
Constructive Morphological Neural Networks:
Some Theoretical Aspects and Experimental
Results in Classification

Peter Sussner and Estevão Laureano Esmi

Abstract. Morphological neural networks are rooted in mathematical morphology
(MM). Several constructive learning algorithms for morphological neural networks
have been proposed during the last decade. Since MM can be conducted very gener-
ally in the complete lattice setting, MNNs are closely related to other lattice-based
neurocomputing models.

This paper reviews and analyzes some important types of constructive mor-
phological neural networks including their learning algorithms from the lattice-
theoretical perspective of mathematical morphology. In particular, we present an
improved version of the learning algorithm for the morphological perceptron (MP).
Moreover, we incorporate competitive nodes into the two variants of the MP and in-
troduce an approach for training these models. Finally, we compare the performance
of several constructive morphological models and of conventional multi-layer per-
ceptrons in some classification problems.

1 Introduction

Mathematical Morphology (MM) is a theory that uses concepts from set theory, ge-
ometry and topology to analyze geometrical structures in an image [21, 28, 45, 44].
MM has found wide-spread applications over the entire imaging spectrum [7, 19,
20, 26, 32, 47, 48]. Morphological operators were originally developed for binary
and grayscale image processing. The subsequent generalization to complete lattices

Peter Sussner
Department of Applied Mathematics, IMECC, University of Campinas,
Campinas, SP 13084−970
e-mail: sussner@ime.unicamp.br

Estevão Laureano Esmi
Department of Applied Mathematics, IMECC, University of Campinas,
Campinas, SP 13084−970
e-mail: ra050652@ime.unicamp.br

L. Franco et al. (Eds.): Constructive Neural Networks, SCI 258, pp. 123–144.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

sussner@ime.unicamp.br
ra050652@ime.unicamp.br

124 P. Sussner and E.L. Esmi

is widely accepted today as the appropriate theoretical framework for mathematical
morphology [21, 42, 44]. In the complete lattice setting, there are four elementary
morphological operators - namely erosion, dilation, anti-erosion, and anti-dilation -
which allow for the decomposition of every mapping between complete lattices [4].

Morphological neural networks incorporate morphological operators into the ar-
tificial neural network setting. More precisely, a morphological neural network per-
forms a morphological operation at every node. Since the concept of morphological
operator is not clearly defined [21], we have suggested to formally define a MNN
as an artificial neural network that performs one of the four elementary operators
of MM, possibly followed by the application of an activation function, at every
node [55].

Several particular morphological models and their respective training algorithms
have been proposed in recent years, including morphological perceptrons (MPs)
[54], morphological perceptrons with dendrites (MPDs) [38], (fuzzy) morphological
associative memories [55, 50, 51, 52, 55], modular morphological neural networks
[3], and morphological shared-weight and regularization neural networks [22, 25].
This paper clarifies that fuzzy lattice neural networks (FLNNs) [24] can also be
viewed as MNNs. Morphological and hybrid morphological/rank/linear neural net-
works [30] have been successfully applied to a variety of problems such as pattern
recognition [24, 46], prediction [1, 50], automatic target recognition [25], handwrit-
ten character recognition [30], control of vehicle suspension [15], self-localization,
and hyperspectral image analysis [34, 17].

Although the theory of morphological neural networks (MNNs) and its applica-
tions has experienced a steady and consistent growth in the last few years [53], only
a brief review and comparison of MNNs has appeared in the literature in the form of
a conference paper [29]. The present article focusses on constructive MNNs which
automatically update their architecture during the learning phase. Additionally, we
provide more background information on MNNs, on the connections between indi-
vidual models of MNNs, and on the learning algorithms of MPs and FLNNs, the
main constructive morphological models [40, 54, 31, 23]. For instance, we present
an improved version of the training algorithm for MPs, introduce MPs and MPDs
with competitive neurons and show how to train them. Finally, we elaborate on the
foundations of morphological perceptrons (MPs) and fuzzy lattice neural networks
(FLNNs) in lattice theory [4, 5]. Moreover we explain why fuzzy lattice neural net-
works can be viewed as morphological models, include some further comparisons
with MPs, and provide additional details with respect to the experimental results
and the computational effort involved in using morphological models.

The paper is organized as follows. After presenting the lattice background of
MNNs, we investigate the most important types of constructive MNNs, namely mor-
phological perceptrons (MPs), morphological perceptrons with dendrites (MPDs),
and fuzzy lattice neural networks (FLNNs). Section 4 compares the performances
of morphological models and MLPs in some classification problems. We finish the
paper with some concluding remarks.

Constructive Morphological Neural Networks 125

2 Lattice Background for Morphological Neural Networks

Morphological neural networks are geared at merging techniques of artificial neu-
ral networks and mathematical morphology. Although mathematical morphology
was conceived as a set-theoretic approach to image processing, its theoretical foun-
dations can be found in lattice algebra. This paper concentrates on morphological
models of neural networks whose operations can not only be described in terms of
set-theoretic ideas but also in terms of the complete lattice framework of mathemat-
ical morphology [21, 42, 44].

A partially ordered set L is called a lattice if and only if every finite, non-empty
subset of L has an infimum and a supremum in L. For simplicity, we assume that a
partially ordered set is non-empty [18]. A lattice L is complete if every non-empty
(finite or infinite) subset has an infimum and a supremum in L [5]. Every (non-
empty) complete lattice has a least element denoted by 0L and a greatest element
denoted by 1L. The extended real numbers R̄ and the unit interval [0,1] represent
specific examples of complete lattices. For any Y ⊆ L, we denote the infimum of Y
by the symbol

∧
Y and we write

∧
j∈J y j instead of

∧
Y if Y = {y j, j ∈ J} for a index

set J. We use similar notations to denote the supremum of Y .
If L1, . . .Ln are lattices, a partial order on L = L1 × . . .×Ln can be defined by

setting

(x1, . . . ,xn) ≤ (y1, . . . ,yn) ⇔ xi ≤ yi ∀i ∈ {1, . . . ,n} . (1)

The resulting partially ordered set L is also a lattice and is called the product
lattice with constituents L1, . . .Ln. If the lattices L1, . . .Ln are complete then the
product lattice L = L1 × . . .×Ln is complete as well. For notational convenience,
the product lattice corresponding to the product of n copies of L is denoted using
the symbol L

n. Suppose that L and M are lattices. A function ϕ : L → M that
satisfies the following equations for all x ∈ L and for all y ∈ M is called lattice
homomorphism.

ϕ(x∨ y) = ϕ(x)∨ϕ(y) and ϕ(x∧ y) = ϕ(x)∧ϕ(y) . (2)

A bijective lattice homomorphism is called lattice isomorphism. Equivalently, we
have that ϕ : L → M is a lattice isomorphism if ϕ is bijective and order preserving,
that is ϕ(x) ≤ ϕ(y) for all x ≤ y.

A central issue in mathematical morphology is the decomposition of mappings
between complete lattices in terms of elementary operations.

Definition 1. Let ε,δ , ε̄ , δ̄ be operators from the complete lattice L to the complete
lattice M, and let Y ⊆ L.

ε is called erosion ⇔ ε(
∧

Y) =
∧

y∈Y

ε(y); (3)

δ is called dilation ⇔ δ (
∨

Y) =
∨

y∈Y

δ (y); (4)

126 P. Sussner and E.L. Esmi

ε̄ is called anti-erosion ⇔ ε̄(
∧

Y) =
∨

y∈Y

ε̄(y); (5)

δ̄ is called anti-dilation⇔ δ̄ (
∨

Y) =
∧

y∈Y

δ̄ (y). (6)

The following theorem establishes representations of anti-dilations and anti-erosions
in terms of erosions, dilations and negations.

Theorem 1. Let L and M be complete lattices with negations νL and νM, respec-
tively.

• An operator δ̄ : L → M is an anti-dilation ⇔ δ̄ = ε ◦νL or δ̄ = νM ◦δ , where δ
is a dilation and ε is a erosion.

• An operator ε̄ : M → L is an anti-erosion ⇔ ε̄ = δ ◦νM or ε̄ = νL ◦ ε , where ε
is an erosion and δ is a dilation.

Banon and Barrera [4] showed that for every mapping ψ : L −→ M there exist
erosions ε i and anti-dilations δ̄ i for some index set I such that

ψ =
∨

i∈I

(ε i ∧ δ̄ i) . (7)

Similarly, the mapping ψ can be written as an infimum of supremums of pairs of
dilations and anti-erosions. In the special case that ψ is increasing, ψ can be repre-
sented as a supremum of erosions or as an infimum of dilations.

Many models of MNNs can alternatively be defined in terms of certain matrix
products in minimax algebra [13, 11]. Minimax algebra is a lattice algebra whose
origins lie in the field of operations research and machine scheduling [9, 12, 16, 57].

In minimax algebra, we consider certain algebraic structures called belts and
bounded lattice ordered groups. For our purposes, it is enough to consider the
bounded lattice ordered group (G,∨,∧,+,+′), where the symbol G denotes R̄ =
R∪{−∞,∞} or Z̄ = Z∪{−∞,∞}. The symbols ∨ and ∧ denote the binary opera-
tions of maximum and minimum, respectively. The operations + and +′ act like the
usual sum operation on G and only differ from each other in the following respect:

∞+(−∞) = (−∞)+ ∞ = ∞ (8)

∞+′ (−∞) = (−∞)+′ ∞ = −∞ (9)

There are two types of matrix products with entries in G. Given a matrix A ∈
G

m×p and a matrix B ∈ G
p×n, the matrix C = A ∨� B, called the max-product of A

and B, and the matrix D = A ∧� B, called the min-product of A and B, are defined by
the following equations:

ci j =
p∨

k=1

(aik + bk j), di j =
p∧

k=1

(aik +′ bk j) . (10)

Constructive Morphological Neural Networks 127

Let A ∈ G
n×m. Consider the following operators εA and δA:

εA(x) = At ∨� x, (11)

δA(x) = At ∧� x. (12)

Note that the operators εA and δA represent erosions and dilations from the com-
plete lattice G

n to the complete lattice G
m, respectively. The theory of minimax

algebra includes a theory of conjugation. For more information, we refer the reader
to the treatises of Cuninghame-Green [13, 11]. The bounded lattice ordered group
(G,∨,∧,+,+′) is self-conjugate. The conjugate of an element x ∈ G is denoted
using the symbol x∗ and is defined as follows:

x∗ =

⎧
⎪⎪⎨

⎪⎪⎩

−x, if x ∈ G\ {−∞,+∞}
+∞, if x = −∞

−∞, if x = ∞

(13)

The operator of conjugation gives rise to a negation ν∗ on G
n which maps the

i-th component of x to its conjugate. Formally, we have

(ν∗(x))i = (xi)∗ ∀ i = 1, . . . ,n . (14)

3 Some Constructive Morphological Neural Network Models

Morphological neural networks are equipped with morphological neurons. We
speak of a morphological neuron if its aggregation function corresponds to an el-
ementary morphological operation. As mentioned before, the emphasis in this pa-
per is on constructive MNNs. To our knowledge, the class of constructive MNNs
consists of morphological perceptrons, morphological perceprons with dendrites,
and - as shown in this section - fuzzy lattice neural networks (FLNNs).

This sections provides a new perspective on constructive MNNs by exhibiting
the relations between these models. In addition, we introduce a modified version of
the training algorithm for morphological perceptron which has led to better experi-
mental results in Section 4 when compared to the original algorithm [54].

3.1 Morphological Perceptron (MP)

Morphological perceptrons [40, 54] grew out of the minimax subalgebra of image
algebra [11, 41, 39]. Although MPs have been formulated in terms of matrix prod-
ucts in minimax algebra, it was not until a recent conference paper that MPs were
viewed in terms of the complete lattice framework of mathematical morphology
[29]. Here, we provide some more details on this issue.

Recall that R̄ and R̄
n represent complete lattices. Given a vector of inputs x ∈ R̄

n

(in practice, we restrict ourselves to input vectors x ∈ R
n), a vector of synaptic

weights w ∈ R̄
n and an activation function f , a neuron of the morphological percep-

tron calculates the output y according to one of the following rules:

128 P. Sussner and E.L. Esmi

y = f (εw(x)), where εw(x) = wt ∧� x =
n∧

i=1

(xi + wi); (15)

y = f (δw(x)), where δw(x) = wt ∨� x =
n∨

i=1

(xi + wi); (16)

y = f (ε̄w(x)), where ε̄w(x) = δw(x)◦ν∗(x) =
n∨

i=1

(x∗i + wi); (17)

y = f (δ̄w(x)), where δ̄w(x) = εw(x)◦ν∗(x) =
n∧

i=1

(x∗i + wi). (18)

Note that εw represents an erosion from the complete lattice R̄
n to the complete

lattice R̄ in the special form of Equation 11. Similarly, δw represents a dilation
R̄

n → R̄ in the special form of Equation 12. By Theorem 1, the composition of the
negation ν∗ followed by the erosion εw yields an anti-erosion that we denoted by
ε̄w and the composition of the negation ν∗ followed by the dilation δw yields an
anti-dilation that we denoted by δ̄w.

The values of the morphological perceptron’s weights must be determined be-
fore it can act as a classifier. More precisely, the weights are determined using a
supervised learning algorithm [54] that constructs n-dimensional boxes around sets
of points which share the same class value. Convergence occurs in a finite number
of steps.

In this paper, we present an improved version of the original training algorithm
for MPs that was proposed to solve two-class classification problems [54]. To this
end, let us introduce some relevant notations.

The vectors x1,x2, . . . ,xk ∈R
n denote the given training patterns. The set of train-

ing patterns belonging to class 0 is denoted using the symbol C0 and the set of train-
ing patterns belonging to class 1 is denoted using the symbol C1. We define the
following index sets:

K(0) = { j ∈ {1, . . . ,k} : x j ∈C0}. (19)

K(1) = { j ∈ {1, . . . ,k} : x j ∈C1}. (20)

Let P be the hyperbox box(p⊥,p�) = {x ∈ R
n : p⊥ ≤ x ≤ p�}, where the sym-

bols p⊥ and p� ∈ R̄
n represent the lower vertex and upper vertex, respectively. The

symbol P◦ stands for the interior of P and the symbol ∂P stands for the boundary of
P, that is P◦ = {x ∈ R

n : p⊥ < x < p�} and ∂P = P\P◦. Furthermore, let us define
the following half-spaces H+

i (x) and H−
i (x) for every input pattern x ∈ R

n:

H+
i (x) = {y ∈ R̄

n : yi ≥ xi } and H−
i (x) = {y ∈ R̄

n : yi ≤ xi } . (21)

The training algorithm will automatically produce the arquitecture depicted in
Figure 1(a). The staircase symbol for the activation function at the output node
represents the Heaviside step function given by

Constructive Morphological Neural Networks 129

f (x) =

{
1, if x ≥ 0 ,

0, if x < 0 .
(22)

Given an arbitrary input pattern x ∈ R
n, the MP computes the output in terms

of f (g(x)), where g is some function R
n → R̄. Let L(0) denote the set of in-

dices j ∈ {1, . . . ,k} such that f (g(x j)) ∈ C0 and let L(1) denote the set of indices
j ∈ {1, . . . ,k} such that f (g(x j)) ∈ C1. The symbol D refers to the set of indices
corrsponding to class 1 patterns that are currently misclassified. Formally, we have
D = { j ∈ L(0)∩K(1)}.

We initialize the function g : R
n → R̄ by setting g(x) = −∞ for all x ∈ R

n. Thus,
initially we have L(0) = {1, . . . ,k} and D = K(1).

Step 1 (Find a Hyperbox containing only Class 1 Patterns)

1 While D �= /0

1.1 Let P = box(p⊥,p�) where the vertices p⊥ and p� satisfy:

p�i =
∨

j∈D

x j
i ∀ i = 1, . . . ,n , (23)

p⊥i =
∧

j∈D

x j
i ∀ i = 1, . . . ,n . (24)

1.2 If there exists an index i0 such that p�i0 = p⊥i0 then perform the following
steps.

(a) If, in addition, the set P∩C0 is empty then select the pattern x j ∈ P∩C1

such that j is minimal and set P = {x j}.
(b) In any event, modify the upper and lower corner of P as follows:

p⊥i = sup{xi < p⊥i : x ∈C0}. (25)

p�i = inf{xi > p�i : x ∈C0}. (26)

Here, the supremum and the infimum are taken in R̄. In particular, we
have sup /0 = −∞ and inf /0 = ∞.

1.3 Otherwise, proceed as follows. Consider the set S = C0 ∩P.
(a) If S = /0 then use Equations 25 and 26 to expand the hyperbox P.
(b) If S �= /0 then continue as follows

(i) For all j = 1, . . . ,k such that x j ∈C0 ∩P execute the following steps.
Set x = x j. Consider the hyperboxes H+

i (x)∩P and H−
i (x)∩P for i =

1, . . .n. Among these 2n hyperboxes, choose the hyperbox P′ ⊆ P that
contains the largest number of currently misclassified patterns in C1

such that x does not belong to P′ (if more than one of the hyperboxes
H±

i (x)∩P meets these criteria then randomly select one of the these).
Update P by setting P = P′.

130 P. Sussner and E.L. Esmi

(ii) Expand the hyperbox P that was obtained in item (a) by applying
Equations 25 and 26.

1.4 Determine the smallest hyperbox B = box(b⊥,b�) which contains all the
misclassified patterns of class 1 in the interior of P. Formally, we have

b�i =
∨

x j∈P◦
x j

i ∀ i = 1, . . . ,n (27)

b⊥i =
∧

x j∈P◦
x j

i ∀ i = 1, . . . ,n (28)

If B = /0 then choose the pattern x j ∈ ∂P∩C1 such that j is minimal, redefine
P as P = {x j}, and return to Step 1.3(b)(ii) (the next time around, B �= /0).

1.5 Determine an intermediary hyperbox C whose upper and lower corner, de-
note respectively by c� and c⊥, are given by the averages of the correspond-
ing vertices of B and P.

c�i =
b�i + p�i

2
, (29)

c⊥i =
b⊥i + p⊥i

2
. (30)

Step 2 (Update the Architecture of the Morphological Perceptron) At the end of this
step, the patterns in the hyperbox C are assigned to class 1.

2.1 Update the function g as follows:

g(x) = g(x)∨
[

n∧

i=1

(xi − c�i)∧
n∧

i=1

(c⊥i − xi)

]

. (31)

2.2 Compute f (g(x)) for all x ∈ D, update the set D, and return to Step 1.

Note that the function g determines a union of hyperboxes. An arbitrary input pattern
x is assigned to class 1 if and only if it lies in this union of hyperboxes. The term
∧n

i=1(xi − c�i)∧∧n
i=1(c

⊥
i − xi) of Equation 31 is non-negative if and only if x is

between the upper and lower vertices of C. The term
∧n

i=1(xi − c�i) corresponds to
the erosion εv where v = −c� and the term

∧n
i=1(c

⊥
i − xi) corresponds to an anti-

dilation δ̄w = εw ◦ ν∗ where w = c⊥. During the training phase, pairs of erosive
and anti-dilative neurons are added to the hidden layer of the MP that is pictured
in Figure 1(a). This process ends once all training patterns are classified correctly.
After convergence, the output of the MP is determined by the following equation
for some m ∈ N:

y = f (
m∨

j=1

(εv j (x)∧ δ̄w j(x))) (32)

Constructive Morphological Neural Networks 131

Fig. 1 Architectures of a morphological perceptron (a) and of an MPD (b), respectively.

An arbitrary input pattern x is classified as belonging to class 1 if and only if
y = 1. According to Equation 34 and Figure 1(a), the MP calculates a maximum
of pair-wise minimums of erosions and anti-dilations which approximates the de-
composition suggested by Banon and Barrera [4] (cf. Equation 7) followed by the
application of a hard-limiting function f .

The modifications of the original algorithm proposed in [54] can be found in
Steps 1.2, 1.3, and 1.4. We have in particular taken additional measures in order
to circumvent situations in which the original algorithm failed to converge. The
modified version is guaranteed to converge in a finite number of steps yielding a
decision surface that perfectly separates the class 0 and the class 1 training data and
led to better results in the classification problems described in Section 4.

In a previous conference paper, we have allocated three morphological neurons
to perform a minimum of an erosion εv and an anti-dilation δ̄w although one could
argue that forming

εv(x)∧ δ̄w(x) =
n∧

i=1

(xi + vi)∧
n∧

i=1

(x∗i + wi) (33)

only requires one single morphological neuron or processing element with inputs
of the form (x1, . . . ,xn,x∗1, . . . ,x

∗
n) and weights in R̄

2n. Therefore, we associate only
one morphological neuron to the computation of Equation 33. In other words, the
number of hidden morphological neurons corresonds to the number of hyperboxes
that are generated during the learning phase.

Suppose we have an S-class classification problem. If S > 2 then the MP approach
has to be adapted so as to be able to deal with multiple classes. Let C̄s ⊆{x1, . . . ,xk}
denote the set of training patterns belonging to the sth class where s = 1, . . . ,S. For
each s = 1, . . .S, we simply set C1 = C̄s and C0 =

⋂
t �=s C̄t and apply the MP training

algorithm. This procedure generates weights vs
j and ws

j for every s = 1, . . .S. Thus,
we obtain S MPs with threshold activation functions at their respective output nodes

132 P. Sussner and E.L. Esmi

of the form pictured in Figure 1(a). Removing the thresholds at the outputs yields S
MPs that are given by the following equations for s = 1, . . .S:

ys =
ms∨

j=1

(εvs
j
(x)∧ δ̄ws

j
(x)) (34)

An MP for multi-class classification problems arises by joining the S MPs and by
introducing competitive output neurons. In other words, an input pattern x will be
classified as belonging to class y = argmaxs ys. For simplicity, we use the acronym
MP/C to denote the resulting morphological perceptron with competitive neurons.

3.2 Morphological Perceptrons with Dendrites (MPD)

Recent research in neuroscience has given considerable importance to dendritic
structures in a single neuron cell [43]. Ritter and Urcid developed a new paradigm
for computing with morphological neurons where the process occurs in the den-
drites [37, 38]. Figure 1(b) provides a graphical representation of an MPD that has
a single output neuron N.

The architecture of an MPD is not determined beforehand. During the training
phase, the MPD grows new dendrites while the input neurons expand their axonal
branches to synapse on the new dendrites. The weight of an axonal branch of input
neuron Ni terminating on the k-th dendrite of the output neuron N is denoted by
wl

ki where the superscript l ∈ {0,1} distinguishes between excitatory (l = 1) and
inhibitory (l = 0) input to the dendrite. The k-th dendrite of N will produce either an
excitatory (pk = 1) or an inhibitory (pk = −1) response to the total input received
from the input neurons Ni. To summarize, the computation performed by the k-th
dendrite is given by

τk(x) = pk

n∧

i=1

∧

l∈L

(−1)l+1(xi + wl
ki) , (35)

where L ⊆ {0,1} corresponds to the set of terminal fibers on Ni that synapse on the
k-th dendrite of N. After passing the value τk(x) to the cell body, the state of N is
given by

∨K
k=1 τk(x), where K denotes the total number of dendrites of N. Finally,

an application of the hard limiting function f defined in Equation 22 yields the next
state of N, in other words the output y of the MPD depicted in Figure 1(b).

y = f (
K∧

k=1

τk(x)) = f (
K∧

k=1

pk

n∧

i=1

∧

l∈L

(−1)l+1(xi + wl
ki)) . (36)

Leaving the biological motivation aside, the MPD training algorithm that was
proposed for binary classification problems [38] resembles the one for MPs [54].
As is the case for MPs, the MPD training algorithm is guaranteed to converge in a
finite number of steps and, after convergence, all training patterns will be classified
correctly. Learning is based on the construction of n-dimensional hyperboxes. Given

Constructive Morphological Neural Networks 133

two classes C0 and C1, an input pattern x is classified as belonging to class C1 if and
only if x is contained in one of the constructed hyperboxes. In fact, each dendrite
corresponds to a hyperbox. Therefore, we can convert an MPD into an MP and
express the computation performed by a dendrite in terms of Equation 33.

When faced with multi-class classification problems, we propose to construct a
MPD with competitive output units and to proceed in the same way as we did with
MPs at the end of Section 3.1. We will refer to the resulting MNN as morphological
perceptron with dendrites and competitive neurons (MPD/C).

3.3 Fuzzy Lattice Neural Network-FLNN

The theoretical framework of FLNN constitutes a successful combination of fuzzy
sets [56], lattice theory [21] and adaptive resonance theory [8]. Figure 2 illustrates
the architecture of the FLNN that consists of an input layer and a category layer.
The input layer has N artificial neurons used for storing and comparing input data.
The category layer has L artificial neurons that define M classes.

Given a vector of inputs x and a vector of synaptic weights w, a neuron of an
FLNN [31, 24] computes the degree of inclusion of x in w in terms of p(x,w)
where p is a fuzzy partial order relation. In general, we refer to p as a fuzzy partial
order on a lattice L if p is a function L×L → [0,1] that satisfies the equation
p(x,y) = 1 if and only if x ≤ y. (We prefer to speak of a fuzzy partial order instead
of a fuzzy membership function or fuzzy inclusion measure because p generalizes
the conventional partial order.) A pair (L, p) consisting of a lattice L and a fuzzy
partial order p is called a fuzzy lattice.

In the case of FLNNs, both the input vector x and the vector of synaptic weights
w are hyperboxes in L

N where L is a complete lattice. For the special case where

Fig. 2 Architecture of the FLNN.

134 P. Sussner and E.L. Esmi

N = 1, a hyperbox in L
N corresponds to a closed interval in L and can be written in

the form [a,b] where a,b ∈L. In particular, if L = [0,1] we obtain a closed subinter-
val of the unit interval. The partial order on a given lattice L induces a partial order
on set of intervals IL = {[a,b] : a,b ∈ L and a ≤ b} which turns IL into a lattice
as well:

[a,b] ≤ [c,d] ⇔ a ≥ c and b ≤ d . (37)

Unfortunately, the lattice of the closed intervals is not complete even if L is com-
plete because

∧
IL does not exist in IL. There are however two closely related

complete lattices. The first one, called the complete lattice of the generalized in-
tervals, is denoted using the symbol PL and arises by leaving away the restriction
a ≤ b. Formally, we have PL = {[a,b] : a,b ∈ L}. If 0L and 1L denote the least el-
ement of L and the greatest element of L, respectively, then the least element of PL

is given by [1L,0L] and the greatest element of PL is given by [0L,1L]. The second
complete lattice of interest is denoted by VL and is given by adjoining [1L,0L] to
IL. We obtain VL = IL ∪{[1L,0L]}.

The FLNN model employs a fuzzy partial order relation p : (VL)N × (VL)N →
[0,1]. In this context, the fuzzy partial order is of a special form. Specifically, the
fuzzy partial order relation employed in the FLNN is based on a ”function-h” or -
as we prefer to call it - a generating function [31]. Similar fuzzy lattice models use
fuzzy partial order relations based on positive valuation functions [5, 24, 23].

In applications of the FLNN to classification tasks such as the ones discussed in
Section 4, it suffices to consider - after an appropriate normalization - the complete
lattice U = [0,1], i.e., the unit interval. Thus, the input and weight vectors are N-
dimensional hyperboxes in (VU)N . In this case, we can show that p(.,w) : (VU)N →
[0,1] represents an elementary operation on mathematical morphology, namely both
an anti-erosion and an anti-dilation, if the underlying generating function h : U →
R is continuous. The proof of this result is beyond the scope of this paper since
it involves further details on fuzzy lattice neuro-computing models, in particular
the construction of a fuzzy partial order from a generating function. Therefore, we
postpone the proof to a future paper where we will show a more general result
that uses additional concepts of lattice theory. Anyway, the fact that every node in
the category layer of an FLNN with a continuous generating function performs an
elementary operation of MM has led us to classify FLNNs as belonging to the class
of morphological neural networks.

FLNNs can be trained in supervised or unsupervised fashion [31, 24]. Both ver-
sions generate hyperboxes that determine the output of the FLNN. In this paper, we
focus on the supervised learning algorithm that is used in classification tasks. Here
we have a set of n training patterns x1, . . . ,xn ∈ (VL)N together with their class la-
bels c1, . . . ,cn ∈ {1, . . . ,M}. Therefore, the basic arquitecture of the FLNN has to be
adapted so as to accomodate the class information. This can be achieved by allowing
for the storage of a class index in each node of the category layer, by augmenting
the input layer by one node that carries the class information ci corresponding to the
pattern xi during the training phase, and by fully interconnecting the two layers.

Constructive Morphological Neural Networks 135

During the training phase, the FLNN successively constructs nodes in the cate-
gory layer each of which is associated with an N-dimensional hyperbox wi - i.e., an
element of (VL)N - together with its respective class label ci. Training in the original
FLNN model is performed using an exhaustive search and takes O(N3) operations
[31]. (A modification of the FLNN called fuzzy lattice reasoning (FLR) classifier
requires O(N2) for training if one renounces on optimizing the outcome of training
[23].) After training, we obtain L N-dimensional hyperboxes wi ∈ (VL)N that cor-
respond to the L nodes that appear in the category layer of the FLNN (cf. Figure
2(b)). A class label ci ∈ {1, . . . ,M} is associated with each hyperbox wi ∈ (VL)N .

In the testing phase, an input pattern x ∈ (VL)N is presented to the FLNN and the
values p(x,wi) are computed for i = 1, . . . ,L. A competition takes place among the
L nodes in the category layer and the input pattern x is assigned to the class ci that
is associated with the hyperbox wi exhibiting the highest value p(x,w). Informally
speaking, the degree of inclusion of x in wi is higher than the degree of inclusion
of x in w j for all j �= i. In particular, if x is contained in wi but not contained in w j

for all j �= i, i.e., p(x,wi) = 1 and p(x,w j) < 1 for all j �= i, the x is classified as
belonging to class ci.

Occasionally, the training algorithms for FLNNs and its modifications produce
overlapping hyperboxes with disparate class memberships although - according to
Kaburlasos et al. - this event occurs rarely [23]. In the experiments we conducted in
Section 4, this situation did in fact occur as evidenced by the decision surface that
is visualized in Figure 5. For more information, we refer the reader to Section 4.

4 Experimental Results

In this section we compare the classification performance of the constructive mor-
phological models and the conventional multi-layer perceptron in a series of experi-
ments on two well known datasets: Ripley’s synthetic dataset [35, 36] and the image
segmentation dataset that can be found in the UCI Machine Learning Repository [6].
In addition, we have used Ripley’s synthetic dataset to visualize the respective de-
cision surfaces. In contrast to our previous conference paper, we have decided to
omit morphological models with a fixed architecture such as the modular morpho-
logical neural network (MMNN) and the hybrid morphological/rank/linear neural
network (MRL-NN) since these models produced poor classification results in our
simulations [29].

Tables 1 and 2 display the percentages of the misclassified training and test-
ing patterns. Since the type of operations performed by the individual models in
a training epoch varies greatly from one model to another we have also included
the average CPU time (on a AMD Athlon 64 X2 Dual Core Processor 4200+ with
a processing speed of 2.221 GHz) of each individual model until convergence of
the training algorithm. We trained the constructive morphological models until their
decision surfaces succeeded in perfectly separating the two classes of training data.

136 P. Sussner and E.L. Esmi

Table 1 Percentage of misclassified patterns for training (Etr) and testing (Ete) in the ex-
periments, CPU time in seconds for learning (Tcpu) and number of hidden artificial neurons
(hyperboxes for MNNs) (Ha).

Ripley’s Synthetic Dataset

Model Etr(%) Ete(%) Tcpu Ha

MP 0.0 11.70 1.1 18
MPD 0.0 17.80 0.58 19
MP/C 0.0 10.80 2.63 38
MPD/C 0.0 13.90 1.26 38
FLNN 0.0 11.4/12.0 75.41 46
MLP 8.41 12.55 144.48 10

Table 2 Percentage of misclassified patterns for training (Etr) and testing (Ete) in the ex-
periments, CPU time in seconds for learning (Tcpu) and number of hidden artificial neurons
(hyperboxes for MNNs) (Ha).

Image Segmentation Dataset

Model Etr(%) Ete(%) Tcpu Ha

MP/C 0.0 17.38 3.29 88
MPD/C 0.0 13.05 0.21 20
FLNN 0.0 10.00 26.87 17
MLP 15.71 26.81 58.41 20

All the models and algorithms were implemented using MATLAB which favors
linear operations over morphological operations. We believe that the CPU times for
learning in the constructive MP, MPD, MPD/C, and MPD/C models would be even
lower if more efficient implementations of the max-product and min-product were
used [33].

For a fair comparison of the number of artificial neurons or processing elements
in the constructive MNNs, we have implicitly expressed each individual model as a
feedforward model with one hidden layer and competitive output nodes and we have
counted the number of hidden nodes or hyperboxes that were constructed during the
learning phase. The same sequence of training patterns appearing on the respective
internet sites were employed for training the constructive MNNs [36, 6].

4.1 Ripley’s Synthetic Problem

Ripley’s synthetic dataset [36] consists of data samples from two classes [35, 36].
Each sample has two features. The data are divided into a training set and a test set
consisting of 250 and 1000 samples, respectively, with the same number of sam-
ples belonging to each of the two classes. Thus, we obtain a binary classification
problem in R

2. Figures 3, 4, and 5 provide for more insight into the constructive

Constructive Morphological Neural Networks 137

Feature 1

F
ea

tu
re

 2

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

Fig. 3 Decision surfaces of an MP represented by by the continuous line and of an MP
with competitive output nodes represented by the difference in shading. Training patterns
belonging to class 0 are plotted using ”+” symbols. Training patterns belonging to class 1 are
plotted using ”◦” symbols.

MNNs by visualizing the decision surfaces that are generated by these models after
training (Figure 5 also includes the decision surface corresponding to an MLP with
ten hidden nodes). Here, we have used the same order in which the training patterns
appear on Ripley’s internet site. We would like to clarify that the decision surfaces
vary slightly depending on the order in which the training patterns are presented to
the constructive morphological models.

Recall that the decision surfaces of the constructive morphological models are
determined by N-dimensional hyperboxes, i.e., rectangles for N = 2. This fact is
clearly visible in the decision surfaces of the MP and the MPD with hardlimiting
output units, that are pictured by means of the continuous lines in Figures 3 and 4.

In addition, Figures 3, 4, and 5 reveal that the decision surfaces generated by
the MP/C, MPD/C, and FLNN models deviate from rectangular appearance of the
ones generated by the basic MP and MPD models. In this context, recall that the
MP/C and MPD/C models construct separate families of hyperboxes for the training
patterns of each class. Each family of hyperboxes is associated to a different class
and corresponds to a certain output node. Upon presentation of an input pattern x
to the MP/C or MPD/C model a competition among the output nodes occurs that
determines the result of classification.

In the FLNN model a similar competition occurs in the category layer. More
precisely, the FLNN uses information on the degrees of inclusion p(x,wi) of an
input pattern x in the hyperboxes wi for classification by associating x to the class
of the hyperbox wi in which x exhibits the highest degree of inclusion. This property
of the FLNN is evidenced by the diagonal lines in its decision surface (cf. Figure 5).

The training algorithms of all types of constructive MNNs are guaranteed to
produce decision surfaces that perfectly separate the training patterns with differ-
ent class labels. However, the training algorithms of the MP/C, the MPD/C, and
the FLNN may result in overlapping hyperboxes with distinct class memberships

138 P. Sussner and E.L. Esmi

Fig. 4 Decision surfaces of
an MPD represented by by
the continuous line and of
an MPD with competitive
output nodes represented by
the difference in shading.

Feature 1

F
ea

tu
re

 2

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

although this event did not happen in our simulations with Ripley’s synthetic dataset
when using the MP/C and MPD/C models. Concerning the FLNN, Figure 5 depicts
intersections of rectangles with distinc class labels using a darker shade of gray.
These sets of intersection correspond to regions of indecision since a pattern x that
is contained in both wi and w j with ci �= c j satisfies p(x,wi) = 1 = p(x,w j).

Table 1 exhibits the results that we obtained concerning the classification per-
formance and the computational effort required by the individual models. The MP
training algorithm described in Section 3.1.1 automatically generated 19 hyperboxes
corresponding to 19 (augmented) hidden neurons capable of evaluating Equation 33.
In a similar manner, training an MPD using the constructive algorithm of Ritter and
Urcid [38] yielded 19 dendrites that correspond to 19 hidden computational units.
In contrast to the basic MP and MPD models, the MP/C and MPD/C generate one
family of hyperboxes for each class of training patterns. Since Ripley’s synthetic
problem represents a binary classification problem, the number of hidden compu-
tational units in the MP/C and MPD/C models is approximately twice as high as
in the MP and MPD. The FLNN grew 46 neurons in the category layer during the
training phase. Moreover, we compared the morphological models with an MLP
with ten hidden nodes that was trained using gradient descent with momentum and
adaptive step backpropagation rule (learning rate η = 10−4, increase and decrease
parameters 1.05 and 0.5 respectively, momentum factor α = 0.9). In addition, we
used 25-fold cross-validation in conjunction with the MLP and chose the weights
that led to the least validation error.

Table 1 reveals that the MP and MPD models including their variants with com-
petitive nodes converge rapidly to a set of weights that yield perfect separation of
the training data. The FLNN model also produces no training error but the conver-
gence of the training algorithm is slower yet not quite as slow as MLP training. All
the models we tested exhibited satisfactory results in classification. The MPD yields
the highest classification error for testing which is due to the fact that, in contrast
to the MP training algorithm, no expansion of the hyperboxes corresponding to C1

patterns takes place in MPD training (this is why the MPD learns faster than the
MP). This lack of expansion does not cause any problems if competing hyperboxes
are constructed for patterns of both classes as is the case for the MPD/C.

Constructive Morphological Neural Networks 139

Fig. 5 Decision surfaces of an FLNN represented by the difference in shading (dark regions
refer to areas of uncertainty where hyperboxes with different class labels overlap) and of an
MLP represented by the continuous line.

As the reader may recall by taking a brief glance at Figure 5, the FLNN produces
areas of indecision, i.e., overlapping hyperboxes with distinct class memberships.
If these areas of indecision are assigned to either one of the two classes, the per-
centages of misclassification for testing are 11.40% and 12.00%, respectively. Oth-
erwise, if no decision is taken then we obtain a classification error of 14.2%. In any
case, the MP/C model exhibits the best classification performance.

4.2 Image Segmentation Problem

The Image Segmentation Dataset was donated by the Vision Group, University of
Massachussets, and is included in the Machine Learning Repository of the Univer-
sity of California, Irvine [6]. This dataset consists of 210 samples for training and
2100 samples for testing. The data have 19 continous attributes. Each sample is
decribed by 19 continous attributes and corresponds to a 3×3 region that was ran-
domly drawn from an outdoor image. The images were handsegmented to create a
classification for every pixel. The goal is to distinguish between 7 different classes:
grass, cement, foliage, brickface, path, sky, and window. The MP and MPD can not
be applied directly to such a multi-class problem.

Therefore, we considered the MP/C, the MPD/C, the FLNN, and a MLP. We
chose to train an MLP with twenty hidden neurons using the Levenberg-Marquardt
algorithm because this algorithm produced the lowest classification error for testing
with the Image Segmentation Dataset in a recent paper [10]. Actually, we found
a testing error of 26.81% that is slightly lower than the error of 28.13% found by
Coskun and Yildirim.

The FLNN yields an excellent recognition rate of 90% of the test patterns without
the use of any fine tuning as required by other networks [27]. In this case no action

140 P. Sussner and E.L. Esmi

with respect to the region of indecision was taken. The classification error can be
lowered to 9.6% by associating a pattern x contained in the region of indecision with
the first class label having value 1. The MLD/C and MP/C also exhibit a better clas-
sification performance than the MLP. The high number of hidden neurons grown by
the MP/C is probably due to the provisions that were taken to circumvent problems
of convergence of the training algorithm. We suspect that these problems are caused
by integer-valued attributes of training patterns with different class labels.

5 Conclusions

This paper provides an overview and a comparison of morphological neural net-
works (MNNs) for pattern recognition with an emphasis on constructive MNNs,
which automatically grow hidden neurons during the training phase. We have de-
fined MNNs as models of artificial neural networks that perform an elementary op-
eration of mathematical morphology at every node followed by the application of an
activation function. The elementary morphological operations of erosion, dilation,
anti-erosion, and anti-dilation can be defined in an arbitrary complete lattice.

In many cases, the underlying complete lattice of choice is R̄
n which has allowed

researchers to formulate morphological neurons (implicitly) in terms of the additive
maximum and additive minimum operations in the bounded lattice ordered group
(R̄,∨,∧,+,+′) - often without being aware of this connection to minimax algebra
[13, 51]. In this setting, the elementary morphological operations can be expressed
in terms of maximums (or minimums) of sums, which lead to fast neural computa-
tional and easy hardware implementation [33, 38].

As to the resulting models of morphological neurons, recent research results have
revealed that the maximum operation lying at the core of morphological neurons is
neurobiologically plausible [58]. We have to admit though that there is no neuro-
physiological justification for summing the inputs and the synaptic weights. This
lack of neurobiological plausibility can be overcome by means of the isomorphism
between the algebraic structure (R̄,∨,∧,+,+′) and (R≥0

∞ ,∨,∧, ·, ·′) that transforms
additive maximum/minimum operations into multiplicative maximum/minimum
operations [52]. In this context, we intend to investigate the connections between
MNNs and min-max or adaptive logic networks that combine linear operations with
minimums and maximums [2].

In this paper, we have related another lattice based neuro-computing model,
namely the fuzzy lattice neural network (FLNN), to MNNs. Specifically, we ex-
plained that the FLNN can be considered to be one of the constructive MNN models.
Morphological perceptrons (MPs) and morphological perceptrons with dendrites
(MPDs) also belong to the class of constructive MNN models. In this paper, we
introduced a modified MP training algorithm that only requires a finite number of
epochs to converge, resulting in a decision surface that perfectly separates the train-
ing data. Furthermore, incorporating competitive neurons into the MP and MPD

Constructive Morphological Neural Networks 141

models led to the MP/C and MPD/C models that can be trained using extensions
of the MP and MPD training algorithms. Further research has to be conducted to
devise more efficient training algorithms for these new morphological models.

Finally, this article has empirically demonstrated the effectiveness of constructive
morphological models in simulations with two well-know datasets for classification
[36, 6] by analyzing and comparing the error rates and the computational effort for
learning. In general, the constructive morphological models exhibited very satisfac-
tory classification results and - except for the FLNN - extremely fast convergence of
the training algorithms. On one hand, the constructive morphological models often
require more artificial neurons or computational units than conventional models. On
the other hand, morphological neural computations based on max-products or min-
products are much less complicated than the usual semi-linear neural computations.

Acknowledgements. This work was supported by CNPq under grant no. 306040/2006−9
and by FAPESP under grant no. 2006/05868−5.

References

1. Araújo, R.A., Madeiro, R., Sousa, R.P., Pessoa, L.F.C., Ferreira, T.A.E.: An evolutionary
morphological approach for financial time series forecasting. In: Proceedings of the IEEE
Congress on Evolutionary Computation, Vancouver, Canada, pp. 2467–2474 (2006)

2. Armstrong, W.W., Thomas, M.M.: Adaptive Logic Networks. In: Fiesler, E., Beale, R.
(eds.) Handbook of Neural Computation, vol. C1.8, pp. 1–14. IOP Publishing, Oxford
University Press, Oxford United Kingdom (1997)

3. Araújo, R.A., Madeiro, F., Pessoa, L.F.C.: Modular morphological neural network train-
ing via adaptive genetic algorithm for design translation invariant operators. In: Proceed-
ings of the IEEE International Conference on Acoustics, Speech and Signal Processing,
Toulouse, France (May 2006)

4. Banon, G., Barrera, J.: Decomposition of Mappings between Complete Lattices by Math-
ematical Morphology, Part 1, General Lattices. Signal Processing 30(3), 299–327 (1993)

5. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence
(1993)

6. Asuncion, A., Newman, D.J.: UCI Repository of machine learning databases, Univer-
sity of California, Irvine, CA, School of Information and Computer Sciences (2007),
http://www.ics.uci.edu/˜mlearn/MLRepository.html

7. Braga-Neto, U., Goutsias, J.: Supremal multiscale signal analysis. SIAM Journal of
Mathematical Analysis 36(1), 94–120 (2004)

8. Carpenter, G.A., Grossberg, S.: ART 3: Hierarchical search using chemical transmitters
in self-organizing pattern recognition architectures. In: Neural Networks, vol. 3, pp. 129–
152 (1990)

9. Carré, B.: An algebra for network routing problems J. Inst. Math. Appl. 7, 273–294
(1971)

10. Coskun, N., Yildirim, T.: The effects of training algorithms in MLP network on image
classification. Neural Networks 2, 1223–1226 (2003)

http://www.ics.uci.edu/~mlearn/MLRepository.html

142 P. Sussner and E.L. Esmi

11. Cuninghame-Green, R.: Minimax Algebra and Applications. In: Hawkes, P. (ed.) Ad-
vances in Imaging and Electron Physics, vol. 90, pp. 1–121. Academic Press, New York
(1995)

12. Cuninghame-Green, R., Meijer, P.F.J.: An Algebra for Piecewise-Linear Minimax Prob-
lems. Discrete Applied Mathematics 2(4), 267–286 (1980)

13. Cuninghame-Green, R.: Minimax Algebra: Lecture Notes in Economics and Mathemat-
ical Systems, vol. 166. Springer, New York (1979)

14. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge University
Press, Cambridge (2002)

15. Gader, P.D., Khabou, M., Koldobsky, A.: Morphological Regularization Neural Net-
works. Pattern Recognition, Special Issue on Mathematical Morphology and Its Appli-
cations 33(6), 935–945 (2000)

16. Giffler, B.: Mathematical solution of production planning and scheduling problems. IBM
ASDD, Tech. Rep (1960)

17. Graña, M., Gallego, J., Torrealdea, F.J., D’Anjou, A.: On the application of associa-
tive morphological memories to hyperspectral image analysis. In: Mira, J., Álvarez, J.R.
(eds.) IWANN 2003. LNCS, vol. 2687, pp. 567–574. Springer, Heidelberg (2003)

18. Grätzer, G.A.: Lattice theory: first concepts and distributive lattices. W. H. Freeman, San
Francisco (1971)

19. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. 1. Addison-Wesley,
New York (1992)

20. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image Analysis Using Mathematical Mor-
phology: Part I. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(4),
532–550 (1987)

21. Heijmans, H.: Morphological Image Operators. Academic Press, New York (1994)
22. Hocaoglu, A.K., Gader, P.D.: Domain learning using Choquet integral-based morpho-

logical shared weight neural networks. Image and Vision Computing 21(7), 663–673
(2003)

23. Kaburlasos, V.G., Athanasiadis, I.N., Mitkas, P.A.: Fuzzy lattice reasoning (FLR) classi-
fier and its application for ambient ozone estimation. International Journal of aproximate
reasoning 45(1), 152–188 (2003)

24. Kaburlasos, V.G., Petridis, V.: Fuzzy lattice neurocomputing (FLN) models. Neural Net-
works 13, 1145–1170 (2000)

25. Khabou, M.A., Gader, P.D.: Automatic target detection using entropy optimized shared-
weight neural networks. IEEE Transactions on Neural Networks 11(1), 186–193 (2000)

26. Kim, C.: Segmenting a low-depth-of-field image using morphological filters and region
merging. IEEE Transactions on Image Processing 14(10), 1503–1511 (2005)

27. Kwok, J.T.: Moderating the Outputs of Support Vector Machine Classifiers. IEEE Trans-
actions on Neural Networks 10(5), 1018–1031 (1999)

28. Matheron, G., Random Sets and Integral Geometry. Wiley, New York, (1975).
29. Monteiro, A.S., Sussner, P.: A Brief Review and Comparison of Feedforward Morpho-

logical Neural Networks with Applications to Classification. In: Kůrková, V., Neruda,
R., Koutnı́k, J. (eds.) ICANN 2008,, Part II. LNCS, vol. 5164, pp. 783–792. Springer,
Heidelberg (2008)

30. Pessoa, L.F.C., Maragos, P.: Neural networks with hybrid morphological/rank/linear
nodes: a unifying framework with applications to handwritten character recognition. Pat-
tern Recognition 33, 945–960 (2000)

31. Petridis, V., Kaburlasos, V.G.: Fuzzy lattice neural network (FLNN): a hybrid model for
learning. IEEE Transactions on Neural Networks 9(5), 877–890 (1998)

Constructive Morphological Neural Networks 143

32. Pitas, I., Venetsanopoulos, A.N.: Morphological Shape Decomposition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 12(1), 38–45 (1990)

33. Porter, R., Harvey, N., Perkins, S., Theiler, J., Brumby, S., Bloch, J., Gokhale, M., Szy-
manski, J.: Optimizing digital hardware perceptrons for multispectral image classifica-
tion. Journal of Mathematical Imaging and Vision 19(2), 133–150 (2003)

34. Raducanu, B., Graña, M., Albizuri, X.F.: Morphological Scale Spaces and Associative
Morphological Memories: Results on Robustness and Practical Applications. Journal of
Mathematical Imaging and Vision 19(2), 113–131 (2003)

35. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press,
Cambridge (1996)

36. Ripley, B.D.: Datasets for Pattern Recognition and Neural Networks, Cambridge, United
Kingdom (1996), http://www.stats.ox.ac.uk/pub/PRNN/

37. Ritter, G.X., Iancu, L., Urcid, G.: Morphological perceptrons with dendritic structure. In:
The 12th IEEE International Conference, Fuzzy Systems, May 2003, vol. 2, pp. 1296–
1301 (2003)

38. Ritter, G.X., Urcid, G.: Lattice Algebra Approach to Single-Neuron Computation. IEEE
Transactions on Neural Networks 14(2), 282–295 (2003)

39. Ritter, G.X., Wilson, J.N.: Handbook of Computer Vision Algorithms in Image Algebra,
2nd edn. CRC Press, Boca Raton (2001)

40. Ritter, G.X., Sussner, P.: Morphological Perceptrons Intelligent Systems and Semiotics,
Gaithersburg, Maryland (1997)

41. Ritter, G.X., Wilson, J.N., Davidson, J.L.: Image Algebra: An Overview. Computer Vi-
sion, Graphics, and Image Processing 49(3), 297–331 (1990)

42. Ronse, C.: Why Mathematical Morphology Needs Complete Lattices. Signal Process-
ing 21(2), 129–154 (1990)

43. Segev, I.: Dendritic processing. In: Arbib, M.A. (ed.) The handbook of brain theory and
neural networks, MIT Press, Cambridge (1998)

44. Serra, J.: Image Analysis and Mathematical Morphology. In: Theoretical Advances,
vol. 2, Academic Press, New York (1998)

45. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London
(1982)

46. Khabou, M.A., Gader, P.D., Keller, J.M.: LADAR target detection using morphological
shared-weight neural networks. Machine Vision and Applications 11(6), 300–305 (2000)

47. Sobania, A., Evans, J.P.O.: Morphological corner detector using paired triangular struc-
turing elements. Pattern Recognition 38(7), 1087–1098 (2005)

48. Soille, P.: Morphological Image Analysis. Springer, Berlin (1999)
49. Sousa, R.P., Pessoa, L.F.C., Carvalho, J.M.: Designing translation invariant operations

via neural network training. In: Proceedings of the IEE International Conference on Im-
age Processing, Vancouver, Canada, pp. 908–911 (2000)

50. Sussner, P., Valle, M.E.: Morphological and Certain Fuzzy Morphological Associative
Memories with Applications in Classification and Prediction. In: Kaburlasos, V.G., Rit-
ter, G.X. (eds.) Computational Intelligence Based on Lattice Theory. Studies in Compu-
tational Intelligence, vol. 67, pp. 149–173. Springer, Heidelberg (2007)

51. Sussner, P., Valle, M.E.: Gray Scale Morphological Associative Memories. IEEE Trans-
actions on Neural Networks 17(3), 559–570 (2006)

52. Sussner, P., Valle, M.E.: Implicative Fuzzy Associative Memories. IEEE Transactions on
Fuzzy Systems 14(6), 793–807 (2006)

http://www.stats.ox.ac.uk/pub/PRNN/

144 P. Sussner and E.L. Esmi

53. Sussner, P., Grana, M.: Guest Editorial: Special Issue on Morphological Neural Net-
works. Journal of Mathematical Imaging and Vision 19(2), 79–80 (2003)

54. Sussner, P.: Morphological Perceptron Learning. In: Proceedings of IEEE
ISIC/CIRA/ISAS Joint Conference, Gaithersburg, MD, September 1998, pp. 477–
482 (1998)

55. Valle, M.E., Sussner, P.: A General Framework for Fuzzy Morphological Associative
Memories. Fuzzy Sets and Systems 159(7), 747–768 (2008)

56. Zadeh, L.A.: Fuzzy Sets. Information and Control 8(3), 338–353 (1965)
57. Zimmermann, U.: Linear amd Combinatorial Optimization of Ordered Algebraic Struc-

tures. North-Holland, Amsterdam (1981)
58. Yu, A.J., Giese, M.A., Poggio, T.: Biophysiologically Plausible Implementations of the

Maximum Operation. Neural Computation 14(12), 2857–2881 (2002)

	Constructive Morphological Neural Networks: Some Theoretical Aspects and Experimental Results in Classification
	Introduction
	Lattice Background for Morphological Neural Networks
	Some Constructive Morphological Neural Network Models
	Morphological Perceptron (MP)
	Morphological Perceptrons with Dendrites (MPD)
	Fuzzy Lattice Neural Network-FLNN

	Experimental Results
	Ripley's Synthetic Problem
	Image Segmentation Problem

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

