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Preface

This volume contains the papers presented at the 14th SDL Forum, Bochum,
Germany entitled Design for Motes and Mobiles. The SDL Forum has been held
every two years for the last three decades and is one of the most important
open events in the calendar for anyone from academia or industry involved in
System Design Languages and modelling technologies. It is a primary conference
event for discussion of the evolution and use of these languages. The most recent
innovations, trends, experiences, and concerns in the field are discussed and
presented. The SDL Forum series addresses issues related to the modelling and
analysis of reactive systems, distributed systems, and real-time and complex
systems such as telecommunications, automotive, and aerospace applications.
The intended audience of the series includes users of modelling techniques in
industrial, research, and standardization contexts, as well as tool vendors and
language researchers.

Of course, during the last three decades languages, associated methods, and
tools have evolved and new ones have been developed. The application domain
has changed almost beyond recognition. Three decades ago the mobile technology
of today was science fiction, whereas now we find software systems embedded
in inexpensive childrens’ toys. More recently multi-core processors have become
common technology for consumer computers, and are beginning to be applied in
small devices. Even in small co-operating, independently powered remote devices
(such as motes and mobile phones), there is enough memory and processing
power to support quite sophisticated operating systems and applications. No
longer do these need to be hand-coded in a machine-level language, and it is
cost effective to apply the languages, tools, and methods that previously applied
to systems for telephony routing or automated manufacture.

Many programming language support systems assume a single processor, or
that distribution of processes over processors is handled by the operating system.
System Design Languages such as the Unified Modeling Language or ITU-T
Specification and Description Language allow engineers to defer the distribution
until later in product engineering, and also to defer whether the distributed
components of systems are loosely (or tightly) coupled. However, these issues still
need to be tackled, and therefore a focus of SDL 2009 was on multi-processor and
multi-core issues. The concern is what impact does development for this kind of
system have on the model-driven approach, engineering languages, and operating
system support. Papers in this volume address such issues or applications that
use motes.

Based on experience with the previous SDL Forum, it was decided to not only
call for papers based on well-advanced or established work, but also to invite
short papers describing work-in-progress. One submitted paper that appears in
this volume is very clearly in the category: “Towards Model-Based Development



VI Preface

of Managed Networked Embedded Systems.” This work is at an early stage, but
the topic is certainly an important one, as we can anticipate further development
of MDD and increasing numbers of networked embedded systems with individ-
ual components that are even more powerful. The method for developing the
management system is the focus of this work. It will be interesting to see the
results.

Another paper applies aspect orientation to the User Requirements Notation
(URN). This language has only recently reached the status of a standard, and
illustrates that it is not just the applications that are changing in nature over
the years: URN has extended the range of formal languages to the requirements
area, and the proposal to add aspect orientation shows that it is a living lan-
guage that is evolving to user needs. In a few years’ time URN, supporting tools,
and use of the language will have evolved. In that case URN may be considered
the natural way to design products with state-based models being thought of as
intermediate languages, in the same way that currently the ITU-T Specification
and Description Language is considered as the design with transcompilation into
C. All that we can really predict is that after another decade, at the 19th SDL Fo-
rum, it is likely that system design will be at a higher level, with more advanced
languages, methods, and tools.

Thanks

As always, the event and this volume would not exist without the contributions
of authors, who are thanked for their work.

The Programme Committee and Anders Olsen (Cinderella, Denmark) were
reviewers of the papers, and are thanked for their work selecting the papers and
the programme.

The organization of SDL 2009 was assisted by sponsorship and support from:

– IBM Rational
– Forschungsschwerpunkt “Ambient Systems”
– International Telecommunication Union

July 2009 Rick Reed
Atilla Bilgic

Irv Badr
Reinhard Gotzhein



Preface VII

SDL Forum Society

The SDL Forum Society is a not-for-profit organization that in addition to run-
ning the SDL Forum series of events:

– Has usually run1 the SAM (System Analysis and Modeling) workshop every
two years between SDL Forum years.

– Is a body recognized by ITU-T as co-developing the Z.100 to Z.109 and Z.120
to Z.129 and other language standards.

– Promotes the ITU-T System Design Languages.

For more information on the SDL Forum Society, see www.sdl-forum.org.

1 In 2008 there was no SAM workshop, but instead a one-day workshop on System
Design Languages was held in collaboration with ITU-T at ITU-T in Geneva.
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Model-Driven Construction of Embedded
Applications Based on Reusable Building Blocks

– An Example

Frank Alexander Kraemer, Vidar Sl̊atten, and Peter Herrmann

Norwegian University of Science and Technology (NTNU),
Department of Telematics, N-7491 Trondheim, Norway

{kraemer,herrmann,vidarsl}@item.ntnu.no

Abstract. For the rapid engineering of reactive systems we developed
the SPACE method, in which specifications can be composed of reusable
building blocks from domain-specific libraries. Due to the mathematical
rigor and completeness with which the building blocks are designed, we
can provide tool support facilitating a high degree of automation in the
development process. In this paper, we focus on the design of embedded
Java applications executed on Sun SPOTs by providing dedicated blocks
to access platform-specific functionality. These building blocks can be
used in combination with other blocks realizing protocols such as leader
election to build more comprehensive applications. We present an exam-
ple specification and discuss its automatic verification, transformation
and implementation.

1 Introduction

Maybe it is just that engineers still love the LEGO bricks of their childhood, but
creating software systems by connecting reusable building blocks seems to be an
attractive development paradigm that can facilitate reuse and enable an incre-
mental development style in which problems can be solved block by block. Yet
the everyday practice by developers often does not work as smoothly as simply
plugging together bricks: Major challenges lie in the nature of reusable modules
in the first place, especially in how to encapsulate and how to compose them.
Our engineering method SPACE [1,2] aims to address these issues. As reusable
units we use special building blocks that express their behavior in terms of UML
activities. These can be composed by pins, and a system can be constructed as
a hierarchy of building blocks. While building blocks can describe local behav-
ior executed by a single component, they can in general also cover collaborative
behavior among several components. This facilitates the reuse of solutions to
problems that require the coordination of several components, and is especially
useful to describe services.

While our method is general and useful in a variety of domains, we demon-
strate in this article its application in the area of embedded systems. For that,
we present the results of a case study on a sensor network carried out as part

R. Reed, A. Bilgic, and R. Gotzhein (Eds.): SDL 2009, LNCS 5719, pp. 1–18, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 F.A. Kraemer, V. Sl̊atten, and P. Herrmann

of the applied research project ISIS1 (Infrastructure for Integrated Services [3]),
in which we develop methods, platforms and tools for the model-driven devel-
opment of reactive systems for applications in home network systems. The case
study is implemented on small processing devices from Sun Microsystems, called
Sun SPOTs [4] that run Java.

In the following, we cover all steps needed to realize deployable code from
high-level specifications. We will focus especially on the definition of building
blocks for the domain of Sun SPOTs and on a protocol for fault-tolerant leader
election. We start with an introduction of Sun SPOTs including the runtime
support system, followed by a brief overview of our method. In Sect. 2, we present
the example system and its high-level specification based on UML activities.
The next two sections document our library for Sun SPOTs and the leader
election algorithm. In Sect. 5 and 6, explanations of the automated analysis and
implementation follow, in which state machines similar to SDL processes are
synthesized, from which code is generated.

1.1 Embedded Java on Sun SPOTs

A sketch of a Sun SPOT is shown on the left side of Fig. 1. Each SPOT is
equipped with two buttons and sensors for temperature, light and acceleration.
SPOTs can also carry extension cards to interact with various other devices. A
Sun SPOT is controlled by a 32-bit ARM 9 processor that can run the Java
virtual machine Squawk [5] executing Java 1.3 code following the CLDC 1.1
specification. SPOTs can communicate among each other using IEEE 802.15.4
radio communication, and build a mobile ad hoc network.

Scheduler Routing

Squawk Java Virtual Machine

Transport

stm 1 stm n... ......

Runtime

Support

System

LEDs

Button 2Light Sensor

Accelerometer Temperature

Sensor

Button 1

Fig. 1. Sun SPOT and Runtime Support System

1.2 Runtime Support System

To facilitate the execution of many concurrent processes on Sun SPOTs, we have
implemented a runtime support system [6], sketched on the right side of Fig. 1.
It includes a scheduler that is responsible for triggering the execution of state
machine transitions whenever signals are received or timers expire. Further, a
router and an object responsible for the transport of signals support commu-
nication using the SPOT’s radio communication. For a detailed description of
1 Partially funded by the Research Council of Norway, project #180122.
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the execution mechanisms and their formal behavior in temporal logic, we refer
to [7]. To generate the state machine classes from UML state machines, we use
the code generator described in [8,9], which produces the necessary Java code.

1.3 The SPACE Engineering Method

We developed the method SPACE [1,2] for the engineering of reactive systems.
This method focuses on the definition of reusable building blocks expressed as
UML activities and collaborations, combined with Java code for detailed op-
erations. Building blocks are grouped into libraries for specific domains, as il-
lustrated on the left hand side of Fig. 2. Developers can use these blocks by
composing them together within UML collaborations and activities: the collabo-
rations describe the structural binding of roles and provide a high-level overview
and activities describe the detailed behavioral composition of events, with some
additional glue logic where necessary. Each block has an associated external
state machine, abbreviated ESM, that provides a behavioral contract describ-
ing in which sequence parameters must be provided to or may be emitted by a
block. This description is useful for understanding a block without looking at
its internal details, and enables compositional model checking, as we describe
below.

Collaborations and Activities Executable State MachinesLibraries of Building Blocks

TransformationComposition

Analysis

Sensors

Dependability

General

Fig. 2. The SPACE engineering method

Once a specification is complete, it is analyzed to ensure various properties
that should hold for any application. For example, a composition of blocks should
never harm any of the contracts (ESMs) and a collaboration should terminate
consistently. For this behavioral analysis, we use model checking. Due to the
compositional semantics and the encapsulation of building blocks by their ESMs,
the state space needed for model checking tends to be very small, since only
one building block on a single decomposition level has to be considered at a
time.2

Complete systems are represented by special system collaborations and ac-
tivities. When a system is sound, it can be transformed automatically into exe-
cutable state machines and components, using a model transformation [10,11].
From the resulting state machines, code for different platforms (such as the Sun
SPOTs introduced above) can be generated.
2 We observe that most building blocks in our libraries require far less than 100 states.
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2 A Sensor Network for Remote Home Monitoring

An increasingly popular area for home automation is to remotely monitor vaca-
tion homes and cabins. Several sensors can be installed in a cabin. One of the
assumptions in our project is that embedded sensors with processing capacity
similar to Sun SPOTs are so cheap they can also be used in a consumer market.
For instance, the sensors can register the temperature at several places, detecting
frost or fire. Further, they can detect sudden changes in light or measure accel-
eration on doors and windows, indicating that somebody is breaking in. With
the extension card presented in [12], we further assume that each Sun SPOT is
capable of GSM communication to set off an alarm to a remote user, for example
by means of an SMS.

To improve the quality and robustness of the system, the sensors communicate
among each other before sending an alarm via GSM. This serves several purposes:
First, multiple sensors can be used redundantly, so that important conditions are
monitored by more than one sensor, whereas only one alarm should be issued.
Second, some conditions may give rise to alarm if the sensors are triggered in a
certain pattern. For example, while changes in light of one sensor could indicate
a broken window shutter, a change observed by several sensors may simply be
due to a cloud moving in front of the sun.3 This means that alarms need to be
coordinated. For that reason, we use a leader election protocol that points out
one SPOT sensor to filter and issue alarms. If the leader runs out of battery or
otherwise fails, a new leader takes over. Such a network is illustrated in Fig. 3.

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

GSM Module

IEEE 802.15.4
Network

elected leader

Fig. 3. Sensor network with the elected leader

Figure 4 shows the UML activity describing the behavior of a SPOT sensor
as composed from our reusable building blocks. Since the SPOT sensors of the
system all have the same behavior, it suffices to specify only one of them. To
visualize the relationship of a SPOT sensor to the other sensors explicitly, how-
ever, we use two activity partitions. The left one, spot sensor, describes how a
SPOT sensor is composed from building blocks, which defines the behavior. The

3 We will not discuss detailed patterns describing when an alarm should be triggered,
and we will also disregard the configuration of individual SPOT sensors.
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s3: Temp. Sensor
activate threshold

exceeded

s1: Motion Sensor

moved
activate

s2: Light Sensor

threshold
exceeded

activate

create event

:Event

create event

:Event

create event

:Event

g: GSM Alarm a: Alarm Filter

eventalarmevent
activate

start stop

leader: ID

Spot Sensor System
spot sensor

select leader

set leader

:ID

set leader

:ID

l: Leader Election
activate

new leader : ID

i am leader: ID

leader==myID

else
1

2

spot sensors
other

myID: ID

leader=myID

initialize myID

«system»

other
candidatescandidate

Fig. 4. Activity describing the composition of SPOT sensors from building blocks

right partition, other spot sensors, enables us to represent the communication
with the other sensors. This partition is only sketched, as only the left one will
be used for the transformation and code generation.

A sensor consists of a block4 for GSM communication g, the alarm filter a
and three building blocks accessing the Sun SPOT’s sensors for motion (s1 )
light (s2 ) and temperature (s3 ). While these blocks encapsulate local behavior,
a building block can also comprise collaborative behavior that is executed by
several participants. The leader election, contributed by building block l in Fig. 4,
is a typical example for that. It is a collaboration among several SPOT sensors,
and therefore crosses the activity partitions. Internally, the block specifies the
establishment of contact between all the sensors and how a leader is selected
amongst them. This behavior is detailed in Sect. 4.

The activity also contains references to the operation create event. Since UML
does not have a concrete language for actions, the details of these operations are
specified by Java methods, managed by our editor. The other elements in the
activity are initial nodes ( ) as well as merge and decision nodes ( ). Decision
nodes are followed by flows that are guarded ( ).

4 Technically, blocks are modeled as UML elements of type Call Behavior Action,
which can refer to subordinate activities.
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GSM Alarm

Leader Election

Periodic Timer

Timer

Light Sensor

Motion Sensor

Temperature Sensor

Alarm Filter

Spot Sensor System

Spot Discovery

Infinitely Often Accurate Detector

Sun SPOT Library

Dependability Library
General Library

Application Specific Blocks

...

...

Fig. 5. Overview of reused block from libraries and application-specific blocks

Upon the start of a SPOT sensor, the initial nodes emit a token and start
all blocks, including the collaboration for the leader election. The alarm filter
is started as well, so that the SPOT by default uses its own GSM Alarm block
to send any SMS notifications, until it finds another leader. The leader election
emits a token through new leader once it detects a SPOT that is pointed out as
the new leader, carrying its ID. In case a SPOT itself is pointed out as leader,
a token is emitted through i am leader. In both cases, the ID of the leader is
stored in variable leader. If a SPOT becomes leader, the alarm filter is started,
and if the SPOT loses its leader status, the alarm filter is terminated.

Whenever one of the sensors s1, s2 or s3 registers a condition, it emits a
token via its output pin, upon which an event is created containing the kind of
condition and ID of the sensor. If the SPOT owning the sensors has the leader
role (i.e., guard leader==myID is valid), the event is directly passed to the alarm
filter. Otherwise, the SPOT sensor forwards the event to the current leader. In
this case, the leader is one of the other SPOT sensors, and sending to it is
specified by the transfer edge ➊. Since the other SPOTs are potentially many,
we have to select which one to address, using the select operator introduced
in [10]. It refers to the ID of the leader. Vice versa, if a SPOT sensor has the
leader role, it may receive events from other SPOT sensors (at ➋).

Figure 5 provides an overview of the dependencies between the building blocks
used for the specification of the SPOT sensor system. Most of them are taken
from our existing libraries (listed here with only those blocks used in the exam-
ple). The Alarm Filter, the experimental GSM Alarm, and the complete system
are specific for the example.

3 Building Blocks Specific for Sun SPOTs

Our library for Sun SPOTs contains twelve building blocks dedicated to the
specific capabilities of the devices, such as the buttons, all sensors on the SPOTs,
and the LEDs. In the following we present some of those that are used in the
SPOT sensor system.
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3.1 Building Block for Sensors

Figure 6 shows the internal details of the block for the detection of movements.
The accelerometers of the Sun SPOTs are accessible via a special API. To re-
act on sudden accelerations that exceed a certain threshold value, a listener is
registered at the SPOT classes that provide access to the hardware. To keep the
execution of the code reacting upon an event under the control of the scheduler
of our runtime support system (RTS), the building block uses an internal signal
as buffer, to decouple the processes. For this reason, operation register listener
creates a listener, which, upon its invocation following a sudden movement, pro-
duces a signal MOVED, that is fed into the RTS. Once this signal is processed,
the behavior following the accept signal action declared for MOVED in Fig. 6
is executed: a token is emitted via output node moved, and the listener is re-
activated, to listen for further movements. The blocks controlling the light and
temperature sensors access the SPOT API in a similar way.

On the right hand side of Fig. 6, the ESM for the motion sensor is shown.
As mentioned previously, it documents the behavior visible at the pins of an
activity, so that we know its external behavior when it is instantiated as a block
as in Fig. 4. Due to the ESM, we know that after a token enters activate, tokens
may be emitted via moved until we terminate the block via stop.

moved

activate

stop

register listener

remove listener

activate listener

MOVED

Motion Sensor «esm» Motion Sensor

activate

/moved

stop
active

Fig. 6. Building block for the motion sensor

3.2 SPOT Discovery

To dynamically find other SPOTs in the sensor network, we provide a collabo-
rative building block which uses the Sun SPOT’s broadcasting functions so that
they can discover each other. The corresponding activity is shown in Fig. 7.
The partition beacon describes how a SPOT that wants to be discovered sends
out periodic messages. Since these messages are specific for Sun SPOTS, they
are sent directly from the Java operation, instead of using our runtime support
system. The partition listener describes the logic to be implemented by a Sun
SPOT that wants to discover other SPOTs. For that, it listens to the incoming
beacon messages. To decouple the receiving processes from the scheduling of
state machine transitions, once such a message arrives, it is fed into our RTS
via signal FOUND, similar to the listener reacting to the movement of a SPOT
explained above. If the ID is not yet known, a token is emitted via found spot.
Notice that if a SPOT wants to both discover other SPOTS and be discovered,
it instantiates this collaboration twice, once as a beacon and once as a listener.
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SPOT Discovery
beacon

start
p: Periodic Timer

start

tick

get my ID

register listener

listener

broadcast
beacon signal

FOUND

id: ID

spot found: ID

spots.contains(id)

spots: Vector<ID>

else

spots.add(id)
: ID

: ID

start

Fig. 7. Building block for the service discovery

other

candidates

[0..*]

candidate

Leader Election

d1: SPOT Discovery

i1: IOD

i2: IOD

observed

observer

observer

observed

beacon

listener beacon

listener

d2: SPOT Discovery

Fig. 8. Collaboration for the leader election

4 Collaborative Building Blocks for Leader Election

To make sure that only one of the SPOT sensors forwards an alarm over GSM,
we use a fault-tolerant leader election protocol. Should the leader SPOT run out
of battery or otherwise fail, another one must take its place so that alarms are
still sent if necessary. To solve this problem, we implemented an algorithm from
[13]. The algorithm uses an Infinitely Often Accurate Detector (IOD) as failure
detector, a concept from [14], which is used by a component to monitor if any of
its communication partners have crashed.5 In Sect. 4.1 we provide a dedicated
building block for this function.

The collaboration in Fig. 8 specifies the structural aspects of the leader elec-
tion. It depicts the participant candidate as collaboration role, and refers to the
sub-services for SPOT discovery and failure detection by collaboration uses d1,
d2 and i1, i2. The leader election is a symmetric collaboration, in which all par-
ticipating roles have the same behavior, and the role for the candidate is therefore
represented twice. For the model transformation and the code generation, the
left candidate is used. To make the collaboration with the other candidates ex-
plicit, we refer to the other candidates on the right hand side, similar to our
proceedings with the SPOT sensors in Sect. 2.

5 In the fault-tolerance domain, a node is said to crash if it from some point on
permanently ceases all operations, but works correctly until then (see [15]).
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Infinitely Often Accurate Detector (IOD)
observed

start

p: Periodic Timer
start

tick

get my ID

:ID

observedID: ID

set observedID

:ID

isSuspected

else
:int

determine
timeout

set isSuspected
= false

t: Timer

start: int

restart: int

set isSuspected
= true

get observedID

:ID

get observedID

:ID

:int
increase
timeout

timeout

suspected: IDnot suspected: ID

observer

isSuspected: boolean

Fig. 9. Building block for the Infinitely Often Accurate Detector

4.1 Infinitely Often Accurate Detector (IOD)

In our example, we use the Infinitely Often Accurate Detector (IOD, [13]) as
specified in Fig. 9. The partition on the left side models the observed SPOT,
which periodically sends so-called “alive” messages to the observing SPOT, rep-
resented by partition observer. These messages are triggered by the periodic
timer p and carry the ID of the observed SPOT. The observer SPOT maintains
two variables to store the status of the observed SPOT; observedID for its ID
and the boolean isSuspected. Moreover, the observer has a timer t to determine
if the alive message from the observed SPOT is delayed.

Whenever the observer receives an alive message from the observed SPOT, it
reacts depending on the current value of isSuspected :

– If the observer does not suspect the observed SPOT sensor of having crashed,
it will simply restart timer t and wait for the next alive message.

– If, on the other hand, the observer currently suspects the observed SPOT of
having crashed, the observer will change isSuspected, increment the timeout
period6 and emit the observed’s ID through output node not suspected.

If, however, timer t expires (i.e., no alive message was received in time), the
observer will suspect the observed SPOT of having crashed, set isSuspected ac-
cordingly and emit a token carrying the observed SPOT’s ID through output
node suspected.

Since a message could also be delayed in the communication medium, a time-
out does not always mean that a SPOT has crashed. Hence there may exist
transient states in which two SPOTs are both considered the leader. This, how-
ever, is acceptable for our application domain. For a detailed analysis and proof
of the properties of the Infinitely Often Accurate Detector, we refer to [13].
6 Incrementing the timeout period upon detecting a false suspicion ensures that the

observer will wrongly suspect the observed only a limited number of times.
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4.2 Composed Building Block for the Leader Election

The detailed behavior of the leader election is expressed by the activity in Fig. 10.
Similar to the overall system of Fig. 4, the leader election is symmetric. The
partition candidate on the left side represents one participant and its detailed
behavior, while the partition to the right represents its communication partners.

As part of the leader election, a SPOT participates in the Infinitely Often
Accurate Detector (IOD) collaboration as both observer and observed entity.
This is represented by blocks i1 and i2, which both refer to the activity in Fig. 9,
but which are bound to partition candidate with roles observed resp. observer.
Moreover, this collaboration is executed as multiple concurrent sessions (once
towards each communication partner). This is signified by the shadow around
them, a notation introduced in [10].

When the leader election collaboration is activated, the SPOT Discovery col-
laboration is initialized as both beacon (d1 ) and listener (d2 ), according to the
role binding in Fig. 8, so that a SPOT sensor can both detect others and be
detected by others. For each sensor found, a token with its ID is emitted via pin
spot found of d2. This ID is used to start a new session of the IOD collaboration
i1, so that a SPOT is observed by any other SPOT it detects. For that we use
again the select statement, which this time refers to the value provided by the
token flow. Vice versa, once a SPOT is detected by other SPOTS, they start a
new instance of the IOD collaboration (in this direction represented by i2 ).

i2: IOD
not suspected: ID

suspected:ID

i1: IOD

start

activate

Leader Election
candidate

suspects: Hashtable

d2: SPOT Discovery

spot found: ID

start

d1: SPOT Discovery
start

:ID

:ID

new leader: ID

store as
not suspected

determine
new leader

:ID

set leader
:ID

result!=leader

get leader

leader == getMyID()

get leader

else

else

store as
suspected

i am leader: ID

observer

select id

observed

observedobserver

listener beacon

listenerbeacon

other
candidates

leader: ID

Fig. 10. Building block for leader election
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Via the output pins suspected and not suspected on i2, a SPOT is notified
about perceived changes in the state of each of the other SPOTs. The logic
that follows determines the current leader status. For that, hash table suspects
maps the ID of the other SPOTs to their respective status (suspected or not
suspected). Whenever i2 issues a change in state of another SPOT via one of its
output pins, the subsequent operations store this change to the hash table and
determine the new leader. If several SPOTs qualify for the leader status, the one
with the lowest ID is chosen. If the leader has changed, we store the new leader
and check if the new leader is this SPOT. Depending on the outcome, a token
is emitted through either the i am leader or new leader output node.

5 Automated Analysis

The analysis of the specification is based on model checking. This process is au-
tomated, since our tool also generates the corresponding theorems to be verified.
Currently, we check the following generally desirable system properties [16]:

– A building block must conform with its own ESM. The motion sensor of
Fig. 6, for instance, may not emit a token via node moved after the sur-
rounding context provided one via stop.

– A building block must also obey all ESMs of the subordinate blocks it is
composed from.

– Building blocks with more than one participant are checked for bounded
communication queues. For the IO detector in Fig. 9, for instance, we find
that the periodic timer could, in principle, overflow the queue between the
observing and the observed component.7

The analysis focuses on the soundness of interactions among collaboration par-
ticipants as well as the correct composition of all building blocks with respect
to event orderings. The content of operations (that is, the Java code) is not part
of the analysis. In cases where decisions are involved that depend on variables,
the analysis always examines all alternative branches. If the executions of some
branches may harm certain properties, we reason manually if these cases may
in fact happen. For instance, in the IO detector of Fig. 9, the else branch may
restart the timer before it is started. This, however, never happens in the final
system because of the value of isSuspected.

The results of the analysis are presented to the user by explanatory anno-
tations within the original UML model, so that no expertise in the underlying
formalism is required, as demonstrated in [17]. In addition, counter examples
illustrating design flaws are presented as animations within the activities. In
our experience, checking the above mentioned properties is of great value in the
practical development of specifications. Although these properties may appear
simple when considered in isolation, even experienced engineers usually harm

7 In this case, however, we estimate the time needed for the transmission and subse-
quent processing and conclude that this is not an issue in a real system.
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several of them in initial designs, especially when more complex collaborations
are constructed.

Due to the compositional semantics of our method, each building block can
be analyzed separately. Internal building blocks are abstracted by their ESMs,
so that the global state space of the specification in Fig. 4 has only 15 distinct
reachable states. Moreover, since most of the building blocks are taken from
libraries and are already analyzed, only the new ones created for the specific
applications have to be examined. These are the ones for the SPOT Sensor
System, the Alarm Filter and the GSM Alarm.

6 Automated Implementation

As briefly mentioned in the introduction, the implementation is performed by a
completely automated process with two steps: In a first step, executable state
machines are synthesized from the activities. In a second step, code is generated.
This is possible since the activities provide descriptions that are behaviorally
complete, and the details of operations are provided as Java methods as part of
the building blocks.

6.1 Transformation to Executable State Machines

In Fig. 11 and 12, we present the state machines as generated by the transfor-
mation. In our method, they are only an intermediate result used as input for
the subsequent code generation; developers do not have to edit or read them. In
the following, we highlight some properties to demonstrate the soundness of the
transformation.

For the partitioning of components into state machines (or processes in SDL),
our algorithm follows the guidelines from [6]. In particular, the algorithm merges
all behavior of building blocks that is executed one at a time by the compo-
nent under construction into one single state machine. All blocks that denote
multi-session collaborations (behavior that is executed multiple times towards
a changing number of different communication partners) are implemented by
dedicated state machines, one instance for each session, as presented in [10]. For
the SPOT sensor system, for instance, the algorithm creates the state machine
Spot Sensor, depicted in Fig. 11, which takes care of the main component be-
havior. This includes all logic contained in the building blocks used in Fig. 4.
However, since the behavior of the Infinite Often Accurate Detector is executed
concurrently within each SPOT sensor (once for each other sensor detected), its
behavior is implemented by dedicated state machines. These are state machines
Observer and Observed in Fig. 12.

The main state machine Spot Sensor has two8 distinct control states, 1 and
2. This is because the transition behavior only has to distinguish if a SPOT is
8 This is less than the 15 states from the previous analysis because the analysis also

captures the interleaving with other SPOTs and the queues for communication,
which do not contribute any control states for a local component.
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stm Spot Sensor

start t4
start t2

registerWithSingleton()
start t0

registerAccListener()
activateGSM()

timeout t0
evaluate()

timeout t4
checkLight()

THRESHOLD_EXCEEDED

1

[isAlarm==true]
sendGSMEvent()

restart t0

[else]
restart t0

[checkLight==true]

[else]
restart t4

[else]
send EVENT

activate()

[leader=myID]
registerEvent()

evaluate()

[else]
send EVENT

restart t4

[leader==myID]
registerEvent()

evaluate()

[leader==myID]
registerEvent()

evaluate()

EVENT
registerEvent()

evaluate()

[leader==myID]
registerEvent()

evaluate()

[leader==myID]
registerEvent()

evaluate()

[leader==myID]
registerEvent()
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[else]
restart t4

[else]
restart t4

[checkLight==true]

[checkTemp==true]

[checkTemp==true]

THRESHOLD_EXCEEDED

timeout t4
checkLight()

SUSPECTED
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SUSPECTED
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timeout t2
checkTemperature()

timeout t2
checkTemperature()

NOT_SUSPECTED
removeFromList()
determineLeader()

[else]
restart t2

[else]

[else]

[else]

[else]
restart t2

[else]

[else]

[else]

[else]
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[else]
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restart t2

[isAlarm==true]
sendGSMEvent()

restart t4

[else]
restart t4

[else]
restart t2

[isAlarm==true]
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[isAlarm==true]
sendGSMEvent()

activate()

[isAlarm==true]
sendGSMEvent()

restart t4

[isAlarm==true]
sendGSMEvent()

restart t2

[else]
restart t2

[else]
send EVENT

restart t4

[isAlarm==true]
sendGSMEvent()

[isAlarm==true]
sendGSMEvent()
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[else]
activate()

[else]
send EVENT
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[else]
send EVENT

restart t2

[result!=leader]
set leader

[result!=leader]
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[result!=leader]
set leader
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sendGSMEvent()

[else]

[else]

[else]

[else]
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restart t0
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Fig. 11. Bird’s eye view of the synthesized state machine for the Spot Sensor
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stm Observed

stm Observer

0 1

1

0

0 1

0

1

1

IODETECTOR_START
set id

send ALIVE
start t0

timeout t0
send ALIVE

restart t0

IODETECTOR_STOP

ALIVE
set observedID

[else]
start t0

[suspected==true]
incrementTimeout()

set timeout
getFalse()

setSusepected
start t0

NOT_SUSPECTED

timeout t0
getTrue()

set suspected
send SUSPECTED

[else]
restart t0

[suspected==true]
incrementTimeout()

set timeout
getFalse()

set suspected
restart t0

send NOT_SUSPECTED
ALIVE

set observedID

Fig. 12. The synthesized state machines for the IO detector

the leader or not. When a spot is the leader, the alarm filter is active and the
state machine is in state 1. When another SPOT is the leader, the alarm filter
is inactive and the state machine is in state 2. The transitions from either state
handle the periodic checks of the sensors, the periodic discovery protocol and
react to the events of the Infinitely Often Accurate Detector. In state 1, which is
entered by the initial transition, the SPOT assumes it is the leader and therefore
starts the alarm filter, which constantly evaluates the log of events, shown by
the topmost transition.

6.2 Code Generation for Sun SPOTs

Since the Sun SPOTs execute Java, the code generator described in [9] is largely
based on the standard Java code generator, described in [18]. As introduced in
Sect. 1.2, the execution is based on a runtime support system, which takes care of
scheduling, routing and transport of messages. The scheduler (see Fig. 1) main-
tains event queues for each state machine in which incoming messages and active
timers are placed. In a round-robin manner, the scheduler triggers the execution
of state machine transitions by feeding the event into a dedicated transition
method, which is specific for each state machine type. The transition method
contains nested if-statements that distinguish the current control state and input
event and then execute the effect as specified by the UML transitions in Fig. 11
and 12. Effects referring to operation calls on the activity level, such as determine
new leader in Fig. 10, are copied into the transition method. Other actions that
are part of a transition effect, such as sending signals or operations on timers, are
synthesized from the UML model. The transport module (see Fig. 1), responsible
for sending and receiving messages from and to other SPOTs, uses the the radio
stream protocol from the Sun SPOT API to transmit messages. This protocol
provides buffered, reliable, stream-based communications over multiple hops on
top of the IEEE 802.15.4 radio protocol. The content of the messages sent via
the radio channels are SOAP-documents generated with the help of the kSOAP
libraries [19], as described in [8]. For the necessary serialization of objects, the
code generator adds methods that convert objects and primitive types to strings.
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7 Estimation of Reuse Proportions

To estimate the degree of reuse for the exemplified system, we distinguish be-
tween the building blocks that are part of our libraries and intended for reuse,
and those building blocks constructed specifically for the application. These are
shown in Fig. 5, with the libraries on the left hand side. As application-specific
we count the Alarm Filter, the GSM Alarm and the overall SPOT sensor sys-
tem. The effort necessary for the construction of a building block consists of the
UML models on the one hand and Java code contained within the call operation
actions (like determine new leader in Fig. 10) on the other hand.

– By counting the lines of code contained in the call operation actions in each
building block, we find that there are lblocks = 443 lines of code within the
call operation actions for all building blocks used in the system in total.
Those building blocks taken from libraries contribute with llib = 333 lines,
so that the reuse proportion Rcode = llib/lblocks is 75 %.

– As an estimate for the effort spent UML modeling, we use a simple metric
that just counts the number of activity nodes and activity edges n = nnodes+
nedges within a building block. This metric shows that all building blocks used
in the system consist of n = 276 edges and nodes in total. Those building
blocks taken from the library contribute with nlib = 195 elements, so that
the reuse proportion Rmodel = (nlib/n) is 71 %.

Of course, these numbers vary for different systems. For the given example, we
have programmed a relatively simple logic for the alarm filter, which contributes
only 50 lines of code. Since the GSM module is not yet finalized, we estimate
another 50 lines for that building block.

To get an impression of the overall gains including the automatic implemen-
tation, we consider also the complete code needed for the execution on top of the
runtime support system. The code generated automatically for the state machine
logic adds up to lstm = 634 lines, and the number of code lines written manually
for the Java operations copied from the building blocks as mentioned above is
lblocks = 443. This means that the code necessary for the entire application has
ltotal = lstm + lblocks = 1077 lines,9 from which lstm/ltotal = 59 % are generated
automatically. If we add up these numbers, we find that (llib+ lstm)/ltotal = 90 %
of the Java code lines are either reused or generated from the UML models.

8 Related Work

There exist a number of approaches for the model-based design of reactive sys-
tems that are also suitable for embedded applications. Some of them based on
SDL such as TIMe [20], SPECS [21], SOMT [22] and SDL-MDD [23]. Others,

9 The underlying runtime support system has about 1900 lines of code. Since it is
provided as a library that can be reused also in manual approaches, it is not part of
our calculation.
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such as ROOM [24] (later UML-RT) or Catalysis [25], are oriented towards
UML as language. As design models that describe the behavior of individual
components, these approaches use state machines, either in the form of SDL
processes or as UML state charts (called ROOM charts in [24]). To capture col-
laborative behavior among several components, most of these approaches rely
on MSCs. Catalysis [25], inspired by the Object-Oriented Role Analysis Method
(OOram, [26]) and DisCo [27], on the other hand, uses collaborations more ex-
plicitly in specific diagrams, albeit in a rather informal way that requires manual
synchronization by the developers. Micro protocols [28] are another approach to
capture and encapsulate communication protocols within self-contained units,
by using pairs of SDL processes or composite states.

In principle, these approaches are compatible with the one presented here,
since all the design models based on state machines with their emphasis on
event-driven transitions are quite similar. The difference lies in the models on
which developers work: To enable the composition of collaborative behavior as
self-contained building blocks, we use UML activities, from which the state
machine-based design models are derived automatically. This enables a num-
ber of opportunities for the reusability, the analysis and the overall specification
style, as we will argue below.

9 Concluding Remarks

In our experience, the composition as enabled by activities, shown for example
in Fig. 4, is quite flexible. We attribute this to two major reasons: First, the
complete but cross-cutting nature of UML activities, in which the coordination
of several participants can be described within the same diagram. If, for example,
we would like to exchange the selected leader election protocol with another one,
we would just have to replace the building block l in Fig. 4, and its connections
to the other blocks, which can be achieved by focusing on one single diagram.
Second, the way activities enable the encapsulation of functionality related to a
certain purpose as separate, self-contained building blocks. While state machines
offer some means of structuring (for example composite states), they do not
offer the same degree of flexibility and separation as activities. The functions
encapsulated by the building blocks in Fig. 4, for example, are dispersed among
several transitions in the state machines of Fig. 11 and 12. One reason for that
is that state machines represent their states by explicit control states, while
activities use concurrent flows that may execute independently. Although such
behavior can to a certain degree be described in state machines by concurrent
regions, such a description style gets intricate once the behaviors in these regions
need to be synchronized. However, since state machines are very suitable for the
specification of the executable behavior of components, we generate them in the
described way, so that we have both the compositional features of UML activities
and the efficient scheduling of state machines.

Besides these properties coming from the chosen notation, an important fea-
ture of our method is the compositional verification it enables, based on the
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underlying semantics in cTLA [29]. Not only does this reduce the state space
during model checking, but it also has important effects on the larger scale de-
velopment process. Since building blocks can be verified individually, proven
solutions can be encapsulated in building blocks, and these can be checked and
stored in a library. Whenever a building block is reused, the verified properties
are enforced automatically and do not have to be re-verified. This enables “true
reuse” as mentioned in [25], in which reuse does not mean to simply copy and
paste some parts of a specification, but also ensures that important properties
are maintained.

All things considered, we think that the chosen principles and the way they
are combined enable a reuse-oriented specification style, one that encourages the
use of encapsulated building blocks to a high degree, but that still allows us to
adapt systems to match the requirements of the individual application. This is a
crucial step towards the cost-effective LEGO-brick like development paradigm.
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Abstract. Energy consumption is a major concern during the develop-
ment of wireless networks consisting of battery-powered nodes. In this
paper, we study possibilities of specifying energy aspects in the sys-
tem design phase, with SDL as design language. In particular, we strive
for suitable abstractions, by establishing a design view that is largely
platform-independent. We achieve this objective by identifying and real-
izing energy mode signaling and energy scheduling as two complementary
approaches to incorporate energy aspects into SDL. We provide details
on how to apply these approaches in order to control the energy con-
sumption of CPU and transceiver, and how to implement them on the
Imote2 platform. A case study illustrates the use of both approaches in
a wireless networked control system.

1 Introduction

In systems consisting of battery-powered nodes, energy consumption is a major
concern, constraining the uptime of nodes and therefore of networks. Among
these systems are wireless sensor networks [1], ad-hoc networks [2], and net-
worked control systems [3]. As a general rule, energy consumption should be
minimized. This can, for instance, be achieved by choosing low-power hardware
platforms, such as micro controllers and motes, and by devising energy-efficient
algorithms and protocols. Also, hardware components can be temporarily shut
off or switched to an energy saving mode when not needed. Such techniques are
being applied with great success to laptop computers and mobile phones.

When minimizing energy consumption, it is important that the application re-
quirements are taken into consideration from the beginning. For instance, in a net-
worked control system, consisting of a set of sensors, actuators, and a controller
communicating over a wireless medium, the stability of the controlled system is of
primary concern. Energy consumption must only be reduced if the system can still
be kept sufficiently stable. This calls for a cross-layer design approach, addressing
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energy aspects already in the early development phases. In this paper, we focus
on the design phase, referred to as energy-aware system design.

In the design phase, modeling techniques such as SDL [4] or UML [5] are
often used. With these techniques, design models can be specified on an abstract
level, relieving the developer from implementation-specific details. The design
view would typically exclude resource aspects such as memory size, CPU speed,
transmission rates, and energy consumption. However, if these aspects are a
major concern and part of the system requirements, then suitable abstractions
that can be exploited to optimize resource usage must be included in the design.
For instance, in order to minimize energy consumption, it should be possible
to identify periods of inactivity at execution time, based on the system design.
Also, it should be possible to explicitly control the energy modes of individual
hardware components on design level.

In this paper, we address energy-aware system design, with SDL as the de-
sign language. We examine the requirements of energy-aware design, and exploit
existing language constructs of SDL for this purpose. Furthermore, we extend
the implementation of the SDL virtual machine (SVM) in order to identify pe-
riods of inactivity and thereby reduce energy consumption. To further enhance
energy-aware system design, we propose to exploit existing language constructs
of SDL. Finally, we address implementation issues and provide a case study from
the networked control systems domain to illustrate our findings. Our work uses
the Imote2 platform [6] (see Fig. 1).

The paper is organized as follows: In Sect. 2, we survey related work. Section 3
introduces an energy model, which forms the basis for energy-aware design. In
Sect. 4, we identify and realize two complementary approaches, called energy
mode signaling and energy scheduling, to incorporate energy aspects into SDL.
Section 5 shows how energy-aware design is implemented, by extending the SVM
and SEnF, our SDL Environment Framework. Section 6 presents an excerpt
of an inverted pendulum system, controlled over a wireless network. We draw
conclusions in Sect. 7.

(a) Photo

SDRAMCC2420

(ROM)
Flash

Control
Power

Expansion (digital I/O)

SRAM

CPU

Battery

(b) Block diagram

Fig. 1. The Imote2 hardware platform
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2 Related Work

In the literature, a wealth of results on energy-aware systems and protocols has
been reported. Practical system deployments are constrained by the available
hardware components and energy sources. In [7], battery models for energy-aware
system designs are considered. Benini et al. [8] give an overview of energy-aware
designs of embedded memories. Current techniques to reduce the energy con-
sumption of the CPU include voltage scaling [9]. An energy model of the XScale
platform has been reported in [10].

To minimize the energy consumed by transceivers, a variety of energy-aware
protocols have been devised. Among these are so-called duty cycling protocols
on MAC level. Generally, the term duty cycle denotes the fraction of time a
component (CPU, transceiver) or system is in an active state. If the traffic load
of a network is below its capacity, it is possible to save energy by systematically
switching transceivers to inactive mode. In the optimal case, a transceiver needs
to be active only if it has to transmit or receive. The difficulty here is to de-
termine this in advance. Several MAC protocols for duty cycling that attempt
to approximate the optimal case have been reported, including S-MAC [11] and
RMAC [12]. Similar considerations apply to routing in ad-hoc networks [13].

The formal specification of energy aspects as part of the system design has
received little attention so far. Mohsen et al. [14] present an integrated method-
ology and tool support for voltage scheduling and energy-aware co-synthesis of
real-time systems. It is mentioned that SDL has been used as design language;
however, no details are given in the paper.

It is certainly straightforward to specify the functionality of energy-aware
duty-cycling or routing protocols in SDL. Compiling these designs using avail-
able tools (e.g. Cmicro [15], ConTraST [16]) may even yield runtime-efficient
code. However, without additional measures, this does not exploit the energy
saving mechanisms of embedded platforms. Also, energy aspects are currently
not incorporated into existing SDL runtime systems controlling the execution of
code generated from SDL, nor are they made explicit in the SDL design.

3 Energy Model

To assess and minimize the energy consumption of a specific hardware platform,
an energy model is needed. The energy model determines, for each hardware com-
ponent, modes of operation, the energy consumed in each mode, and possible tran-
sitions between modes. Some of these transitions are triggered by the hardware
itself. For instance, in case of a power fault due to a discharged battery, opera-
tion may be reduced to a minimum by switching to a deep sleep state, or even
by switching off the entire node. This is usually done in a controlled fashion, i.e.
outstanding memory transactions are completed, and volatile memory is placed
in self-refresh mode or is saved to persistent memory. Other transitions between
modes of operation may be accessible to the system programmer by setting a spe-
cial power mode register, which provides the basis for the implementation of en-
ergy scheduling strategies. Based on the energy model, strategies for saving energy
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can be developed and evaluated. For instance, a CPU may be switched to idle
mode or sleep mode during inactive periods. Also, a transceiver may be switched
off between active phases of a duty cycle. As a general rule, the mode consum-
ing the least energy should be chosen when components are temporarily not used.
However, when changing a mode, the duration and power consumption to return
to full activity must be considered. For instance, to switch from sleep mode to
active mode may take considerably longer than from idle mode to active mode,
as more hardware units have to be powered on. Which mode to choose therefore
depends on the required reaction time and the total energy balance.

Figure 2 shows an excerpt of our energy model for the Imote2 platform: the up-
per part shows the CPU model; the lower part shows the transceiver model. The
modes and transitions of the CPU model are documented in the Intel PXA27x
Processor Family Developer’s Manual [17]. Values for energy consumption are
taken from [18]. The CC2420 data sheet [19] is used for the transceiver.

The CPU energy model is decomposed into two transition systems, represent-
ing mode of operation and CPU speed (frequency). In total, 6 modes of operation
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Fig. 2. Energy model of the Imote2
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are distinguished, with power consumption ranging from 132mA in active mode
to 1mA in deep sleep mode. In active and idle mode, power consumption also
depends on the current CPU speed, which is expressed by the factor F . By fre-
quency scheduling, the CPU speed may be adapted to the current task situation.
There are 4 different speeds, ranging from 13MHz up to 416MHz. The (normal)
speed of 104MHz is the basis for energy calculations, therefore, F = 1. Transi-
tion durations are given in clock cycles. Note that some values are not reported
in the available literature and therefore omitted.

The transceiver energy model shows 4 modes of operation and an intermediate
mode during initialization. Interestingly, receiving consumes more energy than
sending, which is typical for low power transmitters and must be considered by
duty cycling protocols. Transition durations are given in s. When not needed,
the transceiver may be switched to idle mode or even to power down mode, if
the additional delay of 1000s to activate the transceiver can be granted.

4 Specifying Energy Control Aspects with SDL

In this section, we present our methodology for energy-aware system design with
SDL. We assume the existence of an energy model, as discussed in Sect. 3. In
Sect. 4.1, we introduce two conceptual approaches to incorporate energy aspects
into SDL. We then apply these approaches to reduce energy consumption of
CPU and transceiver in Sect. 4.2 and Sect. 4.3, respectively. As it turns out, this
can be achieved in an intuitive, conceptually clean way on a level of abstraction
that is entirely adequate for SDL designs.

4.1 Energy Mode Signaling and Energy Scheduling

To incorporate energy aspects into SDL, we have identified two complemen-
tary conceptual approaches. The first approach, called energy mode signaling,
requires that the system developer specifies transitions of the energy model as
part of the SDL design. In other words, transitions between modes of operation
and thus the energy consumption of individual hardware components are con-
trolled explicitly. This can be done, for instance, by sending special SDL signals
to the environment, or by using special SDL procedures. In both cases, a spe-
cific treatment during system implementation is required to map energy mode
signaling to the native operating system, and finally to the hardware platform.
This treatment is different from the exchange of regular SDL signals with the
environment, which are addressed to other processes of the local node or remote
nodes. To distinguish between these cases, we apply naming conventions.

The second approach, called energy scheduling, incorporates additional func-
tionality into the implementation of the SDL Virtual Machine (SVM ) [20]. The
SVM is the core of the SDL formal semantics [21] and provides typical oper-
ating system functionality on top of a logical hardware called SDL Abstract
Machine (SAM ). It controls the dynamic system architecture, the activity of
SDL processes at runtime, the selection of transitions, and their firing. The
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additional functionality consists, for each hardware component, of an energy
scheduler, which is responsible for triggering transitions of the energy model.
The energy scheduler uses state information available to the SVM in order to
determine when the mode of operation is to be changed. To derive this informa-
tion, signal queues and active SDL timers are inspected. As this does not require
modifications of the SDL design, energy scheduling is an implicit approach to
controlling energy consumption.

Energy mode signaling and energy scheduling both have limitations. With
energy mode signaling, the decision about changing the energy mode of a hard-
ware component has to be based on information available to the SDL process
executing the corresponding SDL action. In particular, this means that global
conditions such as “currently no fireable transitions in the SDL system” can-
not be used to switch the CPU to sleep mode. Furthermore, it means that the
duration of the sleep period cannot be determined from the global set of ac-
tive SDL timers. However, both kinds of information are available to the SVM,
and can be used for energy scheduling, i.e. for implicit energy control. On the
other hand, energy scheduling cannot determine, for instance, duty cycles of the
transceiver from the current state of the SDL system. Duty cycles can be ap-
plied by using energy mode signaling to explicitly switch the transceiver between
modes of operation based on SDL timers. In summary, we observe that energy
mode signaling and energy scheduling are complementary and therefore should
be applied together.

4.2 Controlling Energy Consumption of the CPU

In this section, we study how to apply energy mode signaling and energy schedul-
ing in SDL in order to control the energy consumption of the CPU. Recall that
energy mode signaling requires explicit action: the specification of SDL actions
changing the mode of operation. For these actions to be executed, the CPU is
required and therefore has to be in active mode (see Fig. 2). For the CPU, the
following two cases can be considered:

CPU frequency signaling. Here, the designer adapts CPU speed to control en-
ergy consumption, thereby scaling system performance up or down. For this
purpose, he defines a frequency scheduling strategy and uses energy mode sig-
naling to switch between frequency modes. For instance, in case of the Imote2
energy model (see Fig. 2), switching between 13MHz, 104MHz, 208MHz, and
416MHz is possible. To signal frequency modes in SDL, we define a special SDL
signal CPU FREQ MODE, which carries the frequency as parameter (see List. 1, Line
5). A specific frequency mode can then be signaled by sending CPU FREQ MODE
to the environment (Line 7), where it is mapped to the native operating
system.

CPU operation signaling. The designer switches the CPU from active mode to
inactive mode for a specified period of time. For this purpose, he defines a duty
cycling strategy for the CPU and uses energy mode signaling to switch to a
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Listing 1. SDL excerpt: CPU frequency signaling in SDL

1 syntype CPU Frequency = In t ege r
2 constants 13 , 104 , 208 , 416
3 endsyntype
4

5 signal CPU FREQ MODE (CPU Frequency ) ;
6

7 output CPU FREQ MODE (104 ) ;

particular inactive mode. For instance, in case of the Imote2 energy model (see
Fig. 2), idle, standby, and sleep are inactive modes. Our SDL solution is analo-
gous to CPU frequency signaling, and is shown in List. 4.2. Note that after the
signal CPU OP MODE is sent (Line 7), the execution of the current SDL transition
is suspended. It will be resumed after the CPU is switched back to active mode,
triggered by a hardware timer expiring after the specified duration (since SDL
timers are not available in inactive mode).

Listing 2. SDL excerpt: CPU operation signaling in SDL

1 newtype CPU Operation
2 l i t e ra l s act ive , i d l e , deepIdle , standby , s l e ep , deepSleep ;
3 endnewtype
4

5 signal CPU OP MODE (CPU Operation , Duration ) ;
6

7 output CPU OP MODE ( id l e , 0 . 0 1 ) ;

Next, we consider energy scheduling, which is achieved by incorporating addi-
tional functionality into the implementation of the SDL Virtual Machine (SVM)
(cf. Sect. 4.1). For this, a scheduling strategy that is based on state information
available to the SVM is to be devised. For the exposition, we assume that in
the SVM implementation, transition selection for all agents of a node is done
in a centralized manner, and that there are separate queues signalQueue and
timerQueue for SDL signals and active SDL timers, respectively.

Listing 3 shows the CPU energy scheduler, written in pseudo code. It uses the
SDL transition scheduler selectTransition, the transition handler fireTran-
sition, and the timer routine selectNextExpiringTimer. If no transition is
currently enabled, the scheduler searches the timer queue for the next expiring
timer. If an active timer is found, the CPU is switched to sleep mode until either
the timer expires, or an external interrupt occurs. Otherwise, the sleep time is
eventually terminated by an external interrupt, which may e.g. be triggered by
the environment of the SDL system when the transceiver receives a message.

It should be noted that the use of the SDL energy scheduler requires certain
stylistic restrictions. First, we rule out the use of now in continuous signals,
such as in the condition (t>now). Instead, SDL timers should be used in this
case. Second, we either disallow spontaneous transitions, or assume that they
are never enabled when the CPU is in inactive mode.
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Listing 3. CPU energy scheduler

1 while ( running ) do
2 s e l e c tT r an s i t i o n
3 i f ( t rans i t ionFound ) then
4 f i r eT r an s i t i o n
5 else
6 se lectNextExpir ingTimer in timerQueue
7 i f ( timerFound ) then
8 s l e ep un t i l ( t imer exp i r e s or i n t e r r up t occu r s )
9 else

10 s l e ep un t i l ( i n t e r r up t occu r s )
11 f i
12 f i
13 od

4.3 Controlling Energy Consumption of the Transceiver

In this section, we study how to apply energy mode signaling and energy schedul-
ing in SDL in order to control the energy consumption of the transceiver. As
energy mode signaling requires explicitly specified SDL actions to be executed
at runtime, the CPU has to be in active mode. Since the energy model of the
CC2420 transceiver has only modes of operation (see Fig. 2), it suffices to sup-
port transceiver operation signaling. Based on some duty cycling strategy, the
transceiver is switched between active and inactive modes. For this purpose,
we introduce a special SDL signal CC2420 OP MODE (see List. 4), which carries
the mode of operation as parameter. A specific mode of operation can then be
signaled by sending CC2420 OP MODE to the environment (Line 7), where it is
mapped to the transceiver hardware. Note that the send mode is only signaled
implicitly, i.e. when a frame is to be transmitted, and therefore omitted in the
type definition CC2420 Operation.

Listing 4. SDL excerpt: transceiver operation signaling in SDL

1 newtype CC2420 Operation
2 l i t e ra l s powerDown , i d l e , r e c e i v e ;
3 endnewtype
4

5 signal CC2420 OP MODE ( CC2420 Operation ) ;
6

7 output CC2420 OP MODE (powerDown ) ;

Compared to the CPU, the transceiver’s potential for energy scheduling is
rather limited. Recall that we have defined energy scheduling to be an implicit
approach, relying on state information available to the SVM only. As we want
to have explicit control over the transceivers inactive states, the only leeway for
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energy scheduling is the transition to send mode, which is implicitly signaled
when a frame is transmitted. Thus, no further scheduling strategy needs to be
devised and incorporated into the SVM.

5 Implementation of Energy Control Aspects

In this section, we outline how energy control aspects explicitly specified in SDL
and implicitly derived during execution of SDL models are implemented on real
hardware platforms. In particular, we elaborate on the implementation of energy
mode signaling (Sect. 5.1) and energy scheduling (Sect. 5.2) as introduced in
Sect. 4. Specific implementation aspects are explained by referring to the Imote2
hardware platform [6].

5.1 Energy Mode Signaling

Energy mode signaling is achieved by an extension of our SDL Environment
Framework (SEnF) [22], which provides the interfacing of the SDL design model
and the (hardware) environment on implementation level. The SEnF is a col-
lection of drivers and routines supporting various hardware devices (e.g. IEEE
802.11 a/b/g (WLAN), IEEE 802.15.1 (Bluetooth), IEEE 802.15.4 (ZigBee),
RS-232 (UART), LEDs, Netcams) and operating systems (e.g. Linux, Windows
XP). Basically, special SDL signals are sent to the environment and interpreted
accordingly, by setting registers of the Imote2.

CPU frequency mode changes. Signaled to the environment are consumed by the
CPU driver of the SEnF. In case of the Imote2, the processor, the bus speed and
the voltage for the mode change have to be selected. These values are written to
the Power Management Controller via I2C and to the coprocessor register CR6.

CPU operation mode changes. Have to be applied very carefully. According to
the datasheet, certain preconditions must be fulfilled before a new mode can
be selected, in order to avoid data loss or unpredicted behavior. The operation
modes idle and deep idle can be entered without further considerations. In both
modes, memory refresh and timer work as in active mode; only peripherals and
statement execution are suspended. Wakeup is triggered by a hardware interrupt,
e.g. by setting a hardware timer with a duration specified as parameter of the
special SDL signal. In the remaining modes, no time-triggered wakeup is possible.
For instance, in sleep or deep sleep mode, the Imote2 can only be reactivated by a
hardware interaction such as pressing a button. Operation modes are processed
by writing the selected mode to the coprocessor register CR7. In case of deep
idle mode, a frequency mode change to 13MHz is implicitly done before the
operation mode change.

Transceiver mode changes. Signaled to the environment are consumed by the
transceiver driver of the SEnF. Before applying mode changes, an error check
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regarding the current transceiver mode is applied, e.g. whether the transceiver
is still sending when to be powered down. If no error is detected, a command
is given to the transceiver via the SP-Interface, and the current energy mode is
saved in the driver.

5.2 Energy Scheduling

Energy scheduling is achieved by an extension of the SDL virtual machine
(SVM), which schedules SDL transitions and triggers their execution. Based on
information available to the SVM during execution, energy modes of the CPU
are chosen. In particular, the SVM has to decide when to sleep and which sleep
mode to use, depending on current system activity. To leave the active mode, all
schedulable transitions must have been fired, and no further signals are queued
in the environment. If the first condition is satisfied, the SVM polls the environ-
ment using the interface function xInEnv, which has the following signature:

void xInEnv (SDL Time next timer expiration);

If there is in the environment a pending signal, received (for example) from other
network nodes, this signal is moved to the corresponding SDL process queue. If
there is no pending signal, the parameter of xInEnv, which denotes the time when
the next SDL timer will expire, is used to determine the next CPU operation
mode, and to set a hardware timer. Let d = (next timer expiration − now)
be the remaining duration until then. In principle, the CPU can be switched to
a sleep mode if d > 0. However, for precise energy scheduling, we also have to
consider the time it takes to reactivate the CPU. Therefore, we change the CPU
operation mode from active to idle only if d > 60μs, and to deep idle only if
d > 2 s. The hardware timer is set to t = now +(d− estimated wakeup time).
Mode changes from idle modes to active are either triggered by the expiration
of the hardware timer, or by other hardware interrupts.

6 Case Study Inverted Pendulum

We illustrate the application of energy mode signaling and energy scheduling
by our inverted pendulum system, a wireless networked control system (WNCS),
where controllers, sensors, and actuators exchange information over a wireless
digital communication network. The main challenge of this WNCS is to achieve
predictable performance and stability in all possible dynamic situations. To ex-
tend the lifetime of the WNCS, energy consumption has to be reduced.

The inverted pendulum is shown in Fig. 3. The vertical rod can rotate around
a fixed point on the cart. The corresponding angle from the vertical upward
position is ψ. The cart displacement and velocity are x and v, respectively. A
linear force u can be applied to the cart using a DC electric motor coupled to
the cart through a transmission belt. The mathematical model of the system
and its parameters can be found in [23].
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Fig. 3. Inverted pendulum with wireless network nodes

Figure 3 also shows the network topology of the inverted pendulum control
system consisting of 5 Imote2 nodes communicating via IEEE 802.15.4. Attached
to the pendulum are three sensor nodes measuring position and velocity of the
cart, and the angle of the rod. In addition, there is a node used for the DC motor,
and a node acting as controller. During operation, sensor values are transmitted
periodically to the controller, which computes control values and sends them
to the actuator. To keep the inverted pendulum sufficiently stable, a sampling
period of 30ms has to be assured.

For WNCSs in general, and for the inverted pendulum in particular, we have
devised a specialized 4-layer communication system, with application-specific
layer called WNCS Communication Middleware (WNCS CoM ) on top, using
SDL as design language. The idea is that sensors and actuators register specific
services (e.g., periodical value delivery), to which controllers can subscribe. This
service interface supports control applications on a high level of abstraction.
Service usage is illustrated by the MSC in Fig. 4, which shows a typical message
scenario. Here, the control application of the sensor node registers a service called
angle. Likewise, a service motor is registered on the actuator node. Afterwards,
the controller subscribes to these services, providing QoS parameters specifying
the sampling period. After these initializations, the sensor nodes periodically
send data to the controller, which in turn gives control values to the actuator.
A heartbeat mechanism completes the scenario.

All energy-relevant states and events of the angle sensor in the scenario in
Fig. 4 are listed in Table 1. The entry “step” in the first column of the table
refers to a relative point in time of the MSC marked by the same index. For each
point in time, the previous energy scheduling and energy mode signaling events
are shown. In addition, the CPU mode and transceiver mode reached at that
point in time are listed. At t1, the CPU is in active mode, running at a speed
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of 13MHz, while the transceiver is in power down mode. By sending a signal
CC2420 OP MODE(idle) to the environment, the CPU switches the transceiver
to idle mode. At t3, an alive signal has been sent, so the transceiver has been
implicitly switched to send mode, from which it returns to receive mode without
further signaling. The CPU energy scheduler then determines that no further
transitions can be executed and switches the CPU to sleep mode, while the
transceiver remains in receive mode. At t5 and t8, receive and timer interrupts
occur, respectively, and the CPU is switched to active mode again. From t6
onward, the transceiver remains idle except when data or alive signals are to
be sent. Also, the CPU is in sleep mode most of the time, reducing energy
consumption of the sensor node. Similarly, the controller and actuator nodes
switch between active and inactive modes.
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Table 1. Energy modes of the inverted pendulum scenario for Fig. 4

step energy scheduling energy mode CPU mode transceiver
signaling mode

t1 active, 13 MHz power down
t2 CC2420 OP MODE(idle) active, 13 MHz idle
t3 →send→receive active, 13 MHz receive
t4 →sleep sleep receive
t5 rx interrupt active, 13 MHz receive
t6 →send→receive CC2420 OP MODE(idle) active, 13 MHz idle
t7 →send→receive→sleep CC2420 OP MODE(idle) sleep idle
t8 timer interrupt active, 13 MHz idle
t9 →send→receive→sleep CC2420 OP MODE(idle) sleep idle
t10 timer interrupt active, 13 MHz idle
t11 →send→receive→sleep CC2420 OP MODE(idle) sleep idle
t12 timer interrupt active, 13 MHz idle
t13 →send→receive→sleep CC2420 OP MODE(idle) sleep idle
t14 timer interrupt active, 13 MHz idle
t15 →send→receive→sleep CC2420 OP MODE(idle) sleep idle

The inverted pendulum case study illustrates how energy can be controlled at
design time, using explicit energy mode signaling and implicit energy scheduling.
In general, energy management requires a very thorough analysis to ensure that
components are active when needed. In a distributed system, time synchroniza-
tion among network nodes may be needed as a basis for system-wide duty cycles.
These topics are not addressed here and require further study.

7 Conclusions

In this paper, we have presented two complementary approaches to specify en-
ergy aspects during the design phase, and how to incorporate them into the
design language SDL. The first approach called energy mode signaling is based
on an underlying energy model of the hardware platform, and allows transitions
between energy modes of hardware components such as CPU and transceiver to
be controlled explicitly, using special SDL signals. The second approach called
energy scheduling exploits information available to the SDL Virtual Machine
(SVM) at runtime to control transitions between energy modes. Since this does
not require any changes of the design specification, energy scheduling is an im-
plicit approach. We have argued that both approaches have certain limitations,
which can be overcome by using them together.

Energy mode signaling and energy scheduling are straightforward to apply
and to implement. We have illustrated the use of both approaches to stabilize
an inverted pendulum, a wireless networked control system. Also, we have given
details of how they are implemented to control energy aspects of the Imote2
hardware platform.
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It would be interesting to extend SDL in order to specify further energy as-
pects. For instance, by defining execution tasks and assigning energy consump-
tion to them, more advanced energy scheduling techniques could be devised. The
definition of execution tasks is currently not supported by SDL, and in fact may
turn out to be difficult, as this would have to establish an SDL structure that is
orthogonal to the hierarchical system architecture consisting of agents and their
refinements. Also, it has to be studied how, for each task, energy consumption
can be determined. In an SDL specification, the execution time - and therefore
the energy consumption - of the SDL Virtual Machine remains implicit. This
would also be the case if execution is structured into individual tasks.
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20. Glässer, U., Gotzhein, R., Prinz, A.: The Formal Semantics of SDL-2000 - Status
and Perspectives. Computer Networks 42(3), 343–358 (2003)

21. ITU-T Recommendation Z.100 Annex F (11/00), SDL Formal Definition,
http://www.itu.int/rec/T-REC-Z.100/en

22. Kuhn, T., Gotzhein, R., Webel, C.: Model-Driven Development with SDL - Process,
Tools, and Experiences. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 83–97. Springer, Heidelberg (2006)

23. Gabel, O., Litz, L.: NCS Testbed for Ambient Intelligence. In: Proceedings of the
IEEE SMC Conference, pp. 115–120 (2005)

http://int.xscale-freak.com/XSDoc/PXA27X/PXA27X_index.htm
http://enaweb.eng.yale.edu/drupal/system/files/imote2_power.pdf
http://focus.ti.com/lit/ds/symlink/cc2420.pdf
http://www.itu.int/rec/T-REC-Z.100/en


Model-Driven Development of Time-Critical
Protocols with SDL-MDD

Philipp Becker, Dennis Christmann, and Reinhard Gotzhein

Networked Systems Group, University of Kaiserslautern, Germany
{pbecker,christma,gotzhein}@cs.uni-kl.de

Abstract. Contention-based medium access in wireless networks suf-
fers from the problem of frame collisions. In previous work, we have
introduced new transfer protocols for the network-wide transmission of
bit sequences that overcome the problem of destructive collisions. In
this paper, we present the model-driven development of these protocols
with SDL-MDD and its SDL tool chain. On the one hand, we show how
to formally specify low-level functionality and time-critical behavior –
network-wide deterministic arbitration – using the available constructs
of a high-level design language. On the other hand, we show the embed-
ding of this high-level design into our SDL execution environment that is
extended to support time-critical requirements of the introduced transfer
protocols.

Keywords: SDL, SDL-MDD, black burst, cooperative/arbitrating
transfer protocol, MacZ.

1 Introduction

Technological advances over the past decade have led to the wide dissemina-
tion of mobile devices, communicating over wireless links. Mobile phones, laptop
computers, and motes1 have opened up new markets and have changed our every-
day life. A main driver for this success is the progress in radio communication,
ranging from efficient coding schemes and more powerful, yet energy-efficient
transceivers to sophisticated protocols supporting wireless media. A common
property of these protocols is that they have to arbitrate a shared medium. This
is usually done either by adopting a point coordinator, i.e. a node that schedules
transmissions of other nodes, or by contention-based access.

Contention-based medium access suffers from the problem of frame collisions,
where the information carried by a data frame may be destroyed due to in-
terferences. Several measures such as listening before transmitting (CSMA),
non-deterministic medium access delays (random backoff), and 2-hop short-term
reservations (RTS/CTS) reduce the problem, but cannot solve it, always leaving
a non-deterministic element.

1 Common synonym for wireless sensor nodes.
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In previous work [1], we have introduced new protocols for the network-wide
transfer of bit sequences in wireless networks, which overcome the problem of de-
structive collisions. Arbitrating transfer supports network-wide arbitration such
that exactly one node wins after a fixed time. Cooperative transfer can propagate
a common bit sequence such as a time value or a node address across the entire
network, with deterministic delay. Both protocols are based on encodings with
so-called black bursts, which are special transmissions insensitive to interference
and therefore protected against collisions.

In this paper, we study the model-driven development of the protocols for
the network-wide transmission of bit sequences with black bursts, using SDL [2]
as design language. We apply SDL-MDD [3,4], our model-driven development
process, and its SDL tool chain, which in particular supports the automatic ge-
neration of code for embedded systems directly from the SDL design model. The
specific challenge on the one hand is how to formally specify low-level functional-
ity and time-critical behavior, i.e. network-wide deterministic arbitration based
on black bursts, using the available constructs of a high-level design language. On
the other hand, we show how our extended SDL execution environment supports
time-critical requirements of the arbitrating transfer protocols. By means of our
SDL tool chain, automatic implementations can be obtained that are embedded
into the extended execution environment.

The paper is structured as follows. In Sect. 2, we survey related work. Section 3
explains the ideas of arbitrating transfer of bit sequences in wireless networks.
Section 4 is the core of the paper, presenting the model-driven development of
arbitrating transfer with SDL-MDD. Section 5 supplements Sect. 4 by introduc-
ing further measures at implementation level that help to handle time-critical
behavior. In Sect. 6, we draw conclusions and outline future work.

2 Related Work

Related work can be grouped into two categories: the design of low-level func-
tionality with SDL, and the implementation of SDL design specifications. We
do not consider work on arbitration protocols or on channel encoding as related
work, as this is not the focus of the paper.

The design of low-level functionality with SDL has received little attention
so far. Mohsen et al. [5] present an integrated methodology and tool support
for voltage scheduling and energy-aware co-synthesis of real-time systems. It is
mentioned that SDL has been used; however, this is not substantiated in the
paper.

Regarding the implementation of SDL design specifications, the situation is
entirely different. Several SDL compilers developed in industry (e.g. Cadvanced,
Cmicro [6], Real Time Developer Studio [7]) and academia (e.g. ConTraST [8])
contribute to the automatic code generation. A major part of the textbook [9]
is devoted to the implementation of SDL, elaborating on different strategies
regarding, e.g., timer management, input queue management, and interfacing
with the environment. The latter is of particular importance when it comes to
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a mapping of encoding events to the underlying operating system and hardware
platform. Since this is a very broad field of possible implementation choices, we
will not go into further detail at this point.

In [10], the implementation of SDL specifications is also addressed. Beside
the general problems due to gaps between assumptions in SDL and real world
conditions (e.g., consideration of processing time, availability/capacity of re-
sources), Bræk et al. discuss differences between SDL and modern programming
languages such as built-in support for concurrency, time, and communication.
To fulfill real-time constraints, prioritization of processes and messages must be
introduced that are currently not supported by SDL constructs and must be
considered at implementation level.

Optimization of SDL systems at implementation level is also discussed in [11],
especially the usage of priority assignments to processes, which are not covered
in SDL, but in many tool chains. Also by softening the SDL copy by value
semantics in signal parameters, a performance gain can be achieved, because
in many cases, copying of signal parameters into process variables represents
avoidable overhead when SDL signals are forwarded only.

3 Arbitrating Transfer of Bit Sequences in Wireless
Networks

In wireless networks, destructive frame collisions may occur if several trans-
missions overlap in time and place. To reduce the probability of frame collisions
during contention access periods, MAC protocols usually adopt several measures
such as CSMA, random backoff, and RTS/CTS schemes; however, this does not
solve the problem of destructive frame collisions.

To solve the problem, we have proposed new protocols for the network-wide
transfer of bit sequences, located at MAC level [1]. These protocols are based
on encodings with so-called black bursts, which are special transmissions insen-
sitive to interference and therefore protected against collisions. More precisely, a
black burst is a period of transmission energy of defined length on the medium.
Transmission of black bursts occurs at determined points in time, without prior
medium arbitration. If two or more nodes transmit a black burst at (almost) the
same time, a receiving node can still detect the period of energy on the medium
including starting and ending time. Since this is the only information carried by
a black burst, the collision is non-destructive.

In [12], we have implemented black bursts by MAC frames without pay-
load, transmitted without prior medium arbitration. Start and end of reception
are detected by using the clear channel assessment (CCA) mechanism of the
transceiver.

Bits can be encoded with black bursts of different length. Below, we use
black bursts of length db > 0 to encode a binary 1, and of length db = 0 (i.e.
no transmission) to encode a binary 0. This stipulation yields two important
properties. First, a binary 1 is dominant, i.e. if two nodes transmit different bit
values at (almost) the same time, the binary 1 is received by nodes in range.
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Second, a node “transmitting” a binary 0 is actually not in transmission mode,
but can listen on the medium. Thus, it can detect whether another node in range
is transmitting a binary 1.

To avoid destructive collisions in the presence of multiple simultaneous trans-
missions, black burst encodings in combination with specific transfer protocols
can be used. In [12], we have proposed a protocol for multi-hop tick synchro-
nization, where all network nodes agree on joint reference points in time called
ticks. Tick synchronization is a sufficient basis for system level applications such
as network-wide medium slotting and duty cycling. In [1], we have introduced
two further protocols for network-wide transfer of bit sequences, referred to as
cooperative transfer and arbitrating transfer. With cooperative transfer, it is pos-
sible to propagate a common value, for instance, a time value or a node address,
across the network in deterministic time. We have used this protocol to perform
master-based time synchronization in tick-synchronized networks. With arbitrat-
ing transfer, it is possible to achieve network-wide arbitration during contention
periods, such that exactly one node wins after a fixed time.

We now describe arbitrating transfer of bit sequences, which we explain by
means of the example in Fig. 1. The example shows a topology consisting of
three nodes, where nodes A and C start transmitting bit sequences 111 and 101,
respectively. We also refer to these bit sequences as arbitration sequences, in line
with the purpose of the transfer. Arbitration sequences could, for instance, be
unique message identifiers, chosen according to the priority of the message, or
node identifiers. It is crucial that transmission of arbitration sequences starts
at (almost) the same point in time. This can be achieved by an underlying tick
synchronization establishing network-wide reference points in time (see [12]), and
by agreeing on a joint schedule for arbitration phases relative to these reference
points.

During an arbitration phase, there are two types of nodes. We will refer to a
node that is in the process of sending its own arbitration sequence as Trans-

mitter. A node not sending its own arbitration sequence is called Repeater.
In Fig. 1, nodes A and C are Transmitters at the beginning of the arbitration

Fig. 1. Example: Network-wide arbitrating transfer of a bit sequence
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phase, node B is a Repeater. Note that a Transmitter becomes a Repeater

as soon as it loses the arbitration, but a Repeater never turns into a Trans-

mitter in the same arbitration phase.
The diagram in Fig. 1 is structured into black burst intervals of length dburst

and bit intervals of length dbit. In the first black burst interval, nodes A and C,
initially being Transmitters, send the first bit of their arbitration sequences,
i.e. a binary 1 encoded as a black burst. Node B, being a Repeater, listens on
the medium during this interval and detects the black burst. Since the network
has a diameter of 2 hops, a Repeater receiving a black burst in the first black
burst interval has to forward this to the remaining nodes in the subsequent black
burst interval. So, in the second black burst interval, node B has to repeat the
black burst (which is not necessary in the given topology, however, this topology
may not be known to the nodes). This finishes the network-wide propagation
of the first arbitration bit, which takes one bit interval. In general, nmaxHops

bit intervals are needed for each arbitration bit, where nmaxHops denotes the
maximum network diameter in hops. It follows that dbit = nmaxHops · dburst.

Transmissions of the second bit of the arbitration sequences start in the second
bit interval, which is the third black burst interval in Fig. 1. As before, nodes A
and C are Transmitters, encoding a binary 1 and a binary 0, respectively. Node
B listens during this interval and receives a binary 1, which is dominant. Again,
node B has the task of forwarding the received bit value in the following black
burst interval. Thus, the binary 1 is propagated to node C in the fourth black
burst interval. Node C now recognizes that it has lost the arbitration, as another
node is transmitting a bit sequence that dominates its own arbitration sequence.
Therefore, it gives up its role as Transmitter and becomes a Repeater for
the rest of the arbitration phase.

Arbitration is completed by transmission of the third bit. At this point, there
is only one node remaining as Transmitter. Note that the duration of the
arbitration phase is precisely determined as the product of the length of the
arbitration sequence nbit, the maximum network diameter in hops nmaxHops, and
the duration of a black burst interval dburst. If nodes use different arbitration
sequences, exactly one node will be selected during the arbitration process. This
mechanism can be used for many purposes, such as deterministic master election
or network-wide medium arbitration with subsequent collision-free transmission
of regular data frames in a reserved time interval.

4 Model-Driven Development of Arbitrating Transfer
with SDL-MDD

In this section, we present the model-driven development of network-wide arbi-
trating transfer of bit sequences in wireless networks (see Sect. 3) using SDL-
MDD. We briefly survey SDL-MDD, identify general guidelines for time-critical
specifications, give an overview of the system architecture, and then focus on be-
havioral aspects. In particular, we show how low-level behavior can be specified
from a conceptual point of view.
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4.1 Model-Driven Development with SDL-MDD

SDL-MDD [4] is a holistic, model-driven development approach where the formal
system model guides and directs all development activities, with ITU-T’s Speci-
fication and Description Language (SDL) [2] as design language. It addresses all
phases of system development and is supported by design methodologies and a se-
mantically integrated and complete tool chain. Thus, SDL-MDD supports rapid
development, increases productivity through reusability, and improves quality.

SDL-MDD distinguishes two phases, the

Fig. 2. SDL-MDD [4]

specification phase and the implementation
phase. The steps of the specification phase,
which is related to OMG’s MDA [13], are shown
in Fig. 2. It starts with the definition of the
computation-independent model (CIM), where
message sequence charts (MSC [14]) are used
to collect requirements and to define func-
tionalities. In the second step, the platform-
independent model (PIM) is constructed
using SDL as a design language. The PIM
is functionally complete and can therefore al-
ready be analyzed and validated. However,
it abstracts from platform-dependent details
such as the association with a concrete environment. In the third step, the PIM
is extended by adding platform-specific details, yielding the platform-specific
model (PSM). In particular, the PSM is obtained by selecting a hardware plat-
form, adding corresponding abstract hardware interfaces to the PIM, and by
configuring hardware parameters.

Productivity and quality of model-driven development with SDL-MDD are
increased by using SDL design patterns and SDL micro protocols [15,4] through-
out the specification phase. An SDL design pattern is a fine-grained, reusable
generic solution for a recurring design problem. An SDL micro protocol is a
communication protocol with a single, distributed functionality and the required
protocol collaboration. When designing the protocols for cooperative and arbi-
trating transfer of bit sequences (see Sect. 3), we have defined and composed
several micro protocols, yielding a high-quality system structure that is highly
maintainable (see Sect. 4.3).

In the implementation phase of SDL-MDD, executables are automatically
generated from the PSM in two steps. In the first step, intermediate code in
languages such as C or C++ is generated, using available code generators (e.g.
Tau Cadvanced [6], ConTraST [8]). This code is then compiled with a platform-
specific C/C++-compiler, augmented by hardware drivers of our SDL Environ-
ment Framework (SEnF [4]), and executed under the control of the SDL Virtual
Machine (SVM). In addition, it is possible to compile an executable for perfor-
mance simulations, too.
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4.2 Guidelines for Time-Critical Specifications

When specifying low-level and time-critical systems with SDL, we have to deal
with delays that may occur until a fireable transition is selected and executed.
Basically, there are two reasons why a transition may be delayed, although there
is a corresponding stimulus in the input queue. First, the stimulus may be en-
queued behind other stimuli that are processed before. Second, the execution
time of a running transition is not determined. Since transition execution is
atomic, other fireable transitions are delayed until the active transition is com-
pleted (sequentialization delay). Thus, the delay of a fireable transition is in
general unknown and might be unbounded, e.g., if loops are used.

To deal with this problem, we have defined and adopted the following speci-
fication guidelines:

1. To accelerate the consumption of time-critical signals, we constrain the
system architecture by stipulating that designers use short communication
paths for time-critical signals. This means that SDL components exchang-
ing time-critical signals should be placed topologically close to each other,
avoiding intermediate processes if possible. In particular, SDL components
exchanging time-critical signals with the environment should be directly at-
tached to the system border.

2. To further accelerate the consumption of time-critical signals, we require
them to be declared as priority input. According to the semantics of SDL,
signals declared as priority input are processed before regular signals and
continuous signals. A drawback of SDL-2000 is that there is only one priority,
which inhibits the distinction of different degrees of time-criticality. Priority
inputs should be used moderately in order to be effective.

3. To cope with the problem of sequentialization delay, complex transitions with
long execution times are to be avoided. If necessary, complex computations
should be split into several transitions, reducing the sequentialization delay
of time-critical transitions.

4. Finally, to achieve fast firing times of time-critical transitions, the SDL system
must not get overloaded during execution. This requires the choice of a suit-
able hardware platform and the analysis of the overall system behavior, based
on an offline performance analysis. In [10], Bræk et al. suggest the calculation
of mean peak load and advise optimization of software and/or speed-up of
hardware if the mean peak load exceeds 0.3 to allow statistical variation.

Yet, these measures cannot guarantee that all real-time requirements can be
met. To further improve execution time and accuracy, additional measures can
be applied by introducing optimizations at the implementation level. Section 5
addresses these measures in detail by presenting enhancements of the execution
environment SEnF and SVM.

4.3 MAC Layer Architecture

This subsection gives an overview of the architecture of the MAC layer proto-
col, and in particular of our protocols for the network-wide, collision-protected
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Fig. 3. Architecture of the MAC layer, including transfer protocols (Non-relevant
signals are omitted)

transfer of bit sequences in wireless networks. The architecture is shown as an
SDL overview diagram in Fig. 3. The complete functionality is obtained by
defining and composing several SDL micro protocols, which is also shown in the
figure. We will elaborate on the behavior of several of these micro protocols in
the following subsections.

The architecture shows an SDL block MacBasicLayer and its decomposition
into four blocks. BBS is the design of Black Burst Synchronization, our protocol
for tick synchronization (see [12]). Bit sequences to be transmitted by cooperative
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or arbitrating transfer are managed by BBStorage. BlackBurstCoDec is respon-
sible for encoding and decoding single black bursts, which is a low-level func-
tionality needed by several other micro protocols. Note that being time-critical,
BlackBurstCoDec is placed right on top of the hardware environment, in accor-
dance with our specification guidelines above. The block TransferProtocols is
the result of composing the transfer protocols ArbTransfer, RestArbTransfer,
and CoopTransfer, the control component TransferCtrl, and BBDeMux. Trans-
ferCtrl coordinates the active periods of the transfer protocols, and for
synchronizing the beginning of these active periods to the network-wide ticks
obtained through BBS. BBDeMux collects and distributes outgoing and incoming
black bursts, respectively. This leads to an encapsulation of TransferProtocols,
which allows extensions with additional black burst-based transfer protocols
without changing the interface of TransferProtocols.

4.4 BlackBurstCoDec – Creation and Detection of Black Bursts

The micro protocol BlackBurstCoDec builds the bridge between the concep-
tual view on black bursts and their concrete implementation. It is positioned
close to the SDL environment, i.e. signals coming from and going to entities
of this protocol are renamed by an additional driver component, but not pro-
cessed any further. This is in accordance with our guidelines for time-critical
specifications and helps to keep delay due to the signal path low. In addition,
the driver component prioritizes the SDL signals CCA and TX exchanged between
BlackBurstCoDec and environment.

BlackBurstCoDec itself consists of two components (not shown in Fig. 3):
BlackBurstEncode is responsible for transmitting black bursts over the medium,
BlackBurstDecode detects incoming black bursts. At the design level, the speci-
fication of black burst transmissions is straightforward. When triggered, Black-
BurstEncode outputs an SDL signal TX to the environment, which triggers the
physical transmission of a regular MAC frame of predefined length without prior
CCA. Here, we may note that this MAC frame is only constructed once during
initialization, and then used for every subsequent black burst transmission. This
reduces runtime complexity and thus improves performance.

BlackBurstDecode is responsible for detecting single incoming dominant
black bursts, independent of how they are used by a specific transfer protocol,
and to forward them to BBDemux. Detection of black bursts is done by monitoring
the energy on the medium, using the clear channel assessment (CCA) mecha-
nism. Each time the mediums status changes from idle to busy or vice versa, the
SDL environment sends an SDL signal CCA, containing the new medium status
and a timestamp, which is consumed by BlackBurstDecode. Based on these
signals, the duration of the medium’s busy periods can be calculated. If the
duration lies within well defined bounds, the reception of a black burst (dom-
inant 1) is assumed and forwarded to BBDemux. The duration bounds as well
as the transmission length of a black burst are chosen such that the following
constraints are satisfied:
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1. Slightly overlapping black bursts from different stations transmitting con-
currently must still be detected.

2. Regular data frames must not be mistaken for black bursts, i.e. they must
differ significantly in length.

3. Inaccuracies of the (hardware-related) CCA mechanism must not prevent
black bursts from being detected. This includes also the attenuation of hys-
teresis performed by the transceiver.

As the accuracy of black burst timing is crucial for tick synchronization with
BBS and for the transfer protocols using black burst encodings, we have to be very
careful when specifying this mechanism. In particular, we have to remove factors
that may decrease the accuracy of detecting black bursts as far as possible.
Among these factors are, for instance, delayed environment polling, SDL signal
delay, and late timestamping.

In a previous SDL design of BlackBurstDecode, we used SDL time to cre-
ate timestamps. In that design, the current value of now was associated with
incoming CCA signals that are created by the environment when a medium sta-
tus change is detected. It is quite obvious that this high-level solution may be
too inaccurate, as there exist unknown delays between the detection of a sta-
tus change of the medium on hardware level and the consumption of the cor-
responding SDL signal. Following our guidelines for time-critical specifications
only alleviates rather than solves this problem.

Using early timestamping, i.e. saving the time value from when the medium
status change was detected by the hardware, would represent a better solution.
Therefore, we decided to rely on hardware-level implementations of some time-
critical aspects, which we have added to our SDL execution environment (see
Sect. 5).

4.5 TransferCtrl – Scheduling of Transfer Protocols

TransferCtrl is the control component responsible for the timely activation
and deactivation of cooperative and arbitrating transfer protocols. It manages
requests for the cooperative and arbitrating transfer of bit sequences, and sched-
ules so-called transfer opportunities, i.e. time intervals where black burst enco-
dings may be used. A transfer request consists of the PId of the calling process,
a unique job ID, the type of transfer protocol, and the length of the bit sequence
that should be sent or received. Actual bit sequences are not part of the re-
quest managed by TransferCtrl, but retrieved by the transfer protocol from
BBStorage.

The activation of a particular transfer protocol consists of two steps. First,
the upcoming activation is announced to the transfer protocol well in advance,
via the SDL signal TransAnnounce communicating a particular transfer request.
This early announcement is not time-critical and decouples the preparation of
the transfer from the actual, time-critical transfer. The next pending request
may already be announced to the corresponding transfer protocol (ArbTransfer,
RestArbTransfer, or CoopTransfer). Then, TransferCtrl waits for the next
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transfer opportunity. Transfer opportunities are associated with micro slots of
the underlying medium slotting, which are determined by BBS, the tick synchro-
nization protocol. Between two ticks, micro slots are consecutively numbered,
starting with 1. BBS signals the start of each micro slot to TransferCtrl by
SDL signals MicroSlot IND. In Fig. 4, the transition consuming these signals is
shown. Since signal consumption is time-critical, a priority input is specified, in
accordance with our guidelines.

If the signaled micro slot number corresponds to the beginning of the next
transfer opportunity, the next scheduled request is determined, and the corre-
sponding transfer protocol is enabled by sending an SDL signal TransEnable
(see Fig. 4). Retrieval of the bit sequence and its transfer is then entirely under
the control of the transfer protocol (see Sect. 4.6). When the request has been
processed, i.e. when a bit sequence has been sent or received, the transfer proto-
col will return an SDL signal TransComplete. If at this point, another request
is pending, the corresponding transfer protocol is enabled. This continues until
either all requests have been handled or the transfer opportunity terminates that
is again associated with a specific micro slot number. At this point, all transfer
protocols are disabled (see Fig. 4).

4.6 ArbTransfer – Arbitrating Transfer Protocol

The micro protocol ArbTransfer performs the arbitrating transfer of bit se-
quences, using black burst encoding. When activated by TransferCtrl, it di-
vides the time into bit and burst intervals, and starts sending black bursts as
described in Sect. 3. When activated, ArbTransfer either assumes the role of
Transmitter, sending its own arbitration sequence, or Repeater, forwarding
received black bursts in the next black burst interval. We will now elaborate on
the SDL design of ArbTransfer.

For the timely behavior of ArbTransfer, synchronicity of the starting points
of burst intervals is crucial. Therefore, we have removed all avoidable delays in
our specification that could defer the starting points of both the first burst inter-
val and all subsequent ones. In particular, we distinguish between a setup phase
and a transfer phase. The setup phase is triggered by the announcement of an up-
coming activation via the SDL signal TransAnnounce. This decouples the prepa-
ration of the transfer from the actual, time-critical transfer. During this phase,
ArbTransfer retrieves the bit sequence of the next request from BBStorage,
thereby becoming Transmitter at the beginning of the next transmission op-
portunity. If no bit sequence is retrieved, ArbTransfer becomes Repeater. In
the transfer phase, triggered by the reception of the SDL signal TransEnable
from TransferCtrl, the bit sequence is processed.

To achieve high accuracy during the transfer phase, we save the start time
tphase of the current phase as local reference point in time, and use it to deter-
mine the start times of subsequent burst and bit intervals (see Sect. 3). More
specifically, we set an SDL timer that expires at the beginning of the next burst
interval, by computing tphase +(i−1) ·dburst as expiration time, where i denotes
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Fig. 5. ArbTransfer (excerpt 1)

the number of the current black burst interval. Thus, delays that may occur due
to consumption of timer signals do not sum up, as they would in case of using
now+ dburst as the next timer setting.

To clarify the functionality of ArbTransfer and the application of our design
rules, we present some transitions of our SDL specification.

Figure 5 shows the start of the arbitrating transfer phase, which is indicated by
TransferCtrl by the time-critical signal TransEnable, received via a priority in-
put. In this transition, ArbTransfer initializes context variables, saves the start-
ing time of the current phase, sets the burst interval timer BurstIntervalT to
now +dBurst (the old value being irrelevant at this point), and decides whether
it takes the role of Transmitter or Repeater depending on the availability
of an arbitration sequence. If ArbTransfer takes the role of Transmitter, it
sends a dominant start of frame bit (SOF, not part of the arbitration sequence)
and changes the state to wait4cmpl. In wait4cmpl, ArbTransfer ignores incom-
ing black bursts and waits until the next bit interval begins. Otherwise, if the
Repeater role is taken, ArbTransfer changes to state listen, where it waits
for incoming black bursts to be forwarded.

In Fig. 6, the reaction on an incoming black burst in state listen is shown,
which is time-critical, too. Here, the ArbTransfer component extends the re-
ceived bit sequence that represents a binary 1, and becomes Repeater. Note
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Fig. 6. ArbTransfer (excerpt 2)

that the component could already be a Repeater, because listen is entered
both if ArbTransfer is a Transmitter and sending a binary 0, or if it is a
Repeater. In all cases, ArbTransfer decides whether there is a black burst in-
terval left to forward the black burst (waiting for this interval in state wait4TX),
or if the black burst was received in the last black burst interval of the current
bit interval (going into state wait4cmpl).

Finally, Fig. 7 depicts the behavior in state wait4cmpl when the burst in-
terval timer is consumed. Here, ArbTransfer checks if the elapsed burst inter-
val was the last one of the bit interval. If this is not the case, the component
awaits another burst interval by staying in state wait4cmpl and setting the
burst interval timer with nextBBT ime set to nextBBT ime + dBurst (rather
than now +dBurst) to avoid time drift and achieve accuracy. On the other hand,
if the bit interval is finished, ArbTransfer checks whether the elapsed bit in-
terval represents the last interval of the arbitration sequence. If this is the case,
TransferCtrl informs about the end of transfer and forwards the received bit
sequence to the requesting SDL process. Otherwise, it processes the next bit of
the bit sequence that depends on the current role and sets the burst interval
timer again. We should mention that the bit sequence seen on the medium is
always forwarded to the requesting SDL process at the end of the transfer pro-
tocol, even if the station has transmitted this particular bit sequence itself. This
is done because the requesting process can then compare its bit sequence with
the received bit sequence and decide if it has won the arbitration.



48 P. Becker, D. Christmann, and R. Gotzhein

F
ig

.7
.
A
r
b
T
r
a
n
s
f
e
r

(e
xc

er
pt

3)



Model-Driven Development of Time-Critical Protocols with SDL-MDD 49

5 Implementation Aspects for Time-Critical Systems

To implement time-critical systems specified in SDL, we have taken several mea-
sures in the SDL Virtual Machine (SVM) and the SDL Environment Framework
(SEnF) (see Sect. 4.1). These measures support and extend the guidelines iden-
tified in Sect. 4.2 to improve timeliness and predictability of these systems. In
addition, we have realized measures to speed up the execution times of SDL
transitions and thereby reduce the execution delay of other fireable transitions.

Time-critical behavior in SDL systems can, e.g., be supported by adopting
scenario-specific solutions, not necessarily limited to the specification itself. One
example is the conceptual change from late to early timestamping for the CCA
mechanism (see Sect. 4.4). As described in Sect. 3, the CCA mechanism and
its accuracy are essential for the recognition and correct interpretation of black
bursts on the medium. The moment a medium status change is detected, a
hardware interrupt is triggered by the transceiver. This interrupt is handled
directly by the transceiver driver included in the SEnF. We modified this driver
in a way that the current hardware clock is read and the time value is assigned
already during execution of the interrupt routine. This timestamp is then added
as parameter to the CCA status signal. Since the time from interrupt creation to
completion of the clock reading is constant, we can even correct the timestamp,
leaving the hardware-dependent CCA jitter as the only (very small) source of
inaccuracy.

Listings 1 and 2 are code excerpts of our SEnF transceiver driver. Listing 1
shows the interrupt routine where the timestamping occurs (line 5). It is trig-
gered by a hardware interrupt when a medium status change is detected. The
creation of the SDL signal CC2420 CCA during environment polling is presented
in Listing 2. Here, the saved timestamp is added as second parameter to the
signal, as shown in line 13. In summary, we have reduced unpredictable delays
that affect the accuracy of black burst recognition to a minimum, while still
using SDL as high-level design language. In particular, we can now guarantee
a deterministic upper bound for the accuracy of black burst recognition, as the
only remaining variable factor comes from hardware-dependent CCA jitter that
has a known maximum value.

1 /∗ ca l l e d when an inte r rup t on the CCA pin has occurred ∗/ void
2 dr ive r cc2420 CCA Inte r rupt ( ) {
3 // ge t CCA sta tu s from transce iv e r and s tore timestamp from SVM
4 SEnF CC2420 Data . actual CCA = GPLR(CCA PIN) & GPIO BIT(CCA PIN)

;
5 SEnF CC2420 Data . a c tua l t ime = now( ) ;
6
7 envHasSignals = TRUE;
8 }

Listing 1. CCA interrupt routine from CC2420 transceiver driver
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1 /∗ ca l l e d by SVM during environment po l l i n g ∗/
2 void send CCA signal ( ) {
3 // only i f there ’ s a change of the CCA signa l between
4 // l a s t sending and now , a s igna l i s send
5 i f ( SEnF CC2420 Data . actual CCA != SEnF CC2420 Data . last CCA ){
6
7 // Macros to create and i n i t i a l i z e SDL s igna l CC2420 CCA
8 SENF DECLARESIGNAL(CC2420 CCA , S i gna l In )
9 SENF GETSDLSIGNAL(CC2420 CCA , S i gna l In )

10
11 // Assign s igna l parameters
12 SDL SIGNAL( S i gna l In ) . Param1 = SEnF CC2420 Data . actual CCA ;
13 SDL SIGNAL( S i gna l In ) . Param2 = SEnF CC2420 Data . a c tua l t ime ;
14
15 // Save current CCA sta tu s for comparison
16 SEnF CC2420 Data . last CCA = SEnF CC2420 Data . actual CCA ;
17
18 // Send Signa l to SDL
19 SENF SENDTOSDL(CC2420 CCA , S igna l In , 0)
20 }
21 }

Listing 2. Creation of CCA signal during environment polling

Another aspect is the reduction of execution times, leading to reduced exe-
cution delays of SDL transitions. According to the SDL standard, variables of
most SDL data types are copied by value, especially when used as signal parame-
ters and exchanged between different SDL processes. This includes complex and
memory intensive data types like Octet string or Arrays. Although SDL-2000
offers a copy by reference semantics with Object data types, this semantics is lim-
ited to where a process instance contains both the output and input. The copy
by value semantics can generate substantial unnecessary and avoidable overhead
if the data is never modified by the involved SDL components and thus a single
and SDL process-spanning instance of the data would be sufficient.

To efficiently implement the semantics of SDL data types, we are following two
different approaches. First, we have specified and implemented new data types
with copy by reference semantics as an alternative to existing data types. These
can be either used if the data is never modified or if we explicitly want to work
on the same data from multiple SDL processes cooperatively. Second, our SVM
supports an optional copy on write mechanism on many existing SDL data types
that is transparent for the SDL system and the generated code. Copy on write
means that data is assigned by reference initially, not copied. The SVM keeps
track of the number of references to this data. If a process performs a write access
on multi-referenced data, the data is copied transparently and the modifications
are only applied to the copy. Disadvantages of copy on write include additional
overhead resulting from reference management and from checking the number of
references before each write access. However, copy on write results in increased
performance in many cases while preserving the SDL semantics. In our future
work, we plan to evaluate to which degree existing SDL systems can benefit from
copy on write semantics.
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In our execution environment for motes, the SVM is implemented directly on
top of the hardware platform and therefore has full control of system execution;
no native operating system is used. In principle, this opens up possibilities for
real-time scheduling of SDL transitions. However, we note that SDL does not
provide many possibilities to control the order in which SDL transitions are
fired. Basically, this is limited to priority inputs and to priorities of continuous
signals, which place only certain local constraints on transition scheduling. The
execution order of transitions belonging to different SDL processes can not be
specified.

In time-critical systems, it is mandatory that (static and/or dynamic) pri-
orities can be associated with processes. Furthermore, it must be possible to
temporarily suspend processes in order to free resources. For instance, for a
timely execution of time-critical transitions as in case of black burst handling,
the CPU must not be overloaded. To solve the problem, global dynamic transi-
tion scheduling according to the specific needs of an SDL system is required.

To provide better control of the order in which SDL transitions are fired, sev-
eral language extensions are perceivable. One step is the introduction of (static
and/or dynamic) SDL process priorities, in order to enforce a global transition
execution order. To reduce resource consumption during certain execution phases
and thus have a more controllable, timely response time, these priorities could
also be used to suspend processes. In other words, only those SDL processes
with high priority remain active and can fire transitions during these periods.
Extensive consideration of all related aspects is required before suitable language
extensions of SDL can be proposed.

6 Conclusions

In this paper, we have presented the model-driven development of MAC-level,
time-critical protocols for network-wide, collision-protected transfer of bit se-
quences in wireless networks with SDL-MDD. With these protocols, which sup-
port cooperative and arbitrating transfer based on encodings with black bursts,
we have presented a solution to the problem of destructive frame collisions.

The contributions of the paper are twofold. First, we have shown how to for-
mally specify low-level functionality and time-critical behavior, using the avail-
able constructs of SDL, a high-level design language. Secondly, we have extended
the SDL Virtual Machine (SVM) and the SDL Environment Framework (SEnF)
such that this high-level, time-critical design is supported automatically, using
our SDL-MDD tool chain.

Instead of extending SDL, we have exploited the existing language constructs.
In addition, we have identified a set of guidelines for time-critical specifications,
which we have applied in our SDL design of MAC-level transfer protocols. Fur-
thermore, we have extended the SVM and the SEnF, such that we have full exe-
cution control over the hardware platform. Thus, we were able to approximate
time-critical behavior to a certain degree. Nevertheless, we would appreciate
extensions of SDL to specify signal priority levels and process priorities.
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In our future work, we will study the performance of low-level protocols with
time-critical behavior. For this purpose, we are devising drivers and a real-time
transition scheduler for the Imote2 hardware. Experiments will show whether
the measures that we have introduced in this paper are sufficient. Also, based
on experience gained, we will study further measures to support time-critical
behavior.
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IRIT, Université de Toulouse, 118 Route de Narbonne
F -31062 Toulouse, France

{El-Arbi.Aboussoror,Ileana.Ober,Michelle.Sibilla}@irit.fr

Abstract. In this paper we focus on the use of models in the develop-
ment of managed networked embedded systems. In this context, models
offer a mechanism that allows the level of abstraction to be raised during
development and more advanced functionalities such as adaptability to
be targeted. In applications where management and configuration are
central issues, there is a need for coordination between the development
of the operational system and the development of the management sys-
tem. In current practice, the two developments are often disconnected.
This paper argues that the two developments should be done as much as
possible in a collaborative way, and that integration of the developments
is facilitated by the use of models in both developments. Finally, the
paper explains how the model-based development in this area facilitates
the addition of manageability and auto-configuration capabilities, which
are premises for adaptability.

1 Introduction

The ever increasing use of embedded systems in our everyday environments,
demands efficient mechanisms for developing these systems. This paper focuses
on the development of networked embedded systems (NES). Embedded systems
need to communicate and co-habit in a network, so their development has to meet
the requirements of both embedded and networked systems. For networked sys-
tems the paper focuses in particular on the management activities. As detailed
in [2], these are activities related to the operation, administration, maintenance
and provisioning of networked systems. In most cases the management activities
are done late in the development life-cycle, by independent developers teams,
often after the operational part has been fully developed. This paper reports
on work in progress that aims to define a generic development methodology
for managed networked embedded systems. Our thesis is that the development
of networked embedded systems should follow the model driven development
(MDD) principles, in order to be able to abstract away, as much as possible,
from platform dependent constraints and to explicitly express these constraints
when they cannot be removed. The paper proposes that the design of the man-
agement part should be done as much as possible in parallel with the design of
the operational part. The rest of this paper is organized as follows:
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c© Springer-Verlag Berlin Heidelberg 2009
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Section 2 overviews major issues existing in networked embedded systems design.
Section 3 describes how MDD can be applied in networked embedded systems.
There is a short overview of MDD (Sect. 3.1) and followed by exposing our ap-
proach (Sect. 3.2) and how it helps in designing for manageability (Sect. 3.3).
These principles have been applied on the development of a case study that we
use to validate our ideas (Sect. 3.4). The paper ends with a conclusion giving
directions for future work.

2 Issues in Networked Embedded Systems Design

Nowadays, embedded systems are becoming more and more widespread in nearly
all domains of our everyday life, such as household appliances, avionic applica-
tions, and medical devices. These systems often need to operate in a physically
distributed manner, and therefore require tight connection between a set of em-
bedded components on a network. Designers need to be able to manage a set of
communicating systems. Such an aggregate system of NES raises new challenges
on how to manage the distributed software artifacts and make them collaborate
in an efficient way, how to meet the performance and QoS requirements, and
how to design a dependable aggregate system of NES.

This paper gives a first step to answer these questions by proposing a base for
a generic model-driven development methodology for designing NES. NES have
the same design requirements as classical embedded systems:

– keep the manufacturing costs low;
– handle real-time constraints;
– reduce the resources usage (memory, power, etc.).

In addition to those requirements, NES should address some relevant manage-
ment issues related to resource management, QoS and accounting.

With these additional requirements, new research challenges arise [3] on how
to deal with dependability (timeliness, safety, security, availability), management
(resources, network), and composability.

Management is a key activity in keeping the embedded systems operational
and it has a significant influence on performance. Therefore handling manage-
ment properly is a pre-requisite for meeting the QoS requirements. The manage-
ment activities use available information about processing elements(e.g. router)
and dependencies (e.g. a service relying on a web server) to perform their goals.
This information is gathered in the management informational model. This ap-
proach is today widely used in several standards. For example:

– IETF SNMP [7] relies on the Management Information Base (MIB);
– the ITU-T M Series Recommendations especially the M.31xx Recommenda-

tions [9] provides either generic and specific network information models;
– the ISO System Management Overview (ISO/IEC 10040:1998) [8] introduces

management information aspects.
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All these standards make the information model a central part of the man-
agement artifacts. But only some of them are protocol independent. In the rest
of this paper, the informational part of the management model is considered for
these highlighted issues. And to remain generic, only the protocol independent
standards will be considered. Currently in most cases the management infor-
mational model on which the system & network management is performed, is
built late in the development life cycle, most often after the development of the
system components. The deficiencies of this design approach are similar to those
motivating the hardware and software co-design of embedded systems [6].

First, there is no representation of the entire system (operational and man-
agement parts) at design time: this representation is crucial for a performance
analysis of the whole system. The impact of the management on the perfor-
mance of a managed system [14] could be controlled if an early and complete
representation of the system is available at design time. This issue is even more
critical in the constrained context of NES. Second, the separation between op-
erational system architecture and management system architecture leads to
sub-optimal system design. Consequently the design of the management data
collecting operations becomes tricky.

These problems are addressed by designers by considering the management
requirements earlier.

3 MDD for Networked Embedded Systems Design

This section takes a look at the techniques used for NES design and at the place
of models in this context.

3.1 Model Driven Development Principles

Today’s software industry faces an increased interest in modeling and techniques
aiming to raise the abstraction level in software development. One of the most
relevant steps in this direction is the OMG initiative in promoting modeling
through MDA/MDE [16]. Modeling is not a new issue: it is traditionally used in
science, as a means to master the complexity. The key to success here is abstrac-
tion. In software development, languages such as SDL [10] or MSC [11], paved
the way for the use of modeling. The adoption of the MDA/MDE technology
at the level of individual projects is very much dependent on the existence of
well-defined software development methodologies that clearly and completely
identify the different development phases and their expected outputs; as well as
the development actors and their responsibilities. In this context the arguments
presented in [12] fifteen years ago are as fresh as ever. It is unrealistic to expect
that enterprises that already have well established development methodologies
are eager to abandon them. Therefore the target is a generic development pro-
cess that can be customized according to the needs and specific situations of
actual development process users. Several development method patterns exist in
the literature, such as the waterfall model [18], the iterative model [15], and the
spiral model [1].
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The MDA advocates for a Y-shaped development process where the upper
branches correspond to the platform independent development that leads to
the PIM (Platform Independent Model) respectively to the platform dependent
development that leads to the PSM (Platform Specific Model).

The actual system is obtained by merging the two (the lower part of the Y)
in the actual model. Ideally this is (at least partially) done by automatic code
generation.

3.2 Using Models in NES Design

The complexity of the management activities is increasing with the complexity
of the managed network and systems. That raises new challenges, such as how
to designate the managed components, what kind of management capabilities
are needed, how to store and handle the management information.

Several initiatives to produce management protocol independent standards
are addressing these issues by using an object oriented informational model,
such as: the DMTF CIM [4] and the TM Forum Information Framework [21].
Almost all those approaches rely on introducing different abstraction levels. In
such a setting, models are a promising candidate [20] to handle complexity. Our
approach relies on the ISO standard ISO/IEC 10040 [8] for designing the man-
agement system. According to this standard, in order to build the management
model, four kinds of models have to be built:

– The functional model : states the administrator requirements and defines a
set of operations to meet those requirements.

– The informational model : specifies all the information needed to perform the
management operations.

– The organizational model : describes the management component’s distribu-
tion pattern.

– The communicational model : describes the communication services offered
to the management components.

Although the management activities are typically started soon after the end of the
development activities, as far as we know, little is done to elaborate a development
method integrating the design and development of the functional part with the
management activities. Therefore in the current state of the art,the management
operates on an already built (and often deployed) system: the system & network
manager sees the operational system as a black box. This leads to a twofold ac-
tivity of discovering some structural or behavioral properties of the system and
implementing a managing application for the system. This activity is a central
part of the whole management designer’s mission, but it could be made easier if
done in parallel with the operational system development. Our thesis is that the
network management models and especially the Informational model should be
built earlier, during the operational system analysis and design phase.

The initial hypothesis is that during the development a UML profile for man-
agement is used. This management profile can be the CIM Profile [5], but other
management profiles can be used as well.
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At design time the designers must take into account the artifacts specific to
the targeted management activities. Thus, they should identify the management
model artifacts. This is done, based on the management profile. At operational
system design time, the entities meaningful for management can be identified
and flagged as such. It is important to note that at this stage the only thing
needed is to flag these entities.

For instance by stereotyping the model classes that will be meaningful for
management. The reason for not going into more detail is that at this stage
there is not enough information available to precisely classify these entities in
terms of management. Moreover the operational system designer might not have
the training needed to correctly classify these entities in terms of management.

In order to keep the operational system design independent from the manage-
ment profile, a generic management stereotype will be used. This means that any
management specific profile is imposed on the operational system design. More-
over, flagging the management specific entities offers a basis for automatically
generating an initial management information model, based on the management
profile chosen by the management experts. This generated model provides a
starting point for the development of the management part and it covers most
of the management specific discovery activity, while allowing the management
expert to identify the actual nature of the discovered management entities and
their relationships.

Concretely speaking, this means the management expert will stereotype the
classes - flagged as management specific in the operational system development
part - and will add the needed detail in terms of the chosen management profile.

This generated model will be refined by the management system designers,
who will apply management stereotypes and patterns.

Once the management system model is achieved, design verification can start.
All the verification activities (simulation, test & validation) could now take in
their scope both the management system and the operational system. In the NES
context this approach is pertinent because an operational system meeting the
requirements does not lead necessary to an entire system (operational coupled
with the management system) also meeting the requirements. To make things
clear, imagine that a component is managed according to an agent-manager
paradigm. The agent is embedded into the managed component, and in the
NES context the agent is relying on the same power resource as the managed
component. Thus the agent activity, if it is not taken into account during the
power consumption analysis could lead to unpredicted runtime behavior.

Figure 1 schematizes the exchanges that are done between the system and
management part developments in a MDD setting, where the development of
the platform independent and platform dependent parts are separated as much
as possible. On the platform independent branch of the management system
development process, the steps to perform depend on the management devel-
opment method adopted. The steps presented in Fig. 1 are those recommended
by the ISO standard ISO/IEC 10040 [8], and are those presented above. A key
aspect of our approach is the collaboration between the two Y-shaped processes.
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Fig. 1. Integrated development process

This collaboration between the operational and the management stakeholders
roles is crucial and should result in sharing and reusing model elements.

The proposed integration has two main advantages. The first, is to make the
development of the management application easier, by facilitating the identifica-
tion of the management-relevant entities and generating a part of the correspond-
ing data model and the basic management operations. The second advantage is
to make the system under development easier to manage. In fact by taking into
account the management requirements early in the development process, the
designers are able to make available (or easy to access) some information from
the system at management level. Therefore the algorithms used to perform the
management tasks get less complicated. In fact management system designers
are helping the operational system designers to design for manageability. This
point is detailed in the following section.

3.3 Towards Highly Manageable Components

Manageability is the ability to gather information about the state of something
and to control it [17]. If seen as a metric, manageability is the performance of
the management system [14]. Manageability capabilities are necessary for a NES
to remotely control the NES’s configuration, to add maintenance and upgrade
facilities, and to decrease costs of diagnosing runtime failures.

Based on these requirements we can define a Highly Manageable Component
(HMC) as a component with three characteristics:

– HMC management is cost effective;
– HMC efficiency [14] is high (closed to 1), which means that the impact of

the management system on the operational one is minimal;
– the HMC management system productivity is maximal.
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This definition is performance metric independent. That means that there is
a need of design effort to identify the adequate set of performance metrics [13].

The integrated development process (Fig. 1) introduced in this article facil-
itate the design and implementation of HMC. Our future work includes more
investigation in this way.

3.4 Example

To test our approach, we applied it to a fleeT tRAcking System (TRAS), using
UML for the system design and the UML Profile for DMTF Common Informa-
tion Model (CIM) [5] for the management system design. The system is composed
of several mobile entities that need to be tracked by a supervisor. Figure 2 gives
an overview of the system, it shows their different components. Each vehicle of
the fleet has an embedded Tracer component that sends its position to a server.
The Supervisor can then connect to the server and track the vehicles. In this
example the collaboration between the operational system designers and the
management system designers occurs at the Tracer component design.

Figure 3 shows one of the Tracer subcomponents: the TracerController. This
subcomponent is stereotyped as a managed component and its attributes are
stereotyped with managedSetting. What we show in this figure is the configura-
tion capability of this component. These stereotypes are applied by the system

Fig. 2. Preliminary Architecture

Fig. 3. A Managed Component of the Tracer Subsystem
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Fig. 4. Part of the TracerController Configuration Model (with the applied configura-
tion pattern)

designer and they are specialized by the system management designers as shown
in the Fig. 4. This part of the informational model shows the application of a con-
figuration pattern from the CIM Core Specification [4] to the TracerController
component. For specializing the management part, the management experts will
use a management profile. In our case we use the CIM profile.

3.5 Discussion and Future Work

Our approach aims to bring the MDE benefits [20] into the management ac-
tivities. Consequently the managed components can be captured; the manage-
ment structural and behavioral data are implementation language independent.
The advantage of our approach is the earlier collaboration introduced in the
development process between the operational system designers and the system
management designers. We claim that this integration will increase the quality
of the management system. That means that it will improve the performance
and the quality of the whole system at various levels, that range from system
reliability, safety & security, QoS and maintainability. In particular it should
lead to a better energy consumption control [3] since we can use a higher level
energy management policy to optimize the system energy consumption (e.g. op-
timize the communication traffic and the networked embedded systems energy
consumption in an integrated manner).

This list is not exhaustive, and we can also imagine that this integration is a
first step to auto-configurable component design. That allows the introduction
of auto-configuration behavior in the embedded components earlier and more
easily especially if the system behavior modeling covers the management part
as well [19]. The auto-configuration is formalized by the management design
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stakeholders, and their earlier participation in the development process provides
the component with more autonomic behavior.

4 Conclusion

This paper advocates the use of MDD techniques in the development of Net-
worked Embedded Systems. We argue that the management design activities
should come early in the development phases. This makes sure the information
needed for management is available at the right moment. This also offers the
premises for auto-adaptation. Indeed, the auto-adaptation can only be made if
the (meta-)information from the operational part of the system is available. By
designing the management part in parallel with the operational part, it is better
identified what information is needed and what could be used in an autonomous
setting. We intend to continue the integration of operational part development
with the management part development, in the context of a model based devel-
opment. In particular, we intend to look closer for relationships that may exist
between the models developed, with the aim of enabling the automatic exchange
of information between the two.

References

1. Boehm, B.W.: A spiral model of software development and enhancement. IEEE
Computer 21(5), 61–72 (1988)

2. Clemm, A.: Network Management Fundamentals. Pearson Education, London
(2007)

3. National Research Council: Embedded Everywhere. National Academy Press
(2001)

4. DMTF: Common Information Model (CIM) Standards,
http://www.dmtf.org/standards/cim

5. DMTF: UML Profile for CIM,
http://www.dmtf.org/standards/published_documents/DSP0219.pdf

6. The Donald O. Pederson Center for Electronic Systems Design: A framework for
hardware-software co-design of embedded systems,
http://embedded.eecs.berkeley.edu/Research/hsc/abstract.html.

7. IETF: RFC 1157: A Simple Network Management Protocol,
http://www.ietf.org/rfc/rfc1157.txt

8. ISO: ISO/IEC 10040:1998 Systems Management Overview,
http://www.iso.org/iso/catalogue_detail.htm?csnumber=24406

9. International Telecommunications Union: M Series Recommendations, Telecom-
munication management, including TMN and network maintenance,
http://www.itu.int/rec/T-REC-M

10. International Telecommunications Union: Recommendation Z.100 (11/07), Speci-
fication and Description Language (SDL),
http://www.itu.int/rec/T-REC-Z.100/en

11. International Telecommunications Union: Recommendation Z.120 (04/04), Mes-
sage sequence chart (MSC),
http://www.itu.int/rec/T-REC-Z.120/en

http://www.dmtf.org/standards/cim
http://www.dmtf.org/standards/published_documents/DSP0219.pdf
http://embedded.eecs.berkeley.edu/Research/hsc/abstract.html.
http://www.ietf.org/rfc/rfc1157.txt
http://www.iso.org/iso/catalogue_detail.htm?csnumber=24406
http://www.itu.int/rec/T-REC-M
http://www.itu.int/rec/T-REC-Z.100/en
http://www.itu.int/rec/T-REC-Z.120/en


62 E.A. Aboussoror, I. Ober, and M. Sibilla

12. Jackson, M.: Problems, methods and specialization. IEEE Software 11(6), 57–62
(1994)

13. Jain, R.: The Art of Computer Systems Performance Analysis. Wiley, India (2008)
14. Lahmadi, A., Andrey, L., Festor, O.: On the impact of management on the perfor-

mance of a managed system: A jmx-based management case study. In: Schönwälder,
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Abstract. Models defined using the Unified Modeling Language (UML)
are nowadays common parts of software documentations, specifications
and sometimes even implementations. However, there is a broad variety
of how UML is used. Reasons can be found, for example, in the lack of
generally accepted modeling norms and guidelines, the semi-formal se-
mantics of UML, or the complexity of the language. In practice, these fac-
tors inevitably lead to quality problems in UML models that need to be
addressed. We investigate and discuss existing work in the field of quality
assessment and improvement of UML models and present how we envi-
sion an integrated approach to quality assessment and improvement of
UML models. We assess a model with a Factor-Criteria-Metrics (FCM)
based quality model, detect issues by finding smells and violated met-
ric thresholds in UML models, and improve UML models by applying
refactorings using model-to-model transformations.

1 Introduction

Quality control for a software development process requires ongoing quality as-
surance measures for all artifacts produced during the development process.
Assessing the quality of artifacts produced in early phases of a process, such as
requirement or design specifications, is critical since a change in these specifi-
cations often implies change in documents, specifications, or code (during later
development phases) as well. The Unified Modeling Language (UML) from the
Object Management Group (OMG) has been widely adopted as a common mod-
eling language for the creation of requirements and design specifications. In later
stages of development, UML models may also serve as a base for code and test
generation. Unfortunately, there is a wide variety of how UML is used in practice.
This is often due to the lack of generally accepted modeling norms and guide-
lines, the semi-formal semantics of UML and the complexity of UML as a whole.
In practice, these factors inevitably lead to quality problems in UML models
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that need to be addressed. Therefore, continuous tool-supported quality assur-
ance and quality improvement measures, throughout the whole development
process, are required. Based on our experience [1,2] with the quality engineering
of large test specifications written in the standardized Testing and Test Control
Notation (TTCN-3), we started to investigate the possibility of using similar
techniques for the quality engineering of UML models. Our quality engineering
approach for TTCN-3 specifications is based on:

– a quality model for test specifications that defines the main quality charac-
teristics of a test specification,

– test metrics to assess the quality characteristics,
– smell detection for identifying problematic locations in the test code using

pattern-based analysis and metric thresholds, and
– refactoring for the improvement of those problematic locations.

While TTCN-3 from its appearance is comparable to a typical general purpose
programming language like C or Java, the challenges to adopt this approach
for UML are numerous. As already mentioned, the usage and actual knowledge
about UML is very diverse. It is not unusual that people mistake UML as a
standardized way to draw diagrams, rather than understanding it as a modelling
language, that uses diagrams for partial presentations of the model. This variety
of how UML is perceived differently by the people using it, eventually has an
effect on what UML specifications look like, how they can be used later on, and
also how quality engineering must be implemented for UML specifications. The
contribution of this paper is a survey on the topics quality models, metrics, bad
smells, and refactoring for UML models. The papers investigated in the survey
are selected to cover those topics that are related to our proposed approach for
UML quality assurance.

This paper is structured as follows: in Sect. 2, we introduce the foundations of
this paper: that is the basics of UML, quality models, metrics, bad smells, and
refactoring. Sections 3–6 present existing work on the respective topics. Section 7
outlines current tool support for metrics, smell detection, and refactoring for
UML. In Sect. 8, we present our ideas for an integrated quality engineering
approach for UML. We conclude with Sect. 9, where we summarize our progress
towards the realization of our ideas and we discuss what topics still need to be
addressed.

2 Foundations

In this section, we briefly provide the foundations of the topics that are rele-
vant for this paper — the Unified Modeling Language (UML), quality models,
metrics, bad smells, and refactoring. Section 2.1 is of particular importance as it
also attempts to address common misunderstandings and misconceptions about
UML: what the UML architecture is about and what kinds of notations exist for
UML models.
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2.1 The Unified Modeling Language (UML)

We assume basic knowledge of UML and therefore we concentrate on facts that
may not be immediately apparent to everyone who has not dealt with UML
as a modelling language. The UML architecture is composed of four layers
(Fig. 1). The M3 layer, the foundation of UML, is called the Meta-Object Facil-
ity (MOF) [3]. OMG itself describes MOF as a metadata management framework
and metadata services. In essence, MOF is a language that is used to model itself
as well as other models or metamodels. In the context of UML, the most promi-
nent use of MOF is the definition of the UML metamodel (the M2 layer). MOF
can be considered a meta-metamodel in this case. A distinction is made between
Essential MOF (EMOF) and Complete MOF (CMOF). As the names suggest,
EMOF is a slimmed down version, a subset of CMOF. MOF is used to specify
the UML metamodel that consists of the Infrastructure [4] and Superstructure [5]
standards. These standards define the abstract syntax of the language: that is
basic UML modeling concepts, attributes, relationships, as well as the semantics
of each modeling concept. In the language definition, the cohesion between the
Infrastructure definition and MOF is more complex, as MOF is again defined
using UML. The M1 layer is again an instance of the M2 layer. On the M1 layer,
we find those models that we typically create for requirements or design speci-
fications. The instance of a UML model is then finally found on the M0 layer,
which describes instantiated objects.

The UML models we deal with everyday are typically the ones found on the
M1 layer — we create instances of the UML metamodel. One common way
to create such a model is to use the graphical notation provided in the UML
Superstructure standard. However, it is crucial to understand that a UML model
and a UML diagram are different things. The diagrams defined in the UML
Superstructure are essentially guidelines and do not represent a specific formal
notation. This results in ambiguities and variations between tools. It is easily
possible to draw a set of diagrams in the UML notation on paper. However, on
paper these cannot be validated, transformed, or even used for code generation.

M3: MOF

M2: UML Metamodel

M1: UML Model

M0: UML Model Instance

Instance of

Instance of

Instance of

Fig. 1. The UML Architecture
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<packagedElement xmi:type="uml:Class" xmi:id="C1" name="Location">
<ownedAttribute xmi:id="A1" name="cityName" visibility="private">

</ownedAttribute>
<ownedAttribute xmi:id="assEndC2" name="temp" visibility="private" type="C2" association="Association1">
<upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="littempUperValue" name="" value="1"/>
<lowerValue xmi:type="uml:LiteralInteger" xmi:id="littempLowerValue" name="" value="1"/>

</ownedAttribute>
<ownedOperation xmi:id="M1" name="getLocation" visibility="public"/>

</packagedElement>
<packagedElement xmi:type="uml:Class" xmi:id="C2" name="WeatherConrolSystem">
<ownedAttribute xmi:id="assEndC1" name="loc" visibility="private" type="C1" association="Association1">
<upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="litlocUperValue" name="" value="*"/>
<lowerValue xmi:type="uml:LiteralInteger" xmi:id="litlocLowerValue" name="" value="1"/>

</ownedAttribute>
<ownedOperation xmi:id="M2" name="displayTemp" visibility="public">
<ownedParameter xmi:id="P1" name="cityName" visibility="public">
</ownedParameter>

</ownedOperation>
</packagedElement>
<packagedElement xmi:type="uml:Association" xmi:id="Association1" name="result" memberEnd="assEndC1 assEndC2"/>

<packagedElement xmi:type="uml:Collaboration" xmi:id="collob1" name="WCS">
<ownedBehavior xmi:type="uml:Interaction" xmi:id="Interaction1" name="WCS">
<ownedAttribute xmi:id="Obj1" name="" visibility="private" type="C1"/>
<ownedAttribute xmi:id="Obj2" name="" visibility="private" type="C2"/>
<lifeline xmi:id="l1" name="" visibility="public" represents="Obj1" coveredBy="MO3 MO2 MO2Start MO2Finish"/>
<lifeline xmi:id="l2" name="" visibility="public" represents="Obj2" coveredBy="MO1.... MO4Start MO4Finish MO6Start MO6Finish"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO1" name="" visibility="public" covered="l2" message="SM1"/>

[....]
<message xmi:id="SM1" name="" visibility="public" receiveEvent="MO2" sendEvent="MO1"/>
<message xmi:id="SM2" name="cityName" visibility="public" messageSort="reply" receiveEvent="MO4" sendEvent="MO3"/>
<message xmi:id="SM3" name="" visibility="public" receiveEvent="MO6" sendEvent="MO5">
</message>

</ownedBehavior>
</packagedElement>

</uml:Model>
</xmi:XMI>

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:id="M1" name="Data">

WFR: Object
without Name

1: getLocation()

2: cityname

3: getCityCode()

4: displayTemp(cityName=)

Smell:
Undefined Method

Graphical Smell
Overlapping

Fig. 2. Graphical and XMI Representation of a UML Model

Even if we transfer our diagrams as they are into digital form, they are missing
important pieces of information that are not part of the diagrams such as how the
diagrams relate to each other and where the definitions to model references can
be found. If the graphical notation is used to create a UML model (i.e., by using
a UML tool), each diagram represents only a partial view of the complete model.
Thus, a UML model may be described by multiple diagrams or no diagram at
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all — a UML model may still contain all elements we know from the commonly
used graphical notation without including a single diagram. However, there is
no common and unified notation that can represent a UML model completely,
but attempts to solve this problem exist, e.g, TextUML [6]. One way, although
not entirely human-readable, to represent a complete UML model is the XML
Metadata Interchange (XMI) format [7] which is, however, an exchange format
rather than a useful notation for modeling.

To illustrate the difference between a model and diagrams, we present a sim-
ple specification of a weather information system in Fig. 2. At the top of the
figure, we have the graphical notation of a UML model consisting of a class
and a sequence diagram. At the bottom part of the figure, we present the XMI
notation of the same model. The figure illustrates two things. First, a complete
model can represent multiple diagrams and vice versa — multiple diagrams may
be part of a single UML model. In this case, the model contains the definitions
from the class diagram and the sequence diagram. Second, the XMI represen-
tation explicitly references the previously defined UML classes. Such an explicit
reference is not possible when we deal with diagrams in UML notation (that are
created using pencil and paper or a diagramming tool) rather than UML models.
Finally, it is necessary to mention the Object Constraint Language (OCL) [8].
OCL is a declarative language used to express constraints (preconditions, post-
conditions, or invariants) on UML models and is based on first-order predicate
logic. Although not its intended use, it is also possible to use OCL as a query
language by evaluating result sets of OCL expressions.

2.2 Software Quality and Quality Models

Software quality refers to all attributes of a software product that show the
appropriateness of the product to fulfill its requirements. For a software prod-
uct, Fenton et al. [9] distinguish between attributes of processes, resources, and
products. For each class, internal and external attributes can be distinguished.
External attributes refer to how a process, a resource, or a product relates to
its environment. Internal attributes, on the other hand, are properties of a pro-
cess, a resource, or a product on its own, separate from any interactions with
its environment. Hence, the assessment of external attributes of a product, the
so-called external quality, requires the execution of the product, whereas usually
static analysis is used for the assessment of its internal attributes, the so-called
internal quality. Since this article treats quality characteristics for UML models,
which are products that do not need to be executable, only internal quality is
considered in the following.

Quality models are used to assess software quality. Our work concentrates on
hierarchical Factor-Criteria-Metrics quality models (FCM-models). Prominent
examples for FCM-models are the quality model developed by McCall et al.
(McCall-model) [10] and the ISO/IEC standard 9126 (ISO/IEC 9126-model) [11].

The highest level of the McCall-model are the three uses: operation, transi-
tion and maintenance. The operation use refers to quality characteristics that
concern the product when it is being executed, i.e., its external quality. The
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Fig. 3. ISO/IEC 9126 Quality Model for Internal and External Quality

transition use combines quality characteristics that concern the product when it
is moved to another environment, and the maintenance use focuses on quality
characteristics that concern the product when it is changed. As indicated by
the abbreviation FCM, on the second, third and fourth level, the McCall model
defines factors, criteria and metrics. A factor defines a high-level quality crite-
rion such as efficiency. On the next lower level, criteria for judging factors are
defined. For example, criteria for the factor efficiency are storage and execution
efficiency. Metrics are then used to assess criteria, e.g., storage efficiency may be
assessed by calculating the ratio between allocated and used storage.

The ISO/IEC 9126-model defines no uses, but distinguishes between internal
quality, external quality and quality-in-use. The quality ISO/IEC 9126-model is
a generic quality model that covers internal and external quality in one abstract
model (Fig. 3). The model for quality-in-use is similar to the operation use of
the McCall model. However, quality-in-use and external quality are out of the
scope of this paper and therefore not discussed any further. In the ISO/IEC 9126-
model, factors are called characteristics and criteria are called subcharacteristics.

2.3 Software Metrics

Fenton et al. structured internal product metrics (metrics that measure internal
quality) into size and structural metrics [9]. Size metrics measure properties
of the number of usage of programming or specification language constructs:
for example, the number of source statements. Structural metrics analyze the
structure of a program or specification. Popular examples of structural metrics
are complexity metrics based on control flow or coupling metrics.

To make sure that reasonable metrics for quality assessment are chosen,
Basili et al. suggest the Goal, Question and Metrics (GQM) approach [12]: First,
the goals which shall be achieved (such as improved maintainability) must be
defined. Then, for each goal, a set of meaningful questions that characterize a
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goal is derived. The answers to these questions determine whether a goal has
been met or not. Finally, one or more metrics are defined to gather quantitative
data which can provide answers to each question.1

2.4 Smells

The metaphor of “bad smells in code” has been coined by Beck and Fowler [13].
They define smells as “certain structures in the code that suggest (sometimes they
scream for) the possibility of refactoring”. According to this definition, defects
with respect to program logic, syntax, or static semantics are not smells, since
these defects cannot be removed by a refactoring. A refactoring only improves
internal structure, but does not change observable behaviour.

Beck and Fowler present smells for Java source code. They describe their
smells using unstructured English text. A well-known smell is Duplicated Code.
Code duplication affects (in particular) the changeability quality subcharacteris-
tic in the ISO/IEC 9126-model: if code that is duplicated needs to be modified,
it usually needs to be changed in all duplicated locations. Smells provide only
hints: whether the occurrence of an instance of a certain smell in a source code
is considered as a sign of low quality may depend on preferences and the con-
text of a project. For the same reason, a list containing code structures that are
considered smells is never complete and may also vary from project to project
and from domain to domain [14].

The notions of metrics and smells are not disjoint: each smell can be turned
into a metric by counting the occurrences of a smell, and often, a metric can be
used to locate a smell. The latter is the case, for example, when a long function
is expressed by a metric that counts the lines of code of this function and a
threshold is violated. However, the above smell of duplicated code and other
pathological structures in code require a pattern-based detection approach and
cannot be identified by using metrics alone.

2.5 Refactoring

Refactoring is defined as “a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its observ-
able behavior” [13]. This means that refactoring is a remedy against software
aging [15]. While refactoring can be regarded as cleaning up source code, it is
more systematical and thus less error prone than arbitrary code clean-up, be-
cause each refactoring provides a checklist of small and simple transformation
steps, which are often automated by tools.

The essence of most refactorings is independent from a specific programming
language. However, a number of refactorings make use of particular constructs
of a programming language, or of a programming paradigm in general, and are
thus only applicable to source code written in that language.
1 The GQM approach can also be used to define individual FCM quality models as

goals are similar to factors and questions similar to criteria.
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3 Quality Models for UML

A surprisingly small number of researchers have addressed the problem of quality
assessment for UML models. The comprehensive work in this area has been done
by Lange and Chaudron [16,17]. In [17], they discuss the difference between
source code and UML models and highlight the particularities of UML models.
As a consequence, a special quality model for UML has been developed (in the
following called Lange-Chaudron-model). An overall view of the model is given
in Fig. 4.

Like the model developed by McCall, the Lange-Chaudron-model is a hierar-
chical model with four levels. On the highest level, the Lange-Chaudron-model
defines the two uses maintenance and development. The maintenance use is
taken from the McCall model. The other two uses from McCall (operation and
transition) are not relevant for the quality of UML models. The operation use
is related to external quality attributes and the transition use is not related to
the modeling phase and design phase of development in which UML is used.
The development use combines quality characteristics of a product and its ar-
tifacts in phases before the product is finished. The second level of the Lange-
Chaudron-model defines the purposes of modeling. For example, the purpose
Testing indicates that the model is used for test generation and the purpose
Code Generation denotes a usage for automatic code generation. The third level
of the Lange-Chaudron-model identifies the characteristics of the purposes. The
meaning of most characteristics in Fig. 4 is straightforward. For example, the
characteristic complexity measures the effort required to understand a model or
a system.

Two special characteristics of the Lange-Chaudron-model are aesthetics and
balance. The quality of the graphical diagrams is addressed by the aesthetics
characteristic only. Aesthetics is defined by the extent that the graphical layout
of a model or system enables ease of understanding of the described system.
Lange and Chaudron define balance as the extent that all parts of a system
are described at an equal degree. All characteristics are included in the balance
characteristic with the same weight. This has been criticized by Mohagheghi and
Aagedal [18], because the assessment of the balance characteristic requires the
evaluation of all metrics and rules defined in the fourth level, i.e., it is not a good
abstraction. In [18], it is proposed to shift balance to the purpose level and to
assess balance by using the characteristics completeness, conciseness, modularity,
and self-descriptiveness.

The fourth level of the Lange-Chaudron-model (not shown in Fig. 4) defines
metrics and rules for the assessment of the characteristics. We discuss this part
of Lange-Chaudron-model in Sects. 4 and 5. Lange and Chaudron underpinned
their work with industrial case studies. They showed the applicability of their ap-
proach by interviewing representatives of project teams, analyzing UML models,
and giving feedback to project teams. A quality model for design documentation
in model-centric domains has been developed by Pareto and Boquist [19]. The
background of this work is experience with the Rational Unified Process (RUP)
as model-centric software development process. Even though UML is an essential
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Fig. 4. Lange-Chaudron Quality Model

part of RUP, all kinds of artifacts on the abstraction levels between requirements
specification and code are considered relevant. For the development of the qual-
ity model, Pareto and Boquist interviewed and discussed with designers, process
engineers, line managers and architects. From these interviews and discussions,
22 quality attributes were identified and structured into six groups. Each group
identified one quality characteristic. As the quality model is related to RUP
also quality aspects for management are covered. However, they stop with the
identification of quality attributes and quality characteristics. No means for the
assessment of quality attributes and characteristics are provided.

4 Metrics for UML

In current research,a largenumber new softwaremetrics are defined. Manymetrics
are based and calculated on grammatical structures such as Abstract Syntax Trees
(ASTs). A UML model is also based on a specific structure: the UML metamodel.
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However, numerous proposals are based on informal metrics definitions that often
respect only diagrams: the graphical representation of UML with its partial views.
In the following sections, we will present noteworthy literature on UML metrics.
We differentiate between metrics that are based on the actual UML model, and
metrics that are solely based on the graphical notation: graphical metrics.

4.1 Model Metrics

Lange [20] uses metrics and rules (metrics with a binary result) and relates them
to quality characteristics of his quality model (see Sect. 3) to assess the quality
of a UML model. He reuses the most widely known metrics such as the met-
ric suite from Chidamber and Kemerer [21] and describes them informally. He
stresses that his list is by no means complete. Kim and Boldyreff [22] propose
27 metrics for UML that are supposed to predict characteristics at earlier stages
in the software lifecycle. The metrics are defined informally and no relationship
between the UML model quality and the metrics is established. Baroni et al. [23]
propose to use OCL to describe UML metrics in a formal way in order to avoid
ambiguities due to descriptions in natural language. By using several samples of
different complexity, they demonstrate that OCL is a well suited formalism for
defining UML metrics and that it is easier to understand than formulas using
custom built mathematical frameworks. McQuillan and Power [24] extended this
approach and use OCL to calculate coupling and cohesion metrics, as well as the
metrics from the Chidamber and Kemerer metric suite [21]. They argue, how-
ever, that a metrics specific metamodel is a more generic solution than defining
metrics directly over the UML metamodel. Furthermore, they demonstrate how
to automatically generate test data and metamodel instances. Another interest-
ing way to formalize metrics is proposed by El-Wakil et al. [25]. They propose
to define metrics using XQuery over the XMI representation of the UML model
under analysis. They argue that using XQuery to express metrics eases tool
building. Also, they claim that metric libraries specified in XQuery are easy to
extend and provide a proof-of-concept implementation.

4.2 Graphical Metrics

Graphical metrics for UML are not covered very well in the literature despite
the fact that the quantification of visual elements can be an important part to
assess the quality of a graphical layout. However, it seems that layouting itself
draws more attention in research than the assessment of a layout by numbers.
Kiewkanya and Muenchaisri [26] performed an experiment in which they eval-
uated whether metrics quantifying aesthetic aspects of class and sequence dia-
grams influence the maintainability of UML models. For the measurements, they
selected aesthetic indicators that have been proposed by Purchase [27], Eichel-
berger [28], and others. Such aesthetic indicators are, for example, the maximum
number of bends on the edges, the standard deviation of edge lengths, or the
total numbers of edges fixed to an orthogonal grid divided by the total number
of edges. Their conclusion is that aesthetic metrics can indeed be indicators for
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the maintainability of class and sequence diagrams. Gronback [29] provides a
general catalog of UML metrics to detect deviations from best practices. Some
of them are derived from style guidelines provided by Ambler [30]. He suggests
generic diagram metrics such as “number of colors on diagram” or diagram-
specific metrics such as “depth of inheritance hierarchy” (for class diagrams)
and even provides minimum and maximum thresholds for his metrics. The met-
rics presented by Gronback, however, mix graphical properties with properties
that are part of the UML model.

5 Smells for UML

As discussed earlier, UML models do not have a standardized textual notation
like typical general purpose programming languages. However, bad smell analysis
in source code is rarely executed directly on the textual notation. An abstract
grammatical representation of the notation, the AST, can in fact be regarded as
a model for the textual notation of the programming language that is subject of
the analysis. Analyzing UML models is therefore not that much different than
analyzing an AST. However, the underlying abstract syntax is more complex. In
the following section, we present related work that deals with bad smells in UML
models. We differentiate between model smells and graphical smells. With model
smells, we regard design flaws or possible defects that we find by analyzing the
UML model (independently from any diagrams) such as possible inconsistencies,
ambiguities, or constructs that complicate maintenance. Graphical smells, on
the other hand, are related to the graphical notation of UML. They primarily
concern the understandability aspect of the diagram. For example, diagrams
with overlapping or crossing elements are harder to understand than diagrams
with elements that are laid out with aesthetic aspects in mind.

5.1 Model Smells

Lange [16] — with his goal to improve the overall quality of UML models —
discusses that undetected defects can cause large problems in later development
stages and identifies generic UML defects such as the number of messages in a
sequence diagram that do not correspond to a method in a defined class diagram.
The presented smells were identified by discussions with industrial partners and
by performing case studies. He assumes that a set of UML diagrams defines a
system as a whole and that those diagrams have consistency relationships be-
tween each other. The defects partially overlap with the well-formedness rules
and are related in their scope, but are described informally, without a relation-
ship to the abstract syntax of UML. Astels [31] presents UML smell detection
in the context of UML refactoring. With smell detection, he locates where to
refactor and which refactoring is suggested. He argues that the visual presen-
tation of UML makes smell structures more evident and presents exemplarily
what classical bad smells from Fowler [32] (e.g., lazy class or middle man) look
like in the graphical notation. His own statement is that his list is by no means
complete. His work is described informally in the visual notation of UML.
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5.2 Graphical Smells

Graphical smells concern the graphical notation of UML models excluding prob-
lems that are of logical nature or that may introduce issues in efficiency or main-
tenance. Therefore, the main aspect of graphical smells is how model elements
are laid out and what elements are represented by the diagrams. Ambler [30]
provides more than 300 guidelines for all UML diagram types that primarily
concern the graphical notation. The violations of these guidelines can be con-
sidered as graphical smells. As an example, a guideline with the aim to improve
the understandability of a diagram is to split large diagrams with a high num-
ber of elements into multiple smaller diagrams, where no diagram must have
more than nine elements. Purchase et. al [27] have studied graphical layout aes-
thetics in class and collaboration diagrams. By performing a case study where
they questioned persons to investigate their subjective preferences, they conclude
that there are certain common aesthetic properties that seem to be unfavorable.
Among these properties are, for example, arc crossings, or orthogonality (for
class diagrams). From their results, they derive that the aesthetics of graph lay-
outs is dependent on the domain, i.e., properties that are important for one
diagram type may not be important for another one.

6 Refactorings for UML

UML refactoring is an emerging research topic that can already be considered
as important as classical source-code refactoring. We again differentiate between
model refactorings, i.e., semantically preserving model changes and graphical
refactorings that improve the aesthetics of UML diagrams.

6.1 Model Refactorings

Astels [31] presents UML smells in class and sequence diagrams and describes
a number of Fowler refactorings that are applicable to UML. His refactoring
descriptions are based on UML diagrams and are informal. His examples are in-
tended to motivate that UML refactoring is applicable in the context of agile de-
velopment processes. France and Bieman [33] want to avoid uncontrolled change
and increased evolution costs of a system due to deteriorating structure and
system quality by introducing a goal-directed, cyclic process for object-oriented
software when object-oriented models, such as UML models, are transformed
and evaluated in each cycle. For the model transformation, they explicitly men-
tion model refactoring to enhance quality attributes of the model that should
be realized using patterns involving roles, i.e., each participant in the pattern
plays a certain role with specific properties within the pattern description. A
formal method for pattern-based transformation with role models does not exist
yet. Sunyé et al. [34] propose refactorings for class diagrams and state charts
to make software easier to extend and maintain. Using pre and post conditions
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expressed in OCL, they ensure that transformation preserve behavioral prop-
erties. However, they describe the refactoring mechanics informally. Porres [35]
presents how to describe and execute UML refactorings using a rule-based trans-
formation formalism and he argues that an update-based mapping mechanism
that modifies a model in place is more efficient for describing refactorings than
mapping transformations that transform into a different target model. For the
realization and description of refactoring transformations, he uses his own lan-
guage called SMW that operates on the UML metamodel — when the paper
was written, there were no widely adopted transformation languages available.
Dobrzański [36] provides a comprehensive survey on UML model refactorings
in his master’s thesis that deals with the refactoring of executable UML mod-
els [37]. He introduces an initial refactoring catalog for executable UML models.
The refactorings are formalized with pre and post conditions in OCL. According
to him, the main difference in refactoring executable models is that the update
of the behavioral aspects of the models has to be taken into account.

More recent work on UML model refactoring and transformation is often based
on the Eclipse Modeling Framework (EMF) representation of UML models. Bier-
mann et al. [38] present work on an EMF model transformation framework that
is based on graph transformations. They show how the rich theory of algebraic
graph transformation can be applied to EMF model transformations. Using their
method, the validation of the model transformations with respect to functional
behavior and correctness is possible. They demonstrate their approach by using
selected state chart refactorings. Similarly, Folli and Mens [39] suggest the use
of graph transformations for model refactoring as well and present, as a proof-
of-concept, how they have implemented a number of more complex UML model
refactorings using the AGG [40] graph transformation tool.

6.2 Graphical Refactorings

Graphical refactorings are applied when it is hard to read and understand the
graphical notation of a UML model: that is the corresponding diagrams con-
taining partial views of the UML model. There are a huge variety of generic
graph layout algorithms, and graph drawing itself is a very active research topic.
Summaries can be found in a variety of textbooks, for example, Graph Drawing
by Battista et al. [41]. Work on layouts of UML diagrams is rare. Ambler [30]
provides informal guidelines that lack a systematic transformation mechanic to
improve diagrams. However, it is arguable whether graphical refactorings should
only change parts of a model using the refactoring mechanic or whether UML di-
agram specific transformations for complete optimal layouts are more desirable.
Eichelberger and Gudenberg [28] discuss existing automatic layout methods for
class diagrams and present their approach to laying out class diagrams that
respect aesthetic rules, such as those described by [27]. Castello et al. [42] pro-
pose an automatic layout algorithm that improves the readability of state chart
diagrams. It reduces the number of edge crossings and edge bends.
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7 Tool Support

It is encouraged to use tools for measuring metrics, detecting smells, and apply-
ing refactorings to UML models. Manual application of refactorings, for example,
is very error-prone and there is a risk that the changes are not semantically pre-
serving due to human mistakes. Popular tools that support the automatic calcu-
lation of metrics and detection of bad smells in UML models are SDMetrics [43],
Together [44], IBM Rational Systems Developer [45], and ArgoUML [46]. These
tools partially use different terminologies for the term “bad smell”. SDMetrics,
for example, calls them design rules, Together calls them audits, or ArgoUML
names them design critics. The toolset from Chaudron et al. [47] calculates
metrics on UML models, it detects rules in sequence diagrams, it checks model
consistency, and visualizes metrics in a metric viewer. Except for the commer-
cial tool Poseidon for UML, which provides a refactoring browser supporting the
refactorings from Boger at al. [48], none of the major commercial UML tools sup-
port refactoring beyond renaming and moving model elements. Tools that sup-
port more sophisticated UML refactorings are academic prototypes. An overview
over existing academic UML refactoring tools is given by Dobrzański [36]. Van
Gorp et al. [49] have implemented refactorings as plug-in for the Fujaba UML
tool. Recently, several academic UML refactoring tools are evolving that build
on EMF, for example, GaliciaUML [50].

8 Our Approach

The variety in the understanding and application of UML is visible in research
as well. There is work dealing with UML diagrams only, while neglecting the fact
that UML is a modeling language. On the other hand, others respect UML as
a modeling language or mix descriptions based on the graphical notation with
descriptions based on the UML metamodel. Most authors realize that there are
relationships and dependencies between different diagrams that have to be re-
spected when applying UML refactorings. To describe those relationships based
on diagrams, however, is the wrong approach and we strongly believe that met-
rics, smell detection, and refactoring for UML should be described in a formal-
ism that works on the UML metamodel. This ensures precision regarding the
actual underlying UML model and regards complete models rather than just
partial views. Authors such as [35] have realized this as well, but neither do
they present a complete quality engineering approach for UML models including
assessment and improvement that can be applied in every iteration of a develop-
ment process, nor were there any widely spread model transformation languages
available that could be applied for such uses. With our experience in the quality
assurance of TTCN-3 [2,51], we aim to provide an integrated quality engineering
approach for UML (Fig. 5) that consists of two main parts: quality assessment
and quality improvement. For the assessment, a quality model is used and metrics
quantify quality characteristics of this model. For the improvement, smell detec-
tion is used for locating possible issues and refactoring is used to improve the
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- FCM Quality Model+graphical quality aspects,
e.g Instantiation of ISO/IEC 9126 for UML

- Number of sequence diagram per usecase
- Number of statecharts per class

- Metrics+smells (metrics will provide location of issue)

- using Refactoring / transformation method

Quality Assessment

Quality Improvement

Quality Model for UML

Metrics for UML

Issue Detection

Issue Removal

Fig. 5. Quality Assessment and Quality Improvement for UML

quality. Once the improvement step is completed, a quality reassessment quan-
tifies whether the improvement was successful.

The first part in Fig. 5, i.e., the quality assessment requires a quality model for
UML. We aim to use a generic FCM-based quality model, such as the ISO/IEC
9126 model, that can be instantiated with metrics to quantify its quality char-
acteristics. The quality model has to be described in detail for its target envi-
ronment of UML models, and (if necessary) it must be adapted for this domain.
For example, the understandability characteristic of the ISO/IEC 9126 quality
model does not only relate to the actual complexity of the UML model, but
also to the graphical aspects of UML, such as the graphical smells described
in Sect. 5.2. For the calculation of metrics, we use a widely used formalism
such as OCL that works on the UML metamodel. While OCL is a language for
expressing constraints in the first place, it can also be used to query models
and to evaluate set sizes. For the quality improvement, we further plan to use
languages that are now adopted for querying and transforming UML models.
For the smell detection, we plan to provide a guideline catalog of bad smells in
UML models using both an informal description in natural language and formal
descriptions, e.g., given in OCL, where metrics with additional thresholds are
defined to locate the smells. We are also evaluating the use of model transforma-
tion languages to identify smell locations by transforming the UML model into
an instantiation of a metamodel that describes the results of the smell detection.
For the actual refactorings, we plan to use existing model-to-model transforma-
tion languages such as Query/View/Transformation (QVT) [52], Xtend [53],
or the ATLAS Transformation Language (ATL) [54] to describe the refactoring
transformations, and OCL to define pre and post conditions for each refactoring.
The techniques and languages described above are all based on the analysis at
the model level instead of the graphical notation of UML. We plan to empha-
size the actual model analysis instead of the graphical problems, as the involved
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layout techniques are part of a different field of research. However, graphical is-
sues do play an important role in the overall assessment of the quality of a UML
model — especially for the understandability quality characteristic. As we plan
to use existing languages as formalisms to describe our metrics, smells, and refac-
torings, a proof-of-concept implementation will only involve the application of
our metrics, smells, and refactoring descriptions to actual tool implementations
that exist.

9 Status and Future Work

In our current work, we have successfully applied OCL for the calculation of
metrics on a UML model and we have made first experiments to describe refac-
torings using Xtend. In both cases, we directly executed our experiments against
existing UML models with tools that implement these languages. For the eval-
uation of OCL, we used the Eclipse OCL implementation of the Eclipse Model
Development Tools project [55], which also allows the evaluation of the OCL
result sets. For the refactoring, we have implemented so far simple refactorings
using Xtend [53]. Our first experiments to detect smells and to apply refactoring
using model-to-model transformation languages were successful, however, de-
scribing model-to-model transformations for UML models is not always an easy
task due to the complexity of the UML metamodel. We plan to evaluate QVT
and ATL to find out whether they make these descriptions more compact or
more complicated and we also intend to evaluate the possibility of building a
refactoring toolkit that eases the definition of refactorings. For the validation of
our approach, we currently start to work on a case study that involves a UML
model similar in size to industrial models. We then plan to apply our combined
approach in an automated manner and use the quality reassessments after im-
provements to check whether the quality has improved. Expert reviews should
then validate whether the automatic reassessment is correct.
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36. Dobrzański, L.: UML Model Refactoring- Support for Maintenance of Executable
UML Models. Master’s thesis, Blekinge Institute of Technology, School of Engi-
neering, Ronneby, Sweden (2005)

37. Mellor, S., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tecture. Addison-Wesley, Reading (2002)

38. Biermann, E., Ermel, C., Taentzer, G.: Precise Semantics of EMF Model Trans-
formations by Graph Transformation. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 53–67. Springer,
Heidelberg (2008)

39. Folli, A., Mens, T.: Refactoring of UML models using AGG. In: Proceedings of the
3rd International ERCIM Symposium on Software Evolution (2007)

40. Taentzer, G.: A Graph Transformation Environment for Modeling and Validation
of Software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
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54. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: ATL: A QVT-Like
Transformation Language. In: Companion to the 21st ACM SIGPLAN Symposium
on Object-Oriented Programming Systems, Languages, and Applications. ACM
Press, New York (2006)

55. Eclipse Foundation: Eclipse Model Development Tools (MDT) OCL,
http://www.eclipse.org/modeling/mdt/?project=ocl

http://argouml.tigris.org
http://www.win.tue.nl/empanada/tools.htm
http://www.omg.org/docs/formal/08-04-03.pdf
http://www.openarchitectureware.org
http://www.eclipse.org/modeling/mdt/?project=ocl


Optimal String Edit Distance Based Test Suite
Reduction for SDL Specifications
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Abstract. We propose a test selection method that provides efficient
test sets for systems based on SDL specifications. Our approach builds
on previous results of Voung et al. and Feijs et al. on string edit distance
based coverage metrics. The method reduces a set of test cases repre-
sented in the MSC (Message Sequence Chart) notation, while maintain-
ing the highest possible distance between all pairs of traces defined by the
given test set. The algorithm is tunable by a parameter representing the
threshold distance for test redundancy. We show that the algorithm runs
in polynomial time of the size of the input test set and that it is inde-
pendent of the size of the system. We implemented and incorporated the
algorithm into our SDL-based test selection framework, and evaluated
against existing symbol coverage and fault coverage based test selection
approaches by conducting experiments on the well-known INRES and
Conference Protocol. Results indicate that the string edit distance based
method yields similar results in terms of reduction-capability and cover-
age as the other approaches, but with significantly less complexity.

Keywords: SDL based test selection, string edit distance, MSC test
cases.

1 Introduction

From the design perspective, system development facilitated by formal modelling
has several benefits, mainly due to the higher level of abstraction it provides
to system architects. A further and often overlooked advantage of modeling
techniques comes from the testing phase of the development life cycle: A correct
model of the system under development may serve as a basis for automating test
development, which is a crucial and increasingly expensive part of the software
development process.

R. Reed, A. Bilgic, and R. Gotzhein (Eds.): SDL 2009, LNCS 5719, pp. 82–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Optimal String Edit Distance Based Test Suite Reduction 83

Research in the field of testing has established various test generation meth-
ods [1,2,3] and tools like Autolink [4], TorX [5], TGV [6] or Phact [7] for different
formalisms including extended finite state machine (EFSM) based modelling lan-
guages such as SDL (Specification and Description Langugage). These methods
typically have a sound mathematical background, but are often criticized for
resulting in excessive number of test cases under industrial-size application. A
major challenge of automatic test generation is, therefore, the detection and
reduction of redundancies among the large number of test cases derived from
a system model. This type of problem is addressed by test selection meth-
ods [2,8,9,10,11]: their objective is to minimize the cardinality of the target test
set without sacrificing its quality. However as shown in [8] the selection problem
is NP-hard, so approximative solutions must be defined [10,11].

In this paper we present a method for automatic test selection building on
a promising idea first published by Voung et al. [9] and later improved by
Feijs et al. [12]. Vuong’s original approach defines string edit distance measures
and addresses the normalization of traces represented as strings to approxi-
mate differences among patterns of system behavior; traces are considered to
be similar if their distance is smaller than a given parameter. The latter paper
generalizes that original idea by introducing a cycling and a reduction heuristics
and gives formulae to precisely calculate the distance between traces containing
finite number of traversals of loops around a state in the specification.

We utilize the string edit distance-based test coverage metric to reduce MSC
(Message Sequence Chart) test sets. A two-step selection algorithm is proposed
to find the minimum cardinality subset with the highest possible diversity: First
the minimum cardinality for a given approximation threshold is determined by
reducing the distance based selection problem to an assignment problem in bi-
partite graphs. Then a test set with the highest overall internal edit distance
is selected from all subsets with that computed cardinality. We show that the
algorithms run in polynomial time of the size of the input test set and that it
is independent of the size of the system. Furthermore, the paper proposes an
iterative test generation method that can be used in incremental development
of compact test sets.

The algorithm has been implemented and customized to accept the SDL spec-
ification of the system under test and a test set defined in MSC. The solution
has been incorporated into our SDL-based test selection framework [2], and has
been evaluated against existing symbol coverage and fault coverage based test
selection approaches by conducting experiments on the well-known INRES [13]
and Conference Protocol [7]. Results indicate that the string edit distance based
method does not show significant differences in terms of reduction-capability
and coverage compared to the other approaches, but requires significantly less
computation time.

The rest of the paper is organized as follows. A brief overview of our as-
sumptions and notations is given in Sect. 2. Section 3 describes the procedure
of distance maximization among the test cases. In Section 4 we introduce how the
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proposed method can be used to reduce the size of the resulting test set during
an automatic test generation process. We demonstrate our method through an
example. Section 5 compares the string edit distance based test selection method
with two other appoaches: a fault based and a coverage based solution using the
sample SDL systems INRES and Conference Protocol. Section 6 presents our
conclusions.

2 Preliminaries

SDL [14] is a well-accepted world standard supported by the ITU (International
Telecommunication Union). SDL is widely used in the telecommunications in-
dustry for the description of telecommunication protocols, but it may be used in
other fields where high reliability is required. Typically complex, event-driven,
real-time and communicating systems can be effectively described in SDL.

SDL is built on the extended finite state machine (EFSM) model that is an
extension of the basic FSM formalism by adding support for the use of variables.
An EFSM is a 5-tuple: EFSM = (S, I, O, V, H), where S is the finite set of
states, I is the finite set of input symbols, O is the finite set of output symbols, V
is the finite set of variables, and H is the finite set of transitions. Each transition
h ∈ H is a 6-tuple: h = (sj , i, P (V ), A(V ), o, sk), where sj ∈ S is the start state
of the transition, i ∈ I is an input, P is a set of predicates on the variables, A
is a set of actions on the variables, o ∈ O is an output and s′ ∈ S is the next
state.

2.1 Test Cases and Their String Representation

Existing test generation tools like Autolink [4] provide excellent means to derive
large number of MSC traces from SDL specifications. In practice the number of
such executable traces is infinite and therefore exhaustive testing based on all
traces is generally impossible. The purpose of test selection (and test generation
in its essence) is to identify a subset of trace set sufficient to establish a required
level of confidence in the correctness of the system.

Throughout this paper we consider SDL specifications with a reliable reset
signal as a test start point. A test set consists of a set of MSCs, where each
test case is a finite trace after a reset input. The MSC traces in the examples
are generated by means of random-walk, but any other test derivation tool or
algorithm may be considered as well. Note that in this paper we use the terms
test sets and trace sets interchangeably.

Traces derived from an SDL specification can be represented as strings on an
arbitrary alphabet C. A mapping M : {I ∪ O}+ → C defines a set of pairs of an
SDL signal sequence and a character of alphabet C: 〈(xi1xi2 . . . xim), ci〉, where
xik ∈ I ∪ O, k = 1 . . .m, k ∈ N, ci ∈ C. Note that according to this definition
several successive input or output signals may be mapped to a character of
that given alphabet. Such mapping M is the marked trace notation defined
in [12].
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Fig. 1. INRES ISAP Manager Ini process (see [13])

Let us use the ISAP Manager Ini process of the INRES system [13] as exam-
ple, its SDL representation can be seen in Fig. 1. The process has three states
S = {disconnected, wait, connected}, the initial state is disconnected. The
machine is not completely specified, input signals such as the IDATreq in state
disconnected are not shown and considered to be implicitly consumed, that is,
they do not change the state of the machine and do not produce output. The
input and output signal sets are the following: I = {ICONreq, T, ICONF, IDATreq,
IDIS} and O = {ICON, IDISind, ICONconf, IDAT}. The timeout T is considered
to be an input signal and according to the specification it is only possible in
state WAIT.

Let us assume a simple signal sequence to character mapping M defined by
Table 1, which maps each possible transition of the process ISAP Manager Ini
to a character. The table indicates implicit events as well: dash represents that
no output signal is produced. The state transition diagram of the unfolded FSM
and the graph with mappings applied are presented in Fig. 2(b). Note that the
cycling heuristics of [12] is not used in the mapping for the sake of simplicity.
EFSM aspects can be taken into account when defining the mapping for param-
eterized signals: a parameterized signal name can be mapped to a set of different
characters depending on the actual parameter values.
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Table 1. Signal sequence to character mapping for ISAP Manager Ini

ICONreq/− a
ICONreq/ICON b
T/IDISind c
ICONF/− d

ICONF/ICONconf e
IDATreq/− f

IDATreq/IDAT g
IDIS/IDISind h

disconn

wait

conn

IDIS/IDISind

IDIS/IDISind
T/IDISind

ICONreq/ICON/set(T)

IDATreq/IDAT
IDIS/IDISind

ICONF/ICONconf/reset(T)

(a) INRES ISAP Manager Ini process

disconn

wait

conn

b/set(T)
e/reset(T)

h

a,f

a,d,g
d,f,h

h,c

(b) INRES ISAP Manager Ini process
after event to character mapping

Fig. 2. The state transition diagram of the FSM of the ISAP Manager Ini process from
the sample INRES protocol in original form and after event to character mapping

Figure 2(a) shows the state transition graph of the ISAP Manager Ini when
that is unfolded into a finite state machine, and Fig. 2(b) shows the graph after
applying the event to string mapping defined above.

2.2 Trace Distance

The edit distance between strings σ1 and σ2 is the minimum number of edit
operations (character insert, character delete and character overwrite) needed
to transform σ1 to σ2 [15]. Different edit operations may have distinct costs
assigned, for the sake of simplicity we consider unit edit operator costs in the
current paper.

Let Σ be a finite set of strings over the alphabet C, and let d : Σ ×Σ → R be
a distance metric such that d(σ1, σ1) = 0, d(σ1, σ2) = d(σ2, σ1) and d(σ1, σ3) ≤
d(σ1, σ2) + d(σ2, σ3), for all σ1, σ2, σ3 ∈ S. If the lengths of σ1 and σ2 are l1
and l2 respectively, the time and space complexity of computing the distance
is O(l1l2). The distance metric computation above is according to one defined
in [15], but other approaches can be considered as well.
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env IMI
ICONF

ICONreq
ICON T

ICONreq
IDATreq((.0.))

ICONreq

TIDISind
IDATreq((.0.))

ICONF

msc t1

env IMI
IDATreq((.0.))

IDIS

TIDISind
ICONF
IDIS

TIDISind
ICONreq

ICON T
ICONF T

ICONconf
IDIS

TIDISind
IDATreq((.0.))

msc t2

env IMI
ICONreq

ICON T
ICONF T

ICONconf
IDATreq((.0.))
IDAT((.0.))

IDIS

TIDISind
ICONreq

ICON T
IDATreq((.0.))
IDATreq((.0.))
IDATreq((.0.))

msc t3

env IMI
ICONF
IDIS

TIDISind
ICONreq

ICON T
IDISind

IDIS

TIDISind
IDATreq((.0.))

ICONF
IDATreq((.0.))

msc t4

env IMI
ICONF
ICONF

ICONreq
ICON T

IDISind
ICONF

IDATreq((.0.))
IDATreq((.0.))
IDATreq((.0.))

msc t5

env IMI
IDIS

TIDISind
ICONF

ICONreq
ICON T

IDATreq((.0.))
IDISind

IDIS

TIDISind
ICONF

msc t6

env IMI
ICONreq

ICON T
ICONreq
IDISind

IDIS

TIDISind
ICONF

IDATreq((.0.))
IDIS

TIDISind
ICONreq

ICON T

msc t7

env IMI
ICONreq

ICON T
IDIS

TIDISind
ICONreq

ICON T
IDATreq((.0.))

ICONF T
ICONconf

IDATreq((.0.))
IDAT((.0.))

IDATreq((.0.))
IDAT((.0.))

IDATreq((.0.))
IDAT((.0.))

msc t8

Fig. 3. The T test set of eight MSCs generated with random walk. (IMI abbreviates
ISAP Manager Ini from the INRES system)

Let D = [dij ] be a distance matrix of the set of MSC traces T . Let dij =
d(M(ti), M(tj)), where 1 ≤ i, j ≤ |T |, i, j ∈ N. Note that D is symmetric
because of the symmetric nature of distance and the size of the matrix is |T |×|T |.
Let DU and DL denote the strictly upper and lower triangular matrices of D
respectively.

The metric space involves the normalization of edit distance values as it is done
in [9] and [12]. For the sake of simplicity – and without any loss of generality – in
the example of this paper we dispense with the normalization by using traces of
a given length and consider that the distances are non-negative integer numbers
not greater than that length.

Example. Let the test set T be composed of the MSCs of Fig. 3 derived with
random walk for the ISAP Manager Ini process. According to the M map-
ping of Table 1 M(T ) = {dbafacfd, fhdhbehf, beghbfff, dhbchfdf, ddbcdfff,
hdbafchd, bachdfhb, bhbfeggg} are the string representations of T . Note that
reset inputs are omitted in the figure for the sake of clarity, and all test sequences
have reset input as prefix thus start from initial state disconnected. These eight
strings together traverse 11 of the 13 transitions of the machine in Fig. 2(b).
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The distance matrix of this trace set M(T ) with unit cost edit operations is:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 8 7 6 6 3 6 7
8 0 5 5 7 6 6 7
7 5 0 6 5 8 5 6
6 5 6 0 3 6 6 6
6 7 5 3 0 6 6 7
3 6 8 6 6 0 6 7
6 6 5 6 6 6 0 7
7 7 6 6 7 7 7 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3 String Edit Distance Based Test Suite Reduction

This section proposes a method for selecting a test set with the highest possible
diversity with regard to the distance based coverage metric. The inputs of the
method are the D distance matrix of the traces, and an ε approximation param-
eter. The method consists of two stages: First the minimum cardinality of the
target test set is calculated assuming the ε threshold, then the test set with the
maximum internal distance is selected.

For our discussions we assume the notion of ε-approximation as defined by
Feijs et. al. in [12]: T ′ is an ε-cover of T , where

T ′ ⊆ T, ε ≥ 0 ⇐⇒ ∀t ∈ T : ∃t′ ∈ T ′ : d(M(t), M(t′)) ≤ ε.

This implies that for each T and ε there exists at least one minimal cardinality
T ′ ε-cover of T , for which ∀t′i, t

′
j ∈ T ′ : d(M(t′i), M(t′j)) > ε, t′i �= t′j . The test set

T is divided into two disjoint subsets: a T ′′ subset of test cases that can and a
T ′

0 ⊆ T ′ subset of test cases that can not be ε-covered by other test cases. The
test cases from T ′

0 must be included in T ′, and from T ′′ the minimum number
of cases must be selected: T ′ = T ′

0 ∪ reduce(T ′′). Thus the maximum reduction
of T ′′ yields the most compact T ′.

Algorithm 1 finds the size of the most compact test suite T ′ that can be
achieved with the string edit distance based selection in polynomial time for
a given distance matrix. The inputs of the algorithm are the distance matrix
of T and a ε threshold parameter. For the computation two matrices A and
Aμ of boolean values and a bipartite graph G′ = (N ′

R ∪ N ′
C , E′) are used. The

algorithm first determines which test cases of T ε-cover each other, and if they
do, it is marked in A with 1 value (lines 4-7). Then, the size of the T ′

0 set is
determined in lines 8-10. In lines 11-15, if exactly the same coverage is found for
two test cases, then one of them is eliminated. Lines 16-22 construct a bipartite
graph G′ based on matrix A such that the set of rows of A is mapped to the
node set N ′

R and the set of columns of A is mapped to the node set N ′
C , and

if aij is not 0, then there is an edge from n′
i to n′

j , where n′
i ∈ N ′

R, n′
j ∈ N ′

C .
The Hopcroft-Karp algorithm [16] is used for finding a maximum cardinality
assignment μ in G′ (line 23). The k minimal size returned in line 28 is the size
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Algorithm 1. Reducing the string edit distance based test case selection
problem to a matching problem in bipartite graphs
input : D distance matrix of T test set; ε threshold
output: k, the maximum number of redundant cases for the given ε
data( A = [aij ], aij ∈ {0, 1};Aμ = [aμij ], aμij ∈ {0, 1};1

G′ = (N ′, E′) graph, where N ′ = N ′
R ∪ N ′

C , ∀ni, nj ∈ N ′
R : (ni, nj) �∈ E′,2

∀ni, nj ∈ N ′
C : (ni, nj) �∈ E′)

/* Initialization */
k := 0, N ′

R := ∅, N ′
C := ∅, E′ := ∅,A := 0,Aμ := 0;3

/* Computing the A matrix */
foreach i, j, 1 ≤ i, j ≤ |T | do4

if dij < ε then aij = 1;5

else aij = 0;6

endfch7

/* Counting the elements of T ′
0 */

foreach i do8

if
∑

j aij = 0 then k := k + 1;9

endfch10

/* Finding test cases with the same coverage */
foreach k, l, 1 ≤ k ≤ |T | − 1, k < l ≤ |T | do11

if
∑

j

(akjxoralj) = 0 then
12

foreach j, 1 ≤ j ≤ |T | do alj := 0, ajl := 0;13

endif14

endfch15

/* Constructing the G′ graph */
forall the ti ∈ T do16

N ′
R := N ′

R ∪ ti;17

N ′
C := N ′

C ∪ ti;18

endfall19

foreach i, j, 1 ≤ i, j ≤ |T | do20

if aij > 0 then E′ := E′ ∪ {(n′
i, n

′
j)}, n′

i ∈ N ′
R, n′

j ∈ N ′
C ;21

endfch22

Let E′
μ be the matching selected by the Hopcroft-Karp algorithm;23

/* Marking the pairs of the maximum matching in Aμ */
foreach i,j, 1 ≤ i, j ≤ |T | do24

if (n′
i, n

′
j) ∈ E′

μ then Aμ ij = 1;25

else Aμ ij = 0;26

endfch27

return k := k + rank(AL
μ)28

of T ′
0 plus the rank of the upper or lower triangual matrix of Aμ constructed

based on the maximum matching in lines 24-27.
The complexity of the construction of A (lines 4-7) and G′ (lines 16-22) are

O(|T |2). The worst-case complexity of the Hopcroft-Karp algorithm [16] applied
to the graph G′ = (N ′, E′) in line 23 is O(

√
|N ′||E′|). Since |N ′| ≤ 2|T | and
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Aε=5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 1 0
0 1 0 0 1 0 0 0
0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ot1 o t1

ot2 o t2

ot3 o t3

ot4 o t4

ot6 o t6

ot7 o t7

Fig. 4. The A matrix and the bipartite graph G′ constructed from it

|E′| ≤ |T |2 according to lines 16-22, its complexity is O(|T |5/2). Hence the worst
case complexity of this algorithm is determined by the search for same rows in
A in lines 11-15, which is O(T 3).

Example. The ε-coverage of matrix D of the example at the end of Sect. 2.2
with ε = 5 (note that we dispense with normalization) and the bipartite graph
G′ constructed from A are in Fig. 4. In matrix A on the left the eighth is
the only row that contains only 0 values, therefore T ′

0 = {t8}. The second and
the fifth row are identical, so we may remove either t2 or t5 from the further
processing as a redundant case. The bipartite graph G′ and the matching prob-
lem constructed from T ′′ without the redundant t5 can be seen on the right.
Edges show that a trace ε-covers an other test case. Bold lines select a max-
imum cardinality matching: the selected elements of Aμ boxed in the matrix
A are (1, 6),(2, 4),(3, 7),(4, 2),(6, 1),(7, 3). The rank of the upper or lower tri-
angular matrices of Aμ is 3, therefore beside t5, three additional test cases
can be removed: T ′′

U = {t1, t2, t3, t5} or T ′′
L = {t4, t5, t6, t7}. The resulting T ′

candidates are T ′
1 = {t1, t2, t3, t8}, if t5 was considered to be redundant, or

T ′
2 = {t1, t3, t5, t8}, if t2 was considered to be redundant and T ′

3 = {t4, t6, t7, t8}.
In general more maximum cardinality assignments may exist, but all with the
same cardinality. ��

According to [9] and [12] two patterns of behavior are approximated to be less
similar if the distance between their string representation is greater. The redun-
dancy among the test cases in a test set is the least, if the sum of all pairwise
distances is maximal. Hence, if more than one minimal cardinality T ′ solutions
exist, the one with the maximum internal distance should be preferred.

Selecting the T ′ test set with minimal cardinality from the test set T , such
that T ′ is an ε-cover of T and the test cases differ from each other as much as
possible can be calculated in a polynomial time of |T |. This means that the sum
of distances between all pairs of the test cases of T ′ is maximal, therefore the
optimization problem is:

max
∑

ti∈T ′,tj∈T ′

d(M(ti), M(tj)), (1)
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R1
(c11,d′

11)

(c12,d′
12)

(c1T ,d′
1T )

C1

(1,0)
R2

(c21,d′
21)

(c22,d′
22)

(c2T ,d′
2T )

C2

(1,0)

s
(k,0)

s∗

(1,0)

(1,0)

(1,0)

t

...
...
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(cT T ,d′
TT )

(cT2,d′
T2)

(cT1,d′
T1)

CT

(1,0)

Fig. 5. The flow problem equivalent to the maximum distance k-cardinality matching

where ∀i, j : d(M(ti), M(tj)) > ε. A T ′ with the minimum k cardinality can be
determined with Algorithm 1. There may be many T ′s with this k cardinality,
and there is at least one with the maximum distance sum.

This problem is equivalent to the following minimum cost maximum flow
problem. Let C = [cij ], where cij ∈ {0, 1} a capacity matrix, and let the dis-
tance matrix D = [dij ] of T be a cost matrix. Let G′ = (N ′, E′) be a bipartite
graph of distance matrix D as constructed in Algorithm 1. Let G = (N, E) be
directed weighted graph extending G′ such that N = {s, s∗} ∪ N ′ ∪ {t} and
E = {(s, s∗), (s∗, n′

i)} ∪ E′ ∪ {(n′
j, t)}, for all n′

i ∈ N ′
R, n′

j ∈ N ′
C and let all edges

between nodes N ′
R and N ′

C be directed from n′
R to n′

C . Each edge is assigned
with a capacity value and a cost defined as follows. Let the capacity of all edges
e ∈ E be c = 1, except for (s, s∗) that has a capacity of k. Hence, the maximum
flow capacity is determined by the {(s, s∗)} cut and it equals to k. Let the cost
of edges (s, s∗),(s∗, n′

i) and (n′
j , t) be 0, and let the cost of edges (n′

i, n
′
j), where

n′
i ∈ N ′

R, n′
j ∈ N ′

C , be d′ij = max
i,j

(dij) − dij for all i and j. See Fig. 5.

The minimum cost maximum flow can be found by solving the following op-
timization with linear programming, and can be expressed as

max
∑|T |

i=1
∑|T |

j=1 cijdij

where
|T |∑
j=1

cij ≤ 1, i = 1, ..., |T |,
|T |∑
i=1

cij ≤ 1, j = 1, ..., |T |,

|T |∑
i=1

|T |∑
j=1

cij = k, and cij ∈ {0, 1}.

This problem has been defined as the k-cardinality assignment problem by
Dell’Amico and Martello and has been shown to be a P-space problem in [17].
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Example. It has been shown that k = 4 for the ε = 5 case and therefore the
“best” solution contains |T | − k = 8 − 4 = 4 test cases. In the example three
solutions have been found. The sum of distances between pairs of T ′

1 is 40, for
T ′

2 and T ′
3 it is 38, so T ′

1 is the best reduced suite.

4 Application to Selective Automatic Test Generation

This section proposes a selective extension to automatic test generation methods.
When a new test case is derived from an SDL specification, before adding that to
the test set as usual, the method proposed in Sect. 3 is used to find redundancies
immediately. Note that this method may lead to suboptimal solution compared
to the single stage optimization, but the resulting test set is already reduced and
makes test selection unnecessary.

We generalize the distance function to evaluate the effect of merging a new
trace into an already existing trace set. Let d : (t′, T ) → R compute the distance
between the trace t′ and the trace set T such that d(t′, T ) = min

i
d(t′, ti), where

ti ∈ T .

Algorithm 2. Selective automatic test generation
input : ε; K iteration limit; Sp specification
output: T set

T [0] := ∅;1

k := 1;2

repeat3

t′ := derive(Sp);4

if d(t′, T ) < ε then T [k] := reduce(T [k − 1] ∪ t′);5

else T [k] := T [k − 1] ∪ t′ k := k + 1;6

until k > K ;7

return T [k]8

Algorithm 2 is a selective method for automatic test generation. The inputs
of the method are a ε selection threshold, a K iteration limit, which is an upper
bound for the number of generated test cases. The output is a reduced test set.
The algorithm can co-work with any test generation algorithm [4,5,6,7]. In each
iteration cycle a new test case t′ is derived. That test case is added to the test
set immediately if its distance from every element of the test set is greater than
the given threshold. Otherwise the union of the newly generated test case and
the old test set is optimized with the method of Sect. 3 to maintain the density
of the test set.

Example. In the example let the iteration limit be K = 8, and let MSC traces
from Fig. 3 be generated iteration by iteration. In general the iteration limit,
the length and the number of sequences are independent, but setting all these
configuration parameters to 8 simplifies this example.
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Two cases are investigated, the ε = 5 and the ε = 6 case. The string edit
operations insert, delete and replace are assumed to have unit cost. The iterative
test generation procedure is presented only for the first case. The distance matrix
for the test cases of this example can be found in Sect. 2.2, and the coverage
matrix can be seen Fig. 4.

Let us first investigate the ε = 5 case. This Aε=5 matrix implies that the
resulting set consists of four strings.

Step 1. The first string is t′ = dbafacfd, so Tε=5[1] = {dbafacfd}. Since this
is the only element of T in step 1, Dε=5[1] = 0 and Aε=5[1] = 0. This sequence
traverses 6 of the 13 transitions of the FSM in Fig. 2(b).

Step 2. In this step the string t′ = fhdhbehf is added to Tε=5[1], thus Tε=5[2] =
{dbafacfd, fhdhbehf} and

Dε=5[2] =
[
0 8
8 0

]
Aε=5[2] =

[
0 0
0 0

]

The second sequence traverses also 6 transitions and two sequences together
traverse 9 different transitions.

Step 3. The new string added to T is t′ = beghbfff . This new string traverses
5 different transitions and provides one new, not yet traversed transition for
Tε=5[2]. However d(t2[2], t′) = 5, that is, these two sequences ε-cover each other,
therefore one of them is dropped despite of providing a new transition.

Dε=5[3] =

⎡
⎣

0 8 7
8 0 5
7 5 0

⎤
⎦ Aε=5[3] =

⎡
⎣

0 0 0
0 0 1
0 1 0

⎤
⎦

As the d(t1[2], t2[2]) = 8 > d(t1[2], t′) = 7, t1[2] and t2[2] are kept.

Step 4. The situation is the same as in step 3. The new string t′ = dhbchfdf
traverses 5 transitions from which none is new for Tε=5[3].

Dε=5[4] =

⎡
⎣

0 8 6
8 0 5
6 5 0

⎤
⎦ Aε=5[4] =

⎡
⎣

0 0 0
0 0 1
0 1 0

⎤
⎦

As the d(t1[3], t2[3]) = 8 > d(t1[3], t′) = 6, t1[3] and t2[3] are kept.

Step 5. In this step t′ = ddbcdfff is added to the sequence set, that con-
tains Tε=5[5] = {dbafacfd, fhdhbehf, ddbcdfff}. This sequence traverses only
4 different transitions which are already traversed by Tε=5[4] = Tε=5[2], thus a
redundant sequence is added to the set.

Step 6. The sixth string to be added is t′ = hdbafchd. However d(t1[5], t′) = 3,
therefore one of them (t1 or t′) is considered to be redundant:

Dε=5[6] =

⎡
⎢⎢⎣

0 8 6 3
8 0 7 6
6 7 0 6
3 6 6 0

⎤
⎥⎥⎦ Aε=5[6] =

⎡
⎢⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦
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Because d(t1[5], t2[5]) + d(t1[5], t3[5]) = 14 > d(t′, t2[5]) + d(t′, t3[5]) = 12, t1[5]
is kept and t′ is dropped.

Step 7. Though the sequence t′ = bachdfhb traversing 6 different transitions is
completely redundant for Tε=5[6], it is added to the set, because Aε=5[7] = 0.
This t′ also does not increase the number of traversed transitions.

Step 8. The last sequence t′ = bhbfeggg is also added to Tε=5[8] which is
now Tε=5[8] = {dbafacfd, fhdhbehf, ddbcdfff, bachdfhb, bhbfeggg}. This last
sequence traverses two more transitions so Tε=5[8] traverses the 11 of the 13. This
resulting set contains five sequences, one more as it would have been necessary
according to Aε=5. The final distance matrix is:

Dε=5[8] =

⎡
⎢⎢⎢⎢⎣

0 8 6 6 7
8 0 7 6 7
6 7 0 6 7
6 6 6 0 7
7 7 7 7 0

⎤
⎥⎥⎥⎥⎦

When setting now ε = 6 instead of 5, the resulting set is further reduced. Ac-
cording to the Aε=6[8] below two more traces can be removed: t3[8] and t4[8].
(Note that in the ε = 5 case these two cases were named previously as redun-
dant.) The remaining three traces Tε=6[8] = {dbafacfd, fhdhbehf, bhbfeggg}
still traverse 11 of the 13 transitions.

Aε=6[8] =

⎡
⎢⎢⎢⎢⎣

0 0 1 1 0
0 0 1 1 0
1 1 0 1 0
1 1 1 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

When using ε = 6 from the beginning of the iteration cycle, the final trace set
is Tε=6 = {dbafacfd, fhdhbehf, bhbfeggg}. Without the iterative cycle the re-
sulting set would be Tε=6 = {dbafacfd, fhdhbehf} with 9 transitions traversed.

The transition coverage is the same for both the ε = 5 and the ε = 6 cases.
In step 3 one new transition is discovered, but the trace is dropped due to
redundancy. Two new transitions are found in step 8 including the one dropped
in step 3.

The total number of distance calculations is 20 in the ε = 5 case and 13 in
the ε = 6 case. Without the iterative cycle it would be 28, hence matrix A is
provided with less calculations. The gain depends on the relation between trace
lengths and the total number of traces generated.

5 Empirical Analysis

This section gives simulation based evaluation of the – single-staged – string
edit distance based test case selection method. A process from each of two sys-
tems, the ISAP Manager Ini process from the INRES [13] and the Conference
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Table 2. Properties of the unfolded SDL systems and input parameters for the test
selection methods

Name States Inputs Outputs Non-implicit Faults injected Symbols used
transitions in mapping

INRES 3 5 4 7 25 8
Conference 5 11 3 19 78 22

Protocol [7] both represented in SDL, and test sets derived manually and auto-
matically are used in this investigation. The result of the method proposed in
this section are compared to the results of two different selection strategies based
on pairing of test cases and test case requirements [8]. One of these two methods
is the fault coverage based test selection method proposed in [2], where the test
case requirements are considered to be faults injected systematically into the
system according to the given fault model. The other is a transition coverage
based method that regards the checking of a transition of an FSM as a test case
requirement. Hence the two SDL systems are unfolded into FSMs.

Table 2 characterizes the two unfolded SDL systems. The INRES ISAP Man-
ager Ini process’ FSM consists of three states, has four inputs, a timer and four
outputs. The total number of transitions is 15, the number of different faults that
can be injected to that process according to the fault model proposed in [2] is 25.
The input and output events are mapped to eight characters. The Conference
Protocol limited to three users and at most one conference at a time has five
states, eleven inputs and three outputs when unfolded into an FSM. 16 of the 55
transitions are non-implicit, and the same fault model yields 78 mutant systems.
22 characters are used in the mapping to represent the input and output events
of this system.

Three test sets are used to evaluate the selection method proposed in this
section. One is an automatically generated set of the eight cases that has already
been used in the example in Sect. 2.1. The second is an automatically generated
one of thirteen cases. These first two sets are executed against the ISAP Manager
Ini process. A third automatically generated set is run againsts the Conference
Protocol.

The results of simulations can be seen in Table 3. In the experiment on the
INRES system’s ISAP Manager Ini process with eight automatically generated
test cases, the string edit distance based method and the transition coverage
based method provide exactly the same three test cases. These three cases miss
four faults that could be detected with the fault coverage method. As automati-
cally generated cases are more likely to check implicit transitions their transition
coverage is greater than in case of the manual cases. In the experiment with 13
manually generated cases, the string edit distance based method achieves a big-
ger reduction (13 to 6 vs. 13 to 8) than the transition coverage based method at
the cost of not traversing all transitions. Both provide the same fault coverage,
but miss four injected faults that could be found.
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Table 3. Results of the selection experiments

Test set System Method Number of Number of Transitions
selected cases faults detected covered

String 4/8 19/25 11/13
Automatic (8) INRES Transition 3/8 19/25 11/13

Fault 4/8 23/25 11/13
String 6/13 19/25 6/13

Manual (13) INRES Transition 8/13 19/25 10/13
Fault 4/13 23/25 8/13
String 14/40 59/78 39/55

Automatic (40) Conference Transition 11/40 59/78 40/55
Fault 6/40 60/78 25/55

In case of the Conference Protocol all three methods provide nearly the same
fault coverage. The biggest reduction is achieved by the fault coverage based
method, but that traverses the least transitions.

In general according to the experiments shown above, the smallest reduced
test and the highest fault coverage ration is provided by the fault based method.
The highest transition coverage can be achieved by the transition coverage based
method. The string based method provides results close to the transition cov-
erage based method, but this is automatic and requires much less algorithmic
steps to execute than the automatic fault based method.

6 Conclusions

This paper proposes an efficient approach for both single stage and iterative
test selection processes. A method is provided to select a subset of a test set in
polynomial time by searching for similar patterns of events. The approach builds
on previous results of string edit distance based test selection methodology. We
propose two selection criteria: one to identify the minimum cardinality of the
target test set for a given a ε-cover, and an other to select the test cases that
differ from each other as much as possible assuming the string distance based
metric. An iterative procedure is given to reduce the computation requirement
for long test cases, which is specially suited for maintaining test sets for regression
testing. The operation of the algorithm is demonstrated through an example.

The method is compared with fault and coverage based test selection tech-
niques using the sample systems INRES and Conference Protocol. The string edit
distance based method provides similar fault detection capability as the transi-
tion coverage based selection, and requires less computation than the other two
methods.

A generalization of the method is possible for test cases represented as a
labeled, rooted, unordered trees. By calculating the distance matrix of such trees
the method is applicable for test case selection without fundamental changes.



Optimal String Edit Distance Based Test Suite Reduction 97

References

1. Lee, D., Yiannakakis, M.: Principles and methods of testing finite state machines
– a survey. Proceedings of the IEEE 43(3), 1090–1123 (1996)
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Abstract. The ability to perform quantitative analysis at the requirements level
supports the detection of design errors during the early stages of a software de-
velopment life cycle. This would help reduce the cost of later redesign activi-
ties in case of unsatisfactory performance. This paper presents a novel approach
to perform schedulability analysis at the requirement stage using Timed Use
Case Maps (TUCM) language. The proposed approach relies on the computa-
tion of Worst-Case Execution Time (WCET), resource allocation and scheduling
policies. Timing and resource constraints are first incorporated into UCM speci-
fications, then mapped to Abstract State Machines (ASM) formalism and imple-
mented in AsmL language, allowing for simulation and schedulability analysis.
The applicability of the approach is illustrated using an example of the Automatic
Protection Switching (APS) feature.

1 Introduction

The ability to perform quantitative analysis at the requirements level supports the de-
tection of design errors during the early stages of a software development life cycle.
Thus, reducing the cost of later redesign activities. In order to achieve this goal, non-
functional aspects dealing with reliability, availability, performance, and timing con-
straints have to be incorporated at the software requirement phase. This is essential in
order to correctly model, for instance, time dependent applications at early stages in
system development. Typical classes of such applications are communication protocols
and real-time distributed systems, which have to satisfy stringent timing constraints.
Missing such constraints (such as the failure to meet a deadline) may impact system
reliability and therefore can have serious consequences. Hence, appropriate methods
are needed to complement the software specification approaches, so that requirement
specifications can be analyzed in terms of schedulability. Schedulability analysis meth-
ods are usually used to validate the fulfillment of time constraints of an application
(deadline, response time, ready time, etc.).

The widespread interest in time modeling and analysis techniques, provides the
major motivation for this paper. There is particular focus on the need for a formal ap-
proach to validate time-based scenarios during the requirement phase. This paper serves
different purposes:

– It provides an Abstract State Machine (ASM) [1] based formal semantics for the
Timed Use Case Maps (TUCM) language [2] based on a discrete time model. The

R. Reed, A. Bilgic, and R. Gotzhein (Eds.): SDL 2009, LNCS 5719, pp. 98–114, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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resulting timed ASM models are implemented using AsmL language allowing for
analysis, simulation and validation.

– It provides a novel approach to perform schedulability analysis based on the Timed
Use Case Maps language. The proposed approach relies on the computation of
Worst-Case Execution Time (WCET), resource allocation and scheduling policies.

– It extends the ongoing research towards the construction of a formal framework
for the Use Case Maps language [3] to describe, simulate and analyze real-time
systems [2,4,5].

In an attempt to make this paper self-contained, a brief introduction to schedulability
analysis is provided in Sect. 2. Section 3 outlines the UCM time extensions introduced
in Hassine et al. [2]. Section 4 represents the core of the paper, that presents the timed
UCM based schedulability approach, discusses UCM resource modeling (Sect. 4.1), ex-
plains how the worst case execution time (WCET) is computed (Sect. 4.3), presents the
adopted scheduling strategy (Sect. 4.4), and provides the corresponding ASM-based se-
mantics (Sects. 4.2 and 4.5). An example of the Automatic Protection Switching (APS)
feature is presented in Sect. 5. Section 6 describes some related work. Finally, limita-
tions and future work are discussed in Sect. 7 followed by conclusions in Sect. 8.

2 Schedulability Analysis

Schedulability analysis addresses the problem of meeting the specified timing require-
ments in order to have an understandable, predictable and maintainable system timing
behavior. It represents a powerful tool for checking the correctness of real-time sys-
tems at design time. By definition real-time system deadlines must not be missed. To
ensure this property, schedulability analysis allows checking timing constraints given
the resources (hardware and software) available for the execution of the system tasks.

A system is said to be schedulable, under a given scheduling strategy, if it can be
guaranteed never to miss a deadline. Ramamritham and Stankovic [6] have identified
four main classes of real-time scheduling strategies: off-line vs. on-line, preemptive vs.
non-preemptive, static vs. dynamic and optimal vs. heuristic scheduling. Some of the
most popular scheduling strategies include:

– Priority-driven Preemptive Scheduling: Liu and Layland [7] proposed two schedul-
ing algorithms. The first algorithm is a fixed priority algorithm, called Rate Mono-
tonic. It assigns static priorities to tasks based on their periods (i.e. higher priorities
are given to tasks with shorter periods). The dispatcher will make sure that at any
time, the highest priority task is actually running. Liu and Layland have also ana-
lyzed a dynamic scheduling strategy, called Earliest Deadline First (EDF), where
the highest priority is assigned to the task with the closest absolute deadline.

– Dynamic Planning-based Scheduling [8]. Unlike the priority-driven approaches,
feasibility is checked at run-time where a task is accepted for execution only if it
is guaranteed to meet its time constraints. A task is guaranteed by constructing
a plan for task execution given a set of assumptions such as the task worst case
execution time, resource requirements, timing constraints, and the nature of faults
in the system.
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– Value-Based Scheduling (VBS) [9]: VBS is a more advanced scheduling approach
where each task is associated with a reward and penalty that is offered to the system
depending on whether the task meets or misses its deadline. It represents a means by
which the system copes with degradation gracefully (i.e. in case of overloaded sys-
tem for instance) by executing critical tasks that offer high values/benefits/rewards
to the functioning of the system.

Most of the schedulability analysis methods rely on knowing for each task of the system
the upper bound of its execution time, commonly called Worst-Case Execution Time
(WCET). There are two main classes of methods for WCET analysis [10]: static and
measurement-based methods.

1. Static methods: These methods consist of analyzing a system statically and do not
rely on real execution or on simulation. They are based on static program analy-
sis [11] of possible control flow paths. Static methods emphasize safety by produc-
ing guaranteed bounds on the execution time [10].

2. Measurement-based methods: These methods consist of executing the tasks on the
targeted hardware or on a simulator for a subset of the inputs. The measurements
of a subset of all possible executions do not actually produce bounds, but provide
estimates of the bounds from maximal and minimal observed execution times.

In what follows, a brief overview is provided of the Timed Use Case Maps language,
initially introduced in [2], which represents the base for implementing the proposed
schedulability analysis approach.

3 The Timed Use Case Maps Language

The Use Case Maps language (UCM) is a high-level scenario based modeling technique
that can be used to capture and integrate functional requirements in terms of causal
scenarios representing behavioral aspects at a high level of abstraction. UCM can also
provide stakeholders with guidance and reasoning about a system-wide architecture and
behavior. This is being reflected by Use Case Maps being part of the ITU-T standard
User Requirements Notation (URN) Z.151 [3].

The Use Case Maps language [3] has been extended with time constraints [2]. Two
formalization approaches1 for the Timed Use Case Maps language have been proposed:

1. Clocked Transition System (CTS) based semantics: Based on a discrete time model,
CTS [12] provides an easy and flexible way to reason about system execution over
time. Hassine et al. [2] defined two step semantics (with two sets of transition rules)
for timed UCM models aiming to cover both interleaving and true concurrency
models. However, no executable model was provided.

2. Timed Automata (TA) based semantics: Based on a dense time model, the authors
in [5] defined a timed automaton [13] template for each timed UCM construct.
Furthermore, timed UCM models expressed in timed automata can be validated
and verified using the UPPAAL model checker [14]. Although, an executable model
was provided allowing for formal verification of timed UCM models, the concept of
resources was overlooked and no schedulability based verification was considered.

1 For a detailed description of timed UCM formalization, see [2,5,15].
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To accommodate the proposed schedulability approach, a slightly modified version
of the time criteria introduced in [2] is used. The following summarizes the selected
time-related criteria:

– Initiation and termination of enabling [16] represents a flexible and suitable choice
for UCM level of abstraction. Both a lower and upper bound may be imposed on
the enabling of a responsibility. A responsibility may be enabled any time between
minDL and maxDL time units after the completion of its predecessor. Such a delay
is introduced in order to describe, for instance, situations of queueing delay or when
the resources needed to execute a responsibility are not immediately available.

– Durational semantic model where time is mainly consumed by responsibilities. A
responsibility may be associated with minDur and maxDur denoting respectively
its best and worst case execution times. UCM control constructs such as OR-Forks
(involving condition evaluation) may take some time to complete.

– A global and centralized clock for measuring and increasing time globally over the
system is used: MasterClock (MClock).

– A discrete time model is adopted. The smallest time unit (i.e. clock tick) used to
track system evolution over time is named δ. It defines the granularity of Master-
Clock (MClock).

– Both relative and absolute time models are considered. Relative time is used to
define the duration of responsibilities and their incurred delay. Absolute time is
used to track the value of the MasterClock (MClock). It is used in start points to
record the scenario starting time and to define responsibilities’ deadlines.

Fig. 1. Delayable responsibility

– Urgency such that a responsibility is considered as urgent when enabled imme-
diately after the execution of its predecessor (i.e. minDL= maxDL = 0). Alterna-
tively, it is considered as delayable. All UCM control constructs (such as OR-Fork,
OR-Join, AND-Fork, etc.) are considered as urgent once enabled. Transitions are
processed as soon as they are enabled allowing for a maximal progress. Figure 1
illustrates a delayable responsibility R with an estimated delay between 1 and 2, an
execution interval between 10 and 20 and a deadline of 25 (when MClock = 25).
The start point S is triggered at MClock = 0.

4 Timed UCM-Based Schedulability Approach

Figure 2 illustrates how schedulability analysis fit into the proposed UCM-based re-
quirement specification and validation framework. The UCM functional model, the
timed annotations (discussed in Sect. 3) and the binding architecture (for the UCM
components) are formalized using Abstract State Machines [1] and implemented using
AsmL [17], an advanced ASM-based executable specification language developed by
the Foundation of Software Engineering Group at Microsoft Research.
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Fig. 2. Schedulability analysis in the UCM-based requirement specification flow

4.1 Resource Modeling

In UCM, components are generic and can represent software entities (objects, pro-
cesses, etc.) as well as non-software entities (e.g. processors). Each component can
handle a set of resources (power, memory, communication bandwidth, etc.).

The URN standard [3] distinguishes between processing resources (that execute or
process operations) and passive resources (that do not perform operations). A process-
ing resource can be a processor, a disk, or a digital signal processor (DSP). In the pro-
posed schedulability analysis context, only generic processing resources are consid-
ered. In addition, URN does not distinguish best and worst execution times and misses
the notions of delays and priorities, which are needed for schedulability analysis. The
approach in this paper assumes the following:

– A resource is defined as a global quantity that has a finite size (such as 1 Gigabit of
memory).

– How much of a given resource a UCM construct consumes can be specified as
an absolute interval [Rmin, Rmax] (e.g. [128,256] kilobytes of memory) or as a
percentage interval [Pmin,Pmax] (e.g. [5%,10%] of CPU utilization).

– Resources are consumed by UCM constructs (responsibilities and control con-
structs) during scenarios execution. For example, if a responsibility consumes 20 kb
of memory, the total memory usage will be increased by 20 kb during the respon-
sibility execution and will be decreased by 20 kb when completed.

4.2 ASM-Based Formal Semantics for Timed UCMs

The proposed semantics are based on the author’s previous work [4] on untimed ASM
based semantics for the Use Case Maps language. The following presents the timed
ASM rules for start points, responsibilities and OR-fork constructs.
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– Start points. If the PreCondition is satisfied, there occurs at least one event from
the triggeringEvent-set and no additional delay is required (that is minDL ≤
MClock ≤ maxDL), then the start point is triggered and the control passes to
the outgoing edge out. Figure 3 describes the start point ASM rule.

if CurrentConstruct is StartPoint(PreCondition, Trigger, SP-Label, in, out,
minDL, maxDL, Component) then

if (PreCondition & EvaluateTrigger & (minDL ≤MClock ≤ maxDL) then
add out to active
remove in from active

where:
EvaluateTrigger: TriggerringEvent-set × {events} → Boolean;
evaluates whether the set of events occurring at StartPoint are included in the
TriggeringEvent-set.

Fig. 3. ASM rule for a timed start point

– Responsibilities. If the control is on the incoming edge (in), the master clock is
increased by the value of the actual delay (random(minDL, maxDL)). Subse-
quently the master clock is increased by the value of the actual execution time
(random(minDur, maxDur)) and the resource utilization is updated. Upon com-
pletion, the component resources are released and the control is transferred to the
outgoing edge (out). Figure 4 illustrates the responsibility ASM rule. The resource
utilization (ResUtilization) and the remaining resources (remainingRes) are abstract
and can be refined in terms of CPU or memory utilization.

if CurrentConstruct is Responsibility (in, Resp, out, minDL, maxDL, minDur,
maxDur, minU, maxU, deadline, Comp) then

DelayTime:= random (minDL,maxDL)
step

MClock := MClock + DelayTime
Resp
ExecutionTime:= random (minDur,maxDur)
ResUtilization:= random (minU, maxU)

step
MClock := MClock + ExecutionTime
Comp.remainingRes := Comp.remainingRes - ResUtilization

step
if (MClock ≥ delay) then Write(’Deadline Misssed’)
if (Comp.remainingRes ≤ 0) then Write(’Not enough resources’)
Comp.remainingRes := Comp.remainingRes + ResUtilization
add out to active
remove in from active

Fig. 4. ASM rule of a timed responsibility
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– OR-Fork. If the control is on the incoming edge of an OR-Fork, the conditions
are evaluated and the control passes to the edge associated with the true condition.
If more than one condition evaluates to true (nondeterministic choice), the control
passes randomly to one of the outgoing edges associated to the true conditions. At
all times a set of active edges (active) is maintained. The set active is updated by
adding the outi that corresponds to the true condition and by removing the edge in.
The necessary resources are allocated then freed after the outgoing edge selection
is completed. Figure 5 illustrates the OR-Fork ASM rule.

if CurrentConstruct is OR-Fork(in, [Condi]i≤n,[outi]i≤n, minDur, maxDur,
minU, maxU, Comp)
then

MClock := MClock + random(minDur, maxDur)
ResUtilization:= random (minU, maxU)

step
Comp.remainingRes := Comp.remainingRes - ResUtilization

step
if (Comp.remainingRes ≤ 0) then Write(’Not enough resources’)
Comp.remainingRes := Comp.remainingRes + ResUtilization
add (choose k in [outk]k≤l) to active
remove in from active

Fig. 5. ASM rule of a timed OR-fork

4.3 Worst Case Execution Time Computation

In the ASM rules presented in the previous section, a random delay and a random execu-
tion time are applied by the function random. Similarly, an average delay and execution
time can be applied. Although, it gives a fair execution time estimate, the average exe-
cution time is not the main factor when optimizing an application. If a system allocates
enough execution time to execute its worst case execution path under all circumstances,
anything using less time than that makes the system idle for the rest of the allocated
time. This makes it important to minimize the WCET.

For a given timed UCM scenario, where initial values and triggered start points are
provided, the worst case execution time is simply the summation of the individual con-
struct execution times and delays along the traversed path. Figure 6 illustrates an exam-
ple of a timed UCM with dependent control flows, where responsibilities R1, R2, R3

Fig. 6. UCM with dependent control flows
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and R4 have a WCET of 5, 120, 150, 5 respectively, condition evaluation at OR-Forks
OF1 and OF2 have a WCET of 2 each and variable assignments have a WCET of 2
each. All constructs are considered as urgent (i.e. delay=0). The simple calculation of
WCET is:

WCET = OF1 + max(R1 + (C2 := true),

R2 + (C2 := false)) + OF2 + max(R3,R4)

= 2 + max(5 + 2, 120 + 2) + 2 + max(150, 5)

= 276

However, if a static analysis of the control flow is performed, the WCET will be:

WCET = max(OF1 + R1 + (C2 := true) + OF2 + R3,

OF1 + R2 + (C2 := false) + OF2 + R4)

= max(2 + 5 + 2 + 2 + 150, 2 + 120 + 2 + 2 + 5)

= 161

The computed WCET is a less pessimistic, but still accurate WCET, as it is still an
upper bound for the actual execution time. Since the proposed approach is based on
run-time simulation, the computed WCET represents a fair upper bound value to the
scenario execution time.

Deriving a WCET estimate for every single UCM construct depends on the resources
binding model. Indeed, WCET of a responsibility varies from one computing platform
to another. Multiple potential component allocations can be considered when deriving
WCET for a UCM construct.

4.4 Scheduling Strategy

When a UCM construct is ready to be executed on a sequential path, the required mem-
ory and CPU are allocated, the construct is executed, then the WCET is increased by
the maximum delay and maximum duration values (i.e. WCET := WCET + maxDL
+ maxDur). Then resources are released and the control passes to the subsequent con-
struct. In the presence of concurrent paths (see Fig. 7) and contrary to the strategy of
the untimed version [4], where the next edge to be executed is chosen randomly from
the set of active edges, in this work the selection of the subsequent edge (leading to the
next UCM construct) is based on the following criteria (in the order they appear below):

1. The responsibility with the highest priority is selected.
2. In the case of responsibilities having the same priority, the edge leading to the

construct with the minimum delay is selected.
3. In the case of equal priority and delay, the construct having the minimal duration is

selected.

The ASM-based scheduler implements a priority-driven non-preemptive scheduling
with interleaving semantics. Hence, once a construct is selected for execution, it will
run to completion allowing for maximal progress. However, before executing a respon-
sibility, a check (deadline ≥ MClock + maxDur) whether it meets its deadline is per-
formed. If there is a risk that it will miss its deadline, the user is warned by including
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Fig. 7. A UCM concurrent path

a warning message in the execution trace, but the responsibility can still be executed.
Similarly, if a responsibility requires more resources than the system can offer, the user
is warned.

Based on the selected scheduling strategy, the schedulability of a timed end-to-end
UCM scenario is defined as follows:

Definition 1 (Schedulability). A timed UCM scenario is said to be schedulable if and
only if it satisfies the following conditions:

– The UCM scenario reaches its end points.
– All responsibilities can meet their deadlines.
– System resources are not exhausted.
– Its end-to-end WCET is acceptable.

After ensuring that a system is schedulable, a new responsibility will not be admitted
unless it passes a schedulability test.

4.5 AsmL Implementation of Timed UCM Semantics

Data Structures. The data structures introduced in [4] are extended to cover time
and resources annotations. Figure 8 describes an excerpt of the AsmL implementation

structure UCMConstruct case OF Construct
case SP Construct in hy as HyperEdge

in hy as HyperEdge Selec as Set of OR Selection
out hy as HyperEdge label as String
label as String minDL as Integer
preCondition as BooleanExp maxDL as Integer
minDL as Integer location as Component
maxDL as Integer . . .
location as Component structure Component

Name as Integer
case R Construct Type as String

in hy as HyperEdge MemorySize as Integer
out hy as HyperEdge RemainingMem as Integer
label as String RemainingCPU as Integer
minDL as Integer
maxDL as Integer structure OR Selection
minDur as Integer out hy as HyperEdge
maxDur as Integer out cond as BooleanExp
minU as Integer
maxU as Integer structure UCMElement
deadline as Integer source as UCMConstruct
priority as Integer hyper as HyperEdge
location as Component target as UCMConstruct

Fig. 8. Excerpt of the AsmL implementation of the timed UCM data structures
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of UCMConstruct data structure that incorporates many case statements as a way of
organizing different variants of UCM constructs. UCMElement specifies how UCM
constructs are connected to each other – represented as (source, edge, target). A UCM
component has (1) static properties such as its Name, Type (Processor, DSP, etc.) and
MemorySize, and (2) dynamic properties (updated during scenario execution) such as
the remaining memory (RemainingMem) and the available CPU (RemainingCPU).

AsmL Implementation of the Scheduler. Assuming a single-agent based solution
with interleaving semantics, Figure 9 presents an excerpt of the AsmL implementation
of the scheduler.

class Agent
const id as String
var active as Edge
var mode as Mode

Program()
step

until ((act = {}) or (me.mode = inactive))
do

let h = {t1.edge ‖ t1 in act }
let z = GetNext(h) choose s2 in z.level.ele where HyperExists(z.edge, GetInHyperEdge(s2.source))

match (s2.source) choose z in act where z.delay= minimumDL
choose h in level.ele where HyperExists(active, GetInEdge(h.source))
match (s2.source)

// Rule of Start Point
SP Construct (a,b,c,d,e,f,g): step

if d.Value() = true and (MClock ≤ f) and (MClock ≥ e)
WriteLine(Start Point:+c+ in Component: + g)
add activ(b, z.level) to act
choose r in act where r.edge = a
remove r from act

// Rule of Responsibility
R Construct (a,b,c,d,e,f,g,l,i,k,l,m): step

MClock := MClock + random(d,e)
Utilization := random(l,i)

step
if (m.RemainingU ≤ Utilization)

WriteLine(’Responsibility ’ + a + ’cannot be scheduled: Not enough CPU ’)
ExecuteResponsibility((s2.source) as R Construct)
m.RemainingU := m.RemainingU - Utilization

step
MClock := MClock + random(f,g)
WCET := WCET + e + g

step
if (WCET ≥ k)

WriteLine(’Responsibility ’ + a + ’: missed its deadline k’)
add activ(b, z.level) to act
choose r in act where r.edge = a
remove r from act
m.RemainingU := m.RemainingU + Utilization

// ...

Fig. 9. Excerpt of the AsmL implementation of the scheduler

4.6 Properties of the Proposed Schedulability Approach

Interpretation vs. Compilation. The proposed timed ASM-UCM scheduler is based
on the interpretation concept of execution. The scheduler looks at each construct of
the specification, works out what it means, executes its corresponding rule, notifies the
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user of any violations, and then proceeds with the next construct. With interpretation
the modification of the semantics of a timed UCM construct simply results in chang-
ing the corresponding ASM rule (without modifying the original specification). In a
compilation-based execution, such a modification requires a redesign of the mapping
of UCM constructs to the target formalism (such as LOTOS formal language) and the
regeneration of the specification (executable form).

Scalability. The scheduler does not maintain system states during the execution of con-
secutive UCM constructs (except for the stub-plugin hierarchy). This would minimize
the amount of state information managed by the scheduler allowing for better scalability.

Language Evolution. The proposed ASM rules can be easily modified to accommodate
UCM language evolution. Indeed, the modification of the semantics of a UCM construct
or the addition of a new construct result in the modification or the addition of a new
ASM rule that describes the semantics of the new construct.

4.7 Simulation and Inspection of Traces

The use of traces or execution histories as an aid to debugging, testing and analysis
is a well established technique for programming languages. In the context of timed
UCM specifications, a trace file (saved as a text file) starts with a start point of the root
map and terminates with one end point of the root map (in-between, we can have addi-
tional start points and end points executions). The AsmL model (Sect. 4.5) is executed
within Spec Explorer [18], an advanced model-based specification and conformance
testing tool. A generated trace is composed of a sequence of lines recording the name
of the UCM construct, its location (i.e. UCM component), current WCET, snapshot of
the resource utilization, etc. In addition, the values of some variables of interest can
be printed at each computation step.

The inspection (by an analyst) of the generated traces may help discover the follow-
ing design errors:

– Schedulability issues: This includes responsibilities missing their deadlines, re-
source exhaustion and end-to-end time constraint violations.

– Lock situations: At the Use Case Maps level of abstraction, no distinction is made
between deadlock, livelock and other liveness error situations. A lock situation is
detected when the trace does not terminate with an end point that belongs to the
root map. Such a lock may be due to incorrect conditions at a branching construct
or incorrect plug-in selection policy.

– Violations of user specified correctness assertions: in the context of UCMs, concur-
rency and non-determinism may impact causality assertions. For instance, analysts
may use a generated trace to check for assertions of the following form: responsi-
bility R2 should always be preceded by responsibility R1. Furthermore, invariants
can be checked by parsing the values of variables at each computation step and
computing the invariant expression.

– Violations of postconditions: trace-based testing is efficient to validate that a post-
condition holds for every execution of a responsibility that satisfies a precondition.
To validate postconditions we need to accomplish the following steps:(1) Identify
the execution of the responsibility that is a target for postcondition validation (2)
ensure the precondition and (3) validate the postcondition.
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5 Illustration Example: Automatic Protection Switching (APS)

Automatic Protection Switching (APS) provides optical protection during times of op-
tical failures in service provider networks. It represents the capability of a transmission
system to detect a failure on a working facility and to switch to a standby facility to re-
cover the traffic. This capability has a positive impact on the overall system availability.

Fig. 10. Typical service provider APS implementation

Telcordia specification GR-253 [19] defines two modes of APS: 1+1 protection
switching and 1:N protection switching. In this case study, we limit ourselves to the
1+1 model. In 1+1 protection switching, there is a protection facility (backup line) for
each working facility. Figure 10 illustrates a typical service provider SONET (Syn-
chronous Optical NETwork) APS implementation. At the near section (i.e. Add-Drop
Multiplexer (ADM)), the optical signal is bridged permanently (split into two signals)
and sent over both the working and the protection facilities simultaneously, producing
a working signal and a protection signal that are identical. At the far end (i.e. Routers
A and B) of the section, both signals are monitored independently for failures.

Protection switching is initiated as a result of one of the following situations:

– Signal Failure (SF) condition: This is a hard failure such as the loss of frame (LOF),
Loss of Signal (LOS) within an optical signal.

– Signal Degrade (SD) condition: This is a soft failure caused by the error rate ex-
ceeding some predefined value (i.e. SONET line B2 error threshold crossed).

– In response to an external request from a network manager (Manual switch) during
a maintenance window.

Two important requirements that every APS implementation should satisfy are:

1. APS must provide the ability to initiate a switch from a failed link within a 10
millisecond time frame.

2. APS must complete the switch from the failed link to a functional link within a 50
millisecond time frame.
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Fig. 11. APS switch UCM scenario

Although simple, this example illustrates the applicability of the proposed approach
and covers most of the UCM constructs. Figure 11 provides the timed UCM sce-
nario corresponding to the APS switch mechanism. After reporting a link down state
(i.e. responsibility reportLinkStateDown), the information exchanged (i.e. responsibil-
ity K1K2Update) between the router B and the ADM (carried over the K1 and K2 bytes
of the SONET overhead) lead to the enabling of the protect link (i.e. responsibility
protectEnabled).

This timed trace is generated with the following initial values:
ThresholdCrossed: true
InjectFailurePreCond : true
externalRequestPreCond: false

Start Executing APS Switching Scenario
Start Point:injectFailure in component:RouterA; RouterA.RemainingU=90%; WCET=0
OR-Fork: OF1 in component:RouterA; ThresholdCrosses: true; RouterA.RemainingU=85%; WCET=2
Responsibility: reportSF in component:RouterA; RouterA.RemainingU=70%; WCET=7
OR-Join: OJ1 in component:RouterA; RouterA.RemainingU=85%; WCET =8
OR-Join: OJ2 in component:RouterA; RouterA.RemainingU=85%; WCET =9
Responsibility:reportLinkStateDown in component:RouterA; RouterA.RemainingU=70%; WCET=14
Deadline=10 ; reportLinkStateDown missed its deadline
Responsibility:linkStateDownAck in component:RouterB; RouterA.RemainingU=70%; WCET=19
Responsibility:K1K2Updates RouterB in component:RouterB; RouterB.RemainingU=70%; WCET=24
Responsibility:K1K2Updates ADM in component:ADM; ADM.RemainingU=70%; WCET=29
AND-Fork: AF in component:ADM; ADM.RemainingU=85%; WCET=30
Responsibility:protectEnabled ADM in component:ADM; ADM.RemainingU=70%; WCET=35
Responsibility:protectEnabled RouterB in component:RouterB; RouterB.RemainingU=70%; WCET=40
AND-Join: AJ in component:RouterB; RouterB.RemainingU=85%; WCET=41
End Point: Success in component:RouterB; WCET=41

Fig. 12. APS switch timed trace
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It is assumed that all constructs are urgent (i.e. delay=0), each UCM control construct
(i.e., OR-Fork, OR-Join, AND-Fork and AND-Join) takes 1 time unit to execute and
consume 5% of CPU, each responsibility has a duration interval of [2,5] and consumes
20% of CPU. In addition, we assume that all components use 10% of CPU in steady
state. Priority is overlooked because no concurrent responsibilities take place within a
single component. Figure 12 shows the generated timed trace that corresponds to the
APS switch scenario. It indicates that responsibility reportLinkStateDown missed its
deadline (i.e. 10 ms) and that the end-to-end time requirement is met (i.e. WCET = 41
< 50 ms).

6 Related Work

Non-functional requirements, in particular time-related aspects, have received consid-
erable attention by the modeling community with several timed extensions of vari-
ous notations and tools. For instance, the Unified Modeling Language (UML), as a
standard, considers real-time aspects in the profile for Schedulability, Performance
and Time (SPT) [20]. SPT represents a framework to model resource, time, concur-
rency, schedulability and performance concepts, to support quantitative analysis of
UML models. It defines stereotypes to describe real-time situations (�SASituation�),
events (�SATrigger�), responses (�SAResponse�), actions (�SAAction�), re-
sources (� SAResource�), processors (�SAEngine�), etc. SPT supports schedula-
bility analysis by using �SAprofile�, which uses modifiers on some parameters, such
as: (1) worst-case values (as in, worst-case execution time), (2) special parameters of a
task, such as its release time, its relative and absolute deadlines and laxity (laxity spec-
ifies the type of deadline, hard or soft), and (3) special measures such as blocking time
and preempted time. More specifically, Di Natali and Saksena [21] have proposed an
SPT based schedulability analysis method using Rate Monotonic Analysis (RMA) [7].
For a detailed description of SPT schedulability analysis capabilities and limitations,
the reader is invited to consult [22].

The OMG has also recently issued a request for proposal (RFP) for a new UML
profile for Modeling and Analysis of Real-Time and Embedded Systems (MARTE) [23]
in order to upgrade the SPT profile to UML2 [24] and to extend its scope with real-
time embedded system (RTES) modeling capabilities. MARTE goes beyond the SPT
quantitative model of physical time and adopts more general time models. In MARTE,
time can be physical (used by chronometric clocks), and considered as dense or discrete,
but it can also be logical (i.e., bound to any recurrent event), which focus on the ordering
of instants, possibly ignoring the physical duration between instants. In a recent work,
Peraldi-Frati and Sorel [25], presented a MARTE-based approach to extract temporal
information and the implementation characteristics in order to provide a schedulability
analysis. Another working line in this context is the one of Espinoza et al. [26] who
provided a framework for MARTE by adopting the modeling practices of the SPT and
QoS&FT [27], and proposed a domain model for annotating non-functional properties
to support temporal verification of UML based models.

In a closely related work, Petriu et al. [28] have augmented the Use Case Maps
language with performance related data such as arrival characteristics for start points,
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probabilities/weights on branches on OR-fork, plugins and dynamic stubs. The result-
ing models are then used to generate Layered Queueing Network (LQN) performance
models allowing for analysis. However, their approach does not consider explicit delay
or execution time of constructs.

Alvarez et al. [29] have proposed a schedulability analysis technique for systems
specified in SDL [30]. The authors [29] have defined a predictable execution model that
addresses non-determinism (i.e. unpredictable ordering of message and unpredictable
process activation) and the interactions with the system resources.

Finally, other research attempts [31,32] integrate the schedulability theory with
object-oriented real-time design.

7 Limitations and Future Work

In what follows, some limitations of the scheduling approach and possible remedies are
considered:

– Interleaving vs. true concurrent semantics: The AsmL implementation of the
scheduler, in Sect. 4.5, is based on a priority-driven non-preemptive scheduling
with interleaving semantics. This choice is dictated by the lack of true concurrency
features in AsmL. To address this limitation, instead of having the system execute
a full UCM construct in every single step, the scheduler may be modified to al-
low the system to make progress on every single clock tick. Although, this solution
allows for implementing various scheduling algorithms, it does not scale well. In-
deed, simulation times would increase exponentially with responsibilities having
large delays and long execution periods.

– Targeting multiple execution platforms: For a given timed UCM construct, one sin-
gle WCET value has been assumed. However, to allow the reuse of UCM specifica-
tions across different execution architectures, it is planned to have multiple WCET
values attached to a single UCM construct, each one applicable to a given target
execution platform.

– Context dependence of execution times: At the implementation level, the execution
times for individual tasks vary depending on the state of the processor in which
they are executed. Tasks using precomputed values (i.e. cached) take less time than
expected. This knowledge would allow for a more precise upper bound of execu-
tion estimates. In this work, context independence of the timing behavior has been
assumed. Such an assumption is acceptable at the UCM level of abstraction.

8 Conclusions

This paper presents a novel approach to perform schedulability analysis at the require-
ment stage using the Timed Use Case Maps language, extended with time, scheduling
and architectural constraints. The resulting specification is formalized in terms of Ab-
stract State Machine (ASM) language and implemented in AsmL allowing for analy-
sis, simulation and validation. The approach has two main benefits. First, it is relatively
cheap to implement since it is built upon a previous untimed ASM operational semantics.
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Second, it provides an environment (within Spec Explorer) to capture various aspects of
a system run (executed constructs, WCET, components, missed deadlines, etc.) in terms
of timed traces. This provides the designer, at the early stages, with better understanding
of timing properties of the system such as worst-case response times of task, worst-case
resource usage, processor utilization, assessment of spare capacity and others.
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Abstract. In November 2008, the User Requirements Notation (URN)
was approved as Recommendation Z.151 by the Standardization Sec-
tor of the International Telecommunication Union (ITU-T). URN is
the first and currently only standard that supports both goal-oriented
and scenario-based modeling for requirements engineering activities. The
Aspect-oriented URN (AoURN) is a recent extension of URN that com-
bines goals, scenarios, and aspects in one framework. AoURN is a can-
didate for future versions of the URN standard. We first summarize the
basic concepts and notation of AoURN and then discuss advanced fea-
tures of AoURN that are necessary for large-scale modeling. Based on
our experience with AoURN modeling, we present a list of requirements
including rationale for an aspect-oriented extension of Z.151 that suc-
cinctly expresses the required features to evolve URN into a complete
aspect-oriented modeling framework.

Keywords: User Requirements Notation, Goal-oriented Requirement
Language, Use Case Maps, Aspects, Aspect-oriented Modeling, Aspect-
oriented Requirements Engineering, Aspect-oriented User Requirements
Notation.

1 Introduction

The recent Recommendation Z.151 (11/08) defines the User Requirements No-
tation (URN) [9], a modeling language for requirements engineering and high-
level design that incorporates goal-oriented and scenario-based models in one
framework. While scenario models have been regarded as an essential tool for
software development for a long time, goal models are a more recent develop-
ment [5,22,26,28]. In URN, goal models created with the Goal-oriented Require-
ment Language (GRL) are complemented with scenario models created with
Use Case Maps (UCMs). Even though Recommendation Z.151 is now available,
new developments in software engineering must be considered in the context of
evolving URN. One of the most exciting developments in software engineering
over the last decade is the emergence of aspect-oriented modeling (AOM) [4],
promising better encapsulation of crosscutting concerns at the requirements and
architecture stage which in turn may lead to greater maintainability, reusability,
and scalability of requirements models. Crosscutting concerns in the context of
requirements engineering are for example features, scenarios, and non-functional
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requirements (NFRs) that cannot be properly encapsulated with only tradi-
tional requirements engineering techniques. Many aspect-oriented approaches for
such techniques have been proposed (e.g., for use cases [2,3,10], viewpoints [24],
problem frames [12], and UML models [6,27]).

For the last three years, the Aspect-oriented User Requirements Notation
(AoURN) has been developed [13,14,15,16,17,18,19,20,21,23]. During this time
period, the initial basic concepts of AoURN have been augmented with several
advanced features. We summarize all of these advanced features together here
in one publication for the first time, and furthermore discuss the motivation of
these advanced features. Based on our experiences in combining URN and aspect-
oriented concepts, numerous case studies, and feedback from industrial collabo-
rators, we are now in a position to formulate requirements for the extension of
URN with aspects. This approach follows the example of URN itself, as require-
ments for URN were first published in Recommendation Z.150 (02/03) “User
Requirements Notation (URN) – Language requirements and framework” [8]
and later Z.151 was defined based on these requirements. The goal therefore is
to amend Z.150 with requirements for aspect-oriented modeling based on the
requirements presented here. Furthermore, Z.151 itself contains additional re-
quirements that describe in detail the semantics of the dynamic behavior of
UCMs when interpreted (i.e., traversed) by a path traversal mechanism. Hence,
the second set of requirements presented here is formulated for the UCM path
traversal to enable the traversal of aspect-oriented UCM models.

In the remainder of this paper, Section 2 gives a brief overview of Recommen-
dation Z.151, the User Requirements Notation (URN). Section 3 explains the
basic concepts of the Aspect-oriented User Requirements Notation (AoURN).
Section 4 then addresses advanced features of AoURN required for large-scale
modeling. A simple web-based application serves as an example to illustrate the
basic and motivate the advanced features of AoURN. Section 5 presents the list
of requirements for extending URN with aspect-oriented concepts, grouped into
general requirements and requirements for the path traversal of Use Case Maps
(UCM). Finally, Section 6 concludes the paper and identifies future work.

2 Overview of Z.151 – User Requirements Notation

The User Requirements Notation (URN) [1,9] supports the elicitation, analysis,
specification, and validation of requirements. URN captures early requirements
in a modeling framework containing two complementary sub-languages called
Goal-oriented Requirement Language (GRL – for goal-oriented modeling) and
Use Case Maps (UCMs – for scenario-based modeling). GRL models are used
to describe and reason about non-functional requirements (NFRs), quality at-
tributes, and the intentions of system stakeholders, whereas UCM models are
used for operational requirements, functional requirements, and performance and
architectural reasoning. While GRL identifies at a very high level of abstraction
possible solutions to be considered for the proposed system, UCM models de-
scribe these solutions in more detail. In summary, URN has concepts for the



Extending URN with Aspect-Oriented Concepts 117

specification of stakeholders, goals, non-functional requirements, rationales, be-
haviour, actors, scenarios, and structuring.

A GRL model consists of intentional elements (e.g., softgoals ( ), hard goals
( ), and tasks ( )) connected together with different types of links. Inten-
tional elements may be assigned to stakeholders called actors ( ). Contribution
links ( ) indicate positive (+) or negative (–) impact of intentional elements
on each other. Correlation links ( ) are similar to contribution links in that
they also indicate impact but are used to describe side effects rather than de-
sired impacts. Decomposition links ( ) allow the decomposition of intentional
elements into sub-elements. AND, (inclusive) OR, and XOR decompositions are
supported.

For example in Fig. 1, two stakeholders, the Customer and the DVD Store, are
shown. The customer’s goal graph has three intentional elements with positive
contribution links between them, whereas the store’s goal graph is a little more
complicated and considers two alternatives, Online Store and Traditional Store,
modeled as tasks.
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Fig. 1. The Customer and DVD Store Stakeholders of a Simple Online DVD Store
System

A UCM model (such as Fig. 2) consists of a path that begins at a start
point ( , e.g., buy) and ends with an end point ( , e.g., bought). A path may
contain responsibilities ( , e.g., processOrder), identifying the steps in a scenario,
and notational symbols for alternative ( ) and concurrent ( ) branches. Path
elements may be assigned to a component ( , e.g., DVD Store). Stubs ( ) are
containers for sub-models called plug-in maps. Drilling into a stub leads to a
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submap that provides more details, thus allowing for hierarchical structuring
of UCM models. A binding between the stub and elements on the plug-in map
precisely defines how the scenario continues from the parent map to the submap
and back to the parent map.

Furthermore, URN links ( ) are used to establish traceability by relating tasks
(i.e., possible solutions) or actors in goal models to their representation in the
UCM model (e.g., maps, responsibilities, and stubs or components that further
describe the linked GRL elements). For example, the GRL Customer stakeholder
in Fig. 1 is linked to the UCM Customer component in Fig. 2. Finally, URN
allows the definition of metadata (<<MetadataName>>) for any URN modeling
element, thus providing an extension mechanism that permits the definition of
profiles for URN.

Customer DVD Store
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sendMovie

selectMovie

payForMovie

Customer DVD Store

processOrder

bought

buy

sendMovie

selectMovie

payForMovie

Customer DVD Store

processOrder

bought

buy

sendMovie

selectMovie

payForMovie

Fig. 2. The Buy Movie Use Case of a Simple Online DVD Store System

The most comprehensive URN tool available to date is the Eclipse plug-in
jUCMNav [11]. jUCMNav is a full editor for GRL and UCM models that ensures
that only syntactically correct URN models are created. The tool manages hier-
archical UCM models consisting of several layers of maps and plug-in maps and
allows the requirements engineer to navigate easily through them. In addition,
the tool provides standard analysis features for URN models: global quantitative
and qualitative tradeoff analysis for conflicting stakeholder goal models as well
as validation and (regression) testing of UCM models including the detection of
undesired feature interactions. jUCMNav supports the built-in traceability and
profiling features of URN as well as several transformations. Structured, textual
use cases may be imported into URN models and URN models may be trans-
formed into more detailed scenario languages such as message sequence charts
but also into performance models. Furthermore, jUCMNav synchronizes URN
models with requirements management tools and therefore allows URN models
to be managed together with other types of requirements. OCL constraints on
URN models can also be defined and verified by jUCMNav. Some support for
aspect-oriented modeling is already available for jUCMNav. Further AO func-
tionality is being prototyped and will be added to the tool in the near future.
Finally, the tool also supports more advanced research on URN-based business
process monitoring and runtime adaptation. For more details about URN, visit
the URN Virtual Library [25].
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3 Basic Concepts of AoURN

TheAspect-orientedUserRequirementsNotation (AoURN) [15,16,17,18,19,21,23]
extends the User Requirements Notation (URN) with aspect-oriented concepts,
allowing modelers to better encapsulate crosscutting concerns which are hard
or impossible to encapsulate with URN models alone. AoURN adds aspect con-
cepts to URN’s sub-languages, leading to and integrating Aspect-oriented GRL
(AoGRL) [17,23] and Aspect-oriented UCMs (AoUCM) [16,18,19]. The three
major aspect-oriented concepts that have to be added to URN are concerns,
composition rules, and pointcut expressions. Note that the term aspect refers to
a crosscutting concern, while the term concern encompasses both crosscutting
and non-crosscutting concerns. These are core concepts of many aspect-oriented
modeling (AOM) techniques. In terms of aspect-oriented programming (AOP,
e.g. with AspectJ [7]), the concept of a crosscutting concern in AOM relates to
the concept of an aspect and the aspect’s advice in AOP, the concept of compo-
sition rules in AOM encompasses the common before/after/around operators in
AOP, and the concept of pointcut expressions is the same in AOM and AOP.

A concern is a new unit of encapsulation that captures everything related
to a particular idea, feature, quality, etc. AoURN treats concerns as first-class
modeling elements, regardless of whether they are crosscutting or not. Typical
concerns in the context of URN are stakeholders’ intentions, NFRs, and use cases.
AoURN groups all relevant properties of a concern such as goals, behavior, and
structure, as well as pointcut expressions needed to apply new goal and scenario
elements to a URN model or to modify existing elements in the URN model.

Pointcut expressions are patterns that are specified by an aspect and matched
in the URN model (often referred to as the base model). If a match is found, the
aspect is applied at the matched location in the base model. The composition rule
defines how an aspect transforms the matched location. AoURN uses standard
URN diagrams to describe pointcut expressions and composition rules (therefore
AoURN is only limited by the expressive power of URN itself as opposed to a
particular composition language). AoURN’s aspect composition technique can
fully transform URN models.

Section 2 has already introduced a URN model with three concerns for the
example application: the Customer stakeholder, the DVD Store stakeholder, and
the Buy Movie use case. These concerns will now be expanded and new concerns
will be added in the remainder of this section with the help of basic AoURN
features.

AoURN adds the ability to define pointcut expressions and then compose
aspects with the URN model. GRL pointcut expressions are shown on a pointcut
graph and make use of pointcut markers ( PP ) and pointcut deletion markers ( )
to indicate the pattern to be matched. All elements without pointcut markers
are added to the matched location in the GRL base model, while elements with a
pointcut deletion marker are removed. The composition rule is therefore defined
by the set of links between elements without pointcut markers and elements
with pointcut markers. Generic, reusable goals and tasks of an aspect may be
described in more detail in separate goal graphs called aspect graphs.
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For example, Fig. 3 depicts four pointcut graphs showing how the DVD Store
and the Customer stakeholders are connected (Fig. 3.a), how the Buy Movie use
case and the new Earn/Redeem Movie Points use case impact the goal model
(Fig. 3.b and Fig. 3.c), and how the new Security NFR concern impacts the use
cases (Fig. 3.d). Note that the tasks defined on the pointcut graphs of the use
case concerns have URN links to UCM elements (e.g., Process online and send by
mail is linked to processOrder and sendMovie shown in Fig. 2). Furthermore, a
reusable aspect graph of the Security NFR concern is shown in Fig. 4, explaining
how security can be generally achieved by modeling knowledge from the security
domain.
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Fig. 3. AoGRL’s Pointcut Graphs for a Simple Online DVD Store

The pointcut expressions in Fig. 3.a, Fig. 3.b, and Fig. 3.c are rather straight-
forward and the composition of these aspects with the base model is simple.
The base locations affected by these three aspects are indicated by four aspect
markers ( , e.g., Reduced DVD price) in Fig. 5. The pointcut expression of the
Security NFR concern in Fig. 3.d connects the reusable aspect graph of the Se-
curity NFR concern with the application-specific goal model of the online DVD
store. The pointcut expression matches any two tasks with a dependency link
as long as one task resides within the DVD Store stakeholder while the other
task resides within the Customer stakeholder. The base locations affected by the
Security NFR concern are again indicated by aspect markers (see the four tasks
in Fig. 3.b and Fig. 3.c).

When an aspect marker is selected, the modeler is taken to the AoView of the
aspect with only those aspectual properties of the pointcut graph highlighted
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Fig. 4. AoGRL’s Aspect Graph for the Security NFR Concern
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Fig. 5. AoGRL’s Aspect Markers for a Simple Online DVD Store System

that are relevant to the aspect marker. The aspect markers and the AoViews
allow the requirements engineer to reason about the composed model. The con-
cept of composed models in AOM thus relates to aspects being woven into the
base in AOP. Essentially, aspect markers in AoURN are similar to the advice
markers in AspectJ shown on the left-hand side of the Java Eclipse editor [7].

The AoViews of the aspect markers in Fig. 5 are simply the pointcut graphs
from Fig. 3 without the symbols for the pointcut markers – i.e., the AoView of
the aspect marker for Comfortable is Fig. 3.b, for Reduced DVD price it is Fig. 3.a
and Fig. 3.c because Reduced DVD price is matched by two pointcut graphs, for
Attract repeat customers it is Fig. 3.c (see Fig. 6.a), and for Online Store it is
Fig. 3.b. The two examples illustrated in Fig. 6.b and Fig. 6.c show the AoViews
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Fig. 6. AoGRL’s AoView for five Aspect Markers

corresponding to the aspect markers of the Security NFR. The AoView of the
aspect markers of Order movie at home and Process online and send by mail is
shown in Fig. 6.b, while the AoView of the aspect markers of Record movie points
and Use movie points is shown in Fig. 6.c. Note how parameterized elements of
the pointcut expression are replaced by their actual matches in the AoViews in
Fig. 6.b and Fig. 6.c. By using the models defined by the requirements engineer
for the AoViews, it is possible to view the composed AoURN model without
having to resolve complex layout issues (this applies to AoGRL and AoUCM).

Similarly to GRL pointcut expressions, UCM pointcut expressions define the
pattern to be matched with a pointcut map. Grey start and end points on the
pointcut map are not part of the pointcut expression but rather denote its be-
ginning and end. The aspectual properties are shown on a separate aspect map,
allowing the pointcut expression and the aspectual properties to be individually
reused. The aspect map is linked to the pointcut expression with the help of a
pointcut stub ( PP ). The causal relationship of the pointcut stub and the aspec-
tual properties visually defines the composition rule for the aspect, indicating
how the aspect is inserted in the base model (e.g., before, after, optionally, in
parallel or anything else that can be expressed with the UCM notation). The
replacement pointcut stub ( PP ) is a special kind of pointcut stub, indicating that
the aspect is replacing the matched base elements.

For example, the purpose of the new Communication concern in Fig. 7 is to
define in more detail the interaction between the customer and the online DVD
store when the customer selects a movie. The pointcut map therefore matches
against the selectMovie and processOrder responsibilities in the Customer and
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DVD Store components, respectively. The bindings of the pointcut stub connect
the in-path of the stub with the start point of the pointcut map and the out-
path of the stub with the end point of the pointcut map. As the pointcut stub
on the aspect map is a replacement pointcut stub, the matched responsibilities
are replaced with the aspectual properties described on the aspect map. The
aspect map defines that selectMovie and processOrder are reinserted and explicit
request and reply responsibilities as well as a waiting place are added, specifying
that the customer has to wait for the response of the online DVD store. Note
that the specification of this aspect is rather problematic as will be discussed in
Sect. 4. However, it serves its purpose here to introduce the main concepts of
AoUCM.
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Fig. 7. AoUCM’s Aspect Map and Pointcut Map for the Communication Concern

Similar to GRL aspect markers, UCM aspect markers ( ) also indicate af-
fected base locations in the UCM model. If the aspect adds elements before or
after the base location matched by the pointcut expression, the aspect marker
is added before or after the base location, respectively. In the case of a replace-
ment, two aspect markers are added, one before and one after the replaced base
elements. In contrast to AoGRL, a UCM aspect marker is not just an annotation
but is rather a kind of stub that links the base model with a submap: the as-
pect map. Bindings between the aspect marker and the aspect map are created
automatically by AoURN’s composition mechanism. Figure 8 shows the aspect
markers added to the use case from Fig. 2 because the pointcut expression in
Fig. 7 matches selectMovie and processOrder in this use case.

Fig. 8 also shows the AoView for the aspect markers, highlighting the portion
of the Communication aspect map that is inserted. When the first aspect marker is
reached during the Buy Movie scenario, the scenario continues with the aspectual
behavior on the aspect map (right after the pointcut stub). When the aspect
map’s end point is reached, the scenario continues with the second aspect marker,
thus skipping the replaced base elements. If the aspect does not replace base
elements but simply adds elements before or after the matched base location,
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Fig. 8. AoUCM’s Aspect Markers and their corresponding AoView

the scenario returns from the aspect map to the same aspect marker. In this
case, the aspect marker has bindings to and from the aspect map. Note that the
dashed arrows depicting bindings are only added for illustration purposes and
are not part of AoUCM’s concrete syntax. The jUCMNav tool manages bindings
and hierarchical UCM models much more effectively.

Finally, aspects may depend on or conflict with each other. AoURN models
dependencies and conflicts among concerns and the resolution thereof with the
help of the Concern Interaction Graph (CIG) [15]. Many aspect interactions can
be resolved with precedence rules. The CIG is a specialized GRL goal graph
that uses dependencies, correlations, and intentional elements to model such
precedence rules. The precedence rules then govern the order in which concerns
are applied to a URN model.

4 Advanced Features of AoURN

The pointcut expression in Fig. 7 is problematic because only a very specific
interaction between the customer and the online DVD store is matched. However,
it is very likely that many if not all interactions between the customer and
the online DVD store use the request/reply pattern defined by the aspect in
Fig. 7. To rectify this problem, the pointcut expression can easily be adapted to
match against any two responsibilities (simply by using the wildcard * instead
of concrete names for the responsibilities).

This is better but still very fragile with respect to rather small changes to the
base model. If another responsibility is added in the base model after process-
Order (e.g., rewardReferrer), then the pointcut expression will no longer match.
The pointcut expression expects only two responsibilities before the path crosses
back into the Customer component. Therefore, the pointcut expression must be
made more flexible. This is achieved by the anything pointcut element (.....) as
shown in Fig. 9. The anything pointcut element matches against an arbitrary
sequence of base elements.

At this point, the aspect itself is not generic enough and therefore cannot
be reused easily, because it also specifies very concrete elements of the base
model (i.e., Customer, DVD Store, selectMovie, processOrder). In order to model
a reusable aspect, it must be possible to reuse base elements matched by the
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Fig. 9. Reusing Matched Elements with Variables and the Anything Pointcut Element

pointcut expression. This is achieved with variables denoted by the prefix $ as
shown in Fig. 9 on the aspect map and pointcut map.

The pointcut expression in Fig. 9 now matches against selectMovie, process-
Order, and rewardReferrer as well as payForMovie and sendMovie (hence there are
two pairs of aspect markers in Fig. 10). Furthermore, when the aspect is applied
to a location, the variables in the aspect are replaced by the matched elements
(i.e., $initiateRequest is replaced by selectMovie or by payForMovie; $performRe-
quest is replaced by processOrder and rewardReferrer or by sendMovie; $Requester
is replaced by Customer; and $Replier is replaced by DVD Store as shown in the
AoViews in Fig. 10).
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Fig. 10. AoUCM’s Aspect Markers and their corresponding AoView

Note that the anything pointcut element is only available for AoUCM. It is
not available for AoGRL because the highly interconnected nature of goal graphs
leads to an undesired explosion of matches. Furthermore, AoGRL does not re-
quire variables because GRL pointcut expressions are not separated from the
description of aspectual properties. Although this is an advantage, the disad-
vantage is that individual reuse of pointcut expressions and aspectual behavior,
while possible with AoUCM, is not possible with AoGRL.
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The pointcut expression in Fig. 9 now captures all interactions between the
customer and the DVD store. However, some interactions may have to be treated
differently, e.g., asynchronous communication may be more appropriate for some
interactions. This may lead to pointcuts with complicated regular expressions.
Annotation-based matching is a common approach for aspect-oriented program-
ming languages and can be effectively used to address this issue. AoURN sup-
ports annotation-based matching with metadata for both AoGRL and AoUCM
models. Metadata may be specified in the pointcut expression and the base model
may also be annotated with the metadata, explicitly identifying the locations to
which the aspect should be applied. The metadata is then simply taken into
account by the matching algorithm of AoURN.

The aspect map in Fig. 9, which describes a communication mechanism, may
be further improved by adding checks for corrupted replies and a way to retry
the interaction. Figure 11 shows the updated aspect map. This, however, leads
to an ambiguous situation when the aspect map is connected to the aspect
marker through bindings. It is not clear which of the two start points should be
connected and which of the two end points. This is addressed by the definition
of local start and end points ( and , e.g., retry and fail in Fig. 11), which by
definition are never connected by bindings with aspect markers.

$Requester

request

$Replier

reply

continue

$initiateRequest

$perform
Request

request
Communication

P

fail

[else]

[replyCorrupted]

retry
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replyreply

continue

$initiateRequest

$perform
Request

request
Communication

PPP

fail

[else]

[replyCorrupted]

retry

Fig. 11. Local Start and End Points for Aspects

An attempt to describe in more detail the Earn/Redeem Movie Points use case
introduced in Fig. 3 uncovers another problem. The Buy Movie (BM) use case
and the Earn/Redeem Movie Points (ERMP) use case are heavily intertwined
with each other. First a membership form needs to be filled (ERMP), then
the order is processed (BM), then movie points may be redeemed if enough
points are available (ERMP). If there are not enough points available (ERMP),
then the customer pays for the movie as usual (BM) but earns movie points
(ERMP) once the movie has been sent (BM). The problem with intertwined use
cases is that either both use cases have to be modeled together (i.e., different
concerns are tangled with each other) or many small aspects add the individual
steps of one use case to the other, making it hard to understand how these
small aspects relate to each other. Intertwined use cases are a very common
phenomenon. AoUCM uses interleaved composition to address this problem by
allowing multiple pointcut stubs to be defined for a single aspect map.
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Fig. 12. Interleaved Composition

A requirements engineer can understand the ERMP use case simply by looking
at its definition, i.e., the aspect map in Fig. 12. First, a member form must be
filled if the customer is not yet signed up, then movie points may be redeemed
if enough points are available, and finally movie points may be earned if the
member did not redeem movie points in the same transaction. In addition, the
pointcut stubs identify how the BM use case is interleaved with the ERMP use
case. The member form must be filled before processing the order, redeeming of
movie points may occur instead of paying for a movie, and earning movie points
happens after the movie was sent.

As shown in the pointcut expression in Fig. 12, interleaved composition is
achieved with a series of UCM paths, established by connecting together grey end
and start points. Pairs of grey end and start points are ignored by the matching
algorithm and the pointcut expression is therefore easily matched against the
Buy Movie use case described in Fig. 10. The additional grey end and start
points, however, are used when connecting a series of pointcut stubs to a series of
UCM paths on the pointcut map. All examples until now featured only pointcut
maps with one grey start and one grey end point and aspect maps with only
one pointcut stub. The binding to the pointcut stub on the aspect map was
therefore straightforward – the in-path of the pointcut stub is connected to
the grey start point and the out-path to the grey end point. In Fig. 12, the
processOrder pointcut stub is connected to the first path segment of the pointcut
expression, the payForMovie pointcut stub to the second path segment, and the
sendMovie pointcut stub to the third and last path segment. Note how the causal
relationship of the individual steps of the Earn/Redeem Movie Points use case
are clearly described on the aspect map and how the bindings of pointcut stubs
to UCM paths define the interleaving of the two use cases, while the pointcut
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Fig. 13. Two Highlighted Scenarios of the Earn/Redeem Movie Points Use Case

expression remains fairly simple. Interleaved composition is powerful yet it is
seldom supported in other AOM and AOP approaches.

Fig. 13 highlights two scenarios of the Earn/Redeem Movie Points use case
composed with the Buy Movie use case. The first is the initial scenario where a
new member signs up to the movie points program, while the second scenario
shows a redemption of movie points. The dashed arrows have been added to
illustrate the bindings created automatically by the composition mechanism of
AoURN, allowing the reader to follow along the scenario as it unfolds. Note that
the jUCMNav tool does not require the bindings to be visualized but allows the
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modeler to conveniently navigate from stubs to plug-in maps or aspect markers
to aspect maps by clicking on the stub or aspect marker, respectively. This results
in a much less confusing experience for the requirements engineer than Fig. 13
seems to convey.

The operationalization of the Security NFR concern from Fig. 3.d can also
be modeled concisely with interleaved composition. The pointcut expression
matches against the request responsibility, the AND-fork, $performRequest, reply,
and the path crossing back into the $Requester component in the Communica-
tions concern. Encryption processing is then added after the request and reply
responsibilities, while decryption processing is added before $performRequest and
after crossing back into the $Requester component.

Some of the aspect markers in Fig. 13 only have a binding to the aspect map,
some only one from the aspect map, and some both. The concrete syntax for all
three cases, however, is the same. This makes it difficult for the requirements
engineer to understand the impact of an aspect simply by looking at the aspect
marker. AoUCM differentiates between these three cases ( . . . standard = to
and from bindings, . . . beginning of a replacement = only to bindings,
. . . end of a replacement = only from bindings), making it possible to identify
replacements immediately.

5 Requirements for Extending Z.151 with Aspects

Table 1 proposes requirements for improving modularity and separation of con-
cerns in URN by extending it with aspect-oriented concepts. Some of these re-
quirements may not require any changes to the current version of URN, especially
if a proposed solution for AOM with URN uses existing modeling constructs spe-
cialized by metadata in a URN profile. These requirements are still included here
as this set of requirements aims to be complete with respect to coverage of key
aspect-oriented concepts.

6 Conclusion

We have presented the Aspect-oriented User Requirements Notation (AoURN),
an extension to the User Requirements Notation (URN). Basic and advanced
features of AoURN were illustrated and discussed. Based on these features as
well as our experience with AoURN modeling in general, we proposed a list of
requirements that can be used to evolve URN into a complete aspect-oriented
modeling environment for requirements engineering activities. In future work,
the requirements for supporting the analysis and validation features of URN
in an aspect-oriented way as well as the requirements for the path traversal
mechanism will still have to be refined. Furthermore, recent work on analyzing
semantic aspect interactions with the help of GRL graphs could be considered
for inclusion into an updated version of the URN standard. Finally, the notions
of aspect markers and pointcut expressions spanning model types with the help
of URN links could be applied to other AOM techniques to address layout issues
of composed models and support multi-model aspects.
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Table 1. Requirements for Extending Z.151 with Aspect-oriented Concepts

Requirement (URN shall allow. . . ) Rationale
GRL and UCM model diagrams and elements
to be grouped into concerns.

Basic premise of aspect-oriented modeling.

Patterns (i.e., pointcut expressions) to be de-
fined for a concern.

Basic premise of aspect-oriented modeling.

Patterns to be defined that are at the same
level of complexity as URN itself.

A pattern language (i.e., pointcut language) that is
not able to capture all constructs of URN is limiting
the expressiveness and flexibility available to the re-
quirements engineer.

Parameterized patterns to be defined. Parameterized patterns allow concerns to transform a
large numbers of base locations.

Patterns that include logical operators AND,
OR, or NOT.

Required to fine-tune pattern descriptions.

Patterns that include metadata. Required to fine-tune pattern descriptions.
Patterns that match against an arbitrary se-
quence of UCM base elements.

Required to safe-guard successful pattern matches
against small changes in the base model or to effi-
ciently capture variations in the target pattern.

The reuse of matched UCM elements in the
description of the concern properties.

Required to specify highly reusable concerns.

Patterns to be defined over both model types. Aspect-oriented extensions to URN must take advan-
tage of the URN framework.

Purely syntactic model elements to be ig-
nored when matching the pattern against the
base model.

Required to safe-guard successful pattern matches
against inconsequential changes in the base model.

Semantically equivalent models to be
matched even if their syntactic representa-
tion is different.

Required to safe-guard successful pattern matches
against inconsequential changes in the base model.

Composition rules to be defined for a concern. Basic premise of aspect-oriented modeling.
Composition rules to be defined that are at
the same level of complexity as URN itself.

Composition rules that are not able to express all con-
structs of URN are limiting the expressiveness and
flexibility available to the requirements engineer.

Interleaved composition to be defined. Scenarios are often intertwined with each other. In-
terleaved composition allows scenarios to be defined
separately from each other without losing context in-
formation and increasing pattern complexity.

Locations to be transformed by a concern
only if the transformation is indicated at the
locations.

Basic feature of aspect-oriented modeling and pro-
gramming.

Locations to be transformed by a replacement
transformation of a concern only if the re-
placement transformation is indicated at the
locations in a different way than for locations
that are transformed in some other way.

It is important for the requirements engineer to un-
derstand at a glance the impact of concerns on the
matched base locations.

Concern dependencies and conflicts as well as
their resolutions to be modeled.

Concerns interact with each other. Without support
for the resolution of these interactions, the model spec-
ification is ambiguous and may result in undesired in-
teractions.

The individual, separate reuse of concern
properties and patterns (patterns may only
be reused for UCM but not for GRL).

A goal of aspect-oriented modeling is to provide highly
reusable assets. URN must support this by allowing
concern properties and patterns to be reused sepa-
rately from each other.

The base model composed with all concerns
to be viewed without requiring the user to
resolve complex layout issues.

Requirements engineers need to have access to a fully
composed model for further analysis. URN must sup-
port this.

Its analysis and validation features to be per-
formed in an aspect-oriented way.

This is a very general requirement at this point. How-
ever, any aspect-oriented extension to URN must not
prevent or limit the current analysis and validation
features.

The UCM Path Traversal to traverse the
specified concern behavior upon arrival at a
location transformed by a concern before con-
tinuing with the traversal at a base location.

This is also quite general at this point and will have to
be refined given a particular aspect-oriented extension
of URN.
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E., Brisaboa, N.R., Gómez, J. (eds.) VIII Jornadas de Ingenieŕıa de Software y
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Abstract. The Unified Modeling Language (UML) does not fully ad-
dress the needs of some important modeling domains, including goals
and non-functional requirements (NFR). However, UML can be extended
and tailored through the definition of profiles. In this paper, we propose
a UML profile for the Goal-oriented Requirement Language (GRL), the
goal/NFR notation of the User Requirements Notation (URN), recently
standardized by ITU-T as Recommendation Z.151. Our profile is based
on the abstract metamodel of GRL defined in accordance with ITU-T
Recommendation Z.111 (meta-metamodel). This GRL metamodel has al-
ready been successfully tested and implemented in the jUCMNav Eclipse
plug-in (a URN modeling tool). The profiling approach used in this pa-
per adheres to the guidelines for UML profile design defined in ITU-T
Recommendation Z.119. The resulting profile has been implemented in
a UML 2 tool, namely IBM Rational Tau 4.0, and validated with case
studies. Our experience and lessons learned are also discussed.

Keywords: Goal-oriented Requirement Language, Metamodel, Tau G2,
UML Profile, User Requirements Notation.

1 Introduction

Goals are high-level objectives or concerns of a business, stakeholder, or sys-
tem. They are often used to discover, select, evaluate, and justify requirements
for a system. Functional Requirements (FR) define functions of the system un-
der development, whereas Non-Functional Requirements (NFR) characterize sys-
tem properties and qualities such as expected performance, robustness, usability
and cost. Goals and NFRs capture essential aspects of systems, which have a
significant impact throughout the development process. Goal models help to
compare alternative requirements and solutions, facilitate trade-offs among con-
flicting concerns and constraints of different stakeholders, document rationales
for design decisions (so we avoid revisiting previously considered and inferior
solutions), and provide traceable justifications for lower-level requirements and
design artifacts [4,19].

The Unified Modeling Language (UML) [16] is the most popular modeling
language for developing software applications. However, many modelers are still
unsatisfied with the role of UML in the area of goal and NFR modeling. With the
importance of UML in the industry, this deficiency has now become an apparent
weakness.

R. Reed, A. Bilgic, and R. Gotzhein (Eds.): SDL 2009, LNCS 5719, pp. 133–148, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Modelers struggle to define how best to describe and structure goals. While
somemetamodels for goalmodeling languages exist, such workhas often been com-
pleted in isolation and has not been done in accordance with standards. Yet, there
exists one mature metamodel for goal modeling, namely that of the Goal-oriented
Requirement Language (GRL). GRL is combined with the Use Case Map (UCM)
scenario notation to form the User Requirements Notation (URN) [11], recently
standardized as ITU-T Recommendation Z.151 [12]. Standalone GRL-based mod-
eling is useful on its own, and even more so when combined with UCMs. However, if
one desires to integrate goal modeling with UML, then having a standardized and
standalone goal metamodel may not be sufficient, and aligning it with the UML
metamodel would help reduce existing communication and integration problems
between goal modelers and UML modelers.

Although UML does not address explicitly the modeling of goals and non-
functional requirements, there is a generic extension mechanism for tailoring
UML to a particular domain, namely UML profiling. In this paper, we propose
a UML profile for GRL. This profile satisfies the following properties, which are
considerably important for successful goal-oriented modeling in a UML context.

1. Integration with UML: the ability to share information between the goal
model elements and other UML elements.

2. Diagram pollution avoidance: preventing the mixing of different diagram
constructs.

3. Metamodel stability: the maturity of the underlying goal metamodel.
4. Implementability of the profiling mechanism: how well the approach used for

the creation of the profile is amenable to implementation and tool support.

A good integration with UML allows one to maintain traceability between goal
models and UML models. The ability to avoid diagram pollution is useful to en-
sure the consistency of the goal diagrams created, and this is typically achieved
by providing a dedicated diagram editor. A mature and stable metamodel con-
tributes to the resulting profile’s stability and validity. Finally, the implementabil-
ity of a profile is important for integrating usable editors in existing UML modeling
environments.

In our work, we satisfy the first property by virtue of UML profiling. Diagram
pollution avoidance results from our choice of metamodeling implementation ap-
proach (metamodel extension, to be detailed in Sect. 3). Because our profile is
based on a standardized metamodel (URN’s, explored in Sect. 2), which has
been already used as basis for GRL modeling tools [14], our work satisfies the
stability property. The implementability of the profiling mechanism is demon-
strated by a proof-of-concept implementation based on a commercial UML tool,
to be described in Sect. 4.

Our main contributions are hence the definition of a UML profile for goal
modeling rooted in the standard GRL metamodel and its implementation in
IBM Rational (previously Telelogic) Tau 4.0 [8]. UML’s metaclasses are mapped
to GRL’s metaclasses in accordance with standard guidelines provided in ITU-T
Recommendation Z.119 [10]. We also discuss the typical usage of this profile with
a small example where GRL is used standalone in a model, and then where GRL
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diagrams are combined with selected UML diagrams in a model. Related work
is discussed in Sect. 5, followed by our conclusions.

2 Goal-Oriented Requirement Language (GRL)

This section introduces the GRL notation, main concepts, and metamodel.

2.1 Overview of the GRL Notation

GRL is a language that focuses primarily on goal modeling. A subset of URN
and a graphical language, GRL’s major asset is to provide ways to model and
reason about non-functional requirements and other high-level goals. With GRL,
the modeler is primarily concerned with exposing “why” certain choices for be-
havior and/or structure were introduced, leaving the “what” and the “how” to
other languages such as UCM and UML. GRL integrates some of the best ele-
ments of two well-known goal-oriented modeling languages, i* [20] and the NFR
framework [4]. Major benefits of GRL over other popular notations include the
integration of GRL with a scenario notation, the support for qualitative and
quantitative attributes, and a clear separation of GRL model elements from
their graphical representation, enabling a scalable and consistent representation
of multiple views/diagrams of the same goal model.

The graphical syntax of GRL (see Fig. 1) is based on the syntax of the i*
language [20]. There are three main categories of concepts in GRL: actors, inten-
tional elements, and links. A GRL goal graph is a connected graph of intentional
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elements that optionally reside within an actor boundary. An actor represents
a stakeholder of the system or another system. Actors are holders of intentions;
they are the active entities in the system or its environment who want goals to
be achieved, tasks to be performed, resources to be available and softgoals to be
satisfied. A goal graph shows the high-level business goals and non-functional
requirements of interest to a stakeholder and the alternatives for achieving these
high-level elements. A goal graph also documents beliefs (rationales) important
to the stakeholder.

In addition to beliefs, intentional elements can be softgoals, goals, tasks, and
resources. Softgoals differentiate themselves from goals in that there is no clear,
objective measure of satisfaction for a softgoal whereas a goal is quantifiable. In
general, softgoals are related more to non-functional requirements, whereas goals
are related more to functional requirements. Tasks represent solutions to (or
operationalizations of) goals or softgoals. In order to be achieved or completed,
softgoals, goals, and tasks may require resources to be available.

Links (see Fig. 1.b) are used to connect elements in the goal model. Decompo-
sition links allow an element to be decomposed into sub-elements. AND, IOR, as
well as XOR decompositions are supported. XOR and IOR decomposition links
may alternatively be displayed as means-end links. Contribution links indicate
desired impacts of one element on another element. A contribution link can have
a qualitative contribution type (see Fig. 1.d), or a quantitative contribution (in-
teger value between -100 and 100, see Fig. 1.e). Correlation links are similar to
contribution links, but describe side effects rather than desired impacts. Finally,
dependency links model relationships between actors (one actor depending on
another actor for something).

As an example, Fig. 2 shows a simple GRL model that illustrates the use
of GRL constructs. This model captures various relationships between the con-
cerns of customers, the bank and the merchant involved in some transaction
payment. This is an artificial example used for testing our profile as it covers
many combinations of links (including contributions with various weights), ac-
tors and intentional elements of different types in a single diagram. It will not be
explained further here as it is not meant to reflect reality (for a GRL tutorials
and literature, please refer to [3]).

2.2 GRL Metamodel

Figure 3 shows a graphical representation of the metamodel of the core GRL
concepts, which constitute a part of the URN metamodel from Recommenda-
tion Z.151 [12]. These concepts represent the abstract grammar of the language,
independently of the notation.

This metamodel formalizes all the GRL concepts and constructs introduced
earlier. The GRL metamodel definition adheres to the guidelines of ITU-T Rec-
ommendation Z.111 [9] for metamodel-based definitions of ITU-T languages.
This recommendation standardizes notations used to create abstract and con-
crete syntaxes of languages, using metagrammars or metamodels. Z.111 uses
a subset of the Meta-Object Facility [15] to define a simple meta-metamodel
targeting the definition of modeling languages.
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Fig. 2. GRL Model Example
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Fig. 3. GRL Metamodel (from Z.151)

3 UML Profile for GRL

The UML metamodel is not intended to be directly modifiable outside of the
UML standardizing process. However, profiling enables one to customize UML
to a particular domain. A new domain-specific language can hence be defined
and integrated to the core UML by creating a profile that extends the UML
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metamodel. There already exist different UML profiles that have been devel-
oped by the Object Management Group [17], including the Systems Model-
ing Language (SysML), the Enterprise Distributed Object Computing (EDOC),
and the Profile for Modeling and Analysis of Real-time and Embedded Sys-
tems (MARTE). This section discusses the creation of a profile for goal-oriented
modeling based on GRL’s concepts.

3.1 UML Profile Creation

Two main approaches are used for creating UML profiles: the Stereotype Mech-
anism (SM) and the Metamodel Extension Mechanism (MEM). The Stereotype
Mechanism is a very common and straightforward method for creating a UML
profile. This approach extends the basic UML elements and is supported by
most UML tools. The different constructs used to define a profile are Stereo-
type, Tagged value and Constraint [16]. A stereotype is a metamodel construct
defined as an extension of an existing UML metamodel element, in a manner
similar to class extension using inheritance. A tagged value is similar to an at-
tribute construct of a class in a UML metamodel. Tagged values are standard
meta-attributes. Finally, constraints are restrictions on a metamodel required in
a particular domain. Notice that existing UML metamodel constraints cannot be
weakened in a profile. The definition of a profile using the SM method consists of:

1. Assigning a new name to an extended metaclass, which will be represented
as a stereotype of UML;

2. Adding new attributes in the stereotype, which are called tags ;
3. Adding new constraints to the stereotype.
4. Assigning a new appearance to the stereotype.

One limitation of the SM approach is that it does not prevent the mixing of
domain-specific diagram constructs with predefined UML diagram constructs.
This can result in diagram pollution and potentially hurt the understandability
of models.

The Metamodel Extension Mechanism [13], which includes the functionalities
of SM, is a less common method of creating a UML profile. It allows the extension
of non-basic UML elements and imposes restrictions that ensure the sole use of
domain-specific stereotypes in diagrams, thus avoiding diagram pollution. While
more flexible, the MEM is a more complex approach of profiling and is supported
by fewer tools than the SM. Given the desirable properties defined in Sect. 1,
MEM is favored over SM in our work.

3.2 Overview of UML Profile for GRL

Our profile is based on the conventions defined in the ITU-T Recommendation
Z.119 [10]. This recommendation defines specific rules and a template for ITU-T
languages profiling. Because of space restrictions, only a summary of the profile
is provided in this paper. The complete profile, documented in accordance to
recommendation Z.119, is available in Abid’s thesis [1]. Table 1 provides a list
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Table 1. Summary of Stereotype Mapping Information

Stereotype Stereotyped UML Metaclass
GRLspec Model
GRLmodelElement NamedElement
GRLLinkableElement Class
Actor Class
IntentionalElement Class
IntentionalElementType Enumeration
ImportanceType Enumeration
ElementLink Relationship
Contribution Association
ContributionType Enumeration
Dependency Association
Decomposition Association
DecompositionType Enumeration

Actor
<<stereotype>>

ElementLink
<<stereotype>>

IntentionalElement

type : IntentionalElementType
decompositionType : DecompositionType = AND
importance : ImportanceType = None
importancequantitative : Integer = 0

<<stereotype>>

GRLspec
<<stereotype>>

Model
<<metaclass>>

extends

Fig. 4. GRL Specification

GRLModelElement
<<stereotype>>

ElementLink
<<stereotype>>

GRLLinkableElement
<<stereotype>>

NamedElement
<<metaclass>>

extends

Fig. 5. GRL Model Element

of the stereotypes with the UML metaclass that each stereotype extends, while
Figs. 4 to 7 graphically depict the UML profile with UML class diagrams.

Metaclass GRLspec from Fig. 3 maps to a stereotype of the UML metaclass
Model as shown in Fig. 4. This is consistent with the fact that GRLspec is in-
tended to serve as a container for GRL specifications, a role fulfilled by instances
of Model in a UML specification.

GRLModelElement, which serves as superclass for the elements of a GRL
model, extends the UML metaclass NamedElement (Fig. 5).



140 M.R. Abid et al.

GRLLinkableElement
<<stereotype>>

Actor
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type : IntentionalElementType
decompositionType : DecompositionType = AND
importance : ImportanceType = None
importancequantitative : Integer = 0

<<stereotype>>

Class
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extends

extends

extends

Fig. 6. GRL Linkable Element

The stereotype GRLLinkableElement is intended for generalizing GRL Actor
and GRL IntentionalElement. GRLLinkableElement extends the UML metaclass
Class (see Fig. 6). Stereotypes Actor and IntentionalElement are also defined
as extensions to metaclass Class. The UML metaclass Class describes a set of
objects that share the same specifications of features, constraints and seman-
tics. Its features are comprised of attributes and operations. Similarly, a GRL
Actor has attributes and operations. Association elems between Actor and In-
tentionalElement is captured as a subset of association nestedClassifier owned
by Class toward Classifier.

The stereotype ElementLink extends the UML metaclass Relationship (see
Fig. 7) as its purpose is to show the intentional relationship among GRLLink-
ableElements which include stereotypes Actor and IntentionalElement.

The specializations of ElementLink (Decomposition, Dependency and Con-
tribution) are defined from the UML metaclass Association. Contribution in-
cludes additional tagged values for the contribution type, quantitative value and
correlation.

The enumeration types used in the profile (DecompositionType, Contribu-
tionType, IntentionalElementType and ImportanceType in Fig. 3) are simply
kept as is.

3.3 Sample Details for a Profile Metaclass: IntentionalElement

For each metaclass, Abid’s thesis [1] provides subsections with the details of
the corresponding attributes, constraints, semantics, notation, and references to
UML, as recommended in Z.119. This section illustrates such details for the
stereotype IntentionalElement.

First, a correspondence between the attributes of the UML metamodel and
those of GRL’s is established. For example, IntentionalElement owns the
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Fig. 7. Element Links

attributes listed in Table 2 and defined as tagged values. This table also includes
the attributes from inherited metaclasses (URNmodelElement, via GRLmod-
elElement, see Fig. 3).

Constraints on the stereotypes are then described in a separate subsection
of [1]. For instance:

– «IntentionalElement» Class has a tag importanceQuantitative whose value
must be ≥ 0 and ≤ 100.

– Each «IntentionalElement» Class must have a unique name.

The semantics is also informally described in a separate subsection of [1]:

– The «IntentionalElement» Class has an association with GRL «Actor». It
specifies the reasons for including particular behaviors, information and
structural aspects in a system’s requirements. There are different types of
intentional elements corresponding to different types of behavior and infor-
mation elements. These various types have different notations and can be
linked to each other.

– The «IntentionalElement» Class has a tag importance that captures an ac-
tor’s level of interest in the included intentional element. However, it is not
mandatory that modelers use both the importance and importanceQuantita-
tive tags. The selection depends on a modeler’s requirements for the desired
analysis type, either qualitative, quantitative, or mixed.

The notation is also described for each metaclass of the profile. For example:

– An «IntentionalElement» Class has different types as mentioned above in
semantics. Each type has a separate notation: 1

1 The five first symbols in Fig. 1.a would be described here, but we do not repeat them
because of space constraints.
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Table 2. Attributes of IntentionalElement

Attribute Description
name: String Defines the name of the «IntentionalElement» Class.
id: String Defines the identifier of the «IntentionalElement» Class.
type: Intentional-
ElementType

This is an enumeration data type. It defines the different
types of GRL «IntentionalElement»: Softgoal, Goal, Task,
Resource and Belief.

decompositionType:
DecompositionType

This is an enumeration data type. Its possible values are
AND, XOR and IOR. Its default or initial value is AND. It
defines the decomposition type when GRL «IntentionalEle-
ment» is the source of the decomposition link.

importance:
ImportanceType

This is an enumeration data type. Its possible values are
High, Medium, Low, and None. Its default value is None. It
is used to evaluate the importance level of the intentional
element to its owning actor when specified.

importance-
Quantitave: Integer

Defines the evaluation of the quantitative importance of
GRL «IntentionalElement» on its GRL «Actor». Its value
ranges from 0 to 100, with 0 as default.

In the last subsection of [1], references to the relevant sections of the UML
superstructure [16] are included:

– UML Superstructure: 7.3.7 Class (from Kernel).
– UML Superstructure: 7.3.33 NamedElement (from Kernel, Dependencies).

4 Implementation and Validation

In order to validate our UML profile for GRL, we have implemented it using IBM
Rational Tau version 4.0 [8]. This modeling environment supports UML profil-
ing. It allows extending the UML metamodel and, therefore, enables modelers to
customize the UML metamodel for specific domains. Both the stereotype mech-
anism (SM) and the metamodel extension mechanism (MEM) are supported by
the tool. However, some adaptation is required because the meta-metamodel
supported by Tau (TDDMetamodel) differs from UML in a number of ways.
For instance, the UML Enumeration and NamedElement metaclasses are absent
or represented differently and the basic type String needed to be converted to
Charstring. Hence, some customization of our profile was required during the
implementation. Such differences in the meta-metamodel also leads to the gen-
eration of XMI files that may not be imported correctly by other UML tools,
but tool interoperability was not a concern in our work so this was not tested.

Other UML tools supporting profiles were also considered: IBM Rational Soft-
ware Architect was limited in its support of MEM [2], and Eclipse’s Model De-
velopment Tools (MDT) was less mature than Tau at the time this work was
done . However, MDT has evolved substantially since then, especially in terms
of support for profiles and OCL-based validation of constraints [6].
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Fig. 8. UML Profile for GRL with SM in Tau 4.0

Figure 8 gives an overview of the SM profile for GRL as defined in Tau.
A drawback of the SM approach is that it does not allow the creation of a
separate GRL editor. We must activate the GRL profile and then create a Class
diagram. In the Class diagram editor, we create classes and manually associate
an appropriate stereotype to each of these classes. A property view enables the
setting of attribute values for the elements.

The MEM approach supported by Tau allows the generation of a specific GRL
editor with a customized tool palette for GRL constructs. It is possible to“drag and
drop”elements in the GRL editor to create a GRL model. The user is able to create
a model based solely on GRL elements and avoid diagrampollution. Again, a prop-
erty view can be used to provide values to attributes without visual representation.
Furthermore, this approach allows to associate specific icons to the GRL elements.
Figure 9 shows a view of a GRL editor created in Tau using the MEM approach.

Figure 10 gives a glimpse of a MEM-based implementation of the UML pro-
file for GRL in Tau (which contains many more classes and connections to Tau’s
meta-metamodel than the SM metamodel). Such implementation is more com-
plex as it requires one to connect the profile to predefined Tau stereotypes to
allow/restrict visibility of elements in diagrams and the property view, and define
icons, label positions, presentation, etc. In terms of semantics, this UML profile
captures well the core GRL concepts described in Fig. 3, as these do not conflict
with existing UML model elements. However, it is still incomplete as it does not
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Fig. 9. Usage of UML Profile for GRL with MEM in Tau 4.0

yet support the notions of GRL strategy (which would be simple to add) and of
connections to UCMs (on one hand harder to capture given their partial overlap
with existing UML concepts, but on the other hand not absolutely required for
goal modeling).

We evaluated our profile implementation by using the Tau generated editor
on various examples, described in [1]. These experiments allowed us to verify
the satisfaction of the properties listed in Sect. 1. In particular, GRL diagram
elements are not intermixed with those from class diagrams (unlike the SM
option). It is also possible to reuse GRL model elements in other diagrams: for
example, one can drag a GRL actor from a GRL diagram to a UML use case
diagram (to create an actor) or to a sequence diagram (to create a lifeline).
Since these elements from different views refer to the same definition, changes to
the name or another attribute of one of these elements are then automatically
reflected in the other diagrams. Traceability links between GRL element and
other UML elements can also be created and navigated. Such links are used to
document design rationale and to explain decisions, so that weaker alternative
designs are not constantly re-suggested. They also enable coverage assessments
by answering questions such as “are all my goals sufficiently addressed by my
UML design (goals without links)?” and “are there UML design elements that
are spurious or that have no purpose (as they cannot be traced to any goal,
directly or indirectly)?”. This profile’s implementation enables modelers to get
answers to such important questions, which would be difficult to get otherwise.

We then compared the resulting diagrams with GRL diagrams obtained from
jUCMNav [14], a dedicated URN modeling tool. A profile-based editor can hardly
compete with a specialized editor from a usability perspective and in terms of
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Fig. 10. UML Profile for GRL with MEM in Tau 4.0 (Extract)

how good the diagrams look (compare jUCMNav’s GRL diagram from Fig. 2
with Tau’s in Fig. 9). Yet, it is actually possible to capture goal concepts, at-
tributes, and relationships from within a UML tool (with much of the syntax
and a palette supported), and integrate them to the rest of the UML model.

We were also able to identify some limitations of Tau that had some impact on
the appearance of the resulting diagrams (some of which were already reported
in [2]). Among others, adding icons to qualify links (e.g., qualitative GRL contri-
butions) and visually embedding GRL intentional elements inside the boundaries
of actors proved to be impossible with the version of Tau we used (see Fig. 9).
The constraints defined in the profile, discussed in Sect. 3.3, cannot be easily
supported as there is no constraint language such as UML’s OCL (although con-
straint verification procedures could be defined in a language like C++ using
the notion of Tau agents).

5 Related Work

Little research has addressed UML profiling for goal modeling. Supakkul and
Chung [18] proposed a metamodel for NFR concepts that is integrated with the
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UML metamodel through the use of a UML profile. The integration of UML
and NFR notations occurs in a Use Case diagram. NFRs are represented as
softgoals and associated with appropriate Use Case model elements. The authors
implemented their work and illustrated it with a case study. A difference between
this work and ours is that the former is restricted to NFRs. They also used an
SM-based approach for the implementation, which does not prevent diagram
(and concept) pollution.

A metamodel for enterprise goal modeling is proposed by Grangel et al. [7].
It distinguishes four different conceptual constructs: Objective (to represent tar-
gets that enterprises want to achieve), Strategy (to describe how the enterprise
wants to achieve the proposed objectives), Plan (to represent the organization
of the work at different hierarchal levels in order to accomplish the objectives
and strategy) and Variable (to represent any factor that is able to influence the
execution of the plans defined in the organization). A UML profile based on
the metamodel has been implemented in IBM Rational Software Modeler De-
velopment Platform and in MagicDraw UML 12.0. Our goal metamodel appears
more general and standard than the one in [7], which is specialized for enterprise
goals. The profile implementation mechanism also appears to be an SM-based
approach.

An approach for the integration of functional and non-functional requirements
(NFR) is discussed by Cysneiros and Leite in [5]. The authors propose a junction
point between the functional and the non-functional requirements development
cycles named Language Extended Lexicon (LEL). The proposed approach is
intended to cover all types of UML diagrams. For instance, a UML class diagram
is integrated with related NFRs by having every root of each NFR graph refer to
a LEL symbol and every class of the class diagram named using a LEL symbol.
This approach is however not really defined as a UML profile. Similarly, van
Lamsweerde presents an approach where goal modeling with KAOS is integrated
with UML modeling, but not at the profile level [19].

6 Conclusion

In this paper, we presented a UML profile for goal-orientedmodeling. Our research
hypothesis is that UML can be profiled to support such modeling with a semantics
rooted in a standard metamodel such as that of URN’s Goal-oriented Requirement
Language. A profile based on a mature and a stable metamodel that has been al-
ready used by editors and in analysis techniques is likely to represent a better al-
ternative to the few existing solutions that currently exist and that were reviewed
in the previous section. The definition of such profile should also be done accord-
ing to standard recommendations such as Z.119. Z.119 provided us with useful
guidance on the structure and the level of detail required for a good profile, but it
was limited in guiding the selection of suitable metaclasses in UML corresponding
to our GRL concepts. The implementation of the profile also enables models that
can combine goal-oriented concepts with object-oriented concepts in a way that is
comprehensible by the UML community at large.
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We demonstrated that UML can indeed be profiled in such a way, and that it
is possible to provide corresponding tool support through a commercial, profile-
enabled UML environment (Tau in our case). An implementation approach based
on UML’s metamodel extension mechanism further enables the integration of
goal modeling concepts with UML’s in a tool while avoiding diagram pollution.
Overall, this satisfies the desirable properties specified in the introduction.

Future extensions of this profile should include support for GRL strategies,
which describe what-if scenarios to analyze GRL models and which are part of
URN. The profile should eventually be extended to encompass URN entirely
by also including Use Case Map scenario concepts. This would be in line with
ITU-T’s objective of having UML profiles for its formal languages (one such
profile exists for SDL, namely Recommendation Z.109). Improvements to UML
tools supporting profiles would also help cope with the complexity of supporting
such modeling notations. The scalability, usability and acceptance by modelers of
such a profile are also important research questions that deserve deeper studies.
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Abstract. Creating debuggers for languages has always been a hard
task. The main reason is that languages differ a lot, especially in the
way programs are executed on underlying platforms. The emergence of
metamodel-based technologies for defining languages simplified the cre-
ation of various language tools, e.g., creating editors from notation de-
scriptions became common practice. Another, relatively recent, example
is the metamodel-based description of execution semantics from which
an interpreter can be derived. Such a semantics allows one to apply a
model-based approach also to debugger development. In this paper, we
demonstrate how a debugger can be modelled for an imperative voice
control language. We show models of the debugging context, breakpoints,
and stepping of voice control programs. These models are processed by
a generic debugger.

1 Introduction

Debuggers are critical tools in software development. They are used by program-
mers to determine the cause of a program malfunction or simply to understand
program execution behaviour. Programmers can follow the flow of execution
and, at any desired point, suspend further execution and inspect the program’s
state. Execution may either be suspended manually or by setting breakpoints at
well-defined program locations. A debugger then visualises the program’s state.
It presents all relevant information in the current context of execution, such as
visible variable values and the program location.

Debuggers are well-known for general-purpose languages (GPLs). But, they
can also be useful for executable domain-specific languages (DSLs). These lan-
guages are tailored to specific application domains. They allow developers to use
specific concepts and notations to create programs of a corresponding domain
with more concise and readable expressions than in GPLs.

In traditional language engineering, tools including debuggers are usually im-
plemented by hand. But this can be too expensive for DSLs if they are used
in small projects. It can also be a problem for bigger languages, e.g. UML or
SDL, which are first specified in a standardisation process before tools are im-
plemented by hand. Such manual implementation not only causes a gap between
specification and tools but also delays tool availability.

R. Reed, A. Bilgic, and R. Gotzhein (Eds.): SDL 2009, LNCS 5719, pp. 149–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A new language description technique that makes both language and tool
development less expensive is metamodelling. It allows the description of the
different aspects of a language with models, from which tools can be derived [1].
This is, for example, done for editors and interpreters, but there is currently no
such technique for modelling debuggers.

The reason for this is that debuggers heavily depend on how language instances
are executed and how runtime states can be extracted [2]. Execution semantics can
either be described by a transformation to another language or by interpretation.
In transformational semantics, debuggers depend on operating system capabilities
and also on compilers and linkers that generate the symbol table and align target
code. Debuggers for interpreted languages depend on language-dependent inter-
preter interfaces. Such dependencies make it hard to developa modelling technique
for debuggers and to implement a generic debugger.

What can already be implemented in a generic fashion is the graphical user in-
terface part of a debugger because it is similar in many debuggers. The Eclipse
Debugging Framework (EDF) [3] is such an implementation. It defines a set
of Java-Interfaces, which concrete debuggers must implement. The EDF pro-
vides generic functionality on the basis of these interfaces. They forward user
interactions to concrete implementations and they query them for debugging
information that is displayed in the user-interface.

In this paper, we advance this state-of-the-art with a technique for modelling
debuggers. It requires a metamodel-based description of the abstract syntax of
a language and an operational semantics. Such language descriptions allow:

1. access to runtime states easily via model repositories, and
2. control of execution at the granularity of operational semantics steps.

Our approach is based on an EDF-based implementation of a generic debugger
and descriptions for specific DSL debuggers. In contrast to generated tools, the
generic debugger processes DSL-specific debugging descriptions and allows for
domain-specific debugging of DSL programs. With our approach, the debugging
of a DSL is described on the basis of its metamodel. It consists of various descrip-
tions of debugging concepts: context information, program locations, breakpoints
and step-operations. We demonstrate a description of these concepts with the
sample DSL Voice Control Language (VCL).

In the following section, we present the foundations of our approach in more
detail and we explain the language description of VCL in special example sec-
tions. Section 3 explains our approach for modelling debuggers. We demonstrate
the modelling of a debugger for VCL in Sects. 4 and 5. The paper ends with a
short conclusion and future work in Sects. 7 and 8.

2 Foundations

We use the Eclipse Modeling Framework (EMF) [4] as a metamodelling frame-
work for MOF-based metamodels [5] and the operational semantics framework
EProvide [6] for executing DSL programs according to an operational semantics
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description. Although we use EMF and EProvide, the approach is not limited to
these tools. It may also be applied to other MOF-based metamodelling frame-
works and other descriptions of operational semantics.

2.1 Metamodelling

A metamodel defines the abstract syntax of a language. It describes the structure
of a set of possible language instances with object-oriented description means,
e.g. classes, attributes, and associations. Language instances are models that
contain instances of metamodel elements, e.g. objects, attribute values, and links.

Metamodelling frameworks such as EMF allow working with metamodels and
models. They provide a model repository, editors and a programming environ-
ment, e.g. Java, that can be used to write programs on the basis of a metamodel.

Example 1 An example DSL is the Voice Control Language (VCL). It is an
imperative language that can be used to write programs for controller modules
connected to a telephone. Besides concepts of imperative languages, e.g. variables
and control structures, VCL also contains domain-specific concepts like say text,
perform action and listen for key press. These concepts and their relations are
defined by the metamodel, depicted in Fig. 1.

Basically, VCL programs consist of reusable Modules that contain sequences
of Actions. There are domain-specific Actions like SayText and Listen but also
ones that remind us of GPLs like EnterModule, Decision and Assignment. Ex-
pressionActions can access Variables that save program state. They have to be
declared local to a specific module or global to all modules. For simplicity reasons
Variables are always of type Integer.

A sample instance of the metamodel is depicted in Fig. 2. It is a gambling
game, called probe game. The game can be played by calling a telephone that is
connected to a corresponding controller. It randomly chooses between 0 and 1
and it tells you to make a guess. You either win the game with three successful
probes or you lose it after three tries.

At the program level the global variables score and tries are declared. Exe-
cution begins in the main module probe. It first outputs some information to
the caller and then assigns initial values to the global variables. Next is a while
action, which is executed if there are tries left. Execution then proceeds in the sub
module doProbe. Modules can be compared to functions in GPLs. The module
doProbe declares the local variables in and result. The first action listens for
one of two possible inputs. It then assigns in to either 0 or 1. After the listen
action, a random number between 0 and 1 is computed via an external system
call. If the result matches the value of in, the caller gets a point. In either case
the caller’s tries are decremented. The module doProbe is left after execution of
the last action has been completed. Execution continues after the EnterModule
action in the main module probe. The section startConfig defines a number of
initial inputs. They let a language developer test the program.

The textual representation of VCL instances is defined with TEF [7]. It allows
description of textual notations and derivation of textual editors automatically.
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Fig. 1. VCL metamodel

2.2 Operational Semantics

An operational semantics defines the execution of language instances as a step-
wise transition of a runtime state [8]. In a metamodel-based operational semantics,
possible runtime states are modelled as part of a DSL metamodel and transitions
are defined as model-to-model transformations. Such transformations can be de-
fined with EProvide in one of various languages, e.g. Java, QVT, ASMs, Prolog or
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program probeGame {
decl score, tries;
mainModule probe {

say "probe on 0 or 1";
        score = 0;
        tries = 3;

while tries > 0 {
enter doProbe;
if score = 3 {

                tries = 0;
say "you win";

            }
        }

if score < 3 {
say "you lose";

        }
    }

module doProbe {
decl in, result;
listen {

0 : "probe 0" : in = 0;
1 : "probe 1" : in = ;

        }
        result = sys "random" (0, 1);

if result = in {
            score = score + 1;
        }
        tries = tries - 1;
    }

startConfig {
input = [0, 1, 2];

    }
}

1

Fig. 2. Probe game written in VCL

Scheme. On the basis of such a definition, EProvide executes DSL instances step-
wise. DSL developers can use the Eclipse launching dialog for specifying execution
parameters, and they can control execution at the granularity of operational se-
mantics steps. But up to now, EProvide does not support debugger features such
as a variable view or more complex stepping.

Example 2 To define the operational semantics of VCL programs, we extend
the metamodel with a description of possible runtime states (emphasised ele-
ments in Fig. 1), e.g., the class Environment, which holds user inputs and pro-
gram outputs, and the reference Program.nextAction, which plays the role of an
instruction pointer.

We define the transformation (step) and an initial state (reset) in Java (see
Listing 1). It defines that in each step, one action is to be executed. Actions
process inputs and outputs, which are contained in an Environment object. Inputs
are numeric keys pressed on a telephone key pad. They are consumed by Listen
actions that define actions to be taken. Outputs are strings spoken to the caller.
They are produced by SayText actions. All other actions define program state
computations and conditional execution of actions.

2.3 Model Transformations

In our approach, we also use model-to-model transformations in the transforma-
tion language QVT Relations [9]. A transformation is described on the basis of
a source and a target metamodel. One specifies complex object patterns that,
when found in a source model, result in matching another object pattern in a
target model. If the target pattern does not exist, objects, links and values are
created.

A transformation specification consists of a set of top-level relations that must
hold in order for the transformation to be successful and ordinary relations that
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public class JavaSemanticsProvider implements ISemanticsProvider {

public void step(Resource model) {
Program program = getProgram(model);
...
Action action = program.getNextAction();
if (action == null) return;
if (action instanceof SayText) {

program.getEnv().getOutputBuffer().add(((SayText) action ).getText ());
}
else if (action instanceof Listen ) { ... }
program.setNextAction (...);

}

public void reset (Resource model) {
Program program = getProgram(model);
Action firstAction = program.getActions().get (0);
program.setNextAction( firstAction );
program.getEnv().getInputBuffer (). clear ();
program.getEnv().getOutputBuffer(). clear ();

}
}

Listing 1. Operational semantics description for VCL programs

are executed conditionally in when and where clauses. A relation needs to hold
only when the relations in its when clause hold. A relation called in a where
clause needs to hold only when the calling relation holds.

3 An Approach for Modelling Debuggers

The DSLs that are used in our approach are special in two ways. First, their run-
time state is completely contained in a model. This makes it possible to describe
a debugging representation of a DSL instance on the basis of its metamodel. Such
a representation is defined by a model-to-model transformation of DSL instances
to instances of a debugging metamodel, e.g. in QVT Relations. The debugging
metamodel describes concepts for visualising threads, stack frames, variables and
values; its instances are mapped to objects in EDF, which are displayed in the
user-interface. Besides such state information, program locations are another part
of a program’s runtime state. Model objects that represent program locations are
extracted by model queries and then highlighted in a concrete syntax.

The second characteristic is the step-wise execution of DSL instances. This
makes the implementation of a generic debugger possible, which checks a pro-
gram for active breakpoints to suspend further execution. Breakpoints are based
on possible program locations. They can be installed for model objects that
may represent program locations. Execution automatically suspends if an object
that was marked as a breakpoint is included in a query for program locations.
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Step-Operations, e.g., step-into, step-over, and step-return, are described simi-
larly by model queries that extract model objects for target program locations.
For such target locations, temporary breakpoints are installed and execution
automatically suspends when one of those breakpoints is reached.

4 Debugging Context

The presentation of context information is one of the major tasks of a debugger.
Context information exists when the execution of a program is suspended. It tells
a user where execution currently resides, how execution reached this point and
what the values of visible variables are. Context information is derived from the
runtime state of a program and displayed in different views in the user-interface
of a debugger. The location where execution currently resides is referred to as
the current program location. It is usually highlighted in an editor for a language.
Information about how execution reached a program location includes:

1. concurrency information, e.g. information about threads, and
2. information about program parts that were activated during execution.

An example for activations are stack-frames that are created for function invo-
cations. We refer to runtime elements that contain such activations as activation
frames. Each concurrency context contains a sequence of activation frames that
reflect the point in time where parts of a program were activated. By selecting an
activation frame, information about variable structures is displayed as variables
and values.

Example 3 Figure 3 displays the context information of a VCL program. We
can see that the current program location is a While action (editor in the middle),
that the module probe has been entered to reach this location (left side) and that
the variable score is allocated to the value 0 (right side).

The context information that is displayed depends on the current selection of
elements in a debugger’s user-interface. An example is the selection of activation
frames, which determines the presentation of visible variables and values. We de-
fine a debugging context to include runtime information of a suspended program

Fig. 3. VCL debugger
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that is relevant to debugging, depending on the current selection of debugger
elements. A debugging context includes the following types of information:

1. a set of concurrent execution contexts,
2. a sequence of currently activated program parts as activation frames,
3. a set of visible variables and their values, and
4. a program location.

Information types 1-3 are referred to as debugging state information and are not
described in the same way as program locations. There can be many debugging
contexts and many debugging states in a suspended program.

4.1 Debugging State

Debugging state information is represented as structured data in two different
views of a debugger. Such data can be described by a metamodel as depicted in
Fig. 4. The metamodel defines concepts for representing all possible debugging
states and their relationships. The presentation of one of these debugging states
depends on the current selection of an activation frame. The metamodel is thus
referred to as debugging states metamodel.

All concepts have a textual representation that is defined by the attribute
labelText in class LabeledElement. The root element of a debugging state is an
MProgramContext. It contains information about concurrently executing pro-
gram parts as MConcurrencyContexts. Each such context holds a sequence of
activated program parts as MActivationFrames. Activation frames contain visi-
ble variables and their values as MVariables and MValues. A variable may also
contain other variables.

The generic debugger processes debugging state models and presents them in
the user-interface. What has to be supplied is a mapping of possible runtime

Fig. 4. Debugging states metamodel
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states of DSL programs to instances of the debugging states metamodel. Such a
mapping can be defined as a model-to-model transformation in QVT Relations.
On the basis of a mapping the generic debugger computes a debugging state
model and display its content.

Example 4 For VCL, the mapping is defined in 115a lines of QVT Relations
statements. Table 1 summarises the mapping. The table shows how VCL in-
stances and their attributes are mapped to debugging states instances. We use
the colon notation o:Class to indicate the presence or the creation of an object
o for class Class and we use the punctuation notation o.assocEnd for referring
to attributes or association ends.

The first row indicates that each instance of Program is mapped to an in-
stance of MProgram plus an instance of MConcurrencyContext. VCL does not
define concurrent execution of program parts. Therefore a mapping to a dummy
MConcurrencyContext is necessary in order to map activation frames. The pro-
gram’s name p.name maps to the label of MProgramContext mp.labelText. The
module that the next action is contained in p.nextAction.module maps to an ac-
tivation frame in cc.frames. If the module was entered from another action and
thus p.nextAction.module.return is not null, an activation frame is created in
cc.frames. The mapping continues recursively for the entering action. After these
explanations, the rest of the table should be comprehensible to the reader.

An excerpt of the QVT Relations transformation is displayed in Listing 2.
The top-level relation localVar corresponds to the emphasised row in Table 1.
It maps local VCL variables to debugging state variables. The relation needs to
hold only if the relation frame(m,af) holds, i.e. there must be an activation frame
af for the module m. The source object pattern checks for local variables and
enforces corresponding MVariables to exist. The transformation then continues
in the where clause, which maps the variables values.

With such a transformation, a debugging states model can be created and
displayed by the generic debugger, e.g. the left and right side of the VCL debugger
in Fig. 3.
a Line measurements in this paper do not include comments, empty lines and lines

with ending braces.

4.2 Program Location

A program location is a highlighting of an element in the notation of a program
that is somehow related to the current point of execution. There are different kinds
of program locations. Current program locations exist for every concurrent exe-
cution context. They highlight a part of a program that will be executed when
execution continues. Besides current program locations, debuggers usually also
display context-dependent program locations for selected activation frames. These
program locations highlight a part of a program that is currently being executed.

In GPLs, program locations are often displayed as highlighted statements in a
textual concrete syntax. These statements are derived from some kind of instruc-
tion pointer. But metamodel-based DSLs are not necessarily textual and they do
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Table 1. Mapping VCL instances to debugging states instances

VCL instance debugging states instance

p:Program mp:MProgram, cc:MConcurrencyContext
p.name mp.labelText

cc.labelText = ’dummy concurrency context’
p.nextAction.module cc.frames
p.nextAction.module.return ... cc.frames
p.env cc.frames.variables
p.globalVars cc.frames.variables

m:Module af:MActivationFrame
m.name af.labelText
m.localVars af.variables

v:Variable mv:MVariable
v.name mv.labelText
v.value val:MValue, val.labelText = v.value, mv.value = val

e:Environment env:MVariable
e.inputBuffer in:MVariable, env.innerVariables = in
e.inputBuffer.EInt iv:MValue, iv.labelText = EInt, in.value = iv
e.outputBuffer out:MVariable, env.innerVariables = out
e.outputBuffer.EString ov:MValue, ov.labelText = EString, out.value = ov

not need to define explicit instruction pointers. Generally, a program location of
such DSLs results from arbitrarily connected objects and their attribute values.
Possible program locations are described by formulating an OCL [10] query that
extracts model objects from the runtime state of a program. These model objects
represent program locations and are highlighted in a notation of the program.

An example are Petri nets. The current program locations of a Petri net are de-
termined by active transitions that are the result of a set of place objects and their
markings. Program locations cannot be described by identifying static structures
in a Petri net metamodel because there does not have to be an explicit reference
to active transitions. Instead, a model query is necessary that extracts them.

Model queries for program locations are naturally described by OCL queries.
But practical realisation requires a connection to an OCL editor, which we did
not implement in our approach. Instead, program locations have to be described
by implementing a Java interface that is defined by the generic debugger. In
order to describe program locations in OCL, some additional code is necessary
that evaluates OCL queries via MDT OCL1 [11]. The generic debugger processes
such descriptions when execution has suspended and informs appropriate editors
that queried objects need to be highlighted.

The problem when highlighting current program locations is that there can be
many such locations if there are multiple concurrent execution contexts. Con-
text information is used to restrict these locations to one context-dependent

1 MDT OCL is an Eclipse-based OCL implementation for EMF.
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transformation RuntimeStateToDebuggingState(vclModel:vcl, dsModel:debuggingstate) {
top relation localVar {

n: String ;
checkonly domain vclModel m : vcl::Module {

localVars = lv : vcl :: Variable {
name = n

}
};
enforce domain dsModel af : debuggingstate ::MActivationFrame {

variables = var : debuggingstate :: MVariable {
labelText = n

}
};
when { frame(m,af); }
where { lv. value . oclIsUndefined () or value( lv , var ); }

}
...

Listing 2. QVT transformation for mapping VCL programs to debugging state models

program location. The interface that has to be implemented defines the oper-
ations getCurrentLocations and getLocationInActivationFrame (see Listing 3).
The first operation is purely used for breakpoint checking, which is explained in
Sect. 5.1, and only the second operation is actually used for highlighting program
locations on the basis of a selected activation frame.

Example 5 In VCL, there is only one current program location, which is deter-
mined by the next action to be executed. This action is defined by the current al-
location of Program.nextAction. Thus, the program location can be described by
the following OCL query: Program.allInstances()->collect(p : Program |

p.nextAction)->asSet(). It extracts all instances of Program and for the one
program that exists, it retrieves the current allocation of nextAction. The com-
plete Java implementation consists of around 30 lines of code.

5 Execution Control

Basic execution control is already part of the generic interpreter EProvide. It
allows to start, suspend, and terminate execution and to step forward and back-
ward at the granularity of operational semantics steps. For a full-featured de-
bugger, breakpoints and additional step-operations are necessary.

5.1 Breakpoints

Breakpoints are markings of possible program locations where execution should
automatically be suspended. The generic debugger inspects the current program
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public class VclSyntaxLocationProvider implements ISyntaxLocationProvider {

public Collection <EObject> getCurrentLocations(Resource model) {
// query model objects by using the Java API of MDT OCL
// or by accessing the model with Java directly .

}

public EObject getLocationInActivationFrame(EObject dslFrame) {
if (dslFrame instanceof Module) {

Module module = (Module) dslFrame;
Action nextAction = ((Program) module.eContainer()).getNextAction();
// determines the currently executing action in the given module recursively .
return getActionForModule(nextAction, module);

}
return null ;

}
...

Listing 3. Description of current program locations for VCL

locations for breakpoint markings after each operational semantics step and sus-
pends or continues further execution. This way, DSL developers do not need to
describe the reaching of breakpoints explicitly. What has to be supplied is a de-
scription of a marking function that checks whether a breakpoint marking for cer-
tain model objects should be allowed or not. The function has to be defined by
implementing the Java interface IBreakpointDescription. It is used by the generic
debugger when a user selects model objects in Eclipse (see Fig. 5). If the marking
function evaluates to true, a special breakpoint activation entry is added to the
context menu. Such a breakpoint description makes it possible to implement the
breakpoint parts of the generic debugger in a completely generic way.

Example 6 For VCL, breakpoints can be added only to Actions. The code in
Listing 4 shows an implementation in Java.

Fig. 5. Context menu for activating breakpoints
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public class VclBreakpointDescription implements IBreakpointDescription {
public boolean isBreakpointable(EObject object) {

return object instanceof Action;
}

}

Listing 4. Description of breakpoints for VCL

public class VclSyntaxLocationProvider implements ISyntaxLocationProvider {
...
public Collection <EObject> getStepOverLocations(EObject curLocation) {

Collection <EObject> locations = new HashSet<EObject>();
if (curLocation instanceof EnterModule || curLocation instanceof Listen

|| curLocation instanceof Conditional ) {
Action action = (Action) curLocation ;
locations .add(action . getAfterAction ());
return locations ;

}
return null ;

}
public EObject getStepReturnLocation(EObject dslFrame) {

if (dslFrame instanceof Module) {
Module module = (Module) dslFrame;
if (module.getReturn() != null) {

module.getReturn().getAfterAction ();
}

}
return null ;

}
}

Listing 5. Description of step-operations for VCL

5.2 Step-Operations

Step-Operations allow to continue execution to a certain point. In an operational
semantics step-operations result in the execution of several transformations until
a certain state is reached. The state is determined by extracting target program
locations from a program. At these locations, temporary breakpoints are in-
stalled and execution suspends again when one of these breakpoints is reached.

There are different kinds of step-operations. A step-over executes invocations
of functions to completion. It depends on a program location, which is deter-
mined by a currently selected activation frame. On the basis of such a location,
target program locations are extracted from the program. Generally, there are
many target locations because execution may proceed at one of several pro-
gram locations. Such a situation arises if continuation causes the execution of a
conditional expression, for example an if-expression.
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A step-return executes a currently entered function until completion, i.e. exe-
cution continues at the caller of the function. The target of a step-return depends
on a selected activation frame. On the basis of such a frame, target program lo-
cations are extracted from the program.

The step-operation step-into is the default operational semantics step. Like
program locations, step-operations are also described by implementing the Java
interface ISyntaxLocationProvider.

Example 7 For VCL, step-operations are described in Java as displayed in List-
ing 5. A step-over can be performed for the actions EnterModule, Listen and
Conditional. Execution continues at the action that is located right after the cur-
rent action at the same branching level. For example, in a Decision action it is
the action that follows the Decision action.

The target of a step-return is extracted from the selected activation frame,
which is in the case of VCL a module. The generic debugger keeps track of source
objects that activation frames are created from. Such a source object is provided
as parameter dslFrame. The target is the action that follows the EnterModule
action, that caused the entering of the current module.

6 Related Work

An approach for generating debuggers for grammar-based DSLs is the DSL De-
bugging Framework (DDF) [12]. The abstract syntax of a DSL has to be defined
by a grammar and its execution semantics by a transformation to a general-
purpose language (GPL) like Java. DSL debuggers are based on a mapping
between DSL and GPL code and a GPL debugger. While a mapping describes
the debugging concepts of a DSL, the actual debugging process works on the
GPL level by using the GPL debugger. Mapping information is used to map
DSL debugging commands to GPL debugger commands and GPL debugger re-
sults back to DSL results. The approach is limited to textual languages and it
needs a GPL debugger for the target language.

Other approaches like ldb [13] and cdb [14] concentrate on generic debuggers
for the programming language C. These debuggers can be re-used for varying
target architectures, i.e., varying operating systems, compilers and machine ar-
chitectures. They define a machine independent interface for common debugger
actions, e.g. setting breakpoints or reading variable values. The interface has to
be implemented for each target architecture. It encapsulates the technical and
machine-dependent parts of a C debugger. The debugger itself is implemented
on the basis of the machine-independent interface. This approach is also lim-
ited to grammar-based languages. Furthermore, execution semantics need to be
defined by a special compiler (lcc) that automatically generates information for
the debugger.
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7 Conclusion

We presented a novel approach for modelling debuggers of metamodel-based
DSLs that have an operational semantics definition2. The complete debugging
description for VCL programs consists of around 160 lines of different descrip-
tions in OCL, Java, and QVT. We are confident that such a description is a lot
smaller and less expensive than a manually implemented debugger, although a
direct comparison has not yet been conducted.

8 Future Work

We believe that our approach can also be applied to other metamodel-based lan-
guages, e.g. UML activities and the Object Constraint Language OCL. Future
work could deal with the description of debuggers for such languages. Our expe-
rience with the sample language VCL shows that the availability of descriptions
of runtime states and operational semantics is the main obstacle. But if there
are such descriptions, debugging can be described with little effort.

Another area of interest is how the mapping for debugging states is described.
Our experience shows that the structure of debugging states is, without any or
with little structural changes, already part of a DSL metamodel. Consequently,
another way to define the mapping could be to add inheritance relations between
the classes of a DSL metamodel and the classes of the debugging states meta-
model. Debugging state classes could declare associations as derived and DSL
classes could specify how these associations are derived. This way, every DSL
instance would also be a debugging state instance and could instantly be pro-
cessed by the generic debugger. We believe that such a mapping would be easier
to define and would execute faster than a transformation in QVT Relations.
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Abstract. The ARC (Agent, Role, Coordination) programming model
is an evolutionary synthesis of established software technology that helps
model-driven pervasive software applications to effectively utilize the
parallelism on multicore processors. Computational entities in the ARC
programming model are composed of role-based agents, exposing natural
opportunities for inter-entity and intra-entity parallelism and facilitating
collaboration-based designs. The coordination required by collaboration-
based designs is separated from other computation and enacted via coor-
dination agents upon coordinated role-based agents. The implementation
of the ARC programming model is responsible for mapping relatively ab-
stract model-level parallelism to the target platform and exploiting the
available processor-level parallelism.

1 Introduction

Computation is being influenced by the convergence of two technological trends:
parallelism and pervasiveness. The trend toward parallelism is apparent in the
direction of commodity microprocessors, where the emphasis is now on increas-
ing the number of processors (cores) per chip. The new interpretation of Moore’s
Law states that the number of cores per chip will likely double every two to three
years. The trend toward pervasiveness implies that open and distributed appli-
cations will continue to proliferate. The question of how to program pervasive
applications to execute on parallel hardware is therefore an important one.

While the shift to multicore processors represents a revolution in computer
hardware, the software response will necessarily be more evolutionary. Ideally,
multicore processors could be exploited through synthesis and extension of estab-
lished programming models and software technology. We believe that effective
exploitation of multicore processors is facilitated by a programming model in
which parallelism is intuitive, manifest, and relatively abstract. The desire for a
higher level of abstraction aligns with approaches to model-driven engineering
(MDE) [1] such as the model-driven architecture (MDA) [2]. In the MDA, the
specification and design of a software application is separated from the specifica-
tion of the platform technology used by the application. The basis of the MDA
is a platform-independent model (PIM) of the system of interest and the (auto-
mated or manual) translation from a PIM to a platform-specific model (PSM).
The effective exploitation of available hardware parallelism is then a concern of
the toolchain that generates a deployable executable from the PIM and PSM.

R. Reed, A. Bilgic, and R. Gotzhein (Eds.): SDL 2009, LNCS 5719, pp. 165–181, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A PIM may be specified using SDL-2000 [3] exclusively or using the Uni-
fied Modeling Language (UML) [4] combined with SDL-2000 [5]. In either case,
SDL-2000 defines the executable semantics of the PIM. SDL-2000 embodies
decades of experience in the development of the distributed systems prevalent in
pervasive computing and also enables the specification of parallel computational
agents. Conceptually, each parallel agent has a dedicated thread of control, al-
though the PSM implementation may be specialized to the actual parallelism
available on a particular processor provided the conceptual model is not violated.
Exploiting massive multicore parallelism in an SDL-2000 MDE application re-
quires the PIM to be effectively decomposed into parallel agents. Opportunities
for parallelism should be exposed while retaining a convenient and intuitive pro-
gramming model. It has been argued that if concurrency was intrinsically diffi-
cult, humans would not function well in a physical world filled with concurrent
activity. Of course, humans and other entities, both animate and inanimate,
often successfully play several roles concurrently. Further, the roles played by
an entity that are of interest to observers determine the points-of-view from
which the entity is considered. Consequently, the role concept has significantly
influenced software development. We believe that parallel role-based agents offer
a convenient and intuitive programming model for structuring an MDE appli-
cation specified as an SDL-2000 PIM. The executable PSM generated for an
SDL-2000 PIM exploits parallel role-based agents to efficiently utilize multicore
parallelism while shielding application developers from the complexities of low-
level synchronization.

A programming model with role-based agents also enables collaboration-based
designs. A collaboration is a collection of roles played by participating entities
that cooperate to achieve an application feature. The cooperation among roles
within collaboration-based designs is a particular concern in the model of compu-
tation provided by SDL-2000. Parallelism among agents implies the need for co-
ordination, but SDL-2000 does not enable the coordination of groups of agents to
be specified in a convenient and modular fashion. Communication among agents
may be asynchronous and may be subject to arbitrary delay, which implies that
the order in which messages are received by agents may be nondeterministic. If
an application requires an agent to process a set of messages received on multiple
channels in a deterministic order, the application must specify such determinism
within the behavior of the agent. Similarly, if an application requires that a set
of messages be processed by a set of agents in a deterministic order, the applica-
tion must specify message and behavior protocols that will result in the desired
determinism. When such protocols are explicitly specified for individual agent
behaviors, the protocols result in cross-cutting concerns that become entangled
within agent behaviors.

The ARC (Agent, Role, Coordination) programming model helps pervasive
software applications effectively utilize the parallelism on multicore processors.
The ARC model uses an extended dialect of SDL-2000 (SDL-ARC) and is a
novel but evolutionary synthesis of established software technologies, including
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role-based modeling, split objects, and aspect-oriented programming (AOP).
The ARC model has several distinguishing features.

• Computational entities are composed of role-based agents, exposing inter-
entity and intra-entity parallelism and enabling collaboration-based designs.

• The coordination required by collaboration-based designs is separated from
other computation and enacted via coordination agents upon coordinated
role-based agents.

• A program in the ARC model is a PIM, and the associated PSM implemen-
tation maps the explicit and relatively abstract model-level parallelism to
the target platform, exploiting the available processor-level parallelism.

This paper examines the distinguishing features of the ARC programming model.
Section 2 examines the structure of computational entities and the role-based
agents that compose them. Section 3 examines the coordination required by
collaboration-based designs. Section 4 surveys the realization of the ARC model.
Section 5 discusses related work. Section 6 concludes the paper.

2 Agents, Entities, and Roles in the ARC Model

The ARC model is a conservative synthesis and extension of established software
technology intended to help exploit multicore processors while preserving the
accepted and familiar semantics of the contributing technology. This section
introduces computational entities composed of SDL-2000 agents and organized
on the basis of a synthesis of role-oriented modeling and split objects. The roles
played by an entity are often relatively independent, which implies that the roles
may effectively execute in parallel, subject only to data dependencies within the
entity. This simple observation is fundamental to the design of the ARC model.

2.1 Agents

The agent is the fundamental unit of specification in SDL-2000. The specifica-
tion of an agent may include three optional sections: local attributes (parameters,
variables, procedures), behavior, and internal structure. The behavior of an agent
is specified via a communicating Extended Finite State Machine (EFSM) [6]. The
concurrency within an agent with internal structure is specified by defining the
agent as either a block agent or a process agent. In a block agent, the behavior
of the agent and the behaviors of all internal agents execute concurrently within
dedicated conceptual threads of control. In a process agent, the behavior of the
agent and the behaviors of all internal agents alternate execution within a sin-
gle conceptual thread of control. An SDL-2000 system is a special block agent
with the capability to communicate with the environment. The system agent is
typically decomposed into block agents that represent subsystems, which may
be further decomposed as appropriate. Ultimately, several process agents are
typically required to interact, and it is at this level that the ARC programming
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Fig. 1. Block and Process Agents in SDL-2000

model is focused. For example, Fig. 1 illustrates a block agent B with two in-
ternal block agents, B1 and B2. Agent B1 is composed of process agents PA and
PB. Agent B2 is composed of process agents PX, PY, and PZ. There are eight
conceptual concurrent threads of control, including the EFSM behaviors of the
five process agents (denoted by octagons) and the EFSM behaviors of the three
block agents (denoted by rounded rectangles).

The advent of multicore processors has triggered renewed interest in the Actor
model [7], since the Actor model seems well-suited to the expected computational
trends. A natural mapping exists between SDL-2000 agents and actors. SDL-2000
agents are active, autonomous, and encapsulated. Encapsulation ensures that in-
teraction with an agent is accomplished strictly through signal exchange. Since
the internal state of an agent is protected from direct external access, auton-
omy is ensured. Each agent has a unique, invariant identity and its own input
queue where signals are received and buffered. An agent processes its signals
serially and to completion. Thus, the complexities and hazards of concurrent
access to the encapsulated state of an agent are not an issue in SDL-2000, which
is a major advantage over multicore programming models in which explicitly
synchronized access to shared memory predominates. The concurrency that ex-
ists both within and between SDL-2000 block agents is manifest and relatively
abstract and safe. The combination of asynchronous and synchronous commu-
nication also enables an effective and intuitive parallel programming model. All
agents with a dedicated conceptual thread of control execute asynchronously,
and synchronous communication is used only when dictated by control or data
dependencies among agents.

2.2 Entities and Roles

As multicore processors become massively parallel, it is important to maximize
the parallelism among SDL-2000 agents. A software system is typically composed
of a relatively small number of block agents that represent the structural hier-
archy of subsystems within the application. The additional parallelism required
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to exploit massively multicore processors must be exposed at the level of the
process agents that interact within subsystems. However, the required increase
in parallelism must be balanced with the need for an intuitive and convenient
programming model at the level of process agents. We believe that such a model
can be synthesized from two established models that are based on the notion
of software viewpoints: role-oriented modeling and split objects. In role-oriented
modeling [8] the features of an object are classified as either intrinsic or extrinsic.
The intrinsic features of an object are allocated directly to the object, while the
extrinsic features are allocated to the various roles played by the object in order
to collaborate with other objects in an application. The following properties of
roles are commonly accepted.

• Abstractivity: Role generalization and inheritance hierarchies may exist.
• Aggregation/Composition: Roles can be composed of other roles.
• Dependency: A role cannot exist without an object. The methods of a role

may be defined in terms of the methods of the object, but not vice versa.
• Dynamicity: An object may add and remove roles during its lifetime.
• Identity: An object and its roles constitute a single entity with one identity.
• Multiplicity: An object may play several roles simultaneously, including mul-

tiple instances of the same role.
• Visibility: Access to an object is restricted to the methods of a role, excluding

methods of other roles.

In the split object model [9], a split object is a collection of parts that share a
common identity. A split object denotes a single entity, and each part of a split
object denotes a viewpoint of the entity. A natural synthesis of role-oriented
modeling and the split object model results when the viewpoints of an entity are
equated with roles, effectively partitioning an entity based on the roles it plays.

The synthesis of role-oriented modeling and split objects is realized in the
ARC model by structuring computation in terms of entities composed of basic
agents and role agents. Both basic agents and role agents are SDL-2000 process
agents. A role agent is dependent on its parent agent within an entity. The
parent of a role agent is either a basic agent, or in the case of role aggregation,
another role agent. A basic agent may be created by an arbitrary agent, and
no dependent parent relationship is implied. An entity is composed of one basic
agent that represents the intrinsic part of the entity and zero or more role agents
that represent the extrinsic parts of the entity. If the basic agent and role agents
that compose an entity are defined in the context of a block agent, each part
of the entity has a dedicated conceptual thread of control. Thus, the intrinsic
and extrinsic parts of the entity may all execute in parallel, subject only to the
data dependencies within the entity. The treatment of entities in the ARC model
is descriptive and not prescriptive. An entity is a semantic concept and not a
syntactic construct, and parent relationships within an entity are not enforced.

An example of an entity in the ARC model is illustrated in Fig. 2, where
basic agents are denoted by squares, role agents are denoted by circles, and solid
arrows indicate parent relationships among basic agents and role agents. The
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entity Joe has four agent parts. The intrinsic part of Joe defines features that
are invariant across roles, e.g. the name of a person, and is implemented by an
instance of the Person basic agent (PJ). The example assumes that Joe is a
student who also works two jobs. Thus, an instance of the Student role agent
(SJ) and two instances of the Employee role agent (EJ1,EJ2) implement the
extrinsic parts of Joe. Role agents define features that are specific to a role or
viewpoint of an entity, e.g. the phone number of a person. The role property of
dynamicity is apparent in the ability to dynamically create or delete role agents
that implement extrinsic parts of an entity. The role property of multiplicity is
apparent in the simultaneous existence of multiple roles for Joe, including two
Employee role agent parts of Joe. To implement the identity role property, basic
agents and role agents have an input signal named entity? 1. The result of the
entity? input for a basic agent is its own identity (self), and the entity?
input for a role agent forwards entity? to its parent. Consequently, the identity
of an entity is the identity of its intrinsic basic agent, and the identity returned
by an entity? signal sent to any part of Joe is PJ.

SJ

P J E J2E J1

Joe

Fig. 2. Person Entity with Employee and Student Roles in the ARC Model

The SDL-ARC agents used to implement the entity Joe are specified in Fig. 3.
The Main agent illustrates the role properties of dynamicity and multiplicity in
its use of the Person basic agent and the Employee and Student role agents
to create the entity Joe with the four agent parts illustrated in Fig. 2. The
dependency role property is apparent in that input signals in a role agent, e.g.
name, may be delegated to the parent agent, but input signals in a parent agent
may not be delegated to role agent children. The Main agent also illustrates the
role property of restricted visibility based on the viewpoint of a role, as each
call to the phone procedure will assign a different phone number string. The
abstractivity role property is based on agent type inheritance in SDL-2000. Both
basic agents and role agents in the ARC model can use agent type inheritance to
redefine agent features. The aggregation/composition role property (a role with
a subrole) will be illustrated in the following section.

1 The lexical rules for names in SDL-ARC allow a terminating ?, !, or $.
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1 system PersonEntity ; b lock B; syntype Agent = Pid endsyntype ;
2 s i g n a l
3 en t i t y ?( Agent ) , e n t i t y (Agent ) , newEmployee (Agent ) , newStudent (Agent ) ,
4 asEmployee ( Charstr ing ) , asStudent ( Charstr ing ) ,
5 name?( Agent ) , name( Charstr ing ) , phone ?( Agent ) , phone ( Charstr ing ) ;
6
7 proce s s Person (0 ,255) (name , phone Charstr ing ) ;
8 s i g n a l s e t en t i t y ? , name? , phone ? , asEmployee , asStudent ;
9 dc l c a l l e r Agent ; dc l phone1 Charstr ing ;

10 s t a r t ; n ex t s ta t e main ; s t a t e main ;
11 input en t i t y ?( c a l l e r ) ; output en t i t y ( s e l f ) to c a l l e r ; n ex t s ta t e −;
12 input name? ( c a l l e r ) ; output name (name) to c a l l e r ; n ex t s ta t e −;
13 input phone? ( c a l l e r ) ; output phone ( phone ) to c a l l e r ; n ex t s ta t e −;
14 input asEmployee ( phone1 ) ; c r e a t e Employee ( phone1 ) ;
15 output newEmployee ( o f f s p r i n g ) to sender ; n ex t s ta t e −;
16 input asStudent ( phone1 ) ; c r e a t e Student ( phone1 ) ;
17 output newStudent ( o f f s p r i n g ) to sender ; nex t s ta t e −;
18 endprocess ;
19
20 proce s s Employee (0 ,255) ( phone Charstr ing ) ;
21 s i g n a l s e t en t i t y ? , name? , phone ? ; dc l c a l l e r Agent ;
22 s t a r t ; n ex t s ta t e main ; s t a t e main ;
23 input en t i t y ?( c a l l e r ) ; output en t i t y ?( c a l l e r ) to parent ; nex t s ta t e −;
24 input name? ( c a l l e r ) ; output name? ( c a l l e r ) to parent ; nex t s ta t e −;
25 input phone? ( c a l l e r ) ; output phone ( phone ) to c a l l e r ; n ex t s ta t e −;
26 endprocess ;
27
28 proce s s Student (0 ,255) ( phone Charstr ing ) ; /∗ . . . ∗/ endprocess ;
29 /∗ Student EFSM i d e n t i c a l to Employee EFSM in t h i s example ∗/
30
31 proce s s Main ( 1 , 1 ) ;
32 s i g n a l s e t newEmployee , newStudent , name , phone , en t i t y ;
33 dc l E1 , E2 , E3 , Joe , JoeE1 , JoeE2 , JoeS Agent ; dc l S1 , S2 , S3 Charstr ing ;
34
35 procedure en t i t y$ ( agent Agent , in /out en t i t y Agent ) ;
36 s t a r t ; output en t i t y ?( s e l f ) to agent ; nex t s ta t e wait ;
37 s t a t e wait ; input en t i t y ( en t i t y ) ; r e turn ; save ∗ ; endprocedure ;
38
39 procedure name$( agent Agent , in /out name Charstr ing ) ;
40 s t a r t ; output name?( s e l f ) to agent ; nex t s ta t e wait ;
41 s t a t e wait ; input name(name ) ; re turn ; save ∗ ; endprocedure ;
42
43 procedure phone$ ( agent Agent , in /out phone Charstr ing ) ;
44 s t a r t ; output phone ?( s e l f ) to agent ; nex t s ta t e wait ;
45 s t a t e wait ; input phone ( phone ) ; r e turn ; save ∗ ; endprocedure ;
46
47 procedure asEmployee ( agent Agent , phone Charstr ing , in /out r o l e Agent ) ;
48 s t a r t ; output asEmployee ( phone ) to agent ; nex t s ta t e wait ;
49 s t a t e wait ; input newEmployee ( r o l e ) ; r e turn ; save ∗ ; endprocedure ;
50
51 procedure asStudent ( agent Agent , phone Charstr ing , in /out r o l e Agent ) ;
52 s t a r t ; output asStudent ( phone ) to agent ; nex t s ta t e wait ;
53 s t a t e wait ; input newStudent ( r o l e ) ; r e turn ; save ∗ ; endprocedure ;
54
55 s t a r t ; task { c r ea t e Person ( ’ Joe ’ , ’555 −0000 ’) ; Joe := o f f s p r i n g ; } ;
56 c a l l asEmployee ( Joe , ’555−1111 ’ , JoeE1 ) ; c a l l en t i t y$ ( JoeE1 , E1 ) ;
57 c a l l asEmployee ( Joe , ’555−2222 ’ , JoeE2 ) ; c a l l en t i t y$ ( JoeE2 , E2 ) ;
58 c a l l asStudent ( Joe , ’555−3333 ’ , JoeS ) ; c a l l en t i t y$ ( JoeS , E3 ) ;
59 c a l l a s s e r t (E1 = Joe and E2 = Joe and E3 = Joe ) ;
60 c a l l phone$ ( JoeE1 , S1 ) ; c a l l phone$ ( JoeE2 , S2 ) ; c a l l phone$ ( JoeS , S3 ) ;
61 c a l l a s s e r t ( S1 = ’555−1111 ’ and S2 = ’555−2222 ’ and S3 = ’555 −3333 ’) ;
62 c a l l name$ ( JoeE1 , S1 ) ; c a l l name$ ( JoeE2 , S2 ) ; c a l l name$ ( JoeS , S3 ) ;
63 c a l l a s s e r t ( S1 = S2 and S2 = S3 and S3 = ’ Joe ’ ) ; stop ;
64 endprocess ; endblock ; endsystem ;

Fig. 3. Person Entity with Employee and Student Roles in SDL-ARC



172 K. Marth and S. Ren

3 Coordination in the ARC Model

The entities within an application do not exist in isolation. Application fea-
tures require collaborations among entities. A collaboration is a collection of
roles played by participating entities that cooperate to realize an application
feature. In the ARC model, an entity participates in collaborations through its
role agents. The parallelism among role agents within a collaboration implies the
need for coordination if the role agents are to cooperate effectively. Coordina-
tion in the ARC model is enacted by coordinator agents and is based on open
and dynamic sets of role agents. Coordinator agents, like basic agents and role
agents, are SDL-2000 process agents. Both coordinator agents and role agents
may behave as coordination agents and react to events that occur within other
observed agents. To enhance simplicity and locality, a role agent may observe
only its parent agent, and a coordinator agent may observe only the current
elements of its coordinated set(s) of role agents.

3.1 Coordinator Agent Behavior

A coordinator agent is the point of contact for an instance of a feature collabora-
tion and also enacts coordination in reaction to events observed in coordinated
role agents. The EFSM that specifies the behavior of a coordinator agent there-
fore handles signals from clients of a feature collaboration as well as signals from
coordinated role agents collaborating within the feature. The signals sent to a
coordinator from coordinated role agents may signal the following events.

• A coordinated role agent receives a specified signal from its input queue.
• A coordinated role agent transitions from a specified state.
• A coordinated role agent transitions into a specified state.

The coordination logic enacted by coordinator agents in response to events is
state-based and may vary over time. The state of a coordinator agent consists of
the explicit current state of its state machine and the implicit state stored in its
local variables, including the open and dynamic sets of coordinated role agents.

The hybrid behavior and dual responsibilities of coordination agents distin-
guish the ARC model from actor-based coordination models in which coordina-
tion is enacted exclusively at the meta-level and direct communication among
basic actors and meta-level coordination actors is impossible. The combination of
role and coordinator agents in the ARC model facilitates modular coordination
and enhances the modularity of features. A new application feature typically re-
quires new role agents, new inputs for the respective parent agents to instantiate
the new role agents, and a new coordinator agent to coordinate the role-based
collaboration within the feature. The existing role agents of entities often remain
oblivious to additional role agents. Modular coordination is facilitated if coor-
dinator agents have the capability to send signals to coordinated role agents,
since the logic to send the signals relevant in coordination scenarios may then
be untangled from the behaviors of the coordinated role agents and specified
cohesively within the behaviors of coordinator agents.



The ARC Programming Model 173

3.2 Coordination, Indivisibility, and Synchronization

The parallelism among role agents within a feature collaboration implies the
need for coordination and synchronization of the role agents. In contrast to the
explicit low-level synchronization primitives such as semaphores and condition
variables that complicate parallel applications today, the ARC model enables
synchronization to be expressed at a higher level of abstraction and implicitly
implements low-level locking and mutual exclusion. The capability to atomically
dispatch a set of signals to a set of agents is fundamental to many coordination
scenarios. The SDL-ARC dispatch statement provides a novel synthesis of signal
send and dispatch capabilities. A dispatch statement is executed only by a
coordinator agent. The body of a dispatch statement must be a sequence of
signal sends to a set of target role agents. The messages are atomically sent and
dispatched using an adapted three-phase commit protocol.

1. In the first phase, all target agents are locked by the coordinator agent,
ensuring that the target agents will dispatch only signals sent by the coordi-
nator agent until the target agents are unlocked. Target agents are locked by
the ARC model implementation sequentially and in the order determined by
their respective identifiers (Pids). A lock on a target agent completes only
when the target agent is in a state that defines an input for its associated
target signal. Several deadlock and livelock scenarios are therefore avoided.

2. In the second phase, the sequence of signals is sent by the coordinator agent
to the target agents, and the received signals are dispatched by the target
agents. A run-time check ensures that only one signal is sent to each target
agent within a given dispatch statement. Since the target agents are locked
and sensitized to input signals only from the coordinator agent, the second
phase must ultimately complete.

3. In the third phase, the target agents are unlocked in the order determined by
their respective identifiers, execution of the dispatch statement is complete,
and the coordinator agent continues execution after the dispatch statement
with knowledge of the coordinated state of the target agents.

Indivisibility is a fundamental requirement of coordination. While a coordination
event that ultimately impacts several coordinated agents is being processed, no
intermediate states can be visible or accessible, and information required to
process an event must remain valid throughout the event. When a coordinated
agent triggers a coordination event by receiving a signal or executing a state
transition, the coordinated agent may use the SDL-ARC lock statement to
explicitly lock itself on behalf of a specified coordinator agent. The execution of
lock(coordinator) immediately ensures that the coordinated agent will dispatch
only signals received from the specified coordinator agent. When the coordinator
agent attempts to lock the coordinated agent again during the first phase of a
subsequent dispatch statement, the lock attempt will succeed without effect,
and deadlock does not occur. Explicit locks are not distinguished during the
third phase of a dispatch statement, and a target agent associated with an
explicit lock is unlocked upon completion of the dispatch statement.
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Fig. 4. The Dining Philosophers Problem in the ARC Model

3.3 Coordination Example

We illustrate coordination in the ARC model by solving a version of the dining
philosophers problem. Each philosopher alternates between thinking and dining
and must atomically acquire assigned tableware before dining and release the
tableware after dining. While dining, each philosopher contributes to solving the
NAS Embarrassingly Parallel (EP) benchmark [10]. The EP benchmark is typical
of Monte-Carlo simulation applications in scientific computing and provides a
concrete representation of a workload that is easily partitioned among ARC
parallel agents. The ARC solution uses the roles of Philosopher, Process, and
Resource, as illustrated in Fig. 4, and builds on the example entity illustrated
in Fig. 2 and Fig. 3. In addition to the roles of Employee and Student, Joe also
plays the Philosopher role in a collaboration of dining philosophers.

In Fig. 4, basic agents are denoted by squares, role agents are denoted by
circles, and coordinator agents are denoted by hexagons. Solid arrows indicate
parent relationships among basic and role agents. Dashed arrows indicate co-
ordination enacted by coordinator agents. The ARC solution has the following
structure.

• The intrinsic part of Joe is realized by a Person basic agent (PJ).
• The extrinsic parts of Joe discussed earlier are realized by two Employee

role agents (EJ1, EJ2) and a Student role agent (SJ).
• The additional extrinsic part of Joe added for the dining philosophers prob-

lem is realized by a Philosopher role agent (PhJ) that plays the role of a
process with resource requirements. A Process role agent (PrJ) realizes the
process sub-role of the philosopher role played by Joe.

• The Tableware basic agents (Ti) represent the resources (e.g. fork, spoon,
chopstick) required by philosophers. The shared resource role played by each
Tableware agent is realized by a Resource role agent (Ri).
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• A dedicated DiningPhilosopher coordinator agent coordinates the Process
role agent for a philosopher and the Resource role agents required by the
philosopher, e.g. (DPJ) is dedicated to Joe. Note that each Resource role
agent is coordinated by multiple DiningPhilosopher coordinator agents,
reflecting the inherent resource contention in the problem.

Before considering the required coordination, we summarize the behaviors of the
Tableware, Person, and Philosopher agents specified in Fig. 5.

1 system Din ingPhi losophers ; b lock B;
2 syntype Agent = Pid ;
3 syntype u i n t 8 t = In t ege r cons tants (0 : 255 ) ;
4 syntype u in t 16 t = In t eg e r cons tants (0 : 65535) ;
5 value type SetAgent i n h e r i t s Str ing<Agent>;
6 va lue type VectorEP i n h e r i t s Vector<Real ,12 > ;
7 s i g n a l EPresult (VectorEP ) ,
8 acqu i r e ( SetAgent ) , acquire$ , r e l e a s e , r e l e a s e $ , new(Agent ) ,
9 asPh i lo sopher ( u int8 t , u i n t 8 t ) , a sProces s (Agent ) , asResource ;

10 proce s s Process r e f e r en c ed ; p roce s s Resource r e f e r en c ed ;
11 proce s s Din ingPhi losopher r e f e r en c ed ; p roce s s Main r e f e r en c ed ;
12
13 proce s s Tableware ( 0 , 2 55 ) ;
14 s i g n a l s e t asResource ; dc l r e s ou r c e Agent := Null ;
15 s t a r t ; n ex t s ta t e s t a r t $ ; s t a t e s t a r t $ ;
16 input asResource ; task {
17 i f ( r e s ou r c e = Null ) { c r e a t e Resource ; r e s ou r c e := o f f s p r i n g ; } ; } ;
18 output new( r e sou r c e ) to sender ; nex t s ta t e −;
19 endprocess ;
20
21 proce s s Person (0 ,255) (name , phone Charstr ing ) ;
22 s i g n a l s e t asPh i lo sopher ; dc l number , un i t s u i n t 8 t ;
23 s t a r t ; n ex t s ta t e main ; s t a t e main ;
24 /∗ prev ious behavior assumed but omitted here to conserve space ∗/
25 input asPhi lo sopher (number , un i t s ) ; c r e a t e Phi losopher (number , un i t s ) ;
26 output new( o f f s p r i n g ) to sender ; nex t s ta t e −;
27 endprocess ;
28
29 proce s s Phi losopher (0 ,255) (number , un i t s u i n t 8 t ) ;
30 s i g n a l s e t asProcess , a cqu i r e ;
31 dc l tableware SetAgent , coo rd ina to r Agent , V VectorEP ; t imer T := 10 . 0 ;
32 procedure EP( in u int8 t , in /out u int8 t , in /out VectorEP ) ex t e rna l ;
33 s t a r t ; n ex t s ta t e s t a r t $ ; s t a t e s t a r t $ ;
34 input asProces s ( coo rd ina to r ) ; c r e a t e Process ( coo rd ina to r ) ;
35 output new( o f f s p r i n g ) to sender ; s e t (T) ; nex t s ta t e th ink ing ;
36 s t a t e th ink ing ; input T;
37 d e c i s i o n un i t s = 0 ;
38 ( t rue ) : output EPresult (V) to coo rd ina to r ; stop ;
39 e l s e : n ex t s ta t e hungry ;
40 enddec i s i on ;
41 s t a t e hungry ; input acqu i r e ( tableware ) ; nex t s ta t e d in ing ;
42 s t a t e d in ing ; provided true ;
43 c a l l EP(number , units , V) ; s e t (T) ; nex t s t a t e th ink ing ;
44 endprocess ;
45 endblock ; endsystem ;

Fig. 5. The Dining Philosophers Problem in SDL-ARC (part 1)

Each Tableware basic agent creates a single shared Resource role agent and
outputs the agent in response to the asResource input. The Person basic agent
adds the asPhilosopher input in addition to the behavior discussed above. The
behavior of the Philosopher role agent is expressed as the following EFSM.
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• In the start$ state, the philosopher assumes the Process role in response
to the asProcess input, sets the timer (T) to expire after an interval of
thinking, and transitions to the thinking state.

• In the thinking state, after the timer (T) expires, the philosopher decides
whether its contribution to the EP benchmark has been completed. If all
units of work have been completed, the philospher outputs its contribution
and stops; otherwise, the philosopher transitions to the hungry state.

• In the hungry state, the philosopher awaits the input of an acquire signal
with the appropriate set of tableware. The philosopher transitions to the
dining state after acquiring its tableware.

• In the dining state, the philosopher completes one unit of benchmark work
via the EP procedure, sets the timer (T), and returns to the thinking state.

The additional coordination agents specified in Fig. 6 include the Process,
Resource, and DiningPhilosopher agents. The coordination enacted by the
DiningPhilosopher coordinator agent is triggered by a sequence of events that
occur in the Philosopher and Process role agents. Coordination in the ARC
model is treated as an orthogonal concern, and established aspect-oriented pro-
gramming technology is leveraged to help enact coordination. SDL-ARC aspects
are influenced by AspectJ [11] and are composed of join points, pointcuts and
advice. However, join points in SDL-ARC are customized to SDL and include
agent instantiation, agent termination, state inputs, and state transitions in the
EFSM behaviors of agents. We believe that aspects based on EFSM behavior
are more abstract and less fragile than aspects based on lower-level control flow.
Two aspects are specified in Fig. 6.

The PhilosopherProcess aspect observes events in the Philosopher role
agent. The perAgent declaration ensures that an aspect instance is dedicated to
each Philosopher agent. The aspect has three pieces of advice.

• After a Philosopher agent creates a Process agent, the identity of the
offspring is saved in the process$ variable.

• After a Philosopher agent transitions into the hungry state, the acquire$
signal is output to the saved Process agent.

• After a Philosopher agent transitions from the dining state, the release$
signal is output to the saved Process agent.

The DiningPhilosopherProcess aspect observes events in the Process role
agent. The singleton aspect has two pieces of advice that use the coordinator
parameter of a Process agent to output signals to a DiningPhilosopher agent.

• After a Process agent transitions into the acquire state, the acquire$
signal is output using the coordinator parameter.

• After a Process agent transitions from the release state, the release$
signal is output using the coordinator parameter.

The acquire$ input sent from the PhilosopherProcess aspect causes the
Process role agent to transition from its start$ state into its acquire state.
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1 aspect Ph i lo sopherProces s perAgent ( Phi losopher ( ) ) ;
2 po intcut Phi losopher ( ) : s e l f ( Phi losopher ) ; dc l p roce s s$ Agent ;
3 a f t e r ( ) : Phi losopher ( ) and c r ea t e ( Process )
4 { task proce s s$ := o f f s p r i n g ; }
5 a f t e r ( ) : Phi losopher ( ) and s t a t e+(hungry )
6 { output acqu i r e$ to proce s s$ ; }
7 a f t e r ( ) : Phi losopher ( ) and state −(d in ing )
8 { output r e l e a s e $ to proce s s$ ; }
9 endaspect ;

10
11 aspect Din ingPhi losopherProcess ;
12 po intcut Process ( ) : s e l f ( Process ) ;
13 a f t e r ( ) : Process ( ) and s t a t e+(acqu i r e )
14 { output acqu i r e$ to Process . coo rd ina to r ; }
15 a f t e r ( ) : Process ( ) and state −( r e l e a s e )
16 { output r e l e a s e $ to Process . coo rd ina to r ; }
17 endaspect ;
18
19 proce s s Process (0 ,255) ( coo rd ina to r Agent ) ;
20 s i g n a l s e t acquire , acquire$ , r e l e a s e $ ; dc l tableware SetAgent ;
21 s t a r t ; n ex t s ta t e s t a r t $ ;
22 s t a t e s t a r t $ ; input acqu i r e$ ; nex t s ta t e acqu i r e ;
23 s t a t e acqu i r e ; input acqu i r e ( tableware ) ;
24 output acqu i r e ( tableware ) to parent ; nex t s ta t e r e l e a s e ;
25 s t a t e r e l e a s e ; input r e l e a s e $ ; nex t s ta t e s t a r t $ ;
26 endprocess ;
27
28 proce s s Resource ( 0 , 2 55 ) ; s i g n a l s e t acquire , r e l e a s e ;
29 s t a r t ; n ex t s ta t e r e l e a s e d ;
30 s t a t e r e l e a s e d ; input acqu i r e ; nex t s ta t e acqu i red ;
31 s t a t e acqu i red ; input r e l e a s e ; nex t s ta t e r e l e a s ed ;
32 endprocess ;
33
34 proce s s
35 Din ingPhi losopher (0 ,255) ( ph i l o sopher Agent , tableware SetAgent ) ;
36 s i g n a l s e t acquire$ , r e l e a s e$ , new , EPresult ;
37 dc l process$ , r e s ou r c e SetAgent := emptystring , V VectorEP ;
38
39 procedure newProcess ( ph i losopher , coo rd ina to r Agent ) −> Agent ;
40 /∗ c r ea t e Process agent with ph i l o sopher as parent ∗/ endprocedure ;
41 procedure newResource ( tableware Agent ) −> Agent ;
42 /∗ c r ea t e Resource agent with tableware as parent ∗/ endprocedure ;
43
44 s t a r t ; task { proce s s$ := mkstring ( newProcess ( ph i losopher , s e l f ) ) ;
45 loop ( dc l t u i n t 8 t := 1 , t <= length ( tableware ) , t+1)
46 r e sou r c e := re sou r c e // mkstring ( newResource ( tableware ( t ) ) ) ;
47 } ;
48 nex t s ta t e main ;
49 s t a t e main ;
50 input acqu i r e$ ;
51 d i spatch {
52 output acqu i r e ( tableware ) to proce s s$ ( 1 ) ;
53 loop ( dc l r u i n t 8 t := 1 , r <= length ( r e sou r c e ) , r+1)
54 output acqu i r e ( emptystr ing ) to r e sou r c e ( r ) ;
55 } ;
56 nex t s ta t e −;
57 input r e l e a s e $ ;
58 d i spatch {
59 loop ( dc l r u i n t 8 t := 1 , r <= length ( r e sou r c e ) , r+1)
60 output r e l e a s e to r e sou r c e ( r ) ;
61 } ;
62 nex t s ta t e −;
63 input EPresult (V) ; output EPresult (V) to parent ; stop ;
64 endprocess ;

Fig. 6. The Dining Philosophers Problem in SDL-ARC (part 2)



178 K. Marth and S. Ren

This state transition triggers an input at the DiningPhilosopher coordina-
tor agent (explained below) that will ultimately result in the dispatch of an
acquire input to the Process role agent with the appropriate set of tableware.
The Process role agent forwards the acquire input with the set of tableware to
its parent Philosopher role agent and transitions into its release state. The
release$ input sent from the PhilosopherProcess aspect causes the Process
role agent to transition from its release state back into its start$ state,
triggering another input at the DiningPhilosopher coordinator agent.

The DiningPhilosopher coordinator agent defines two sets of coordinated
role agents. The process$ set is a singleton set whose member is the Process
role agent created by the Philosopher role agent specified in the philosopher
parameter. The resource set is the set of Resource role agents associated
with the Tableware basic agents required by the Philosopher role agent. The
DiningPhilosopher coordinator agent reacts to the acquire$ input sent from
the DiningPhilosopherProcess aspect by atomically dispatching acquiremes-
sages to the Process role agent and its required Resource role agents. The
acquire message sent to the Process role agent contains the required table-
ware to be forwarded to the Philosopher role agent. Each of the locks on
the Resource role agents attempted sequentially during the first phase of the
dispatch statement completes only when the Resource role agent is in its
released state, ensuring the coherence and correctness of the atomic acquisition
of resources. The DiningPhilosopher coordinator agent reacts to the release$
input sent from the DiningPhilosopherProcess aspect by atomically dispatch-
ing release messages to the previously acquired Resource role agents.

The EFSM behavior of the Main agent is simple but is not specified here be-
cause of space restrictions. To maximize parallelism in the EP benchmark, the
Main agent creates twice the number of Philosopher and Tableware agents as
the number of threads (cores) available, since at most half of the Philosopher
agents can be dining concurrently. A dedicated DiningPhilosopher agent is cre-
ated to coordinate each Philosopher agent and its required Tableware agents.
The Main agent also accumulates the EP benchmark contributions from the
Philosopher agents, verifies the accuracy of the total, and prints a report.

In the SDL-ARC version of the dining philosophers problem, a Philosopher
role agent has explicit knowledge of acquired Tableware agents only in the
dining state, and the set of acquired Tableware agents could change at each
transition into the dining state. An enhanced DiningPhilosopher coordinator
agent could dynamically adjust the open sets of Tableware agents and associ-
ated Resource role agents required by a Philosopher agent and its Process role
agent. The required coordination is modular, enabling each role agent EFSM be-
havior to be concisely expressed and oblivious to the myriad coordination details
inherent in the atomic acquisition of a dynamic set of shared resources. Implicit
locking and the avoidance of some deadlock and livelock scenarios enhance the
quality of pervasive applications and the productivity of software engineers.
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4 Realization of the ARC Model

An implementation of SDL-2000 that is fully conforming, fully functional, and
available to the public is not yet readily available. SDL-ARC models are currently
translated by hand to equivalent SDL-96 models. In addition to the documented
SDL-2000 to SDL-96 conversion [3], the SDL-ARC extensions (dispatch and
lock statements, aspect-oriented advice) must also be implemented during the
translation. An SDL-ARC compiler that automates the translation to SDL-96 is
currently in development.

The implementation of the PSM for an SDL-ARC PIM uses a thread pool
pattern in which the number of application worker threads is closely matched
to the available processors. The conceptual threads dedicated to parallel agents
are mapped onto the worker threads by the PSM implementation. An agent is
scheduled in an available application thread when a signal is input to the agent,
and the agent is run to completion on the input signal in the assigned thread.

The version of the dining philosophers problem presented above was admit-
tedly selected to illustrate the potential of the ARC model. The exploitation of
multicore parallelism in arbitrary MDE applications will undoubtedly be more
challenging. Nevertheless, the table below illustrates the performance achieved
when comparing the SDL-ARC PIM of the dining philosophers EP benchmark
to the NAS serial version of the EP benchmark written in C. The target plat-
form was a Sun UltraSPARC T2 1.2 MHz processor with 8 multithreaded cores.
The efficiency measures how well the SDL-ARC PSM implementation utilizes
the multicore parallelism, including the overhead due to communication and
synchronization. Efficiency is defined by the formula E = T1/(Tt ∗ t), where T1
is the execution time of the NAS serial version, and Tt is the execution time
of the SDL-ARC parallel version using t threads and (t ∗ 2) philosophers. The
efficiency degrades beyond 16 philosophers (8 threads), presumably because of
intra-core resource contention on the UltraSPARC T2 introduced by multiple
threads sharing the single floating point unit (FPU) on each of the 8 cores.

Execution Time (seconds) and Efficiency (%), phil=philosophers
input NAS SDL SDL SDL SDL SDL SDL
size serial phil=2 phil=4 phil=8 phil=16 phil=32 phil=64
228 293.640s 296.050s 150.900s 74.980s 38.870s 24.640s 13.450s
228 N/A 99.19% 97.30% 97.91% 94.43% 74.48% 68.22%
230 1176.688s 1183.120s 590.585s 303.678s 155.530s 80.453s 44.452s
230 N/A 99.46% 99.62% 96.87% 94.57% 91.41% 82.72%

5 Related Work

The initial publication of the ARC model [12] discussed related work in the area
of coordination in some depth. The ARC model has since been generalized and
retargeted to SDL-2000. The coordination enacted in the ARC model remains
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event-based, role-based, state-based, open, and dynamic. In the updated ARC
model, the logic specified in coordinator agents combines both the computation
and the coordination required by a feature. However, the collaboration-based co-
ordination in the ARC model is modular in the presence of cross-cutting features
and untangled from the behaviors of role agents and basic agents.

The goals of the ARC model and the Epsilon model [13] are similar, and the
survey of work related to the Epsilon model is of interest here. The Epsilon model
enables object-oriented delegation via the export of features both to and from
role objects, while in the ARC model, features are only exported from parent
agents to role agents. This ARC model design decision aligns with established
practice in role modeling and minimizes semantic changes to SDL-2000.

The SDL-2000 standard introduced several constructs that facilitate the spec-
ification of structural hierarchy, including generalized nested agents, composite
states, and state aggregations. A composite state is a nested state machine and
may also be a state aggregation. A state aggregation is composed of partitions
(each with a state machine) that handle disjoint sets of input signals, and a state
aggregation is in one state in each of its partitions. An alternate realization of a
role-based entity might use an agent whose state machine is a state aggregation,
where each partition of the state aggregation corresponds to a role. However, the
state aggregation semantics specifies interleaved scheduling that enables exactly
one partition to be executing at any point. The alternate realization requires
a more complicated implementation that enables parallelism among partitions
only when the intuitive behavior required by interleaved scheduling can be main-
tained, potentially adding overhead and limiting intra-entity parallelism.

6 Conclusion and Status

The computational landscape is being shaped by multicore processors and per-
vasive computing. The ARC model leverages existing software technology to
address the question of how to program software applications that are open, dis-
tributed, and parallel. The foundation for the ARC model is SDL-2000, which
embodies decades of experience in building distributed systems, maps directly
to the Actor model, aligns with the principles of model-driven software devel-
opment, and enables relatively abstract platform-independent parallelism. How-
ever, SDL-2000 does not offer a detailed model for structuring computation
among process agents that exposes natural opportunities for parallelism. The
ARC model uses a synthesis of role-oriented modeling and the split object model
to structure computation in terms of conceptual entities. An entity is composed
of a basic intrinsic agent and multiple extrinsic role agents, all with dedicated
conceptual threads of control. Entities in the ARC model interact through their
role agents in the context of feature-oriented collaborations with dedicated co-
ordinator agents. The basic agents, role agents, and coordinator agents in the
ARC model are SDL-2000 process agents. Role agents and coordinator agents
are coordination agents that use aspects to observe events in other agents. The
coordination logic enacted by coordinator agents uses the capability to atom-
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ically send and dispatch messages to coordinated role agents in response to
events.

The experience with hand-translated SDL-ARC examples has been positive.
We plan to continue working with examples from the literature to identify op-
portunities to apply the modular coordination and abstract parallelism in the
ARC model. Additional extensions to SDL-ARC that more concisely express
ARC model usage patterns will be investigated. The completion of the SDL-
ARC compiler will enable us to assess the utilization of multicore processors
by significant SDL-based MDE applications and evaluate ARC model design
decisions made to this point.
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Abstract. Behavioral interfaces describing the sequences of buffered
signal transmissions between components are useful to ensure that com-
ponents can interact consistently. Previous work has shown that com-
patible interfaces at each side of a channel are in general asymmetric:
In cases where both communicating sides can take initiative and send,
they have to be prepared for conflicts that need resolution. Such conflicts
are often difficult to handle properly at the interaction level, where the
intent of the actual application may be obscured by technical details.
For this reason, we developed an automated method that starts with a
holistic and collaborative view on distributed behavior provided by UML
activities, in which components are represented by separate partitions.
Once the activity is well-formed, pairs of interfaces for each channel are
derived by cutting the activity along its partitions and exploring the
visible behavior between them. The resulting interfaces are compatible
by construction and allow other entities to interact consistently across
them. The proposed method is implemented as part of our tool support.

1 Introduction

One principle in service-oriented approaches is that systems do not have to
be specified and implemented at once and by one stakeholder, but that they
can be provided incrementally, with new components introduced dynamically at
run-time. Obviously, in order that new components can make use of the func-
tionalities already provided or replace existing components, they need to interact
consistently with the other components. A key concept is therefore the definition
of interfaces between components. In a number of approaches, such interfaces
are called services and specify only the operations provided or required by a
component, corresponding to signals sent and received in an asynchronous com-
munication setting. However, to ensure consistent interactions, the sequences,
in which messages are to be exchanged, are also important. But while this has
been discussed in many approaches in literature (see, for example [6,7,8,11,22]),
it seems that such interfaces are not yet adopted by programmers for everyday
development. As one reason for that we see the level of expertise and effort
needed to design and understand such interfaces in a correct way with all their
intricacies. When highly concurrent systems are designed using a buffered com-
munication scheme (as offered for example by enterprise service busses), the
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delay of signals has to be taken into account. This leads to interfaces that are
more complicated than the naïve solution that a developer often would initially
develop.

Some approaches find a solution to this problem in restricting interactions to
certain patterns that are easier to handle (for instance simple request/response
patterns), and avoid the usage of any elaborate protocols in the first place. We
think such solutions are unfortunate, since they prevent a system from executing
according to its full potential [25]. Furthermore, basic protocols can also be
intricate. This paper shows how even a rather simple subscription-based pattern
requires asymmetric interfaces, due to a conflicting initiative between the regular
notification and the command to unsubscribe from the client. Failing to treat
these cases with the necessary precision will in the best case lead to an unsharp
specification style where it is not clear if a certain behavior is intended by the
designer or whether it is a flaw. In the worst case it leads to interfaces that will
not work correctly in any environment.

To improve this situation, we propose a technique in which compatible in-
terfaces are synthesized automatically from a higher-level description expressed
in form of a collaboration with behavior defined using UML activity diagrams.
This is a description of behavior among several participants, including their in-
teractions and those parts of their local behavior that are relevant for the task of
the collaboration. Since activities express complete behavior, they can be model
checked, so that the soundness of the collaboration can be ensured. With the
tools described in [15], we show how this can be ensured in a rather automated
process, where flaws are explained to users by animations. Once a collaboration
is sound, our algorithm uses the state space obtained from the analysis tools to
construct the interfaces for each communication partner and encapsulates them
as service contracts. As a result, developers do not have to develop pairs of com-
patible interface descriptions manually, but may focus on the development of a
sound collaboration suitable for their application. This task is usually easier to
understand, since it is closer to the actual application and intricacies such as
mixed initiatives are handled by the algorithm constructing the interfaces.

The generation mechanism for interfaces described here is an important ele-
ment in a more comprehensive framework for the dynamic provision and discov-
ery of services. Within this framework, services are provided as collaborations,
as described later. Functions like registration, discovery and optional negotia-
tion of services are contributed as dedicated, collaborative building blocks. This
facilitates the construction of dynamic services in a specification-driven way. In
the following, we focus on the derivation of service contracts from activities and
present the example of a simple SMS notification protocol, in which a receiver
can subscribe to an SMS gateway to receive messages that are sent by mobile
user to a certain number. Based on the example, we state the criteria for sound
interactions and develop the interfaces for the example. In Sect. 3 we introduce
our collaboration-oriented engineering method SPACE by giving a collaboration
for the SMS notification and their detailed semantics. The algorithm is intro-
duced in Sect. 4 and discussed in Sect. 5.
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2 Behaviored Interfaces and Service Contracts

As an example, we assume to be a telecom operator who wants to make an SMS
Notification service accessible to third-party service providers. With this service,
third parties can receive all SMS messages that are sent by mobile phones to
a certain number. For that reason, we build an SMS gateway Cg that can be
accessed by clients like the SMS receiver Cr, as shown in our first figure.

Fig. 1. SMS Notification service provided to clients

The signal exchanges for the service are described by interface Ig. It is started
by the reception (?) of a subscription message sent by the receiver. From then
on, the SMS gateway forwards all incoming SMS to the receiver, expressed by
the sending (!) of message sms, until the receiver unsubscribes, which is acknowl-
edged by message unsubscribe_ack.

2.1 Interfaces Come in Pairs of Two

When a third party wants to build an SMS receiver interacting consistently
with the SMS gateway, a naïve look at interface Ig may lead to an erroneous
solution: Programmers may forget that even if they have sent unsubscribe to
the gateway, they still must be prepared to receive an sms from the gateway.
This is because Ig is the interface local to the gateway, and we assume that the
communication between the receiver and the gateway is buffered. Therefore, two
messages can cross their ways and lead to conflicting behaviors. Such a situation
is also called mixed [11] or conflicting [5] initiative, or non-local choice [4]. For
the SMS notification, the receiver therefore has to be prepared to accept an SMS
message even after it sent unsubscribe.1 For this reason, an interface local to the
receiver, Ir, should be considered instead when building the receiver. Since any
receiver interested in the gateway can make use of this interface, we agree with
the authors of [27] that interfaces should be provided as pairs.

1 Internally the receiver can still deliberately drop the SMS message, but such a deci-
sion should be done explicitly by an engineer with knowledge about the application.
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Fig. 2. Interfaces for receiver and gateway for the SMS Notification

For the given example, Fig. 2 shows the pair of interfaces Ig and Ir, with Ir

being local to the receiver. We note that Ir is not a simple inversion of Ig, but
structurally different due to the reception of sms in state s_r3. In the center of
the figure, a stereotyped collaboration is shown. It is a service contract in line
with the emerging SoaML standard [24] and refers with its two collaboration
roles g and r to UML state machines describing both interfaces.

The question remains how to build compatible interfaces, such as Ig and Ir, in
the first place. While the example above may seem trivial to some, such intricacies
of buffered communication are in our experience hard to impart to programmers.
Furthermore, once several conflicts can happen, or interfaces describe more than
one ongoing concurrent functionality, the design of compatible interfaces Ig and
Ir can get quite difficult also for experts. Before we come to the generation of such
interfaces, let us first consider the criteria for consistent interactions.

2.2 Interface Compatibility

An interface Ii is a state machine attached to the end of a communication channel
at the component it represents to describe the allowed sequences of signal sendings
and receptions. In the following, we assume error-free and order-preserving chan-
nels. Starting in its initial state, an interface updates its current state with every
sending and receiving action of its component over the channel. A pair of interfaces
is compatible if and only if two communication partners that obey the behavior
described by their respective interfaces interact soundly. This means that:

(i) There are no unspecified receptions, i.e., whenever a signal arrives at an
interface from a communication partner, the interface is in a state that
enables a transition allowing the reception of that signal.

(ii) There are no deadlocks, i.e., when an interface is in a state waiting only
for a signal reception from the communication partner, it will eventually
receive such a signal.
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In [11], properties (i) and (ii) are also called containment and obligation, re-
spectively. The reception of the additional sms of the receiver in Fig. 2 in in
state s_r3 can be generalized as a rule for interfaces in order to be able to
interact consistently with them: An interface declaring outgoing sending and re-
ceiving transitions in a state s1 must declare also all receiving transitions in all
states si that are targeted via sending transitions from s1. This is called input
consistency [5].

With the algorithms presented in [10,11,25], the compatibility of two interfaces
with respect to criteria (i) and (ii) can be checked. Before that, however, the
interfaces have to be created in the first place.

3 Focus on Collaborations

In Sect. 4, we present an algorithm that generates service contracts from the
more holistic specifications provided by collaborations, that means behavioral
descriptions comprising several participants. For that, we first briefly describe
our engineering method to set the larger context of our construction algorithm,
and then develop the SMS notification from a collaborative perspective.

3.1 The SPACE Engineering Method

The idea behind this method [14,16] is to use collaborations as the major speci-
fication units, which can be stored in a variety of libraries for different domains,
as shown on the left side of Fig. 3. Since these building blocks can cover behav-
ior among several components, they facilitate the reuse of solutions that require
several participants to be coordinated, which means that entire sub-services, in-
cluding all their participants, can be reused. During service and system design,
blocks can be taken from such libraries and composed together. If no block exists
yet, new ones may be created from scratch and stored in a library for later reuse.

For the behavioral description of the blocks we use UML activities. These
activities can have input and output parameters, which can later be used for
composing activities together and pass data or synchronize events. With an

Fig. 3. The SPACE method based on reusable, collaborative building blocks
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additional UML state machine, a so-called ESM, the externally visible behavior
of these parameters is specified. This makes it possible to reuse a collaboration
without looking at the details of its internal behavior; the ESM is sufficient to
compose it correctly. The composition of the blocks is analyzed by means of
model checking. Due to the ESMs, a building block can always be analyzed in
isolation; any constituent blocks are abstracted by their ESMs, which reduces the
state space required during the analysis. Once a system is complete and sound,
it may be implemented. For that, we use a process consisting of two steps: In the
first step, we automatically transform the activities into executable UML state
machines (similar to SDL processes, see [19]), using the algorithm presented
in [18]. In a second step, code is generated from the state machines [14].

Fig. 4. Activity describing both sides of the SMS notification

3.2 Collaboration for the SMS Notification

Fig. 4 shows the behavior of the collaboration for the SMS notification. It con-
sists of two activity partitions; one for each participant of the collaboration: the
SMS gateway and the receiver. Since we assume that we are the developers of
the SMS gateway, the activity shows all necessary actions needed for the SMS
gateway, which we will use to implement the server via our transformation and
code generators. We assume that the receiver, on the other hand, will eventually
be developed by a third party. Therefore, the partition for it is marked as «exter-
nal», and its behavior is just sketched. In particular, the timer t represents any
spontaneous initiative from the receiver side to unsubscribe. The detailed behav-
ior of this activity will be presented in the next section, after a brief introduction
to the formal semantics for activities.
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3.3 Formal Semantics in Temporal Logic

To ensure the correctness of the method and define the semantics of all dia-
grams, we reason in temporal logic, in particular the Temporal Logic of Actions
(TLA, [21]). This is a linear-time temporal logic and describes behaviors as infi-
nite sequences of states, where each state is an assignment of values to variables.
Steps between states are described by actions, which effectively describe precon-
ditions and effects on variables. Using cTLA [12], a compositional variant of TLA
that introduces processes and their composition by joint actions [3], we have for-
malized the behavior of collaborations using the special dialect cTLA/c [17]. It
assigns TLA actions to one of each collaboration participant, introduces queue
variables between participants for communication and defined rules for the usage
of these variables by the actions to ensure realizability. Therefore, it is ideal for
the description of the behavior as expressed by UML activities. Since activities
have semantics close to Petri nets, they describe state transition systems, which
describe the movement of data or control tokens along the activity graph. The
token markings (the places on which the tokens rest) are expressed by variables,
and the token movements are expressed by TLA actions that remove and add
tokens at the corresponding variables.

Fig. 5. Transmission queues between the activity partitions

In our example for the SMS notification, we use the variables i for the initial
node, t for the timer, s for the accept signal node for SMS and a for the accept
signal node waiting for an ACK.2 Moreover, to respect the delays of the buffered
communication, we add queue variables where flows cross the partitions. Queue
q1 is used by all tokens flowing from the receiver to the gateway, and queue
q2 is used by tokens flowing in the opposite direction. We describe queues as
2 Activity final node fx doesn’t need a variable since it never holds any tokens; when a

token arrives to fx, the structured node around it is terminated and the token from
s:SMS is removed.
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sequences of signals qi = 〈sig0, ..sign〉, with sigi ∈ {subscribe, unsubscribe} for q1
and sigi ∈ {sms, unsubscribe_ack} for q2. The queues are located between the
activity partitions, illustrated in Fig. 5.

In [17], we described how the detailed TLA actions can be derived from an
activity. But instead of listing the formulas for the SMS notification, we illustrate
each action graphically by showing the affected sub-graph of the activity in
Fig. 6. A token added is illustrated by , a removed token by . Tokens added
to queues are appended at the tail, and tokens must be at the head position in
order to be removed. Actions r1..r4 are executed by the receiver, and actions
g1..g4 by the gateway.

3.4 Analysis of the Collaboration

With the automated analysis tool presented in [15,29], we make sure that the
collaboration for the SMS notification fulfills a number of general properties that
should hold for any application:

– A collaboration should terminate consistently, that means in such a way that
all queues are empty once the activity reaches an activity final node.

– No deadlocks must occur, that means there must not be a situation in which
no action can be executed but the activity final node has not yet been
reached.

– If a collaboration is composed from other building blocks, these blocks must
be used according to their external description.

– If a collaboration is encapsulated by an ESM, its internal behavior given
by the activity must conform to the external contract described by its ESM
(not shown here).

– The queues between activity partitions must be bounded.

Once problems are detected, error situations are presented as animations within
the activity [15], and in some cases, improvements are suggested [29]. For the
example, the analysis detects that the number of tokens in queue q2 grows beyond
a certain value, indicating unbounded behavior. For this case, [29] describes
several means to ensure boundedness. For the example, we use an estimate on
the timing behavior of the system: We know, that the arrival of SMS messages
happens slowly compared to the transmission time of signals and the subsequent
processing by the receiver. Technically, we can assert this in the specification by
a stereotype on the activity edge represented by queue q2. The respective action
is then enabled only when q2 does not already contain the maximum number of
sms tokens. Another possibility is the introduction of an explicit buffer managed
by the gateway and an additional confirmation of each SMS message by the
receiver.

3.5 Collaborations and Service Contracts

If we just want to build the SMS gateway and one specific receiver, a collabo-
ration that describes the behavior of each participant by a partition of a UML
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Action r1: The initial action is started by a to-
ken emitted from the initial node. After the
duplication by the fork node, the timer is
started and one token is placed in queue q1.

Action g1: The gateway receives the subscrip-
tion, registers its listener and starts listening
for internal signals.

Action g2: Once the gateway’s receives an SMS
from the server logic, a token is emitted by
accept signal action s. With the subsequent
fork, the token is sent towards the receiver
(via queue q2) and one token is placed back
into s, to continue listening.

Action r2: The client receives the SMS from q2.
Here the processing of the message is only
sketched by operation process sms. The sub-
sequent flow final node just consumes the
token.

Action r3: Once the receiver does not want to
receive SMS anymore, it moves a token un-
subscribe into q1. We trigger this action by
timer t, which represents any spontaneous
initiative of a real client.

Action g3: The gateway receives the signal for
unsubscribing. The token flowing into activ-
ity final node fx removes the token from the
accept signal action s, due to the structured
node around it. Furthermore, the listener is
removed, and we start waiting for the con-
firmation ACK of the server logic.

Action g4: Once the acknowledgement arrives
via the internal ACK from the gateway
logic, a corresponding token is placed into
queue q2.

Action r4: The receiver consumes the acknowl-
edgement. (A real receiver would then ter-
minate or invoke further behavior.)

Fig. 6. Detailed actions defining the behavior of the SMS Notification

activity as in Fig. 4 is sufficient, since we can generate executable components
directly from this representation [18]. For a dynamic scenario, in which new com-
ponents can join the system at run-time and then use and provide services such
as the SMS notification, we utilize service contracts as introduced in Sect. 2. In
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our collaborations, these service contracts describe the visible behavior in terms
of signal transmissions between the activity partitions. For the example, the ser-
vice contract consists of the two interfaces Ig and Ir . These are located at the
partition borders, illustrated in Fig. 5, and describe the sequence of tokens (resp.
signals once implemented) entering or leaving the partition.

4 Synthesizing Service Contracts from Activities

Figure 7 illustrates the steps needed to construct a pair of interfaces from an
activity. We start with an activity describing both participants by dedicated
partitions, such as the SMS Notification presented before. We assume that the
activity is sound with respect to the criteria given in Sect. 2.2. In a first step, we
obtain the state space of the behavior implied by the activity via model checking.
From the resulting graph we extract one graph for each interface by labeling
the steps according to the observable signal transmissions at the corresponding
partition border. In two further steps, silent steps are removed, and the graph
is minimized. The resulting graphs are used to construct UML state machines
as the interface description, which are paired in a collaboration to form the
complete service contract.

4.1 Step 1: Generating the State Space of an Activity

With the definition of all actions r1..r4 and g1..g4 from Sect. 3.3 and their effects
on the variables i, t, a, s and the signal queues, we calculate the state space of
the behavior. For that, we start with the initial state of the activity, in which
only the initial node contains one token, and determine all reachable states by
executing the actions for each state they are enabled.

For the SMS Notification, the complete state space is shown in Fig. 8. Each state
m0..m11 corresponds to a specific token marking in the activity, and all edges refer
to the actions of Sect. 3.3 that are executed. The graph is built using the assertion
for bounded queues in Sect. 3.4 for at most one sms token in q2. To the right of
the graph, the detailed values of the variables are given for the markings m0 to m3
in TLA+ syntax [21]. For proceeding further, these are not important, since the
interfaces are constructed only from the structure of the graph and its edges.

Fig. 7. Overview of the construction mechanism
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Fig. 8. State space for the SMS Notification

4.2 Step 2: Mapping from Actions to Sending and Receiving Labels

The interface graphs that we are generating refer with their edges to the signals
sent or received in the activity step the edge represents. Since sending and re-
ceiving is relative to the location of the interface (Ir or Ig), we will do a mapping
for each of the sides. For that purpose, we look at the definition of the actions
in Sect. 3.3 and note which events are visible at the interface. For the interface
Ir, the actions map to the following labels:

r1 �→ ! subscribe r2 �→ ? sms g1..g4 �→ τ

r3 �→ ! unsubscribe r4 �→ ? unsubscribe_ack

All activity steps executed by the gateway (g1..q4) do not contribute any visible
interaction and thus no label. We therefore map them to the silent step τ . Vice
versa, for interface Ig, we read from the activity steps the following mapping:

g1 �→ ? subscribe g2 �→ ! sms r1..r4 �→ τ

g3 �→ ? unsubscribe g4 �→ ! unsubscribe_ack

As result we obtain the graphs Gr for the receiver and Gg for the gateway,
depicted in Fig. 9.

4.3 Step 3: Removal of τ -Steps

Since interfaces shall describe only observable events, we remove the τ -steps. To
do so, we consider each τ -step and do one of the following:

– If the τ -step has the same source and target state, it is simply removed.
– If source and target states of the τ -step are distinct, these states are merged

as described below and the τ -step is removed.
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Fig. 9. Mapping to the labels for the receiver (Gr) and the gateway (Gg)

Fig. 10. Graphs after the removal of τ -steps

Merging the source and target state of a τ -step means that all incoming steps
into the target state are added to the incoming steps of the source state, and all
outgoing steps of the target are set as outgoing steps of the source. The target
state is then removed. By subsequently applying removal and merging, several
states may be merged into one single state. In the example, states m1, m3, and
m5 of Gr are connected by τ -steps, and are therefore merged into state m1.
Similarly, m2, m4, m6, m7, m8, m9, m10 are merged into state m2. States m0
and m11 remain unchanged. As a result, we get the graph G′

r shown in Fig. 10.
Similarly, the removal of τ -steps for the receiver yields graph G′

g.
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In general, the removal of τ -steps can hide situations in which a component
may internally change from a state where a signal can be received to one in which
the signal cannot be received anymore (see, for instance, [5,11]). Such τ -steps
must not be removed. However, in our case such situations cannot occur in the
first place, since the the activity that we use as input for the algorithm describes
input consistent behavior, as we will explain in Sect. 5.1. Therefore, all τ -steps
may be removed. The merging of states may have the result that between a
pair of states there are several steps with the same label. These are duplicates
that have no significance for the behavior, and can be merged into one single
step.

4.4 Step 4: Minimization

Comparing the graphs of Fig. 10 with the interfaces in Fig. 2, we see that our al-
gorithm has already produced the desired result. In general, however, the graph
obtained after the removal of all τ -steps can contain equivalent states, i.e., states
from which the same behavior (defined by the possible sequence of signal trans-
missions) can be observed.

To reduce the interfaces to their minimal representation, we use the min-
imization procedure for finite state machines described by Holzmann in [13].
This procedure checks if a pair of states is equivalent by considering if (1) all
possible labels of a state are also enabled by the other, and (2), if all possible
successor states of one state are matched by at at least one possible successor
of the other state. The second condition is evaluated iteratively, using an equiv-
alence matrix. Once the algorithm terminates, groups of equivalent states can
be read from the equivalence matrix. These states are merged, similar to the
merging during the removal of τ -steps. Since this may again result in multiple
steps with the same label between a pair of states, we remove duplicate steps
during merging.

4.5 Step 5: Encapsulation as Service Contracts

From the graphs obtained after minimization we construct UML state machines
as the final representation for the service contracts. These state machines are
stored within a UML model repository, for which we use the one provided by
the Eclipse Modeling Project [9]. Each state of a graph is represented by a UML
state. Graph states with no outgoing edge are represented by UML final states,
and the initial state is marked by an initial transition originating from an initial
pseudo state. The edges are represented by UML transitions. Receiving labels
(?) are translated to corresponding signal triggers, and sending labels (!) to
send signal actions as part of a transition’s effect. The signals referred by these
sending actions and triggers declare typed attributes if the activity flows they
represent transport objects, so that the interface also defines which data types
are required.
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5 Discussion

5.1 Soundness of the Generated Interfaces

By taking activities as the starting point, we can utilize a property of activities
that distinguishes them from the state machines used to model interfaces: State
machines must for every control state explicitly declare signals they can receive.
We recall the example from the introduction, in which s_r3 in Fig. 2 must
explicitly declare ?sms. Forgetting the declaration of this reception results in
input inconsistent behavior, and may result in unspecified receptions.

In contrast, activities do not exhibit unspecified receptions: Signal sendings
and receptions are modeled by the very same element, a single flow crossing
partition borders. Whenever a token representing a signal is at the head of a
queue entering a partition, it may continue and trigger the behavior declared
by the downstream flow.3 The activities we take as input for the generation of
interfaces therefore describe input-consistent behavior.

To ensure, that the interfaces generated by the algorithm do in fact describe
the behavior observed in the activity, we reason in temporal logic. The interfaces
need to be abstractions of the complete behavior described by the activity, or,
vice-versa, the activity must be a valid refinement of all the interfaces. In tempo-
ral logic, this can be verified by a refinement proof. Both, the complete behavior
of the collaboration A and the generated interfaces Ii, can be represented by
TLA specifications Sa and Si, respectively. In TLA, refinement corresponds to
implication (⇒). This means we have to prove that for all interfaces i, Sa ⇒ Si

holds. With refinement mappings, TLA offers a quite elegant method to perform
this implication proof (see [1]). For that, we have to find a mapping R from the
state spaces of Sa to the one of Si, so that:

– The initial state of Sa maps to the initial state of Si.
– An action of Sa, leading the system specification from state s to t, maps to

either an action in Si so that R(s) leads to R(t), or to a stuttering step, i.e.,
the values of Si stay unchanged.

Since our algorithm takes the more detailed system Sa as input and constructs
the interfaces through abstraction, it is always possible to give the refinement
mapping R by observing which states are merged during the τ -removal and the
minimization. For the interface Ir , we obtain therefore the following mapping
for the state variable state of the interface Ir:

state = if m0 then sr_1
else if m1 ∨ m3 ∨ m5 then sr_2
else if m2, m4, m6, m7, m8, m9, m10 then sr_3
else sr_4

3 If this behavior would harm any of the properties in Sect. 3.4, it would be detected
by the analysis and the construction of the interface would be aborted.
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We have verified that this refinement mapping is correct, i.e., Sa ⇒ Si, using
TLC [30]. Due to this refinement relation between an activity and the interfaces
generated from it, as well as the reception behavior of activities explained above,
the generated interfaces are sound.

– Property (i) is fulfilled since an interface is generated from the state space
that includes all possible signal receptions. For each state in which a signal
sig is at the head of the incoming queue for interface I, the algorithm adds
an outgoing transition ?sig to the current state of I. Since the only action
removing sig from the head of the queue is the actual reception by I, all
states in which sig may be received will have ?sig as an outgoing transition
for I. Hence, an interface declares receiving operations whenever they are
required. This also implies that interfaces are input consistent, since all signal
sendings lead to corresponding transitions in the interface.

– Property (ii) is fulfilled due to the requirement that activities are free from
deadlocks, ensured by the prior analysis.

5.2 Scalability of the Method

Although we explore all reachable states of a specification, our method is scal-
able, due to the compositional semantics of the underlying engineering method
introduced in Sect. 3.1.

– The collaborations, for which we generate the contracts, are typically related
to a specific task, so that they are limited in complexity to begin with.

– If a collaboration needs to interact with other functionalities, these may be
abstracted by internal signals (like s:SMS and a:ACK in Fig. 4) which sepa-
rates our collaboration from the gateway’s logic. Another possibility is to de-
scribe expected behavior on either collaboration side by ESMs as mentioned
in Sect. 3.1. In both cases, the state space is limited to the functionality
needed to realize the collaboration’s behavior.

– If an activity is composed of other building blocks on either side, these would
be in turn abstracted by their ESMs.

5.3 Related Approaches

Several other approaches in literature deal with the compatibility of interfaces.
In [11], Floch describes a process that extracts interfaces (called association
roles) from SDL processes to document the observable behavior towards each
communication partner. This facilitates the validation of systems under design,
since state machines under construction can be validated against such interfaces.
However, within these processes designers still need to deal with the concepts of
interfaces and their intricacies as discussed in the introduction, and may lose fo-
cus on the actual application. Sanders extends this approach in [26] with progress
labels. These labels can be used when a service should be chosen at run-time:
Instead of just selecting any service that is compatible, the service that enables
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the most features can be chosen. In SIMS [28], also sub-typing of interfaces and
ontologies [23] were discussed in that context.

Differences of our work lie especially in the implied development method:
we propose the use of behaviorally complete defined collaborations in terms of
activities as the starting point, from which the service contract and necessary
interfaces are derived. Since we focus on pure interface compatibility in terms
of allowed signal sequences, we have not treated progress or ontologies. These
can be seen as additional criteria that are meaningful during service discovery,
in case that we can choose among several compatible services.

6 Concluding Remarks

We presented an automated process for the synthesis of compatible interfaces and
service contracts, starting with behaviorally complete and application-oriented
descriptions expressed by UML activities. The synthesis algorithm is imple-
mented as an Eclipse plug-in in our tool suite Arctis [2], and has been tested on
numerous collaborations from other case studies. Typically, the algorithm pro-
duces the interfaces within the fraction of a second, due to the generally small
state space of collaborative descriptions.

The novelty of our method lies in its practical implications on development.
When creating a system that should make some of its functionality available via
service contracts, engineers can focus on their application expressed by activities,
and derive corresponding service contracts automatically. This not only saves
time, but also avoids a manual process which can lead to inconsistencies.

For an inverted scenario (that is, when a designer should build a component
that corresponds to a given service contract) we can generate special building
blocks from service contracts that guarantee compliance, and any violations will
be detected by our analysis tools. We have demonstrated and implemented such
an approach in [20] for interfaces given as web service descriptions. In either
scenario, our method does not require developers to understand the intricacies of
behavioral interfaces, which in our opinion is a major hurdle for their widespread
adoption.
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Abstract. In recent years, Wireless Sensor Networks (WSNs) have been
primarily used to build ad-hoc telecommunication infrastructures from
scratch or as low-cost alternatives to traditional networks. But the di-
versity of applications with typically narrow node resources and require-
ments of already existing information infrastructures sets hard constraints
to WSN. The software development process becomes even more compli-
cated when real-time constraints have to be taken into account. This is
the case when the physical processes of the WSN environment have to be
observed and are realized in space and time. For the development of such
WSN we present a model-based framework (GAF4WSN), where the well-
known techniques SDL, UML and ASN.1 are involved. The framework
was already successfully used for the development of a new generation of
Earthquake Early Warning Systems (EEWS). An Earthquake Synthesizer
(ES) and an Experiment Management System (EMS) complete the frame-
work, which supports the modelling, simulation, installation and adminis-
tration of different EEWS approaches in combination with a Geographic
Information System (GIS).

Keywords: model-based development, sensor systems, wireless sensor
networks, simulation, code generation, experiment management, SDL,
UML, ASN.1.

1 Introduction

Wireless Sensor Networks (WSN) become more and more popular for monitor-
ing numerous physical phenomena and often they should be self-organized for
easy installation and maintenance (e.g. to autonomously integrate new sensor
nodes and react on failed ones). This emerging technology offers exciting poten-
tial for numerous application areas including environmental, medical, military,
transportation and disaster management. The major challenges in the WSN do-
main include sensing and collecting data from sensors and then evaluating it
to formulate meaningful information such as generating alarms or supporting
decisions while minimizing energy consumption. But the development of such
complex systems is a challenging task. In particular, the evaluation of their po-
tential real-time behaviour is almost impossible or too expensive without prior
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modelling experiments, involving computer simulations. Besides the complexity
of the system itself, its surrounding environment in real-time behaviour terms
must be considered and modelled (e.g. load-models using synthetic sensor input
data). In addition to this kind of requirement, it is quite difficult to port a WSN
application to different platforms.

To solve these issues, system engineers need to be able to model applications
using high-level abstractions and to simulate those using configurable and realis-
tic topologies for the network itself. We follow a generally approved model-driven
development paradigm using a technology mix of SDL/ASN.1/UML/C++ [1,2]
to generate the code for the target hardware platform (sensor nodes) and for dif-
ferent kinds of simulators supporting different experiment scenarios (including
the system and its environment) in preparation for the implementation. A further
specialty of our approach is the integration of the model-driven tool chain into a
spatial-time-based Experiment Management System (EMS) in connection with
a Geographic Information System (GIS). This allows us to describe the WSN
topology and the distribution or movement of the physical phenomena in a geo-
graphic map. All tool components are integrated by our GIS-based Development
and Administration Framework for Wireless Sensor Networks (GAF4WSN).

The presented paper illustrates the usage of GAF4WSN developing a new ap-
proach for Earthquake Early Warning Systems (EEWS) that uses self-organizing
mesh WSN based on commercial off-the-shelf hardware where the WSN nodes
are equipped with low-cost seismometers and GPS units. The most important
installed software components are the Linux operating system, WLAN network
stack and further protocol units for message routing and alarming through a
meshed network. Additional general services are provided by middleware be-
tween the communication and application layer of the protocol stack. Significant
and innovative aspects of that approach are connected with the fact that each
sensing node performs on-site independent analysis of the ground motion and
that the early warning is automatically carried out within the wireless mesh
network itself by dedicated alarming processes. Moreover, since commercial off-
the-shelf hardware is inexpensive, this also allows for more sensor nodes and
hence much denser sensor networks. These can provide more detailed, higher
resolution information than traditional seismic networks with only a few power-
ful seismological stations spread over a large area.

Structure and behaviour models of network topologies developed with
GAF4WSN for specific geographic regions are coupled with seismometer sen-
sor input data generation and convenient visualizations to form the basis for
various types of simulation experiments ahead of system implementation and
installation. The general objective of these studies is to test the functionality
of an EEWS and to optimize it with respect to real-time, reliability and cost
requirements of potential end-users. This approach is used for implementing a
prototype-EEWS developed within the EU project SAFER (Seismic eArly warn-
ing For EuRope, [3]) in cooperation with the GeoForschungsZentrum Potsdam.
A small installation of this prototype system is established in the mega-city
Istanbul, a region threatened by strong earthquakes.
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This paper focuses on a transcompiler (integrated in GAF4WSN) as an ex-
tension of PragmaDevs RealTimeDeveloperStudio [4] to generate specific code
for different types of simulation experiments and for the sensor nodes’ target
platform out of SDL/UML models.

2 Related Work

Legacy computer network simulators, such as ns-2 [5], ns-3 [6], JistSwans [7] and
OPNET [8] enable the simulation of wired or wireless network behaviour and
protocol stack operation, but do not take into account WSN characteristics. This
is overcome in the simulators proposed specifically for WSN, which were catego-
rized by [9] into networking oriented and sensor node simulators. In addition [9]
introduces a further simulator type, which is characterized by an integration of
design, simulation, debugging and code generation tools under a unique GUI.

The network-oriented simulators model the transmission medium in de-
tail and are more suitable for the large scale WSN simulations. Most of the
proposed networking oriented simulators are based on legacy computer network
simulators. SensorSim [10] and Naval Research Laboratory’s sensor network sim-
ulator [11] extend ns-2 with general WSN features.

The sensor node simulators mainly simulate the operation of a single node
but implement a lightweight communication model. Most of the proposed sen-
sor node simulators are targeted to TinyOS motes. Complete TinyOS systems
can be simulated with TinyOS SIMulator (TOSSIM) [12], and TinyOS Scalable
Simulation Framework that is an extension to SWAN [13].

Currently some integrated tool environments are available that combine
graphical design techniques with different kinds of simulators and code gen-
erators for different platforms. It is interesting that the most used modelling
technique in that area is the ITU-T language SDL. Examples of that category
are the WISENES framework [9] or the complete framework for modelling, sim-
ulation and multiplatform code generation based on MathWorks tools. They
enable system engineers to effectively design WSN applications and map them
on a wireless network. Application developers can automatically generate the
complete application code for several target operating systems from the same
simulated and debugged model, without thinking about the details of the target
platform implementation. The SDL Environment Framework (SEnF), developed
by the group of R. Gotzhein [14], is a further prominent example of that category.

Our integrated tool environment GAF4WSN supports time-dependent and
timeless simulations in combination with virtual or real machine simulations
based on a sensor network model in SDL/UML. Furthermore it is possible to use
a GIS-based approach for modeling different net topologies in combination with
models of environmental processes. For efficient transmission of messages, ASN.1
coding/decoding mechanisms are offered. GAF4WSN is not only a framework
for the design, simulation and code generation; furthermore it is also prototyped
as an operating and management platform for WSN. For that the WSN have to
be equipped with a middleware in combination with an EMS, which has to be
installed outside the WSN.
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3 SOSEWIN: A Wireless Meshed Seismic Sensor
Network

The Self-Organizing Seismic Early Warning Information Network (SOSEWIN)
is technically a decentralised, wireless mesh sensor network, made up of low-
cost components, with a special seismological application that supports earth-
quake early warning and rapid response tasks. It is being developed within the
SAFER [15] project funded by the European Union.

3.1 Earthquake Early Warning

Earthquakes belong to the most devastating natural hazards. They not only
cause damage to economic infrastructures, but also cause the loss of human life.
Several mega-cities like San Francisco, Mexico City, Tokyo or Istanbul are at
risk. Such cities not only accommodate a large number of people, but they also
constitute the economic heart of their regions. An EEWS is feasible because
earthquakes generate two basic kinds of seismic waves: P-waves (primary waves)
and S-waves (secondary waves). The harmless P-waves are almost twice as fast as
the S-waves, which cause most of the destructive shaking. Therefore, the warning
time (time interval between the detection of the fast P-waves and the arrival of
the slower S-waves), depends on the distance of a target area, usually a city to be
protected, from the hypocenter (the origin location of the earthquake). Although
for the worst case scenario this short warning time is not enough for people to
leave their houses, this can still be sufficient to mitigate secondary damages like
gas explosions and fire outbreaks.

3.2 Rapid Response

Immediately after an earthquake event, several analyzing tasks of the recorded
seismic waves must be carried out in order to understand the seismic impacts of
the event. These analyzing tasks belong to the rapid response phase. A typical
task in this phase is the fast generation of so-called ShakeMaps [16], which show
the wave peaks (or intensity) in the seismic affected area in form of isobar lines
or different colours. The combination of such ShakeMaps with information about
building structures and population densities in the affected area is important for
fast and proper disaster management. Thus the recording of aftershocks directly
in the affected area is a typical task or earthquake task forces.

3.3 Characteristics and Purpose

In contrast to existing EEWS [17], SOSEWIN realizes the new approach of
performing the decision whether an earthquake early warning should be raised,
inside the network itself and not in a central data centre (two-level alarming
protocol, Sect. 6.1).

A SOSEWIN reacts in a self-organizing way on newly added or removed nodes.
Therefore it is more robust, easier to install and maintain than traditional, cen-
tralized EEWSs. In addition, with a relatively low price compared to common
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seismometer stations, a very dense network (hundreds or thousands of nodes)
can be established directly in the threatened region. SOSEWIN nodes are also
small and light-weight, which allows a working network to be established very
quickly to support earthquake task forces during the rapid response phase.

The SOSEWIN nodes were already successfully used in two field tests for mon-
itoring building structures: Recently during the aftershock phase of the Abruzzo
event (Italy) and the Fatih bridge (Istanbul, Turkey) [18].

4 Framework Requirements for the Design and
Administration of WSN

In the following section we postulate a list of requirements which we were able
to identify by generalization of the SOSEWIN development in our case study
and which were introduced step by step in our framework GAF4WSN as special
features.

• To test SOSEWIN in the form of models or real installed network topologies,
a framework feature is necessary as it allows us to simulate the environ-
mental processes (characterized by time series for each node, identified by
its precise local geographic position). In the case of earthquakes this data has
to be generated by a synthesizer tool for which input data is defined by an
event description (epicentre, depth, magnitude), a geological description of
the ground area of the travelling waves (defined by fault characteristics), the
WSN topology (given by geographic positions and link quality parameters)
and the node equipment (processor, memory, GPS-unit, seismometer sensor,
software components). Independent of the concrete use case, the framework
should support the built-up of model repositories. Furthermore the WSN
middleware should support a deployment of the test data and a principle
switch between two kinds of node input: real sensor data or synthesized
data.

• For the configuration of WSN models or real prototypes (network topology,
software architecture of nodes, geographic area) influenced by environmental
processes, a graphical Topology Editor based on a Geographic Infor-
mation System (GIS) is necessary. Adding and removing nodes is one
of the necessary basic features. The OGC standard Web Feature Service
(WFS) [19] can be recommended to introduce an additional layer of spa-
tial objects (e.g. points and lines with additional attributes) in an existing
topographic map.

• The example SOSEWIN has shown that for the design of WSN as alarming
systems, time-based simulations are absolutely essential to estimate the
relation between the speeds of the environmental process (travelling of seis-
mic waves) and the information processing process by the WSN. This kind of
performance prediction experiments allows for the evaluation of the chosen
network topology, routing protocols, message coding methods and hierar-
chical alarming protocols before the WSN is installed as an early warning
system.
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• In view of the complexity of large-scale WSN, the spread of WSN simulators
should allow a step-wise transition of abstract to real components
during the test process of WSN components. Here it was very useful to of-
fer the choice between different time concepts (free model time, model time
related to real time and real time itself). Furthermore tests should be sup-
ported by execution of complete WSN protocol stacks on virtual machines,
even if only small net topologies can be investigated by that approach. Larger
topologies need a higher degree of model abstraction, so that GAF4WSN
should support the use of ordinary network simulators.

• The WSN application protocols should be designed by standardized mod-
elling techniques. This has an impact for maintaining and porting the
WSN concepts. As already mentioned in Sect. 2, SDL was also the favourite
modelling language for our framework. We decided to use the Real-time
Developer Studio from PragmaDev, which supports the design of real-time
systems combined with debugging and C code generation facilities for dif-
ferent real-time operating systems. In particular this tool allows for a pow-
erful combination of the SDL agent concept (except some restrictions) with
UML class, use case and sequence diagrams. The data and sequential action
parts of PragmaDevs SDL/UML harmonization are based on C/C++. As a
consequence pointers can be efficiently handled as message parameters in-
dependent of whether the message is used for internal node communication
(with the parameter as a reference value) or if it is used for node-to-node
communication (with the parameter as a dereferenced value).
This piece of knowledge, whether the parameter is a reference or a deref-
erenced value, is always given by the respective sender agent. In addition
it is possible to bypass the actual weakness of SDL-RT in message delivery
between processes of block instances, where in SDL-RT all instances of a
block share process instance sets: one shared instance set for each enclosed
process definition (compared with SDL-2000 where each process instance
set in a block is enclosed by the block and distinct from sets in other block
instances).

• Commonly WSN have to deliver a great quantity of raw sensor data. Stan-
dardized techniques for coding and decoding improve the efficiency of the
whole network. We use ASN.1 basic encoding/decoding rules with Mini-
SEED [20], a standardized coding technique for seismometer raw data.

• Experiments as generalization of systematic simulator runs or real tests of
WSN prototypes form the evaluation base of our use case example SOSEWIN.
To ensure the consistency of all artefactswhich are necessary for an experiment
(concerning WSN model, WSN environment, tools, test input and output re-
sults), a tool-based information management is absolutely convenient. Such
an experiment management system should be integrated in the design and ad-
ministration framework. Independent of the nature of the investigation object
(model or realprototype), all events like state changes, timer events ormessage
arrivals have to be logged into files. This guarantees a unique operational in-
terface for the experiment management system. The collected data form
the base for a further use-case-dependent information evaluation.
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• Equally important are issues related to network deployment, interworking
and the integration with existing network infrastructures. Of particular in-
terest here is the choice of a suitable communication middleware that
hides the complexity of the low-level networking protocols and facilitates the
development of applications. In this context the data-centric communication
approach, which is based on data content rather than receivers’ addresses, ap-
pears to be more efficient and more appropriate for wireless sensor networks.
This middleware can act as ”glue” between software components of appli-
cations and the network or it is the ”slash” in the Client/Server construct.
To act in this way, middleware should offer services specified by well-defined
interfaces.

5 Our Approach: GAF4WSN

5.1 Architecture Overview

Figure 1 shows an overview on the core components of GAF4WSN. For sup-
porting the development task, this framework offers a centralized management
of models, software artefacts and experiment results. This is enabled by sev-
eral repositories that are implemented using database technologies with spatial
extension (OpenGIS). This GIS-based technology also offers the possibility to
administrate a WSN in terms of monitoring its health status or for deploying
new or updated software components. The following gives a brief description of
the framework components shown in Fig. 1.

• The Experiment Management System supports planning, configura-
tion, automated execution of experiments and storage of experiment results.
It provides additionally GIS-based visualization capabilities for experiment
results and it can also be used for planning software deployment and moni-
toring of an installed WSN.

• The Model Repository stores used SDL(-RT), UML and C++ models
defining the application for the WSN and underlying layers like middle-
ware [21] or routing.

• The Model Configurator knows the target platform and uses platform de-
pendent artefacts to configure the compiler (e.g. cross-compilation). It also
specifies certain input parameters (e.g. threshold values or network cluster-
ing) and stores the whole configuration into the Experiment Repository.

• The Transcompiler is indeed a tool chain of several transcompilers, which
accept SDL-RT models and compile C++ code at the end into different
executable binaries (simulators, target code). See Sect. 5.3 for details.

• The Execution Libraries are used by the transcompiler to generate the
executable binaries for a simulator or target code. They comprise several li-
braries for the target code binary (e.g. threading and networking capabilities
with the necessary functions to decode and encode the network messages us-
ing ASN.1). For simulator support it is also a pool of simulation frameworks.
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Fig. 1. Overview of GAF4WSN architecture

• The Environment Repository comprises environment models to describe
the setting of the WSN (e.g. network topology, link qualities) for simulation
and also load models to provide synthetically or historically recorded sensor
data to be applied as input to a sensor node in order to execute certain
experiments (simulative or with an existing WSN).

• The Simulator / Target Code is the target binary representation created
by the transcompiler tool chain. It is either a simulator out of a set of sev-
eral simulator types realizing different functionality (derived from different
simulation frameworks) or a binary intended to run on a node of a WSN.

Further on in this paper we focus on certain components of the GAF4WSN:
mainly the transcompiler tool chain (Sect. 5.3) addressing the special needs to
map SDL modelling concepts to simulator and target code. But in the following
we first introduce the basic libraries for these target platforms.

5.2 Used Libraries / Target Platform

ODEMx. [22] is a general purpose simulation C++ library that follows the well-
known Simula-67 tradition of process-oriented model descriptions with model
time based interleaved execution. ODEMx uses a highly portable coroutine im-
plementation and has been developed by the authors in several versions along
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with the emergence of C++ features. ODEMx provides base classes for pro-
cesses and events, so that it supports closed process life cycles as well as simple
event actions. Processes are scheduled according to their model time consump-
tion and executed as coroutines. Events are executed by simple function calls
on top of some process’ execution stack. The library contains special classes for
synchronization utilities as limited resources and unlimited queues. It provides a
broad range of random distribution classes and automatic reports on all resource
utilizations. ODEMx also supports combined models with both discrete and con-
tinuous time processes. Since its version 2.0 ODEMx provides a special package
for modelling protocol components. Using ODEMx allows for highly adaptable
experiments with the signalling protocols specified in SDL with different varia-
tion points:

• various levels of details in the model representation of the net infrastructure
ranging from ideal transmission without signal loss to tuning of transmission
quality parameters including group separation and explicitly modelling of
lower protocol layers,

• inclusion of real world node setup scenarios as well as all kinds of experiments
on hypothetic node allocations,

• feeding synthesized (but real world equivalent shaped) or recorded real sensor
data into the sensor nodes.

Boost. [23] is a collection of C++ libraries usable across a broad spectrum of
applications. It aims at establishing ”existing practice” and provides reference
implementations so that Boost libraries are suitable for eventual standardization.
For the target platforms, the following particular components are used for the
target code generation:

portable networking — including sockets;
timers;
hostname resolution;
socket iostreams;,
portable C++ multi-threading.

OpenWrt. [24] is described as a Linux distribution for embedded devices. In-
stead of trying to create a single, static firmware, OpenWrt provides a fully
writable file system with package management. This frees us from the applica-
tion selection and configuration provided by the vendor and allows us to cus-
tomize the device through the use of packages to suit any application. For the
developer, OpenWrt is the framework to build an application without having to
build the complete firmware around it.

5.3 SDL HUB Transcompiler

General Description. The core tool of our framework GAF4WSN is the ex-
tension of PragmaDevs RTDS to a new transcompiler which is able to generate
C++ code artefacts from UML/SDL-RT. These different artefacts can be linked
after their compilation with different libraries, which allows the construction of
different binaries corresponding to Fig. 2:
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A) RTDS-Simulator of small WSN topologies (as direct SDL interpretation)
B) ODEMx-Simulator of large-scale topology applications without a precise

model of the underlying communication layer
C) OpenWrt-target code fragments representing the application functionality

which has to be installed together with other software components on a node
of a special type, whose functionality is described in SDL by a corresponding
SDL block type and executable under OpenWrt.

In addition an SDL transcompiler to ns-3 [6] is in development by us.

PragmaDev approach. As illustrated in Fig. 2.A the PragmaDev approach
is given by translation of correct SDL-RT models into valid C code in general.
Some parts of the output are generated; others are static in order to support a
wide range of operating systems. The static parts are interleaved by the RTDS
transcompiler with generated code artefacts, which are parameterized by using
macro functions. Each framework provided by PragmaDev or any third party
developer both needs to define the macros used by the code generator as well as
the static parts. These components are represented by ”RTDS code templates”.

During the transformation into C code, RTDS discards any information con-
nected to the composition of processes into blocks. This implies a flat hierarchy
among blocks and processes. Processes are always mapped to threads of the cor-
responding OS, procedures map to functions and messages are represented as C
structures.

Due to the lack of a representation of blocks in the generated source code,
RTDS is not able to instantiate blocks dynamically. This motivates the use of an
additional compiler that gets called when the PragmaDev one finishes its work.

RTDS extension points. Figure 2.A also illustrates the principle way of com-
piler extension. First of all definitions of generated macro calls can be changed
using customized RTDS code templates. In addition, the static files that are
interleaved with actual generated code can be used as ”markers” for our tool
during examination of the generated files. The advantage of this approach is
that the customised tool doesn’t need to really understand the structure of
the generated code, but instead can use the markings for orientation. Finally
RTDS allows to partially redefine generated makefiles by the use of (RTDS gen-
erated) include directives. This mechanism can be used to integrate additional
tools seamlessly into the chain without artificially changing how the toolchain
works.

HUB SDL approach. Due to the structure of the generated code, our addi-
tional transcompiler is still able to reconstruct missing information. Blocks are
mapped to C++ classes that are populated with other blocks or processes, and
processes become C++ classes that have procedures as their methods. In order
to allow the sending of messages among different processes, all processes derive
from a common base class that implements an interface for resolving process
type IDs. Since we require dynamic instantiation of blocks in our large-scale
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truefalse

noEvent

signalAnalyser =  new SignalAnalyser(
  SAMPLERATE, PSHORTWINDOW, PSLRATIO,
  PDELAY, PGAMMA, PCUTOFF, 
  SSHORTWINDOW, SCUTOFF
);

eventDetected

nextRecord(data)

SignalAnalyser* signalAnalyser;
bool pWave = false; 
bool sWave = false; 
bool endOfEvent = false; 
tSensorData data;

pWave

EventDetected VIA cSAE_SE

signalAnalyser • >processNextRecord(
  data.timeindex, 
  data.northsouth, 
  data.eastwest, 
  data.z
);
pWave =
signalAnalyser • >isPTriggered();

t_Swave (T_SAE_SWAVE)

Fig. 3. Simplified SDL-RT state machine for Streaming Analysis

uses

SignalAnalysingEntity

>nextRecord(in sample : tSensorData)
<EventDetected() {via:cSAE_SE}
<EventDescribed() {via:cSAE_SE}
<EventFinished() {via:cSAE_SE}
<NoEvent() {via:cSAE_SE}

StreamingAnalysis

+isEndOfEvent() : boolean
+isSTriggered() : boolean
+isPTriggered() : boolean
+processNextRecord( timeIndex:long, northSouth:float, eastWest:float, vertical:float)

1 streamingAnalysis

1 signalAnalysingEntity

Fig. 4. SDL-UML specification for the Signal Analysing Entity process and the Stream-
ing Analysis class
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Fig. 5. The GAF4WSN simulators and testbeds
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topology projects, a block needs to provide mechanisms for internal block com-
munication. This implies a common base class. Unfortunately we were unable to
distinguish SDL-RT blocks from user defined include files just by analyzing C
code without loss of generality. Therefore we needed to introduce naming con-
ventions for blocks and block classes if those should be instantiated dynamically.
This doesn’t break compatibility with the original SDL-RT, because compilation
will still work even if the naming conventions are ignored.

ODEMx simulator/target code. Following the above principles, the modi-
fied compiler pipelines for an ODEMx simulator generation (Fig. 2.B) and for
the target code generation (Fig. 2.C) can be constructed.

5.4 Experiment Management System

Experiment management ensures the consistency of artefacts that are necessary
for an experiment, so that during analysis, the modeller is provided with all in-
formation that characterizes experiments: e.g. used model, parameter settings,
results, characteristics of the simulator/prototype (code generation process, soft-
ware version, algorithms used etc.) and the machine (account, operating system,
execution time, etc.). Therefore EMS [25] provides support for the three phases:
experiment planning, experiment execution and evaluation of the experiment
results.

In our use case study the results of the simulator runs (event traces) or
application-level-messages transmitted within the WSN are stored within the
relational database, the Experiment Repository (by importing log files or direct
access through an API). Experimental results can then be evaluated manually by
the Visualizer. This tool allows the presentation of a P-wave travelling through
the network, with its detection (or non-detection) being marked by the sensor
nodes changing their colour.

But there are much more possibilities to evaluate experiment results such
as visualizing the messages between software processes running on the Sensing
Node as a UML sequence diagrams or doing statistical analysis, e.g. to compute
the average message length of messages sent during a certain time period.

6 SOSEWIN Application

The main purpose of the SOSEWIN application we developed with our
GAF4WSN is to perform the tasks of an EEWS (Sect. 3.1). Therefore in this
chapter the basic principles of the Alarming Protocol (AP), implemented in the
WSN application layer, are introduced. To go more into detail the Earthquake
Synthesizer (ES) is explained, followed by a description of the integration of the
signal analysis performed by a single node to detect a P-wave.

6.1 Cooperative Alarming Protocol

To establish a hierarchical alarming system, each node in the WSN runs the
AP with different roles at runtime [26]. The SOSEWIN nodes are organized into
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clusters using criteria that determine the optimum communication efficiency.
Each cluster is headed by a Sensing Node (SN) that is designated as a Leading
Node (LN), with whom the other SNs within its cluster communicate general
”housekeeping/status” information and initial alarms. The LN in turn commu-
nicates with other LNs, including issuing of system alarms, based on each LN
knowing the status of the nodes that make up its respective cluster.

The SNs continuously monitor the ground shaking and perform a signal anal-
ysis with the goal to detect/trigger a P-wave. If a critical number of P-wave
triggers have reached the cluster’s LN, this node informs its neighbouring LNs.
In the case that a LN has received enough cluster alarms, a so-called system
alarm will be sent as fast as possible to the sinks in the SOSEWIN (Gateway
Node (GN)) that are responsible for forwarding those alarms the potential end-
users (e.g. public organizations responsible for disaster management).

6.2 Earthquake Synthesizer

The ES generates synthetic seismograms for each location of a node based on the
method of Wang [27]. Synthetic seismograms offer the opportunity to test differ-
ent methods of event detection and classification, with the freedom to introduce
as much (or as little) ”noise” to the data as required.

6.3 Integration of Streaming Analysis

The Signal Analysis (SA) [28] of the incoming sensor data stream is originally
performed by algorithms developed at the GFZ using the Matlab program. These
algorithms where re-implemented by hand into C++ to be highly efficient run-
ning on each SN. In the SDL model within the part of a SN this code is included
as passive UML classes.

Figure 3 shows a simplified SDL-RT state machine representing the Stream-
ing Analysis within the AP (the corresponding generated code for the target
platform is presented in Listing 1). Figure 4 shows a combined specification of
the SDL process und a passive UML class related to the SignalAnalyser class
performing the signal analysing algorithms. It processes a data record provided
by the SDL signal input queue via nextRecord(data). If a P-wave is detected,
it informs another state machine and goes into state eventDetected.

6.4 Simulators and Target Code

As motivated in Sect. 4 and described by their generation tools in Sect. 5.3
GAF4WSN supports code generation for SDL simulator, ODEMx simulator and
target code. In Fig. 5 each subsection represents one of the three HUB SDL
Transcompiler code generation target types and shows the specific input data,
the generated parts of the AP, the substituted entities and the relation to the
corresponding layers. In the development of the SOSEWIN software architecture
each code generation target fulfils a specific purpose and provides a different level
of abstraction.
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0 #include <boost/thread/thread.hpp >
#include <boost/bind.hpp>
#include " SignalAnalysingEntity.h"

#define RTDS_PROCESS_NUMBER RTDS_process_SignalAnalysingEntity
5 #define RTDS_PROCESS_NAME SignalAnalysingEntity

SignalAnalysingEntity:: SignalAnalysingEntity( RTDS:: Logger& logger)
: SDLProcess(logger)
{

10 RTDS_LOG_PROCESS_CREATION((int)msgQueue .writer, "SignalAnalysingEntity",
(int)cover);

}

void SignalAnalysingEntity:: main()
15 {

RTDS_MSG_DATA_DECL
short RTDS_transitionExecuted;

SignalAnalyser* signalAnalyser;
20 bool pWave = false;

bool sWave = false;
bool endOfEvent = false;
tSensorData data;

25 /* declare framework -side variables for the process
* starts stdio.run() asynchronous stops when isRunnings
* destructor is destroyed
*/

boost:: thread _workThread_t( boost::bind(
30 &boost ::asio:: io_service::run , &ioService));

auto_ptr <boost::asio:: io_service::work > _workThread_ptr(isRunning);
isRunning = 0;

/* Initial transition */
35 signalAnalyser = new SignalAnalyser(

SAMPLERATE , PSHORTWINDOW ,
PDELAY , PGAMMA ,
SSHORTWINDOW , SCUTOFF

);
40 RTDS_SDL_STATE_SET(noEvent );

do
{

/* peek new message from queue */
45 currentMessage = msgQRead ();

RTDS_LOG_MESSAGE_RECEIVE((int)& currentMessage ->sender ,
(int)msgQueue .writer , currentMessage ->sequenceNumber ,
getCurrentTime());

/* Double switch state / signal */
50 RTDS_transitionExecuted = 1;

switch(RTDS_currentContext->sdlState )
{

/* ... */
/* Transitions for state noEvent */

55 case noEvent :
switch(RTDS_currentContext->currentMessage ->messageNumber)
{

/* Transition for state noEvent - message nextRecord */
case nextRecord:

60 RTDS_MSG_RECEIVE_nextRecord(data);
signalAnalyser -> processNextRecord(

data.timeindex ,
data.northsouth ,
data.eastwest ,

65 data.z
);
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pWave = signalAnalyser -> isPTriggered();
if ( pWave )
{

70 RTDS_MSG_QUEUE_SEND_TO_NAME( EventDetected , 0, NULL ,
"SensingEntity", RTDS_process_SensingEntity);

RTDS_SET_TIMER(t_Swave , T_SAE_SWAVE);
RTDS_SDL_STATE_SET(eventDetected);
break;

75 }
RTDS_SDL_STATE_SET(noEvent );
break;

default :
RTDS_transitionExecuted = 0;

80 break;
}
break;

default :
RTDS_transitionExecuted = 0;

85 break;
} /* End of switch( RTDS_currentContext->sdlState) */
delete currentMessage;

} while (1);
}

Listing 1. Generated target C++ code for simplified Streaming Analysis state machine

The SDL simulator (Fig. 5.A) is used to test the functional behaviour of
smaller ensembles of the SOSEWIN nodes. We abstract from concrete earth-
quakes, and underlying protocol layers. One further important preposition is
perfect transmission behaviour of used communication channels over the air.
The results of functional tests allow us to evaluate and improve the business
logic of our AP. Typical outputs here are Sequence Diagrams (SD) and alarming
signals without useful time constraints.

The ODEMx simulator (Fig. 5.B) uses the capability of our general-purpose
ODEMx library, which supports next event simulation of parallel processes. It
allows an integrated test of all developed software components (incl. SA, ASN.1
encoding and decoding) in a large network of sensor nodes. Every node processes
its own set of sensor data provided by our ES. The outputs are general trace
files which can be used to generate SD or ShakeMaps. Input, output and network
configuration data come with precise time and spatial references. This simulator
allows the estimation of required transmission times and transmission quality
of alternative SOSEWIN configurations, which guarantees the early warning
functionality is independent of different earthquake scenarios.

Target code (Fig. 5.C) is a generated software binary which is, after deploy-
ment and installation using the EMS, running on every node in the SOSEWIN
network (Fig. 5.C shows two nodes communicating over WIFI network). For
testing purposes it is possible to switch between the real sensor data input and
the synthetic sensor data. The target code is integrated in a special package
which could be installed remotely into the OpenWrt operating system.

Listing 1 shows the generated target C++ code based on the simplified
Streaming Analysis state machine presented in Fig. 3. It realises the modeled
state changes within an endless-running loop (lines 42-88) consuming signals
depending on the current state. For example, if it has consumed a nextRecord
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signal (line 59) this is processed (line 61) and may result in the detection of a
P-wave (line 68) and a switch to state eventDetected (line 73).

The XEN simulator [29] is an additional code generation target, not shown
in Fig. 5, which allows to run several virtualized node hardware instances on
a XEN server. XEN is a virtual machine monitor for different computer archi-
tectures. It allows several guest operating systems to be executed on the same
computer hardware concurrently. In contrast to the SDL and ODEMx simulator
the XEN simulator allows the complete integration test of all software compo-
nents running on the real nodes (incl. the operating system and the complete
communication stack). The link between the nodes is implemented by a network
bridge without any packet loss. Due to the absence of a sensor in the virtualiza-
tion the raw sensor data is provided by the Environment Repository.

7 Conclusion

SDL in combination with UML and ASN.1 is one of the most powerful tech-
nologies for modelling complex distributed reactive systems. In this paper we
have demonstrated the extension of PragmaDev’s RTDS into the core of model-
driven development and administration approach of WSN, offered by one in-
tegrated framework GAF4WSN. Its architecture is based on OGC, OMG and
ITU-T standards and combines different technologies for GIS, databases, be-
haviour modelling, information coding and code generation for target platforms
and for different types of simulation. In addition, with experiment management,
simulation and prototyping test cycles are handled independently, which leads to
a quality improvement by applying these two evaluation techniques on different
abstractions of the same real system. The advantages of GAF4WSN comprise
not only the general support for modelling and simulation of environmental pro-
cesses with geo-specific spatial contexts, but also the unification of information
management of model experiments with tests of the prototyped WSN that al-
lows us to use GAF4WSN for modelling as well as for administration. With
the development of the first prototype of an EEWS for Istanbul we were able
to demonstrate a proof of concepts. In the up-coming consolidation period of
SOSEWIN in Istanbul we will extend our simulation experiments for preparing
the extension of the real network with general network simulators like ns-3 to
investigate large-scale topologies.
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Development of the seismological analysis software to be implemented in the Low
Cost Network, http://casablanca.informatik.hu-berlin.de/wiki/images/4/
41/D4.04_4.05_SAFER_GFZ.pdf

29. XEN, http://www.xen.org

http://www.opengeospatial.org/standards/wfs
http://www.iris.washington.edu/data/dmc-seedlink.htm
http://casablanca.informatik.hu-berlin.de/wiki/images/2/2f/D4.22_SAFER_UBER.pdf
http://casablanca.informatik.hu-berlin.de/wiki/images/2/2f/D4.22_SAFER_UBER.pdf
http://odemx.sourceforge.net
http://www.boost.org
http://www.openwrt.org
http://casablanca.informatik.hu-berlin.de/wiki/images/7/73/D4.21_SAFER-UBER.pdf
http://casablanca.informatik.hu-berlin.de/wiki/images/7/73/D4.21_SAFER-UBER.pdf
http://casablanca.informatik.hu-berlin.de/wiki/images/4/41/D4.04_4.05_SAFER_GFZ.pdf
http://casablanca.informatik.hu-berlin.de/wiki/images/4/41/D4.04_4.05_SAFER_GFZ.pdf
http://www.xen.org


Modeling LTE Protocol for Mobile Terminals
Using a Formal Description Technique

Anas Showk1, David Szczesny1, Shadi Traboulsi1, Irv Badr2,
Elizabeth Gonzalez1, and Attila Bilgic1

1 Institute for Integrated Systems, University of Bochum,
44801 Bochum, Germany

{anas.showk,david.szczesny,shadi.traboulsi,elizabeth.gonzalez,
attila.bilgic}@is.rub.de

2 IBM Rational, Chicago, IL, USA
ibadr@us.ibm.com

Abstract. The Long Term Evolution (LTE) radio communication is
the upgrade of the current 3G mobile technology with a more complex
protocol in order to enable very high data rates. The usage of Model
Driven Development (MDD) has arisen as a promising way of dealing
with the increasing complexity of next generation mobile protocols. In
this paper, a light version of the LTE protocol for the access stratum
user plane is modeled using the SDL SuiteTM tool. The tool shows easy
understanding of the model as well as easy testing of its functionality
using simulation in cooperation with Message Sequence Chart (MSC).
The simulation result shows that the implemented Specification and De-
scription Language (SDL) guarantees a good consistency with the target
scenarios. The system implementation is mapped to multiple threads and
integrated with an operating system to enable execution in multi core
hardware platforms.

Keywords: Service-Oriented applications, formal modeling, automatic
code generation, formal verification, formal validation.

1 Introduction

Developing next generation mobile communication and wireless technologies
greatly benefit from reusing prevailing approaches and best practices. For over
a decade, most global installations have taken advantage of Model Driven De-
velopment (MDD) for communication products; oftentimes through tools using
the Specification Description Language (SDL)[1]. This especially applies to most
protocol based products developed within the last twenty years.

Besides other domains, a big majority of wireless base stations and personal
handset devices world-wide currently use SDL with Testing and Test Control No-
tation version 3 (TTCN-3) [2]. Consequently, SDL generated, and TTCN tested
systems now drive over eighty percent of all wireless technology in the world [3].
As the merits of domain specific modeling are just now becoming apparent,

R. Reed, A. Bilgic, and R. Gotzhein (Eds.): SDL 2009, LNCS 5719, pp. 222–238, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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one has to commend the foresight used in development of the SDL language,
over two decades ago. SDL, coupled with TTCN, has provided a solid work-
flow for model driven and Agile development approach for 2G and 3G wireless
systems [4,5,6,7], and is slated to repeat the same for beyond 3G, and 4G wire-
less protocol development. Consequently, we use SDL to develop a light version
of the Long Term Evolution (LTE) protocol stack layer 2 (L2) and layer 3 (L3)
for the mobile terminal.

1.1 Development Methodology

The block diagram in Fig. 1 shows the implementation steps of the LTE pro-
tocol stack using SDL SuiteTM. In the top left side, the Message Sequence
Chart (MSC) [8] editor is utilized to produce the target design for the LTE
user plane which is compatible with the LTE standard [9]. The MSCs are used
as guidance for graphical modeling in SDL and C functions implementation for
header processing. After mapping the graphical model to C code, the generated
code is linked and compiled with the hand written C implementation. The over-
all system is simulated to check the functionality and compare it with the design
target MSCs. Further corrections of the LTE models can be done when needed.

As shown in the lower branch of Fig. 1, the LTE system implementation can
be integrated into an operating system. The modeled system is divided into
separate threads using the deployment editor. The multithread SDL model is
converted to C code, compiled, and linked with the hand written code.

This paper is organized such that Sect. 2 gives an introduction to the LTE
protocol stack and its data flow. Section 3 shows the LTE user plane target de-
sign. The development environment is presented in Sect. 4. After that, Sect. 5
discusses the SDL model of the system in detail. Section 6 is dedicated to the

Fig. 1. Block diagram showing the LTE protocol stack implementation steps
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integration with operating systems. In Sect. 7, the simulation results are pre-
sented followed by the conclusion and outlook to future research work in Sect. 8.

2 The LTE Protocol Stack

The LTE is the successor of the Universal Mobile Telecommunications System
(UMTS) cellular technology. It enables much higher data rates to be achieved
along with much lower packet latencies in an IP based system. The LTE will
provide maximum data rates of 100 Mb/s in the downlink and 50 Mb/s in the
uplink direction. Currently upcoming and future mobile devices enable the best
quality of services in the current environment of the user with a future vision of
an all IP based network. Another aspect is the dramatic increase of multimedia
applications in the broadest sense including video streaming, video conferencing,
and online gaming. Initiated in 2004, the LTE project focused on enhancing the
Universal Terrestrial Radio Access (UTRA) and optimizing 3GPPs radio access
architecture [9].

The LTE protocol stack L2 is divided into three sublayers, Medium Access
Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Pro-
tocol (PDCP). To summarize the flow of uplink data through all the protocol
layers, an example with three IP packets is illustrated in Fig. 2. The PDCP
performs IP header compression through Robust Header Compression (ROHC),
followed by ciphering. A PDCP header is added, carrying information required

Fig. 2. The LTE protocol data flow in uplink direction from IP layer through L2 to
the Physical layer (PHY)
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Fig. 3. MSC for the LTE data path in uplink and downlink showing packet flow from
L3 through L2 and the transport block reception and processing in both layers

for deciphering in the mobile terminal. The output from the PDCP is fed to the
RLC.

The RLC protocol performs concatenation and/or segmentation of the PDCP
PDUs and adds an RLC header. The header is used for in sequence delivery (per
logical channel) in the mobile terminal and for identification of RLC PDUs in
case of retransmissions. Several RLC PDUs are forwarded to the MAC sublayer,
which assembles them into a MAC Service Data Unit (SDU), and attaches the
MAC header to form a transport block. The transport block size depends on
the instantaneous data rate selected by the link adaptation mechanism. Thus,
the link adaptation affects both the MAC and RLC processing. Finally, the
physical layer attaches a Cyclic Redundancy Check (CRC) to the transport
block for error detection purposes. The physical layer processing is performed
before transmitting the signal to the air interface [10]. The inverse functionality
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is done in the downlink when receiving a transport block. More details about
uplink and downlink processing are given in Sect. 5.

3 The LTE Protocol Stack Design

As a first step of our implementation, as shown in Fig. 1, the MSCs are designed.
Several scenarios are plotted according to the LTE standard as described in the
3GPP Rel8 [9]. As an example, Fig. 3 demonstrates the MSC for a target LTE
protocol scenario. The MSC represents a looped LTE protocol data path from
the IP layer through L2 uplink to L2 downlink. Only the user plane is considered
because its real time requirements are associated with longer execution time than
the control plane. The MSCs are used for system analysis. The system can also
be verified by comparing the designed MSCs with the MSCs generated by SDL
SuiteTM simulator User Interface (UI).

The application data rate is realized using the timer T1 and the IP packet
payload length. In the uplink direction (see the upper part of Fig. 3) the IP
packet should be processed in the PDCP sublayer and sent to the RLC sub-
layer to be concatenated with other PDCP PDUs depending on the trans-
mission opportunity notification from MAC sublayer. The data rate in the
mobile terminal is determined by the timer T2 together with the transport block
size.

In the downlink, when MAC sublayer receives a transport block it should
process its header and forward the RLC PDUs to the upper sublayers (see Fig. 3).
The PDCP PDUs should be extracted from the received RLC PDUs and sent
to PDCP sublayer to feed the IP layer with the IP packets.

4 SDL Environment

Formal Description Techniques (FDTs) are efficient in specifying complex com-
munication protocols. FDTs guarantee syntactically and semantically unam-
biguous formal descriptions of communication protocols. In addition, they also
guarantee interoperable and compatible implementations of these protocols in-
dependent of their implementers. This removes a lot of the anxiety of current
software vendors to make their stack interoperable with other stacks developed
by other vendors. Furthermore, the conformance of these protocols to a given
standard can be checked with the help of predefined tests [11].

SDL supports object oriented software design by dedicated elements of the
language in contrast to other FDTs. Furthermore, its quick to learn graphical
notation is self documenting and thus easily maintainable [12]. These are the
reasons why SDL was chosen to model the LTE protocol stack.

SDL is the most widely used FDT in the area of telecommunications. The
basic theoretical model of an SDL system consists of a set of Extended Finite
State Machines (EFSM) that run in parallel. These machines are independent
of each other and communicate with asynchronous discrete signals. The LTE
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protocol stack model consists of the components described in the following sub
sections.

4.1 SDL Structure

The LTE Protocol Stack (PS) is structured using the hierarchical decomposition
with system, block, process, and procedure as the main building components.
The main hierarchical levels in SDL are utilized to organize the LTE model-
ing. Every PS sublayer is represented by a sub block (that is MAC, RLC, and
PDCP). The sub block in turn, is divided into sub sub blocks or processes ac-
cording to the functionality or entities of the target layer. Some functionality
like header building/processing is implemented using external C functions to
have more efficient code for accessing memory and doing other hardware closer
functionalities.

4.2 SDL Communication

In SDL, global data is accessed by an exchange of signals: the language model
does not allow direct reading from or direct writing to data owned by an enclosing
block. Communication requires that information between processes, or between
processes and the environment, is sent with signals (optionally with parameters).
SDL signals are sent asynchronously: the sending process continues executing
without waiting for an acknowledgment from the receiving process. PDUs are
sent as signals. Synchronous communication is possible via a shorthand: remote
procedure call. This shorthand is transformed to signal sending and waiting for
a signal for the acknowledgment [1].

4.3 SDL Behavior

The dynamic behavior in an SDL system is described in the processes using
EFSM. The system/block hierarchy is a static description of the system struc-
ture. Processes in SDL can be created at system start, or created and terminated
dynamically at runtime. More than one instance of a process can exist. Each in-
stance has a unique process identifier (Pid). This makes it possible to send signals
to individual instances of a process. The concept of processes and process in-
stances that work autonomously and concurrently makes SDL a true real time
language [13]. The other advantage of the processes concurrency that it makes
the parallelism easier to identify and exploit than the pure C programming.

5 The LTE Protocol Stack Model

The LTE protocol stack model in the SDL system is composed of two blocks
called LTE PS and Radio Interface, as illustrated in Fig. 4(a). The radio inter-
face forwarding functionality is modeled using two processes. The first for re-
ceiving the transport block and the other for forwarding the transport block to
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the downlink. As illustrated in Fig. 4(b), inside the LTE PS block, there are four
sub blocks, and 20 processes used to model the LTE protocol stack L2 and L3.
All the models are implemented according to the LTE standard [14,15,16]. More
details of the process modeling is given in the next subsections.

5.1 IP Packet Generation

The IP packet generation consists of two processes: one to emulate an application
transmitting data and the other to build the IP header. The IPv4 [17] header
with a length of 20 bytes is used in this implementation. The functionality is
implemented using an external C function, which returns the pointer to the
IP packet, and is invoked inside the SDL process. The IP packet length and
the pointer to the IP packet are forwarded to L2 by an SDL signal for further
processing and header building.

5.2 PDCP Uplink

In the PDCP sub block, there are two processes used to model the LTE PDCP
uplink. The first process receives the pointer to the IP packet from the upper
layer. The Robust Header Compression (ROHC) and data ciphering are not in-
cluded in this implementation because they are already implemented and tested
with 3G system. The components with names relevant to the above tasks are
not fully implemented but used only to forward the received packet. For every
IP packet received from the upper layer, the second process appends a PDCP
header and increments the sequence number counter. Then the pointer to the
PDCP PDU is forwarded to the RLC sublayer.

5.3 RLC Uplink

The RLC sublayer has three different modes: Transparent Mode (TM), Unac-
knowledged Mode (UM) and Acknowledged Mode (AM). In the TM the RLC
entity does not concatenate RLC SDUs nor add RLC headers, but forwards the
received RLC SDUs to the MAC sublayer. On the other hand, when the RLC
operates in the UM or AM, the RLC entity concatenates and/or segments the
received RLC SDUs and adds the RLC headers to build the RLC PDUs. Then,
the RLC PDUs are forwarded to the MAC sublayer. The main difference be-
tween AM and UM is that in the AM, the acknowledgement should be received
from the receiving entity. The resegmentation can be done in the AM mode as
well.

There are seven processes used to model the RLC functionalities in all three
modes as shown in Fig. 5(a). The RLC entity saves the received RLC SDUs
(that is, the PDCP PDUs) in a buffer and waits for the transmission opportunity
indicated by the MAC sublayer. When receiving an indication from the MAC
entity to transmit, combined with the length of the transport block allowed
to be sent, the RLC SDUs are concatenated according to the transport block
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Fig. 6. SDL modeling of MAC DL shows transmitting MAC SDUs to different logical
channels according to the LCID field in the received header

length to build the RLC PDU. In the TM entity (the TM RLC Tx process) no
RLC header is built. On the other hand, the UM and AM transmitter processes
build the RLC header and append it to the concatenated SDUs using external C
functions. A pointer to the RLC PDU and its length are forwarded to the MAC
sublayer, via the MUX DEMUX process using the Dedicated Traffic Channel
(DTCH), as shown in Fig. 5(b).
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Fig. 7. SDL modeling of RLC DL shows reordering RLC SDUs and send them to the
upper layers

5.4 MAC Downlink

The received MAC PDU header is decoded using a C function. As a consequence,
the number of multiplexed MAC SDUs, the logical channel identifier (LCID),
and the length of every MAC SDU are used to forward the received SDUs to
the higher layer via the dedicated logical channel as shown in Fig. 6. There
are two processes used to model the above functionalities (see Fig. 4(c)). The
first process decodes the received packet header and sends the number of MAC
SDUs to the second process which in turn transmits every MAC SDU to the
RLC sublayer via logical channels. The traffic data is sent via the DTCH.

5.5 RLC Downlink

The pointer to the RLC PDU is received by the MUX DEMUX process and
forwarded to the corresponding process, depending on the RLC entity mode. In
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the TM, the RLC PDU is forwarded to the PDCP layer without any processing
according to [14]. On the other hand, in UM and AM, the RLC entity decodes
the received header to check the starting address, the sequence number, and the
length of every RLC SDU. As illustrated in Fig. 7, in the case that the SDUs
are received out of order, the reordering is carried out and sent to the PDCP
sublayer. If there is more than one copy of the same packet received correctly,
only one will be processed and the other(s) will be discarded. The main difference
between AM and UM is the retransmission of the packet which is not received
at all or corrupted in the AM. As a consequence, the error correction using
automatic repeat request (ARQ) is done in the acknowledged mode (see [14]).
The ARQ procedure is not implemented in this version and a unidirectional
channel is assumed.

5.6 PDCP Downlink and IP Packet Reception

In the downlink direction, the received RLC SDUs represents PDCP PDUs.
The header of the PDCP PDU is decoded and the sequence number and packet
length are used for in sequence delivery of the packets to L3. The duplicated
packets are eliminated as well. After removing the PDCP header, the pointer to
the beginning of the PDCP SDU is sent to the IP layer.

In the IP layer only the IP header checksum is calculated and evaluated for
the received IP packet. The IPv4 header of length 20 bytes is removed such that
the payload data can be sent to the application.

6 Integration with Operating Systems

The LTE system implementation is integrated into an operating system. The
modeled system is divided into separate threads using the deployment editor. In
our setup, every SDL process acts as one thread using multiplicity (*) on the
aggregation between a component and the thread that contains the SDL block as
illustrated in Fig. 8. The multi threaded model is converted to C code, compiled
and linked with the hand written C code. With the threaded integration, SDL
SuiteTM supports different operating systems like POSIX, Win32, VxWorks, and
Nucleus Plus. As a consequence, the generated C code can be integrated with
one of those operating systems. The integration with POSIX is done by tak-
ing the advantage of the standard pthread library for initiating, creating, start-
ing and managing threads. The concurrency of processes makes the parallelism
is easier to identify and exploit than the imperative programming style such
as C.

We run the generated code of the designed LTE stack model on an embedded
ARM11 processor with 32 KB cache size running at a frequency of 350 MHz. The
observed average execution time for uplink and downlink processing is around 70
microseconds each. The development efforts for the modeling described in Sect. 5
and the integration with operating system is about 6 man/months including the
learning phase for LTE and SDL.
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Fig. 8. The deployment diagram for the LTE protocol stack shows the multi-threading
of the modeled system

7 Simulation Results

IBM R© Rational R© SDL SuiteTM is a real time, software development solu-
tion that provides specification and development capabilities for complex, event
driven communications systems and protocol software. The SDL SuiteTM v6.1 is
used to analyze the LTE model and to automatically generate C code. The
generated code is compiled and linked with the hand written C implemen-
tation for header processing (see Fig. 1). The overall system is simulated to
check the functionality and compare it with design target MSCs presented in
Sect. 3.

As illustrated in Fig. 9, the IP packets propagate through PDCP, RLC and
MAC sublayers to the radio interface. The SDL processes which are not relevant
to the uplink are removed from the MSC for the sake of clarity.

The received transport block is processed in MAC, RLC, PDCP, and IP layers
to extract the IP packet payload from it (see Fig. 10). The MSC in Fig. 9 and
Fig. 10 are comparable to the target design MSC shown in Fig. 3. The main
difference is the increased number of entities in the simulation output, because
in SDL every process is treated as a separate entity. The SDL processes which
are not relevant to the downlink are removed from the MSC for the sake of
clarity. From a functionality point of view, the LTE protocol considered in this
work is successfully implemented using SDL.
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8 Conclusion

In this paper, we present efficient modeling of a light version of the LTE protocol
stack in the UE side using SDL together with hand written C code. The overall
system is simulated to check the functionality and compare it with design target
MSCs which is compliant with 3GPP release 8 standard of the LTE. The sim-
ulation result shows that the implemented SDL guarantees a good consistency
with the target test scenario, and has not any mismatching of logic flows as well
as semantic errors.

The SDL model is decomposed into threads to enable execution in multi
core as well as in single core platforms. For future work, we plan to extend the
introduced LTE implementation, integrate it with any POSIX like operating
system that support multi core and run them on a multi core embedded system.

Acknowledgments. The authors acknowledge the excellent cooperation with all
partners within the ICT eMuCo project and the support by the European
Commission. Further information is available on the project web site:
http://www.emuco.eu.
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Abstract. In this paper we present a new hardware/software co-design
methodology for embedded systems, where software components written
in Specification and Description Language (SDL) execute on a soft-model
of a hardware platform, a so called Virtual Prototype (VP). The proposed
approach enables fast exploration of different hardware and software de-
sign options at high level of abstraction in order to make early system
design decisions. We prove our approach by considering the Long Term
Evolution (LTE) communication stack as a use case for the architectural
exploration of our mobile terminal. The open source L4/Fiasco microker-
nel is deployed as a Real-Time OS to run the modem application repre-
sented by the LTE SDL-modelled protocol stack. We profile and analyze
the system performance by measuring average and maximum packet pro-
cessing times under various hardware and software conditions. Thereby,
we are able to rapidly obtain an efficient design point that provides 80 %
packet processing speedup against other unoptimized implementations
while meeting the required timing constraints and maintaining a good
balance between area and power consumption.

Keywords: hardware/software co-design, rapid system prototyping,
design-space exploration, mobile terminal, SDL.

1 Introduction

The complexity of embedded systems is increasing over time due to the integra-
tion of more and more functionalities into a single chip, which is supported by
the advances in fabrication technology. Nowadays, these systems are made up of
heterogeneous architectures consisting of a broad range of IP modules like em-
bedded processors, accelerator blocks, interface modules, a memory subsystem,
and a communication infrastructure through which these blocks can interact for
the exchange of data and synchronization.

Embedded systems like mobile phones have serious power constraints because
of their limited battery life time. Moreover, these systems often have real-time
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characteristics. For instance, communication devices have to process a certain
number of packets per second in order to guarantee no degradation in the sys-
tem’s efficiency and quality of service. In addition, reducing the chip area is an
important aspect in chip design due to its impact on chip cost. The metrics
introduced above (power, performance and area) influence the selection of an
appropriate system architecture based on given constraints and their trade-off
figures. System constraints, together with the degree of system’s complexity, de-
termine the effort needed to optimize hardware and software components of the
system.

To be able to define system bottlenecks at an early stage of system develop-
ment, describing hardware and software at high level of abstraction is mandatory.
SystemC, a recent hardware modelling language, has gained a lot of attention
for describing hardware components at high level of granularity for the purpose
of design exploration [1]. On the software side, formal description techniques
such as the Specification and Description Language (SDL) provide simplicity
and modularity needed to cope with complex modern software applications.

In this paper we present a new methodology that bridges software and hard-
ware development as both impact the fulfilment of system constraints. The pro-
posed methodology combines modular and abstract software design using SDL
with system-level hardware design based on virtual prototyping (VP). This al-
lows for optimizing and customizing the whole system at a high level of abstrac-
tion, where simulations are faster and the potential for optimization is larger
compared to low level detailed implementations.

The rest of the paper is organized as follows. In the following section we give
an overview about co-design and modelling methods from literature. Section 3
describes our SDL/VP co-design approach. An abstract design of a mobile phone
system with its VP and software stack is demonstrated in Sects. 4 and 5. As a
case study, we demonstrate in Sect. 6 the usage of the proposed methodology
for architectural exploration of the reference mobile system. Section 7 concludes
the paper and gives an outlook on future work.

2 Related Work

There is currently much research being done in the area of Hardware/Software
(Hw/Sw) co-design. Many approaches have been proposed that rely on different
concepts. Interplay of processes describing a whole system is modelled in [2]
using performance networks, where system workload and services of resources
are described as event and resource streams, respectively. These two stream
types interact in performance components that are connected to a network to
analyze resource loads. This method can only be used for initial steps of system
partitioning and mapping of tasks into specific resources. It is very abstract
and does not provide any mechanism for evaluating the impact of hardware and
software variations on system performance.

Several co-design tools are developed throughout research. Cosyma [3] is an
environment that enables a C-based description of an embedded system’s tasks
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and their interconnection. It transforms the system behaviour into an Extended
Syntax (ES) graph, which is then used for determining the mapping of system
tasks into software and hardware resources. Software parts are converted to C
code and hardware blocks are generated in a HardwareC language. Estimations
for both software and hardware metrics are then obtained by simulating the
object code with Register Transfer Level (RTL) hardware models and their syn-
thesized counterparts, respectively. A similar approach is followed in [4], where
hardware partitions are memory-mapped with an interface through interrupt
lines to the controlling software and estimations are computed in cycles per byte
for comparison with predefined cost and performance parameters. Another work
in [5] uses Co-design Finite State Machines (CFSM) to describe both hardware
and software parts of a system. Iterative evaluation is then performed for the sake
of system partitioning. The next step involves conversion of software partitions
into C routines and mapping the hardware parts into an abstract description,
which is then refined through logic synthesis to represent the final implemented
hardware. Another language suitable for co-design is called SpecChart [6]. De-
velopment of hardware and software estimators for this language is carried out
by researchers. Particularly, software estimation is based on a generic processor
model, while hardware estimations are based on several area models [7,8]. These
tools perform system partitioning at very abstract level in a first step, while
evaluation is performed at low level in the second step. Hence, they are able
to make very accurate estimations. However, they suffer from low simulation
speed, which in turn slows down the convergence of finding a suitable system
configuration.

Transaction level models (TLM) [9] have the advantages of decoupling func-
tionality from communication between system blocks to meet short simulation
times. TLMs are used for different purposes depending on the level of abstraction
they are applied at [10]. In [11], TLM is used in a trace-based simulator, where
processing times of software routines running on a processor or Central Process-
ing Unit (CPU) are expressed as delay functions and memory reads/writes are
mapped to bus latencies. This mechanism only allows for identification of hard-
ware architecture timing bottlenecks without any indication on meeting absolute
constraints. Moreover, this method overly abstracts software representation and
hence does not account well for impacts from the software side. Ptolemy [12] is
a design framework that targets the modelling, simulation and design of embed-
ded systems by considering different models of computation, however, with the
main focus on specification and code generation. Click [13] is an approach for
specifying packet processing functionalities in an efficient way, however, with-
out providing means for evaluation of their performance on specific system
architectures.

In contrast to the above concepts, which either focus on software or hard-
ware modelling, our methodology is based on a medium level of abstraction,
where modelling of full software functionality is abstracted using SDL and the
description of virtual hardware prototyping models is based on SystemC/C++.
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3 The Design Methodology

The design problem of a parameterizable System-on-Chip (SoC) can be formu-
lated as a search problem. As software and hardware are the two main com-
ponents that build a whole SoC, each design point (dn) can be defined as a
combination of software and hardware parameters reflecting their architectural
design variations. As an example, we assume that both hardware and software
designs depend on two parameters each, and that each of these parameters has
two possible assignments. Therefore, we will have in this case 24 = 16 different
design points forming a so called search space (S) as shown in Fig. 1. Notice
that out of these points we have only six design points that meet our system’s
multi-objective functions, and hence they form a solution space (R).

Searching for design points belonging to the solution space in complicated
SoCs cannot be done in an exhaustive manner due to an exponential number of
design points. Moreover, estimating performance metrics for each configuration
requires costly simulation and analysis of the system. Some evolutionary algo-
rithms are used in [14] to reduce searching complexity. As finding an efficient
heuristic is not the focus of our work, we use a simple heuristic that first con-
siders the hardware dimension and then performs software variations only on
promising hardware design points: those that are close or meet the system ob-
jective functions. This approach does not necessarily lead to an optimal solution,
but to a local optimum that fulfils the given constraints.

The proposed flow for SDL/VP co-design is depicted in Fig. 2. Starting with
system specifications and intended functionality, an initial partitioning of system
tasks between hardware and software can be made. The design of software appli-
cations is carried out in SDL with an abstract style of modelling, from which C
code is generated. SDL applications are then integrated together with a selected
Real-Time Operating System (RTOS) and the required device drivers forming
the whole software part of an embedded system. On the other hand, a VP repre-
senting the hardware system architecture can be constructed from off-the-shelf
building blocks like processors and proprietary modules such as hardware ac-
celerators, in addition to the memory sub-system, on-chip interconnects and
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Input/Output blocks. The binary of the software component is then co-simulated
with the developed VP. During simulation, profiling takes place by monitoring
special system events based on selected target figures like software processing
time, power consumption and memory usage. Analysis of simulated hardware
and software design variations can then be performed by comparing the evalua-
tion results against given system constraints. In case of the constraints are not
met, further configurations are applied to hardware and/or software components
before starting another iteration to evaluate the new system design point. An-
other possibility is to migrate some system tasks from software to hardware and
vice versa to satisfy performance and area constraints, respectively.

The VP can be configured by selecting different hardware blocks to achieve
a certain data or signal processing task. Thus, it can switch between candi-
dates such as Digital Signal Processors (DSPs), Application Specific Instruction
Set Processors (ASIPs) and general purpose processors. CPUs can also be cus-
tomized by modifying their Arithmetic Logic Unit (ALU), pipeline architecture,
cache associativity and size. The memory sub-system can also be investigated for
various sizes, hierarchies and read/write latencies. The on-chip communication
infrastructure can be configured to use different bus standards and arbitration
schemes, or a network-on-chip topology. These configurations will help to eval-
uate the impact of hardware architecture on the metrics of interest. The design
of different blocks in a VP is usually performed at relatively high abstraction
levels based on SystemC/C++ which can be gradually refined as soon as the
solution space is defined and reduced. This is especially required for area esti-
mations which are dependent on transistor libraries and hence can be precisely
determined only at low implementation levels.

Software partitions can be modelled in SDL in terms of communicating pro-
cesses, where each process is specified as a set of interconnected abstract Finite
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State Machines (FSM). In this way, we achieve a clear and abstract way of mod-
elling software by focusing on program semantics rather than the language itself.
Modification of software at this level is much faster than at lower levels. For in-
stance, different implementations of the algorithm can change the functionality
per process and its interaction with other processes. Other optimizations at this
level could be reducing SDL process communication overhead and memory ac-
cesses, and distributing software tasks among SDL processes in order to exploit
locality of data and instructions. SDL modelling might also be useful to cope
with software challenges associated with next-generation multi-core embedded
systems. For example, the number of software threads and the way they com-
municate and synchronize, and the degree of parallelism is highly influenced by
the number of available SDL processes and their interconnections.

The proposed co-design flow employs combined software and hardware mod-
elling at reasonable abstraction level, allowing the capturing of accurate infor-
mation for system-level analysis and identification of design points that meet
specified objective functions. Moreover, it provides means for Hw/Sw partition-
ing in modern SoCs as well as for optimization of both software and hardware
within the same design flow. This approach also provides implicit verification
of software and bridges the gap between software and hardware design method-
ologies. After finding a suitable design point, hardware refinement towards pure
VHDL can be made for final chip tape-out and SDL generated code can be op-
tionally replaced with pure C-code for efficiency considerations. As a use case,
we will present in the following sections the hardware and software design of
a simple mobile phone system and its architectural exploration based on the
proposed methodology.

4 Virtual Hardware Platform

We build a VP of a mobile phone platform using tools from VaST Systems
Technology Corporation [15]. This platform is intentionally designed to be based
on a multi-core processor, which enables us to perform future investigations
about parallelism opportunities for high data rate communication standards.
Within the context of this paper, this platform is used as a single-core system,
where only one of the available cores is activated.

The architecture of our platform is inspired from the RealView PB11MPCore
baseboard provided by ARM [16]. A simplified block diagram of our VP is de-
picted in Fig. 3. Standard building blocks like processor and interconnects, are
taken from the model library provided by the tool vendor. An ARM11 MPCore
processor realizes four ARM11 cores, which are representative for state-of-the-art
processors in mobile phones [17]. Each of these processors is equipped with an
L1 data and instruction cache and a local timer. A snoop control unit is used to
maintain the coherency between processors’ local L1 data caches. A distributed
interrupt controller (not shown in Fig. 3) is responsible for dispatching input
interrupt lines into the corresponding cores. Each of the four cores features
an eight-stage datapath pipeline and a Memory Management Unit (MMU) to
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support virtual memory. Moreover, the processor subsystem contains a L2 cache
to improve the performance of data intensive applications.

The platform employs different kinds of memory blocks. Flash memory is
used to hold the device firmware or boot code, which initializes the system : for
example, configuring the L2 cache and memory controllers. The firmware then
gives control to the operating system which runs from the RAM.

This Double Data Rate Synchronous Dynamic RAM (DDR) is used as an
external main memory of the system. The operating system and applications
running above are executed from this memory. The read and write latencies of
this memory are adjusted according to the state-of-the-art mobile phone plat-
form [18]. In addition, an internal SRAM memory offers low access latencies
and hence can be used to store small and time-critical data and/or code. Static
and dynamic memory controllers implement the interface protocol required for
reading and writing data to Flash and DDR memories, respectively.

To off-load the processor, the Direct Memory Access Controller (DMAC) is
used for performing efficient burst transfers from and to the IO blocks. The
DMAC has an associated device driver software for configuration. The Trans-
mit/Receive (TX/RX) is an IO block that implements the physical interface for
transmitting and receiving data frames, for instance through an Ethernet port.
Once a data frame is received, the TX/RX block signals the DMA requesting a
data transfer to memory. After that, the DMA copies the data from the TX/RX
block to a predefined location in memory. When the copy is completed, the DMA
controller raises an interrupt notifying the processor that a radio frame exists
in memory and is ready to be fetched and processed. Upon transmission, the
processor triggers DMA transfers from memory to the TX/RX block by writing
to its configuration register.
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System components communicate and exchange data through a high speed
crossbar bus. Other busses with different standards and speed rates are con-
nected to the main bus using bus bridges. The bus bridge allows translation
between distinct bus protocols. The AMBA High-performance Bus (AHB) is
used for internal memory and the DMAC, whereas the Advanced Peripheral
Bus (APB) is used to connect low speed peripherals, such as timer and UART.
The timer can be used for the scheduling functionality of the operating system,
however, in our case the core’s internal timer is used for this purpose. User
interaction is provided by a console connected to the UART.

5 Software Stack

The stack representing the software component of our mobile phone platform is
made up of two parts. The Long Term Evolution (LTE) communication subsys-
tem for decoding and processing of data packets, and the L4/Fiasco microkernel
as an RTOS on top of which the protocol stack executes. These two software
entities and their details are illustrated in the following subsections.

5.1 LTE Modem Application

The modem application in our case represents the layer 2 (L2) functionality of
the LTE protocol stack. It is divided into uplink and downlink processing paths,
representing the communication protocol from mobile phone to base station and
vice versa, respectively. Both uplink and downlink consist of the Medium Access
Control (MAC), the Radio Link Control (RLC), and the Packet Data Conver-
gence Protocol (PDCP) sublayers [19]. As part of abstract software modelling,
the SDL model of the modem application implements data plane sublayers in
several concurrent processes communicating through signals. Control plane pro-
cessing is not considered since it does not have much impact on the data pro-
cessing time. Fig. 4 shows the processing tasks implemented in the SDL model.

PDCP
Packet forwarding
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Packet reordering 
Header processing

MAC
Header processing
Multiplexing/DeMultiplexing
Channel mapping
Hybrid ARQ
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. . .

MAC SDUMAC
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Fig. 4. Implemented functionality of the modem subsystem in SDL
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Fig. 5. The RLC downlink block architecture and its Acknowledged Mode process
behavior
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When a transport block is received at the mobile terminal, MAC processing
starts by applying the Hybrid Automatic Repeat Request (HARQ) process, which
retransmits transport blocks for error recovery. When a correct transport block is
decoded, header processing starts by decoding the MAC header to extract data
like logical channel Identification (LCID) and the Service Data Unit (SDU) length.
Afterwards, the downlink shared transport channel is mapped into corresponding
control and traffic logical channels, which realize the interface with the RLC sub-
layer. Consequently, it demultiplexes MAC SDUs into their corresponding logi-
cal channels. In the opposite direction, i.e. uplink processing, inverse operations
are performed starting with multiplexing of MAC SDUs and ending with header
generation to form the transport block ready for transmission.

Data processing continues at the RLC sub-layer after data is passed from the
MAC sublayer. First, the RLC header is decoded and then segmentation pro-
cessing is applied by unpacking an RLC Protocol Data Unit (PDU) into RLC
SDUs, or portion of SDUs. This process depends also on the size of the packets.
If the transport block is small, due to bad channel conditions, the RLC SDU may
be split among several RLC PDUs. As out-of-order packets might be produced
during handover, packet order is corrected in RLC by reordering the packets
based on the sequence number carried out in the RLC header. These operations
summarize the unacknowledged mode of RLC processing. Fig. 5 illustrates the
architecture of the RLC entity in the downlink direction. This entity demulti-
plexes packet data into different modes of RLC processing implemented in three
different processes. The communication of these processes with the rest of the
system is performed using SDL messages via the SDL channels. As an example,
the Acknowledged Mode process AM RLC Rx is described using an Extended
Finite State Machine (EFM). For space reasons, the LTE SDL system is not
fully demonstrated in this paper.

The PDCP sub-layer is implemented as packet forwarding in our investiga-
tions, but will be extended in the future enabling complete L2 modelling in
SDL. According to LTE specifications, two transport blocks should be processed
in 1ms leading to a processing budget of 0,5ms per transport block. Performance
analysis of LTE protocol processing in [20] shows that 13% of this time is occu-
pied by MAC and RLC sublayer processing. This means the timing requirements
for our architectural exploration in section 6 must be set to 65μs.

SDL modelling and code generation of the previously described protocol stack
functionality is performed using the IBM Rational tool, SDL Suite [21]. By
setting the operating system interface option to POSIX, we are able to generate
code capable to run on L4/Fiasco microkernel, which supports the same API
standard. The size of the SDL kernel itself accounts for 11,000 lines of code and
hence will impose some overhead on the generated SDL software system.

5.2 The L4/Fiasco Microkernel

The modem application in our mobile phone system runs on top of L4/Fiasco
based operating system [22]. The latter is composed of two layers, the L4/Fiasco
microkernel and the L4 runtime environment (L4Re) as shown in Fig. 6. The
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Fig. 6. The L4/Fiasco based operating system

selection of such a modern operating system which adopts the concept of mi-
crokernels is due to the fact that microkernels can act as robust RTOSs. For
instance, microkernels aim at running only the most necessary functionality in
the processor privileged mode. Hence, it requires smaller code size which re-
duces complexity and percentage of errors in the privileged mode. Moreover, mi-
crokernels offer good isolation characteristics by separating the communication
subsystem from untrusted components like freeware applications. In addition, it
supports virtualization by allowing the execution of general purpose operating
systems like embedded Linux, where mobile applications like calendar and video
codec can run, together with a proprietary RTOS responsible for executing the
communication protocol in a mobile phone. The services of each layer of the
deployed OS will be illustrated in the following.

The L4/Fiasco microkernel is the only component running in processor priv-
ileged mode and is responsible for managing the underlying hardware. Based
on its nature, it provides a minimal set of mechanisms like tasks, threads, and
Interprocess Communication (IPC). Fiasco kernel services are implemented in
terms of kernel objects. A task comprises an address space where one or more
threads can execute. Multiple threads within a task are scheduled by Fiasco’s
priority-based and preemptive scheduler. An IPC kernel object provides the basic
communication mechanism in L4- based systems and is used mainly for trans-
mitting arbitrary data between threads. On the other hand, the L4Re offers a
basic set of abstractions and services, which are useful to implement user- level
applications on top of the L4/Fiasco microkernel. It consists of a set of libraries
mainly responsible for memory and IO resource management.

In this work, we consider only the SDL model of the protocol stack as an
application to execute directly on top of the L4Re and the microkernel, which
in turn provides real-time capabilities.

6 Architectural Exploration Case Study

As a case study we apply the proposed methodology for exploring the impact of
different hardware and software architectural parameters on system performance.
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The objective of this exploration is to analyze the mobile phone platform. So, the
focus here is to see how the execution time of the protocol stack is influenced by
different selected parameters. Particularly, the main goal of this case study is the
customization of processor and memory subsystem in order to meet the timing
constraint of 65μs previously derived in subsection 5.1.

The parameters selected for system exploration are core frequency, memory
latency, cache size, and the number of threads realized by our SDL model. These
parameters have impact on system metrics. As the power of a CMOS-based chip
grows linearly with the operating frequency, higher processor frequencies will
result in more power consumption. On the other hand, this will improve the
speed of our system as the processor will be able to handle more instructions
within a fixed period of time, thus shortening the protocol stack execution time.
Note that the frequency of a processor is not the only deciding factor for system
performance. Actually the latter depends on the nature of the application being
executed since the processor has always to communicate with memory. There-
fore, it makes sense to investigate the impact of memory response or read/write
latency on our objective function. This parameter representing memory through-
put has also a linear impact on power consumption. Another important aspect
is to find a suitable L1 cache size. Actually, large cache sizes should shorten
the packet processing time by exploiting both spatial and temporal locality of
program code and packet data. This however happens at the expense of in-
creasing the chip area resulting in a higher fabrication cost. As an architectural
software design parameter, we increase the thread density of our protocol stack
SDL model. Threads have impact on systems memory and performance as each
thread is assigned a dedicated stack in memory and has to be managed by the
operating system. However, threads are also useful for exploiting concurrency
and parallelism in a system as long as the application allows it. Although we
know how these design parameters impact the system, it is still unclear how
huge this impact is. This is going to be illustrated within the rest of this section.
This study will also allow us to see the trade-off between different metrics, which
contributes to making our final design decisions.

Figure 7 shows the profiling setup and demonstrates how the processing times
are measured. The whole system is simulated with a cycle-approximate level of
accuracy using CoMET from VaST. We run the generated code of the SDL-
modelled protocol stack on top of the L4/Fiasco based operating system, which
in turn executes on the designed hardware platform. In this study, IP packets’
payload is generated in software. The data is then passed to the uplink data plane
processing which outputs a valid transport block as it would be received from a
base station via the air interface. After that, the downlink part of the stack is
triggered to process the transport block before it signals the IP data generation
process to start further iterations. In this way we are able to investigate both
processing paths at the same time.

As our objective function is to meet the timing requirements with respect
to the protocol stack execution time, timer tags are integrated into the stack’s
generated code enclosing both uplink and downlink processing paths. Timing
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Fig. 7. Simulation and profiling setup for evaluation of several design configurations
with respect to the execution time

measurements are performed by waiting for the timer tags during simulation
to start and stop corresponding timers leading to the measurements of the up-
link and downlink processing times. A Tcl automation script controls the whole
evaluation process which starts by selecting the SDL model which adheres to
the software design parameter. Afterwards, it adapts the hardware architecture
according to the assigned hardware parameter values and runs the simulation
where the performance profiling is also made. The evaluation ends by post- pro-
cessing the recorded timer values. Since different packet processing iterations
have different processing times, mainly due to different hardware states, we col-
lect the processing time for hundreds of iterations and post-process them to
compute the average and maximum processing time per packet.

Having four design parameters each with wide range of values will result in
a huge number of combinations or design points. To reduce the number of de-
sign points, we select parameter values within the range, which is acceptable for
embedded systems. For instance, the core frequency can be assigned to two pos-
sible values 210MHz and 350MHz. However, the (read,write) memory latency
parameters are assigned to (16,12) or (4,3) cycles at a reference frequency of
100 MHz. For the cache size, we consider four distinct values (8, 16, 32, and 64
kbytes) which are realistic candidates in a typical mobile device. For the software
parameter, we design SDL models with different number of running threads (1,
2, 6, and 17) by distributing the functionality of the MAC and RLC sublayers
into a higher number of SDL processes. In this use case, we are not concerned
with efficient mapping of SDL processes into concurrent worker threads. This
analysis will be carried out later on when dealing with multicore architectures
in order to explore and exploit parallelism in the modem application.

We apply the heuristic of considering design points with hardware variations
under stable software conditions. Particularly, we set the number of threads to
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Fig. 8. Evaluation of several design points through variation of hardware parameters.
Average execution time is shown in subplots (a) and (b), whereas plot (c) shows the
maximum execution time of both uplink and downlink processing.

one and vary all other hardware parameters. As a second step, we vary software
parameters only on the set of design points showing good results from the first
evaluation step. The uplink and downlink processing times corresponding to
design points d0 to d15 considered in the first evaluation step are depicted in
Fig. 8. In this figure the design points are grouped according to their cache size.
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From the results, we can notice that the achieved processing times are short-
ened with higher data caches reaching 44μs for uplink and 33μs for downlink
at core frequency of 210MHz and memory (read,write) latency of (16,12) cy-
cles. By increasing the processing frequency to 350MHz, the execution time of
both uplink and downlink is reduced by 10% and 35% at a cache size of 8 kB
and 64 kB, respectively. This shows that for small caches with large number of
misses, the system performance is limited by the memory response rather than
processor speed. This is justified in the third bar where the memory latency is
reduced to 25%, leading to 40% reduction in processing time at 8 kB cache size,
and only 10% reduction at 16 kB. In plot (c), the maximum execution time per
design configuration point is depicted. Design points with a cache size of 32 kB
and 64 kB are the only configurations which fulfil or almost fulfil the timing con-
straints. On the other hand, a small gain of 9μs can be observed by doubling the
cache size from 32 kB to 64 kB under the same frequency and memory latency.
This shows that design points with a 64 kB cache size are not worth to consider
due to their area overhead in comparison with the performance gain they can
bring. As a result, only design points based on 32 kB cache, i.e. d6 − d8, are
considered in the next evaluation step.

As a second step, we apply different variations of threaded SDL models into
design points d6 −d8. As Fig. 9 shows, the downlink execution time increases by
45% with configuration of two threads, and much larger with 6 and 17 threads.
It is obvious that we will not gain performance with higher number of threads
due to thread management overhead without possibility for parallelism since
the protocol stack is running on one core. However, we realize that the impact
of thread management is quite huge in a single core and this has to do with
the overhead of thread management coming from the SDL kernel as well as the
L4/Fiasco based operating system. This architectural exploration and analysis
allows us to highlight this issue, which should be taken into consideration for
further optimization especially when executing the stack on several cores.
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Finally, we select the design point d7, where the processor with a 32 kB cache
operates at 350MHz and the memory (read,write) latency is (16,12) cycles at
100MHz. In addition, the single threaded SDL model is selected. This configura-
tion achieves an average execution time which meets the timing constraints and
is on average 80% faster than other design configurations (see Fig. 8). Moreover,
it provides a good balance between area and power costs.

7 Conclusion

In this paper we propose a hardware/software co-design flow for embedded sys-
tems. Within this flow, software components are abstractly modelled using SDL,
while hardware components are emulated in software using the concept of virtual
prototyping. This approach allows for fast and early investigations of several de-
sign options for both hardware and software due to the low effort and high speed
associated with such modelling techniques. To prove our methodology, an archi-
tectural exploration of a mobile phone platform is considered. We demonstrate
an SDL-modelled LTE protocol stack, an L4/Fiasco based RTOS, and a designed
virtual prototype of a mobile terminal. We customize the processor and memory
subsystem of the platform by rapidly obtaining a suitable design configuration
which meets the required timing constraints and provides 80% packet process-
ing speedup compared to other unoptimized implementations. In addition, the
achieved design parameters provide a balanced power/area consumption trade-
off. For further study, different Hw/Sw partitioning configurations can be applied
and evaluated in a similar way. As a future work, we will adapt the software part
to make efficient utilization of multi-core architectures and make further investi-
gations about the performance gain, power consumption and scalability of such
a multi-core based communication system.

Acknowledgement. The authors acknowledge the excellent cooperation with
all partners within the ICT-eMuCo project and the support by the European
Commission. Further information is available on the project web-site:
http://www.emuco.eu.
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