
Modelling a Debugger for an

Imperative Voice Control Language

Andreas Blunk, Joachim Fischer, and Daniel A. Sadilek

Humboldt-Universität zu Berlin
Unter den Linden 6

D-10099 Berlin, Germany
{blunk,fischer,sadilek}@informatik.hu-berlin.de

Abstract. Creating debuggers for languages has always been a hard
task. The main reason is that languages differ a lot, especially in the
way programs are executed on underlying platforms. The emergence of
metamodel-based technologies for defining languages simplified the cre-
ation of various language tools, e.g., creating editors from notation de-
scriptions became common practice. Another, relatively recent, example
is the metamodel-based description of execution semantics from which
an interpreter can be derived. Such a semantics allows one to apply a
model-based approach also to debugger development. In this paper, we
demonstrate how a debugger can be modelled for an imperative voice
control language. We show models of the debugging context, breakpoints,
and stepping of voice control programs. These models are processed by
a generic debugger.

1 Introduction

Debuggers are critical tools in software development. They are used by program-
mers to determine the cause of a program malfunction or simply to understand
program execution behaviour. Programmers can follow the flow of execution
and, at any desired point, suspend further execution and inspect the program’s
state. Execution may either be suspended manually or by setting breakpoints at
well-defined program locations. A debugger then visualises the program’s state.
It presents all relevant information in the current context of execution, such as
visible variable values and the program location.

Debuggers are well-known for general-purpose languages (GPLs). But, they
can also be useful for executable domain-specific languages (DSLs). These lan-
guages are tailored to specific application domains. They allow developers to use
specific concepts and notations to create programs of a corresponding domain
with more concise and readable expressions than in GPLs.

In traditional language engineering, tools including debuggers are usually im-
plemented by hand. But this can be too expensive for DSLs if they are used
in small projects. It can also be a problem for bigger languages, e.g. UML or
SDL, which are first specified in a standardisation process before tools are im-
plemented by hand. Such manual implementation not only causes a gap between
specification and tools but also delays tool availability.

R. Reed, A. Bilgic, and R. Gotzhein (Eds.): SDL 2009, LNCS 5719, pp. 149–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

150 A. Blunk, J. Fischer, and D.A. Sadilek

A new language description technique that makes both language and tool
development less expensive is metamodelling. It allows the description of the
different aspects of a language with models, from which tools can be derived [1].
This is, for example, done for editors and interpreters, but there is currently no
such technique for modelling debuggers.

The reason for this is that debuggers heavily depend on how language instances
are executed and how runtime states can be extracted [2]. Execution semantics can
either be described by a transformation to another language or by interpretation.
In transformational semantics, debuggers depend on operating system capabilities
and also on compilers and linkers that generate the symbol table and align target
code. Debuggers for interpreted languages depend on language-dependent inter-
preter interfaces. Such dependencies make it hard to develop a modelling technique
for debuggers and to implement a generic debugger.

What can already be implemented in a generic fashion is the graphical user in-
terface part of a debugger because it is similar in many debuggers. The Eclipse
Debugging Framework (EDF) [3] is such an implementation. It defines a set
of Java-Interfaces, which concrete debuggers must implement. The EDF pro-
vides generic functionality on the basis of these interfaces. They forward user
interactions to concrete implementations and they query them for debugging
information that is displayed in the user-interface.

In this paper, we advance this state-of-the-art with a technique for modelling
debuggers. It requires a metamodel-based description of the abstract syntax of
a language and an operational semantics. Such language descriptions allow:

1. access to runtime states easily via model repositories, and
2. control of execution at the granularity of operational semantics steps.

Our approach is based on an EDF-based implementation of a generic debugger
and descriptions for specific DSL debuggers. In contrast to generated tools, the
generic debugger processes DSL-specific debugging descriptions and allows for
domain-specific debugging of DSL programs. With our approach, the debugging
of a DSL is described on the basis of its metamodel. It consists of various descrip-
tions of debugging concepts: context information, program locations, breakpoints
and step-operations. We demonstrate a description of these concepts with the
sample DSL Voice Control Language (VCL).

In the following section, we present the foundations of our approach in more
detail and we explain the language description of VCL in special example sec-
tions. Section 3 explains our approach for modelling debuggers. We demonstrate
the modelling of a debugger for VCL in Sects. 4 and 5. The paper ends with a
short conclusion and future work in Sects. 7 and 8.

2 Foundations

We use the Eclipse Modeling Framework (EMF) [4] as a metamodelling frame-
work for MOF-based metamodels [5] and the operational semantics framework
EProvide [6] for executing DSL programs according to an operational semantics

Modelling a Debugger for an Imperative Voice Control Language 151

description. Although we use EMF and EProvide, the approach is not limited to
these tools. It may also be applied to other MOF-based metamodelling frame-
works and other descriptions of operational semantics.

2.1 Metamodelling

A metamodel defines the abstract syntax of a language. It describes the structure
of a set of possible language instances with object-oriented description means,
e.g. classes, attributes, and associations. Language instances are models that
contain instances of metamodel elements, e.g. objects, attribute values, and links.

Metamodelling frameworks such as EMF allow working with metamodels and
models. They provide a model repository, editors and a programming environ-
ment, e.g. Java, that can be used to write programs on the basis of a metamodel.

Example 1 An example DSL is the Voice Control Language (VCL). It is an
imperative language that can be used to write programs for controller modules
connected to a telephone. Besides concepts of imperative languages, e.g. variables
and control structures, VCL also contains domain-specific concepts like say text,
perform action and listen for key press. These concepts and their relations are
defined by the metamodel, depicted in Fig. 1.

Basically, VCL programs consist of reusable Modules that contain sequences
of Actions. There are domain-specific Actions like SayText and Listen but also
ones that remind us of GPLs like EnterModule, Decision and Assignment. Ex-
pressionActions can access Variables that save program state. They have to be
declared local to a specific module or global to all modules. For simplicity reasons
Variables are always of type Integer.

A sample instance of the metamodel is depicted in Fig. 2. It is a gambling
game, called probe game. The game can be played by calling a telephone that is
connected to a corresponding controller. It randomly chooses between 0 and 1
and it tells you to make a guess. You either win the game with three successful
probes or you lose it after three tries.

At the program level the global variables score and tries are declared. Exe-
cution begins in the main module probe. It first outputs some information to
the caller and then assigns initial values to the global variables. Next is a while
action, which is executed if there are tries left. Execution then proceeds in the sub
module doProbe. Modules can be compared to functions in GPLs. The module
doProbe declares the local variables in and result. The first action listens for
one of two possible inputs. It then assigns in to either 0 or 1. After the listen
action, a random number between 0 and 1 is computed via an external system
call. If the result matches the value of in, the caller gets a point. In either case
the caller’s tries are decremented. The module doProbe is left after execution of
the last action has been completed. Execution continues after the EnterModule
action in the main module probe. The section startConfig defines a number of
initial inputs. They let a language developer test the program.

The textual representation of VCL instances is defined with TEF [7]. It allows
description of textual notations and derivation of textual editors automatically.

152 A. Blunk, J. Fischer, and D.A. Sadilek

Ac
tio

n

ex
ec

ut
e(

)

Sa
yT

ex
t

te
xt

 :
 E

St
rin

g

Sy
st

em
Ca

ll

na
m

e
:

ES
tr

in
g

Li
st

en

w
ai

tin
g

:
EB

oo
le

an

M
od

ul
e

na
m

e
:

ES
tr

in
g

En
te

rM
od

ul
e

Pr
og

ra
m

na
m

e
:

ES
tr

in
g

Li
st

en
O

pt
io

n

di
gi

t
:

EI
nt

te
xt

 :
 E

St
rin

g

En
vi

ro
nm

en
t

in
pu

tB
uf

fe
r

:
EI

nt

ou
tp

ut
Bu

ff
er

 :
 E

St
rin

g

Va
ria

bl
e

na
m

e
:

ES
tr

in
g

Ex
pr

es
si

on

ev
al

ua
te

()
 :

 E
In

t

Va
ria

bl
eA

cc
es

s
N

um
be

r

D
ec

is
io

n

W
hi

le

As
si

gn
m

en
t

Bl
oc

k

Ex
pr

es
si

on
Ac

tio
n

Co
nd

iti
on

al

Pl
us

M
in

us
G

re
at

er

Le
ss

Eq
ua

lSt
ar

tu
pC

on
fig

ur
at

io
n

in
iti

al
In

pu
t

:
EI

nt

bl
oc

k

0.
.1

lis
te

nO
pt

io
n 0.
.1

ac
tio

ns 1.
.*

ta
rg

et
Ac

tio
n

1.
.1

ne
xt

Ac
tio

n
0.

.1

op
tio

ns 1.
.*

ac
tiv

eO
pt

io
n

0.
.1

lis
te

n
1.

.1

lo
ca

lV
ar

s
0.

.*re
tu

rn
1.

.1

m
od

ul
e

1.
.1

m
od

ul
es

0.
.*

m
ai

nM
od

ul
e

1.
.1

en
v

0.
.1

gl
ob

al
Va

rs

0.
.*

co
nf

ig
0.

.1

va
ria

bl
e

1.
.1

va
ria

bl
e

1.
.1

op
er

an
ds0.

.*
ex

pr
es

si
on 1.

.1

co
nd

0.
.1

bo
dy

1.
.1

va
lu

e
:

EI
nt

eg
er

O
bj

ec
t

Fig. 1. VCL metamodel

2.2 Operational Semantics

An operational semantics defines the execution of language instances as a step-
wise transition of a runtime state [8]. In a metamodel-based operational semantics,
possible runtime states are modelled as part of a DSL metamodel and transitions
are defined as model-to-model transformations. Such transformations can be de-
fined with EProvide in one of various languages, e.g. Java, QVT, ASMs, Prolog or

Modelling a Debugger for an Imperative Voice Control Language 153

program probeGame {
decl score, tries;
mainModule probe {

say "probe on 0 or 1";
 score = 0;
 tries = 3;

while tries > 0 {
enter doProbe;
if score = 3 {

 tries = 0;
say "you win";

 }
 }

if score < 3 {
say "you lose";

 }
 }

module doProbe {
decl in, result;
listen {

0 : "probe 0" : in = 0;
1 : "probe 1" : in = ;

 }
 result = sys "random" (0, 1);

if result = in {
 score = score + 1;
 }
 tries = tries - 1;
 }

startConfig {
input = [0, 1, 2];

 }
}

1

Fig. 2. Probe game written in VCL

Scheme. On the basis of such a definition, EProvide executes DSL instances step-
wise. DSL developers can use the Eclipse launching dialog for specifying execution
parameters, and they can control execution at the granularity of operational se-
mantics steps. But up to now, EProvide does not support debugger features such
as a variable view or more complex stepping.

Example 2 To define the operational semantics of VCL programs, we extend
the metamodel with a description of possible runtime states (emphasised ele-
ments in Fig. 1), e.g., the class Environment, which holds user inputs and pro-
gram outputs, and the reference Program.nextAction, which plays the role of an
instruction pointer.

We define the transformation (step) and an initial state (reset) in Java (see
Listing 1). It defines that in each step, one action is to be executed. Actions
process inputs and outputs, which are contained in an Environment object. Inputs
are numeric keys pressed on a telephone key pad. They are consumed by Listen
actions that define actions to be taken. Outputs are strings spoken to the caller.
They are produced by SayText actions. All other actions define program state
computations and conditional execution of actions.

2.3 Model Transformations

In our approach, we also use model-to-model transformations in the transforma-
tion language QVT Relations [9]. A transformation is described on the basis of
a source and a target metamodel. One specifies complex object patterns that,
when found in a source model, result in matching another object pattern in a
target model. If the target pattern does not exist, objects, links and values are
created.

A transformation specification consists of a set of top-level relations that must
hold in order for the transformation to be successful and ordinary relations that

154 A. Blunk, J. Fischer, and D.A. Sadilek

public class JavaSemanticsProvider implements ISemanticsProvider {

public void step(Resource model) {
Program program = getProgram(model);
...
Action action = program.getNextAction();
if (action == null) return;
if (action instanceof SayText) {

program.getEnv().getOutputBuffer().add(((SayText) action).getText ());
}
else if (action instanceof Listen) { ... }
program.setNextAction (...);

}

public void reset (Resource model) {
Program program = getProgram(model);
Action firstAction = program.getActions().get (0);
program.setNextAction(firstAction);
program.getEnv().getInputBuffer (). clear ();
program.getEnv().getOutputBuffer(). clear ();

}
}

Listing 1. Operational semantics description for VCL programs

are executed conditionally in when and where clauses. A relation needs to hold
only when the relations in its when clause hold. A relation called in a where
clause needs to hold only when the calling relation holds.

3 An Approach for Modelling Debuggers

The DSLs that are used in our approach are special in two ways. First, their run-
time state is completely contained in a model. This makes it possible to describe
a debugging representation of a DSL instance on the basis of its metamodel. Such
a representation is defined by a model-to-model transformation of DSL instances
to instances of a debugging metamodel, e.g. in QVT Relations. The debugging
metamodel describes concepts for visualising threads, stack frames, variables and
values; its instances are mapped to objects in EDF, which are displayed in the
user-interface. Besides such state information, program locations are another part
of a program’s runtime state. Model objects that represent program locations are
extracted by model queries and then highlighted in a concrete syntax.

The second characteristic is the step-wise execution of DSL instances. This
makes the implementation of a generic debugger possible, which checks a pro-
gram for active breakpoints to suspend further execution. Breakpoints are based
on possible program locations. They can be installed for model objects that
may represent program locations. Execution automatically suspends if an object
that was marked as a breakpoint is included in a query for program locations.

Modelling a Debugger for an Imperative Voice Control Language 155

Step-Operations, e.g., step-into, step-over, and step-return, are described simi-
larly by model queries that extract model objects for target program locations.
For such target locations, temporary breakpoints are installed and execution
automatically suspends when one of those breakpoints is reached.

4 Debugging Context

The presentation of context information is one of the major tasks of a debugger.
Context information exists when the execution of a program is suspended. It tells
a user where execution currently resides, how execution reached this point and
what the values of visible variables are. Context information is derived from the
runtime state of a program and displayed in different views in the user-interface
of a debugger. The location where execution currently resides is referred to as
the current program location. It is usually highlighted in an editor for a language.
Information about how execution reached a program location includes:

1. concurrency information, e.g. information about threads, and
2. information about program parts that were activated during execution.

An example for activations are stack-frames that are created for function invo-
cations. We refer to runtime elements that contain such activations as activation
frames. Each concurrency context contains a sequence of activation frames that
reflect the point in time where parts of a program were activated. By selecting an
activation frame, information about variable structures is displayed as variables
and values.

Example 3 Figure 3 displays the context information of a VCL program. We
can see that the current program location is a While action (editor in the middle),
that the module probe has been entered to reach this location (left side) and that
the variable score is allocated to the value 0 (right side).

The context information that is displayed depends on the current selection of
elements in a debugger’s user-interface. An example is the selection of activation
frames, which determines the presentation of visible variables and values. We de-
fine a debugging context to include runtime information of a suspended program

Fig. 3. VCL debugger

156 A. Blunk, J. Fischer, and D.A. Sadilek

that is relevant to debugging, depending on the current selection of debugger
elements. A debugging context includes the following types of information:

1. a set of concurrent execution contexts,
2. a sequence of currently activated program parts as activation frames,
3. a set of visible variables and their values, and
4. a program location.

Information types 1-3 are referred to as debugging state information and are not
described in the same way as program locations. There can be many debugging
contexts and many debugging states in a suspended program.

4.1 Debugging State

Debugging state information is represented as structured data in two different
views of a debugger. Such data can be described by a metamodel as depicted in
Fig. 4. The metamodel defines concepts for representing all possible debugging
states and their relationships. The presentation of one of these debugging states
depends on the current selection of an activation frame. The metamodel is thus
referred to as debugging states metamodel.

All concepts have a textual representation that is defined by the attribute
labelText in class LabeledElement. The root element of a debugging state is an
MProgramContext. It contains information about concurrently executing pro-
gram parts as MConcurrencyContexts. Each such context holds a sequence of
activated program parts as MActivationFrames. Activation frames contain visi-
ble variables and their values as MVariables and MValues. A variable may also
contain other variables.

The generic debugger processes debugging state models and presents them in
the user-interface. What has to be supplied is a mapping of possible runtime

Fig. 4. Debugging states metamodel

Modelling a Debugger for an Imperative Voice Control Language 157

states of DSL programs to instances of the debugging states metamodel. Such a
mapping can be defined as a model-to-model transformation in QVT Relations.
On the basis of a mapping the generic debugger computes a debugging state
model and display its content.

Example 4 For VCL, the mapping is defined in 115a lines of QVT Relations
statements. Table 1 summarises the mapping. The table shows how VCL in-
stances and their attributes are mapped to debugging states instances. We use
the colon notation o:Class to indicate the presence or the creation of an object
o for class Class and we use the punctuation notation o.assocEnd for referring
to attributes or association ends.

The first row indicates that each instance of Program is mapped to an in-
stance of MProgram plus an instance of MConcurrencyContext. VCL does not
define concurrent execution of program parts. Therefore a mapping to a dummy
MConcurrencyContext is necessary in order to map activation frames. The pro-
gram’s name p.name maps to the label of MProgramContext mp.labelText. The
module that the next action is contained in p.nextAction.module maps to an ac-
tivation frame in cc.frames. If the module was entered from another action and
thus p.nextAction.module.return is not null, an activation frame is created in
cc.frames. The mapping continues recursively for the entering action. After these
explanations, the rest of the table should be comprehensible to the reader.

An excerpt of the QVT Relations transformation is displayed in Listing 2.
The top-level relation localVar corresponds to the emphasised row in Table 1.
It maps local VCL variables to debugging state variables. The relation needs to
hold only if the relation frame(m,af) holds, i.e. there must be an activation frame
af for the module m. The source object pattern checks for local variables and
enforces corresponding MVariables to exist. The transformation then continues
in the where clause, which maps the variables values.

With such a transformation, a debugging states model can be created and
displayed by the generic debugger, e.g. the left and right side of the VCL debugger
in Fig. 3.
a Line measurements in this paper do not include comments, empty lines and lines

with ending braces.

4.2 Program Location

A program location is a highlighting of an element in the notation of a program
that is somehow related to the current point of execution. There are different kinds
of program locations. Current program locations exist for every concurrent exe-
cution context. They highlight a part of a program that will be executed when
execution continues. Besides current program locations, debuggers usually also
display context-dependent program locations for selected activation frames. These
program locations highlight a part of a program that is currently being executed.

In GPLs, program locations are often displayed as highlighted statements in a
textual concrete syntax. These statements are derived from some kind of instruc-
tion pointer. But metamodel-based DSLs are not necessarily textual and they do

158 A. Blunk, J. Fischer, and D.A. Sadilek

Table 1. Mapping VCL instances to debugging states instances

VCL instance debugging states instance

p:Program mp:MProgram, cc:MConcurrencyContext
p.name mp.labelText

cc.labelText = ’dummy concurrency context’
p.nextAction.module cc.frames
p.nextAction.module.return ... cc.frames
p.env cc.frames.variables
p.globalVars cc.frames.variables

m:Module af:MActivationFrame
m.name af.labelText
m.localVars af.variables

v:Variable mv:MVariable
v.name mv.labelText
v.value val:MValue, val.labelText = v.value, mv.value = val

e:Environment env:MVariable
e.inputBuffer in:MVariable, env.innerVariables = in
e.inputBuffer.EInt iv:MValue, iv.labelText = EInt, in.value = iv
e.outputBuffer out:MVariable, env.innerVariables = out
e.outputBuffer.EString ov:MValue, ov.labelText = EString, out.value = ov

not need to define explicit instruction pointers. Generally, a program location of
such DSLs results from arbitrarily connected objects and their attribute values.
Possible program locations are described by formulating an OCL [10] query that
extracts model objects from the runtime state of a program. These model objects
represent program locations and are highlighted in a notation of the program.

An example are Petri nets. The current program locations of a Petri net are de-
termined by active transitions that are the result of a set of place objects and their
markings. Program locations cannot be described by identifying static structures
in a Petri net metamodel because there does not have to be an explicit reference
to active transitions. Instead, a model query is necessary that extracts them.

Model queries for program locations are naturally described by OCL queries.
But practical realisation requires a connection to an OCL editor, which we did
not implement in our approach. Instead, program locations have to be described
by implementing a Java interface that is defined by the generic debugger. In
order to describe program locations in OCL, some additional code is necessary
that evaluates OCL queries via MDT OCL1 [11]. The generic debugger processes
such descriptions when execution has suspended and informs appropriate editors
that queried objects need to be highlighted.

The problem when highlighting current program locations is that there can be
many such locations if there are multiple concurrent execution contexts. Con-
text information is used to restrict these locations to one context-dependent

1 MDT OCL is an Eclipse-based OCL implementation for EMF.

Modelling a Debugger for an Imperative Voice Control Language 159

transformation RuntimeStateToDebuggingState(vclModel:vcl, dsModel:debuggingstate) {
top relation localVar {

n: String ;
checkonly domain vclModel m : vcl::Module {

localVars = lv : vcl :: Variable {
name = n

}
};
enforce domain dsModel af : debuggingstate ::MActivationFrame {

variables = var : debuggingstate :: MVariable {
labelText = n

}
};
when { frame(m,af); }
where { lv. value . oclIsUndefined () or value(lv , var); }

}
...

Listing 2. QVT transformation for mapping VCL programs to debugging state models

program location. The interface that has to be implemented defines the oper-
ations getCurrentLocations and getLocationInActivationFrame (see Listing 3).
The first operation is purely used for breakpoint checking, which is explained in
Sect. 5.1, and only the second operation is actually used for highlighting program
locations on the basis of a selected activation frame.

Example 5 In VCL, there is only one current program location, which is deter-
mined by the next action to be executed. This action is defined by the current al-
location of Program.nextAction. Thus, the program location can be described by
the following OCL query: Program.allInstances()->collect(p : Program |

p.nextAction)->asSet(). It extracts all instances of Program and for the one
program that exists, it retrieves the current allocation of nextAction. The com-
plete Java implementation consists of around 30 lines of code.

5 Execution Control

Basic execution control is already part of the generic interpreter EProvide. It
allows to start, suspend, and terminate execution and to step forward and back-
ward at the granularity of operational semantics steps. For a full-featured de-
bugger, breakpoints and additional step-operations are necessary.

5.1 Breakpoints

Breakpoints are markings of possible program locations where execution should
automatically be suspended. The generic debugger inspects the current program

160 A. Blunk, J. Fischer, and D.A. Sadilek

public class VclSyntaxLocationProvider implements ISyntaxLocationProvider {

public Collection <EObject> getCurrentLocations(Resource model) {
// query model objects by using the Java API of MDT OCL
// or by accessing the model with Java directly .

}

public EObject getLocationInActivationFrame(EObject dslFrame) {
if (dslFrame instanceof Module) {

Module module = (Module) dslFrame;
Action nextAction = ((Program) module.eContainer()).getNextAction();
// determines the currently executing action in the given module recursively .
return getActionForModule(nextAction, module);

}
return null ;

}
...

Listing 3. Description of current program locations for VCL

locations for breakpoint markings after each operational semantics step and sus-
pends or continues further execution. This way, DSL developers do not need to
describe the reaching of breakpoints explicitly. What has to be supplied is a de-
scription of a marking function that checks whether a breakpoint marking for cer-
tain model objects should be allowed or not. The function has to be defined by
implementing the Java interface IBreakpointDescription. It is used by the generic
debugger when a user selects model objects in Eclipse (see Fig. 5). If the marking
function evaluates to true, a special breakpoint activation entry is added to the
context menu. Such a breakpoint description makes it possible to implement the
breakpoint parts of the generic debugger in a completely generic way.

Example 6 For VCL, breakpoints can be added only to Actions. The code in
Listing 4 shows an implementation in Java.

Fig. 5. Context menu for activating breakpoints

Modelling a Debugger for an Imperative Voice Control Language 161

public class VclBreakpointDescription implements IBreakpointDescription {
public boolean isBreakpointable(EObject object) {

return object instanceof Action;
}

}
Listing 4. Description of breakpoints for VCL

public class VclSyntaxLocationProvider implements ISyntaxLocationProvider {
...
public Collection <EObject> getStepOverLocations(EObject curLocation) {

Collection <EObject> locations = new HashSet<EObject>();
if (curLocation instanceof EnterModule || curLocation instanceof Listen

|| curLocation instanceof Conditional) {
Action action = (Action) curLocation ;
locations .add(action . getAfterAction ());
return locations ;

}
return null ;

}
public EObject getStepReturnLocation(EObject dslFrame) {

if (dslFrame instanceof Module) {
Module module = (Module) dslFrame;
if (module.getReturn() != null) {

module.getReturn().getAfterAction ();
}

}
return null ;

}
}

Listing 5. Description of step-operations for VCL

5.2 Step-Operations

Step-Operations allow to continue execution to a certain point. In an operational
semantics step-operations result in the execution of several transformations until
a certain state is reached. The state is determined by extracting target program
locations from a program. At these locations, temporary breakpoints are in-
stalled and execution suspends again when one of these breakpoints is reached.

There are different kinds of step-operations. A step-over executes invocations
of functions to completion. It depends on a program location, which is deter-
mined by a currently selected activation frame. On the basis of such a location,
target program locations are extracted from the program. Generally, there are
many target locations because execution may proceed at one of several pro-
gram locations. Such a situation arises if continuation causes the execution of a
conditional expression, for example an if-expression.

162 A. Blunk, J. Fischer, and D.A. Sadilek

A step-return executes a currently entered function until completion, i.e. exe-
cution continues at the caller of the function. The target of a step-return depends
on a selected activation frame. On the basis of such a frame, target program lo-
cations are extracted from the program.

The step-operation step-into is the default operational semantics step. Like
program locations, step-operations are also described by implementing the Java
interface ISyntaxLocationProvider.

Example 7 For VCL, step-operations are described in Java as displayed in List-
ing 5. A step-over can be performed for the actions EnterModule, Listen and
Conditional. Execution continues at the action that is located right after the cur-
rent action at the same branching level. For example, in a Decision action it is
the action that follows the Decision action.

The target of a step-return is extracted from the selected activation frame,
which is in the case of VCL a module. The generic debugger keeps track of source
objects that activation frames are created from. Such a source object is provided
as parameter dslFrame. The target is the action that follows the EnterModule
action, that caused the entering of the current module.

6 Related Work

An approach for generating debuggers for grammar-based DSLs is the DSL De-
bugging Framework (DDF) [12]. The abstract syntax of a DSL has to be defined
by a grammar and its execution semantics by a transformation to a general-
purpose language (GPL) like Java. DSL debuggers are based on a mapping
between DSL and GPL code and a GPL debugger. While a mapping describes
the debugging concepts of a DSL, the actual debugging process works on the
GPL level by using the GPL debugger. Mapping information is used to map
DSL debugging commands to GPL debugger commands and GPL debugger re-
sults back to DSL results. The approach is limited to textual languages and it
needs a GPL debugger for the target language.

Other approaches like ldb [13] and cdb [14] concentrate on generic debuggers
for the programming language C. These debuggers can be re-used for varying
target architectures, i.e., varying operating systems, compilers and machine ar-
chitectures. They define a machine independent interface for common debugger
actions, e.g. setting breakpoints or reading variable values. The interface has to
be implemented for each target architecture. It encapsulates the technical and
machine-dependent parts of a C debugger. The debugger itself is implemented
on the basis of the machine-independent interface. This approach is also lim-
ited to grammar-based languages. Furthermore, execution semantics need to be
defined by a special compiler (lcc) that automatically generates information for
the debugger.

Modelling a Debugger for an Imperative Voice Control Language 163

7 Conclusion

We presented a novel approach for modelling debuggers of metamodel-based
DSLs that have an operational semantics definition2. The complete debugging
description for VCL programs consists of around 160 lines of different descrip-
tions in OCL, Java, and QVT. We are confident that such a description is a lot
smaller and less expensive than a manually implemented debugger, although a
direct comparison has not yet been conducted.

8 Future Work

We believe that our approach can also be applied to other metamodel-based lan-
guages, e.g. UML activities and the Object Constraint Language OCL. Future
work could deal with the description of debuggers for such languages. Our expe-
rience with the sample language VCL shows that the availability of descriptions
of runtime states and operational semantics is the main obstacle. But if there
are such descriptions, debugging can be described with little effort.

Another area of interest is how the mapping for debugging states is described.
Our experience shows that the structure of debugging states is, without any or
with little structural changes, already part of a DSL metamodel. Consequently,
another way to define the mapping could be to add inheritance relations between
the classes of a DSL metamodel and the classes of the debugging states meta-
model. Debugging state classes could declare associations as derived and DSL
classes could specify how these associations are derived. This way, every DSL
instance would also be a debugging state instance and could instantly be pro-
cessed by the generic debugger. We believe that such a mapping would be easier
to define and would execute faster than a transformation in QVT Relations.

References

1. Scheidgen, M.: Adopting Meta-modelling for ITU-T Languages: Language Tool
Prototypes as a by-Product of Language Specications. In: Workshop on ITU Sys-
tem Design Languages (2008),
http://www.itu.int/dms_pub/itu-t/oth/06/18/T06180000010042PDFE.pdf

2. Rosenberg, J.: How Debuggers Work - Algorithms, Data Structures, and Architec-
ture. John Wiley & Sons, Chichester (1996)

3. Eclipse Foundation: Eclipse Debugging Framework,
http://help.eclipse.org/ganymede/index.jsp?topic=/

org.eclipse.platform.doc.isv/guide/debug.htm

4. Eclipse Foundation: Eclipse Modeling Framework (EMF),
http://www.eclipse.org/modeling/emf

2 The presented approach for describing DSL debuggers and the implementation of
the generic debugger, which is called MODEF, are part of a diploma thesis [15].
The thesis includes more detailed information and more complete examples, but is
unfortunately only available in German.

http://www.itu.int/dms_pub/itu-t/oth/06/18/T06180000010042PDFE.pdf
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/debug.htm
http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/debug.htm
http://www.eclipse.org/modeling/emf

164 A. Blunk, J. Fischer, and D.A. Sadilek

5. Object Management Group (OMG): Meta Object Facility (MOF) Core Specifica-
tion, Vers. 2.0, http://www.omg.org/docs/formal/06-01-01.pdf

6. Sadilek, D., Wachsmuth, G.: EProvide: Prototyping Visual Interpreters and Debug-
gers for Domain-Specific Modelling Languages. In: Schieferdecker, I., Hartman, A.
(eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 63–78. Springer, Heidelberg (2008)

7. Humboldt-Universität zu Berlin: Textual Editing Framework (TEF),
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef

8. Plotkin, G.: A Structural Approach to Operational Semantics. Technical Report
(DAIMI FN-19), University of Aarhus (1981)

9. Object Management Group (OMG): Meta Object Facility (MOF) 2.0 Query/View/
Transformation Specification, http://www.omg.org/docs/formal/08-04-03.pdf

10. Object Management Group (OMG): Object Constraint Language (OCL) Version
2.0, http://www.omg.org/docs/formal/06-05-01.pdf

11. Damus, C.W.: Implementing Model Integrity in EMF with MDT OCL,
http://www.eclipse.org/articles/

article.php?file=Article-EMF-Codegen-with-OCL/index.html

12. Wu, H., Gray, J., Mernik, M.: Grammar-Driven Generation of Domain-Specific
Language Debuggers. Softw. Pract. Exper. 38(10), 1073–1103 (2008)

13. Ramsey, N.: A Retargetable Debugger. Ph.D. Thesis, Princeton University, Prince-
ton (1993)

14. Hanson, D., Raghavachari, M.: A Machine-Independent Debugger. Softw. Pract.
Exper. 26(11), 1277–1299 (1996)

15. Blunk, A.: MODEF – Ein generisches Debugging-Framework für
domänenspezifische Sprachen mit metamodellbasierter Sprachdefinition auf
der Basis von Eclipse, EMF und EProvide. Diploma Thesis, Humboldt-Universität
zu Berlin (2009)

http://www.omg.org/docs/formal/06-01-01.pdf
http://www2.informatik.hu-berlin.de/sam/meta-tools/tef
http://www.omg.org/docs/formal/08-04-03.pdf
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.eclipse.org/articles/article.php?file=Article-EMF-Codegen-with-OCL/index.html
http://www.eclipse.org/articles/article.php?file=Article-EMF-Codegen-with-OCL/index.html

	Modelling a Debugger for an Imperative Voice Control Language
	Introduction
	Foundations
	Metamodelling
	Operational Semantics
	Model Transformations

	An Approach for Modelling Debuggers
	Debugging Context
	Debugging State
	Program Location

	Execution Control
	Breakpoints
	Step-Operations

	Related Work
	Conclusion
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

