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A Feedforward Constructive Neural Network 
Algorithm for Multiclass Tasks Based on Linear 
Separability 

João Roberto Bertini Jr. and Maria do Carmo Nicoletti1 

Abstract. Constructive neural network (CoNN) algorithms enable the architecture 
of a neural network to be constructed along with the learning process. This chapter 
describes a new feedforward CoNN algorithm suitable for multiclass domains 
named MBabCoNN, which can be considered an extension of its counterpart Bab-
CoNN, suitable for two-class classification tasks. Besides describing the main con-
cepts involved in the MBabCoNN proposal, the chapter also presents a comparative 
analysis of its performance versus the multiclass versions of five well-known con-
structive algorithms, in eight knowledge domains, as empirical evidence of the 
MBabCoNN suitability and efficiency for multiclass classification tasks. 

Keywords: Constructive neural network algorithm, LS-discriminant learning, 
Barycentric Correction Procedure, Multiclass classification. 

1   Introduction 

There are many different methods that allow the automatic learning of concepts, 
as can be seen in [1] and [2]. One particular class of relevant machine learning 
methods is based on the concept of linear separability (LS). 

The concept of linear separability permeates many areas of knowledge and 
based on the definition given in [3] it can be stated as: Let E be a finite set of N 
distinct patterns {E1, E2, …, EN}, each pattern Ei (1 ≤ i ≤ N) described as Ei = 
〈x1,…,xk〉, where k is the number of attributes that defines a pattern. Let the pat-
terns of E be classified in such a way that each pattern in E belongs to only one of 
the M classes Cj (1 ≤ j ≤ M). This classification divides the set of patterns E into 
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the subsets EC1, EC2, …, ECM, such that each pattern in ECi belongs to class Ci, 
for i = 1, …, M. If a linear machine can classify the patterns in E into the proper 
class, the classification of E is a linear classification and the subsets EC1, EC2, …, 
ECM are linearly separable. Stated another way, a classification of E is linear and 
the subsets EC1, EC2, …, ECM, are linearly separable if and only if linear dis-
criminant functions g1, g2, …, gM exist such that 

gi(E) > gj(E) 

j = 1, …, M, j≠i 

for all E ∈ ECi 

for all i = 1, …, M 

Since the decision regions of a linear machine are convex, if the subsets EC1, 
EC2, …, ECM are linearly separable, then each pair of subsets ECi, ECj, i, j = 1, …, 
M, i ≠ j, is also linearly separable. That is, if EC1, EC2, …, ECM, are linearly sepa-
rable, then EC1, EC2, …, ECM, are also pairwise linearly separable. 

According to Elizondo [4], linearly separable based learning methods can  
be divided into four groups. Depending on their main focus they may be based 
on linear programming, computational geometry, neural networks or quadratic 
programming. 

This chapter describes a new neural network algorithm named MBabCoNN 
(Multiclass Barycentric-based Constructive Neural Network) suitable for multi-
class classification problems. The algorithm incrementally constructs a neural 
network by adding hidden nodes that linearly separate sub-regions of the feature 
space. It can be considered a multiclass version of the two-class CoNN named 
BabCoNN (Barycentric-based Constructive Neural Network) proposed in [5]. 

The chapter is an extended version of an earlier paper [6] and is organized as fol-
lows. Section 2 stresses the importance of CoNN algorithms and discusses the role 
played by the algorithm used for training individual Threshold Logic Units (TLU), 
particularly focusing on the BCP algorithm [7]. Section 3 highlights the main char-
acteristics of the five well-known CoNN multiclass algorithms used in the empirical 
experiments described in Section 5. Section 4 initially outlines the basic features of 
the two-class BabCoNN algorithm briefly presenting the main concepts and strate-
gies used by BabCoNN when learning and classifying and,presents a detailed de-
scription of the multiclass MBabCoNN algorithm divided into two parts: learning 
the neural network and using the network learnt for classifying previously unseen 
patterns. Section 5 presents and discusses the results of 16 algorithms; four of them 
are versions of PRM and BCP for multiclass tasks and the other 12 are variants of 
the basic multiclass algorithms used, namely: MTower, MPyramid, MUpstart, 
MTiling, MPerceptron-Cascade and MBabCoNN in eight knowledge domains from 
the UCI Repository [8]. The Conclusion section ends the chapter by presenting a 
summary of the main results highlighting a few possible research lines to investi-
gate, aiming at improving the MBabCoNN algorithm. 

2   Constructive NN and the Relevance of TLU Training 

Whereas conventional neural network (NN) training algorithms such as the Back-
propagation algorithm require the NN architecture to be defined before learning 
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can begin, constructive neural network (CoNN) algorithms allow the network ar-
chitecture to be constructed simultaneously with the learning process; both sub-
processes, learning and constructing the network, are interdependent. 

Constructive neural network (CoNN) algorithms do not assume fixed network 
architecture before training begins. The main characteristic of a CoNN algorithm 
is the dynamic construction of the network’s hidden layer(s), which occurs simul-
taneously with training. A description of a few well-known CoNN algorithms can 
be found in [9] and [10]; among the most well-known are: Tower and Pyramid 
[11], Tiling [12], Upstart [13], Perceptron-Cascade [14], Pti and Shift [15]. 

2.1   Training Individual TLUs 

Usually the basic function performed by a CoNN algorithm is the addition to the net-
work architecture of a new TLU and its subsequent training. For this reason CoNN al-
gorithms are very dependent on the TLU training algorithm used. For training a TLU, 
a constructive algorithm generally employs the Perceptron or any of its variants, such 
as Pocket or Pocket with Ratchet Modification (PRM) [11]. Considering that CoNN 
algorithms depend heavily on an efficient TLU training algorithm, there is still a need 
for finding new and better methods, although some of the Perceptron variants (espe-
cially the PRM) have been widely used with good results. 

The Barycentric-based Correction Procedure (BCP) algorithm [7] [16], al-
though not widely adopted, has performed well when used for training individual 
TLUs (see [17] for instance) and has established itself as a good competitor com-
pared to the PRM when used by CoNN algorithms (see [18] for a performance 
comparison). Good results have also been obtained by allowing both algorithms 
(BCP and PRM) to compete for training the next neuron to be added to the net-
work; the proposal of this hybrid constructive algorithm and its results can be 
found in [19]. In spite of BCP being poorly explored in the literature, its good per-
formance motivated the choice of this algorithm as the TLU’s training algorithm 
embedded in both the BabCoNN and its multiclass version MBabCoNN, de-
scribed in this chapter. 

The BCP is based on the geometric concept of the barycenter of a convex hull 
and the algorithm (for a two-class problem) iteratively calculates the barycenters 
of the regions defined by the positive and the negative training patterns. Unlike 
Perceptron based algorithms, this algorithm calculates the weight vector and the 
bias separately. The BCP defines the weight vector as the vector that connects two 
points: the barycenter of the convex hull of positive patterns (class +1) and the 
barycenter of the convex hull defined by negative patterns (class −1). The convex 
hull of an n-dimensional set of points E is the intersection of all convex sets con-
taining E, and the barycenter stands for its center of mass [20]. It follows a brief 
overview of the BCP algorithm. 

Let E = E1 ∪ E2 be a training set such that E1 is the subset of training patterns 
with class 1 and E2 the set of training patterns with class −1, and let |E1| = k1 and 
|E2| = k2. The barycenters b1 and b2 represent the center of mass of the convex hull 
formed by patterns belonging to each class, respectively. In the algorithm they are 
defined as the weighted averages of patterns in E1 and E2 respectively as de-
scribed by eq. (1), 
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(1)

where α and μ are weight vectors, α = 〈α1,α2, …, αk
1
〉 and μ = 〈μ1, μ2, …, μk

2
〉, re-

sponsible for modifying the position of the barycenters. For the experiments de-
scribed in Section 5, both weight vectors were randomly initialized in the range 
[1,2], as recommended in [17]. They are used to vary the barycenters, at each exe-
cution, increasing the probability of finding a better weight vector. 

In the BCP procedure the weight vector is defined as W = b1 – b2 and the hy-
perplane it defines is given by W.x + θ = 0, where θ is the bias term. Once W is 
determined, the bias term θ is separately defined according to the following pro-
cedure. Let p be a pattern and consider the function V: Rn → R given by eq. (2). 

V(p) = −W.p  (2)

Consider subsets V1 = {V(p) | p ∈ E1} and V2 = {V(p) | p ∈ E2} and let V = 
V1 ∪ V2. The greatest and the smallest values of V1 and V2 are then determined. 
If max(V1) < min(V2), the training set is linearly separable and θ is chosen such 
that max(V1) < θ < min(V2) and the algorithm ends. Otherwise either the set is 
not linearly separable or the current weight vector is not correctly positioned.  

If max(V1) ≥ min(V2) the chosen value for θ should minimize the misclassifi-
cations. To do so, consider the set Ex = {ext1, ext2, ext3, ext4} whose values cor-
respond to the smallest and biggest values of V1 and V2 respectively. Consider P− 
= [ext1,ext2) ∩ V; P+ = [ext3,ext4) ∩ V and Pov = [ext2,ext3) ∩ V. As sets P− and 
P+ have patterns belonging to only one class, they are called exclusion zones. 
Since Pov has patterns belonging to both classes it is called the overlapping zone. 
To choose an appropriate bias, the algorithm iteratively establishes its value as the 
arithmetic mean of two consecutive values in the overlapping zone. The value that 
correctly classifies the greatest number of patterns is chosen as bias. 

At a certain, iteration let R and S be the sets of patterns belonging to classes 1 
and −1 respectively and let b1 and b2 be the barycenters of region R and S respec-
tively (calculated as in eq. (1)). Let RE ⊂ R and SE ⊂ S be the subsets of misclas-
sified patterns. The algorithm determines the barycenters be1’ and be2’ of RE and 
SE respectively and then, creates two vectors e1 = b1 − be1’ and e2 = b2 − be2’. The 
two vectors are then multiplied by random values from [0,1], say r1 and r2, giving 
rise to the new barycenters b1’ = r1.e1 and b2’ = r2.e2. A new weight vector W’ (and 
consequently the new hyperplane H’), is then obtained by connecting the new 
barycenters. The process continues while wrongly classified patterns remain or the 
number of iterations has not reached its predefined value. Due to its geometric ap-
proach, the BCP ends after a few iterations and the final hyperplane tends to be a 
good separator between the two classes, even in situations where the training set is 
not linearly separable. 
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3   Reviewing Five Well-Known Multiclass CoNN Algorithms 

Multiclass classification tasks are common in pattern recognition. Frequently a 
classification task with M (> 2) classes is treated as M two-class tasks. Although 
this approach may be suitable for some applications, there is still a need for more 
effective ways of dealing with multiclass problems. CoNNs have proved to be a 
good alternative for two-class tasks and have the potential to become good alterna-
tives for multiclass domains as well. 

Multiclass constructive algorithms start by training as many output neurons as 
there are classes in the training set; generally two different strategies can be em-
ployed for the task, the independent (I) and the winner-takes-all (WTA). As stated 
in [21] in the former strategy each output neuron is trained independently of the 
others. The WTA strategy, however, explores the fact that the membership of a 
pattern in one class prevents its belonging to any other class. Using the WTA 
strategy, for any pattern, the output neuron with the highest net input is assigned 
an output of 1 and all other neurons are assigned outputs of −1. In the case of a tie 
for the highest net input all neurons are assigned an output of −1, thereby render-
ing the pattern incorrectly classified.  

The main goal of this section is to provide a brief overview of the five well-
known multiclass CoNN algorithms used in the experiments (for a more detailed 
description see [9]) described in Section 5 and to describe the new multiclass algo-
rithm MBabCoNN. So far, multiclass problems have not been the main focus of 
CoNN research and consequently most of the multiclass algorithms available are 
extensions of their two-class counterparts.  

The multiclass MTower algorithm was proposed in [22] and can be considered 
a direct extension of the two-class Tower algorithm. The Tower creates a NN with 
only one TLU per hidden layer. In a Tower network [11] each new hidden neuron 
introduced is connected to all the input neurons and to the hidden neuron previ-
ously created – this causes the network to resemble a tower. Similarly to the two-
class Tower, the MTower adds TLUs to the network; instead of one at a time, like 
the Tower, it adds as many hidden neurons as there are classes. 

For an M-class problem, the MTower adds M hidden neurons per hidden layer. 
Each one of the M neurons in a certain hidden layer has connections with all the 
neurons in the input layer as well as connections with all the M neurons of the 
previously added hidden layer. The addition of new layers to the network ends 
when any of the following stopping criteria is satisfied: (1) the current network 
correctly classifies all the training patterns; (2) the threshold on the number of lay-
ers has been reached; (3) the current network accuracy is worse than the accuracy 
of the previous network (i.e., the current network without the addition of the last 
hidden layer). If (3) happens the algorithm removes the last layer added and ends 
the process, returning the network constructed so far. 

The multiclass MPyramid, also proposed in [22], is a direct extension of its 
two-class counterpart Pyramid algorithm, described in [11]. MPyramid extends 
the Pyramid simply by adding M hidden neurons per layer (corresponding to the 
existing M classes in the training set) instead of only one at each step. The differ-
ence between the Tower and Pyramid algorithms (and consequently between their 
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M-class versions) lies on the connections. In a Pyramid network each newly added 
hidden neuron has connections with all the previously added hidden ones as well 
as with the input neurons. 

The two-class Upstart algorithm [13] constructs the neural network as a binary 
tree of TLUs and it is governed by the addition of new hidden neurons, specialized 
in correcting wrongly-on or wrongly-off errors made by the previously added neu-
rons. A natural extension of this algorithm for multiclass tasks would be an algo-
rithm that constructs M binary trees, each one responsible for the learning of one 
of the M classes found in the training set. This approach, however, would not take 
into account a possible relationship that might exist between the M different 
classes. The MUpstart proposal, described in [23], tries to circumvent the problem 
by grouping the created hidden neurons in a single hidden layer. Each hidden neu-
ron is created aiming at correcting the most frequent error (wrongly-on or 
wrongly-off) committed by a single neuron among the M output neurons. The hid-
den neurons are trained with patterns labeled with two classes only and they can 
fire 0 or 1. Each hidden neuron is directly connected to every neuron in the output 
layer. The input layer is connected to the hidden neurons as well as to the output 
neurons. 

The Tiling algorithm [12] constructs a neural network where hidden nodes are 
added to a layer in a similar fashion to laying tiles. Each hidden layer in a Tiling 
network has a master neuron and a few ancillary neurons. The output layer has 
only one master neuron. Tiling constructs a neural network in successive layers 
such that each new layer has a smaller number of neurons than the previous layer. 
Similarly to this approach, the MTiling method, as proposed in [24], constructs a 
multi-layer neural network where the first hidden layer has connections to the in-
put layer and each subsequent hidden layer has connections only to the previous 
hidden layer. Each layer has master and ancillary neurons with the same functions 
they perform in a Tiling network i.e., the master neurons are responsible for classi-
fying the training patterns and the ancillary ones are responsible for making the 
layer faithful. The role played by the ancillary neurons in a hidden layer is to 
guarantee that the layer does not produce the same output for any two training pat-
terns belonging to different classes. In the MTiling version the process of adding a 
new layer is very similar to the one implemented by Tiling. However, while the 
Tiling algorithm adds only one master neuron per layer, the MTiling adds M mas-
ter neurons (where M is the number of different classes in the training set). 

The Perceptron Cascade algorithm [14] is a neural constructive algorithm that 
constructs a neural network with an architecture resembling the one constructed 
by the Cascade Correlation algorithm [25] and it uses the same approach for  
correcting the errors adopted by the Upstart algorithm [13]. Unlike the Cascade 
Correlation however, the Perceptron Cascade uses the Perceptron (or any of its 
variants) for training individual TLUs). Like the Upstart algorithm, the Perceptron 
Cascade starts the construction of the network by training the output neuron and 
hidden neurons are added to the network similarly to the process adopted by the 
Cascade Correlation: each new neuron is connected to both the output and input 
neurons and has connections with all hidden neurons previously added to the net-
work. The MPerceptron-Cascade version, proposed in [22], is very similar to the 
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MUpstart described earlier in this section, the main difference between them being 
that the neural network architecture induced by both. The MPerceptron-Cascade 
adds the new hidden neurons in new layers while the MUpstart adds them in one 
single layer. 

4   The Multiclass MBabCoNN Proposal 

The MBabCoNN proposal can be considered an extension of the two-class algo-
rithm called BabCoNN [5], suitable for classification tasks involving M > 2 
classes. In order to present and discuss the MBabCoNN proposal, this section ini-
tially presents a brief description of the most important features of the BabCoNN 
algorithm, paying particular attention to the mechanism employed by the hidden 
neurons for firing their outputs, since the MBabCoNN shares the same strategy. 
To facilitate the understanding of MBabCoNN, the learning and the classification 
processes implemented by the algorithm are approached separately; the trace of 
both processes is shown via an example. 

4.1   The Two-Class BabCoNN Algorithm 

BabCoNN is a new proposal that borrows some ideas from the BCP to build a 
neural network. Like Upstart, Perceptron Cascade (PC) and Shift, BabCoNN also 
constructs the network beginning with the output neuron. However, it creates only 
one hidden layer; each hidden neuron is connected to the input layer as well as to 
output neuron, like the Shift algorithm [15]. Unlike Shift however, the connections 
created by BabCoNN do not have an associated weight. The Upstart, PC and Shift 
algorithms construct the network by adding new hidden neurons specialized in 
correcting wrongly-on or wrongly-off errors. The BabCoNN, however, employs a 
different strategy to add new hidden neurons to the network. 

Network construction starts by training the output neuron, using the BCP. Next, 
the algorithm identifies all the misclassified training patterns; if there are none, the 
algorithm stops, otherwise it starts adding neurons (one at a time) to the single 
hidden layer of the network, in order not to have misclassified patterns. A hidden 
neuron added to the hidden layer will be trained with the training patterns that 
were misclassified by the last added neuron; the first hidden neuron will be trained 
with the patterns that were misclassified by the output neuron; the second hidden 
neuron will be trained with the set containing the patterns that the first hidden neu-
ron was unable to classify correctly, and so on. The process continues up to the 
point where no training patterns remain or all the remaining patterns belong to the 
same class. 

The process of building the network architecture is described by the pseu-
docode given in Fig. 1, where E = {E1, E2,…EN} represents the training set and 
each training pattern is described as Ei = 〈x1, x2,…xk, C〉, i.e., k attributes and an 
associated class C ∈ {–1, 1}. 

In Fig. 1 the variables output and hiddenLayer[ ] define the neural network. 
The variable output represents a single neuron, and hiddenLayer[ ] is a vector  
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representing the hidden neurons. The function bcp( ) stands for the BCP algo-
rithm, used for training individual neurons. The function removeClassifiedPat-
terns( ) removes from the training set the patterns that were correctly classified  
by the last added neuron and bothClasses( ) is a Boolean function that returns 
‘true’ if the current training set still has patterns belonging to both classes and 
‘false’ otherwise.  

Due to the way the learning phase is conducted by BabCoNN, each hidden neu-
ron of the network is trained using patterns belonging to a region of the training 
space (i.e., the one defined by the patterns that were misclassified by the previous 
hidden neuron added to the network). This particular aspect of the algorithm has 
the effect of introducing an undesirable ‘redundancy’, in the sense that a pattern 
may be correctly classified by more than one hidden neuron. This has been sorted 
out by implementing a classification process where the neurons of the hidden layer 
have a particular way of firing their output. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 BabCoNN algorithm for constructing a neural network. 

Given an input pattern to be classified by a BabCoNN network, each hidden 
neuron has three possible outputs: 1, when the input pattern is classified as posi-
tive; −1, when the pattern is classified as negative and 0, when the pattern is clas-
sified as undetermined. Aiming at stressing the classification power of the hidden 
neurons, as well as providing a way for them to deal with unknown patterns, a 
limited ‘region of action’ is assigned to each hidden neuron. The region is limited 
by two thresholds associated to each hidden neuron, one for the positive class and 
the other for the negative class. The threshold values are determined as the largest 
Euclidean distance between the barycenter of a given class and the patterns of the 
same class are used to train the current neuron.  

Figure 2 illustrates the process. The two-dimensional patterns used for training 
the hidden neuron are represented by ‘+’ (positive) and ‘–’ (negative); b1 and b2 
are the barycenters of the regions defined by the ‘+’ and the ‘−’ patterns respec-
tively; W is the weight vector after the training and H is the hyperplane defined by 

procedure BabCoNN_learner(E) 
begin 

output ← bcp(E) 
nE ← removeClassifiedPatterns(E) 
h ← 0 
while bothClasses(nE) do 
  begin 

h ← h + 1 
hiddenLayer[h] ← bcp(nE) 
nE ← removeClassifiedPatterns(nE) 

  end 
end procedure. 
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both, W and the bias. For each class, the region is defined as the hypersphere 
whose radius is given by the largest distance between all correctly classified pat-
terns and the corresponding barycenter of the region. 

To exemplify how a hidden neuron behaves during the classification phase, let 
each Yi = 〈yi1, yi2〉, i = {1, 2 ,3 ,4} be a given pattern to be classified. As can be 
seen in Figure 2, four situations may occur:  

(1) The new pattern (Y1) is in the positive classification region of the hidden 
neuron. The pattern Y1 is classified as positive by the neuron, which 
fires +1;  

(2) The new pattern (Y2) is in the positive region, but now lying on the other 
side of the hyperplane; this would make the neuron classify Y2 as nega-
tive. However, the neuron will fire the value 0 since there is no guarantee 
that the pattern is negative; 

(3) The new pattern (Y3) is not part of any region; in this case the neuron fires 
the value 0 independently of the classification given by the hyperplane it 
represents; 

(4) The new pattern (Y4) is in the negative classification region of the hidden 
neuron. The pattern Y4 is classified as negative and the neuron fires the 
value −1. Note that the regions may overlap with each other and, eventu-
ally, a pattern may lie in both regions. When that happens, the hidden neu-
ron (as implemented by the version used in the experiments described in 
Section 5) assigns the pattern the class is given by the hyperplane.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2 BabCoNN hidden neuron firing process. 

The pseudocode of the classification procedure is described in Fig. 3. After 
each hidden neuron fires its output, the output neuron decides which class the 
given pattern belongs to. The decision process is based on the sum of all the  
responses; if the resulting value is positive, the pattern is classified as positive, 
otherwise, as negative. If the sum result is 0, the output node is in charge of classi-
fying the pattern.  
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The function classification( ) returns the neuron classification (1 or –1), this is 
the usual classification that uses the weight vector and bias. Both functions  
belongsToPositive( ) and belongsToNegative( ) are Boolean functions. The first 
returns ‘true’ if the pattern lies in the positive region and ‘false’ otherwise. The 
second returns ‘true’ if the pattern lies in the negative region and ‘false’ otherwise. 
The Hlc[ ] vector stores the classifications given by all hidden neurons, for a 
given pattern and the last conditional command in the classification algorithm de-
fines the class associated with the input pattern X.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 BabCoNN classification process. 

4.2   The MBabCoNN Learning Algorithm 

Figure 4 presents the pseudocode of the algorithm that implements the MBab-
CoNN learning process; the input to the algorithm is the training set E with pat-
terns belonging to M > 2 classes. MBabCoNN can deal with Boolean, integer and 
real-valued tasks.  

MBabCoNN constructs the network beginning with the output layer containing 
as many neurons as there are classes in the training set (each output neuron is as-
sociated to a class). The algorithm is flexible enough to allow the output neurons 
to be trained using any TLU algorithm combined with either strategy, independent 
or WTA. 

After adding and training the M output neurons using procedure MTluTraining( ), 
the algorithm identifies the misclassifications the current network makes on the 
training set, via procedure evaluateNetwork( ), and starts to add neurons to its single 
hidden layer in order to correct the classification mistakes made by the output  
neurons. 

procedure BabCoNN_classifier(X) 
{X is the pattern to be classified} 
begin 

for i ← 1 to h do 
  begin 

C ← classification(hiddenLayer[i], X) 
Bp ← belongsToPositive(hiddenLayer[i], X) 
Bn ← belongsToNegative(hiddenLayer[i], X) 
if (C = 1 and Bp) then Hlc[i] ← 1 
                             else if (C = –1 and Bn)  

                                   then Hlc[i] ← –1  
                                   else Hlc[i] ← 0 

  end 
sum ← 0 
for j ← 1 to h do  
     sum ← Hlc[j] + sum 
if sum ≠ 0 then sum / |sum| 
                  else classification(output,X) 

end procedure. 
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In a MBabCoNN neural network each hidden neuron can be considered a  
two-class BabCoNN-like hidden neuron, i.e. it only fires 1, −1 or 0 values. In or-
der to add a hidden neuron, MBabCoNN first finds which output neuron (class) is 
responsible for the greatest number of misclassifications in relation to patterns be-
longing to all the other output classes, via highest_wrongly-on_error( ), detailed in 
Figure 5. 

A hidden neuron is then added to the hidden layer and is trained with a set con-
taining patterns of two classes only: those belonging to the class the output neuron 
represents (which are relabeled as class −1) and those belonging to the misclassi-
fied class (which are relabeled as class 1). 

Each newly added hidden neuron is then connected only to the two output neu-
rons whose classes it separates. The connection to the neuron responsible for the 
misclassifications has weight 1 and the other −1. In fact the classes’ labels can be 
arbitrarily chosen, the only proviso is that the weight must correspond to the rela-
beled class of the output neuron in question, e.g. the connection associated with a 
neuron recently represented by label 1 must be 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Pseudocode of the MBabCoNN learning procedure. 

As mentioned before in situations of uncertainty, BabCoNN neurons fire 0; 
this is convenient in a multiclass situation because it causes no side effects con-
cerning the other patterns that do not belong to either two classes responsible for 
the hidden neuron creation. After a hidden neuron is added, the whole training set 
is input to the network grown so far and the classification process is repeated  
 

procedure MBabCoNNLearner(E)  
begin 
   currentAccuracy ← 0, 
   previousAccuracy ← 0 
   output ← MTluTraining(E)   {output layer with M neurons for a M-class problem} 
   currentAccuracy ←  evaluateNetwork(E) 
   h ← 0 {hidden neuron index} 
   while (currentAccuracy > previousAccuracy) and (currentAccuracy < 1) do 
      begin 
         highest_wrongly-on_error(E,WrongNeuron,Wrongly-onClass) 
         twoClassesE ← createTrainingSet(WrongNeuron,Wrongly-onClass,E) 
         h ← h + 1 
         hiddenLayer[h] ← bcp(twoClassesE)               {hidden BabCoNN neuron} 
         previousAccuracy ←  currentAccuracy 
         currentAccuracy ← evaluateNetwork(E) 
      end 
   if currentAccuracy ≠ 1 then begin  
                                                    remove(hiddenLayer,h) 
                                                    h ← h – 1 
                                                 end 
end procedure. 
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again. Depending on the classification accuracy, new hidden neurons may be 
added to the network in a similar fashion as the one previously described. If with  
 

the addition of a new hidden neuron the accuracy of the network decreases, the 
new hidden neuron is removed and the learning process ends. The other trivial 
stopping criteria is the convergence of the network i.e., when the network makes 
no mistakes).  

Fig. 5 Pseudocode for determining the neuron responsible for the highest number of 
wrongly-on misclassifications as well as for the corresponding misclassified class. 

4.3   An Example of the MBabCoNN Learning Algorithm 

This section shows a simple example of the MBabCoNN learning algorithm ac-
cording to the pseudocode described in Fig. 4. The example considers a training 
set with six training patterns identified by numbers 1 to 6 describing three classes 
identified by numbers 1 to 3. The figure on the left shows a MBabCoNN network 
after training the output neurons and, on the right, the four misclassifications it 
makes. The following figures show the evolution of the network implemented by 
MBabCoNN in the process of correcting the misclassifications. 
 
 

procedure highest_wrongly-on_error(E,WrongNeuron,Wrongly-onClass) 
begin 
{initializing error matrix} 
 for i  ← 1 to M do 
   for j  ← 1 to M do  
      outputErr[i,j] ← 0 
{collecting errors made by output neurons in training set E={E1,E2,…,EN} } 
  for i  ← 1 to N do 
   begin 
       predClass ← MBabCoNN(Ei) 
       if predClass ≠ class(Ei) 
            then outputErr[predClass,class(Ei)] ← outputErr[predClass,class(Ei)] + 1 
   end 
{identifying which neuron makes the highest number of wrongly-on errors within a class} 
highWrong ← 0 
highErr ← 0 
highWrongly-onClass ← 0 
for i ← 1 to M do  
    for j  ← 1 to M do 
    if outputErr[i,j] > highErr 
      then begin 
                 highErr ← outputErr[i,j] 
                 highWrong ← i 
                 highWrongly-onClass ← j 
               end 
WrongNeuron ← highWrong  
Wrongly-onClass ← highWrongly-onClass 
end procedure. 
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Number of wrongly-on errors by u1: 0 
Number of wrongly-on errors by u2: 1 
Number of wrongly-on errors by u3: 3 (patterns #2, #3 (class 2) and #4 (class 1)) 
u3: has the highest number of wrongly-on errors within a class (misclassifies #2 and #3 from 
class 2). A new hidden neuron (h1) is added to the network and trained with all patterns be-
longing to class 2 and class 3 i.e., hidden neuron h1 is trained with E = {#2,#3,#5,#6}. 

                  class     new class label 
#2 2                    1 
#3 2                    1 
#5 3                  −1 
#6 3                  −1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Number of wrongly-on errors by u1: 0 
Number of wrongly-on errors by u2: 1 
Number of wrongly-on errors by u3: 1 (pattern #4 (class 1)) 
u2 and u3 have the highest number of wrongly-on errors within a class. Randomly choose one 
of them; u3 for example.  A new hidden neuron (h2) is added to the network and trained with 
all patterns belonging to class 1 and class 3 i.e., trained with E = {#1,#4,#5,#6}. 

                   class     new class label 
#1 1                    1 
#4 1                    1 
#5 3                  −1 
#6 3                  −1 

#P: pattern id; C: correctly classified; 
W: wrongly classified 
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Training set: {#1, #2, #3, #4, #5, #6} 
After the addition of h1, patterns #2 and #3 are 
correctly classified. 
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Number of wrongly-on errors by u1: 0 
Number of wrongly-on errors by u2: 1 (pattern #5 (class 3)) 
Number of wrongly-on errors by u3: 0 
u2 has the highest number of wrongly-on errors within a class. A new hidden neuron (h3) is 
added to the network and trained with all patterns belonging to class 3 and class 2 i.e., 
trained with E = {#5, #6, #2, #3}. 

                 class     new class label 
#5 3                    1 
#6 3                    1 
#2 2                  −1 
#3 2                  −1 

 
 
 
 
 
 
 
 
 
 
 
 
 

4.4   The MBabCoNN Classifying Algorithm 

The MBabCoNN classifying algorithm is described in Fig. 6. For the classification 
process an output neuron that has any connections to hidden neurons is said to 
have dependencies. 

In the pseudocode of Fig. 6, the procedure classification( ) approaches the 
network as constituted by a single output node indexed by output[ ] and no hidden 
neurons; the procedure gives as result the classification of the input pattern by the 
output node. 
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The classification process promotes the lack of dependency; if an output neuron 
fires 1 and has no dependencies then the class given to the pattern being classified 
is the class the neuron represents. Intuitively, an output neuron that does not create 
dependencies reflects the fact that it has not been associated with misclassifica-
tions during training. This can be an indication that the class represented by this 
particular neuron is reasonably easy to identify from the others (i.e., is linearly 
separable from the others). Figure 7 shows an example of this situation. 

 

 

Fig. 6 Pseudocode of the MBabCoNN procedure for classifying a new pattern. 

procedure MBabCoNN_classifier(X) 
{X: new pattern} 
{MBabCoNN network with M output neurons} 
begin 
 result ← 0, counter ← 0, neuronIndex ← 0  
j ← 1 
while (j ≤ M) and (counter < 2) do  
   begin 
     OutputClassification[j] ← classification(output[j],X)  {retrieves 1 or -1} 
     if OutputClassification[j] = 1 then  
            begin 
                 counter ← counter + 1 
                  neuronIndex ← j  
            end 
     j ←  j + 1 
   end  
 if ( (counter = 1) and not hasDependencies(output[neuronIndex]) ) 
   then result ← class(neuronIndex) 
   else 
     begin 
        for j  ← 1 to M do  
          begin 
           sum ← 0 
           for k ← 1 to h do  
                begin      {h is the number of  hidden neurons}  
                  if isConected(k,j)  then   {verifies connection between hidden neuron k and output j} 
                          sum ← sum + classification(hiddenLayer[k], X) {BabCoNN-like neuron} 
                   hiddenClassification[j] ←  sum 
               end 
         end  
       result ← class(greatest(hiddenClassification)) 
       {returns the class associated with the  index of the greatest value in hiddenClassification} 
    end 
end  procedure. 
  
 
 
 
 
 
 
end procedure. 
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Fig. 7 Two out of three output neurons have dependencies. 

In Fig. 7, two of the output neurons, u2 and u3 have dependencies (have con-
nections with hidden neurons) and neuron u1 does not have dependencies. If a new 
pattern is to be classified, the classification procedure checks if the output given 
by the node(s) that has (have) no dependencies (in this example, the u1) is +1; if 
that is the case the new pattern is assigned the class represented by u1 otherwise, 
the classification procedure takes into consideration only the sum of the outputs by 
the hidden neurons. 

In cases where hidden neurons fire value 0, the classification procedure ig-
nores the hidden neurons and takes into account the information given by the  
output neurons only. If, however, the output neuron that classifies the pattern has 
dependencies, the output result will be the sum of the outputs of all hidden neu-
rons. If the sum is 0 the output neuron will be in charge of classifying the pattern.  

The three output neurons, u1, u2 and u3, in the MBabCoNN network of Fig. 8 
have dependencies. Each output node has two connections with the added hidden 
neurons. A pattern to be classified will result in three outputs, one from each of 
the three hidden nodes (+1, −1 or 0), which will be multiplied by the connection  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 MBabCoNN network where the three output neurons have dependencies. 
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weight, producing values +1, −1 or 0. Each output neuron will sum the input re-
ceived from the hidden neurons and the pattern will be assigned the class repre-
sented by the output neuron with the highest score. 

5   Experimental Results and Discussion 

This section presents and compares the results of using MBabCoNN and the five 
other multiclass CoNN algorithms previously described, when learning from eight 
multiclass knowledge domains. Each algorithm was implemented in Java using 
two different algorithms for training individual TLUs, namely, the PRM and  
the BCP, identified in tables 2 to 9 by the suffixes P and B added to their names 
respectively. 

Also for comparative purposes, the results of running a multiclass version of 
PRM and BCP, each implemented in two versions, WTA and independent(I),  are 
presented. The eight knowledge domains used in the experiments have been 
downloaded from the UCI-Repository [8] and are summarized in Table 1. 

Taking into consideration the MBabCoNN proposal (implemented in two ver-
sions: MBabCoNNP and MBabCoNNB), the two different versions implemented 
for each of the five algorithms (MTower, MPyramid, MUpstart, MTiling and 
MPerceptron-Cascade) and the two different strategies employed for implement-
ing the MPRM and the MBCP, a total of 16 different algorithms have been im-
plemented and evaluated. 

Versions MBabCoNNP and MBabCoNNB differ in relation to the algorithm 
used for training their output neurons, the PRMWTA and the BCPWTA respec-
tively, since both versions use the BCP for training hidden neurons. In the ex-
periments, the accuracy of each neural network is based on the percentage of suc-
cessful predictions on test sets for each domain. For each of the eight datasets the 
experiments consisted of performing a ten-fold cross-validation process with 
each of the 16 algorithms. The results are the average of the ten runs followed by 
their standard deviation.  

Table 1 Domain Specifications 

Domain # PATTERNS # ATTRIBUTES # CLASSES 

Iris 150 4 3 

E. coli 336 7 8 

Glass 214 9 6 

Balance 625 4 3 

Wine 178 13 3 

Zoo 101 17 7 

Car 1,728 6 4 

Image Segmentation 2,310 19 7 
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Runs with the various learning procedures were carried out on the same train-
ing sets and evaluated on the same test sets. The cross-validation folds were the 
same for all the experiments in each domain. For each domain, each learning pro-
cedure was run considering one, ten, a hundred and a thousand iterations; only the 
best test accuracy among these iterations for each algorithm is presented. All the 
results obtained with MBabCoNN and the other algorithms (and their variants) are 
presented in tables 2 to 9, organized by knowledge domain. 

The following abbreviations were adopted for presenting the tables: #I: number 
of iterations, TR training set, TE testing set. The accuracy (Acc) is given as a per-
centage followed by the standard deviation value. The ‘Absolute Best’ (AB) col-
umn gives the best performance of the learning procedure (in TE) over the ten 
runs and the ‘Absolute Worst’ (AW) column gives the worst performance of the 
learning procedure (in TE) over the ten runs; #HN represents the number of hid-
den nodes; AB(HN) gives the smallest number of hidden nodes created and 
AW(HN) gives the highest number of hidden nodes created. 

Obviously the PRMWTA, PRMI, BCPWTA and BCPI do not have values for 
#HN, AB(HN) and AW(HN) because the networks they create only have input 
and output layers. 

In relation to the results obtained in the experiments shown in tables 2 to 9, it 
can be said that as far as accuracy in test sets is concerned, MBabCoNNP has 
shown the best performance in four out of eight domains, namely the Iris, E. Coli, 
Wine and Zoo. In the Balance domain, although its result is very close to the best  
 
Table 2 Iris 

Algorithm #I Acc(TR) Acc(TE) #HN AB(TE) AW(TE) AB(HN) AW(HN)

MBabCoNNP 103 98.7~0.4 98.0~3.2 3.1~0.3 100.0 93.3 3.0 4.0 

MBabCoNNB102 94.2~3.1 94.0~4.9 4.9~0.6 100.0 86.7 6.0 4.0 

PRMWTA 102 98.7~0.4 95.3~8.9 − 100.0 7.3.3 − − 

PRMI 102 89.3~2.6 86.7~18.1 − 100.0 46.7 − − 

BCPWTA 102 87.9~1.4 84.0~13.4 − 100.0 53.3 − − 

BCPI 1 85.0~7.3 72.7~41.3 − 100.0 6.7 − − 

MTowerP 102 98.9~0.4 96.7~6.5 3.6~1.3 100.0 80.0 3.0 6.0 

MTowerB 102 87.8~1.6 83.3~14.5 3.3~0.9 100.0 53.3 3.0 6.0 

MPyramidP 102 98.8~0.4 96.0~8.4 3.3~0.9 100.0 73.3 3.0 6.0 

MPyramidB 102 88.3~1.4 82.7~13.8 3.6~1.3 100.0 53.3 3.0 6.0 

MUpstartP 102 98.9~0.4 93.3~12.9 3.3~0.0 100.0 60.0 3.0 3.0 

MUpstartB 102 88.6~1.6 80.7~13.9 3.6~0.5 100.0 53.3 3.0 4.0 

MTilingP 10 98.2~0.8 95.3~8.9 3.0~0.0 100.0 73.3 3.0 3.0 

MTilingB 102 89.6~4.7 84.0~14.5 7.0~8.8 100.0 53.3 3.0 28.0 

MPCascadeP 102 98.8~0.4 95.3~8.9 3.0~0.0 100.0 73.3 3.0 3.0 

MPCasdadeB 102 88.5~1.4 80.7~13.5 3.3~0.5 100.0 53.3 3.0 4.0 
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Table 3 E. Coli 

Algorithm #I Acc(TR) Acc(TE) #HN AB(TE) AW(TE) AB(HN) AW(HN)

MBabCoNNP102 90.6~0.6 83.9~5.3 8.2~0.6 91.2 75.8 8.0 9.0 

MBabCoNNB102 85.1~1.5 81.0~5.2 9.1~0.7 88.2 73.5 10.0 8.0 

PRMWTA 102 90.8~1.3 77.8~18.9 − 100.0 52.9 − − 

PRMI 102 87.2~2.6 73.8~24.0 − 100.0 42.4 − − 

BCPWTA 102 76.5~3.0 69.1~15.0 − 97.1 42.4 − − 

BCPI 10 85.1~3.3 72.0~28.2 − 100.0 27.3 − − 

MTowerP 10 90.2~1.5 78.4~22.2 27.8~14.1 100.0 30.3 6.0 56.0 

MTowerB 102 76.6~2.9 69.2~14.4 9.2~3.2 97.1 48.5 8.0 16.0 

MPyramidP 10 90.1~1.3 79.6~18.3 29.1~10.3 100.0 42.4 14.0 48.0 

MPyramidB 102 76.6~2.8 69.5~16.2 8.4~2.1 97.1 36.4 6.0 14.0 

MUpstartP 102 90.7~1.6 76.9~19.7 8.1~1.3 100.0 50.0 6.0 10.0 

MUpstartB 102 80.5~2.8 75.2~10.4 8.9~1.3 97.1 60.7 6.0 11.0 

MTilingP 10 87.9~2.2 76.3~20.7 7.7~0.7 100.0 38.2 6.0 8.0 

MTilingB 102 76.3~3.3 67.3~18.0 25.3~55.4 97.1 33.3 6.0 183.0 

MPCascadeP 10 88.8~1.2 82.9~16.2 8.6~1.3 100.0 57.8 8.0 11.0 

MPCasdadeB 102 79.6~2.7 70.1~15.3 9.0~1.7 97.0 42.4 6.0 12.0 

Table 4 Glass 

Algorithm  #I Acc(TR) Acc(TE) #HN AB(TE) AW(TE) AB(HN) AW(HN)

MBabCoNNP103 64.7~2.5 60.3~12.7 7.5~0.7 68.4 60.6 85.7 42.9 

MBabCoNNB103 63.2~2.2 56.1~8.1 7.4~0.5 66.8 60.9 66.7 40.9 

PRMWTA 103 55.7~1.4 48.1~14.3 − 57.5 52.3 71.4 23.8 

PRMI 103 53.9~2.6 46.8~14.0 − 57.3 50.0 81.0 28.6 

BCPWTA 102 54.3~2.7 49.6~10.2 − 59.6 48.7 66.7 36.4 

BCPI 103 58.8~5.2 54.2~5.8 − 66.7 51.6 66.7 47.6 

MTowerP 103 61.2~2.5 56.1~10.8 21.6~8.6 65.8 58.0 71.4 33.3 

MTowerB 103 56.1~1.9 50.6~6.8 18.6~10.4 60.4 53.4 61.9 36.4 

MPyramidP 102 64.9~5.0 56.3~13.9 33.0~17.7 71.0 56.5 77.3 28.6 

MPyramidB 102 55.1~2.3 51.5~11.0 17.4~4.4 59.1 52.1 66.7 36.4 

MUpstartP 103 72.2~1.5 63.6~6.8 8.3~0.9 74.6 69.3 76.2 52.4 

MUpstartB 102 64.3~4.7 54.7~8.4 7.9~1.0 68.2 52.8 66.7 42.9 

MTilingP 102 79.9~16.5 55.9~15.2 81.5~63.1 92.7 54.9 72.7 23.8 

MTilingB 103 54.6~1.5 50.0~8.2 6.0~0.0 57.5 52.1 61.9 38.1 

MPCascadeP 103 71.4~1.8 62.7~10.4 7.6~1.2 73.6 68.2 81.0 42.9 

MPCasdadeB 102 57.6~5.2 54.4~13.4 7.2~1.2 65.8 48.7 76.2 36.4 
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Table 5  Balance 

Algorithm    #I Acc(TR) Acc(TE) #HN AB(TE) AW(TE) AB(HN) AW(HN)

MBabCoNNP10 92.1~0.8 91.4~2.3 3.5~0.7 93.7 87.1 3.0 5.0 

MBabCoNNB10 92.1~0.9 89.3~2.5 5.3~0.5 93.5 85.5 6.0 5.0 

PRMWTA 102 92.2~0.5 90.1~3.7 − 96.8 84.1 − − 

PRMI 10 89.1~1.6 89.3~4.8 − 98.4 84.1 − − 

BCPWTA 102 80.1~4.4 77.9~9.9 − 91.9 65.1 − − 

BCPI 10 89.5~1.7 88.0~3.5 − 93.5 82.3 − − 

MTowerP 10 94.8~1.1 90.6~6.2 20.4~5.8 98.4 79.4 12.0 30.0 

MTowerB 102 83.6~4.8 80.8~8.0 9.0~3.5 91.9 65.1 6.0 15.0 

MPyramidP 10 95.1~0.9 90.1~6.3 24.0~6.2 96.8 76.2 15.0 33.0 

MPyramidB 102 83.3~4.1 83.1~5.8 6.2~2.2 93.5 76.2 3.0 9.0 

MUpstartP 10 91.8~0.4 91.2~4.7 3.4~0.9 98.4 85.5 3.0 6.0 

MUpstartB 102 82.1~4.9 81.1~6.9 4.0~0.8 91.9 69.8 3.0 5.0 

MTilingP 102 95.5~2.9 92.3~3.3 28.1~21.8 96.8 88.9 3.0 49.0 

MTilingB 102 79.8~4.5 76.4~8.4 3.0~0.0 91.9 66.7 3.0 3.0 

MPCascadeP 102 92.1~0.6 90.0~4.5 3.2~0.4 98.4 84.1 3.0 4.0 

MPCasdadeB 102 81.6~4.7 78.6~9.9 4.0~0.8 91.9 66.7 3.0 5.0 

Table 6 Wine 

Algorithm    #I Acc(TR) Acc(TE) #HN AB(TE AW(TE) AB(HN) AW(HN)

MBabCoNNP103 94.2~0.9 92.7~5.5 3.3~0.5 95.0 93.1 100.0 82.4 

MBabCoNNB102 76.2~2.2 75.8~8.8 4.4~0.5 81.9 73.8 88.9 58.8 

PRMWTA 103 85.8~3.3 81.9~10.4 − 90.1 78.9 100.0 64.7 

PRMI 103 92.0~1.4 88.3~8.9 − 94.4 90.0 100.0 66.7 

BCPWTA 103 74.0~1.4 70.8~7.1 − 75.6 70.8 82.4 61.1 

BCPI 10 73.7~1.7 71.9~7.3 − 75.8 70.0 77.8 58.8 

MTowerP 103 86.5~3.5 83.1~13.5 4.2~2.1 90.0 81.2 100.0 61.1 

MTowerB 102 73.6~0.9 69.1~7.6 4.2~1.5 74.5 71.9 83.3 61.1 

MPyramidP 103 87.3~2.7 81.5~17.1 8.1~4.9 90.7 83.1 100.0 50.0 

MPyramidB 103 73.6~0.9 69.1~7.6 4.2~15 74.5 71.9 83.3 61.1 

MUpstartP 103 94.5~0.5 91.6~6.0 3.1~0.3 95.6 93.8 100.0 83.3 

MUpstartB 102 74.1~1.6 71.4~11.3 3.2~0.4 76.2 70.8 94.1 55.6 

MTilingP 102 86.7~5.0 82.5~11.2 13.1~31.9 99.4 81.9 94.4 61.1 

MTilingB 102 73.8~2.1 74.8~8.7 3.0~0.0 76.2 69.6 88.9 61.1 

MPCascadeP 103 92.1~0.7 84.9~9.0 3.1~0.3 93.1 91.2 94.1 66.7 

MPCasdadeB 10 75.7~1.2 74.1~9.2 3.2~0.4 77.5 73.3 88.9 61.1 
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Table 7 Zoo  

Algorithm    #I Acc(TR) Acc(TE) #HN AB(TE) AW(TE) AB(HN)AW(HN)

MBabCoNNP 102 100.0~0.0 97.0~4.8 7.0~0.0 100.0 100.0 100.0 90.0 

MBabCoNNB 102 89.5~5.1 85.1~12.7 9.3~0.9 95.6 77.8 100.0 60.0 

PRMWTA 102 100.0~0.0 95.2~6.7 − 100.0 100.0 100.0 81.8 

PRMI 102 100.0~0.0 95.0~7.1 − 100.0 100.0 100.0 80.0 

BCPWTA 103 78.4~7.5 71.3~16.6 − 89.0 65.6 90.0 40.0 

BCPI 10 64.9~16.0 65.5~16.1 − 94.5 36.3 90.0 40.0 

MTowerP 102 100.0~0.0 95.0~7.1 7.0~0.0 100.0 100.0 100.0 80.0 

MTowerB 102 79.0~5.3 70.4~7.7 9.1~3.4 86.8 72.5 80.0 60.0 

MPyramidP 102 100.0~0.0 95.0~8.5 7.0~0.0 100.0 100.0 100.0 80.0 

MPyramidB 102 78.2~7.9 74.3~15.0 9.8~4.9 86.7 64.8 100.0 50.0 

MUpstartP 103 100.0~0.0 96.0~7.0 7.0~0.0 100.0 100.0 100.0 80.0 

MUpstartB 102 81.0~6.6 74.4~13.1 7.9~0.7 90.1 70.3 90.0 50.0 

MTilingP 103 100.0~0.0 97.0~4.8 7.0~0.0 100.0 100.0 100.0 90.0 

MTilingB 103 78.5~7.9 72.4~12.8 13.3~10.290.1 65.9 90.0 50.0 

MPCascadeP 103 100.0~0.0 95.1~7.0 7.0~0.0 100.0 100.0 100.0 80.0 

MPCasdadeB 102 77.8~6.2 72.4~15.2 7.4~0.7 85.7 68.1 100.0 50.0 

Table 8 Car  

Algorithm    #I Acc(TR) Acc(TE) #HN AB(TE)AW(TE) AB(HN) AW(HN)

MBabCoNNP 103 81.2~0.7 80.1~2.8 4.7~0.5 82.8 80.4 83.8 76.3 

MBabCoNNB 102 78.3~3.6 77.5~4.4 5.8~0.9 80.5 68.2 84.4 70.5 

PRMWTA 102 80.5~0.5 79.7~1.7 − 81.4 79.9 82.7 78.0 

PRMI 102 79.1~0.5 78.9~4.0 − 80.2 78.3 83.8 72.1 

BCPWTA 103 68.7~0.6 68.5~3.1 − 69.4 67.3 73.8 63.0 

BCPI 102 77.3~1.1 76.3~2.7 − 79.4 75.8 81.5 73.4 

MTowerP 102 82.7~1.2 81.5~2.4 26.8~18.4 85.1 81.6 86.1 78.5 

MTowerB 103 73.8~2.1 73.3~3.7 5.2~2.7 75.4 68.2 78.6 65.7 

MPyramidP 10 83.6~1.3 80.4~3.8 32.8~14.2 85.7 81.1 86.7 73.8 

MPyramidB 102 68.6~1.2 68.5~4.1 5.2~2.7 71.2 67.2 78.0 64.7 

MUpstartP 102 81.9~1.7 80.8~2.3 5.3~1.6 85.3 80.3 85.5 77.5 

MUpstartB 10 75.3~0.3 74.8~3.3 4.3~0.5 76.1 74.9 79.2 69.4 

MTilingP 102 89.2~3.0 83.0~3.9 88.1~30.3 91.1 80.6 86.7 73.4 

MTilingB 10 74.9~0.5 74.7~2.3 4.0~0.0 75.3 73.6 79.8 72.1 

MPCascadeP 103 82.8~1.4 81.2~4.4 6.3~1.7 84.3 80.2 87.9 74.4 

MPCasdadeB 103 74.8~1.7 73.8~4.9 4.7~0.8 75.8 70.1 79.2 62.2 
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Table 9 Image Segmentation  

Algorithm    #I Acc(TR) Acc(TE) #HN AB(TE) AW(TE) AB(HN) AW(HN)

MBabCoNNP 103 92.2~1.6 83.3~7.2 7.9~0.7 95.2 89.4 95.2 71.4 

MBabCoNNB 103 74.0~4.7 70.0~9.5 8.8~0.9 81.5 68.8 85.7 52.4 

PRMWTA 103 91.2~0.9 83.8~10.6 − 92.6 89.4 100.0 66.7 

PRMI 103 88.9~1.5 83.8~6.4 − 91.5 86.8 90.5 71.4 

BCPWTA 102 62.2~2.3 60.5~6.8 − 65.6 57.1 71.4 52.4 

BCPI 102 67.6~5.9 63.8~15.9 − 78.8 60.3 81.0 33.3 

MTowerP 102 91.7~1.2 82.4~9.0 14.0~8.1 93.1 88.9 95.2 71.4 

MTowerB 102 67.9~3.7 63.8~14.1 11.9~4.7 72.0 61.9 85.7 42.9 

MPyramidP 103 92.0~1.1 81.4~4.7 11.2~4.9 93.1 89.9 85.7 71.4 

MPyramidB 103 61.3~3.0 60.5~8.7 9.1~3.4 68.3 57.7 81.0 52.4 

MUpstartP 103 94.8~0.7 85.2~10.9 7.1~0.3 95.8 93.7 100.0 66.7 

MUpstartB 103 64.7~2.9 59.5~8.5 7.3~0.7 68.8 58.2 71.4 47.6 

MTilingP 102 93.4~4.0 82.4~7.1 35.5~65.9 100.0 89.9 90.5 71.4 

MTilingB 102 64.7~5.0 63.8~8.8 7.0~0.0 70.9 54.0 76.2 52.4 

MPCascadeP 102 88.8~1.2 86.2~6.1 7.3~0.5 90.5 87.3 90.5 76.2 

MPCasdadeB 103 66.7~4.0 64.8~10.3 7.4~0.7 70.4 57.1 81.0 47.6 

 
result (obtained with MTilingP), it is worth noting that MTilingP created 28.1 hid-
den neurons on average while MBabCoNN created only 3.5. A similar situation 
occurred in the Car domain.  

All the algorithms with a performance higher than 80% induced networks big-
ger than the network induced by MBabCoNNP, especially the MTilingP, the 
MPyramid and the MTowerP, although the accuracy values of the three were very 
close to those of MBabCoNN. In the Glass domain, MBabCoNNP is ranked third 
considering only accuracy; however, when taking into account the standard  
deviation as well, it can be said that the MBabCoNNP and MPCascadeP (second 
position in the rank) are even. In the last domain, Image Segmentation, MBab-
CoNNP accuracy was average while the best performance was obtained with the 
MPCascadeP. 

In relation to the versions that used BCPWTA for training the output neuron, 
MBabCoNNB outperformed all the other algorithms in the eight domains. The re-
sults however were inferior to those obtained using the PRMWTA for training the 
output nodes. This fact is due to the particular characteristics of the two training 
approaches; in general the BCPWTA is not a good match for the PRMWTA. Fu-
ture work concerning BCPWTA needs to be done in order for this algorithm to be 
considered an option for network construction.  

Now, considering the PRMWTA versions of all algorithms, it is easy to see 
that the test accuracies are more standardized. In order to have a clearer view  
of the algorithm performances, Table 10 presents the values for the average  
ranks considering the test accuracy for all PRMWTA based CoNN algorithms. In 
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the table the results are ranked in ascending order of accuracy. Ties in accuracy 
were sorted out by averaging the corresponding ranks. 

According to Demšar [26], average ranks provide a fair comparison of the al-
gorithms. Taking into account the values obtained with the average ranks it can be 
said that, as far as the eight datasets are concerned, MBabCoNN is the best choice 
among the six algorithms. As can be seen in Table 10, MBabCoNNP obtained the 
smallest value, followed by MPCascadeP and MUpstartP. MBabCoNNP was 
ranked last in only one domain (Car); in the Car domain, however, the test accura-
cies among the six algorithms were very close, i.e. the maximum difference was 
about 3.0%. 

It is worth noticing that the three algorithms ranked first in the average rank-
ings, construct the network by first adding the output neurons and then starting to 
correct their misclassifications by adding two-class hidden neurons. The good per-
formance may be used to corroborate the efficiency of this technique. Based on 
the empirical results obtained, it can be said that the MBabCoNN algorithm is a 
good choice among the multiclass CoNN algorithms available. 

Table 10 Average rank over PRMWTA based algorithms concerning test accuracy 

Domain MBabCoNNP MTowerP MPyramidP MUpstartP MTilingP MPCascadeP 
Iris 98.0~3.2 (1) 96.7~6.5(2) 96.0~8.4(3) 93.3~12.9(6) 95.3~8.9(4.5) 95.3~8.9(4.5) 
EColi 83.9~5.3(1) 78.4~22.2(4) 79.6~18.3(3) 76.9~19.7(5) 76.3~20.7(6) 82.9~16.2(2) 
Glass 60.3~12.7(3) 56.1~10.8(5) 56.3~13.9(4)  63.6~6.8(1) 55.9~15.2(6) 62.7~10.4(2) 
Balance 91.4~2.3(2) 90.6~6.2(4) 90.1~6.3(5) 91.2~4.7(3) 92.3~3.3(1) 90.0~4.5(6) 
Wine 92.7~5.5(1) 83.1~13.5(4) 81.5~17.1(6) 91.6~6.0(2) 82.5~11.2(5) 91.0~6.1(3) 
Zoo 97.0~4.8(1.5) 95.0~7.1(5.5) 95.0~8.5(5.5) 96.0~7.0(3) 97.0~4.8(1.5) 95.1~7.0(4) 
Car 80.1~2.8(6) 81.5~2.4(2) 80.4~3.8(5) 80.8~2.3(4) 83.0~3.9(1) 81.2~4.4(3) 
Image 83.3~7.2(3) 82.4~9.0(4.5) 81.4~4.7(6) 85.2~10.9(2) 82.4~7.1(4.5) 86.2~6.1(1) 

       
Average 

Rank 
2.312 3.875 4.687 3.25 3.687 3.187 

5   Conclusions 

This chapter proposes the multiclass version, MBabCoNN, of a recently proposed 
constructive neural network algorithm named BabCoNN, which is based on the 
geometric concept of convex hull and uses the BCP algorithm for training individ-
ual TLUs added to the network during learning. The chapter presents the accuracy 
results of learning experiments conducted in eight multiclass knowledge domains, 
using the MBabCoNN implemented in two different versions: MBabCoNNP and 
MBabCoNNB, versus five well-known multiclass algorithms (each implemented 
in two versions as well). Both versions of the MBabCoNN use the BCP for train-
ing the hidden neurons and differ from each other in relation to the algorithm used 
for training their output neurons (PRMWTA and BCPWTA respectively). 

As far as results in eight knowledge domains are concerned, it can (easily) be 
observed that all algorithms performed better when using PRMWTA for training 
the output neurons. This may occur because BCPWTA is not a good strategy for 
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training M (>2) classes. Now considering the PRMWTA versions, it can be said 
the MBabCoNNP version has shown superior average performance in relation to 
both accuracy in test sets and the size of the induced neural network. This work 
had established MBabCoNN as a good option among other CoNNs for multiclass 
domains. 
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