Q) = tqterm(E)〈qterm〉

sub-terms the input E.iter is extended by its grouping variables X1, . . . ,Xn. Thus value
invention (and deep copy) terms inside that grouping term depend also on X1, . . . ,Xn.

Grouping in Xcerpt is always modulo structural or deep equivalence, i.e., all node
invention and deep copy terms produce a new value only for each equivalence class
modulo deep equal over the binding tuples. In other words, if there are two binding
tuples where the bindings for all grouping variables are deep equal, we only produce a
single new value.

Queries and Rules. Based on the logical semantics for construct and query terms es-
tablished in the previous sections, we can finally conclude the semantics by considering
full Xcerpt rules. Rules are translated using trXcerpt as shown in Table 9. It delegates the
translation of rule bodies and heads to different functions which each create root atoms
where necessary.
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An Xcerpt rule body is translated using tq which takes care of all top-level disjunc-
tion, conjunction, or negations. Note, that for conjunctions we propagate the environ-
ment returned by the translation of the first operand to the translation of the second
operand, thus ensuring that matches are deep equal (as within the same query term).
For disjuncts, however, we do not propagate variable mappings, but rename answer
variables (i.e., variables that occur in both disjuncts) to gather bindings from both dis-
juncts into one variable (vX for answer variables X). This assumes that, as usual, that
non-answer variables are standardized apart for each disjunct.

The following proposition is an immediate consequence of the above construction:
Variables can occur negatively only in parts of the query resulting from a negated query
term where the same safety restrictions apply as for Datalog¬new.34

Proposition 1. Let R be a range-restricted Xcerpt rule. Then trXcerpt(R) is a safe
Datalog¬new rule.

It is easy to verify that in each step of the above translations the resulting Datalog¬new
expression is linear in the input query term. Furthermore, each case treats one or more
input constructs. Therefore we can surmise:

Theorem 2. The size of the Datalog¬new expression Q returned by trXcerpt for a given
Xcerpt rule P is linear in the size of P.

To complete the semantics we also need to consider Xcerpt goals. Goals are treated the
same as normal rules, but root nodes of goals are constructed in the relation answer-
root rather than in Root. This also prevents the result of goals to partake in the rule
chaining (observe that rule bodies only match data starting with a node in Root).

Definition 21 (Logical Semantics of Xcerpt). Let P = {R1, . . . ,Rn} be an Xcerpt pro-
gram. Then Pd = trXcerpt(R1)∪ . . .∪ trXcerpt(Rn) is a safe Datalog¬new program. The logi-
cal semantics of P is the relational structure obtained by removing the Root relation and
all references to nodes not reachable from a node in answer-root from the semantics of
Pd (as defined in [2]).

Example of the Full Translation. To conclude the discussion of the logical semantics
for Xcerpt, we give a final example of the semantics. The following Xcerpt goal selects
papers containing “Cicero” as author and “puts them in a shelf”.

1 GOAL
shelf{ all var X group-by(var X) }

3 FROM
conference{{

5 var X → paper{{
desc author{{ "Cicero" }} }} }}

7 END

Applying trXcerpt to that rule yields the following Datalog¬new program, also depicted
in Figure 8:

34 We use inequalities outside of the translation of negated query terms, but only in a safe manner,
see Table 7.



118 F. Bry et al.

1

2

c
h
ild

1

2

3

4

child
descendant

child

group by

deep copy

conference

paper

author

‘Cicero’

0

shelf

Fig. 8. Example of rule translation

1 Root(1()) ∧ Labshelf(1()) ∧ Rchild(1(), deep-copy(v2, v2))

←− Root(v1) ∧ Labconference(v1) ∧ Rchild(v1, v2) ∧ Labpaper(v2) ∧ Rdescendant

(v2, v3) ∧ Labauthor(v3) ∧ Rchild(v3, v4), LabCicero(v4) ∧ Rarity(v4, 0).

The query variable v2 is used in the head to specify which part of the data to copy and
how often. Recall that deep-copy(v2,v2) indicates that, for each unique binding of v2,
a new node should be created that is a deep copy of v2 itself.

Outlook: Xcerptrdf. The above treatment of Xcerpt is focused on Xcerptxml. Though
extending the translation to Xcerptrdf is not difficult, it requires a number of adjustments
that are briefly summarized in the following.

– Most importantly, the above translation considers only XML data. If we also want
to query RDF data we have to extend the translation rules to the specifics of that
data model. Section 2.4.4 outlines how to represent RDF data in a relational struc-
ture that can be queried using Datalog¬new.

– RDF and Xcerptrdf distinguish different node types such as blank nodes, named
resources, and literals and contain named edges. All these features require slight
adaptations to the translation. To give a flavor of these adaptations consider the
following Xcerptrdf query term:

var X {{ foaf:knows → _:1{{ foaf:name → "Julius
Caesar"}} }}

It queries for persons that know someone who is named “Julius Caesar”. Its trans-
lation uses and for named edge traversal (rather than Rchild as for unnamed
edge traversal in XML) and requires each Datalog¬new to be a specific kind of RDF
node or edge.

1 Named(n1) ∧ Labex:anna(n1) ∧ (n1, e1) ∧ Edge(e1) ∧ Labfoaf:knows(e1) ∧
(e1, n2) ∧ Blank(n2) ∧ (n2, e2) ∧ Edge(e2) ∧ Labfoaf:name

(e2) ∧ (e2, n3) ∧ Literal(n3) ∧ LabJulius Caesar(n3)
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– Xcerptrdf contains not just term (there called “graph”) variables as discussed in the
previous sections, but a number of additional variable kinds. Node and predicate
(label) variables can easily be added to the above semantics. Essentially they are
treated the same as label variables in [69]. More challenging are CBD-variables
that select concise bounded descriptions of a matching node. A concise bounded
description is similar to a term variable in that it binds to a structure (rather than
just to a single label as label variables). But that structure may be only an excerpt
of the actual sub-graph rooted at a matching node: It includes only all paths up to
and including the first named resource on that path. CBD-variables can be added
to the translation without any changes to the target language Datalog¬new as they
can be expressed through recursive Datalog¬new rules. However, such a realisation
is likely to be inefficient. Therefore adding a specific operator for these variables is
preferable.

In the following, we will continue considering only Xcerptxml, except for Sec-
tion 2.4.4 where we briefly revisit the integration of Xcerptrdf and Xcerptxml. However,
it is easy to check that all the results below transfer also to Xcerptrdf as all of the added
or changed features can be expressed in Datalog¬new over relational structures represent-
ing RDF graphs. Also the features can be translated to Datalog¬new expressions in linear
time and space, as in the case of Xcerptxml.

This concludes the definition of the logical semantics of Xcerpt by translation to
Datalog¬new. The following sections exploit this semantics to prove complexity and ex-
pressiveness properties of Xcerpt and several sub-languages of Xcerpt (Section 2.4.4)
and to implement Xcerpt on top of relational database (Section 2.4.4).

Expressiveness and Complexity of Xcerpt. From the previous section, we obtain a
linear translation of Xcerpt programs to Datalog¬new programs. Here we show how to
use that translation to adapt or extend a number of existing results on expressiveness
and complexity of Datalog¬new to Xcerpt and some interesting sub-languages of Xcerpt.

Xcerpt: Query Complete. First, let us consider full Xcerpt. The above translation
establishes that we can find a Datalog¬new program to compute the semantics of any
Xcerpt program and that this translation is linear. What about the other direction? It
turns out, that we can encode each Datalog¬new program in an equivalent Xcerpt program
of at most quadratic size:

Theorem 3. Xcerpt has the same expressiveness, complexity, and completeness prop-
erties as Datalog¬new (and thus ILOG [89]).

Proof. By the translation above, we can give a Datalog¬new program for each Xcerpt
program.

On the other hand, each Datalog¬new program P can be encoded as an Xcerpt program
P′ preserving the semantics of P in the following way:

Each atom in the body is represented as an ordered, total Xcerpt query term with
the predicate symbol as term label, replacing Datalog¬new variables by Xcerpt vari-
ables and Datalog¬new constants c by "c". The head atom is represented as an ordered,
total Xcerpt construct term, replacing Datalog¬new variables by Xcerpt variables and
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Datalog¬new constants c by "c". An invention symbol in the head is replaced by the
Xcerpt term new[t1, . . . , tn] where t1, . . . tn are the non-invention variables or constants
in that head and new is a unique symbol not otherwise used in the program or data.
Thus a resulting term simulates only with other instances of the same head by virtue of
the unique term label new. Essentially we generate a new term for each unique binding
tuple of t1, . . . , tn (modulo deep equal).

It is easy to see that if P |= p(t1, . . . , tn) then there is an isomorphism κ from Xcerpt
terms with new labels to invention constants such that p[t′1, . . . , t

′
n] can be derived with

the rules in P′, t′i = ti if ti is a normal constant, and t′i = κ(ti) otherwise.
This translation is at worst quadratic in the size of the Datalog¬new program: Invention

symbols may lead to duplication of variable occurrences, but since only non-invention
variables and constants are ever included this duplication does not lead to exponential
size.

For the following corollary we exploit several results on ILOG [89], a syntactic variant
of Datalog¬new. First, we call two answers equivalent up to “copy removal” if they differ
only in invented values and those invented values are deep or structurally equivalent.
Second we recall the class of (list) constructive queries from [42] which are designed
to capture precisely the queries expressible in languages such as Datalog¬new, ILOG, or
Xcerpt. It coincides with the class of queries where the new domain elements in the
output can be viewed as hereditary finite lists constructed over the domain elements of
the input. Hereditary finite lists are lists constructed over a given set U of “ur-elements”
from the input domain such that each element of the list is either from U or a hereditary
finite list over U. With this definitions and respective results on ILOG from [89] and
[43] we obtain that

Corollary 1. 1. Xcerpt is Turing complete. 2. Xcerpt is query complete modulo copy
removal, i.e., it expresses all computable queries modulo copy removal. 3. Xcerpt is
(list) constructive complete.

The reason for the limitation to “modulo copy removal” is that Xcerpt uses deep or
structural equivalence as equivalence relation for grouping and can not distinguish be-
tween two terms that are deep equal.35

This result shows that while Xcerpt is indeed Turing complete that expressive power
is justified as it can express all computable queries modulo deep equal. Since the whole
language is Turing complete, it is worth investigating sub-languages with better com-
putational properties. Before we turn to that question, let us briefly consider the effect
of stratification on expressiveness and complexity:

Stratified Xcerpt: Still Query Complete. In the translation above as well as most
parts of Section 2.3 we only consider programs with a limited form of negation, viz.
stratified negation.

35 This issue is closely related to the issue of lean vs. non-lean RDF graphs as answers in lan-
guages such as SPARQL or RDFLog [38]: That Xcerpt is complete “modulo copy removal”
means that it can not create answers (or groupings) with several instances of the same, struc-
turally equivalent graph, i.e., it can only produce the term equivalent of lean answers.
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Recall the definition of stratified Xcerpt from Section 2.4.2, here recast using the
dependency graph on Xcerpt rules, as we make use of that notation also for defining
some sub-languages of Xcerpt below. Given an Xcerpt rule R we define its top-level
query terms as usual: A query terms in R is called top-level if it occurs inside the body
of R nested only inside (arbitrary combinations) of and, or, and not.

Definition 22 (Dependency graph for Xcerpt programs). Let P = R1, . . . ,Rn be an
Xcerpt program. Then the dependency graph D(P) = (N,E) for P is defined as follows:

– The nodes of D(P) are the rules of P.
– There is an edge from Ri to R j in D(P) iff one of the top-level query terms q of Ri

simulates with the construct term of R j. The edge is negative if q occurs inside a
not in Ri, otherwise it is positive.

Using the notion of dependency graph, we can define stratified Xcerpt programs as
follows:

Definition 23 (Stratified Xcerpt). Let P = R1, . . . ,Rn be an Xcerpt program. Then P is
called stratified, if there is a partitioning of P into strata S 1, . . . ,S k such that there is no
negative edge from an R ∈ S i to an R′ ∈ S j with i < j.

Proposition 2. Let P be a stratified Datalog¬new program. Then the Xcerpt encoding
of P by the proof of Theorem 3 is a stratified (and therefore locally stratified) Xcerpt
program.

Proof. A stratification of P immediately gives us a stratification of its Xcerpt encoding
P′ as any negated query term t in P′ yields from a negated atom in P and the cor-
responding rule can all construct terms in lower strata have top-level labels that are
different from the top-level label of t and thus do not unify. Otherwise the predicate that
construct term is the encoding of depends on the negated atom already in P, yet is in a
lower stratum in contrast to the assumption that P is stratified.

From this result and [43] which shows that stratified Datalog¬new has the same expressive
power as full Datalog¬new and thus can express all computable queries modulo copy
removal we can deduce the same observation for Xcerpt:

Corollary 2. Stratified Xcerpt already expresses all computable queries modulo copy
removal.

In other words, the class of queries expressible in Xcerpt does not shrink if we constrain
ourselves to stratified programs. This contrast to the case of Datalog¬ without value
invention where stratification is indeed a limitation on the kind of queries expressible
in the language.

Weakly-Recursive Xcerpt: Finite Models. A first decidable sub-language of Xcerpt
is inspired by the notion of weakly acyclic Datalog¬new [89] that is also used extensively,
e.g., in the data exchange setting. Essentially combining recursion and value invention
is dangerous as we can no longer give a bound on the number of ground terms entailed
by a program (in other words the active domain is no longer finite). The notion of
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weak acyclicity is a sufficient condition to guarantee finite active domains: We allow
recursion but only if no new values can be created on by the recursive rules. In terms of
the dependency graph of the program: we allow cycles in the dependency graph as long
as they are not through invention atoms.

Directly applying this notion to Xcerpt is unsatisfying as every Xcerpt rule generates
new nodes. However, since we generate new nodes modulo deep equality, we only need
to ensure that the number of different terms a program can generate is finite.

Given two terms t and t′. We define the nesting depth of t in t′ as usual: If t = t′ then
the nesting depth is 0. Otherwise, if t′ is nested inside a term t′′ in t with nesting depth
d then t′ has nesting depth d+1. If t′ occurs several times in t then its nesting depth is
the minimum of the nesting depths of its occurrences.

Definition 24 (Weakly-recursive Xcerpt). Let P = R1, . . . ,Rn be an Xcerpt program.
Then P is called weakly-recursive, if for each edge (Ri,R j) in D(P) the following holds:

– The construct term c of R j does not contain any grouping terms (no all).
– For each variable in c the nesting depth of its occurrence in c is less or equal to the

nesting depth in any top-level query term q in Ri that simulates with c.

Weakly-recursive Xcerpt is the fragment of Xcerpt containing all such programs.

Roughly speaking the absence of grouping terms prevents terms with unbounded
breadth and the second condition places a bound on the breadth of terms.

Theorem 4. Weakly-recursive Xcerpt is decidable and the combined complexity of its
evaluation is nexptime-complete.

Proof. Weakly-recursive Xcerpt is nexptime-hard as we can reduce weakly-recursive
Datalog¬new which is known to be nexptime-complete [43] to weakly-recursive Xcerpt
by the construction in the proof of Theorem 3. The resulting Xcerpt programs are in-
deed weakly-recursive, as the construction never creates grouping terms and the nesting
depth only increases when translating invention atoms.

On the other hand, weakly-recursive Xcerpt is also obviously in nexptime: For a
given input program we can compute the maximum depth and breadth of a term as well
as the number of distinct labels for a given input term of depth d, breadth b, and number
of distinct labels l.

We generate each of the O(bd · l) different terms that can be generated with these
bounds. Then we compute the Xcerpt program by a standard fixpoint operator, but in-
stead of generating new terms we only mark those terms we have already derived. If
there are no more rules that mark additional terms or all terms are marked, the evalu-
ation terminates. A single derivation step is obviously in NP. Since each step marks at
least one term, there are at most O(bd · l) steps

Non-Recursive Xcerpt: Parallelizable. Though weakly-recursive Xcerpt is decidable
it is still fairly expensive to evaluate. An obvious further restriction is to allow no recur-
sion in Xcerpt at all:



Four Lessons in Versatility or How Query Languages Adapt to the Web 123

Definition 25 (Non-recursive Xcerpt). Let P = R1, . . . ,Rn be an Xcerpt program. Then
P is called non-recursive, if its dependency graph D(P) is acyclic. Non-recursive Xcerpt
is the fragment of Xcerpt containing all such programs.

Though this restriction limits the construction of new values, it turns out that even the
application of a single Xcerpt rule can be potentially expensive due to the use of deep-
equal. For arbitrary Xcerpt terms this is as hard as graph isomorphism for which no
polynomial time algorithms are known. Therefore, we also limit ourselves to trees-
shaped data as input and disallow references in rules.

It turns out that with these two restriction, we obtain a sub-language that is efficiently
parallelizable (wrt. data complexity):

Proposition 3. Non-recursive Xcerpt on trees has data complexity in nc1 ⊆ l and pro-
gram complexity pspace-complete.

Proof. We can obtain a non-recursive Datalog¬ program with deep-equal by 1. com-
puting the (now acyclic) dependency graph, 2. indexing all relations in the head of each
rule with a unique identifier, 3. replacing references to the relation in the body of each
rule with a disjunction referencing the indexed relations of all rules they may depend
on. The resulting program is a non-recursive Datalog¬ program with deep-equal and is
at most exponential in the size of the input Xcerpt program. A Datalog¬ program with
deep-equal can be evaluated with data complexity in nc1 and program complexity in
pspace(which is thus not affected by the exponential translation size) since deep-equal
on trees is nc1-complete [91].

From Xcerpt to SQL: A Foundation for a Relational Implementation. With the
translation to Datalog¬new for Xcerpt programs, we not only achieve a purely logical se-
mantics, but also the foundation for a relational implementation: First notice, that each
stratified Datalog¬ program can be translated into a, possibly recursive, SQL expres-
sion. SQL recursion (introduced in SQL:1999 and refined in SQL:2003) is expressed
using with and is limited to monoton recursion: A relation P may be defined by means
(including negation) of a relation Q only if adding tuples to Q cannot cause any triple
of P to be deleted. Fortunately, stratified Datalog¬ programs are designed to be allow
only monoton recursion.

With the addition of ranking operators in SQL:1999 controlled value generation has
been standardized as well. When translating a Datalog¬new program to SQL, we employ
the ROW NUMBER or DENSE RANK function to generate new node IDs based on the
invention variables. For details see [82] where these are used in the context of XQuery
iteration.

The chief disadvantage of translating Xcerpt (in this or other ways) to SQL for im-
plementation is that the nave relational representation discussed in Section 2.4.4 does
not perform well in practice. This has been observed frequently and, for tree data, la-
beling schemes such as the pre-/post-encoding [81], ORDPATH [122], or BIRD [153]
have been suggested to provide better XML storage. They provide linear time and space
processing of XML tree queries on tree data. However, when querying graph data these
approaches do not immediately apply. Therefore, we have developed a labeling scheme
for graph data that not only provides linear time and space evaluation for tree data but
also for many graphs, see Section 2.5.1.
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Versatile Semantics: Adding XPath, XQuery, and SPARQL. The above transla-
tion has been focused so far on Xcerpt with a brief outlook to Xcerptrdf. However,
Datalog¬new together with the relation representations for RDF and XML data from
Section 2.4.4 can form a common basis for analysing and evaluating a far larger set
of query languages.

In fact in [71,69], we show how to map not only Xcerpt but also XPath, XQuery, and
SPARQL to Datalog¬new. Combined with the labeling scheme and evaluation for tree
and graph data discussed in Section 2.5.1 this allows us the use of the same, efficient
evaluation engine for all this languages. In particular, we can integrate queries written
in these very different languages. Though such integration has been suggested previ-
ously (e.g., in [128]), none of the previous approaches achieves language integration
also on the level of the evaluation engine. By translating both languages to Datalog¬new
we open up opportunities for cross language optimization. Furthermore, the labeling
scheme propose in Section 2.5 allows for such integration without sacrificing efficiency
for the more restricted languages (e.g., for XPath on tree data).

Example: Language Integration. As illustration let us consider an example of such
language integration where we allow XPath and SPARQL queries to occur in the body
of an Xcerpt rule. XPath queries are always only filters, i.e., they do not provide variable
bindings. SPARQL queries may provide variable bindings, though such variables are
always label variables only. The same variables may be used in body parts of different
languages and are understood as multiple variable occurrences in Xcerpt. However,
if Xcerpt term variables are used in SPARQL or XPath only their top-level label is
considered. For simplicity we assume that XPath and Xcerpt query the same XML data,
but SPARQL queries a separate RDF graph. Of course, we could also access different
data sets in each language.

The following example selects the names of authors of conference papers in a
variable X if they contain “Cicero” in an Xcerpt query. An XPath filter constraints
these bindings by requiring that there is also a member of the organizers from Plato’s
“Akademia” with the same name. Finally, we also select all resources in the RDF data
whose dc:creator has the same full-name.

1 GOAL
shelf{ all author { var X, all var A group-by A } group-by X

}
3 FROM

and(
5 conference{{

paper{{
7 desc author{{ var X → /.*/ }} }} }},

9 //organizers/member[affiliation[text() = ’Akademia’]
name[text()=$X]],

11 SELECT ?A
WHERE { ?A dc:creator ?P AND ?P vcard:FN ?X }

13 )
END
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The translation to Datalog¬new is very much along what we have seen in Section 2.4.4:

Root(1()) ∧ Labshelf(1()) ∧ Rchild(1(), 2(v2)) ∧ Labauthor(2(v2)) ∧ Rchild(2(v2),
deep-copy(v2, v2)) ∧ Rchild(2(v2), deep-copy(v2, s1, s1))

2 ←− Root(v1) ∧ Labconference(v1) ∧ Rchild(v1, v2) ∧ Labpaper(v2) ∧ Rdescendant

(v2, v3) ∧ Labauthor(v3) ∧ Rchild(v3, v4), Rarity(v4, 0) ∧

4 Root(x1) ∧ Rdescendant-or-self(x1, x2) ∧ Laborganizers(x2) ∧ Rchild(x2, x3) ∧
Labmember(x3) ∧ Rchild(x3, x4) ∧ Labaffiliation(x4) ∧ Rchild(x4, x5) ∧
LabAkademia(x5) ∧ Rchild(x3, x6) ∧ Labname(x6) ∧ Rchild(x6, x7) ∧
x7 � v4 ∧

6 (s1, e1) ∧ Edge(e1) ∧ Labdc:creator(e1) ∧ (e1, s2) ∧ (s2, e2) ∧
Edge(e2) ∧ Labvcard:FN(e2) ∧ (e2, s3) ∧ s3 � v4.

Obviously, in this case the use of XPath affords little gain compared to Xcerpt only
queries, but the same technique can be applied to integrate XPath into SPARQL or
SPARQL into XQuery. Full translations for SPARQL, XPath, and XQuery can be found
in [69].

Outlook. Xcerpt and versatile Web queries in general are a powerful and convenient
tool for accessing Web data. In this section, we show that, both their semantics and eval-
uation, can nevertheless be cast in terms of existing logical foundations and technology.
In particular, we show how Xcerpt can be translated to Datalog¬new and use that transla-
tion to proof several formal properties of Xcerpt and interesting sub-languages thereof.
Perhaps even more important is that the suggested translation can also be achieved for
such diverse Web query languages as SPARQL, XPath, or XQuery. Not only does that
provide us with a playground for comparing and investigating these languages, it also
allows us, as discussed in the last two Sections, to integrate and implement these lan-
guages in a common engine. We have only outlined first ideas towards this integration
here. There remain a plethora of open issues such as the right mapping of variable bind-
ings. One of the most crucial of these issues is the question whether the use of such a
common engine does not sacrifice performance for the more restricted languages such
as XPath. The following Section 2.5 essentially answers this question negative: We can
provide a common engine for these languages based on a uniform evaluation of tree and
graph data, that nevertheless provides a linear time and space (and thus optimal) eval-
uation for XPath (tree queries on tree data). It even extends this complexity to many
graphs in contrast to all previous approaches.

2.5 Versatile Evaluation

In the previous sections, we have shown how versatile query languages advance the
state-of-the-art for querying the Web, where often the same application needs access to
data published in different formats.

Employing a versatile query language may be convenient, but what about the cost?
If the price is that we have to forgo efficient evaluation methods that exploit the specific
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Table 10. Complexity of graph labeling schemes for reachability test on arbitrary graphs (labeling
size is per node). n ≥ eg: number of non-tree edges.

approach reachability time labeling time labeling size

2-Hop [53] O(n) O(n4) O(n)
HOPI [137] O(n) O(n3) O(n)

Graph labeling [6] O(n) O(n3) O(n)
SSPI [48] O(n) O(n2) O(n)

Dual labeling [151] O(1) O(n3) O(n)
GRIPP [145] O(n) O(n2) O(n)

limitations of the involved data formats, versatile query languages may often not be
practical.

Fortunately, we show in this section that in two crucial aspects this concern is not
justified: First, we present a uniform evaluation algorithm that is capable of dealing
with arbitrary graphs (as they occur in RDF data), but (seamlessly) processes trees and
even many non-trees

2.5.1 Evaluating Queries: Structure Scaling with CIQCAG

What makes Web queries different from those used in centralized, relational databases
is the emphasize on versatile, flexible structure conditions. Web queries are often
written against data, where neither the exact shape of the children of a node nor of the
paths connecting two nodes is known. This observation leads to emphasize on a flexi-
ble representation of Web data, be it tree- or graph-shaped, where we can not assume a
fixed, recursion- and repetition-free schema.

Labeling schemes have become a popular means for providing efficient queries to
Web data, in particular if that Web data is represented relationally. Labeling schemes
assign each node a unique (constant36) label such that we can decide whether two nodes
stand in a certain structural relations given only their labels. For tree data, several label-
ing schemes with constant time membership test have been proposed [81,122,153].

On arbitrary graph data testing adjacency (or reachability) in both constant time and
constant per-node space is not possible.37 Labeling schemes have therefore focused
on heuristics for finding compact representations of reachability and adjacency. These
heuristics come in roughly two kinds (here and in the following n,m are the number of
nodes and edges in a given graph):

– For reachability in arbitrary graphs, the 2-hop cover [53] is a set of shortest paths
such that for any two nodes there is a concatenation of two such paths that is a

36 As most other works on labeling schemes, we consider label size to be bounded in practice
and thus as constant. More precisely, label size is in O(logn) where n is the number of nodes
in the document.

37 As there are 2n2
different graphs, yet constant per-node space allows only for 2n different

representations.
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shortest path for those two nodes. Such a 2-hop cover can be exploited to assign
labels for reachability testing: Each node v is labeled with two sets (Lout(v),Lout(v))
such that Lout(v)∩ Lin(v′) for each node v′ reachable from v. However, finding an
optimal 2-hop labeling np-hard and there are graphs whose optimal 2-hop labeling
is at least Ω(n ·m1/2) in size. Further work on 2-hop labeling has focused mostly on
efficient approximation algorithms [137].

– Often sparse graphs are almost tree-shaped with only few non-tree edges. This
is exploited by a several approaches [6,48,151,145] for extending tree labelings,
mostly pre-/post-labelings [81], to graphs. However, for all of these approaches the
largest interesting class of graphs where they can still guarantee constant time and
per-node space reachability tests are trees. On arbitrary graphs they either degener-
ate in space or time complexity.
Roughly speaking all three four approaches extend pre-/post-tree labeling to arbi-
trary graphs by first labeling a spanning tree. They differ in how they deal with
non-tree edges: In [6] nodes get additional pre-/post-intervals for descendants not
reachable by tree edges at the cost of up to linear space per node. In [48] non-tree
edges are iterated at query time at the cost of up to linear time for testing reachabil-
ity. In [151] the transitive closure of non tree edges is computed and stored at the
cost of up to linear space per node space. Finally, [145] presents a refined combi-
nation of [6] and [48] that performs on sparse graphs often significantly better, but
does not improve the worst-case space or time complexity.

Table 10 summarizes these time and per-node space complexity.

Contributions. In this chapter, we present a novel characterization of a class of graphs
that is a proper, non-trivial superclass of trees that still exhibits a labeling scheme with
constant time, constant per-node space adjacency and reachability tests. Furthermore,
we give a quadratic algorithm that computes, for an arbitrary graph, such a labeling if
one exists.

Constant time membership test almost immediately yields linear time evaluation for
existential acyclic conjunctive queries on tree data. However, nave approaches for n-
ary universal queries take at least quadratic time in the graph size. We show how the
above labeling scheme can be exploited to give an algorithm for evaluating acyclic
conjunctive queries that is O(n · q) wrt. time and space complexity, i.e., linear in both
data and program complexity. Furthermore, our algorithm guarantees iteration in the
size of the related nodes rather than in all nodes.

Labeling Beyond Trees: Continuous-Image Graphs. Tree data, as argued above,
allows us to represent relations on that data more compactly, e.g., using various interval-
based labeling schemes. Here, we introduce a new class of graphs, called continuous-
image graphs (or cigs for short), that generalize features of tree data in such a way
that we can evaluate (tree) queries on cigs with the same time and space complexity as
techniques such as twig joins [30] which are limited to tree data only.

Continuous-image graphs are a proper superset of (ordered) trees. On trees we re-
quire that each node has at most one parent. For continuous-image graphs, however,
we only ask that we can find a single order on all nodes of the graph such that the
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Fig. 10. Sharing: On the Limits of Continuous-image Graphs

children of each parent form a continuous interval in that order. Formally, we define
a continuous-image graph by means of the image interval property (a generalization
of corresponding properties of tree-shaped relations or closure relations of tree-shaped
base relations. Recall that we denote with R(n) for a node n ∈ N and a binary relation R
over the domain N the set {n′ ∈ N : (n,n′) ∈ R}.
Definition 26 (Continuous-image Graph). Let R be a binary relation over a domain
(of nodes) N. Then R is a continuous-image graph, short cig, if it carries the image
interval property: there is a total order <i on N with the induced sequence S over N
such that for all nodes n ∈ N, R(n) = ∅ or R(n) = {S [s], . . . ,S [e] : s ≤ e ∈ �}.
The definition of continuous image graphs allows graphs where some or all children of
two parents are “shared” (in contrast to trees where this is never allowed). However,
it limits the degree of sharing: Figure 10 shows two minimal graphs that are not cigs.
Incidentally, both graphs are acyclic and, if we take away any one edge in either graph,
the resulting graph becomes a cig. The second graph is actually the smallest (w.r.t. the
number of nodes and edges) graph that is not a cig. The first is only edge minimal but
illustrates an easy to grasp sufficient but not necessary condition for violating the image
interval property: if a node has at least three parents and each of the parents has at least
one (other) child not shared by the others then the graph can not be a cig.

On continuous-image graphs we can exploit similar techniques for representing
structural relations as on trees, most notably we can label each node with a single,
continuous interval for its children and/or descendants. Together with a simple index to
represent that nodes position in the underlying order, we obtain constant space labels
(three integers), yet can test adjacency and/or reachability in constant time (with two
integer comparisons).
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Fig. 11. “The Five Good Emperors” (after Edward Gibbon), their relations, and provinces

Testing for CIGs: consecutive ones property. Moreover, whether a given graph is a
cig (and in what order its node must be sorted to arrive at continuous intervals for each
parent’s children) is just another way of saying that its adjacency matrix carries the
consecutive ones property [68]. For the consecutive-ones problem [24] gives the first
linear time (in the size of the matrix) algorithm based on so called PQ-trees, a compact
representation for permutations of rows in a matrix. More recent refinements in [84]
and [88] show that simpler algorithms, e.g., based on the PC-tree [87], can be achieved.
We adapt these algorithms to obtain a linear time (in the size of the adjacency matrix)
algorithm for deciding whether a graph is a cig and computing a cig-order.

From a practical perspective, cigs are actually quite common, in particular, where
time-related or hierarchical data is involved: If relations, e.g., between Germany and
kings, are time-related, it is quite likely that there will be some overlapping, e.g.,
for periods where two persons were king of Germany at the same time. Similarly,
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hierarchical data often has some limited anomalies that make a modelling as strict tree
data impossible. Figure 11 shows actual data38 on relations between the family (red
nodes, non-ruling member 1 , co-emperor or heir designate 10 , emperors 2 ) of the
Roman emperors in the time of the “Five Good Emperors” (Edward Gibbon) in the 2nd
century. It also shows, for actual emperors, which of the four new provinces ( I ) added
to the roman empire in this period each emperor ruled (the other provinces remained
mostly unchanged and are therefore omitted). Arrows between family members indi-
cate, natural or adoptive, fathership39. Arrows between emperors and provinces show
rulership, different colors are used to distinguish different emperors. Despite the rather
complicated shape of the relations (they are obviously not tree-shaped and there is con-
siderable overlapping, in particular w.r.t. province rulership).

The previous example also highlights the intuition behind continuous-image graphs:
we allow some overlapping between among the children of different nodes, but only
in such a way that the images can still be represented (over some order on the nodes)
as continuous intervals. Figure 12 illustrates the intervals on the Roman provinces for
representing the ruled provinces of each emperor: With the given order on the provinces,
each image is a single interval (e.g., Trajan I–III and Septimus Severus II–IV) even
though the data is clearly not tree-shaped (or a closure relation of a tree-shaped relation).

How continuous-image graphs differ from tree-shaped data (or closure relations over
tree-shaped data) is further detailed in Figure 13: Tree data carries the image disjoint-
ness property as, under the order on the nodes induced by a breadth-first traversal, the
nodes in the image of any parent node in the tree form a continuous, non-overlapping
interval. Closure relations over tree data (i.e., relations such as XPath’s descendant)
carry the image containment property as, e.g., under the order on the nodes induced by
a depth-first traversal, again the nodes in the image of any parent node form a continu-
ous interval and overlapping is limited: either two such intervals do not overlap at all or
one is contained within the other.

Continuous-image graphs (as shown in the right of Figure 13) carry, as stated above,
the image interval property, i.e., there is some order on the nodes such that the nodes
in the image of each parent form a continuous interval. Here, the intervals may overlap
arbitrarily as illustrated in Figure 13. However, in contrast to the tree or closure relation
over tree case the required order on the nodes is no longer known a-priori but must be
determined for each graph using, e.g., the above described algorithms.

Intermediary Answers as Interval Labels. When we evaluate acyclic conjunctive or
tree queries, we can observe that for determining matches for a given query node only
the match for its parent and child in the query tree are relevant. Intuitively, this “locality”
property holds as in a tree there is at most one path between two nodes. To illustrate,
consider, e.g., the XPath query //a//b//c selecting c descendants of b descendants of a’s.
Say there are n a’s in the data nested into each other with m b’s nested inside the a’s
and finally inside the b’s (again nested in each other) l c’s. Then a naive evaluation of

38 The name and status of the province between the wall of Hadrian and the wall of Antonius
Pius in northern Britain is controversial. For simplicity, we refer to it as “Caledonia”, though
that actually denotes all land north of Hadrian’s wall.

39 Note that all emperors of the Nervan-Antonian dynasty except Nerva and Commodus were
adopted by their predecessor and are therefore often referred to as “Adoptive Emperors”.
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Fig. 12. Overlapping of province children in the “The Five Good Emperors” example, Figure 9

the above query considers all triples (a,b,c) in the data, i.e., n×m× l triples. However,
whether a c is a descendant of a b is independent of whether a b is a descendant of
an a. If a b is a descendant of several a’s makes no difference for determining its c
descendants. It suffices to determine in at most n×m time and space all b’s that are
descendants of a, followed by a separate determination of all c’s that are descendants
of such b’s in at most m× l time and space.

Indeed, if we consider the answer relation for a tree query, i.e., the relation with
the complete bindings as rows and the query’s nodes as columns, this relation always
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exhibits multivalue dependencies [65]: We can normalize or decompose such a relation
for a query with n nodes into n− 1 separate relations that together faithfully represent
the original relation (and from which the original relation can be reconstructed using
n−1 joins). This allows us to compact an otherwise potentially exponential answer (in
the data size) into a polynomial representation.

This is the first principle of the algorithm: decompose the query into separate binding
sequences for each query node with “links” or pointers relating bindings of different
nodes. We thus obtain an exponentially more succinct data structure for (intermediary)
answers of tree queries than if using standard (flat) relational algebra. In this sense,
a sequence map can be considered a fully decomposed column store for the answer
relation.
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Fig. 14. Selecting sons, type, name, and ruled provinces for all members of the imperial family
in the data of Figure 11
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Imp-ID Type Name Son-ID Ruled-ID Ruled-Name

1 non-ruling Marcus Ulpius Traianus 4 – –
2 augustus Nerva 4 – –
3 non-ruling P. Aurelius Hadrianus Afer 6 – –
4 augustus Trajan 6 I Mesopotamia
4 augustus Trajan 6 II Arabia Petraea
4 augustus Trajan 6 III Dacia
5 non-ruling Titus Aurelius Fulvus 9 – –
6 augustus Hadrian 9 II Arabia Petraea
6 augustus Hadrian 10 II Arabia Petraea
6 augustus Hadrian 9 III Dacia
6 augustus Hadrian 10 III Dacia
7 non-ruling L. Ceionius Commodus Verus 10 – –
8 non-ruling M. Annius Verus 11 – –
9 augustus Antonius Pius 11 II Arabia Petraea
9 augustus Antonius Pius 12 II Arabia Petraea
9 augustus Antonius Pius 11 IIi Dacia
9 augustus Antonius Pius 12 III Dacia
9 augustus Antonius Pius 11 IV Caledonia
9 augustus Antonius Pius 12 IV Caledonia

10 caesar Lucius Aelius 12 – –
11 augustus Marcus Aurelius 13 II Arabia Petraea
11 augustus Marcus Aurelius 13 III Dacia
12 caesar Lucius Verus – – –
13 augustus Commodus – II Arabia Petraea
13 augustus Commodus – III Dacia
14 augustus Septimus Severus – II Arabia
14 augustus Septimus Severus – III Arabia
14 augustus Septimus Severus – IV Caledonia

Fig. 15. Answers for query from Figure 14, single, flat relation

To illustrate this, consider the query in Figure 14 on the data of Figure 11. The query
selects sons and ruled provinces of members of the imperial family. We also record
type and name of the family member and name of the province to easier talk about the
retrieved data. The answers for such a query, if expressed, e.g., in relational algebra
or any language using standard, flat relations to represent n-ary answers, against the
data from Figure 11 yields the flat relation represented in Figure 15. As argued above,
we can detect multivalue dependencies and thus redundancies, e.g., from emperor to
province, from province to province name, from emperor (Imp-ID) to type and name.

To avoid these redundancies, we first decompose or normalize this relation along the
multivalue dependencies as in Figure 16. For the sequence map, we use always a full
decomposition, i.e., we would also partition type and name into separate tables as in a
column store.

Storing Intermediary Results as Intervals. Once we have partitioned the answer
relation into what subsumes to only link tables as in column stores, we can observe
even more regularities (and thus possibilities for compaction) if the underlying data is
a tree or continuous-image graph. Look again at the data in Figure 11 and the resulting
answer representation in Figure 16: Most emperors have not only ruled one of the new
provinces Mesopotamia, Arabia Petraea, Dacia, and Caledonia but several. However,
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Imp-ID Type Name

1 non-ruling M. Ulpius Traianus
2 augustus Nerva
3 non-ruling P. A. Hadrianus Afer
4 augustus Trajan
5 non-ruling Titus Aurelius Fulvus
6 augustus Hadrian
7 non-ruling L. C. Commodus Verus
8 non-ruling M. Annius Verus
9 augustus Antonius Pius

10 caesar Lucius Aelius
11 augustus Marcus Aurelius
12 caesar Lucius Verus
13 augustus Commodus
14 augustus Septimus Severus

Imp-ID Son-ID

1 4
2 4
3 6
4 6
5 9
6 9
6 10
7 10
8 11
9 11
9 12

10 12
11 13

Imp-ID Prov-ID

4 I
4 II
4 III
6 II
6 III
9 II
9 III
9 IV

13 II
13 III
14 II
14 III
14 IV

Prov-ID Name

I Mesopotamia
II Arabia Petraea
III Dacia
IV Caledonia

Fig. 16. Answers for query from Figure 14, no multivalue dependencies

Imp-ID Son Range

1 4
2 4
3 6
4 6
5 9
6 9–10
7 10
8 11
9 11–12

10 12
11 13

Imp-ID Prov Range

4 I–III
6 II–III
9 II–IV

13 II–III
14 II–IV

Fig. 17. Answers for query from Figure 14, multiple relations, interval pointers. The first table
from Figure 16 remains unchanged.

since the data is a continuous-image graph there is an order (indeed, the order of the
province IDs if interpreted as roman numerals) on the provinces such that the provinces
ruled by each emperor form a continuous interval w.r.t. that order. Thus we can actually
represent the same information much more compactly using interval pointers or links
as in Figure 17 where we do the same also for the father-son relation (although there is
far less gain since most emperors already have only a single son).

Instead of a single relation spanning 28 rows and 6 columns (168 cells), we have thus
reduced the information to 5 · 2+ 11 · 2+ 14 · 3 = 74 cells. This compaction increases
exponentially if there are longer paths in a tree query (e.g., if the provinces would be
connected to further information not related to the emperors). It increases quadratically
with the increasing size of the tables, e.g., if we added the remaining n provinces of the
Roman empire ruled by all emperors in our data we would end up with 7 ·n additional
rows of 6 columns in the first case (each of the 7 emperors in our data ruled all these
provinces), but only n · 2 additional cells when using multiple relations and interval
pointers.
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Fig. 18. Sequence Map: Example. For a query selecting roman emperors together with their name
and ruled provinces on the data of Figure 11.

Formally, we represent (intermediary) answers to an acyclic query as a mapping from
the set of query variables V to sequences of matches for that query node. A match for
query node v in itself is the actual data node or edge v is matched with and a set of pairs
of child nodes of v to start and end positions. Intuitively, it connects the match for v to
matches of its child nodes in the tree query. We obtain in this way a data structure as
shown in Figure 18 for a query selecting roman emperors with their names and ruled
provinces on the data of Figure 11.

Note, that we allow for each child node of v multiple intervals. If the data is a cig, it
is guaranteed that only a single interval is needed and thus the overall space complexity
of a sequence map is linear in the data size. However, we can also employ a sequence
map for non-cig graphs. In this case, we often still benefit from the interval pointers, but
in worst-case we might need |N ∪E| many interval pointers to relate to all bindings of a
child variable. Overall, a sequence map for non-cig graphs thus may use up to quadratic
space in the data size.

Representing intermediary results: A Comparison. As stated above, the sequence
map is heavily influenced by previous data structures for representing intermediary an-
swers of tree queries. Figure 19 shows the most relevant influences. Complexity and
supported data shapes are compared below after discussing the actual evaluation of tree
queries using the interval labeling for data and intermediary results. Here, we illus-
trate that the above discussed choices when designing a data structure for intermediary



136 F. Bry et al.

keys pointers

se
ts

se
qu

en
ce

s
CAA [114]

ciqcag

Pathfinder [81]

SPEX [118]

Polynom. XPath [77]

relational ciqcag
(FNF)

Xcerpt 1.0 [135],
NFNF (tree)

twig joins [30]

Xcerpt 1.5 [36];
NFNF (graph)

Fig. 19. Data structures for intermediary results (of a tree query)

answers of tree queries are actually present in many related systems: We can find sys-
tems such as Xcerpt 1.0 [135], many early XPath processors (according to [77]), and
tree algebras such as TAX [90] that use exponential size for storing all combinations
of matches for each query node explicitly. [77] shows that XPath queries can in fact
be evaluated in polynomial time and space, which is independently verified in SPEX
[118], the first streaming processor for navigational XPath with all structural axes. Like
SPEX and our approach, complete answer aggregates [114] use interval compaction for
relating matches between different nodes in a tree query. CAAs are also most closely re-
lated to our approach w.r.t. the decomposition of the answer relation: fully decomposed
without multivalue dependencies. In contrast, Pathfinder [22] uses standard relational
algebra but for the evaluation of structural joins a novel staircase join [83] is employed
that exploits the same interval principles used in CAAs and our approach.

Streaming or cursor-based approaches such as twig join approaches [30,48] consider
the data in a certain order rather than all at once. In such a model, it is possible and
desirable to skip irrelevant portions of the input stream (or relations) and to prune partial
answers as soon as it is clear that we can not complete such answers. Recent versions of
SPEX [37,118] contain as most twig join approaches, mechanisms to skip over parts of
the stream (at least for some query nodes) if there can not be a match (e.g., because there
is no match for a parent node and we know that matches for parent nodes must come
before matches for child nodes). Both twig joins and SPEX also prune results as soon
as possible. However, twig joins are limited to vertical relations (child and descendant)
whereas SPEX and ciqcag can evaluate all XPath axes, though only on tree data.

To summarize, though our approach to representing intermediary answers is similar
in its principles to several of the related approaches in Figure 19, it combines efficient in-
termediary answer storage as in CAAs with fully algebraic processing as in Pathfinder
and efficient skipping and pruning as in twig joins.

Furthermore, where most of the related approaches are limited to tree data (with the
notable exception of Xcerpt), our approach allows processing of many graphs, viz. cigs,
as efficient as previous approaches allow for trees.
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Evaluating Tree Queries on Interval Labels. For evaluating acyclic conjunctive
queries (or tree queries) the essential operation is a join that allows us to gather results
of the evaluation of the constituent query atoms in a consistent manner: Only where
variables are bound the same in answers to different query atoms those answers are
“joined” together to form a larger answer.

There are some other operations needed for implementing full acyclic conjunctive
queries, most importantly selection, but they are omitted here for clarity of presentation.
For full details see [69].

The join operation for interval representations of relations is defined as follows:

Definition 27 (Sequence map join (disjoint edge covers)). Let D be a relational
structure, Q a tree query, and S 1,S 2 two interval representations for D over Q such
that there is no edge in Q that is covered by both S 1 and S 2. Then ��[](S 1,S 2) returns
an interval representation S 3 such that
1. the induced relation of S 3 is the natural join of the induced relations of S 1 and S 2.
2. S 3|domS 1∪domS 2

= S 3 (S 3 contains bindings only for variables mapped either in S 1

or in S 2).

Note that this definition yields an interval representation that leaves bindings for non-
shared variables unchanged from the input representations. These variables occur only
in one of the query parts covered by the input, but not in the other. For shared variables,
only those bindings are retained that occur in both representations. This also applies to
the (interval pointer) references from bindings of a parent variable v to a child variable
v′ of v: They are contained only in one of the sequence maps (due to the edge cover
restriction), for the other sequence map the induced relation records any combination
of bindings by definition.

The restriction on the edge covers on S 1 and S 2 is imposed to ensure that for any pair
of variables v,v′ only one of the interval representations may contain interval pointers
from v to v′, though both may contain bindings for v and v′. In other words, each edge
of the query is enforced by at most one of the two sequence maps.

For a given tree query expression, the edge cover of each sub-expression can be de-
termined statically, without knowledge about the data the expression is to be evaluated
against. Thus, we can also statically determine whether a join expression is valid or
violates the edge cover restriction defined above. For the evaluation of tree queries we
never need joins with overlapping edge covers.

Algorithm 2.5.1 computes an interval representation that represents the join of the
induced relations as demanded in the definition of ��[](), but may be inconsistent: It
“bombs” bindings not contained in both sequence maps rather than dropping them en-
tirely. This has the effect that interval pointers can remain unchanged (but now point to
an interval containing possibly bombed entries). Note, that interval pointers to bindings
of a variable occur only in one of the two input interval representations as the incoming
edge of each variable is unique (since the query is tree-shaped) and the edge covers
are disjoint. This allows line 16 where we simply throw together intervals from both
sequence maps. Finally, observe that by the definition of the initialization of a sequence
map, bindings for the same query variable occur in the same order in all sequence maps
for that query. Thus the bindings of a variable shared between the two interval repre-
sentations are ordered the same.
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Algorithm 1 ��[](S 1,S 2)
input : Interval representations S 1 and S 2 with disjoint edge covers
output: Interval representation res representing the join of the induced relations

of the inputs

ec1← edgeCover(S 1); ec2← edgeCover(S 2);1

AllVars← domS 1∪domS 2;2

SharedVars← domS 1∩domS 2;3

res← ∅ ;4

foreach v ∈ AllVars do5

if v � domS 2 then res← res∪{(v,S 1(v))} ;6

else if v � domS 1 then res← res∪{(v,S 2(v))};7

else // v is in both8

// 1 is the primary (fallback if v is in neither edge cover)
iter← S 1(v); alt← S 2(v) ;9

if (v′,v) ∈ ec2 for some v′ then10

// v is sink in ec2, thus the order and number of entries must be as in 2
(it can not be sink in ec1 as Q tree query and edge covers disjoint)

iter← S 2(v); alt← S 1(v);11

S ← ∅; i, j,k← 1 ;12

while i ≤ |iter| do13

(n1, i)← nextBinding(S 1(v), i); (n2, j)← nextBinding(S 2(v), j); if14

n1 = n2 then // Retain binding if same
S [k] = (n1, intervals(iter[i])∪ intervals(alt[ j])) ;15

i++; j++; k++;16

else if n1 < n2 then // “bomb” if in iter but not in alt17

S [k] = �;18

i++; k++;19

else // skip binding if in alt but not in iter20

j++;21

22

res← res∪{(v,S )} ;23

24

return res25

.

These observations are exploited in Algorithm 2.5.1 to give a merge-join [73] style
algorithm for the join of two interval representations with disjoint edge cover that has
linear time complexity in the (combined) size of the inputs. Since the bindings are
already in the same order, we can omit the sort phase of the merge join and immediately
merge the two binding sequences. However, we need to ensure that not only the order
but also the number of bindings (and the position of eventual failure markers, cf. lines
18–20) reflects that for the same variable v in the sequence map where v’s incoming
edge is in the edge cover (lines 9–11).
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Algorithm 2
input : Sequence S containing, possibly, failure markers and start index i
output: The next element in S at or after i that is not a failure marker and its

index or (∞,∞) if no such binding exists

for j← i to |S | do1

if S [ j] is not a failure marker then break;2

if j = |S | and S [ j] failure marker then return (∞,∞) ;3

return (S [ j], j)4

. NextBinding(S, i)

Theorem 5. Algorithm 2.5.1 computes ��[](S 1,S 2) for interval representations with
disjoint edge cover and set of shared variables Shared in O(btotal

Shared · i) ≤ O(|Shared| ·
n · i) time where btotal

Shared is the total number of bindings associated in either input with a
variable in Shared and i is the maximum number of intervals associated with any such
binding. For tree, forest, and cig data i = 1, for arbitrary graph data i ≤ n.

Proof. Algorithm 2.5.1 computes S =��[](S 1,S 2): For any variable v, if a binding for
v occurs in the induced relation of both interval representations, it occurs also in S
due to lines 15–17. If v’s incoming edge is in the edge cover of one of the interval
representations S ′, lines 9–11 ensure that the sequence of bindings for v is the same
(except that some bindings are “bombed”) in S as in S ′. For the parent v′ of v, if a
binding is retained the set of intervals from both interval representations are copied en
block. There are only intervals in S ′ (as (v′,v) is not in the edge cover of the other
interval representation) and thus only those relations between bindings of v and v′ as
in the induced relation of S ′ are retained. This is proper as in the induced relation
of the other interval representation all bindings of v are related to all bindings of v′
by definition of the induced relation. Both input sequences may be inconsistent: The
presence of failure markers in either sequence does not affect the correctness of the
algorithm: failure markers in alt are skipped, failure markers in iter are retained (lines
15–17) as intended. Dangling bindings do not affect the algorithm.

Algorithm 2.5.1 loops over all shared variables of S 1 and S 2 and for each such vari-
able it iterates over all bindings in the primary interval representation iter and cor-
responding bindings in alt, skipping, if necessary, bindings in alt not in iter. In the
loop lines 13–22 i or j is incremented (possibly multiple times, if failure markers are
skipped in NextBinding) until either i > |iter|. If j ever becomes > |alt| subsequent calls
of binding(()alt[ j]) return, by definition, a value larger than all n ∈ Nodes(D).

Thus the algorithm touches, for each shared variable, each entry in either interval
representation at most once (and touches one proper (not a failure mark) entry in each
step of the loop 13–22). Thus it runs in O(btotal

Shared · i) where btotal
Shared is the total number

of bindings in both interval representations for a shared variable and i is the maximum
number of intervals per binding. This is bound by O(|Shared| · n · i) for any interval
represenation (including those for arbitrary graphs).

It is worth pointing out, that a tree query any variable is shared at most once for each in-
or outgoing edge and for each unary relation associated with the variable. Thus, even
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if there are O(q) joins in the expression, the accumulated number of shared variables
among all those joins is also only O(q) an thus the total complexity for only those joins
is bounded by O(q ·n · i).

Comparison. The above outlined algorithm for a join on interval representations can
be easily extended to an algorithm for full tree queries, see [69]. In the following we
compare our approach, called ciqcag, to previous approaches for tree query evaluation
on XML (i.e., limited to tree data).

To keep the discussion focused we ignore index-based evaluation of XML. Though
path indices such as the DataGuide [76] or IndexFabric [55] and more recent variants
[51] can significantly speed up path queries they suffer from two anomalies: First, if a
tree query contains many branching nodes (i.e., nodes with more than one children) they
generally do not perform better than, e.g., the structural join approach below. Second,
even though only path queries can be directly answered from the index, the index size
can be significantly higher than the size of the original XML documents.

We can classify most of the remaining approaches to the evaluation of XML tree
queries in four classes (the corresponding complexity for evaluation XPath (and similar)
tree queries on tree data is summarized in Table 14):

1. Structural joins: The first class is most reminiscent of query evaluation for rela-
tional queries and arguable inspired by earlier research on acyclic conjunctive queries
on relational databases [78]. Tree queries are decomposed into a series of (structural)
joins. Each structural join enforces one of the structural properties of the given query,
e.g., a child or descendant relation between nodes or a certain label. Proposed first in
[8], structural joins have also been used to great effect for studying the complexity of
XPath evaluation and proposing the first polynomial evaluation of full XPath [77]. Due
to its similarity with relational query evaluation it has proved to be an ideal foundation
for implementing XPath and XQuery on top of relational databases [80]. It turns out,
however, that the use of standard joins is often not an ideal choice and structure- or tree-
aware joins [22] (that take into consideration, e.g., that only nodes in the sub-tree routed
at another node can be that nodes a-descendants) can significantly improve XPath and
XQuery evaluation.

2. Twig joins: In sharp contrast, the second class employs a single (thus called holis-
tic) operator for solving an entire tree query rather than decomposing it into structural
joins. These approaches are commonly referred to as twig or stack join [30,49] and
essentially operate by keeping one stack for each step in, e.g., an XPath query rep-
resenting partial answers for the corresponding node-set. Theses stacks are organized
hierarchically with (where possible, implicit) parent pointers connecting partial answers
for upper stack entries to those of lowers. The approaches mostly vary in how the stacks
are populated. In contrast to the other approaches, twig joins are limited to vertical, i.e.,
child and descendant, axes and have not been adapted for the full range of XPath axes.
They also, like structure-aware joins [22], exploit the tree-shape of the data and can, at
best, be adapted to DAGs [48].

3. PDA-based: Where twig joins assume one stream of nodes from the input doc-
ument for each stack (and thus XPath step), the third class of approaches based on
pushdown automata aims to evaluate XPath queries on a single input stream similar
to a SAX event stream. SPEX, e.g., [119,120,118] also maintains a record of partial
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Table 14. Approaches for XML Tree Query Evaluation. n: number of nodes in the data, d: depth
of data; q: size of query. We assume constant membership test for all structural relations.

time space

Structural Joins, relational
join

O(q ·n · log n) O(q ·n2)

—————, structure-aware
join

O(q ·n) O(q ·n2)

Twig or Stack Joins O(q ·n) O(q ·n+n ·d)

PDA-based (here: SPEX) O(q ·n ·d) O(q ·n)

Interval-based (here: ciqcag) O(q ·n) O(q ·n)

answers for each XPath step, but minimizes used memory more efficiently and exploits
the existential nature of most XPath steps by maintaining only generic conditions rather
than actual pointers to elements from the XML stream (except for candidates of the ac-
tual results set, of course). Also it supports all XPath axes in contrast to the twig join
approaches. The cost is a slightly more complex algorithm.

4. Interval-based: Finally, interval-based approaches are a combination of the tree
awareness in twig joins and SPEX and the structural join approach: The query is de-
composed into a series of structural relations, but each relation is organised in such a
way that all elements related to one element of its parent step are in a single continuous
interval. This allows both an efficient storage and join of intermediate answers. The first
interval-based approach are the Complete Answer Aggregates (CAA) [115,114]. Here
theciqcag algebra is proposed which improves on the complexity of CAA (to the linear
complexity given in Table 14) and covers, in contrast to CAA, arbitrary tree-shaped re-
lations. It is also shown that interval-based approaches can be extended even to a large,
efficiently detectable class of graph data (so called continuous-image graphs) that is not
covered by any of the other linear time approaches discussed above.

Currently, extensions of the above algorithms for larger classes of graph data are
investigated, e.g., in [48] and [69].

Conclusion. In this chapter, we present a novel characterization of a class of graphs
that is a proper, non-trivial superclass of trees that still exhibits a labeling scheme with
constant time, constant per-node space adjacency and reachability tests. Furthermore,
we give a quadratic algorithm that computes, for an arbitrary graph, such a labeling if
one exists.

Constant time membership test almost immediately yields linear time evaluation for
existential acyclic conjunctive queries on tree data. However, nave approaches for n-
ary universal queries take at least quadratic time in the graph size. We show how the
above labeling scheme can be exploited to give an algorithm for evaluating acyclic
conjunctive queries that is O(n · q) wrt. time and space complexity, i.e., linear in both
data and program complexity. Furthermore, our algorithm guarantees iteration in the
size of the related nodes rather than in all nodes.
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2.5.2 Evaluating Rules: Subsumption under Rich Unification

In the preceeding sections, we have considered the efficient evaluation of Xcerpt queries
by a translation to a relational normal form. This section deals with the subsumption
relationship between Xcerpt query terms. Deciding subsumption has traditionally been
an important means for optimizing multiple queries against the same set of data and
can be used for improving termination of Xcerpt programs in a backward chaining
evaluation engine.

Xcerpt query terms (Definition 2) are an answer to accessing Web data in a rule-based
query language. Like most approaches to Web data (or semi-structured data, in general),
they are distinguished from relational query languages such as SQL by a set of query
constructs specifically attuned to the less rigid, often diverse, or even entirely schema-
less nature of Web data. As Definitions 2 (Xcerpt Query Term) and 7 suggest, Xcerpt
terms are similar to normalized forward XPath (see [121]) but extended with variables,
deep-equal, a notion of injective match, regular expressions, and full negation. Thus,
they achieve much of the expressiveness of XQuery without sacrificing the simplicity
and pattern-structure of XPath.

When used in the context of Xcerpt, query terms serve a similar role to terms of first-
order logic in logic languages. Therefore, the notion of unification has been adapted
for Web data in [134], there called “simulation unification”. Simulation is recapitulated
in Definition 8. This form of unification is capable of handling all the extensions of
query terms over first-order terms that are needed to support Web data: selecting terms
at arbitrary depth (desc), distinguishing partial from total terms, regular expressions
instead of plain labels, negated subterms (without), etc.

The notions of query term, simulation and substitution sets are exemplified in
Section 2.3 and formally defined in 2.4. In this section, we consider query containment
between two Xcerpt terms.

Subsumption or containment of two queries (or terms) is an established technique
for optimizing query evaluation: a query q1 is said to be subsumed by or contained in a
query q2 if every possible answer to q1 against every possible data is also an answer to
q2. Thus, given all answers to q2, we can evaluate q1 only against those answers rather
than against the whole database.

For first-order terms, subsumption is efficient and employed for guaranteeing termi-
nation in tabling (or memoization) approaches to backward chaining of logic [144,50].
However, when we move from first-order terms to Web queries, subsumption (or con-
tainment) becomes quickly less efficient or even intractable. Xcerpt query terms have,
as pointed out above, some similarity with XPath queries. Containment for various frag-
ments of XPath is surveyed in [139], both in absence and in presence of a DTD. Here,
we focus on the first setting, where no additional information about the schema of the
data is available. However, Xcerpt query terms are a strict super-set of (navigational)
XPath as investigated in [139]. In particular, the Xcerpt query terms may contain (mul-
tiple occurrences of the same) variables. This brings them closer to conjunctive queries
(with negation and deep-equal), as considered in [152] on general relations, and in
[18] for tree data. Basic Xcerpt query terms can be reduced to (unions of) conjunctive
queries with negation. However, the injectivity of Xcerpt query terms (no two siblings
may match with the same data node) and the presence of deep-equal (two nodes are



Four Lessons in Versatility or How Query Languages Adapt to the Web 143

deep-equal iff they have the same structure) have no direct counterpart in conjunctive
query containment. Though [100] shows how inequalities in general affect conjunctive
query containment, the effect of injectivity (or all-distinct constraints) on query con-
tainment has not been studied previously. The same applies to deep-equal, though the
results in [103] indicate that in absence of composition deep-equal has no effect on
evaluation and thus likely on containment complexity.

For Xcerpt query terms, subsumption is, naturally, of interest for the design of a
terminating, efficient Xcerpt engine. Beyond that, however, it is particularly relevant in
a Web setting. Whenever we know that one query subsumes another, we do not need to
access whatever data the two queries access twice, but rather can evaluate both queries
with a single access to the basic data by evaluating the second query on the answers of
the first one. This can be a key optimization also in the context of search engines, where
answers to frequent queries can be memorized so as to avoid their repeated computation.
Even though today’s search engines are rather blind of the tree or graph structure of
HTML, XML and RDF data, there is no doubt that some more or less limited form
of structured queries will become more and more frequent in the future (see Google
scholar’s “search by author, date, etc.”). Query subsumption, or containment, is key to
a selection of queries, the answers to which are to be stored so as to allow as many
queries as possible to be evaluated against that small set of data rather than against the
entire search engine data. Thus, the notion of simulation subsumption proposed in this
chapter can be seen as a building block of future, structure-aware search engines.

Therefore, we study in this section subsumption of Xcerpt query terms. The main
building blocks of this section are the following.

– we introduce and formalize a notion of subsumption for Xcerpt query terms, called
simulation subsumption, in Section 2.5.2. To the best of our knowledge, this is the
first notion of subsumption for queries with injectivity of sibling nodes and deep-
equal.

– we show, also in Section 2.5.2, that simulation on ground query terms is equivalent
to simulation subsumption.40 This also shows that ground query term simulation as
introduced in [134] indeed captures the intuition that a query term that simulates
into another query term subsumes that term.

– we define, in Section 2.5.2, a rewriting system that allows us to reduce the test for
subsumption of q in q′ to finding a sequence of syntactic transformations that can
be applied to q to transform it into q′.

– we show, in Section 2.5.2, that this rewriting system gives rise to an algorithm
for testing subsumption that is sound and complete and can determine whether q
subsumes q′ in time O(n!n). In particular, this shows that simulation subsumption
is decidable.

Xcerpt Basics: Query Terms and Simulation. Query terms are an abstraction for
queries that can be used to extract data from semi-structured trees. In contrast to XPath
queries, they may contain (multiple occurrences of the same) variables and demand

40 With small adaptions of the treatment of regular expressions and negated subterms in query
term simulation.
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an injective mapping of the child terms of each term. For example, the XPath query
/a/b[c]/c demands that the document root has label a, and has a child term with
label b that has itself a child term with label c. The subterm c that is given within the
predicate of b can be mapped to the same node in the data as the child named c of b.
Therefore, this XPath query would be equivalent to the query term a{{b{{c}}}}, but not
to a{{b{{c,c}}}}. Simulation could be, however, easily modified to drop the injectivity
requirement.

Simulation Subsumption. In this section, we first introduce simulation subsumption
(Definition 28), then for several query terms we discuss whether one subsumes the other
to give an intuition for the compositionality of the subsumption relationship. Subse-
quently, the transitivity of the subsumption relationship is proven (Lemma 4), some
conclusions about the membership in the subsumption relationship of subterms, given
the membership in the subsumption relationship of their parent terms are stated. These
conclusions formalize the compositionality of simulation subsumption and are a neces-
sary condition for the completeness of the rewriting system introduced in Section 2.5.2.

In tabled evaluation of logic programs, solutions to subgoals are saved in a solu-
tion table, such that for equivalent or subsumed subgoals, these sets do not have to
be recomputed. As mentioned before, this avoidance of re-computation does not only
save time, but can, in certain cases be crucial for the termination of a backward chain-
ing evaluation of a program. In order to classify subgoal as solution or look-up goals,
boolean subsumption as specified by Definition 28 must be decided. Although Xcerpt
query terms may contain variables, n-ary subsumption as defined in [139] would be too
strict for our purposes. To see this, consider the Xcerpt query terms q1 := a{{var X}} and
q2 := a{{c}}. Although all data terms that are relevant for q2 can be found in the solutions
for q1, q1 and q2 cannot be compared by n-ary containment, because they differ in the
number of their query variables.

Definition 28 (Simulation Subsumption). A query term q1 subsumes another query
term q2 if all data terms that q2 simulates with are also simulated by q1.

Example 1 (Examples for the subsumption relationship). Let the query terms q1, . . .q5

be given by:

– q1 := a{{}}
– q2 := a{{desc b,desc c,d}}
– q3 := a{{desc b,c,d}}
– q4 := a{{without e}}
– q5 := a{{without e{{without f }}}}

Then the following subsumption relationships hold:

– q2 subsumes q3 because it requires less than q3: While q3 requires that the data has
outermost label a, subterms c and d as well as a descendant subterm b, q2 requires
not that there is a direct subterm c, but only a descendant subterm. Since every
descendant subterm is also a direct subterm, all data terms simulating with q3 also
simulate with q2.
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But the subsumption relationship can also be decided in terms of simulation: q2

subsumes q3, because there is a mapping π from the direct subterms ChildT (q2) of
q2 to the direct subterms ChildT (q3) of q3, such that qi subsumes π(qi) for all qi in
ChildT (q2).

– q3 does not subsume q2, since there are data terms that simulate with q2, but not
with q3. One such data term is d := a{b,e{c},d}.
Again, the subsumption relationship between q3 and q2 (in this order) can be de-
cided by simulation. There is no mapping π from the direct subterms of q3 to the
direct subterms of q2, such that a simulates into π(a).

– q1 subsumes q4 since it requires less than q4. All data terms that simulate with q4

also simulate with q1.
– q4 does not subsume q1, since the data term a{{e}} simulates with q1, but does not

simulate with q4.
– q5 subsumes q4, but not the other way around.

Proposition 4. The subsumption relationship between query terms is transitive, i.e. for
arbitrary query terms q1, q2 and q3 it holds that if q1 subsumes q2 and q2 subsumes q3,
then q1 subsumes q3.

Proposition 4 immediately follows from the transitivity of the subset relationship. Query
term simulation and subsumption are defined in a way such that, given the simula-
tion subsumption between two query terms, one can draw conclusions about subsump-
tion relationships that must be fulfilled between pairs of subterms of the query terms.
Lemma 1 formalizes these sets of conclusions.

Lemma 1 (Subterm Subsumption). Let q1 and q2 be query terms such that q1 sub-
sumes q2. Then there is an injective mapping π from ChildT+(q1) to ChildT+(q2) such
that qi

1 subsumes π(qi
1) for all qi

1 ∈ChildT+(q1).
Furthermore, if q1 and q2 are breadth-incomplete, then there is a (not necessarily

injective) mapping σ from ChildT−(q1) to ChildT−(q2) such that pos(σ(q j
1)) subsumes

pos(q j
1) for all q j

1 ∈ChildT−(q1).

If q1 is breadth-incomplete and q2 is breadth-complete then there is no q j
1 in

ChildT−(q1) and qk
2 ∈ChildT+(q2) \ range(π) such that pos(q j

1)  qk
2.

Lemma 1 immediately follows from the equivalence of the subsumption relationship
and the extended query term simulation (see Lemma 4 in the appendix of [35]).

Simulation Subsumption by Rewriting. In this section, we lay the foundations for a
proof for the decidability of subsumption between query terms according to Definition
28 by introducing a rewriting system from one query term to another, which is later
shown to be sound and complete. Furthermore, this rewriting system lays the foundation
for the complexity analysis in Section 2.5.2.

The transformation of a query term q1 into a subsumed query term q2 is exemplified
in Figure 2.5.2.

Definition 29 (Subsumption monotone query term transformations). Let q be a
query term. The following is a list of so-called subsumption monotone query term trans-
formations.
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a{{
b{c, var X},
desc d,
without e{{ f }}

}}

a{{ b{c, var X},
desc d,
without e{{ f

}},
var Y

}}

a{{ b{var X, c},
/.*/{{ desc d

}},
without e{{ f

}},
var Y

}}

a{{ b{var X, c},
g{{ desc d }},
var Y,
without e{{ f }}

}}

a{{ b{var X, c},
g{{ /.*/{{

desc d }} }},
var Y,
without e{{ f }}

}}

a{{ b{var X, c},
g{{ h{{ d }} }},
var Y,
without e{{ f }}

}}

a{ b{var X, c},
g{{ h{{ d }} }},
var Y,
without e{{ f }}

}

a{ b{var X, c},
g{{ h{{ d }} }},
i{ },
without e{{ }}

}

Equation 6

Equations 5,7,10

Equations 11, 7

Equation 5

Equation 11

Equation 4

Equation 9, 12,10

– if q has incomplete subterm specification, it may be transformed to the analogous
query term with complete subterm specification.

a{{q1, . . . ,qn}}
a{q1, . . . ,qn} , (4)

– if q is of the form desc q′ then the descendant construct may be eliminated or it may
be split into two descendant constructs separated by the regular expression /.*/,
the inner descendant construct being wrapped in double curly braces.

desc q
q
,

desc q
desc /. ∗ /{{desc q}} (5)

– if q has incomplete-unordered subterm specification, then a fresh variable X may
be appended to the end of the subterm list. A fresh variable is a variable that does
not occur in q1 or q2 and is not otherwise introduced by the rewriting system.

X fresh⇒ a{{q1, . . . ,qn}},
a{{q1, . . . ,qn,var X}} (6)



Four Lessons in Versatility or How Query Languages Adapt to the Web 147

– if q has unordered subterm specification, then the subterms of q may be arbitrarily
permuted.

π ∈ Perms({1, . . . ,n})⇒ a{{q1, ..., qn}}
a{{qπ(1), ..., qπ(n)}} (7)

π ∈ Perms({1, . . . ,n})⇒ a{q1, ..., qn}
a{qπ(1), ..., qπ(n)}

(8)

– if q contains a variable var X, which occurs in q at least once in a positive context
(i.e. not within the scope of a without) then all occurrences of var X may be
substituted by another Xcerpt query term.

X ∈ PV(q), t ∈ QTerms⇒ q
q{X �→ t} (9)

This rule may only be applied, if q contains all occurrences of X in q1. Furthermore,
no further rewriting rules may be applied to the replacement term t.
If a variable appears within q only in a negative context (i.e. within the scope of
a without), the variable cannot be substituted by an arbitrary term to yield a
transformed term that is subsumed by q. The query terms a{{ without var
X }} and a{{ without b{ } }} together with the data term a{ c } illus-
trate this characteristic of the subsumption relationship. For further discussion of
substitution of variables in a negative context see Example 2.

– if q has a subterm qi, then qi may be transformed by any of the transformations in
this list except for Equation 9 to the term t(qi), and this transformed version may
be substituted at the place of qi in q, as formalized by the following rule: 41,42

qi

t(qi)
⇒ a{{q1, . . . ,qn}}

a{{q1, . . . ,qi−1, t(qi),qi+1, . . .qn}} (10)

– if the label of q is a regular expression e, this regular expression may be replaced by
any label that matches with e, or any other regular expression e′ which is subsumed
by e (see Definition 8 in the appendix of [35]).41

e ∈ RE,e subsumes e’⇒ e{{q1, . . . ,qn}}
e′{{q1, . . . ,qn}} (11)

– if q contains a negated subterm qi = without r and r′ is a query term such that
t(r′) = r (i.e. r′ subsumes r) for some transformation step t, then qi can be replaced
by q′i := without r′.

(qi = without r)∧ r′

r
∧ (q′i = without r′)⇒ a{{q1, . . . ,qi, . . . ,qn}}

a{{q1, . . . ,q′i , . . .qn}} (12)

41 The respective rules for complete-unordered subterm specification, incomplete-ordered sub-
term specification and complete-ordered subterm specification are omitted for the sake of
brevity.

42 The exclusion of Equation 9 ensures that variable substitutions are only applied to entire query
terms and not to subterms. Otherwise the same variable might be substituted by different terms
in different subterms.
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Properties of the Rewriting System. In this section, we show that the rewriting system
introduced in the previous section is sound (Section 2.5.2) and complete (Section 2.5.2).
Furthermore, we study the structure of the search tree induced by the rewriting rules,
show that it can be pruned without losing the completeness of the rewriting system
and conclude that simulation subsumption is decidable. Finally we derive complexity
results from the size of the search tree in Section 2.5.2.

Subsumption Monotonicity and Soundness

Lemma 2 (Monotonicity of the transformations in Definition 29). All of the trans-
formations given in Definition 29 are subsumption monotone, i.e. for any query term q
and a transformation from Definition 29 which is applicable to q, q subsumes t(q).

The proof of Lemma 2 is straight-forward since each of the transformation steps can
be shown independently of the others. For all of the transformations, inverse transfor-
mation steps t−1 can be defined, and obviously for any query term q it holds that t−1(q)
subsumes q.

Lemma 3 (Transitivity of the subsumption relationship, monotonicity of a se-
quence of subsumption monotone query term transformations). For a sequence
of subsumption monotone query term transformations t1, . . . , tn, and an arbitrary query
term q, q subsumes t1 ◦ . . .◦ tn(q1).

The transitivity of the subsumption relationship is immediate from its definition (Defi-
nition 28) which is based on the subset relationship, which is itself transitive.

As mentioned above, the substitution of a variable X in a negative context of a query
term q by a query term t, which is not a variable, results in a query term q′ := q[X �→ t]
which is in fact more general than q. In other words q[X �→ t] subsumes q for any query
term q if X only appears within a negative context in q. On the other hand, if X only
appears in a positive context within q, then q′ is less general – i.e. q subsumes q′. But
what about the case of X appearing both in a positive and a negative context within q?
Consider the following example:

Example 2. Let q := a{{ var X, without b{{ var X }} }}. It may be
tempting to think that substituting X by c[] to give q′ makes the first subterm of q
less general, but the second subterm of q more general. In fact, a subterm b[ c ]
within a data term would cause the subterm without b{{ var X }} of q to fail,
but the respective subterm of q′ to succeed, suggesting that there is a data term that
simulation unifies with q′, but not with q, meaning that q does not subsume q′. How-
ever, there is no such data term, which is due to the fact that the second occurrence of X
within q is only a consuming occurrence. When this part of the query term is evaluated,
the variable X is already bound.

The normalized form for Xcerpt query terms is introduced, because for an unnormal-
ized query term q1 that subsumes a query term q2 one cannot guarantee that there is
a sequence of subsumption monotone query term transformations t1, . . . , tn such that
tn ◦ . . .◦ t1(q1) = q2. To see this, consider example 3.
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Example 3 (Impossibility of transforming an unnormalized query term). Consider q1 :=
a{{var X as b{{c}},var X as b{{d}}}} and q2 := a{{b{{c,d}},b{{c,d}}}}. q2 subsumes q1, in
fact both terms are even simulation equivalent. But there is no sequence of subsumption
monotone query term transformations from q2 to q1, since one would have to omit
one subterm from both the first subterm of q2 and from the second one. But such a
transformation would in general not be subsumption monotone.

Besides opening up the possibility of specifying restrictions on one subterm non-locally,
duplicate restrictions for the same variable also allow the formulation of unsatisfiable
query terms, as the following example shows:

Example 4 (Unsatisfiable query terms due to variable restrictions). Consider the query
terms q1 := a{{var X as b, var X as c}} and q2 := b{{}}. It is easy to see that q1 is
unsatisfiable, and thus q2 subsumes q1. However, there is no transformation sequence
from q2 to q1.

Also single variable restrictions may in some cases be problematic, because they allow
the specification of infinite, or at least graph structured data terms as example 5 shows:

Example 5 (Nested variable restrictions). Consider the query terms q1 := a{{var X as
b{{var X}}}} and q2 := a{{var Y as b{{b{{var Y}}}}}}.
To overcome this issue, query terms are assumed to be in normalized form (Definition
30). In fact, almost all Xcerpt query terms can be transformed into normalized form.

Definition 30 (Query terms in normalized form). A query term containing only a
single variable restriction for each variable is a query term in normalized form. A
query term which can be converted into an equivalent query term in normalized form is
said to be normalizable.

Unsatisfiability of query terms makes the decision procedure for subsumption more
complex, and thus it is to be avoided whenever possible. Allowing the specification of
unsatisfiable query terms does not add expressive power to a query language, and should
thus be disallowed. Apart from the normal form, also subterm injectivity is a means for
preventing the user of the Xcerpt query language from specifying unsatisfiable queries.

Example 6 (Unsatisfiability due to non-injectivity). In this example we use triple curly
braces to state that the mapping from the siblings enclosed within the braces need not
be injective. With this notation queries become less restrictive as the number of braces
in the subterm specification increases. Let q1 := a{{{b, without b}}}. Since q1 both re-
quires and forbids the presence of a subterm with label b, it is clearly unsatisfiable. Let
q2 := b{{}}. Although q2 subsumes q1, we cannot find a subsumption monotone trans-
formation sequence from q2 to q1.

The above example shows that the the proof for the decidability of the subsumption
relationship given in this section relies on the injectivity of the subterm mapping. Since
there is no injectivity requirement for multiple consecutive predicates in XPath, the
proof cannot be trivially used to show decidability of subsumption of XPath fragments.
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Completeness

Theorem 6 (Subsumption by transformation). Let q1 and q2 be two query terms in
normalized form such that q1 subsumes q2. Then q1 can be transformed into q2 by a
sequence of subsumption monotone query term transformations listed in Definition 29.

Proof. We distinguish two cases:

– q1 and q2 are subsumption equivalent (i.e. they subsume each other)
– q1 strictly subsumes q2

The first case is the easier one. If q1 and q2 are subsumption equivalent, then there
is no data term t, such that t simulates with one, but not the other. Hence q1 and q2

are merely syntactical variants of each other. Then q1 can be transformed into q2 by
consistent renaming of variables (Equation 10), and by reordering sibling terms within
subterms of q (Equation 7). This would not be true for unnormalized query terms as
Example 3 shows.

The second is shown by structural induction on q1.
For both the induction base and the induction step, we assume that q1 subsumes

q2, but that the inverse is false. Then there is a data term d, such that q1 simulates
into d, but q2 does not. In both the induction base and the induction step, we give a
distinction of cases, enumerating all possible reasons for q1 simulating into d but q2 not.
For each of these cases, a sequence of subsumption monotone transformations t1, . . . tn
from Definition 29 is given, such that q′1 := tn ◦ tn−1 ◦ . . . ◦ t1(q1) does not simulate into
d. By Lemmas 2 and 3, q′1 still subsumes q2. Hence by considering d and by applying
the transformations, q1 is brought “closer” to q2. If q′1 is still more general than q2,
then one more dataterm d′ can be found that simulates with q′1, but not with q2, and
another sequence of transformations to be applied can be deduced from this theorem.
This process can be repeated until q1 has been transformed into a simulation equivalent
version of q2. For the proof, see the appendix of [35].

Decidability and Complexity. In the previous section, we establish that, for each pair
of query terms q1,q2 such that q1 subsumes q2, there is a (possibly infinite) sequence of
transformations t1, . . . , tk by one of the rules in Section 2.5.2 such that tk ◦ . . .◦ t1(q)= q2.

However, if we reconsider the proof of Theorem 6, it is quite obvious that the se-
quence of transformations can in fact not be infinite: Intuitively, we transform at each
step in the proof q1 further towards q2, guided by a data term that simulates in q1 but
not in q2. In fact, the length of a transformation sequence is bounded by the sum of the
sizes of the two query terms. As size of a query term we consider the total number of
its subterms.

Proposition 5 (Length of Transformation Sequences). Let q1 and q2 be two Xcerpt
query terms such that q1 subsumes q2 and n the sum of the sizes of q1 and q2. Then, there
is a sequence of transformations t1, . . . , tk such that tk ◦ . . .◦ t1(q1) = q2 and k ∈ O(n).

Proof. We show that the sequences of transformations created by the proof of The-
orem 6 can be bounded by O(n+m) if computed in a specific way: We maintain a
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mapping μ from subterms of q1 to subterms of q2 indicating how the query terms are
mapped. μ is initialized with (q1,q2). In the following, we call a data term d discrimi-
nating between q1 and q2 if q1 simulates in d but not q2.

(1) For each pair (q,q′) in μ, we first choose a discriminating data term that matches
case 1 in the proof of Theorem 6. If there is such a data term, we apply Equation (11),
label replacement, once to q obtaining t(q) and update the pair in μ by (t(q),q′). This
step is performed at most once for each pair as (t(q),q′) have the same label and thus
there is no more discriminating data term that matches case 1.

(2) Otherwise, we next choose a discriminating data term that matches case 2.a.i or
2.b.i. In both cases, we apply Equation (6), variable insertion, to insert a new variable
and update the pair in μ. This step is performed at most |q2| − |q1| ≤ n times for each
pair.

(3) Otherwise, we next choose a discriminating data term that matches case 2.a.ii
and apply Equation (4), complete term specification and update the pair in μ. This step
is performed at most once for each pair.

(4) Finally, the only type of discriminating data term that remains is one with the
same number of positive child terms as q2. We use an oracle to guess the right mapping
σ from child terms of q1 to child terms of q2. Then we remove the pair from μ and add
(c,σ(c)) to μ for each child term of q1. This step is performed at most once for each pair
in μ.

Since query subterms have a single parent, we add each subterm only once to μ in a
pair. Except for case 2, we perform only a constant number of transformations to each
pair. Case 2 allows up to n transformations for a single pair, but the total number of
transformations (over all pairs) due to case 2 is bound by the size of q2. Thus in total
we perform at most 4 ·n transformations where n is the sum of the number of the sizes
of q1 and q2.

Though we have established that the length of a transformation sequence is bound by
O(n), we also have to consider how to find such a transformation sequence. The proof
of Proposition 5, already spells out an algorithm for finding such transformation se-
quences. However, it uses an oracle to guess the right mapping between child terms of
two terms that are to be transformed. A naive deterministic algorithm needs to consider
all possible such mappings whose number is bound by O(n!). It is worth noting, how-
ever, that in most cases the actual number of such mappings is much smaller as most
query terms have fairly low breadth and the possible mappings between their child terms
are severely reduced just by considering only mappings where the labels of child terms
simulate. However, in the worst case theO(n!) complexity for finding the right mapping
may be reached and thus we obtain:

Theorem 7 (Complexity of Subsumption by Rewriting). Let q1 and q2 be two Xcerpt
query terms. Then we can test whether q1 subsumes q2 in O(n!n) time.

Proof. By proposition 5 we can find a O(n) length transformation sequence in O(n!n)
time and by Theorem 6 q1 subsumes q2 if and only if there is such a sequence.
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Future Work in the area of Xcerpt Query Term Subsumption. Starting out from the
problem of improving termination of logic programming based on rich kinds of simu-
lation such as simulation unification, this section investigates the problem of deciding
simulation subsumption between query terms. A rewriting system consisting of sub-
sumption monotone query term transformations is introduced and shown to be sound
and complete. By convenient pruning of the search tree defined by this rewriting sys-
tem, the decidability of simulation subsumption is proven, and an upper bound for its
complexity is identified.

Future work includes (a) a proof-of-concept implementation of the rewriting system,
(b) the development of heuristics and their incorporation into the prototype to ensure
fast termination of the algorithm in the cases when it is possible, (c) the study of the
complexity of the problem in absence of subterm negation, descendant constructs, deep-
equal, and/or injectivity, (d) the implementation of a backward chaining algorithm with
tabling, which uses subsumption checking to avoid redundant computations and infinite
branches in the resolution tree, and (e) the adaptation of the rewriting system to XPath
in order to decide subsumption and to derive complexity results for the subsumption
problem between XPath queries.

2.6 Conclusion

The Merriam-Webster dictionary defines versatile as “embracing a variety of subjects,
fields or skills”, as “turning with ease from one thing to another”, and as “having many
uses or applications”. As shown in this chapter, the query language Xcerpt embraces
both tree and graph-shaped data (in particular also relational data), Web and Semantic
Web data, semantic data embedded in HTML as microformats and purely semantic
data. It can be used to query data on a syntactic and on a semantic level, and it turns
easily between the formats that it supports, allowing the transformation of one format
to another within a single rule.

Having isolated the concept of simulation unification as a matching algorithm that
can be adapted to any kind of semi-structured data, the single rule and multi-rule seman-
tics of Xcerpt become versatile in the sense that new forms of simulations for new Web
formats (e.g., topic maps) can be “plugged into” Xcerpt without having to adapt the
semantics of single rules, and the semantics of negation as failure of possibly recursive
multi-rule programs.

Datalog with negation and value invention can be used to precisely formulate the
semantics of Xcerpt rules, no matter of the type of data being queried. Since it is a
well-studied fragment of first order logic this provides an easy-to-understand semantics
of Xcerpt for query authors that have some background knowledge in rule based for-
malisms. In particular, we use this translation for proving a number of computational
properties of Xcerpt and some of its sub-languages.

Furthermore, the translation to Datalog with negation and value invention can serve
as a basis for an implementation of Xcerpt in a relational database. For this aim, we
also need a compact and efficient representation of both tree- and graph-shaped semi-
structured data. Such a representation is discussed in Section 2.5.1. We showed that
this representation allows constant time and constant per-node space reachability and
adjacency test for all trees and many graphs.
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While this article aims at giving an answer to the design questions for versatile web
query languages, it has also raised a number of new questions and desires:

– Section 2.3 shows that Xcerpt is suitable for querying HTML, XML, RDF and
microformat data. Xcerpt queries for extracting data from microformats, however,
exhibit all the same underlying characteristics: excessive use of the descendant
axis, ignoring XML element labels by using regular expressions, filtering elements
according to the value of the class attribute. While in regular XML querying,
the child axis is often more prevalent than the attribute axis, and element labels
are more distinguishing than attribute values (except for id-attributes), these pairs
have switched roles in microformat querying. With microformats becoming the de
facto standard of the “lowercase semantic web” [97], query patterns specifically
aimed at micro-formats and sharing the same characteristics as simulation are a
valuable investigation. Alternatively a domain specific language for microformats
only could be of use for Semantic Web programmers.

– As mentioned in Section 2.4, the idea of weak stratification could be carried over
to rule based languages with a rich unficication algorithm such as simulation
unification.

– Guaranteeing termination of backward chaining evaluation of possibly recursive
multi-rule programs involving negation has received a large amount of attention in
the past [144,133] [130]. Termination is even a bigger issue for recursive rule based
languages with a rich unification algorithm, since there is a larger variety of infi-
nite branches of subsumption monotone subgoals. A subsumption-aware resolution
algorithm for rule based languages with rich unfication and negation as failure is
currently being implemented by the authors.
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version). Technical Report PMS-FB-2008-01, University of Munich (2007)

36. Bry, F., Furche, T., Linse, B., Schroeder, A.: Efficient Evaluation of n-ary Conjunctive
Queries over Trees and Graphs. In: Proc. ACM Int’l. Workshop on Web Information and
Data Management (WIDM). ACM Press, New York (2006), 2 citations [Google Scholar]

37. Bry, F., Coskun, F., Durmaz, S., Furche, T., Olteanu, D., Spannagel, M.: The XML Stream
Query Processor SPEX. In: Proc. Int’l. Conf. on Data Engineering (ICDE), pp. 1120–1121
(2005), 17 citations [Google Scholar]

38. Bry, F., Furche, T., Ley, C., Linse, B.: Rdflog: Filling in the blanks in rdf querying. Technical
Report PMS-FB-2008-01, University of Munich (2007)

39. Bry, F., Furche, T., Ley, C., Linse, B., Marnette, B.: Taming existence in rdf querying.
In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 236–237. Springer,
Heidelberg (2008)

40. Bry, F., Schaffert, S.: A Gentle Introduction into Xcerpt, a Rule-based Query and Trans-
formation Language for XML. In: Proc. Intl. Workshop on Rule Markup Languages for
Business Rules on the Semantic Web (2002)

41. Buneman, P., Fernandez, M.F., Suciu, D.: UnQL: a query language and algebra for
semistructured data based on structural recursion. VLDB Journal: Very Large Data
Bases 9(1), 76–110 (2000)

42. Bussche, J.V.D., Gucht, D.V., Andries, M., Gyssens, M.: On the completeness of object-
creating database transformation languages. Journal of the ACM 44(2), 272–319 (1997)

43. Cabibbo, L.: The expressive power of stratified logic programs with value invention. Infor-
mation and Computation 147(1), 22–56 (1998)

44. Carlos, J., Polleres, A., Polleres, A.: Sparql rules. Technical report, Universidad Rey Juan
Carlos (2006)

45. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In:
WWW 2005: Proceedings of the 14th international conference on World Wide Web, pp.
613–622. ACM, New York (2005)

46. Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi, S., Tanca, L.: XML-GL: a graph-
ical language for querying and restructuring XML documents (1998)

47. Chamberlin, D.D., Robie, J., Florescu, D.: Quilt: An XML query language for heteroge-
neous data sources. In: Suciu, D., Vossen, G. (eds.) WebDB 2000. LNCS, vol. 1997, pp.
1–25. Springer, Heidelberg (2001)

48. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching on dags.
In: Proc. Int’l. Conf. on Very Large Data Bases (VLDB), pp. 493–504. VLDB Endowment
(2005)

49. Chen, T., Lu, J., Ling, T.W.: On Boosting Holism in XML Twig Pattern Matching using
Structural Indexing Techniques. In: Proc. ACM SIGMOD Int. Conf. on Management of
Data, pp. 455–466. ACM Press, New York (2005)



156 F. Bry et al.

50. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic programs. J.
ACM 43(1), 20–74 (1996)

51. Chen, Z., Gehrke, J., Korn, F., Koudas, N., Shanmugasundaram, J., Srivastava, D.: Index
structures for matching XML twigs using relational query processors. Data & Knowledge
Engineering (DKE) 60(2), 283–302 (2007)

52. Cholak, P., Blair, H.A.: The complexity of local stratification. Fundam. Inform. 21(4), 333–
344 (1994)

53. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries via 2-
hop Labels. In: Proc. ACM Symposium on Discrete Algorithms, Philadelphia, PA, USA,
pp. 937–946. Society for Industrial and Applied Mathematics (2002)

54. Connolly, D.: Gleaning resource descriptions from dialects of languages (grddl). Recom-
mendation, W3C (2007)

55. Cooper, B., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon, M.: A Fast Index for
Semistructured Data. In: Proc. Int. Conf. on Very Large Databases, pp. 341–350. Morgan
Kaufmann Publishers Inc., San Francisco (2001)

56. Cowan, J., Tobin, R.: XML Information Set (2 edn.). Recommendation, W3C (2004)
57. Davis, I.: GRDDL primer (2006)
58. Deutsch, A., Fernández, M.F., Florescu, D., Levy, A.Y., Suciu, D.: XML-QL. In: QL (1998)
59. Dijkstra, E.W.: On the role of scientific thought (EWD447). In: Selected Writings on Com-

puting: A Personal Perspective, pp. 60–66 (1982)
60. Droop, M., Flarer, M., Groppe, J., Groppe, S., Linnemann, V., Pinggera, J., Santner, F.,
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José Júlio Alferes1, Michael Eckert2, and Wolfgang May3
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Abstract. Evolution and reactivity in the Semantic Web address the vi-
sion and concrete need for an active Web, where data sources evolve au-
tonomously and perceive and react to events. In 2004, when the Rewerse

project started, regarding work on Evolution and Reactivity in the Seman-
tic Web there wasn’t much more than a vision of such an active Web.

Materialising this vision requires the definition of a model, architec-
ture, and also prototypical implementations capable of dealing with re-
activity in the Semantic Web, including an ontology-based description
of all concepts. This resulted in a general framework for reactive Event-
Condition-Action rules in the Semantic Web over heterogeneous compo-
nent languages.

Inasmuch as heterogeneity of languages is, in our view, an important
aspect to take into consideration for dealing with the heterogeneity of
sources and behaviour of the Semantic Web, concrete homogeneous lan-
guages targeting the specificity of reactive rules are of course also needed.
This is especially the case for languages that can cope with the challenges
posed by dealing with composite structures of events, or executing com-
posite actions over Web data.

In this chapter we report on the advances made on this front, namely
by describing the above-mentioned general heterogeneous framework,
and by describing the concrete homogeneous language XChange.

3.1 Introduction

The Web and the Semantic Web, as we see it, can be understood as a “living
organism” combining autonomously evolving data sources, each of them possibly
reacting to events it perceives. The dynamic character of such a Web requires
declarative languages and mechanisms for specifying the evolution of the data,
and for specifying reactive behaviour on the Web.

Rather than a Web of data sources, we envisage a Web of information sys-
tems where each such system, besides being capable of gathering information
(querying, both on persistent data, as well as on volatile data such as occurring
events), can possibly update persistent data, communicate the changes, request
changes of persistent data in other systems, and be able to react to requests from
and changes on other systems. As a practical example, consider a set of data
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(re)sources in the Web of travel agencies, airline companies, train companies,
etc. It should be possible to query the resources about timetables, availability of
tickets, etc. But in such an evolving Semantic Web, it should also be possible for
a train company to report on late trains, and travel agencies (and also individual
clients) be able to detect such an event and react upon it, by rescheduling travel
plans, notifying clients that in turn could have to cancel hotel reservations and
book other hotels, or try alternatives to the late trains, etc.

ECA Rules

Some reactive languages have been proposed that allow for updating Web sources
as the above ones, and are also capable of dealing-with/reacting-to some forms
of events, evaluate conditions, and upon that act by updating data [12, 11,4, 61]
(see Section 3.2). The common aspect of all of these languages is the use of
declarative Event-Condition-Action (ECA) rules for specifying reactivity and
evolution. Such kind of rules (also known as triggers, active rules, or reactive
rules), that have been widely used in other fields (e.g. active databases [62,70])
have the general form:

on event if condition do action

They are intuitively easy to understand, and provide a well-understood seman-
tics: when an event (atomic or composite) occurs, evaluate a condition, and if the
condition (depending on the event, and possibly requiring further data) is satis-
fied then execute an action (or a sequence of actions, a program, a transaction,
or even start a process).

In fact, we fully agree with the arguments exposed in the field of active
databases for adopting ECA rules for dealing with evolution and reactivity in the
Web (declarativity, modularity, maintainability, etc). Still, the existing languages
fall short in various aspects, when aiming at the general view of an evolving Web
as described above. In these languages, the events and actions are restricted to
updates on the underlying data level; they do not provide for more composite
events and actions. In a Semantic Web environment, actions are more than just
simple updates to Web data (be it XML or RDF data), but application-level ac-
tions. As said above, besides that, actions can be notifications to other resources,
or update requests of other resources, and they can be composed from simpler
actions (like: do this, and then do that).

Moreover, events may in general be more than simple atomic events in Web
data, as in the above languages. First, there are atomic events other than physical
changes in Web data: events may be received messages, or even “happenings”
in the global Web, which may require complex event detection mechanisms (e.g.
(once) any train to Munich is delayed ...). Moreover, as in active databases
[29,74], there may be composite events. For example, we may want a rule to be
triggered when there is a flight cancellation and then the notification of a new
reservation whose price is much higher than the previous (e.g. to complain to
the airline company). In our view, a general language for reactivity in the Web
should cater for such richer actions and events.
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Such a general ECA language with richer actions and events, adapted to Web
data, is not yet enough for fully materialising our view of an evolving Semantic
Web. In fact, a main goal of the Semantic Web since its inception is to pro-
vide means for a unified view on the Web, which obviously includes to deal
with the heterogeneity of data formats and languages. In this scenario, XML
(as a format for exchanging data), RDF (as an abstract data model for states,
sometimes stored natively, sometimes mapped to XML or a relational storage),
OWL (as an additional framework for theory-based knowledge representation)
provide the natural underlying concepts. The Semantic Web does not possess
any central structure, neither topologically nor thematically, but is based on
peer-to-peer communication between autonomous, and autonomously develop-
ing and evolving nodes. This evolution and behaviour depend on the cooperation
of nodes. In the same way as the main driving force for the Semantic Web idea
was the heterogeneity of the underlying data, the heterogeneity of concepts for
expressing behaviour requires an appropriate handling on the semantic level.
When considering evolution, the concepts and languages for describing and im-
plementing behaviour will surely be diverse, albeit due to different needs, and
it is unlikely that there will be a unique language for this throughout the Web.
Since the contributing nodes are prospectively based on different data models
and languages, it is important that frameworks for the Semantic Web are mod-
ular, and that their concepts are independent from the actual data models and
languages, and allow for an integrated handling of these.

Our view is that a general framework for evolution and reactivity in the Se-
mantic Web should be based on a general ECA language that allows for the usage
of different event languages, condition languages, and action languages. Each of
these different (sub)languages should adhere to some minimal requirements (e.g.
dealing with variables), but it should be as free as possible.

Moreover, the ECA rules do not only operate on the Semantic Web, but
are themselves also part of it. For that, the ECA rules themselves must be
represented as data in the Semantic Web, based on an ontology of ECA rules and
(sub)ontologies for events, conditions and actions, with rules specified in RDF.
The ontology does not only cover the rules themselves but, for handling language
heterogeneity, the rule components have to be related to actual languages, which
in turn can be associated with actual processors. Moreover, for exchange of rules
and parts of them, an XML Markup of ECA Rules, that is preferably closely
related to the ontology, is needed.

In this chapter, after a brief overview of the state of the art, we present a gen-
eral framework for evolution and reactivity in the Semantic Web, which caters
for the just exposed requirements. The framework also provides a comprehen-
sive set of concrete languages. We continue the chapter with a description of a
concrete homogeneous language for reactivity and evolution, XChange.

Both the general framework and the XChange language have been developed
(and implemented) in the Rewerse project. This work opened several possi-
bilities of future applications and research areas, that are sketched in the last
section of this chapter.
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3.2 Starting Point and Related Work

As already mentioned before, the issue of reactivity, and even that of reactivity
on the Web, had already been studied before the beginning of this work.

Reactivity in Databases. Reactivity has been extensively studied in the area of
databases, e.g., in [62,70]. In these, notions of composition of events, as advocated
above, have been proposed based on event algebras with their concise theory and
semantics and well-understood detection mechanisms. A prominent representa-
tive of such approaches is e.g. the SNOOP algebra of the Sentinel system [28]
for transactional rules and rule-driven business workflows. Also more recent ap-
proaches like RuleCore [9] use similar concepts more or less explicitly. Our work
on composite events in the Semantic Web has its roots on this previous work.

Event Algebra expressions are formed by nesting operators and basic expres-
sions that specify which atomic events are relevant. For this, every event algebra
specifies a set of operators, e.g., “A and B”, “A or B”, “A and then B”, “not
C between A and B”. From a declarative point of view, such an event algebra
expression can be true or false over a given sequence of events. From the pro-
cedural point of view, a composite event is detected at the timepoint where it
becomes true wrt. the sequence of events occurred up to that point. Event al-
gebra terms are usually not evaluated like queries against the history (although
their semantics is defined like that), but are detected incrementally against the
stream of incoming events.

Process Definition Languages. Also for the specification of composite actions,
work already existed on process algebras and other process definition languages.
Well-known process algebras are CCS (Calculus of Communicating Systems) [59]
or CSP (Communicating Sequential Processes) [46]; another prominent recent
process specification language is BPEL (Business Process Execution Language)
[60]. In these approaches, e.g., the following concepts can be specified:

– sequences of actions to be executed (as in simple ECA rules);
– processes that include “receiving” actions, like the corresponding actions

a and ā action in CCS that are used for modeling communication: ā can
only be executed together with a (sending) action a in another process. The
semantics of ā is thus similar to the event part of ECA rules on a if condition
do action where the occurrence of a “wakes the rule up” and starts execution
of the subsequent condition and action;

– guarded (i.e., conditional) execution alternatives;
– families of communicating, concurrent processes, and
– starting an iteration or even infinite processes.

Reasoning about Actions. Formalisms for representing and reasoning about ac-
tions and effects of actions have also long been studied in Artificial Intelligence.
Action languages have been defined to account for just that [49,56,5,40,41,42,43,
44]. Central to this approach of formalizing actions is the concept of a transition
system: a transition system is simply a labelled graph where the nodes are states
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and the arcs are labelled with actions or sets of actions. Usually the states are
first-order structures, where the predicates are divided into static and dynamic
ones, the latter called fluents (cf. [66]). Action programs are sets of sentences
that define one such graph by specifing which dynamic predicates change in the
environment after the execution of an action. Usual problems here are to pre-
dict the consequences of the execution of a sequence of (sets of) actions, or to
determine a set of actions implying a desired conclusion in the future (planning).

Most of the above action languages are equipped with appropriate action
query languages, that allow for querying such a transition system, going beyond
the simple queries of knowing what is true after a given sequence of actions has
been executed (allowing e.g. to query about which sets of actions lead to a state
where some goal is true, which involves planning).

Web Update Languages. The above work sets up the foundation on which the
definition of reactivity and evolution in the Semantic Web has been inspired. Fur-
thermore, reasoning about such behaviour has its own specificity that requires a
specific solution after the mechanisms have been defined. To start, there is the
issue of how to update Web data, something that is much more concrete than
e.g. the update of states in action languages. For this, as a starting point we
could rely on a number of proposals such as XUpdate [72], the XQuery update
extension of [69], XML-RL [51], XPathLog [53], and RUL [52].

XUpdate [72] makes use of XPath expressions for selecting nodes to be pro-
cessed afterwards, in a way similar to XSLT. The XSLT-style syntax of the
language makes the programming, and the understanding of complex update
programs, very hard.

A proposal to extend XQuery with update capabilities was presented in [69]. In
it XQuery is extended with a FOR ... LET ... WHERE ... UPDATE ... struc-
ture. The new UPDATE part contains specifications of update operations (i.e.
delete, insert, rename, replace) that are to be executed in sequence. For ordered
XML documents, two insertion operations are considered: insertion before a child
element, and insertion after a child element. Using a nested FOR...WHERE clause
in the UPDATE part, one might specify an iterative execution of updates for nodes
selected using an XPath expression. Moreover, by nesting update operations, up-
dates can be expressed at multiple levels within a XML structure.

The XML-RL Language [51] incorporates features of object-oriented databases
and logic programming. The XML-RL Update Language extends XML-RL with
update capabilities. Five kinds of update operations are supported by the XML-
RL Update Language, viz. insert before, insert after, insert into, delete,
and replace with. Using the built-in position function, new elements can be in-
serted at the specified position in the XML document (e.g. insert first, insert sec-
ond). Also, complex updates at multiple levels in the document structure can be
easily expressed.

XPathLog [53] is a rule-based logic-programming style language for querying,
manipulating and integrating XML data. XPathLog can be seen as the migra-
tion from F-Logic [48], as a logic-programming style language, for semistruc-
tured data to XML. It uses XPath as the underlying selection mechanism and
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extends it with the Datalog-style variable concept. XPathLog uses rules to spec-
ify the manipulation and integration of data from XML resources. As usual for
logic-programming style languages, the query and construction parts are strictly
separated: XPath expressions in the rule body, extended with variables bind-
ings, serve for selecting nodes of XML documents; the rule head specifies the
desired update operations intensionally by another XPath expression with vari-
ables, using the bindings gathered in the rule body. As a logic-programming style
language, XPathLog updates are insertions.

Reactive Web Languages. Also some reactive languages have been proposed, that
do not only allow for updating Web data as the above ones, but are also capable
of dealing-with/reacting-to some forms of events, evaluate conditions, and act by
updating data. These are e.g. Active XQuery [11], the XML active rules of [12],
the Event-Condition-Action (ECA) language for XML defined in [4], and the
ECA reactive language RDFTL [61] for RDF data.

Active XQuery [11] expands XQuery with a trigger definition and the execu-
tion model of the SQL3 standard that specifies a syntax and execution model
for ECA rules in relational databases (and using the same syntax for CREATE
TRIGGER). It adapts the SQL3 notions of BEFORE vs. AFTER triggers and, more-
over, the ROW vs. STATEMENT granularity levels to the hierarchical nature of XML
data. The core issue here is to extend the notions from “flat” relational tuples
to hierarchical XML data.

Another approach to ECA rules reacting on updates of standard XML docu-
ments, in the style of SQL3 triggers, is the one of [4]. It defines ECA rules, of
the usual form on ... if ... do, where events can be of the form INSERT e
or DELETE e, where e is an XPath expression that evaluates to a set of nodes;
the nodes where the event occurs are bound to a system-defined variable $delta
where they are available for use in condition and action parts. An extension for
a replace operation is sketched. The condition part consists of a boolean combi-
nation of XPath expressions. The action part consists of a sequence of actions,
where each action represents an insertion or a deletion in XML. For insertion op-
erations, one can specify the position where the new elements are to be inserted
using the BELOW, BEFORE, and AFTER constructors. This work has been extended
to RDF data (serialised as XML data) in [61].

These approaches are “local”, in that, as in SQL3, work on a local database,
are defined inside the database by the database owner, and only consider local
events and actions. On the contrary, the XML active rules of [12] establishes
an infrastructure for user-defined ECA rules on XML data, where rules to be
applied to one given repository can be defined by arbitrary users (using a prede-
fined XML ECA rule markup), and can be submitted to that repository where
they are then executed. The definition of events and conditions is up to the user
(in terms of changes and a query to an XML instance). The actions are restricted
to sending messages. This approach further implements a subscription system
that enables users to be notified upon changes on a specified XML document
somewhere on the Web. For this, the approach extends the server where the doc-
ument is located by a rule processing engine. Users that are interested in being
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notified upon changes in the document submit suitable rules to this engine that
manages all rules corresponding to documents on this server. Thus, evaluation
of events and rules is local to the server, and notifications are “pushed” to the
remote users. Note that the actions of the rules do not modify the information,
but simply send a message.

None of these languages considers composite events in general. There is some
preliminary work on composite events in the Web [8], but it only considers
composition of events of modification of XML-data in a single document.

Besides being mostly limited to updates, and reaction on updates, on XML
(or RDF) data, and with mostly no support for composite events or actions, none
of these proposals tackles the issues of heterogeneity of behaviour and languages
in the Semantic Web, of dealing with composite events in the Web, and dealing
with composite actions, required for materialising our initial vision of an active
Semantic Web, where reactivity, evolution and propagation of changes play a
central role. Having all of these aspects combined in a single framework is the
goal of the work presented in this chapter.

3.3 Conceptualization of ECA Rules and Their
Components: A General Framework for ECA Rules

The idea of a General Framework for ECA Rules aims at covering (i) active con-
cepts w.r.t. the domain ontologies and (ii) heterogeneity of domain-independent
conceptualization of activity in a comprehensive way [55].

Active Concepts of Domain Ontologies. The general framework assumes actions
and events to be first-class citizens of the domain ontologies. While static notions
like classes, properties, and their instances are represented in the state of one or
more nodes, events and actions are present as volatile entities. Events and actions
are represented by XML (including RDF/XML) fragments that are exchanged
(e.g., by HTTP) between nodes. For instance,

<travel:CanceledFlight travel:code=“LH1234”>

<travel:reason>bad weather</travel:reason>

</travel:CanceledFlight>

is the representation of an event (raised e.g. by an airport).

Application-Domain Ontology travel

Events
CanceledFlight

Literals
Flight

operatedBy

Actions
CancelFlight

♦ ♦ ♦

Fig. 1. Components of Domain Ontologies

Every domain ontology –
e.g. for banking or travel-
ing – defines static notions
(classes, relationships) and
dynamic notions, i.e., the
types of possible events and
actions as classes of the re-
spective domain ontologies
as shown in UML notation
in Fig. 1.
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Next, we identify the types of languages used in the rules to deal with state,
events, and actions.

Domain-Independent Conceptualization of Activity. This aspect deals with the
modeling and specification of active rules and rule components, i.e., the descrip-
tion of relevant events, including composite events, conditions, including queries
against the state of domain nodes, and actions, including the specification of
composite actions up to (even infinite) processes. While the atomic constituents
are provided by the domain ontology, any kind of composition requires domain-
independent notions. As mentioned above, multiple formalisms and languages
for composite events, queries, and actions have been proposed. Each of them
can be seen as an ontology of composite events, processes, etc.

The general framework covers this matter by following a modular approach
for rule markup that considers the markup and ontology on the generic rule level
separately from the markup and ontologies of the components.
Two different variants of the general idea have been implemented:

MARS – Modular Active Rules for the Semantic Web is an open architecture that
allows for combining nearly arbitrary existing languages and services. For this,
MARS includes a meta-level ontology of languages and services in general.

r3 – Resourceful Reactive Rules follows an integrated design that is based
on a toolbox for defining and implementing heterogeneous languages in a
homogeneous programming environment.

In the following, we first present the common ideas underlying the general frame-
work, and then point out the different design decisions in MARS and r3. Services
from both approaches can also interoperate.

3.3.1 The Rule Level

The core of the general framework is a model and architecture for ECA rules
that use heterogeneous event, query, and action languages. The condition com-
ponent is divided into queries to obtain additional information (from potentially
different sources; the queries can be expressed in different languages) and a test
component (that consists only of a boolean combination of generic comparison
operators e.g., from XPath):

ON event AND additional knowledge IF condition THEN DO something.
The approach is parametric regarding the component languages. Users write
their rules by using component languages of their choice. While the semantics
of the ECA rules provides the global semantics, the components are handled
by specific services that implement the respective languages. Fig. 2 (from [54])
illustrates the structure of the rules and the corresponding types of languages.

Markup. The markup of the rule level, i.e., the ECA-ML markup language,
mirrors this structure as shown in Figure 3. It allows to embed the components
as nested subexpressions in their own markup (using their own namespaces). The
conceptual border between the ECA rule level and the particular concepts of the
E, C and A components is manifested in language borders between the ECA level
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Rule Model ECARule ECAEngine

EventComponent ConditionComponent ActionComponent

Query Test

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model
Language

Name, URI
Processor

♦1

♦

0..1

♦

1..*

♦*

♦

0..1

�

�

�

�

uses uses uses uses

impl by

impl by

Fig. 2. ECA Rule Components and Corresponding Languages (from [54])

language and the languages of the nested components. The language borders
are used at execution time to organize the cooperation between appropriate
processors. The components are specified as nested subexpressions of the form
<eca:Component-Type xmlns:lang=“embedded-lang-ns”>

embedded fragment in the embedded language’s markup and namespace
</eca:Component-Type>

in arbitrary formalisms or languages.
As we shall see, analogous conceptual borders are found between the level of

composite expressions and their atomic subexpressions.

Communication and Data Flow Between Components. The data flow through-
out the rules, and between the ECA engine and the event, query, test, and action
components is provided by logical variables in the style of deductive rules, or of

<eca:Rule xmlns:eca=“http://www.semwebtech.org/languages/2006/eca-ml#”>

<eca:Event>

<ns1:el1>nested expression in event specification language markup </ns1:el1>

</eca:Event>

<eca:Query”>

<ns2:el2>nested expression in query language markup </ns2:el2>

</eca:Query>

:
<eca:Query > . . . </eca:Query>

<eca:Test>

<ns3:el3>test expression over obtained information </ns3:el3>

</eca:Test>

<eca:Action>

<ns4:el4>nested expression in action language markup </ns4:el4>

</eca:Action>

</eca:Rule>

Fig. 3. ECA-ML Markup Pattern
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production rules. The state of a rule evaluation, and the information sent and
returned by service calls is always a set of tuples of variable bindings. Thus, all
paradigms of query languages, following a functional style (such as XPath/X-
Query), a logic style (such as Datalog or SPARQL [64]), or both (F-Logic [48])
can be used. The semantics of the event part (that is actually a “query” against
an event stream that is evaluated incrementally) is –from that point of view–
very similar to that of queries, and the action part takes variable bindings as
input. Given this semantics, the ECA rule combines the evaluation of the com-
ponents in the style of production rules (evaluated in forward-chaining mode “if
body then head”, cf. Figure 4):

action(X1, . . . , Xn, . . . , Xk) ←
event(X1, . . . , Xn), query(X1, . . . , Xn, . . . , Xk), test(X1, . . . , Xn, . . . , Xk) .

The evaluation of the event component (i.e., the successful detection of a, pos-
sibly composite, event) binds variables to values that are then extended in the
query component, possibly constrained in the test component, and propagated
to the action component.

For the actual data exchange, an XML format has been defined. Alternatively,
for local services, internal data structures can be exchanged as references, and
also a shared database storage is provided.

<eca:Event>

event component
binds X1, . . . , Xn

</eca:Event>

⇒

<eca:Query>

query component
over X1, . . . , Xn, . . . , Xk

join vars: X1, . . . , Xn

binds Xn+1, . . . , Xk

</eca:Query>

⇒
<eca:Test>

over X1, . . . , Xk

</eca:Test>

⇒

<eca:Action>

action component
uses X1, . . . , Xk

</eca:Action>

(Composite) Event
Detection Engine Query Engine Action/Process

Engine

register
event

component

upon
detection:
result
variables

send
query

receive
result

send
action
+vars

Fig. 4. Use of Variables in an ECA Rule

3.3.2 The Event Component

For the event component, two levels of specifications are combined (cf. Figure 5):
The specification of the (algebraic) structure of the composite event is given as a
temporal combination of atomic events, and the specification of the contributing
atomic events as the leaf expressions is given by small “queries” against the
actual events that check if an event matches the specification.

Atomic Event Specifications. As shown at the beginning of this section, actual
events are volatile items, considered to be represented as XML fragments. Atomic
event specifications (AESs) are used in the rules’ event components for specifying
which atomic events are relevant; they form the leaves of the event component
tree. Their specification needs to consider the type and contents of atomic events,
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Fig. 5. Event Component: Languages (from [7])

e.g. reacting to an event “if a flight is canceled due to bad weather conditions then
...”. In case of detecting the composite event “if a flight is first delayed and later
canceled then ...”, the flight number must be extracted from the event to use it in
a join condition between different atomic events. The following fragment shows
an atomic event specification in an XML-QL-style [32] matching formalism, that
extracts the flight number and the reason from such an event:

<xmq:AtomicEvent
xmlns:xmq=“http://www.semwebtech.org/languages/2006/xmlql#”>

<travel:CanceledFlight xmlns:travel=“. . . ” travel:flight=“{$flightno}”>

<travel:reason>{$reason}</travel:reason>

</travel:CanceledFlight>

</xmq:AtomicEvent>

In an atomic event specification, there are always two languages involved as
shown in Figure 5: (i) a domain language (associated with the namespace of
the event; above: travel), and (ii) an atomic event description/matching/query
language (above: xmq) for describing what events should actually be matched.

Composite Event Specifications. Given an event algebra, the markup of event alge-
bra expressions is straightforward, forming a tree term structure over atomic event
specifications. As a sample composite event language, a variant of the SNOOP
event algebra [29] extended with relational data flow has been developed [7].

3.3.3 The Condition Component

The condition component consists of one or more queries to obtain additional
information from domain nodes, and a test that is evaluated over the obtained
variable bindings.
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As query languages, opaque components play an important role: most domain
nodes are assumed to provide an existing query language according to their
data model, e.g., SQL, XPath/XQuery, or SPARQL. While all these languages
support variables, they are not in any XML markup1, but queries are given as
strings that have to be parsed at the respective nodes. For the ECA rules, these
strings are opaque. Opaque embedded fragments are of the form
<eca:Opaque eca:language=“lang-id” eca:uri=“uri”>

query string
</eca:Opaque>

which indicates the language and the URI where the query has to be sent for
being answered. Opaque code fragments can also be used in the action part.

Additionally, a query language for RDF and OWL data that has an RDF
syntax (whose XML markup is its RDF/XML serialization), called OWLQ, has
been developed in the MARS project.

3.3.4 The Action Component

The action component specifies the actual reaction to be taken. This again can be
an atomic action, or a composite action, often called process. For its specification,
process languages or process algebras can be used. Given a process language, the
markup on the process level is again straightforward, forming a tree expression
structure (note that BPEL [60] is originally defined as an XML language).

Atomic actions are those of the application domains, again represented as
XML fragments, belonging to some domain namespace. Such atomic actions are
then sent to the appropriate nodes to be executed. The specification of an action
to be executed thus consists of the specification to generate an XML fragment
which is then submitted to the corresponding domain nodes, or to a domain
broker [6] that will in turn submit it to appropriate domain nodes (using the
namespace identification). For that, also multiple languages exist.

Conditions, Queries and Events inside Process Specifications. The specification
of a process, which e.g. includes branching or waiting for a response, can also
require the specification of queries to be executed, and of events to be waited
for. For that, we allow event specifications, queries and conditions as regular,
executable components of a process:

– “executing” a query means to evaluate the query, to extend the variable
bindings, and to continue.

– “executing” a condition means to evaluate it, and to continue for all tuples of
variable bindings where the condition evaluates to “true”. For instance, for
a conditional alternative process ((c : a1) + (¬c : a2)), all variable bindings
that satisfy c will be continued in the first branch with action a1, and the
others are continued with the second branch.

– “executing” an event specification means to wait for an occurrence of the
respective event.

1 With exceptions, such as XQueryX as an XML markup for XPath/Query
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Fig. 6. Structure of the Action Component as an Algebraic Language (from [7])

Figure 6 shows the relationship between the process algebra language and the
contributions of the event and test component languages, and those of the do-
main languages. As a sample process language, an enriched variant of CCS [59]
has been defined [7, 47] that works on relational states (i.e., a set of tuples of
variable bindings) that are manipulated by the atomic actions.

3.3.5 Languages and Language Borders

In the above design, rules and (sub)expressions are represented by XML trees.
Nested fragments correspond to subtrees in different languages, corresponding
to XML namespaces, as illustrated in Figure 7: the rule reacts on a composite
event (specified in the extended SNOOP [29,7] event algebra as a sequence) “if
a flight is first delayed and later cancelled”, and binds the flight number and
the reason of the cancellation. Two expressions in an XML-QL-style matching
formalism contribute the atomic event specifications. Note the occurrence of the
travel domain namespace inside the atomic event specification.

Processing of an XML fragment in a given language, or more abstractly, ex-
ecuting some task for a fragment, is organized by using the namespace URI of
the fragment’s outermost element. Every processor (e.g., the one responsible for
the crosshatched event part in the snoopy namespace) controls the processing
of “his” level (the SNOOP event algebra), and whenever an embedded frag-
ment (e.g., an atomic event specification) has to be processed, the appropriate
processor (here, for XML-QL) is invoked.

The aim of the General Framework idea is to allow to embed arbitrary lan-
guages of appropriate types by only minimal restrictions on the languages. The
cornerstones of the framework w.r.t. this issue are the following:

– the approach does only minimally constrain the component languages:
the information flow between the ECA engine and the event, query, test, and
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<eca:Rule xmlns:eca=“http://www.semwebtech.org/languages/2006/eca-ml#”>

<eca:Event>

<snoopy:Sequence xmlns:snoopy=“http://.../languages/2006/snoopy#”
xmlns:travel=“http://.../domains/2006/travel#”>

<xmq:Event xmlns:xmq=“http://.../domains/2006/xmlql#”>

<travel:DelayedFlight travel:code=“{$flight}”/>

</xmq:Event>

<xmq:Event xmlns:xmq=“http://.../domains/2006/xmlql#”>

<travel:CanceledFlight travel:code=“{$flight}”>

<travel:reason>{$reason}</travel:reason>

</travel:CanceledFlight>

</xmq:Event>

</snoopy:Sequence>

</eca:Event>

<eca:Query>

query spec

</eca:Query>

<eca:Action>

action spec

</eca:Action>

</eca:Rule>

xmlns:eca•– rule level

•

action spec◦
query◦

xmlns:snoop – event spec•

• •
atomic event specs

+ occurrences of
domain namespaces

Fig. 7. Nesting of Language Subtrees

action components is provided by (i) XML language fragments, and (ii)
current variable bindings (cf. Fig. 4),

– a comprehensive ontology of language types, service types and tasks (as
described below),

– an open, service-oriented architecture,

– a Language and Service Registry (LSR) that holds information about actual
services and how to do the actual communication with them.

The XML and RDF concept of namespaces provides a powerful and built-in
mechanism to identify the language of an XML fragment: namespaces are the
languages’ URIs. The concrete languages are related to actual services, and the
namespace information of a fragment to be processed is used to select and address
an appropriate processor.

With that, all necessary information what to do with an embedded fragment of
a “foreign language” is contained in (i) the language fragment (via the namespace
of its root element), (ii) the local knowledge of the currently processing service
(i.e., what it expects the fragment to be, and what it wants do to with it), and
(iii) the LSR information.
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3.3.6 Languages Types, Service Types, and Tasks

For every kind of language there is a specific type of service that provides a
specific set of tasks – these are independent from the concrete language; only
the actual implementation by a service is language-dependent.

The Languages and Services Ontology is shown in Figure 8; sample instances
are denoted by dashed boxes. The ontology contains two levels: the level of
language types and corresponding service types, and the concrete languages and
services.
There are the following language types, with the corresponding service types :

Rule Languages, e.g. the ECA rule language, are handled by rule engines. There,
e.g., rules can be registered.

Event Specification Languages (specifications of composite or atomic events):
composite event specifications are processed by Composite Event Detection
Engines (CEDs); atomic event specifications are processed by Atomic Event
Matchers (AEMs). In both cases, event specifications can be registered at such
services. Upon occurrence/detection of the event, the registrant will be noti-
fied (asynchronously).

Query Languages are handled by query engines. Queries can be sent there, and
they are answered (synchronously or asynchronously).

Test Languages: tests (i.e., boolean queries) are also handled by query engines,
or locally (as they involve rather simple comparisons). Tests can be submit-
ted, and they are answered (synchronously or asynchronously).

Action Languages: Composite and atomic actions are processed by action ser-
vices. Action specifications can be submitted there for execution (either pro-
cesses, or atomic actions).

Domain Languages: Every domain defines a language that consists of the names
of actions (understood to be executed), classes/properties/predicates (de-
pending on the respective data model), and events (emitted by the domain
services) as shown in Figure 1. Domain services support these names and
carry out the real “businesses”, e.g., airlines (in the travel domain) or uni-
versities. They are able to answer queries, to execute (atomic) actions of
the domain, and they emit (atomic) events of the domain. Domain Brokers
implement a portal functionality for a given domain.

For every kind of language there is intuitively a typical set of tasks (e.g., given
a query language QL, one expects that a service that implements QL provides
the task “answer-query”). In the Languages and Services Ontology, the tasks
are not associated with the language, but with the corresponding service type
(in programming languages terminology, a service type is an interface that is
implemented by the concrete services; thus the provided tasks can be seen as
(part of) its signature).

For a concrete language, e.g., SNOOP, there are one or more concrete services
(of the appropriate service type) that implement it (here: snoopy). Each such
service has a URI, and has to provide the characteristic tasks of the service
type (in programming languages terminology: implement the signature of the
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Fig. 8. Ontology of Languages and Services

interface). For each provided task, there is a task description that contains the
information how to establish communication (described in detail at the end of
this section).

The relationships on the meta level are called meta-implemented-by and meta-
provides-task, while on the concrete level, they are called implemented-by and
provides-task. The reason for not just overloading names is that the RDFS de-
scription then allows to distinguish domains and ranges.

Figure 9 shows the most important tasks for each service type; addition-
ally, the actual communication flow is indicated: e.g., rule engines provide the
task “register-rule”, which in turn calls the task “register-event-pattern” that is
provided by event detectors. When the task “register-event-pattern” of a CED
is called, it will in turn call the task “register-event-pattern” for the embedded
(atomic) subevents at some AEMs (for the respective AESLs). Domain nodes
emit events that end up at the task “receive-event” that is provided by AEMs. If
such an event matches a registered pattern, the AEM will call the task “receive-
detected-event” that is provided by the registrant (which is a CED or a rule
engine). A more concrete example using the sample rule from Figure 7 will be
given in Section 3.3.7.

Information about Concrete Services. The concrete information about available
services for the concrete languages is managed by the Language and Service
Registry (LSR). For every such service, the LSR contains the URI, and for each
provided task, there is a task description that contains information for estab-
lishing communication (cf. Figure 10 for a sample in RDF/XML markup):
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Language Rule Composite Atomic Query/Test Process AtomicAct. Domain
Type: Languages Event Languages Languages Languages Languages

Service Type: Rule Composite Atomic Query/Test Composite Atomic Domain
Task: Engines Event Detectors Services Action Services Brokers Nodes
register-rule P

reg.-event-pattern C P/C P/C C P
rec-detected-ev. P C/P C P
receive-event P C/P
(SendEvent) C

evaluate-query C P/C C P/C P
(answer-query) C
rec-query-answer P C/P P C/P

evaluate-test C P/C C
rec-test-answer P C/P P

execute-action C P/C P/C P/C P

P: Provides task ; C: Calls task – asynchronous answers will be sent to another task
Arrows from C to P of the same service type represent communication between different
services of the same type (e.g., nesting of different event algebras).
The rightmost dashed arrows represents the domain-specific behavior of domain nodes:
from executing actions, occurrences of events may be raised.

Fig. 9. Services and Tasks

– the actual URL (as a service supports multiple tasks, each of them may have
an own URL, which is not necessarily related to the service’s URI),

– whether it supports to submit a set of tuples of variables, or only a single
tuple at each time,

– information about the required message format:
• send reply-to address and subject in the message header or in the body,
• whether it requires a certain wrapper element for the message body,

– whether it will answer synchronously or asynchronously.

All MARS ontologies and an LSR snapshot in XML/RDF syntax can be found at
http://www.dbis.informatik.uni-goettingen.de/MARS/#mars-ontologies

For processing a component or subexpression, a language processor for the
indicated specification language is determined by asking an LSR for a processor
for the embedded-lang-ns namespace and the task is submitted to that node
according to the information given in the respective task description. The actual
process of determining an appropriate service and organizing the communication
is operationally performed by a Generic Request Handler (GRH), that is used
by all sample services. Details about the actual handling are described in [37].

In the current prototype, the LSR is implemented by a central RDF/XML
file. In a fully operational MARS environment, the LSR would be realized as one
or more LSR services where language services can register and deregister, and
that are connected e.g. in a peer-to-peer way. By that, e.g., different LSRs can
list their “friend” services, and only fall back to remote services if no local ones
are available.

http://www.dbis.informatik.uni-goettingen.de/MARS/#mars-ontologies
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<mars:EventAlgebra rdf:about=“http://.../languages/2006/snoop#”>

<mars:is-implemented-by>

<mars:CompositeEventDetectionEngine xml:base=“http://.../services/2007/snoopy/”
rdf:about=“http://www.semwebtech.org/services/2007/snoopy”>

<has-task-description> <TaskDescription>

<describes-task rdf:resource=“&mars;/ced#register-event-pattern”/>

<provided-at rdf:resource=“register”/> <input>element register</input>

<Reply-To>body</Reply-To> <Subject>body</Subject>

<variables>*</variables>

</TaskDescription> </has-task-description>

:
</mars:CompositeEventDetectionEngine>

<mars:is-implemented-by>

</mars:EventAlgebra>

Fig. 10. MARS LSR: LSR entry with Service Description Fragment for SNOOP

3.3.7 Architecture and Processing: Cooperation between Resources

Imposed by the structure of the rule and the type of languages, each service plays
a certain role when processing the parts it is responsible for. The basic pattern,
according to the ECA structure is always the same, as illustrated in Figures 11
(global interaction) and 12 (more detailed view of the services and tasks that are
involved in composite event detection including the prior registration of event
specifications).

Consider again the example rule from Figure 7:
A client registers the rule (which deals with the travel domain) at the ECA en-

gine (Step 1.1). Event processing is done in cooperation of an ECA engine, one or
more Composite Event Detection Engines (CEDs) that implement the event alge-
bras (in the example: SNOOP), and one or more Atomic Event Matchers (AEMs)
that implement the Atomic Event Specification Languages (AESLs) (in the ex-
ample: XML-QL). For this, the ECA engine submits the event component to the
appropriate CED service (1.2), here, a SNOOP service. The SNOOP service in-
spects the namespaces of the embedded atomic event specifications and registers
the atomic event specifications (for travel:DelayedFlight and travel:CanceledFlight)
at the XML-QL AEM service (1.3). The AEM inspects the namespaces of the
used domains, where in this case the travel ontology is relevant. It contacts a
travel domain broker (1.4) to be informed about the relevant events (i.e., De-
layedFlight and CanceledFlight).

The domain broker forwards relevant atomic events to the AEM (2.2;
e.g., happening at Lufthansa (e.g., 2.1a: DelayedFlight(LH123), 2.1c: Canceled-
Flight(LH123)) and Air France (2.1b: DelayedFlight(AF456))). The AEM matches
them against the specifications and in case of a success reports the matched
events and the extracted variable bindings to the SNOOP service (3). Only after
detection of the registered composite event (after events 2.1a and 2.1c), SNOOP
submits the result to the ECA engine (4).
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Fig. 11. Communication: Event Processing

This means the actual “firing” of the rule which then evaluates additional
queries and tests (assumed to be empty here). Then, the action component is
executed. Assume an action component (which is not given explicitly in Figure 7)
that uses CCS and contains an atomic action concerning the corresponding air-
line node and an atomic action that sends a mail (using an SMTP action). The
ECA engine inspects the used language namespace (ccs:) and forwards it to a
CCS service (5.1). The CCS node forwards the action to the Lufthansa node via
the domain broker (5.2a,b) and sends a mail (5.3a,b) via an SMTP service.

Embedding of Domain Languages. Domain languages and services are completely
compatible with this approach (cf. Figure 9). For domain nodes, the tasks are
register-for-event and execute-action. Domain brokers provide a portal function-
ality between language services and domain services.

3.3.8 The RDF Level: Language Elements and Their Instances as
Resources

Rules on the semantic level, i.e., RDF or OWL, lift ECA functionality w.r.t.
two (independent) aspects: first, the events, conditions and actions refer to the
domain ontology level as described above. On an even higher level, the above
rule ontology and event, condition, and action subontologies regard rules them-
selves as objects of the Semantic Web. Together with the languages and their
processors, this leads directly to a resource-based approach: every rule, rule com-
ponent, event, subevent etc. becomes a resource, which is related to a language
which in turn is related to other resources.
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Describing rules in RDF provides an important base to be able to reason about
rules. This will support several things:

– validation and support for execution,
– actual reasoning about the behaviour of a node, including correctness issues,
– expressing rules in abstract terms instead of w.r.t. concrete languages. The

services can then e.g. choose which concrete languages support the expres-
siveness required by the rule’s components.

For the RDF/OWL level, we assume that not only the data itself is in RDF, but
also events and actions are given as XML/RDF fragments (using the same URIs
for entities and properties as in the static data).

Based on the semantics of the component languages as algebraic structures,
a representation in RDF is straightforward for each language. Actually, when
designing a language having an RDF and an XML variant (such as developed
for SNOOP and CCS), the XML markup is a stripped variant of a certain RD-
F/XML serialization according to a target DTD of the RDF graph of the rule.
The processing of rules given in RDF is actually done via transforming them to
the XML syntax which is then executed as described above.

Figures 13 and 14 show an excerpt of the rule given in Figure 7 as RDF: “If
a flight is first delayed and then canceled (note: use of a join variable), then ...”.
For atomic event matching, it uses the RDF-based OWLQ language.

3.3.9 MARS Implementation

Modular Active Rules for the Semantic Web – MARS – implements an open,
service-oriented architecture exactly as described above. In MARS, every con-
tributing service is completely autonomous. Making a language and a service
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Fig. 13. Example Rule and Event Component as Resources

interoperable in MARS just consists of adding an appropriate language entry
with a service description to the Language and Service Registry (LSR) and us-
ing it anywhere in a rule or process. Communication between services is always
done via HTTP and the XML serialization of variable bindings.

In the MARS project, several sample languages on the XML and RDF level
have been implemented.

XML Level. On the XML level, the focus is on having an XML markup for
ECA rules using more or less well-known component languages that have been
adapted to relational dataflow. XML is here just used as a markup format for
rules and their components and subexpressions:

– Atomic Event Specifications: An XML-QL-style [32] pattern-based query
mechanism,

– Composite Event Specifications: the SNOOP event algebra of the Sentinel
system [28,7],

– Queries: XPath and XQuery as opaque queries (i.e., non-markupped CDATA
contents), XML-QL,

– Atomic Actions: An XML-QL-style pattern-based XML generation mecha-
nism,

– Composite Actions: the CCS – Calculus of Communicating Systems process
algebra [59,7,47].
Process specifications (in CCS) as used in the Action part of ECA rules can
also be defined and executed standalone.
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<!DOCTYPE rdf:RDF [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY owlq "http://www.semwebtech.org/languages/2006/owlq#">

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY travel "http://www.semwebtech.org/domains/2006/travel#"> ]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:eca="http://www.semwebtech.org/languages/2006/eca-ml#"

xmlns:snoop="http://www.semwebtech.org/languages/2006/snoopy#"

xmlns:owlq="http://www.semwebtech.org/languages/2006/owlq#"

xmlns:travel="http://www.semwebtech.org/domains/2006/travel#"

xml:base="foo:rule">

<eca:Rule rdf:ID="rule-df-cf">

<eca:uses-variable rdf:resource="#flight"/>

<eca:has-event>

<snoop:Sequence>

<snoop:first>

<owlq:EventSpec rdf:ID="ev-df">

<owlq:baseEvent rdf:resource="&travel;DelayedFlight"/>

<owlq:scopesVariable>

<owlq:Variable>

<owlq:hasVariableDefinition>

<owlq:VariableDefinition>

<owlq:onProperty rdf:resource="&travel;flight"/>

<owlq:toVariable rdf:resource="#flight"/>

<owlq:VariableDefinition>

</owlq:hasVariableDefinition>

</owlq:Variable>

</owlq:scopesVariable>

</owlq:EventSpec>

</snoop:first>

<snoop:second>

<owlq:EventSpec rdf:ID="ev-cf">

<owlq:baseEvent rdf:resource="&travel;CanceledFlight"/>

<owlq:scopesVariable>

<owlq:Variable>

<owlq:hasVariableDefinition>

<owlq:VariableDefinition>

<owlq:onProperty rdf:resource="&travel;flight"/>

<owlq:toVariable rdf:resource="#flight"/>

<owlq:VariableDefinition>

</owlq:hasVariableDefinition>

</owlq:Variable>

</owlq:scopesVariable>

</owlq:EventSpec>

</snoop:second>

</snoop:Sequence>

</eca:has-event>

<!-- ... query and action ... -->

</eca:Rule>

Fig. 14. Sample RDF Rule
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RDF Level. On the RDF level, all language fragments are represented in RD-
F/XML. Here, new language proposals are embedded in MARS:

– SNOOP and CCS (in RDF version),
– OWLQ as query language and for atomic event specifications,
– RDF-CL (an OWLQ-style RDF generation language).

Domain Services. There is a prototypical domain broker (cf. [6]) and sample
RDF data for demonstrating the rules; an active domain node with a demon-
strator application is under development.

Openness. The MARS framework is open for foreign component languages and
other sublanguages. Languages that have an XML markup smoothly integrate as
shown above. For existing services, it is an easy task to implement a wrapper Web
service that provides a suitable interface and to add the respective information
to the LSR (the online MARS LSR and the demonstrator contain samples of
foreign languages). Languages that do not have an XML markup but any other
textual syntax can be integrated using the handling of opaque fragments (for
details, see [2]), or also via an XML-based wrapper.

An online demonstrator of MARS is available at
http://www.semwebtech.org/mars/frontend/.

3.3.10 r3 Implementation

Resourceful Reactive Rules – r3 – is a prototype implementation of the general
framework described above that, unlike MARS, follows an integrated design that
is based on a toolbox for defining and implementing heterogeneous languages in
a homogeneous programming environment.

r3 is based on an OWL-DL foundational ontology [1], describing reactive
rules and their components, and fully relies on the RDF Level. I.e., in r3 rules,
and their components are resources described in RDF according to the OWL-
DL foundational ontology. As such, no concrete markup is expected, though a
compatibility with the ECA-ML markup described above is provided.

The prototype is actually a network of r3 engines that cooperate towards
the evaluation of ECA rules. As in MARS, the communication between the r3

engines is done via HTTP and XML serialization of variable bindings. However,
making languages and services interoperable is not as simple as in MARS. The
entry point is an r3 main agent, providing operation for loading and removing
ECA rules. This main engine then interfaces with r3-aware language specific sub-
engines, e.g. for detecting events, querying, testing conditions and performing
actions. These r3 sub-engines may either be language services or domain services.

For easing the construction of r3 engines the prototype comes together with
a toolbox, including a development library and a corresponding meta-model to
describe component languages. This development library abstracts away com-
munication protocols, bindings of variables, generation of alternative solutions,
dealing with RDF models, etc. With this toolbox, building an r3 engine for a

http://www.semwebtech.org/mars/frontend/
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language amounts to describing the language constructs in the meta-model, and
implementing each of the constructs, or using already existing implementations.
This provides a homogeneous programming environment for building r3 engines.

In fact several r3 engines have been built using this toolbox, for different
languages and services:

– HTTP, providing functors for put, get, post and delete;
– Prova [50], allowing for querying prova (Prolog-like) rules bases, and for

performing actions by using prova programs;
– XPath and XQuery for querying data in the Web;
– Xcerpt [63, 30] (see also Chapter 2), allowing for querying Web data using

this language;
– SNOOP for specifying composite events;
– XChange [25] which allows for detecting events with XChange, raising

XChange events, and performing XChange actions;
– Protune [10], allowing for query and acting upon policy knowledge bases, as

defined in Chapter 4;
– Evolp [3] allowing to query and act in an updateable logic programming

knowledge base.

Moreover, a broker has been implemented for allowing r3 engines to access
MARS, and an example domain service for the bio-informatics domains. All of
this, plus the source code of r3 and the toolbox, installation and usage manual, as
well as an online demonstrator, can be found at http://rewerse.net/I5/r3/.

3.4 XChange – A Concrete Web-Based ECA Rule
Language

XChange [25] is a reactive rule language addressing the need for evolution and
reactivity on the Web, both local (at a single Web node) and global (distributed
over several Web nodes) . As motivated in the beginning of this Chapter, it is
based on ECA rules of the form “ON event query IF Web query DO action.” When
events answering the event query are received and the Web query is successful
(i.e., has a non-empty result), the rule’s action is executed.

In contrast to the ECA rule frameworks presented in the previous section,
XChange aims at providing a single, homogenous, and elegant language that is
tailored for working with Web data and that is easy to learn and use. A guiding
idea of XChange is to build upon the existing Web query language Xcerpt [68,67].
(Xcerpt is discussed in Chapter 2 of this book; the core ideas as relevant for
understanding XChange will also be presented shortly here.)

XChange builds on the pattern-based approach of Xcerpt for querying data,
and additionally provides for pattern-based updating of Web data [63, 30]. De-
velopment of Xcerpt, XChange, and also of the complex event query language
XChangeEQ [18] follows the vision of a stack of languages for performing com-
mon tasks on Web data such as querying, transforming, and updating static
data, as well as reacting to changes, propagating updates, and querying complex

http://rewerse.net/I5/r3/
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flights [
flight {

number { "UA917" },

from { "FRA" },
to { "IAD" }

},

flight {

number { "LH3862 " },
from { "MUC" },

to { "FCO" }
},

flight {
number { "LH3863 " },

from { "FCO" },
to { "MUC" }

}
]

(a) Data term

<flights >
<flight >

<number >UA917 </number>

<from >FRA </from >
<to>IAD </to>

</flight >

<flight >

<number >LH3862 </number>
<from >MUC </from >

<to>FCO </to>
</flight >

<flight >
<number >LH3863 </number>

<from >FCO </from >
<to>MUC </to>

</flight >
</flights >

(b) XML document

Fig. 15. An Xcerpt data term and its corresponding XML document

events. The result is a set of cooperating languages that provide, due to the
pattern-based approach that is common to all of them, a homogenous look-and-
feel. When a programmer has mastered the basics of querying Web data with
Xcerpt’s query terms, she can progress quickly and with smooth transitions to
more advanced tasks.

3.4.1 Representing, Querying, and Constructing Web Data

Data terms. XML and other Web data is represented in XChange in the term
syntax of Xcerpt that is arguably more concise and readable than the original
formats. Further, data terms are the basis for query terms and construct terms,
and the importance of conciseness and readability of the term syntax will become
more pronounced when we introduce them shortly.

Figure 15(a) shows an Xcerpt data term for representing information about
flights; its structure and contained information corresponds to the XML docu-
ment shown in Figure 15(b). A data term is essentially a pre-order linearization
of the document tree of an XML document. The element name, or label, of the
root element is written first, then surrounded by square brackets or curly braces,
the linearizations of its children as subterms separated by commas.

The term syntax provides two features that are not found in XML: First,
child elements in XML are always ordered. The term syntax allows children to
be specified as either ordered (indicated by square brackets [ ]) or unordered
(indicated by curly braces { }). The latter brings no added expressivity to the
data format (an unordered collection can always been given some arbitrary or-
der) but is interesting for efficient storage based on reordering elements and for
avoiding incorrect queries that attempt to make use of an order that should not
exist. In the example of Figure 15(a), the order of the flight children of the
flights element is indicated as relevant, whereas the order of the children of
the flight elements is not.
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Second, the data model of XML is that of a tree. Our terms are more general,
supporting rooted graphs, which is necessary to transparently resolve links in
XML documents (specified, e.g., with IDREFs [13,14] or with XLink [31,17,16])
and to support graph-based data formats such as RDF. However for understand-
ing XChange in the scope of this article, this feature is not necessary and we
therefore refer to [68, 67] for more details.

Query Terms. A query term describes a pattern for data terms; when the pattern
matches, it yields (a set of) bindings for the variables in the query term. Variable
bindings are also called substitutions, and sets thereof (called substitution sets).
The syntax of query terms resembles the syntax of data terms and extends it to
accommodate variables, incompleteness, and further query constructs.

Variables in query terms are indicated by the keyword var. They serve as
placeholders for arbitrary content and keep query results in the form of bindings.
In the patterns of query terms, single brackets or braces indicate a complete
specification of subterms. In order for such a pattern to match, there must be
a one-to-one matching between subterms (or children) of the data term and
the query term. Double brackets or braces in contrast indicate an incomplete
specification (w.r.t. to breadth): each subterm in the query term must find a
match in the data term, but the data term may contain further subterms. As
with data terms, square brackets indicate that the order of subterms is relevant
to the query and curly braces that it is not. Incompleteness in depth, that is
matching subterms that are not immediate children but descendants at arbitrary
depth, is supported with the construct desc.

Query terms also cater for restricted variables, negated subterms, optional
subterms, label variables, positional variables, regular expression matching, non-
structural conditions such arithmetic comparisons, and more. Examples of query
terms used in the ECA rule of Figure 16, which will be discussed in detail later,
are the first term with root element xchange:event (following the keyword ON)
and the term with root element flights.

Construct Terms. Construct terms are used to create new data terms using
variable bindings obtained by a query. A construct term describes a pattern
for the data terms that are to be constructed. The syntax of construct terms
resembles the syntax of data terms and extends it to support variables and
grouping.

In constructing new data, variables in construct terms are simply replaced
by the bindings obtained from the query. The result is a new data term. If
there are no grouping constructs, then a new data term is generated for each
binding of the variables. For more complex restructuring of data, groupings can
be expressed as subterms in a construct term of the form all c group by { var
V }, where c is another construct term (which may of course contain further
grouping constructs). Its effect is to generate a data term from the construct
term c (as subterm for the overall construct term) for each distinct binding of
the variable V . The group by part can also be left out; the default then is to
group by the free variables immediately inside the construct term after all.
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When grouping generates a list, the order of the generated subterms can be
influenced with an order by clause. Grouping constructs can be nested.

Construct terms also cater for aggregation functions (e.g., max, count), group-
ings that are restricted to a fixed number of subterms, dealing with optional vari-
ables, and construction of graph rather than tree data. An examples of construct
terms used in the ECA rule of Figure 16, which will be discussed in detail later,
is the second term with root element xchange:event (following the keywords
DO and and); note that this is a fairly simple construct term that does not make
use of grouping constructs.

3.4.2 Event-Condition-Action (ECA) Rules

An XChange program consists of one or more reactive rules of the form ON event
query IF Web query DO action.2, with the intuitive meaning as described above.
Both event query and Web query can extract data through variable bindings,
which can then be used in the action. As we can see, both event and Web queries
serve a double purpose of detecting when to react and influencing —through
binding variables— how to react. For querying data, as well as for updating
data, XChange embeds and extends the Web query language Xcerpt presented
earlier.

Figure 16 shows an example of an XChange ECA rule, which will be used for
our subsequent explanations. The individual parts of the rules employ Xcerpt
and its pattern-based approach. Patterns are used for querying data in both the
event and condition part, for constructing new event messages in the action part,
and for specifying updates to Web data in the action part.

3.4.3 Events

Event messages. Events in XChange are represented and communicated as XML
messages. The root element for all events is xchange:event, where the prefix
xchange is bound to the XChange namespace. Events messages also carry some
meta-data as children of the root element such as

– raising-time (i.e. the time of the event manager of the Web node raising
the event),

– reception-time (i.e. the time at which a node receives the event),
– sender (i.e. the URI of the Web node where the event has been raised),
– recipient (i.e. the URI of the Web node where the event has been received),

and
– id (i.e. a unique identifier given at the recipient Web node).

An example event that might represent the cancellation of a flight with number
“UA917” for a passenger named “John Q Public” is shown in both XML and
term syntax in Figure 17.
2 In the course of the development of XChange, different keywords and orders for the

rules have also been used. In particular, rules can also be written as RAISE event
raising action ON event query FROM Web query or TRANSACTION update action ON

event query FROM Web query.
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ON
xchange :event {{

flight -cancellation {{

flight -number { var N },
passenger {{

name { "John Q Public" }
}} }} }}

IF

in { resource { "http://www.example .com/flights .xml", "xml" },
flights {{

flight {{
number { var N },

from { var F },
to { var T }

}} }} }

DO
and {

xchange :event [
xchange :recipient [ "http://sms-gateway .org/us/206 -240 -1087/" ],

text -message [
"Hi, John! Your flight ", var N,

" from ", var F, " to ", var T, " has been canceled ."
] ],

in { resource { "http://shuttle .com/ reservation.xml", "xml" },
reservations {{

delete shuttle -to -airport {{
passenger { "John Q Public" },

airport { var F },
flight { var N }

}} }} }
END

Fig. 16. An XChange ECA rule reacting to flight cancellations for passenger “John Q
Public”

Simple (“atomic”) event queries. The event part of a rule specifies a class of
events that the rule reacts upon. This class of events is expressed as an event
query. A simple (or atomic) event query is expressed as a single Xcerpt query
term.

Event messages usually contain valuable information that will be needed in
the condition and action part of a rule. By binding variables in the query term,
information can flow from the event part to the other parts of a rule. Hence,
event queries can be said to satisfy a dual purpose: (1) they specify classes of
events the rule reacts upon and (2) they extract data from events for use in the
condition and action part in the form of variable bindings.

An XChange program continually monitors the incoming event messages to
check if they match the event part of one of its XChange rules. Each time an
event that successfully matches the event query of a rule is received, the condition
part of that rule is evaluated and, depending on the result of that, the action
might be executed.

The event part of the ECA rule from Figure 16 would match the event message
in Figure 17. In the condition and action part the variable N would then be
bound to the flight number “UA917”.

Event Composition Operators. To detect complex events, the original proposal of
XChange supported composition operators such as and (unordered conjunction
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<xc:event xmlns:xc="http://pms.ifi.lmu.de/xchange ">
<xc:sender > http://airline .com </xc:sender >
<xc:recipient > http:// passenger.com </xc:recipient >

<xc:raising -time > 2005 -05 -29T18:00 </xc:raising -time >
<xc:reception -time >2005-05-29T18:01 </xc:reception -time >

<xc:reception -id> 4711 </xc:reception -id>

<flight -cancellation >

<flight -number >UA917 </flight -number >
<passenger >John Q Public </passenger >

</flight -cancellation >
</xc:event >

(a) XML syntax

xchange :event [
xchange :sender ["http://airline .com"],
xchange :recipient ["http:// passenger.com"],

xchange :raising -time ["2005-05 -29T18:00"],
xchange :reception -time ["2005-05 -29T18:01"],

xchange :reception -id ["4711"],

fligh -cancellation {

flight -number { "UA917" },
passenger { "John Q Public" }

}
]

(b) Data term syntax

Fig. 17. Example of an event message

of events), andthen (ordered sequence of events), without (absence of events in
a specified time window), etc. [33, 63, 24, 25]. This algebraic approach to query
complex events with composition operators has been common in Active Database
research [62,29]; it is however not without problems and has weaknesses in terms
of expressiveness and potential misinterpretations of operators [73,38, 18,21].

Querying Complex Events with XChangeEQ. Later work on the complex event
query language XChangeEQ [18, 20] seeks to replace the original composition
operators of XChange with an improved and radically different approach to
querying complex events. The problems associated with composition operators
can be attributed to a large extend to the operators mixing different aspects
of querying (see [35] and [34] for an elaboration). For example in the case of a
sequence operator (andthen), composition of events and their temporal order
are mixed.

XChangeEQ is built on the idea that an expressive event query language must
cover the following four orthogonal dimensions, and must treat them separately
to gain ease-of-use and full expressiveness:

– Data extraction: Events contain data that is relevant to whether and how
to react. For events that are received as SOAP messages (or in other XML
formats), the data can be structured quite complex (semi-structured). The
data of events must be extracted and provided (typically as bindings for vari-
ables) to construct new events or trigger reactions (e.g., database updates).
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– Event composition: To support composite events, i.e., events that are
made up out of several events, event queries must support composition con-
structs such as the conjunction and disjunction of events (or more precisely
of event queries).

– Temporal (and causal) relationships: Time plays an important role in
event-driven applications. Event queries must be able to express temporal
conditions such as “events A and B happen within 1 hour, and A happens
before B.” For some applications, it is also interesting to look at causal
relationships, e.g., to express queries such as “events A and B happen, and
A has caused B.”

– Event accumulation: Event queries must be able to accumulate events to
support non-monotonic features such as negation (absence) of events, ag-
gregation of data, or repetitive events. The reason for this is that the event
stream is (in contrast to extensional data in a database) infinite; one therefore
has to define a scope (e.g., a time interval) over which events are accumulated
when aggregating data or querying the absence of events. Application exam-
ples where event accumulation is required are manifold. A business activity
monitoring application might watch out for situations where “a customer’s
order has not been fulfilled within 2 days” (negation). A stock market appli-
cation might require notification if “the average of the reported stock prices
over the last hour raises by 5%” (aggregation).

XChangeEQ also adds support for deductive rules on events, relative temporal
events (e.g., “five days longer than event i”), and enforces a clear separation
between time specifications that are used as events (and waited for) or only as
restrictions (conditions in the where-part).

The research on XChangeEQ also puts an emphasis on formal foundations
for querying events [19]. Declarative semantics of XChangeEQ can be given as a
model theory with accompanying fixpoint theory [18]. This is a well-understood
approach for traditional (non-event) query and rule languages, and it is shown
that with some important adaptations, this approach can be used for event query
languages as well. Operational semantics for an efficient incremental evaluation
of XChangeEQ programs are based on a tailored variant of relational algebra
and finite differencing [19, 20]. The notion of temporal relevance is used in the
operational semantics to garbage collect events that become irrelevant (to a given
query) as time progresses during the evaluation [19,20].

3.4.4 Conditions

Web queries. The condition part of XChange rules queries data from regular
Web resources such as XML documents or RDF documents. It is a regular Xcerpt
query, i.e., anything could come after the FROM part of an Xcerpt rule. Like event
queries in the event part, Web queries in the condition part have a two-fold
purpose: they (1) specify conditions that determine whether the rule’s action is
executed or not and (2) extract data from Web resources for use in the action
part in the form of variable bindings.
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The condition part in the rule from Figure 16 accesses a database of flights
like the one from Figure 15 located at http://www.example.com/flights.xml
(the resource is specified with a URI using the keyword in). It checks that the
number (variable N) of the canceled flight exists in the database and extracts
the flight’s departure and destination airport (variables F and T , respectively).

Deductive rules. Web queries can facilitate Xcerpt rule chaining, that is, they
can access not only extensional data (i.e., data in some Web resource) but also
intensional data that has been constructed with deductive rules (i.e., results of
these rules). For this, an XChange program can contain Xcerpt CONSTRUCT-FROM
rules in addition to its ECA rules. Such rules are useful for example to mediate
data from different Web resources. In our example we might want to access
several flight databases instead of a single one and these might have different
schemas. Deductive rules can then be used to transform the information from
several databases into a common schema.

3.4.5 Actions

The action part of XChange rules has the following primitive actions: rasing new
events (i.e., creating a new XML event message and sending it to one or more
recipients) and executing simple updates to persistent data (such as deletion or
insertion of XML elements). To specify more complex actions, compound actions
can be constructed from these primitives.

Raising new events. Events to be raised are specified as a construct terms for
the new event messages. The root element of the construct term must be labeled
xchange:event and contain at least on child element xchange:recipientwhich
specifies the recipient Web node’s URI. Note that the recipient can be a variable
bound in the event or condition part.

The action of the ECA rule in Figure 16 raises (together with performing
another action) an event that is sent to an SMS gateway. The event will inform
the passenger that his flight has been canceled. Note that the message contains
variables bound in the event part (N) and condition part (F , T ).

Updates. Updates to Web data are specified as so-called update terms. An up-
date term is a (possibly incomplete) query pattern for the data to be updated,
augmented with the desired update operations. There are three different types
of update operations and they are all specified like subterms in an update term.
An insertion operation insert c specifies a construct term c that is to be in-
serted. A deletion operation delete q specifies a query term q for deleting all
data terms matching it. A replace operation replace q by c specifies a query
term q to determine data items to be modified and a construct term c giving
their new value. Note that update operations cannot be nested.

Together with raising a new event, the action of the ECA rule in Figure 16
modifies a Web resource containing shuttle reservations. It removes the reserva-
tion of our passenger’s shuttle to the airport. The update specification employs
variables bound in the event part (N) and condition part (F ).

http://www.example.com/flights.xml
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Due to the incompleteness in query patterns, the semantics of complicated
update patterns (e.g., involving insertion and deletion in close proximity) might
not always be easy to grasp. Issues related to precise formal semantics for up-
dates that are still reasonably intuitive even for complicated update terms have
been explored in [30]. So-called snapshot semantics are employed to reduce the
semantics of an update term to the semantics of a query term.

Compound Actions. Actions can be combined with disjunctions and conjunc-
tions. Disjunctions specify alternatives, only one of the specified actions is to
be performed successfully. (Note that actions such as updates can be unsuccess-
ful, i.e., fail.) The order in which alternatives are tried is non-deterministic and
implementation dependent. Conjunctions in turn specify that all actions need
to be performed. The combinations are indicated by the keywords or and and,
followed by a list of the actions enclosed in braces or brackets.

The actions of the rule in Figure 16 are connected by and so that both actions,
the sending of an SMS and the deletion of the shuttle reservation, are executed.

3.4.6 Applications

Due to its built-in support for updating Web data, an important application of
XChange rules is local evolution, that is updating local Web data in reaction to
events such as user input through an HTML form. Often, such changes must be
mirrored in data on other Web nodes: updates need to be propagated to realize
a global evolution. Reactive rules are well suited for realizing such a propagation
of updates in distributed information portals.

A demonstration that shows how XChange can be applied to programming re-
active Web sites where data evolves locally and, through mutual dependencies,
globally has been developed in [45] and presented in [23, 22]. The demonstra-
tion considers a setting of several distributed Web sites of a fictitious scientific
community of historians called the Eighteenth Century Studies Society (ECSS).
ECSS is subdivided into participating universities, thematic working groups,
and project management. Universities, working groups, and project management
have each their own Web site, which is maintained and administered locally. The
different Web sites are autonomous, but cooperate to evolve together and mirror
relevant changes from other Web sites.

The different Web sites maintain XML data about members, publications,
meetings, library books, and newsletters. Data is often shared, for example a
member’s personal data is present at his home university, at the management
node, and in the working groups he participates in. Such shared data needs to be
kept consistent among different nodes; this is realized by communicating changes
as events between the different nodes using XChange ECA rules.

Events that occur in this community include changes in the personal data
of members, keeping track of the inventory of the community-owned library,
or simply announcing information from email newsletters to interested working
groups. These events require reactions such as updates, deletion, alteration, or
propagation of data, which are implemented using XChange rules. The rules run
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r1: ON change member
DO update LMU data

r2: ON change member
DO forward to management

r3: ON change member
DO update management data

r4: ON change member (w/WG3)
IF was not member of WG3
DO send add member to WG3

r5: ON change member (w/o WG2)
IF was member of WG2
DO send remove member to WG2

r6: ON remove member
DO update WG2 data

r7: ON add member
DO update WG3 data

Fig. 18. Changing a member’s personal data (including working group affiliation)

locally at the different Web nodes of the community, allowing for the processing
of local and remote events.

For a concrete example, consider changing a member’s personal data including
his working group affiliation. The information flow is depicted in Figure 18. The
initial change is entered by using a Web form at the member’s home university
LMU. The form generates event message m1. One ECA rule (r1) reacts to this
event and locally updates the member’s data at LMU accordingly. Another ECA
rule (r2) forwards the change to the management node.

The management node has rules for updating its own local data about the
member (r3) and for propagating the change to the affected working groups (r4
for adding, r5 for deleting a member). In the example, the member changes the
working group affiliation from WG2 to WG3. Accordingly, event m4 is sent to
WG3 by rule r4 and m3 is sent to WG2 by r5.

Finally, the working groups each have rules reacting to deletion and insertion
events (m2 and m3) to perform the requested updates (here: r6 at WG2 and r7
at WG3).

In this description we have restricted ourselves for space reasons to this one
example of changing member data. The demonstration realizes full member
management of the community, a community-owned and distributed virtual li-
brary (e.g., lending books, monitions, reservations), meeting organization (e.g.,
scheduling panel moderators), and newsletter distribution. These other tasks are
also implemented by ECA rules that are in place at the different nodes.

The full application logic of the distributed Web sites in the demonstration is
realized in XChange ECA rules. While a similar behaviour as the one in the demo
could be obtained with conventional programming languages, XChange provides
an elegant and easy solution that also removes issues such as dealing low-level
network communication protocols from the programmer’s burden. Evolution of
data and reactivity on the Web are easily arranged for by using readable and
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intuitive ECA rules. Moreover, by employing and extending Xcerpt as a query
language, XChange integrates reactivity to events, querying of Web resources,
and updating those resources in a single, easy-to-learn language. XChange ECA
rules have also been investigated as way to realize workflows, e.g., in business
processes. More details on this can be found in [65,26].

3.5 Conclusions and Outlook

Reactivity in the Semantic Web was a quite untouched issue when the project
started. The work developed in Rewerse, and described in this chapter, has
established the basis for reactivity and evolution in the Semantic Web. It pro-
vides a proposal for a framework for active rules in the Semantic Web over
heterogeneous component languages; the rule ontology and markup together
with component languages have been developed. Moreover, a concrete homoge-
neous language, XChange, has also been defined, and integrated in the general
framework. Both the language XChange and the general framework have been
implemented, including the implementation of the integration of XChange in the
r3 implementation of the framework.

In other words, the work in Rewerse materialised the initial vision of an ac-
tive Web, where reactivity, evolution and propagation of changes play a central
role. Behaviour in the Semantic Web includes being able to draw conclusions
based on knowledge in each Web node, but it also includes making updates on
nodes and propagate these updates. Moreover, the specification of the behaviour
must itself be part of this active Semantic Web, in as much as the specification of
derivation rules must be part of the (static) Semantic Web. This requires an on-
tology of behaviour and rules, both derivation or reactive ones, to be formulated
in this ontology, as well as concrete languages for detecting events in the Web,
for querying the Web and testing conditions and for acting, including updates
of Web data.

Despite all the advances made with the work described here, for having a
(Semantic) Web with evolution and reactive behaviour, some issues remained
untouched, and some new issues were raised, all of these calling for continuing
the research in this area.

To start, taking more advantage of a semantical representation of behaviour
rules is still pretty much an open issue. In our work an ontology for representing
active rules semantically has been developed, and an execution framework has
been realised. This semantical representation can also be used for working on
rules and reasoning about the rules as objects themselves, e.g., doing rule anal-
ysis, verification, etc. Defining declarative semantics for reactive rules, along the
lines of the existing languages in AI mentioned in the introduction, is certainly an
interesting and important topic for further investigation when reasoning about
the rules is desired. This work could also be seen as a generalisation for reactive
rules, of the existing work of combining (derivation) nonmonotonic rules with
ontologies, that is described in Chapter 7. Related with reasoning about rules is
also the topic of model checking and verification methods for reactive rules in
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the Semantic Web. Preliminary studies have been made (cf. REX tool [36]), but
much more is left to be done.

In the project we have developed specific languages for event querying in
the Web and for update languages of Web data. Here again there is scope for
further research, namely in detection of events at the semantic level, and on
definition of updates on other data and meta-data formats on the Web such as
RDF or TopicMaps. The extension of XChange (with its underlying Web query
language Xcerpt) and the addition of new component languages to the general
framework to deal with these data formats is an aspect of both practical relevance
and research interest. Versatility [27], where data in different formats must be
processed and reasoned with jointly to fulfill some task, becomes an important
research issue with the inclusion of new data formats in reactive languages and
frameworks. A further research issue is that Web formats such as RDF [71]
(together with RDF Schema [15]) or OWL [57] can be considered more expressive
than XML, allowing to specify inferences and more constraints on data. Updates
on data in these formats may thus fail (because they violate constraints) or
require additional, inferred updates. A related issue is also the integration of
data formats and reasoning formalisms targeted for time and location, since
time and location often play an important role in reactive applications.

Related to action languages, there is the whole issue of transactions in the
Semantic Web which is a very important and by now almost untouched one.
With an open environment as the (Semantic) Web, transactions following the
ACID (Atomicity-Consistency-Isolation-Durability) properties as in databases
are not desired, if at all possible. Surely isolation is something quite difficult
to obtain in the Web, and independent nodes cannot wait, isolated, on actions
being performed by other independent nodes. However, this does not rule out a
relaxed notion of transaction. For instance, in our travel example, one may want
to reserve both a flight and hotel room for a stay abroad in such a way that if one
of these is not possible, then none should go ahead (i.e. if I cannot book the flight,
then there is no point in keeping the hotel rooms, and vice-versa). Clearly, in
such a case, some notion of atomicity is desired, even if isolation is not possible
since one cannot expect the flights services to wait for the hotel reservation,
nor vice-versa. This calls for defining a kind of long-running transactions, in the
same spirit of those defined for heterogeneous databases [39], where isolation
is only kept for (local) subtransactions, and irreversible actions on the global
environment are associated to compensation actions, to account for a weaker
form of atomicity. Though some preliminary work on transactions in the context
of Web services exists [58], a lot remains to be done for having long-running
transactions in the Semantic Web.

Another interesting new issue is that of automatic generation of ECA rules.
ECA rules explicitly specify reactive behaviour, giving the events and conditions
under which an action will be executed. Rather than authoring all rules manually,
some applications may call for the automatic generation of ECA rules from higher
level descriptions. Consider for example the distributed information portal with
update propagation described in Section 3.4.6. Rather than writing ECA rules for
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all updates that are propagated manually, it may be conceivable to generate these
rules automatically from a specification that takes the form of view definitions
(e.g., over a global schema) that describe which nodes mirror which data. In a
similar manner, the generation of ECA rules from process descriptions (e.g., in
a language such as BPEL) is interesting [26].

Finally, for putting the whole work to usage in real practical applications,
more work is needed regarding the efficiency of the systems, possibly fixing a
smaller set of languages and services, and also on defining programming tools
and methodologies for reactive rules in the Web. In fact, efficient execution of
reactive rule sets has been given little consideration so far. The efficient exe-
cution of the individual parts of an ECA, i.e., event query evaluation, query
evaluation and action processing, is well-understood. However, joint optimiza-
tion of all parts of a rule as well as full rule sets has received little attention. It
is conceivable for example to use multi-query optimization techniques to group
together and jointly evaluate queries that are shared in multiple rules. Also, cur-
rent reactive rule systems primarily work by evaluating all event queries first. It
is also conceivable to use the evaluation of the condition part to enable or disable
rules, thus saving the evaluation cost of the event query part when the condition
part is not satisfied. Note however that this requires a mechanism where the
condition part is re-checked whenever its underlying data changes.
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Abstract. Trust and policies are going to play a crucial role in en-
abling the potential of many web applications. Policies are a well-known
approach to protecting security and privacy of users in the context of
the Semantic Web: in the last years a number of policy languages were
proposed to address different application scenarios.

The first part of this chapter provides a broad overview of the research
field by accounting for twelve relevant policy languages and comparing
them on the strength of ten criteria which should be taken into account
in designing every policy language. By comparing the choices designers
made in addressing such criteria, useful conclusions can be drawn about
strong points and weaknesses of each policy language.

The second part of this chapter is devoted to the description of the
Protune framework, a system for specifying and cooperatively enforcing
security and privacy policies on the Semantic Web developed within the
network of excellence REWERSE. We describe the framework’s func-
tionalities, provide details about their implementation, and report the
results of performance evaluation experiments.

4.1 Introduction

Trust is the top layer of the famous Semantic Web picture. It plays a crucial role
in enabling the potential of the web. While security and privacy do not cover all
the facets of trust, still they play a central role in raising the level of trust in
web resources.

Security management is a foremost issue in large scale networks like the Se-
mantic Web. In such a scenario, traditional assumptions for establishing and
enforcing access control regulations do not hold anymore. In particular identity-
based access control mechanisms have proved to be ineffective, since in decen-
tralized and multicentric environments, the requester and the service provider
are often unknown to each other.
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Web Services obviously need some form of access control. Moreover, recent ex-
periences with Facebook’s “beacon” service1 and Virgin’s use of Flickr pictures2

have shown that users are not willing to accept every possible use (or abuse) of
their data.

Policies are a well-known approach to protecting security and privacy of users
in the context of the Semantic Web: policies specify who is allowed to perform
which action on which object depending on properties of the requester and of
the object as well as parameters of the action and environmental factors (e.g.,
time). The application of suitable policies for protecting services and sensitive
data may determine success or failure of a new service. In a near future, we
might see Web Services compete with each other by improving and properly
advertising their policies.

4.2 A Review of the State-of-the-Art in Policy Languages

The potential policies have proved to own is not fully exploited yet, since nowa-
days their usage is mainly restricted to specific application areas. On the one
hand this depends on general lack of infrastructure services for such policies to
truly function: for instance, there are no end user-oriented digital certification
services (national digital ID providers are just appearing). On the other hand,
lacking knowledge about currently available solutions is one of the main fac-
tors hindering widespread use of policies: in order to exploit a policy language
the potential user needs to be provided with a clear picture of the advantages
it provides in comparison with other solutions. Furthermore in the last years
many policy languages were proposed, targeting different application scenarios
and provided with different features and expressiveness: scope and properties of
available languages have to be known to the user in order to help her in choosing
the one most suitable to her needs.

In an attempt to help with these and other problems, comparisons among
policy languages have been provided in the literature. However existing com-
parisons either do not consider a relevant number of available solutions or are
mainly focused on the application scenarios the authors worked with (e.g., trust
negotiation in [20] or ontology-based systems in [22]) Moreover policy-based se-
curity management is a rapidly evolving field and most of this comparison work
is now out-of-date.

In this section we provide an extensive comparison covering twelve policy lan-
guages. Such a comparison will be carried out on the strength of ten criteria. Our
analysis will hopefully have the side-effect of helping users in choosing the policy
language mostly suiting their needs, as well as researchers currently investigating
this area.

1 http://www.washingtonpost.com/wp-dyn/content/article/2007/11/29/

AR2007112902503.html?hpid=topnews
2 http://www.smh.com.au/news/technology/virgin-sued-for-using-teens-

photo/2007/09/21/1189881735928.html

http://www.washingtonpost.com/wp-dyn/content/article/2007/11/29/AR2007112902503.html?hpid=topnews
http://www.washingtonpost.com/wp-dyn/content/article/2007/11/29/AR2007112902503.html?hpid=topnews
http://www.smh.com.au/news/technology/virgin-sued-for-using-teens-photo/2007/09/21/1189881735928.html
http://www.smh.com.au/news/technology/virgin-sued-for-using-teens-photo/2007/09/21/1189881735928.html
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This section is organized as follows. In section 4.2.1 related work is accounted
for. Section 4.2.2 briefly sketches the evolution of the research field and intro-
duces some concepts (e.g., role-based policy language as well as various kinds
of policies) which will be massively exploited in the following. Sections 4.2.3
and 4.2.4 respectively introduce the languages which will be compared later on
and the criteria according to which the comparison will be carried out. The
actual comparison takes place in section 4.2.5, whereas section 4.2.6 presents
overall results and draws some conclusions.

4.2.1 Related Work

The paper of Seamons et al. [20] is the basis of our comparison: some of the
insights they suggested have proved to be still valuable right now and as such
they are addressed in our work as well. Nevertheless in over six years the research
field has considerably changed and nowadays many aspects of [20] are out of date:
new languages have been developed and new design paradigms have been taken
into account, what makes the comparison performed in [20] obsolete and many
criteria according to which they were evaluated not suitable anymore.

The pioneer paper of Seamons et al. paved the way to future research on policy
language comparisons like Tonti et al. [22], Anderson [2] and Duma et al. [14]:
although [22] actually presents a comparison of two ontology-based languages
(namely KAoS and Rei) with the object-oriented language Ponder, the work
is rather an argument for ontology-based systems, since it clearly shows the
advantages of ontologies.

Because of the impressive amount of details it provides, [2] restricts the com-
parison to only two (privacy) policy languages, namely EPAL and XACML,
therefore a comprehensive overview of the research field is not provided, and
features which neither EPAL nor XACML support are not taken into account
at all among the comparison criteria.

Finally [14] provides a comparison specifically targeted to giving insights and
suggestions to policy writers (designers): therefore the criteria, according to
which the comparison is carried out, are mainly practical ones and scenario-
oriented, whereas more abstract issues are considered out of scope and hence
not addressed.

4.2.2 Background

In this section some concepts are introduced, which will help to smoothly un-
derstand the rest of the chapter. First an overall picture of the research field is
provided by briefly outlining the historical evolution of policy languages, then
the definitions of some policy types which will be used throughout the chapter
are provided.

From uid/psw-based authentication to trust negotiation. Traditional
access control mechanisms (like the ones exploited in traditional operating sys-
tems) make authorization decisions based on the identity of the requester: the
user must provide a pair (username, password) and, if this pair matches with
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one of the entry in some static table kept by the system (e.g., the file /etc/pwd
in Unix) the user is granted with some privileges. However, in decentralized or
multicentric environments, peers are often unknown to each other, and access
control based on identities may be ineffective. In order to address this scenario,
role-based access control mechanisms were developed. In a role-based access con-
trol system a user is assigned with one or more roles, which are in turn exploited
in order to take authorization decisions. Since the number of roles is typically
much smaller than the number of users, role-based access control systems reduce
the number of access control decisions. A thorough description of role-based ac-
cess control can be found in [16].

In a role-based access control system the authorization process is split into
two steps, namely assignment of one or more roles and check whether a member
of the assigned role(s) is allowed to perform the requested action. The role-
based languages we consider provide support only to one of the two steps: for
instance, TPL (a role-assignment policy language) policies describe to which role
the requester can be mapped; this role must then be fed as input to an existing
role-based access control mechanism. A similar approach is taken by Cassandra
and RT . On the other hand Ponder (authorization) policies are meant to support
the second step, i.e., they allow to define which actions may be performed by a
requester who has already been successfully authenticated.

Role-based authentication mechanisms require that the requester provides
some information in order to map her to some role(s). In the easiest case this
information can be once again a (uid, pwd) pair, but systems which need a
stronger authentication usually exploit credentials, i.e., digital certificates rep-
resenting statements certified by given entities (certification authorities) which
can be used in establishing properties of their holder. More modern approaches
(e.g., EPAL, WSPL and XACML) directly exploit the properties of the requester
in order to make an authorization decision, i.e., they do not split the authoriza-
tion process in two parts like role-based languages. Nevertheless they do not use
credentials in order to certificate the properties of the requester.

Credentials, as well as declarations (i.e., not signed statements about prop-
erties of the holder) are however supported by PeerTrust, Protune and PSPL,
which are languages designed to support the trust negotiation [24] vision. The
notion of trust management was introduced by [7] as a new paradigm bringing
together authentication and authorization in distributed systems. A scenario-
based introduction to Trust Negotiation is provided in Section 4.3.2.

Policy types. Policies can be exploited in a number of fields and with dif-
ferent goals: security, management, conversation, quality-of-service, quality-of-
protection, reliable messaging, reputation-based, provisional policies are just
some examples of policies which are encountered in the literature. Here we focus
on policy types which will be mentioned in the following, for instance because
some language we consider has been explicitly designed to support that kind of
policy.

Role-assignment policies. As the name suggests, role-assignment policies specify
which conditions a requester must fulfill in order to belong to some server-defined
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role. Role-assignment policies are typically used in role-based policy languages
like Cassandra, RT and TPL which postulate the existence of a back-end role-
based access control mechanism to which the role will be fed in order to perform
the actual authorization.

Access control policies. Access control is concerned with limiting the activities
a user is allowed to perform. Consequently access control policies define the
prerequisites the requester must fulfill in order to have the activity she asked for
performed.

Privacy policies. Privacy policies are meant to protect the privacy of the user:
they need to reflect current regulations and possibly promises made to the cus-
tomers. Privacy policies arise further issues in comparison to access control poli-
cies, as they require a more sophisticated treatment of deny rules and conditions
on context information; moreover privacy policy languages have to take into ac-
count the notion of “purpose”, which is essential to privacy legislation. A subset
of privacy policies are enterprise privacy policies which furthermore have to pro-
vide support to more restrictive enterprise-internal practices and may need to
handle customer preferences. EPAL was especially designed in order to target
enterprise privacy policies.

Obligation policies. Obligation policies specify the actions that must be per-
formed when certain events occur, i.e., they are event-triggered condition-action
rules. Obligation policies may be exploited, e.g., to specify which actions must be
performed when security violations occur or under which circumstances auditing
and logging activities have to be carried out. Obligation policies are supported,
among others, by KAoS, Ponder and Rei.

4.2.3 Presentation of the Considered Policy Languages

To date a bunch of policy languages have been developed and are currently
available: we have chosen those which at present seem to be the most popu-
lar ones, namely Cassandra [6], EPAL [3], [4], KAoS [23], PeerTrust [15], Pon-
der [13], Protune [8], [10], PSPL [9], Rei [17], RT [18], TPL [16], WSPL [1] and
XACML [19], [21]. The information we will provide about the aforementioned
languages is based on the referenced documents. Whenever a feature we are go-
ing to tackle is not addressed in the considered literature nor is it known to the
authors in other way, the feature is supposed not to be provided by the language.

Thenumber andvariety of policy languages proposed so far is justifiedby the dif-
ferent requirements theyhad to accomplish and the different use cases theywerede-
signed to support. Ponder was meant to help local security policy specification and
security management activities, therefore typical addressed application scenarios
include registration of users or logging and audit events, whereas firewalls, oper-
ating systems and databases belong to the applications targeted by the language.
WSPL’s name itself (namely Web Services Policy Language) suggests its goal: sup-
porting description and control of various aspects and features of a Web Service.
Web Services are addressed by KAoS too, as well as general-purpose grid com-
puting, although it was originally oriented to software agent applications (where
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dynamic runtime policy changes need to be supported). Rei’s design was primar-
ily concerned with support to pervasive computing applications (i.e. those in which
people and devices are mobile and use wireless networking technologies to discover
and access services and devices). EPAL (Enterprise Privacy Authorization Lan-
guage) was proposed by IBM in order to support enterprise privacy policies. Some
years before IBM had already introduced the pioneer role-based policy language
TPL (Trust Policy Language), which paved the way to other role-assignment pol-
icy languages like Cassandra and RT (Role-based Trust-management framework),
both of which aimed to address access control and authorization problems which
arise in large-scale decentralized systems when independent organizations enter
into coalitions whose membership and very existence change rapidly. The main
goal of PSPL (Portfolio and Service Protection Language) was providing a uni-
form formal framework for regulating service access and information disclosure in
an open, distributed network system like the web; support to negotiations and pri-
vate policies were among the basic reasonswhich led to its definition. PeerTrust is a
simple yet powerful language for trust negotiation on the Semantic Web based on a
distributed query evaluation. Trustnegotiation is addressed by Protune too, which
supports a broad notion of “policy” and does not require shared knowledge besides
evidences and a common vocabulary. Finally XACML (eXtensible Access Control
Markup Language)was meant to be a standard general purpose access control pol-
icy language, ideally suitable to the needs of most authorization systems.

Given the multiplicity of available languages and the sometimes very specific
contexts they fit into, one may argue that a meaningful comparison among them
is impossible or, at least, meaningless. We claim that such a comparison is not
only possible but even worth: to this aim we identified ten criteria which should
be taken into account in designing every policy language. By comparing the
choices designers made in addressing such criteria, useful conclusions can be
drawn about strong points and weaknesses of each policy language.

4.2.4 Presentation of the Considered Criteria

We acknowledge the remark made by [14], according to which a comparison
among policy languages on the basis of the criteria presented in [20] is only
partially satisfactory for a designer, since general features do not help in under-
standing which kind of policies can be practically expressed with the constructs
available in a language. Therefore in our comparison we selected a good deal of
criteria having a concrete relevance (e.g., whether actions can be defined within
a policy and executed during its evaluation, how the result of a request looks
like, whether the language provides extensibility mechanisms and to which ex-
tent . . . ). On the other hand, since we did not want to come short on theoretical
issues, we selected four additional criteria, basically taken from [20] and somehow
reworked and updated them. We called these more theoretical criteria core policy
properties whereas more practical issues have been grouped under the common
label contextual properties. In the following presentation core policy properties
precede contextual properties.
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Well-defined semantics. According to [20] we consider a policy language’s se-
mantics to be well-defined if the meaning of a policy written in that language is
independent of the particular implementation of the language. Logic programs
and Description logic knowledge bases have a mathematically defined semantics,
therefore we assume policy languages based on either of the two formalisms to
have well-defined semantics.

Monotonicity. In the sense of logic, a system is monotonic if the set of conclu-
sions which can be drawn from the current knowledge base does not decrease
by adding new information to the knowledge base. In the sense of [20] a pol-
icy language is considered to be monotonic if an accomplished request would
also be accomplished if accompanied by additional disclosure of information by
the peers: in other words, disclosure of additional evidences and policies should
only result in the granting of additional privileges. Policy languages may be not
monotonic in the sense of logic (as it happens with Logic programming-based
languages) but still be monotonic in the sense of [20], like Protune.

Condition expressiveness. A policy language must allow to specify under which
conditions the request of the user (e.g., for performing an action or for disclosing
a credential) should be accomplished. Policy languages differ in the expressive-
ness of such conditions: some languages allow to set constraints on properties
of the requester, but not on parameters of the requested action, moreover con-
straints on environmental factors (e.g., time) are not always supported. This
criterion subsumes “credential combinations”, “constraints on attribute values”
and “inter-credential constraints” in [20].

Underlying formalism. A good deal of policy languages base on some well-known
formalism. Knowledge about the formalism a language bases upon can be use-
ful in order to understand some basic features of the language itself: e.g., the
fact that a language is based on Logic programming with negation (as failure)
entails consequences regarding the monotonicity of the language (in the sense
of logic), whereas knowing that Description logic knowledge bases may contain
contradictory statements could induce to infer that a Description logics-based
language needs a way to deal with such contradictions.

Action execution. During the evaluation of a policy some actions may have to
be performed: one may want to retrieve the current system time (e.g., in case
authorization should be allowed only in a specific time frame), to send a query
to a database or to record some information in a log file.

It is worth noticing that this criterion evaluates whether a language allows the
policy writer to specify actions within a policy: during the evaluation of a policy
the engine may carry out non-trivial actions on its own (e.g., both RT and TPL
engines provide automatic resolution of credential chains) but such actions are
not considered in our investigation.

Delegation. Delegation is often used in access control systems to cater for tem-
porary transfer of access rights to agents acting on behalf of other ones (e.g.,
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passing write rights to a printer spooler in order to print a file). The right of
delegating is a right as well and as such can be delegated, too. Some languages
provide a means for cascaded delegations up to a certain length, whereas others
allow unbounded delegation chains.

In order to support delegation many languages provide a specific built-in con-
struct, whereas others exploit more fine-grained features of the language in order
to simulate high-level constructs. The latter approach allows to support more
flexible delegation policies and is hence more suited for expressing the subtle but
significant semantic differences which appear in real-world applications.

Evidences. The result of a policy’s evaluation may depend on the identities or
other properties of the peer who requested for its evaluation: a means needs hence
to be provided in order for the peers to communicate such properties to each
other. Such information is usually sent in the form of digital certificates signed by
trusted entities (certification authorities) and called credentials. Credentials are
not supported, among else, by languages not targeting authentication policies.
PeerTrust, Protune and PSPL provide another kind of evidence, namely dec-
larations which are non-signed statements about properties of the holder (e.g.,
credit-card numbers).

Negotiation support. [1] adopts a broad notion of “negotiation”, namely a ne-
gotiation is supposed to happen between two peers whenever (i) both peers are
allowed to define a policy and (ii) both policies are taken into account when
processing a request. According to this definition, WSPL supports negotiations
as well. In this chapter we adopt a narrower definition of negotiation by adding
a third prerequisite stating that (iii) the evaluation of the request must be dis-
tributed, i.e., both peers must locally evaluate the request and either decide to
terminate the negotiation or send a partial result to the other peer who will go
on with the evaluation.

Whether the evaluation is local or distributed may be considered an imple-
mentation issue, as long as policies are freely disclosable. Distributed evaluation
is required under a conceptual point of view as soon as the need for keeping
policies private arises: indeed if policies were not private, simply merging the
peers’ policies would reveal possible compatibilities between them.

Policy engine decision. The result of the evaluation of a policy must be notified
to the requester. The result sent back by the policy engine may carry information
to different extents: in the easiest case a boolean answer may be sent (allowed vs.
denied). Some languages support error messages. Protune is the only language
providing enough informative content to let the user understand how the result
was computed (and thereby why the query succeeded/failed).

Extensibility. Since experience shows that each system needs to be updated
and extended with new features, a good programming practice requires to keep
things as general as possible in order to support future extensions. Almost every
language provides some support to extensibility: in the following we will provide a
description of the mechanisms languages adopt in order to support extensibility.
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4.2.5 Comparison

In this section the considered policy languages will be compared according to
the criteria outlined in section 4.2.4. The overall results of the comparison are
summarized in Table 1. Notice that Table 1 does not contain criterion “condition
expressiveness” which can be hardly accounted for in a table.

Well-defined semantics. We assumepolicy languages based onLogic programming
or Description logics to have well-defined semantics. Since the formalisms under-
lying the considered policy languages will be accounted for in the following, so far
we restrict ourselves to list the languages provided with a well-defined semantics,
namely, Cassandra, EPAL, KAoS, PeerTrust, Protune, PSPL, Rei and RT .

Monotonicity. In the sense of [20] a policy language is considered to be monotonic
if disclosure of additional evidences and policies only results in the granting of
additional privileges, therefore the concept of “monotonicity” does not apply to
languages which do not provide support for credentials, namely EPAL, Ponder,
WSPL and XACML. All other languages are monotonic, with the exception
of TPL, which explicitly chose to support negative certificates, stating that a
user can be assigned a role if there exists no credential of some type claiming
something about it.

The authors of TPL acknowledge that it is almost impossible proving that
there does not exist such a credential somewhere, therefore they interpret their
statement in a restrictive way, i.e., they assume that such a credential does not
exist if it is not present in the local repository. Despite this restrictive definition
the language is not monotonic since, as soon as such a credential is released and
stored in the repository, consequences which could be previously drawn cannot
be drawn anymore.

Condition expressiveness. A role-based policy language maps requesters to roles.
The assigned role is afterwards exploited in order (not) to authorize the requester
to execute some actions. The mapping to a role may in principle be performed
according to the identity or other properties of the requester (to be stated by
some evidence) and eventually environmental factors (e.g., current time). Cas-
sandra (equipped with a suitable constraint domain) supports both scenarios.

Environmental factors are not taken into account by TPL, where the mapping
to a role is just performed according to the properties of the requester; such
properties can be combined by using boolean operators, moreover a set of built-
in operators (e.g., greater than, equal to) is provided in order to set constraints
on their values.

Environmental factors are not taken into account by RT0 either, where role
membership is identity-based, meaning that a role must explicitly list its mem-
bers; nevertheless since (i) roles are allowed to express sets of entities having a
certain property and (ii) conjunctions and disjunctions can be applied to exist-
ing roles in order to create new ones, then role membership is finally based on
properties of the requester.
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RT1 goes a step beyond and, by adding the notion of parametrized role, allows
to set constraints not only on properties of the requester but even on the ones of
the object, the requested action should be performed upon; the last feature makes
the second step traditional role-based policy languages consist of unnecessary,
therefore RT1, as well as the other RT flavors basing on it, may be considered
to lay on the border between role-based and non role-based policy languages.

A non role-based policy language does not split the authentication process
in two different steps but directly provides an answer to the problem whether
the requester should be allowed to execute some action. In this case the autho-
rization decision can be made in principle not only depending on properties of
the requester or the environment, but also according to the ones of the object
the action would be performed upon as well as parameters of the action itself.
EPAL introduces the further notion of “purpose” for which a request was sent
and allows to set conditions on it.

Some non role-based languages make a distinction between conditions which
must be fulfilled in order for the request to be taken into consideration (which we
call prerequisites, according to the terminology introduced by [9]) and conditions
which must be fulfilled in order for the request to be satisfied (requisites accord-
ing to [9]); not always both kinds of conditions have the same expressiveness.

Let start checking whether and to which extent the non role-based policy
languages we considered support prerequisites: WSPL and XACML allow only
to use a simple set of criteria to determine a policy’s applicability to a request,
whereas Ponder provides a complete solution which allows to set prerequisites
involving properties of requester, object, environment and parameters of the
action. Prerequisites can be set in EPAL and PSPL as well; the expressiveness
of PSPL prerequisites is the same as the one of its requisites, which we will
discuss later.

With the exception of Ponder, which allows restrictions on the environment
just for delegation policies, each other language supports requisites (Rei is even
redundant in this respect): KAoS allows to set constraints on properties of the
requester and the environment, Rei also on action parameters and Protune,
PSPL, WSPL and XACML also on properties of the object. EPAL supports
conditions on the purpose for which a request was sent but not on environmental
factors. Attributes must be typed in EPAL, WSPL, XACML and typing can be
considered a constraint on the values the attribute can assume, anyway the
definition of the semantics of such attributes is outside WSPL’s scope. Finally,
in PeerTrust conditions can be expressed by setting guards on policies: each
policy consists of a guard and a body, the body is not evaluated until the guard
is satisfied.

Underlying formalism. The most part of languages provided with a well-defined
semantics rely on some kind of Logic programming or Description logics. Logic
programming is the semantic foundation of Protune and PSPL, whereas a subset
of it, namely Constraint DATALOG, is the basis for Cassandra, PeerTrust and
RT . KAoS relies on Description logics, whereas Rei combines features of Descrip-
tion logics (ontologies are used in order to define domain classes and properties
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associated with the classes), Logic programming (Rei policies are actually partic-
ular Logic programs) and Deontic logic (in order to express concepts like rights,
prohibitions, obligations and dispensations). EPAL exploits Predicate logic with-
out quantifiers. Finally, no formalisms underly Ponder (which only bases on the
Object-oriented paradigm), TPL, WSPL and XACML.

Action execution. Ponder allows to access system properties (e.g., time) from
within a policy, moreover it supports obligation policies, asserting which actions
should be executed if some event happens: examples of such actions are printing
a file, tracking some data in a log file and enabling/disabling user accounts.

XACML allows to specify actions within a policy; these actions are collected
during the policy evaluation and executed before sending a response back to the
requester. A similar mechanism is provided by EPAL and of course by WSPL,
which is indeed a specific profile of XACML.

The only actions which the policy writer may specify in PeerTrust and PSPL
are related to the sending of evidences, whereas Protune supports whatever kind
of actions, not necessarily side-effect free, as long as a basic assumption holds,
namely that action results do not interfere with each other (i.e., that actions are
independent).

Cassandra (equipped with a suitable constraint domain) allows to call side-
effect free functions (e.g., to access the current time).

It is worth noticing that languages allowing to specify actions within policies
can to some extent simulate obligation policies, as long as the triggering event
is the reception of a request, although the flexibility provided by Ponder is not
met in such languages.

Finally, KAoS, Rei, RT and TPL do not support execution of actions.

Delegation. Ponder defines a specific kind of policies in order to deal with dele-
gation: the field valid allows positive delegation policies to specify constraints
(e.g., time restrictions) to limit the validity of the delegated access rights. Rei
allows not only to define policy delegating rights but even policy delegating
the right to delegate (some other right). Delegation is supported by RT D (“D”
stands indeed for “delegation”): being RT a role-based language, the right which
can be delegated is the one of activating a role, i.e., the possibility of acting as
a member of such a role.

Ponder delegation chains have length 1, whereas in RT delegation chains
always have unbounded length. Cassandra and Protune provide a more flexible
mechanism which allows to explicitly set the desired length of a delegation chain
(as well as other properties of the delegation): in order to obtain such a flexibility
the aforementioned languages do not provide high-level constructs to deal with
delegation but simulate them by exploiting more fine-grained features of the
language.

Delegation (of authority) can be expressed in PeerTrust by exploiting operator
“@”. Finally, EPAL, KAoS, PSPL, TPL, WSPL and XACML do not support
delegation.

Type of evaluation. The most part of the considered languages require that all
policies to be evaluated are collected in some place before starting the evaluation,
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which is hence performed locally: this is the way EPAL, KAoS, Ponder, RT and
TPL work.

Other languages, namely Cassandra, Rei, WSPL and XACML, perform policy
evaluation locally, nevertheless they provide some facility in order to collect
policies (or policy fragments) which are spread over the net: e.g., in XACML
combining algorithms define how to take results from multiple policies and derive
a single result, whereas Cassandra allows policies to refer to policies of other
entities, so that policy evaluation may trigger queries of remote policies (possibly
the requester’s one) over the network.

Policies can be collected into a single place if they are freely disclosable (as-
suming that the place they are collected into is not a trusted one), therefore the
languages mentioned so far do not address the possibility that policies themselves
may have to be kept private. Protection of sensitive policies can be obtained only
by providing support to distributed policy evaluation, like the one carried out
by PeerTrust, Protune or PSPL.

Evidences. Credentials are a key element in Cassandra, RT and TPL, whereas
they are unnecessary in Ponder, whose policies are concerned with limiting the
activity of users who have already been successfully authenticated.

The authors of PSPL were the first ones advocating for the need of exchang-
ing non-signed statements (e.g., credit card numbers), which they called decla-
rations ; declarations are supported by PeerTrust and Protune as well.

Finally, EPAL, KAoS, Rei, WSPL and XACML do not support evidences.

Negotiation support. As stated above, we use a narrower definition of negotiation
than the one provided in [1], into which WSPL does not fit, therefore only
pretty few languages support negotiation in the sense we specified above, namely
Cassandra, PeerTrust, Protune and PSPL.

Policy engine decision. The evaluation of a policy should end up with a result
to be sent back to the requester. In the easiest case such result is a boolean
stating whether the request was (not) accepted (and thereby accomplished):
KAoS, PeerTrust, Ponder, PSPL, RT and TPL conform to this pattern.

Besides permit and deny WSPL and XACML provide two other result val-
ues to cater for particular situations: not applicable is returned whenever no
applicable policies or rules could be found, whereas indeterminate accounts
for some error which occurred during the processing; in the latter case optional
information is available to explain the error.

A boolean value, stating whether the request was (not) fulfilled, does not make
sense in the case of an obligation policy, which simply describes the actions which
must be executed as soon as an event (e.g., the reception of a request) happens,
therefore besides the so-called rulings allow and deny EPAL defines a third
value (don’t care) to be returned by obligation policies; one of the elements
an EPAL policy consists of is a global condition which is checked at the very
beginning of the policy evaluation: not fulfilling such a condition is considered an
error and a corresponding error message (policy error) is returned; a further
message (scope error) is returned in case no applicable policies were found.
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Cassandra’s request format contains (among others) a set of constraints c
belonging to some constraint domain; the response consists of a subset c′ of c
which satisfies the policy; in case c′ = c (resp. c′ is the empty set) true (resp.
false) is returned.

Protune allows for more advanced explanation capabilities: not only is it pos-
sible to ask why (part of) a request was (not) fulfilled (Why and Why-not queries
respectively), but the requester is even allowed to ask since the beginning which
steps she has to perform in order for her request to be accomplished (How-to
and What-if queries).

A rudimentary form of What-if queries is supported also by Rei obligation
policies: the requester can decide whether to complete the obligation by com-
paring the effects of meeting the obligation (MetEffects) and the effects of not
meeting the obligation (NotMetEffects).

Extensibility. Extensibility is a fuzzy concept: almost all languages provide some
extension points to let the user adapt the language to her current needs, never-
theless the extension mechanism greatly varies from language to language: here
we will briefly summarize the means the various languages provide in order to
address extensibility.

Extensibility is described as one of the criteria taken into account in designing
Ponder: in order to provide smoothly support to new types of policies that may
arise in the future, inheritance was considered a suitable solution and Ponder
itself was therefore implemented as an object-oriented language.

XACML’s support to extensibility is two-fold

– on the one hand new datatypes, as well as functions for dealing with them, may
be defined in addition to the ones already providedby XACML. Datatypes and
functionsmust be specified inXACML requests, which indeed consists of typed
attributes associatedwith the requesting subjects, the resource actedupon, the
action being performed and the environment

– as we mentioned above, XACML policies can consist of any number of dis-
tributed rules; XACML already provides a number of combining algorithms
which define how to take results from multiple policies and derive a single re-
sult, nevertheless a standard extension mechanism is available to define new
algorithms

Using non-standard user-defined datatypes would lead to wasting one of the
strong points of WSPL, namely the standard algorithm for merging two poli-
cies, resulting in a single policy that satisfies the requirements of both (assuming
that such a policy exists), since there can be no standard algorithm for merging
policies exploiting user-defined attributes (except where the values of the at-
tributes are exactly equal); use of non-standard algorithms would in turn mean
that the policies could not be supported using a base standard policy engine.
Being standardization the main goal of WSPL, no wonder that it comes short
on the topic “extensibility”, which is not necessarily a drawback, if the assertion
of [1] holds: “most Web Services will probably use fairly simple policies in their
service definitions”.
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Ontologies are the means to cater for extensibility in KAoS and Rei: the
use of ontologies facilitates a dynamic adaptation of the policy framework by
specifying the ontology of a given environment and linking it with the generic
framework ontology; both KAoS and Rei define basic built-in ontologies, which
are supposed to be further extended for a given application.

Extensibility was the main issue taken into account in the design of Cassan-
dra: its authors realized that standard policy idioms (e.g., role hierarchy or role
delegation) occur in real-world policies in many subtle variants: instead of em-
bedding such variants in an ad hoc way, they decided to define a policy language
able to express this variety of features smoothly; in order to achieve this goal, the
key element is the notion of constraint domain, an independent module which is
plugged into the policy evaluation engine in order to adjust the expressiveness
of the language; the advantage of this approach is that the expressiveness (and
hence the computational complexity) of the language can be chosen depending
on the requirements of the application and can be easily changed without having
to change the language semantics.

A standard interface to external packages is the means provided by Protune
in order to support extensibility: functionalities of a component implementing
such interface can be called from within a Protune policy.

Finally, PeerTrust, PSPL, RT and TPL do not provide extension mechanisms.

4.2.6 Discussion

In this section we review the comparison performed in section 4.2.5 and provide
some general comments.

By carrying out the task of comparing a considerable amount of policy lan-
guages, we came to believe that they may be classified in two big groups col-
lecting, so to say, standard-oriented and research-oriented languages respectively.
EPAL, WSPL and XACML can be considered standard-oriented languages since
they provide a well-defined but restricted set of features: although it is likely that
this set will be extended as long as the standardization process proceeds, so far
the burden of providing advanced features is charged on the user who need them;
standard-oriented languages are hence a good choice for users who do not need
advanced features but for whom compatibility with standards is a foremost issue.

Ponder, RT and TPL are somehow placed in between: on the one hand Pon-
der provides a complete authorization solution, which however takes place after
a previously overcome authentication step, therefore Ponder cannot be applied
to contexts (like pervasive environments) were users cannot be accurately iden-
tified; on the other hand RT and TPL do not provide a complete authorization
solution, since they can only map requesters to roles and need to rely on some ex-
ternal component to perform the actual authentication (although parametrized
roles available in RT1 and the other RT flavors basing on it make the previous
statement no longer true).

Finally research-oriented languages strive toward generality and extensibility
and provide a number of more advanced features in comparison with standard-
oriented languages (e.g., conflict harmonization in KAoS and Rei, negotiations
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in Cassandra, PeerTrust and PSPL or explanations in Protune); they should
be hence the preferred choice for users who do not mind about standardization
issues but require the advanced functionalities that research-oriented languages
provide.

4.3 A Framework for Semantic Web Policies

The languages presented in Section 4.2 can be expected to be used by security
experts or other computer scientists. Common users cannot profit for them,
since almost no policy framework offers facilities or tools to meet the needs of
users without a strong background in computer science. Yet usability is a major
issue in moving toward a policy-aware web. It is well known that as protection
increases, usability is affected by the extra steps required for authentication and
other operations related to access control. The information collected for security
and privacy purposes extends the amount of sensitive information released by
users while navigating the web. Moreover, it is frequently not clear to a common
user which policy is actually applied by a system, and which are its consequences
(cf. Virgin’s case mentioned in Section 4.1). Similarly, common users may find
it difficult to formulate their own privacy requirements and compare them with
whatever privacy policy is advertised by a Web Service.

The work on policies carried out within the network of excellence REWERSE
has tackled these aspects by regarding policies as semantic markup. By regarding
policies as pieces of machine understandable knowledge:

– it is possible to assist some of the operations related to access control and
information release, thereby improving a user’s navigation experience;

– it is easier to support attribute-based access control, that increases the level
of privacy in on-line transactions;

– it is possible to create policy documentation automatically; in this way align-
ment is guaranteed between the policy enforced by the system and the policy
documented in natural language for end users; moreover it is possible to spe-
cialize explanations to specific contexts (such as a particular transaction);
this may help users to understand why a transaction fails (policy violation
or technical problems?), how to get the permissions for obtaining a service,
and so on;

– it is possible to create tools for verifying policies and more generally support-
ing policy authoring; other tools may help users to compare privacy policies
and make (semi-)automated policy-aware service selections.

In this section we describe the policy framework Protune, designed and imple-
mented within REWERSE to incarnate the above ideas. Protune is meant to
support policy creation and advanced policy enforcement, providing not only tra-
ditional access control but also trust negotiation (to automate security checks
and privacy-aware information release) and second generation explanation facil-
ities (to improve user awareness about—and control on—policies).

In the next section we summarize the different semantic techniques applied
in Protune. Section 4.3.2 introduces a possible reference scenario that inspires
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most of the examples used in the following sections. Then Section 4.3.3 recalls
the policy language and the core functionalities of Protune, followed by a section
devoted to the explanation facility Protune-X. When needed, we point out dif-
ferences from the previous theoretical papers that set the foundations of Protune
and Protune-X [11,12]. Sections 4.3.5 and 4.3.6 describe the implementation and
the existing facilities for integrating Protune in a web application such as policy-
driven personalized presentation of web content. In Section 4.3.7 we report the
results of a preliminary experimental performance evaluation. The chapter is
concluded by a section on further research perspectives.

4.3.1 Policies as Semantic Markup in Protune

Policies are semantic markup because they specify declaratively part of the se-
mantics (in terms of behavior constraints and admissible usage) of the static
or dynamic resources that policies are attached to. Accordingly, semantic tech-
niques have several roles in Protune:

– Policies are formulated as sets of axioms and meta-axioms with a formal,
processing-independent semantics; this is the basis for consistent treatment
of policies for different tasks: enforcement, negotiation, explanations, valida-
tion, etc.;

– The aforementioned tasks involve different automated reasoning mechanisms,
such as deduction for enforcement, abduction and partial evaluation for ne-
gotiation, pruning and natural language generation for explanations, etc.;

– The auxiliary concepts needed to formulate policies (such as what is a public
resource, what is an accepted credit card, ...) and the link between such
concepts and the evidence needed to prove their truth (e.g. which X.509
credentials are needed to prove authentication, or what forms need to be
filled in) are defined by means of lightweight ontologies that may be included
in the policy itself or referred to by means of suitable URIs; therefore, unlike
XACML contexts, Protune’s auxiliary concepts are machine understandable
and allow agent interoperability.

4.3.2 Negotiations

In response to a resource request, a server may return its policy for accessing
the resource. The policy may contain (a reference to) an auxiliary ontology, as
explained in the previous section. In the simplest case, user agents may use
such machine understandable information to check automatically whether the
policy can be fulfilled and how, thereby (partially) automating the operations
needed for (traditional) access control and facilitating navigation in the presence
of articulated policies. In advanced scenarios, a user agent may reply with a
counter-request in order to enforce the user’s privacy policy, as explained below.

An example scenario. Bob’s birthday is next week and Alice plans to use
today’s lunch break for buying on-line a novel of Bob’s favourite writer. She



218 P.A. Bonatti et al.

finds out that an on-line bookshop she never heard about before sells the book
at a very cheap price.

The bookshop groups its customers in different categories, according to per-
sonal data (country, age, profession . . . ) and purchase-related data (frequency,
item, payment preferences . . . ). Different sale strategies are applied to different
customer categories (e.g. prices discounted to different rates, no delivery fees,
sending of promotional material, and so on).

By interacting with the bookshop’s server Alice learns that she has to provide
either her credit card number or a pair (userId, password) for a previously
created account. This is just the bookshop’s default policy, the custom-tailored
policies described above are disclosed only after getting more information about
the customer.

Alice does not want to create a new account on the fly, so releasing her credit
card is the only option. However she is willing to give such information only to
trusted on-line shops (let say, belonging to the Better Business Bureau – BBB),
therefore she asks the bookshop to provide such information.

The bookshop belongs indeed to the BBB and is willing to disclose such
credential to anyone. This satisfies Alice, who provides her credit card number.

After having interacted with the VISA server to check that the credit card
is valid, the bookshop asks Alice for other information, in order to under-
stand which customer category she belongs to and apply the corresponding sale
strategy.

The lunch break is already over and Alice has no time left to provide the data
requested, therefore she decides to abort the transaction.

Scenario revisited. Automated server and client policy processing may signif-
icantly speed up interactions like the above. As soon as Alice decides which book
she wants to buy, a negotiation between her agent and the on-line bookshop’s
agent would be triggered. Since the bookshop is not willing to provide the book
for free, it would answer by returning its (default) policy protecting the book.
The returned policy would contain the description of the actions Alice has to
perform (either sending a credit card number or providing log-in data): the use
of shared ontologies to identify such actions would grant common understanding
of their semantics. Alice’s agent would then quickly check whether the server’s
policy can be fulfilled and how. Additionally, in the presence of a privacy policy,
Alice’s agent would reply with a counter-request asking the bookshop to provide
a certificate. Again, the common vocabulary would allow the bookshop to under-
stand the request, which would be accepted since the certificate is not protected
by any policy, and as a consequence Alice would finally deliver her credit card
number and have the book delivered.

The availability of a framework capable to enforce access control and nego-
tiations automatically given the two policies has remarkable consequences on
privacy as well as usability. On the one hand a direct intervention of the user in
the decision process would be required less frequently, since the user’s decision
would be already embedded to some extent into the policies (s)he defines: there-
fore sensitive resources would (or would not) be disclosed without necessarily
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Fig. 1. Protune’s architecture

asking the user each and every time. On the other hand, such usability im-
provement may encourage users to refine their policies by specifying articulated
(eventually attribute-based) policies, thereby improving privacy guarantees.

4.3.3 Protune’s Policy Language and Framework

In order to support assisted credential dislosure and handle negotiations (when
needed), Protune’s architecture comprises negotiation agents both on server side
and on client side, as illustrated by Fig 1. Each agent reasons about access control
or information disclosure policies to interpret the requests of the other peer and
select possible negotiation actions.

Protune’s policy language is a logic programming language enhanced with an
object oriented syntax. For example, the rule that allows to buy a book by giving
a credit card could be encoded with a set of rules including:

allow(buy(Resource))←
credential(C), valid credit card(C), accepted credit card(C).

valid credit card(C)←
C.expiration : Exp, date(Today), Exp > Today.

where C.expiration : Exp is an O.O. expression meaning that Exp is the value of
C’s attribute expiration. Protune policies may use and define different categories
of predicates:
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– decision predicates, used to specify a policy’s outcome, such as allow() in
the above example;3

– provisional predicates, that are meant to represent actions as described be-
low;

– abbreviation predicates,defining useful abstractions such as valid credit card.

Protune supports two pre-defined provisional predicates: credential and declara-
tion. An atom credential(X) is true when an object X representing an X.509 cre-
dential is stored in the current negotiation state. A peer may make credential(X)
true on the other peer by sending the corresponding credential; this is the ac-
tion attached to this particular provisional predicate. Predicate declaration is
analogous but its argument is an unsigned semi-structured object similar to a
web form that, for example, can be used to encode a traditional password-based
authentication procedure as in:

authenticated←
declaration(D), valid login data(D.username,D.password).

When a set of rules like the above one is disclosed by a server in response to a
client’s request, the client—roughly speaking—works back from allow(Request)
looking for the credentials and declarations in its portfolio that match the con-
ditions listed in the rules’ bodies. In logical terms, the selected credentials and
declarations (represented as logical atoms) plus the policy rules should entail
allow(Request): this is called an abduction problem by the automated reasoning
community. After receiving credential and declarations from a client, a server
checks whether its policy is fulfilled by trying to prove allow(Request) using its
own rules and the new atoms received from the client, as in a standard deduction
problem.

When a client enforces a privacy policy and issues a counter-request as in
Alice’s scenario, the roles of the two peers are inverted: the client plays the role
of the server and viceversa. For example, the client may publish rules governing
credit card release such as:

allow(release(C))← credit card(C), bbb member(Server), . . .
bbb member(Server)← credential(BBB), BBB.issuer =′′ BBB CA′′, . . .

Abbreviation predicates define in a machine understandable way the meaning
of the conditions listed in rule bodies (unlike XACML contexts, which are black
boxes). The rules defining such predicates constitute a lightweight, rule-based
ontology. Abbreviation predicates are eventually defined on facts (e.g., listing
the accepted credit cards, or the certification authorities recognized by a server)
and/or on X.509 credentials and declarations, as in the rules for authenticated
and bbb member. Therefore, the ontologies associate each condition in a policy
rule to the kind of evidence needed to fulfill the condition (specifying whether it
should be signed or unsigned, issued by which certification authority, with what

3 The specifications in [11] include also a predicate to sign and issue new credentials;
this predicate is not yet implemented.
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attributes, etc.) as well as the actions that need to be taken. In this way, nego-
tiation agents can interoperate even if their policies use different abbreviation
predicates.

So far, we have illustrated only information disclosure actions, such as those
associated to credential and declaration. However, policies may require to exe-
cute actions that do not have negotiation purposes, such as logging some requests
or notifying an administrator. New provisional predicates like these can be de-
fined by means of metapolicies that specify the action associated to a predicate
and the actor in charge of executing the action, for example:

log(X )→ type : provisional .
log(X )→ action :′ echo $X > logfile ′.
log(X )→ actor : self .

where “→” connects a metaterm to its metaproperties.
Rules and ontologies may be sensitive. For example, a server may want to

publish which credit cards it accepts, but not the list of username and passwords
encoded by predicate valid login data. As another example, in a social network
scenario a rule such as

allow(download(pictures))← best friend

may have to be protected, because in case of a denial it may reveal to a friend
that he or she is not considered as a best friend. The sensitivity level of predicates
and rules is defined with metapolicies, e.g. by means of metafacts like

valid login data(X , Y )→ sensitivity : private.

Such metapolicies drive a policy filtering process that selects relevant rules (for
efficiency), and removes sensitive parts if needed. The first definition of policy
filtering [11] performed also partial evaluation w.r.t. the available facts. The
current implementation does no partial evaluation anymore because (i) it may
significantly increase the size of the messages exhanged during negotiations,
and (ii) it destroys much of the structure of the policies thereby making the
explanation facility (illustrated later on) much less effective.

Metapolicies are also used for other purposes, such as specifying atom ver-
balizations (see Section 4.3.4), controlling when actions are to be executed, and
more generally driving negotiations in a declarative way. Metapolicies are an
effective declarative way of adapting the framework to new application domains
by means of activities much closer to configuration than general program en-
coding, thereby reducing deployment efforts and costs. For more details on the
metapolicy language and its possible uses see [11] and REWERSE deliverable
I2-D2 reachable from http://rewerse.net. Such documents illustrate also the
facilities for integrating legacy software and data.

4.3.4 Explanations: Protune-X

Even with a policy with relatively few rules it could be hard for a common user—
with neither a general training in Computer Science nor a specific knowledge of

http://rewerse.net
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mechanisms and formats of the system—to understand what is actually required
to access a certain service. Even more, a denial that results simply in a no
does not help a user to see what has gone wrong during an acknowledgment
process and hence may discourage new users from using a system. Therefore,
a policy framework such as Protune would be effective only if it provides some
explanation facilities that increase the user’s awareness and control over a policy
and provide a means to ask the system why a certain acknowledgment has been
denied or granted.

Protune-X, the explanation facility of Protune, plays an essential role in im-
proving user awareness about—and possibly control over—the policy enforced
by a system. Protune-X is also a major element of Protune’s cooperative en-
forcement strategy: the explanation system is meant to enrich the denials with
information about how to obtain the permissions (if possible) for the requested
service or resource.

For this purpose four kinds of queries are supported: How-to queries provide
a description of a policy and may help a user in identifying the prerequisites
needed for fulfilling the policy. How-to queries may also be used to verify a
complex policy. What-if queries are meant to help users foresee the results of
a hypothetical situation, which may be useful for validating a policy before its
deployment. Finally, why and why-not queries explain the outcome of a concrete
negotiation (i.e. provide a context-specific help). Why/why-not queries can be
used both by end users who want to understand an unexpected response, and
by policy administrators who want to diagnose a policy.

Some of the major desiderata that guided the design of Protune-X are:

– Explanations should not increase significantly the computational load of the
servers. The explanation-related processes have not to be interwoven with
the reasoning process of Protune. On the contrary, it would be desirable
that the server simply provides the relevant piece of information (rules and
facts) whenever an explanation is demanded and the client has the burden
to produce it. For this reason explanations are produced in our approach by
a distinct module, ProtuneX, which operates client-side.

– Almost no further effort should be added to the policy instantiation phase.
This is achieved by exploiting generic heuristics as much as possible. For
example how-to explanations exploit the actor meta-attributes defined in
the metapolicy to distinguish automatically the prerequisites that should
be satisfied by users from the conditions that are locally checked by the
server. In most cases, the only extra effort needed for enabling explanations
consists in writing verbalization metarules in order to specify how single,
domain-specific atoms have to be rendered, e.g.:

passwd(X ,Y )→ verbalization : Y & “is the correct password of ′′ & X .

– Explanation have to be presented in manageable pieces. An acknowledgment
process is essentially an attempt to show that some (state or provisional)
facts satisfy/not satisfy a policy. This proof generally consists of an AND-
OR tree where each node is a goal, OR-alternatives represent the different
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Fig. 2. A ProtuneX screenshot

rules that apply to that goal. Finally, AND -edges are the subgoals in the
body of each rule. This structure cannot be easily captured all in a single
view, therefore ProtuneX represents it by means of linked web-pages. Each
web-page represents a view on a single goal and the rules that apply to it.
Web-pages are linked in order to form a tree that reproduces the structure
of the proof.

– Explanations should be presented in a user-friendly format. ProtuneX is
meant to present explanations in natural language with the help of ver-
balization metarules.

– Explanations should support so-called second generation features. Such fea-
tures include methods to highlight relevant information while pruning irrel-
evant parts and make easier to focus on the paths that do not match the
expectations of the user.

In the following we illustrate some of these second-generation features by means
of examples taken or adapted from the on-line demo. For a deeper discussion
and a more complete description of Protune-X the reader is referred to [12].

A typical why-not explanation for a failed negotiation is an HTML hypertext
whose first page may look like the screenshot in Fig. 2. The explanation may
look different depending on the causes of failure. In Fig. 2 the negotiation fails
because the paper is not public and the user released an invalid ID credential;
if the ID credential were valid, then other conditions in the body of the rule
corresponding to the second item would become relevant to explain the failure
and would appear in the explanation, as in

– Rule [4] cannot be applied:

• J. Smith is authenticated [details]

but

• There is no Subscription such that J. Smith subscribed the

Subscription [details].

Note that the same rule can be explained in a completely different way depending
on the context. This is an example of irrelevant information pruning, that results
from another generic heuristic adopted by Protune-X. It exploits the metarules
identifying so-called blurred predicates, that is, predicates whose definition is
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not communicated because the predicate is either sensitive or too large to be
transmitted efficiently over the network. Such predicates are not (completely)
evaluated, therefore in selected cases they cannot be responsible for success or
failure. A few more features can be illustrated via the following explanation item:

– Rule [6] cannot be applied:

• c012 is an id whose name is J. Smith and issuer is myCA

but

• myCA is not a recognized certification authority [details].

Here the first bullet covers several atoms in the body of Rule [6], whose internal
format looks like

. . . , credential(C), C.name:User, C.issuer:CA, . . .

In this case the variables are bound to constants c012, ‘J. Smith’, myCA because
there is a unique answer substitution for this group of atoms; this heuristics is
called unique answer propagation. Moreover the group of atoms is verbalized in
one phrase because the group constitutes a so-called cluster. These heuristics
enhance readability by producing text about concrete entities (as opposed to
variables with unspecified values) and referring to structured objects through
their properties (name and issuer) rather than internal handlers (c012) that
are meaningless to users.

However, if the user had provided a credential that had not been recognized
as an identifier, the resulting explanation would have been

– Rule [6] cannot be applied:

• I find no Credential such that the Credential is an id [details]

This is another example of pruning irrelevant information, if an object of a
certain type is not found, as an id credential in this case, it is not relevant to
report its properties.

The explanation hypertext can be navigated by clicking on the [details]
links, that give more details about why the corresponding condition succeeds
or fails. Note that this presentation technique combines local information (the
rules that directly apply to a specific condition) with global information (which
conditions eventually succeed, which of them fail, which answer substitutions
are returned) that together describe a set of alternative (possibly incomplete or
failed) proof attempts. For example, in case the types of subscription that allow
to download the paper did not match the ones owned by J. Smith, we can obtain
the following explanation.

– Rule [3 ] cannot be applied:

• J. Smith is authenticated [details]

but the following conditions cannot be simultaneously satisfied:

• J. Smith subscribed some Subscription [Subscription = basic

computer pubs] [Subscription = basic law pubs]

• paper 0123.pdf is available for the Subscription [Subscription =

gold subscription] [Subscription = complete computer pubs]
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As you can see, the conditions J. Smith subscribed some Subscription and pa-
per 0123.pdf is available for the Subscription do not have a common answer,
therefore ProtuneX states that they cannot simultaneously satisfied. But, as
they singularly succeed, ProtuneX provides a global view on the their possible
results. So the user can more easily follow the paths that do not match the user
expectations and focus more rapidly on the pages of interest.

4.3.5 The Engine

Protune can be entirely compiled onto Java bytecode. Network communications
and the main flow of control for negotiations are implemented directly in Java,
while reasoning (including filtering) is implemented in TuProlog, a standard
Prolog that can be compiled onto Java bytecode.

Figure 3 shows the overall algorithm for a single negotiation step implemented
within the Protune system.

– rfp ≡ Received filtered policy
– s ≡ Negotiation state
– rn ≡ Received notifications
– g ≡ Overall goal
– op ≡ Other peer
– ta ≡ Termination Algorithm
– ass ≡ Action Selection Strategy

1: add(rfp, s)
2: add(rn, s)
3: Action[] la = extractLocalActions(g, s)
4: while(la.length != 0)
5: Notification[] ln = execute(la)
6: add(ln, s)
7: la = extractLocalActions(g, s)
8: if(prove(g, s))
9: send(SUCCESS, op)
10: return
11: if(isNegotiationFinished(s, ta))
12: send(FAILURE, op)
13: return
14: Action[] ua = extractUnlockedExternalActions(g, s)
15: Action[] aa = selectActions(ass, ua, s)
16: Notification[] sn = execute(aa)
17: FilteredPolicy sfp = filter(g, s)
18: add(sfp, s)
19: add(sn, s)
20: send(sfp, op)
21: send(sn, op)

Fig. 3. Negotiation algorithm pseudocode

At each negotiation step a peer P1 sends another peer P2 a (potentially empty)
filtered policy rfp and a (potentially empty) set of notifications rn, respectively
stating the conditions to be fulfilled by P2, and notifying the execution by P1 of
any actions it was asked for. As soon as P2 receives this information, it adds it
to its negotiation state.

Then P2 processes its local policy in order to identify the local actions that
can be performed taking into account the new information received. When such
local actions are performed, other local actions may become ready for execu-
tion: this is the case e.g., if the instantiation of a variable is a prerequisite for
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the execution of an action and the instantiation of this variable is (part of)
the result of another action’s execution like in the following example, where the
execution of action1 makes action2 ready for execution.

. . . ← action1(X), action2(X).

action1( ) → actor : self.
action1( ) → execution : immediate.

action2( ) → actor : self.
action2(X) → execution : immediate ← ground(X).

For this reason local action selection and execution are performed in a loop, until
no more actions are ready to be executed. The need for iteration was overlooked
in [11] and is documented in this chapter for the first time.

After having performed all possible local actions the local policy is processed
in order to check whether the overall goal of the negotiation is fulfilled. If this is
the case, a message is sent to P1 telling that the negotiation can be successfully
terminated. Otherwise the Termination Algorithm is consulted in order to decide
whether the negotiation should continue or fail.

If the negotiation is not yet finished, then two processes have to be performed

– It is P2’s turn to filter its local policy and collect all items that have to be
sent back to P1;

– P2 has to decide which of the actions whose execution has been requested by
P1 will be performed. Therefore, it processes its local policy and the (last)
filtered policy received from P1 in order to identify such actions. Notice that
only actions such that the policies protecting them are fulfilled (unlocked
actions) are collected.

Unlocked actions represent potential candidates to execution, i.e., those actions
which can be performed according to P2’s local policy and its current negotiation
state. However, just a subset of them will be actually performed, namely the one
selected by the Action Selection Function. At each step of the negotiation, Pro-
tune builds an AND-OR tree with all the actions (e.g., information disclosure)
that must be performed in order to advance the negotiation. This AND-OR tree
is passed to a class implementing an Action Selection Function. Such a class can
be custom and it just needs to follow an open API 4. Protune provides out-of-
the-box a “relevant” strategy that performs in parallel those actions required to
advance the negotiation. We are also working on strategies based on preferences
defined by the user between pairs of actions (e.g., it is preferred to provide in-
formation related to my credit card than to my bank account) and use them at
run-time. “Good” negotiation strategies are discussed in [25,5].

Finally, the filtered policy and the notifications of the performed external
actions are added to the negotiation state and sent to P1.
4 Cf. http://www.l3s.de/~olmedilla/policy/doc/javadoc/org/policy/strategy/
ActionSelectionStrategy.html

http://www.l3s.de/~olmedilla/policy/doc/javadoc/org/policy/strategy/ActionSelectionStrategy.html
http://www.l3s.de/~olmedilla/policy/doc/javadoc/org/policy/strategy/ActionSelectionStrategy.html
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4.3.6 Demo: Policy-Driven Protection and Personalization of Web
Content

Open distributed environments like the World Wide Web offer easy sharing of
information, but provide few options for the protection of sensitive information
and other sensitive resources. Furthermore, many of the protected resources are
not static, but rather generated dynamically, and sometimes the content of a
dynamically generated web page might depend on the security level of the re-
quester. Currently these scenarios are implemented directly in the scripts that
build the dynamic web page. This typically means that the access control deci-
sions that can be performed are either simple and inflexible, or rather expensive
to develop and maintain. Moreover it is commonly accepted that access control
and application logic should be kept separate, as witnessed by the design of pol-
icy standards such as XACML and the WS-* suite. Frameworks like Protune
provide a flexible and expressive way of specifying access control requirements.

We have integrated Protune in a Web scenario capable of advanced deci-
sions based on expressive conditions, including credential negotiation to establish
enough trust to complete a transaction while obtaining some privacy guarantees
on the information released [11]. We have developed a component that is easily
deployable in web servers supporting servlet technology (we currently support
Apache Tomcat), which adds support for negotiations and policy reasoning. It
allows web developers to protect static resources by assigning policies to them.
In addition to protection of static content, it also allows web developers to gen-
erate parts of dynamic documents based on the satisfaction of policies (possibly
involving negotiations). We provide an extension to the web design tool Macro-
media Dreamweaver in order to help web designers to easily and visually assign
policies to their dynamic web pages5.

A live demo is publicly available6 as well as a screencast7.

4.3.7 Experimental Evaluation

In order to evaluate the performance of Protune we first focused on its efficiency
in carrying out negotiations. To this aim we measured the duration of each step
of the negotiation algorithm described in Section 4.3.5 with a profiling tool we
built exploiting the log4j 8 utility by the Apache foundation.

In the absence of large bodies of complex formalized policies, we further de-
veloped a module to automatically generate policies according to the following
input parameters: number of negotiation steps, number of rules per predicate,
number of literals per rule body.

5 As described in http://skydev.l3s.uni-hannover.de/gf/project/protune/wiki/

admin/?pagename=Integration+with+Dreamweaver
6 http://policy.l3s.uni-hannover.de/
7 http://www.viddler.com/olmedilla/videos/1/. We recommend viewing it in full

screen.
8 http://logging.apache.org/log4j/

http://skydev.l3s.uni-hannover.de/gf/project/protune/wiki/admin/?pagename=Integration+with+Dreamweaver
http://skydev.l3s.uni-hannover.de/gf/project/protune/wiki/admin/?pagename=Integration+with+Dreamweaver
http://policy.l3s.uni-hannover.de/
http://www.viddler.com/olmedilla/videos/1/
http://logging.apache.org/log4j/
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Table 2. Overall reasoning and network time (msec)

Reasoning time Network time

3 steps

Definitions Definitions

1 2 3 4 1 2 3 4

Literals

1 8 + 6 + 6 5 + 4 + 4 5 + 4 + 4 5 + 10 + 4 10 7 7 7
2 5 + 4 + 5 5 + 4 + 4 5 + 4 + 10 5 + 3 + 4 9 7 7 6
3 5 + 4 + 4 5 + 3 + 4 5 + 4 + 4 5 + 4 + 4 7 7 6 7
4 5 + 10 + 5 5 + 3 + 5 5 + 3 + 4 5 + 4 + 4 7 7 7 7

5 steps

Definitions Definitions

1 2 3 4 1 2 3 4

Literals

1 16 + 20 + 34 34 + 54 + 50 81 + 93 + 111 199 + 173 + 208 14 17 18 18
2 35 + 40 + 41 66 + 120 + 91 165 + 241 + 206 397 + 445 + 409 16 16 18 19
3 42 + 78 + 56 116 + 212 + 161 291 + 481 + 347 646 + 867 + 719 17 17 19 19
4 75 + 105 + 77 189 + 365 + 222 470 + 789 + 560 1012 + 1445 + 1173 17 17 20 21

7 steps

Definitions Definitions

1 2 3 4 1 2 3 4

Literals

1 65 + 37 + 47 196 + 100 + 63 1059 + 394 + 160 1922 + 893 + 230 19 12 20 14
2 187 + 91 + 53 771 + 736 + 147 4423 + 3701 + 617 8526 + 12065 + 3030 12 12 14 14

Table 3. Realistic experiments for Protune core (left), and Protune-X performance
(right)

Reasoning time Network time

6 + 35 + 21 11
1 + 2 + 4 8

5 + 23 + 17 8
1 + 2 + 5 7
1 + 2 + 4 7

pol. size output size processing time page rate page squared rate
18 10 400 ± 70 40 4
35 20 1710 ± 60 85 4.3
71 22 2100 ± 50 95 4.3
42 31 3095 ± 31 99 3.2
40 32 3760 ± 40 117 3.7
42 35 3100 ± 40 88 2.5
40 41 6540 ± 130 159 3.9
39 41 6130 ± 30 150 3.6
59 42 5100 ± 60 121 2.9
83 46 6000 ± 60 130 2.8
57 50 8030 ± 90 160 3.2
109 63 20140 ± 110 319 5.0

Finally we assembled the components described above in a package which
is freely available at http://skydev.l3s.uni-hannover.de/gf/project/
protune/wiki/?pagename=Evaluation.

We ran a first set of experiments with realistic policies inspired by our refer-
ence scenarios. The results, reported in the leftmost part of Table 3, show that
in these cases the system’s performance is fully satisfactory. Then we tried the
system on artificial policies that create large trees of dependencies: the root is
the requested resource; its children (i.e., the 1st level of the tree) are the creden-
tials needed to get the resource; the 2nd level is the set of counter-requests of
the client that are needed to unlock the credentials in the 1st level, and so on.
The artificial aspects in such examples consist in the exponential number of cre-
dentials involved (corresponding to tree nodes) and the chains of dependencies
between them (usually shorter and sparser in realistic scenarios). Table 2 reports
the results of these experiments, some of which are interrupted after 150sec. The
frontier of terminating runs touches examples with hundreds or thousands of in-
terrelated credentials, which explains the high values for reasoning time. Given
the size of the examples involved, we conclude that this technology can scale
up to policies and portfolios of credentials and declarations significantly larger
than those applied today. This is interesting because the availability of frame-
works like Protune may encourage the adoptions of policies more articulated and
sophisticated than those deployed today.

http://skydev.l3s.uni-hannover.de/gf/project/protune/wiki/?pagename=Evaluation
http://skydev.l3s.uni-hannover.de/gf/project/protune/wiki/?pagename=Evaluation
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A performance evaluation of the explanation facility ProtuneX has been done
on a sample of 12 tests, including both realistic and artificial policies. We have
used a ProtuneX implementation designed to be run through TuProlog, the
Java-based Prolog adopted in the Protune framework. Each test has been run
20 times on a computer equipped with an 2GHz Intel dual-core duo and 2GB
ram. Table 3 (on the right) shows the obtained results: the first column reports
the size of the policy, that is, the number of its rules and metarules; the second
column reports the number of generated web pages; the third column shows for
each test the mean time (in msec) occurred to generate all the web pages and
the relative mean squared error.

Tests are ordered according to the size of their policy and the reader can
note that it is not easy to find out regularities between size and processing
time. For example, tests 2 and 3 refer to policies of approximatively the same
size, but the processing time of the latter is about 10 times longer than the
former’s one. However, if we consider test 7, whose policy size is notably larger
than 3, the number of generated web-pages is a bit bigger and accordingly the
processing time is. For this reason we have reported in column 4 the page rate,
that is, the ratio between processing time and the output size, this value grows
up linearly with respect to the output size, showing that the processing time is
approximatively quadratic in the output size (cf. column 5).

Finally, we mention that there exists also a stand-alone implementation
of ProtuneX, available at http://cs.na.infn.it/rewerse/demos/protune-x/
demo-protune-x.html, that runs on XSB-Prolog, a Prolog engine written in C
equipped with memoizing methods to improve performances and provide a more
declarative semantics than standard Prolog. Even if a precise performance eval-
uation has not yet been carried out, its performance is remarkably better (>10
time faster) than the TuProlog counterpart.

The Java-based implementation is still appealing due to deployment ease (it is
even possible to download the user agents as signed applets). However, the above
performance estimates suggest that the explanation hypertext should rather be
generated incrementally during navigation. Note that the computational load
for the hypertext generation is essentially confined on the client; the server only
needs to disclose verbalization metarules.

4.3.8 Discussion and Conclusions

We have illustrated the policy framework Protune and its implementation, re-
porting some positive, preliminary performance evaluation experiments. Protune
is one of the most complete frameworks according to the desiderata laid out in
the literature. It makes an essential use of semantic techniques to achieve its
goals. More information about Protune and the vision behind it can be found on
the web site of REWERSE’s working group on Policies: http://cs.na.infn.
it/rewerse/. There, on the software page, the interested reader may find links
to Protune’s software and some on-line demos and videos.

Unlike other applications of Semantic Web ideas, the main challenges for
Protune are related to usability rather than tuple-crunching. Protune currently

http://cs.na.infn.it/rewerse/demos/protune-x/
demo-protune-x.html
http://cs.na.infn.it/rewerse/
http://cs.na.infn.it/rewerse/
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tackles usability issues by (partially or totally) automating the information ex-
change operations related to access control and information release control, and
by supporting advanced, second generation explanation facilities for policies and
negotiations.

We are planning to continue the development of Protune by adding new fea-
tures and improving the prototype. In particular we plan to explore variants and
enhancements of what-if queries to improve policy quality. Another interesting
line of research concerns support for reliable forms of evidence not based on
standard certification authorities, e.g. exploiting services such as OpenId and
supporting user-centric credential creation (we can already support reputation-
based policies via the external call predicates [11]). Support to obligation poli-
cies is another foreseen extension. Finally, we point the interested reader to
Chapter 2, where the ACE front-end for Protune is discussed. Such front-end
enables to exploit the controlled natural language ACE in order to define poli-
cies. As soon as (controlled) natural language is made Protune’s standard user
interface, usability evaluations will be carried out as well.

Another important line of research concerns standardization. We are inves-
tigating how Protune’s policies and messages can be encoded by adapting and
combining existing standards such as XACML (for decision rules), RuleML or
RIF (for rule-based ontologies), WS-Security (for message exchange), and so on.
Concerning W3C RIF initiative, our working group has contributed with a use
case about policy and ontology sharing in trust negotiation.
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Abstract. Intelligent applications and agents on the Semantic Web typically
need to be specified with, or interact with specifications written in, many different
kinds of formal languages. Such languages include ontology languages, data and
metadata query languages, as well as transformation languages. As learnt from
years of experience in development of complex software systems, languages
need to support some form of component-based development. Components
enable higher software quality, better understanding and reusability of already
developed artifacts. Any component approach contains an underlying component
model, a description detailing what valid components are and how components
can interact. With the multitude of languages developed for the Semantic Web,
what are their underlying component models? Do we need to develop one for
each language, or is a more general and reusable approach achievable? We
present a language-driven component model specification approach. This means
that a component model can be (automatically) generated from a given base
language (actually, its specification, e.g. its grammar). As a consequence, we
can provide components for different languages and simplify the development of
software artifacts used on the Semantic Web.

Keywords: software engineering, composition, modularization, semantic web.

5.1 Introduction

The Semantic Web started out as a vision to enable “computers and people to work
in cooperation” by creating an extension of the current Web “in which information is
given well-defined meaning” [13]. The Semantic Web has since come to encompass
a wide range of research areas and approaches; a very high-level overview of this di-
versity is provided by the Semantic Web Topic Hierarchy.1 In particular, a large num-
ber of languages have been constructed to support the different ideas and approaches.
This includes metadata languages (e.g. RDF [34]), query languages (e.g. XQuery [14],
Xcerpt [45]), rule languages (e.g. RIF [1]) and ontology languages (e.g. OWL [44]),
to only name a few. Most of these languages are developed by research groups, or
developed through consortiums (such as the W3C2), where the focus of the language
development is to cover certain use-cases that are considered important for the kind

1 http://semanticweb.org/wiki/Semantic_Web_Topic_Hierarchy
2 http://www.w3c.org

F. Bry and J. Maluszynski (Eds.): Semantic Techniques for the Web, LNCS 5500, pp. 233–275, 2009.
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of problems the language is assumed to be able to address. Many of these languages
have been developed over many years and are being adopted by a large number of
users. More and more, they are considered mature enough to be deployed in production
systems (XQuery and OWL are examples of such languages). Parallel with the devel-
opment of the languages, development of associated tools is carried out, such as query
engines, ontology reasoners and appropriate editors.

One commonality between most Semantic Web languages is that they are domain-
specific languages (DSLs).3 A DSL can been defined as a “programming language or
executable specification language that offers, through appropriate notations and abstrac-
tions, expressive power focused on, and usually restricted to, a particular domain.” [22,
p. 26]. As such, DSLs stand in contrast to the existence of general-purpose languages
(GPLs) in the field of software engineering. GPLs do not presume the kind of problems
they will be used to solve, but can be used for many different purposes and solutions.
However, only having a general-purpose language available can be sub-optimal for a
very particular problem that is to be solved. For this reason—and the general useful-
ness of DSLs—there have been several approaches developed that enable the embed-
ment of a DSL into a GPL, called the host language (e.g. [10,16,30,53]). Such DSLs
are referred to as embedded DSLs (E-DSLs). The advantage of embedment is that both
syntax and semantics from the host language can be reused for the DSL. For example,
as a way to provide semantics for the embedded language, a translation into the host
language can be specified. Thanks to the translational semantics, existing tooling for
the general-purpose language may be reused. Examples of host languages are Java and
Scala.4 As an added benefit, the already existing abstraction and reuse constructs of the
host language may be exploited, making it unnecessary to provide them in the DSL in
the first place. This also holds for other useful language constructs, such as control-flow
mechanisms (e.g. conditionals and loops).

Can these useful techniques also be applied to the DSLs used on the Semantic Web?
Many Semantic Web DSLs are non-embedded DSLs (NE-DSLs, also called standalone
or external [24]). This means that many Semantic Web languages are intended to be
used as standalone languages, with their own syntax, well-defined semantics, and de-
veloped tools (e.g. query engines and ontology reasoners). As the authors of [22] point
out in their work, the key to the definition of DSLs is the notion of focused expressive
power. Thus, constructs and abstractions are provided specifically for formulating and
solving problems related to the domain for which the language was developed. With
such specialized constructs and appropriate domain-related abstractions at hand, pro-
grammers can concisely express what they want and need. However, DSLs often do
not provide rich constructs that enable reuse and component-based development. Even
though DSLs can be a tool to help cope with software complexity, unfortunately, they
also introduce a new level of complexity that is not always initially foreseen. The new
complexity arises because the DSL specifications themselves may grow in size. For
example, XML query or transformation programs can easily grow large and become
hard to manage and maintain. The same holds for ontology specifications which can
contain thousands of concepts. As those specific parts of larger software systems grow,

3 We say ‘most’ since we are obviously making a generalization, but a useful one.
4 See http://java.sun.com/ and http://www.scala-lang.org, respectively.

http://java.sun.com/
http://www.scala-lang.org
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there must be means in place to cope with that growth in order for DSLs to maintain
their attractiveness. This also holds true for the NE-DSLs on the Semantic Web. While
there exist general approaches to achieve abstraction and reuse constructs for DSLs
in traditional software engineering through language embedment, no general approach
exists to enable the same for NE-DSLs, in particular those used on the Semantic Web.
With a large number of languages available, a general approach for the enablement of
component-based development seems highly desirable.

In this chapter, we present such a general approach to address this problem; general
in the sense that different languages and different component types (reuse constructs,
or abstractions) can be realized. It should be mentioned that we only address the prob-
lem of how single programs/specifications can be decomposed and recomposed, and
not the problem of how heterogenous languages/formalisms can be composed and inte-
grated. We focus on the rule-based Web query language Xcerpt [45] (cf. Chapter 2) and
the ontology language OWL [44]. Our approach is achieved by building on existing
invasive software composition techniques: grammar-based modularization [36,37,39]
and invasive software composition [5]. We follow the vision outlined in [4,6], where
the employment of component-based software engineering techniques is proposed for
several concerns of semantic applications. We have implemented our approach in the
composition toolset and framework REUSEWARE.5 A partial consequence of an inva-
sive composition approach is that it is static. This means that the considered components
must be composed at compile-time. Furthermore, all components are composed to valid
instances of the addressed language (e.g. Xcerpt or OWL) before being executed or in-
terpreted. This allows existing tools of the base language to be reused, which is essential
for such a general approach.

This chapter is structured as follows. In Section 5.2 we briefly introduce the notion
of composition systems, the query language Xcerpt and the ontology language OWL.
In Section 5.3 we summarize the current state of the art wrt. modularization for query
and ontology languages, and then invasive composition techniques in software engi-
neering. In Section 5.4 we discuss use-cases for Web query and ontology components.
In Section 5.5 we present our contribution of universal (invasive) component models
and composition systems. In Section 5.6 we go into details of how component-based
development with the query language Xcerpt can be realized in our approach. Finally,
in Section 5.7, we summarize the chapter.

5.2 Background

In this section, we introduce three notions and languages that are further built upon in
the remainder of the chapter: composition systems, the query language Xcerpt and the
ontology language OWL.

5.2.1 Composition Systems and Component Models

The works of McIlroy [40] and Dennis [21] have, in the software engineering domain,
introduced the notion of components (aka modules) and shown their usefulness for the

5 http://www.reuseware.org

http://www.reuseware.org


236 J. Henriksson and U. Aßmann

Composition techniqueComposition language

Component model

Composition
System

Fig. 1. A composition system consists of a composition language, composition technique and a
component model

structuring of large software and the handling of product families [43]. Components
hide volatile aspects under an interface, protect information, and serve for substitutabil-
ity of parts. Many different component models have been developed; classical module
systems a la Modula-2 are just a simple example. Recently, it has been proposed that
component-based software engineering needs not only component models, but compo-
sition systems [5]. A composition system describes a particular compositional setting
and is made up of three distinct parts: a composition language, a composition technique
and a component model (see Figure 1). The composition language is used to specify
exactly which components should be put together, and in what way. The composition
language is thus used to write composition programs. The composition technique de-
scribes how components are joined, while the component model describes what kind of
components may be defined (what they may look like) and how they are allowed to be
accessed or transformed during composition (their interfaces).

A component model is essential to a composition system since it is the main in-
strument for controlling and restricting compositions. The exact restrictions posed by a
component model often differ between composition systems, depending on their precise
requirements.

Example 1 (Composition system of ASPECTJ). ASPECTJ is an extension of Java that
enables the possibility of programming with aspects [32]. An aspect can contain a cross-
cutting concern of the overall system realization. It can be defined separately, and is then
woven into the core system. We do not completely introduce ASPECTJ here, but use it
as an example composition system since it is well-known, and see how it can be broken
down into the three above-described components.

– Composition language. The composition language is a direct extension of Java, in
which aspects can be defined, and how the aspects are to be woven into the core
system.

– Composition technique. Aspects can be woven statically or dynamically. Static
weaving changes the structure of programs without changing the program behavior,
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while dynamic weaving does change the runtime behavior. The static weaving boils
down to transforming the source code structure of Java programs. Hence, the com-
position technique can be seen as transforming Java source code. Dynamic weaving
takes place at run time and involves technical details such as changing the underly-
ing call stack.6

– Component model. The component model in ASPECTJ incorporates classes, aspects
and the ‘join point model.’ The join point model defines all places in a program that
are accessible for transformation, that is, the places where aspects can be woven
in. In ASPECTJ, since only implicit interfaces are available (they are not marked
by programmers), the component model mainly describes how components can be
accessed, and less how they look.

5.2.2 Web Query Language Xcerpt

Xcerpt is a rule-based language for querying semi-structured data, for example XML
or RDF (which has an XML serialization). The language follows, or is closely related
to, the Logic Programming (LP) paradigm (see, for example, [41] for an introduction
to LP). There are many publications on Xcerpt (see, e.g., [17,18,45] and in particular
Chapter 2). Here we recall the basic constructs. An Xcerpt program consists of a finite
set of Xcerpt rules. The rules of a program are used to define data, or to derive new data
from existing data (i.e. the data being queried). In Xcerpt, two different kinds of rules
are distinguished: construct rules and goal rules. Their syntax are given in Listings 1.1
and 1.2, respectively, where anything enclosed between angle brackets (< and >) will be
explained later. We simply refer to (Xcerpt) rules when we do not distinguish between
the two kinds of rules. Construct rules are used to produce intermediate results while

1 CONSTRUCT
2 <head>
3 FROM
4 <body>
5 END

Listing 1.1. A construct rule

1 GOAL
2 <head>
3 FROM
4 <body>
5 END

Listing 1.2. A goal rule

goal rules make up the output of programs. Rules have a head and optionally a body.
Intuitively, rules are to be read: if body holds, then head holds. A rule lacking a body is
interpreted as a fact, that is, the rule head always holds.

While Xcerpt works directly on XML data, it also has its own data format. Xcerpt
data terms model XML data and there is a one-to-one correspondence between the
two notions. While XML uses labeled “tags,” Xcerpt data terms use a square bracket
notation. The data term book [ title [ "White Mughals" ] ], for example, cor-
responds to the <book><title>White Mughals</title></book> XML snippet. The
data term syntax provides a more readable XML syntax to use in queries.

6 Certain behavioral program modifications can also be achieved by changing program structure,
but we do not elaborate on this here (see [33] for details).
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1 GOAL
2 authors [ all author [ var X ] ]
3 FROM
4 book [[ author [ var X ] ]]
5 END
6

7 CONSTRUCT
8 book [ title [ "White Mughals" ], author [ "William Dalrymple" ] ]
9 END

10

11 CONSTRUCT
12 book [ title [ "Stanley" ], author [ "Tim Jeal" ] ]
13 END

Listing 1.3. The construct rules define data about books and their authors and the goal rule queries
this data for authors

Formally, the head of a rule is a construct term and the body is a query. A query is
a set of query terms joined by some logical connective (e.g. or or and). Query terms
are used for querying data terms and intuitively describe patterns of data terms. Query
terms are used with a pattern matching technique to match data terms.7 Query terms can
be configured to take partialness and/or ordering of the underlying data terms into ac-
count during matching. Square brackets are used in query terms when order is of impor-
tance, otherwise curly brackets may be used. E.g. the query term a [ b [], c [] ]
matches the data term a [ b [], c [] ] while the query term a [ c [], b [] ]
does not. However, the query term a { c [], b [] } matches a [ b [], c [] ]
since ordering is said to be of no importance in the query term. Partialness of a query
term can be expressed by using double, instead of single, brackets (i.e. [[ ... ]] or
{{ ... }}). Query terms may also contain logical variables (denoted by capitalized
identifiers preceded by keyword var, for example, var X). If so, successful match-
ing with data terms results in variable bindings used by rules for deriving new data
terms. For example, matching the query term book [ title [ var X ] ] with the
XML snippet above results in the variable binding {X / "White Mughals"}. Con-
struct terms are essentially data terms with variables. The variable bindings produced
by queries in the body of a rule can be applied to the construct term in the head of the
rule in order to derive new data terms. In the rule head, construct terms including a
variable can be prefixed with the keyword all to group the possible variable bindings
around the specific variable.

An example Xcerpt program relating to books is shown in Listing 1.3. The last two
rules are facts and define two books, each with a title and an author. The first rule—a
goal rule—defines the output of the program. It queries authors of books, and constructs
a list of all found authors. The program in Listing 1.3 would result in the following data
term as output:

authors [ author [ "William Dalrymple" ], author [ "Tim Jeal" ] ]

7 This technique is called simulation unification, please consult [46] for details.
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1 GOAL
2 <head>
3 FROM
4 in { resource { "file:db.xml", "xml" },
5 <query>
6 }
7 END

Listing 1.4. A program with a single rule querying an external resource

Both authors are in the answer because of the grouping construct (all) used in the con-
struct term of the goal rule. Furthermore, the query in the goal rule matches the two facts
by not considering the book titles since the partialness construct is used ([[ ... ]]).

A rule can also query an external resource, for example, a Web page or an XML
database stored as a file. An example in given in Listing 1.4 where the XML file
file:db.xml is being queried by a not further detailed query (<query>). The construct
term of the rule is also omitted (<head>).

5.2.3 Description Logics and OWL

Description Logics (DLs) are a family of knowledge representation formalisms, where
most members are sub-languages of first-order logics. DLs are used to capture the im-
portant concepts and relations (roles in DL parlance) between individuals of the mod-
eled domain. Concepts and roles can be described by complex concept (resp. role)
descriptions using the construction operators available in the particular DL.

The most widely used DL is the one underlying OWL DL [44]. To simplify the
presentation, we do not cover datatypes here. An OWL DL interpretation is a tuple
I = (ΔI , ·I ) where the individual domain ΔI is a nonempty set of individuals, and ·I is
an individual interpretation function that maps (i) each individual name o to an element
oI ∈ ΔI , (ii) each concept name A to a subset AI ⊆ ΔI , and (iii) each role name R to a
binary relation RI ⊆ ΔI × ΔI . Valid OWL DL concept descriptions are defined by the
DL syntax:

C ::= � | ⊥ | A | ¬C | C �D | C 	D | {o} | ∃R.C | ∀R.C |� mR |� mR

The interpretation function ·I is extended to interpret �I = ΔI and ⊥I = /0. The con-
cept � (⊥) is called owl:Thing (owl:Nothing) in OWL. The interpretation function can
further be extended to give semantics to the remaining concept and role descriptions
(see [44] for details).

An OWL DL ontology consists of a set of axioms, including concept axioms, role
axioms and individual axioms.8 A DL knowledge base consists of a TBox, an RBox
and an ABox. A TBox is a finite set of concept inclusion axioms of the form C � D,
where C,D are concept descriptions. An interpretation I satisfies C � D if CI ⊆ DI .
An RBox is a finite set of role axioms, such as role inclusion axioms (R � S). The

8 Individual axioms are called facts in OWL.
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kinds of role axioms that can appear in an RBox depend on the expressiveness of the
ontology language. An interpretation I satisfies R � S if RI ⊆ SI . An ABox is a finite
set of individual axioms of the form a : C, called concept assertions, or 〈a,b〉 : R, called
role assertions. An interpretation I satisfies a : C if aI ∈ CI , and it satisfies 〈a,b〉 : R if
〈aI ,bI 〉 ∈ RI .

Let C,D be concept descriptions, C is satisfiable wrt. a TBox T iff there exist an
interpretation I of T such that CI �= /0; C subsumes D wrt. T iff for every interpretation
I of T we have CI ⊆ DI . A knowledge base Σ is consistent (inconsistent) iff there exists
(does not exist) an interpretation I that satisfies all axioms in Σ.

Human-readable syntax – Manchester OWL Syntax. OWL has several syntaxes,
but OWL ontologies are most commonly represented by XML serializations. Such se-
rializations are machine readable, which is good for tooling and interoperability, but
less appealing to end-users and ontology designers. Many end-users prefer to use the
Manchester OWL syntax [31], which is more user friendly for non-logicians, and also
supported by ontology editors such as Protégé.9 In short, the Manchester syntax “tries
to minimize syntactic constructs that are difficult to enter or understand” [31, p. 3].
For example, the conjunction (disjunction) of concepts C and D, rather than using the
mathematical symbol � (	), can be written: C and D (C or D). Other concept con-
structors have similar intuitive English words that can be used. Ontology axioms can
also be represented. The axiom defining concept C as a sub-concept of D (C � D) can
be written: Class: C SubClassOf D. There are other Manchester OWL constructs
not detailed here, but they are intuitive to understand when seen in an example. More
detail on the Manchester OWL syntax can be found in [31].

5.3 State of the Art: Semantic Web Components and Invasive
Software Component Models

This section consists of three parts. In Sections 5.3.1–5.3.2 we study modularization
(or component-based development) techniques for existing Semantic Web languages.
Our main focus is on query and ontology languages. For ontology languages we mainly
focus on OWL due to its wide adoption as a standard, but focus also on modularization
techniques for its underlying logic – Description Logics. Then, in Section 5.3.3, we
study existing invasive composition approaches.

5.3.1 Query Modularization

– Xcerpt. The only programming abstraction provided by Xcerpt is the rule. A rule
can query an external resource or data constructed by another rule. An Xcerpt pro-
gram is thus a set of rules with certain implicit dependencies. The programmer has
the freedom of splitting the overall query task into any number of rules. During
evaluation of a query program the same rule can be used several times and is in this
sense reused for that particular query evaluation. Xcerpt does not, however, provide

9 http://protege.stanford.edu/

http://protege.stanford.edu/
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a way of reusing rules across programs. Nor does Xcerpt provide means to reuse
larger query tasks (sets of collaborating and related rules).

– XQuery. XQuery is a functional XML query language standardized by W3C [14].
XQuery provides a relatively rich set of constructs for reuse and component-based
development, the main one being the function. A function takes a number of argu-
ments and returns either an atomic value (e.g. an integer), or an element (document
node). The function body consists of a single expression that can make use of the
passed parameters, or other user-defined functions. Users can also define modules.
Every application is a module, the main module, but so-called library modules can
also be defined. Every module has an associated namespace. Library modules can
be imported into other modules using the import module construct, by referring
to their namespaces. Importing a module gives access to its declared functions and
global variables. Imports do not cascade, that is, access is only given to modules that
are imported directly. Cyclic imports are not allowed (wrt. different namespaces,
since modules may share namespaces). The main advantage of XQuery functions
(and modules) is the ability to hide schema complexity for users, and to enable
recursive queries in a convenient way.

– Extensible Stylesheet Language Transformations (XSLT). XSLT is an XML trans-
formation language [19]. XSLT provides two methods for combining stylesheets
(transformation specifications): inclusion and importing. Including stylesheets re-
tains the semantics of the combination, while importing stylesheets override each
other depending on a precedence value (not described here, cf. [19]). XSLT is a
rule-based language, but uses precedence rather than the standard union semantics
for multiple applicable rules. Rule precedence is the dominating issue for XSLT’s
module system (stylesheet importing) which provides intricate mechanisms for de-
termining the precedence of rules from different modules. The module system is
cascading, and has limited parameterization via its apply-imports construct.

5.3.2 Ontology Modularization

There have been many approaches suggested for modularizing OWL ontologies, or
its underlying logic, Description Logic. Below we give an overview of the main ap-
proaches, separated into two categories: ontology mapping and linking, and ontology
importing.

Ontology Mapping and Linking. These approaches address the problem of how well-
defined links can be established between ontologies. In such case, each component
ontology can be seen as a module.

– E-Connections. An E-Connection is a set of “connected” ontologies, where each
separate ontology is intended to cover a single topic [12]. It is an underlying as-
sumption that the different involved ontologies have disjoint signatures (sets of
non-logical symbols). An E-Connected ontology is a standard ontology, but con-
tains special kinds of properties, link properties. Link properties are binary relations
that relate elements from different (disjoint) domains (ontologies). Link properties
are defined in a “source ontology,” and relate some of its elements to elements in
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a “target” ontology. The elements in the target ontology are considered foreign.
Link properties cannot be transitive or symmetric; each link property hence only
connects two ontologies in a given E-Connection. E-Connected ontologies can be
used both to integrate different ontologies (by adding knowledge of how the on-
tologies relate using link properties), and to decompose existing ontologies. The
core idea is to keep ontologies small and disjoint and describe their relations with
E-Connections, as seen fit by the modeler. E-Connections are not suitable for com-
bining ontologies with overlapping domains.

– Distributed Description Logics (D-DL). D-DL is a formalism for combining differ-
ent DL knowledge bases [15]. Each component ontology retains its independence
and identity. The coupling between the different component ontologies is estab-
lished by allowing a new set of inter-ontology axioms, bridge rules. Bridge rules
take one of two forms [15]:

C
�−→ D (“into” bridge rule) and C

�−→ D (“onto” bridge rule)

where C and D are concepts defined in different ontologies that are being related.
The “into” bridge rule specifies that C-individuals in one ontology only correspond
to D-individuals in the second ontology. The “onto” bridge rule specifies that ev-
ery D-individual has a corresponding pre-image in concept C of the first ontology.
Hence, D-DL can be used to relate ontologies developed independently. The main
goal of D-DL is to connect existing ontologies, rather than to support collaborative
development where different designers work on their separate modules.

Ontology Importing. These approaches address the problem of how an ontology or
ontology module can be imported and hence reused.

– owl:imports. OWL natively provides some facilities for reusing ontologies and on-
tology parts. First, a feature inherited from RDF [34] (upon which OWL is lay-
ered) is linking—loosely referencing distributed Web content and other ontologies
using URIs. Second, OWL provides an owl:imports construct which syntactically
includes the complete referenced ontology into the importing ontology. The link-
ing mechanism is convenient from a modeling perspective, but is semantically not
well-defined—there is no guarantee that the referenced ontology or Web content
exists. Furthermore, the component (usually an ontology class) is small and often
hard to detach from the surrounding ontology in a semantically well-defined way.
Usually, a full ontology import is required since it is unclear which other classes the
referenced class depends on. The owl:imports construct can only handle complete
ontologies and does not allow for partial reuse.

– Semantic Import. Semantic import differs from owl:imports (referred to as syntactic
import) by allowing to import partial ontologies and by additionally enforcing the
existence of any referred external ontologies and ontology elements by the notion of
ontology spaces [42]. The goal in this work is controlled partial reuse of ontologies;
the reuse units are concepts, properties or individuals.

– Extracting ontology modules. In [20], the authors propose an approach to extract
modules from ontologies. A module is a (preferably minimal) set of axioms that
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define the concepts that are being reused. Importing a module M (from a larger on-
tology OM) into an ontology B does not affect the modeling of B. Given a signature
S (a set of non-logical symbols), an algorithm is presented for extracting S-modules
from an existing ontology. An S-module is defined as [20]:

Let Q1 ⊆ Q be two ontologies and S a signature. Q1 is an S-module in Q (wrt.
a language L) if for every ontology P and every axiom α expressed in L with
signature Sig(P∪{α})∩Sig(Q) ⊆ S, we have P∪Q |= α iff P ∪Q1 |= α.

Thus, the approach can be used for extracting small and suitable modules from
already developed monolithic ontologies. Extracted modules can then be imported
into ontologies using owl:imports. Another approach in this direction is presented
in [50].

– Package-based Description Logics. The work in [9] proposes package-based De-
scription Logics (P-DLs) for collaborative ontology construction, sharing and
reuse. A package is a fragment of an ontology. Each term (concept name, property
name, or individual name) belongs to a particular package, its home package. A
package can use terms defined in another package. A term that appears in package
P, but has a different home package Q is called a foreign term in P (in this case, P
imports Q). A package-based ontology (P-DL ontology) consists of multiple pack-
ages, each expressed in DLs. Packages may be organized in a hierarchical manner
(e.g. a package can be defined as a sub-package of another package). Packages
are defined by a local semantics, which is not influenced by foreign terms (simply
treated as symbols; the same term can be interpreted differently in two different
packages). Each package must be locally consistent. To ensure local semantics and
knowledge hiding, it is possible to provide scope limitation modifiers to terms, reg-
ulating their visibility wrt. other packages. Terms and axioms can be visible only
to their home packages (private), to their home packages and descendant packages
in the package hierarchy (protected), or globally visible (public). The authors also
define a global semantics, which gives the interpretation of all involved packages.
Finally, there is also a distributed semantics, which gives interpretation to some
of the involved packages. P-DL was developed to be used in a highly distributed
environment such as the Web, and to support collaborative ontology development.
P-DL is more expressive than D-DL. Bridge rules in D-DL only connect atomic
concepts, while P-DL can express more complex relations, even involving concept
expressions where terms belong to different modules (packages).

Ontology modularization is still largely an open issue. There are different approaches
and motives for modularization. Most works have been focused on ontology design and
reasoning in distributed environments. Less work has been done on component-based
ontology development, that is, how to develop a single monolithic ontology in a flexible,
modularized, and reusable fashion.

5.3.3 Invasive Component Models in Software Engineering

In this section we discuss the state of the art in invasive software component mod-
els. A component model in a composition approach can be said to support invasive



244 J. Henriksson and U. Aßmann

composition if the involved components can be adapted internally to fit the particular
reuse context. This stands in contrast to traditional black-box component models where
the component interfaces consists of data flow between the components.10

Grammar-Based Modularization (GBM). BETA is an object-oriented programming
language. One of the side projects developed around BETA was the Mjølner BETA sys-
tem. The Mjølner system provides a fragment system (or fragment language) aimed for
modularization of BETA program text. Essentially, any snippet of BETA source code—
a fragment—can be a module. By putting such fragments together, a complete and exe-
cutable program can be constructed. The technique used by the Mjølner fragment sys-
tem is called grammar-based modularization (GBM) in the literature [36,37,39]. The
technique is ‘grammar-based’ since the underlying language grammar dictates what are
considered valid and deployable fragments for the modularization process.

The fragment system provided in the Mjølner system is directly connected to the
BETA language itself. To simplify the presentation we do not introduce the BETA lan-
guage and its syntax, but instead exemplify the technique using a Datalog-like language
(see e.g. [41] for an introduction to Datalog). Modules, which here are equalled to frag-
ments, are syntactical structures of the considered language and are called forms. Forms
must belong to some syntactic category of the underlying grammar, and hence be deriv-
able from some of its nonterminals. A form derived from nonterminal 〈A〉 is called an
A-form. Forms can in principle be any sequence of terminal and nonterminal symbols
of the considered grammar. Hence, forms are essentially sentential forms of a particular
syntactic category of the grammar. Imagine that we have a grammar Datalog specifying
the rule language Datalog (containing nonterminals such as 〈Rule〉, 〈Atom〉, 〈Variable〉,
〈Num〉 etc.).11 Then the sentential form in (1) can be seen as a rule-form of the Data-
log grammar with one 〈Num〉 and one 〈Atom〉 nonterminal (not yet derived to terminal
symbols).

bonus(X, 〈Num〉) :- employee(X), 〈Atom〉. (1)

To be able to refer to nonterminals in forms, they are given names. Nonterminals
meant to be replaced by the fragment system are called slots and have the following
syntax:12

«SLOT T:A» (2)

where T is the name of the slot and A is its syntactic category. The sentential form
from (1) can thus be written as in (3), which contains a slot named value of syntactic
category 〈Num〉 and a slot named condition of syntactic category 〈Atom〉 (when using
nonterminals in slots we do away with the angle brackets). These slots describe where
change can take place and are called slot declarations.

bonus(X, «SLOT value:Num») :- employee(X),

«SLOT condition:Atom» .
(3)

10 Invasive components are referred to be supporting gray-box reuse abstractions [5].
11 We do not present the grammar here, but it can easily be imagined.
12 This syntax was originally chosen for its suitability wrt. the BETA language, and we use the

same here.
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When defining forms in the fragment system, they must be given a name and a syntac-
tic category, and are then called fragment-forms. Following the style of [39], we use a
graphical syntax for defining fragment-forms. The table in (4) demonstrates the graph-
ical syntax (gray table rows indicate ‘meta’ information about forms, while white rows
contain concrete forms).13

F:A
ff

(4)

In (4) F is the name of the fragment-form, A is its syntactic category and ff is the
form (derivable from nonterminal 〈A〉). The Mjølner system also introduces the no-
tion of fragment groups, which are sets of fragment-forms associated by a name using
the name construct (illustrated below). A fragment group containing a single fragment-
form, corresponding to (3), is shown in (5).

name ‘RuleGroup’
myRule:Rule
bonus(X, «SLOT value:Num») :- employee(X),

«SLOT condition:Atom» .

(5)

Complete programs are assembled by binding fragment-forms to declared slots. The
origin construct can be used for this purpose. The origin construct takes the fragment
group being operated on as an argument. The fragment-forms appearing in a fragment
group with an origin construct are called slot applications.

name ‘Rules’
origin ‘RuleGroup’
value:Num
200
condition:Atom
efficient(X)

(6)

By matching the names of the fragment-forms in (6) (slot applications) with the slot
names in the fragment group indicated by the origin construct (slot declarations), the
fragment-form in (7) is constructed.

myRule:Rule
bonus(X, 200) :- employee(X), efficient(X).

(7)

Notice that the form in (7) is a valid Datalog sentence, stating that “efficient employ-
ees receive a bonus of 200.” As such it is a useful entity constructed from its smaller
fragment parts. The above has demonstrated the main idea of the Mjølner fragment sys-
tem, but using the Datalog language rather than BETA itself. We have discussed the
main features of the fragment system here. For more details we direct the reader to [39,
Chapter 17].

13 There is also a textual syntax available in the Mjølner BETA system, but is not further dis-
cussed here.
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1 public void setTimeStamp() {
2 this.time = new java.util.Date().getTime();
3 System.out.println("Time set at: " + this.time);
4 }

Listing 1.5. A Java method box defined by an assignment and a print statement

1 public class Contract extends BankEntity {
2 // attributes ...
3 // methods ...
4 Contract() { ... }
5 }

Listing 1.6. A Java class box for a bank contract (attributes and methods not shown)

Invasive Software Composition in COMPOST. Invasive Software Composition (ISC)
is a static composition approach where pieces of source code (fragments) are trans-
formed into usable programs, the composition results [5]. The ISC demonstrator sys-
tem is called COMPOST [52]. The entities being composed are programs, or partial
programs, of a particular language. Such entities are, in ISC terminology, called frag-
ment boxes (or simply boxes). As an example, a box containing a Java method—a Java
“method box”—is shown in Listing 1.5. This particular method (setTimeStamp()),
when invoked, assigns the class variable time the current time value and prints an in-
formative message to standard output. The method cannot be used by itself (e.g. com-
piled by a Java compiler), but composed into a larger program it can provide certain
functionality and can be reused.

Other kind of boxes can also be defined: perhaps larger entities such as elaborate
Java class boxes. Listing 1.6 shows a (potentially complex) Java class box with class
name Contract (attributes and methods are intensionally left out). But also simpler
boxes can be defined. As an example of a less elaborate box, Listing 1.7 shows a Java
attribute box defining an attribute named time of primitive type long.

To reuse boxes, it must be possible to adapt the environment (context) where they will
be reused. ISC boxes—like any software components—need composition interfaces
that can be exploited during reuse adaptation.

While many existing composition techniques mainly rely on only one kind of compo-
sition interface, ISC amalgamates two different kinds of interfaces: explicit and implicit
interfaces. The possible implicit interfaces for boxes directly depend on the underlying
language in which the boxes are defined. For a language having methods (e.g. Java),
we can imagine the possibility of implicitly inserting debugging statements into such

1 public long time;

Listing 1.7. A Java attribute box defining an attribute named time, of type long
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1 public class Contract extends genericSupertypeSuperClass {
2 // attributes ...
3 // methods ...
4 Contract() { ... }
5 }

Listing 1.8. A Java contract class box with unspecified super-class (a hook in ISC)

1 public class CompositionProgram {
2 public static void main(String argv[]) {
3 // load a classbox, methodbox and an attributebox
4 ClassBox cBox = new ClassBox("Contract");
5 MethodBox mBox = new MethodBox("setTimeStamp");
6 AttributeBox aBox = new AttributeBox("time");
7

8 // bind super−type hook
9 cBox.findGenericSuperClass("Supertype").bind("CarRentalEntity");

10 // extend class attribute list with attribute
11 cBox.findHook("Contract.members").extend(aBox);
12 // extend class method list with method
13 cBox.findHook("Contract.members").extend(mBox);
14 }
15 }

Listing 1.9. Composition specification for composing a contract class with time-stamping
capabilities using ISC

methods. For a language lacking a method concept (e.g. Datalog), this cannot be done.
For each language, the implicit interfaces are different, and directly depend on that lan-
guage. However, as in GBM, boxes can also be adapted to new contexts using explicit
interfaces, called (explicit) hooks in ISC lingo. The explicit interfaces of boxes make
plain to their users which points can, or must, be modified before reuse.

For example, we might realize that the Java class in Listing 1.6 can be used for dif-
ferent kinds of contracts, not only bank contracts (e.g. car rental contracts). Say that
we want to specify the same contract class, but without having to, a priori, commit to
a specific super-type entity. However, we want to signal users (or systems supporting
the users) that there needs to be a super-class specified when the class is reused. Hence,
we want to make the super-class an explicit hook. To make super-classes recogniz-
able as hooks in ISC, their names need to conform to the predefined naming conven-
tion for super-class hooks. In COMPOST this convention is generic + [hook name]
+ SuperClass. The super-class specified in Listing 1.8, for example, is a super-class
hook with name Supertype.

One of the results from work on ISC was the distillation of two simple, yet fundamen-
tal, composition operators for boxes: bind() and extend(). These two operators comply
with the observation in software composition and reuse in general of two pivotal com-
position and reuse styles: parameterization and extension. Hence, these two operators
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1 public class Contract extends CarRentalEntity {
2 // attributes ...
3 public long time;
4 // methods ...
5 Contract() { ... }
6 public void setTimeStamp() {
7 this.time = new java.util.Date().getTime();
8 System.out.println("Time set at: " + this.time);
9 }

10 }

Listing 1.10. Composed class for car rental contracts with time stamping functionality

correspond to composition phenomena observable in almost any language, and are as
such very general. When executed, these composition operators work by transforming
the abstract syntax trees (ASTs) of the fragment boxes they are applied to.

Example 2. As an example, we will use the above-mentioned Java fragments to com-
pose a usable and compilable Java class. Say we want to use the generic contract class
(Listing 1.8) to model car rental contracts. Furthermore, we want to be able to time
stamp such contracts. We could implement this functionality directly in the contract
class, but separating the two also allows to reuse the time stamping functionality in
other applications. To achieve this, the method box of Listing 1.8 can be modified for
reuse using both its implicit and explicit interface. The Java program in Listing 1.9,
the language of choice in COMPOST [5] for describing compositions, details the steps
needed to achieve the result.14 First the fragment boxes are declared such that they are
accessible (Lines 4–6). On Line 9 the super-class is bound, on Line 11 the class member
list is extended with the attribute box (Listing 1.7), and on Line 13 the same member list
is extended with the time-stamping method (Listing 1.5). The result of this composition
can be found in Listing 1.10. The resulting class now sub-classes CarRentalEntity,
contains an attribute holding the time stamp and a method to set it.

The above was a simple example, but demonstrated the use of both implicit and explicit
interfaces, as well as the primitive operators bind() and extend(), which are the corner-
stones of ISC. Based on these techniques, ISC can be used to realize aspect-oriented
programming, hyperspace programming, collaboration-based design and other compo-
sition techniques [5].

The main drawback with the current realization of ISC (as demonstrated by COM-
POST) is its hand-coded component models. For example, COMPOST has been tailored
for Java and cannot easily be adapted to support another language.

Aspect-Oriented Programming (AOP) in ASPECTJ. The goal of AOP is to capture
and separate crosscutting concerns of systems [32]. The most prominent implementa-
tion of AOP concepts can be found in ASPECTJ [2]. Crosscutting concerns can be both
scattered (spread over the system) and entangled (mixed together with other concerns).

14 Certain details of the specification have been left out for space and comprehensibility reasons.
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The separation of crosscutting concerns is achieved by defining aspects that can be wo-
ven into the system, at the appropriate places such that the desired functionality is made
available. The allowed points in programs where aspects can be woven in is governed
by a join point model. The selection of a set of join points is called a point cut.

Aspects and AOP can be classified along different dimensions. In relating to ISC we
are mainly interested in two dimensions: static vs. dynamic crosscuts, and basic vs. ad-
vanced dynamic crosscuts. Static crosscutting only changes the structure of a program,
while dynamic crosscutting changes the execution behavior of the program. When us-
ing a basic dynamic crosscut, the join points can be determined statically. In contrast,
an advanced dynamic crosscut can only be determined during runtime. This means that
a purely static approach such as ISC can handle static and basic dynamic crosscuts, but
not advanced dynamic crosscuts (since a static approach is not active during runtime, to
e.g. inspect and possibly modify the call stack to change program behavior). However,
as it turns out, advanced dynamic crosscuts are rarely used in practice [3].

Both ASPECTJ and COMPOST support composition approaches with component
models that dictate valid interfaces. In ASPECTJ the component model is made up of
classes, aspects, and the join point model. ASPECTJ only supports implicit interfaces,
due to its reliance on obliviousness [23]. In contrast, COMPOST supports both implicit
and explicit interfaces (hooks, inspired by the GBM notion of slots). The join point
model of ASPECTJ is predefined, and changing it is not straight-forward.

Collaboration-Based Design. A composition approach the predates AOP is Collab-
oration-Based Design (CBD). Intuitively, a collaboration describes a set of ‘collabo-
rating’ classes that together implement a functionality. Collaborations are interesting
reuse units since they can be large (contain many classes) while still be general enough
to be reusable. A CBD approach is presented in [47], where the collaborations are called
mixin layers. In this approach, the collaborations are defined in a strict hierarchy. This
layering requirement can be problematic for supporting unanticipated changes. Other
approaches exists that can be used to realize CBD (e.g. [11]), but are not further de-
scribed here. CBD play an important role in object-oriented programming and design
and have received much attention in the last years. They are predominately invasive in
their approach.

5.4 Use-Cases: Components on the Web

We believe that component-based development on the Semantic Web will play a more
and more important role. It will be necessary for developers to be able to reuse already
developed parts, and to have a choice of different abstractions. An abstraction and a
component (or reusability through a component) are closely related issues (see for ex-
ample [38]). In this section we introduce desirable abstractions, or components types,
for two Semantic Web languages that have previously not been studied (apart from our
work reported on in this chapter). First we discuss modules for Xcerpt, which is a declar-
ative rule-based languages without explicit data flow control. Then we discuss role mod-
els for ontology languages, such as OWL. For further details, see [8] and [28]. Then,
in Section 5.5, we will make the connection between the desirable component types
and their languages, with the invasive composition techniques surveyed in the previous
section.
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5.4.1 Modular Xcerpt

For reuse of Xcerpt rules or query tasks, we introduce the notion of Xcerpt modules.
An Xcerpt module is a set of rules that can be imported and reused across programs.
A module defines interfaces dictating how the module may successfully be used. The
interfaces are defined by adorning construct terms or queries of the module’s rules.
Adorned query terms are part of the required interface and adorned construct terms are
part of the provided interface. Modules can contain both construct and goal rules, but
construct terms of goal rules cannot be part of module interfaces since goal rules only
result in program output.

Definition 1 (Xcerpt module). Let Q represent a query, C a construct term in a con-
struct rule, and G a construct term in a goal rule. We denote C ← Q a construct rule,
and G ← Q a goal rule. Then the following is an Xcerpt module consisting of n rules:

Ĉ1 ← Q1, . . . ,Gk ← Qk, . . . ,Cn ← Q̂n

where each Ci or Q j adorned with a ̂ (hat) is part of the module interface.15 The

following properties hold for a module: (i) No Qi or Q̂ j will match any Ĉk, and (ii)
No Q̂i will match any Cj or Ĉk. That is, no rule in the module depends on a rule with
an adorned construct term, and adorned queries can only match rules outside of the
module.

In general a module can have several input and output interfaces. Most of our examples
will have one output interface, and possibly one input interface. Below we define and
discuss concrete constructs needed to define modules and for making use of them in
programs. It should be noted that it is also possible for modules to make use of other
modules, called module nesting.

1. Defining modules – constructs for module programmers. Module programmers
need constructs for defining sets of rules as modules and ways of declaring their
interfaces.

(a) Module definition. We can group sets of rules into modules and give such a set
a mnemonic identifier using the module construct.

〈module〉 ::= MODULE 〈module-id〉 〈import〉* 〈rule〉*

The 〈module-id〉 construct is a simple string identifier, the 〈import〉 construct
is defined below and the 〈rule〉 construct is the rule construct of Xcerpt. The
import constructs inform us that a module can in turn import any number of
other modules. The module construct is assumed, along with the program, to
be a fundamental unit formulable by programmers.

(b) Module interfaces. A module is considered to have a required interface if any
of its rules are meant to query data produced by rules outside of the module.
This can be allowed by adorning a top-level query with the public keyword.

15 A single rule may have both its construct term and query adorned.
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〈interface-in〉 ::= public 〈top-level-query〉

The 〈top-level-query〉 construct is defined in Xcerpt and represents a query
that is either a query contained directly in the rule body, or as the top-most
query term inside a complex query (conjunction or disjunction). Similarly, a
module will require an provided interface if the data produced by the module
is intended to be further processed. To achieve this, the public keyword may
adorn a top-level construct term.

〈interface-out〉 ::= public 〈top-level-construct-term〉

The 〈top-level-construct-term〉 construct is again defined by Xcerpt, and is a
construct term directly contained in a rule head. Both the 〈interface-in〉 and the
〈interface-out〉 constructs are assumed to be valid alternatives for the constructs
they encompass. That is, where a 〈top-level-query〉 can be programmed, an
〈interface-in〉 construct can be placed. The equivalent holds for 〈interface-out〉.

Thus, a module programmer defines a set of rules, gives them a suitable name, and
possibly defines the input and output interfaces of the module, all depending on the
programmer’s intension with the module.

2. Deploying modules – constructs for module users. Module users need to be able
to (a) declare which modules they want to use in a program, to (b) query those
declared modules, and to (c) provide data to the same modules, if required.

(a) Module import. We can import modules into other modules or programs. This
is done using the IMPORT-AS construct, defined by:

〈import〉 ::= IMPORT 〈module-ref 〉 AS 〈alias-id〉

The 〈module-ref 〉 is the location or unique identifier of the module, while the
〈alias-id〉 is a string identifier. The 〈alias-id〉 can be used in the same program
to refer to the declared module. The IMPORT-AS construct can be used before
the rules of the module (or program) being defined.

(b) Module querying. We can query the data produced by a module using the
IN-MODULE construct:

〈in-module〉 ::= IN 〈alias-id〉 ( 〈query〉 )

The 〈alias-id〉 construct represents the precise module to query and the 〈query〉
represents the actual Xcerpt query. The query can only match against data pro-
duced by provided interfaces of the referred module. The IN-MODULE construct
can be used where an Xcerpt 〈query〉 construct is allowed.

(c) Module provision. We can feed (provision) data to a module with the
TO-MODULE construct:

〈to-module〉 ::= TO 〈alias-id〉 ( 〈top-level-construct-term〉 )
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1 MODULE participants
2 IMPORT file:student.mx AS stud
3

4 CONSTRUCT
5 public
6 participants [
7 all name [ var N ] ]
8 FROM
9 IN stud (

10 students [[
11 name [ var N ]
12 ]]
13 )
14 END

Listing 1.11. Module A: Participants
module in file file:particip.mx

1 MODULE student
2

3 CONSTRUCT
4 public students [
5 name [ "John Rowlands" ],
6 name [ "Henry Stanley" ],
7 name [ "Edmund Morel" ],
8 name [ "Roger Casement" ] ]
9 END

10

11 CONSTRUCT
12 students [
13 name [ "William Sheppard" ] ]
14 END

Listing 1.12. Module B: Student data
module in file file:student.mx

The 〈alias-id〉 construct represents the precise module to feed data into. The
data produced by the TO-MODULE construct can only be matched by rules in the
referred module that are part of its required interface, that is, rules with they
keyword public used in its body. The TO-MODULE construct can be used where
top-level-construct-terms are allowed.

Below we present a simple example making use of the above introduced constructs, and
briefly study the consequences in terms of module encapsulation.

Example 3 (Simple Xcerpt modules and their usage). This example deals with two
modules and a main program. Module A (Listing 1.11) imports module B (Listing 1.12)
and is itself imported into the main program P (Listing 1.13). We thus have the following
dependency between the modules and the program (where −→ denotes the dependency
relation):

P −→ A −→ B

Module B defines data about students, their names in particular. Some of the data is
declared to be part of the module interface, namely, where the construct term is adorned
with the public keyword. Module A imports module B and queries it for student names
using the IN-MODULE construct. Furthermore, module A “exports” the matched names,
but in a different format. Again, this is the case since the construct term is adorned with
the public keyword. The result of executing the main query program P is shown in
Listing 1.14 (in Xcerpt’s data term format).

The simple modules and query program in this example essentially passes the public
data declared in module B into the main program P, via module A, as can be seen in the
query result in Listing 1.14. Notice that the name "William Sheppard" is not part of
the result since this data is not declared to be part of the interface of module B.

The programs in Listings 1.15 and 1.16 are constructed to test the encapsulation
capabilities of the module system. Both the programs in Listings 1.15 and 1.16 return
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1 IMPORT file:particip.mx AS part
2

3 GOAL
4 results [ all name [ var N ] ]
5 FROM
6 IN part (
7 participants [[
8 name [ var N ] ]]
9 )

10 END

Listing 1.13. Program P: The main query
program.

1 results [
2 name [
3 "John Rowlands" ],
4 name [
5 "Henry Stanley" ],
6 name [
7 "Edmund Morel" ],
8 name [
9 "Roger Casement" ]

10 ]

Listing 1.14. The result of executing the
query program P

1 IMPORT file:student.mx AS stud
2

3 GOAL
4 access_allowed []
5 FROM
6 IN stud (
7 students [[ name [
8 "William Sheppard" ] ]]
9 )

10 END

Listing 1.15. Failing to query module B

1 IMPORT file:student.mx AS stud
2

3 GOAL
4 intrusion_achieved []
5 FROM
6 students [[
7 name [
8 "Roger Casement" ]
9 ]]

10 END

Listing 1.16. Failing to query module B

<error>no results</error> (empty results), but for different reasons. The program
in Listing 1.15 correctly uses the IN-MODULE construct, but queries data that is not part
of the interface of the imported module (cf. module in Listing 1.12). The program in
Listing 1.16 queries data that is “visible” wrt. the imported module, but fails to actually
query the imported module using the provided IN-MODULE construct.

5.4.2 Role Models as Ontology Components

As we mentioned in Section 5.3.2, many existing ontology modularization approaches
focus on enabling distributed reasoning (e.g. [9,12,15]), while other focus on extracting
partial ontologies (modules) from already developed ontologies (e.g. [20,50]). However,
comparatively few approaches address the issue of how to compose a single monolithic
ontology (that can be used by applications) from components. If composed from com-
ponents, the final monolithic ontology can easily be changed according to new require-
ments or changes. Thus, different vendors can compose their own ontology that fit their
existing infrastructure and data. Such an approach does not have to modify existing
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reasoners (the most costly artifact to modify), while languages or tools might have to
be modified. While this does not allow for distributed reasoning, this scenario covers a
niche in ontology modularization that has not received much attention. We have inves-
tigated one such approach in [28], based on the notion of role modeling and role models
as the fundamental component type.

In conceptual modeling it has long been known that there is a fundamental distinction
between different kinds of concepts: some stand on their own (e.g. Person), while oth-
ers depend on the existence of some other concept (e.g. Borrower, who must be related
to the borrowed item). Making this distinction explicit is favored in the role modeling
community (see e.g. [48,49] and references therein), with successful applications—
for example, in object-oriented programming [29]. In role modeling, concepts that can
stand on their own are called natural types, while dependent concepts are called role
types. Distinguishing different kinds of concepts is not only important for a better un-
derstanding of the modeled domain, but also for ontology reuse. This second application
of role types has—to the best of our knowledge—never been investigated by the ontol-
ogy community. Related role types and their relationships form abstraction units that
can be studied and defined on their own. They can intuitively be seen as contexts. Such
abstraction units are traditionally called role models. As role models often transcend
domains, they can be reused in different ontologies.

We here briefly exemplify the main idea through an example given in Manchester
OWL syntax [31], which has been extended for the purpose of defining and composing
role models; the keywords of the extended constructs are underlined. Listing 1.17 shows
an ontology that models a faculty, introducing main concepts (natural types) such as
Professor, FacultyMember, and PhDStudent. The faculty is managed by a board which
is described in the role model in Listing 1.18. A board consists of board members that
elect a chairman.16 The chairman can appoint one of the members as secretary. The
ontology in Listing 1.17 imports the board role model and can so use the concepts it
defines. Concepts and properties defined in the role model are marked with ’ to distin-
guish them from the concepts introduced in the base ontology.

One might ask why the board is described in a role model. The reason is that boards
have a recognizable structure with a typical set of relationships that hold between enti-
ties in that context, regardless of the particular underlying domain. It therefore makes
sense to detach the description of the board from the faculty ontology. The ontology in
Listing 1.17 is made up of standard DL constructs, save the ImportRoles and CanPlay
constructs. The meaning of the ImportRoles construct is the obvious, making the role
model available to the ontology. The CanPlay constructs are crucial since they define
the relations between the base ontology and the role model. We refer to such connect-
ing statements as bridge axioms, and they can be given different semantics (see [28]
for details). The role model in Listing 1.18 makes use of two additional constructs,
RoleModel and Role that have the obvious meaning (defining a role model and a role,
respectively). The URL of a RoleModel can be used to import it using the ImportRoles
construct. By separating out such contexts—or role models as understood in the role
modeling paradigm—they can be reused across ontologies and be composed together
to form the resulting ontology that can be deployed in systems and applications. The

16 A ‘chairman’ is here a person designated to preside over a meeting.
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1 Ontology: http://ex.org/Faculty
2 ImportRoles:
3 http://ex.org/Board
4 Class: FacultyMember
5 CanPlay: BoardMember’
6 Class: Professor
7 SubClassOf: FacultyMember
8 CanPlay: ChairMan’
9 Class: PhDStudent

10 SubClassOf: FacultyMember
11 Individual: smith
12 Types: Professor, Chairman’
13 Individual: mike
14 Types: PhDStudent,

BoardMember’

Listing 1.17. Role-based ontology

1 RoleModel: http://ex.org/Board
2 Role: BoardMember’
3 Role: Chairman’
4 SubClassOf: BoardMember’ and
5 electedBy’ some BoardMember’
6 Role: Secretary’
7 SubClassOf: BoardMember’
8 ObjectProperty: electedBy’
9 Domain: Chairman’

10 Range: BoardMember’
11 ObjectProperty: appointedBy’
12 Domain: Secretary’
13 Range: Chairman’
14

15

Listing 1.18. Role model

notion of role models is closely related to collaboration-based design, which has been
investigated in object-oriented modeling, but not in ontology design and engineering.
For further details we refer the reader to [28].

5.5 Universal Component Models

In this section we present our approach towards creating universal invasive component
models. We use the term ‘universal’ to mean applicable to arbitrary formal languages.
We do not attempt the creation of a single component model covering every language
and situation, which is an untenable idea. Instead, we present a language-driven and
generative approach for creating component models in a very flexible manner that fit a
specific language and need. By creating component models, in its extension we define
composition systems. We will then explain how we can design composition systems that
can address and support the need for components on the Semantic Web (in particular
the ones discussed in Section 5.4).

A universal approach is achieved by building on previous composition approaches,
most notably grammar-based modularization (GBM) and invasive software composi-
tion (ISC) (cf. Section 5.3.3). First we define universal GBM (U-GBM) which allows
to create explicit interfaces (slots) for arbitrary nonterminals of a grammar. Second we
build upon U-GBM to define universal ISC (U-ISC). In U-ISC, any formal language
defined by a context-free grammar can be adapted to the composition techniques of
ISC, which allow developers to scale between explicit and implicit interfaces. Finally,
we define embedded ISC (E-ISC). In E-ISC it is possible to define intuitive abstractions
(or component types) for the benefit of end users. This advance is illustrated in Figure 2.
The realization of modules for Xcerpt and role models for OWL (cf. Section 5.4) have
been achieved using E-ISC–based techniques.

The approach is, as ISC, static. This means that composition takes place at compile-
time. This is in contrast to advanced ASPECTJ features which can also compose at

http://ex.org/Faculty
http://ex.org/Board
http://ex.org/Board
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Fig. 2. We present a three-staged advance over previous work (GBM and ISC): universal
grammar-based modularization, universal invasive software composition and embedded invasive
software composition

runtime. In ASPECTJ composition can happen during runtime, for example, based on
a particular value of a variable. Not only is our approach static, but we require that the
final composition result a valid instance of the base language. This has the benefit that
existing compilers, interpreters, or virtual machines, can directly be reused.

5.5.1 Universal Grammar-Based Modularization (U-GBM)

Grammar-based modularization (GBM) [36,37,39] is a composition technique that de-
fines itself by referring to grammar formalisms, in particular context-free grammars
(CFGs) [35]. A context-free grammar describes the valid programs for some language.
Formally, a context-free grammar (CFG) is a 4-tuple [35]:

G = (N,Σ,P,S)

where N a finite set of nonterminal symbols, sometimes called syntactic categories, Σ
is a finite set of terminal symbols (disjoint from N), P a finite set of production rules
N × (N ∪ Σ)∗ and S ∈ N the start symbol. Each production rule N × (N ∪ Σ)∗ can be
used to rewrite N by (N ∪ Σ)∗. Any string in (N ∪ Σ)∗ derivable from the start symbol
S is called a sentential form. A sentential form that does not contain any nonterminal
symbols is called a sentence (it only contains terminal symbols, that is, it is in Σ∗). All
strings that can be derived by a CFG G is called the language L(G) generated by the
CFG. Most programming languages can be specified as a context-free grammar.

As we saw in Section 5.3.3, GBM essentially provides a way of programming with
sentential forms. The technique is attractive because of its simplicity, which is partly
due to only considering explicit interfaces; fragments cannot be modified other than
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through their declared slots. The only known realization of GBM, the Mjølner Sys-
tem [39, Chapter 17], is only realized for one particular language, namely, BETA [39].
Also, because the Mjølner System supports separate compilation of fragments (into bi-
nary code), slots are only supported for a carefully selected set of syntactic categories.

We develop a lightweight, grammar-driven, approach to GBM:17 Given a context-
free grammar G, and a set of nonterminals Nslot of G, a function ψ : CFG → CFG
constructs a “reuse grammar” that describes a language that accepts slots for each of
the nonterminals in Nslot .

Example 4 (A reuse grammar for Datalog). Consider the following Datalog-like ab-
stract syntax grammar specification with the usual EBNF interpretation of the cardinal-
ity constraint + (at least one):

〈Datalog〉 ::= 〈Unit〉

〈Unit〉 ::= 〈Program〉

〈Program〉 ::= 〈Statement〉+

〈Statement〉 ::= 〈Rule〉 | 〈Fact〉

〈Rule〉 ::= 〈Head〉 〈Body〉

〈Fact〉 ::= 〈Head〉

〈Head〉 ::= 〈Atom〉

〈Body〉 ::= 〈Atom〉+

〈Atom〉 ::= 〈Predname〉 〈Term〉+

〈Term〉 ::= 〈Variable〉 |
〈Constant〉 | 〈Num〉

〈Predname〉 ::= STRING

〈Variable〉 ::= CAP_STRING

〈Constant〉 ::= STRING

〈Num〉 ::= NUM_STRING

We do not here specify the concrete syntax but it can be assumed to be the standard
Datalog syntax (see for example (7)). The last four grammar rules define what predicate
names, variables, constant symbols and numbers look like. They are defined by special
tokens not further specified here (predicate names and constant symbols are character
strings starting with a lower-case letter, variables are capitalized character strings, and
numbers are strings of numerals).

The fragment in (8) would be valid wrt. the above Datalog grammar transformed via
ψ on the set Nslot = {Num,Atom}.

bonus(X, «SLOT value:Num») :- employee(X),

«SLOT condition:Atom» .
(8)

Not only can we write programs with slots, but we can also define fragments of certain
types. For example, to be able to use (8) in a composition process we must be able to de-
fine fragments of type 〈Atom〉, so that such a fragment can replace the slot condition,
and so on. Which fragment types may be defined is also dictated by the selected set
Nslot .

To enable the use of slots for a particular base language, we transform the produc-
tion rules of the base language’s grammar appropriately. We can allow (representatives
of) non-derived nonterminals 〈n〉 to appear as slots in fragments by a set of grammar

17 We call it ‘lightweight’ since we do not consider separate compilation of fragments.
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Table 1. Abstract syntax of the SLOT-grammar. The concrete syntax can be chosen appropriately
depending on the underlying language grammar into which it will be incorporated.

〈Slot’〉 ::= 〈Ident’〉 〈Type’〉

〈Ident’〉 ::= STRING

〈Type’〉 ::= STRING

transformations via function: ψ : (CFG,n) → CFG, where n is a nonterminal of the
input CFG. For a given input base grammar G, and nonterminal n, ψ is defined by the
following transformation steps, resulting in grammar G′:

1. Union the SLOT-grammar (cf. Table 1) with G.18 This means: Union the two dis-
joint sets of nonterminals, (disjoint) terminal token symbols, (disjoint) production
rules, but retain the start symbol of G.

2. For each production rule in G defining nonterminal n (〈n〉 on the left-hand side),
rename n to (previously non-existing nonterminal) n′. We denote the original n
nonterminal n0 and strings generated by the original nonterminal n for n0-strings
(or L(n0)).

3. Introduce the new unit production rule: 〈n〉 ::= 〈n’〉.
4. Introduce the new unit production rule: 〈n〉 ::= 〈Slot’〉.

Since the SLOT-grammar and G are disjoint wrt. their nonterminals, the only effect
made by steps 1–3 is that the derivation of a string derivable by G from any nonterminal
(of G) defined via n is one step longer when derived by G′, via the additional unit
production rule 〈n〉 ::= 〈n’〉.

Being able to transform a given language grammar in the above mentioned way
allows to use GBM techniques for arbitrary languages. We do not further detail these
techniques but refer the reader to [25,26,27]. We summarize:

– We describe how a base grammar G can be transformed via ψ(G,{N1, . . . ,Nn}) =
G′, on a set {N1, . . . ,Nn} of nonterminals from G, into a reuse grammar G′. The
reuse grammar describes a language where slots may appear. Hence, it is possible
to program with the required fragments of GBM: concrete and practical sentential
forms.

– Our toolset REUSEWARE19 is able to generate parsers, handle slot constructs, com-
pose fragments and pretty-print composed programs back such that they can be
compiled or interpreted by existing tools.

– We define the reuse grammars such that the fragments’ interfaces can be described
by referring to the nominal semantics of CFGs, namely the languages they generate.

– We define requirements for safe compositions. Safe compositions ensures that each
intermediate composition result during the composition process remains valid wrt.

18 If ψ is applied to the same base grammar more than once, this step is only performed once.
19 http://www.reuseware.org

http://www.reuseware.org
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the underlying reuse grammar. That is, it is not possible to compose syntactically
incorrect programs (wrt. the underlying grammar) without getting an error. These
safety conditions are derived from the base grammar, and are hence general. In
particular we define that final composition results must belong to the language gen-
erated by the underlying base grammar. This ensures that existing tools can work
with the composition results.

5.5.2 Universal Invasive Software Composition (U-ISC)

Invasive software composition (ISC) is a technique that extends GBM by also consider-
ing implicit fragment interfaces [5]. In this respect ISC is a more powerful and flexible
composition technique, but also arguably harder to use. ISC has previously been applied
and tailored for specific languages, mainly Java and XML, in the COMPOST environ-
ment [52]. Our goal is to make ISC grammar-driven and universal in the same way
as for universal GBM. The main difficulty of achieving a universal approach for ISC
is to find a good way of handling the implicit interfaces. Since the components un-
der consideration are (source-code) fragments, the possible implicit interfaces depend
on the component language, the base language in which the fragments are written.
When the component language is fixed, as in [52], this is easier handled. In a grammar-
driven approach, not beforehand knowing the component language, the problem is more
intricate.

The implicit interfaces of fragments do not only depend on the component language.
It is also important that there are restrictions in place that exactly details what those
interfaces are. COMPOST addressing Java allows, for example, method entry and exit
points to be transformed implicitly [5,52]. This can be used to separate out debugging
or logging code from the production code and separately weave such statements into
Java methods, in the style of aspect-oriented programming. The particular supported
implicit interfaces for Java was a decision made by the developers of COMPOST. For
other component languages and systems, these decisions will be different. How can
implicit interfaces be supported in a universal approach, without making assumptions
on the component language? To better understand the issue, we first look at a simple
example of how this is done in COMPOST. Listing 1.19 shows what a composition
program can look like in COMPOST. The program in Listing 1.19 loads (Line 2) the
class box fragment in Listing 1.20, and binds the “methodEntry” implicit point with the
value “Debug.println("In Lifecycle");” (Line 3). The result of the composition is shown
in Listing 1.21. Naturally more complex composition programs can be written, but from
this simple example we notice two things:

1. The composition language—the language used to write the composition program—
is Java. But we have to be careful about what we mean with the “composition
language.” There is for example a Java type ClassBox for declaring and using
fragments corresponding to Java classes, which is not really Java as much as it is a
Java library. In this case we call the Java library for the core composition language,
and Java itself for the host composition language (used as a platform on which the
core composition language is realized).
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1 public void compositionProgram {
2 ClassBox cBox = new ClassBox("RecursiveRobot"); // load a fragment
3 cBox.findHook("lifeCycle.methodEntry").bind(
4 "Debug.println(\"In Lifecycle\");"); // bind method entry point with a

statement
5 ...
6 }

Listing 1.19. Composition program in COMPOST

1 public class RecursiveRobot {
2 public void lifeCycle() {
3 work(...);
4 lifeCycle();
5 }
6 }

Listing 1.20. A Java fragment

1 public class RecursiveRobot {
2 public void lifeCycle() {
3 Debug.println("In Lifecycle");
4 work(...);
5 lifeCycle();
6 } }

Listing 1.21. After composition

−→ If the Java type ClassBox is provided, users can work with class boxes,
etc. If the type does not exist, that fragment type cannot be defined.

2. The implicit interfaces are predefined. For example, the name “methodEntry” on
Line 3 in Listing 1.19 is interpreted in a special way by the COMPOST system.

−→ If the name “methodEntry” carries meaning for COMPOST, such im-
plicit points can be accessed. Implicit points for which no name and
interpretation is given cannot be accessed.

Based on these observations we present a generative approach to handle grammar-
driven ISC and its implicit interfaces. It is generative because a core composition lan-
guage is generated for each addressed component language, while Java is always used
as the host composition language. The approach extends U-GBM from Section 5.5.1
by allowing to specify another nonterminal set Nimpl from a base grammar G to spec-
ify which parts of fragments can be accessed implicitly. We illustrate the idea with an
example.

Example 5 (Restricting implicit fragment access in grammar-driven ISC). Imagine we
have a grammar Datalog specifying the rule language Datalog (containing nontermi-
nals such as 〈Rule〉, 〈Atom〉, 〈Variable〉, 〈Num〉 etc, cf. Example 4). From the specifica-
tion of a set of nonterminals, for example:

Nimpl = {Rule,Atom,Num} (9)
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Table 2. Main operations on generated Java types, corresponding to grammar nonterminals

Operator Explanation
Start implicit transformation

accept(Visitor) Starts an implicit fragment traversal, defined by the Visitor.
Transform

bind(Fragment) Replaces the operand fragment with the value fragment.
bind(String,Fragment) Replaces a slot (named by String) with a fragment.
extend(Fragment) Extends the operand fragment with the value fragment.

Boolean context queries
inContextOf(NonTerminal) True if the fragment is in context of the NonTerminal.
isFirst() / isLast() True if the fragment is first / last of a fragment list.

Fragment results
print(String) Prints the contents of the fragment to a specified file.

a core composition language is generated that supports dealing with fragments of
types Rule, Atom and Num. If some nonterminal is not specified in Nimpl , fragments
of that type cannot be transformed implicitly during composition. Based on (9), vari-
ables (defined by nonterminal 〈Variable〉) can for example not be implicitly accessed in
fragments.

Generating core composition languages. For each nonterminal specified in such a
set, Nimpl , two Java types are generated, named: I<N> and I<N>Impl, where <N> is the
name of the nonterminal. The former is a Java interface (the “interface”), while the latter
is a concrete class (the “class”) implementing the interface. The class provides a static
method load(String) that can be used to load a fragment (either directly from a string,
or from a file). The interface specifies the methods in Table 2, which are implemented
by the class.

So, based on the selection in (9), and after having generated the core composition
language, we can write the composition program in Listing 1.22. A Datalog fragment
lacking any explicit interfaces is defined and declared on Line 2. That fragment is then
transformed via its implicit interfaces between Lines 3–17 (by transforming its AST, as
in ISC). The resulting fragment is printed on Line 18. The discussed program performs
the following composition:

bonus(X) :- employee(X).
composes into−−−−−−−−−→

bonus(X, 100) :- employee(X), efficient(X).
(10)

As can be seen from Listing 1.22, certain auxiliary classes are also generated (such as
DatalogUtil and DatalogVisitor). The DatalogVisitor class can be sub-classed
to override visit(Fragment)-methods that dictates how a fragment should be trans-
formed.20 One such visit-method exists for each nonterminal specified in Nimpl .
Hence, Nimpl restricts fragments’ implicit interfaces. The accept(Visitor)-method,

20 The default transformation is to do nothing.
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1 public void compositionProgram() {
2 IRule rule = IRuleImpl.load("bonus(X) :- employee(X).");
3 rule.accept(new DatalogVisitor() { // transform fragment implicitly
4 public boolean visit(IAtom atom) { // transform 〈Atom〉s
5 if (atom.inContextOf(DatalogUtil.HEAD)) {
6 atom.accept(new DatalogVisitor() {
7 public boolean visit(INum num) { // transform 〈Num〉s
8 if (num.isLast())
9 num.extend(INumImpl.load("100"));

10 return true;
11 }
12 });
13 } else
14 if (atom.isLast())
15 atom.extend(IAtomImpl.load("efficient(X)"));
16 return true;
17 } });
18 rule.print("file:out.datalog"); // "bonus(X,100) :− employee(X), efficient(X)."
19 }

Listing 1.22. Composition program transforming a Datalog fragment implicitly

to which a visitor object is passed, traverses the operand fragment implicitly an in-
vokes the appropriate visit(Fragment)-methods depending on the contents of the
fragment. For example, assume a fragment corresponding to a Datalog rule is being
traversed because the accept(Visitor) method was invoked on that rule fragment
(cf. Listing 1.22, Line 3). If a sub-fragment of type 〈Atom〉 is encountered during the
traversal, visit(IAtom) will be invoked, passing the encountered atom as the argu-
ment, hence providing an opportunity to transform it. In Listing 1.22 (Line 3 and 6)
we use the anonymous instance concept from Java as a simplified way of sub-classing
DatalogVisitor.

Since the traversal of a fragment’s AST is implicit, we need a way of querying the
current fragment context. For example, to tell if an encountered variable occurs in a rule
head or body. There are predefined methods for this purpose (cf. Table 2). On Line 5 in
Listing 1.22, for example, we check if the encountered atom is in the rule head or body.

Using this approach, we are able to provide a grammar-driven way of transforming
fragments implicitly, with restrictions in place for how this may be done (hence, there
is a component model). Let us recall what we are able to do with universal ISC, as an
extension of universal GBM:

– By referring to a base grammar, we can define which language constructs (rep-
resented by a nonterminal) should be “slotable,” and which language constructs
should be addressable implicitly during composition.

– The approach is generative. Based on a comparatively small specification wrt. some
base grammar, an appropriate Java library (an API) is generated that can be used
to write composition programs for the component language that the base grammar
specifies. That is, we generate the core composition language. Using the generated
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core composition language, and using our composition framework REUSEWARE,
we can:

– Define and parse fragments of the component language (containing or not con-
taining slots).

– Bind slots with value fragments.
– Traverse fragments (their ASTs) in an intuitive and semi-declarative way (using

visitors). The allowed traversals are restricted by the developer. Hence, there is
always a component model present.

– Extend fragments implicitly.
– Pretty-print composition results.

– It is important to control how compositions may be specified. This is predefined, or
specified manually, in COMPOST and ASPECTJ. We automate this process via our
generative approach, making it easier to experiment with different restrictions and
for different component languages.

5.5.3 Universal Syntactic Abstractions with Embedded ISC

The techniques outlined in Sections 5.5.1 and 5.5.2 can be used to adapt, in a grammar-
driven manner, any language to the flexible and powerful composition technique of
ISC. This gives the possibility to compose programs in the fashion of Listing 1.22, but
for any desirable component language (here we used Datalog as an example). From a
developer’s point-of-view it does not seem very attractive to construct software in this
way, since the composition is described on a very primitive level.21 But neither GBM,
nor ISC, is able to avoid this undesirable primitiveness. One of the reasons is that in both
approaches fragments and their interfaces are treated as first-class software entities;
they are the basic units of modularization. If this is the level on which components are
described, this is also the level on which they must be used.

To address this situation, while still leveraging ISC’s generality, we have a twofold
objective:

1. Use this generic composition technology to address a well-defined problem. In our
case, the problem is to enable component-based development for NE-DSLs (or
other languages in need of a component concept).

2. Strive for intuitive “components,” or notions of abstractions, rather than having
fragments as first-class entities.

Our hypothesis is that software developers want to specify and use components that
have an intuitive raison d’être. One attractive feature of components is their reusability.
Wegner states that “abstraction and reusability are two sides of the same coin” ([54,
p. 30] as cited in [38]). Krueger paraphrases Wegner explaining that “every abstrac-
tion describes a related collection of reusable entities and that every related collection
of reusable entities determines an abstraction” [38, p. 134]. So, a reusable component
can be seen as an abstraction; the abstraction describes a set of solutions for which the
component can be configured to solve. Krueger goes on to explain that an abstraction

21 Also supported by Aßmann, see [5, p. 278].
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1 IMPORT file:sales.md AS sales
2 bonus(X, 200) :-
3 IN sales ( employee(X) ).
4 bonus(X, 100) :- employee(X).
5 employee(john).

Listing 1.23. Rule program importing a
module

1 MODULE sales
2 @ employee(X) :-

sales_employee(X).
3 sales_employee(steve).
4 sales_employee(marco).

Listing 1.24. Rule module at
file:sales.md

can be described in terms of the abstraction specification and its corresponding real-
ization [38, p. 134]. Using this terminology, we shall exemplify what we would like to
achieve, using Datalog as the example component language.

– Abstraction specification. An abstraction specification is arguably more than a plain
fragment, notwithstanding that it does have an interface as concerns ISC (it is ar-
guably too primitive). An abstraction specification becomes truly useful when the
developer may use intuitive syntax to describe the abstraction (i.e. a component).
Consider the Datalog ‘module’ in Listing 1.24, defining the employees of a ficti-
tious company’s sales department (steve and marco), and stating that they are also
employees in a more general sense (via the first rule). The module is merely a col-
lection of Datalog rules, with some additional intuitive syntax (MODULE) so as to
let developers know what is being defined, namely, a module. There is also an in-
terface construct (@) that defines how the module may be used. The @ in front of the
head of the rule means: this rule can be queried by a program or a module importing
this module. Thus, it defines the provided interface of the module. Notice that this
interface definition goes beyond that of GBM and ISC – it’s understandable by a
developer unaware of either GBM or ISC. It’s intuitive, not technical.

– Abstraction realization. How the Datalog module in Listing 1.24 can be used is
shown in Listing 1.23. The module is imported using the IMPORT-AS construct,
and referred to (queried) using the IN construct. The first rule only queries the
employees of the sales department module (using IN), while the second rule only
queries the “local” employees (the only local employee here is john). Posing the
query bonus(X,Y) to the program in Listing 1.23 should give the following results:

{X = steve, Y = 200}, {X = marco, Y = 200}, {X = john, Y = 100}

The query sales_employee(X) should give no answers (or an error). The reason
is that the queried predicate is not directly available, but is encapsulated in the
imported module. The query employee(X) would give the single answer:

{X = john}

since only the local employees are directly accessible. All the keywords in red and
underlined in Listings 1.23 and 1.24 represent constructs that go beyond what is
available in the underlying component language, Datalog. Hence, this program and
module are written in an extension of Datalog. For example, the abstract grammar
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Table 3. Definition of constructs for importing and using modules

〈ImportAs〉 ::= 〈File〉 〈Predname〉
〈InModule〉 ::= 〈Predname〉 〈Atom〉
〈File〉 ::= LOCATION

snippet in Table 3 could be integrated into the Datalog grammar (cf. Example 4) to
define syntax for importing and querying Datalog modules. Our tool REUSEWARE

provides means for injecting such syntactic extensions into a base grammar.
The intended semantics of such syntactic extensions can be realized by compo-

sition. The extended constructs can hence be given a compositional semantics (or
translational semantics). This can be done by associating the extended constructs
with composition programs written in an U-ISC environment (see Section 5.5.2)
developed for the component language. For Datalog and its module-related con-
structs briefly discussed above, these semantics specifications would be similar
in style to Listing 1.22. The composition would need to compose extended pro-
grams into semantically equivalent programs of the underlying, plain, component
language. This way already developed tooling for the component language can be
reused (e.g., query engines). What ‘semantically equivalent’ means can differ de-
pending on the component language and the developed component type (e.g. what
properties should the components have?). For our Datalog module example, we
would for example want to ensure proper module encapsulation and separation.
Because of the connection between extended syntax, for the benefit of program-
mers, and composition programs providing the semantics of the extended syntax,
we refer to this technical approach as Embedded ISC (E-ISC).

Relationships between extended syntax and composition programs. The realiza-
tion of an abstraction—appropriate transformations to handle the component type and
ensure certain properties such as encapsulation—can often be a non-trivial task. How-
ever, as suggested, such a realization can be specified by a composition program, hence
using ISC’s basic composition operators bind() and extend(). We refer to a composi-
tion program used for this purpose as a complex (composition) operator. A complex
operator is atomic and always assumed to be executed in its entirety, or not at all. It
should also be noted that a complex operator does not only contain calls to ISC’s basic
operators, but can also contain internal fragments that are needed for the realization of
the abstraction the operator is implementing (see fragments f1, . . . , fn in Figure 3). An
example of such an internal fragment could be a fragment containing an identifier (a
name) which is used in some renaming scheme during composition (for example, for
renaming predicate names for our above-discussed Datalog modules).

As discussed, certain constructs are introduced for the purpose of abstraction speci-
fication, while others are introduced for the purpose of using the specifications (hence
for the abstraction realization). We can categorize these constructs into the following:
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extend()bind()

0..*0..*

...f1 f2 fn

IN complex operator

<InModule>
::= IN <Predname> ( <Atom> )

...

Extended grammar:

General Composition FrameworkSpecific Composition System

explicit connection

= fragment

Legend:

= composition operator

Fig. 3. A complex composition operator is connected to an active syntax construct in an extended
grammar

1. Passive syntax. This is syntax that is used by the programmer to define components
or describe how they should be used. For our rule-based modules the MODULE and
@ (module interface) constructs are examples of passive syntax.

2. Active syntax. This is syntax that is used to deploy components and that takes an
active part in the composition of those components. For our rule-based modules the
IMPORT-AS and IN constructs are examples of active syntax.

The notion of active syntax is closely related to complex composition operators. The
relation is that an active syntax construct (e.g. IN) delegates its work to a complex
composition operator. Or seen the other way around, a complex composition operator
implements an active syntax construct. The passive syntax constructs are not composi-
tion operators, but are used to guide the composition and are hence equally important.

The relation between an active syntax construct and a complex composition operator
has to be made explicit by a developer. This is done on the grammar level. For example,
since the IN construct used above is an active syntax construct, its corresponding non-
terminal in the grammar should be connected to some complex composition operator
implementing its functionality. This is illustrated in Figure 3, where the nonterminal
〈InModule〉 represents the IN construct (concrete syntax is shown for clarify).

The only difference between a complex operator and a composition program is that
complex operators take some external input, in form of the fragments they are supposed
to work on. This external input directly relates to the definition of the active syntax
construct that the complex operator is implementing. For example, the IN construct
(defined by nonterminal 〈InModule〉) from Table 3 would need to know the name of the
referred module, as well as the atom querying the module, represented by nonterminals
〈Predname〉 and 〈Atom〉, respectively (cf. Table 3). Since we are using Java as our
host composition language, these special composition programs can be realized as Java
methods. Considering our module extension to Datalog and an appropriately generated
core composition language, the signature of a complex composition operator method
implementing the IN construct would be (possibly using a different name):
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1 public IAtom inModule(final IPredname module, final IAtom atom) {
2 atom.accept(new DatalogVisitor() { // traverse atom being operated on
3 public boolean visit(IPredname node) {
4 // transform atom being operated on
5 node.bind(IPrednameImpl.load(node.toString() + "_" +
6 // uses the name of the referred module; stored outside this method
7 names.get(module.toString()) +
8 "_" + interfaceOut.toString()));
9 return true;

10 } });
11 return atom;
12 }

Listing 1.25. Simplified complex operator for the IN construct

public IAtom inModule(IPredname name, IAtom atom)

The parameter types directly correspond to the definition of the IN construct. The
fragment returned from a complex composition operator replaces the active syntax that
invoked it. This method will be invoked when a construct appears in a composition
program that corresponds to the considered nonterminal. That is, if 〈InModule〉 is con-
nected to the above method, the method will be invoked whenever an IN construct is
used. A simplified example implementing the IN construct is shown in Listing 1.25.
The composition operator renames the considered predicate name to ensure separation
of the modules in the composition result.

What can we do with this technology? Several things, but in particular we can
address the use-cases discussed in Section 5.4. That is, we can combine a grammar-
driven composition technique with composition requirements for several different lan-
guages, e.g. Semantic Web languages. Syntactic grammar extensions can support com-
ponent specification, and we can use the above-described composition techniques to
support those extensions by implementing suitable complex composition operators. We
summarize:

– We essentially provide technology for universal syntactic abstractions. Macros
(e.g. in Lisp) is an example of an syntactic abstraction concept that can be used to
syntactically extend a language. E-ISC differs from traditional macros on several
levels, but the comparison is helpful. Our main goal remains to provide component-
based development opportunities to NE-DSLs.

– We leverage the generality of ISC, in particular its universalization (U-ISC), but
make this technology approachable by a wider audience by providing the oppor-
tunity to use the technology “under the hood.” Hence, by addressing a particular
problem we can make the general, and often hard to understand, techniques of ISC
practical. This idea lies at the heart of embedded ISC (E-ISC).

We have implemented several examples that make use of the presented technique. In
Section 5.6 we detail the underlying composition idea for one such example, Modular
Xcerpt.
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Table 4. A store consists of three sections: out, private and in

Section Data stored in the section
out Data part of the provided interface – data to be queried.

private Data for the internal use of the module – not accessible from outside the module.
in Data injected used by the required rules of the module.

5.6 Example Application: Modular Xcerpt

In this section we present the transformations that are carried out under the hood during
composition of Modular Xcerpt programs. Due to lack of space we discuss the com-
position strategy without detailing how the composition system is concretely realized.
In particular, we explain how module encapsulation can be retained in the composition
result via the notion of “stores.” This enables the reuse of the existing Xcerpt interpreter
for Modular Xcerpt.

The purpose of the store is to ensure proper module encapsulation. A store can be
likened to a virtual (XML) database associated with a unique identifier. Every module
is assumed to be associated with a store. A store is divided into three sections: out,
private and in (see Table 4 for their explanations). In order for a module to be properly
encapsulated, every data term internally constructed by the module (not part of the
module’s interface) should only be usable by other rules of the same module. If this
is not the case then the encapsulation of the module is violated. Or, if rules within the
module can query rules outside the module that do not intentionally provide data to the
module, then encapsulation is also violated. By directing any data terms constructed
into the suitable section of the considered module’s store, proper separation, and hence
encapsulation, can be ensured.

The extended constructs (IMPORT-AS, IN-MODULE, TO-MODULE) that the module pro-
grammers make use of are responsible for directing rules to the correct section of the
considered module’s store.

– Module import. When importing a module using the IMPORT-AS construct, every
top-level construct term and query term of each rule is directed to the appropriate
section of the module’s store. This is in general done by transforming each module
rule in the following way:

1 CONSTRUCT <head>
2 FROM <body>
3 END

−→
1 CONSTRUCT <STORE: <head> >
2 FROM <STORE: <body> >
3 END

where each construct enclosed within < and > is as of yet unspecified. In general
the <STORE: <term> > construct can be expanded to the following:

store [ id [ <module-id> ], section [ <section> ], <term> ]

where <module-id> is a string containing a unique identifier of the module (a URI
or the location of the module), <section> a string indicating which section of the
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store is being referred to (out, private or in), and <term> is the construct term
or query term considered. We refer to a term when it is irrelevant if we mean a
construct or a query term. If the considered term is not part of the module interface,
then the section used is private. If the term is a construct term adorned with the
public keyword, and is hence part of the provided interface, then we use the out
section of the store. In the same manner, if we consider an adorned query, then we
use the in section. The following is an example of a single rule with an adorned
construct term:

1 CONSTRUCT
2 public data_out [
3 var X
4 ]
5 FROM
6 data [
7 var X
8 ]
9 END

−→

1 CONSTRUCT
2 store [ id [ <module-id> ],
3 section [ "out" ],
4 data_out [ var X ] ]
5 FROM
6 store [ id [ <module-id> ],
7 section [ "private" ],
8 data [ var X ] ]
9 END

– Module querying. The IN-MODULE construct is provided for querying specific mod-
ules. Such queries are meant to query the data terms constructed by a module as part
of its provided interface, and are hence referred to the out section of the referred
module’s store. The following transformation is performed:

1 CONSTRUCT ...
2 FROM
3 IN mod (
4 <query>
5 )
6 END

−→

1 CONSTRUCT ...
2 FROM
3 store [ id [ <module-id> ],
4 section [ "out" ],
5 <query> ]
6 END

In the above, mod is the alias given to the imported module (using IMPORT-AS) and
<module-id> in the transformed rule is the identifier of the considered module (the
exact identifier is an implementation detail, and could e.g. be the module filename).

– Module provision. The TO-MODULE construct can be used for providing data to be
used by a module. For this data to be made available to the module, it needs to
be directed to the in section of the module’s store. This is done via the following
transformation:

1 CONSTRUCT
2 TO mod (
3 <construct term>
4 )
5 FROM ...
6 END

−→

1 CONSTRUCT
2 store [ id [ <module-id> ],
3 section [ "in" ],
4 <construct term> ]
5 FROM ...
6 END

Example 6 (Simple module composition). The following example makes use of a sim-
ple identity module, that is, a module that simply returns the data terms it receives as
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1 IMPORT file:ident.mx AS ident
2 GOAL result [ var X ]
3 FROM
4 IN ident (
5 ident_out [ var X ] )
6 END
7

8 CONSTRUCT
9 TO ident (

10 ident_in [ "value" ] )
11 END

Listing 1.26. A query program using the
identity module

1 MODULE identity_module
2 CONSTRUCT
3 public ident_out [ var X ]
4 FROM internal [ var X ]
5 END
6

7 CONSTRUCT
8 internal [ var X ]
9 FROM

10 public ident_in [ var X ]
11 END

Listing 1.27. An identity module at
file:ident.mx

1 GOAL
2 result [
3 var X
4 ]
5 FROM
6 store [
7 id [ "file:ident.mx" ],
8 section [ "out" ],
9 ident_out [ var X ]

10 ]
11 END
12

13 CONSTRUCT
14 store [
15 id [ "file:ident.mx" ],
16 section [ "in" ],
17 ident_in [ "value" ]
18 ]
19 END

Listing 1.28. Program in Listing 1.26
composed to Xcerpt

1 CONSTRUCT
2 store [ id [ "file:ident.mx" ],
3 section [ "out" ],
4 ident_out [ var X ] ]
5 FROM
6 store [ id [ "file:ident.mx" ],
7 section [ "private" ],
8 internal [ var X ] ]
9 END

10

11 CONSTRUCT
12 store [ id [ "file:ident.mx" ],
13 section [ "private" ],
14 internal [ var X ] ]
15 FROM
16 store [ id [ "file:ident.mx" ],
17 section [ "in" ],
18 ident_in [ var X ] ]
19 END

Listing 1.29. Module in Listing 1.27
composed to Xcerpt

input (Listing 1.27). The identity module could be implemented using a single rule, but
we use two rules to show how the internal communication (between the two rules) is di-
rected to the private section of the module’s store. The program in Listing 1.26 makes
use of the identity module by sending it some data, expecting to get the same output
as result when querying the module. The result of the query program is, as expected:
result [ "value" ]. The query program and the module, written in the Modular
Xcerpt language, are composed to the plain Xcerpt programs show in Listings 1.28
and 1.29, respectively.
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All the constructs belonging to the extended language, Modular Xcerpt, have been
removed in the composed results. The programs in Listings 1.28 and 1.29 can be merged
into a single program and executed by the Xcerpt interpreter to yield the expected re-
sult shown above. Thus, the composed and merged program is the realization of the
abstractions used in Listings 1.26 and 1.27. The realization ensures that modules are
encapsulated using the concept of stores.

Certain special cases are handled while composing modular query programs:

1. External resources. If a module queries an external resource, then the query is not
transformed, since the query must match the format of that resource.

2. Complex queries. We remember that queries are not simply query terms, but sets
of query terms joined by logical connectors, such as or or and. When transforming
a conjunctive or disjunctive query, the transformations are done on the top-level of
each involved query term.

3. Module nesting. It is possible for modules to import other modules, so-called mod-
ule nesting. During the transformation of a module, encountered IN-MODULE and
TO-MODULE constructs are transformed wrt. the modules they are referring to.

The transformations described above that ensures that the modules retain their en-
capsulation in the unified composition result can be implemented using an E-ISC–based
technique. A E-ISC–based composition system can be created by a developer, while an
end-user can deploy the benefits of having modules when writing Xcerpt programs (cf.
Listings 1.26–1.27). Hence, there are different user roles to consider when enabling
component-based development for languages. Further examples of Modular Xcerpt can
be found in [7].

5.7 Conclusions

We have in this chapter made a connection between the need for components in non-
embedded domain-specific languages (NE-DSLs), in particular those found on the Se-
mantic Web, and invasive component models. It seems that invasive component models
have a useful existence together with the declarative and descriptive languages that are
abundant on the Semantic Web.

Our composition approach and methodological framework requires that the final
composition results are instances of the underlying base languages (reduction seman-
tics). The main reason for this is the desire to reuse existing tools; but also to be able to
provide a general solution to a general problem (enable component-based development
for NE-DSLs), instead of having to provide language-specific solutions throughout the
whole language development process (from NE-DSL requirements, through their de-
sign and to their implementation). One immediate consequence of the reduction se-
mantics for E-ISC–based composition systems is that the core expressiveness of the
addressed language is never really extended. We do not claim that the expressiveness
of NE-DSLs are always at fault, rather their ability to support developers in defining
and using reusable entities—components. This is supported by a remark from Clemens
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Szyperski, which suggests that there is not always a need to extend the core expressive-
ness of the base language in order to support components:

“[...] from a purely formal point of view, there is nothing that could be done
with components that could not be done without them.”

– Clemens Szyperski, Component Software [51, p. 10]

Nevertheless, components are important for reuse, that is, for cost reduction and
quality improvement in the development process. Could the dream of McIlroy [40]
finally become true for Semantic Web languages? This was the goal of this chapter: to
introduce a universal approach to modularity for all Semantic Web languages, not only
one, and to show a lightweight way to component-based engineering with any DSL
on the Web. The technology presented is ready to be applied to more languages. The
REUSEWARE toolset is available and will be supported in the following years, and the
authors are open to collaborate in experiments with interested readers. Grammar-based
tools are like machine tools: they need to be used, employed, and applied to produce a
massive amount of products and other tools.

One of the most attractive application areas is the componentization of operational
Web languages, that is, workflow and Web service languages, such as BPEL or OWL-S.
In the field of programming, gray-box component techniques, such as aspect-orientation
or invasive composition, have considerably changed the way we think about software.
Since operational Web languages are basically not different from programming lan-
guages, the question remains open how gray-box component techniques can be trans-
ferred to them. How can BPEL views and aspects be specified? How can OWL-S
templates be defined? The technology presented in this chapter should provide answers
to these questions and is ready to be applied and tested.

Future work must also treat the open problem of fragment component contracts. A
fragment component, apart from being composed in a well-formed way, may pose re-
quirements on the components it is composed with. Relations from static semantics
could be employed to write fragment component contracts that define composition and
substitutability constraints. However, most of these constraints are language-specific.
Hence, a universal technology should integrate specification technologies for static se-
mantics, such as attribute grammars or natural semantics.

Of course, on a larger scale, component-based development for Semantic Web lan-
guages is still an open issue. In this chapter, we have presented one possible approach
for Web-DSL modularization, but other aspects, like application architecture, context-
aware adaptation, or application component models [4], have not been solved yet. Also,
there are different motivations for modularization. Some approaches want to establish
connections between different parts (e.g., ontology modules) to enable a shared un-
derstanding in a largely distributed environment. Others introduce techniques for het-
erogeneous or hybrid reasoning to treat heterogeneous ontologies written in diverse
languages. Other approaches, such as ours, attempt to create large monolithic entities
in a modular and reusable fashion. The aims are different, but each approach strives
to improve reuse and modularization in some way. Modularization on the Semantic
Web—and in general—will be an exciting field to follow in the coming years.
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Abstract. The existing Semantic Web languages have a very technical
focus and fail to provide good usability for users with no background
in formal methods. We argue that controlled natural languages like At-
tempto Controlled English (ACE) can solve this problem. ACE is a sub-
set of English that can be translated into various logic based languages,
among them the Semantic Web standards OWL and SWRL. ACE is
accompanied by a set of tools, namely the parser APE, the Attempto
Reasoner RACE, the ACE View ontology and rule editor, the semantic
wiki AceWiki, and the Protune policy framework. The applications cover
a wide range of Semantic Web scenarios, which shows how broadly ACE
can be applied. We conclude that controlled natural languages can make
the Semantic Web better understandable and more usable.

6.1 Why Use Controlled Natural Languages for the
Semantic Web?

The Semantic Web proves to be quite challenging for its developers: there is
the problem of adequately representing domain knowledge, there is the question
of the interoperability of heterogeneous knowledge bases, there is the need for
reliable and efficient reasoning, and last but not least the Semantic Web requires
generally acceptable user interfaces.

Languages like RDF, OWL, SWRL, RuleML, R2ML, SPARQL etc. have been
developed to meet the challenges of the Semantic Web. The developers of these
languages are predominantly researchers with a strong background in logic. This
is reflected in the languages, all of which have syntaxes that conspicuously show
their logic descent. Domain experts and end-users, however, often do not have
a background in logic. They shy away from logic notations, and prefer to use
notations familiar to them — which is usually natural language possibly com-
plemented by diagrams, tables, and formulas.

The developers of Semantic Web languages have tried to overcome the usabil-
ity problem by suggesting alternative syntaxes, specifically for OWL. However,
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even the Manchester OWL Syntax [21], which is advertised by its authors as
“easy to read and write”, lacks the features that would bring OWL closer to do-
main experts. The authors of [33,23] list the problems that users encounter when
working with OWL, and as a result of their investigations express the need for a
“pedantic but explicit” paraphrase language. Add to this that many knowledge
bases require a rule component, often expressed in SWRL. The proposed SWRL
syntax, however, is completely different from any of the OWL syntaxes. Query
languages for OWL ontologies introduce yet other syntaxes.

The syntactic complexity of Semantic Web languages can be hidden to some
extent by front-end tools such as Protégé1 that provides various graphical means
to view and edit knowledge bases. While the subclass hierarchy of named classes
can be concisely presented graphically, for more complex expressions users still
have to rely on one of the standard syntaxes.

Thus the languages developed for the Semantic Web do not seem to meet all
of its challenges. Though by and large they fulfill the requirements of knowledge
representation and reasoning, they seem to fail the requirement of providing
general and generally acceptable user interfaces.

Concerning user interfaces, natural language excels as the fundamental means
of human communication. Natural language is easy to use and to understand by
everybody, and — other than formal languages — does not need an extra learn-
ing effort. Though for particular domains there are more concise notations, like
diagrams and formulas, natural language can be and is used to express any
problem: only listen to scientists paraphrasing complex formulas, or to some-
body explaining the way to the station. For this reason, we will in the following
focus only on natural language, and not discuss complementary notations. Since
natural language is highly expressive, and is used in any application domain,
some researchers even consider natural language “the ultimate knowledge rep-
resentation language” [37]. This claim should be taken with reservations since
we must not forget that natural language is highly ambiguous and can be very
vague.

Thus there seems to be a conflict: on the one side the Semantic Web needs
logic-based languages for adequate knowledge representation and reasoning, and
on the other side the Semantic Web requires natural language for generally
acceptable user interfaces.

This conflict was already encountered before the advent of the Semantic Web,
for instance in the fields of requirements engineering and software specification.
Their researchers proposed to use controlled natural languages2 to solve the con-
flict — where a controlled natural language is a subset of the respective natural
language specifically designed to be translated into first-order logic. This trans-
latability turns controlled natural languages into logic languages and enables
them to serve as knowledge representation and reasoning languages, while pre-
serving readability. As existing controlled natural languages show, the ambiguity
and vagueness of full natural language can be avoided.

1 http://protege.stanford.edu/
2 http://www.ics.mq.edu.au/~rolfs/controlled-natural-languages/
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Therefore it is only natural that researchers have proposed to use controlled
natural language also for the Semantic Web [35]. In fact, several studies have
shown that controlled natural languages offer domain experts improved usability
over working with OWL [27,14,18].

Controlled natural languages, for instance Attempto Controlled English that
we present in the following, can be translated into various Semantic Web lan-
guages, thus providing the features of these languages in one and the same
user-friendly syntax. In our view, this demonstrates that ACE and similar con-
trolled natural languages have the potential to optimally meet the challenges of
the Semantic Web.

This chapter is structured as follows. Section 2 gives an overview of controlled
natural languages. In section 3 we present Attempto Controlled English (ACE),
and describe how ACE texts can be translated into first-order logic. Section
4 shows how ACE fits into the Semantic Web, concretely how ACE can be
translated into OWL and SWRL, how ACE can be used to express rules and
policies, and briefly how ACE can be translated into the languages RuleML,
R2ML and PQL. Section 5 is dedicated to tools developed for the ACE language,
namely the Attempto Reasoner RACE, the ACE View ontology and rule editor,
the semantic wiki AceWiki, and the front-end for the Protune policy language.
In section 6 we summarize our experiences, and assess the impact of controlled
natural languages on the Semantic Web.

6.2 Controlled Natural Languages: State of the Art

Besides Attempto Controlled English (ACE) that we will describe in detail in
the next section, there are several other modern controlled natural languages:

PENG [36] is a language that is similar to ACE but follows a more light-weight
approach in the sense that it covers a smaller subset of natural English. Its
incremental parsing approach makes it possible to parse partial sentences
and to look-ahead to find out how the sentence can be continued.

Common Logic Controlled English (CLCE) [38] is another ACE-like language
that has been designed as a human interface language for the ISO standard
Common Logic3.

Computer Processable Language (CPL) [7] is a controlled English developed
at Boeing. Instead of applying a small set of strict interpretation rules, the
CPL interpreter resolves various types of ambiguities in a “smart” way that
should lead to acceptable results in most cases.

E2V [32] is a fragment of English that corresponds to a decidable two-variable
fragment of first-order logic. In contrast to the other languages, E2V has
been developed to study the computational properties of certain linguistic
structures and not to create a real-world knowledge representation language.

While the languages presented above have no particular focus on the Semantic
Web, there are several controlled natural languages that are designed specifically
for OWL:
3 http://cl.tamu.edu/

http://cl.tamu.edu/
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Sydney OWL Syntax (SOS) [10] builds upon PENG and provides a syntacti-
cally bidirectional mapping to OWL. The syntactic sugar of OWL is car-
ried over one-to-one to SOS. Thus, semantically equivalent OWL statement
that use different syntactical constructs are always mapped to different SOS
statements.

Rabbit [18] is a controlled English developed and used by Ordnance Survey
(Great Britain’s national mapping agency). Rabbit is designed for a scenario
where a domain expert and an ontology engineer work together to produce
ontologies. Using Rabbit is supported by the ROO (Rabbit to OWL Ontology
construction) editor [11]. ROO allows entering Rabbit sentences, helps to
resolve possible syntax errors, and translates them into OWL.

Lite Natural Language [2] is a controlled natural language that maps to DL-
Lite which is one of the tractable fragments of OWL. Lite Natural Language
can be seen as a subset ACE.

CLOnE [13] is a very simple language defined by only eleven sentence patterns
which roughly correspond to eleven OWL axiom patterns. For that reason,
only a very small subset of OWL is covered.

ACE is unique in the sense that it covers both aspects: It is designed as a
general-purpose controlled English providing a high degree of expressivity. At
the same time, ACE is fully interoperable with the Semantic Web standards,
since a defined subset of ACE can bidirectionally be mapped to OWL.

6.3 Attempto Controlled English (ACE)

6.3.1 Overview of Attempto Controlled English

This section contains a brief survey of the syntax of the language Attempto
Controlled English (ACE). Furthermore, we summarize ACE’s handling of am-
biguity, and show how sentences can be interrelated by anaphoric references.

Syntax of ACE. The vocabulary of ACE comprises predefined function words
(e.g. determiners, conjunctions), predefined fixed phrases (e.g. ‘it is false that’, ‘for
all’), and content words (nouns, proper names, verbs, adjectives, adverbs).

The grammar of ACE — expressed as a set of construction rules and a set of
interpretation rules — defines and constrains the form and the meaning of ACE
sentences and texts.

An ACE text is a sequence of declarative sentences that can be anaphorically
interrelated. Furthermore, ACE supports questions and commands. Declarative
sentences can be simple or composite.

Simple ACE sentences can have the following structure:

subject + verb + complements + adjuncts

A customer inserts two cards manually in the morning.
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Every sentence of this structure has a subject and a verb. Complements (di-
rect and indirect objects) are necessary for transitive verbs (‘insert something’)
and ditransitive verbs (‘give something to somebody’), whereas adjuncts (adverbs,
prepositional phrases) that modify the verb are optional.

Alternatively, simple sentences can be built according to the structure:

‘there is’/‘there are’ + noun phrase

There is a customer.

Every sentence of this structure introduces only the object described by the noun
phrase.

Elements of a simple sentence can be elaborated upon to describe the situation
in more detail. To further specify the nouns, we can add adjectives, possessive
nouns and of -prepositional phrases, or variables as appositions.

A bank’s trusted customer X inserts two valid cards of himself.

Other modifications of nouns are possible through relative clauses

A customer who is trusted inserts two cards that he owns.

Composite sentences are recursively built from simpler sentences through coor-
dination, subordination, quantification, and negation.

Coordination by ‘and’ is possible between sentences and between phrases of
the same syntactic type.

A customer inserts a card and an automated teller checks the code.

A customer inserts a card and enters a code.

Coordination by ‘or’ is possible between sentences, verb phrases, and relative
clauses.

A customer inserts a card or an automated teller checks the code.

A customer inserts a card or enters a code.

A customer owns a card that is invalid or that is damaged.

Coordination by ‘and’ and ‘or’ is governed by the standard binding order of logic,
i.e. ‘and’ binds stronger than ‘or’. Commas can be used to override the standard
binding order.

There are three constructs of subordination: if-then-sentences, modality, and
sentence subordination. With the help of if-then-sentences we can specify con-
ditional situations, e.g.

If a card is valid then a customer inserts it.

Modality allows us to express possibility and necessity.

A trusted customer can insert a card.

A trusted customer must insert a card.

It is possible that a trusted customer inserts a card.

It is necessary that a trusted customer inserts a card.
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Sentence subordination means that a complete sentence is used as an object, e.g.

It is false that a customer inserts a card.

A clerk believes that a customer inserts a card.

Sentences can be existentially or universally quantified. Existential quantifi-
cation is typically expressed by indefinite determiners (‘a man’, ‘some water’, ‘3
cards’), while universal quantification is typically expressed by the occurrence of
‘every’ — but see below for the quantification within if-then-sentences. In the
example

Every customer inserts a card.

the noun phrase ‘every customer’ is universally quantified, while the noun phrase
‘a card’ is existentially quantified, i.e. every customer inserts a card that may, or
may not, be the same card that another customer inserts. Note that this sentence
is logically equivalent to the sentence

If there is a customer then the customer inserts a card.

which shows that noun phrases occurring in the if -part of an if-then-sentence
are universally quantified.

Negation allows us to express that something is not the case, e.g.

A customer does not insert a card.

To negate something for all objects of a certain class one uses ‘no’.

No customer inserts more than 2 cards.

To negate a complete statement one uses sentence negation.

It is false that a customer inserts a card.

ACE supports two forms of queries: yes/no-queries and wh-queries. Yes/no-
queries ask for the existence or non-existence of a specified situation.

Does a customer insert a card?

With the help of wh-queries, i.e. queries with query words, we can interrogate a
text for details of the specified situation. If we specified

A trusted customer inserts a valid card manually.

we can ask for each element of the sentence with the exception of the verb, e.g.

Who inserts a card?

Which customer inserts a card?

What does a customer insert?

How does a customer insert a card?

Finally, ACE also supports commands. Some examples:

John, go to the bank!

John and Mary, wait!

Every dog, bark!

A brother of John, give a book to Mary!
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Constraining Ambiguity. To constrain the ambiguity of full English ACE
employs three simple means

– some ambiguous constructs are not part of the language; unambiguous al-
ternatives are available in their place

– all remaining ambiguous constructs are interpreted deterministically on the
basis of a small number of interpretation rules

– users can either accept the assigned interpretation, or they must rephrase
the input to obtain another one

Here is an example how ACE replaces ambiguous constructs by unambiguous
constructs. In full English relative clauses combined with coordinations can in-
troduce ambiguity, e.g.

A customer inserts a card that is valid and opens an account.

In ACE the sentence has the unequivocal meaning that the customer opens an
account. To express the alternative meaning that the card opens an account the
relative pronoun ‘that’ must be repeated, thus yielding a coordination of relative
clauses.

A customer inserts a card that is valid and that opens an account.

However, not all ambiguities can be safely removed from ACE without rendering
it artificial. To deterministically interpret otherwise syntactically correct ACE
sentences we use a small set of interpretation rules.

Here is an example of an interpretation rule at work. In

A customer inserts a card with a code.

‘with a code’ attaches to the verb ‘inserts’, but not to ‘a card’. To express that the
code is associated with the card we can employ the complementary interpreta-
tion rule that a relative clause always modifies the immediately preceding noun
phrase, and rephrase the input as

A customer inserts a card that carries a code.

Anaphoric References. Usually an ACE text consists of more than one sen-
tence, e.g.

A customer enters a card and a code. If a code is valid then an automated teller

accepts a card.

To express that all occurrences of ‘card’ and ‘code’ should mean the same card
and the same code, ACE provides anaphoric references via the definite article,
i.e.

A customer enters a card and a code. If the code is valid then an automated teller

accepts the card.
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During the processing of the ACE text, all anaphoric references are replaced by
the most recent and most specific accessible noun phrase that agrees in gender
and number.

What does “most recent and most specific” mean? Given the sentence

A customer enters a red card and a blue card.

then

The card is correct.

refers to the second card, which is the textually closest noun phrase that matches
the anaphor ‘the card’, while

The red card is correct.

refers to the first card that is the textually closest noun phrase that matches the
anaphor ‘the red card’.

What does “accessible” mean? Like in full English, noun phrases introduced in
if-then-sentences, universally quantified sentences, negations, modality, and sub-
ordinated sentences cannot be referenced anaphorically in subsequent sentences.
Thus for each of the sentences

If a customer owns a card then he enters it.

A customer does not enter a card.

we cannot refer to ‘a card’ with

The card is correct.

Anaphoric references are also possible via personal pronouns

A customer enters his own card and its code. If it is valid then an automated teller

accepts the card.

or via variables

A customer X enters X’s card Y and Y’s code Z. If Z is valid then an automated

teller accepts Y.

Note that proper names always denote the same object.

6.3.2 From Attempto Controlled English to First-Order Logic

ACE texts can be mapped to Discourse Representation Structures (DRS) [24,5].
DRSs use a syntactic variant of the language of standard first-order logic which
we extended by some non-standard structures for modality, sentence subordi-
nation, and negation as failure. This section gives a brief overview of the DRS
representation of ACE texts. Consult [12] for a comprehensive description. DRSs
consist of a domain and of a list of conditions, and are usually displayed in a
box notation:
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Domain

Condition1
...
ConditionN

The domain is a set of discourse referents (i.e. logical variables) and the con-
ditions are a set of first-order logic predicates or nested DRSs. The discourse
referents are existentially quantified with the exception of boxes on the left-
hand side of an implication where they are universally quantified. We are using
a reified (or “flat”) notation for the predicates. For example, the noun ‘a card’
that normally would be represented in first-order logic as

card(A)

is represented as

object(A,card,countable,na,eq,1)

relegating the predicate ‘card’ to the constant ‘card’ used as an argument in
the predefined predicate ‘object’. In that way, we can reduce the potentially
large number of predicates to a small number of predefined predicates. This
makes the processing of the DRS easier and allows us to include some linguistic
information, e.g. whether a unary relation comes from a noun, from an adjective,
or from an intransitive verb. Furthermore, reification allows us to quantify over
predicates and thus to express general axioms needed for reasoning over ACE
text in the Attempto Reasoner RACE that is presented in Section 6.5.1.

Proper names, countable nouns, and mass nouns are representedby the object-
predicate:

John drives a car and buys 2 kg of rice.

A B C D E

object(A,’John’,named,na,eq,1)
object(B,car,countable,na,eq,1)
predicate(C,drive,A,B)
object(D,rice,mass,kg,eq,2)
predicate(E,buy,A,D)

Adjectives introduce property-predicates:

A young man is richer than Bill.

A B C D

object(A,’Bill’,named,na,eq,1)
object(B,man,countable,na,eq,1)
property(B,young,pos)
property(C,rich,comp than,A)
predicate(D,be,B,C)

As shown in the examples above, verbs are represented by predicate-predicates.
Each verb occurrence gets its own discourse referent which is used to attach
modifiers like adverbs (using modifier adv) or prepositional phrases (using
modifier pp):

John carefully works in an office.
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A B C

object(A,’John’,named,na,eq,1)
object(B,office,countable,na,eq,1)
predicate(C,work,A)
modifier adv(C,carefully,pos)
modifier pp(C,in,B)

The relation-predicate is used for of -constructs, Saxon genitive, and possessive
pronouns:

A brother of Mary’s mother feeds his own dog.

A B C D E

object(A,’Mary’,named,na,eq,1)
object(B,brother,countable,na,eq,1)
relation(C,of,A)
object(C,mother,countable,na,eq,1)
relation(B,of,C)
relation(D,of,B)
object(D,dog,countable,na,eq,1)
predicate(E,feed,B,D)

There are some more predicates which are not discussed here, but are described
in [12]. The examples so far have been simple in the sense that they contained
no universally quantified variables and there was no negation, disjunction, or
implication. For such more complicated statements, nested DRSs become neces-
sary. In the case of negation, a nested DRS is introduced that is prefixed by a
negation sign:

A man does not buy a car.

A

object(A,man,countable,na,eq,1)

¬ B C

object(B,car,countable,na,eq,1)
predicate(C,buy,A,B)

Note that ‘a man’ is not in the scope of the negation. In ACE, scopes are deter-
mined on the basis of the textual order of the sentence elements. In the following
example, ‘a man’ is also under negation:

It is false that a man buys a car.

¬
A B C

object(A,man,countable,na,eq,1)
object(B,car,countable,na,eq,1)
predicate(C,buy,A,B)

The ACE structures ‘every’, ‘no’, and ‘if ... then’ introduce implications that are
denoted by arrows between two nested DRSs.

Every woman owns a house.

A

object(A,woman,countable,na,eq,1)
⇒ B C

object(B,house,countable,na,eq,1)
predicate(C,own,A,B)
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As stated before already, discourse referents that are introduced in a DRS box
that is on the left-hand side of an implication are universally quantified. In all
other cases, they are existentially quantified. Disjunctions — which are repre-
sented in ACE by the coordination ‘or’ — are represented in the DRS by the
logical sign for disjunction:

John works or travels.

A

object(A,’John’,named,na,eq,1)

B

predicate(B,work,A)
∨ C

predicate(C,travel,A)

The modal constructs of possibility (‘can’) and necessity (‘must’) are represented
by the standard modal operators (see [6] for details):

Sue can drive a car.

A

object(A,’Sue’,named,na,eq,1)

�
B C

object(B,car,countable,na,eq,1)
predicate(C,drive,A,B)

Bill must work.

A

object(A,’Bill’,named,na,eq,1)

� B

predicate(B,work,A)

Finally, that -subordination can lead to the situation where a discourse referent
stands for a whole sub-DRS:

John knows that his brother works.

A B C

object(A,’John’,named,na,eq,1)
predicate(B,know,A,C)

C :
D E

relation(D,of,A)
object(D,brother,countable,na,eq,1)
predicate(E,work,D)

Every ACE sentence can be mapped to exactly one DRS using the introduced
DRS elements. DRSs are a convenient and flexible way to represent logical state-
ments.

6.3.3 Attempto Parsing Engine (APE)

The Attempto Parsing Engine (APE) is a tool that translates an input ACE
text into a DRS, provides various technical feedback (tokenization and sentence
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splitting of the input text, tree-representation of the syntactic structure of the
input), and various logical forms and representations derived from the DRS:
standard first-order logic form, DRS in XML, OWL/SWRL. An ACE paraphrase
of the input text is also offered, by translating (verbalizing) the obtained DRS
into a subset of ACE.

If the input text contains syntax errors or unresolvable anaphoric references
then the translation into a DRS fails and a message is output that pinpoints the
location and the cause of the error. Furthermore, APE tries to suggest how to
resolve the problem.

APE implements the ACE syntax in the form of approximately 200 definite
clause grammar rules using feature structures. APE comes with a large lexicon
containing almost 100’000 English words. User defined lexica can be used in
addition or in place of this large lexicon.

APE has been implemented in SWI-Prolog and released under the LGPL open
source license. The distribution also includes the DRS verbalizer, translator from
ACE to OWL/SWRL, and more4. APE has a command-line client and can be
also used from Java, or over HTTP as a REST web service5 or from its demo
client6. Figure 1 shows a screenshot of the APE web client.

6.4 Fitting ACE into the Semantic Web

6.4.1 OWL and SWRL

In order to make ACE interoperable with some of the existing Semantic Web
languages, mappings have been developed to relate ACE to OWL and SWRL (see
a detailed description in [22]). For example, the mapping of ACE to OWL/SWRL
translates the ACE text

Every employee that does not own a car owns a bike.

Every man that owns a car likes the car.

Which car does John own?

into a combination of OWL axiom, SWRL rule and DL-Query (an OWL class
expression).

employee � ¬ (∃ own car) � ∃ own bike
man(?x) ∧ own(?x, ?y) ∧ car(?y) → like(?x, ?y)
car � ∃ own− {John}

Note that the mapping is performed on the DRS level, meaning that all
ACE sentences that share their corresponding DRS are mapped into the same
OWL/SWRL form. ACE provides a lot of linguistically motivated syntactic
sugar, e.g. the following sentences have the same meaning (because they have
the same DRS).
4 http://attempto.ifi.uzh.ch/site/downloads/
5 http://attempto.ifi.uzh.ch/site/docs/ape_webservice.html
6 http://attempto.ifi.uzh.ch/ape/

http://attempto.ifi.uzh.ch/site/downloads/
http://attempto.ifi.uzh.ch/site/docs/ape_webservice.html
http://attempto.ifi.uzh.ch/ape/
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Fig. 1. Screenshot of the APE web client, showing the DRS and the paraphrase of the
sentence ‘everybody who does not drive a car owns a fast bike’

John knows every student.

Every student is known by John.

If there is a student then John knows the student.

For every student John knows him/her.

In order to keep the mappings simple and immediately reversible, they cur-
rently support only a fragment of ACE. Notably, there is no support for modifiers
such as adjectives, adverbs, and prepositional phrases. The covered ACE frag-
ment, however, is so large and syntactically and semantically expressive, that it
covers almost all of OWL 2 (some aspects of data properties are not handled)
and SWRL (again, data properties are not completely covered). ACE questions
that contain exactly one query word (‘what’, ‘which’, ‘whose’, ‘who’) are mapped
to DL-Queries.

The OWL→ACE mapping allows us to verbalize existing OWL ontologies as
ACE texts. This mapping is not just the reverse of the ACE→OWL as it also
covers OWL axiom and expression types that the ACE→OWL mapping does
not generate. For example

PropertyDomain(write author)

is verbalized as

Everything that writes something is an author.
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Table 1. Examples of verbalizing OWL property and class expressions as ACE verbs
and noun phrases (including common nouns and proper names), where R is a named
property, C, C1, . . . , Cn are (possibly complex) class expressions, a is an individual, n
is a natural number larger than 0. In the actual verbalizations, the word ‘something’ is
often replaced by a noun representing a conjoined named class, e.g. IntersectionOf(cat
ExistsSelf(like)) would be verbalized as ‘cat that likes itself’.

OWL properties and classes Examples of ACE verbs and noun phrases
Named property Transitive verb, e.g. ‘like’
InverseProperty(R) Passive verb, e.g. ‘is liked by’
Named class Common noun, e.g. ‘man’
owl:Thing ‘something’, ‘thing’
ComplementOf(C) ‘something that is not a car’, ‘something that does not

like a cat’
IntersectionOf(C1. . . Cn) something that is a person and that owns a car and

that . . .
UnionOf(C1. . . Cn) something that is a wild-animal or that is a zoo-animal

or that . . .
OneOf(a) Proper name, e.g. ‘John’, ‘something that is John’
SomeValuesFrom(R C) something that loves a person
ExistsSelf(R) something that likes itself
MaxCardinality(n R C) something that has at most 2 spouses

The resulting ACE sentence can be handled by the ACE→OWL mapping by
converting it into a general class inclusion axiom with the same semantics as the
property domain axiom.

The subset of ACE used in these mappings provides a corresponding ACE
content word (proper name, common noun, transitive verb) for each OWL entity,
whereas complex OWL class and property expressions map to ACE phrases, and
OWL axioms map to ACE sentences. At the entity level, OWL individuals are
denoted by ACE proper names, named classes by common nouns, and (object)
properties by transitive verbs and relational nouns (e.g. ‘part of’). In OWL, it
is possible to build complex class expressions from simpler ones by intersection,
union, complementation and property restriction. Similarly, ACE allows building
complex noun phrases via relative clauses which can be conjoined (by ‘and that’),
disjoined (by ‘or that’), negated (by ‘that is/are/does/do not’) and embedded (by
‘that’). OWL anonymous inverse properties map to ACE passive verbs. This
proves that in principle, each OWL structure can be mapped to a corresponding
ACE structure.7 Table 1 shows some examples of mapping OWL classes and
properties.

7 Only very complex structures that would require parentheses to denote the scope
of their constructors cannot be directly mapped to ACE as ACE does not offer a
similar parentheses mechanism for grouping. In order to enable the verbalization
in such cases, one can replace part of the complex structure by a named class to
simplify the structure.
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Table 2. Examples of verbalizing OWL axioms as ACE sentences, where R1, . . . , Rn,
and S are object property expressions; C and D are class expressions; and a, a1 and
a2 are individuals.

OWL axiom types Examples of ACE sentences
SubClassOf(C D) Every man is a human.
SubPropertyOf(
PropertyChain(R1. . . Rn) S)

If X knows Y and Y is an editor of Z then X
submits-to Z.

DisjointProperties(R1 R2) If X is a child of Y then it is false that X is a
spouse of Y.

SameIndividual(a1 a2) Bill is William.
DifferentIndividuals(a1 a2) Bill is not John.
ClassAssertion(C a) Bill is a man that owns at least 2 cars.

OWL axioms are mapped to ACE sentences (see table 2 for some exam-
ples). Apart from sentences that are derived from the axioms about individ-
uals (SameIndividual, DifferentIndividuals, ClassAssertion, PropertyAssertion),
all sentences are every-sentences or if-then-sentences, meaning that they have a
pattern ‘NounPhrase VerbPhrase’ or ‘If X . . . then X . . .Y ’ where NounPhrase
starts with ‘every’ or ‘no’. Of course, in the ACE to OWL/SWRL direction one
can use if-then-sentences instead of every-sentences and has also otherwise more
flexibility.

In a nutshell, the mappings between ACE and OWL/SWRL provide an alter-
native syntax for OWL and SWRL. This syntax is readable as standard English,
it makes the difference between OWL and SWRL invisible, and provides linguis-
tically motivated syntactic sugar. This syntax is mainly intended for structurally
and semantically complex knowledge bases for which visual methods and the of-
ficial OWL/SWRL syntaxes fail to provide a user-friendly front-end.

6.4.2 AceRules: Rules in ACE

AceRules is a multi-semantics rule engine using ACE as input and output lan-
guage. AceRules has been introduced in [26] and is designed for forward-chaining
interpreters that calculate the complete answer set. The following is a simple ex-
emplary program (we use the term “program” for a set of rules and facts):

John is a customer.

John is a friend of Mary.

Mary is an important customer.

Every customer is a person.

Every customer who is a friend of Bill gets a discount.

If a person is important then he/she gets a discount.

Every friend of Mary is a friend of Bill.

Submitting this program to AceRules, we get the following answer (we use the
term “answer” for the set of facts that can be derived from a program):
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Mary is important.

Mary is a customer.

John is a customer.

Mary is a person.

John is a person.

John is a friend of Mary.

John is a friend of Bill.

Mary gets a discount.

John gets a discount.

The program and the answer are both represented in ACE and no other formal
notation is needed for the user interaction.

AceRules is designed to support various semantics. Depending on the ap-
plication domain, the characteristics of the available information, and on the
reasoning tasks to be performed, different rule semantics are needed. At the
moment, AceRules incorporates three different semantics: courteous logic pro-
grams [17], stable models [15], and stable models with strong negation [16]. Only
little integration effort would be necessary to incorporate other semantics into
AceRules.

Negation is a complicated issue in rule systems. In many cases, two kinds of
negation [39] are required. Strong negation (also called “classical negation” or
“true negation”) indicates that something can be proven to be false. Negation
as failure (also called “weak negation” or “default negation”), in contrast, states
only that the truth of something cannot be proven.

However, there is no such general distinction in natural language. It depends
on the context, what kind of negation is meant. This can be seen with the
following two examples in natural English:

1. If there is no train approaching then the school bus can cross the railway
tracks.

2. If there is no public transport connection to a customer then John takes the
company car.

In the first example (which is taken from [16]), the negation corresponds to
strong negation. The school bus is allowed to cross the railway tracks only if the
available information (e.g. the sight of the bus driver) leads to the conclusion that
no train is approaching. If there is no evidence whether a train is approaching
or not (e.g. because of dense fog) then the bus driver is not allowed to cross the
railway tracks.

The negation in the second sentence is most probably to be interpreted as
negation as failure. If one cannot conclude that there is a public transport con-
nection to the customer on the basis of the available information (e.g. public
transport schedules) then John takes the company car, even if there is a special
connection that is just not listed.

As long as only one kind of negation is available, there is no problem to
express this in controlled natural language. As soon as two kinds of negation
are supported, however, we need to distinguish them somehow. We found a
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natural way to represent the two kinds of negation in ACE. Strong negation is
represented with the common negation constructs of natural English:

– ‘does not’, ‘is not’ (e.g. ‘John is not a customer’)
– ‘no’ (e.g. ‘no customer is a clerk’)
– ‘nothing’, ‘nobody’ (e.g. ‘nobody knows John’)
– ‘it is false that’ (e.g. ‘it is false that John waits’)

To express negation as failure, we use the following constructs:

– ‘does not provably’, ‘is not provably’ (e.g. ‘a customer is not provably trustworthy’)
– ‘it is not provable that’ (e.g. ‘it is not provable that John has a card’)

This allows us to use both kinds of negation side by side in a natural looking
way. The following example shows a rule using strong negation and negation as
failure at the same time.

If a customer does not have a credit-card and is not provably a criminal then the

customer gets a discount.

This representation is compact and we believe that it is well understandable.
Even persons who have never heard of strong negation and negation as failure
can understand it to some degree.

The original stable model semantics supports only negation as failure, but it
has been extended to support also strong negation. Courteous logic programs
are based on stable models with strong negation and support both forms of
negation.

None of the two forms of stable models guarantee a unique answer set. Thus,
some programs can have more than one answer. In contrast, courteous logic pro-
grams generate always exactly one answer. In order to achieve this, priorities are in-
troduced and the programs have to be acyclic. The AceRules system demonstrates
how these different rule semantics can be expressed in ACE in a natural way.

6.4.3 The Protune Policy Language

The term “policy” can be generally defined as a “statement specifying the be-
havior of a system”, i.e., a statement which describes which decision the system
should take or which actions it should perform according to specific circum-
stances.

Some of the application areas where policies have been lately used are se-
curity and privacy. A security policy defines security restrictions for a system,
organization or any other entity. A privacy policy is a declaration made by an
organization regarding its use of customers’ personal information (e.g., whether
third parties may have access to customer data and how that data will be used).

The ability of expressing policies in a formal way can be regarded as desir-
able: the authority defining policies would have to express them in a machine-
understandable way whereas all further processing of the policies could take
place in an automatic fashion.
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For this reason a number of policy languages have been defined in the last
years (cf. [9] for an extensive comparison among them). Nevertheless a major
hindrance to widespread adoption of policy languages are their shortcomings in
terms of usability: in order to be machine-understandable all of them rely on a
formal syntax, which common users find unintuitive and hard to grasp.

We think that the use of controlled natural languages can dramatically im-
prove usability of policy languages. This section describes how we exploited (a
subset of) ACE in order to express policies and how we developed a mapping
between ACE policies and the ones written in the Protune policy language. The
Protune policy language is extensively described in Chapter 4. This section only
provides a general overview of the Protune policy language and especially focuses
on its relevant features w.r.t. the ACE → Protune mapping.

Protune is a Logic Programming-based policy language and as such a Protune
policy has much in common with a Logic Program. For instance the Protune
policy

A ← B11, . . . , B1n.
. . .
A ← Bm1, . . . , Bmn.

can be read as follows: A holds if one of

– (B11 and . . . and B1n)
– . . .
– (Bm1 and . . . and Bmn)

holds. In this overview we only introduce two additional features of Protune
policies w.r.t. usual logic programs, namely actions and complex terms.

A policy may require that under some circumstances some actions are per-
formed: a typical scenario in an authorization context requires that access to
some resource is allowed only if the requester provides a valid credential. For
this reason the Protune language allows to define actions like in the following
example.

allow(action1) ← action2.

The rule above can be read as follows: action1 can be executed if action2 has
been executed. Notice the different semantics of the actions according to the side
of the rule they appear in: in order to stress this semantic difference we force
the policy author to write actions appearing in the left side of a rule into the
allow/1 predicate.

The evaluation of a policy may require to deal with entities which can be
modeled as sets of (attribute, value) pairs. This is the case with the creden-
tials mentioned in the example above. The Protune language allows to refer to
(attribute, value) pairs of such an entity by means of the following notation.

identifier.attribute : value

Only a subset of the ACE language needs to be exploited when defining policies:
data (i.e., integers, reals and strings), nouns, adjectives (in positive, comparative
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and superlative form), (intransitive, transitive and ditransitive) verbs and prepo-
sitional phrases (in particular of -constructs) can be used with some restrictions,
the most remarkable of which is that plural noun phrases are not allowed. This
means that neither expressions like ‘some cards’ or ‘at least two cards’ nor sentences
like ‘John and Mary are nice’ are supported. However notice that some of such sen-
tences (although not all) can be rewritten as sets of sentences (e.g., the previous
example can be split into ‘John is nice’ and ‘Mary is nice’). The complete set of
restrictions can be found in [8].

ACE provides a number of complex structures to combine simple sentences
into larger ones, whereas only few of them (namely negation as failure, possibility
and implication) can be exploited in order to express policies. Moreover whilst
ACE complex structures can be arbitrarily nested, in ACE policies nesting is
allowed only according to given patterns. Roughly speaking (more on this in [8])
ACE policies must have one of the following formats

– If B1 and . . . and Bn then H .
– H .

where Bi (1 ≤ i ≤ n) may contain a negation-as-failure or possibility construct
and H may contain a possibility construct. For example, only the first one of
the following sentences is a correct ACE policy: ‘if it is not provable that John has

a forged credit-card then John can access “myFile”’ and ‘it is not provable that John has

a forged credit-card’.
The restrictions listed above allow to straightforwardly map ACE sentences

into Protune rules: it should be easy to figure out that the ACE implication (resp.
negation as failure) construct maps to Protune rules (resp. negated literals). On
the other hand the ACE possibility construct is meant to convey the semantics of
the allow/1 Protune predicate. Other remarkable mapping rules are accounted
for in the following list.

– A programmer asked to formalize the sentence ‘John gives Mary the book’
as a logic program would most likely come up with a rule like give(john,
mary, book). Indeed in many cases translating verbs into predicate names
can be considered the most linear approach, and we pursued this approach
as well. However the arity of a Protune predicate can be arbitrary, whereas
intransitive (resp. transitive, ditransitive) verbs can be naturally modeled
as predicates with arity one (resp. two, three). For this reason we decided
to exploit ACE prepositional phrases (except of -constructs) for providing
further parameters to a Protune predicate. For instance, sentence ‘John gets

“A” in physics.’ translates into ‘get#in’(‘John’, ‘A’, physics).
– A statement like ‘John is Mary’s brother’ can be seen as asserting some in-

formation about the entity “Mary”, namely that the value of her property
“brother” is “John”. It should be then intuitive exploiting Protune complex
terms to map such ACE sentence to ‘Mary’.brother : ‘John’.

– When translating noun phrases like ‘a user’ it must be decided if it really
matters whether we are speaking about a “user” (in which case the noun
phrase could be translated as user(X)) or not (in which case the noun phrase
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could be translated as a variable X). According to our experience, policy
authors tend to use specific concepts even if they actually mean generic
entities. For this reason we followed the second approach, according to which
the sentence ‘if a user owns a file then the user can access the file’ is translated
into the Protune rule: allow(access(User, F ile)) ← own(User, F ile). If it
is needed to point out that the one owning a file is a user, the sentence
can be rewritten e.g., as follows: ‘if X is a user and X owns a file then X can

access the file’ which gives the translation: allow(access(X, File)) ← user(X),
own(X, File).

6.4.4 Other Web Languages

ACE has also been translated into other Semantic Web languages. A translator
has been implemented that converts ACE texts into the Rule Markup Language
(RuleML) [19]. Another translator has been developed that translates a subset
of ACE into the REWERSE Rule Markup Language (R2ML) [30]. R2ML inte-
grates among others the Semantic Web Rule Language (SWRL) and the Rule
Markup Language (RuleML) [40]. Furthermore, ACE has been used as a front-
end for the Process Query Language (PQL) that allows users to query MIT’s
Process Handbook. It has been shown that queries expressed in ACE and au-
tomatically translated into PQL provide a more user-friendly interface to the
Process Handbook [4,3].

6.5 ACE Tools for the Semantic Web

6.5.1 Attempto Reasoner RACE

The Attempto Reasoner RACE supports automatic reasoning in the first-order
subset of ACE that consists of all of ACE with the exception of negation as fail-
ure, modality, and sentence subordination. For simplicity, the first-order subset
of ACE is simply called ACE in this section.

RACE proves that theorems expressed in ACE are the logical consequence of
axioms expressed in ACE, and gives a justification for the proof in ACE. If there
is more than one proof, then RACE will find all of them. If a proof fails, then
RACE will indicate which parts of the theorems could not be proved. Variations
of the basic proof procedure permit query answering and consistency checking.

The current implementation of RACE is based on the model generator Sat-
chmo [31]. The Prolog source code of Satchmo is available — which allows us
to easily add modifications and extensions. The two most important extensions
are an exhaustive search for proofs and a tracking mechanism.

– exhaustive search: while Satchmo stops once it finds the first inconsistency,
RACE will find all inconsistencies

– tracking mechanism: RACE will report for each successful proof which min-
imal subset of the axioms is needed to prove the theorems.
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Currently, we employ RACE only for theorem proving. To better answer wh-
questions we plan to utilize RACE also as model generator.

RACE works with the clausal form of first-order logic. ACE axioms A and
ACE theorems T are translated — via DRSs generated by APE — into their first-
order representations FA, respectively FT . Then the conjunction (FA∧¬FT ) is
translated into clauses, submitted to RACE and checked for consistency. RACE
will find all minimal inconsistent subsets of the clauses and present these subsets
using the original ACE axioms A and theorems T . If there is no inconsistency,
RACE will generate a minimal finite model — if there is one.

RACE is supported by auxiliary axioms expressed in Prolog. Auxiliary axioms
implement domain-independent linguistic knowledge that cannot be expressed
in ACE since this knowledge depends on the DRS representations of ACE texts.
A typical example is the relation between the plural and the singular forms of
nouns. Auxiliary axioms can also act as meaning postulates for ACE constructs
that are under-represented in the DRS, for example generalized quantifiers and
indefinite pronouns. Finally, auxiliary axioms could also be used instead of ACE
to represent domain-specific knowledge.

ACE is undecidable. Technically this means that RACE occasionally would
not terminate. To prevent this situation, RACE uses a time-out with a time
limit that is calculated on the size of the input.

In the spirit of the Attempto project, running RACE should not require any
knowledge of theorem proving in general, and of the working of RACE in partic-
ular. Nevertheless, RACE offers a number of parameters that let users control
the deductions from collective plurals, enable or disable the output of the auxil-
iary axioms that were used during a proof, and limit the search for proofs. These
parameters have default settings that allow the majority of the users to ignore
the parameters.

RACE processes clauses by forward-chaining whose worst-case time complex-
ity is O(n2), where n is the number of clauses. To reduce the run-time of RACE
we need to reduce primarily the number of clauses that participate:

– we profit from simplifications introduced in the DRS representation that lead
to fewer clauses

– we use clause compaction
– we eliminate after the first round of forward reasoning the clauses with the

body true that cannot be fired again
– we apply intelligent search for clauses that could be fired in the next round

of forward reasoning
– we use complement splitting — given a disjunction (A∨B), one investigates

(A ∧ ¬B), respectively (¬A ∧ B) — though complement splitting is not
guaranteed to increase the efficiency in each case

RACE can be called via a SOAP web service8 and can conveniently be accessed
via a web client9. Figure 2 is a typical screenshot of the RACE web client.
8 http://attempto.ifi.uzh.ch/site/docs/race_webservice.html
9 see http://attempto.ifi.uzh.ch/race/ and
http://attempto.ifi.uzh.ch/site/docs/race_webclient_help.html

http://attempto.ifi.uzh.ch/site/docs/race_webservice.html
http://attempto.ifi.uzh.ch/race/
http://attempto.ifi.uzh.ch/site/docs/race_webclient_help.html
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Fig. 2. The web interface of RACE showing how to answer an ACE query from ACE
axioms with the default setting of the parameters

6.5.2 ACE View Ontology and Rule Editor

The ACE View ontology and rule editor10 allows users to develop OWL ontolo-
gies and SWRL rulesets in ACE. The ACE View editor lets the user create,
browse, and edit an ACE text, and query both its asserted and automatically
entailed content.

In the context of ACE View, an ACE text is a set of ACE snippets where
each snippet is a sequence of one or more (possibly anaphorically linked) ACE
sentences. In general, each snippet corresponds to an OWL or SWRL axiom, but
complex ACE sentences that involve sentence conjunction can map to several
axioms. When a snippet is added to the text, it is automatically parsed and
converted into OWL/SWRL. If the translation fails then the snippet is still
accepted, but as it does not have any logical axioms attached, it cannot be
considered as part of the text during reasoning. In case the translation succeeds,
the snippet is mapped to one or more OWL axioms and SWRL rules which
are in turn merged with the underlying knowledge base representation. In case
a snippet is deleted from the text, its corresponding axioms (if present) are
removed from the knowledge base.
10 http://attempto.ifi.uzh.ch/aceview/

http://attempto.ifi.uzh.ch/aceview/
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ACE View is implemented as an extension to the Protégé editor11. Therefore,
the ACE View user can alternatively switch to one of the default Protégé views
to perform an ontology editing task. In case an axiom is added in a Protégé view,
then the axiom is automatically verbalized into an ACE snippet which in turn
is merged into the ACE text. If the verbalization fails (e.g. the verbalizer does
not support the FunctionalProperty-axiom with data properties) then an error
message is stored and the axiom is preserved in the ACE text in Manchester
OWL Syntax. In case an axiom is deleted, then its corresponding snippet is
deleted as well.

The ACE text (and thus the ontology) can be viewed and edited at several
levels — word, snippet, vocabulary, text.

– Word level provides an access to OWL entities in the ontology and allows
one to specify how the entities should appear in ACE sentences, i.e. what
are the surface forms (e.g. singular and plural forms) of the corresponding
words.

– Snippets can be categorized as asserted declarative snippets, asserted inter-
rogative snippets (i.e. questions) and entailed (declarative) snippets.
Asserted snippets are editable and provide access to their details (parsing
results such as error messages or syntax trees/syntax aware layout, corre-
sponding axioms/rules, ACE paraphrase). Questions provide additionally
answers. Entailed snippets are not editable but can be explored to find out
the reasons that cause the entailment.

– Vocabulary is a set of ACE content words. It can be sorted alphabetically or
by frequency of usage. As content words correspond to OWL entities, stan-
dard Protégé views offer even more presentation options, e.g. the “back-bone
hierarchy” of subclass and “part of” relations; separation of the vocabulary
into classes, properties, individuals. The vocabulary level provides a quick
access to the word level, each selected/searched word (entity) can be auto-
matically shown in the word level, or its corresponding snippets in the text
level.

– An ACE text is a set of ACE snippets. This set can be filtered, sorted, and
searched. Reasoning can be performed on the whole text to find out about
its (in)consistency. A new text can be generated by filling it with snippets
that the asserted text entails.

The ACE View user interface comprises several “views” that allow for brows-
ing and editing of the ACE text at all the described levels (see figures 3 and 4).
In the “Lexicon view” and “Words view”, the complete content word vocabu-
lary of the ACE text is presented, sorted either alphabetically or by frequency
of usage. The “Lexicon view” allows the user to edit the surface forms (singu-
lar, plural, past participle) of words and make sure that they all correspond to
the same OWL entity. When a new entity is generated in the standard Protégé
views, the surface forms of its corresponding content word are automatically

11 http://protege.stanford.edu/

http://protege.stanford.edu/
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Fig. 3. One possible layout of the ACE View editor. Several views are shown: ACE
Snippet Editor shows the currently selected snippet; ACE Feedback shows its para-
phrase, annotations, the corresponding OWL axiom, and a list of syntactically similar
snippets; Q&A view shows all the entered questions, and the answers to the question
‘Which country is a an enclave?’; ACE Explanation shows the justification for the an-
swer ‘Vatican City is a country that is an enclave’. The justification contains two sets of
snippets (i.e. different explanations), one of which is expanded.

generated based on rules of English morphology. The user can override these
forms if needed.

The “Snippets view” organizes all the asserted snippets in a table. With each
snippet a set of its features are presented: snippet length (in content words),
creation time, number of annotations, etc. The table rows can be highlighted and
filtered based on the selected word, presenting only the snippets that contain the
word. The “Snippet Editor” lets the user to edit an existing snippet, or create a
new one. The “Feedback view” shows the logical and linguistic properties of the
selected snippet, and meta information such as annotations for the snippet. For
sentences that fail to map to OWL/SWRL, error messages are provided. Error
messages point to the location of the error and explain how to deal with the
problem.

The “Q&A view” lists ACE questions and answers to them. These ques-
tions correspond to DL-Queries which are essentially (possibly complex) class
expressions. The answers to a DL-Query are named individuals (members of
the queried class) or named classes (named super and subclasses of the queried
class). In ACE terms, the answers are ACE content words — proper names
and common nouns. While the answers to DL-Queries are representation-wise
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Fig. 4. Another possible layout of the ACE View editor. Several views are shown: the
standard Protégé tree view shows the subclass hierarchy of named classes; ACE Snip-
pets view shows the snippets that reference the selected entity ‘enclave’, the number
of content words and the creation time is shown for each snippet; Metrics view shows
various (mostly linguistic) metrics of the ACE text.

identical in the ACE view and in the standard Protégé view, the construction of
the query is potentially much simpler in the ACE view, as one has to construct
a natural language question.

The “Entailments view” provides a list of ACE sentences that follow logically
from the ACE text, i.e. these sentences correspond to the entailed axioms of
the ontology. Such axioms are generated by the integrated reasoner on the event
of classification. The “Explanation view” provides an “explanation” for a se-
lected entailed snippet. Such an explanation is a (minimal) sequence of asserted
snippets that justify the entailment. Presenting a tiny fragment of the ontology
which at the same time is sufficient to cause the entailment greatly improves the
understanding of the reason behind the entailment.

ACE View is implemented as a plug-in for Protégé 4 and relies heavily on
the OWL API [20] that provides a connection to reasoners, entailment explana-
tion support, storage of OWL axioms and SWRL rules in the same knowledge
base, etc. The main task of the ACE View plug-in, translating to and from
OWL/SWRL, is performed by two external translators — APE web service (see
section 6.3.3) and OWL verbalizer12. The entity surface forms are automatically
generated using SimpleNLG13.

6.5.3 AceWiki: ACE in a Semantic Wiki

AceWiki14 is a semantic wiki that uses ACE to represent its content. Figure 5
shows a screenshot of the AceWiki interface. Semantic wikis combine the phi-
losophy of wikis (i.e. quick and easy editing of textual content in a collaborative
way over the Web) with the concepts and techniques of the Semantic Web (i.e.
giving information well-defined meaning in order to enable computers and peo-
ple to work in cooperation). The general goal of semantic wikis is to manage
formal representations within a wiki environment.
12 http://attempto.ifi.uzh.ch/site/docs/owl_to_ace.html
13 http://www.csd.abdn.ac.uk/~ereiter/simplenlg/
14 See [27], [28], and http://attempto.ifi.uzh.ch/acewiki

http://attempto.ifi.uzh.ch/site/docs/owl_to_ace.html
http://www.csd.abdn.ac.uk/~ereiter/simplenlg/
http://attempto.ifi.uzh.ch/acewiki
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Fig. 5. This screenshot shows an AceWiki article about the concept ‘continent’. The
content of the article is written in ACE.

There exist many different semantic wiki systems. Semantic MediaWiki [25],
IkeWiki [34], and OntoWiki [1] belong to the most mature existing semantic wiki
engines. Unfortunately, none of the existing semantic wikis supports expressive
ontology languages in a general way. For example, none of them allows the users
to define general concept inclusion axioms like ‘every country that borders no sea

is a landlocked country’. Furthermore, most of the existing semantic wikis fail to
hide the technical aspects and are hard to understand for people who are not
familiar with the technical terms.

AceWiki tries to solve these problems by using controlled natural language.
Ordinary people who have no background in logic should be able to understand,
modify, and extend the formal content of a wiki. Instead of enriching informal
content with semantic annotations (as many other semantic wikis do), AceWiki
treats the formal statements as the primary content of the wiki articles. The
use of controlled natural language allows us to express also complex axioms in
a natural way.

The goal of AceWiki is to show that semantic wikis can be more natural and
at the same time more expressive than existing semantic wikis. Naturalness is
achieved by representing the formal statements in ACE. Since ACE is a subset
of natural English, every English speaker can immediately read and understand
the content of the wiki. In order to enable easy creation of ACE sentences, the
users are supported by an intelligent predictive text editor [29] that is able to
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Fig. 6. A screenshot of the predictive editor of AceWiki. The partial sentence ‘Every
area that contains a city is ...’ has already been entered and now the editor shows all
possibilities to continue the sentence. The possible words are arranged by their type in
different menu boxes.

look ahead and to show the possible words to continue the sentence. Figure 6
shows a screenshot of this editor.

In AceWiki, words have to be defined before they can be used. At the moment,
five types of words are supported: proper names, nouns, transitive verbs, of -
constructs (i.e. nouns that have to be used with of -phrases), and transitive
adjectives (i.e. adjectives that require an object). Figure 7 shows the lexical
editor of AceWiki that helps the users in creating and modifying word forms in
an appropriate way.

Most sentence that can be expressed in AceWiki can be translated into OWL.
Some examples are shown here:

AceWiki relies on the ACE→OWL translation that has been introduced in
Section 6.4.1. The OWL reasoner Pellet15 is seamlessly integrated into AceWiki,
15 http://clarkparsia.com/pellet/

http://clarkparsia.com/pellet/
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Fig. 7. The lexical editor of AceWiki helps the users to define the word forms. The
example shows how a new transitive verb — “organize” in this case — is created.

so that reasoning can be done within the wiki environment. Since only OWL
compliant sentences can be considered for reasoning, the sentences that are out-
side of OWL are marked with a red triangle:

In this way, it is easy to explain to the users that only the statements that are
marked by a blue triangle are considered when the reasoner is used. We plan to
provide an interface that allows skilled users to export the formal content of the
wiki and to use it within an external reasoner or rule-engine. Thus, even though
the statements that are marked by a red triangle cannot be interpreted by the
built-in reasoner they can still be useful.

Consistency checking plays a crucial role because any other reasoning task
requires a consistent ontology in order to return useful results. In order to en-
sure that the ontology is always consistent, AceWiki checks every new sentence
— immediately after its creation — whether it is consistent with the current
ontology. Otherwise, the sentence is not included in the ontology:
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After the user created the last sentence of this example, AceWiki detected that
it contradicts the current ontology. The sentence is included in the wiki article
but the red font indicates that it is not included in the ontology. The user can
remove this sentence, or keep it and try to reassert it later when the rest of the
ontology has changed.

Not only asserted but also inferred knowledge can be represented in ACE.
At the moment, AceWiki can show inferred class hierarchies and class member-
ships. Furthermore, AceWiki supports queries that are formulated in ACE and
evaluated by the reasoner:

Thus, ACE is used not only as an ontology- and rule-language, but also as a
query-language.

A usability experiment [27] showed that people with no background in formal
methods are able to work with AceWiki and its predictive editor. The partici-
pants — without receiving instruction on how to use the interface — were asked
to add general and verifiable knowledge to AceWiki. About 80% of the resulting
sentences were semantically correct and sensible statements (in respect of the
real world). More than 60% of those correct sentences were complex in the sense
that they contained an implication or a negation.

6.5.4 Protune

Chapter 4 describes the Protune framework in detail. Here we simply provide a
general overview of the Protune framework, and especially focus on the role of
ACE in this framework by building on the concepts introduced in Section 6.4.3.

The Protune framework aims at providing a complete solution for all aspects
of policy definition and policy enforcement. Special attention has been given to
the interaction with users, be they policy authors or end-users whose requests
have been accepted or rejected. For policy authors a set of tools is available to
ease the task of defining policies. For end-users a number of facilities are provided
to explain why a request was accepted or rejected.

In the following we describe the tools provided by the Protune framework for
policy authors, namely

Protune editor: It allows advanced users to exploit the full power of the Protune
language by directly providing Protune code
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ACE front-end for Protune: It enables users familiar with ACE but not with
Protune to define Protune policies

Predictive editor: It provides a user interface which guides non-expert users
toward the definition of syntactically correct policies (under development)

Advanced users can exploit the Protune editor for policy authoring. The edi-
tor helps them to avoid annoying syntactical errors, and provides facilities like
syntax highlighting, visualization of error/warning/todo messages, automatic
completion, outlining, as well as other facilities that come for free with a rich
client platform. A demo of the Protune editor can be found online16.

The Protune editor is intended for users who already have some knowledge of
the Protune policy language. For others users an ACE front-end for Protune has
been developed that allows them to define policies by means of the subset of ACE
described in Section 6.4.3. Such natural language policies can then be automat-
ically translated into semantically equivalent Protune policies, and enforced by
the Protune framework. The ACE→Protune compiler provides a command-line
interface that translates an input ACE policy into the corresponding Protune
policy, or if an error occurs, shows error messages like

Within the scope of negation-as-failure only one single predicate is
allowed.

or

Only “be” can be used as relation in the “then”-part of an implication.

Messages like these are shown if a syntactically correct ACE sentence cannot be
translated into a valid policy. For incorrect ACE sentences the error messages
provided by APE (cf. 6.3.3) are returned to the user.

The command-line interface that we just described assumes that the user is
already familiar with ACE. For unexperienced users a predictive editor like the
one described in Section 6.5.3 would be more advisable. A predictive editor for
the subset of ACE defined in Section 6.4.3 is in development.

Although the facilities described above have been designed in order to target
different categories of users, they can benefit any user. Expert users might want
to exploit the ACE front-end for Protune in order to define policies in a more
intuitive way and maybe fine-tune the automatically generated Protune policies
later. On the other hand, novice users might want to switch from the predictive
editor to the command-line interface as soon as they get sufficiently familiar with
the ACE language.

6.6 Conclusions

We showed how controlled natural languages in general and ACE in particular
can bridge the usability gap between the complicated Semantic Web machinery
16 http://policy.l3s.uni-hannover.de:9080/policyFramework/protune/

http://policy.l3s.uni-hannover.de:9080/policyFramework/protune/
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and potential end users with no experience in formal methods. Many tools have
been developed around ACE in order to use it as a knowledge representation
and reasoning language for the Semantic Web, and for other applications.

The ACE parser is the most important tool. It translates ACE texts into
different forms of logic, including the Semantic Web standards OWL and SWRL.
AceRules shows how ACE can be used as a practical rule language. We presented
RACE that is a reasoner specifically designed for reasoning in ACE. AceWiki
demonstrates how controlled natural language can make semantic wikis at the
same time expressive and very easy to use. We showed how ACE can help in
defining policies by providing a front-end for the Protune policy language. Last
but not least, ACE View is an ontology editor that shows how ontologies can be
managed conveniently in ACE. The large number of existing tools exhibits the
maturity of our language.

Evaluation of the AceWiki system showed that ACE is understandable and
usable even for completely untrained people. More user studies are planned for
the future.

If the vision of the Semantic Web should become a reality then we have to pro-
vide user-friendly interfaces. The formal nature of controlled natural languages
enables to use them as knowledge representation languages, while preserving
readability. Our results show how controlled natural language can bring the Se-
mantic Web closer to its potential end users.
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Abstract. Searching relevant information on the web is a main occu-
pation of researchers nowadays. Classical keyword-based search engines
have limits. Inconsistent vocabulary used by authors is not handled. Rel-
evant information spread over multiple documents can not be found. An
overview over an entire document collection can not be given by the means
of ranked lists. Question answering requiring semantic disambiguation of
occurring terminology is not possible. Trends in the literature can not be
followed if vocabulary is evolving over time.

GoPubMed is a semantic search engine using the background knowl-
edge of ontologies to index the biomedical literature. In this chapter we
discuss how semantic search can contribute to overcome the limits of clas-
sical search paradigms.

Keywords: Search Engines, Ontologies, Life Sciences, Question Answer-
ing, Expert Knowledge, Literature Trends.

7.1 Biomedical Literature Search

A major goal in the post-genome era is the exploration of the order and logic
of genetic programs (11). Advances in sequencing technology made genomes of
many organisms available. High-throughput experiments create masses of data
which can be mined for new insights into biological programs.

Despite the fact that ever more biomedical knowledge is stored in struc-
tured databases (58) including genome sequences, molecular structures, bio-
logical pathways, protein interactions and gene expression arrays most of the
biomedical knowledge available nowadays is still only accessible through un-
structured text in scientific publications.

The biomedical literature grows at a tremendous rate and PubMed comprises
already over 18.000.000 abstracts. Finding relevant literature is an important and
difficult problem with up to 5,000 new citations in PubMed every day. Biomedical
textming aims to manage this information blast (7).

Recently much research has been devoted to the analysis of the biomedical
literature. This interest has been sparked by the growth in literature, but also
by the availability of abstracts, full papers, and bibliometric data. Researchers
have been specifically interested in automatically extracting information from
free text such as protein names (22; 60; 31), ontology terms (55; 8; 16), and
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protein interactions (57; 21; 32). These techniques are then applied to aid or
even automate the annotation of the representations of proteins in databases.

Ontologies are increasingly used to capture biological knowledge. (26) defines
an ontology as an explicit specification of a conceptualization. In (38) the authors
give examples of biological ontologies and ontology-based knowledge. A prominent
example of an ontology is the Gene Ontology (GO) (24), which provides a hier-
archical vocabulary for function, processes and cellular locations. GO is used to
annotate proteins in biological databases such as the sequence database UniProt
(3) and the protein structure databank PDB (6).

7.1.1 Limits of Classical Search

Finding relevant literature is an important and difficult problem. The amount
of literature available online today is enormous. Ingenta (www.ingenta.com),
an online index of 17,000 periodicals, has 7 million articles going back to 1988.
Infotrieve (www.infotrieve.com) indexes over 20,000 journals with 15 million
citations. CiteSeer (www.citeseer.com), a digital library, covers over one million
articles and 22 million citations. Other important examples of literature search
engines are Google Scholar, Scopus, Scirus and Forschungsportal.Net. Databases
for scientific literature are growing at an astonishing rate. PubMed, a biomedical
literature database, has grown by 754,003 cited documents in the last year and
covers now more than 18 million abstracts of scientific literature, although about
half of them are retractions and corrections (55). With 871 million searches in
PubMed in 2007 it is clear that researchers spend a considerable amount of time
searching the scientific literature.

Great quantities of knowledge and information are available to researchers
through millions of documents. But without effective ways of access a lot of it
will remain unnoticed by the readers due to the overwhelming amounts of text.
Classical search engines have the following limitations:
– Classical search engines do not provide search results spread over multiple

documents. The answers are a ranked list of single documents represented
as a text excerpt and a URL.

– The search result is a ranked hitlist. The costs for the user, the time spent
to find relevant documents, quickly add up if the keywords are relevant for
multiple topics. To increase the precision1 the user has to refine his query
iteratively, which typically reduces recall2 at the same time.

– Results comprising many relevant documents are poorly represented by a
few documents in the beginning of a hitlist.

– Classical search engines are unaware of synonyms and relational information
of common terminology. Some engines aim at producing a higher recall by
expanding the query with synonyms, this technique typically reduces the
precision of the systems.

– Meta information characterizing the entire collection of relevant documents
is not part of the response of a classical search engine.

1 The precision measures of the ability of an algorithm to retrieve only relevant entities.
2 The recall measures the ability of an algorithm to extract all relevant entities.

www.ingenta.com
www.infotrieve.com
www.citeseer.com
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Table 1. Categorization of Biomedical Search Engines

Information Retrieval Knowledge Retrieval
Improved Querying Results Processing Tools Integration Semantic Processing
askMedline BioIE HubMed EBIMed
PubMedInteract ReleMed PubFocus GOAnnotator
PICO Linguist PubMed PubReMiner Harvester Info-PubMed
BabelMeSH ClusterMed XploreMed
PubFinder BioMetaCluster iHop
CiteXplore ExpertMapper

Textpresso
AliBaba
Chilibot
PubGene
MedStory
GoPubMed

The following section introduces online available biomedical search engines
which provide functionality beyond classical search engines.

7.1.2 Biomedical Search Engines

With the fast growth of the biomedical literature the number of specialized
search engines tailored to the needs of medicals and biologists has increased. In
1997, the US government decided to make MEDLINE, the citation catalog of
the National Library of Medicine, publicly accessible via the World Wide Web.
In 2001, a new URL was introduced www.pubmed.gov. Since then it has become
the most popular literature database online. With the introduction of the Entrez
Programming Utilities and the availability of citations in XML format since 2000
the number of alternative PubMed interfaces has increased quickly. Biomedical
search engines can be classified according to their focus on Information Retrieval
support and Knowledge retrieval support (36). However, it is not always possible
to separate clearly. Table 1 shows how the biomedical search engines discussed
in this section are categorized.

Search engines focusing on Information Retrieval. Information Retrieval
is the process of searching for documents or information in documents executed
by a human user or automated agent. A system supporting a human user query-
ing is aimed at increasing the ratio between relevant and non-relevant documents
upon a query, e.g web search engines. An automatic system’s task is the aggrega-
tion of filtered information to reduce the number of documents requiring further
processing, e.g. customizable RSS feed services.

Improved Querying. PubMed expands user queries using MeSH3 headings and
additional vocabularies such as drugs or chemicals. If a query contains such a
3 The Medical Subject Headings (MeSH) thesaurus is a controlled vocabulary com-

prising biomedical and health-related topics.

www.pubmed.gov
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term the query is expanded with the option to include also articles which were
manually annotated with this term. In the PubMed interface this expanded
query can be reviewed by the user. Also the E-Utilities can be called to compute
this expansion. This query expansion helps retrieving relevant articles which
otherwise would be missed.

Some tools aim to improve the querying of PubMed by supporting the user
during query formulation. Features reach from language translation over graph-
ical aims to pre-processing full English questions:

The text-based website askMEDLINE (19) takes a natural language question
as input. The system removes irrelevant words and the remaining words are
tested to relate to MeSH headings by querying PubMed. Terms classified as
“other eligible entries” are eliminated as well if the remaining search results are
few. The result is always a list of citation titles and links to the abstract and
full text.

PubMedInteract (42) is a web interface to PubMed and presents slider bars to
set PubMed search limits and parameters. A “Preview Count” option computes
the number of articles to be expected with the current settings.

PICO Linguist (18) offers non English medicals the option to build a struc-
tured clinical query with medical terms that may be difficult to express in English
by using the PICO framework. The user may specify the patient’s problem, the
therapy and alternative therapies and the outcome in his/her own language. Pri-
mary sources of vocabularies for translation are UMLS, MeSH, WHO EMRO and
UMLF. UMLS is a project which combines several terminologies such as ICD-10
(International Classification of Diseases), MeSH (40), SNOMED (45), LOINC
(20), Gene Ontology (4) and OMIM (29) into one resource. The Metathesaurus
contains concepts, concept names, and other attributes from more than 100 ter-
minologies, classifications, and thesauri; some in multiple editions.

The BabelMeSH (18) website maps search terms to a multilingual MeSH in
12 different languages. Only terms listed in the multilingual vocabulary can be
used for the query.

The PubFinder service (25) aims to automatically extract Pubmed abstracts
that deal with a specific scientific subject. The user enters a representative set
of PubMed ids. Based on the abstracts, a list of discriminating words is calcu-
lated which is used for ranking Pubmed abstracts for their probability of belonging
to the user defined topic. The first 100 words exhibiting the highest difference in
occurrence between both the global PubMed frequency of a word in a reference
dictionary and the frequency of a word in the selected abstracts make the list of dis-
criminating words. A set of abstracts dealing with literature mining contains, for
example, these words: abstracts, medline, information, articles, names, precision,
database, recall, protein, literature, databases, references, system, automatically,
interactions, set, mining, scientific, automated, motivation and others.

CiteXplore indexes documents from sources like Medline, European Patent
Office, Chinese Biological Abstracts and Citeseer using the Lucene full text in-
dex. Advanced searches such as wildcard search on selected attributes is offered.
Another option is the expansion with synonyms. Information gathered from other
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applications such as InterPro, SwissProt/Trembl and Alternative Splicing is cross
referenced. The external WhatIsIt textmining service is used to highlight pro-
teins, genes and protein-protein interactions. The references can be exported to
EndNote, RIS and Bibtex format.

Results Processing. Some systems process search results further to facilitate
browsing of a large number of documents or link to further related citations
based on the content of the search result. Examples are evidence highlighting,
document re-ranking and information organization. Evidence highlighting visu-
ally emphasizes text passages in source documents. For example, the word in a
sentence stating a relation of two entities is underlined. Readers are supported
when scanning through relevant text passages. Documents can be sorted ac-
cording to selected criteria such as date, type of citation, usage of vocabulary
or reputation. Hyperlinks to documents not in the original search result, for
example referenced papers or papers with similar content are linked, support
researchers in finding all relevant material. Information organization is the pro-
cess of organizing information such that it becomes useful. For example tables
or network graphs support understanding.

BioIE is a rule-based system that extracts informative sentences from MED-
LINE document or uploaded texts. Informative sentences refer to structures,
functions, diseases and therapeutic compounds, localisations or familial rela-
tionships of biological entities, particularly proteins. The selected text base can
be visualized in tabular form as word, MeSH term and word phrase frequency
tables. Textual templates are used to identify informative sentences of a selected
type, e.g. functional descriptions. The sentences can be further filtered for cooc-
currence with additional keywords.

ReleMed (54) expands a user’s query automatically using UMLS and MeSH.
Names of proteins and genes are expanded as well. Also lexical variants of
words are generated. The user has the option to undo these expansions selec-
tively. Matches in separate sentences are highlighted. ReleMed uses the relational
MySql database to implement a full text index over single sentences. MeSH head-
ings associated with the abstracts are concatenated and treated as an additional
sentence. The relevance of an article is defined in eight levels depending on the
cooccurrence of all keywords in one or more sentences.

PubMed PubReMiner (37) shows the user journals in which his/her keywords
are mentioned the most. It displays authors publishing the most articles men-
tioning the keywords. It shows words that have been used most in the title and
abstract of the articles. Queries can be refined based on document attributes
such as address, substances, MeSH headers, publication year, author and others.

Vivisimo applies clustering methods in ClusterMed and BioMetaCluster (56).
In ClusterMed PubMed results are clustered in various ways. Document dis-
tances are computed based on strings in (1) title, abstract, and Medical Subject
Headings, (2) title, abstract only, (3) MeSH only, (4) author’s name only, (5)
affiliation only and (6) date of publication only. Vivisimo uses words found in
this document’s attributes to label clusters. The clusters are ordered by the
number of documents contained in them. The cluster hierarchy is computed
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using statistical language processing. For the query rab5 ClusterMed returned
several clusters such as Vacuoles, Phagosomes, Rabaptin-5, Rab5a and others.
The labels are computed on the basis of word occurrence statistics in the re-
trieved article abstracts. The cluster “Rabaptin-5” contains sub-clusters such
as “Ubiquitin”, “GAT domain”, “Vesicular transport”, “Nucleotide exchange”,
“Dimerization Of Rabaptin-5”, “Endocytic membrane fusion”, “Correlated, Tis-
sue”, “FRET microscopy”, “Cleaved in apoptotic” and other labels.

ClusterMed gives the option to compute the clusters only on the MeSH head-
ings. The same string based clustering techniques are applied but using only words
from MeSH. A clustering result for the query rab5 displays clusters labeled with
MeSH headings such as “Guanine Nucleotide Exchange Factors”, “Virology” and
“Pathology” but also concatenated labels such as “Analysis, Liver”, “Chromatog-
raphy, Affinity, Cattle”, “Phagosomes, Microbiology” which do not correspond to
a single MeSH heading or sub-heading but to a combination of them. A cluster
does not necessarily comprise sub-clusters reflected by a relation in the UMLS. In
the examples the cluster “Guanine Nucleotide ExchangeFactors” comprises labels
of cellular components, diseases, peptides, proteins and algorithms. The cluster-
ing algorithm grouped them on the basis of statistical co-occurrence in the result
set. No information about relations between headings is used.

Another feature of ClusterMed is the clustering by authors. Here, the strings
of the last name plus the initials are clustered. Sub-clusters contain co-authors.
The clusters may contain PubMed citations of different authors with same last
name and initials.

BioMetaCluster is a meta search engine based on the Vivisimo clustering
architecture. It queries 22 web resources relevant for the biomedical domain
using string based clustering of the search results.

Search Engines Focusing on Knowledge Retrieval. In (59) the authors
compare knowledge retrieval systems and define their task as finding knowledge
from information and organizing it into structures that humans can use. Follow-
ing (1), the content of the human mind can be classified into data, information,
knowledge, understanding and wisdom. (1) Data simply exists and has no signif-
icance beyond its existence. Symbols such as raw numbers are data. (2) Informa-
tion is data that has been given meaning by way of relational connection. It adds
context. This meaning does not need be useful. A relational database holds struc-
tured relational data. (3) Knowledge is the appropriate collection of information,
such that its intention is to be useful. Computer programs modeling or simulating
some process apply knowledge. (4) Understanding is an interpolative and proba-
bilistic process. With understanding one can synthesize new knowledge or at least
information. (5) argue that some artificial intelligence systems can generate new
knowledge and are therefore “understanding”. (5) Wisdom is an extrapolative and
non-deterministic, non-probabilistic process. Read the essay from (53) for an in-
teresting philosophical discussion. (5) suggest an interpretation of the concepts
as shown in figure 1. The transitions from data to information, to knowledge, and
finally to wisdom is achieved by understanding. Some systems focus on the inte-
gration of external programs to achieve these transitions.
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Fig. 1. The diagram shows the transitions from data to information, to knowledge,
and finally to wisdom. Understanding is not a separate level of its own, it is necessary
for the transition from each stage to the next. Figure adopted from (5). (1) points
out that information ages quickly, knowledge has a longer time span, only wisdom is
permanent.

Tools Integration. Biomedical search engines that process search results exter-
nally call API methods or web services to analyze single citations or batches of
citations. These features are influenced by the ideas of the Semantic Web. Some
services allow for various data exchange formats such as RDF, XML, BibTex,
RIS, Endnote and plain text.

HubMed (17) offers a battery of external tools to process PubMed results.
The search behaves exactly like the original in PubMed if one chooses to use
the option sort by date. An alternative is the option sort by relevance. Here, an
Apache Lucene index is employed but no MeSH headings are expanded as is done
via the PubMed search. The option sort by relevance seems to favor citations
containing all query keywords. Some internal tools help managing references. A
clipboard stores a set of citations for later reuse. The history function enables the
recovery of previous searches. Citations can be tagged with arbitrary keywords
for later filtering for them. Moreover, tags of other users may be used.

The search can be narrowed or widened with the most closely related words.
The relatedness is computed using a tf-idf ranking (35) of the words of the first
500 citations. Another option to manipulate the original query is the clustering
feature of HubMed. The Lingo algorithm (39) is used to cluster the first 200
citations of the original query. The clusters are linked back to the first 20 citations
of each cluster.

An external utility called by HubMed is the Entrez’ ELink utility. For some
articles, generally if an article refers to the discovery or sequencing of a gene



316 A. Doms and M. Schroeder

or protein, the inter-database links are presented by HubMed. Another tool
employed is the Whatizit web service (51), which recognizes terms such as pro-
tein names and biological processes, linking them to services such as UniProt
and Gene Ontology. Citations in the clipboard can be visualized with the Touch-
Graph Java applet4. HubMed focuses on improved querying but also on tool
integration and thereby supporting knowledge retrieval.

PubFocus (48) is a bibliometric statistics tool integrating external data and
web services to process PubMed searches and provide ranked lists of prominent
authors, cities and journals. The ranking of citations is based on journal im-
pact factors, volume of forward references, referencing dynamics and authors’
contribution level. PubFocus uses the non-free Journal Citation Reports Impact
Factors published by Thomson Scientific. Forward citation information is based
on PubMed Central and Google Scholar. The data retrieval is executed online by
parsing the external website’s HTML output. The authors define several indexes
such as citations-over-age index, the Combined Impact Factor, the Cumulative
Impact Factor and the Author’s Rank. Terms of the NCI thesaurus and the MGD
mammalian gene ontology database occurring within titles and/or abstracts of
citations are extracted using a MySQL full text search. Statistics for such terms
are also integrated in the web interface and serve for further refinement of the
initial query.

Harvester crawls and cross-links the following web resources: BLAST,
CDART, CDD, ensEMBL, Entrez, GenomeBrowser, gfp-cDNA, Google-Scholar,
GoPubMed, H-Inv, HomoloGene, Hwiki-Forum, iHOP, IPI, MapView, Mi-
tocheck, OMIM, PolyMeta, PSORT II, SMART, SOSUI, SOURCE, STRING,
Unigene, UniprotKB, Wikipedia. Harvester cross-links public bioinformatic
databases and prediction servers to provide fast access to protein specific bioin-
formatic information.

Semantic Processing. Various techniques to overcome the semantic gap between
text and its meaning are employed by biomedical search engines. A strong assump-
tion made by some tools is that co-occurrence of biological entities in a sentence
potentially indicates an observation or hypothesis of an interaction in vivo. Biolog-
ical entities have a highly ambiguous terminology. Disambiguation techniques aim
at solving this problem. Some tools make use of relations of concepts in taxonomies
or ontologies and employ reasoning techniques. If findings can be confirmed to be
significant such information is aggregated and can be seen as knowledge and used
for question answering. A form of dialog can guide knowledge retrieval by directing
what kind of knowledge is requested. Finally, some tools experiment with hypoth-
esis generation, used knowledge and some statistical signals to present potentially
new knowledge which needs to be confirmed.

With EBIMed (52) identify associations between protein/gene cellular com-
ponents, biological processes, molecular functions, drugs and species. Results
are presented in tabular form. Sentences supporting the associations are cited.
The tabular form of presenting many relations between biological entities

4 sourceforge.net/projects/touchgraph
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ordered by their frequency is a way of providing the user with a quick overview.
Such an accumulated form of information can support literature search for as-
sociations because the user reads mainly relevant sentences. The authors claim
that EBIMed is complementary to PubMed in the sense that large result sets in
PubMed are tedious to read through while EBIMed’s tables are expected to be
of more help for larger sets of citations.

GOAnnotator aims to support database curators. Their task is to confirm
automatic database curations by linking annotations to experimental results de-
scribed in peer-review publications. The tool provides textual evidences for gene
products which have already uncurated automatically generated annotations and
links the uncurated annotations to texts extracted from literature thus support-
ing GO curators in choosing the correct terms. GOAnnotator is utilising the
hierarchical structurte of GO and can also suggest alternative, i.e. more precise
annotations. The precision of the system is high due to the focused search with
the previously annotated similar concept.

Info-PubMed provides information from Medline on protein-protein interac-
tions. Given the name of a gene or protein, it shows a list of the names of other
genes/proteins which co-occur in sentences from Medline, along with the fre-
quency of co-occurrence. Information Extraction techniques are used to identify
a set of sentences which clearly indicate interactions. The user interface allows
to collect statements in a drag&drop manner and to visualize them using an
external tool.

XplorMed (46) allows the user to explore a set of Medline abstracts. Three en-
try points are offered: Medline search, a set of document PMIDs or via a database
entry with associations to Medline. The system then classifies the abstracts based
on the top hierarchy of the MeSH terms associated to each MEDLINE entry.
One or more top level categories of MeSH can be selected. The associated articles
are now analyzed for words that are significantly related to others in this subset
of articles. A main contribution of XplorMed is the functionality to explore the
vocabulary used in a set of articles. The context of prominent words from the
abstracts can be visualized. This is a list of other words in the texts which appear
frequently together with such words. Based on this analysis, chains of words, an
ordered set of words where the 2nd depends on the 1st, the 3rd depends on the
2nd, an so on, can be selected. The selected chain of words may be used to re-
rank the initial Medline citations. The more chain words appear in an abstract
the higher it is ranked. The authors claim that XplorMed can be used for sets
of articles for which the user does not initially know what to expect. Prominent
vocabulary is revealed, which later is used for re-ranking.

Information Hyperlinked over Proteins (33) is a website offering hyperlinked
navigation of PubMed abstracts via gene/protein mentions in sentences. Upon a
search the user is presented a list of sentences containing concurrent gene/protein
mentions. An interaction of the concurring entities is assumed and the predicted
type of the interaction is highlighted. In case of existence of large scale exper-
imental evidence of an interaction this is indicated as well by a link to the
experimental results. Gene/protein name disambiguation is a difficult task (60).
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iHop enables users to verify its findings by highlighting the entity names in the
original sentences. Thus, research will be able to confirm the findings. Three lev-
els of confidence of the algorithm are indicated. The user may create gene mod-
els by appending interactions of genes/proteins to a graphical representation.
While iHop is an Information Retrieval tool as it displays PubMed sentences for
gene/protein mentions it additionally disambiguates such entities. This enables
a semantic connection between sentences also via synonymous labels of the same
entity. Furthermore, this can be used to create interaction networks manually or
automatically. This is a potential source of new insights into previously published
data potentially supporting new hypotheses. Therefore, iHop is recognized as a
Knowledge Retrieval tool as well.

For a selection of 105 topics Expert Mapper computed prominent authors from
Medline citations of the years 1997 to 2006 grouped into geographical regions.
The main contribution of Expert Mapper is the accumulation of affiliation infor-
mation for an author so that it becomes possible to make a reasonable manual
prediction about the identity of an individual.

Textpresso (41) is an ontology-based search engine built of scientific literature
on C. elegans and selected others domains. The texts are indexed with biologi-
cal concepts and relations. The labels fall into 33 categories that comprise the
Textpresso ontology. On a second level Textpresso maintains ca. 14.500 regular
expressions representing known formulations of relations of a parent category
with other entities. A selection of full text articles of selected species is indexed.
The user can retrieve sentences mentioning keywords and concepts. Currently,
the list comprises 101 concepts, some of which are known from the Gene Ontol-
ogy. For each category Textpresso maintains a list of regular expressions used to
index the texts. Textpresso can retrieve abstracts mentioning a life stage in C.
elegans and a cell part. The indexation of an article with a descendant concept
implies the indexation also with the ancestor concepts. Each concept in the on-
tology has its own identification algorithm. Textpresso provides ten-thousands
of indexed articles containing more than 222.000 facts.

AliBaba (47) visualizes PubMed as a graph. It parses PubMed abstracts for
biological objects and their relations as mentioned in the texts. Ali Baba visu-
alizes the resulting network in graphical form, thus presenting a quick overview
over all information contained in the abstracts. A variety of relations between
proteins, (sub)cellular locations, genes, drugs, tissues, diseases and others are
detected. The extracted relations have a confidence value which can be used for
filtering less likely correct associations. The interactive graphical representation
allows for human interpretation of high dimensional data.

Chilibot (13) searches PubMed abstracts for specific relationships between
proteins, genes, or keywords. The user enters a list of two or more genes or other
keywords. PubMed searches for citations mentioning those entities or a synonym
in one sentence. The resulting sentences are later categorized into six types: (1)
Interactive relationship (stimulative), (2) Interactive relationship (inhibitory),
(3) Interactive relationship (both stimulative and inhibitory), (4) Interactive
relationship (neutral), (5) Non-interactive (i.e. parallel) relationship and
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(6) Abstract co-occurrence only. The relations are then visualized in a 2D graph
with colored nodes and edges. The nodes denote the biological entity or key-
words, and the edges denote the observed type of relation and its count. The
graph is hyperlinked with the original set of sentences the relations were derived
from. The user can confirm each relation and remove false edges from the graph.

Another feature of Chilibot is the generation of new hypotheses. Two nodes
which are not directly connected to each other can be searched for the missing
link. A graph of potential indirect interactions is drawn. The hypothesis is made
on the basis of common connections to other entities, built by association, a
principle previously used in gene function studies (50). PubGene (34) is similar to
Chilibot relying on non-directional interactions. PubGene Webtools allow users
to analyze gene expression data with literature network information, browse
literature neighbors of a given gene, search literature articles for a set of genes,
search ontology terms related to a given gene, search MeSH terms found with a
set of genes, and search for official nomenclature.

Medstory5 groups result items into categories. The categories show users how
the results distribute. Each category suggests further topics. Selecting of the
sub-topics gives the choice of starting a new search with a narrowed query. The
main researchers in the area are listed. Medstory is focused on the non-medical
expert.

Summary of Comparision. Table 2 summarizes the features of all com-
pared search engines. The features were selected in order to highlight the
different approaches of the tools: (1) PubMed query expansion/refinement:
expands MeSH headings and additional vocabularies such as drugs or chem-
icals, citation metadata, (2) expands gene/protein names with synonyms,
(3) offers narrowing/expanding with ontology concepts, (4) language trans-
lation of terms, (5) full natural language questions handled, (6) querying
with other documents/database cross-references, (7) alternative full text in-
dex (Lucene/MySQL), (8) refinement based on metadata derived from ini-
tial resultset, (9) meta search in separate databases, (10) refinement based on
keywords derived from initial resultset, (11) bypassed normal PubMed query
expansion/special PubMed queries, (12) entity specific (genes/proteins), (14)
Search in UMLS, (15) Search in MeSH, (16) Search in Gene Ontology, (17)
Browse within Taxonomy/Ontology hierarchy, (18) Browse within identified
text occurences, (19) Query history, (20) Permanent user account, (21) Ses-
sion clipboard, (23) links to title, (24) links to abstract, (25) provides external
links, (26) shows PMID, (27) shows evidence sentence, (28) shows text snip-
pets, (29) calls external web services, (31) highlighted keywords from query,
(32) highlighted biomedical entities/relations, (33) highlighted ontology con-
cepts detected, (34) highlighted vocabular (cluster labels/significant words),
(36) Re-ranking based on concurrence of keywords, (37) Re-ranking based on
concurrence of identified entities, (38) Re-ranking based on external database
references or precomputed statistics, (39) Language structure (e.g. conclu-
sive sentences), (41) Cosin similarity based, (42) based on co-authorship, (43)
5 medstory.com
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Table 2. Comparision of Biomedical Search Engines. The main features of the tools
are marked in bold.

via author name, (44) hierarchical classification based on distance metrics,
(45) hierarchical classification using taxonomies/ontologies, (46) 2D concept
graph, (47) tabular statistics, (48) Call external service, (50) graphical slid-
ers, (51) email communication, (52) social tagging, (53) special query language,
(54) batch processing, (55) drag&drop GUI, (57) external markup tool, (58) im-
port literature references from external databases curations, (59) visualization
using an external tool, (60) external large scale experimental metadata used,
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(62) XML, (63) RDF, (64) BibTex, (65) Endnote (RIS), (67) biomedical enti-
ties (e.g. gene/proteins), (68) Taxonomy/Ontology terminology, (69) Wikipedia
terminology, (71) within abstracts, (72) within sentences, (74) disambiguation
for bio-entities, (75) disambiguation for taxonomy/ontology terminology, (76)
disambiguation for authors, (78) is-a generalization, (80) significant strings, (81)
significant taxonomy/ontology concepts, (82) expert profiles, (83) significant bio-
entities, (84) textual synopsis, (87) explicit question answering, (89) question
categories, (90) graphical interaction, (92) explicit hypothesis generation.

Table 2 shows that most biomedical search engines already provide extended
functionality for Information Retrieval while about only half of them provide
some support for Knowledge Retrieval. The Life Sciences are early adopters for
semantic technologies. A number of biomedical search engines offer functional-
ity to process results semantically in order to provide more condensed or more
relevant results to the user. Enitity Recognition and Co-Occurrence analysis
are most widely supported. The background knowlegde of ontologies is not yet
widely used.

7.1.3 The Ontology-Based Search Paradigm

The basis of a semantic search engine is the underlying specific expert knowledge.
This knowledge is captured within one or more ontologies. In contrast to classical
keyword search the results are not presented as a long ordered list of documents
but as an hierarchical index. The concepts defined in the ontologies are identified
in the text of each document. This mapping phase is clearly most crucial for the
quality of the results. Efficient concept recognition algorithms are necessary to
cope with varying morphology and syntax of concept labels. Another important
issue is Word Sense Disambiguation as concept labels may have different meaning
in different contexts (2).

After mapping the documents to the mentioned concepts in the text a hi-
erachical index, further named induced ontology, is computed. The idea is to
compute a graph which connects all concepts found in the annotations of the
retrieved documents to the most general concept defined, the root of the ontol-
ogy. All concepts of the background knowledge which are part of a path from
an annotated concept all the way up to the root are included in the induced
ontology. The graph contains multiple instances of concepts having more than
one parent concept. The set of concepts Θ represented by the induced ontology
can be defined as follows:

Θ =
i⋃

1..d

t⋃
1..a(i)

ancestors(O, concept(i, t)) (1)

where d is the number of documents of a result set and a(i) is the number of
annotations in a document. The function concept returns the ontology concept
associated with a document annotation and ancestors returns the set of concepts
transitively related to the given concept in the ontology O.
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The resulting acyclic graph functions as a ”table of contents” for the search
results. The graph can be explored by the user. At any level a concept can be
selected. The documents associated with this node are only those which mention
the concept or a descandent concept or a synoynm. Figure 2 shows an example of
an Induced Ontology for a query to PubMed using the MeSH and Gene Ontology
as background knowledge.

Beside the classical keyword based search paradigm and the ontology-based
search paradigm there exists the natural language processing based paradigm.
One recently created state-of-the-art NLP search engine is Powerset6. It uses the
background knowledge of Wikipedia to answer full sentence questions. Powerset
analyzes the document corpus using Natural Language Processing techniques.
The user enters a full question and the system responds with a list of possible
answers in the form of text passages from Wikipedia. The background knowledge
used is stored in natural language text not in structured ontologies. The user
needs to be able to formulate a question containing enough information for the
system to find relevant answers and the system must be able to correctly parse
the sentence. It is often difficult for the user to formulate a precise question and
often it is even more difficult for parser to understand a complex question.

Figure 3 shows keyword-based and natural language based paradigms in re-
lation to the ontology-based paradigm. The answers of keyword and NLP-based
searches are typically single documents, while ontology-based searches offer an
outline of all relevant documents. NLP and ontology-based searches use semantic
technologies to structure text, while keyword-based search is based on charac-
ter n-grams. Keyword and ontology-based searches take word phrases as input,
while NLP search takes full questions as input.

7.2 Answering Biomedical Questions

When users search they have questions in mind. Answering questions in a domain
requires the knowledge of the terminology of that domain. Classical approaches
to search do not make use of background knowledge during search. This section
describes GoPubMed’s approach to uses ontological background knowledge when
mining a literature corpus to answer biomedical questions. It is shown that the
background knowledge can be used to find more relevant documents and to
organize the results in order to focus on important aspects. An aspect is a set
of similar statements, e.g. a set of sentences describing the relation between a
disease and a drug. The goal is to answer biomedical questions with a minimum
of user interactions.

The goal of Information Retrieval systems is to maximize the precision of
the results, by minimizing the number of irrelevant documents presented to the
user, and to maximize the recall, by minimizing the number of missed relevant
documents.

After retrieving relevant documents the user is interested to collect specific
information from the documents. Ultimately the user wants to answer a question
6 powerset.com
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Induced Ontology for PubMed query ’rab5’

Anatomy [735]

Biological Sciences [751]

cellular component [702]

Chemicals and Drugs [769]

biological process [726]

biological adhesion [14]

biological regulation [415]

cellular process [698]

cellular component organization and biogenesis [560]

membrane organization and biogenesis [459]

membrane invagination [420]

endocytosis [420]

· · ·
developmental process [231]

establishment of localization [544]

growth [56]

immune system process [33]

localization [584]

locomotion [10]

maintenance of localization [16]

metabolic process [326]

multi-organism process [81]

multicellular organismal process [206]

pigmentation [2]

reproduction [50]

reproductive process [44]

response to stimulus [68]

rhythmic process [2]

viral reproduction [38]

Diseases [241]

Health Care [311]

Named Groups [56]

Natural Sciences [639]

Organisms [670]

Techniques and Equipment [549]

molecular function [478]

Fig. 2. This figure shows the induced ontology for the PubMed result to the query
”rab5”. The top level MeSH and GO categories are alphabetically ordered. The GO
branch cellular process is expanded to the concept endocytosis, the topic pro-
cess most intensively for the protein. The induced ontology shows 16 other biological
processes related to the protein rab5. The numbers denote the amount of the linked
documents.
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Fig. 3. Three search paradigms. Keyword- and ontology-based search take boolean
keyword queries as input while NLP-based search takes full question sentences as input.
NLP- and keyword-based search return single documents as results while ontology-
based search returns a graph which can be used as an outline of the search results.
Ontology- and NLP-bases search use semantic technologies to map documents or parts
of documents to formally defined background knowledge. Keyword-based search returns
lists of resources, e.g. lists of URLs. NLP-based search returns facts as answers to
questions, e.g. the distance between two cities. Ontology-based search returns an outline
into a potentially very large result set. The outline organizes the resulting documents
hierarchically according to identified topics.

and thereby acquire knowledge. The idea is to organize search results using the
structured background knowledge of ontologies, such that its intention is to be
useful.

7.2.1 Characterization of Question Types

The user can only expect answers to questions which actually are covered by
text passages from the documents or by the defined concepts in the background
knowledge. It is assumed that the background knowledge and the documents
corpus deal with the same domain. Answers to questions which are short text
passages of literature abstracts are named citation answers, answers which can
be given in the form of a collection of ontology concepts and their definitions are
named glossary answers. The idea in both cases is to reason over the relations
captured in the background knowledge to answer questions.

Citation Answers. For example the user wants to know how aspirin works. It
is possible to answer this question by providing one or more statements if the
corpus contains documents mentioning the drug and an adequate concept of
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the background knowledge in proximity. The user does not need to know this
concept nor its synonyms. The entry point to answer the question will be the
categories of the background knowledge. Every level of the hierarchically struc-
tured knowledge comprises potential answers. The more familiar a user is with
the domain the deeper he or she can select an entry point.

One possible scenario to answer the question is: the user sends the keyword
”aspirin” to the system. The system shows a table of content comprising identi-
fied concepts in the retrieved documents. The user selects an appropriate concept
among the displayed categories in the table of content. An appropriate concept
to answer the above question is biological process, a rather general concept
in the biomedical field. Users familiar with the biomedical domain may select
a more specific concepts such as regulation of cellular metabolic pro-

cess. The system now displays highlighted text passages mentioning the keyword
and the selected concepts and its descendants. Possible outcomes for the above
question are:

Aspirin exerts its unique pharmacological effects by irreversibly acety-
lating a serine residue in the cyclooxygenase site of prostaglandin-
H(2)-synthases (PGHSs). (PMID: 18242581)

NO-donating aspirin inhibits the activation of NF-kappaB in human
cancer cell lines and Min mice. (PMID: 18174252)

In the first passage cyclooxygenase (pathway), a biological process, is men-
tioned. In the second passage the activation of NF-kappaB, a regulating
process in the cell, is mentioned. Aspirin has various effects on biological pro-
cesses in an organism. Both answers represent correct and useful answers to
different audiences depending on their background.

Glossary Answers. A user is interested in learning which diseases are associated
to a well known virus. In this scenario documents with mentions of any disease
in proximity of the virus are relevant. The answer to the question would be a
list of diseases linked to the text passages stating the relation to the virus. The
answer might be a ranked list of diseases sorted by the frequency of cooccurrence
in the literature.

For the query ”HIV” a system might identify the following passage in a pub-
lication:

Hepatitis B, C seroprevalence and delta viruses in HIV-1 Senegalese
patients at HAART initiation (retrospective study). (PMID: 18551596)

Hepatitis is a disease defined in the MeSH terminology. MeSH defines 6527
descendants of the concept disease. The citation shows a close relation between
HIV infection and this disease.

The following section describes algorithms developed to find answers to
biomedical questions based on an semantically annotated literature corpus using
ontological background knowledge.
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Bibliometric Answers. Another type of questions regards the publishing be-
haviour in a selected research field. Questions whether a topic is an active re-
search field and which authors are most prominent in a field can only be answered
with the entire literature corpus. The problem is that there is no common vocab-
ulary used by researchers. The terminology used varies over time and geographic
locations. Section 7.3 shows how ontology-based search can answer bibliometric
questions.

7.2.2 Using Background Knowledge to Answer Questions

The TREC Genomics Track 2006 (30) is an annual activity of the information
retrieval community aiming to evaluate systems and users. For the evaluation
of biomedical search engines a new single task was developed that focused on
retrieval of passages (from part to sentence to paragraph in length) with linkage
to the source document. Topics are expressed as questions and the systems were
measured on how well they retrieve relevant information at the passage, aspect,
and document level. The participating systems returned passages linked to source
documents. Judges rated the returned passages and grouped them by aspect.

The following questions of the TREC Genomics Track 2006 were answered
using GoPubMed. There were three types of queries: (1) questions for the role
of a gene or protein in a disease, (2) the inter-relation of biological entities and
(3) the biological function of an entity.

For the first type of questions the query keywords were the protein name or
synonyms if provided by the algorithm described in (28) which is implemented
in GoPubMed. Then clicking in the induced ontology on the respective disease
the linked documents ranked according to the aspect are scanned. Only correct
evidences on the first page of answers were considered.

For the second type of questions the two entities and their synonyms were
entered as keywords and answers from the top categories were considered. The
top categories were computed with a “tf-idf” ranking.

For the third type of questions the biological entity was entered as the query
string and the respective biological function was selected in the ontology. Again
only answers provided on the first page were considered. The TREC questions
of all years are numbered. The questions of the year 2006 begin with 160 and
end with 187.

Roles of Genes and Proteins in a Diseases: What is the role of PrnP in
mad cow disease? (TREC #160). ”Since 2004, significant associations be-
tween bovine spongiform encephalopathy (BSE) susceptibility in cattle and fre-
quencies of insertion/deletion (ins/del; indel) polymorphisms within the bovine
prion protein gene (PRNP) have been reported. PMID: 18399944”

GoPubMed presents this answer after searching for ”PrnP” followed by two
intuitive clicks: (1) PrnP is a protein, so we use the protein name expansion by
clicking the option: ”Expand your query with synonyms for PrnP”. (2) The disease
branch of MeSH lists the official name among the top concepts, Encephalopa-

thy, Bovine Spongiform. Figure 4 shows the induced ontology for the query
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Fig. 4. This screenshot shows the induced ontology for the query ”PrnP” in GoP-
ubMed. Encephalopathy, Bovine Spongiform, the official name for “Mad Cow
Disease” is selected. It links to 77 publications in PubMed. Additionally Scrapie,
Creutzfeldt-Jakob Syndrome and other diseases are listed in the disease branch
of MeSH.

”PrnP”. The disease Encephalopathy, Bovine Spongiform, alias Mad Cow
Disease, links to 77 publications mentioning the disease and PrnP. Figure 5 shows
how GoPubMed visualizes documents in the snippet mode by showing a sentence
mentioning the keyword and the selected term or a descendant.

The TREC benchmark lists 32 answers mentioning a mutation in PrnP play-
ing a role in mad cow disease. This shows that the important aspect, mutated
variants of PrnP are related to mad cow disease, can be found with a simple
search in GoPubMed. Three intuitive user interactions. The induced ontology
holds answers to many more aspects related to the topic. For example it links 91
publications to a related disease in humans Creutzfeldt-Jakob Syndrome

and Scrapie a fatal disease of the nervous system in sheep and goats, 185 links.
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Fig. 5. This screenshot shows the first text snippet the user sees when clicking
on Encephalopathy, Bovine Spongiform. The keyword ”PrP” is a synonym of
”PrnP” and is highlighted in yellow. The disease’s synonym, Bovine spongiform en-

cephalopathy, is highlighted in green. The snippet is ranked highest because it is a
recent publication plus keyword and concept is mentioned in the same sentence.

This shows a major advantage of the ontology-based search: serendipity and
overview search. The background knowledge provides an outline of the whole
content of the search results.

Inter-relation of Biological Entities: How does BARD1 regu-
late BRCA1 activity? (TREC #168). ” BARD1 regulates BRCA1-
mediated transactivation of the p21(WAF1/CIP1) and Gadd45 promoters.
(PMID: 18243530)”

GoPubMed presents the title of this publication as an answer after search-
ing for ”BRCA1 AND BARD1” followed by one click on the option ”Expand
your query with synonyms for BRCA1, BARD1”. The third text snippet clearly
mentions the inter-relation of the two proteins. GoPubMed shows by default not
the whole abstract. One sentence is selected as a text snippet which mentions
keywords and concepts. In this example no concept was selected but the two
keywords are mentioned in the text snippets.

GoPubMed classifies the 132 articles using MeSH and the Gene Ontology.
The GO branch biological process lists important concepts such as regu-

lation of progression through cell cycle with 67 evidences like: ”The
BRCA1 tumor suppressor exists as a heterodimeric complex with BARD1, and
this complex is thought to mediate many of the functions ascribed to BRCA1,
including its role in tumor suppression.”. Interestingly the snippet was ranked
high because tumor suppression is a Gene Ontology synonym of regulation

of progression through cell cycle.
Another important aspect is represented by the second biological process

DNA repair. Clicking on it shows the evidence: ”Cells deficient in the Werner
syndrome protein (WRN) or BRCA1 are hypersensitive to DNA interstrand
cross-links (ICLs), whose repair requires nucleotide excision repair (NER) and
homologous recombination (HR). PMID: 16714450”. The abstract, shown in
figure 6, was ranked high because it mentions the keywords and the concept
interstrand crosslink repair which was identified by the Concept Recog-
nition algorithm. The concept is a synonym of nucleotide-excision repair

which is a descendant of DNA repair. For the aspect “DNA repair” there are
52 more evidences listed in the induced ontology.
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Fig. 6. A full abstract shown in the document view of GoPubMed for the query
”BRCA1 AND BARD1”. The abstract is shown when selecting concept DNA re-

pair. Note that DNA repair is not mentioned literally in the text. Instead the Con-
cept Recognition algorithm detected interstrand crosslink repair as a synonym
of nucleotide-excision repair which is a descendant of DNA repair.

Biological Function of Entities: How do Bop-Pes interactions affect
cell growth? (TREC #177). ”The nucleolar PeBoW-complex, consisting of
Pes1, Bop1 and WDR12, is essential for cell proliferation and processing of ri-
bosomal RNA in mammalian cells. (PMID: 16738141)”.

GoPubMed presents this snippet when searching for ”Bop AND Pes” followed
by a click on the option ”Expand your query with synonyms for Bop, Pes” and
filtering for the MeSH heading Cell Growth Processes. The advanced search
feature in GoPubMed allows for filtering with concept branches. The advanced
search Bop AND Pes +*mesh#“Cell Growth Processes” retains only documents
mentioning cell growth. The above snippet is shown at position 1 out of six
documents when using this advanced search query and expanding the protein
names.

The TREC gold-standard lists snippets of the full text of PubMed Central
documents as valid answers to the questions. For question #177 the benchmark
lists 7 snippets which were accepted by the curators as an answer to the ques-
tion. For example the passage: ”Interestingly, a potential homologous complex of
Pes1-Bop1-WDR12 in yeast (Nop7p-Erb1p-Ytm1p) is involved in the control of
ribosome biogenesis and S phase entry. In conclusion, the integrity of the PeBoW
complex is required for ribosome biogenesis and cell proliferation in mammalian
cells. (PMID: 16043514)” was accepted to answer question number 177.

All questions of the TREC 2006 Genomics Track could be answered with GoP-
ubMed. It is important to note that the answers of GoPubMed are based on the
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abstracts and not on the full texts as used by the TREC participants. Table 3 shows
the summary of results of this evaluation. The column Advanced Query shows the
query syntax submited to the system for each query. It contains the keywords of
the question plus the concept branch relevant to answer the question. The column
”Ex” denotes whether the Protein/Gene name expansion was used or not. The As-
pect column contains the concept uder which the answer was found. IS gives the
number of documents used to induce the ontology. RS is the number of documents
linked to the aspect. Pos is the position in the snippet list the answer was found.
UI is the number of user interactions required to find the question.

Despite the fact that this evaluation was carried out with the abstract texts
only, in contrast to the full texts used during the TREC evaluation, GoPubMed
is able to answer all questions with a minimum of user interactions required.
The advanced queries used in this experiment can easily be replaced by a simple
keyword search plus a click on the concept in the ontology. In most cases the
concepts selected here are top categories of the queries. In the other cases a
search in the background knowledge with the option ”Find related categories
...” quickly locates the appropriate concepts.

The number of official TREC answers per question varies between 0 and
593 snippets. The answers mostly cover not only one aspect of the topic. For
example one TREC answer to the question number 160 is related to muta-
tions: ”Nineteen mutations of the PrP gene are associated with inherited human
prion disease... (PMID: Pmid: 7642588 Span: 19641-86)” another aspect,
the pathogenesis in cattle and sheep, is covered by the correct answer:
”bovine spongiform encephalopathy in cattle, and scrapie in sheep are members of
a family of infectious neurodegenerative mammalian diseases known as the trans-
missible spongiform encephalopathies. During disease pathogenesis, a protease-
resistant form of prion protein (PrP) accumulates in the brain and other tissues
of infected animals... Pmid: 7852415 Span: 4349-483”.

In GoPubMed the spectrum of relevant answers to the questions is reflected
in the induced ontology. The user can explore the aspects by navigating through
the induced hierarchy. The top categories help to identify important aspects
without the need to dive into the hierarchy.

7.3 Revealing Trends in the Literature

Recently much research has been devoted to the analysis of the biomedical lit-
erature. This interest has been sparked by the growth in literature, but also
by the availability of abstracts, full papers, and bibliometric data. Researchers
have been specifically interested in automatically extracting information from
free text such as protein names (22; 60; 31), ontology terms (55; 8; 16), and
protein interactions (57; 21; 32).

Underlying all of the above textmining applications is the literature, which
grows overall. But at a closer glance it turns out that some research areas shrink,
while others take off. Bibliometric analyses aim to shed light on such devel-
opments and to identify emerging trends. Such analyses date back to the 60s
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(49) and typically focus on research topics (23), specific journals (9), or the re-
searchers themselves (43; 44; 49; 27; 12; 10). (23) investigate e.g. the research
on programmed cell death. Despite programmed cell death being described 25
years ago, it took some 15 years until journals such as “Cell Death and Differ-
entiation” emerged and the number of publications in the field in general took
off. As an example for an analysis of a specific journal Boyack analysed the
emergence and development of topics covered by PNAS (9). A very active area
of research aims to understand the social process of publishing by investigating
co-author and co-citation networks (43; 44; 49; 27; 12; 10). Such analyses al-
low one to identify authors in an organisation, who work interdisciplinary and
connect otherwise unconnected co-author networks (44), to animate citations of
key publications over time (12), evolution of author and publication networks
(10), and to understand how groups form (27). All of these analyses are useful
to take a birds-eye view onto research. This section links such analyses to the
ontology-based literature search engine GoPubMed to support the discovery of
trends on topics interesting for molecular biologists.

GoPubMed extracts GO terms from all 18.000.000 PubMed abstracts and
allows users to explore their search results with the Gene Ontology. GoPubMed’s
association of GO concepts with abstracts is a valuable resource to understand
how a research topic - represented by a GO concept - develops. It shows how
many articles were published over time, which authors are most prolific for the
topic, which journals cover the topic best, and which countries publish most
on the topic. The use of an ontology for these analyses is very important as
it includes synonyms and subconcepts. As an example, (23) point out that
during the 60s and 70s researchers in the US used “programmed cell death” while
their European colleagues used “apoptosis”. In this analysis, these are treated
as equivalent with the help of the underlying ontology. Also it is important
to consider subconcepts as some papers may mention GTPases in general, while
others refer to specific GTPases such as Ran, Rac, Rho, etc. Again, the use of the
ontology ensures that an analysis of GTPases will include all specific GTPases.

Besides research topics, authors and places were analysed. The results show
their publishing activity over time and the topics covered. Finally, the whole
biomedical literature was analysed to identify the journals, which mention most
GO concepts. Assuming that GO captures the background knowledge of a molec-
ular biologist, these are the most important journals for the molecular biologist.

The experiment was structured as follows: a bibliometric analysis focusing
on “important topics” investigating apoptosis and endosome was carried out.
Second, an investigation of “important places” shows how organisations and
places can be classified, and the analysis of “important journals” summarizes
the main topics covered by a journal. Finally, the whole Gene Ontology was
analysed for the 20 most important journals for a molecular biologist.

It is important to mention that any attempt of a quantitative analysis of the
literature, however sophisticated, must be interpreted by informed judgment.
Absolute citation frequencies may be misinterpreted. It is not the intention to
judge the significance of the contributions of individual scientists or institutions.
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Fig. 7. PubMed abstracts per year mentioning apoptosis (including synonyms and
speacialisations of the term)

7.3.1 Important Topic: Apotosis

In 1997, Garfield and Melino analysed the scientific literature on programmed
cell death (apoptosis) (23) using the ISI’s Science Citation Index. Using the
date of publication, frequency, citation and co-citation of papers, they analysed
the development of the field, the countries most active, the main journals, and
key authors. They found that there was a significant increased impact of arti-
cles on programmed cell death after 1990 and that it was one of the hottest
topics in 1997. Some of the countries among the most active are the US, UK,
Germany, Australia and France. Journals most actively publishing on apoptosis
are Immunology, Blood, FASEB Journal Cancer Research, Biological Chemistry,
PNAS and Oncogene. The most cited authors are AH Wyllie, SJ Korsmeyer and
GT Williams as well as later on position 17 and 22 JC Reed and PH Krammer.

Such information is valuable to quickly get an overview over a new field.
Although the author stated in a later addendum that they made a mistake so
Strasser and Vaux were not mentioned although they had to be on rank 2 and
3. Also other research fields like nitric oxide and p53 are mentioned as similarly
active research fields at this time.

Bibliometric analyses as above are valuable but difficult to produce. Espe-
cially at the beginning emerging trends may be known under different names.
As Garfield and Melino point out, initially the term apoptosis was used more
frequently in Europe while the US coined the same topic programmed cell death.
Besides synonyms such analyses should consider papers, which do not mention
apoptosis explicitly but implicitly.

As example consider papers, which mention release of cytochrome c

from mitochondria or caspase activation. Since the release of cytochrome
c from the mitochondrial intermembrane space into the cytosol leads to caspase
activation and is an early step of apoptosis. Hence papers, which mention these
terms should also be considered as covering apoptosis.

These two problems - the use of synonyms and the inclusion of specialisations
of terms - can be addressed with an ontology. The Gene Ontology defines e.g.
the synonyms apoptosis and type I programmed cell death. Furthermore,
it defines that caspase activation is part of apoptotic program, which is
part of apoptosis.
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Since GoPubMed indexes all PubMed abstracts with the GeneOntology our
analyses include the consideration of synonyms and specialisations. For apoptosis
we find very similar results to Garfield and Melino. The exponential increase of
publications after 1990 can be seen in figure 7. The figure also shows that this
trend continued after 1997, when Garfield and Melino’s analysis was published.
While Garfield and Melino claim that apoptosis is a hot topic, we can quantify
this claim to some extent.

Considering the number of papers between 1991 and 1997 apoptosis ranks at
position 16 in comparison to other GO concepts at the same level as apoptosis
or deeper in the GO hierarchy. An analysis of the countries also confirms Garfield
and Melino finding though Australia’s high rank in 1997 has diminished. All of the
relevant journals identified by Garfield and Melino are confirmed by our analysis.
Their six journals rank in the top 5 and at position 8 (Blood). The analysis reveals
additionally Biochemical and Biophysical Research Communications and Nucleic
Acids Research at position 6 and 7 as highly relevant for apoptosis.

The ranking for most actively publishing authors is different in this anaylsis
than the results of Garfield and Melino. This is due to the fact that in contrast
to them only the number of papers mentioning apoptosis could be used to rank
the authors and not the citations and impact of the papers. However the two
highly ranked authors Reed and Krammer also rank very high in the results.
This shows that considering citations of articles gives in general a significantly
different ranking than simply using term mentioning frequency. To improve this
information about citations for each abstract would be needed.

One can conclude that this approach of indexing the usage of GO concepts
in literature abstracts leads to very similar results when compared with the
approach of Garfield and Melino. The main differences are: (1) that this approach
is fully automated and always up to date, while their results date back to 1997,
(2) synonyms and specialisations are considered, (3) and most of all this analysis
is available online for any of the 24,000 GO concepts.

7.3.2 Important Topic: Endosome

Let us consider another example besides apoptosis, namely GO’s cellular compo-
nent endosome, which includes subterms such as the early and late endosome.
As shown in the bottom of Figure 8, one can see that research in this areas
has steadily increased in superlinear fashion. Clearly research related to the en-
dosome is a hot topic at the moment. As may be expected the literature is
dominated by countries from North America, Europe and Japan. However, a
small part is attributed to Singapore, which is significant due to its small size.
Table 8 shows the main journals and authors.

7.3.3 Important Place: Dresden

Bibliometric analyses can also be applied to get an overview over organisa-
tions and places. Evaluating the topics covered by publications whose affiliation
mentions Dresden reveals e.g. that biomedical research in Dresden is focused
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Table 4. Statistics for endosome (Art. = number of articles containing endosome).
Top left: Most prolific journals. Top right: Most prolific authors.

Journal Art.
Biological chemistry 777
Cell biology 420
Cell science 261
Molecular bio. of the cell 250
Virology 180
PNAS 178
Immunology 152
Bioch. et biophy. acta 144
European j. of cell bio. 134
Biochemical journal 131
Traffic 114
EMBO journal 113
American j. of physiology 104
Bioch. & biophy.res.comm. 90
Cell and tissue research 90
Others journals 6389

Author Art.
P D Stahl 59
H J Geuze 52
T Berg 44
J Gruenberg 44
I Mellman 44
B I Posner 41
J J Bergeron 40
K Sandvig 36
M Zerial 36
G Griffiths 35
B van Deurs 35
R G Parton 35
A S Verkman 31
H Stenmark 29
S R Pfeffer 29

on the following topics: antiporter activity, pregnancy, apoptosis, cell prolifera-
tion, viral nucleocapsid, cytosol, exogen, microtubule, spindle, fever, gastrulation,
lactation, cytokinesis, endosome, autosome, vasodilation, enucleation, phospho-
rylation, wound healing, dendrite, lipid raft, RNA interference, cytoskeleton,
angiogenesis, cell migration, inflammatory response, mismatch repair, vacuole,
collagen type I, fibrinolysis, insulin secretion, vascular endothelial growth factor
receptor binding, phagocytosis, cellular respiration, pore complex, chromatin.

This gives an immediate impression and individual topics can be traced back
to researchers and groups. E.g. RNA interference is a hot topic in Dresden with
a high-throughput RNAi screening facility in place, which has lead to numerous
publications including high-profile papers in Nature.

7.3.4 Important Journal: Which Are the 10 Most Frequently Used
GO Terms in Nature, Cell and Science?

Similar to the analysis (9) carried out for PNAS, we can analyse other
journals. As an example, we looked at the 10 most frequently mentioned
terms in Nature, Cell, and Science. Some terms appear frequently in all of
the major journals, like exogen, apoptosis, mutagenesis, cytokinesis, antiporter
activity, DNA replication and phage assembly. Some terms are mentioned
more often in one of the journals in comparison to others. E.g. Cell was
found to list articles on transcription initiation, endoplasmic reticulum mem-
brane, nucleosome, protein targeting, protein-ER targeting and regulation of
cell cycle more frequently, which reflects its focus on molecular cell biology very
well. Science (Weekly) was found to list abstracts containing T-cell activation,
nucleic acid transport, regulation of action potential, carbon dioxide transport



336 A. Doms and M. Schroeder

Fig. 8. Screenshot of GoPubMed statistics for the concept endosome. Top: Most pro-
lific countries. Bottom: Articles on endosome over time.

and response to carbon dioxide more than other journals and Nature nucleic
acid transport, myosin, regulation of action potential and generation of action
potential.

7.3.5 20 Journals for the Molecular Biologist

The PubMed database is the main source for literature abstracts in the biomedi-
cal field covering thousands of journals, dating back to the 60s, including millions
of authors, and several million abstracts. The GeneOntology on the other hand
is a large vocabulary of over 24.000 terms covering many aspects of interest for a
molecular biologist. Assuming that GO reflects the topics of interest for a molec-
ular biologist, we wish to analyse how much of the PubMed literature might be
actually of interest, which GO terms are mentioned most frequently, and which
journals are the most relevant.

How many articles mention GO terms? PubMed is growing at a tremendous
pace and in 2004 alone there were 598278 new abstracts registered. But how
much of this is relevant to a molecular biologist as there are is also very general
articles such as ”Relative efficacy of the proposed Space Shuttle antimotion
sickness medications”, ”Point-counterpoint: should physicians accept gifts from
their patients? No: Gifts debase the true value of care”, ”The why and wherefore
of empowerment: the key to job satisfaction and professional advancement”.
nonetheless, our analysis shows that nearly half (47.9%) of all articles in English
mention at least one GO term. This figure is quite high, as e.g. Nature, which
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Fig. 9. Topic evolution for the most mention GO concepts since 1972. The list of GO
concepts is ordered by the research interest over time. Topics like apoptosis, transduc-
tion, donor preference, cell proliferation and necrosis are of increasing research interest
whereas liver development, pregnancy and kidney development show an relatively de-
creasing rate of mentions in PubMed abstracts.

is certainly the accepted journal for any molecular biologist, has only in 38.5%
of its articles at least one GO term.

Which are the 10 most frequently used GO terms per year? A specialization level
of greater than 5 was choosen in the Gene Ontology to compare research topics
in two years 1972 and 2004. That means high-level ontology terms were ignored.

GO concepts mentioned in abstracts frequently in both year were: kidney de-

velopment, lung development, response to X-ray, response to virus

and phosphorylation. Articles from 1972 mentioned additionally following GO
concepts more frequently: microsome, cellular respiration, phage assem-

bly, antiporter activity, central nervous system development, DNA

replication, alkaline phosphatase activity, nucleic acid transport,
regulation of balance, renin activity, lysosome, salivary gland (de-

termination/morphogenesis) and ovulation.
In contrast to that the following new topics were subjects of

research in 2004: apoptosis, donor preference, endothelial cell (ac-

tivation/morphogenesis), equator specification, exogen, angiogen-

esis, visual perception, inflammatory response, interferon-gamma

biosynthesis, response to reactive oxygen species.
In figure 9 the evolution of the most frequently used GO concepts over time is

shown. One can clearly see that topics like apoptosis, transduction, donor pref-
erence, cell proliferation and necrosis are of increasing research interest whereas
liver development, pregnancy and kidney development show an relatively de-
creasing rate of mentions in PubMed abstracts.
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Table 5. 20 journals for the molecular biologist

Pos. Journal
1. Biological chemistry
2. PNAS
3. Biochimica et biophysica acta
4. Immunology
5. Biochemical and biophysical research communications
6. American journal of physiology
7. Biochemistry
8. Biochemical journal
9. Brain research

10. Cancer research
11. Virology
12. FEBS letters
13. Bacteriology
14. Blood
15. Endocrinology
16. Cell biology
17. European journal of biochemistry / FEBS
18. Infection and immunity
19. Molecular and cellular biology
20. Nature

Which 20 journals mention the most GO terms? Finally, let us turn to the
“20 journals for the molecular biologist”, which are as partially shown in Ta-
ble 5. Biological chemistry, PNAS, Biochimica et biophysica acta, Immunology,
Biochemical and biophysical research communications, American journal of
physiology, Biochemistry, Biochemical journal, Brain research, Cancer research,
Virology, FEBS letters, Bacteriology, Blood, Endocrinology, Cell biology , Eu-
ropean journal of biochemistry, FEBS, Infection and immunity, Molecular and
cellular biology, and Nature. Other journals such as Science rank at position 32,
EMBO at 26, Cell at 52. It is interesting that many biochemistry journal rank
in the top positions.

This shows the high relevance of the selection of the journals. In the online
version the user can browse all abstracts of a selected journal mentioning a
previously selected GO term via GO.

7.4 Conclusion

GoPubMed was developed into a full application as part of the REWERSE
project. The web based search engine is online at www.gopubmed.org since 2004
and serves thousands of users every day.

Contributions made during the course of the REWERSE project include a
complete survey on state-of-the-art biomedical search engines. The systems were
categorized according to their features supporting Information and Knowledge

www.gopubmed.org
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Retrieval. One conclusion is that some systems semantically process documents
but no system uses ontologies to organize search result.

Another contribution is a survey over 15 freely available annotation corpora.
There is no corpus directly applicable for the evaluation of Concept Recognition
algorithms for Gene Ontology terms. The BioCreAtIvE dataset is the best source
for manually confirmed Gene Ontology annotations in full texts. However it is
biased toward the annotation of selected proteins.

As part of REWERSE’s output a new Concept Recognition pipeline was
developed(15) which improved the previously reported (14) performance by
25,7% achieving 79,9% precision and 72,7% recall. To access the quality of the
pipeline and to facilitate further training for ambiguous ontology labels a cura-
tions tool was designed. With these tools a new benchmark comprised of 689
PubMed abstracts and 18,356 curations, personally curated by the original au-
thors of PubMed articles, was created.

(15) also summarizes the first ontology-based, large scale, online available,
up-to-date bibliometric analysis for topics in molecular biology represented by
Gene Ontology concepts is evaluated. It is shown that the method is in line with
existing, but often out-dated, analyses.

The methods developed during the REWERSE project are not limited to the
biomedical domain. Currently it is investigated how new ontologies can be gen-
erated by extending available domain ontologies or from the scratch. Ontology
design is a labor intensive task. It is of great interest in how available litera-
ture corpora can be used to generate suggestions for ontology concept labels,
synonyms, abbreviations, textual definitions and relations between concepts.

The induced ontologies are a rich source of information. However Concept
Recognition methods can not be perfect. Even human experts disagree on a
large number of concept mentions in natural language texts. Therefore the in-
duced ontology will always carry irrelevant information and lack of some relevant
information hidden in the texts. Recurrently stated knowledge is well represented
in the induced ontology. It is of great interest how to identify under-represented
or new knowledge in document collections. The difficulty here is to distinguish
this knowledge from noise in the form of irrelevant markups.
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Abstract. New experimental methods allow researchers within molecular and
systems biology to rapidly generate larger and larger amounts of data. This data
is often made publicly available on the Internet and although this data is extremely
useful, we are not using its full capacity. One important reason is that we still lack
good ways to connect or integrate information from different resources.

One kind of resource is the over 1000 data sources freely available on the Web.
As most data sources are developed and maintained independently, they are highly
heterogeneous. Information is also updated frequently. Other kinds of resources
that are not so well-known or commonly used yet are the ontologies and the stan-
dards. Ontologies aim to define a common terminology for a domain of interest.
Standards provide a way to exchange data between data sources and tools, even
if the internal representations of the data in the resources and tools are different.

In this chapter we argue that ontological knowledge and standards should be
used for integration of data. We describe properties of the different types of data
sources, ontological knowledge and standards that are available on the Web and
discuss how this knowledge can be used to support integrated access to multiple
biological data sources. Further, we present an integration approach that com-
bines the identified ontological knowledge and standards with traditional infor-
mation integration techniques. Current integration approaches only cover parts of
the suggested approach. We also discuss the components in the model on which
much recent work has been done in more detail: ontology-based data source in-
tegration, ontology alignment and integration using standards.

Although many of our discussions in this chapter are general we exemplify
mainly using work done within the REWERSE1 working group on Adding Se-
mantics to the Bioinformatics Web.

8.1 Introduction

New experimental methods allow researchers within molecular and systems biology to
rapidly generate larger and larger amounts of data. This data is often made publicly
available on the Internet. However, although this data is extremely useful, we are not
using its full capacity. One important reason is that we still lack good ways to connect

1 The work on this chapter and on the articles by this chapter’s authors that are referenced in this
chapter was performed in the context of REWERSE.

F. Bry and J. Maluszynski (Eds.): Semantic Techniques for the Web, LNCS 5500, pp. 343–376, 2009.
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or integrate information from different resources. Semantic Web technology can play
an important role to alleviate this problem.

Assume a future crisis, where a new virus creates an epidemic of fatal disease. Re-
searchers manage to isolate the genetic material of the virus, determine the sequence
and want to create an antidote. Publicly available resources and specialized computer
programs can be used to determine relationships with previously studied viruses and to
determine proteins that are possible targets of antidotes. Additional useful information
such as sequences, structure, functionality and interactions of the protein can be found
and compared with data from other viruses to more rapidly give information on what
antidotes to create and what further experiments to perform.

There are several kinds of resources that contain biological information which are
relevant for the scenario. The most common and well-known resources are the data
sources. They may contain, for instance, information on gene maps, protein structures,
molecular interactions, and models of metabolic and other kinds of pathways. The 2007
Database issue of the Nucleic Acids Research journal listed 968 data sources freely
available on the Web and the 2008 issue introduced 98 new data sources. As most data
sources are developed and maintained independently, they are highly heterogeneous.
They vary in the type of the stored data, the data format, and access methods. In ad-
dition, there is a terminology discrepancy at the data level and at the schema level,
which even more complicates the data retrieval process. Also, information is frequently
updated and new information is frequently added.

Other kinds of resources, i.e. ontologies and standards, are not so well-known or
commonly used yet. Ontologies aim to define the basic terms and relations of a do-
main of interest, as well as the rules for combining these terms and relations. In the last
decade much research has been performed on defining a common terminology through
the development of ontologies. To describe data items and relations between data items
each data source has its own internal data model. Today, a number of standardized ex-
port formats for data have been developed. These standards provide a way to exchange
data between data sources and tools, even if the internal representations of the data in
the resources and tools are different. The latest development is to define meta standards,
which determine minimum requirements for what should be included in a standard or
representation format.

In order to find all relevant data for our scenario, information from all these resources
needs to be connected and integrated. For instance, to find information about a particular
protein, we may have to access different data sources, such as UniProt for sequence
information and PDB for structure information. Therefore, we need to find out how
proteins are modeled in the two sources (schema) and we need a way to know when
data items in the two sources represent the same real-world entity such as a particular
protein. These tasks are further complicated by the fact that different resources may use
different terminology, possibly based on different ontologies. Further, data needs to be
transferred between data sources (e.g. an identifier for a protein in UniProt is used to
query PDB) or tools (e.g. protein data is used in a reaction network model building or
analysis tool). To be able to integrate all this information we need knowledge about the
relationships between the different resources.
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In this chapter we describe the different kinds of resources for bioinformatics men-
tioned above (section 8.2). We describe data sources (section 8.2.1), ontologies (section
8.2.2) and standards (section 8.2.3). In section 8.3 we deal with integration of the re-
sources. First, we describe an integration model in section 8.3.1 and show that not only
the resources, but also the connections between the resources are important for integra-
tion. We then briefly describe integration approaches for data sources (section 8.3.2) and
the connection between data sources and ontologies (section 8.3.3) and focus in more
details on recent work on ontology alignment (section 8.3.4), integration of standards
(section 8.3.5) and the connection between standards and other resources (section 8.3.6).

8.2 Resources

8.2.1 Data Sources

There are over 1000 data sources that store information related to biological data freely
available on the Web and they are highly heterogeneous in different ways. We describe
here the properties of these data sources.

Data source content. The stored biological data ranges from experimental results,
DNA and protein sequences, to three-dimensional molecule structures and networks
representing interactions between molecules. As researchers worked independently and
collected biological data relevant to their own research issues in parallel, the available
data is spread over a large number of data sources, the data sources differ in their focus,
but they often store data that is highly related to each other. To facilitate the discovery of
relevant information, links between relevant entries at different data sources are usually
stored explicitly. Links may differ in their quality and semantics [3] and not all possible
relationships are explicitly stated.

Data quality. The data sources differ in their data quality. The source of the data
can be researchers (that submit their data), literature (data from published articles) and
other data sources. The collected data may be checked, modified or appended by the
local curators. Some data sources use tools (instead of curators) to gather information
from different sources. This means that as the original data sources change, the data in
the secondary data sources should also change.

Data updates. The frequency of data updates differs among the data sources. The
user may receive the source releases in periods of two or four months, the data updates
between one day or two weeks, or the period can be irregular.

Inconsistency. Many inconsistencies appear in biological data sources. There are sev-
eral reasons for this: data is merged from different communities, data is submitted in
a flexible way, there are errors in annotations and the area is inherently dynamic. In
contrast to traditional database approaches, constraints are often not used to check the
validity of the submitted data. To speed up publishing the discovered knowledge, cor-
rectness of the submitted data may not always be checked. In [14] it was illustrated
that errors in predicted annotations in a genome may reach up to 40%. Data sources
frequently change and evolve as new approaches and tools are developed that generate
new types of data. This causes irregularity of data structure at the data sources. An-
other source of data inconsistencies is non-synchronized frequency of updates at the
data sources. For example, as explicitly specified links between data sources may not
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be updated, or as biological objects evolve over time and their identifiers change, some
data sources may still use old identifiers to refer to the data.

Semantic heterogeneity. In addition to syntactic heterogeneity biological data sources
display a high level of semantic heterogeneity. Since there is no agreed terminology in
the area of bioinformatics, we encounter cases where the same representation is implic-
itly assigned to different definitions or different representations are used to refer to the
same concept. For instance, the concept gene is a DNA sequence fragment that either
encodes a protein (e.g. UniProt) or that carries some information of biological interest
(e.g. GenBank). Different identifiers and names can be used to refer to the same bio-
logical object. For example, a UniProt data entry describing Pancreas/duodenum home-
obox protein 1 (short name: PDX-1) has P52945 as the entry identifier (and previously
O60594 as a withdrawn entry identifier in SwissProt which is now a part of UniProt).
This protein can also be referred to as Insulin promoter factor 1 (IPF-1), Islet/duodenum
homeobox-1 (IDX-1), Somatostatin-transactivating factor 1 (STF-1), Insulin upstream
factor 1 (IUF-1) and Glucose-sensitive factor (GSF).

Data models. Different data models (from flat files to relational and object models)
are used to represent biological data and different data management systems are used to
manage the data. For instance, flat files were selected at the beginning of the 1990s, as
a simple, flexible and working solution for storing biological data. Currently, relational
or object-oriented database techniques are also used. Regardless of the type of the un-
derlying data model, the data can usually be exported to the user as flat files or in XML2

format.
Data retrieval possibilities. Regardless of the expressivity of the underlying data

model, the users are provided with data retrieval interfaces having limited query ca-
pabilities. Most systems support boolean queries (supporting the AND, OR and NOT
operators) as well as wildcards in the text strings. The systems allow search for the
given strings within a data entry (full-text search) or within selected predefined fields.
The retrieval interface specifies which fields are searchable. The queries can be formu-
lated using a form-based query interface or entered into a command line (sometimes
expressed as URLs). The fields that can be searched on differ in the form-based and the
command-line interfaces.

8.2.2 Ontologies

A second important source of biological information is the ontologies. Intuitively, on-
tologies can be seen as defining the basic terms and relations of a domain of interest,
as well as the rules for combining these terms and relations [63]. In recent years many
biomedical ontologies (e.g [49]) have been developed. They are a key technology for
the Semantic Web [71,43]. The benefits of using ontologies include reuse, sharing and
portability of knowledge across platforms, and improved documentation, maintenance,
and reliability. Ontologies lead to a better understanding of a field and to more effective
and efficient handling of information in that field. The work on ontologies is recog-
nized as essential in some of the grand challenges of genomics research [10] and there
is much international research cooperation for the development of ontologies. The num-
ber of researchers working on methods and tools for supporting ontology engineering

2 See chapter 2.



Information Integration in Bioinformatics with Ontologies and Standards 347

is constantly growing and more and more researchers and companies use ontologies in
their daily work.

The use of biological ontologies has grown drastically since database builders con-
cerned with developing systems for different (model) organisms joined to create the
Gene Ontology (GO) Consortium in 1998 [11]. The goal of GO was and still is to pro-
duce a structured, precisely defined, common and dynamic controlled vocabulary that
describes the roles of genes and proteins in all organisms. The GO ontologies are a de
facto standard and many biological data sources are today annotated with GO terms.
The terms in GO are arranged as nodes in a directed acyclic graph, where multiple
inheritance is allowed.

Another milestone was the start of Open Biomedical Ontologies as an umbrella Web
address for ontologies for use within the genomics and proteomics domains [70]. In ad-
dition to being a common portal for ontologies, OBO also promotes a scientific method
for ontology development. For an ontology to become a member ontology originally
five requirements needed to be fulfilled: the ontologies are required to be open, to be
written in a common shared syntax, to have a delineated content (be orthogonal to other
ontologies), to share a unique identifier space and to include textual definitions. In 2006
five new requirements were added for ontologies to be part of the OBO Foundry: pro-
cedures for identifying distinct successive versions need to be provided, relations in the
ontologies follow the OBO Relation Ontology [86], the ontology is well documented,
the ontology has a plurality of independent users, and the ontology is developed col-
laboratively with other OBO Foundry members. Many biological ontologies, including
GO, are already available via OBO.

The field has also matured enough to start talking about standards. An example of
this is the organization of the first conference on Standards and Ontologies for Func-
tional Genomics (SOFG) in 2002 and the development of the SOFG resource on on-
tologies. Another example is the start of the development of the Common Anatomy
Reference Ontology [7] to facilitate interoperability between existing anatomy ontolo-
gies for different species. Further, in systems biology ontologies are used more and
more, for instance, in the definition of standards for representation and exchange of
molecular interaction data.

Ontologies differ regarding the kind of information they can represent. From a knowl-
edge representation point of view ontologies can have the following components (e.g.
[88,49]). Concepts represent sets or classes of entities in a domain. For instance, in fig-
ure 1 nose represents all noses. The concepts may be organized in taxonomies, often
based on the is-a relation (e.g. nose is-a sensory organ in figure 1) or the part-of relation
(e.g. nose part-of respiratory system in figure 1). Instances represent the actual entities.
They are, however, often not represented in ontologies. Further, there are many types of
relations (e.g. chromosone has-sub-cellular-location nucleus). Finally, axioms represent
facts that are always true in the topic area of the ontology. These can be such things as
domain restrictions (e.g. the origin of a protein is always of the type gene coding origin
type), cardinality restrictions (e.g. each protein has at least one source), or disjointness
restrictions (e.g. a helix can never be a sheet and vice versa). Ontologies can be clas-
sified according to the components and the information regarding the components they
contain. A simple type of ontology is the controlled vocabulary. These are essentially
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[Term]
id: MA:0000281
name: nose
is_a: MA:0000017 ! sensory organ
is_a: MA:0000581 ! head organ
relationship: part_of MA:0000327 ! respiratory system
relationship: part_of MA:0002445 ! olfactory system
relationship: part_of MA:0002473 ! face

Fig. 1. Example concept from the Adult Mouse Anatomy ontology (available from OBO)

lists of concepts. When these concepts are organized in an is-a hierarchy, we obtain a
taxonomy. A slightly more complex kind of ontology is the thesaurus. In this case the
concepts are organized in a graph. The arcs in the graph represent a fixed set of relations,
such as synonym, narrower term, broader term, similar term. The data models allow for
defining a hierarchy of classes (concepts), attributes (properties of the entities belonging
to the classes, functional relations), relations and a limited form of axioms. The knowl-
edge bases are often based on a logic. They can contain all types of components and
provide reasoning services such as checking the consistency of the ontology. An ontol-
ogy and its components can be represented in a spectrum of representation formalisms
ranging from very informal to strictly formal [32]. In general, the more formal the used
representation language, the less ambiguity there is in the ontology. Formal languages
are also more likely to implement correct functionality. Furthermore, the chance for in-
teroperation is higher. In the informal languages the ontology content is hard-wired in
the application. This is not the case for the formal languages as they have a well-defined
semantics. However, building ontologies using formal languages is not an easy task. In
practice, biological ontologies have often started out as controlled vocabularies. This
allowed the ontology builders, which were domain experts, but not necessarily experts
in knowledge representation, to focus on the gathering of knowledge and the agreeing
upon definitions. More advanced representation and functionality was a secondary re-
quirement and was left as future work. However, some of the biological ontologies have
reached a high level of maturity and stability regarding the ontology engineering process
and their developers have now started investigating how the usefulness of the ontologies
can be augmented using more advanced representation formalisms and added function-
ality. Moreover, some recent efforts have started out immediately as knowledge bases.

8.2.3 Standards

The third important source for biological information is the standards. These were de-
veloped for exchange and integration of data.

Data can originate from experimental results or created models and researchers often
want to submit them to databases. Further, often several systems and data sources are
used when analyzing biological data, and data and results are exported from one system
or data source to the next. Earlier, the task of transferring data from one system to the
next and translating the output format from the first to the input format of the second,
was often done on case-to-case base and was therefore a time-consuming and error-prone
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Table 1. Standards for molecular interaction data. (Information from [90]).

Name Substances Interactions Pathways Compartments Organism Experiments
DNA, RNA Protein Other

SBML X X X X X X
PSI MI X X X X X X X
BioPAX X X X X X X X
CellML X X X X X X X
CML X X
EMBLxml X X X
INSDseq X X X
Seqentry X X X
BSML X X X X
HUP-ML X X X X
MAGE-ML X X X X
mzXML X
mzData X
AGML X X

task. To avoid this we need common data models, i.e. descriptions of the different kinds
of data, their representations and how the different pieces of data relate to each other.
This is often done by the definition of standards.

One important decision when defining a standard for data representation is the
choice of underlying representation language. Previous evaluations [1,58] have shown
that XML is a suitable representation language for bioinformatics data. Moreover, an
overview of existing standards shows that within bioinformatics and systems biology
most standards use XML or XML-based representation formats such as RDF and
OWL.3 For instance, a search for XML-based standards within systems biology pro-
vided 85 standards of varying levels of interest [90]. We limited the scope to standards
for molecular interaction and signaling pathways, and standards for describing the ba-
sic entities often included in standards for signaling pathways, that is, standards for
describing proteins, DNA, genes or other substances, compartments, and experimental
results. We further limited the result list by requiring that the standards must have been
under recent development or use, they are referred to in more than one source, there is
data available that uses the standard for representation or there are tools available for
manipulation of data in the standard. With these restrictions we still found 14 standards
of higher interest.

An overview of these standards is given in table 1. We show whether the
standards contain information on substances, interactions, pathways, compartments,
organisms and experiments. The standards fall into three categories. First, there
are the standards whose aim is to represent some aspects of molecular inter-
actions or pathways. In this category SBML ([31], http://www.sbml.org/) and
CellML ([24], http://www.cellml.org/) are tuned towards simulation, PSI MI ([29],
http://www.psidev.info/) towards description of experiments, and BioPAX ([108],

3 For an introduction to XML and RDF see chapters 1 and 2.
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http://www.biopax.org)has a more general scope. The second group focuses on describ-
ing genes and proteins and the third group models results of experiments. Considering
our example in section 8.1, the kind of information described in these standards is use-
ful when we have identified a number of proteins similar to the ones appearing in our
virus. The information described in the standards can give useful information on their
interactions and functionality. This information could be very valuable to determine the
probable functionality of our unknown virus and to suggest experiments to verify these
properties.

In previous studies ([92], updated in [91]) we have put further emphasis on stan-
dards for molecular interactions by comparing the three standards: SBML, PSI MI

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">
<model id="Tyson1991CellModel_6" name="Tyson1991_CellCycle_6var">

+ <annotation>
<listOfSpecies>

<species id="C2" name="cdc2k" compartment="cell">
+ <annotation>

</species>
+ <species id="M" name="p-cyclin_cdc2" compartment="cell">
+ <species id="YP" name="p-cyclin" compartment="cell">
... more species

</listOfSpecies>
<listOfReactions>

<reaction id="Reaction1" name="cyclin_cdc2k dissociation">
<annotation>

<rdf:li rdf:resource="http://www.reactome.org/#REACT_6308"/>
<rdf:li rdf:resource="http://www.geneontology.org/#GO:0000079"/>

</annotation>
<listOfReactants>

<speciesReference species="M"/>
</listOfReactants>
<listOfProducts>

<speciesReference species="C2"/>
<speciesReference species="YP"/>

</listOfProducts>
<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply> <times/> <ci> k6 </ci> <ci> M </ci>
</apply></math>

<listOfParameters>
<parameter id="k6" value="1"/>

</listOfParameters>
</kineticLaw>

</reaction>
+ <reaction id="Reaction2" name="cdc2k phosphorylation">

... more reactions

</listOfReactions>
</model>

</sbml>

Fig. 2. An SBML example
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and BioPAX. An example of an SBML description fetched from the Biomodels [64]
database is given in figure 2. The figure is shortened to improve readability. The fig-
ure shows an SBML representation of the Tyson cell model [101] which describes one
of the basic functions in the cell life cycle. In the example we can see the interact-
ing molecules (the species) and where these molecules exist. The reaction part of the
example shows how these molecules interact to provide the studied functionality.

In general, the aim of SBML is to represent several kinds of pathways, biochem-
ical reactions and gene regulation. The main concepts in SBML are the interacting
substances (Species), how these substances interact (Reaction) and where the reaction
takes place (Compartment). In addition, the user can specify mathematical properties
describing the reaction’s behavior, sizes of compartment, concentrations of substances
and similar information. SBML contains several features. One is a framework for link-
ing SBML descriptions to complementary information about the objects in available
data sources. Another addition is the ability to place restrictions on the type of objects.
For some of the main concepts, such as Reactions and participants in the reactions,
the user can refer to controlled vocabularies, thereby providing a more detailed spec-
ification of the concept. These vocabularies are provided as a controlled vocabulary,
included in OBO [70]. For Species and Compartments, there is another solution. Here
the user can group concepts by a type specification that is specific to each model. In the
proposal for level 3, future versions of the standard will enable the encoding of protein
states from protein structure.

The main aim for PSI MI is to provide a mean for representation and exchange of
data from experiments. The main objects in PSI MI are Interactors (in SBML: species),
Interactions (in SBML: reactions) and Experiments. In addition, information about the
type of experiment, methods for detecting a substance, statistical evidence for an in-
teraction and the participating Interactors can be stored. Later developments of PSI MI
provide a means for a more fine-grained representation of Interactor and Interactions.
It also allows representation of both the biological and the experimental role of a par-
ticipant in a detected interaction. There are also additions to Interaction allowing the
user to represent deduced interactions and experiments made on species other than the
one the interaction is reported from. Another feature is the use of ontologies, providing
means of referring to Interactortypes, Interactiontypes, Experimenttypes and different
kinds of experimental methods in a consistent way. As with SBML, these vocabularies
are part of OBO [70].

The main aim of the BioPAX standard is to define a unified framework for sharing
pathway information. It uses OWL as the representation format. In BioPAX informa-
tion is centered around substances, called Physical Entities, and Interactions. For each
of these main concepts a number of subclasses are defined specifying many types of
substances, such as proteins and DNA, together with different kinds of interactions.
BioPAX also includes a means for the user to combine single Interactions into Path-
ways in various ways. BioPAX also provides an import of the PSI MI features for
representation of sequences for proteins, DNA and RNA. BioPAX is adapted towards
experimental data by the ability to represent information about experimental evidence
of an interaction.
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This short description gives an idea about the similarities and differences between
the different standards. In practice, all the standards studied in [90] show some overlap
to other XML standards. In some cases, there are competitive standards, i.e. two sug-
gestions on how to standardize the same kind of information. In most cases, however,
there are differences in scope and aim of the standards which makes this large amount
of co-existing standards valuable to the community. On the other hand, the existence of
many standards is a hinder for data integration, since the information exists in several
formats.

To alleviate the problem that many standards are being developed covering much
overlapping information, the latest development within this field includes efforts to
determine minimum requirements for a standard. For instance, MIAME (Minimum
Information About a Microarray Experiment) [5] defines minimum requirements for
microarray data and within the genomic technology society, several minimum require-
ments have been developed, such as MIAPE (The Minimum Information About a Pro-
teomics Experiment) [100] for proteomics data and MIRIAM (Minimum Information
Requested In the Annotation of biochemical Models) [65] for models in systems bi-
ology. One common theme among these requirements is a link to ontologies by the
recommendation to store metadata according to controlled vocabularies instead of free
text. Other important requirements are that information about participating substances
is included as well as information on which organisms they are collected from, and
references to sources in the literature.

Important for integration of information is the ability to link data and information
between resources. Many XML-based standards contain ontology information or links
to external sources. This is often in accordance with the recommendations in the spec-
ifications of minimal information for a standard. For instance, MIAME recommends
the use of ontologies to represent data where such ontologies exist. MIAME uses the
notion of qualifier, value, source-triplets to refer to external knowledge. The source can
be defined either by the user or can refer to an external ontology. Also MIRIAM has an
annotation scheme for external resources that requires the use of unique resources iden-
tifiers (URIs) to identify model constituents, such as model, compartments, reacting
entity or reaction. These URIs are unique, permanent references to information about
the particular object in that data source or ontology, that are built up so they do not
necessarily reflect the current server address or entry name but contain information to
identify organization, data source and accession code. The standards listed in table 1 all
have some variant of this feature.

8.3 Integrating the Resources

8.3.1 Integration Model

Figure 3 [46] represents the different kinds of resources as well as the different kinds of
relationships among the (components) of resources.

Within a data source there is usually4 a well-defined relationship between the data
items and the schema (1). When integrating information from two data sources (e.g. we

4 This is especially true for the structured data sources such as relational databases.
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Fig. 3. Integration Model [46]

need information about the sequence and structure about proteins for our example in
section 8.1 and need to integrate data from UniProt, a protein data source, and PDB, a
data source containing information about the 3-dimensional structure of proteins), we
need to find out how similar data items are represented. This is usually done by provid-
ing a mapping between the schemas (2). Several information integration systems in this
field define an integrated schema (not shown in figure) which is mapped to the schemas
of the data sources that are integrated. Many of these information integration systems
are still academic. Further, it is necessary to integrate data items from different sources
(3). In the current systems this is often done by explicitly linking data items. Popular
integration systems such as SRS and Entrez, rely heavily on this. Some duplicate detec-
tion or instance matching mechanisms are also used. Further, many data sources already
provide the possibility to export their data in standardized formats (6 and 7).

Some integration systems use ontologies as an integrated schema (8). However, the
main use of ontologies is currently for annotation of data sources (8 and 9). For in-
stance, terms from the GO molecular function ontology are used to describe gene
and protein functions in many data sources. The use of annotations reduces the ter-
minology discrepancy and supports finding similar data items in one or more data
sources.

One problem, however, is the fact that many ontologies with overlapping information
are being developed. For instance, OBO lists 26 anatomy ontologies (October 2008).
Finding the relationships between these ontologies would give valuable information for
information integration (5). Currently, a number of ontology alignment systems have
been developed to deal with this issue. Similarly, standards have been developed with
different focus or application area, but with overlapping information, and it is only
recently that work has started on finding this overlap (4). Some of the current standards
are also based on or connected to ontologies (10).

Integrating information from different resources is not easy due to the different lev-
els of heterogeneity. To overcome these difficulties and obtain higher quality search re-
sults, knowledge about relationships between entities in the different resources should
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be used. While integration of data sources is reasonably well understood, still not so
many systems exist. Work on dealing with integration of ontologies has started and
good results have already been obtained, while integration of standards is still in its
infancy. However, with the recent interest in developing a Semantic Web, both these
issues attract more and more research.

In the remainder of this section we discuss some of the connections in figure 3.
We briefly describe integration approaches for data sources and the connection between
data sources and ontologies. Then, we focus in more details on recent work on ontology
alignment, integration of standards and the connection between standards and other
resources.

8.3.2 Integration of Data Sources

The traditional database integration solutions cannot be used in a straightforward way to
meet the requirements for information integration in bioinformatics. These approaches
usually lack the power and flexibility to cope with the heterogeneity of the environment
and the user needs that evolve over time. As noted in [41], traditional database systems
rely on data structures and object identities that are predefined and do not change over
time, lack the flexibility to represent similar data and limit users to data manipulation
queries. Existing information integration systems can be grouped into virtual and ma-
terialized systems depending on whether they preserve the autonomy of data sources or
whether they need to be downloaded and processed locally. As discussed in [38], data
warehouses - materialized systems - do not guarantee that accessed information is up-
to-date, provide access to a limited number of data sources and do not cope well with
changes in the data sources. Virtual information integration systems retrieve data on
demand, i.e. query results are up-to-date. With respect to the transparency, information
integration systems can be grouped into tightly coupled and loosely coupled federa-
tions. Tightly coupled federations hide the integrated data sources from the user and
select the relevant data sources for the query processing. Loosely coupled federations
expose the integrated data sources to the user. In this approach, the user is responsi-
ble for selecting data sources that are relevant to a query. Loosely coupled federations
count on user knowledge about existing data sources and ways to link them. In [78] it is
emphasized that tightly coupled federated database systems are not practical since the
required level of integrated data management is too high. In many cases, the simplifying
assumptions made by the available integration systems are not appropriate for biolog-
ical data integration that relates to management of scientific data on the Web [41]. For
instance, systems developed to integrate Web sources assume that conjunctive queries
are enough to retrieve data of interest. The systems deal with limited data source query
capabilities but do not consider multiple capabilities of the data source [17].

Within the field of bioinformatics several integration approaches have been proposed
and systems have been implemented. Different systems have focused on different is-
sues and requirements for information integration systems. The earliest and currently
most widely used systems are index-based systems such as Entrez [19] and SRS (Se-
quence Retrieval System, [20]). An Entrez data source stores information collected from
different other data sources. Before adding new information into the integrated data
source, it is modified, e.g. assigned a unique identifier, converted into a common data
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representation, validated and matched to literature and taxonomy data sources. Data
sources accessed through Entrez are interlinked between each other by cross-references.
Entrez also introduces links between entries at a data source. For each entry, a list of
neighbors, i.e. similar entries, is assigned. SRS is a loosely coupled federation support-
ing a uniform interface and a query language to retrieve data. Most of the other (more
recent) systems have been used in field trials or have reached the stage of prototype, but
they often have not yet been used to the same extent as Entrez and SRS.

The information integration systems differ with respect to the type of the stored
knowledge and the formalisms used to represent the knowledge. The data models for
representing the integrated schemas can be separated into two groups: data models
established in the database community, i.e. relational, object-oriented and functional
data models, and data models used in the knowledge representation community, mainly
logic-based models. Some systems emphasize the support of web technologies and sug-
gest to use data models specialized for the Web (e.g. TAMBIS [89,9]). Some systems
support multiple integrated schemas (e.g. BioMediator [83]). The systems maintaining
integrated schemas differ in expressivity of the modeled mapping rules between the in-
tegrated schemas and the source schemas. Mapping rules are relations between terms
in an integrated schema and terms in the data source schemas. These rules specify how
queries expressed in terms of an integrated schema can be rewritten into the queries
referring to the data sources. Two important kinds of mapping rules are local-as-view
and global-as-view mapping rules (e.g. [53]). Both kinds of mapping rules are used. For
instance, BACIIS [60] uses local-as-view mapping rules, K2 [99] uses global-as-view,
while KIND [55] supports both. In addition to schemas and mapping rules, the systems
may use other types of knowledge to improve query processing such as capabilities of
data sources (e.g. BioFAST [17]), domain knowledge (e.g. KIND [55]), links between
data sources (BioMediator [83]) and statistical information on the data and data sources
(e.g. BioNavigation [42]).

Other types of information integration systems are also used in bioinformatics. For
instance, [37] explores the use of agent ontology for information integration in bioin-
formatics and grid technology is used in, for instance, the Cancer Bioinformatics Grid
CaBIG [73].

8.3.3 Data Sources and Ontologies

The main use of ontologies in bioinformatics is currently for annotation of data sources.
For instance, [2] describes the use of GO for Mouse Genome Informatics (MGI). MGI
integrates genetic and genomic data about the mouse. GO is used to assign consistent
functional annotations for data that is gathered from different other data sources and
literature. The use of consistent annotations reduces the terminology discrepancy and
supports finding similar data items in different data sources. The GO annotation sets are
also used in MGI for computing initial functional annotations for previously uncharac-
terized genes.

Two other advantages of using ontologies which can be used in integration, are
the use of the ontologies for query expansion and the use of ontologies for reasoning
[81]. In both cases new relationships may become apparent and used for integration of
information.
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Some of the information integration systems described in section 8.3.2 use Semantic
Web technologies based on the use of ontologies together with reasoning mechanisms
over the ontologies for dealing with data on the Web. BACIIS and TAMBIS use a do-
main ontology to represent the integrated schema, to specify mapping rules, to guide
rewriting of a user query into data source terms and to structure the retrieved results. In
addition, TAMBIS uses the domain ontology to guide a user during query formulation
and to semantically optimize queries. KIND uses the domain ontology to bridge the
gap between the data sources to integrate, i.e. to model and identify the relationships
between data objects that come from domains that are not directly related. Views are
formulated over the data sources and the domain ontology. In addition to the termino-
logical ontologies, the system uses a special formalism to model ontologies describing
processes. To enable automatic inclusion of the newly integrated data sources to the
previously defined views and to organize the retrieved data, similarly to BACIIS and
TAMBIS, KIND maps local data source ontology terms to the domain ontology.

nose

  − nasal bone

  − nasal cavity

  − nasal mucosa

  ...

  ...
  p − nasal cavity

     p −nasal cavity epithelium

          i − nasal cavity olfactory epithelium

          i − nasal cavity respiratory epithelium

  ...

      − olfactory mucosa

nose−MA nose−MeSH

nose

Fig. 4. Example of overlapping ontologies

8.3.4 Ontology Alignment

As stated before, many ontologies with overlapping information are being developed.
For instance, figure 4 shows a piece of the Adult Mouse Anatomy (MA) ontology and
a piece of the Medical Subject Headings (MeSH) ontology both representing nose. In
MA is-a (i) is used for specialization relationships (e.g. nasal cavity olfactory epithe-
lium is-a nasal cavity epithelium) and part-of (p) for partitive relationships (nasal cavity
part-of nose). MeSH uses the same relationship (-) for both these types of relationships.
There is overlap between these pieces. We know that nose, nasal cavity and nasal cav-
ity olfactory epithelium in MA represent the same concepts as nose, nasal cavity and
olfactory mucosa, respectively, in MeSH.

Ontology alignment5 is recognized as an important step in ontology engineering
that needs more extensive research and during the last years a large number of ontol-
ogy alignment systems have been developed. Examples of such systems can be found
in tables 2, 3, 4 and 5. More information can also be found in review papers (e.g.

5 See also chapter 6, section on ontology modularization, for an application in component mod-
els for semantic web languages.
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[47,84,66,36]), the book [21] on ontology matching, and on the ontology matching
web site at http://www.ontologymatching.org/.

Ontology alignment framework. Many ontology alignment systems are based on the
computation of similarity values between terms in different ontologies and can be de-
scribed as instantiations of the general framework shown in figure 56. The framework
consists of two parts. The first part (I in figure 5) computes mapping suggestions. The
second part (II) interacts with the user to decide on the final mappings.7 An alignment
algorithm receives as input two source ontologies. The ontologies can be preprocessed,
for instance, to select pieces of the ontologies that are likely to contain matching terms.
The algorithm includes one or several matchers, which calculate similarity values be-
tween the terms from the different source ontologies and can be based on knowledge
about the linguistic elements, structure, constraints and instances of the ontology. Also
auxiliary information can be used. Mapping suggestions are then determined by com-
bining and filtering the results generated by one or more matchers. By using different
matchers and combining and filtering the results in different ways we obtain different
alignment strategies. The suggestions are then presented to the user who accepts or
rejects them. The acceptance and rejection of a suggestion may influence further sug-
gestions. Further, a conflict checker is used to avoid conflicts introduced by the mapping
relationships. The output of the ontology alignment system is an alignment which is a
set of mappings between terms from the source ontologies.

Strategies. The matchers use different strategies to calculate similarities between the
terms from the different source ontologies. They use different kinds of knowledge that
can be exploited during the alignment process to enhance the effectiveness and effi-
ciency. Some of the approaches use information inherent in the ontologies. Other ap-
proaches require the use of external sources. We describe the types of strategies that
are used by current ontology alignment systems and in tables 2, 3, 4 and 58 we give an
overview of the used knowledge per system. The information in table 2 stems from the
study in [47]. The systems in tables 3, 4 and 5 participated in the Ontology Alignment
Evaluative Initiative in 2007 and/or 2008.

– Strategies based on linguistic matching. These approaches make use of textual de-
scriptions of the concepts and relations such as names, synonyms and definitions.
The similarity measure between concepts is based on comparisons of the textual de-
scriptions. Simple string matching approaches and information retrieval approaches

6 The framework in figure 5 is an extension of the framework defined in [47]. The framework
is further extended in [45] where we investigated the use of partial reference alignments in
ontology alignment.

7 Some systems are completely automatic (only part I). Other systems have a completely man-
ual mode where a user can manually align ontologies without receiving suggestions from the
system (only part II). Several systems implement the complete framework (parts I and II) and
allow the user to add own mapping relationships as well.

8 Also the approaches that are not based on the computation of similarity values may use these
types of knowledge and are therefore included in the table.
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Fig. 5. Alignment framework (based on [47,45])

(e.g. based on frequency counting) may be used. Most systems use this kind of
strategies.

– Structure-based strategies. These approaches use the structure of the ontologies
to provide suggestions. Typically, a graph structure over the concepts is provided
through is-a, part-of or other relations. The similarity of concepts is based on their
environment. An environment can be defined in different ways. For instance, using
the is-a relation an environment could be defined using the parents (or ancestors)
and the children (or descendants) of a concept.

– Constraint-based approaches. In this case the axioms are used to provide sug-
gestions. For instance, knowing that the range and domain of two relations are
the same, may be an indication that there is a relationship between the relations.
Constraint-based approaches are currently used by only a few systems.

– Instance-based strategies. In some cases instances are available directly or can be
obtained. For instance, the entries in biological data sources that are annotated with
GO terms, can be seen as instances for these GO terms. When instances are avail-
able, they may be used for defining similarities between concepts.
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Table 2. Knowledge used by (earlier) alignment systems [47]

linguistic structure constraints instances auxiliary
ArtGen name parents, children domain-specific WordNet
[74] documents
ASCO name, label, parents, children, WordNet
[52] description siblings,

path from root
Chimaera name parents, children
[59]
FCA-Merge name domain-specific
[93] documents
FOAM name, parents, children equivalence
[18] label
GLUE name neighborhood instances
[15]
HCONE name parents, children WordNet
[40]
IF-Map instances a reference
[35] ontology
iMapper leaf, non-leaf, domain, instances WordNet
[94] children, range

related node
OntoMapper name parents, children documents
[75]
(Anchor-) name direct graphs
PROMPT
[68,69]
S-Match label path from root semantic WordNet
[25] relations in text

– Use of auxiliary information. Dictionaries and thesauri representing general or do-
main knowledge, or intermediate ontologies may be used to enhance the alignment
process. Also information about previously aligned or merged ontologies may be
used. Many systems use auxiliary information.

An ontology alignment tool. As an example of an ontology alignment tool and its use,
we briefly discuss SAMBO9 [47]. SAMBO is developed according to the framework
described above. The system separates the process into two steps: aligning relations
and aligning concepts. The second step can be started after the first step is finished.
In the suggestion mode several kinds of matchers can be used and combined. The
implemented matchers are a terminological matcher (TermBasic), the terminological
matcher using WordNet (TermWN), a structure-based matcher (Hierarchy), a matcher
(UMLSKSearch) using domain knowledge in the form of the Unified Medical Lan-
guage System (UMLS) of the U.S. National Library of Medicine [103] and an instance-
based matcher (BayesLearning). TermBasic contains matching algorithms based on the

9 System for Aligning and Merging Biomedical Ontologies.



360 P. Lambrix, L. Strömbäck, and H. Tan

Table 3. Knowledge used by alignment systems participating in both OAEI 2007 and 2008

linguistic structure constraints instances auxiliary
ASMOV textual parents, property WordNet,
[33,34] descriptions children UMLS
DSSim textual semantic WordNet
[61,62] descriptions relations in text
Lily textual hierarchy property web knowledge,
[105,106] descriptions information instances
RiMOM label, ancestors instances WordNet
[54,113] comment
SAMBO(dtf) name, is-a and part-of, domain-specific WordNet,
[98,50] synonym descendants documents UMLS

and ancestors
TaxoMap label children property
[110,28]

Table 4. Knowledge used by alignment systems participating in OAEI 2007 but not in 2008

linguistic structure constraints instances auxiliary
Agreement- labels parents
Maker path to root
[95]
AOAS textual is-a, part-of UMLS
[112] descriptions relations a reference ontology
Falcon-AO textual structural
[30] descriptions relations
OLA textual structural domain, range
[23] descriptions relations property
OWL-CM label children equivalence WordNet
[109]
Prior+ name sub-elements property
[56]
SEMA label, parents, domain,range instances WordNet
[87] comment children property
SILAS name related
[72] text
SODA label, neighborhood
[111] comment
X-SOM textual neighborhood google search WordNet
[12] descriptions

names and synonyms of concepts and relations. The matcher is a combination matcher
based on two approximate string matching algorithms (n-gram and edit distance) and
a linguistic algorithm. In TermWN a general thesaurus, WordNet [107], is used to en-
hance the similarity measure by using the hypernym relationships in WordNet. The
structure-based algorithm requires as input a list of mapping relationships and
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Table 5. Knowledge used by alignment systems participating in OAEI 2008, but not in 2007

linguistic structure constraints instances auxiliary
Anchor-Flood lexical info parents, children property
[82] neighborhood
AROMA textual subsumption instances
[13] descriptions relations in text
CIDER textual structural
[27] descriptions relations
GeRoMe textual paths, WordNet
[77] descriptions children
MapPSO name, parents property WordNet
[4] label
SPIDER textual semantic WordNet
[80] descriptions relations in text

Fig. 6. Combination and filtering

similarity values and can therefore not be used in isolation. The intuition behind the
algorithm is that if two concepts lie in similar positions with respect to is-a or part-
of hierarchies relative to already aligned concepts in the two ontologies, then they are
likely to be similar as well. UMLSKSearch uses the Metathesaurus in the UMLS which
contains more than 100 biomedical and health-related vocabularies. The Metathesaurus
is organized using concepts. The concepts may have synonyms which are the terms in
the different vocabularies in the Metathesaurus that have the same intended meaning.
The similarity of two terms in the source ontologies is determined by their relationship
in UMLS. BayesLearning makes use of life science literature that is related to the con-
cepts in the ontologies. It is based on the intuition that a similarity measure between
concepts in different ontologies can be defined based on the probability that documents
about one concept are also about the other concept and vice versa. For more detailed
information about these matchers we refer to [47]. In addition to these techniques we
have also experimented with other matchers [51,96,104]. The combination algorithm
in SAMBO is a weighted sum strategy. Figure 6 shows how different matchers can be
chosen and weights can be assigned to these matchers.

Filtering is performed using a threshold value. The pairs of terms with a similar-
ity value above this value are shown to the user as mapping suggestions. We have
also developed the double threshold filtering method [8] and implemented in the



362 P. Lambrix, L. Strömbäck, and H. Tan

Fig. 7. Mapping suggestion

Fig. 8. Information about the remaining suggestions

SAMBOdtf system, an extension of SAMBO. The double threshold filtering approach
uses the structure of the ontologies. It is based on the observation that (for the differ-
ent approaches in the evaluation in [47]) for single threshold filtering the precision of
the results is decreasing and the recall is increasing when the thresholds are decreas-
ing.10 Therefore, we propose to use two thresholds. Pairs with similarity values equal
or higher than the upper threshold are retained as suggestions. The intuition is that this
gives suggestions with a high precision. Further, pairs with similarity values between
the lower and the upper threshold are filtered using structural information and the rest
is discarded. We require that the pairs with similarity values between the two thresh-
olds are ’reasonable’ from a structural point of view. The intuition is that the recall is
augmented by adding new suggestions, while at the same time the precision stays high
because only structurally reasonable suggestions are added. For details we refer to [8].

An example mapping suggestion is given in figure 7. The system displays informa-
tion (definition/identifier, synonyms, relations) about the source ontology terms in the
suggestion. For each mapping suggestion the user can decide whether the terms are
equivalent, whether there is an is-a relation between the terms, or whether the sugges-
tion should be rejected. If the user decides that the terms are equivalent, a new name

10 Recall is the number of correct suggestions divided by the number of correct mapping relation-
ships. Precision is the number of correct suggestions divided by the number of suggestions.
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Fig. 9. Manual mode

for the term can be given as well. Upon an action of the user, the suggestion list is up-
dated. If the user rejects a suggestion where two different terms have the same name,
she is required to rename at least one of the terms. The user can also add comments
on a mapping relationship. At each point in time during the alignment process the user
can view the ontologies represented in trees with the information on which actions have
been performed, and she can check how many suggestions still need to be processed.
Figure 8 shows the remaining suggestions for a particular alignment process. A similar
list can be obtained to view the previously accepted mapping suggestions. In addition to
the suggestion mode, the system also has a manual mode in which the user can view the
ontologies and manually map terms (figure 9). The source ontologies are illustrated us-
ing is-a and part-of hierarchies (i and p icons, respectively). The user can choose terms
from the ontologies and then specify an alignment operation. Previously aligned terms
are identified by different icons. For instance, the M icons in front of ’nasal cavity’
in the two ontologies in figure 9 show that these were aligned using an equivalence
relationship. There is also a search functionality to find specific terms more easily in
the hierarchy. The suggestion and manual modes can be interleaved. The suggestion
mode can also be repeated several times, and take into account the previously performed
operations.

After the user accomplishes the alignment process, the system receives the final map-
ping list and can be asked to create the new ontology. The system merges the terms in
the mapping list, computes the consequences, makes the additional changes that follow
from the operations, and finally copies the other terms to the new ontology. Furthermore,
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SAMBO uses a DIG description logic reasoner to provide a number of reasoning ser-
vices. The user can ask the system whether the new ontology is consistent and can ask
for information about unsatisfiable concepts and cycles in the ontology.

Evaluation of ontology alignment strategies for life sciences. Considering the fact
that many strategies and systems are being developed, it becomes increasingly diffi-
cult to choose what techniques to use for aligning ontologies. However, the study of
the properties, and the evaluation and comparison of the alignment strategies and their
combinations, can give us valuable insight in how the strategies could be used in the
best way. It would also lead to recommendations on how to improve the alignment
techniques. There are two main evaluations of the performance of ontology alignment
strategies for the life sciences in terms of the quality of the mapping suggestions. In
[47,96,104,51] different matchers were evaluated on five smaller test cases. Two cases
used a part of a GO ontology together with a part of SigO. The other test cases were
based on MeSH (anatomy category) and Adult Mouse Anatomy. An analysis of some
of the results using the KitAMO environment is given in [48].

The largest evaluation is performed within the Ontology Alignment Evaluation Ini-
tiative (OAEI, http://oaei.ontologymatching.org/). This is a yearly initiative that was
started in 2004. The goals are, among others, to assess the strengths and weaknesses
of alignment systems, to compare different techniques and to improve evaluation tech-
niques. This is to be achieved through controlled experimental evaluation. For this pur-
pose OAEI publishes different cases of ontology alignment problems, some of which
are open (reference alignment is known beforehand), but most are blind (reference
alignment is not known - participants send their mapping suggestions to organizers who
evaluate the performance). OAEI currently only evaluates the non-interactive part of
ontology alignment systems. The case that is related to the life sciences is the anatomy
case. In 2008 participants were required to align the Adult Mouse Anatomy (2744 con-
cepts) and the NCI Thesaurus - anatomy (3304 concepts). The case is divided into 4
tasks (of which task 4 was new for 2008). The anatomy case is a blind case. The ref-
erence alignment contains only equivalence correspondences between concepts. In all
tasks the two ontologies should be aligned. In task 1 the system should be tuned to opti-
mize the f-measure11. This means that both precision and recall are important. The sys-
tems are compared with respect to precision, recall, f-measure and recall+ (recall with
respect to non-trivial mappings). 9 systems participated in task 1. In tasks 2 and 3, in
which 4 systems participated, the system should be optimized with respect to precision
and recall, respectively. In task 412, in which 4 systems participated, a partial reference
alignment is given which can be used during the computation of mapping suggestions.
It contains all trivial and some non-trivial mappings. The best results in tasks 1 and 4
were obtained by SAMBO with SAMBOdtf in second place. The version of SAMBO
for OAEI used a maximum-based combination of TermWN and UMLSKSearch. This
suggests that domain knowledge is important to obtain good results for this task.

11 F-measure is the weighted harmonic mean of precision and recall. For task 1 precision and
recall are weighted evenly.

12 As a follow-up on task 4, we have studied the use of partial reference alignments in the different
components of an ontology alignment system. For details we refer to [45].
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However, as the recall+ of the best system is still around 0.6, work still needs to be
done to find non-trivial mappings. Also, the best systems that did not not use domain
knowledge managed to find non-trivial mappings that were not found by any system
using domain knowledge. As [6] suggests, a combination of different strategies may
improve the results. Taking the union of the SAMBO results with the results of the Ri-
MOM and Lily systems gave a recall of 0.922 and a recall+ of 0.8. RiMOM and Lily
use linguistic and structure-based approaches. The 4 systems participating in task 4 all
managed to improve their f-measure on the non-given part of the reference alignment.
However, only SAMBOdtf managed to improve both precision and recall. The best sys-
tem for task 213 (RiMOM) obtained a precision of 0.964 (with a recall of 0.677) and the
best system for task 3 (RiMOM) obtained a recall of 0.808 (with a precision of 0.450
and a recall+ of 0.538). We note that the best recall is lower than the recall for SAMBO
and SAMBOdtf in task 1.

Current challenges. [85] lists ten challenges for ontology alignment systems. A first
challenge is more large-scale evaluation. This includes larger test sets than the cur-
rent OAEI provides and evaluation measures. Further, there is an issue of performance.
When mappings are generated off-line and not very often, this may not be a major fac-
tor, but when mappings need to be generated on-line in semantic web applications, this
may become a bottleneck. When ontologies are being developed, it is usually within
a certain context and with certain background knowledge. This is not always explic-
itly represented in the ontologies and therefore makes the alignment task harder. Other
challenges are uncertainty in ontology alignment and reasoning with mappings. Also,
not so much work has been done on user involvement, user interfaces and ontology and
ontology alignment visualization [44,22]. To help users in deciding whether to accept or
reject mapping suggestions, we may need to explain why the systems propose the sug-
gestions. Further, as ontology alignment may be a large task, one may want to involve
a community of users that participate in social and collaborative ontology alignment.
There is currently not much infrastructure for alignment management. An ontology
alignment management system may, in addition to components for aligning ontologies,
also provide functionality for storing, retrieving and searching the results. Some initial
ideas are realized in the KitAMO environment [48] and the BioPortal [67]. Finally, as
many alignment strategies (matchers, combinations and filters) have been developed, it
is not always easy to choose the best strategy for aligning two ontologies. One way to
address this issue is to develop systems that recommend strategies (e.g. [97]).

8.3.5 Integrating Standards

As for ontologies, although different standards are developed with different aims, the
fact that there exists so many and diverse standards gives problems for the community.
The different standards overlap partially and have their own specific strengths, e.g. PSI
MI [29] is designed for the description of molecular interactions while SBML [31] and
CellML [24] are designed for describing pathways and simulation models.

In parallel to this, the importance of data integration becomes more and more obvi-
ous as the number of interdisciplinary research projects increases constantly [79,102].

13 SAMBO and SAMBOdtf did not participate in tasks 2 and 3.
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When the scope of the projects increases there is a need to model different kinds of data
and several of the standards are likely to be used within the same project. To provide an
interface between the standards, transformations between the standards are needed, i.e.
connection 4 in figure 3. For instance, of the variety of software tools being available
for the work on biochemical models, many only support a limited number of formats
and develop their own specific converters for the standards they support [26,64]. Some
converters are provided by the communities, for example on www.sbml.org for SBML
models. Those are mostly XSLT scripts that convert versions of a standard into versions
of another standard. The main drawback of this solution is that the transformation is
hard coded, and thus as soon as a new version of one of the participating standards
becomes available, the converter has to be rewritten. This leads to a situation where a
conversion expert is needed in order to maintain the facilities.

Another problem is that a great number of converters is needed for, for instance, all
the combinations of pathway standards that a community wants to support. One solution
is to use tools for integration of XML that work on the XML schema, e.g. COMA++
[57]. Another solution that allows integration of XML-based and OWL-based standards
is proposed in [39]. The main architecture of this solution is described in figure 10. The
task is to convert XML or OWL data from one standardized format to another. The
main work is done on the schema level. For cases where the standard is described as an
XML schema the XML schema is converted to an OWL description. With this trans-
formation the integration can be done, semi-automatically, with a tool for integration
of OWL ontologies such as SAMBO. The alignment results can then be used for trans-
forming the original XML files from one format to the other. The proposed architecture
provides a general and semi-automatic solution for integrating standards in order to
support reusability and comparability of biochemical models defined in XML-based
and OWL-based formats. XML Schema lacks the formal foundations of OWL and thus
a lossless transformation of OWL relations into XML Schema structures is not possible.

The general architecture can be divided into the following steps:

1. Provide a schema definition (e. g. the SBML Schema), if the starting point was an
instance file (e. g. an SBML model).

2. Transform the XML Schema into an OWL model representation.
3. Repeat 1 and 2 for all standards that should be compared.
4. Match the (created) OWL models on OWL level.
5. Use the matching correspondences to either form a joint format containing all the

information of both starting schemas, or to assign data of the source document to
the target document.

During the transformation step, an existing XML Schema is transformed into an
equivalent OWL model. The transformation is focused on keeping the naming and
structure of the original models, as those are of great importance for the success of
a matching process. This especially means that the hierarchy of the XML Schema has
to be kept unchanged. Notions such as cardinalities or data models (differences between
choice, sequence and all) are of minor interest for the matching process. No additional
names or identifiers should be added in order to avoid a distortion of matching results
later on. The result of the transformation is a valid OWL model which can be read by
existing OWL tools.
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Fig. 10. An architecture for integration of XML standards [39]

To get back from the created OWL model to the XML based representation, the whole
transformation from XML Schema to OWL model is recorded (recall transformation)
using XML Path Language (XPath). XPath can address parts of an XML Schema un-
ambiguously and by storing the XPath expressions during the transformation step, the
XML Schema can be recreated from the generated OWL model. It has been shown that
the backwards transformation from OWL model to XML Schema keeps all the informa-
tion needed for the transformation tool, and that it is possible to unambiguously identify
each part of the created OWL model and its equivalent in the according XML Schema.

During a matching step, the created and/or original models are matched. A matching
takes two schemas S1 and S2 as input and returns a mapping between those two schemas
as output. The resulting mapping then defines relations between the two schemas and
therefore allows for a comparison of common parts in both schemas. As described in
section 8.3.4 there exist a number of matching algorithms and we have currently evalu-
ated SAMBO, PROMPT and COMA++.

The described architecture could, if fully realized, be a tool that provides semi-
automatic conversion between formats. We also see the possibility of reusing old con-
versions when new versions of a representation format appear. This is needed but not
available in current technology.

8.3.6 Connection between Standards and Other Resources

We have already mentioned in section 8.2.3 that connections between standards and
ontologies have been required by several of the efforts defining minimum requirements
for standards.
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This relation between standards, described in XML format, and ontologies (connec-
tion 10 in figure 3) can further be illustrated by the fact that many of the XML standards
make use of ontologies to further specify the type of a described entity. Here we illus-
trate this by showing a subset of the information that can be identified for an interaction
in the PSI MI [29] standard. In this standard an interaction typically represents any
interaction between a number of molecules that has been detected by an experiment.
The interaction can be further classified by specifying an interactiontype. The values
of the interactions are specified by a predefined hierarchy in OBO. Similarly, the val-
ues specifying the experimental and the biological role of a participant molecule of the
interaction can be further specified as OBO classes. Figure 11 shows an excerpt of the
ontology specifying the possible values for the interaction type. Other standards, e.g.
BioPAX [108], are instead specified as an ontology. Thus, the concepts in the hierarchy
build up the data model that is needed to describe the data and suitable parameters can
be connected to a specific class in the ontology.

Fig. 11. The PSI MI interaction ontology

The connection between the data model of an internal data source and a standard
is kept by special implementations that allow a data source to import and export data
in any of the standardized formats (connection 6 in figure 3). However, in addition to
this, the specification of the standards tries to support integration between data sources
(connections 7 and 3 in figure 3). One example of this is the xref attribute used in
the PSI MI standard (see table 6). The standard supports links between different data
sources, and by following the given links it is possible to find related interactions in
other databases.

The MIRIAM [65] standard has put further effort on this. MIRIAM is a meta stan-
dard and the aim is to define the minimal amount of information that must be included
in data to make it reusable by other sources. One important issue is to specify how the
objects in a description could be annotated, i.e. how the references to other data sources
should be defined. For this purpose MIRIAM contains both a database of different web
resources and a specification of how these should be referred. Examples of how this
is used for the Tyson Cell model in the Biomodels database are shown in table 7. The
table shows that the Tyson model is considered to be part of the Fungi Metozoa group
as specified in the UniProt database. There are also versions of this model in other
databases and ontologies: KEGG, GO and Reactome. Similarly, the bottom part of the
table shows where more information on one of the first reactions of this model can be
found. Here the information is linked to the Enzyme nomenclature, GO and Reactome.
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Table 6. PSI MI interaction

PSI MI: Interaction
id identifier
xref reference to identifier for this interaction in other databases
interactiontype further specification of kind of interaction (OBO class)
experimentList experiments to verify this interaction
participantList molecules participating in the interaction

id identifier for the participating molecule
names name of the participating molecule
experimental-role the molecules role in the experiment (OBO-class)
biological-role the molecules biological role in the interaction (OBO-class)

Table 7. Tyson model

Tyson model bqmodel:is Taxonomy: Fungi/Metazoa group
bqbiol:isVersionOf KEGG Pathway: sce04111

Gene Ontology: mitotic cell cycle
bqbiol:hasVersion Reactome REACT 152

Deactivation of cdc-2 kinase bqbiol:isVersionOf EnzymeNomenclature: 2.7.10.2
Gene Ontology: protein amino acid phosphorylation
Gene Ontology: negative regulation of
cyclin-dependent protein kinase activity

bqbiol:hasVersion Reactome: REACT 3178
Reactome: REACT 6327

The qualifier isVersionOf in table 7 specifies that this model is a version or instance of
the more general model or concept defined by, in this case KEGG and GO. The qualifier
hasVersion, on the other hand, specifies that models or concepts, in this case in KEGG,
are a version of this model.

8.4 Conclusion

In this chapter we have briefly reviewed different kinds of resources of biological infor-
mation that are publicly available on the Web. Researchers in the field need information
from all these different kinds of resources. However, integrating this information is not
an easy task. We described a model for integration that not only makes use of the re-
sources, but also of the connections between the resources. Further, we described recent
work on different components in the model.

A resource of biological information that we did not address in this chapter is the
large amount of scientific literature. Many biological data sources have curators that
collect data from literature and add the data to the data source. Other biological data
sources use text mining approaches to gather data. Also here there is more and more
work on using ontologies for annotation and search. For instance, all articles in MED-
LINE, the main component of PubMed [76], are annotated with MeSH terms. An ex-
ample of a literature search engine that uses ontologies is GoPubMed [16], which is the
topic of chapter 7.
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