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Preface

We describe in this book, new methods for evolutionary design of intelligent sys-
tems using soft computing and their applications in modeling, simulation and con-
trol. Soft Computing (SC) consists of several intelligent computing paradigms,  
including fuzzy logic, neural networks, and evolutionary algorithms, which can be 
used to produce powerful hybrid intelligent systems. The book is organized in four 
main parts, which contain a group of papers around a similar subject. The first part 
consists of papers with the main theme of evolutionary design of fuzzy systems in 
intelligent control, which consists of papers that propose new methods for designing 
and optimizing intelligent controllers for different applications. The second part con-
tains papers with the main theme of evolutionary design of intelligent systems for 
pattern recognition applications, which are basically papers using evolutionary algo-
rithms for optimizing modular neural networks with fuzzy systems for response in-
tegration, for achieving pattern recognition in different applications. The third part 
contains papers with the themes of models for learning and social simulation, which 
are papers that apply intelligent systems to the problems of designing learning ob-
jects and social agents. The fourth part contains papers that deal with intelligent sys-
tems in robotics applications and hardware implementations. 

In the part of Intelligent Control there are 5 papers that describe different con-
tributions on evolutionary optimization of fuzzy systems in intelligent control. The 
first paper, by Ricardo Martinez-Marroquin et al., deals with the design of mem-
bership functions of a fuzzy logic controller for an autonomous mobile robot using 
ant colony optimization. The second paper, by Ricardo Martinez et al., deals with 
the evolutionary optimization of type-2 fuzzy logic systems applied to the control 
of linear plants. The third paper, by Cynthia Solano-Aragon and Arnulfo Alanis, 
studies a multi-agent system with fuzzy logic control for autonomous mobile ro-
bots in known environments. The fourth paper, by Gerardo Mendez and Angeles 
Hernandez, proposes hybrid interval type-1 non-singleton type-2 fuzzy logic sys-
tems as equivalent to type-2 adaptive neuro-fuzzy inference systems. The fifth pa-
per, by Ieroham Baruch and Rosalba Galvan-Guerra, proposes a centralized direct 
and indirect neural control of distributed parameter systems. 

In the part of Pattern Recognition there are 5 papers that describe different contri-
butions on achieving pattern recognition using hybrid intelligent systems. The first 
paper, by Martha Pulido et al., describes ensemble neural networks with fuzzy logic 
integration for complex time series prediction. The second paper, by Ricardo Munoz 
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et al., describes modular neural networks with fuzzy logic integration for face, fin-
gerprint and voice recognition and the optimization of the network architecture with 
hierarchical genetic algorithms. The third paper, by Erika Ayala et al., describes the 
optimization of modular neural networks with fuzzy integration using a genetic al-
gorithm with application to face recognition. The fourth paper, by Magdalena 
Serrano et al., proposes an intelligent hybrid system for person identification using 
biometric measures and modular neural networks with fuzzy integration of re-
sponses. The fifth paper, by Monica Beltran et al., deals with modular neural net-
works with fuzzy response integration for human signature recognition. 

In the part of Learning and Social Simulation there are 3 papers that describe 
different contributions for creating learning objects and social intelligent agents. 
The first paper by Mario Garcia and Brunett Parra, describes a hybrid recom-
mender system architecture for obtaining learning objects. The second paper, by 
Dora Luz Flores et al., deals with the application of fuzzy semantic networks for 
interaction representation in social simulation. The third paper, by Carelia Gaxiola 
et al., describes a fuzzy personality model based on transactional analysis for so-
cially intelligent agents and robots.  

In the part of Robotics and Hardware Implementations several contributions are 
described on the application evolutionary methods for achieving optimization of 
fuzzy systems in robotics applications and also hardware implementations of 
fuzzy systems. The first paper, by Nohe Cazarez et al., describes a new method for 
controlling unstable non-minimum phase systems with fuzzy logic. The second 
paper, by Selene Cardenas, describes a new genetic approach for the optimization 
of walking patterns of a biped robot. The third paper, by Oscar Montiel et al., 
deals with the design and simulation of the type-2 fuzzification stage with active 
membership functions and its hardware implementation on FPGAs. The fourth 
paper, by Roberto Sepulveda et al., deals with a methodology to test and validate a 
VHDL inference engine of a type-2 fuzzy system with the Xilinx system genera-
tor. The fifth paper, by Roberto Sepulveda et al., deal with the modeling and simu-
lation of the defuzzification stage of a type-2 fuzzy controller using the Xilinx  
system generator and Simulink. 

In conclusion, the edited book comprises papers on diverse aspects of evolu-
tionary methods, fuzzy models, soft computing techniques and hybrid intelligent 
systems. The book addresses theoretical aspects of the models and methods as 
well as application papers, ranging from intelligent control, pattern recognition, 
robotics and hardware implementations.  

June 30, 2009 Oscar Castillo 
Tijuana Institute of Technology, Mexico 

Janusz Kacprzyk 
Polish Academy of Sciences, Poland 

Witold Pedrycz 
 University of Alberta, Canada
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Optimization of Membership Functions of a Fuzzy 
Logic Controller for an Autonomous Wheeled Mobile 
Robot Using Ant Colony Optimization 

Ricardo Martínez-Marroquín, Oscar Castillo, and José Soria 

Tijuana Institute of Technology, Tijuana México 
ocastillo@hafsamx.org 

Abstract. In this paper we describe the application of a Simple ACO (S-ACO) as 
a method of optimization for membership functions’ parameters of a fuzzy logic 
controller (FLC) in order to find the optimal intelligent controller for an Autono-
mous Wheeled Mobile Robot. Simulation results show that ACO outperforms a 
GA in the optimization of FLCs for an autonomous mobile robot. 

1   Introduction 

Nowadays, fuzzy logic is one of the most used methods of computational intelli-
gence and with the best future; this is possible thanks to the efficiency and  
simplicity of Fuzzy Systems since they use linguistic terms similar to those that 
human beings use. 

The complexity for developing fuzzy systems can be found at the time of decid-
ing which are the best parameters of the membership functions, the number of 
rules or even the best granularity that could give us the best solution for the prob-
lem that we want to solve. 

A solution for the above mentioned problem is the application of evolutionary 
algorithms for the optimization of fuzzy systems. Evolutionary algorithms can be 
a useful tool since its capabilities of solving nonlinear problems, well-constrained 
or even NP-hard problems. Among the most used methods of evolutionary algo-
rithms we can find: Genetic Algorithms, Ant Colony Optimization, Particle 
Swarm Optimization, etc.  

This paper describes the application of evolutionary algorithms, such as the Ant 
Colony Optimization as a method of optimization of the parameters of the mem-
bership functions of the FLC in order to find the best intelligent controller for an 
Autonomous Wheeled Mobile Robot. 

This paper is organized as follows: Section 2 shows the concept of Ant Colony 
Optimization and a description of S-ACO which is the technique that was applied 
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for optimization. Section 3 presents the problem statement and the dynamic  
and kinematic model of the unicycle mobile robot. Section 4 shows the fuzzy  
logic controller proposed and in Section 5 it’s described the development of the 
evolutionary method. In the Section 6 the simulation results are shown. Finally, 
Section 7 shows the Conclusions. 

2   S-ACO Algorithm 

Ant Colony Optimization (ACO) is a probabilistic technique that can be used 
for solving problems that can be reduced to finding good path along graphs. 
This method is inspired on the behavior presented by ants in finding paths from 
the nest or colony to the food source. 

The S-ACO is an algorithmic implementation that adapts the behavior of real 
ants to solutions of minimum cost path problems on graphs [11]. A number of 
artificial ants build solutions for a certain optimization problem and exchange 
information about the quality of these solutions making allusion to the commu-
nication systems of the real ants [5]. 

Let us define the graph ( )EVG ,= , where V is the set of nodes and E is the 

matrix of the links between nodes. G has VnG = nodes. Let us define KL  as 

the number of hops in the path built by the ant k from the origin node to the 
destiny node. Therefore, it is necessary to find: 

                        { }CqqqQ fa ∈= 1,...,                                 (1) 

Where Q is the set of nodes representing a continuous path with no obsta-

cles; fa qq ,..., are former nodes of the path and C is the set of possible configura-

tions of the free space. If ( )txk  denotes a Q solution in time t, ( )( )txf k  expresses 

the quality of the solution. The general steps of S-ACO are the followings: 

• Each link ),( ji is associated with a pheromone concentration denoted 

as ijτ .  

• A number knk ,...,2,1= are placed in the nest. 

• On each iteration all ants build a path to the food source (destiny node). 
For selecting the next node a probabilistic equation is used: 

                      ( ) ( )

k
i

k
i

Nj ij

k
ij

k
ij
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∉
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Where, k
iN  is the set of feasible nodes (in a neighborhood) connected  

to node i with respect to ant k, ijτ is the total pheromone concentration  

of link ij, and α is a positive constant used as again for the pheromone  
influence. 

• Remove cycles and compute each route weight ( )( )txf k . A cycle could 

be generated when there are no feasible candidates nodes, that is, for any 

i and any k, ∅=k
iN ; then the predecessor of that node is included  as a 

former node of the path. 
• Pheromone evaporation  is calculated with equation (3): 

( ) ( ) ( )tt ijij τρτ −← 1                                   (3) 

Where [ ]1,0∈ρ  is the evaporation rate value of the pheromone  

trail. The evaporation is added to the algorithm in order to force the 
exploration of the ants, and avoid premature convergence to sub-
optimal solutions [11]. For 1=ρ  the search becomes completely 

random [11]. 
• The update of the pheromone concentration is realized using equation (4): 

( ) ( ) ( )ttt
kn

k

k
ijijij ∑

=

Δ+=+
1

1 τττ                            (4) 

Where k
ijτΔ  is the amount of pheromone that an ant k deposits in a link 

ij in a time t. 
• Finally, the algorithm can be ended  in three different ways: 

o When a maximum number of epochs has been reached. 

o When it has been found an acceptable solution, with ( )( ) ε<txf k . 

o When all ants follow the same path 

3   Problem Statement 

The model of the robot considered in this paper is a unicycle mobile robot (see 
Figure 1), that consists of two driving wheels mounted of the same axis and a front 
free wheel. 

A unicycle mobile robot is an autonomous, wheeled vehicle capable of  
performing missions in fixed or uncertain environments. The robot body is sym-
metrical around the perpendicular axis and the center of mass is at the geometrical 
center of the body. It has two driving wheels that are fixed to the axis that passes  
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Fig. 1. Wheeled Mobile Robot [10] 

through C and one passive wheel prevents the robot from tipping over as it moves 
on a plane. In what follows, it´s assumed that motion of the passive wheel can be 
ignored in the dynamics of the mobile robot presented by the following set of 
equations [8]: 

 

tFDqqCqM ext,                         (5) 

 

w

v
q

qJ

1
0
0

0
sin
cos

                                  (6) 

Where ( )Tyxq θ,,=  is the vector of the configuration coordinates; Twv,  
is the vector of linear and angular velocities; ( )21,τττ =  is the vector of torques 

applied to the wheels of the robot where 21  and ττ denote the torques of the right 

and left wheel respectively (Figure 1); ∈extF 2 uniformly bounded disturbance 

vector; ( )∈qM 22× is the positive-definite inertia matrix; qqC ,  is the  

vector of centripetal and Coriolis forces; and ∈D 22×  is a diagonal positive-
definite damping matrix. Equation (6) represents the kinematics of the system, 

where ( )yx,  is the position of the mobile robot in the X-Y (world) reference 

frame, θ is the angle between heading direction and the x-axis v and w are the an-
gular and angular velocities, respectively. 

Furthermore, the system (5)-(6) has the following non-holonomic constraint: 
 

0sincos =− θθ xy &&                                        (7) 
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which corresponds to a no-slip wheel condition preventing the robot from moving 
sideways[9]. The system (6) fails to meet Brockett’s necessary condition for feed-
back stabilization [2], which implies that anon-continuous static state-feedback 
controller exists that stabilizes the close-loop system around the equilibrium point. 

The control objective is to design a fuzzy logic controller of τ that ensures: 

( ) ( ) 0lim =−∞→ tqtqdt                                      (8) 

for any continuously, differentiable, bounded desired trajectory ∈dq 3 while at-

tenuating external disturbances. 
A more detailed description can be found on reference [10]. 

4   Fuzzy Logic Control Design 

In order to satisfy the control objective it is necessary to design a fuzzy logic con-
troller for the real velocities of the mobile robot. To do that, a Takagi-Sugeno 
fuzzy logic controller was designed, using linguistic variables in the input and 
mathematical functions in the output. The error of the linear and angular velocities 

( dd wv ,  respectively), were taken as inputs variables, while the right ( )1τ  and left 

( )2τ  torques as outputs. The membership functions used on the input are trape-

zoidal for the negative (N) and positive (P), and a triangular was used for the zero 
(C) linguistic terms. The interval used for this fuzzy controller is [-50 50] [10].  

 

  
(a) 

 
(b) 

  
(c) (d) 

Fig. 2. (a) Linear velocity error. (b) Angular velocity error. (c) Right output ( )1τ . (d) Left 

output ( )2τ . 
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Fig. 3. Fuzzy Logic Controller Architecture. 

Figure 2 shows the input and output variables, and figure 3 shows the general FLC 
architecture. 

The rule set of the FLC contains 9 rules, which governs the input-output rela-
tionship of the FLC and this adopts the Takagi-Sugeno style inference engine [10], 
and it is used with a single point in the outputs, this mind that the outputs are con-
stant values, obtained using weighted average defuzzification procedure. In Table 
1 we present the rule set whose format is established as follows:  

4321  is  and  is  then  is  and G is  if : Rule GNGFGeei wv  

where 41..GG  are the fuzzy set associated to each variable i=1,2,…,9. 

Table 1. Fuzzy rules set 

wv ee /  N C P 

N N / N N / C N / P 
C C / N C / C C / P 
P P / N P / C P / P 

To find the best FLC, we used a S-ACO to find the parameters of the member-
ship functions. Table 2 shows the parameters of the membership functions, the 
minimal and maximum values in the search range for the S-ACO algorithm to find 
the best fuzzy logic controller.  

It is important to remark that values shown in Table 2 are applied to both inputs 
and both outputs of the fuzzy logic controller. 
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Table 2. Parameters of the membership Functions. 
 

MF TYPE POINT 
MINIMAL  

VALUE 
MAXIMAL 

VALUE 
a  -50  -50  
b  -50  -50  
c  -15  -5.1  Trapezoidal 

d  -1.5  -0.5  
a  -5  -1.8  

b  0  0  Triangular 
c  1.8  5  
a  0.5  1.5  
b  5.1  15  
c  50  50  

Trapezoidal 

d  50  50  
Constant (N) a -50 -50 
Constant (C) a 0 0 
Constant (P) a 50 50 

5   ACO Architecture 

A S-ACO algorithm was applied for the optimization of the membership functions 
for the fuzzy logic controller. For developing the architecture of the algorithm it 
was necessary to follow the next steps: 

1. Marking the limits of the problem in order to eliminate unnecessary com-
plexity.  

2. Representing the architecture of the FLC as a graph that artificial ants 
could traverse.  

3. Achieving an adequate handling of the pheromone but permitting the al-
gorithm to evolve by itself 

5.1   Limiting the Problem and Graph Representation 

One of problems found on the development of the S-ACO algorithm was to make 
a good representation of FLC. First we reduced the number of elements that the 
method needed to find by deleting the elements whose minimal value and maxi-
mal values are the same (see Table 2) and therefore if they were included they will 
not change any way. Table 3 shows the parameters of the membership functions 
included in the search. 

The next step was to represent those parameters shown in table 3; to that,  
was necessary to discretize the parameters in a range of possible values in order  
to represent every possible value as a node in the graph of search. The level of  
discretization between minimal and maximal value was of 0.1 (by example: -1.5, -
1.4, -1.3,…, -0.5). 
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Table 3. Parameters of the Membership Functions Included in S-ACO Search 

MF TYPE POINT 
MINIMAL 
VALUE 

MAXIMAL 
VALUE 

c -15  -5.1  Trapezoidal  
d  -1.5  -0.5  
a  -5  -1.8  Triangular  
c  1.8  5  
a  0.5  1.5  Trapezoidal  

b  5.1  15  

Table 4 shows the number of possible values that each parameter can take. 

Table 4. Number of Possible Values of the Parameters of Membership Functions 
 

MF TYPE POINT COMBINATIONS 
c 100 

Trapezoidal 
d 15 
a 33 

Triangular 
c 33 
a 15 

Trapezoidal 
b 100 

 
Figure 4 shows the search graph for the proposed S-ACO algorithm, the graph can 

be viewed as a tree where the root is the nest and the last node is the food source. 

 

 

Fig. 4. S-ACO Architecture 
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5.2   Updating Pheromone Trail 

An important issue is that the update of pheromone trail be applied in the best way 
possible. In this sense we need to handle the evaporation (Equation 3), and in-
crease or deposit of pheromone (Equation 4), where the key parameter in evapora-
tion is denoted by ρ  that represents the rate of evaporation and in deposit of 

pheromone is denoted by τΔ  that represents the amount of pheromone that an ant 
k deposits in a link ij in a time t. For ρ we assign a random value and Equation 9 

shows the way how the increase of pheromone is calculated. 

( )
max

max

e

ee k−=Δτ                                                (9) 

Where 10max =e  is the maximum error of control permitted and ke  is error of 

control generated by a complete path of an ant k. We decided to allocate 

10max =e  in order to stand [ ]1,0∈Δτ . 

6   Simulation Results 

In this section we present the results of the proposed controller to stabilize the uni-
cycle mobile robot, defined by Equation (5) and Equation (6), where the matrix 
values 

 

    ( )   ,
3739.00202.0
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⎥
⎦

⎤
⎢
⎣

⎡
−

−
=qM  

( ) ,
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1350.00
, ⎥

⎦

⎤
⎢
⎣

⎡
−

=
θ

θ
&

&
&qqC  

                              and ⎥
⎦

⎤
⎢
⎣

⎡
=

100

010
D              

 
were taken from [6]. The evaluation was made through computer simulation per-
formed in MATLAB® and SIMULINK®. 

The desired trajectory is the following one: 
 

ttw

ttv
t

d

d
d 5.0sin4.0

exp12.0
                              (10) 
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Table 5. S-ACO Results of Simulations for FLC Optimization 

 

Iterations Ants  α ρ 
Average 

Error 
Time 

20  10  0.2  random 1.5589  00:01:30  
20  10  0.2  random 1.451  00:01:34  
25  10  0.2  random 1.5566  00:01:46  
25  10  0.2  random 1.4767  00:01:51  
25  10  0.2  random 1.4739  00:02:05  
25  10  0.2  random 1.6137  00:02:08  
25  10  0.2  random 1.6642  00:01:54  
25  100  0.2  random 1.3484  00:20:30  
25  100  0.2  random 1.3413  00:18:44  
25  100  0.2  random 1.3360  00:18:31  
25  100  0.2  random 1.2954  00:18:32  
25  100  0.2  random 1.4877  00:18:41  
25  100  0.2  random 1.2391  00:18:31  
10  15  0.2  random 1.6916  00:01:14  
10  15  0.2  random 1.4256  00:01:09  
40 65 0.2 random 1.2783 00:19:17 
40 65 0.2 random 1.4011 00:19:45 
40 65 0.2 random 1.2216 00:19:33 
40 65 0.2 random 1.2487 00:19:49 
50 70 0.2 random 1.3782 00:26:09 
50 70 0.2 random 1.0875 00:27:35 
50 70 0.2 random 1.4218 00:33:45 
50 70 0.2 random 1.475 01:08:48 
25 80 0.2 random 1.4718 00:14:55 
25 80 0.2 random 1.4212 00:15:00 
25 80 0.2 random 1.3221 00:14:52 
25 80 0.2 random 1.1391 00:15:41 
50 80 0.2 random 1.2148 00:28:43 
62 50 0.2 random 1.0322 00:24:49 
50 80 0.2 random 1.1887 00:29:55 
50 80 0.2 random 1.2158 00:29:56 
60 90 0.2 random 1.3493 00:41:56 
60 90 0.2 random 1.3060  00:39:48 
60 90 0.2 random 1.3161 00:40:00 

and was chosen in terms of its corresponding desired linear  dv  and angular 

dw velocities, subject to the initial conditions 

00 and ,0,1.0,1.00 Tq 2
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The gains iγ , i=1, 2, 3 of the kinematic model (see [10]) are ,51 =γ  242 =γ  

and 33 =γ  were taken from [10]. 

6.1   S-ACO Algorithm Results for the Optimization of the FLC 

Table 5 shows the results of the FLC, obtained varying the values of maximum it-
erations and number of artificial ants, where the highlighted row shows the best 
result obtained with the method. Figure 5 shows the evolving of the method. 

 

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

Iteración

lo
g1

0(
f(

x)
)

Best = 1.0322

 

Fig. 5. Evolution of the S-ACO for FLC Optimization. 

Figure 6 shows the membership functions of the FLC obtained by S-ACO  
algorithm. 

  
(a) (b) 

Fig. 6. (a) Linear velocity error, and (b) angular velocity error optimized by S-ACO  
algorithm. 
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Figure 7 shows the block diagram used for the FLC that obtained the best re-
sults. Figure 8 shows the results of linear and angular errors, and Figure 9 shows 
the output results of the fuzzy controller that represents the torque applied to the 
wheels of the autonomous mobile robot. 

 

Fig. 7. Block diagram for simulation of the FLC 

 

Fig. 8. Linear and angular velocity errors 
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Fig. 9. Right and left torques 

 

Fig. 10. Position errors in θ,, yx . 

 

Fig. 11. Obtained trajectory 
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The positions errors of the autonomous mobile robot can be observed in Figure 
10. Figure 11 shows the desired trajectory and obtained trajectory. 

7   Conclusions 

A trajectory tracking controller has been designed based on the dynamics and 
kinematics of the autonomous mobile robot through the application of ACO for 
the optimization of membership functions for the fuzzy logic controller with good 
results obtained after simulations. 

Acknowledgment. We would like to express our gratitude to the CONACYT  
and Tijuana Institute of Technology for the facilities and resources granted for the 
development of this research.  
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Abstract. We describe a different kind of evolutionary methods to optimize a 
type-2 fuzzy logic controller (FLC) applied to linear plants. The evolutionary 
method used is a genetic algorithm to find the optimal FLC for the plant control. 
The plant receives a linear signal of input controlled by an optimized FLC, obtain-
ing as result the control and the stability of the plant. Simulations results were 
made in Simulink showing the effectiveness of the proposal. 

1   Introduction 

The evolutionary methods are used for different purposes such as optimization,  
solution search’s processes and other kind of applications. This study is about sev-
eral evolutionary methods applied to the autonomous linear plants. To this pur-
pose, we use a type-2 fuzzy logic system to develop the optimal controller. Previ-
ously we optimize a type-2 fuzzy logic controller for an autonomous mobile robot 
for trajectory tracking, where the genetic algorithms were used to find the optimal 
controller obtaining good results applied some kind of perturbation. For the study 
of the evolutionary methods, we use a transfer function to test the optimal type-2 
fuzzy logic controller. One of the evolutionary methods is genetic algorithms that 
we used to find the parameters of the membership functions, using the genetic op-
erators, mutation and crossover obtaining an Optimal FLC for the plant control.    

This paper is organized as follows: Section 2 presents the theoretical basis  
and problem statement, 2.1 presents an introductory explanation of Type-2 Fuzzy 
Logic, subsection 2.2 presents the basics of Evolutionary Methods. Section 3  
introduces the controller design where a genetic algorithm is used to select the  
parameters. Robustness properties of the closed-loop system are achieved with a 
type-1 fuzzy logic control system using a Takagi-Sugeno model where the error 
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and the change of error, are considered the linguistic variables. Section 4 provides 
a simulation study of the plant using the controller described in Section 3. Finally, 
Section 5 presents the conclusions. 

2   Theoretical Basis and Problem Statement 

This section describes the theoretical basis of the paper as well as the problem 
definition. Some basics about type-2 fuzzy systems and genetic-fuzzy systems are 
first presented. 

2.1   Type-2 Fuzzy Logic Systems 

If we have a type-1 membership function, as in Figure 1 (a), and we are blurring it 
to the left and to the right as illustrated in Figure 1 (b), then, for a specific 
value 'x , the membership function ( 'u ), takes on different values, which are not 
all weighted the same, so we can assign an amplitude distribution to all of those 
points.  Doing this for all Xx∈ , we create a three-dimensional membership 
function –a type-2 membership function– that characterizes a type-2 fuzzy set  
[1, 14].  A type-2 fuzzy set A~ , is characterized by the membership function: 

( ){ }]1,0[,|),(),,(~
~ ⊆∈∀∈∀= xA JuXxuxuxA μ                             (1) 

in which 1),(0 ~ ≤≤ uxAμ .  Another expression for A~  is, 

),/(),(
~

~ uxuxA
Xx Ju A

x
∫ ∫∈ ∈
= μ      ]1,0[⊆xJ                          (2) 

where ∫ ∫ denote union over all admissible input variables x and u.  For discrete 

universes of discourse ∫ is replaced by ∑ [14].  In fact ]1,0[⊆xJ  repre-

sents the primary membership of x, and ),(~ uxAμ is a type-1 fuzzy set known as  
 

 

Fig. 1. a) Type-1 membership function and b) Blurred type-1 membership function. 
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Fig. 2. Interval type-2 membership function. 

the secondary set.  Hence, a type-2 membership grade can be any subset in [0,1], 
the primary membership, and corresponding to each primary membership, there is 
a secondary membership (which can also be in [0,1]) that defines the possibilities 
for the primary membership [20]. 

This uncertainty is represented by a region called footprint of uncertainty 

(FOU). When ]1,0[,1),(~ ⊆∈∀= xA Juuxμ  we have an interval type-2 

membership function, as shown in Figure 2.  The uniform shading for the FOU 
represents the entire interval type-2 fuzzy set and it can be described in terms of 

an upper membership function )(~ xAμ and a lower membership function )(~ xAμ . 

A FLS described using at least one type-2 fuzzy set is called a type-2 FLS.  
Type-1 FLSs are unable to directly handle rule uncertainties, because they use 
type-1 fuzzy sets that are certain [21].  On the other hand, type-2 FLSs, are very 
useful in circumstances where it is difficult to determine an exact membership 
function, and there are measurement uncertainties [23]. 

It is known that type-2 fuzzy sets enable modeling and minimizing the effects 
of uncertainties in rule-based FLS.  Unfortunately, type-2 fuzzy sets are more  
difficult to use and understand than type-1 fuzzy sets; hence, their use is not wide-
spread yet.  As a justification for the use of type-2 fuzzy sets, in [22] are men-
tioned at least four sources of uncertainties not considered in type-1 FLSs:  

 
1. The meanings of the words that are used in the antecedents and consequents 

of rules can be uncertain (words mean different things to different people).  
2. Consequents may have histogram of values associated with them, especially 

when knowledge is extracted from a group of experts who do not all agree. 
3. Measurements that activate a type-1 FLS may be noisy and therefore  

uncertain. 
4. The data used to tune the parameters of a type-1 FLS may also be noisy.  
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All of these uncertainties translate into uncertainties about fuzzy set member-
ship functions.  Type-1 fuzzy sets are not able to directly model such uncertainties 
because their membership functions are totally crisp.  On the other hand, type-2 
fuzzy sets are able to model such uncertainties because their membership func-
tions are themselves fuzzy.  A type-1 fuzzy set is a special case of a type-2 fuzzy 
set; its secondary membership function is a subset with only one element, unity. 

 

Fig. 3. Type-2 Fuzzy Logic System. 

A type-2 FLS is again characterized by IF-THEN rules, but its antecedent or 
consequent sets are now of type-2.  Type-2 FLSs, can be used when the circum-
stances are too uncertain to determine exact membership grades such as when the 
training data is corrupted by noise.  Similar to a type-1 FLS, a type-2 FLS includes 
a fuzzifier, a rule base, fuzzy inference engine, and an output processor, as we can 
see in Figure 3.  The output processor includes type-reducer and defuzzifier; it 
generates a type-1 fuzzy set output (from the type-reducer) or a crisp number 
(from the defuzzifier) [6,5].  Next we will explain each of the blocks of Figure 3. 

2.1.1   Fuzzifier 
The fuzzifier maps a crisp point x=(x1,…,xp)

T ∈X1xX2x…xXp ≡X  into a type-2 

fuzzy set xA
~

in X [12], interval type-2 fuzzy sets in this case.  We will use type-2 

singleton fuzzifier, in a singleton fuzzification, the input fuzzy set has only a sin-

gle point on nonzero membership [31, 34].  xA
~

is a type-2 fuzzy singleton if 

1/1)x(
xA

~ =μ  for x=x' and 0/1)x(
xA

~ =μ  for all other x≠x'[23]. 

2.1.2   Rules 
The structure of rules in a type-1 FLS and a type-2 FLS is the same, but in the lat-
ter the antecedents and the consequents will be represented by type-2 fuzzy sets.  
So for a type-2 FLS with p inputs x1∈X1,…,xp ∈Xp  and one output y∈Y, Multi-
ple Input Single Output (MISO), if we assume there are M rules, the lth rule in the 
type-2 FLS can be written as follows [23]: 
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Rl: IF x1 is lF1
~ and ···and xp is l

pF~  , THEN y is lG~       l=1,…,M            (3) 

2.1.3   Inference 
In the type-2 FLS, the inference engine combines rules and gives a mapping from 
input type-2 fuzzy sets to output type-2 fuzzy sets.  It is necessary to compute the 

join ⊔, (unions) and the meet Π (intersections), as well as extended sup-star com-

positions (sup star compositions) of type-2 relations [23].If l
p

ll AFF ~~~
1 =××L , 

equation (3) can be re-written as 

lll
p

lll GAGFFR ~~~~~: 1 →=→××L     l=1,…,M         (4) 

Rl is described by the membership function ),,...,(),( 1 yxxy pRR ll μμ =x , where 

),(),( ~~ yy lll GAR
xx →= μμ                     (5) 

can be written as [23]: 

)(),(),( 1~~~
1

xyy llll FGAR
μμμ == → xx Π···Π )(~ pF

xl
p

μ Π )(~ ylG
μ  = 

[Π p
i 1= )(~ iF

x
i

lμ ]Π )(~ ylG
μ      (6) 

In general, the p-dimensional input to Rl is given by the type-2 fuzzy set 

xA~ whose membership function is 

)()( 1~~
1

xxAx
μμ =x Π···Π )(~ ppx xμ =Π p

i 1= )(~ iix xμ    (7) 

where ),...,1(~ piX i = are the labels of the fuzzy sets describing the inputs.  Each 

rule Rl determines a type-2 fuzzy set l
x

l RAB o~~ = such that [23]: 

== l
x

l RAB
y

o~~ )( μμ ⊔ [ )(~ xX xAx μ∈ Π ]),( ylR
xμ       y∈Y  l=1,…,M          (8) 

This equation is the input/output relation in Figure 3 between the type-2 fuzzy 
set that activates one rule in the inference engine and the type-2 fuzzy set at the 
output of that engine [23]. 

In the FLS we used interval type-2 fuzzy sets and meet under product t-norm, 
so the result of the input and antecedent operations, which are contained in the fir-

ing set  Π )'(( '
~1 xl

iF
p
i Fx

ii
≡= μ , is an interval type-1 set [23], 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≡

⎥
⎥
⎦

⎤

⎢
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⎡
=

−

−

−

−

l
l

l
ll ffffF ,)'(),'()'( xxx                               (9) 

where 
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)(**)()'( '

~

'
1

~
1

p
FF

l xxf
l

p
l −−−

= μμ Lx                (10) 

and 

)(**)()'( '
~

'
1~

1 pFF

l

xxf l
p

l

−−−
= μμ Lx                         (11) 

where * is the product operation. 

2.1.4   Type Reducer  
The type-reducer generates a type-1 fuzzy set output which is then converted in a 
crisp output through the defuzzifier.  This type-1 fuzzy set is also an interval set, 
for the case of our FLS we used center of sets (cos) type reduction, Ycos which is 
expressed as [23] 
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this interval set is determined by its two end points, yl and yr, which corresponds 

to the centroid of the type-2 interval consequent set iG
~

[23], 
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before the computation of  Ycos (x), we must evaluate equation 13, and its two end 
points, yl and yr.  If the values of fi and yi that are associated with yl are denoted fl

i 
and yl

i, respectively, and the values of fi and yi that are associated with yr are de-
noted fr

i and yr
i, respectively, from 12, we have [23] 
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2.1.5   Defuzzifier  
From the type-reducer we obtain an interval set Ycos, to defuzzify it we use the  
average of yl and yr, so the defuzzified output of an interval singleton type-2 FLS 
is [23] 

2
)( rl yy

y
+

=x                        (16) 



Evolutionary Optimization of Type-2 Fuzzy Logic Systems 23
 

2.2   Evolutionary Methods Applied to Fuzzy Systems 

2.2.1   Genetic Fuzzy Systems 
Fuzzy systems have been successfully applied to problems in classification [8], 
modeling [24] control [11], and in a considerable number of applications. In most 
cases, the key for success was the ability of fuzzy systems to incorporate human 
expert knowledge. In the 1990s, despite the previous successful history, the lack 
of learning capabilities characterizing most of the works in the field generated a 
certain interest for the study of fuzzy systems with added learning capabilities. 

Two of the most successful approaches have been the hybridization attempts 
made in the framework of soft computing, were different techniques, such as neu-
ral and evolutionary; provide fuzzy systems with learning capabilities. Neuro-
fuzzy systems are one of the most successful and visible directions of that effort. 
A different approach to achieve hybridization has lead to genetic fuzzy systems 
(GFSs). A GFS is basically a fuzzy system augmented by a learning process based 
on a genetic algorithm (GA) [9].  

GAs are search algorithms, based on natural genetics, that provide robust 
search capabilities in complex spaces, and thereby other a valid approach to prob-
lems requiring efficient and effective search processes [16,19,20]. Genetic learn-
ing processes cover different levels of complexity according to the structural 
changes produced by the algorithm [10], from the simplest case of parameter op-
timization to the highest level of complexity of learning the rule set of a rule based 
system. Parameter optimization has been the approach utilized to adapt a wide 
range of different fuzzy systems, as in genetic fuzzy clustering or genetic neuro-
fuzzy systems.  

An analysis of the literature shows that the most prominent types of GFSs are 
genetic fuzzy rule-based systems (GFRBSs) [9], whose genetic process learns or 
tunes different components of a fuzzy rule-based system (FRBS). Inside GFRBSs 
it is possible to distinguish between either parameter optimization or rule genera-
tion processes, that is, adaptation and learning. 

It is important to distinguish between tuning (alternatively, adaptation) and 
learning problems: 

• Tuning is concerned with optimization of an existing FRBS, whereas learn-
ing constitutes an automated design method for fuzzy rule sets that starts 
from scratch. Tuning processes assume a predefined RB and have the ob-
jective to find a set of optimal parameters for the membership and or the 
scaling functions, DB parameters. 

• Learning processes perform a more elaborated search in the space of possi-
ble RBs or whole KBs and do not depend on a predefined set of rules. 

• They are different kind of genetic fuzzy systems applications, but we  
focused on genetic tuning for optimization parameters of membership func-
tions [2] [1] [7]. 

2.2.2   Particle Swarm Optimization 
Particle swarm optimization (PSO) is a population based stochastic optimization 
technique developed by Eberhart and Kennedy in 1995, inspired by social behav-
ior of bird flocking or fish schooling [13]. 
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PSO shares many similarities with evolutionary computation techniques such as 

Genetic Algorithms (GA) [15]. The system is initialized with a population of ran-
dom solutions and searches for optima by updating generations. However, unlike 
the GA, the PSO has no evolution operators such as crossover and mutation. In the 
PSO, the potential solutions, called particles, fly through the problem space by fol-
lowing the current optimum particles [4].   

Each particle keeps track of its coordinates in the problem space, which are as-
sociated with the best solution (fitness) it has achieved so far (The fitness value is 
also stored). This value is called pbest. Another "best" value that is tracked by the 
particle swarm optimizer is the best value, obtained so far by any particle in the 
neighbors of the particle. This location is called lbest. When a particle takes all the 
population as its topological neighbors, the best value is a global best and is called 
gbest [17]. 

The particle swarm optimization concept consists of, at each time step, 
changing the velocity of (accelerating) each particle toward its pbest and lbest 
locations (local version of PSO). Acceleration is weighted by a random term, 
with separate random numbers being generated for acceleration toward pbest 
and lbest locations [27].  

In the past several years, PSO has been successfully applied in many research 
and application areas. It is demonstrated that PSO gets better results in a faster, 
cheaper way compared with other methods [3] [18].   

Another reason that PSO is attractive is that there are few parameters to adjust. 
One version, with slight variations, works well in a wide variety of applications. 
Particle swarm optimization has been used for approaches that can be used across 
a wide range of applications, as well as for specific applications focused on a spe-
cific requirement [28]. 

3   Fuzzy Logic Controller Design 

In this section we design a fuzzy logic controller (FLC) where the optimal control-
ler was found with first evolutionary method, which in this case is the genetic  
algorithm. 

The FLC a Takagi-Sugeno type of fuzzy systems is used with two inputs a) er-
ror, and b) error change, with three membership functions each input, “Negative, 
Zero and Positive” (Gaussian and triangular), and one output  which are constant  
 

 

Fig. 4. a) input 1 “error”, b) input 2 “error change”. 
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Table 1. Fuzzy Rules of the FLC. 

 N Z P 
N N N Z 
Z N Z P 

P Z P P 

values. The fuzzy rules “If-Then” type. Figure 5 shows the FLC base for the plant 
control and Table 1 show the Fuzzy Rules. 

Once we obtained the FLC design, we used an evolutionary method (Genetic 
Algorithm) to find the optimal Controller. The genetic algorithm chromosome has 
17 genes of real values and they represent the two inputs, error and error change 
and one output constant values. Figure 6 show the chromosome representation for 
the FLC and Table 2 shows the parameters of the membership functions, the 
minimal and the maximum values in the search range for the genetic algorithm to 
find the best fuzzy controller system. 

Gaussian
MF’s MF’s MF’sMF’s MF’s Constants

Triangular Gaussian Triangular Gaussian

Input Input 2 Output
17

a b a c d a b a b a b c a b

 

Fig. 5. Chromosome representation for the fuzzy logic controller. 

4   Simulations Results 

In this section, we evaluate, through computer simulations performed in 
MATLAB® and SIMULINK®, the designed FLC for two plants. 

4.1   Plant 1 

Plant 1 is given by the following transfer function: 

wsws

wsg
nn

n
22

2

2
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++
=

ε    ,5.0=ε   2=wn
               (17) 

Table 2 presents the parameters of the membership functions used in the ge-
netic algorithm for the plant 1. 

Table 3 present the main results of the FLC obtained by genetic algorithms 
showing in the result 3 our best result. 
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Table 2. Parameters of the membership functions 

MF Type Point Minimum 
Value 

Maximum 
Value 

a 0.3 0.6 
Gaussian 

b -1 -1 
a -0.3 -0.8 
b 0 0 Triangular 
c 0.3 0.8 
a 0.3 0.6 

Gaussian 
b 1 1 

Table 3. Results of the FLC obtained by genetic algorithms. 

No. Indiv. Gen. 
% 
Remp. Cross. Mut. 

GA 
Time 

Average 
error 

1 90 35 0.7 0.6 0.3 00:18:06 0.050870 
2 150 80 0.7 0.5 0.2 01:19:13 0.044310 
3 80 50 0.7 0.5 0.2 00:23:01 0.071366 
4 45 60 0.7 0.6 0.3 00:16:03 0.068477 
5 75 50 0.7 0.6 0.1 00:21:37 0.068158 
6 100 40 0.7 0.6 0.1 00:24:08 0.067052 
7 65 35 0.7 0.7 0.2 00:15:35 0.069994 
8 200 70 0.7 0.4 0.1 01:30:02 0.072356 
9 25 15 0.7 0.8 0.3 00:02:58 0.129872 
10 50 45 0.7 0.5 0.2 00:13:25 0.068855 
11 90 35 0.7 0.6 0.2 00:19:15 0.065290 
12 40 25 0.7 0.7 0.4 00:06:48 0.175755 
13 120 454 0.7 0.4 0.1 00:29:51 0.065761 

 

Fig. 6. Evolution of the GA for the FLC optimization. 
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Fig. 7. Membership functions of the FLC obtained by GA. 

Figure 6 shows the evolution of the genetic algorithm giving the best FLC for 
control the plant and figure 7 show the membership functions of the FLC obtained 
by the GA. 

Figure 8 show the control result of the plant 1 using the FLC optimized ob-
tained by GA. 

 

 

Fig. 8. Simulation result of the control of plant 1. 

4.2   Plant 2 

Plant 2 is given by the following equation: 

4

1
)(

2 +
=

s
sg                                                (18) 

For the experiment with plant 2 we test different range of the membership func-
tion finding the best result in the range of the -10 to 10. Table 4 present the main 
results of the FLC obtained by genetic algorithms. 
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Table 4. Simulation results of plant 2. 

No. Ind. Gen. 
% 
Remp. Cross Mut. 

GA 
Time 

Average 
error 

Param. Range 
of MF 

1 45 20 0.7 0.4 0.1 00:05:10 0.889298 from 0.5 to 1 
2 160 75 0.5 0.6 0.1 01:10:43 0.889298
3 80 30 0.7 0.6 0.1 00:14:01 0.889302
4 50 20 0.7 0.5 0.1 00:05:13 0.889784
5 50 20 0.7 0.5 0.1 00:05:11 0.894638

from -1 to 1 

6 55 45 0.5 0.6 0.1 00:12:45 0.574186
7 95 65 0.5 0.5 0.1 00:32:13 0.569497
8 150 70 0.5 0.4 0.1 00:53:32 0.569667

from -2 to 2 

9 55 45 0.5 0.6 0.1 00:12:45 0.473400
10 150 70 0.5 0.4 0.1 00:53:52 0.447686
11 95 65 0.5 0.5 0.1 00:30:50 0.461219

from -4 to 4 

12 150 100 0.5 0.5 0.1 01:20:24 0.064981
13 95 65 0.5 0.5 0.1 00:32:07 0.065394
14 85 65 0.5 0.5 0.1 00:29:11 0.066594
15 150 70 0.5 0.4 0.1 00:54:30 0.068396
16 55 45 0.5 0.6 0.1 00:12:50 0.073958
17 80 50 0.5 0.6 0.1 00:22:18 0.076842
18 150 70 0.5 0.4 0.1 00:54:48 0.196999
19 95 65 0.5 0.5 0.1 00:30:56 0.197443
20 55 45 0.5 0.6 0.1 00:37:22 0.203600
21 55 45 0.5 0.6 0.1 00:12:16 0.213285

from -8 to 8 

22 200 90 0.5 0.4 0.1 01:33:19 0.065268
23 120 85 0.5 0.4 0.1 00:52:13 0.070636
24 90 35 0.5 0.5 0.2 00:16:26 0.074058
25 65 35 0.5 0.4 0.2 00:11:53 0.076711
26 55 45 0.5 0.6 0.1 00:39:01 0.077597
27 100 40 0.5 0.3 0.1 00:20:41 0.078355
28 40 25 0.5 0.7 0.1 00:05:12 0.134507
29 25 15 0.5 0.8 0.3 00:02:15 0.261787

from -10 to 10 

Figure 9 shows the evolution of the genetic algorithm and figure 10 shows the 
membership functions of FLC obtained by GA. 

Figure 11 show the control result of the plant 2 using the FLC optimized ob-
tained by GA. 
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Fig. 9. Evolution of the GA for the FLC optimization. 

 

Fig. 10. Membership functions of the FLC obtained with the  GA. 

 

Fig. 11. Simulation result of the control Plant 2. 
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5   Conclusions 

We described the use of evolutionary methods for the design of optimized FLC’s; 
in particular we present results of a genetic algorithm in FLC optimization for lin-
ear plants. The results of first plant are satisfactory controlling the plant and get-
ting stability in less than 10 seconds using a fuzzy logic controller with three 
membership functions and nine fuzzy rules. On the other hand, in second plant we 
can get stability faster that the first plant close to five seconds, but with a high 
overshoot and undershoot for the plant. We have achieved satisfactory results with 
genetic algorithms and the next step is to solve the problem using multiple objec-
tive optimizations to obtain better results. Moreover, we will extend the results for 
nonlinear systems like autonomous mobile robots. 
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Abstract. This paper describes the development of a Multi-Agent System (MAS), 
which is supported with fuzzy logic (to control the robots movements in a reactive 
path) and vision, which controls an autonomous mobile robot to exit a maze. The 
research consists of two stages. In the first stage the problem is to be able to make 
the robot exit a maze, the mobile robot is positioned at the entrance (point A) and 
should reach an output (B). It should be noted that we are working with a NXT 
Lego MINDSTORMS robot. In its second phase the problem is to make the robot 
search for a recognized object, for this, a camera is used to capture images, which 
will be processed with vision techniques, for their identification, and after that, the 
SMA takes the decision to evade or take the object as appropriate. 

1   Introduction  

Making smarter robots is a problem that has captivated the scientific community 
for several years now, this being a big challenge to overcome even for man. To 
move from one place to another from an initial to a final point with only the 
information of what we want to reach at the end is a complicated task. The 
problem has been solved with soft computing methods, such as fuzzy logic, neural 
networks, genetic algorithms, hybrid systems, among others. Navigation of the 
robot has been achieved taking a completely controlled environment where we 
have total knowledge of the world [8, 11, 15, 14]. 

Human beings have the ability to react to unexpected situations and the ability 
to use their reasoning to react to situations that arise, an example is a situation of 
traffic management, to which we think that we have the best route and with this 
the rest of the trip is done reacting to what was observed. This could be, at a traffic 
light, when it changes from green to yellow, the reaction will be learning, 
acceleration or deceleration, a situation that when you start, it has to be learned. 
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Knowing that we have this ability to react, we will use fuzzy logic to transfer 
the knowledge we use to carry out this process by establishing computer-type 
fuzzy "if-then" rules and exploiting the advantages offered to us by fuzzy logic, 
which is the use of linguistic variables [26].  

A man driving a car, as in many other activities, derives its information by 
looking at distances, clearances and other identifying information that we collect 
through the light. In this research we use vision techniques to draw from that vital 
information for navigation control, supported with special sensors. An example is 
the ultrasonic sensors that are used to measure distance and the light sensors that 
we can use to measure the change in light intensity, all of these help to extract 
environmental information necessary for decision making. 

2   Agents 

Let's first deal with the notion of intelligent agents. These are generally defined as 
"software entities", which assist their users and act on their behalf. Agents make 
your life easier, save you time, and simplify the growing complexity of the world, 
acting like a personal secretary, assistant, or personal advisor, who learns what 
you like and can anticipate what you want or need. The principle of such 
intelligence is practically the same of human intelligence. Through a relation of 
collaboration-interaction with its user, the agent is able to learn from himself, from 
the external world and even from other agents, and consequently act 
autonomously from the user, adapt itself to the multiplicity of experiences and 
change its behavior according to them. The possibilities offered for humans, in a 
world whose complexity is growing exponentially, are enormous [20][19][7][18].  

We need to be careful to distinguish between rationality and omniscience. An 
omniscient agent knows the actual outcome of its actions, and can act accordingly; 
but omniscience is impossible in reality. Consider the following example: I am 
walking along the Champs Elys´ees one day and I see an old friend across the 
street. There is no traffic nearby and I’m not otherwise engaged, so, being rational, 
I start to cross the street. Meanwhile, at 33,000 feet, a cargo door falls off a 
passing airliner, and before I make it to the other side of the street I am flattened. 
Was I irrational to cross the street? It is unlikely that my obituary would read 
“Idiot attempts to cross street.”Rather, this point out that rationality is concerned 
with expected success given what has been perceived. Crossing the street was 
rational because most of the time the crossing would be successful, and there was 
no way I could have foreseen the falling door. Note that another agent that was 
equipped with radar for detecting falling doors or a steel cage strong enough to 
repel them would be more successful, but it would not be any more rational [23]. 

3   FIPA 

FIPA (The Foundation of Intelligence Physical Agents) specifications represent a 
collection of standards, which are intended to promote the interoperation of 



Multi-Agent System with Fuzzy Logic Control for Autonomous Mobile Robots  35
 

heterogeneous agents and the services that they can represent. The life cycle [46] 
of specifications details what stages a specification can attain while it is part of the 
FIPA standards process. Each specification is assigned a specification identifier 
[47] as it enters the FIPA specification life cycle. The specifications themselves 
can be found in a Repository [11]. The Foundation of Intelligent Physical Agents 
(FIPA) is now an official IEEE Standards Committee. The UML modeling 
language is the most popular system used today and is a graphic language to 
visualize, specify, build and document a system. Gaia is a methodology for 
application development in the paradigm of agents, one of the most curious 
aspects of Gaia, is the fact that the requirements specification is completely 
independent of the analysis and design. 

4   Proposed Method 

To realize this work, the creation of a SMA is needed, which is composed of three 
agents, an agent for the management of sensors, an agent for handling the drive 
and a last agent to act as coordinator of the multi-agent system. 

Summarizing the SMA is composed of the following agents:  

Node Agent (NA), a set of sensors.  
Task Agent (TA), a set of servo motors.  
Agent System (AS), coordinator of the system [1]. 

The Node Agent (NA) will be responsible for the sensors used by the robot, 
which are:  

• Ultrasonic Sensor  
• Light Sensor left  
• Light Sensor right  
• Camera  

These sensors are used to interact with the world to achieve our goal. 
The Task Agent (TA) will be used to drive to move forward, rewind, or make 

some movement to escape.  
The System Agent (SA) will be responsible for coordinating the other actors, 

the NA and TA, and will also have activities not only the coordination, which 
will be to recognize the object that is opposite, calculate the angle of the object, 
which will help us to know that will guide the robot. Depending on the 
recognition that was obtained,  whether or not the object, which will tell us that 
there is no escape or the object based on this decision was to trigger the switch 
which we will control the outcome to be used, reactive or path to better 
performance of the controllers.  

In Fig. 1 we show graphically the architecture of the complete system. 
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AS: Agent System TA: Task Agent NA: Node Agente BDI: 

ImageDatabase CR: Reactive control CT: Control of trajectory

 

Fig. 1. Architecture of the complete system. 

We can describe the proposed method as follows:  
In the operation of the model, we have 2 main blocks, which are responsible for 

knowledge and learning (with the paradigm of intelligent agents) and the vision 
and control (using fuzzy logic).  

These modules are described below, the first module contains 3 agents, NA 
[Node Agent], TA [Task Agent] SA [System Agent] Agent System (AS), and will 
know every time the operation of the other agents.  

To detect a change in the environment the Agent Node [that is in charge of the 
sensors (ultrasonic, camera and two light sensors)] with the ultrasonic sensor and 
two light sensors, starts its operation, and we start at the state called reactive 
control; this because you have to move and sense all the time until it finds an 
obstacle, this can happen once a photo is taken, which will be sent to the database 
of images (BDI), the image will be applied a pre-processing for recognition in 
order to know whether the object is found, this decision was taken on the angle 
(angle to take the decision to bypass the object), able to escape and move forward, 
trend data, they are caught in the trajectory control process, to observe the speed 
values, the Task Agent (which is responsible for the drive), once all the 
parameters necessary for the performance of the robot agent system (AS) who is 
the coordinator, and executes instructions in the robot.  

For the development of the two key tools we used Gaia and UML for the 
analysis and design of agents. The completion of the Multi-Agent System (MAS) 
is based on the FIPA standards for better utilization and greater possibility of 
extension. 
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5   Analysis and Design of the Multi-Agent System (MAS) 

The first activity was the analysis and design of the multi-agent system as 
mentioned above and to develop the two tools and we describe as follows.  

5.1   UML  

Use Case Diagrams  
The Use Case diagrams show the granularity of the system into reusable pieces of 
functionality, interaction of players with the functionality of the system, visually 
organize user requirements and allow the contract to certify the functionality, 
formalize the process map.  

Fig. 2 presents the use case of the sense in which the distance is appreciated 
that all other processes must be carried out before and after to complete. In Fig. 3 
we show the use case of the motor A move, which is seen in all other processes 
that must be carried out before and after to complete [2][3][4][5][6]. 

 

 

Fig. 2. Use case diagram of the process of 
image recognition. 

Fig. 3. Main processes of use cases. 

Fig. 4 presents the case for use of the remote sensing process, which shows that 
other processes must be carried out before and after to complete. Fig. 5 shows the 
use case of the motor A move, which is seen in all other processes must be carried 
out before and after to complete. 

 

 

Fig. 4. Use case diagram of the remote sense. Fig. 5. Use case diagram of the process 
moving motor A. 
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Sequence diagrams describe the interaction of objects that require the 

functionality of the different scenarios of a use case, objects are represented with 
their life cycle within a time series, and each possible scenario of a use case can be 
represented as a sequence diagram.  

Below in Fig. 6 we show the sequence diagram of the use case moving motor 
A. In Fig. 7 presents the sequence diagram of use case to capture the image which 
is carried out by the agent node (AN). 

  

Fig. 6. Sequence diagram use case move 
motor A. 

Fig. 7. Sequence diagram use case capture 
image. 

In Fig. 8 presents the sequence diagram used for the case sense of distance, 
which is carried out by the agent node (AN). 

 

 

Fig. 8. Sequence diagram use case sense distance. 
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5.2   Gaia    

Below we show the diagrams in which we can observe the responsibilities, 
permissions, activities and protocols to be followed by each agent in the Multi-
Agent System (MAS). 

Agent node  
Responsibilities:   
Sense:  

Active 
Inactive 

Permissions: 
Ultrasonic sensor: measures distances from 0 cm to 255 cm, with a delay 

of one millisecond signal.  
Camera Sensor: take pictures in an estimated time of seconds, saves all 

images in a folder for processing. It has a degree of vision approximately of 
50 degrees.  

Light sensors: they measure the intensity with which an object reflects 
light. This makes a light emitting and measuring the portion of the return is 
received, the table 3.2 shows the ranges of values. 

Activities:  

The only activities are sensing and taking pictures of the world. 
Protocols:  

Ultrasound: This is responsible for sensing the distance to get to an 
obstacle. The initiative for this would be the agent system, which indicates 
the time of initiation.  

Chamber is responsible for obtaining the images within the scene, and as 
for the ultrasonic sensor system depends for its initiation.  

Light sensors: the role of these sensors is to measure the intensity with 
which an object reflects light (walls, diagrams). This makes a light emitting 
and measuring the portion of the return is received and handled the ranges 
are 0 to 1023 RAW. 

Agent system 
Responsibilities: 

It is responsible for image processing and decision making, and sends a 
message to agent communication process completed? 

Permissions: 

This is the one that has full access, sensors, communication, engine and 
handling agents and NXT in general. 

Activities: 

Making decisions based on the behavior and implements what is needed to 
finish the job. 
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Protocols: 

Full Access, sensors, communication, engine and handling agents and NXT 
in general, the entry for this information would be provided by the agents, 
getting a response from these so they generate an output and generate 
interaction among them. 

Task agent  
Responsibilities: 

Motor movement 
Permission: 

Depends entirely on the agent system to perform its task. 
Activities: 

Sensors for the engine: they measure in degrees is given for each engine is 
360 degrees for one revolution, a revolution for the tire of each motor, the 
motors can rotate independently, can also be used with constant speed 
motors. 

Protocols: 
The system is the initiator, resulting in a movement or departure, which 

can be any direction, depending on the decision taken by the agent system. 

Figure 9 shows the three models that form the multi-agent system (MAS) using 
Gaia.  

 
 

 
 
 
 

 

 

 

 

 
 
 
 
 
 

Fig. 9. Shows the diagrams of the Agent Node (AN), Task Agent (TA), and Agent System 
(AS) in Gaia. 
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Fig. 10. Diagram of the relationship model of the SMA. 

Fig. 10 presents the relationship between the agents of the multi-agent system 
(MAS). 

5.3   Knowledge Base 

Below we show the knowledge base that the MAS uses to function properly.  

Facts 
NAi.SU. STATE =(X), where X can have 2 states (ON, OFF) 
NAi.SU.OBJ=(Y) where Y can have 2 states (DETECTS, NO DETECTS) 
NAi.SC. STATE = (Z) where Z can have 2 states (ON, OFF) 
NAi.SC.TIMAGE  
NAi.SLI. STATE = (W) where W can have 2 states (ON, OFF) 
NAi.SLD. STATE = (V) where V can have 2 states (ON, OFF) 
TAj.M.GO(evaluationFIS[SU, SLI, SLD]) where SU,SLI,SLD   FIS are entries 

for return rates of both servomotors  (MA, MB) 
TAj.M.STOP 
TAj.MA.GO(evaluationFIS[SU, SLI, SLD]) where SU,SLI,SLD   FIS are 

entries for return rates of both servomotors (MA, MB) 
TAj.MA.DECREASEV 
TAj.MB.GO(evaluationFIS[SU, SLI, SLD]) where SU,SLI,SLD   FIS are 

entries for return rates of both servomotors  (MA, MB) 
TAj.MB. DECREASEV 
SA. BEGINTASK 
SA.RECONOCIMAGE.STATE = (N) where N can have 2 states (YES, NO) 
SA.ACTION.TAKEFIGURE 
SA.ACTION.AVOID 
SA.FIGUREFOUND 
SA.ENDMAZE = (M) where M can have 2 states (YES, NO) 
SA.ENDTASK 

Rules 
If SA. BEGINTASK and NAi.SU.STATE=OFF then NAi.SU.STATE=ON 
If SA. BEGINTASK and NAi.SC.STATE=OFF then NAi.SC.STATE=ON 
If SA. BEGINTASK and NAi.SLI.STATE=OFF then NAi.SLI.STATE=ON 
If SA. BEGINTASK and NAi.SLD.STATE=OFF then NAi.SLD.STATE=ON 
If SA.ENDTASK and NAi.SU.STATE=ON then NAi.SU.STATE=OFF 
If SA.ENDTASK and NAi.SC.STATE=ON then NAi.SC.STATE=OFF 
If SA.ENDTASK and NAi.SLI.STATE=ON then NAi.SLI.STATE=OFF 
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If SA.ENDTASK and NAi.SLD.STATE=ON then NAi.SLD.STATE=OFF 
If SA. BEGINTASK and NAi.SU.STATE=ON then 

TAj.M.GO(evaluationFIS[SU, SLI, SLD]) 
If TAj.M.GO(evaluationFIS[SU, SLI, SLD]) and NAi.SU.OBJ= DETECTS 

then NAi.SC.TIMAGE  
If NAi.SC.TIMAGE then SA.RECONOCIMAGE 
If SA.RECONOCIMAGE.STATE = SI then SA.ACTION.TOMAFIG 
If SA.RECONOCIMAGE.STATE = NO then SA.ACTION.EVADIR 
If SA.ACTION.TAKEFIGURE then TAj.MA.GO(evaluationFIS[SU, SLI, 

SLD]) and TAj.MB.GO(evaluationFIS[SU, SLI, SLD]) 
If SA.ACTION.AVOID then TAj.MA.GO(evaluationFIS[SU, SLI, SLD]) and 

TAj.MB.GO(evaluationFIS[SU, SLI, SLD]) 
If SA.ACTION.TAKEFIGURE and SA.ENDMAZE = YES then 

SA.ENDTASK 
If SA.ACTION.TAKEFIGURE and SA.ENDMAZE = NO then 

TAj.MA.GO(evaluationFIS[SU, SLI, SLD]) and TAj.MB.GO(evaluationFIS[SU, 
SLI, SLD]) 

If SA.ACTION.AVOID and SA.ENDMAZE = YES then 
TAj.MA.GO(evaluationFIS[SU, SLI, SLD]) and TAj.MB.GO(evaluationFIS[SU, 
SLI, SLD]) 

6   Simulation 

Figure 11 shows the plant and the controller for the simulations that were carried 
out in Simulink of Matlab 2007b. 

The controller is based on the following fuzzy system, which contains the rules 
that work with the robot.  

 

Fig. 11. Plant for performing simulations. 
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Fig. 12. Structure of the fuzzy system that works for the simulations. 

The fuzzy system has three inputs, two outputs and consists of ten rules for 
inference. 

The first input variable of the fuzzy system is the ultrasonic sensor, which has 
three membership functions, which are linguistic (close, near, far), as shown in 
Fig. 13. 

 

Fig. 13. Membership functions for the ultrasonic sensor. 

The second variable of the fuzzy system is the light sensor that has two 
membership functions that are free and wall, as shown in Fig. 14. 

 

Fig. 14. Membership functions of the left light sensor. 
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The third variable of the fuzzy system is the light sensor that has two 
membership functions that are free and wall, as shown in Fig. 15. 

 

Fig. 15. Membership functions of the right light sensor. 

This is the first output variable is the speed of the left engine, has five 
membership functions as shown in Fig. 16. 

 

Fig. 16. Membership functions of the left motor. 

This is the second output variable is the speed of the right engine, has five 
membership functions as shown in Fig. 17. 

 

Fig. 17. Membership functions of the right motor. 
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In Fig. 18 we show the rules that are used in the system, which are 10 fuzzy 
rules.  

 

Fig. 18. Rules of the fuzzy system (FIS). 

 

Fig. 19. Simulation1 with a duration of 00:63 minutes. 

 

Fig. 20. Simulation2 with a duration of 01:30 minutes. 
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Fig. 21. Simulation3 with a duration of 00:51 minutes. 

 

Fig. 22. Simulation4 with a duration of 00:50 minutes. 

 

Fig. 23. Simulation5 with a duration 00:50 minutes. 
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Fig. 24. Simulation6 with a duration of 00:17 minutes. 

 

Fig. 25. Simulation7 with a duration of 00:57 minutes. 

 

Fig. 26. Simulation8 with a duration of 00:52 minutes. 
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Fig. 27. Simulation9 with a duration of 00:52 minutes. 

 

Fig. 28. Simulation10 with a duration of 00:51 minutes. 

 

Fig. 29. Simulation11 with a duration of 01:25 minutes. 
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Fig. 30. Simulation12 with a duration 01:46 minutes. 

Table 1 contains the information from the simulations regarding the duration 
that each one had, and whether or not out the robot was able to get out of the 
labyrinth, it also highlights the best simulation time. 

Table 1. A comparison between the simulations. 

Number of Simulation Duration/minutes Exit the maze 

1 00:63 Yes 
2 1:30 No 
3 00:51 Yes 
4 00:50 No 
5 00:50 Yes 
6 00:17 No 
7 00:57 No 
8 00:52 Yes 
9 00:52 Yes 

10 00:51 Yes 
11 1:25 No 
12 1:46 No 

7   Conclusions 

There is a big diversity of intelligent applications, in this particular case, the 
implementation of multi-agent systems is complex because it is short, and it 
incorporates other techniques, making it even more complex.  

One of the main objectives of this research initially was to open a new view of 
intelligent agents using fuzzy logic, which hitherto has not been given the 
approach that is intended here. Fuzzy logic gives a degree of utilization of this 
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paradigm of intelligent agents, but more research is needed in order to defend this 
idea as innovative.  
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Abstract. This article presents a new learning methodology based on a hybrid 
algorithm for interval type-1 non-singleton type-2 TSK fuzzy logic systems (FLS). 
Using input-output data pairs during the forward pass of the training process, the 
interval type-1 non-singleton type-2 TSK FLS output is calculated and the 
consequent parameters are estimated by the recursive least-squares (RLS) method. 
In the backward pass, the error propagates backward, and the antecedent 
parameters are estimated by the back-propagation (BP) method. The proposed 
hybrid methodology was used to construct an interval type-1 non-singleton type-2 
TSK fuzzy model capable of approximating the behavior of the steel strip 
temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to 
predict the transfer bar surface temperature at finishing Scale Breaker (SB) entry 
zone. Comparative results show the performance of the hybrid learning method 
(RLS-BP) against the only BP learning.  

Keywords: Interval type-2 fuzzy logic systems, ANFIS, neuro-fuzzy systems, 
hybrid learning. 

1   Introduction 

Interval type-2 (IT2) fuzzy logic systems (FLS) constitute an emerging 
technology. In [1] both, one-pass and back-propagation (BP) methods are 
presented as IT2 Mamdani FLS learning methods, but only BP is presented for 
IT2 Takagi-Sugeno-Kang (TSK) FLS systems. The one-pass method generates a 
set of IF-THEN rules by using the given training data one time, and combines the 
rules to construct the final FLS. When BP method is used in both Mamdani and 
TSK FLS, none of antecedent and consequent parameters of the IT2 FLS are fixed 
at starting of training process; they are tuned using exclusively steepest descent 
method. In [1] recursive least-squares (RLS) and recursive filter (REFIL) 
algorithms are not presented as IT2 FLS learning methods. 
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The aim of this work is to present and discuss a new hybrid learning algorithm 
for antecedent and consequent parameters tuning during training process for 
interval type-1 non-singleton type-2 TSK FLS (IT2 NSFLS-1 or IT2 NS-1 
ANFIS). In the forward pass, the FLS output is calculated and the consequent 
parameters are tuned using RLS method. In the backward pass, the error 
propagates backward, and the antecedent parameters are tuned using the BP 
method.   

The hybrid algorithm for IT2 Mamdani FLS has been already presented 
elsewhere [2, 3, 4] with three combinations of the learning method: RLS-BP, 
REFIL-BP and orthogonal least-squares-BP (OLS-BP), whilst the hybrid 
algorithm for singleton IT2 TSK FLS (IT2 ANFIS) has been presented elsewhere 
[5] with two combinations of the learning method: RLS-BP and REFIL-BP. 

Since in the literature, only the BP learning method for IT2 FLS has been 
proposed, in this work the IT2 TSK NSFLS-1 system that uses the hybrid learning 
methodology has been developed and implemented for temperature prediction at 
hot strip mill (HSM) finishing scale breaker (SB) entry zone. This motivated by 
the success of the hybrid learning method in type-1 (T1) FLS (ANFIS) over BP 
only method. 

Convergence has been practically tested for particular conditions; it is no the 
purpose of this work the generalization of the algorithm developed here, but only 
to show comparative results and feasibility of application. Mathematical proof is 
still to be done in general for hybrid learning algorithms. 

2   Problem Formulation 

Most of the hot strip mill processes are highly uncertain, non-linear, time varying 
and non-stationary [2, 6], having very complex mathematical representations. IT2 
NS-1 ANFIS takes easily the random and systematic components of type A or B 
standard uncertainty [7] of industrial measurements. The non-linearities are 
handled by FLS as identifiers and universal approximators of nonlinear dynamic 
systems [8, 9, 10, 11]. Stationary and non-stationary additive noise is modeled as a 
Gaussian function centered at the measurement value. In stationary additive noise 
the standard deviation takes a single value, whereas in non-stationary additive 
noise the standard deviation varies over an interval of values [1]. Such 
characteristics make IT2 NS-1 ANFIS a powerful inference system to model and 
control industrial processes.  

Only the BP learning method for IT2 TSK SFLS has been proposed in the 
literature and it is used as a benchmark algorithm for parameter estimation or 
systems identification [1]. To the best knowledge of the authors, IT2 NS-1 ANFIS 
has not been reported in the literature [1, 12]. 

One of the main contributions of this work is to implement an application of the 
IT2 NS-1 ANFIS using the hybrid RLS-BP learning algorithm, capable of 
compensates for uncertain measurements. 
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3   Problem Solution 

3.1   Using Hybrid RLS-BP Method in IT2 NS-1 ANFIS Training 

The Table 1 shows the activities of the one pass learning algorithm of BP method. 
Both, IT2 TSK SFLS (BP) and IT2 TSK NSFLS-1 (BP) outputs are calculated 
during forward pass. During the backward pass, the error propagates backward and 
the antecedent and consequent parameters are estimated using only the BP method. 

Table 1. One pass in learning procedure for IT2 TSK (BP) 

 Forward Pass Backward Pass 
Antecedent Parameters Fixed BP 
Consequent Parameters Fixed BP 

The proposed hybrid algorithm (IT2 NS-1 ANFIS) uses RLS during forward 
pass for tuning of consequent parameters as well as the BP method for tuning of 
antecedent parameters, as shown in Table 2. It looks like Sugeno type-1 ANFIS 
[13, 14], which uses RLS-BP hybrid learning rule for type-1 FLS systems. 

Table 2. Two passes in hybrid learning procedure for IT2 NS-1 ANFIS 

 Forward Pass Backward Pass 
Antecedent Parameters Fixed BP 
Consequent Parameters RLS Fixed 

3.2   Adaptive BP Learning Algorithm 

The training method is presented as in [1]: Given N input-output training data 
pairs, the training algorithm for E training epochs, should minimize the error 
function:  

( ) ( )( ) ( )[ ]222

1 tt
FLSIT

t yfe −= − x  . (1) 

where te  is the error function at time t , ( )( )t
FLSITf x−2  is the output of the IT2 

FLS using the input vector ( )tx from the input-output data pairs, and  ( )ty  is the 

output from the input-output data pairs. 

4   Application to Transfer Bar Surface Temperature Prediction  

4.1   Hot Strip Mill 

Because of the complexities and uncertainties involved in rolling operations, the 
development of mathematical theories has been largely restricted to two-
dimensional models applicable to heat losing in flat rolling operations. 



56 G.M. Mendez and M. De Los Angeles Hernandez 
 

Fig. 1, shows a simplified diagram of a HSM, from the initial point of the 
process at the reheat furnace entry to its end at the coilers. 

Besides the mechanical, electrical and electronic equipment, a big potential for 
ensuring good quality lies in the automation systems and the used control 
techniques. The most critical process in the HSM occurs in the Finishing Mill 
(FM). There are several mathematical model based systems for setting up the FM. 
There is a model-based set-up system [15] that calculates the FM working 
references needed to obtain gauge, width and temperature at the FM exit stands. It 
takes as inputs: FM exit target gage, target width and target temperature, steel 
grade, hardness ratio from slab chemistry, load distribution, gauge offset, 
temperature offset, roll diameters, load distribution, transfer bar gauge, transfer 
bar width and transfer bar temperature entry. 

 

Fig. 1. Typical hot strip mill 

The errors in the gauge of the transfer bar are absorbed in the first two FM 
stands and therefore have a little effect on the target exit gauge. It is very 
important for the model to know the FM entry temperature accurately. A 
temperature error will propagate through the entire FM.  

4.2   Design of the IT2 NS-1 ANFIS 

The architecture of the IT2 NS-1 ANFIS was established in such away that its 
parameters are continuously optimized. The number of rule-antecedents was fixed 
to two; one for the Roughing Mill (RM) exit surface temperature and one for 
transfer bar head traveling time. Each antecedent-input space was divided in three 
fuzzy sets (FSs), fixing the number of rules to nine. Gaussian primary membership 
functions (MFs) of uncertain means were chosen for the antecedents. Each rule of 
the each IT2 NS-1 ANFIS is characterized by six antecedent MFs parameters (two 
for left-hand and right-hand bounds of the mean and one for standard deviation, 
for each of the two antecedent Gaussian MFs) and six consequent parameters (one 
for left-hand and one for right-hand end points of each of the three consequent 
type-1 FSs), giving a total of twelve parameters per rule. Each input value has one 
standard deviation parameter, giving two additional parameters. 
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4.3   Noisy Input-Output Training Data Pairs 

From an industrial HSM, noisy input-output pairs of three different product types 
were collected and used as training and checking data. The inputs are the noisy 
measured RM exit surface temperature and the measured RM exit to SB entry 
transfer bar traveling time. The output is the noisy measured SB entry surface 
temperature. 

4.4   Fuzzy Rule Base 

The IT2 NS-1 ANFIS fuzzy rule base consists of a set of IF-THEN rules that 
represents the model of the system. The IT2 ANFIS system has two 
inputs 11 Xx ∈ , 22 Xx ∈  and one output Yy∈ . The rule base has M = 9 rules of 

the form: 

,~~: 2211
iii FisxandFisxIFR 22110 xCxCCYTHEN iiii ++=  . (2) 

where iY the output of the ith rule is a fuzzy type-1 set, and the parameters i
jC , 

with i = 1,2,3,…,9 and j = 0,1,2, are the consequent type-1 FSs. 

4.5   Input Membership Function 

The primary MFs for each input of the IT2 NS-1 ANFIS are Gaussians of the 
form: 
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where: =k 1,2 (the number of type-2 non-singleton inputs), ( )kX x
k

μ  is centered 

at '
kk xx =  and 

kXσ  is the standard deviation. The standard deviation of the RM 

exit surface temperature measurement, 
1Xσ , was initially set to 13.0 Co  and the 

standard deviation head end traveling time measurement, 
2Xσ , was initially set to 

2.41 s. The uncertainty of the input data was modeled as stationary additive noise 
using type-1 FSs. 

4.6   Antecedent Membership Functions 

The primary MFs for each antecedent are FSs described by Gaussian with 
uncertain means: 
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where [ ]i
k

i
k

i
k mmm 21,∈  is the uncertain mean, with k =1,2 (the number of 

antecedents) and i = 1,2,..9 (the number of M rules), and i
kσ is the standard 

deviation. The means of the antecedent fuzzy sets are uniformly distributed over 
the entire input space.  

Table 3 shows the calculated interval values of uncertainty of 1x  input, where 

[ ]1211, mm  is the uncertain mean and 1σ is the standard deviation.  

Table 4 shows the calculated interval values of uncertainty of 2x input, where 

[ ]2221, mm  is the uncertain mean and 2σ is the standard deviation for all the 9 

rules.  

Table 3. Intervals of uncertainty 1x input 

 11m  

Co  
12m  

Co  
1σ  

Co

1 950 952 60 

2 1016 1018 60 

3 1080 1082 60 

Table 4. Intervals of uncertainty of 2x input 

 
Product Type

21m

s 
22m

s 
2σ  

s 
1 32 34 10 
2 42 44 10 
3 56 58 10 

The standard deviation of temperature noise 1nσ was initially set to 1 Co and the 

standard deviation of time noise 2nσ  was set to 1 s. 

4.7   Consequent Membership Functions 

Each consequent is an interval type-1 FS with [ ]i
r

i
l

i yyY ,=  where 

ii
j

p

j j
ip

j j
i
j

i
l ssxcxcy 0101

−−+= ∑∑ ==
 (5) 

and 

ip

j

i
jj

ip

j j
i
j

i
r ssxcxcy 0101

+++= ∑∑ ==
 (6) 

where i
jc  denotes the center (mean) of i

jC  and i
js  denotes the spread of i

jC , with 

=i 1,2,3,..,9 and =j 0,1,2. Then i
ly  and i

ry are the consequent parameters. When 
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only the input-output data training pairs ( ) ( )( )11 : yx ,…, ( ) ( )( )NN yx : are available 

and there is not data information about the consequents, the initial values for the 

centroid parameters i
jc  and i

js can be chosen arbitrarily in the output space [11]. 

In this work the initial values of i
jc  were set equal to 0.001 and the initial values 

of i
js  equal to 0.0001, for =i 1,2,3,..,9 and =j 0,1,2. 

4.8   Results 

The IT2 NS-1 ANFIS (RLS-BP) system was trained and used to predict the SB 
entry temperature, applying the RM exit measured transfer bar surface 
temperature and RM exit to SB entry zone traveling time as inputs. We ran fifteen 
epochs of training; one hundred and ten parameters were tuned using eighty seven, 
sixty-eight and twenty-eight input-output training data pairs per epoch, for type A, 
type B and type C products respectively.  

The performance evaluation for the hybrid IT2 NS-1 ANFIS system was based 
on root mean-squared error (RMSE) benchmarking criteria as in [1]. 

Fig. 2 shows the RMSEs of the two IT2 TSK NSFLS-1 systems (one trained 
using the BP only method, and the new proposed hybrid algorithm using RLS-BP 
methods)  and the base line interval singleton IT2 TSK SFLS (BP), all of them for 
fifty epochs’ of training for the case for type C products. Observe that from epoch 
1 to 4 the hybrid IT2 NS-1 ANFIS (RLS-BP) has better performance than both: 
the singleton IT2 SFLS (BP) and the IT2 NSFLS-1 (BP). From epoch 1 to 4 the 
RMSE of the IT2 NSFLS-1 has an oscillation, meaning that it is very sensitive to 
its learning parameters values. At epoch 5, it reaches its minimum RMSE and is 
stable for the rest of training. The proposed IT2 NS-1 ANFIS system has the best 
performance and stability after only one epoch of training. 
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Fig. 2. (*) RMSE TSK 2, SFLS (BP)   (+) RMSE TSK 2, NSFLS-1 (BP)   (o) RMSE TSK 2, NSFLS-1  
(RLS-BP) 
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5   Conclusions 

An IT2 NS-1 ANFIS using the hybrid RLS-BP training method was tested and 
compared for predicting the surface temperature of the transfer bar at SB entry. 
The antecedent MFs and consequent centroids of the IT2 NS-1 ANFIS absorbed 
the uncertainty introduced by all the factors: the antecedent and consequent 
initially values, the noisy temperature measurements, and the inaccurate traveling 
time estimation. The non-singleton type-1 fuzzy inputs are able to compensate the 
uncertain measurements, expanding the applicability of IT2 NS-1 ANFIS systems.  

It has been shown that the proposed IT2 NS-1 ANFIS system can be applied in 
modeling and control of the steel coil temperature. It has also been envisaged its 
application in any uncertain and non-linear system prediction and control, as in 
furnace temperature control, aerospace stability control, turbine trust control, and 
especially in those applications where there is only one chance of training. 
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Centralized Direct and Indirect Neural Control of 
Distributed Parameter Systems 
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Abstract. The paper proposed to use a Recurrent Neural Network Model (RNNM) 
for centralized modeling, identification and direct adaptive control of an anaerobic 
digestion bioprocess, carried out in a fixed bed and a recirculation tank of a 
wastewater treatment system. The analytical model of the digestion bioprocess 
represented a distributed parameter system, which is reduced to a lumped system 
using the orthogonal collocation method, applied in three collocation points plus 
the recirculation tank. The RNNM learning algorithm is the dynamic backpropa-
gation one. The graphical simulation results of the distributed plant direct and  
indirect adaptive neural control system, exhibited good convergence and precise 
reference tracking, outperforming the optimal control. 

Keywords: Recurrent neural network model, backpropagation learning, distrib-
uted parameter system, system identification, direct and indirect adaptive neural 
control, anaerobic digestion bioprocess, wastewater treatment bioreactor. 

1   Introduction 

In the last two decades, a new identification and control tools like Neural Net-
works (NN), used for biotechnological plants rose fame. Among several possible 
network architectures the ones most widely used are the Feedforward NN (FFNN) 
and the Recurrent NN (RNN), [1]. The main NN property namely the ability to 
approximate complex non-linear relationships without prior knowledge of the 
model structure makes them a very attractive alternative to the classical modeling 
and control techniques. This property has been proved for both types of NNs by 
the universal approximation theorem [1]. The preference given to NN identifica-
tion with respect to the classical methods of process identification is clearly dem-
onstrated in the solution of the “bias-variance dilemma” [1]. The FFNN and the 
RNN have been applied for Distributed Parameter Systems (DPS) identification 
and control too. In [2], [3], [4], an intelligent modeling approach is proposed for 
Distributed Parameter Systems (DPS). In [5], it is presented a new methodology 
for the identification of DPS, based on NN architectures, motivated by standard 
numerical discretization techniques used for the solution of Partial Differential 
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Equations (PDE). In [6], an attempt is made to use the philosophy of the NN adap-
tive-critic design to the optimal control of distributed parameter systems. In [7] the 
concept of proper orthogonal decomposition is used for the model reduction of 
DPS to form a reduced order lumped parameter problem. In [8], measurement data 
of an industrial process are generated by solving the PDE numerically using the 
finite differences method. Both centralized and decentralized NN models are in-
troduced and constructed based on this data. The models are implemented on 
FFNN using Backpropagation (BP). Unfortunately, all these works suffered of the 
same inconvenience that the FFNNs used are multilayer and of higher dimension 
having great complexity which made difficult their application. In [9] - [13], a 
new canonical Recurrent Trainable NN (RTNN) architecture, and a dynamic BP 
learning algorithm has been applied for systems identification and control, obtain-
ing a good results. In the present paper, this RTNN model will be used for identi-
fication, direct and indirect adaptive neural control of a digestion anaerobic DPS 
of wastewater treatment, [14], modeled by PDE/ODE, and simplified using the or-
thogonal collocation technique. 

2   Description of the RTNN Topology and Learning 

Block-diagrams of the RTNN topology and its adjoint, are given on Fig. 1, and 
Fig. 2. Following Fig. 1, and Fig. 2, we could derive the dynamic BP algorithm of 
its learning based on the RTNN topology using the diagrammatic method of [15]. 
The RTNN topology and learning are described in vector-matrix form as: 
 

X(k+1) = AX(k) + BU(k); B = [B1 ; B0]; U
T = [U1 ; U2]; (1)

Z1(k) = G[X(k)]; (2)

V(k) = CZ(k); C = [C1 ; C0]; Z
T = [Z1 ; Z2]; (3)

Y(k) = F[V(k)]; (4)

A = block-diag (Ai), |Ai | < 1; (5)

W(k+1) = W(k) +η ΔW(k) + α ΔWij(k-1); (6)

E(k) = T(k)-Y(k); (7)

E1(k) = F’[Y(k)] E(k); F’[Y(k)] = [1-Y2(k)]; (8)

ΔC(k) = E1(k) ZT(k); (9)

E3(k) = G’[Z(k)] E2(k); E2(k) = CT(k) E1(k); G’[Z(k)] = [1-Z2(k)]; (10)

ΔB(k) = E3(k) UT(k); (11)

ΔA(k) = E3(k) XT(k); (12)

Vec(ΔA(k)) = E3(k)▫X(k); (13)
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Fig. 1. Block diagram of the RTNN model 

 

Fig. 2. Block diagram of the adjoint RTNN model 

Where: X, Y, U are state, augmented output, and input vectors with dimensions n, 
(l+1), (m+1), respectively, where Z1 and U1 are the (nx1) output and (mx1) input 
of the hidden layer; the constant scalar threshold entries are Z2 = -1, U2 = -1, re-
spectively; V is a (lx1) pre-synaptic activity of the output layer; T is the (lx1) plant 
output vector, considered as a RNN reference; A is (nxn) block-diagonal weight 
matrix; B and C are [nx(m+1)] and [lx(n+1)]- augmented weight matrices; B0 and 
C0 are (nx1) and (lx1) threshold weights of the hidden and output layers; F[.], G[.] 
are vector-valued tanh(.)-activation functions with corresponding dimensions; 
F’[.], G’[.] are the derivatives of these tanh(.) functions; W is a general weight, 
denoting each weight matrix (C, A, B) in the RTNN model, to be updated; ΔW 
(ΔC, ΔA, ΔB), is the weight correction of W; η, α are learning rate parameters; 
ΔC is an weight correction of the  learned matrix C; ΔB is an weight correction of 
the learned matrix B; ΔA is an weight correction of the learned matrix A; the di-
agonal of the matrix A is denoted by Vec(.) and equation (13) represents its learn-
ing as an element-by-element vector products; E, E1, E2, E3, are error vectors with 
appropriate dimensions, predicted by the adjoint RTNN model, given on Fig.2. 
The stability of the RTNN model is assured by the activation functions (-1, 1) 
bounds and by the local stability weight bound condition, given by (5). Below a 
theorem of RTNN stability which represented an extended version of Nava’s theo-
rem, [9], [10] is given. 

Theorem of stability of the RTNN: Let the RTNN with Jordan Canonical Struc-
ture is given by equations (1)-(5) (see Fig.1) and the nonlinear plant model, is as 
follows: 
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Xd.(k+1) = G[ Xd (k), U(k) ]  

Yd (k) = F[ Xd (k) ]  

Where: {Yd (.), Xd (.), U(.)} are output, state and input variables with dimensions 
l, nd, m, respectively; F(.), G(.) are vector valued nonlinear functions with respec-
tive dimensions. Under the assumption of RTNN identifiability made, the applica-
tion of the BP learning algorithm for A(.), B(.), C(.), in general matricial form,  
described by equation (6)-(13), and the learning rates η (k), α (k) (here they are 
considered as time-dependent and normalized with respect to the error) are de-
rived using the following Lyapunov function: 

( ) ( ) ( )1 2L k  = L k +L k   

Where: 1L (k)   and  2L (k)  are given by: 

 ( ) ( )21
1 2L k  = e k  

 ( ) ( ) ( ) ( )% % % % % %T T T
2 A B CBA CL k  = tr W (k)W (k) +tr W (k)W (k) +tr W (k)W (k)  

 
Where: − − −% % %* * *

A B Cˆ ˆˆW (k) = A(k) A ,W (k) = B(k) B ,W (k) = C(k) C  

 
Are vectors of the estimation error and  * * *(A ,B ,C ) , ˆ ˆˆ(A(k),B(k),C(k))  denote the 
ideal neural weight and the estimate of the neural weight at the k-th step, respec-
tively, for each case. Then the identification error is bounded, i.e.: 

( ) ( ) ( )
( ) ( ) ( )

<
Δ + = +

1 2L k+1  = L k+1 +L k+1 0
L k 1   L k 1  –  L k

 
 

Where the condition for 1L (k+1)<0  is that: 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠< <max

max max

1 1
1- 1+

2 2η
ψ ψ

 

 

And for 2L (k+1)<0  we have: 

( ) ( ) ( ) ( )< − −2 2
2 max maxΔL k+1 η e k+1 α e k +d k+1

 
 

Note that maxη  changes adaptively during the RTNN learning and:  

{ }
3

max i
i=1

η =max η  

Where all: the unmodelled dynamics, the approximation errors and the perturba-
tions, are represented by the d-term. The Rate of Convergence Lemma used is 
given in [10]. The complete proof of that Theorem of stability is given in [9]. 

3   Direct Adaptive Neural Control  

The Direct Adaptive Neural Control (DANC) using the RTNN as plant identifier 
and plant controller has been described in [9]-[13]. The block-diagram of the con-
trol system is given on Fig. 3. It contained a recurrent neural identifier RTNN 1, 
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and two recurrent neural controllers (Feedback-FB and Feedforward-FF). Let us  
to write the following z-transfer- functions of the plant, the neural identifier and 
controllers: 

 

Wp(z) = Cp (zI – Ap)
-1 Bp (14) 

Pi(z) = (zI – Ai)
-1 Bi (15) 

Q1(z) = Ccfb (zI – Acfb)
-1 Bcfb (16) 

Q2(z) = Ccff (zI – Acff)
-1 Bcff (17) 

 

 
 

Fig. 3. Block diagram of the closed-loop system using RTNN identifier and two adaptive 
RTNN controllers 

The z-transfer functions (14)-(17) are connected by the following equation, de-
rived following the block-diagram of the Fig. 3, and given in z-operational form: 

Y p(z) = Wp(z) [I + Q1(z) Pi(z)] -1 Q2(z) R(z) + θ(z) (18) 

θ(z) = Wp(z) θ1(z) + θ2(z) (19) 

Where: θ (z) is a generalized noise term. The RTNN topology is controllable and 
observable. The BP algorithm of learning is convergent, [9]. Then the identifica-
tion and control errors tend to zero.  

Ei(k) = Y p(k) – Y(k) → 0; Ec(k) = R(k) - Y p(k) → 0; k → ∞ (20)

This means that each transfer function given by equations (14)-(17) is stable with 
minimum phase. The closed-loop system is stable and the RTNN-2 feedback  
controller compensates the plant dynamics. The RTNN-3 feedforward controller 
dynamics is an inverse dynamics of the closed-loop system one, which assure a 
precise reference tracking in spite of the presence of process and measurement 
noises. If l=m, both RTNN-2, RTNN-3 controllers are learnt by the output control 
error applying the BP algorithm. The centralized DPS could be considered as a 
system with excessive measurements, where the DANC performed a data fusion 
so to elaborate the control action. If l>m, the needed input control error for BP 
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learning is obtained from the output control error, using the C, B  parameters, es-
timated  by the RTNN-1:  

( ) ( ) ( ) ( ) ( )1( ) ( ), [ ]
T T

u cE k CB E k CB CB CB CB
+ + −= =  (21) 

4   Indirect Adaptive Control Using a RTNN Identifier 

The indirect adaptive control using the RTNN as plant identifier has been de-
scribed in [9]-[12] and applied for aerobic fermentation bioprocess plant control, 
[11], [12]. Here the same control approach will be represented as a Sliding Mode 
Control (SMC) and applied for wastewater anaerobic digestion bioprocess, mod-
eled by a simplified rectangular ODE system, [14]. The block diagram of this  
control is shown on Fig. 4. The stable nonlinear plant is identified by a RTNN 
identifier with topology, given by equations (1)-(5) and learned by the stable BP-
learning algorithm, given by equations (6)-(13), where the identification error 
tends to zero. Let us first to admit that l= m (square system). The identified local 
linear plant model described in both state-space and input-output form is given by 
the equations:  

X (k+1) = A X (k) + B U(k) (22)

Y (k) = C X(k) (23)

Y(k+1) = C X(k+1) = C [AX(k) + BU(k)] (24)

In [16], the sliding surface is defined with respect to the state variables and the 
SMC objective is to move the states from an arbitrary state-space position to the 
sliding surface in finite time. In [17], the sliding surface is also defined with re-
spect to the states but the states of the SISO system are obtained from the plant 
outputs by differentiation. In [18], the sliding surface definition and the control 
objectives are the same. The equivalent control systems design is done with re-
spect to the plant output, but the reachability of the stable output control depended 
on the plant structure. Here, the sliding surface is defined directly with respect to 
the plant outputs which facilitated the equivalent SMC systems design and de-
coupled the closed-loop system. Let us define the following sliding surface as an 
output tracking error function: 

                                                     p 
S(k+1)=E(k+1)+∑ γi E(k-i+1);  |γi | < 1 (25) 

                                                   i=1 
 

where S (.) is the Sliding Surface Error Function (SSEF) defined with respect to 
the plant output; E(.) is the systems output tracking error; γi are parameters of the 
desired stable SSEF; p is the order of the SSEF. The tracking error for k, k+1 is 
defined as: 
 

E(k) = R(k) − Y(k); E(k+1) = R(k+1) − Y(k+1) (26) 
 

Here the l-dimensional vectors R (k), Y (k) are the system reference and the  
output of the local linear plant model. The objective of the sliding mode control  
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Fig. 4. Block-diagram of the closed-loop system using RTNN identifier and a SMC 

systems design is to find a control action which maintained the system error on the 
sliding surface, assuring that the output tracking error reached zero in p steps, 
where p < n. So, the control objective is fulfilled if the SSEF is S (k+1) = 0. From 
(24)-(26), we obtained: 

                                                                    p 
R(k+1) – CAX(k) – CBU(k) + ∑ γi E(k-i+1) = 0 (27) 

                                                                   i=1 
 

As the local approximation plant model (22), (23), is controllable, observable and 
stable, [9], the matrix A is diagonal, and l = m, then the matrix product (CB), rep-
resenting the plant model static gain, is nonsingular, and the plant states X (k) are 
smooth non-increasing functions. Now, from (27) it is easy to obtain the equiva-
lent control capable to lead the system to the sliding surface which yields: 

                                                                              p 
Ueq(k) = (CB)-1 [ – CAX(k) + R(k+1) + ∑ γi E(k-i+1)] (28)

                                                                            i=1 
Following [16], the SMC avoiding chattering is taken using a saturation function 
instead of sign one. So the SMC took the form: 
 

                                      ⎧ Ueq(k),                     if ||Ueq(k)|| < Uo 
                   U*(k) =   ⎨ (29) 

                                      ⎩-Uo Ueq(k)/||Ueq(k)||, if ||Ueq(k)|| ≥ Uo 
 
Here the saturation level Uo is chosen with respect to the load level perturba-

tion. It is easy to see that the substitution of the equivalent control (28) in the in-
put-output linear plant model (24) showed an exact complete plant dynamics 
compensation. The designed plant output sliding mode equivalent control substi-
tuted the multi-input multi-output coupled high order dynamics of the linearized 
plant with desired decoupled low order one. The centralized DPS could be consid-
ered as a system with excessive measurements, where the SMC performed a data 
fusion so to elaborate the control action. If l > m (rectangular system) the equiva-
lent control law (28) is changed. The inverse of the (CB) became a pseudo-inverse 
(CB)+ and a learnable threshold Of with dimension (mx1) is added to the right 
hand side of (28), so to obtain: 
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                                                                         p 
Ueq(k) = (CB)+ [ – CAX(k) + R(k+1) + ∑ γi E(k-i+1)] + Of (30) 

                                                                        i=1 
 

The threshold Of is trained using the input control error, applying the BP  
algorithm, given by (6). The input control error is obtained from the output control  
error backpropagating it through the RTNN adjoint model (see Fig.3). An ap-
proximate way to obtain the input error from the output error is to multiply it by 
the same (CB)-pseudo-inverse (see equation (21)). So, the threshold correction is 
obtained as: 
 

ΔOf (k) = (CB)+E(k); (CB)+  = [(CB)T(CB)]-1 (CB)T (31) 

5   Analytical Model of the Anaerobic Digestion System 

The anaerobic digestion systems block diagram is depicted on Fig.5. It is con-
formed by a fixed bed reactor and a recirculation tank. The physical meaning of 
all variables and constants (also its values), are summarized on Table 1. The com-
plete analytical model of wastewater treatment anaerobic bioprocess, taken from 
[14], could be described by the following system of PDE and ODE (for the recir-
culation tank): 

( )
1

1 1
1 1 1 1max '

1 1

, ,
s

X S
D X

t K X S
μ ε μ μ∂

= − =
∂ +

 (32)

( )
2

2

2 2
2 2 2 2 2

' 2
2 2

, ,s

s

I

X S
D X

St
K X S

K

μ ε μ μ∂ = − =
∂ + +

 
(33)

2
1 1 1

1 1 12 2
,zS E S S

D k X
t H z t

μ∂ ∂ ∂
= − −

∂ ∂ ∂  
(34)

 

2
2 2 2

2 1 12 2
,zS E S S

D k X
t H z t

μ∂ ∂ ∂
= − +

∂ ∂ ∂  
(35) 

( ) ( ) ( ) ( )1, 1 2, 2
1 20, , 0, , ,

1 1
in T in T T

eff

S t RS S t RS Q
S t S t R

R R DV

+ +
= = =

+ +
 

(36) 

( ) ( )1 21, 0 , 1, 0 .
S S

t t
z z

∂ ∂
= =

∂ ∂  
(37) 

For practical purpose, the full PDE anaerobic digestion process model, [14],  
could be reduced to an ODE system using an early lumping technique and the  
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Table 1. Summary of the variables in the plant model 

Variable Units Name Value 
z z∈[0,1] Space variable  
t D Time variable  

Ez m2/d Axial dispersion coefficient 1 
D 1/d Dilution rate 0.55 
H m Fixed bed length 3.5 
X1 g/L Concentration of acidogenic 

bacteria 
 

X2 g/L Concentration of methano-
genic bacteria 

 

S1 g/L Chemical Oxygen Demand  
S2 mmol/L Volatile Fatty Acids  
ε  Bacteria fraction in the liq-

uid phase 
0.5 

k1 g/g Yield coefficients 42.14 
k2 mmol/g Yield coefficients 250 
k3 mmol/g Yield coefficients 134 
μ1 1/d Acidogenesis growth rate  
μ2 1/d Methanogenesis growth rate  
μ1max 1/d Maximum acidogenesis 

growth rate 
1.2 

μ2s 1/d Maximum methanogenesis 
growth rate 

0.74 

K1s
’ g/g Kinetic parameter 50.5 

K2s
’ mmol/g Kinetic parameter 16.6 

KI2
’ mmol/g Kinetic parameter 256 

QT m3/d Recycle flow rate 0.24 
VT m3 Volume of the recirculation 

tank 
0.2 

S1T g/L Concentration of Chemical 
Oxygen Demand in the recircu-

lation tank 

 

S2T mmol/L Concentration of Volatile 
Fatty Acids in the recirculation 

tank 

 

Qin m3/d Inlet flow rate 0.31 
VB m3 Volume of the fixed bed 1 
Veff m3 Effective volume tank 0.95 

S1,in g/l Inlet substrate concentration  
S2,in mmol/L Inlet substrate concentration  

 

Orthogonal Collocation Method (OCM), [14], in three points (0.25H, 0.5H, 
0.75H) obtaining the following system of OD equations: 

( ) ( )1, 2,

1, 1, 2, 2,
,,i i

i i i i

dX dX
D X D X

dt dt
μ ε μ ε= − = −  (38)

2 2
1,

, 1, , 1, 1 1, 1,2
1 1

,
N N

i z

i j j i j j i i
j j

dS E
B S D A S k X

dx H
μ

+ +

= =

= − −∑ ∑
 

(39)
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Fig. 5. Block-Diagram of Anaerobic Digestion Bioreactor 
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2,1 2,
1

2, 2 2, 2

, ,N N i
i

N N N N

A A
K K

A A
+ +

+ + + +

=− =−  (44)

( )1 2
, ,, , 1 ,l

m l m l mA l zφ ϖ ϖ− −⎡ ⎤=Λ Λ= = −⎣ ⎦  (45)

( ) ( )1 3 1
, , ,, , 1 2 ,l l

m l m l m m l mB l l z zφ τ τ φ− − −⎡ ⎤= Γ Γ = = − − =⎣ ⎦  (46)

2,..., 2 , , 1,..., 2 .i N m l N= + = +  (47)

The reduced plant model (38)-(47) (here (40) represented the OD equations of the 
recirculation tank), could be used as unknown plant model which generate in-
put/output data for the centralized Direct Adaptive Neural Control (DANC) sys-
tem design. 
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6   Simulation Results of DPS Direct and Indirect Neural 
Control 

The centralized DANC controlled 14 output plant variables, which are: 4 variables 
for each collocation point z=0.25H, z=0.5H, z=0.75H of the fixed bed as: X1 (aci-
dogenic bacteria), X2 (methanogenic bacteria), S1 (chemical oxygen demand) and 
S2 (volatile fatty acids), and the following variables in the recirculation tank: S1T 
(chemical oxygen demand) and S2T (volatile fatty acids). The topologies of the 
RTNNs and the learning rate parameters are as follows: for the RTNN1 it is (2, 
16, 14), the activation functions are tanh (.) for both layers, the learning rate pa-
rameters are α=0.001, η=0.1; for the RTNN2 the topology is (16, 18, 2); for the 
RTNN3 the topology is (14, 16, 2); the activation functions are tanh (.)-for the 
hidden layers, sigm (.) for the output layers of both control nets; the learning rate 
parameters for both control RTNNs are α=0.1, η=0.1. The simulation results of 
DANC are obtained on-line during 100 days with a step of 0.1 day (To=0.1 sec., 
Nt=1000 iterations). The Figs. 6-10 compared the plant outputs with the respective 
reference signals for X1, X2, S1, S2, in three collocation points of the bioreactor, 
and for both S1T, S2T of the recirculation tank. The Means Squared Error (MSE%) 
of the DANC plant variables for the fixed bed and the recirculation tank are shown 
in Table 2. For sake of comparison, in Table 3 are given the MSE% results, ob-
tained with optimal control of the linearized plant model. The comparison of that 
MSE% results showed slight priority of the direct centralized adaptive neural con-
trol over the optimal control due to the adaptability of the first one. 

Table 2. MSE of the DANC of all output plant variables 

Collocation points of the 
fixed bed variables 

X1 X2 S1 S2 

z=0.25 2.8674E-10 1.0574E-9 6.1765E-8 1.7201E-8 

z=0.5 3.4107E-11 6.2468E-11 8.6977E-9 1.2094E-12 

z=0.75 6.5947E-13 3.3659E-12 1.3766E-10 1.6511E-10 

Recirculation tank variables   2.6501E-9 2.4932E-9 

Table 3. MSE of the proportional optimal control of all output plant variables 

Collocation points of the 
fixed bed variables 

X1 X2 S1 S2 

z=0.25 5.3057E-8 1.7632E-7 1.1978E-5 2.1078E-5 

z=0.5 6.6925E-9 4.2626E-8 1.4922E-6 4.4276E-6 

z=0.75 3.0440E-10 2.0501E-9 6.8737E-8 2.0178E-7 

Recirculation tank variables   2.7323E-7 6.0146E-7 
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Fig. 6. a) DANC of S1T (chemical oxygen demand in the recirculation tank) dotted line –
plant output, continuous line –reference signal; b) SMC of S2T (volatile fatty acids in the re-
circulation tank) dotted line- plant output, continuous line –reference signal 
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Fig. 7. DANC of X1 (acidogenic bacteria in the fixed bed) dotted line -plant output, con-
tinuous line reference signal; a) 3d view of X1; b) DANC of X1 in z=0.25H; c) DANC of X1 
in z=0.5H; d) DANC of X1 in z=0.75H  

The graphical simulation results of SMC are obtained also on-line in real-time 
during 100 days with a step of 0.1 day (To = 0.1 sec., Nt = 1000 iterations). The 
Figs. 11-15 compared the respective plant outputs with the reference signals dur-
ing Nt = 1000 iterations of RTNN learning and sliding mode bioprocess control. 
Fig. 12 b, c, d showed the variable X1 (dotted line) and the respective reference 
(continuous line) in three measurement points of the fixed bed bioreactor 
(z=0.25H, z=0.5H, z=0.75H, H= 3.5 m). The Fig. 12 a show a 3-D view which 
gave a spatiotemporal representation of the output variable X1 for the bioreactor 
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Fig. 8. DANC of X2, (methanogenic bacteria in the fixed bed) dotted line – plant output, 
continuous line –reference signal; a) 3d view of X2 b) DANC of X2 in z=0.25H; c) DANC 
of X2 in z=0.5H, d) DANC of  X2 in z=0.75H 
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Fig. 9. DANC of S1 (chemical oxygen demand in the fixed bed) dotted line-plant output, 
continuous line –reference signal; a) 3d view of S1; b) DANC of S1 in z=0.25H; c) DANC 
of S1 in z=0.5H, d) DANC of S1  in z=0.75H 
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Fig. 10. DANC of DANC of S2  (volatile fatty acids in the fixed bed) dotted line- plant out-
put, continuous line –reference signal; a) 3d view of S2 ; b) DANC of S2 in z=0.25H; c) 
DANC of S2 in z=0.5H; d) DANC of S2  in z=0.75H 

fixed bed length z and the time. The interpolation of the variable X1 between the 
space measurement points (z=0.25H, z=0.5H, z=0.75H, H= 3.5 m) is linear. The 
graphical results of RTNN learning and SMC, given on Fig. 13 a, b, c, d, Fig. 14 
a, b, c, d, Fig. 15 a, b, c, d showed similar results for the variables of the fixed bed 
X2, S1, S2. The graphical results of RTNN learning and SMC, given on Fig. 11 a, b 
showed temporal results for the variables of the recirculation tank S1T, S2T. The 3-
D views showed a decrease of the variables with the increase of the fixed-bed 
length z. The temporal graphics of RTNN learning and SM control showed some 
bigger discrepancies between the plant variables and the respective references at 
the beginning of the learning which decreased faster on time. In order to see the 
accuracy of the system identification and SM control, the values of the Mean 
Squared Error of all plant output variables for the fixed bed and the recirculation 
tank at the end of the 1000 iterations of learning are shown on Table 4.  

Table 4. MSE of the SMC of all output plant variables 

Collocation points of the 
fixed bed variables 

X1 X2 S1 S2 

z=0.25H 1.4173E-10 1.1231E-9 3.2284E-8 1.4994E-8 

z=0.5H 1.6442E-11 8.0341E-12 4.7359E-9 1.8789E-9 

z=0.75H 1.9244E-13 3.1672E-13 4.3831E-11 2.9076E-12 

Recirculation tank variables   2.6501E-9 2.4932E-9 
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Fig. 11. SMC of the recirculation tank variables; a) SMC of S1T (chemical oxygen demand 
in the recirculation tank) -dotted line –plant output, continuous line –reference signal; b) 
SMC of S2T (volatile fatty acids in the recirculation tank) dotted line- plant output, continu-
ous line –reference signal 
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Fig. 12. SMC of X1 (acidogenic bacteria in the fixed bed) (dotted line -plant output, con-
tinuous line- reference signal); a) 3-D view of X1; b) SMC of X1 in z=0.25H; c) SMC of X1 
in z=0.5H; d) SMC of X1 in z=0.75H. 

The value of the MSE% obtained for the worse case (S1 for z=0.25H) is 3.2284. 
10-8. The obtained in Table 4 results of MSE% are compared with the results of 
MSE% for proportional linear optimal control, given on Table 3. The comparison 
of that MSE% results showed slight priority of the indirect centralized adaptive 
neural control over the linearized optimal control due to the adaptability of the 
first one.  
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Fig. 13. SMC of X2, (methanogenic bacteria in the fixed bed) (dotted line – plant output, 
continuous line –reference signal); a) 3d view of X2 b) SMC of X2 in z=0.25H; c) SMC of 
X2 in z=0.5H, d) SMC of  X2 in z=0.75H. 
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Fig. 14. SMC of S1 (chemical oxygen demand in the fixed bed) (dotted line-plant output, 
continuous line –reference signal); a) 3d view of S1; b) SMC of S1 in z=0.25H; c) SMC of 
S1 in z=0.5H; d) SMC of  S1 in z=0.75H 
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Fig. 15. SMC of S2  (volatile fatty acids in the fixed bed) (dotted line- plant output, con-
tinuous line –reference signal); a) 3d view of S2 ; b) SMC of S2 in z=0.25H; c) SMC of S2 
in z=0.5H; d) SMC of  S2 in z=0.75H 

In total, the MSE% results of bioprocess identification and control showed a 
very good RTNN convergence and precise reference tracking with slight priority 
of the SMC over the linear optimal control and the DANC due to the better plant 
dynamics compensation of the SMC. 

7   Conclusions 

The paper proposed to use a Recurrent Neural Network for centralized identifica-
tion, direct and indirect control of Distributed Parameter Systems. An anaerobic 
digestion bioprocess plant model described by partial differential equations is used 
as an example of such system. The simplification of the DPS described by PDE 
equations is realized using the orthogonal collocation method in three collocation 
points, converting the PDE plant description in ODE one. The ODE system has 
excessive measurements and it is identified using a centralized RTNN model. The 
state and parameters estimated by the RTNN identifier are used for direct and  
indirect adaptive neural control, performing data fusion. The applied neural ap-
proach to complex systems identification and control exhibits a good RTNN con-
vergence and precise plant outputs tracking. The MSE% of plant outputs tracking 
for the SMC and DANC are of order of E-008 in the worse case, outperforming 
the optimal control (E-005 in the worse case) due to its adaptability. The compari-
son of the MSE% of reference tracking gave slight priority of the SMC over 
DANC due to its better compensation ability. 
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Abstract. In this paper we describe the application of an architecture for an en-
semble neural network for Complex Time Series Prediction.  The times series we 
are considering are: the Mackey-Glass, Dow Jones and Mexican Stock Exchange 
and we show the results of a set of trainings with the ensemble neural network, 
and its integration with the methods of average, weighted average and Fuzzy Inte-
gration. Simulation results show very good prediction of the ensemble neural 
network with fuzzy logic integration. 

1   Introduction 

Time series predictions are very important because we can analyze past events to 
know the possible behavior of futures events and thus can take preventive or cor-
rective decisions to help avoid unwanted circumstances. 

The choice and implementation of an appropriate method of prediction has al-
ways been a major issue for enterprises that seek to ensure the profitability and 
survival of business. The predictions give the company the ability to make deci-
sions in the medium and long term, and due to the accuracy or inaccuracy of data 
could mean predicted growth or profits and financial losses.  

It is very important for companies to know the behavior that will be the future 
development of their business, and thus be able to make decisions that can im-
prove the company's activities, and avoid unwanted situations which in some 
cases can lead to the company’s failure. 

2   Time Series and Prediction 

A time-series is defined as a sequence of observations on a set of values that takes 
a variable (quantitative) at different points in time. The time series are widely used 
today because organizations need to know the future behavior of certain phenom-
ena in order to plan, prevent, and so on, their actions. That is, to predict what  
will happen with a variable in the future from the behavior of that variable in the 
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past [1]. The data can behave in different ways over time, this may be a trend, 
which is the component that represents a long-term growth or decline in value 
over a period of time high. You can also have a cycle, which refers to the wave 
motion that occurs around the trend, or may not have a defined or random manner; 
there are seasonal variations (annual, biannual, etc.). , which is a behavior pattern 
that is repeated year after year at a particular time. [2]. 

The word “prediction” comes from the Latin prognosticum, which means I 
know in advance. Prediction is to issue a statement about what is likely to happen 
in the future, based on analysis and considerations of experiments. Making a fore-
cast is to obtain knowledge about uncertain events that are important in decision-
making [3]. Time series prediction tries to predict the future based on past data, it 
take a series of real data  and then obtains the 

prediction of data . The goal of time series predic-
tion or a model is to observe the series of real data, so that future data may be 
accurately predicted. [4] 

3   Neural Networks  

Neural networks are composed of many elements (Artificial Neurons), grouped 
into layers and are highly interconnected (with the synapses), this structure has 
several inputs and outputs, which are trained to react (or give values) in a way you 
want to input stimuli (R values). These systems emulate in some way, the human 
brain. Neural networks are required to learn to behave (Learning) and someone 
should be responsible for the teaching or training (Training), based on prior 
knowledge of the environment problem [5]. 

Artificial neural networks are inspired by the architecture of the biological 
nervous system, which consists of a large number of relatively simple neurons that 
work in parallel to facilitate rapid decision-making [6].  

A neural network is a system of parallel processors connected as a directed 
graph. Schematically each processing element (neuron) of the network is repre-
sented as a node. These connections establish a hierarchical structure that is trying 
to emulate the physiology of the brain as it looks for new ways of processing to 
solve real world problems. What is important in developing the techniques of NN 
is if its useful to learn behavior, recognize and apply relationships between objects 
and plots of real-world objects themselves. In this sense, artificial neural networks 
have been applied to many problems of considerable complexity. Its most impor-
tant advantage is in solving problems that are too complex for conventional tech-
nologies, problems that have no solution or that the algorithm of the solution is 
very difficult to find [5]. 

4   Methods of Integration 

There exists a diversity of methods of integration or aggregation of information, 
and we mention some of these methods below: 
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Integration by average: this method is used in the ensembles of networks. This 
integration method is the simplest and most straightforward, consists in the sum of 
the results generated by each module divided by the number of modules, and the 
disadvantage is that there are cases in which the prognosis is not good. 

Integration of Weighted Average: this method is an extension of the integration 
by average, with the main difference that the weighted average assigns importance 
weights to each of the modules. These weights are assigned to a particular module 
based on several factors; the most important is the knowledge product of experi-
ence. This integration method belongs to the well known aggregation operators. 

Fuzzy logic was proposed for the first time in the mid-sixties at the University 
of California Berkeley by the brilliant engineer Lotfi A. Zadeh. Who proposed 
what it’s called the principle of incompatibility:  "As the complexity of a system 
increases, our ability to give precise instructions and build on their behavior de-
creases to the threshold beyond which the accuracy and meaning are mutually 
exclusive characteristics." Then introduced the concept of a fuzzy set (Fuzzy Set), 
under which lies the idea that the elements on which to build human thinking are 
not numbers but linguistic labels. Fuzzy logic can represent the common knowl-
edge that natural of language is mostly qualitative and not necessarily quantitative 
in a mathematical language by means of fuzzy set theory and function characteris-
tics associated with them. [7]. 

Fuzzy Set: Let  be a space of objects and  be generic element of . A classi-
cal set ,  is defined as a collection of elements or objects  such that 
each  can either belong or not belong to the set A. By defining a characteristic 
function for each element  in , we can represent a classical set  by a set of 
ordered pairs  which indicates or respectively. 
Unlike the aforementioned conventional set, a fuzzy set expresses the degree to 
which an element belongs to a set. Hence the characteristic function of a fuzzy set 
is allowed to have values between 0 and 1, which denotes the degree of member-
ship of an element in a given set. The basic structure of a fuzzy inference system 
consists of three conceptual components: a rule base, which contains a selection of 
fuzzy rules; (or dictionary), which defines the membership functions used in the 
fuzzy rules; and a reasoning mechanism, which performs the inference produce 
(usually the fuzzy reasoning). [8]. 

5   Genetic Algorithms 

Genetic algorithms were introduced by the first time by a professor of the Univer-
sity of Michigan named John Holland [9]. A genetic algorithm, is a mathematical 
highly parallel algorithm that transforms a set of mathematical individual objects 
with regard to the time using operations based on evolution. The Darwinian laws of 
reproduction and survival of the fittest can be used, and after having appeared of  
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natural form a series of genetic operations between(among the object) that stands 
out the sexual recombination [10,11]. Each of these mathematical objects is in the 
habit of being a chain of characters (letters or numbers) of fixed length that adjusts 
to the model of the chains of chromosomes, and one associates to them with a cer-
tain mathematical function that reflects the fitness. 

6   Problem Statement and Proposed Method 

This paper is concerned with the study of a fuzzy integration method that can be 
applied to ensemble neural networks with applications to complex time series, in 
addition to developing alternative methods for the integration of ensemble net-
work, such as the average and weighted average. Figure 1 shows the general archi-
tecture used in this work. 

 

Fig. 1. General Architecture of the ensemble neural network. 

Historical data of the Mackey-Glass time series was used for the ensemble 
neural network trainings, where each module was fed with the same information, 
to find a suitable architecture for a module of the ensemble will be same or very 
similar to the other modules, unlike the modular networks, where each module is 
fed with different data, which leads to architectures that are not uniform. Integra-
tion by the average method was very easy to implement, just joining the results of 
each module and the result was divided by the number of elements, the main 
problem of this method is that if one of the modules produces an unfortunate 
result, it can greatly affect the result the integration. Integration by weighted 
average includes assigning values from 0 to 1, where the module that has the best 
prediction is the one that will have a greater weight. The network consists of 
three modules, the allocation of weights we used is 0.50 for the module that pro-
duces better results, 0.30 for second best and 0.20 for the worst module, we do 
this only if the three modules meet the above conditions. Fuzzy integration for 
the Mackey-Glass time series was implemented in a system of traditional Mam-
dani fuzzy inference, which consists of three input variables (the results of each 
module of our ensemble network) and one output variable  (the result of integra-
tion), is shown in Figure 2. 
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Fig. 2. Fuzzy Inference System. 

To Optimize the Fuzzy System for Integration of the Mackey-Glass, Dow Jones 
and the Mexican Stock Exchange time series we implemented a genetic algorithm 
to optimize the membership functions and rules of the fuzzy system. Where the 
objective function is defined to minimize the prediction error: 

 
 

 
 

 
 

 
 

(1) 
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Where  correspond to prediction1, prediction2 and prediction3, 

respectively; these are used as inputs for the fuzzy integration system, repre-

sents real data, ,  and  calculates the error of module1, module2, mod-

ule3 respectively and  is the total prediction error,  is the number of rules  
generated by the genetic algorithm, the possible number of  27 rules and 100 to 
assign more weight to the  error of prediction. 

The corresponding chromosome structure is shown in Figure 3. 

 
Fig. 3. Chromosome Structure 

 

Fig. 4. Series data Mackey-Glass. 

Data of the Mackey-Glass time series was generated using equation (1). We are 
using 800 points. We use 70% of the data for the ensemble neural network train-
ings and 30% to test the network. 
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The Mackey-Glass Equation is defined as follows: 

 

Where it is assumed x (0) = 1.2,  t = 17, and x (t) = 0 for t <0. Figure 4
shows a plot of the time series for these parameter values. 

(2)

 

This time series is chaotic, and there is no clearly defined period over time. The 
series does not converge or diverge, and the trajectory is extremely sensitive to  
the initial conditions. The time series is measured in number of points, and we 
apply the fourth order Runge-Kutta method to find the numerical solution of the 
equation [12]. 

Data of the Dow Jones time series: We are using 800 points that correspond 
from 11/03/05 to 01/08/09.  We used 70% of the data for the ensemble neural 
network trainings and 30% to test the network [13]. 

Figure 5 shows a plot of the time series for these parameter values. 

 

Fig. 5. Series data Dow Jones. 

Data of the Mexican Stock Exchange time series: We are using 800 points that 
correspond from 11/09/05 to 01/15/09. We used 70% of the data for the ensemble 
neural network trainings and 30% to test the network [14]. We show in Figure 6 
the plot of this time series. 
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Fig. 6. Mexican Stock Exchange. 

7   Simulation Results 

In this section we show results for the three time series using the Ensemble NN 
with fuzzy Integration. 

7.1   Simulation Results for the Mackey-Glass Time Series 

The architecture of the ensemble network that produced the best results is shown 
in Figure 7 for the Mackey-Glass Time Series [14]. 

 

 

Fig. 7. The best Network Architecture for Mackey-Glass. 
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In this architecture we used two layers in each module. In module 1, in the first 
layer we used 15 neurons and 13 neurons in second layer. In module 2 we used 15 
neurons in the first layer and 13 neurons in the second, and in module 3 we used 16 
neurons in the first layer and 13 neurons in the second. The training method used 
was the Levenberg-Marquardt (LM); we also applied 3 delays to the network. 

The best training was the one shown in row number 3,  using 1 layer in each of 
the modules of the ensemble network, implementing  3 delays in the network, the 
training method used was Levenberg-Marquardt (LM), (as shown in Table 1) 
where the total error of this training was: 0.1296. 

Table 1. Results of Training using 1 layer for  Mackey-Glass. 

 

The best training was the one shown in row number 5 using 2 layers in each of 
the modules of the ensemble network, implementing  3 delays in the network, the 
training method used was Levenberg-Marquardt (LM), (as shown in Table 2) 
where the total error of this training was: 0.01396.  

Table 2. Results of Training  using 2 layers for  Mackey-Glass. 
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The best training was the one shown in row number 5 varying between 1 and 2 
layers in each of the modules of the ensemble network, implementing  3 delays in 
the network, the training method used was Levenberg-Marquardt (LM), (as shown 
in Table 3) where the total error of this training was: 0.01396.  

Table 3. Results of Training  using 1and 2  layers for  Mackey-Glass. 

 

The result is training number 3 (as shown in Table 4), where the integration 
method used was average integration; and we obtained an error of 0.025, with 
weighted average integration we obtained an error of 0.0461,  with fuzzy integra-
tion we obtained an error of 0.0789 and with optimized fuzzy integration we ob-
tained an error of 0.038131. 

The best method of integration for this architecture was the average integration 
with an error of 0.0205. 

Table 4. Results of the Integration Methods with 1 layer  for Mackey-Glass. 

 

The best result is training 5 (as shown in Table 5), where the integration method 
used was average integration; we obtained an error of 0.0106, with weighted  
average integration we obtained an error of 0.0126, with fuzzy integration we  
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Table 5. Results of the Integration Methods with 2 layers  for Mackey-Glass. 

 

obtained an error of 0.0708 and with  optimized fuzzy integration we obtained an 
error of 0.023317. 

The best result is training 5 (as shown in Table 6), where the integration 
method used was average integration; we obtained an error of 0.0241, with 
weighted average integration we obtained an error of 0.0348, with fuzzy integra-
tion we obtained an error of 0.0751 and with  optimized fuzzy integration we 
obtained an error of 0.023317. 

Where the best method for this architecture was the average integration with an 
error of 0.0241. 

Table 6. Results of the Integration Methods with 1 and  layers  for Mackey-Glass 

 

The best result obtained for the Mackey-Glass time series was  number 5 using 
2 layers  in each of the modules of the ensemble network, implementing  3 delays, 
the training method used was the Levenberg-Marquardt (LM), (as shown in  
Table 2 and in Figure 8).  
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Fig. 8. Simulation results of training 5 for Mackey-Glass. 

Table 7. Genetic algorithm results for training 5 for Mackey-Glass. 

 
 

Table7 shows the genetic algorithm results for training 5 (as shown in Table 2 
and in Figure 9). Where the prediction error is of 0.023372. 

The fuzzy integration system generated by the genetic algorithm is represented 
in figure 10: 

Comparing Figure 2, which belongs to the base fuzzy integrator (not optimized) 
with Figure 9, which belongs to the fuzzy integrator generated by the genetic 
algorithm, it can be seen that the parameters of membership functions are  
different, the number of rules obtained are 20  and this helps to improve the pre-
diction error. 
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Fig. 9. Fuzzy system generated by genetic algorithm for Mackey-Glass. 

 

Fig. 10. Rules Fuzzy system generated by genetic algorithm for Mackey-Glass. 

7.2   Simulation Results for the Dow Jones Time Series 

The architecture of the ensemble network that produced the best results for Dow 
Jones Time Series is shown in Figure 11. 

In this architecture we used one layer in each module. In module 1, in the first 
layer we used 37 neurons in module 2 we used 38 neurons in the first layer and in 
module 3 we used 38 neurons in first layer. The training method used was the 
Levenberg-Marquardt (LM); we also applied 3 delays to the network. 
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Fig. 11. The Best Network Architecture for Dow Jones. 

The best training was the one shown in row number 4,  using 1 layer in each of 
the modules of the ensemble network, implementing  3 delays in the network, the 
training method used was Levenberg-Marquardt (LM), (as shown in Table 8) 
where the total error of this training was: 0.00000886.  

Table 8. Results of Training using 1 layer for Dow Jones. 

 

The best training was the one shown in row number 1 using 2 layers in each of 
the modules of the ensemble network, implementing  3 delays in the network, the 
training method used was Levenberg-Marquardt (LM), (as shown in Table 9) 
where the total error of this training was: 0.00018046. 

 



An Ensemble Neural Network Architecture with Fuzzy Response Integration  99
 

Table 9. Results of Training using 2 layers for  Dow Jones. 

 

The best training was the one shown in row number 4 varying between 1 and 2 
layers in each of the modules of the ensemble network, implementing  3 delays in 
the network, the training method used was Levenberg-Marquardt (LM), (as shown 
in Table 10) where the total error of this training was: 0.00008543.  

Table 10. Results of Training using 1 y 2 layers for  Dow Jones. 

 

The result is training number 4 (as shown in Table 11), where the integration 
method used was average integration; and we obtained an error of 0.0053, with 
weighted average integration we obtained an error of 0.0060,  with fuzzy integration 
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we obtained an error of 0.0194 and with optimized fuzzy integration we obtained an 
error of 0.006863. 

The best method of integration for this architecture was the average integration 
with an error of 0.0053. 

Table 11.  Results of the Integration Methods with 1 layer for Dow Jones. 

 

The best result is training 1 (as shown in Table 12), where the integration 
method used was average integration; we obtained an error of 0.0208, with 
weighted average integration we obtained an error of 0.0406, with fuzzy integra-
tion we obtained an error of 0.0315 and with  optimized fuzzy integration we 
obtained an error of 0.008987. 

The best method of integration for this architecture was the optimized fuzzy In-
tegration with an error of 0.008987. 

Table 12. Results of the Integration Methods with  2  layers  for  Dow Jones. 

 

The best result is training 4 (as shown in Table 13), where the integration 
method used was average integration; we obtained an error of 0.0069, with 
weighted average integration we obtained an error of 0.0098, with fuzzy integration 
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we obtained an error of 0.0455 and with  optimized fuzzy integration we obtained 
an error of 0.008387. 

The best method of integration for this architecture was the average integration 
with an error of 0.008387. 

Table 13. Results of the Integration Methods with 1and 2  layers  for  Mackey-Glass. 

 

The best result obtained for the Dow Jones time series was  number 4  using 1 
layer  in each of the modules of the ensemble network, implementing  3 delays, 
the training method used was Levenberg-Marquardt (LM), (as shown in Table 13 
and in Figure 12).  

 

Fig. 12. Simulation results of training 4 for Dow Jones time series. 
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Table 14. Genetic algoritm results for training 4 for the Dow Jones time series. 

 

Table14 shows the genetic algorithm results for training 4 (as shown in Table 
13 and in Figure 12) where the prediction error is of 0.006863. 

The fuzzy integration system generated by the genetic algorithm is represented 
in Figure 13 and the fuzzy rules in Figure 14. 

Comparing Figure 2, which belongs to the base fuzzy integrator (not optimized) 
with Figure 13, which belongs to the fuzzy integrator generated by the genetic 
algorithm, it can be seen that the parameters of membership functions are differ-
ent, the number of rules obtained are 22  and this helps to improve the error  
prediction. 

 

Fig. 13. Fuzzy system generated by the genetic algorithm for the Dow Jones time series. 
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Fig. 14. Rules of the Fuzzy system generated by genetic algorithm for Mexican Stock 
Exchange. 

7.3   Simulation Results for the Mexican Stock Exchange Time Series 

The architecture of the ensemble network that produced the best results for Mexi-
can Stock Exchange Time Series is shown in Figure 15. 

 

Fig. 15. The Best Network Architecture for Mexican Stock Exchange. 

In this architecture we used one layer in each module. In module 1, in the first 
layer we used 52 neurons in module 2 we used 51 neurons in the first layer and in 
module 3 we used 52 neurons in first layer. The training method used was the 
Levenberg-Marquardt (LM); we also applied 3 delays to the network. 
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The best training was the one shown in row number 4,  using 1 layer in each of 

the modules of the ensemble network, implementing  3 delays in the network, the 
training method used was Levenberg-Marquardt (LM), (as shown in Table 15) 
where the total error of this training was: 0.00015.  

Table 15. Results of Training  using 1 layer for  Mexican Stock Exchange. 

 

The best training was the one shown in row number 1 using 2 layers in each of 
the modules of the ensemble network, implementing  3 delays in the network, the 
training method used was Levenberg-Marquardt (LM), (as shown in Table 16) 
where the total error of this training was: 0.000195.  

Table 16. Results of Training  using 2 layers  for  Mexican Stock Exchange. 

 

The best training was the one shown in row number 5 varying between 1 and 2 
layers in each of the modules of the ensemble network, implementing  3 delays in 
the network, the training method used was Levenberg-Marquardt (LM), (as shown 
in Table 17) where the total error of this training was: 0.00016.  
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Table 17. Results of Training  using 1and 2 layers  for  Mexican Stock Exchange. 

 

The result is training number 4 (as shown in Table 18), where the integration 
method used was average integration; and we obtained an error of 0.0479, with 
weighted average integration we obtained an error of 0.0519,  with fuzzy integra-
tion we obtained an error of 0.1094 and with optimized fuzzy integration we ob-
tained an error of 0.045848. 

The best method of integration for this architecture was the optimized fuzzy in-
tegration with an error of 0.045848. 

Table 18.  Results of the Integration Methods with 1 layer  for  Mexican Stock Exchange 

 

The best result is training 1 (as shown in Table 19), where the integration 
method used was average integration; we obtained an error of 0.0815, with 
weighted average integration we obtained an error of 0.0926, with fuzzy integra-
tion we obtained an error of 0.1286 and with  optimized fuzzy integration we 
obtained an error of 0.05337. 
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The best method of integration for this architecture was the optimized fuzzy in-
tegration with an error of 0.05337. 

Table 19. Results of the Integration Methods with 2 layers  for  Mexican Stock Exchange 

 

The best result is training 4 (as shown in Table 20), where the integration 
method used was average integration; we obtained an error of 0.0458, with 
weighted average integration we obtained an error of 0.0529, with fuzzy integra-
tion we obtained an error of 0.1023 and with  optimized fuzzy integration we 
obtained an error of 0.046131. 

The best method for this architecture was the average integration with an error 
of 0.0458. 

Table 20. Results of the Integration Methods with 1y 2  layers  for  Mexican Stock Ex-
change 

 

The best result obtained for the Mexican Stock Exchange Time Series. was  
number 4  using 1 layers  in each of the modules of the ensemble network, imple-
menting  3 delays, the training method used was Levenberg-Marquardt (LM), (as 
shown in Table 20 and in Figure16).  
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Fig. 16. Simulation results of training 4 for the Mexican Stock Exchange. 

Table 21. Genetic algoritm results for training 4 for Mexican Stock Exchange. 

 

Table 21 shows the genetic algorithm results for training 4 (as shown in Table 
20 and in Figure 16) where the prediction error is of 0.045848. 

The fuzzy integration system generated by the genetic algorithm is represented 
in Figure 17 and the fuzzy rules in Figure 18. 

Comparing Figure 2, which belongs to the base fuzzy integrator (not optimized) 
with Figure 17, which belongs to the fuzzy integrator generated by the genetic 
algorithm, it can be seen that the parameters of the membership functions  
are different , the number of rules obtained are 22 and this helps to improve the 
prediction error. 
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Fig. 17. Fuzzy system generated by genetic algorithm for Mexican Stock Exchange. 

 

Fig. 18. Rules of the Fuzzy system generated by genetic algorithm for Mexican Stock  
Exchange. 

8   Conclusions 

The best result obtained for the Mackey-Glass series training was using the 
ensemble neural network architecture with 2 layers using 3 delays. The error 
obtained by the average integration was 0.0106, the error obtained by the aver-
age weighted integration was 0.0126 and the error obtained by the fuzzy integra-
tion was 0.0708. The best result obtained for the Dow Jones series training was 
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using the ensemble neural network architecture with 1 layer using 3 delays. The 
error obtained by the average integration was 0.0053, the error obtained by the 
average weighted integration was 0.0060 and the error obtained by the fuzzy 
integration was 0.0194. The best result for the Mexican Stock Exchange series 
training was obtained using an ensemble neural network architecture with 1 
layer using 3 delays. The error obtained by the average integration was 0.0479, 
by the average weighted integration was 0.0519 and by the fuzzy integration 
was 0.1094, respectively.  

Since the results were not satisfactory with the fuzzy integration system, it was 
decided to implement an evolutionary approach to optimize the membership func-
tions and rules of this system. The method chosen to optimize this integration 
system was a genetic algorithm. After applying the genetic algorithm we were 
able to obtain an error of 0.023317 for the Mackey-Glass Series, an error of 
0.006863 for the Dow Jones time series and an error of 0.045848 for the Mexican 
Stock Exchange time series, with this improving the results obtained with respect 
to the non optimized system. 
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Abstract. In this paper we describe the development of Fuzzy Response Integrators 
of Modular Neural Networks (MNN) for Face, Fingerprint and Voice Recognition, 
and their Optimization with a Hierarchical Genetic Algorithm (HGA). The optimi-
zation of the integrators consists of optimizing their membership functions, fuzzy 
rules, type of model (Mamdani or Sugeno), type of fuzzy logic (type-1 or type-2). 
The MNN architecture consists of three modules; face, fingerprint and voice. Each 
of the modules is divided again into three sub modules. The same information is 
used as input to train the sub modules. Once we have trained and tested the MNN 
modules, we proceed to integrate these modules with an optimized fuzzy integrator. 
In this paper we show that using a HGA as an optimization technique for the fuzzy 
integrators is a good option to solve MNN integration problems.  

1   Introduction 

Person identification  has become a very important activity in different areas of 
application and with different purposes; in business applications based on punctu-
ality and attendance biometric systems are implemented using the fingerprint or 
the full hand of the employees; in judicial systems biometric pattern recognition 
has become a routine tool in the police force during the criminal investigation, 
allowing the arrest of criminals worldwide, but also other specific applications are 
known, such as controlling access to any type of transaction or access to data [1]. 

Neural networks provide a methodology to work in the field of pattern recogni-
tion. Modular neural networks are often used to simplify the problem and obtain 
good results. Because of this, there arises the need to develop methods to integrate 
the responses provided by the modules of a modular neural network and thus pro-
vide a good result. This paper develops a fuzzy integrator to combine the re-
sponses provided by the modular neural network and achieve a good recognition 
of persons. 

The work described in this paper is divided into two main areas, the first one is 
about the Modular Neural Network (MNN) and the second one is about the Fuzzy 
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Integrators. The main goal of the first part is to create and test different MNNs 
architectures for face, fingerprint and voice recognition. The main goal of the 
second part is to develop fuzzy integrators to integrate the outputs given by the 
modules of the modular neural network. 

This paper is organized as follows: in sections 2, 3 and 4 we present the basic 
concepts of neural networks, fuzzy logic theory and genetic algorithms respec-
tively; in sections 5, 6 and 7 we describe the problem and mention how to solve it 
making use of a MNN with fuzzy integration and the results obtained. In section 8 
we describe the HGA to optimize the fuzzy integrator structure and the optimiza-
tion results; in section 9 we make a comparison with other work. Finally, section 
10 presents the conclusions. 

2   Neural Networks 

Artificial neural networks (NN) are an abstract simulation of a real nervous system 
that consists of a set of neural units connected to each other via axon connections. 
These connections are very similar to the dendrites and axons in biological nerv-
ous systems. Figure 1 shows the abstract simulation of a real nervous system [2]. 

Models of artificial neural networks can be classified as: 

• Biological models: Networks that try to simulate the biological neural systems, 
as well as the functions of hearing or some basic functions of vision. 

• Models for applications: Those models are less dependent on models of bio-
logical systems. These are models in which their architectures are strongly 
linked to the application requirements. 

 
Fig. 1. Simulation of an abstract real nervous system. 

One of the missions of a neural network is to simulate the properties observed 
in biological neural systems through mathematical models recreated through arti-
ficial mechanisms (such as an integrated circuit, a computer or a set of valves). 
The aim is that the machines give similar responses to those the brain is able to 
give, which are characterized by their robustness and generalization [3]. 



Optimization of Fuzzy Response Integrators in Modular Neural Networks  113
 

Artificial neural networks are models that attempt to reproduce the behavior of 
the brain. As such model, a simplification is made, identifying the relevant  
elements of the system, either because the amount of information available is 
excessive or because it is redundant. An appropriate choice of features and an 
appropriate structure is the conventional procedure used to construct networks 
capable of performing certain tasks [1]. 

Modularity is defined as the ability of a system being studied, seen or under-
stood as the union of several parts interacting with each other and working  
towards a common goal, each one performing a task necessary to achieve that 
objective. Each of these parts in which the system is divided is called a module. 
Ideally, a module must be able to work as a black box, i.e. be independent of other 
modules and communicate with them (all or only a part) through well-defined 
inputs and outputs [4]. 

It is said that a neural network is modular if the computations performed by the 
network can be decomposed into two or more modules (subsystems) that operate 
on different inputs with no communication between them. The outputs of the 
modules are measured by an integration unit, which is not allowed to feed infor-
mation to the modules. In particular, the unit decides: (1) how the modules are 
combined to form the final output of the system, and (2) modules that must learn 
that patterns of training [5]. 

As mentioned previously, modular neural networks require an integration unit, 
which allows some form of joining or combining the responses provided by each 
module. Listed below are some methods that can be used to perform this task: 

 
• Average operators 
• Gating Network 
• Fuzzy Integrators 
• Voting mechanism using the Softmax function 
• Etc.  

3   Fuzzy Logic 

Fuzzy logic has gained a great reputation as a good methodology for a variety of 
applications, ranging from control of complex industrial processes to the design of 
artificial devices for automatic deduction through the construction of electronic 
devices for home use and entertainment, as well as diagnostic systems. It has been 
considered generally that the concept of fuzzy logic appeared in 1965 at the Uni-
versity of California at Berkeley, introduced by Lotfi A. Zadeh. 

The basic structure of a fuzzy inference system consists of three conceptual 
components: a rule base, which contains a selection of fuzzy rules, a database (or 
dictionary) which defines the membership functions used in the rules, and a rea-
soning mechanism that performs the inference procedure [6]. 

The basic fuzzy inference system can take either fuzzy or traditional inputs, but 
the outputs it produces are always fuzzy sets. Sometimes you need a traditional 
output, especially when a fuzzy inference system is used as a controller. So we  
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Fig. 2. Structure of a Fuzzy Inference System. 

need a method of “Defuzzification” to extract the numerical value of the output 
(as shown in Figure 2). 

4   Genetic Algorithms 

Genetic algorithms or evolutionary algorithms are stochastic search techniques 
guided or inspired by the mechanisms of natural selection, genetics and evolution. 
Early research on the subject was developed by John Holland at the University of 
Michigan in the 70's with two objectives: to abstract and rigorously explain the 
adaptive processes of natural systems and the design of software systems that 
determine the retention of these important mechanisms. [7] 

This technique is based on the selection mechanisms used by nature [8], ac-
cording to which the fittest individuals of a population are those who survive, 
which are those who adapt more easily to changes in their environment. We now 
know that these changes are made in the genes (the basic encoding unit of each of 
the attributes of a living being) of an individual, and that the most desirable attrib-
utes (for example, that allow an individual to better adapt to its environment) of 
the individuals are transmitted to their descendants, if reproduced sexually. 

Imitating the mechanics of biological evolution in nature, genetic algorithms 
operate on a population of possible solutions to the problem. Each element of the 
population is called "chromosome".  A chromosome is the representative within 
the genetic algorithm, of a possible solution to the problem. The process begins by 
selecting a number of chromosomes to form the initial population. Then we evalu-
ate the role of adaptation for these individuals. The fitness function measures the 
chromosome's fitness to survive in its environment. This function must be defined 
so that the chromosomes that represent better solutions have higher values of 
fitness. The fittest individuals are selected in pairs to breed. Reproduction gener-
ates new chromosomes that combine characteristics of both parents. These new 
chromosomes replace individuals with lower values of adaptation. After this, some 
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chromosomes are randomly selected to be mutated. The mutation consists of ap-
plying a random change in its structure. Then, the new chromosomes must be 
inserted into the population; these chromosomes should replace existing chromo-
somes. There are different criteria that can be used to select chromosomes to be 
replaced. The cycle of selection, reproduction and mutation is repeated until it 
meets the criterion of termination of the algorithm, at which the chromosome that 
is better suited as a solution is returned. 

5   Modular Neural Network with Fuzzy Integration for Face, 
Fingerprint and Voice Recognition  

The proposed MNN architecture defined in this paper consists of three modules: 
face, fingerprint and voice. Each of the mentioned modules will be divided into 
three sub modules. The same information is used as input to train the sub modules. 
After the MNN trainings are done, we proceed to integrate the three modules 
(face, fingerprint ad voice) with a fuzzy integrator. 

 
Fig. 3. Fingerprint and face samples. 
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The data used for training the MNN correspond to 30 persons taken from the 
ORL database and from students of a master degree in computer science from 
Tijuana Institute of Technology, Mexico. The details are as follows: 

• Face: 90 images taken from [9]. The size of these images is of 268x338 pixels 
with bmp extension and were preprocessed with the Wavelet transform. Two 
images are used for training (with different gestures) and one with Gaussian 
noise to test the recognition. 

• Fingerprints taken from [9]: 60 fingerprint images. The size of these images is 
of 268x338 pixels with bmp extension and were preprocessed with the Wavelet 
function. One fingerprint per person for training and one with Gaussian noise to 
test the recognition.  

• Voices taken from [10]: There are 3 word files per person; the words are “hola”, 
“accesar” and “presentacion” in Spanish. The network was trained with the 90 
words preprocessed with Mel-cepstral Coefficients and the network is tested 
with any of them but with noise.  

Examples of face and fingerprint are shown in Figure 3 and a general Scheme 
of the architecture is shown in Figure 4. 

 
Fig. 4. Architecture of the MNN. 

6   Modular Neural Network Results 

Several trainings were made separately to each of the modules until we accom-
plish good results. Tables 1, 2, 3 and 4 show the results of the MNN trainings for 
face, fingerprint and voice, respectively. Figure 5 shows the results from table 4. 
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Table 1. Face training results. 

Training Method  Mod  Architecture Error Duration Rec.  %  
1 350,300 
2 350,300 

 
ER1 

 
trainscg 

3 350,300 

 
0.01 

 
16:10 

 
19/30 

 
63.33 

1 300,300 
2 300,300 

 
ER2 

 
trainscg 

3 300,300 

 
0.01 

 
20:34 

 
21/30 

 
70 

1 300,240 
2 300,250 

 
ER3 

 
trainscg 

3 300,260 

 
0.001 

 
49:39 

 
28/30 

 
93.33 

1 350,300 
2 350,300 

 
ER4 

 
trainscg 

3 350,300 

 
0.001 

 
40:58 

 
28/30 

 
93.33 

1 300,150 
2 300,150 

 
ER5 

 
trainscg 

3 350,150 

 
0.001 

 
01:12:30 

 
28/30 

 
93.33 

1 290,250 
2 305,210 

 
ER6 

 
trainscg 

3 320,200 

 
0.001 

 
50:50 

 
29/30 

 
96.66 

1 300,300 
2 300,300 

 
ER7 

 
trainscg 

3 300,300 

 
0.001 

 
46:07 

 
30/30 

 
100 

Table 2. Fingerprint training results. 

Training Method  Mod  Architecture Error Duration Rec.  %  
1 340,175 
2 280,105 

 
EH1 

 
trainscg 

3 295,138 

 
0.01 

 
12:51 

 
30/30 

 
100 

1 200,100 
2 200,100 

 
EH2 

 
trainscg 

3 200,100 

 
0.01 

 
15:56 

 
30/30 

 
100 

1 150,80 
2 150,80 

 
EH3 

 
trainscg 

3 150,80 

 
0.01 

 
59:34 

 
30/30 

 

 
100 

1 150,100 
2 150,90 

 
EH4 

 
trainscg 

3 150,110 

 
0.01 

 
18:09 

 
30/30 

 
100 

1 100,50 
2 100,60 

 
EH5 

 
trainscg 

3 100,55 

 
0.01 

 
01:39:13 

 
30/30 

 
100 

1 100,50 
2 100,60 

 
EH6 

 
trainscg 

3 100,55 

 
0.02 

 
16:37 

 
26/30 

 
86.66 

1 150,70 
2 117,90 

 
EH7 

 
trainscg 

3 157,87 

 
0.02 

 
08:07 

 
26/30 

 

 
86.66 
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Table 3. Voice training configuration. 

Training Method Architecture Error Duration 

 
EV1 

 
trainscg 

450,240 
420,190 
410,225 

 
0.001 

 
01:44 

 
EV2 

 
trainscg 

150,80 
170,90 
170,75 

 
0.001 

 
12:27 

 
EV3 

 
trainscg 

150,100 
150,100 
150,100 

 
0.001 

 
02:03 

 
EV4 

 
trainscg 

350,140 
320,90 

310,125 

 
0.001 

 
02:17 

 
EV5 

 
trainscg 

180,80 
180,80 
180,80 

 
0.001 

 
29:01 

 
EV6 

 
trainscg 

180,120 
180,120 
180,120 

 
0.001 

 
01:41 

 
 
EV7 

 
trainscg 

300,100 
300,100 
300,100 

 
0.001 

 
02:24 

 

Table 4. Voice training results. 

Recognized persons with noise 
Training 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
 
EV1 

 
90 

 
90 

 
90 

 
90 

 
90 

 
90 

 
90 

 
86 

 
81 

 
74 

 
EV2 

 
90 

 
90 

 
90 

 
90 

 
89 

 
86 

 
85 

 
74 

 
62 

 
62 

 
EV3 

 
90 

 
90 

 
90 

 
90 

 
90 

 
88 

 
88 

 
75 

 
50 

 
49 

 
EV4 

 
90 

 
90 

 
90 

 
90 

 
90 

 
90 

 
90 

 
83 

 
78 

 
68 

 
EV5 

 
90 

 
90 

 
90 

 
90 

 
90 

 
89 

 
89 

 
79 

 
64 

 
65 

 
EV6 

 
90 

 
90 

 
90 

 
90 

 
90 

 
89 

 
89 

 
72 

 
64 

 
56 

 
EV7 

 
90 

 
90 

 
90 

 
90 

 
90 

 
89 

 
89 

 
88 

 
81 

 
68 
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We can observe in table 1 that the best result obtained for face module recogni-
tion is for training ER7 with 100 percent of recognition. 

We can observe in  table 2 that in several trainings (EH1, EH2, EH3, EH4 and 
EH5) we obtained good results, having 100 percent of recognition for the finger-
print module. 

We can observe in tables 3 and 4 that the best result obtained for  the voice 
module recognition is for training EV1, because it has better performance when 
different noise levels are applied to the input when testing the module. It is impor-
tant to know that the noise level consists of adding to each voice signal, a data 
array of  normally distributed random numbers with a standard deviation of 0.1 to 
1 (where noise level 0.1 represents a standard deviation of 0.1, 0.2 a standard 
deviation of 0.2…1.0 a standard deviation of 1). When the recognized persons 
equals 90 we have a 100 percent of recognition. 

 

Fig. 5. Results of voice trainings with different noise level. 

7   Fuzzy Integration Results 

A fuzzy integrator was created using the MATLAB fuzzy logic toolbox, so that 
we can use it to integrate the outputs of the MNN modules and to generate a final 
result. This fuzzy integrator consists of 27 rules; three inputs that are provided by 
the MNN: face activation, fingerprint activation and voice activation; one output: 
winner activation that will indicate which person is recognized. It is important to 
notice that each input and output has three Gaussian membership functions. Figure 
6 shows the architecture of the fuzzy integrator. 
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Fig. 6. Architecture of the fuzzy integrator. 

Table 5 shows the results from the fuzzy integration of the MNN. These results 
were obtained by making some combinations of the MNN modules. We can observe 
that when all three modules have 100% of recognition, fuzzy integration is perfect 
(i.e. No. 8). Even in some cases where one or two of the modules do not give good 
recognition, fuzzy integration is perfect too (i.e. no.4, 6 and 7). But, when all three 
modules have poor recognition, the fuzzy integration is not good (i.e. no. 1). 

Table 5. Fuzzy integration results. 

No. Face Rec. Fingerprint Rec. Voice-noise Rec. Integration 
1 ER1 63.33% EH6 86.66% EV3 1.0 49% 71/90(78.89%) 
2 ER1 63.33% EH1 100% EV3 1.0 49% 90/90 (100%) 
3 ER7 100% EH6 86.66% EV3 1.0 49% 80/90(88.89%) 
4 ER7 100% EH1 100% EV3 1.0 49% 90/90 (100%) 
5 ER1 63.33% EH6 86.66% EV1 0.5 100% 73/90(81.10%) 
6 ER1 63.33% EH1 100% EV1 0.5 100% 90/90(100%) 
7 ER7 100% EH6 86.66% EV1 0.5 100% 81/90(90%) 
8 ER7 100% EH1 100% EV1 0.5 100% 90/90(100%) 

8   Hierarchical Genetic Algorithm 

Analyzing the results shown in Table 5. We can observe that the integration re-
sults for the cases 1, 3, 5 and 7 are not the most desirable, so we decided to de-
velop a genetic algorithm to optimize the structure of the fuzzy integrator and thus 
increase the percentage of recognition. Figure 7 shows the chromosome structure 
we designed to optimize the fuzzy integrator. 
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Fig. 7. HGA Chromosome structure. 

The chromosome shown in figure 7 consists of 325 gens that will help us opti-
mize the fuzzy integrator structure. Gens 1-4 (Binary) are activation gens that 
define the structure of the fuzzy integrator such as the logic type (FL type-1 or 
type-2), the system’s type (Mamdani or Sugeno) and membership function type 
(Gaussian, Gbell, Triangular or Trapezoidal). Gens 5-298 (Real Numbers) allow 
us to manage the MFs parameters for the input and output (depending of FL type, 
system type and MFs type we use part of the gens); gens 299-325 (Binary) allows 
us to reduce the set of possible fuzzy rules activating or deactivating them.  

The optimization of the fuzzy integrator is proposed to be made based directly 
on the performance of the neural network, because we want to: (1) reduce the 
number of recognition errors and (2) reduce the number of fuzzy rules. The objec-
tive Function (equation 1) is the one we want to minimize, so that we can achieve 
our two objectives. 

                                            (1) 

Where:    

er is the error of recognition given when simulating the MNN. 
nr is the number of fuzzy rules of the current individual. 
mr is the maximum number of fuzzy rules. 

( / )Obj e n m
r r r

= +
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We executed the HGA 20 times with different parameters (generation, cross-
over, mutation) for each of the cases we wanted to optimize (in table 5: cases 1, 3, 
5 and 7). We show the results in table 6. 

Table 6. Fuzzy integration results comparisson. 

No. Face Rec. Fingerprint Rec. Voice-noise Rec. Non Optimized 
Integration 

Optimized  
Integration 

1 ER1 63.33% EH6 86.66% EV3 1.0 49% 71/90(78.89%) 87/90 (96.67%)  
2 ER1 63.33% EH1 100% EV3 1.0 49% 90/90 (100%) NO NEED 
3 ER7 100% EH6 86.66% EV3 1.0 49% 80/90(88.89%) 90/90 (100%)  
4 ER7 100% EH1 100% EV3 1.0 49% 90/90 (100%) NO NEED 
5 ER1 63.33% EH6 86.66% EV1 0.5 100% 73/90(81.10%) 85/90 (94.44%)  
6 ER1 63.33% EH1 100% EV1 0.5 100% 90/90(100%) NO NEED 
7 ER7 100% EH6 86.66% EV1 0.5 100% 81/90(90%) 90/90 (100%)  
8 ER7 100% EH1 100% EV1 0.5 100% 90/90(100%) NO NEED 

 

Fig. 8. Integration Comparison. 

We can observe in figure 8 that the proposed HGA help us increase the per-
centage of recognition in all cases. Despite these good results we decided to 
manually change some rules consequent in the best fuzzy integrator obtained with 
the HGA for case 5 because we believed that we could improve that result. When 
we tested the manually changed fuzzy integrator we obtained a 100% of recogni-
tion for case 5, so we decided to make some changes to our HGA chromosome 
structure so that it would be able not only to activate or deactivate fuzzy rules but 
also to change the rules’ consequents. Figure 9 shows the new HGA chromosome  
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Fig. 9. New HGA Chromosome structure. 

structure; the change we made to it, in comparison with the previous is that we 
added 27 gens more that will allow the HGA to manage the consequents of each 
of the 27 rules. 

We also decided to change the objective function for this new HGA as we can 
appreciate in equation 2. 

         (2) 
 

Where: 

er is the error of recognition given when simulating the MNN. 
nr is the number of fuzzy rules of the current individual. 
α is the weight assigned to the error recognition objective. 
β is the weight assigned to the fuzzy rules objective. 

We executed the HGA 20 times with different parameters (generation, cross-
over, mutation) and for each case we needed to optimize. We show the results in 
table 8. 

Table 8 shows a comparison of all the fuzzy integrations that were made. We 
can observe in the last column that we achieve the best fuzzy integration result for 
No. 1 with α=0.9 β=0.1. 
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Table 7. Trainings information for fuzy integration. 

No. Face Rec. Fingerprint Rec. Voice-noise Rec. 
1 ER1 63.33% EH6 86.66% EV3 1.0 49% 
2 ER1 63.33% EH1 100% EV3 1.0 49% 
3 ER7 100% EH6 86.66% EV3 1.0 49% 
4 ER7 100% EH1 100% EV3 1.0 49% 
5 ER1 63.33% EH6 86.66% EV1 0.5 100% 
6 ER1 63.33% EH1 100% EV1 0.5 100% 
7 ER7 100% EH6 86.66% EV1 0.5 100% 
8 ER7 100% EH1 100% EV1 0.5 100% 

Table 8. Fuzzy integration results comparison. 

No. Non-Optimized Fuzzy 
Integration 

Optimized 
Integration 

HGA 1 

Optimized 
Integration HGA 

2 
 (α=0.5 β=0.5) 

Optimized 
Integration HGA 

2 
 (α=0.7 β=0.3) 

Optimized 
Integration HGA 

2 
 (α=0.9 β=0.1) 

1 71/90 (78.89%) 87/90 (96.67%)  84/90 (93.33%) 86/90 (95.56%) 88/90 (97.78%) 
2 90/90 (100%) NO NEED NO NEED NO NEED NO NEED 
3 80/90 (88.89%) 90/90 (100%)  NO NEED  NO NEED  NO NEED  
4 90/90 (100%) NO NEED NO NEED NO NEED NO NEED 
5 73/90(81.10%) 85/90 (94.44%)  90/90 (100%)  NO NEED  NO NEED  
6 90/90(100%) NO NEED NO NEED NO NEED NO NEED 
7 81/90(90%) 90/90 (100%)  NO NEED  NO NEED  NO NEED  
8 90/90(100%) NO NEED NO NEED NO NEED NO NEED 

Because the fuzzy integration of case 1 was the most difficult to optimize, figure 
10 shows the behavior of the HGA evolutions with different weights (for case 1). 

 

Fig. 10. HGA evolutions for case 1. 

We can observe in figure 11 that the best weights configuration of the HGA for 
case 1 are α=0.9 and β=0.1, this means that assigning a very high weight to the 
error recognition objective and a smaller weight to the fuzzy rules objective al-
lowed us to increase the recognition percentage in case 1. 
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Figure 10 shows the final comparison of non-optimized integration vs. optimized 
integration. 

 

Fig. 11. New Fuzzy integration comparison. 

9   Comparison with Other Works 

Many research works have been made in this area. This paper is based directly on 
the work by Hidalgo et al. [11]. In this work a comparison of type-1 and type-2 
fuzzy integration method was made for a MNN for face, fingerprint and voice 
recognition and optimized these systems with a GA (only MFs parameters). The 
work described in this paper is different from Hidalgo’s work in the following 
form: the way of training the MNN (we trained each module separately), Optimi-
zation (we used a HGA to optimize the structure of a FLS not only MFs parame-
ters). We used t-student statistic to make the comparison of results. Figures 12, 13, 
14 and 15 show the results of the hypothesis testing (mean of two independent 
samples) using the Statdisct 9.5.2 software. 

We can observe from figure 14 and 15 that there is statistical evidence to say 
that there is significant difference from the results of our paper with respect to the 
ones in Hidalgo’s work (with almost 90% of confidence). In other words, the 
HGA provided significant improvement in the recognition rate by improving the 
responses of the MNN. 
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Fig. 12. Descriptive statistics for the method proposed in this paper. 

 

Fig. 13. Descriptive statistics for Hidalgo’s work. 
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Fig. 14. Hypothesis testing. 

 
 

Fig. 15. Hipothesis testing plot. 
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10   Conclusions 

The analysis of the results presented in this paper shows that Modular Neural 
Networks are reliable models for pattern recognition. In this case we considered 
face, fingerprint and voice as biometric measures. We also demonstrated that a 
fuzzy integrator is a good choice when we need to integrate the outputs of the 
modules of a MNN. 

It is important to note that the results with a non optimized fuzzy integrator 
were improved using a HGA (Hierarchical Genetic Algorithm). 

The hierarchical genetic algorithm presented in this paper was designed to 
cover a considerable number of features attributable to the structure of the fuzzy 
integrator  (type of system, type of logic, type of membership functions, MFs 
parameters and fuzzy rules), allowing the HGA to explore a very large space of 
solutions and thus obtain the most optimal possible fuzzy integrator. 

Based on the results obtained we can say that Hierarchical Genetic Algorithms 
used to optimize the structure of a fuzzy integrator for MNN responses in face, 
fingerprint and voice recognition are an efficient optimization technique, through 
which we can achieve a higher recognition rate compared with non-optimized 
fuzzy integrators as shown in this paper. 
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Responses for Face Recognition  
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Abstract. This paper presents a modular neural network with fuzzy integration of 
responses for face recognition. We describe its architecture and simulation results 
using the ORL database. We show results from different integrators, such as the 
Gating Network, fuzzy Sugeno integrals and  type-1 fuzzy systems. We also show 
that the results with type-1 fuzzy systems are good, but we decided to optimize 
this fuzzy system with genetic algorithms (MFs parameters and fuzzy rules) to 
improve the results. 

1   Introduction 

Pattern recognition is not only a field of science but also a fundamental process 
that is found in almost all human actions. Over time we have developed systems 
capable of imitating the behavior of the human brain, many of these applied to the 
recognition of the individual according to their biometric measures, such  systems 
are used for security or verification of identity for various purposes. 

Face recognition is a problem that has been considered since the early stages of 
computer vision. This problem has been studied more thoroughly in recent years 
thanks to advances in computational power that have allowed to implement more 
complex algorithms using different techniques. 

There are different techniques and methods that can be used for feature extrac-
tion, and it is now easier to recognize a person through biometric methods that ex-
ist, for example recognition by their irises, fingerprints, face, recognized by the 
voice, signature, hand geometry, ears, vein structure, retina, facial thermography, 
and others that exist. 

This paper describes a modular neural network architecture with fuzzy response 
integration applied to face recognition. The proposed modular architecture was 
tested with the benchmark ORL database with good results. 

Until now biometric methods have been implemented using different devices 
for the creation of patterns and generating the code that identifies the individual 
biometric. This is why, in this work we consider one of the most used biometric 
methods throughout history, which is the face recognition. 
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2   Neural Networks  

Neural networks are just another way to emulate certain characteristics of humans, 
such as the ability to associate and memorize facts. If you look carefully at the 
problems that cannot be expressed through an algorithm, it appears that they all 
have one thing in common: experience. Man is able to solve these situations by re-
sorting to experience. Thus, it seems clear that one way to approach the problem is 
to build systems that are able to reproduce this human characteristic [1].  

In short, neural networks are nothing more than an artificial and simplified 
model of the human brain, which is the most perfect example we have of a system 
that is capable of acquiring knowledge through experience. A neural network is "a 
new system for processing information, whose basic unit of processing is based on 
the fundamental cell of the human nervous system: the neuron." 

Therefore, Neural Networks:  

• consist of processing units that exchange data or information. 
• They are used to recognize patterns, including images, manuscripts and se-

quences of time, financial trends. 
• They have the ability to learn and improve their functionality. 

Artificial neural networks are made up of interconnecting artificial neurons 
(programming constructs that mimic the properties of biological neurons). Artifi-
cial neural networks may either be used to gain an understanding of biological 
neural networks, or for solving artificial intelligence problems without necessarily 
creating a model of a real biological system. 

To summarize these ideas we have the following similarities: 

Biological Neurons - Artificial -Neurons  
synaptic connections- Weighted Connections  
Effectiveness synapse - connections of Weight 
Combined effect of the synapse-spread function or network  
Activation -> firing rate function activation -> Output [2]. 

2.1   Structure of an Artificial Neural System 

The artificial neural system is composed of several components that are necessary 
to structure the system. In Figure 1 we show the structure of an artificial neuron, 
which is a very simplified representation of a real neuron. 

2.2   Modular Neural Networks 

A neural network can be considered modular if it can be decomposed into two or 
more subsystems in which each individual subsystem evaluates various entries with-
out having communication with other subsystems. The output of the system depends 
on a modular unit, which receives the outputs of individual subsystems and com-
bines them into a predefined fashion to produce the output of the system [3]. 
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Fig. 1. Artificial Neuron 

Based on biological evidence, the first modular complex systems were de-
scribed by Jacobs and Jordan [4], which involved two distinct types of learning:  

• Supervised learning, during which a teacher provides for each external 
stimulus input the correct output. However, this teacher does not specify  
that the module is to teach the corresponding pair (stimulus input, desired 
output). 

• Unsupervised learning, which basically consists of a competitive learning, in 
which the various modules compete to learn the example presented. 

The advantage is that if the model supports naturally a breakdown into  
more simple functions, the application of a modular network translates into faster 
learning. Each module can be built differently, in a way that meets the require-
ments of each subtask. In Figure 2 there are n modules, each one is an expert on a 
specific task. 

 
Fig. 2. Schematic of a modular neural network 
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The basic architecture consists of two main components: local experts and an 
integration unit* [5]. The outputs of a number of local experts (Oi) are measured 
by an integration unit. The unit outputs the board using estimated combination 
weights (gi). And together the outputs of the modular network are given by: 

                                                 k 

                                          Yi=∑giOi                                                                (1)                                                
                                                i=1 

2.3   Reason for Using Modular Neural Networks 

The following points highlight some of the important reasons that make the design 
of a modular neural network more attractive than the design of a conventional 
monolithic neural network. 

• Model complexity reduced 
• Robustness 

• Scalability 

• Learning 

• Computational efficiency 

• Learning ability 

• Learning economy 

• Integration of knowledge 

• Insight into the neural network model 

• Biological analogy 

3   Fuzzy Logic 

Fuzzy logic was investigated for the first time in the mid-sixties at the University of 
California Berkeley by the brilliant Iranian engineer Lotfi A. Zadeh, when he real-
ized what it is called the principle of incompatibility: "As the complexity of a system 
increases, our ability to build precise and instructions on their behavior decreases to 
the threshold beyond which the accuracy and meaning are mutually exclusive char-
acteristics." This principle is the basic to the fuzzy systems used today. 

3.1   The Structure of a Fuzzy System Consists of the Following Elements 

1. The rule base that contains linguistic rules provided by the expert, or can be 
extracted from numerical data. 

2. The fuzzifier, which assigns to the numerical entries in their corresponding 
membership functions. This is needed to activate rules, which are specified 
in terms of linguistic variables; fuzzifier takes the input values and deter-
mines the degree to which they belong to each of the fuzzy sets via member-
ship functions. 
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3. The fuzzy inference engine defines the allocation of input fuzzy sets to the 
corresponding values of the output fuzzy sets. This determines the degree to 
which each part of the antecedent is satisfied for each rule. 

4. The defuzzifier in the case of Mamdani-assigned sets of outputs in a number 
that is a fact not fuzzy. Given a fuzzy set which manages a range of output 
values, the defuzzifier returns a number within a set of fuzzy numbers. 

Many methods are used for defuzzification, including the centroid, the maxi-
mum, among others. The most popular is the centroid, which calculates and pro-
duces the center of gravity of an aggregate fuzzy set [7] [8]. 

4   Genetic Algorithms 

In 1975, John Holland proposed the now called “Genetic Algorithms”.  They are 
so called because they are inspired by biological evolution and its genetic and mo-
lecular basis. 

These algorithms do evolve a population of individuals subjected to random  
actions similar to those involved in biological evolution (mutation and genetic re-
combination), as well as a selection according to some criteria, according to which 
individuals are decided to survive, and which are less suitable, are discarded. 

We also have what is known as evolutionary algorithms, and includes the de-
velopment of evolutionary strategies, programming and genetic programming. 

A genetic algorithm is a programming technique that mimics biological evolu-
tion as a strategy to solve problems. Given a specific problem to resolve, the input 
AG is a set of potential solutions to that problem, encoded in some way, and a met-
ric called fitness function that allows quantitative assessment of each candidate.  

AG then evaluates each candidate according to the fitness function. In a pool of 
candidates generated randomly, of course, most will not work at all, and will be 
eliminated. However, by pure chance, a few may be able to show promising activ-
ity, albeit imperfect and weak activity towards solving the problem. [9]. 

4.1   Operation of a Basic Genetic Algorithm 

A genetic algorithm can present several variations, depending on how they apply 
genetic operators (crossing, mutation) also on how the selection is done and how it 
will determine the replacement of individuals to form the new population. In gen-
eral, the pseudo code consists of the following steps: i: initialization, f(x): evalua-
tion, completion status, Se: selection, Cr: mating, Mu: mutation, Re: substitution, 
X: better solution. See Figure 3. 

4.2   Selection Methods 

A genetic algorithm can use many different techniques to select the individuals to 
be copied to the next generation, but below are some of the most common. Some 
of these methods are mutually exclusive, but others may be used in combination, 
something that is often done. 
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Fig. 3. Basic genetic algorithm 

• Elitist selection 
• Proportional to fitness selection 
• Roulette wheel selection 
• Climbing selection 
• Tournament selection 
• Ranking selection 
• Generational selection 
• Browse by state 
• Hierarchical Selection [10]. 

4.3   Crossover Methods 

Once the selection has been chosen to fit the individual, they must be altered at 
random with the hope of improving its fitness for the next generation. There are 
two basic strategies to do this. The first and simplest is called a mutation. Like a 
mutation in the gene changes a life on the other hand, a mutation in a genetic algo-
rithm also causes small changes in specific points of the code of an individual. 

The second method is called mating, and involves selecting two individuals to 
exchange segments of their code, resulting in an `` artificial'' descendants of indi-
viduals who are combinations of their parents. 

5   ORL Data Base 

The Database of Faces, (formerly 'The ORL Database of Faces'), contains a set of 
face images taken between April 1992 and April 1994 at the lab. The database was 
used in the context of a face recognition project carried out in collaboration with 
the Speech, Vision and Robotics Group of the Cambridge University Engineering 
Department.  

There are ten different images of each of 40 distinct subjects. For some subjects, 
the images were taken at different times, varying the lighting, facial expressions 
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(open / closed eyes, smiling / not smiling) and facial details (glasses / no glasses). 
All the images were taken against a dark homogeneous background with the sub-
jects in an upright, frontal position (with tolerance for some side movement) [11]. 

The files are in BPM format (bitmap), the size of each image is 92x112 pixels, 
with 256 grey levels per pixel. The images are organized in 40 directories (one for 
each subject), which have names of the form sX, where X indicates the subject 
number (between 1 and 40). In each of these directories, there are ten different im-
ages of that subject, which have names of the form Y.bpm, where Y is the image 
number for that subject (between 1 and 10), giving a total of 400 images. The fol-
lowing is a part of the ORL database, see Figure 4. 

 

Fig. 4. ORL Database example of faces. 
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6   Characteristics of a Biometric Measure 

A biometric measure is a feature that can be used to make an identification. What-
ever the measure, it must meet the following requirements: 

1. Universality: means that anyone should have that characteristic. 
2. Uniqueness: the existence of two people with identical characteristics has a 

very small probability.  
3. Permanent Characteristics: the characteristic does not change over time  
4. Quantification: the characteristic can be measured in a quantitative form. 

6.1   Architecture of a Biometric System for Person Identification  

A biometric system has three basic components: The first is responsible for the 
acquisition of any analog or digital biometric feature of a person, such as the ac-
quisition of a fingerprint image using a scanner. The second handles the compres-
sion, processing, storage and comparison of acquired data with the stored data. 
The third component provides an interface to applications on the same or another 
system. In figure 5 we show the phases of a biometrical identification system. 

 

Fig. 5. Architecture of the modular neural network 

6.2   Design of the Neural Network Structure for Face Recognition 

The number of neurons is allocated using an empirical expression created by Re-
nato Salinas [17] and can be explained as follows: 

• Input neurons: 2 * (k+m), the activation function is  a Tangent sigmoid. 
• Hidden neurons: (k+m), the activation function is a Tangent sigmoid. 
• Output neurons:  the activation function is a Tangent logarithm sigmoid. 

Where k is the number of individuals to train and m is the number of samples to 
train for each individual. In this case, these were 40 individuals  for  the database  
of  ORL, and 30  for the database  of the institute and 7 samples therefore,  k = 40, 
m = 7  and k = 30, m = 7. 

Taking  into account the previous data to train the modules. The architecture is 
shown in Figure 6. 



Modular Neural Network with Fuzzy Integration of Responses 139
 

 
Fig. 6. Architecture of the neural network for face recognition. 

7   Simulation Results 

In this section, we only show the results for the biometric measures, testing with 3 
methods of training and selecting the best results. Table 1 shows the different 
training methods used in the databases. 

Table 1. Training methods for the neural networks. 

Abbreviation Training method 

TRAINGDX Gradient descendent with momentum and  
adaptive learning rate backpropagation 

TRAINSCG Scaled conjugate gradient backpropagation 

TRAINCGB Conjugate gradient backpropagation with  
Powell-Beales restarts 
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We used 400 images for training without pre-processing, Figure 4 shows that 
the first 7 images of each individual were used for training the neural network and 
the last 3 are used for identification, both the training images the identification of  
images without noise are from a photo editor. The difficult part of the problem is 
to identify the last 3 images that were not trained. 

Table 2 shows the results of the trainings done with the ORL database. We 
show the results of the integration methods: Sugeno measures and Gating  
Network.  

Several training was done using different methods, changing the   learning rate. 
We can observe in table 2 that the greater identification has been found with the 
gating network integrator. 

Table 2. Results with gradient Conjugate Escalade (trainscg), Conjugate gradient with 
Powell (traincgb), taking better performance the trainscg, both in training the  neural net-
work as in the identification results. 

 
 

After having obtained the above mentioned results, three Cross-validations 
(permutations) were made to the original database, making 20 different trainings 
with each permutation. Using others methods of training, like the gradient descent 
with momentum and adaptive learning rate back propagation (TRAINGDX), and 
the above-mentioned gradient Conjugate Escalade (Trainscg), Conjugate gradient 
with Powell (Traincgb). 

We show an example of how the 3 cross validations were made. We used the 
first 7 images for training and the last 3 to identify (ORL database), for the first 
crossover validation the last 3 images (that were for identification) were moved to 
the beginning and now were used for training, and now the last 3 were used for 
identification, and same was done for the other 2 crossover validations. See the 
Figure 7. 

 



Modular Neural Network with Fuzzy Integration of Responses 141
 

 

Fig. 7. Demonstration of the Cross Validations. 

We achieved more results with integrators: Gating network, Integrals Sugeno 
and measures and with fuzzy type-1 integrator developed in this work, showing 
the best training with the different cross-validations and underscoring our best 
training, training with different characteristics.  

The following tables show the results of the first cross-validation indicating the 
best training for each integrator. 

Next we show the table containing data of the modular neural networks, with 
an overall error of 0001 Training 1-6 and 0.0001 de1 7-10, a learning rate of 
0.00001 for the first module, 0.001 for the second and 0.0001 for the third module, 
and the training method is different for each module in different trainings, ranging 
from Trainscg, Traincgb and Traingdx. To verify the data see Table 3. 

Table 3. Content of the modular neural networks 

TRAINED 

 

ERROR 
GOAL  

 

LEARNING RATE 
 

TRAINING METHOD 
 

TIME 

1 0.001 0.00001, 0.001, 0.0001 Traingdx, Traingdx, Traingdx 00:04:50,00:05:25, 00:04:33 

2 0.001 0.00001, 0.001, 0.0001 Traincgb, Traingdx, Trainscg 00:04:13, 00:05:08, 00:07:09 

3 0.001 0.00001, 0.001, 0.0001 Trainscg, Trainscg, Trainscg 00:02:25, 00:03:49, 00:02:34 

4 0.001 0.00001, 0.001, 0.0001 Trainscg, Traincgb, Trainscg 00:03:53, 00:03:29, 00:03:14 

5 0.001 0.00001, 0.001, 0.0001  Traincgb, Trainscg, Traincgb 00:03:49, 00:04:34, 00:05:53 

6 0.001 0.00001, 0.001, 0.0001 Trainscg, Traingdx, Trainscg, 00:04:27, 00:03:50, 00:02:56 

7 0.0001 0.00001, 0.001, 0.0001 Trainscg, Traincgb, Trainscg 00:04:63, 00:05:01, 00:07:54 

8 0.0001 0.00001, 0.001, 0.0001 Traincgb, Trainscg, Traincgb 00:03:19, 00:04:34, 00:04:44 

9 0.0001 0.00001, 0.001, 0.0001 Traincgb, Traincgb, Traincgb 00.04:35, 00:04:35, 00.06:30 

10 0.0001 0.00001, 0.001, 0.0001 Trainscg, Trainscg, Trainscg 00:03:27, 00:04:04, 00:07:10 
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The results of the first cross-validation are shown in Table 4, indicating out our 
best training for each integrator. The training data is shown in Table 3. 

Table 4. Results of the first cross-validation with three different integrators 

 

TRAINING 

 

IDENTIFICATIÓN 

GATING NETWORK % 

 

IDENTIFICATIÓN  

MEASURES AND 

SUGENO INTEGRAL % 

 

IDENTIFICATIÓN 

FUZZY LOGIC 

SYSTEM % 

1 95 95 93.3 
2 92.5 94 89 
3 95 93 90.8 
4 92.5 89 87.5 
5 88 87.5 91.6 
6 94 85 89 
7 90 85 84 
8 95 92.5 83 
9 92.5 88 86.6 
10 88 89 86.6 

Continuing with our results we now show the second cross-validation in  
table 5, underlining our best training for each integrator. The training data is 
shown in Table 3. 

Table 5. Results of the second cross-validation with three different integrators 

 

TRAINING 

 

IDENTIFICATIÓN 

GATING NETWORK % 

 

IDENTIFICATIÓN  

MEASURES AND 

SUGENO INTEGRAL % 

 

IDENTIFICATIÓN 

FUZZY LOGIC 

SYSTEM % 

1 88 86 81 
2 87.5 88 84 
3 90 90 83 
4 89 88 88 
5 92 91 83 
6 92 90 82.5 
7 91 92 84 
8 92 89 89 
9 88 90 88 
10 92 91 89 
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And finally our results for the third cross-validation are shown in Table 6. 

Table 6. Results of the third cross-validation with three different integrators 

 

TRAINING 

 

IDENTIFICATIÓN 

GATING NETWORK % 

 

IDENTIFICATIÓN  

MEASURES AND 

SUGENO INTEGRAL % 

 

IDENTIFICATIÓN 

FUZZY LOGIC 

SYSTEM % 

1 94 91 81 
2 94 93 85.8 
3 94 93 86.6 
4 92.5 91 87.5 
5 91 90 85.8 
6 96 94 93.3 
7 91 87.5 87.5 
8 96 92.5 93.3 
9 89 87.5 89 
10 94 86 87.5 

8   Fuzzy Logic System 

The fuzzy system consists of three input modules and one output, each module has 
three Gaussian functions, with a range of 0 to 1 for both entries of the output. See 
Figure 8. 

 

Fig. 8.  Fuzzy Logic Design 

Each input variable represents 3 modules, which are module1, module2,  
module3 and output variable, and each module consists of three membership func-
tions activatiónmodule1baja, activationmodule2media, activatiónmodule3alta. See 
Figure 9. 
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Fig. 9. Membership Functions. 

9   Genetic Algorithm 

Our genetic algorithm consists of 51 gens, 24 gens for the input and output mem-
bership functions parameters (Gaussians), these gens are moved between 0 and 1 
and are real numbers. The remaining 27 gens are to reduce the rules of the fuzzy 
system, these are binary type. See Figure 10. 

 

Fig. 10. Chromosome of the Genetic Algorithm for optimization of membership functions 
of Gaussian. 

9.1   Objective Function 

Our objective function is defined to minimize the error of recognition and the 
rules, where the most important objective is to minimize the recognition error and  
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the second level of importance objective is to reduce the rules. This can be ex-
pressed as follows: 

Objective function = error recognition + (number rules/27)              (2) 

9.2   Results  

We show the information of the 10 evolutions we performed for the best network 
with the ORL Database and the best network of the three cross-validations. See 
table 7. 

Table 7. Content of evolutions of the Genetic Algorithm 

Evolution Crossing Mutation Generation Individuals 
1 0.7 0.06 100 100 
2 0.6 0.05 60 70 
3 0.8 0.05 60 70 
4 0.5 0.07 60 70 
5 0.9 0.04 60 70 
6 0.4 0.08 60 70 
7 0.6 0.04 60 70 
8 0.6 0.55 60 70 
9 0.6 0.45 60 70 

10 0.6 0.40 60 70 

There were 10 evolutions for the best network of the original Database, identi-
fying the best development for that network. See Table 8. 

Table 8. Results of the 10 evolutions in the genetic algorithm for the best network in the 
ORL Database. 

 
Evolution 

 
Number of 

Rules 

 
Genetic Algorithm 

Error 

 
Time 

Genetic Algorithm  
D.B 

% Identification 
1 22 15.8148 00:23:43 89 
2 21 14.7778 00:22:18 88 
3 23 11.8519 00:24:18 91 
4 21 14.7778 00:18:49 88 
5 23 13.8519 00:19:20 89 
6 21 17.7778 00:18:19 86 
7 24 21.8889 00:18:26 82.5 
8 22 11.8148 00:18:33 91 
9 23 12.8519 00:19:09 90 

10 24 15.8889 00:18:03 87.5 
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Continuing with our results now we show the First cross-validation shown in 
Table 9, underlining our best evolution for that network. The evolutions informa-
tion is shown in Table 7. 

Table 9. Results of  the 10 evolutions in the genetic algorithm for the best network in the 
first cross-validation. 

 
Evolution 

 
Number of 

Rules 

 
Genetic Algorithm 

Error 

 
Time 

Genetic Algorithm  
D.B 

% Identification 
1 20 13.7407 00:53:14 92.5 
2 24 3.8889 00:22:25 97.5 
3 27 14 00:27:49 89 
4 25 14.8148 00:27:04 89 
5 23 9.8148 00:23:29 92.5 
6 27 15 00:25:59 87.5 
7 26 15.8889 00:27.28 87.5 
8 23 10.8519 00:24:14 92 
9 25 8.8889 00:26:10 93 

10 22 9.8148 00:23:02 92.5 

Now we show in table 10 the results for the Second cross-validation, underlin-
ing our best evolution for that network. The evolution information is shown in  
Table 7. 

Table 10. Results of the 10 evolutions in the genetic algorithm for the best network in      
the second cross-validation  

 
Evolution 

 
Number of 

Rules 

 
Genetic Algorithm 

Error 

 
Time 

Genetic Algorithm  
D.B 

% Identification 
1 22 10.8148 00:26:50 92.5 
2 21 10.7778 00:28:10 92.5 
3 22 10.8148 00:25:36 92.5 
4 21 10.7778 00:26:56 92 
5 22 10.8148 00:28:01 92 
6 20 14.7407 00:27:46 88 
7 27 10 00:27:57 92 
8 23 10.8519 00:25:39 92 
9 22 10.8148 00:24:20 92 

10 22 10.8148 00:32:20 92 

And finally our results for the third cross-validation are shown in Table 11. The 
evolution information is shown in Table 7. 
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Table 11. Results of the 10 evolutions in the genetic algorithm for the best network in      
the third cross-validation  

 
Evolution 

 
Number of 

Rules 

 
Genetic Algorithm 

Error 

 
Time 

Genetic Algorithm  
D.B 

% Identification 
1 20 9.7407 00:22:45 92.5 
2 23 6.8519 00:22:25 95 
3 20 21.7407 00:27.22 94 
4 21 7.7778 00:25:01 94 
5 22 7.8148 00:31:57 94 
6 24 4.8889 00:23:22 97 
7 21 6.7778 00:24:57 95 
8 22 5.8148 00:26:39 96 
9 27 7 00:26:40 95 

10 22 5.8148 00:22:56 96 

Having tested the best network for each database, we observe that good results 
are achieved testing a single network for the 4 databases, the information of the 
evolutions are in Table 7. Underlining our best evolution. See Table 12. 

Table 12. Results for the ORL database, the 10 changes in the genetic algorithm with a sin-
gle network for the four Databases.  

 
Evolution 

 
Number of 

Rules 

 
Genetic Algorithm 

Error 

 
Time 

Genetic Algorithm  
D.B 

% Identification 
1 25 33.8667 00:22:38 84 
2 26 16 00:22:45 87.5 
3 25 21.8889 00:30:44 82.5 
4 26 21.8889 00:23:57 82.5 
5 26 15 00:24:21 88 
6 27 16 00:27:30 87.5 
7 26 15 00:27:30 88 
8 26 16 00:24:26 87.5 
9 26 15.8889 00:23:20 87.5 

10 26 11.7778 00:24:37 91 

Continuing with our results now we show the First cross-validation shown in 
Table 13, underlining our best evolution. The evolutions information is shown in 
Table 7. 
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Table 13. Results of the First cross-validation, the 10 evolutions in the genetic algorithm 
with a single network for the four Database.  

 
Evolution 

 
Number of 

Rules 

 
Genetic Algorithm 

Error 

 
Time 

Genetic Algorithm  
D.B 

% Identification 
1 25 32.0000 00:19:15 82 
2 26 20.7778 00:18:49 83 
3 25 10.7778 00:18:04 92 
4 26 11 00:18:40 92 
5 26 13.7778 00:18:38 89 
6 27 14 00:18:15 88 
7 26 8.7778 00:18.46 93 
8 26 9.8519 00:18:56 92.5 
9 26 14.8148 00:18:31 89 

10 26     9.8519 00:18:45 91 

We show the results of the Second cross-validation in Table 14, underlining our 
best evolution. The evolution information is shown in Table 7. 

Table 14. Results of the Second cross-validation, the 10 evolutions in the genetic algorithm 
with a single network for the four Database.  

 
Evolution 

 
Number of 

Rules 

 
Genetic Algorithm 

Error 

 
Time 

Genetic Algorithm  
D.B 

% Identification 
1 25 0.9259 00:00:20 100 
2 26 0.9630 00:00:17 100 
3 25 0.9259 00:00:24 100 
4 26 0.9630 00:00:20 100 
5 26 0.9630 00:00:20 100 
6 27 0.9630 00:00:17 100 
7 26 0.9630 00:00:19 100 
8 26 0.9630 00:00:17 100 
9 26 0.9630 00:00:18 100 

10 26 0.9630 00:00:17 100 

And finally our results for the third cross-validation are shown in Table 15. The 
evolution information is shown in Table 7.Underlining our best evolution. 

Analyzing the previous results, we observe that the results of the second cross-
validation are excellent and we obtained a 100% of identification, now we tested 
the best fuzzy integrator we obtained with the genetic algorithm of ORL Database. 
The results are as follows, see Table 16. 
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Table 15. Results of the Third cross-validation, the 10 evolutions in the genetic algorithm 
with a single network for the four Database.  

 
Evolution 

 
Number of 

Rules 

 
Genetic Algorithm 

Error 

 
Time 

Genetic Algorithm  
D.B 

% Identification 
1 25 25.7778 00:23:08 92 
2 26 31.3778 00:25:15 86 
3 25 29.0667 00:25:07 89 
4 26 32.3556 00:30:03 87 
5 26 31.4667 00:22:03 87 
6 27 32.3556 00:23:01 87 
7 26 29.8667 00:00:19 89 
8 26 28.4444 00:28:21 92 
9 26 32.3556 00:32:36 87 

10 26 29.3333 00:23:46 92 

Table 16. Results of the four databases with the same Fuzzy Integration Method. 

Databases Identificatión  Results 

ORL Database 90.8%  109/120 

First cross-validation 100%  120/120 

Second cross-validation 100%     120/120 

Third cross-validation 100%  120/120 

AVERAGE 97.7 %  

Below is the best Fuzzy System we got from Database ORL, showing the 
Gaussian membership functions for the 3 input to the output. See Figures 11, 12, 
13, 14 and 15.  

 

 
Fig. 11. Fuzzy System 
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Fig. 12. Membership Function for forehead 

 

Fig. 13. Membership Function for Eyes 

 

Fig. 14. Membership Function for Mouth 



Modular Neural Network with Fuzzy Integration of Responses 151
 

 

Fig. 15. Output Membership Function 

And the rules that gave us the fuzzy system were as follows: 

1. If (Forehead is low) and (eyes is low) and (mouth is medium) then (winner is 
low) (1)    
2. If (Forehead is low) and (eyes is low) and (mouth is high) then (winner is me-
dium) (1)    
3. If (Forehead is low) and (eyes is medium) and (mouth is low) then (winner is 
high) (1)    
4. If (Forehead is low) and (eyes is medium) and (mouth is medium) then (winner 
is low) (1)   
5. If (Forehead is low) and (eyes is medium) and (mouth is high) then (winner is 
medium) (1)   
6. If (Forehead is low) and (eyes is high) and (mouth is low) then (winner is high) 
(1)     
7. If (Forehead is low) and (eyes is high) and (mouth is medium) then (winner is 
low) (1)    
8. If (Forehead is low) and (eyes is high) and (mouth is high) then (winner is me-
dium) (1)    
9. If (Forehead is medium) and (eyes is low) and (mouth is low) then (winner is 
high) (1)    
10. If (Forehead is medium) and (eyes is low) and (mouth is medium) then (win-
ner is low) (1)  
11. If (Forehead is medium) and (eyes is low) and (mouth is high) then (winner is 
medium) (1)  
12. If (Forehead is medium) and (eyes is medium) and (mouth is low) then (win-
ner is high) (1)  
13. If (Forehead is medium) and (eyes is medium) and (mouth is medium) then 
(winner is low) (1) 
14. If (Forehead is high) and (eyes is low) and (mouth is medium) then (winner is 
low) (1)   
15. If (Forehead is high) and (eyes is low) and (mouth is high) then (winner is me-
dium) (1)   
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16. If (Forehead is high) and (eyes is medium) and (mouth is medium) then (win-
ner is low) (1)  
17. If (Forehead is high) and (eyes is medium) and (mouth is high) then (winner is 
medium) (1)  
18. If (Forehead is high) and (eyes is high) and (mouth is low) then (winner is 
high) (1)    
19. If (Forehead is high) and (eyes is high) and (mouth is medium) then (winner is 
low) (1)   
20. If (Forehead is high) and (eyes is high) and (mouth is high) then (winner is 
medium) (1)   
21. If (Forehead is low) and (eyes is low) and (mouth is low) then (winner is high) (1)  
 
And finally we made and test of a genetic algorithm to optimize triangular mem-
bership functions, the chromosome to achieve this optimization is with 54 gens, 
the first 27 gens are for the input and output parameters of the membership func-
tions, 27 genes because we have three inputs each with three triangular member-
ship and these have three parameters (a, b, c), these genes are moved between 0 
and 1 and are real numbers. And the remaining 27 genes are to reduce the rules of 
the fuzzy system, these are binary gens. See Figure 16. 

 

Fig. 16. Chromosome of the Genetic Algorithm for optimization of Triangular membership 
functions   

The objective function is to minimize the error of recognition and the rules, 
where the most important objective is to minimize the recognition error and the 
second level of importance objective is to reduce the rules. but in this case uses 
weights for different objectives and can be expressed as follows: 

 
Objective function= (error recognition*0.80) + (number rules*0.20)             (2) 

 
We tested the best fuzzy integrator obtained with the genetic algorithm for the 
ORL Database with triangular membership functions, and we also tested with the 
3 cross validations. The results are as follows. See Table 17. 
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Table 17.  Results of the four databases with the same Fuzzy. 

Databases Identificatión  Results 

ORL Database 96.67%  116/120 

First cross-validation 100%    120/120 

Second cross-validation 100%    120/120 

Third cross-validation 99.15%  119/120 

AVERAGE 98.95 % 

Below is the best Fuzzy System we got from Database ORL, showing the Tri-
angular membership functions for the 3 input to the output.  See Figures 17, 18, 
19, 20 and 21. 

 

 
Fig. 17. Fuzzy System 

 

Fig. 18. Membership Function for forehead 
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Fig. 19. Membership Function for Eyes 

 

Fig. 20. Membership Function for Mouth 

 

Fig. 21. Output Membership Function 
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And the rules that gave us the fuzzy system were as follows: 

1. If (Forehead is low) and (eyes is low) and (mouth is low) then (winner is high) 
(1)      
2. If (Forehead is low) and (eyes is low) and (mouth is medium) then (winner is 
medium) (1)    
3. If (Forehead is low) and (eyes is low) and (mouth is high) then (winner is me-
dium) (1)     
4. If (Forehead is low) and (eyes is medium) and (mouth is low) then (winner is 
medium) (1)    
5. If (Forehead is low) and (eyes is medium) and (mouth is medium) then (winner 
is high) (1)    
6. If (Forehead is low) and (eyes is medium) and (mouth is high) then (winner is 
medium) (1)    
7. If (Forehead is low) and (eyes is high) and (mouth is low) then (winner is high) 
(1)      
8. If (Forehead is low) and (eyes is high) and (mouth is medium) then (winner is 
high) (1)     
9. If (Forehead is low) and (eyes is high) and (mouth is high) then (winner is low) 
(1)      
10. If (Forehead is medium) and (eyes is low) and (mouth is low) then (winner is 
medium) (1)   
11. If (Forehead is medium) and (eyes is low) and (mouth is medium) then (win-
ner is high) (1)   
12. If (Forehead is medium) and (eyes is medium) and (mouth is low) then (win-
ner is high) (1)   
13. If (Forehead is medium) and (eyes is medium) and (mouth is medium) then 
(winner is medium) (1) 
14. If (Forehead is medium) and (eyes is high) and (mouth is low) then (winner is 
low) (1)    
15. If (Forehead is medium) and (eyes is high) and (mouth is medium) then (win-
ner is high) (1)   
16. If (Forehead is medium) and (eyes is high) and (mouth is high) then (winner is 
high) (1)    
17. If (Forehead is high) and (eyes is low) and (mouth is low) then (winner is low) 
(1)     
18. If (Forehead is high) and (eyes is low) and (mouth is medium) then (winner is 
medium) (1)   
19. If (Forehead is high) and (eyes is low) and (mouth is high) then (winner is 
high) (1)     
20. If (Forehead is high) and (eyes is medium) and (mouth is low) then (winner is 
low) (1)    
21. If (Forehead is high) and (eyes is high) and (mouth is medium) then (winner is 
low) (1) 
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And finally a graphic showing the percentages obtained from the ORL Database 
and the three cross-validations, we got from integrators that uses non-optimized 
and optimized. See Fig. 22. 

 

 

 

Fig. 22. Results of different response integrators 

10   Conclusions 

As a conclusion we can say that working with face as biometric measure is more 
reliable than other forms of authentication available.  
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Through the results shown in this work, we can see the results of  response  
integrations: Gating Network with identification rate 97%, Sugeno integrals meas-
ures with identification rate  95%, type-1 fuzzy logic not optimized with identifi-
cation rate 90.8%, type-1 fuzzy logic  using genetic algorithms to optimize  
Gaussian membership function  and fuzzy rules with identification  rate 97.15 and 
type-1 fuzzy logic  using genetic algorithms to optimized Triangular membership 
function  and fuzzy rules with identification  rate 98.95 (the best result of all inte-
gration methods). 

We can also say that making a combination of two or more methods of artificial 
intelligence we can achieve a significant improvement in pattern identification, in 
this paper we used a hybrid system (neuro-fuzzy-genetic). 

11   Future Work 

Identification could be improved with pre-processing. Parallel processing could 
also be implemented to reduce response times. Tipe-2 fuzzy logic could be used to 
test if it helps improve identification.  
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A Modular Neural Network with Fuzzy Response 
Integration for Person Identification Using Biometric 
Measures 

Magdalena Serrano and Patricia Melin 

Tijuana Institute of Technology, Tijuana México 
epmelin@hafsamx.org  

Abstract. This paper describes an intelligent system for person identification with 
biometric measures such as signature, fingerprint and face.  We describe the neu-
ral network architectures used to achieve person identification based on the bio-
metrics measures. Simulation results show that the proposed method provides 
good recognition. Fuzzy integration of the three modules is tested on a single 
computer and also in a distributed environment. 

1   Introduction 

At the moment, systems based on biometric recognition have gained importance in 
applications that require the identification of users or restricted access. Compared 
with conventional methods based on using keys, we have the advantage that the 
biometric features may not be provided, copied or stolen. 

These kinds of systems are usually easy to maintain. A biometric system is  
essentially a pattern recognition system that operates in the following manner: 
capturing a biometric measure, a set of features are extracted and compared with 
another group the features. 

Biometric identification techniques are very diverse, since any element of a 
person is potentially usable as a biometric measure. Even with the diversity of 
existing techniques, to develop a biometric identification system, it is an entirely 
separate scheme from the technique used. The most used biometric measures 
are: fingerprint, iris, voice, signature, face, ear, hand geometry, vein structure, 
retina, etc. 

The need for a way to identify the human being in a unique way, has led re-
searchers to implement a wide range of methods. 

Until today biometric methods have been implemented using different devices 
for the creation of patterns and generate the code that identifies the individual 
biometric measures. This is why, in this work we consider one of the most used 
biometric measures throughout history, which is the fingerprint, and other ones 
such as the face and signature.  
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2   Neural Networks 

A neural network is a model to perform a computational simulation of parts of the 
human brain using replication behavior in small-scale patterns that it performs for 
producing results from the perceived events. 

An artificial neural network (ANN), often just called a "neural network" (NN), 
is a mathematical or computational model based on biological neural networks. It 
consists of an interconnected group of artificial neurons and processes information 
using a connectionist approach to computation. In most cases an ANN is an adap-
tive system that changes its structure based on external or internal information that 
flows through the network during the learning [2]. 

1. Biological neural networks are made up of real biological neurons that are con-
nected or functionally related in the peripheral nervous system or the central 
nervous system. In the field of neuroscience, they are often identified as groups 
of neurons that perform a specific physiological function in laboratory analysis.  

2. Artificial neural networks are made up of interconnecting artificial neurons 
(programming constructs that mimic the properties of biological neurons). Arti-
ficial neural networks may either be used to gain an understanding of biologi-
cal neural networks, or for solving artificial intelligence problems without  
necessarily creating a model of a real biological system. The real, biological 
nervous system is highly complex and includes some features that may seem 
superfluous based on an understanding of artificial networks. 

2.1   Structure of an Artificial Neural System 

The artificial neural system is composed by several components that are necessary 
to structure the system. In figure 1 we show these components: the neuron, layers, 
and networks. 

 

Fig. 1. Hierarchical structure of a system based on artificial neural networks 
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2.2   Modular Neural Networks 

A modular neural network is a neural network characterized by a series of inde-
pendent neural networks moderated by an intermediary. Each independent neural 
network serves as a module and operates on separate inputs to accomplish some 
subtask of the task the network is intended to perform.  

The intermediary takes the outputs of each module and processes them to pro-
duce the output of the network as a whole. The intermediary only accepts the 
modules’ outputs—it does not respond to, nor otherwise signal, the modules. Also 
the modules do not interact with each other [4]. 

The advantage is that if the model supports naturally a breakdown into more 
simple functions, the application of a modular network translates into faster learn-
ing. Each module can be built differently, in a way that meets the requirements of 
each subtask. A modular neural network can be represented by the scheme shown 
in figure 2. 

 

Fig. 2. A modular neural networks architecture. 

3   Characteristics of a Biometric Measure 

A biometric measure is a feature that can be used to make an  identification. 
Whatever the measure, it must meet the following requirements: 

1. Universality: means that anyone should have that characteristic. 
2. Uniqueness: the existence of two people with identical characteristics has a 

very small probability.  
3. Permanent Characteristics: the characteristic does not change over time  
4. Quantification: the characteristic can be measured in a quantitative form. 

3.1   Architecture of a Biometric System for Personal Identification 

A biometric system has three basic components: The first is responsible for the 
acquisition of any analog or digital biometric feature of a person, such as the ac-
quisition of a fingerprint image using a scanner. The second handles the compres-
sion, processing, storage and comparison of data acquired with the stored data. 
The third component provides an interface to applications on the same or another 
system. In figure 3 we show the phases of a biometrical identification system. 
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Fig. 3. Phases of a biometrical identification system. 

4   Problem Statement and Proposed Method 

The problem is to develop a hybrid system for person identification using parallel 
processing implementation determined by the biometric measures. We must de-
velop a module for each of the biometric measures in the neural network architec-
ture to implement: 

• Fingerprint. 
• Signature. 
• Face. 

Starting from the 3 above-mentioned modules it is important to make the unifica-
tion of the 3 biometric measures to make the system obtain a higher percentage of 
identification, which aims at making the integration of the 3 systems into one, as 
shown in Figure 4. 

 
Fig. 4. Proposed scheme for the development of the system. 
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The implementation was done in 4 core computers, i.e, with 4 computers with 4 

processors to activate 16 processors in parallel. 

4.1   Biometric Databases 

The databases were obtained from students and professors of the Master in science 
in computer science from Tijuana Institute the Technology. 

The database consists of 10 Samples of signature, fingerprint and face, taken 
from 30 people, giving a total of 300 samples. We used for training the first 7 im-
ages and leaving the last 3 for identification. In total we trained the network with 
210 images and 90 are left for the identification for face, fingerprint and signature. 

The databases are shown in figures 6, 9, 10 and 11. 

4.1.1   Signature Database 
For the normalization of this database the images were cut to limit the signature, 
this produced a resizing of the images. We also applied Wavelets and the Sobel 
operator to preprocess the image, as shown in Figure 5. 

 

Fig. 5. Preprocessed database 

 
 
 
 

 
 
 
 
 
 
 
 
 

 

 
 
 

Fig. 6. Database with examples of signatures. 
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Fig. 7. Architecture of the net for signature. 

After the preprocessing phase, the database can be visualized in Figure 6 with 
several examples of signatures . 

The  architecture  for  training  the  net  is shown in Figure 7, were  we  have  2  
hidden layers.  

4.1.2   Fingerprint Database 
For the normalization of the database, a cut of the standard image of the limitation 
of the fingerprint was performed, preprocessing was also performed, and the 
methods used for this are the following: 

• Gradient  magnitude  
• Sobel edge masks  
• Skeleton. 
• Wavelets.  

In figure 8 we show an example of fingerprint preprocessing. We show the gra-
dient magnitude and skeleton methods applied to the fingerprint. 

 
Fig. 8. Preprocessing of the fingerprint. 
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After preprocessing the database of images, they go in to the network with a 
dimension of [75 * 50] as shown in Figure 9. 

 

Fig. 9. Database of fingerprints 

The architecture for training the net is shown in figure 10 and it has 2 hidden 
layers.  

 
Fig. 10. Architecture of the neural network for fingerprint recognition. 
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4.1.3   Face Database 
The  face data base  consist of  a mixture of the  ORL database and  data  acquired 
with  students and professors of the  institution, and has  a  different treatment  for  
this  reason,  we  first  converted the images to  gray tones and  made  a resizing to 
[92*112] in BMP format. The face database of the institution is shown en figure 11. 

 

Fig. 11. Database of faces. 

4.1.4   Design of the Neural Network Structure for Face Recognition 
The number of neurons is allocated using an empirical expression created by Re-
nato Salinas[8] and can be explained as follows: 

• Input neurons: 2* (k+m), the activation function is  a Tangent sigmoid. 
• Hidden neurons: (k+m), the activation function is a Tangent sigmoid. 
• Output neurons:  the activation function is a Tangent logarithm sigmoid. 

Where k is the number of individuals to train and m is the number of samples to 
train for each individual. In this case, these were 40 individuals  for  the ORL da-
tabase , and 30  for the database  of the institute and 7 samples therefore,  k = 40, 
m = 7  and k = 30, m = 7. 
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Taking into account the previous data the architecture to train the modules is 
shown in Figure 12. 

 
Fig. 12. Architecture of the neural network for face recognition. 

5   Fuzzy Integration of Face, Signature and Fingerprint 

We used a fuzzy logic module for the integration of the neural networks outpus. 
This method provides better performance in the subjective assignation of imputs 
from each of the individual networks;we show a model where one can see the in-
tegration of neural networks with fuzzy logic, so that the outputs of the neural 
network are processed by a fuzzy inference [11] mechanism, which can be seen il-
lustrated in figure 13. 

This phase consisted of a fuzzy system that can integrate the results of  three 
different biometric measures (face, signature and fingerprint) and using this  re-
sponse as a result. 

This system is designed with three input variables  because each input belongs 
to biometric measure,this will increase if both the input variables, and the granu-
larity of the number of rules would increase in a quantitative way. 

Now we describe the design of the fuzzy integrator, since the granularity of the 
input variables, which are given as low, medium and high and the result is given 
by module1, module2 and module3 the we have the architecture shown in Figure 
14. This type of fuzzy inference is of Mamdani form, which uses both the inputs  
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Fig. 13. Architecture of integration using fuzzy logic for integration of three biometrics 
measures. 

 

Fig. 14. Architecture  of fuzzy Inference system.  

as outputs of linguistic form. The gaussian membership functionare defined by the 
following equation. 

Gaussian (x; c, σ) =
                                           

(1) 

For the granularity of the variables we used the “medium”,” low” and “high” 
membership functions, where these three linguistic values, distributed between 0 
and 1. 
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Fig. 15. granulation of the variable membership Face. 

As shown in figure15, the face input variable has 3 membership functions of 
Gaussian type, which have the following parameters: 
Low: parameter that ranges from [0,0.5] 
Media: parameter that ranges from [0,1] 
High: parameter ranges from [0.5, 1] 

The Gaussian membership function for each of the linguistic values is defined 
as follows: 

=                                                          (2) 

 =                                                          (3) 

=                                                          (4) 

The membership functions for the variables of the signature and fingerprint 
have the same granularity as the one given to the face Gaussians and  is defined in 
the same way as shown in the following equations: 
 
Signature: 

=                                                       (5) 

=                                                       (6) 

=                                                       (7) 
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Fingerprint:            

=                                                     (8) 

=                                                       (9) 

=                                                      (10) 

The output is granulated in membership functions, which have a range from 0 
to 1, the granularity of the output variable shown in Figure 16. 

 

Fig. 16.  Granulation of the output in the variable Result. 

For the Gaussian outputs it is important to mention the ranges which are given 
as follows: 

Module1: [0, 0.5]  
Module2: [0, 1]  
Module3: [0.5,1]  

If we replace both the standard deviation and the mean in the equation of the 
Gaussian then we have: 

=                       (11) 

       =                              (12) 

   =                                                   (13) 
Granulation of the output Variable is given as Modulo1, Modulo2, and 

Modulo3, which belong to the biometric face, fingerprint and signature respec-
tively. This is important because when choosing a result response it is necessary to 
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check which of the three modules is the one that has generated the correct answer. 
For this reason it is necessary that the rules cover all possible combinations for the 
solution of the problem. 

Now we consider the optimization of the fuzzy inference system, the optimiza-
tion can be in the type of system which can be Mamdani or Sugeno, and the mem-
bership function, that can be Gaussian, trapezoidal, triangles, etc.. In our case for 
the optimization, we use the 27 possible rules and leave the system with linguistic 
variables. 

The rules were made taking into account all possible cases that may be present 
as shown in Table1. 

Table 1. Rules for the fuzzy inference system. 

Rules Face Signature Fingerprint Result 

1 Low Low Low Module1 

2 Low Low Medium Module2 

3 Low Low High Module3 

4 Low Medium Low Module2 

5 Low Medium Medium Module2 

6 Low Medium High Module3 

7 Low High Low Module2 

8 Low High Medium Module2 

9 Low High High Module2 

10 Medium Low Low Module1 

11 Medium Low Medium Module1 

12 Medium Low High Module3 

13 Medium Medium Low Module1 

14 Medium Medium Medium Module1 

15 Medium Medium High Module3 

16 Medium High Low Module2 

17 Medium High Medium Module2 

18 Medium High High Module2 

19 High Low Low Module1 

20 High Low Medium Module1 

21 High Low High Module1 

22 High Medium Low Module1 

23 High Medium Medium Module1 

24 High Medium High Module1 

25 High High Low Module1 

26 High High Medium Module1 

27 High High High Module1 

Based on the fuzzy rules of table 1 we can simulate the performance of the 
fuzzy system, which is illustrated in figure 17. 
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Fig. 17. Rule viewer 

The general behavior of the fuzzy can be appreciated with non_linear surface 
generated by the fuzzy module. This is illustrated in three dimensions, with two 
biometric measures in each case. 

Other fuzzy systems were made with triangular and trapezoidal membership 
functions, with a structure similar to the above mentioned inference system, which  
 

 

Fig. 18. Surface visor 
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is only referred to its realization, for the granulation with triangular membership 
functions we how use the following equation: 

               
(14)

 

In implementing the fuzzy inference system with a Mamdani-type model with 
trapezoidal membership function, we used the formula of trapezoids which estab-
lishes the granularity of the values of variables.  

Trapezoid                    (15) 

The results of these fuzzy inference systems were similar to the case of Gaus-
sians and we have decided to use that experience and those who have achieved 
better results in identification of persons 

6   Parallel Processing 

Distributed or parallel computing speeds up the MNN execution of a program 
through its division into fragments that can be run simultaneously, each on one 
processor. Thus a program running on “n” processors might execute n times faster 
than using a single processor. 

We chose to assign a fixed IP to each computer, so, to control the order of the 
machines in the network according to how they are located, and in this way the 
only work that the switch has will be to transfer the information between the proc-
essors, so that the computers are configured with the following assignments: 
 

192.168.1. Module1 

192.168.1. Module2 

192.168.1. Module3 

192.168.1. Module4 

 
Figure 19 shows how the groups were placed on their shelves containers. If 

more computers are added in the cluster it is only necessary to assign the follow-
ing IP address. 

6.1   Distributed Computing Toolbox and MATLAB Distributed Computing 
Engine (MDCE) 

The mdce service ensures that all other processes are running and that it is possi-
ble to communicate with them. Once the mdce service is running, you can use the 
nodestatus command to obtain information about the mdce service and all the 
processes it maintains. 
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Fig. 19. Order of the machines 

 

 

Fig. 20. Overview of Matlab as  a computing distributed system  

The distributed computing toolbox and MDCE allow us to coordinate and exe-
cute operations simultaneously on a cluster of computers to speed up execution of 
work (jobs) in MATLAB. 

Figure 20 shows the interaction between machine, which uses the distributed 
computing toolbox to define jobs and tasks, and the MDCE. The planner can be  
 

192.168.1.1 192.168.1.2 192.168.1.3 

MasterCluster 
192.168.1.4 
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Fig. 21. Structure of the distributed algorithm in the Cluster 

the manager of The Math Works jobs, included as part of MATLAB Distributed 
Computing Engine, a planner or a third party. 

Management meetings conducted by the MDCE  are shown in Figure 20. Proc-
essing requests of different clients are handled separately, a request at a time, for a 
single instant of time is carried out the task by the client 1,then 2 and so on for the  
n clients that can connect to the planner of tasks assigned to each period of time 
for processing. 

6.2   Configuration Process 

On each cluster node open a screen command line (MS-DOS) and type the  
following: 

 
Cd Program files\ MATLAB\R2008a\Toolboox\distcomp\bin 

 

1. Stop the execution of earlier versions of MDCE 
mdce stop 
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2. Install the new version of MATLAB and MDCE, after you continue with the 
next steps. 

mdce install 
3. MDCE starts the service on all cluster nodes 

mdce start 
4. Start the JobManager typing the following command. 

startjobmanager -name <MyJobManager> 
-remotehost <job manager hostname> -v 

Verify that the Manager is running on the host specified. 
 
5. Start the slaves (workers) 
 

startworker -jobmanagerhost <job manager hostname> 
-jobmanager <MyJobManager> -remotehost <worker host-

name> -v 
 
6. Verify that the slaves are running on each computer: 

nodestatus -remotehost <worker hostname> 
 

It should be mentioned that the program receives the JobManager, which is the 
computer that controls all processes and this is where all tasks are carried out for 
pre-processing for biometric measures. As shown in Figure 21. This is how to 
distribute the work in the processor to do the biometric processing, after that the 
results are based on the fuzzy integrator and the Gating Network. 

7   Simulation Results 

In this section, we only show the results obtained for each of the biometric meas-
ures taking the tests with 5 methods of training and choosing the one with the bet-
ter results. In table 1 we show the different methods of training used with the data 
bases and the method for integration, which was the gating network. 

We perform several trainings in order to arrive to these results, although these 
are on average the best results that we have obtained for each of the biometric 
measures. 

The results are given in three importants stages, the first is where the results of 
each of the biometric measures are presented separately, the second is where the 
three biometric measures are integrated through a fuzzy inference and tested on a 
single computer The third stage is the integration of the three biometric  measures 
using response integration on distributed computing in parallel. We used different 
methods of training to check which one was the most appropriate biometric meas-
urement. In Table 2  we shown the training methods used.  
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Table 2. Training methods for the neural networks. 

Abbreviation Training method Integrator 

TRAINGDX Gradient descendent with momentum and 
adaptive learning rate backpropagation 

Gating Network 

TRAINGDA Gradient descendent with adaptive learning 
rate bagpropagation 

Gating Network 

TRAINSCG Scaled conjugate gradient backpropagation Gating Network 

TRAINRP Resilient backpropagation Gating Network 

TRAINCGB Conjugate gradient backpropagation with Pow-
ell-Beales restarts 

Gating Network 

 

7.1   Results of the Three Biometric Measures Considered Separately 

In this section we show separate results for the biometric measures. 

7.1.1   Signature Results 
The results for the measurement of biometric signatures were very good, we 
achieved an average recognition of 99%, which is considerably good for the de-
velopment of the system, and these results are shown below in Tables 3 and 4. 

Table 3. Best simulation  results without learning rate. 

 
Training 

 
Error  Goal 

Training 
Methods 

 
Identification

 
Error

% 
Identification 

1 0.0000001 Traingdx 87 3 87/90(97.50%) 

2 0.0000001 Traingda 87 3 87/90(97.50%) 

3 0.0000001 Trainscg 86 4 86/90(96.66%) 

4 0.0000001 Trainrp 50 40 50/90(66.66%) 

5 0.0000001 Traincgb 68 22 68/90(81.66%) 

Table 3 shows the best training without the use of learning rate, as can be seen, 
we have a percentage of recognition of 97.50 with the training methods “traingdx” 
and “traingda”. 
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Table 4. Best simulation results with learning rate of 0.001. 

 
Training 

 
Error  Goal 

Training 
Methods 

 
Identification 

 
Error 

% 
Identification 

1 0.00000001 Traingdx 89 1 89/90(99.16%) 

2 0.00000001 Traingda 87 3 87/90(97.50%) 

3 0.00000001 Trainscg 86 4 86/90(96.66%) 

4 0.00000001 Trainrp 50 40 50/90(66.66%) 

5 0.00000001 Traincgb 68 22 68/90(81.66%) 

Table 4 shows the best results that were obtained for signature with a learning 
rate of 0.001, increasing our percentage of identification here to a 99.16% and the 
best Method of training was “traingdx”. 

7.1.2   Fingerprint Results 
Several tests were made to reach the results shown in tables 5 and 6. In Table 5 
we show the results of tests made without learning rate and a target error of 
0.00000001 of 86.60%.The best results were obtained with the traingdx and 
traingda  methods of training. 

Table 5. Best results without learning rate 

 
Training 

 
Error  Goal 

Training 
Methods 

 
Identification 

 
Error 

% 
Identification 

1 0.00000001 Traingdx 75 15 75/90(86.60%) 

2 0.00000001 Traingda 97 15 75/90(86.60%) 

3 0.00000001 Trainscg 95 17 73/90(84.82%) 

4 0.00000001 Trainrp 34 56 56/90(50%) 

5 0.00000001 Traincgb 61 29 83/90(74.10%) 

Better results were obtained by adding a learning rate of 0.001 with the same 
goal error is achieved with this increase above the percentage of identification in a 
89.28% as shown in table 6, the best training method was trainscg. 
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Table 6. Best results with learning rate of 0.001 

 
Training 

 
Error  
Goal 

Training 
Methods 

 
Identification 

 
Error 

% 
Identification 

1 0.0000001 Traingdx 99 13 92/112(88.39%) 

2 0.0000001 Traingda 97 15 97/112(86.60%) 

3 0.0000001 Trainscg 100 12 100/112(89.28%) 

4 0.0000001 Trainrp 50 62 50/112(44.64%) 

5 0.0000001 Traincgb 86 26 86/112(76.78%) 

 

7.1.3   Face Results 
For the face identification we have results for the data base of the institution and 
for the data base of the ORL, in both situations we performed different tests. In ta-
ble 6 we show results that include a case of 100% identification for the data base 
from the institution by means of the training method traingdx.  

Table 7. Results of original database take in the  Tijuana Institute of Technology 

 
Training 

 
Error  
Goal 

Training 
Methods 

 
Epoch 

 
Time 

% 
Identification 

1 0.0000001 Traingdx 500,500,500 2:11 90/90(100%) 

2 0.0000001 Traingda 500,500,500 2:03 89/90(98.33%) 

3 0.0000001 Trainscg 500,500,500 8:21 88/90(96.6%) 

4 0.0000001 Trainrp 500,125,240 2:15 82/90(86.66%) 

5 0.0000001 Traincgb 209,134,126 3:9 86/90(93.33%) 

In order to verify the effectiveness of the result of the 100% of identification, 
tests of cross validation were realized where the positions of the images of the data 
base were alternated to verify that the percentage of identification persists, verify-
ing if there is a result  that fails as it is possible to be appreciated in table 7,  
another difference that can be appreciated with the cross validation is that the 
training method varies since with the normal data base we have the method of 
training traingdx and for these tests with which better results were achieved with 
trainscg, with a 95% of identification.  
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Table 8.  Simulation results of cross validation 

 
Train 

 
Error  Goal 

Training 
Methods 

 
Epoch 

 
Time 

% 
Identification 

1 0.0000001 Traingdx 500,500,500 2:11 85/90(91.6%) 

2 0.0000001 Traingda 500,500,500 2:03 84/90(90%) 

3 0.0000001 Trainscg 500,500,500 8:21 87/90(95%) 

4 0.0000001 Trainrp 500,125,240 2:15 82/90(86.66%) 

5 0.0000001 Traincgb 209,134,126 3:9 86/90(93.33%) 

Table 9.  Best results of Three Biometrics measures with better training methods. 

 
Biometric 
Measure 

 
Training Method 

 
Error  Goal 

 
% 

Identification 
 

Traingdx 90/90=100% 
TRainscg 88/90=97% 

 
Face 

 Trraingda 

 
0.0000001 

 89/90=99% 
Traingdx 85/90=94% 
TRainscg 87/90=96 % 

 
Face  with 

Cross-Validation Trraingda 

 
0.0000001 

 84/90=93% 
Traingdx 87/90=96% 
TRainscg 87/90=96% 

 
Signature 

 Trraingda 

 
0.00000001 

 86/90=96.66% 
Traingdx 89/90=99% 
TRainscg 86/90=95% 

 
Signature with 

Cross-Validation Trraingda 

 
0.00000001 

 87/90=96% 
Traingdx 77/90=88.39% 
TRainscg 73/90=84.82% 

 
Fingerprint 

 Trraingda 

 
0.00000001 

 70/90=86.60% 
Traingdx 82/90=92.85% 
TRainscg 70/90=86.60% 

 
Fingerprint with 
Cross-Validation Trraingda 

 
0.00000001 

 78/90=89.28% 

For each of the biometric measures we have had very good results in an inde-
pendent manner. It is important to consider the fact that in the future, when mak-
ing the integration of the 3 biometric measures the percentage of identification 
will increase, because of the modularity and thus having a greater system reliabil-
ity and performance. 
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Table 10. Results of Fuzzy integrator for the  biometrics in set. 

Type of 
Fuzzy  

Integrator 
 

% of Identi-
fication 

Identifica-
tion Error 

Biometric 
Measure 

Range of 
Measure

Activations 
in each  
module 

Face 0.3333 16 
Signature 0.6666 12 

Mandami, 
Gausianas 

100% 0 
 

Fingerprint 1 2 

Table 11. Results of Integration in Distribute Compute with Fuzzy System, fuzzy integrals 
and measures Sugeno and gating network. 

Gating Network 
Fuzzy Integral and 
Sugeno Measures 

Fuzzy Logic 
Type- 1 Image 

% Rec % Ident % Rec % Ident % Rec % Ident 

Workers 
Training 

Time   

60 
60/60 
100% 

60/60 
100% 

60/60 
100% 

60/60 
100% 

60/60 
100% 

60/60 
100% 

3 Rem 
1 min 37 

seg 

80 
80/80 
100% 

78/80 
97% 

80/80 
100% 

72/80 
9% 

80/80 
100% 

79/80 
98.7% 

3 Rem 
2 min 
27seg 

90 
90/90 
100% 

90/90 
100% 

90/90 
100% 

89/90 
96% 

90/90 
100% 

90/90 
100% 

3 Rem 
3 min 
58seg 

120 
120/120 
100% 

118/120 
98% 

120/120 
100% 

110/120 
91% 

120/10 
100% 

120/120 
100% 

3 Rem 
5 min 
49seg 

The best results of the three biometric  measures with the best training methods 
of are show in the table 8, where you can view face and face with cross-validation, 
signature and signature with cross validation as that fingerprint. 

7.1.4   Best Results 
In table 9 we show the best results of the three biometric measures with  the three 
best  training methods for  each biometric measure. 

7.2   Results of Fuzzy Response Integrator 

For the three biometric measures a Mamdani type fuzzy integrator was used,which 
was developed using Gaussian type membership functions. 
Table 10 shows that fuzzy integrator for the combination of the measures in a sin-
gle value has achieved a 100% identification. 

With 0 errors and is reached to verify that the three modules are activated to ob-
tain this result, so the efficiency of a module compensates for other deficiencies. 
For the fuzzy inference system takes values between 0 and 1, as follows: from 
0.3333 to the module face 0.6666 for Release 1 of the signature and fingerprint. 
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7.3   Results Using a Cluster 

A consequence of the  positive results in the previous stage it was decided to 
launch processes to remote nodes that are in the cluster of computers, just to verify 
that the results persist even when the database grows, the components can be seen 
in table 11, we use 7 training images per person and leaving 3 is to identify, 90 
pictures to 30 persons  and 60 to 20 persons, although the first tests were con-
ducted for a number of 20 persons, a same operation to train with 6 images and al-
low for the identification is 4 a total of 120 for 30  persons and 80 to  20 persons. 

In the table we show both the percentage of appreciation that is what is done 
with the images that were training as the percentage of identification that is what 
interests us is that the testing is done with the images that were not previously 
trained, It can be seen that the results are good. 

8   Conclusions 

We can conclude that working with biometric measures is much more reliable 
than with other forms of authentication and the fact that combining several bio-
metric measures helps to have a greater percentage of reliability because measures 
cover the deficiencies of the others within a system. 

At this moment, we have good results with the independent biometric meas-
ures, so it is possible to say that good results may be obtained after having of the 
integration of 3 measures. We will try this in the near future. 

It is important to note that the goal of using parallel computing is to ensure that 
if the databases increase in thousands, the execution time for the identification of a 
person and the percentage of identification are reliable. Therefore we note that our 
research work with regard to biometric measures was much more effective with 
the “trainscg” training method and the best integrator were thegatting network and 
type-1 fuzzy systems. 
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Abstract. This chapter describes a modular neural network (MNN) with fuzzy 
integration for the problem of signature recognition. Currently, biometric identifi-
cation has gained a great deal of research interest within the pattern recognition 
community. For instance, many attempts have been made in order to automate the 
process of identifying a person’s handwritten signature; however this problem has 
proven to be a very difficult task. In this work, we propose a MNN that has three 
separate modules, each using different image features as input, these are: edges, 
wavelet coefficients, and the Hough transform matrix. Then, the outputs from each 
of these modules are combined using a Sugeno fuzzy integral and a fuzzy infer-
ence system. The experimental results obtained using a database of 30 individual’s 
shows that the modular architecture can achieve a very high 99.33% recognition 
accuracy with a test set of 150 images. Therefore, we conclude that the proposed 
architecture provides a suitable platform to build a signature recognition system. 
Furthermore we consider the verification of signatures as false acceptance, false 
rejection and error recognition of the MNN. 

1   Introduction  

Recently, there has been an increased interest in developing biometric recognition 
systems for security and identity verification purposes [2]. Such systems usually 
are intended to recognize different types of human traits, which include a person’s 
face, their voice, fingerprints, and specific handwriting traits [2]. 

Particularly, the handwritten signature that each person posses is widely used 
for personal identification and has a rich social tradition. In fact, currently it is 
almost always necessary in all types of transactions that involve legal or financial 
documents. 

However, it is not a trivial task for a computational system to automatically 
recognize a person’s signature for the following reasons. First, there can be a great 
deal of variability when a person signs a document. This can be caused by differ-
ent factors, such as a person’s mood, free time to write the signature, and the level 
of concentration during the actual act of signing a document. Second, because 
signatures can be so diverse it is not evident which type of features should be used 
in order to describe and effectively differentiate among them. For instance, some 
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signatures are mostly written using straight line segments, and still others have a 
much smoother form with curved and circular lines. Finally, many signatures 
share common traits that make them appear quite similar depending on the types 
of features that are analyzed. 

In this work, we present a handwritten signature recognition system using 
Modular Neural Networks (MNNs) with the Sugeno fuzzy integral. We have cho-
sen a MNN because they have proven to be a powerful, robust, and flexible tool, 
useful in many pattern recognition problems [13, 14].  In fact, we only extract 
simple and easily computed image features during our preprocessing stage, these 
features are: image edges, wavelet transform coefficients, and the Hough trans-
form matrix.  The MNN we propose uses these features to perform a very accurate 
discrimination of the input data used in our experimental tests. Therefore, we have 
confirmed that a MNN system can solve a difficult biometric recognition problem 
using a simple set of image features.  

2   Problem Statement and Outline of Our Proposal 

The problem we address in this chapter is concerned with the automatic recogni-
tion of a person’s signature that is captured on a Tablet PC. We suppose that we 
have a set of N different people, and each has a unique personal signature. The 
system is trained using several samples from each person, and during testing it 
must determine the correct label for a previously unknown sample. 

The system we are proposing consists on a MNN with three separate modules. 
Each module is given as input the features extracted with different feature extrac-
tion methods: edge detection, wavelet transform, and Hough transform. The re-
sponses from each of the modules are combined using a Sugeno fuzzy integral, 
which determines the person to whom the input signature corresponds. A general 
schematic of this architecture is shown in Figure 1, where all of the modules and 
stages are clearly shown. 

In the following section we present a brief review of some of the main concepts 
needed to understand our work. 

 

Fig. 1. General architecture of the proposed Modular Neural Network for signature  
recognition. 
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3   Background Theory 

In this section we provide a general review of artificial neural networks and modu-
lar architectures, we discuss how the output from the modular system can be  
integrated using Sugeno fuzzy integrals, and we describe the feature extraction 
methods that provide the input for each of the modules in our MNN. 

3.1   Modular Neural Networks 

Artificial Neural Networks (ANNs) are information processing systems that em-
ploy a conceptual model that is based on the basic functional properties of bio-
logical neural networks. In the past twenty or thirty years, ANN research has grow 
very rapidly,  in the development of new theories of how these systems work, in 
the design of more complex and intricate models, and in their application to a di-
verse set problem domains. Regarding the latter, application domains for ANN 
include pattern recognition, data mining, time series prediction, robot control, and 
in the development of hybrid methods with fuzzy logic and genetic algorithms, to 
mention but a few examples [7,13, 14]. 

In canonical implementations, most systems employ a monolithic network in 
order to solve the given task. However, when a system needs to process large 
amounts of data or when the problem is highly complex, then it is not trivial, and 
sometimes unfeasible, to establish a good architecture and topology for a single 
network that can solve the problem. For instance, in such problems a researcher 
might attempt to use a very large and complex ANN. Nevertheless, large networks 
are often difficult to train, and for this reason they rarely achieve the desired per-
formance [13].  

In order to overcome some of the aforementioned shortcomings of monolithic 
ANNs, many researchers have proposed modular approaches [11]. MNNs are 
based on the general principle of divide-and-conquer, where one attempts to di-
vide a large problem into smaller sub-problems that are easier to solve independ-
ently. Then, these partial solutions are combined in order to obtain the complete 
solution for the original problem. 

MNNs employ a parallel combination of several ANNs, and normally contain 
two main components: (1) local experts; and (2) an integrating unit.  The basic 
architecture is shown in Figure 1 [16].  

Each module consists of a single ANN, and each is considered to be an expert 
in a specific task. After the input is given to each module it is necessary to com-
bine all of the outputs in some way, this task is carried out by a special module 
called an integrator. The simplest form of integration is given by a gating net-
work, that basically switches between the outputs of the different modules based 
on simple criteria, such as the maximum level of activation. However, a better 
combination of the responses from each module can be obtained using more 
elaborate methods of integration, such as the Sugeno fuzzy integral [16]. 
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Fig. 2. Architecture of a Modular Network. 

3.2   Sugeno Fuzzy Integral 

The Sugeno fuzzy integral is a nonlinear aggregation operator that can combine 
different sources of information [4, 8, 9]. The intuitive idea behind this operator is 
based on how humans integrate information during a decision making process. In 
such scenarios it is necessary to evaluate different attributes, and to assign priori-
ties based on partially subjective criteria. In order to replicate this process on an 
automatic system, a good model can be obtained by using a fuzzy representation 
[5, 8, 12]. Finally, several works have shown that the use of a Sugeno fuzzy inte-
gral as a MNN integrator can produce a very high level of performance [6, 8, 11], 
and for these reasons we have chosen it for the system we describe here. 

3.3   Fuzzy Systems 

Fuzzy theory was initiated by Lotfi A. Zadeh in 1965 with his seminal paper 
“Fuzzy sets”. Before working on fuzzy theory, Zadeh was a well-respected scholar 
in control theory.    

A big event in the 70’s was the birth of fuzzy controllers for real systems. In 
1975, Mamdani and Assilian established the basic framework of fuzzy controller 
and applied the fuzzy controller to control a steam engine. Their results were pub-
lished in another seminal paper in fuzzy theory “An experiment in linguistic syn-
thesis with a fuzzy logic controller”. They found that the fuzzy controller was very 
easy to construct and worked remarkably well [3, 15].     

The fuzzy inference system is a popular computing framework based on the 
concepts of fuzzy set theory, fuzzy if- then rules, and fuzzy reasoning. It has found 
successful applications in a wide variety of field, such as automatic control, data 
classification, decision analysis, experts systems, times series prediction, robotics, 
and patter recognition [3, 15].  

The basic structure of a fuzzy inference system consists of three conceptual 
components: a rule base, which contains a selection of fuzzy rules; a database, 
which defines the membership functions used in the fuzzy rules; and a reasoning 
mechanism, which performs the inference procedure upon the rules and given 
facts to derive a reasonable output or conclusion [3]. 
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3.4   Feature Extraction 

In this work, we employ three individual modules, and each receives different 
image features extracted from the original image of a person’s signature. Each of 
these feature extraction methods are briefly described next. 

3.4.1   Edge Detection 
For images of handwritten signatures, edges can capture much of the overall struc-
ture present within, because people normally write using a single color on a white 
background. Hence, we have chosen to apply the Canny edge detector to each 
image that generates a binary image of edge pixels, see Fig 3. 

 
 
 
 

 

 
 

 
 
 

 
 
 
 

Fig. 3. (a) Original image of a signature. (b) Image edges. 

3.4.2   Wavelet Transform 
The wavelet transform decomposes a signal using a family of orthogonal func-
tions, it accounts for both the frequency and the spatial location at each point. The 
most common application is the Discrete Wavelet Transform (DWT) using a Haar 
wavelet [17]. The DWT produces a matrix of wavelet coefficients that allows us to 
compress, and if needed reconstruct, the original image. In Figure 4 we can ob-
serve the two compression levels used in our work. 

3.4.3   Hough Transform 
In the third and final module we employ the Hough transform matrix as our  
image features [1]. The Hough transform can extract line segments from the 
image. In Figure 5 we show a sample image of a signature and its corresponding 
Hough transform matrix. Finally, in order to reduce the size of the matrix, and 
the size of the corresponding ANN, we compress the information of the Hough 
matrix by 25%. 
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Fig. 4. (a) Original image of a signature. (b) First level of decomposition. (c) Second level 
of decomposition. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5. (a) Sample of a signature image with some of the lines found by the Hough trans-
form (b) The Hough transform matrix. 

3.4.4   Verification of Signatures 
Currently, security practice always involves PIN number, password, and access 
card. However, these signs are not very reliable, since it can be forgotten or lost [2]. 

Automatic signature verification is one of the most practical ways to verify 
human´s identify. Signature verification can be used in many applications such as 
security, access control, or financial and contractual matters. 

The process of signature verification often consists of a learning stage and a 
testing stage, as shown in figure 6. In the learning stage, the verification system 
uses the feature extracted from one or several training samples to build a reference 
signature database. In the testing stage the user inputs the signature into input  
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(b) 
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device. Then the system uses this information to extract the reference in the  
database, and compares the features extracted from the input signature with the 
reference. Finally the verification process out whether the test signature is genu-
ine or not. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6. Signature verification process 

In the research area of signature verification, a type I error rate and type II error 
rate are usually called false reject rate (FRR) and false acceptance rate (FAR) re-
spectively. To minimize the type II errors, which represent the acceptance of the 
counterfeited signatures will normally increase the type I errors, which are the 
rejections of genuine signature. In most case, type II error rate is considered to be 
more important, but it is not a must. This will depend on the purpose, design, 
characteristics and application of the verification systems. If the system requests a 
high security, false accept rate should reduced to its lowest; if the security is not so 
strict, the system can be adjust to its lowest average false rate.[2]  

The fuzzy system will answer the greater activation of the 3 modules signing, 
taking the form of higher activation winner; this means the 27 rules in the system 
are considered fuzzy. 

Once the winner module did a signature verification process to know whether 
the signature that shows fuzzy integrator corresponds to the person.  
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For this we also conducted 30 trainings with 150 different samples of genuine 
signatures, to make activation and get an average of this activation. The average of 
the activations is used as to whether a signature is forged or genuine. 

Typically when the signature is authentic we obtain a high activation and when 
the signature is false the activation is low, although not necessarily, as may hap-
pen if there is a high activation but the signature is false activation or a low but 
firm is true, so we take into account four different cases: 

1. False acceptance (FRA).  
2. False rejection (FRR).  
3. Error.  
4. Signature Authentic. 

After taking as reference the average of activations, 85 samples were collected 
from forged signatures of 17 persons and 65 authentic samples of 13 persons, giv-
ing a total of 150 samples between false and authentic signatures of 30 persons. In 
total 210 images of signatures of each module for the training signatures are au-
thentic. 

Table 1 shows the case that can be given upon verification of signatures, taken 
as a basis the average activations. 

Table 1. Signature verification procedure 

Recognizes Overcome threshold Original signature Result 
Yes Yes No False Acceptance 
Yes No Yes False Rejection 
No Yes Yes Error 
No No Yes Error 
No No No Correct 
No Yes No Correct 

4   Experiments 

In this section we present our database of signature images, describe our experi-
mental set-up, and detail the experimental results we have obtained using mono-
lithic and modular networks. 

4.1   Image Database 

For this work we build a database of images with the signatures of 30 different 
people, students and professors from the computer science department at the Ti-
juana Institute of Technology, BC, México. We collected 12 samples of the signa-
ture from each person; this gives a total of 360 images in total. Sample images 
from the database are shown in Figure 7. 



Signature Recognition with a Hybrid Approach Combining MNNs  193
 

 

Fig. 7. Images from our database of signatures. Each row shows different samples from the 
signature of the same person. 

4.2   Experimental Setup 

In this work, we are interested in verifying the performance of our proposed MNN 
for the problem of signature recognition. Therefore, in order to obtain comparative 
measures we divide our experiments into four separate tests. 

1. First, we use each module as a monolithic ANN for signature recognition.  
Therefore, we obtain three sets of results, one for each module, where in 
each case a different feature extraction method is used. 

2. Second, we train our MNN using all three modules concurrently and the 
Sugeno fuzzy integral as our integration method. 

3. Third, we train our MNN using all three modules concurrently and the 
Fuzzy System as our integration method. 

4. Fourth, Signature verification: false acceptance, false rejection. 

In all tests 210 images were chosen randomly and used for training, and the re-
maining 150 were used as a testing set. Additionally, after some preliminary runs 
it was determined that the best performance was achieved when the ANNs were 
trained with the Scaled Conjugate Gradient (Trainscg) algorithm, with a goal error 
of 0.001. Moreover, all networks had the same basic ANN architecture, with two 
hidden layers. In what follows, we present a detailed account of each of these ex-
perimental tests. 

4.2.1   Monolithic ANNs 
The results for the first monolithic ANN are summarized in Table 2. The table 
shows a corresponding ID number for each training case, the total epochs required 
to achieve the goal error, the neurons in each hidden layer, and the total time re-
quired for training. Recognition performance is shown with the number of correct 
recognitions obtained with the 150 testing images, and the corresponding accuracy  
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Table 2. Performance for a monolithic ANN using edge features; bold indicates best  
performance. 

No Epochs Neurons Time Correct Accuracy (%) 

01 80 100-100 00:01:11 123/150 82 

02 59 100-100 00:01:18 120/150 80 

03 78 100-100 00:01:07 131/150 87 

04 90 100-100 00:01:26 117/150 78 

05 80 100-100 00:01:08 119/150 79 

06 78 100-100 00:01:34 123/150 82 

07 53 100-100 00:00:46 123/150 82 

08 79 80-90 00:01:08 123/150 82 

09 55 80-90 00:00:56 128/150 85 

10 58 80-90 00:00:58 122/150 81 

 
score. In this case, the best performance was achieved in the third training run 
where the algorithm required 78 epochs, and the ANN correctly classified 131 of 
the testing images. 

The second monolithic ANN uses the wavelet features as input, and the ob-
tained results are summarized in Table 3. In this case the best performance was 
obtained in the third training run, with a total of 5 epochs, and 144 correctly clas-
sified images. It is obvious that wavelet features provide a very good discrimina-
tive description of the signature images we are testing. 

Table 3.  Performance for a monolithic ANN using wavelet features. 

Train Epochs Neurons Time Correct Accuracy (%) 

01 12 100-100 00:00:18 135/150 90 

02 30 100-100 00:00:25 138/150 92 

03 05 100-100 00:00:08 144/150 96 

04 09 100-100 00:00:11 140/150 93 

05 06 80-90 00:00:08 142/150 95 

06 05 80-90 00:00:05 140/150 93 

07 10 80-90 00:00:14 141/150 94 

08 07 80-90 00:00:09 138/150 92 

09 10 80-90 00:00:15 140/150 93 

10 05 80-90 00:00:06 137/150 91 
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Finally, the third monolithic ANN uses the Hough transform matrix, and  
the corresponding results are shown in Table 4. The best performance is achieved 
in the fourth training run, with a total of 6 epochs and 141 correctly classified  
images.  

Table 4. Performance for a monolithic ANN using the Hough transform. 

Train Epochs Neurons Time Correct Accuracy 

(%) 

01 63 100-100 00:00:19 135/150 90 

02 65 100-100 00:00:51 140/150 93 

03 68 100-100 00:00:19 141/150 94 

04 06 80-90 00:00:08 141/150 94 

05 04 80-90 00:00:05 140/150 93 

06 45 80-90 00:00:11 138/150 92 

07 08 80-90 00:00:09 138/150 92 

08 05 80-90 00:00:08 137/150 91 

09 05 80-90 00:00:06 137/150 91 

10 33 50-50 00:00:20 138/150 92          

 
It is important to note that in all three cases, the monolithic methods did 

achieve good results. The best performance was obtained using wavelet features, 
and the Hough transform matrix also produced very similar results. On the other 
hand, the simple edge features produced a less accurate recognition than the other 
two methods. 

4.2.2   Modular Neural Network with Sugeno Fuzzy Integral 
The final experimental results correspond to the complete MNN described in Fig-
ure 1, and Table 5 summarizes the results of ten independent training runs. For the 
modular architecture, performance was consistently very high across all runs, and 
the best recognition accuracy of 98% was achieved in half of the runs. In fact, 
even the worst performance of 95% is better or equal than all but one of the mono-
lithic ANNs (see Table 3). 

4.2.3   Modular Neural Network with a Fuzzy System 
We use a fuzzy systems integrator for the three modules of the network. The fuzzy 
systems are of Mamdani type, contain three inputs (module 1, module 2, module 
3) output (winner module), and 27 rules. Several tests were performed with the  
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Table 5. Results for the Modular Neural Network with fuzzy Sugeno Integral 

Trian Epochs Time Correct Accuracy (%) 

01 55 00:00:49 147/150 98 
02 150 00:01:34 146/150 97 

03 180 00:01:53 144/150 96 
04 300 00:02:20 147/150 98 

05 150 00:01:30 147/150 98 
06 155 00:01:45 146/150 97 

07 320 00:02:49 147/150 98 
08 310 00:02:38 148/150 98 

09 285 00:01:58 145/150 96 
10 03 00:00:02 143/150 95 

 
 

fuzzy systems that have the same input, and output rules, but with different func-
tions of membership: Triangular, trapezoidal and Gaussian. 

In figures 8, 9, 10 we show the fuzzy systems with trapezoidal Membership 
functions, Triangular and Gaussian. 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8. Representation of fuzzy systems with trapezoidal membership functions. 
 

1. If (MBinaria is Bajo) and (MWavelet is Bajo) and 
(MHough is Bajo) then (ModGanador is Modulo2) (1)     
2. If (MBinaria is Bajo) and (MWavelet is Bajo) and 
(MHough is Medio) then (ModGanador is Modulo3)    
3. If (MBinaria is Bajo) and (MWavelet is Bajo) and 
(MHough is Alto) then (ModGanador is Modulo3) (1)     
4. If (MBinaria is Bajo) and (MWavelet is Medio) and 
(MHough is Bajo) then (ModGanador is Modulo2) (1)    
5. If (MBinaria is Bajo) and (MWavelet is Medio) and 
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1. If (MBinaria is Bajo) and (MWavelet is Bajo) and 
(MHough is Bajo) then (ModGanador is Modulo2) (1 
2. If (MBinaria is Bajo) and (MWavelet is Bajo) and 
(MHough is Medio) then (ModGanador is Modulo3) (  
3. If (MBinaria is Bajo) and (MWavelet is Bajo) and 
(MHough is Alto) then (ModGanador is Modulo3) (1)     
4. If (MBinaria is Bajo) and (MWavelet is Medio) and 
(MHough is Bajo) then (ModGanador is Modulo2) (1)    
5. If (MBinaria is Bajo) and (MWavelet is Medio) and 

 
 
 
 

 

 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Representation of fuzzy systems with Triangular membership functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Representation of fuzzy systems with Gaussian membership functions. 
 
 

1. If (MBinaria is Bajo) and (MWavelet is Bajo) and 
(MHough is Bajo) then (ModGanador is Modulo2) (1    
2. If (MBinaria is Bajo) and (MWavelet is Bajo) and 
(MHough is Medio) then (ModGanador is Modulo3) 
3. If (MBinaria is Bajo) and (MWavelet is Bajo) and 
(MHough is Alto) then (ModGanador is Modulo3) (1)     
4. If (MBinaria is Bajo) and (MWavelet is Medio) 
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Table 6. Results for the Modular Neural Network with fuzzy system 

Train Membership 
Funtion 

Error 
goal 

 

Epochs Time Correct Accuracy 

(%) 

01 Triangular 0.001 232 00:03:42 148/150 98.66 

02 Triangular 0.001 560 00:09:15 146/150 97.33 

03 Triangular 0.001 710 00:11:05 148/150 98.66 

04 Trapezoidal 0.001 96 00:01:37 147/150 98.00 

05 Trapezoidal 0.001 302 00:08:01 147/150 98.00 

06 Trapezoidal 0.001 304 00:08:03 146/150 97.33 

07 Gaussian 0.001 150 00:02:50 146/150 97.33 

08 Gaussian 0.001 257 00:06:02 149/150 99.33 

09 Gaussian 0.001 223 00:03:17 149/150 99.33 

Table 7. Result with uniform random noise 

Train Method Time Co-

rrect 

Accuracy (%) 

01 Trainscg 00:02:56 141/150 92.66 

02 Trainscg 00:02:57 146/150 97.33 

03 Trainscg 00:04:50 144/150 96.00 

04 Trainscg 00:03:25 143/150 95.33 

05 Trainscg 00:04:20 144/150 96.00 

06 Trainscg 00:03:09 141/150 94.00 

07 Trainscg 00:06:50 139/150 92.66 

08 Trainscg 00:02:54 141/150 94.00 

09 Trainscg 00:03:33 146/150 97.33 

10 Trainscg 00:05:56 144/150 96.00 

The results obtained with the fuzzy system as an integrator of MNN with dif-
ferent membership functions (see table 6), were good, in this case the best result 
was obtained in the training with 9 Gaussian membership function, with a total of 
223 epochs, and 149 images are classified correctly. The method of training is 
scaled conjugate gradient (Transcg). Overcoming the best result with fuzzy 
Sugeno integral (see table 5). 
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4.2.4   Modular Neural Network with a Fuzzy System Adding Uniform 
Random Noise 

After multiple tests done with the fuzzy system, and taking into account that the 
best result was obtained with Gaussian membership functions, we applied noise to 
the images of signatures, using “uniform random noise”. The noise level of 0.5 
was applied. Table 7 shows the top 10 results. The best training is the one in the 
second row, with a total of 146 correctly classified images. 

4.2.5   Results of Verification of Signatures 
Table 8 shows the results as a percentage for each case: false acceptance, false 
rejection, error recognition and the percentage of correct signatures. 

Table 8.  Results from the verification of signatures 

Train Time False 
Acceptance 

(%) 

False 
 Rejection 

(%) 

Error 
Recognition 

(%) 

Correct 
Sgnatures 

(%) 
01 00:06:32 9.33 8.00 1.33 81.33 
02 00:06:03 7.33 18.00 0.66 74.00 
03 00:07:32 10.00 5.33 2.00 82.66 
04 00:08:03 14.66 2.00 1.33 82.00 
05 00:08:02 7.33 18.00 0.66 74.00 
06 00:09:00 16.00 4.00 1.33 78.66 
07 00:06:06 6.66 14.00 1.33 78.00 
08 00:06:42 11.33 10.66 1.33 76.66 
09 00:06:52 15.33 4.66 2.00 78.00 
10 00:06:13 12.00 6.00 2.66 79.33 

5   Summary, Conclusions and Future Work 

In this chapter we have addressed the problem of signature recognition, a common 
behavioral biometric measure. We proposed a modular system using ANNs and 
three types of image features: edges, wavelet coefficients, and the Hough trans-
form matrix. In our system, the responses from each module were combined using 
a Sugeno fuzzy integral and a fuzzy inference system. In order to test our system, 
we built a database of image signatures from 30 different individuals. In our ex-
periments, the proposed architecture achieves a very high recognition rate, results 
that confirm the usefulness of the proposal. 

In our tests, we have confirmed that the modular approach always outperforms, 
with varying degrees, the monolithic ANNs tested here. However, in some cases 
the difference in performance was not very high, only 3 or 2 percent. Neverthe-
less, we believe that if the recognition problem is made more difficult then the 
modular approach will more clearly show a better overall performance.  

Furthermore, our results also show that even with the simple image features 
used in this work, each of the ANN modules is indeed capable of learning very 
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good discriminating functions that can correctly differentiate between our set of 
image signatures. 

Moreover, the fuzzy system as a unit exceeds the percentage achieved with rec-
ognition of Sugeno fuzzy integral. For this reason the last experiments were con-
ducted with the fuzzy system integrator. 

Finally, the results we have obtained suggest several possible extensions for our 
work, which include the following: 

1. Test the system with a more challenging image database, using more signa-
tures and a smaller set of training samples, in order to verify the robustness 
of our approach. 

2. Optimizing the MNN architecture with a genetic algorithm. 
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Abstract. In this paper we present the architecture of a hybrid recommender sys-
tem to support an adaptive hypermedia educational (AHE) system. Currently the 
instructor (using fuzzy rules) specifies the sequence in which learning objects are 
presented to students. The instructor can also give students a chance to choose 
from a pool of objects and helps them make their selection by assigning to each 
object a recommendation rating based on the student’s profile. We propose a hy-
brid recommender system that uses collaborative filtering techniques together with 
fuzzy inference systems to provide recommendations, considering the instructor's 
experience as well as the ratings given by similar students. 

1   Introduction 

The goal of Adaptive Hypermedia systems (AH) is to enhance the functionality of 
hypermedia, tailoring to each user’s needs the navigation and presentation of  
resources [7]. In a previous work an Adaptive Hypermedia Educational (AHE) 
system based on learning objects was proposed by the authors [1]. Learning ob-
jects in this context are reusable web based resources (i.e. a web page, a video or 
images) that support a certain learning activity, these resources are authored as 
components, so they can be combined with others. In a course each unit of instruc-
tion can be supported by many learning objects, and instructors normally define 
the sequence in which these learning objects are going to be presented to students. 
In this current implementation of the system, instructors can personalize to each 
student, the sequencing and selection of learning objects using a rule-based se-
quencing model based on the Simple Sequencing specification [8]. Instructors can 
specify rules that give permission to students so they can choose which objects 
they want to visit. In this paper we present a preliminary design of a hybrid  
recommender system to help students make their selections. The proposed re-
commender systems consider a personalized rating given to the learning object by 
the instructor and also the ratings given by other students. The aim of this paper is 
to present an overview of the main components of the recommendation process 
and the algorithms used. In section 1 a brief overview of the field of recommender 
systems is presented; a more in-depth survey can be found in [2]. An overview of 
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the proposed recommender system is given in section 2, and in section 3 the de-
tails of the recommender algorithm are presented. Finally some conclusions are 
presented in section 4. 

2   Recommender Systems 

Recommender systems (RS) help users deal with information overload by provid-
ing personalized recommendations of content and services [2]. These systems are 
used by commercial websites and e-marketing tools to increase sales, by present-
ing to users those products that they more probably want to buy. The majority of 
RS use a collaborative filtering approach, which is the method of making auto-
matic predictions (filtering) about the interests of a user by collecting information 
on the tastes of many users (collaborative) and also preferences he liked in the 
past. For example, a collaborative filtering system of musical taste, can make 
predictions about which music a user would want, given a partial list of prefer-
ences of other users and his own. Other RS use a content-based approach where 
items recommended to the user are similar to those the user liked in the past. Other 
RS use a hybrid approach. Formally the recommendation problem can be stated as 
follows [2]: Let C be the set of all users, and S the set of items that can be recom-
mended, both sets can be very large. Let  be the utility function that measures 

the usefulness of item s to user . i.e. u:  where  is a totally ordered 

set. Then for each , we want to choose an item  that maximizes 
the user’s utility: 

 

,   
 

Usually  is represented by a rating in a recommender system and is only de-

fined for a subset of the  space, because not all users give a rating to all the 

items. A rating matrix of  has the ratings of items indicated by users, and to 

indicate that a user has not rated an item the symbol “ ” can be used. The RS 
engine should be able to estimate these missing combinations and issue recom-
mendations based in these predictions.  

3   Recommender System Architecture 

In this section the proposed recommender system (RS) is presented. This system is 
used in an Adaptive Hypermedia Educational system, in which students must 
complete certain learning activities previously specified by the instructor. These 
learning activities can have a recommended value based on the student's profile 
which has information about the student's performance and learning style. Instruc-
tors specify their recommendations using a Mamdani fuzzy inference system with 
rules which have a recommended fuzzy recommended value as their consequent: 
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IF Visual IS Strong AND Verbal IS Mild THEN 
      Recommended IS Low 
IF Visual IS Mild AND Verbal IS Strong THEN 
      Recommended IS High 
 

These rules are static, as the instructor has defined the membership functions i.e. 
Strong, Medium and Mild corresponding to Visual and Verbal linguistic 
variables. Learning activities are multimedia resources (i.e. video, text or audio) in 
this example a learning activity presented in text format has a higher recom-
mended value for students with a strong verbal learning style. These heuristic 
based recommendations rely on the instructor's subjective appreciations about the 
preferences of students. One way to add an adaptive behavior to the system is by 
changing the parameters of membership functions in response to student's feed-
back. In this paper another approach is explored, adding another recommendation 
value to learning activities, this time the recommendation is given by a collabora-
tive filtering algorithm. Now each learning activity has a recommended value that 
takes into account the instructor and also their peers’ ratings. In this algorithm the 
same features as the heuristic recommendation are considered: 

 

• Learning style. The learning style is previously assessed by a test, which 
gives students a grade from 0 to 20 in each of the learning styles (visual, 
verbal, aural, physical, logical, social, solitary).   

• Student Performance. Learning activities record the performance of 
students, and the percentage of objectives reached by students. 
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Fig. 1. Recommender System Data Model 
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Each student is given an opportunity to rate each learning activity they complete, 
giving it a rating from 1 to 5. These ratings are also considered by the collabora-
tive filtering algorithms. The data model of the recommender system is illustrated 
in Figure 1.  

Each student is represented by a vector of features in this case their learning 
style inventory; there is also a rating matrix with the ratings of all users. These  
two sets of data are used separately by two k-NN algorithms, one based on Eucli-
dean distance for selecting students with a similar profile, and another based on 
Pearson Correlation to find students with similar preferences as there is a positive 
correlation between their ratings. The recommender algorithm, considers three 
special cases: 

 

1. A new student is added. In order to make accurate recommendations 
collaborative filtering algorithms need to know the student's previous pre-
ferences, based on values of the rating matrix. When a new user is added 
to the system or he has not made certain number of ratings, there is not 
enough rating data to give an accurate recommendation.  If a student is 
"new" in the system then the instructor's recommendation value and the 
ratings of similar students with respect to their learning styles is consid-
ered. The level of newness can be seen as a fuzzy variable based on the 
minimum number of ratings needed to make accurate predictions. This 
value can be estimated on-line.  

2. A new learning activity is added. As in the previous case, there is also a 
problem when a new learning activity is added to the system, as again it 
does not have enough ratings. Each learning activity has standard meta-
data [3] indicating among other things: their intended audience, difficulty 
level, format, authors and version. This information can be used to make 
a content-based recommendation, when a new learning activity is added 
to the system, also the instructors recommendation is considered. As the 
learning activity is receiving ratings, the collaborative filtering recom-
mendations become more accurate and gain more weight in the overall 
recommendation.       

3. Sparse rating matrixes. This is a typical problem in other recommender 
systems and happens when there are a high number of users and items, 
and users only rate a small fraction of the items. In this case, students 
must rate learning activities as they finish them, but they only rate those 
learning activities in their path. This is illustrated in Figure 2, where only 
Student 1 and Student 2 rated the same learning activities, in this particu-
lar application the rating matrix not only has which students rated the 
same learning activities, but to some extent; also which students followed 
similar paths. As an option the proposed recommender system can also 
consider the performance evaluation of the student as an indirect rating 
value.  
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Fig. 2. Paths of different students 

 

 
Fig. 3. Recommender System Process 
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An overview of the recommender process is illustrated in Figure 3, there 
are three different predictions of ratings: one that considers the instructor's 
rule-based system, other that considers the similarity of students regarding 
their learning styles and finally one that considers the correlation between 
student's ratings. These three predictions are then integrated by a fuzzy infer-
ence system which gives the final recommendation value. 

4   Memory-Based RecommenderAlgorithm    

Memory-Based algorithms have been proposed [4] for collaborative filtering. The 
objective of these algorithms is to predict the vote (rating) a particular active user 
is going to give to items, based on a sample or population of the voting of other 
users. Each of these votes are represented by  which is the vote of user   on 

item . This algorithm considers the mean vote of other users  and the active 

user  and assumes that the predicted vote  of active user  to item , is the 
weighted sum of the votes of other users: 

 

  ) 
 

Where  is the number of users with non zero weights. Here the weights  

correspond to the similarity between the active user  and user  (i.e. Pearson's 

correlation or Euclidean distance),  is a normalization factor such that the abso-
lute value of the weights sum to unity. In this particular implementation the num-
ber of users considered are the K-Nearest Neighbors, and the weight function used 
are: Euclidean distance for the Profile Rating and Pearson's for the Correlation 
Rating. These ratings are then integrated by a Fuzzy Inference system that consid-
ers the number of items and ratings (given or received) to determine the newness 
of the user or learning activity, with this information a final recommendation val-
ue is finally assigned to the Learning Object.  

5   Conclusions 

In this paper we have presented the design of a hybrid recommender system, con-
sidering some of the problems associated with this type of systems, multiple  
recommendations are computed and then a selector module chooses the appropri-
ate value for the intended item. Fuzzy inference is used for making heuristic rec-
ommendations and for the final selection. The implementation is still work in 
progress, and refinements can be made as a result of further experiments.  
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Abstract. The need to model interactions between people of different cultures, re-
ligions and ethnic groups is evident. In Social Simulation, the combination of Artifi-
cial Intelligence and Multi-agent Systems has proven to be a good tool for modeling
social groups, however much remains to achieve a model which represents a society
with differences between individuals. Our proposal is to combine fuzzy logic, se-
mantic networks and transactional analysis for representation of social interactions,
taking into account the perception and a psychosocial profile of each individual.
This model will facilitate the implementation of socially intelligent agents.

1 Introduction

Simulations as a research tool have gained more attention by researchers as a pos-
sibility for study and understand phenomena. Several disciplines have adopted it as
a regular tool with success to generate data close to the real phenomena. In [1] and
[5] presented two different types of formalizations, one using UML another using
Logic Agent-Based to present tools for Social Simulation.

Traditionally, social sciences use statistical methods to develop and the study
of models that describe the social phenomena, but with an emergent systemic ap-
proach, the possibility of developing software is more and more appealing. The
social researchers coming from different fields, such as, sociology, psychology, an-
thropology, among others, have developed qualitative tools to take them to the prac-
tice in social simulations, but this is not sufficient to develop simulations that are
resembled the reality more accurately. In order to carry out these simulations it is
precise to define the scope in which they will be developed, from the point of view
of the multi-agents systems (MAS) is an ideal frame to carry out the simulation.

A MAS is a distributed system in which the nodes or elements are artificial intelli-
gence systems, that are called agents, or, it is a distributed system where the conduct
of these agents produces an intelligent result altogether. It is necessary to notice that

O. Castillo et al. (Eds.): Evolutionary Design of Intelligent Systems, SCI 257, pp. 213–225.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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the agents are not necessarily intelligent; two approaches exist to construct them;
the classic one, where the agent is equipped with greater possible intelligence; and
the constructivist, which persecutes the idea to offer intelligence to the assembly of
all the agents. This type of approach is habitually called emergent behaviour.

An interaction assumes the presence of agents able to act and/or to communicate
to achieve a goal by means of individual and/or cooperative work; in this sense,
the necessity to take into account the intentions of the agents in the interactions is
fundamental, this can be obtained considering the psychological part of the same
agents by means of the transactional analysis theory (TA).

TA theory [2] has been used anywhere in the world as a successful tool to under-
stand the bases of the behaviour and feelings of the people as well as for the conflict
detection in the interactions. Dr Berne introduced it for the first time at the begin-
ning of the 60’s and it is considered a tool that can be used to explain the human
interaction [8].

With the purpose of describing the social interactions, one sets out to construct
a representation mechanism that will take into account the attitude, implicit social
interrelations, and the communication, assigning roles based on cultural scripts. As
well as the inclusion of the fuzzy logic to represent the knowledge base of the agents
by a fuzzy inference system.

2 Objective of the Model

This innovative proposal for the representation of the model is in which the theory
of TA is modified to define the interactions among agents within a MAS. In this
sense, the role of each agent is determined according to a set of elements that are
comprised by the TA.

The transactional analysis provides to the people a rational method to analyze
and to understand the human behaviour. [3] propose in their model the structure of
the personality in a systemic and consistent sense. The TA sees the “personality”
as the result of the interactions of forces within an individual. TA not only tries to
formalize the human interaction, in addition detect conflicts too. The transactions
happen between the people when they send messages. A transaction consists of a
stimulus and an answer. The transaction can be obvious and verbal. Some times are
not verbal nor are so obvious, for example a smile or a pitching.

Structural analysis is within TA theory; it is based on the concept of the ego state
(ES). An ES is defined as a pattern of feelings, thoughts, and experiences and they
are related to a behaviour profile. This personality is conformed of three ego states:
Parent (P), Adult (A), and Child (C). Each ES perceives the environment of totally
different form. The Parent ego state, tries to use the learned patterns (imitation), these
patterns are called “culture”. The Adult ego state, changes the environments stim-
ulate into information, this is processed and archived in the previous experience.
Finally the Child ego state reacts of a steep way based in a pre-logical mechanism
and distorted perceptions.
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Fig. 1. Types of transactions. a) complementary, b) crossed, and c) ulterior.

In order than a transaction exists, a stimulate must be generated by a particu-
lar ES of one person and an answer that comes given from ES of another person.
Stroke is named in the TA language when a person recognizes another one with a
smile or a pitching, for example. Two or more strokes become a transaction. All the
transactions can be classified in complementary, crossed, and ulteriors.

A complementary transaction is when the message initiates in a transmitters ES
and is received by the appropriate receivers ES. In this case, cooperation and un-
derstanding of both parties is possible, that is to say, it exists a dialog. A crossed
transaction happens when there is an unexpected answer to the stimulus, an unsuit-
able ES is activated and the lines of the transaction are crossed, when this happens
appears a conflict and the communication is interrupted. The ulterior transactions
are the most complex ones. These transactions involves more than one ES and the
message is sent from more than one ES at the same time. These transactions can be
seen in a graphic way in Fig. 1.

Another concept of the TA that taken into account is the analysis of the game.
The games in which we participated, each person takes its own role. The Triangle of
Drama of Karpman [12] defines three roles, persecutor, victim, and rescuer, which
always are presents in all the games in which we participated. The drama generates
the sensations that happen when people hide its intentions and secrets and later
manipulates them to obtain personal advantage.

Once a role is defined, this one participates within a script. A script is a particular
sequence of actions played by a role. The scripts have the particularitity that are
repeated several times. The scripts have names and the way in which they will be
developed can be calculated, then it is possible to think about them as small theater
play where each participant repeats its lines over and over again.

In order to complete the proposal, it is taken into account the four positions from
life developed by [6] that we shall call psychological posture. Ever since we are
born we are taking some of these positions, when a child is defenseless and de-
pendant takes the I’m not ok –You’re ok (−+) position and it happens in the first
year of life. The second position (I’m not ok –You’re not ok, −−) it is the one that
is adopted when a child is in the second year of its life, where there is not more
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comfort and it receives scolds. When a child is mistreated in his childhood and sur-
vives it can assume the third called position I’m ok –You’re not ok (+−) and always
it is recriminating to the society assuring that it is always right and that everybody in
the world is against its. Finally, the fourth position is I’m ok –You’re ok (++), un-
like the first three which they are in unconscious form, this position is not a feeling,
is based in thoughts, faith and actions.

Including to this proposal the TA theory provides an approach to the reality be-
cause the agents must have major similarity to the human behaviour [4], but this is
not enough since these concepts do not take into account the fuzzy concepts. Soft
computing is an approach to computing which parallels the remarkable ability of the
human mind to reason and learn in an environment of uncertainty and imprecision
[14]; this is a characteristic of human being.

3 Fuzzy MAS Formal Description

In this section, the formal description of representation model of interactions among
agents in a MAS is made. In order to describe a situation in adapted way, simple
and easy to understand, representations can be used. A semantic network is a type
of representation and consists of four parts, a lexical part, a structural part, one of
procedure and a semantic part [11]. The lexical part, determines the symbols that
are allowed in the vocabulary of the representation. The structural part describes the
restrictions on the form in which the symbols can be become ordered. The operative
part specifies the access procedures that allow to create descriptions, to modify them
and to respond to questions. The semantic part establishes a form to associate the
meaning with the descriptions.

Many schools of thought exist about the meaning of the semantics. But after all,
the meaning always seems to have roots in the human perception and the intuition.
A unknown object is identified with a idealized object if their characteristics are
similar and not necessarily identical.

3.1 Formal Definition of Multi-agent System

A finite automaton is used to formally define the multi-agent system model. As it’s
defined in [10] a finite automaton is formed by several parts; this finite automaton
has a set of states and rules and it goes from one state to another following the
input symbol. It has an input alphabet that indicates the symbols that can store. It
has an initial state and a set of acceptance states. The formal definition states that
a finite automaton is a list of these five objects: set of states, input alphabet, rules
for moving, start state, and accept states. In mathematical language a list of five
elements is often called a 5-tuple. A finite automaton is defined as a tuple of five
parts. Transition function is called to the rules for moving and it is denoted by δ .
If a finite automaton has an arrow from the state x to the state y labeled with the
input symbol 1 means that, if the automata is in the state x and reads a symbol 1 this
automaton moves to the state y. This can be indicated of the form δ (x,1) = y.
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Fig. 2. Graphic representation of a MAS

Definition 1. A MAS is defined as a finite automaton with six elements

MAS = (β ,ε,α,δ ,q0,φ)

where:

1. β is a set of finite nodes that describes an agent, denoted by BP,
2. ε is a set of finite nodes that describes the events that happen in the MAS,

denoted by E,
3. α is the finite set named alphabet, where α = {i, t,c} represents a link label

between a node and another one. A labeled i link can initiate a type-BP node or
type-E node; a labeled t link can terminate a type-BP node, finally a labeled c
link corefers two type-BP nodes,

4. δ : η×α → P(η) is the transition function, where η = β ∪ ε and it is defined
by

δ (η ,α) =

⎧⎨⎩
P(β ) η ∈ β and α ∈ {c, t}
P(ε) η ∈ β and α = i
P(η) η ∈ ε and α = i

,

5. q0 ∈ ε is the start state, and
6. φ ⊆ β is the set of accept states.

Fig. 2 shows a graphic representation of the semantic network of a MAS.

Definition 2. An agent is defineted as a 5-tuple

β = (λ ,ESi,ESu,π i,πu)

where:
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1. λ represents the perception of an event for an agent. It is defined in section 3.2
as a linguistic variable.

2. ESi = {P,A,C} represents the ego state of an agent. Where P = Parent, A =
Adult, and C = Child.

3. ESu = {P,A,C} represents the perception of the ego state of another agent.
Where P = Parent, A = Adult, and C = Child.

4. π i represents the psychological posture of an agent. It is defined in section 3.2
as a fuzzy inference system.

5. πu represents the perception of the psychological posture of the other agent. It
is defined in section 3.2 as a fuzzy inference system.

Fig. 3 shows a graphic representation of an agent.
A link labels are i, an acronym for initiates, meaning that a type-BP node or a

type-E node at the tail of an i link leads to the one at the head of the link; t, for
terminates, meaning that a type-BP node at the tail turns off that happened in a
previous time at the head; and c for corefers, meaning that two type-BP nodes are
related in the same time of two or more agents. Links labeled with c have two heads
to indicate that these nodes are related in both directions.

With two kind of nodes and three kind of links, 2× 3× 2 combinations can be
created of the type node-link-node; some combination from these 12 possibilities
are shown in Fig. 4.

λ

πi πu

ESi ESu

Fig. 3. Graphic representation of an agent.

i ci

a) b) c) d)

t

Fig. 4. Some cases of combinations in a semantic network. a) Enablement, b) Reaction, c)
Perseverence, and d) Change of mind.
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3.2 Definition of the Fuzzy Inference System

With the purpose to represent the perception of the event (λ ) for an agent, a mem-
bership functions (MF) is defined. The MF maps each element of a collection of
objects to a membership grade (or membership value) between 0 and 1 [7]. With
this techniques of fuzzy logic [13] can be applied to turn the perceptions to linguis-
tic values.

Let Λ = “event perception.” The fuzzy sets are defined “not important,” “im-
portant,” and “very important” that are characterized by MFs μnot important(λ ),
μimportant(λ ), and μvery important(λ ) respectively. If “event perception” assumes the
value of “not important,” then exists the expression “event perception is not im-
portant,” and so forth for the others values, these linguistic values are displayed in
Fig. 5, where the universe of discourse Λ is totally covered by the MFs and the
transition from one MF to another is smooth and gradual.
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Table 1. Linguistic variables πi and πu and their linguistic values

Linguistic
variables

linguistic values

πi NOK OK
πu NOK OK

Table 2. Linguistic variables ρi and ρu and their linguistic values

Linguistic
variables

linguistic
values

ρi No-role Persecutor Rescuer Victim
ρu No-role Persecutor Rescuer Victim
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Fig. 7. Antecedent MF of Mamdani fuzzy model

In order to represent the roles that participate in a script uses a Mamdani fuzzy
inference system (FIS). A FIS is based on fuzzy set theory, fuzzy if-then rules, and
fuzzy reasoning [7]. Fig. 6 shown the blocks of the FIS. The rule base contains a se-
lection of fuzzy rules; the database (or dictionary) defines the membership fuctions
used in the fuzzy rules; and the reasoning mechanism, which performs the inference
procedure upon the rules and given facts to derive a reasonable output or conclusion.

Table 1 shows the linguistic values for the input variables to the FIS, they are
defined by π i (psychological posture of the agent) and πu (perception of psycho-
logical posture of another agent) as linguistic variables. Table 2 shows the linguistic
values for the output variables, which are ρ i (role of the agent) and ρu (perception
of the role of another agent).
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These variables and their linguistic values can be represented by membership
functions as it is shown in the Fig. 7 and Fig. 8.

In Fig. 9 can be observed that while the psychological posture of each agents
is more closed to linguistic value OK, they do not take any role. If an agent ap-
proaches linguistic value OK and the other agent approaches more linguistic value
NOK, the role that takes the agent is Rescuer and the perception of role of the other
agent is Victim. This is shows the overall input-output surface with the max-min
composition and the defuzzyfication type centroid.
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4 Case of Study

In order to use the model presented in the previous section, an example taken from
[9] is used, that describes a psychological profile called “Don Juan” syndrome and
presents a characterization of psychological script that a man who still is in this situa-
tion. The sequence of steps that follows in this psychological game is presented next:

1. Don Juan uses flattery and promises to present himself as the Rescuer of
a woman who is prey to her own need to be free and to feel appreciated
(the Victim).

2. The work of seduction continues until she capitulates (the response).
3. The moment “Don Juan” reneges on any further demands for emotional

closeness, the woman remains bewildered and shocked.
4. As soon as she realizes how gullible she has been, she turns into a Per-

secutor seeking revenge, and Don Juan, in turn, becomes the Victim of
female voracity–ready to start fresh anew as another woman’s Rescuer
(this move is the switch).

5. The game’s playoff is for Don Juan to prove once again how voracious
women are and to feel “all set and raring to go” in a new attempt to win over
the ideal woman; the woman’s payoff is to confirm man are untrustworthy.

In this game different types of messages can be identifed and a collection of them
could be made, in the Table 3 some classifications of these messages with an exam-
ple are shown.

Table 3. Classification of messages in a psychological game

Type of message Example of message

Social “Hello!”
Flattery “You are beautiful”
Promise “I’ll do it next week!”
Reneges “You ask too much”
Demand “I want to see you right now!”
Revenge “You’re just like all the rest.”

4.1 Scenario A. One Agent Don Juan

In this subsection we describes a scenario where there are 3 agents, one of them
has the profile of “Don Juan,” the two kind of agents using the proposed model are
defined.

Definition 3. “Don Juan” is defineted as a 5-tuple βagent1 = (λ ,ESi,ESu,π i,πu)
where:

1. λ = very− important,
2. ESi = {P},
3. ESu = {C},
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Fig. 10. Screenshot shows to the script of “Don Juan.”

Fig. 11. Screenshot shows interactions among agents who exist in the world.
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4. π i = OK,
5. πu = NOK.

Definition 4. agent2 is defineted as a 5-tuple βagent2 = (λ ,ESi,ESu,π i,πu) where:

1. λ = very− important,
2. ESi = {C},
3. ESu = {P},
4. π i = NOK,
5. πu = OK.

With this information establishing the role of Rescuer for agent1 and agents agent2
and agent3 are positioned in the role of Victim. Following the script of Don Juan
must exist these two roles for agents to begin the steps shown in the previous section.
In Fig. 10 shows a screenshoot of the way in which “hook” these agents and follow
the dash to the end. In Fig. 11 shows a screenshot of the interactions among these
agents, which can display the kind of message that is sent and received by the agents.

5 Conclusions

This research focuses on a proposal of a TA-Fuzzy Semantic Networks to represent
the interactions among agents in social simulation. In the representation of Winston
[11] does not show enough information to detect and resolve conflicts or to identify
the manner in which a decision is taken by an agent. The proposal for TA-Fuzzy
Semantic Network extends this representation combining fuzzy logic, semantic net-
works and transactional analysis for representation of social interactions, taking into
account the perception and a psychosocial profile of each individual.

A tool to model a MAS based on the model proposed was presented. The case of
study of “Don Juan” was used to demonstrate the proposed model. This approach
could be a tool for sociologists, psychologists and other groups of researchers who
are interested in the simulation of social situations.

We are working on a social platform developed by IMOX research group to per-
form simulations. This platform are programmed in Java language is also using a
programming language based on fuzzy rules to define agents and their environment.
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ardiaz@uabc.mx

3 University of Sunderland, UK
susan.jones@sunderland.uk

4 Universidad Autónoma Baja California, Tijuana, B.C. México
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Abstract. This paper presents a model to add personality features to robots, the
Transactional Analysis (TA) is used to define a psychological profile and the Viable
Systems Model (VSM) is used to help explain the decisions made by the robot and
how this impacts on its viability.

1 Introduction

Representing personality in multi-agent system (MAS) has been a key issue in re-
cent years; agent behaviour is expected to reproduce human behaviour and thus,
social phenomena in a MAS must replicate social issues in real life. In the be-
ginning of the 90’s, agent based systems where considered a significant advance-
ment in software development [14], and software evolution [12]. Today agents are
of great interest in a variety of fields in Computer Science. Characteristics such as
autonomy, collaboration, reasoning, adaptability, mobility and goal orientation are
among the main features that make agent oriented systems a great tool for social
simulation [17].

However, humans have more than just these characteristics, since they have a
personality profile, which plays a central role as suggested in [8][1][2][10][15][6].

Unfortunately, one of the first problems encountered while trying to model per-
sonality is that the term itself refers to a concept, which can be interpreted in many
ways, thus uncertainty can arise. Also, it can not be observed directly, but indirectly
by actions performed by someone.

There are many issues that require interacting with the person in order to be able
to describe them. Things like thought and feelings can be “talked about”, but others

O. Castillo et al. (Eds.): Evolutionary Design of Intelligent Systems, SCI 257, pp. 227–241.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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are not at the “conscious level”, so they need to be observed for a longer period of
time. In other words, to study personality requires a long-term strategy.

Often, when we talk about someone, we talk about what makes this person dif-
ferent from others, or even what makes this person special. In [16] personality is
defined as a style of behaviour.

In some Personality Theories, individual personality differences between per-
sons are the main issue as stated in [5]. Nevertheless, personality theorists are also
interested in what is common between people, i.e. their “internal structure”, how a
person can be “ensemble” and how a person “works”. Most theorists try to explain
personality and social dynamics in terms of a “soul”, ”consciousness”, “super ego”
or even “spirit”, which are difficult to model and consequently difficult to program.
So, if we are interested in programming a system in which some piece of software
will represent a person with a personality, we must consider only those theories that
use not so abstracts concepts.

One such model is Transactional Analysis (TA), which was created by Eric Berne
[4] and it has been considered a very useful and practical tool by therapists all over
the world [18]. Therefore, in this paper we focus in defining an internal structure of
a robot based on TA that we will call Robot Personality (RP) which will be used to
model personality.

Given that the trend in MAS research in general is to begin to model agents
within a structural context, often using language and abstractions from the systems
domain, one possible solution to this problem is to look into the systems domain
itself for such ‘well-defined’ models and processes which could provide the frame-
work required to examine macroscopic behaviour in MAS modeling and experimen-
tation [9].

In [9] we propose the use of Stanford Beer’s viable systems model (VSM) to
complement modelling approaches. In this paper we present a combined TA & VSM
model approach, where we use TA theory in order to define the psychological profile
of the robot and the VSM is used to help explain the decisions made by the robot
and how this impacts on its viability or its ability to stay alive.

This paper is organized as follows: next section presents previous work related
to modelling personality, especially in multi-agent systems. In section 3 we present
information about our proposed model. Section 4 presents the experiment done and
finally, section 5 deals with our conclusions.

2 Similar Work

In [11] a computational model of personality is proposed, the purpose of the model
is to implement non-intellectual functions of the human mind on computer systems.
The personality model was formulated based on psychoanalysis.

In [7] the Transactional Analysis Theory is used in order to define the inner struc-
ture of an agent along with the negotiation process occurred among them until the
cooperation is established.
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In [8] a design of a rational agent based on decision theory is presented. Emo-
tional states and personality are defined formally as a finite state automaton. Emo-
tional states are considered as methods for decision making inside the agent.

Changes in external stimuli provoke changes of emotional state and, thus changes
in agent’s decision-making behaviour. Personality is defined as emotional states
along with transition rules between states. Also, a probabilistic version is consid-
ered to model personality. An agent’s personality can be predicted given an initial
state and emotional inputs.

In [1][2] “affective agent”-user interface is considered. Personality is defined as
a complex structure that distinguishes a person, nation or group. An emotion is de-
fined as an affection that interrupts and re-directs attention (usually accompanied
by a stimulus). In this model, the Five-Factor-Model (FFM) is used. The descriptive
nature of FFM gives an explicit model of personality and makes it possible to con-
centrate in the use of the affective interface to express directly these characteristics.
In this project, personality and emotions are used as filters that restrict decision-
making process.

In [10] a basic structure for a dialog automata is described, which is used to
model users. This structure tries to model psychological terms such as personality
and emotions. This proposal is based on the analysis of finite states and offers a
general perspective on which formal methods (algebraic in general) and results can
be applied to a variety of problems.

In [15] a methodology is presented for the study of the mind as part of Artificial
Intelligence. This paper presents an architecture for motivated agents; the architec-
ture is composed by several modules that handle automatic processes in which re-
flexive administration of limited resources that include planning, decision-making,
scheduling, etc. are involved, along with meta-administrative processes like internal
perception and actions.

In [13] a synthetic character is built that generates emphatic behaviour based on
cathexis flux.

In [6], an interaction model for decentralized autonomous systems based on
Transactional Analysis is presented. Cooperation between agents is negotiated by
stroke exchange. After collaboration is established, each autonomous system plays
certain role trying to accomplish a specific goal. However, only parameter formal-
ization and hints on how to use this structure are given, but no implementation is
considered. On the next section, we consider this issue.

3 TA and VSM Personality Model

Definition 1. In our basic model a robot’s personality is represented by a tuple

RP =< A,ES >

where:

1. A is the set of actions a robot can perform
2. ES = {P,A,C}. Ego States where P=Parent, A=Adult, C=Child
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In the simplified model of TA used, each ES holds a series of rules that define how
a RP should perceive the world under that particular ES. For each ES, rules are
different inside RP, in the case of state P, rules are associated mainly with social
behaviour and the way things should be done in each situation. The set of rules for
state P can be considered the ”cultural background” of the RP. For state A, rules
are mainly about information gathering and problem solving mechanisms. Finally,
for state C, rules are about postures as an individual, i.e. what makes this RP dif-
ferent from others. In this case we can consider things like favourite colour, games,
etc. Pre-logical reasoning and spontaneous reaction are considered in this state (see
Figure 1).
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Fig. 1. Representing Rules-Actions and TA States

Another important concept is that of Personal Energy (K) which is equivalent
(but not necessarily identical) to the cathexis concept in humans. Following Berne’s
model, K is divided in three parts: first, for each event that a RP perceives, the list
of actions from A is scanned and assigned a weight for each state; this means that
the same action will have three different weights, one for each state. This first value
represents the Potential Energy (K p) a particular event can give to an action for a RP
in state X , i.e. how an event can trigger an action. As an example, consider action
“To Play”. For state A, K p should be very low since playing is not an action a human
would normally do when in this state. But for state C, K p must be very high since
this action is strongly related to this state. This assignment is independent for each
state.

When considering which of the states will be the actual state that executes an
action, we will consider the one that holds the maximum of Potential Energy, i.e.
the highest K p.

ES = max{K p(P),K p(A),K p(C)} (1)

Consider this: a RP perceives an event; this causes each of its ES to take the
list A of actions and assign to each of them a weight. Then each ES sorts the list
from higher to lower weight. After that, each ES takes the first action of its list and
compares it with the action chosen by the other ESs. The one with highest K p will
be considered the actual ES (this means that the RP will be in that particular ES)
and thus its action will be executed by RP. In Figure 2, action “To Work” of state A
has the highest K p and thus the RP will start working.

On the other hand, it must be taken into account that humans have a tendency
to continue an activity, which we consider interesting or important, either because
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Kp Kp

P A C P A C

max Kp

To Play To Work

Fig. 2. Action “To Work” of state A has the highest K p and thus the RP will start working

we feel obligated, it is convenient or we are just like it, and to discontinue activities
that are no longer interesting or important. This kind of cathexis can be thought of
as “the interest” a RP has and we will call it the Kinetic Energy Kc of the RP to
executing an action. If we consider that, when a RP starts executing an action X,
K p(X) starts to be “consumed” (diminishing); but if there is an interest Kc(X), this
consumption will be compensated and thus, RP will execute X a longer period of
time (see Figure 3a).
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Kp + Kc (To Work): State A
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At this point, the VP changes
from State A to State C
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Fig. 3. Comparision between Potencial Energy (K p) vs. Potencial Energy + Kinetic Energy
(K p+Kc) on action X

An interpretation of this can be as follows: each unit of time we must decide what
to do, those actions that are most important will normally make us decide on them
first, our interest on executing them will continue as long as we still consider them
important. If for some reason the interest disappears, we will stop doing this action
and turn to another. As can be seen in Figure 3b, as action “To Work” is executing, it
is also being “consumed.” When K p(“ToPlay”) is higher than K p(“ToWork”), the
RP will change from state A to state C and will start executing action “ToPlay”.
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Once a function to determine the “actual ES” is defined, it is possible to see the
changes of ES of any RP and thus the possible action that will be executed, given
a sense of “personality”. On the other hand, the opposite can be considered, from
events in the virtual world, to infer which ES a RP is in any moment. In fact, this is
what a TA therapist will do with a client. By asking questions, hearing “the story”
and some other signs like body language, expressions, attitudes, etc., he will try to
infer when, how and why the changes in the patient’s states take place. In this case,
experience is crucial to be able to do a correct inference.

The third kind of cathexis is more complex and will not be taken into account for
this paper.

3.1 Viable System Model

The Viable Systems Model looks at an organisation interacting with its environment.
The organisation is viewed as two parts: the Operation which does all the basic work
and the bits that provide a service to the Operation by ensuring the whole organisa-
tion works together in an integrated way. These bits are called the Metasystem.

Beer’s first insight was to consider the human organism as three main interacting
parts: the muscles & organs, the nervous systems, and the external environment.

These are generalised in the Viable Systems Model as follows:

• The Operation (O). The muscles and organs. The bits that do all the basic work.
The primary activities. In RP the operation is A, and everything in the robot
related to perform the actions in A correctly.

• The Metasystem (M). The brain and nervous systems.
• The Environment (E). All those parts of the outside world that are of direct

relevance to the system in focus.

The following diagram illustrates the basic VSM.

M

O

E

Fig. 4. Basic VSM

The arrows indicate the many and various ways that the three parts interact.
The Operation will consist of a number of Operational units. The Operational units
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themselves must be viable, and thus can be looked at as smaller Viable Systems
embedded in the larger system [3].

The main functions of the Metasystem are:

1. Look at the entire collection of Operational units and deal with ways of getting
them to work together in mutually beneficial ways, and with the resolution of
conflicts. This function is called “Internal Eye”.

2. Look at the external environment, assess the threats and opportunities and make
plans to ensure the organisation can adapt to a changing environment. This func-
tion is called “External Eye”.

3. Establish the ground rules, which set the tone for the whole organisation. This
is the Policy System. Is in the Policy System where the ES are located.

A need Ni takes the RP to the state Si, i.e. the need of “food” takes the RP to the
state “hungry”. The Metasystem identify “needs” and following the rules imposed
for the Policy System determine what action the Operation will perform. When the
action is being executed another necessity can appear, this will take the robot to
another state, i.e. in order to exit from “hungry” state the robot need food, the action
related is “To Eat”, but while the robot are eating the need to work appears, the robot
will be then in the “Responsible” state.

Si Sj

Ai

Fig. 5. Transition from state Si to S j due the execution of the action Ai

In the Figure 6 we can see an activities diagram of the action decision-making
process in RP.

4 Case of Study

4.1 Experiment Protocol

The experiment begins with a new robot (RP) defined as “software being” that
“lives” inside a virtual world. The robot needs to work to meet a specific goal. For
work undertaken the robot earns the equivalent of monetary tokens, but the battery
level decreases and also the performance level slowly depreciates. With the tokens
earned, the robot can pay to recharge its batteries but must also pay for maintenance
services to restore its performance levels to the state they were at the beginning of
the simulation.

Besides parameters defined in section 3, we will use other parameters for these
study cases:

BatL(t) = {1..100}: Battery Level. This parameter defines the amount of “phys-
ical energy” (different from cathexis) that a RP has a time t. This parameter will
decrease by work and rest in order to simulate energy consuming, so BatL(t) >
BatL(t + 1), if for some reason BatL(t) = 0, the RP will die, to avoid this the robot
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Fig. 6. Activities diagram

can pay to “eat”, this means recharge its batteries. All RPs should estimate when
they need to “eat” in order to keep alive.

PerL(t) = 1..100: Performance Level. This parameter defines the state of “Health
Level” that a RP has a time t. This parameter will decrease by work and eat in order
to simulate health depreciation, so PerL(t) > PerL(t + 1), as the performance level
drops, the time taken to carry out the work to meet the goal takes longer, so the
robot can pay to “rest”, this means restore its performance level. The cost of the
maintenance service is high and the time taken to undertake maintenance is lengthy,
in comparison to charging the battery, which is relatively quick.

4.2 Goal of the Experiment

The goal of the experiment is to demonstrate that a robot with some kind of pathol-
ogy, a lazy robot or a workaholic, will die earlier than a robot without such patholo-
gies. The workaholic robot will not perform its own personal maintenance because
of their intrinsic focus on their work. This will eventually lead to bad performance,
which will ultimately affect the productivity of the robot because it is a workaholic
who will spend more time working. Eventually the performance will be so low that
the robot will not recharge its batteries and it will die.
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4.3 Representation of Three Ego States

The program used to simulate the psychological states of the robot and to control the
actions it takes based upon its decision-making, has been developed using LabView
from National Instruments.

The psychological profile of each Ego State i.e. Parent, Adult and Child is defined
by two physiological needs, namely the need to eat or acquire energy, the need to
rest or undertake preventative maintenance and the social need to work or engage in
meaningful activity.
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Fig. 7. Psychological profile of the robot

The user interface includes a set of controls to define the ‘interest’ that each ego
state has for a particular need. The decision is taken in accordance to the “motiva-
tion” level at any particular moment in time. Each Ego State is plotted on a graph,
which records the motivation level for undertaking an activity against time. At any
one time, the level of each of the three states is presented to help the user to demon-
strate the predominate state of the robot with respect to the three “needs” (Figure 8).

4.4 Control of Decision Making by the RP

The decision making process is controlled by the cathexis level, which are illustrated
by three tanks (see Figure 8), each tank representing the cathexis level of each Ego
State, that is the Parent, Adult and Child. The decision of which activity is to be
performed is taken by the ego state with the highest level in the tank.

4.4.1 Fuzzy Inference System
Since the K p is determinant in the decision making process of the RP, we define a
FIS to calculate it, taking into account the personality profile (pp), the interest level
in performing an action i and the need indicator that triggers action i, i.e. in the
process of calculating the K p for the ES Parent and the action “ToEat” the input
is the pp, the interest level that the ES Parent has in ‘eat’ and the BatL(t), then the
output is the K p for the action “ToEat”.

Table 1 shows the linguistic values for the input variables of the FIS, they are
InterestLevel and NeedLevel, the personality profile (pp) is fixed for each simula-
tion, describing the personality profile of a RP. Table 2 shows the linguistic variable
K p, the output of the FIS.
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Fig. 8. Screenshot of the user interface

Table 1. Linguistic variables InterestLevel and NeedLevel and their Linguistic variables

Linguistic
variables

Linguistic
values

InterestLevel “veryLow” “low” “medium” “high” “veryHigh”
NeedLevel “veryLow” “low” “medium” “high” “veryHigh”

Table 2. Linguistic variable K p and their Linguistic variables

Linguistic
variable

Linguistic
values

K p “veryLow” “low” “medium” “high” “veryHigh”

The membership functions of InterestLevel, NeedLevel and the output K p are
represented in Fig 9

For each action in each ES a FIS is defined. The rules for each one are the same.
There are two cases when the NeedLevel determines the K p without evaluating any
other input, the first one is for the case when the NeedLevel becomes critical to the
viability of the robot, e.g., the BatL(t) is “veryLow”, and the other one is for the
case when the need becomes fulfilled, e.g. the BatL(t) is “veryHigh”.

If NeedLevel is “veryLow” then K p is “veryHigh”
If NeedLevel is “veryHigh” then K p is “veryLow”
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Fig. 9. (a) antecedent MFs and (b) consecuent MF

An example of the rules that evaluate InterestLevel and NeedLevel are described
below

If NeedLevel is “veryHigh” then K p is “veryHigh”
If NeedLevel is “veryLow” then K p is “veryLow”
If InterestLevel is “low” and NeedLevel is “medium” then K p is “low”
If InterestLevel is “medium” and NeedLevel is “medium” then K p is “medium”
If InterestLevel is “high” and NeedLevel is “medium” then K p is “high”
If InterestLevel is “veryLow” and NeedLevel is “high” then K p is “low”
If InterestLevel is “low” and NeedLevel is “high” then K p is “medium”
If InterestLevel is “medium” and NeedLevel is “high” then K p is “high”
If InterestLevel is “high” and NeedLevel is “high” then K p is “high”

The response of the RP not only relies in the InterestLevel and NeedLevel but
in the personality profile as well which is taken in to account in the K p calculation.
The Fig 10 shows the overall input-output surface.

4.5 Indicators of ‘Need’

In addition to the controls to define the profile, the indicators to show the cathexis
level and the graphs to show the motivation level, there are three indicators to show
the battery level associated with the necessity to eat, the performance level associ-
ated with the necessity to rest and a counter to show the work undertaken by the
robot. In addition, there is a goal indicator that is, how much work the robot needs
to do for a given period of time, defined for the indicator labelled as Time Limit.
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Fig. 11. Indicators of ‘Need’

4.6 Robot Behaviour

In the Figure 12 we show a screenshot of the result of the simulation of a robot
with a “high” concern in “work”, and “medium” concern in “eat”, as a result of this
compulsion to “work” the robot die early due starvation.

We can identify this RP as a workaholic robot that keeps working without taking
sufficient time out for maintenance, and as it keeps working the performance will
gradually decrease, the time to achieve the goal will extend and the stress levels to

Fig. 12. Screenshot of the simulation of a “workaholic” robot
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Fig. 13. Screenshot of the simulation of a “workaholic” robot

keep working will remain high. This behaviour will eventually cause the robot to
collapse.

In Figure 13 we show a screenshot of the result of the simulation of a robot with
a “very high” concern in “rest”, and “low” concern in “work”, as a result of this
the robot only work when the necessity of “eat” or “rest” appear, in consequence
the tokens earned at the end of the given period of time is extremely low. We can
identify a robot with this RP as a lazy robot.

5 Conclusions and Future Work

With the working simulation the aim will be to explore how a psychological pathol-
ogy as represented in the robot profile, will impact upon its decision making, its
ability to achieve the goals set, its responses to critical viability criteria and ulti-
mately its ’existence’ as a working, self-sustaining robot and viable system.

In this experiment the psychological profile of the robot as defined by the three
ego states described in TA is directly linked to its goal seeking behaviour as a viable
system. Looking more broadly at the rationale behind this combination of a cogni-
tive model with a systems model, the intention is to conduct experiments to help
understand social phenomena.

Clearly the experiment attempts to simulate a cognate being which can achieve
goals and maintain viability. However the model is relatively simple, the robot is
only aware of its own needs and is functioning in a very simple environment that
has limited perturbations and lacks the complexity of real social systems. The work
will look to extend the simulation to gradually increase the complexity and in doing
so, gradually improve on our understanding on how the decisions are taken in order
to maintain a viable existence.

Conscious of the need to consider ‘context’ in MAS systems, future work must
involve the interaction of robots in a constrained ‘world’, similar to a small fam-
ily where individuals at different stages of maturity e.g. father and son whose
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manifestations of ego states are different. The simulation will require the robots
to communicate and in particular must reflect relationships with responsibilities for
others and how these interactions lead to changes in ego states and in the decisions
that individual robots make relative to others. It will be important to consider the
robot both as a viable system in its own right, but recognising the recursive nature
of systems, the robot must also be considered as part of a larger family of robots
with whom it has dependencies which ensure its emotional or physical well being.

In large social systems, which encompass the population of cities like Tijuana
for example, social science researchers need tools to help them find or identify the
mechanisms which drive and underpin social problems. While TA can help social
researchers understand behaviour from a psychological perspective, the VSM and
its more systemic paradigm, helps put individuals and their decision-making be-
haviour into a context with clearly recognisable characteristics that can be identified
and analysed. This powerful combination of the cognitive with the systemic and
structural should help represent social entities both at the level of the individual and
at an organisational or social level - effectively a more natural simulation of a social
system. Given the complexity of large urban populations like Tijuana we need an
approach which can take an account of the context of an individual in a social sys-
tem and at the same time take account of social interaction recognising that the two
are part of the same communication phenomena.
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Abstract. In this paper Fuzzy Logic Systems (FLS) for controlling non-minimum-
phase systems are proposed. A generalized Proportional Integral Derivative (PID)
Fuzzy Logic Controller (FLC) for a benchmarking second order problem with an un-
stable zero is presented. The same Fuzzy Rule Base (FRB) of the PID FLC is used
in a PD FLC to regulate a plant consisting in a non-minimum-phase servomecha-
nism with nonlinear backlash. Simulations demonstrate that the proposed FLC can
be used to handle the non-minimum-phase systems.

1 Introduction

There exist several papers dealing with the stabilization of non-minimum-phase sys-
tems. For example in [7], a simple design method by means of which it is possible
to robustly stabilize, using output feedback, a significant class of uncertain nonlin-
ear systems whose zero dynamics are unstable, the proposed procedure leads to the
construction of a dynamic controller yielding robust, semi-global practical stability.

In [1] nonlinear H∞ control synthesis is extended to an output regulation problem
for a servomechanism with backlash. The problem in question is similar to one
of the problems proposed in this paper, the design a feedback controller so as to
obtain the closed-loop system in which all trajectories are bounded and the load of
the driver is regulated to a desired position while also attenuating the influence of
external disturbances.

On the other hand, Computational Intelligent (CI) strategies have been used to in
order to solve the non-minimum-phase stabilization control problem. For example
in [14] a fuzzy logic controller (FLC) is developed for the nonminimum phase sys-
tem. The well-designed fuzzy rules are exploited to resolve the undershoot problem
caused by the unstable zeros. A 3rd-order plant with two unstable zeros is used to
verify the performance of the fuzzy controlled system.

O. Castillo et al. (Eds.): Evolutionary Design of Intelligent Systems, SCI 257, pp. 245–257.
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A fuzzy logic based approach is proposed in [2] for the control of non-minimum
phase systems. In this approach, a variable structure controller can be designed using
fuzzy logic and linguistic control rules implementation.

In [3] an adaptive fuzzy logic system is incorporated with the Variable Structure
Control (VSC) system for the purpose of improving the performance of the con-
trol system. A sliding surface with an additional tunable parameter is defined as a
new output based on the idea of output redefinition, as a result the overload sys-
tem of missile with the characteristic of non-minimum phase can be transformed
into minimum-phase system by tuning the parameters of the sliding surface, and a
sliding-mode controller can be designed.

In [5] and [8], an hybridization of FLS and Genetic Algorithms (GA) [6] is used
in order to control non-minimum-phase systems, by finding the optimal parameter,
of each MF in a FLS.

This paper addresses the problem of designing FLS to control non-minimum-
phase systems, first for non-minimum-phase Linear Time Invariant (LTI) [13] class
of systems, and then for the design a feedback controller so as to obtain the closed-
loop system in which all trajectories are bounded and the load of the driver is
regulated to a desired position while also attenuating the influence of external distur-
bances, where the provided servomotor position is the only measurement available
for feedback. Performance issues of the proposed FLC output regulator constructed
are illustrated in a simulation study. In the rest of this paper a non-minimum-phase
system will be considered as defined in [13]: a system that has at least one positive
(unstable) zero.

The paper is organized as follows: Section 2 present FLS theoretical aspects,
and the designing of a FLC for controlling non-minimum-phase systems, Section 3
presents the configuration as PID FLC of the FLC designed in Section 2 to control
a non-minimum-phase LTI system with an unstable zero, Section 4 presents the
configuration as PD FLC of the FLC designed in Section 2 for the output regulation
of a servomechanism with non-minimum-phase backlash, and finally, in Section 5
we present our conclusions.

2 Fuzzy Logic Control

A FLS is a numerical system that makes a nonlinear mapping from input to output
data. A FLS consists of four basic elements (see Fig.1): the fuzzifier, the fuzzy rule-
base, the inference engine, and the defuzzifier. The fuzzy rule-base is a collection
of rules in the form of (2), which are combined in the inference engine to produce
a fuzzy output. The fuzzifier maps the crisp input into Fuzzy Sets (FS), which are
subsequently used as inputs to the inference engine, whereas the defuzzifier maps
the FS produced by the inference engine into crisp numbers.

A FS can be interpreted as a MF Ux that associates with each element of x of the
universe of discourse, U , a number μX(x) in the interval [0,1]:

μx : U → [0,1]. (1)
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Fig. 1. Structure of Fuzzy Logic System.

2.1 FLC Design

To solve the regulation problem for non-minimum-phase systems, we propose two-
input one-output rules in the formulation of the knowledge base. The IF-THEN rules
are according with the Mamdani type of Fuzzy Inference Systems [10][9][11]:

IF y1 is Al
1 AND y2 is Al

2 THEN y3 is Bl (2)

where [y1,y2]T = y ∈ U = U1 ×U2 ⊂ IR2, where y1 is the fuzzified value of a mea-
sured variable, y2 is the fuzzified value of the derivative of the measured variable
and y3 ∈ V ⊂ IR. For each input fuzzy set Al

k in yk ⊂ Uk with k = 1,2; and output
fuzzy set Bl in y3 ⊂ V exists an input membership function μAl

k
(yk) whit k = 1,2,

and output membership function μBl ∈ y3 ⊂V , respectively, with l being the number
of membership functions associated to the input k.

The particular choice of each μBl (y3) will depend on the heuristic knowledge of
the experts over the plant.

We select triangular membership functions for each input (error and change of
error) and output (control) variables, granulating each one of these three variables

Table 1. Fuzzy rules

No. error change of error control
1 n n p
2 n z p
3 n p z
4 z n z
5 z z z
6 z p z
7 p n z
8 p z n
9 p p n
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Fig. 2. Input variable error.
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Fig. 3. Input variable change of error.

in three fuzzy sets: negative (n), zero (z) and positive (p). The shape of the variables
can be seen in Fig. 2, 3 and 4 respectively.

These input and output variables are combined in a FRB in the form of (2), and
we select the fuzzy rules shown in Table 1.
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Fig. 4. Input variable control.
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For the inference process, we implement the Mamdani [10][9] type of Fuzzy
Inference, with minimum as disjunction operator, maximum as conjunction operator,
minimum as implication operator, maximum as aggregation operator and Centroid
(COA) [4] as our defuzzification method.
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Defuzzification refers to the way a numeric value is extracted from a fuzzy set as
a representative value. In general, the defuzzification methods take a fuzzy set B of
a universe of discourse V, where B is usually represented by an aggregated output
membership function.

The COA defuzzication method is expressed as

τm =

∫
y3
μB(y3)y3dy3∫

y3
μB(y3)dy3

, (3)

where μB(y3) is the aggregated output MF. This is the most widely adopted de-
fuzzification strategy, which is reminiscent of the calculation of expected values in
probability distributions.

The FLS is builded with the FRB of Table 1 and triangular MF of Figs. 2, 3 and
4, this FLS outputs the control surface of Fig. 5.

3 Controlling a LTI System with an Unstable Zero

The LTI [13] systems, are systems that can be represented by ordinary differential
equations.

A LTI system that has a positive zero is called a non-minimum-phase system, the
fact that a system has a positive zero means that the zero is unstable.
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Fig. 6. System (4) response to the unitary step.
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Fig. 9. Control signal applied to system (4) in the closed-loop.

Let us consider the following non-minimum-phase system:

H(s) =
(s−1)

s2 + 5s+ 4
. (4)

The open-loop system response of (4) to an unitary step is depicted in Fig. 6.
In order to regulate system (4) in a set-point of 1, we implement a Fuzzy PID

Controller with the control law (3), with (2), FRB of Table. 1 and the MF parameters
proposed in Section 2. The closed-loop systems’ response is in Fig. 7, the behavior
of the input variables error and change of error is in Fig. 8, and the control signal
applied is in Fig. 9. Considering a settling criterion of ±1%, the closed-loop system
achieves the control objective in 5.4 seconds.

4 Controlling a Servomechanism with Non-Minimum-Phase
Backlash

In order to prove the robustness of the proposed FLC a different problem is pro-
posed: the output regulation problem of a servomechanism with non-minimum-
phase backlash.

4.1 Dynamic Model

The dynamic models of the angular position qi(t) of the DC motor and the q0(t) of
the load are given according to
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J0N−1q̈0 + f0N−1q̇0 = T + w0

Jiq̈i + fiq̇i + T = τm + wi
(5)

hereafter, J0, f0, q̈0 and q̇0 are, respectively, the inertia of the load and the reducer,
the viscous output friction, the output acceleration, and the output velocity. The in-
ertia of the motor, the viscous motor friction, the motor acceleration, and the motor
velocity denoted by Ji, fi, q̈i and q̇i, respectively. The input torque τm serves as a
control action, and T stands for the transmitted torque. The external disturbances
wi(t), w0(t) have been introduced into the driver equation (5) to account for desta-
bilizing model discrepancies due to hard-to-model nonlinear phenomena, such as
friction and backlash.

The transmitted torque T through a backlash with an amplitude j is typically
modeled by a dead-zone characteristic [12, p.7]:

T (Δq) =
{

0 |Δq| ≤ j
KΔq−K jsign(Δq) otherwise

(6)

with
Δq = qi −Nq0, (7)

where K is the stiffness, and N is the reducer ratio. Such a model is depicted in Fig.
10. Provided the servomotor position qi(t) is the only available measurement on the
system, the above model (5)-(7) appears to be non-minimum-phase because along

(a)

−j 

j Δ q 

T 

Fig. 10. The dead-zone model of backlash.
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with the origin the unforced system possesses a multivalued set of equilibria (qi,q0)
with qi = 0 and q0 ∈ [− j, j].

4.2 Problem Statement

To formally state the problem, let us introduce the state deviation vector x =
[x1,x2,x3,x4, ]T with

x1 = q0 −qd

x2 = q̇0

x3 = qi −Nqd

x4 = q̇i

where x1 is the load position error, x2 is the load velocity, x3 is the motor position
deviation from its nominal value, and x4 is the motor velocity. The nominal motor
position Nqd has been pre-specified in such a way to guarantee that Δq = Δx, where

Δx = x3 −Nx1,

and the output is given by
y = x3. (8)
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Fig. 13. Control signal applied to system (5)-(8) in the closed-loop.



256 N.R. Cazarez-Castro et al.

The objective of the Fuzzy Control output regulation of the nonlinear driver sys-
tem (5) with backlash (6), is thus to design a Fuzzy Controller so as to obtain the
closed-loop system in which all these trajectories are bounded and the output q0(t)
asymptotically decays to a desired position qd as t → ∞ while also attenuating the
influence of the external disturbances wi(t) and w0(t).

4.3 Simulation Results

In order to regulate system (5)-(8) in a desired set-point of qd = π/2, we implement
a Fuzzy PD Controller with the control law (3), with (2), FRB of Table. 1 and MF
parameters proposed in Section 2. Fig. 11 shows the closed-loop systems response,
the behavior of the input variables error and change of error is in Fig. 12, and
the control signal applied is in Fig. 13. Considering settling criterion of ±1%, the
closed-loop system achieves the control objective in 14.5 seconds.

5 Conclusions

The main goal of this paper was to show that a FLC is a good strategy to control
non-minimum-phase systems. This goal was achieved designing the FLC of Section
2. This FLC was configured in a close-loop system in to different control problems:

• the regulation of a LTI non-minimum-phase system, and
• the output regulation of a servomechanism with non-minimum-phase backlash.

In the first problem, regulation of a LTI non-minimum-phase system, the pro-
posed FLC was configured as a Fuzzy PID controller in a closed-loop system,
achieving the control objective satisfactory.

In the second problem of the output regulation of a servomechanism with non-
minimum-phase backlash, the proposed FLC was configured as a Fuzzy PD con-
troller in a closed-loop system, achieving the control objective in a satisfactory
manner.

The simulations presented in this paper show that the proposed FLC is robust,
that is, the FRB and parameters of membership functions can be configured in dif-
ferent ways to achieve different control objectives, furthermore, this same FLC can
be used in different control problems that do not include the non-minimum-phase
phenomenon.
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Abstract. This paper presents an Genetic Algorithm (GA) for the design of walking
patterns of a 3-DOF biped robot formulated as a system with impulse effects. The
GA optimizes the coefficients of a polynomial which represents the desired behavior
of the walking which is included into the dynamics of the biped robot to obtain peri-
odic motions while fulfills a minimal energy consumption over a complete walking
cycle assumed as single support and instantaneous double support phases. Optimiza-
tion results are presented showing walking patterns with low energy consumption
and periodic motions.

1 Introduction

In the last years several results has been provided for the stabilization of the biped
locomotion, which usually are based on find a suitable reference trajectory i. e. walk-
ing pattern such that guarantee to perform stable steps while obey a certain criteria
such as walking velocity, step length, step frequency, including energy minimization
[16], [17]. Recent methods proposed for the walking pattern synthesis incorporate
the zero moment point approach (ZMP) [18] as stability criteria. Qiang et. al. in [9]
considering the ground condition and walking patterns with small torque and veloc-
ity of the joint actuators are obtained. Capi et. al. in [3] generate the joint trajectories
for walking and going up-stairs based on consumed energy and torque change using
evolutionary computation methods. Denk et. al. in [5] propose a systematic approach
for the design of a walking pattern database using optimal control techniques and
ZMP for prevention of the foot rotation and ensure the feasibility of the walking;
Kajita et. al. in [11] introduce a method for a walking pattern generation by using a
preview control of ZMP that uses reference future.

On the other hand the formulation for the walking pattern synthesis is done
as a optimal control problem and optimization techniques are used. Bessonnet et
al. in [2], by quadratic programming define the generalized coordinates as spline
functions such that fulfill the minimization of the amount of the driving torques.

O. Castillo et al. (Eds.): Evolutionary Design of Intelligent Systems, SCI 257, pp. 259–271.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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A Genetic Algorithm is used as optimization method by Sang-Ho et. al. [4] to deter-
mine the shape of velocities and accelerations trajectories that minimizes the sum of
deviation of each one through the search of suitable via points for obtain smooth and
stable walking. Likewise, Park et. al. in [15] obtain an optimal locomotion pattern
with minimal energy consumption and optimal locations of the center of mass of the
links.

This paper is concerned in the energy optimal walking pattern design for a biped
robot modeled as a system with impulse effects. The joint trajectories are parameter-
ized as an polynomial (as are reported in [15]), which are included into the dynam-
ics of the biped robot. A real coded Genetic Algorithm (GA) is used as optimization
method to find the compatible polynomial coefficients which minimize the required
input energy during the walking cycle while holding a stable walking motions. The
optimization process is based on the evaluation of the biped robot in closed-loop,
considering a set of constraints which guarantee no violation of the biped model
assumptions and reach periodic walking motions. The difference with related pub-
lications is the generation of walking patterns whose motions are restricted to be
described as periodic orbits and the design is not based on the ZMP approach, thus
the reported walking patterns, allow more maneuvers than in this work is so far of
our goal.

The paper is organized as follows: Section 2 presents the mathematical model of
an 3-DOF biped robot. In Section 3, the problem formulation is summarized. Sec-
tion 4, presents the GA implementation details used for the problem optimization
established in previous section. Section 5, presents the results of numerical simula-
tions. Section 6 provide the conclusions.

2 Biped Robot Model

In this section the dynamical model of a planar biped robot is introduced. The biped
robot consists of a torso, hips, and two legs of equal length without ankles and
knees. Two torques are applied between the legs and torso, so the system is under
actuated. The definition of the angular coordinates and the disposition of the masses
of the torso, hips and legs of the biped robot are shown in Figure 1, note that positive
angles are computed in clockwise with respect to the indicated vertical lines and all
masses of the links are lumped.

The walking cycle takes place in sagittal plane and on a level of surface, and it is
assumed as successive phases where only one leg (stance leg) touching the walking
surface (swing phase), with the transition from one leg to another taking place in a
smaller length of time. During swing phase, the stance leg is modeled like a pivot
and the swing leg is assumed move into the frontal plane [13] and to renter the
plane of the motion when the angle of the stance leg attains a given desired value.
The assumptions concerning to the walking cycle, define the biped robot model in
two parts: the model that describe the swing phase and another one that describe the
contact event of the swing leg with the walking surface; which are presented below.
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Fig. 1. 3-linkbiped robot.

2.1 Dynamic Model

The dynamical model of the robot during the swing phase is a second order system
derived of Lagrange method [12]:

M(θ )θ̈ +C(θ , θ̇)θ̇ + G(θ ) = Bu, (1)

where θ = [θ1,θ2,θ3]T are the generalized coordinates, θ1 parameterizes the stance
leg, θ2 the swing leg and θ3 the torso; u = [u1,u2]T are the input; M(θ ) is a positive-
definite inertia matrix, C(θ , θ̇ )θ̇ is the vector of the centripetal and Coriolis forces;
and G(θ ) is the vector of the conservative forces and B is the input matrix.

Transforming the second order equation (1) to state-space form by defining

ẋ := d
dt

[
θ
θ̇

]
=

[
θ̇

M−1(θ )[−C(θ , θ̇ )θ̇ −G(θ )+ Bu]

]
:= f (x)+ g(x)u. (2)

2.2 Impact Model

The impact between the swing leg and the ground is modeled like a contact between
two rigid bodies. The main objective is to obtain the velocity of the generalized
coordinates after the impact of the swing leg with the walking surface in terms of
the velocity and position before the impact. The impact model for the biped robot
is based in the rigid impact model of [10] and assume the case where the contact
of the swing leg with de walking surface produce either no rebound nor slipping of
the swing leg, and the stance leg lifting the walking surface without interaction. The
conditions in [10] for these assumptions to be valid are that:
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1. the impact takes place over an infinitesimally small period of time;
2. the external forces during impact can be represented by impulses;
3. impulsive forces may results in instantaneous change in the velocities of the

generalized coordinates, but positions remain continuous;
4. the torques supplied by the actuators are not impulsional.

Taking into account the previous assumptions, the impact model is expressed
with the equation [19]: [

Me −ET

E 0

][
θ̇+

e
F

]
=

[
Meθ̇−e

0

]
, (3)

where θe = [θ1,θ2,θ3,z1,z2]T are the generalized coordinates resulting of the add
the Cartesian coordinates [z1,z2]T of the end of the stance leg as shown in Figure 1;
Me is the positive-definite inertia matrix of the biped model with the new generalized
coordinates; F = [FT ,FN ]T is the tangential and normal forces applied at the end of
the swing leg; θ̇+

e is the velocity after the impact; θ̇−e is the velocity before the
impact and

E :=
∂Y
∂θe

=
[

r cos(θ1) −r cos(θ2) 0 1 0
−r sin(θ1) r sin(θ2) 0 0 1

]
, (4)

obtaining θ̇+
e of the equation (3) must be done a change of coordinates and re-

initialize the model (2). The change of coordinates is an expression for x+ :=
(θ+, θ̇+) in terms of x− := (θ−, θ̇−), which is given for the mapping function:

x+ = Δ(x−) :=
[
θ−2 θ−1 θ−3 θ̇+

2 (x−) θ̇+
1 (x−) θ̇+

3 (x−)
]
. (5)

Thus, the overall model of the biped walking is the combination of the swing
phase model and impact model, as follows:

Σ :

{
ẋ = f (x)+ g(x)u x− /∈ S

x=Δ(x−) x− ∈ S
(6)

where
S := {(θ , θ̇)|z1 > 0,z2 = 0,θ1 = θ d

1 } (7)

3 Problem Formulation

This paper is based on the feedback controller for walking proposed by Grizzle et
al. in [19] which designs a feedback for posture control and swing leg advancement
of the biped robot (6), where the posture control means maintaining the torso angle
at a constant value θ d

3 and swing leg advancement consists in driving the swing leg
to behave as mirror image of the stance leg (θ2 = θ1). Thus, the behavior is encoded
into the dynamics of the robot by defining the following output function:

y :=
[

y1

y2

]
:=

[
h1(θ ,a)
h2(θ ,a)

]
:=

[
θ3 −hd,1(θ1,a)
θ2 −hd,2(θ1,a)

]
(8)
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where

hd,1(θ1,a) := a0
1 + · · ·+ a3

1(θ1)3

hd,2(θ1,a) := −θ1 +(a0
2 + · · ·+ a3

2(θ1)3)× (θ1 +θ d
1 )× (θ1 −θ d

1 )
(9)

with the control objective being to zeroing the outputs (8), they define the feedback

u(x) := (LgLf h(x))−1(Ψ(h(x),Lf h(x))−L2
f h(x)) (10)

and

Ψ(y, ẏ) :=
[ 1
ε2ψα(y1,ε ẏ1)
1
ε2ψα(y2,ε ẏ2)

]
(11)

ψα(x1,x2) := −sign(x2)|x2|α − sign(φα(x1,x2))|φ(x1,x2)| α
2−α (12)

φα := x1 +
(

1
2−α

)
sign(x2)|x2|2−α (13)

The problem statement is described as follows: Given the biped robot model (6)
and the feedback (10), find the parameters a j

i of the function in (9) such that it
obtains a walking pattern which produce periodic walking motions with low energy
consumption.

4 Optimization Strategy

According to the problem, a Genetic Algorithm (GA) is proposed to solve the opti-
mization problem. GA are search algorithms based on natural selection and natural
genetic principles [8], apply them to optimization problems differ from traditional
optimization methods that they use: payoff information (based on a objective func-
tion), no derivatives or other auxiliary knowledge; a coding of the parameters, not
the parameters themselves and probabilistic rules as a tool to guide the search [14].

The implementation of the GA begins with the election of consistent decision
variables which to solve the problem continuing with the coding of them into a
string called individual, as well as an objective function which provide a numerical
value that indicate the goodness degree or fitness of the individual to solve the prob-
lem. The GA operation consist of several stages, that to imitate the natural principles
in which are based: The initialization stage where a set of individuals called popu-
lation is created randomly; the selection stage in which each individual is evaluated
through the objective function, the values of the evaluation are used by a selec-
tion algorithm that identifies and choose the fittest individuals that to serve as the
parents for the creation of new individuals; The new individuals are created by ap-
plying the genetic operations to the individuals selected in the previous stage. This
operations are: crossover, which with certain probability, combine the parameters
encoded between pairs of individuals producing two individuals with information
of both parents and the mutation, which is the alteration of the value of one parame-
ter encoded in the individual, its function is to introduce diversity in the population,
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this stage is called reproduction; the last stage is the replacement, it consist in the
creation of the new population with the new individuals and the parents. The overall
stages is performed of iterative manner, each iteration is called generation. The GA
operation explained above is expressed through an algorithm as shown below:

1. Begin
2. i ← 0
3. Create a population Pi of N individuals
4. Evaluate fitness of all individuals of the population:

Pe
i ← Fitness(Pi)

5. Repeat the steps until the conditions are reached
a) Select the parents for matting: Ps

i ← Select(Pi,Pe
i )

b) Apply crossover and mutation: Pg
i ← Genetic Operation(Ps

i )
c) i ← i+1
d) Create the new population: Pi ← New Pop(Pg

i ,Pi−1)
e) Evaluate fitness of new individuals: Pe

i ← Fitness(Pi)
6. Print out the best solution
7. End

Thus, the details of our implementation of the each stage are provided below.

4.1 Individual Representation

The individual representation selected is the real coding scheme, whose genotype is
composed by eight real numbers such that represent to each parameter a j

i (decision
variables) of the function in (9).

4.2 Objective Function

The goal of the GA is the minimization of the cost function which represents the
approximation to the average energy consumed over the walking cycle:

Ĵ(a) =
∫ T

0
(u2

1 + u2
2)dt (14)

where T is such that θ1(T )−θ d
1 = 0, and u(t) is obtained of applying (10) into the

closed loop with the biped robot model (2) and (8).
This cost function is subject to the following constraints taking of [7]:

ˆ̇θ−1 −0.99λ ( ˆ̇θ−1 ) ≤ 0
‖y(t)‖ ≤ 0
|FT

FN
|− μ ≤ 0

−ż+
2 ≤ 0

(15)

The first constraint assures the existence of the one fixed point, the second one as-
sures that the controller has converged before the impact and the last two constraints
verify the validity of the impact model.
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4.3 Genetic Operations

The genetic operations comprise the classical one point crossover and non-uniform
mutation [6][14]. Non-uniform mutation is defined as follows: if st

v = [v1, ...,vm] is
a individual (with t, which means the generation number) and the element vk was
selected for this mutation, the result is a vector st

v = [v1, ...,v
′
k, ...,vm] where:

v
′
k =

{
vk +Δ(t,UB− vk) if a random digits is 0
vk −Δ(t,vk −LB) if a random digit is 1

(16)

and LB and UB are the lower an upper domains bounds of the variable vk the func-

tion Δ(t,y) = y
(

1− r
(
1− t

T

)b
)

return a value in the range [0,y]; r is a random

number, T is the maxima generation number and b is the dependency degree on the
iteration number.

5 Simulation Results

The GA was developed in MatLab with the characteristics described in Section III,
the individual evaluation is during one walking cycle and uses the implementation in
software of 3-DOF model (6) with the controller (10) available in [1]. The physical
parameters of the biped model are shown in the Table 1, pre-impact angular velocity
is taken as θ̇−1 = 1.55, the friction coefficient μ ≥ 2

3 , and the controller parameters
for equations (11) and (12) are ε = 0.1 and α = 0.9 respectively. Details of the biped
model can be found in [19].

In the Table 3 presents the parameters for the function (9) and the energy con-
sumption as results of five independent GA executions using the GA parameters

Table 1. Biped model parameters

Parameter Value
Mass of Hips (MH ) 15 kg
Mass of Torso (MT ) 10 kg
Mass of Legs (m) 5 kg
Length of legs (r) 1 m
Length of torso (l) 0.5 m

Table 2. Genetic algorithm parameters

Parameter Value
Number of individuals 100

Number Maximum of Generations 400
Crossover Rate 0.9
Mutation Rate 0.2
Selection Rate 0.4
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Table 3. Parameter a j
i and energy magnitude results with the GA

Parameters
Number a0

1 a1
1 a2

1 a3
1 a0

2 a1
2 a2

2 a3
2 Ĵ(a)

1 0.5893 0.4644 1.5558 -0.0367 -1.2656 1.0308 1.1086 3.7436 719.32
2∗ 0.5120 0.0730 0.0350 -0.8190 -2.2700 3.2600 3.1100 1.8900 761.00
3 0.7098 0.0581 0.0536 -1.0280 -1.9803 2.5752 3.6109 2.0000 1225.40
4 0.3992 0.7515 -2.5759 2.5365 1.8022 0.5344 0.2620 6.0033 1679.20
5 1.0730 -0.4986 -0.4127 1.6194 2.7029 -1.4978 1.6201 -0.8384 2541.70
6 0.2892 1.9435 -2.8760 0.4328 2.0252 4.5643 -0.5546 -4.1460 2980.50
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Fig. 2. Joint positions and velocities trajectories corresponding to closed-loop system execu-
tion with the parameters of the first entry of the Table 3
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Fig. 3. Output function trajectories corresponding to closed-loop system execution with the
parameters of the first entry of the Table 3

showed in the Table 2. The second entry on the table 3 include the parameters ob-
tained by Grizzle et. al. in [19] with the same biped robot model using a traditional
optimization method.
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The results summarized in the Figures 2 to 5, corresponds to the closed-loop
system simulations using the walking patterns defined by parameters of the first
entry of the Table 3, and Figure 6 shows the fitness values of the best individual in
each generation, finishing the optimization process about 140th generation. Overall
results depict the execution of the closed-loop system performing eight steps. Note
that the energy magnitude obtained with GA is slightly lower than the reported in
[19]. The joint trajectories in the Figure 2 shows that the time needed to execute the
first step is longer due that minimal change in the input torques succeeded, hence
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Fig. 4. Control signals corresponding to closed-loop system execution with the parameters of
the first entry of the Table 3
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Fig. 10. Orbits corresponding to closed-loop system execution with the parameters of the
sixth entry of the Table 3

the motion turning slow, after these, the step time tend to be the same through the
following steps. In the Figures 7 to 10 demonstrate the results whose parameters
are not optimal in energy magnitude, but still produce periodic walking motions.
Moreover, in the Figures 5 and 10 present the orbits for both simulations cases,
which shown the periodic nature of the walking.

6 Conclusions

In this paper a GA for the design of walking patterns of a biped robot was presented.
The design approach consists in the search of suitable coefficients of a function,
which describe the desired behavior of the joint trajectories such that produce pe-
riodic walking motion while keeping a minimal energy consumption. The numerical
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results with the function obtained by GA in the closed-loop system shows that this
approach can provide a set of different walking patterns whose motions are de-
scribed as periodic orbits and was able to obtain near optimal energy magnitudes.
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Abstract. This paper describes the design and implementation of the fuzzification
stage for type-1 and type-2 fuzzy inference systems (FIS). A versatile method to
calculate the membership values was used, it handles real numbers using decimal
floating point binary encoding to calculate the slopes of triangular and trapezoidal
membership functions. The designs were developed using VHDL code for FPGA
implementation. The type-1 implementation is shown to give the basis of the type-2
implementation, which is based on the average method that consists in substituting
an interval type-2 FIS by two type-1 FISs to cope with uncertainty. The function-
ality of the designs were evaluated by the analysis of the control surface plots of
a speed controller for a DC motor. The plots were obtained from Simulink models
that includes the VHDL designs developed in the Xilinx ISE. They were imported
to the Simulink environment through the Xilinx System Generator.

1 Introduction

Recently, there has been an increasing interest in the research and implementations
of type-2 fuzzy systems because they offer bigger advantages in handling uncer-
tainty with respect to type-1 fuzzy systems [4, 7, 9, 10, 11]; so, many researchers
have found this characteristic very interesting to be applied in the design of new dig-
ital controllers. This statement is supported by several research reports that cover
from theoretical studies to physical implementations [20, 21]. However, it is well
known that the implementation of type-2 fuzzy systems demand higher computa-
tional resources, this requirement is very difficult to satisfy for low cost microcon-
troller systems for industrial or consumer use.

With the rapid development of the Very Large Scale Integrated Circuits (VLSI),
such as the Field Programmable Gate Array (FPGA) and the Applied Specific Inte-
grated Circuit (ASIC), as well as the development of new programming tools that
allow to take complex digital designs to practice in a very small time, now, it is

O. Castillo et al. (Eds.): Evolutionary Design of Intelligent Systems, SCI 257, pp. 273–293.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Overview of the computer architecture used to test and validate the VHDL code of the
fuzzification stage.

possible to design and implement high performance systems embedded into an inte-
grated circuit. Nowadays, the study and proposals to implement a fuzzy system into
an FPGA is growing up [23].

The main objective of this work is to show how to implement the fuzzification
stage of a type-2 fuzzy system based on the average of two type-1 fuzzy systems
using the method proposed in [20]. The proposed algorithms were tested using the
Xilinx System Generator (XSG) from Xilinx, and the Matlab/Simulink from Math-
works. In [26], the details to implement and validate through the Xilinx System
Generator (XSG) the type-1 fuzzification stage were published. Fig. 1 shows the
setting up of the software architecture that was used to test and validate the type-1
and type-2 fuzzification stages. Note in this figure, that there is a main block contain-
ing three sub-blocks: Fuzzification, inference, and defuzzification. The fuzzification
block has two inputs, and one output, this block is related with another block labeled
as VHDL (Very High Description Language) to indicate that this stage was pro-
grammed using this high level hardware description language; the other two stages
(inference and defuzzification) are related with one block labeled as MATLAB to
indicate that these stages were programmed using Matlab/Simulink. Regarding the
fuzzification stage, two different architectures were proposed, they are: Fuzzifica-
tion using only the active MFs, and fuzzification using all the MFs. In the first one,
only the affected MFs by the inputs were considered. In the second architecture, all
the MFs were considered. This work is focused on the design of the fuzzification
stage for active MFs.

There are other works related to this one; for example, for type-1 fuzzy sys-
tems [13, 15, 18, 19, 22, 24, 25], in the book [17] the authors give an academic
example of the VHDL coding of a type-1 fuzzy controller. With respect to type-2
fuzzy systems there are some works like [14, 15, 16].

This work has been organized as follows: Section 2 is devoted to give an intro-
duction from crisp sets to type-1 and type-2 fuzzy sets (FSs), some useful definitions
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about generalized type-2 fuzzy sets are given with special emphasis in the MFs. In
section 3 the mathematics for interval type-2 fuzzy sets is given. In section 4 the
average type-2 fuzzy inference system is explained, emphasizing on the fuzzifica-
tion stage. Section 4.1 was dedicated to explain the most common methods to per-
form digital fuzzification, we explain in this section the method used in this work,
two important piece of VHDL code to fuzzify using triangular and trapezoidal MFs
are given; also, we explain the arithmetic method used to handle real and integers
numbers to improve the performance, a numeric example is given. Section 5 was
dedicated to explain the general idea that was followed in testing and validating this
stage. First, using a type-1 FS, an explanation of the input and output MFs, and their
respective linguistic variables and terms is given, we show the design entity for this
system. Next, it is explained how to implement the type-2 fuzzification stage for
the average method, by taking advantage of VHDL code reusability; i.e., using two
times the same VHDL code previously developed for the type-1 FS. Moreover, a
Simulink model that allows to test the developed type-2 VHDL code for the fuzzifi-
cation stage is shown. Finally, in section 5.4 some conclusions about this work are
given.

2 Sets

This section is dedicated to provide definitions of set theory, starting with “crisp
sets”, in order to introduce the basic concepts of type-1 and type-2 fuzzy set theory.

2.1 Crisp Sets

In classical set theory (George Cantor, 1845-1918) [2], a set A is comprised of ele-
ments x with membership into a universe of discourse X ; i.e., x ∈ X . The member-
ship of an element can be expressed using a membership function (MF) that is also
known as characteristic function or discrimination function [12]. The definition 1
is valid to represent a MF in the classical bivalent set (crisp set) theory. One of the
most common method to represent the crisp set A is,

A = {x|x ∈ X} (1)

Definition 1. For a crisp set A, the membership function μA is defined as

∀x ∈ X , μA(x) =
{

1 if x ∈ A
0 if x /∈ A

(2)

in other words, the function μA maps the elements in the universal set X to the set
{0,1},

μA(x) : X →{0,1}. (3)

��
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2.2 Fuzzy Sets

Ordinary fuzzy sets were developed by Lotfi Zadeh in 1965 [28], they are an exten-
sion of classical set theory where the concept of membership was extended to have
various grades of membership on the real continuous interval [0,1]. The original
idea was to use a fuzzy set (FS); i.e, a linguistic term to model a word; however,
after almost ten years, Zadeh introduced the concept of type-n FS as an extension
of an ordinary FS (type-1 FS) with the idea of blurring the degrees of membership
values [27].

Type-1 fuzzy sets have demonstrated to work efficiently in many applications,
most of them use the mathematics of fuzzy sets but losing the focus on words, that
are mainly used in the context to represent a function that is more mathematics
than linguistic [8]. Membership functions are used to characterize type-1 and type-2
fuzzy sets.

2.2.1 Type-1 Fuzzy Sets
Previously, we mentioned that a FS and its MF is an extension of a crisp set defined
in (1) and in (3), respectively. Therefore, that definition has been modified for the
FS and the MF. A type-1 FS is a set of ordered pairs expressed by (4) [6], and its
corresponding MF is given by definition 2,

A = {(x,μA(x))|x ∈ X} (4)

Definition 2. For a type-1 fuzzy set A, each element is mapped to [0,1] by its MF
μA, where [0,1] means real numbers between 0 and 1, including the values 0 and 1,

μA(x) : X → [0,1]. (5)

��
2.2.2 Type-2 Fuzzy Sets
In a type-1 FS the word fuzzy has the connotation of uncertainty, the problem is that
once the MF parameters have been specified the type-1 FS is completely certain;
as a direct consequence of limitations of type-1 fuzzy sets to handle appropriately
linguistic uncertainties type-n fuzzy sets were proposed [28], being type-2 fuzzy
sets an special case, the advent of this new type of fuzzy sets came with the fact
that uncertainty is always encountered in real life problems and in different ways;
so, type-2 fuzzy sets allow to handle appropriately linguistic and random uncertain-
ties [1, 10].

A pointwise definition of a type-2 FS is given as follows,

Definition 3. For a type-2 FS Ã characterized by a type-2 MF μÃ(x,u) were x ∈ X
and u ∈ Jx ⊆ [0,1], i.e.,

Ã =
{
(x,u), μÃ(x,u)| ∀ x ∈ X ,∀ u ∈ Jx ⊆ [0,1]} (6)

where 0 ≤ μÃ(x,u) ≤ 1. ��
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Another way to express Ã is,

Ã =
∫

x∈X

∫
u∈Jx

μÃ(x,u)/(x,u) Jx ⊆ [0,1] (7)

Similar to type-1 FS, the symbol
∫

stands for union of continuous functions, and
the corresponding symbol for discrete functions is ∑; then in (7),

∫ ∫
denotes union

over all admissible x and u.

Definition 4. The 2D plane with axes u and μÃ(x′,u) formed with x = x′ is called a
vertical slice of μÃ(x,u). ��
Definition 5. A secondary MF is a vertical slice of μÃ(x,u); in particular,μÃ(x =
x′,u) for x′ ∈ X y ∀u ∈ Jx′ ⊆ [0,1], i.e.,

μÃ(x = x′,u) ≡ μÃ(x′) =
∫

u∈Jx′
fx′(u)/u Jx′ ⊆ [0,1]. (8)

where 0 ≤ fx′ ≤ 1. ��
We can drop the prime notation on μÃ(x′) ∀x′ ∈ X and refer to μÃ(x) as a secondary
membership function also known as the secondary set, which is a type-1 FS.

Using the concept of secondary sets, a type-2 FS can be reinterpreted as the union
of all the vertical slices,

Ã = {(x,μÃ)|∀x ∈ X} (9)

or, as

Ã =
∫

x∈X
μÃ(x)/x =

∫
x∈X

[
∫

u∈Jx

fx(u)/u]/x Jx ⊂ [0,1]. (10)

Definition 6. The primary membership of x, Jx (Jx ⊆[0,1] ∀x ∈ X), is the domain of
a secondary MF. ��
Definition 7. A secondary grade is the amplitude of a secondary MF. For example,
in (10) fx(u) is a secondary grade. ��
Definition 8. A main membership function of a type-2 FS is the union of all the
secondary grades equal to 1 (considering that each secondary MF has only one
secondary grade equals to 1); i.e.,

μmain(x) =
∫

x∈X
u/x where fx(u) = 1 (11)

��
Generalized type-2 fuzzy sets are those where secondary membership grades are in
the range of [0,1]; but there is the case when secondary grades are always 1, then
we have the next definition,
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Definition 9. A type-2 FS where its secondary MF is always 1 ( fx(u) = 1, ∀u ∈
Jx ⊆ [0,1]), is called an interval type-2 FS.

Definition 10. The footprint of uncertainty (FOU) is the union of all primary mem-
berships, it is represented as a bounded region that contains uncertainties in the
primary memberships of a type-2 FS, Ã, i.e.,

FOU(Ã) =
⋃
x∈X

Jx (12)

��
The concept of FOU is very useful because it allows to focus the attention only
on the inherent uncertainties of a type-2 MF. For convenience, the FOU can be
described in terms of upper and lower MFs, so we have the next definition.

Definition 11. There are two type-1 membership functions that are the bounds of
the FOU, they are the upper and the lower membership functions. The upper bound
of FOU(Ã) is associated with the upper MF, which is denoted by μ̄Ã(x), ∀x ∈ X .

The lower bound of FOU(Ã) is associated with the lower MF denoted by μ
Ã
(x),

∀x ∈ X , i.e.,
μ̄Ã(x) = FOU(Ã) ∀x ∈ X . (13)

μ
Ã
(x) = FOU(Ã) ∀x ∈ X . (14)

��
Figure 2 shows an interval type-2 MF, the shadow region is the FOU. At the points
x1 and x2 are the primary MFs Jx1 and Jx2 , the corresponding secondary MFs μÃ(x1)
and μÃ(x2) are shown in Figure 3.

x

1
x

J
2

x
J

Fig. 2. Type-2 membership function with FOU showing the primary memberships.
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Fig. 3. Secondary membership values a) Jx1 , b) Jx2 .

3 Interval Type-2 Fuzzification Stage

In section 2.2.2 was mentioned that type-2 FSs were proposed to cope with the
uncertainty that might come from several sources; and it was used the term linguistic
uncertainties when the FS is used to model a word, this to embrace uncertainties
from fuzziness (or vagueness) that result from imprecise boundaries of FSs, non-
specificity which is connected with sizes (information based-imprecision), and strife
(or discord) that expressed conflicts among the various sets or alternatives [8]. In
this section, a summary of type-2 FIS is provided, emphasizing on the fuzzification
stage, since it is the aim of this chapter. Figure 4 shows a schematic of a type-2 FIS,
it has been divided in four stages: fuzzification, inference engine, type reducer and
defuzzification. The task of the fuzzifier is to map a crisp value x = (x1, . . . ,xp)T ∈
X1 × X2 × . . . × Xp ≡ X into a type-2 FS Ãx in X. Ãx is a type-2 fuzzy singleton if
μÃx

= 1/1 for x = x′ and μÃx
= 1/0 for all other x �= x′ [10, 9].

Figure 5 shows an example of the fuzzification process for an interval type-2 FIS,
the universe of discourse X is in the range of [−10,10]. Considering that the input
x =-4 cuts the type-2 MFs “Negative” and “Zero”, for the upper bound of the first
MF the membership value is μ̄N=0.6, and for the lower bound A is μ

N
=0.5 a set of

Fig. 4. Type-2 fuzzy system.
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Fig. 5. Interval type-2 MFs.

Fig. 6. Pictorial description of input and antecedent operations for an interval type-2 single-
ton, the process uses the minimum t-norm. The average type-2 method is compatible with
this idea; however, instead of using type-2 MFs in the antecedents, the method splits each
type-2 MF in two type-1 MF placed at the uncertainty boundaries; i.e., FISu(F̃1) is used for

the FOU(F̃1), and FISl(F̃1) for FOU(F̃1).

primary membership values in the range [0,0.25], the secondary membership values
are equal to one for both fuzzy terms. A type-2 fuzzy inference engine combines
the if-then rules and gives a mapping from input type-2 fuzzy sets to output type-2
fuzzy sets. Figure 6 shows a pictorial description for the inputs x1 and x2, and the
minimum t-norm. According to Liang and Mendel [5], for an interval type-2 FIS
the result of the input and antecedent operations are contained in the interval type-1
firing set [ f l , f̄ l ], where
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f l = μ
F̄ l

1
(x′l)� · · ·�μ

F̄l
P
(x′p) (15)

f̄ l = μ̄F̄ l
1
(x′l)� · · ·�μ̄F̄ l

P
(x′p) (16)

Depending on the desired output, it is possible to use the “output processing”
block to obtain a type-reduced set (type-1), or a crisp output.

4 Average Type-2 FIS

An average type-2 FIS consists in substituting an interval type-2 FIS (Figure 5) with
two type-1 FIS (Figure 7). The main idea of this method is to embrace the uncer-
tainty of the interval type-2 FSs using type-1 FSs. One FIS is used for the upper
bound uncertainty, and the second FIS for the lower bound uncertainty. Consider-
ing the type-2 FS “A”, the interval of uncertainty can be embraced by two type-1
FS. The MFs of the first type-1 FIS are placed such as they match with the upper
bound of FOU(Ã), i.e., (μ̄Ã(x)); similarly, the MFs of the second type-1 FIS are
chosen to match with the lower bound of FOU(Ã), i.e., μ

Ã
(x). Each type-1 FIS

handles an identical set of rules, however the fuzzy output will be different because
the MFs of the inputs are not the same. The average type-2 FIS is consistent with
the nomenclature of interval type-2 FIS; so, Fig. 6 remains being useful to explain
the fuzzification method that was used in this work. Basically, in this first stage, the
difference lies in the fact that an average type-2 FIS uses two type-1 FS in the fuzzi-
fication stage to substitute each type-2 FS. A crisp value is obtained by averaging
the defuzzified output or the two type-1 FIS.

The first step to split the IT2 FIS is to begin defining that one of the FIS is going
to be used for the lower bound of the uncertainty, FISl; and the second one for the
upper bound, FISu. Hence, for the linguistic variables X1 and X2 of an IT2 FIS,
we will write FISl(X1) for the lower bound of uncertainty, and FISu(X2) for the
upper bound. Following a similar idea of nomenclature, the linguistic terms of the
IT2 FIS of Figure 6, FOU(F̃1) and FOU(F̃2), will be written as FISl(F̃1, F̃2), and
FISu(F̃1, F̃2) to indicate that the FISl(F̃1, F̃2) was developed considering the lower
bound of the type-2 linguistic terms F̃1 and F̃2; similarly, FISu(F̃1, F̃2) indicates the
use of the upper bounds of uncertainty of the mentioned terms.

4.1 Type-2 Fuzzification Stage Architecure

In Figure 1 the proposal to test and validate the type-2 fuzzification stage coded
in VHDL was illustrated. This figure depicts that the inference and defuzzification
stages were programmed in Matalb/Simulink using the existing Fuzzy Simulink
modules of the Fuzzy toolbox, whereas the fuzzification stage was coded in VHDL,
this was achieved to evaluate only the VHDL codification.

As was mentioned before, the type-2 FIS explained in this work is based on
calculating the average of two type-1 FIS (for the upper and lower bounds).
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Fig. 7. The interval type-2 MFs of Fig. 5 were substituted with type-1 MFs. The MFs plotted
with solid lines correspond to the fuzzification stage of one FIS, so we have for the upper
bounds of uncertainty FISu(Ñ, Z̃, P̃); and for the lower bounds, FISl(Ñ, Z̃, P̃).

Microelectronic implementations of the fuzzification stage can be achieved in
two ways: Storage memory and arithmetic calculation. Next, a brief review of each
method is given.

4.1.1 Storage Memory Method
This method consists in sampling the universe of discourse and saving into memory
the corresponding membership values and linguistic terms. This alternative allow
us to define any shape of membership function, since the only requirement is to
sample and save the membership values that are addressed by their corresponding
binary input in the universe of discourse. One limitation of this method is regarding
precision, because it depends on the number of samples and bits needed for an ap-
plication, high precision applications require higher memory resources. In [25] can
be found more information about the amount of memory required to achieve this
implementation.
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Fig. 8. Block diagram to illustrate the arithmetic calculation method.



Design and Simulation of the Type-2 Fuzzification Stage 283

4.1.2 Arithmetic Calculation Method
The arithmetic method consists in performing a progressive calculation of the degree
of membership of the antecedents. This method is restricted to use only symmetric
triangular MFs. The method uses two memory allocations for each straight line,
where their slopes values mi, and interception points ai are saved into memory.
An arithmetic circuit for each input shown in Fig. 8(a), solves the corresponding
straight-line equation to obtain the membership value, as can be seen in Fig. 8(b). A
counter driven by the system clock generates the memory addresses, the breakpoint
value is subtracted from the input and the result is multiplied by the slope; if x > xi,
the product is stores in a latch an the counter is increased in the next clock pulse.
The process continues until x < xi. This circuit requires as many clock cycles to
perform its operation as fuzzy sets are defined.

4.1.3 Novel Arithmetic Fuzzification Method
The arithmetic fuzzification method (AFM) was originally proposed by the authors
in [26], in this work some improvements to the original proposal are presented.
The AFM method is more versatile than the storage memory and the arithmetic
calculation methods that were previously explained.

In comparison with the storage memory method explained in section 4.1.1, this
method does not need to have a preloaded singleton table values nor to use high
memory resources to obtain high resolution values.

Comparing with the arithmetic calculation method of section 4.1.2, the AFM
allows to use symmetric and non-symmetric triangular and trapezoidal MFs. The
intersection and slopes values can be calculated online and updated, which is a nice
capability to implement adaptive fuzzy systems. In addition, the AFM only needs
one clock cycle to achieve the fuzzification, this is a very attractive feature when

Fig. 9. Fuzzification stage with two inputs. For each input there are two outputs: The mem-
bership value, and the linguistic term.
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Fig. 10. Triangular and trapezoidal MFs. The slopes and intercept points are shown.

we compare with the arithmetic calculation method of section 4.1.2 that requires
several clock cycles to perform this task.

The AFM code is divided in two parts. The first part is parallel code devoted to
update the intersection points, calculate slopes values, and assign the corresponding
linguistic tag to each MF. It uses one status bit (status flag) related with each slope to
inform that the corresponding slope value has been updated. Once the calculations
have been achieved, all the status flags are set. If any change occurs, the implied
status flags should be reset. The second part of the code checks, whether all the
status flags are set; if so, then the crisp input is fuzzyfied. Fig. 9 is a big picture
of how the fuzzification is achieved for a two input system, the outputs are the
membership grades and linguistic terms of the active MFs. The AFM for a given
input (crisp value) can be summarized into three steps:

1. Calculate the slope values.
2. Calculate the membership values.
3. Assign to signals the membership values and linguistic terms.

Figures 10(a) and 10(b) show the slopes and intercepts of the straight lines of a
triangular MF, and a trapezoidal MF, respectively. Both, use the basic straight line
equation given by the slope-intercept form y = mx + b where “m” is the slope and
’b’ is the intercept. The MFs have two slopes, the positive slope “m(1)”, and the
negative slope “m(2)”; although they have different signs, both are handled as posi-
tive to avoid signed operations; later, the sign is handled by the software. Figure 11
and 12 show the VHDL code to implement the triangular and trapezoidal MF, re-
spectively. These MFs can be implemented using fixed point arithmetic to represent
integers and real numbers, as well as floating point arithmetic. The decision of the
best numeric representation most of the time depends on how the problem will be
handled in later stages. This decision must be done carefully at an early project
phase, in a broad sense, fixed point implementations provide higher speeds and
lower cost implementations, on the other hand, floating point offers higher dynamic
range and it is not necessary to perform scaling task that is a very attractive fea-
ture for complicated algorithms. Its main virtue is that it allows easy conversion to
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Fig. 11. VHDL codification to implement the triangular MF.

Fig. 12. VHDL codification to implement the trapezoidal MF.

decimal digits for printing or display and faster decimal calculations, its drawbacks
are the increased complexity of circuits needed to implement mathematical oper-
ations and a relatively inefficient encoding that occupies more space than a pure
binary representation.
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Fig. 13. VHDL code for the triangular MF.

4.1.4 Fuzzification Using Real Numbers
The arithmetic used in this work is based on the encoding method called Decimal
Floating Point Binary Encoding (DFPBE), but differently to the common way to
implement this encoding method, we used a fixed point format with no exponents.
Figure 13 shows the general idea of encoding a real number using two integers,
and to calculate the slope “m(1)” of the triangular MF showed in Figure 10(a), it
is necessary to achieve a method with several steps; so, Fig. 16 is going to be used
in order to explain the algorithm. Considering that we are going to fuzzify the crisp
binary value 48 (i.e, x1=48), to obtain μ(48) = 0.3325. First, it is necessary to
calculate the positive slope of the Negative (N) MF, using the slope formula m = y

x ,
i.e., m = 255−0

80−32 = 5.3125 ≈ 5.3 since the binary equivalent for an eight-bits MF is

255, hence the membership value is 5.3×(48−32)
255 .

1. Obtain the divisor of the slope formula: Considering that the x value is given
by the points px(1)=32 and px(2)=80, the divider is obtained using px(2)−
px(1) = 80− 32 = 48. Since the codification method DFPBE is being used,
it is necessary for convenience to divide by ten the divider, instead of mul-
tiplying by ten the dividend as is common; therefore, we have px(2)−px(1)

10 =
4.8, then the divider for the integer numbers in the range of (0 to 255) is
48; Quotient1(4), residue1(8); hence, then the divider for the decimal part
is 4.

2. Obtain the slope: The slope is given as the number “Bm.bm”; where “Bm” is an
integer number, and “bm” is a decimal number.
For the integer part: Bm = 255

px(2)−px(1) = 5.3: Quotient2(5), residue2(15). For the

decimal part, bm = residue2
Quotient1

= 15
4 = 3.7 : Quotient3(3),residue3(3). The slope

is a two bytes binary numbers Bm=5, bm=3; i.e. slope “m(1)=5.3”.
3. The membership value for a given crisp input, for example “x=48”, is obtained

as follows: Adjust the crisp input to the corresponding slope, in this case calcu-
late x48 = x− px(1) = 48−32 = 16. Using the slope formula y = mx, which is
equivalent to y = Bmx + bm

10 x. This applied to our example considering scaling,

y = 5(16)+0.3(16)
255 = 0.3325; so, the membership value is 0.3325 for a crisp input

“x=48”.

Note that DFPBE method was used only to calculate the slopes, the membership
values are real numbers coded in one binary word.
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5 Experiment Design and Validation

In Fig. 1 the general idea followed in testing and validating the fuzzification stage
for type-1 and type-2 FIS was presented. More specifically, the FIS was developed
to work as a PD (Proportional Derivative) controller into a PD+I (PD+ Incremental)
controller configuration to regulate the speed of a DC motor. The next two sections
of this chapter are dedicated to explain how to achieve the codification of the type-1
and type-2 fuzzification stages.

Fig. 14. Fuzzy inputs and outputs. Each fuzzy input has five MFs called Negative Big (NB),
Negative (N), Zero (Z), Positive (P), Positive Big (PB). The output has five singletons called
Big Decrease (BD), Decrease (D), Hold (H), Increase (I), Big Increase (BI).

5.1 Type-1 Fuzzification Stage: Active MFs

Fig 14 shows the linguistic variables for the inputs and for the output, these are:
error, change of error, and output. Each input has five MFs, Negative Big (NB),
Negative (N), Zero (Z), Positive (P), and Positive Big (PB); and each label an as-
sociated binary value, for example NB is associated with the value “001”, etc. The
output has five singletons values called Big Decrease (BD), Decrease (D), Hold (H),
Increase (I), and Big Increase (BI); hence, BD is associated with the binary value
“001”, etc. [19, 18]. Additionally, it is shown that each input produces two fuzzified
values; i.e., in input 1 (x1) the dashed line indicates a crisp value that is being fuzzi-
fied, so it will produce the variables e1 and e2, associated with their corresponding
degree of membership stored in variables ge1 and ge2. The variable content value
for e1 is “010”, and “001” for e2. Input x2 works in a similar way. Figure 15 shows
the obtained design entity for the aforementioned design, at the output are the active
grades values and their corresponding linguistic terms. The variable values for e1,
e2, ge1, and ge2 are assigned to output signals. After debugging, only some minor
modifications have to be performed to the VHDL code to take the tested code to the
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Fig. 15. Design entity of the fuzzification stage. The “clk” input is 50 Mhz for the Spartan
3 (XC3S1000). The “ce” (clock enable input) enables the algorithm in the Simulink. The
“reset” input restart the variables of the algorithm.

Fig. 16. MFS for the input x1. An input x1=48 is fuzzified; i.e., μ(48) = 84.8, because
we are using an 8-bits binary codification system, rounding towards towards minus infinity,
μ(48) ≈ 84.

physical implementation into the FPGA. In Fig. 16 we have a crisp input x1=48 that
is fuzzified using type-1 MFs.

5.2 Type-2 Fuzzification Stage: Active MFs

The implementation of the type-2 fuzzification stage for the average method [20,
21] is achieved using two type-1 fuzzification stages; in other words, two instances
like the one shown in Figure 15 are used, the only difference between them is the
parameters values of the MFs, with the purpose to represent the existing FOU in
an interval type-2 MF, the rules and defuzzification stage are similar, although each
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Fig. 17. MFs for the input x1 of the type-2 fuzzification stage.

Fig. 18. MFs for the input x2 of the type-2 fuzzification stage.

system performs independently, and only after each FIS has calculated its respective
output the averaging operation is achieved. Figures 17 and 18 show the type-2 MFs
used for the “error” and “change of error” inputs, each variable has five linguistic
terms; however, to take this approach to practice we will need ten MFs for each
linguistic variable (two MFs for each linguistic term); hence two FIS are used, the
FISu(X1,X2) for the FOU of X1 (“error” input) and X2 (“change of error” input);
and a second FIS, the FISl(X1,X2) for the FOU of X1 and X2. Note, that the signal
“error” is connected to X1, and the signal “change of error” to X2 of the fuzzification
entity in Fig. 15.

5.3 Simulink Model for the Type-2 Fuzzification Stage

Fig. 19 shows the Simulink model that was used to test the type-2 FIS. The type-1
FIS identified by the circled numbers 1, 2, and 3 represent the upper bound FOU;
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Fig. 19. Simulink model of the type-2 FIS (Average method) used to plot the control surface.

and the numbers 4, 5, and 6 identify the second type-1 FIS for the lower bound
FOU. The average of the output of both FIS is achieved in the section marked with
number 7. In the blocks 1 and 4 are the fuzzification stages, these blocks belongs to
the XSG, they are used to import the VHDL code to Simulink. The inference engine
of each type-1 FIS are in the blocks 2 and 5. The defuzzification stage of each type-1
FIS are identify by the numbers 3 and 6. Blocks 2, 3, 5, and 6 were programmed
using Simulink blocks from the toolbox as well as Matlab functions, they were not
programmed in VHDL because in this part the goal is only to test fuzzification stage.
The subsystem block number 8 is to handling numeric format between the code of
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Fig. 20. Control surface obtained with the Simulink model (Average method) showed in
Fig. 19.

the VHDL fuzzification stages and the Matlab inference engines, below this block
there is a shadowed box showing a small section of the content of this subsystem,
the rest is quite similar. The other small Simulink blocks that are at the input of
both fuzzification blocks give two vectors of 1700 values each, for the “error” and
“change of error” inputs in order to obtain the plot shown in Fig. 20, the small
Simulink blocks that are shown between the the fuzzification and inference engine
stages are used to achieve numeric compatibility from the numeric codification of
real numbers used in the fuzzification stages coded in VHDL, to the floating point
numeric representation used in Matlab.

5.4 Conclusions

One of the most stressing task in the development of new methods to improve a
system is related with the use of new software and/or hardware technologies. This
is specially true when the target of the developed software is code for a VLSI cir-
cuit, for example an FPGA. The use of type-2 FIS for real world applications has
been plenty demonstrated in many works; so, the idea of taking some existing fuzzy
controllers from type-1 to type-2 technology is very appealing. However, we have
to expect that the programming cost in terms of developing time grew, as well as
the size of code, and performance, this depending on the selected algorithm. There
are several proposals to implement an interval type-2 FIS [3, 4, 5], but there is no
way to go with little effort from interval type-1 to interval type-2 FIS. The average
method provides an option to handle uncertainty similarly than an interval type-2
FIS does; moreover, the method makes easier the transition from type-1 to type-2
FIS, basically the only additional thing that designers will need do is to duplicate
and modify the MFs values of the original type-1 FIS. This advantage is more em-
phatic when the type-1 FIS was coded using VHDL, because this language uses the
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concept of design entity that can contain a whole design that can be duplicated as
many times as needed. Hence, the cost of programming time is reduced to the mini-
mal, the code is practically twice the size of the type-1 FIS, and the performance of
the hardware implementation of a type-2 is almost the same than the type-1 FIS, the
small difference is due to the time that the electronics takes to perform an averaging
operation, i.e; one addition and one divide operation. The Xilinx System Genera-
tor takes VHDL code to the Simulink environment offering advantages, since it is
possible to analyze the system’s behavior using the control surface, or achieving the
control of the physical plant by interfacing the Simulink model with real world.
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Prototyping of Fuzzy Logic Based Controllers Using Standard FPGA Development
Boards. In: 13th IEEE International Workshop on Rapid System Prototyping on Volume,
pp. 25–32 (2002)
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Abstract. In this paper an improved high performance type-1 inference engine (IE)
is proposed that can be applied with no modifications to the implementation of a
type-2 FIS using the average method. The performance of the type-2 FIS will not
be diminish for the use of this stage since it is achieved in parallel. The proposals
are focused to be implemented into an FPGA. Simulink models to test the type-1
and type-2 inference engines are presented. The type-2 IE was tested in a speed
controller for a DC motor.

1 Introduction

There have been published several papers about the implementation of type-1 and
type-2 fuzzy inference systems (FIS) in [1, 4, 6, 8, 9]. Good references for the
required fuzzy mathematics to implement type-1 and type-2 FIS are [3, 7, 10, 12].
In [25] was explained how to make a hardware implementation of the fuzzification
stage for type-1 FIS, considering integers and real numbers, the results can be easily
extended for the type-2 case using the [17, 18] method. Other proposals in the same
line of type-1 FIS are [11, 19, 20, 21, 22, 23, 24]; and for type-2 FIS [13, 14, 15].
The use of the software Xilinx System Generator (XSG) to import the FIS VHDL
code to the Simulink environment for testing the entities was explained in [25], also
a model that allows to plot the control surface to test the fuzzification stage for an
application was given.

Considering a FIS with crisp inputs and crisp outputs, the fuzzification is the first
stage of any FIS. In this paper, a method to achieve the hardware implementation of
the second stage, the inference engine for type-1 and type-2 FIS is presented. The
designs are oriented to achieve high performance computations and with a slightly
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different architecture from other proposal [16]. In order to accomplish this goal
several strategies has been followed, some of them are:

• The use of active rules. The idea is to consider only the rules affected by the
antecedents. This has pros and cons, for example, it offers an easier implemen-
tation and provides a faster system, however, it lacks of flexibility.

• The use of integers and real numbers. It uses the encoding method called Deci-
mal Floating Point Binary Encoding (DFPBE).

• The use of the average method. This method is based in handling the uncertainty
of the type-2 fuzzy set (FS) of an IT2 FIS by two type-1 FIS located at the
uncertainty boundaries of the fuzzy sets.

• The average method allows to go from a type-1 FIS to a type-2 FIS with a
minimal of effort, since the only thing that is necessary to do is to split the type-
2 FIS in two type-1 FIS; then, the required fuzzy mathematics is the same used
for type-1 FIS.

• An improved inference engine is presented, the previous proposal presented
in [26] was optimized for faster computations.

This paper is organized as follows: Section 2 is devoted to briefly comment on
the origins of Fuzzy Logic (FL), the foundations of IT2 FIS are presented with spe-
cial emphasis on the inference engine. Section 3 explains the advantages of using
the average method to achieve type-2 fuzzy inferences, moreover specific nomen-
clature for the average method is proposed. In Section 4, the improved architecture
to achieve hardware implementation of the type-1 and type-2 inference engines is
presented. In Section 5, three Simulink models to test the VHDL code are given:
The first model is a type-1 inference engine, which purpose is to verify the accu-
racy of the results considering that the inputs were individual values given by hand.
The second model is a type-2 inference engine that was tested in a similar way than
the first model. The third model is a complete type-2 FIS where the source of the
inference engine is VHDL code imported to Simulink through the Xilinx System
Generator (XSG), the fuzzification and defuzzification stages are models from the
Simulink, the aim of this model is to test the type-2 inference engine behavior in a
controller application, for this purpose each input linguistic variable was fed with
a vector value that covers the whole universe of discourse, the result is the surface
control of the system. Finally, in Section 6 the conclusions of this work are given.

2 Type-2 Fuzzy Logic Systems

After almost 40 years that fuzzy set theory was proposed by Zadeh [28], and hun-
dreds of applications working successfully; ten years later, the concept of type-2
fuzzy set was introduced by Zadeh in [27], to cope with uncertainty from words,
because “words mean different things for different people, and are therefore uncer-
tain” [5]. Type-1 FISs are unable to handle uncertainties directly, because they use
type-1 fuzzy sets that are certain [7]. On the other hand, type-2 FLSs, are very use-
ful in circumstances where it is difficult to determine an exact membership function
because there is uncertainty from many sources. Type-2 fuzzy sets are more difficult
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Fig. 1. Typical schematic representation of a type-2 FIS.

to use and understand than type-1 fuzzy sets; hence, their use is not widespread yet.
We can say that a FIS is type-2 if there is at least one type-2 FS. An interval type-2
Fuzzy Inference System (IT2 FIS), contains four components: fuzzification, infer-
ence engine, type-reducer, and defuzzification, which are connected as it is shown in
Fig. 1. The IT2 FIS can be seen as a mapping from the inputs to the output and it can
be interpreted quantitatively as Y = f (X), where X = {x1,x2, · · · ,xn} are the inputs
to the IT2 FIS f , and Y = {y1,y2, · · · ,yn} are the defuzzified outputs. Note that, in
Fig. 1 that the fuzzification is achieved using type-2 MFs, the output of the inference
engine are type-2 FSs; therefore, a type reducer to go from type-2 to type-1 FS, and
a defuzzifier to obtain crisp outputs are needed.

The rules are the core of a FIS, they can be obtained from human experts (Models
for words approach), or extracted without the intervention of humans by the use of a
numerical method (Abstract Mathematics approach) [5]. It is usual to express rules
using the if-then nomenclature; so, for a IT2 FIS with p inputs x1, . . . ,xp ∈ Xp, and
one output y ∈ Y , with M rules, the ith rule is given by,

Ri : If x1 is F̃ i
1 and · · ·and xp is F̃ i

p, then y is G̃i i = 1, ......,M.

where F̃ i
k are the antecedents, the MFs are given by μF̃i

1
(xk)(k = 1, . . . , p), and G̃i(y)

are the consequents.
This rule is a type-2 relation from the input space X1 × . . .×Xp to the output

space Y of the IT2 FIS.

2.1 Inference Engine of an Interval Type-2 FIS

Figure 2 depicts the input and antecedent operations for a two-antecedent single-
consequent rule. First, the fuzzification is achieved; for the first crisp input x1 = x′1,
the dashed vertical line at x′1 can intersect FOU(F̄1) at any place in the interval
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Fig. 2. Pictorial description for type-2 inference.

[μ
F1

(x′1),μF1
(x′1)]; and, for the second crisp input x2 = x′2, the dashed vertical line

at x′2 can intersect FOU(F̄2) everywhere in the interval [μ
F2

(x′2),μF2
(x′2)]. Then the

lower firing level f (x′), and the upper firing level f (x′) are computed using the
minimum t-norm, as follows:

Lower firing level,
f (x′) = min[μ

F1
(x′1),μF2

(x′2)]

Upper firing level,
f (x′) = min[μF1

(x′1),μF2
(x′2)]

For the purpose of this work, it is very important to note that the firing interval
F(x′) = [ f (x′), f (x′)] was obtained as the result of the input and antecedent opera-
tions. To obtain the output rule calculation, the firing interval F(x′) is t-normed with
the consequent FOU(G̃); i.e., f (x′) is t-normed with the lower bound of FOU(G̃),
and f (x′) is t-normed with the upper bound of FOU(G̃). The lower and upper
bounds of FOU(G̃) are usually written as LMF(G̃) and UMF(G̃), respectively.
Figure 2 shows the resulting FS, FOU(B̃), considering a triangular FOU(G̃), and
the minimum for the t-norm.

3 The Average Type-2 FIS

It is known that the type reduction stage is a bottle neck in a type-2 FIS and an
option to avoid it is [2], also the average method [17, 18] is a proposal to handle
interval type-2 FIS avoiding type reduction, which is achieved by substituting the
IT2 FIS with two type-1 FIS located adequately at the uncertainty boundaries of the
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type-2 MFs, the rules and the defuzzification at each FIS remain being identical,
the output is different because the MFs of each FIS are different. The type-2 crisp
output is calculated taken the average of the crisp output of the type-1 FISs, we used
the arithmetic average.

Average type-2 FIS is consistent with the nomenclature of interval type-2 FIS; so,
Figure 2 is still being useful to explain the inference engine of the average method.
The first step to split the IT2 FIS is to begin defining that one of the FIS is going
to be used for the lower bound of the uncertainty, FISl; and the second one for the
upper bound, FISu. Hence, for the linguistic variables X1 and X2 of an IT2 FIS, we
will write FISl(X1) for the lower bound of uncertainty, and FISu(X2) for the upper
bound, hence for a IT2 FIS with two linguistic variables as inputs, X1 and X2, valid
nomenclature is FISl(X1,X2), and FISu(X1,X2). Following a similar idea of nomen-
clature, the linguistic terms of the IT2 FIS of Figure 2, FOU(F̃1) and FOU(F̃2),
will be written as FISl(F̃1, F̃2), and FISu(F̃1, F̃2) to indicate that the FISl(F̃1, F̃2)
was developed considering the lower bound of the type-2 linguistic terms F̃1 and F̃2;
similarly, FISu(F̃1, F̃2) indicates the use of the upper bounds of uncertainty of the
mentioned terms. The approximated type-2 FIS output is calculated by taking the
arithmetic average of the outputs of the defuzzifier processors of each FIS; i.e., the
FISl and FISu. Note that the type reduction stage was avoided.

4 Inference Engine for Type-1 and Type-2 Proposals

In Section 3 the advantages of using the Average method to handle a type-2 FIS
were explained; in short, the method works with the uncertainty boundaries using
type-1 fuzzy mathematics to carry out the whole process, therefore the inference
engine of a type-1 system is also used for the average type-2 proposal.

Fig. 3. Linguistic Variables for the inputs and output: Error, change of error, and output with
their linguistic terms
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4.1 Hardware Implementation of the Type-1 Inference Engine

Fig. 4 shows the interaction of the fuzzification stage, and the inference engine for
a type-1 FIS. The main block of this picture labeled as “Inference Engine” is a
VHDL entity, and it gives a general idea of its internal architecture. The Inference
Engine Entity (IEE) has nine inputs and eight outputs, eight of inputs came from
the fuzzification stage, the ninth input is a clock signal; with respect to the eight
outputs, four are for the linguistic terms, the rest correspond to their firing strengths.

The fuzzification stage has two input variables: “Error” and “Change of Error”.
Each linguistic variable has five terms identified by linguistic tags, and each tag is
related with three binary digits as follows, “Negative Big” (NB) with the value of
“001”, “Negative” (N) with “010”, Zero (Z) with ‘011”, “Positive” with “100”, and
Positive Big (PB) with “101”. For this architecture, the maximal number of active
membership function for each input is two, so in Fig. 3 at the input “Error” there
is a crisp value of ≈ −25 that is activating the linguistic terms NB (“001”) and
N (“010”), and the corresponding membership values are ≈ 0.66 and ≈ 0.33, the
active membership functions (linguistic terms) and membership values are assigned
to VHDL variables, in the figure, e1 =“001” (NB), e2 =“010” (N), for the former,
the membership value is ge1 = 0.66, and for the latter, ge2 = 0.33. Similarly, the
second input “Change of Error” is handled, the linguistic terms are assigned to the
VHDL variables de1 and de2, and the membership values are gde1 and gde2. Finally,
the four VHDL variables of each input are assigned to VHDL output signals that are
the inputs to the next stage; i.e. the IEE. The fuzzification Stage Entity (FSE) was
designed using the behavioral style of VHDL codification, this style use sequential
code, and it only needs one clock pulse to perform the fuzzification.

At the input of the IEE of Fig. 4 are the linguistic terms (e1, e2, de1, and de2), their
membership values (ge1, ge2, gde1, and gde2), and the clock signal (clk). All the

Fig. 4. Overview of the inference engine architecture.
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Fig. 5. VHDL code of the rule base using the Mamdani method

inputs, except clk, enter into a parallel selection process through a multiplexer; note
that although the IEE uses sequential code, the circuits into the process are placed in
parallel; the degree of parallelism can be tailored by an adequate codification style,
in our case all the rules are processed in parallel, the eight outputs are obtained at
the same time because the “clk” signal synchronize the process, hence this stage
needs only one clock cycle to provide the output.

In the IEE, the required circuits to implement the MUX and Select blocks are
placed in parallel, and they produce four outputs; by the concatenation of two of
them, e and de the active rules are identified, then using the piece of code of Fig. 5
the corresponding consequent is ascertained. For example, for the combination of
e1 =“010” and e2 =“010” the value of the variable “ante” is “010010” and the
linked consequent is “I” with a binary value of “100”, as it can be seen in Fig. 3, the
common rule notation is shown next as rule number 4.

1. If e1 is “001” and de1 is “001” then C1 is BI
2. If e1 is “001” and de2 is “010” then C2 is BI
3. If e2 is “010” and de1 is “001” then C3 is BI
4. If e2 is “010” and de2 is “010” then C4 is I

5.
...

The other two outputs of the MUX block are the membership values “ge” and
“gde”, the minimal t-norm of the corresponding rule is calculated to obtain the fir-
ing strength. The e1 and de1 combination and its linked consequent are saved into
VHDL variables, this has been illustrated in Fig. 4 as the memory position “00” that
contains the consequent stored in R0 and its firing strength stored in μ0; the rule
combination e1 and de2 and its consequent are stored in R1 and in μ1 in the memory
position “01”, etc.

For example, if the memory position “00” has the consequent of the active rule
1, i.e. the combination ‘001001”, then the consequent is BI (“101”); if the memory
position “01” has the consequent of the active rule 2, the combination ‘001010”, then
the consequent is BI; if the memory position “10” has the consequent of the active
rule 3, the consequent of the rule combination “010001” is also BI; and so forth.
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Fig. 6. Entity of the type-1 inference engine.

Fig. 7. Entity of the type-2 inference engine; (a) General entity, (b) Internal entity.

The “Memory” block in Fig. 4 at the output is connected to four blocks named C1

to C4, each Cx block represents two VHDL signals where the triggered consequent
cx and its membership value gcx are saved and sent to the entity output at the next
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clock cycle. Note that this method only needs four Cx blocks because the maximal
number of active rules is four, and that the maximum required time to perform an
inference is only one clock cycle.

Fig. 6 shows the IEE that was produced by the Xilinx ISE software as result
of the synthesis process. This entity shows two extra inputs, “Chip Enable” (ce)
and “Reset” (rst), they were added only to be compatible with the Xilinx System
Generator (XSG) and Simulink.

4.2 Hardware Implementation of the Type-2 Inference Engine

In Section 3 was explained the advantages of using the average type-2 method to
compute IT2 FIS. Here, we are going to focus just in the implementation. Fig. 7(a)
shows the top level design of the type-2 VHDL entity of the Inference Engine.
Fig. 7(b) shows one step into the type-2 Inference Engine, there are two type-1
Inference Engines connected in parallel, following the idea of representing FISu

and FISl of the whole system. To go from type-1 to type-2 FIS using the average
method, this stage do not need any modification because the uncertainty is handled
at the Membership Function level and not at the inference level.

5 Models to Test the Type-1 and Type-2 Inference Engines

To test the VHDL inference engines the code generated with the Xilinx ISE was im-
ported to Simulink using the XSG. We choose the application of the speed control
of a DC motor to design the FIS, for the type-1 FIS we used the membership func-
tions showed in Fig. 3, the corresponding Simulink Model is shown in Fig. 8. The

Fig. 8. Simulink model to test the type-1 Inference Engine.
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Fig. 9. Interval type 2 membership functions, for the inputs.

Fig. 10. Simulink model of the type-2 inference engine.

blocks with “K” and the “Gateway” blocks are used to adapt the inputs from floating
to binary representation (for integers or real numbers), and the outputs from binary
representation (integer or real numbers) to floating point, this is necessary because
the inputs in this model are floating point numbers and the inputs and outputs han-
dle real numbers using the special codification explained in the chapter “Design and
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Fig. 11. Simulink model of a type-2 FIS to test the type-2 Inference Engine.

Fig. 12. Surface control of the type-2 FIS.

Simulation of the Type-2 Fuzzification Stage: Using Active Membership Functions”
of this book.

For the type-2 FIS, the type-2 MF of Fig. 9 were implemented, Fig. 10 shows
the type-2 test version of the type-1 showed in Fig. 8. The idea of this type-2 model
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is to provide values by hand and review the outputs that are sent to displays to
analyze them.

Fig. 11 shows a second model for testing the type-2 IEE, the idea is to complete
the FIS with the Inference Engine and Defuzzification stages, these two last stages
were not coded in VHDL since the idea is to test the performance of the IEE, at
model’s inputs complete vectors of values are given with the aim of generating the
control surface shown in Fig. 12 for the DC motor control application. At the de-
fuzzification stage there are two crisp outputs, “Out1” is from the FISu, and “Out2”
is from the FISl , the type-2 crisp output values is then calculated by taking the
arithmetic average of this two outputs; i.e., Out1+Out2

2 .

6 Conclusions

The most widely adopted way to implement a fuzzy system is software into a non-
dedicated computer, this method has the advantage of giving high level support to
the designer since there are many friendly specializing software that helps to obtain
results in short time, however one of the disadvantages of the commented solution
is the processing time. Hardware implementations, specifically those designs that
have been carry out to be implemented at circuitry level offer the bigger advantages
to designers to provide high speed solutions.

In this paper, an improved type-1 inference engine was proposed for hardware
implementation, oriented to be implemented into an FPGA. The type-1 engine can
be applied with no modifications to implement a type-2 FIS using the average
method. The type-1 engine process all the rules in parallel providing high speed
computations, the processing time of the whole inference engine is just one clock
cycle, approximately 0.02 microseconds for the Spartan 3. The processing time of a
type-2 system implemented with the type-1 inference engine will not grow up since
both inference engine are connected in parallel, hence the processing time remains
being the same for this stage.

Three Simulink models were presented for testing the inference engine for type-1
and type-2 FIS. One of the Simulink models was achieved to test the type-2 infer-
ence engine focused to control the speed of a DC motor, the resulting control surface
is shown. We conclude that the inference engine worked fine.
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Abstract. This paper is focused on the study, analysis and development of code
for the defuzzification stage of type-2 fuzzy systems, through the average of two
type-1 fuzzy systems. This proposal is based on the average method for systems
where the type-2 membership functions of the inputs and output, have no uncer-
tainty in the mean or center. The codification is done using the hardware description
language VHDL, and it was exported to Simulink through the Xilinx System Gen-
erator (XSG). Comparative tests were conducted between the type-2 fuzzy systems
for different number of bits and noise levels.

1 Introduction

Most of the existing implementations of type-1 or type-2 fuzzy systems have been
achieved in software on general-purpose computers, the main drawback of these im-
plementations is the speed limitation due to the sequential computer program execu-
tion [26]. Thus the other option for the implementation of fuzzy systems that require
high processing speed to operate in real-time is based on dedicated hardware. In this
line of development, in order to achieve high performance systems, the use of VLSI
devices is increasing [21]. The FPGA is a VLSI device highly flexible that allows
us to implement digital circuitry through the use of specialized software, which is
an appealing characteristic for designers. Other good features are that they consume
low power and can be reprogrammables in field. Hence, there is an increasing in-
terest in using FPGA devices to design digital controllers, and a growing interest
in control systems based on fuzzy logic [13, 27, 29]. In fact it is possible to find
some works where type-1 fuzzy inference systems (FIS)have been implemented in
FPGA, such as in [26] for electrical vehicles, a Mamdani FIS based on FPGA using
distributed arithmetic to calculate the defuzzification stage [17], or diverse designs
and implementations on FPGA of fuzzy inference systems [1, 16, 22, 23, 24, 30].

O. Castillo et al. (Eds.): Evolutionary Design of Intelligent Systems, SCI 257, pp. 309–325.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Proposal for the solution of the defuzzification stage in a type-2 fuzzy system .

With regards to type-2 FIS in FPGA, in [19] is presented the implementation of the
Wu-Mendel method in a XC2V3000ff1152-4 FPGA type of the Virtex family, tak-
ing advantages of the intrinsic parallelism that these devices offer; also we can find
some others works related to this topic in [18, 20].

This work is about the design, test and implementation of the defuzzification
stage of a type-2 FIS. The proposal is based on the use of two type-1 FIS, i.e. the
average method, to emulate a type-2 FIS, so that the membership functions (MFs)
were organized in such a way to emulate the footprint of uncertainty (FOU) of the
type-2 MFs, and the final result is obtained as the average of the crisp values ob-
tained in each type-1 FIS; it was used the height method for the type-2 defuzzifica-
tion stage. In Figure 1 the scheme of the proposed method is shown.

A comparison was made between the control surface of the type-2 average
method where the type-1 defuzzification stage is embedded, and the control surface
of the type-2 FIS with the Wu-Mendel method.

This paper is organized as follows, Section 2 presents in a general context the
type-2 FIS; in Section 3 it is presented the average of two type-1 FIS, as a proposal
to avoid the type reduction; Section 4 is dedicated to explain the type-2 defuzzifica-
tion stage method using VHDL code; Section 5 explains two experiments designed
to test the type-2 Defuzzification stage and to verify the accuracy of the results con-
sidering that the inputs to this stage were individual values given by hand; Section 6
discusses two experiments and results with a complete type-2 FIS, where the source
of the defuzzification stage is VHDL code imported to Simulink through the Xilinx
System Generator (XSG) [15] , the fuzzification and the inference stages are models
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Fig. 2. Type-2 fuzzy system.

from the Simulink. The rules were used for the speed control of a DC motor for the
system validation. Finally, Section 6 presents the conclusions of this work.

2 General Contexts of Type-2 FIS

The concept of a type-2 fuzzy set was introduced by Zadeh in 1975 [11], as an
extension of the concept of an ordinary fuzzy set in 1965 [12], the membership
grade of each of its elements is indeed a fuzzy set in [0, 1], unlike a type-1 set
whose membership is a crisp number in [0, 1].

The basics and principles of fuzzy logic do not change from type-1 to type-2
fuzzy sets [4, 5, 6], they are independent of the nature of membership functions, and
in general, will not change for any type-n. When a FIS uses at least one type-2 fuzzy
set is a type-2 FIS, which is shown in Figure 2 with its components. The structure
of the type-2 fuzzy rules, is the same as for the type-1 case because the distinction
between them is associated with the nature of the membership functions. Hence, the
only difference is that now some or all the sets involved in the rules are of type-2, and
as long as any of its antecedents or consequents sets are interval type-2 fuzzy sets, it
is called an interval type-2 FIS (IT2FIS) [7, 14] which is the most used. In a type-1
FIS, where the output sets are type-1 fuzzy sets, the defuzzification is performed to
get a number, which is in some sense a crisp representation of the combined output
sets. In the type-2 case, the output sets are type-2, so it is necessary the extended
defuzzification operation to get type-1 fuzzy set at the output. Since this operation
converts type-2 output sets to a type-1 fuzzy set, it is called type reduction, and the
type-1 fuzzy set obtained is called a type-reduced set, the type-reduced fuzzy set
may then be defuzzified to obtain a single crisp number.

2.1 Type-Reduction and Defuzzification in an Interval Type-2 FIS

Five different type-reduction (TR) methods are described in [7, 8]. Center-of-sets,
centroid, center-of-sums, and height type-reduction can all be expressed as:
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ȳr(x
′
) = y

r
(x

′
)−

[
∑M

i=1( f̄ i − f i)

∑M
i=1 f̄ i∑M

i=1 f i ×
∑M

i=1 f i(yi
r − y1

r)∑M
i=1 f̄ i(yM

r − yi
r)

∑M
i=1 f i(yi

r − y1
r )+∑M

i=1 f̄ i(yM
r − yi

r)

]
(5)

Observe that the four bounds in (2)-(5) can be computed without having to per-
form TR. Wu and Mendel [3] then approximate the TR set, as [yl(x
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)+ ȳr(x

′
)

2

]
(6)

So, by using the uncertainty bounds, they obtain both an approximate TR set as well
as a defuzzified output [10].

3 Average Type-2 FIS

In cases where the performance of an IT2FIS is important, especially in real time
applications, an option to avoid the computational delay of type-reduction, is the
Wu-Mendel method [3], which is based on the computation of inner and outer bound
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Fig. 3. The fuzzification, the inference and the defuzzification stages in the Average method
uses two type-1 FIS.

sets. Another option to improve computing speed in an IT2FIS, is the average of
two type-1 FIS method, which was proposed for systems where the type-2 MFs of
the inputs and output, have no uncertainty in the mean or center; it is achieved by
substituting the IT2FIS with two type-1 FIS, located adequately at the upper and
lower footprint of uncertainty (FOU)of the type-2 MFs [25].

For the average method the fuzzification, the inference and the defuzzification
stages at each FIS remain identical, the difference is at the output because the crisp
value is calculated by taking the arithmetic average of the crisp output of each type-
1 FIS, as it is shown in Figure 3, using the height method to calculate the defuzzified
crisp output.

4 Type-2 Defuzzification Stage Method Using VHDL Code

In the average method, to achieve the defuzzification, one type-1 FIS is used for the
upper bound of uncertainty, and the second FIS for the lower bound of uncertainty.
So, as it was explained in Section 3, the defuzzification of a type-1 FIS is used in
the average method and it will be explained next.

4.1 Defuzzification in Type-1 FIS

For the explanation of the type-1 defuzzification stage [2], the rule base of a speed
control of a DC motor was used, which is presented in Figure 4, along with the
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Fig. 4. Rule base for the speed control of a DC motor used for the system validation.

Fig. 5. Defuzzification stage proposal for a FIS.

Fig. 6. Block diagram of the height method.

fuzzification and inference stages. In Figure 5 is shown the upper type-1 FIS with
two inputs, e (error) and de (change of error), and one output y. Thus the inputs are
connected to the fuzzification stage, and considering, for this case, that the method



Modeling and Simulation of the Defuzzification Stage 315

Fig. 7. Entity scheme of the type-2 defuzzification stage.

allows to have a maximum of four active MFs, the fuzzifier delivers two signal for
each input, i.e, the membership grade and a tag that identifies the active MF.

The inference engine has eight outputs(considering the four maximum active
rules), four are for the firing strengths, the rest correspond to the corresponding
linguistic terms of the active consequents. So the output values of the inference
engine named as gc1up, gc2up, gc3up, gc4up, are the four possible upper firing
degrees of the active rules, meanwhile c1up, c2up, c3up and c4up are the respec-
tive center value of the active consequents. The upper part of the defuzzification
stage using the gciup, values and ciup’s tags produces a crisp value y1 using the
height defuzzification method. In the same manner as it is described for the upper
defuzzification stage, it is obtained a crisp value y2 for the lower part of the defuzzi-
fication stage.

The upper defuzzification process using the height method, can be expressed by

y1 =
∑M

i=1 gciup ∗ ciup

∑M
i=1 gciup

, (7)

where:
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y1 is the crisp output value.
ciup is the center of the active consequent.
gciup is the upper firing degree of the active rule.

The height method was developed in VHDL based on the block diagram shown
in Figure 6, where ci is the point of symmetry of the active consequent, gci is the
firing degree of the active rule. These two inputs are connected to a block multiplier
which corresponds to the part of the numerator in (7); only the addition of the gci,
will produce the denominator. Both, numerator and denominator are connected to
the block divider. The result of that division is y1 [28].

4.2 Implementation of the Type-2 Defuzzification Stage

The design entity of the type-2 defuzzification stage is shown in Figure 7. Such en-
tity was programmed in VHDL to be implemented in a FPGA, but it can be used
to simulate the Defuzzification stage without the necessity of designing and imple-
menting any test bench. This entity has 19 inputs and one output. The first eight
inputs ( gc1low, gc1up, gc2low, gc2up, gc3low, gc3up, gc4low, gc4up) correspond to
the lower and upper firing degrees of the active rules; the next eight inputs (c1low,
c1up, c2low, c2up, c3low, c3up, c4low and c4up) correspond to the centers of the active
consequents. The remaining three input signals are the clock enable, clock, and reset

Fig. 8. VHDL code for the type-2 Defuzzification stage.
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(ce, clk, rst) that allow the simulation of VHDL code in Simulink environment. The
output port “sal”, delivers the crisp value of the type-2 defuzzification stage.

In Figure 8 the VHDL code of the defuzzification stage for a type-2 FIS is pre-
sented, it is divided in four sections: Initialization, data acquisition, defuzzification
computation, and the average calculus. In the first section the output port is ini-
tialized, the internal count register, which allows to carry out the data acquisition,
besides determines the vector of the denominator of the division that will realize the
average of the obtained results of each type-1 defuzzification stage. In the second
section, the input data is obtained, i.e. the four possible firing strengths with the cen-
tral values of the active consequents for each type-1 defuzzification stage. The input
values are stored in registers, starting with the couple (gc1up, c1up and gc1low, c1low)
until the couple (gc4up, c4up and gc4low, c4low) which correspond to the upper and
lower firing strength and their respective activated consequent. The defuzzification
calculus component, takes each input data couple and using aritmethic operations
like addition, multiplication and division, computes the average of the two type-1
defuzzification stages with the height method, and sent it to the output port ”sal”.
After that, the count register is initialized again, ready to the acquisition of new
input data, and carry on the new defuzzification calculus in a cyclical process.

5 Test of the Type-2 Defuzzification Stage

To test the type-2 defuzzification stage, two experiments were conducted. The com-
parison was made between the defuzzification stage developed in VHDL code for
several bits of resolution, and the Wu-Mendel method [3] programmed in Matlab
code and whose block diagram is shown in Figure 9.

In order to achieve the experiments to test the defuzzification stage three main dif-
ferent software tools were used: The Simulink from Mathwork which is a practical
high-level design and simulation tool because it provides a flexible design and sim-
ulation platform to test and correct designs at high level; the Xilinx Integrated Soft-
ware Environment (Xilinx ISE) which is a Hardware Description Language (HDL)
design software suite that allows taking designs through several steps in the ISE
design flow finishing with final verified modules that can be implemented in a hard-
ware target such a Field Programmable Gate Array (FPGA); and the Xilinx System
Generator (XSG), which is a DSP design tool that enables the use of Simulink for
FPGA design. This tool is very important because it allows generating VHDL code
from the System Generator Simulink modules; and visceversa, VHDL modules can
be included in the Simulink design platform by importing the VHDL code in a Sys-
tem Generator ”Black box”, the VHDL code in converted to Matlab functions.

As a first step the development of the stage was carried out using VHDL pro-
gramming in the ISE Xilinx v8.2i [15], simulated and tested in Simulink/Matlab
using the XSG. The experiments were based on the proposed type-2 MFs for the
output variable, shown in Figure 10. This variable has five MFs, two trapezoidal
and three triangular, on the universe of discourse proposed. As the height method
was used as a defuzzification method, in fact there were used singletons to represent
the central value of each MF.
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Fig. 9. Output using the Wu-Mendel method.

Fig. 10. Output variable Membership Functions.

The experimental defuzzification stage coded in VHDL using the average of two
type-1 fuzzy systems is presented in Figure 11. The stage was coded in VHDL and
simulated in Simulink/Matlab through the XSG tool. The stage was tested for 8, 16,
and 32 bits resolution.

Experiment 1. In this experiment it is assumed that only two MFs are activated,
D and H of Figure 10, by the inference stage . The values for their firing strenghs
are assumed to be Dup=0.7 and Dlow=0.4; Hup=0.6 and Hlow=0.2. The output was
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Fig. 11. Experimental design for the type-2 Defuzzification stage.

Table 1. Results of experiment 1 for the type-2 defuzzification stage.

Type-2 MF Resolution of Defuzzification Bits value Output numeric value

Dup=0.7 Dlow=0.4 8 bits 119 -0.06667
16 bits 30793 -0.06026

Hup=0.6 Hlow=0.2 32 bits 2018083991 -0.06028
Wu-Mendel — -0.05889

obtained for 8, 16 and 32 bits of resolution using for each case the average method
and the height as a defuzzifier. For example in the case of 8 bits of resolution, it was
obtained a 119 value equivalent to -0.06667 in the real domain. The result obtained
using the Wu-Mendel method coded in Matlab, was -0.05889. These results are
shown in Table 1.

Experiment 2. In this case three MFs are activated, D, H and I of Figure 10, by the
inference stage. The values for their firing strenghs are assumed to be Dup=0.5 and
Dlow=0.4; Hup=0.3 and Hlow=0.2; finally Iup=0.2 and Ilow=0.1. After the conversion
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Table 2. Results of experiment 2 for the type-2 defuzzification stage.

Type-2 MF Resolution of Defuzzification Bits value Output numeric value

Dup=0.5 Dlow=0.4 8 bits 122 -0.04314
16 bits 31573 -0.03645

Hup=0.3 Hlow=0.2 32 bits 2069253886 -0.03643
Iup=0.2 Ilow=0.1 Wu-Mendel — -0.0366

for the different resolutions The output was obtained for 8, 16 and 32 bits of reso-
lution using for each case the average method and the height as a defuzzifier. In the
case of 16 bits of resolution it was obtained a 31573 value equivalent to -0.03645 in
the real domain. The result obtained using the Wu-Mendel method coded in Matlab,
was -0.0366, almost the same as the obtained with a 16 bits of resolution. These
results are shown in Table 2.

As can be seen in Tables 1 and 2, the results obtained with the Wu-Wendel
method developed with Matlab code are similar to the ones obtained with the pro-
posed method and 16 bits resolution of the data inputs.

6 Testing the Type-2 Defuzzification Stage in the Fuzzy System

Once the simulation of the VHDL type-2 defuzzification stage has been done, the
next step is to test it in a type-2 FIS with the average of two fuzzification and in-
ference stages, programmed using the appropriated Matlab function from the Fuzzy
Matlab Toolbox. In the same way as in the type-1 defuzzification stage, having two
parallel type-1 fuzzy systems the output is obtained as the average of the crisp values
of each system. There were realized three experiments, the tests were done to verify
the operation of the whole type-2 system in Simulink/Matlab using the Xilinx Sys-
tem Generator library. Comparisons were made between the results obtained with
8, 16 and 32 bits for the data inputs for the defuzzification stage, and those obtained
with the Wu-Mendel method in Matlab code, recalling that in this one was used
floating point in the input and output data. For the validation of the defuzzification
stage in the compound type-2 FIS, the experiments undergo the same input condi-
tions, with the purpose of making comparisons between the obtained results. The
MFs proposed for the two input variables and for the output, are shown in Figure 12
and in Figure 10, respectively.

In Figure 13 is presented the whole Simulink model of the type-2 FIS, in which
the two first stages, fuzzification and inference, were designed in Simulink/Matlab
blocks, while the third one, defuzzification, using VHDL codification and imported
to Simulink through the Xilinx System Generator.

Experiment 3. The type-2 FIS developed has two inputs, error and change of error,
and one output. Assuming the following values for the inputs: error=-20, change of
error=3, after the simulation of both type-2 FIS, the results for the 8, 16, and 32 bits
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Fig. 12. Type-2 MF for the inputs of the Type-2 FIS.

Fig. 13. Test of the type-2 defuzzification stage in a Type-2 FIS.

input data for the test of the type-2 defuzzification stage in the type-2 FIS, as well
for the Wu-Mendel type-2 FIS in Matlab Model are shown in Table 3.

Experiment 4. When the values of the two inputs of the type-2 FIS were assumed
to have the following values: error=10, change of error=-7, after the simulation of
both type-2 FIS, the results for the 8, 16, and 32 bits input data for the test of the
type-2 defuzzification stage in the type-2 FIS, as well for the Wu-Mendel type-2 FIS
in Matlab Model are shown in Table 4.

The results obtained for the type-2 FIS using 16 bits for the input data are very
similar to the results obtained with the type-2 FIS with the Wu-Mendel method.
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Table 3. Results of experiment 3 for the type-2 defuzzification stage in the type-2 FIS, for
error=-20 and cerror=3

Data Type Bits value Output numeric value

8 bits 139 -0.0902
16 bits 35716 -0.08998
32 bits 23640757176 -0.09

Wu-Mendel in Matlab — -0.09732

Table 4. Results of experiment 4 for the type-2 defuzzification stage in the type-2 FIS, for
error=-20 and cerror=3

Data Type Bits value Output numeric value

8 bits 119 -0.06667
16 bits 30692 -0.06334
32 bits 2011476350 -0.06333

Wu-Mendel in Matlab — -0.06945

Experiment 5. To make a comparison between the behavior of the type-2 FIS with
the defuzzification stage coded in VHDL, and the type-2 FIS using the Wu-Mendel
method, a control surface was obtained for both of the fuzzy systems. To perform
this experiment, it was necessary to design a Matlab function capable of generating
two vectors containing all possible combinations for the inputs of each type-2 FIS,
and then get the answer and generate the control surface. In Figure 14 is presented
the control surface for the type-2 FIS with the defuzzification coded in VHDL, and
in Figure 15 the control surface for the type-2 FIS with the Wu-Mendel method. It

Fig. 14. Control surface using the Wu-Mendel method in the type-2 FIS.
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Fig. 15. Control surface using the Average of two type-1 FIS method

can be seen that the difference in both surfaces is minimum, although the input data
for the latter are of floating point type, which allows to obtain more exact values.

7 Conclusions

The software implementations of fuzzy systems have been the most widely adopted,
the highly flexibility is one of their characteristics, however the response time is lim-
ited by the inherent sequential execution of the programs, which is not convenient
in real time applications, where the inference speed is an important factor. For this
reason the number of applications using fuzzy systems into an FPGA is increasing,
because one of its main advantages is the parallel processing, the low cost , low
power and area consumption, etc. The methodology proposed in this paper in the
design of the type-2 inference engine using a hardware description language, give
a more practical and flexible model since the process of updating any change in the
rule base can be made easily. So this is an alternative to quickly achieve both goals,
since the developed code to describe the hardware, i.e. the system model, can be
used with any modification to simulate the system and make the system implemen-
tation in the final target, for example in an FPGA.
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Garćıa-Valdez, Mario 205
Gaxiola, Carelia 213, 227

Hernandez, Ma. De Los Angeles 53

Jones, Susan 227
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