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Abstract. This paper describes the design and implementation of the fuzzification
stage for type-1 and type-2 fuzzy inference systems (FIS). A versatile method to
calculate the membership values was used, it handles real numbers using decimal
floating point binary encoding to calculate the slopes of triangular and trapezoidal
membership functions. The designs were developed using VHDL code for FPGA
implementation. The type-1 implementation is shown to give the basis of the type-2
implementation, which is based on the average method that consists in substituting
an interval type-2 FIS by two type-1 FISs to cope with uncertainty. The function-
ality of the designs were evaluated by the analysis of the control surface plots of
a speed controller for a DC motor. The plots were obtained from Simulink models
that includes the VHDL designs developed in the Xilinx ISE. They were imported
to the Simulink environment through the Xilinx System Generator.

1 Introduction

Recently, there has been an increasing interest in the research and implementations
of type-2 fuzzy systems because they offer bigger advantages in handling uncer-
tainty with respect to type-1 fuzzy systems [4, 7, 9, 10, 11]; so, many researchers
have found this characteristic very interesting to be applied in the design of new dig-
ital controllers. This statement is supported by several research reports that cover
from theoretical studies to physical implementations [20, 21]. However, it is well
known that the implementation of type-2 fuzzy systems demand higher computa-
tional resources, this requirement is very difficult to satisfy for low cost microcon-
troller systems for industrial or consumer use.

With the rapid development of the Very Large Scale Integrated Circuits (VLSI),
such as the Field Programmable Gate Array (FPGA) and the Applied Specific Inte-
grated Circuit (ASIC), as well as the development of new programming tools that
allow to take complex digital designs to practice in a very small time, now, it is
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Fig. 1. Overview of the computer architecture used to test and validate the VHDL code of the
fuzzification stage.

possible to design and implement high performance systems embedded into an inte-
grated circuit. Nowadays, the study and proposals to implement a fuzzy system into
an FPGA is growing up [23].

The main objective of this work is to show how to implement the fuzzification
stage of a type-2 fuzzy system based on the average of two type-1 fuzzy systems
using the method proposed in [20]. The proposed algorithms were tested using the
Xilinx System Generator (XSG) from Xilinx, and the Matlab/Simulink from Math-
works. In [26], the details to implement and validate through the Xilinx System
Generator (XSG) the type-1 fuzzification stage were published. Fig. 1 shows the
setting up of the software architecture that was used to test and validate the type-1
and type-2 fuzzification stages. Note in this figure, that there is a main block contain-
ing three sub-blocks: Fuzzification, inference, and defuzzification. The fuzzification
block has two inputs, and one output, this block is related with another block labeled
as VHDL (Very High Description Language) to indicate that this stage was pro-
grammed using this high level hardware description language; the other two stages
(inference and defuzzification) are related with one block labeled as MATLAB to
indicate that these stages were programmed using Matlab/Simulink. Regarding the
fuzzification stage, two different architectures were proposed, they are: Fuzzifica-
tion using only the active MFs, and fuzzification using all the MFs. In the first one,
only the affected MFs by the inputs were considered. In the second architecture, all
the MFs were considered. This work is focused on the design of the fuzzification
stage for active MFs.

There are other works related to this one; for example, for type-1 fuzzy sys-
tems [13, 15, 18, 19, 22, 24, 25], in the book [17] the authors give an academic
example of the VHDL coding of a type-1 fuzzy controller. With respect to type-2
fuzzy systems there are some works like [14, 15, 16].

This work has been organized as follows: Section 2 is devoted to give an intro-
duction from crisp sets to type-1 and type-2 fuzzy sets (FSs), some useful definitions
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about generalized type-2 fuzzy sets are given with special emphasis in the MFs. In
section 3 the mathematics for interval type-2 fuzzy sets is given. In section 4 the
average type-2 fuzzy inference system is explained, emphasizing on the fuzzifica-
tion stage. Section 4.1 was dedicated to explain the most common methods to per-
form digital fuzzification, we explain in this section the method used in this work,
two important piece of VHDL code to fuzzify using triangular and trapezoidal MFs
are given; also, we explain the arithmetic method used to handle real and integers
numbers to improve the performance, a numeric example is given. Section 5 was
dedicated to explain the general idea that was followed in testing and validating this
stage. First, using a type-1 FS, an explanation of the input and output MFs, and their
respective linguistic variables and terms is given, we show the design entity for this
system. Next, it is explained how to implement the type-2 fuzzification stage for
the average method, by taking advantage of VHDL code reusability; i.e., using two
times the same VHDL code previously developed for the type-1 FS. Moreover, a
Simulink model that allows to test the developed type-2 VHDL code for the fuzzifi-
cation stage is shown. Finally, in section 5.4 some conclusions about this work are
given.

2 Sets

This section is dedicated to provide definitions of set theory, starting with “crisp
sets”, in order to introduce the basic concepts of type-1 and type-2 fuzzy set theory.

2.1 Crisp Sets

In classical set theory (George Cantor, 1845-1918) [2], a set A is comprised of ele-
ments x with membership into a universe of discourse X ; i.e., x ∈ X . The member-
ship of an element can be expressed using a membership function (MF) that is also
known as characteristic function or discrimination function [12]. The definition 1
is valid to represent a MF in the classical bivalent set (crisp set) theory. One of the
most common method to represent the crisp set A is,

A = {x|x ∈ X} (1)

Definition 1. For a crisp set A, the membership function μA is defined as

∀x ∈ X , μA(x) =
{

1 if x ∈ A
0 if x /∈ A

(2)

in other words, the function μA maps the elements in the universal set X to the set
{0,1},

μA(x) : X →{0,1}. (3)

��
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2.2 Fuzzy Sets

Ordinary fuzzy sets were developed by Lotfi Zadeh in 1965 [28], they are an exten-
sion of classical set theory where the concept of membership was extended to have
various grades of membership on the real continuous interval [0,1]. The original
idea was to use a fuzzy set (FS); i.e, a linguistic term to model a word; however,
after almost ten years, Zadeh introduced the concept of type-n FS as an extension
of an ordinary FS (type-1 FS) with the idea of blurring the degrees of membership
values [27].

Type-1 fuzzy sets have demonstrated to work efficiently in many applications,
most of them use the mathematics of fuzzy sets but losing the focus on words, that
are mainly used in the context to represent a function that is more mathematics
than linguistic [8]. Membership functions are used to characterize type-1 and type-2
fuzzy sets.

2.2.1 Type-1 Fuzzy Sets
Previously, we mentioned that a FS and its MF is an extension of a crisp set defined
in (1) and in (3), respectively. Therefore, that definition has been modified for the
FS and the MF. A type-1 FS is a set of ordered pairs expressed by (4) [6], and its
corresponding MF is given by definition 2,

A = {(x,μA(x))|x ∈ X} (4)

Definition 2. For a type-1 fuzzy set A, each element is mapped to [0,1] by its MF
μA, where [0,1] means real numbers between 0 and 1, including the values 0 and 1,

μA(x) : X → [0,1]. (5)

��
2.2.2 Type-2 Fuzzy Sets
In a type-1 FS the word fuzzy has the connotation of uncertainty, the problem is that
once the MF parameters have been specified the type-1 FS is completely certain;
as a direct consequence of limitations of type-1 fuzzy sets to handle appropriately
linguistic uncertainties type-n fuzzy sets were proposed [28], being type-2 fuzzy
sets an special case, the advent of this new type of fuzzy sets came with the fact
that uncertainty is always encountered in real life problems and in different ways;
so, type-2 fuzzy sets allow to handle appropriately linguistic and random uncertain-
ties [1, 10].

A pointwise definition of a type-2 FS is given as follows,

Definition 3. For a type-2 FS Ã characterized by a type-2 MF μÃ(x,u) were x ∈ X
and u ∈ Jx ⊆ [0,1], i.e.,

Ã =
{
(x,u), μÃ(x,u)| ∀ x ∈ X ,∀ u ∈ Jx ⊆ [0,1]} (6)

where 0 ≤ μÃ(x,u) ≤ 1. ��
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Another way to express Ã is,

Ã =
∫

x∈X

∫
u∈Jx

μÃ(x,u)/(x,u) Jx ⊆ [0,1] (7)

Similar to type-1 FS, the symbol
∫

stands for union of continuous functions, and
the corresponding symbol for discrete functions is ∑; then in (7),

∫ ∫
denotes union

over all admissible x and u.

Definition 4. The 2D plane with axes u and μÃ(x′,u) formed with x = x′ is called a
vertical slice of μÃ(x,u). ��
Definition 5. A secondary MF is a vertical slice of μÃ(x,u); in particular,μÃ(x =
x′,u) for x′ ∈ X y ∀u ∈ Jx′ ⊆ [0,1], i.e.,

μÃ(x = x′,u) ≡ μÃ(x′) =
∫

u∈Jx′
fx′(u)/u Jx′ ⊆ [0,1]. (8)

where 0 ≤ fx′ ≤ 1. ��
We can drop the prime notation on μÃ(x′) ∀x′ ∈ X and refer to μÃ(x) as a secondary
membership function also known as the secondary set, which is a type-1 FS.

Using the concept of secondary sets, a type-2 FS can be reinterpreted as the union
of all the vertical slices,

Ã = {(x,μÃ)|∀x ∈ X} (9)

or, as

Ã =
∫

x∈X
μÃ(x)/x =

∫
x∈X

[
∫

u∈Jx

fx(u)/u]/x Jx ⊂ [0,1]. (10)

Definition 6. The primary membership of x, Jx (Jx ⊆[0,1] ∀x ∈ X), is the domain of
a secondary MF. ��
Definition 7. A secondary grade is the amplitude of a secondary MF. For example,
in (10) fx(u) is a secondary grade. ��
Definition 8. A main membership function of a type-2 FS is the union of all the
secondary grades equal to 1 (considering that each secondary MF has only one
secondary grade equals to 1); i.e.,

μmain(x) =
∫

x∈X
u/x where fx(u) = 1 (11)

��
Generalized type-2 fuzzy sets are those where secondary membership grades are in
the range of [0,1]; but there is the case when secondary grades are always 1, then
we have the next definition,
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Definition 9. A type-2 FS where its secondary MF is always 1 ( fx(u) = 1, ∀u ∈
Jx ⊆ [0,1]), is called an interval type-2 FS.

Definition 10. The footprint of uncertainty (FOU) is the union of all primary mem-
berships, it is represented as a bounded region that contains uncertainties in the
primary memberships of a type-2 FS, Ã, i.e.,

FOU(Ã) =
⋃
x∈X

Jx (12)

��
The concept of FOU is very useful because it allows to focus the attention only
on the inherent uncertainties of a type-2 MF. For convenience, the FOU can be
described in terms of upper and lower MFs, so we have the next definition.

Definition 11. There are two type-1 membership functions that are the bounds of
the FOU, they are the upper and the lower membership functions. The upper bound
of FOU(Ã) is associated with the upper MF, which is denoted by μ̄Ã(x), ∀x ∈ X .

The lower bound of FOU(Ã) is associated with the lower MF denoted by μ
Ã
(x),

∀x ∈ X , i.e.,
μ̄Ã(x) = FOU(Ã) ∀x ∈ X . (13)

μ
Ã
(x) = FOU(Ã) ∀x ∈ X . (14)

��
Figure 2 shows an interval type-2 MF, the shadow region is the FOU. At the points
x1 and x2 are the primary MFs Jx1 and Jx2 , the corresponding secondary MFs μÃ(x1)
and μÃ(x2) are shown in Figure 3.

x

1
x

J
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x
J

Fig. 2. Type-2 membership function with FOU showing the primary memberships.
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Fig. 3. Secondary membership values a) Jx1 , b) Jx2 .

3 Interval Type-2 Fuzzification Stage

In section 2.2.2 was mentioned that type-2 FSs were proposed to cope with the
uncertainty that might come from several sources; and it was used the term linguistic
uncertainties when the FS is used to model a word, this to embrace uncertainties
from fuzziness (or vagueness) that result from imprecise boundaries of FSs, non-
specificity which is connected with sizes (information based-imprecision), and strife
(or discord) that expressed conflicts among the various sets or alternatives [8]. In
this section, a summary of type-2 FIS is provided, emphasizing on the fuzzification
stage, since it is the aim of this chapter. Figure 4 shows a schematic of a type-2 FIS,
it has been divided in four stages: fuzzification, inference engine, type reducer and
defuzzification. The task of the fuzzifier is to map a crisp value x = (x1, . . . ,xp)T ∈
X1 × X2 × . . . × Xp ≡ X into a type-2 FS Ãx in X. Ãx is a type-2 fuzzy singleton if
μÃx

= 1/1 for x = x′ and μÃx
= 1/0 for all other x �= x′ [10, 9].

Figure 5 shows an example of the fuzzification process for an interval type-2 FIS,
the universe of discourse X is in the range of [−10,10]. Considering that the input
x =-4 cuts the type-2 MFs “Negative” and “Zero”, for the upper bound of the first
MF the membership value is μ̄N=0.6, and for the lower bound A is μ

N
=0.5 a set of

Fig. 4. Type-2 fuzzy system.
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Fig. 5. Interval type-2 MFs.

Fig. 6. Pictorial description of input and antecedent operations for an interval type-2 single-
ton, the process uses the minimum t-norm. The average type-2 method is compatible with
this idea; however, instead of using type-2 MFs in the antecedents, the method splits each
type-2 MF in two type-1 MF placed at the uncertainty boundaries; i.e., FISu(F̃1) is used for

the FOU(F̃1), and FISl(F̃1) for FOU(F̃1).

primary membership values in the range [0,0.25], the secondary membership values
are equal to one for both fuzzy terms. A type-2 fuzzy inference engine combines
the if-then rules and gives a mapping from input type-2 fuzzy sets to output type-2
fuzzy sets. Figure 6 shows a pictorial description for the inputs x1 and x2, and the
minimum t-norm. According to Liang and Mendel [5], for an interval type-2 FIS
the result of the input and antecedent operations are contained in the interval type-1
firing set [ f l , f̄ l ], where
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f l = μ
F̄ l

1
(x′l)� · · ·�μ

F̄l
P
(x′p) (15)

f̄ l = μ̄F̄ l
1
(x′l)� · · ·�μ̄F̄ l

P
(x′p) (16)

Depending on the desired output, it is possible to use the “output processing”
block to obtain a type-reduced set (type-1), or a crisp output.

4 Average Type-2 FIS

An average type-2 FIS consists in substituting an interval type-2 FIS (Figure 5) with
two type-1 FIS (Figure 7). The main idea of this method is to embrace the uncer-
tainty of the interval type-2 FSs using type-1 FSs. One FIS is used for the upper
bound uncertainty, and the second FIS for the lower bound uncertainty. Consider-
ing the type-2 FS “A”, the interval of uncertainty can be embraced by two type-1
FS. The MFs of the first type-1 FIS are placed such as they match with the upper
bound of FOU(Ã), i.e., (μ̄Ã(x)); similarly, the MFs of the second type-1 FIS are
chosen to match with the lower bound of FOU(Ã), i.e., μ

Ã
(x). Each type-1 FIS

handles an identical set of rules, however the fuzzy output will be different because
the MFs of the inputs are not the same. The average type-2 FIS is consistent with
the nomenclature of interval type-2 FIS; so, Fig. 6 remains being useful to explain
the fuzzification method that was used in this work. Basically, in this first stage, the
difference lies in the fact that an average type-2 FIS uses two type-1 FS in the fuzzi-
fication stage to substitute each type-2 FS. A crisp value is obtained by averaging
the defuzzified output or the two type-1 FIS.

The first step to split the IT2 FIS is to begin defining that one of the FIS is going
to be used for the lower bound of the uncertainty, FISl; and the second one for the
upper bound, FISu. Hence, for the linguistic variables X1 and X2 of an IT2 FIS,
we will write FISl(X1) for the lower bound of uncertainty, and FISu(X2) for the
upper bound. Following a similar idea of nomenclature, the linguistic terms of the
IT2 FIS of Figure 6, FOU(F̃1) and FOU(F̃2), will be written as FISl(F̃1, F̃2), and
FISu(F̃1, F̃2) to indicate that the FISl(F̃1, F̃2) was developed considering the lower
bound of the type-2 linguistic terms F̃1 and F̃2; similarly, FISu(F̃1, F̃2) indicates the
use of the upper bounds of uncertainty of the mentioned terms.

4.1 Type-2 Fuzzification Stage Architecure

In Figure 1 the proposal to test and validate the type-2 fuzzification stage coded
in VHDL was illustrated. This figure depicts that the inference and defuzzification
stages were programmed in Matalb/Simulink using the existing Fuzzy Simulink
modules of the Fuzzy toolbox, whereas the fuzzification stage was coded in VHDL,
this was achieved to evaluate only the VHDL codification.

As was mentioned before, the type-2 FIS explained in this work is based on
calculating the average of two type-1 FIS (for the upper and lower bounds).
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Fig. 7. The interval type-2 MFs of Fig. 5 were substituted with type-1 MFs. The MFs plotted
with solid lines correspond to the fuzzification stage of one FIS, so we have for the upper
bounds of uncertainty FISu(Ñ, Z̃, P̃); and for the lower bounds, FISl(Ñ, Z̃, P̃).

Microelectronic implementations of the fuzzification stage can be achieved in
two ways: Storage memory and arithmetic calculation. Next, a brief review of each
method is given.

4.1.1 Storage Memory Method
This method consists in sampling the universe of discourse and saving into memory
the corresponding membership values and linguistic terms. This alternative allow
us to define any shape of membership function, since the only requirement is to
sample and save the membership values that are addressed by their corresponding
binary input in the universe of discourse. One limitation of this method is regarding
precision, because it depends on the number of samples and bits needed for an ap-
plication, high precision applications require higher memory resources. In [25] can
be found more information about the amount of memory required to achieve this
implementation.
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Fig. 8. Block diagram to illustrate the arithmetic calculation method.
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4.1.2 Arithmetic Calculation Method
The arithmetic method consists in performing a progressive calculation of the degree
of membership of the antecedents. This method is restricted to use only symmetric
triangular MFs. The method uses two memory allocations for each straight line,
where their slopes values mi, and interception points ai are saved into memory.
An arithmetic circuit for each input shown in Fig. 8(a), solves the corresponding
straight-line equation to obtain the membership value, as can be seen in Fig. 8(b). A
counter driven by the system clock generates the memory addresses, the breakpoint
value is subtracted from the input and the result is multiplied by the slope; if x > xi,
the product is stores in a latch an the counter is increased in the next clock pulse.
The process continues until x < xi. This circuit requires as many clock cycles to
perform its operation as fuzzy sets are defined.

4.1.3 Novel Arithmetic Fuzzification Method
The arithmetic fuzzification method (AFM) was originally proposed by the authors
in [26], in this work some improvements to the original proposal are presented.
The AFM method is more versatile than the storage memory and the arithmetic
calculation methods that were previously explained.

In comparison with the storage memory method explained in section 4.1.1, this
method does not need to have a preloaded singleton table values nor to use high
memory resources to obtain high resolution values.

Comparing with the arithmetic calculation method of section 4.1.2, the AFM
allows to use symmetric and non-symmetric triangular and trapezoidal MFs. The
intersection and slopes values can be calculated online and updated, which is a nice
capability to implement adaptive fuzzy systems. In addition, the AFM only needs
one clock cycle to achieve the fuzzification, this is a very attractive feature when

Fig. 9. Fuzzification stage with two inputs. For each input there are two outputs: The mem-
bership value, and the linguistic term.



284 O. Montiel et al.

Fig. 10. Triangular and trapezoidal MFs. The slopes and intercept points are shown.

we compare with the arithmetic calculation method of section 4.1.2 that requires
several clock cycles to perform this task.

The AFM code is divided in two parts. The first part is parallel code devoted to
update the intersection points, calculate slopes values, and assign the corresponding
linguistic tag to each MF. It uses one status bit (status flag) related with each slope to
inform that the corresponding slope value has been updated. Once the calculations
have been achieved, all the status flags are set. If any change occurs, the implied
status flags should be reset. The second part of the code checks, whether all the
status flags are set; if so, then the crisp input is fuzzyfied. Fig. 9 is a big picture
of how the fuzzification is achieved for a two input system, the outputs are the
membership grades and linguistic terms of the active MFs. The AFM for a given
input (crisp value) can be summarized into three steps:

1. Calculate the slope values.
2. Calculate the membership values.
3. Assign to signals the membership values and linguistic terms.

Figures 10(a) and 10(b) show the slopes and intercepts of the straight lines of a
triangular MF, and a trapezoidal MF, respectively. Both, use the basic straight line
equation given by the slope-intercept form y = mx + b where “m” is the slope and
’b’ is the intercept. The MFs have two slopes, the positive slope “m(1)”, and the
negative slope “m(2)”; although they have different signs, both are handled as posi-
tive to avoid signed operations; later, the sign is handled by the software. Figure 11
and 12 show the VHDL code to implement the triangular and trapezoidal MF, re-
spectively. These MFs can be implemented using fixed point arithmetic to represent
integers and real numbers, as well as floating point arithmetic. The decision of the
best numeric representation most of the time depends on how the problem will be
handled in later stages. This decision must be done carefully at an early project
phase, in a broad sense, fixed point implementations provide higher speeds and
lower cost implementations, on the other hand, floating point offers higher dynamic
range and it is not necessary to perform scaling task that is a very attractive fea-
ture for complicated algorithms. Its main virtue is that it allows easy conversion to
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Fig. 11. VHDL codification to implement the triangular MF.

Fig. 12. VHDL codification to implement the trapezoidal MF.

decimal digits for printing or display and faster decimal calculations, its drawbacks
are the increased complexity of circuits needed to implement mathematical oper-
ations and a relatively inefficient encoding that occupies more space than a pure
binary representation.
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Fig. 13. VHDL code for the triangular MF.

4.1.4 Fuzzification Using Real Numbers
The arithmetic used in this work is based on the encoding method called Decimal
Floating Point Binary Encoding (DFPBE), but differently to the common way to
implement this encoding method, we used a fixed point format with no exponents.
Figure 13 shows the general idea of encoding a real number using two integers,
and to calculate the slope “m(1)” of the triangular MF showed in Figure 10(a), it
is necessary to achieve a method with several steps; so, Fig. 16 is going to be used
in order to explain the algorithm. Considering that we are going to fuzzify the crisp
binary value 48 (i.e, x1=48), to obtain μ(48) = 0.3325. First, it is necessary to
calculate the positive slope of the Negative (N) MF, using the slope formula m = y

x ,
i.e., m = 255−0

80−32 = 5.3125 ≈ 5.3 since the binary equivalent for an eight-bits MF is

255, hence the membership value is 5.3×(48−32)
255 .

1. Obtain the divisor of the slope formula: Considering that the x value is given
by the points px(1)=32 and px(2)=80, the divider is obtained using px(2)−
px(1) = 80− 32 = 48. Since the codification method DFPBE is being used,
it is necessary for convenience to divide by ten the divider, instead of mul-
tiplying by ten the dividend as is common; therefore, we have px(2)−px(1)

10 =
4.8, then the divider for the integer numbers in the range of (0 to 255) is
48; Quotient1(4), residue1(8); hence, then the divider for the decimal part
is 4.

2. Obtain the slope: The slope is given as the number “Bm.bm”; where “Bm” is an
integer number, and “bm” is a decimal number.
For the integer part: Bm = 255

px(2)−px(1) = 5.3: Quotient2(5), residue2(15). For the

decimal part, bm = residue2
Quotient1

= 15
4 = 3.7 : Quotient3(3),residue3(3). The slope

is a two bytes binary numbers Bm=5, bm=3; i.e. slope “m(1)=5.3”.
3. The membership value for a given crisp input, for example “x=48”, is obtained

as follows: Adjust the crisp input to the corresponding slope, in this case calcu-
late x48 = x− px(1) = 48−32 = 16. Using the slope formula y = mx, which is
equivalent to y = Bmx + bm

10 x. This applied to our example considering scaling,

y = 5(16)+0.3(16)
255 = 0.3325; so, the membership value is 0.3325 for a crisp input

“x=48”.

Note that DFPBE method was used only to calculate the slopes, the membership
values are real numbers coded in one binary word.



Design and Simulation of the Type-2 Fuzzification Stage 287

5 Experiment Design and Validation

In Fig. 1 the general idea followed in testing and validating the fuzzification stage
for type-1 and type-2 FIS was presented. More specifically, the FIS was developed
to work as a PD (Proportional Derivative) controller into a PD+I (PD+ Incremental)
controller configuration to regulate the speed of a DC motor. The next two sections
of this chapter are dedicated to explain how to achieve the codification of the type-1
and type-2 fuzzification stages.

Fig. 14. Fuzzy inputs and outputs. Each fuzzy input has five MFs called Negative Big (NB),
Negative (N), Zero (Z), Positive (P), Positive Big (PB). The output has five singletons called
Big Decrease (BD), Decrease (D), Hold (H), Increase (I), Big Increase (BI).

5.1 Type-1 Fuzzification Stage: Active MFs

Fig 14 shows the linguistic variables for the inputs and for the output, these are:
error, change of error, and output. Each input has five MFs, Negative Big (NB),
Negative (N), Zero (Z), Positive (P), and Positive Big (PB); and each label an as-
sociated binary value, for example NB is associated with the value “001”, etc. The
output has five singletons values called Big Decrease (BD), Decrease (D), Hold (H),
Increase (I), and Big Increase (BI); hence, BD is associated with the binary value
“001”, etc. [19, 18]. Additionally, it is shown that each input produces two fuzzified
values; i.e., in input 1 (x1) the dashed line indicates a crisp value that is being fuzzi-
fied, so it will produce the variables e1 and e2, associated with their corresponding
degree of membership stored in variables ge1 and ge2. The variable content value
for e1 is “010”, and “001” for e2. Input x2 works in a similar way. Figure 15 shows
the obtained design entity for the aforementioned design, at the output are the active
grades values and their corresponding linguistic terms. The variable values for e1,
e2, ge1, and ge2 are assigned to output signals. After debugging, only some minor
modifications have to be performed to the VHDL code to take the tested code to the
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Fig. 15. Design entity of the fuzzification stage. The “clk” input is 50 Mhz for the Spartan
3 (XC3S1000). The “ce” (clock enable input) enables the algorithm in the Simulink. The
“reset” input restart the variables of the algorithm.

Fig. 16. MFS for the input x1. An input x1=48 is fuzzified; i.e., μ(48) = 84.8, because
we are using an 8-bits binary codification system, rounding towards towards minus infinity,
μ(48) ≈ 84.

physical implementation into the FPGA. In Fig. 16 we have a crisp input x1=48 that
is fuzzified using type-1 MFs.

5.2 Type-2 Fuzzification Stage: Active MFs

The implementation of the type-2 fuzzification stage for the average method [20,
21] is achieved using two type-1 fuzzification stages; in other words, two instances
like the one shown in Figure 15 are used, the only difference between them is the
parameters values of the MFs, with the purpose to represent the existing FOU in
an interval type-2 MF, the rules and defuzzification stage are similar, although each
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Fig. 17. MFs for the input x1 of the type-2 fuzzification stage.

Fig. 18. MFs for the input x2 of the type-2 fuzzification stage.

system performs independently, and only after each FIS has calculated its respective
output the averaging operation is achieved. Figures 17 and 18 show the type-2 MFs
used for the “error” and “change of error” inputs, each variable has five linguistic
terms; however, to take this approach to practice we will need ten MFs for each
linguistic variable (two MFs for each linguistic term); hence two FIS are used, the
FISu(X1,X2) for the FOU of X1 (“error” input) and X2 (“change of error” input);
and a second FIS, the FISl(X1,X2) for the FOU of X1 and X2. Note, that the signal
“error” is connected to X1, and the signal “change of error” to X2 of the fuzzification
entity in Fig. 15.

5.3 Simulink Model for the Type-2 Fuzzification Stage

Fig. 19 shows the Simulink model that was used to test the type-2 FIS. The type-1
FIS identified by the circled numbers 1, 2, and 3 represent the upper bound FOU;
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Fig. 19. Simulink model of the type-2 FIS (Average method) used to plot the control surface.

and the numbers 4, 5, and 6 identify the second type-1 FIS for the lower bound
FOU. The average of the output of both FIS is achieved in the section marked with
number 7. In the blocks 1 and 4 are the fuzzification stages, these blocks belongs to
the XSG, they are used to import the VHDL code to Simulink. The inference engine
of each type-1 FIS are in the blocks 2 and 5. The defuzzification stage of each type-1
FIS are identify by the numbers 3 and 6. Blocks 2, 3, 5, and 6 were programmed
using Simulink blocks from the toolbox as well as Matlab functions, they were not
programmed in VHDL because in this part the goal is only to test fuzzification stage.
The subsystem block number 8 is to handling numeric format between the code of
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Fig. 20. Control surface obtained with the Simulink model (Average method) showed in
Fig. 19.

the VHDL fuzzification stages and the Matlab inference engines, below this block
there is a shadowed box showing a small section of the content of this subsystem,
the rest is quite similar. The other small Simulink blocks that are at the input of
both fuzzification blocks give two vectors of 1700 values each, for the “error” and
“change of error” inputs in order to obtain the plot shown in Fig. 20, the small
Simulink blocks that are shown between the the fuzzification and inference engine
stages are used to achieve numeric compatibility from the numeric codification of
real numbers used in the fuzzification stages coded in VHDL, to the floating point
numeric representation used in Matlab.

5.4 Conclusions

One of the most stressing task in the development of new methods to improve a
system is related with the use of new software and/or hardware technologies. This
is specially true when the target of the developed software is code for a VLSI cir-
cuit, for example an FPGA. The use of type-2 FIS for real world applications has
been plenty demonstrated in many works; so, the idea of taking some existing fuzzy
controllers from type-1 to type-2 technology is very appealing. However, we have
to expect that the programming cost in terms of developing time grew, as well as
the size of code, and performance, this depending on the selected algorithm. There
are several proposals to implement an interval type-2 FIS [3, 4, 5], but there is no
way to go with little effort from interval type-1 to interval type-2 FIS. The average
method provides an option to handle uncertainty similarly than an interval type-2
FIS does; moreover, the method makes easier the transition from type-1 to type-2
FIS, basically the only additional thing that designers will need do is to duplicate
and modify the MFs values of the original type-1 FIS. This advantage is more em-
phatic when the type-1 FIS was coded using VHDL, because this language uses the
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concept of design entity that can contain a whole design that can be duplicated as
many times as needed. Hence, the cost of programming time is reduced to the mini-
mal, the code is practically twice the size of the type-1 FIS, and the performance of
the hardware implementation of a type-2 is almost the same than the type-1 FIS, the
small difference is due to the time that the electronics takes to perform an averaging
operation, i.e; one addition and one divide operation. The Xilinx System Genera-
tor takes VHDL code to the Simulink environment offering advantages, since it is
possible to analyze the system’s behavior using the control surface, or achieving the
control of the physical plant by interfacing the Simulink model with real world.
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20. Sepúlveda, R., Castillo, O., Melı́n, P., Dı́az, A.R., Montiel, O.: Experimental Study of
Intelligent Controllers under Uncertainty using type-1 and type-2 Fuzzy Logic. Informa-
tion Sciences 177, 2023–2048 (2007)
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