
M-CLANN: Multiclass Concept
Lattice-Based Artificial Neural Network

Engelbert Mephu Nguifo1,3, Norbert Tsopze1,2, and Gilbert Tindo2

Abstract. Multilayer feedforward neural networks have been successfully
applied in different domains. Defining an interpretable architecture of a mul-
tilayer perceptron (MLP) for a given problem is still challenging. We propose
a novel approach based on concept lattices to automatically design a neural
network architecture. The designed architecture can then be trained with
the backpropagation algorithm. We report experimental results obtained on
different datasets, and then discuss our contribution as a means to provide
semantics to each neuron in order to build an interpretable neural network.

1 Introduction

A growing number of real world applications have been tackled with artificial
neural networks (ANNs). ANN is an adaptive system that changes its struc-
ture based on external or internal information that flows through the network
during the learning phase. ANNs offer a powerful and distributed computing
architecture, with significant learning abilities and they are able to represent
highly nonlinear and multivariable relationships. ANNs have been success-
fully applied to solve a variety of specific tasks (pattern recognition, function
approximation, clustering, feature extraction, optimization, pattern matching
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LIMOS CNRS, Université Blaise Pascal, Clermont Ferrand, France
e-mail: mephu@isima.fr

L. Franco et al. (Eds.): Constructive Neural Networks, SCI 258, pp. 103–121.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

tsopze@cril.univ-artois.fr
tsopze@cril.fr; gtindo@uycdc.uninet.cm
mephu@isima.fr


104 E.M. Nguifo, N. Tsopze, and G. Tindo

and associative memories) of importance to many applications [28, 39]. ANNs
are useful especially when data is plentiful and prior knowledge is limited.
Different ANN types have been reported in the literature, among which the
multilayer feed-forward network, also called multi-layer perceptron (MLP),
was the first and arguably simplest type of ANN devised, and is the main
concern of this chapter.

MLP networks trained using the backpropagation learning algorithm are
limited to search for a suitable set of weights in an apriori fixed network topol-
ogy. The selection of a network architecture for a specific problem has to be
done carefully. In fact there isn’t a fixed and efficient method for determining
the optimal network topology of a given problem. Too small networks are
unable to adequately learn the problem well while overly large networks tend
to overfit the training data and consequently result in poor generalization
performance. In practice, a variety of architectures are tried out and the one
that appears best suited to the given problem is picked. Such a trial-and-error
approach is not only computationally expensive but also does not guarantee
that the selected network architecture will be close to optimal or will gener-
alize well. An ad-hoc and simple manner deriving from this approach is to
use one hidden layer with a number of neurons equal to the average num-
ber of neurons in both input and output layers. In the literature, different
automatic approaches have been reported to dynamically build the network
topology. These works could be divided into two groups:

1- The first group uses prior knowledge (set of implicative rules) of the
application to derive the neural network topology [32]. The prior knowl-
edge is provided by an expert of the domain. The main advantage here
is that each node in the network represents one variable in the rule set
and each connection between two nodes represents one dependency be-
tween variables. The obtained neural network is a comprehensible ANN
since each node is semantically meaningful, and the ANN’s decision is not
viewed as deriving from a black-box system, but could easily be explain
using a subset of rules from the prior knowledge. The KBANN system
(Knowledge-Based ANN) [32] is an example of such an approach. But this
solution is limited while the prior knowledge is not available as might be
the case in practice.

2- The second group of techniques searches for an optimal network to min-
imize the number of units in the hidden layers [28, 34]. These techniques
bring out a dynamic solution to the ANN topology problem when a pri-
ori knowledge is not available. One technique suggests to construct the
model by incrementally adding hidden neurons or hidden layers to the
network until the obtained network becomes able to better classify the
training data set. Another technique is network pruning which begins by
training an oversized network and then eliminate weights and neurons
that are deemed redundant. An alternative approach consists of using
the linear separability [3] approach or the genetic approach [8] even if
the latter is computationally expensive. All these (incremental, pruning,
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genetic) techniques result to neural networks that can be seen as black
box systems, since no meaning is associated to each hidden neuron. Their
main limitation is the intelligibility of the resulting network (black-box
prediction is not satisfactory [1, 11]).

We propose here a novel solution, M-CLANN (Multi-class Concept Lattices-
based Artificial Neural Networks), to build a network topology where each
node has an associated semantic without using any prior knowledge. M-
CLANN is an extended version of the CLANN approach [35]. Both ap-
proaches uses formal concept analysis (FCA) theory to build a semi-lattice
from which the NN topology is derived and trained by error backpropagation.
The main difference between M-CLANN and CLANN are two-folds. First M-
CLANN can deal with multi-class classification problems, while CLANN is
limited to two-classes. Second, the derived topologies from the semi-lattice
are different in both systems.

Our proposed approach presents many advantages: (1) the generated ar-
chitecture is a multi-layer feed-forward network, such that the use of the
backpropagation algorithm is obvious; (2) each neuron has a semantic as it
corresponds to a formal concept in the semi-lattice, which is a way to jus-
tify the presence of a neuron; (3) each connection (between input neuron
and hidden neuron, and between neurons of different hidden layers) in the
derived ANN also has a semantic as it is associated to a link in the Hasse
diagram of the semi-lattice; (4) the knowledge for other systems (such as ex-
pert systems) could be extracted from the training data through the model;
(5) Experimental results have shown the efficiency of the approach compared
to other well-known techniques.

The rest of this chapter is organized as follows: the next section provides
an overview of some related works. Section three recalls some background
knowledge on formal concept analysis theory and supervised classification;
the fourth section describes our approach M-CLANN (Multiclass CLANN).
Experimental studies are reported in section five. Section six discusses the
soundness and efficiency of our approach.

2 Related Works

Research works about neural network architecture design could be divided
into two groups as mentioned above. The first group uses prior knowledge
to propose a MLP topology, while the second group searches for an optimal
topology minimizing the number of hidden neurons and layers.

2.1 Defining Neural Topology Using Prior Knowledge

An interesting framework is proposed in [32] to design the ANN topology
using the domain theory represented as a set of rules. The derived system
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KBANN (Knowledge Based Artificial Neural networks) [32] use a set of rules
represented as a set of Horn clauses. From these rules an items hierarchy is
defined and the architecture of the neural network is derived from this hierar-
chy. The hierarchy between items is defined using the following equivalences:

1. Final conclusions ⇔ output units;
2. Intermediate conclusions ⇔ internal units;
3. Hypothesis ⇔ input units;
4. Dependency between items ⇔ connection links.

The different steps of KBANN are as follows:

1. Rewriting. This step consists of writing the rules such that disjuncts are
expressed as a set of rules (each rule has only one antecedent).

2. Mapping. The hierarchy between items is defined and directly mapped to
the network.

3. Labeling. Each unit is numbered by its level.
4. Adding new hidden units. In order to make the network able to learn

derived features not specified in the initial rule set, it is advised to add
new units in the hidden layer.

5. Adding input units. Some relevant features which are referred to by the
initial rule set are added.

6. Adding links. Links are added to connect each unit numbered n − 1 to
each unit numbered n. The connection weights of these links are set to 0.

7. Perturbing. A small random number is added to each weight.
8. Initialization of connection weights and ANN training by error backprop-

agation.

The connection weights and the bias neurons are initialized as follows:

• w for the positive antecedents
• −w for the negated antecedents.
• The bias on the unit corresponding to the rules consequent to (p− 1/2)w

where p is the number of positive antecedents of the unit.

w is a positive number having 4 (empirically defined) as the default value.

Example 1. Figure 1 presents a simplified example of defining the neural
topology by KBANN approach. In the first column, are the initial rules which
are rewritten and presented in the second column. And the final network is
presented in the third column.

2.2 Defining Neural Topology without Prior
Knowledge

When the prior knowledge is unavailable, it is not possible to use KBANN. To
avoid this, there are reported methods that directly define the ANN topology
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A

A1
A2

B C E

D F G H

Initial rules set Rewritten rules Resulting neural network

A:-B
A:-C,E
B:-D,F,not H
C:-F,not G
E:-not F,G,H

A:-A1
A:-A2
A1:-B
A2:-C,E
B:-D,F,not H
C:-F,not G
E:-not F,G,H

positive connections

negative connections

added connections

Fig. 1 Example of ANN topology definition with KBANN.

from the data. These methods start with a small network and dynamically
grow the network by adding and training neurons as needed until better
classification is achieved. These methods can be divided into two subgroups:
those with many hidden layers [28] and those with only one hidden layer [38].

2.2.1 Many Hidden Layers

In [28] the authors provide a survey of these methods including MTiling,
MUpstart, and MTower. The new added neuron is trained using a vari-
ant of perceptron similar to the pocket perceptron with rachet modification
[15]. The process adds layers in the existing network until better classifica-
tion is achieved or the maximum number of layers (user specified value) is
attempted.

1. MTiling. It constructs a strictly layered network of threshold neurons.
Apart from the most top layer (which is also the output layer) which
receives inputs from the layer immediately bellow it and to the inputs
neurons, each layer receives input from the layer immediately bellow it.
Two kinds of neurons are distinguished: the master unit and the ancillary
neurons that are added and trained to ensure a faithful representation of
the training data. After training, some ancillary neurons could be pruned
to minimize the network structure.

2. MUpstart. The network is constructed as a binary tree. Two kinds of errors
are defined: wrongly off (output = 0 while the target = 1) and wrongly
on (output = 1 while the target = 0). In case of wrongly off (rep. on), one
left (resp. right) child neuron is added to the wrong neuron and trained
to correct this error.
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a b c d e f

C1 C2 C3 Output layer

Full connection

Master neuron

Ancillary neuron

Hidden layer

Hidden layer

Input layer

Fig. 2 Example of neural network topology definition by MTiling method.

3. MTower. The resulting network is like a tower. It successively adds new
layers in the network until better classification is achieved. The newly
added layer is fully connected to the input layer and to the output layer.
After connecting this layer, it becomes the new output layer.

Example 2. Figure 2 is an example of a network constructed by MTiling.

Recently an approach based on linear separability was introduced in [3] which
relies on barycentric correction procedure algorithm for training the individ-
ual threshold logic unit.

2.2.2 One Hidden Layer

The Distal method [38] belongs to this category. It builds a 3 layer neural
network. Each neuron of the input layer is linked to an attribute. Each neuron
of the output layer is associated to a predefined class. The process essentialy
consists of defining the hidden layer. Distal clusters training data in disjoint
subsets and represents each subset in the hidden layer by one neuron.

Example 3. Figure 3 presents a neural network defined by Distal. (a) is the
initial state of the network and (b) is the generated network.

There are also in the literature many works which help the user to optimize
[37] or prune networks by pruning some connections [23] or by selecting some
variables [5] among the entire set of initial variables, or by detecting and
filtering noisy examples [34]. These works do not propose an efficient method
to build neural network topology, but they can be classified in the second
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O1,O2,...,O10

C1 C2 C3 C1 C2 C3

(a) Initial state
(b) Final neural network

Full connection

Fig. 3 Example of neural network topology definition by Distal method.

group, since by reducing the number of input neurons, the number of neurons
in the hidden layer could also vary.

3 Background - Classification and Formal Concept
Analysis

In this section we recall what is supervised classification task, then define
basic notions of FCA, and finally presents constraints that can be used to
prune the concept lattice in supervised classification.

3.1 Classification

The classification task consists of labelling unknown patterns into a prede-
fined class. The classification process builds a model and trains it for making
this model able to affect the unseen patterns to one of the output classes.
Here, each known pattern is presented as a pair (x, y) where x is the vector
containing different values taken by the pattern on different attributes and y
is its class value represented by a particular attribute. The training data is
divided into two sets: the training set and the test set. The system operates
in two phases: the training phase consists in designing the model while the
second step evaluates the trained model.

For instance, in the data table 1, objects or patterns 1 to 6 can be asso-
ciated to the positive class (+), while patterns 7 to 10 can be associated to
the negative class (-).
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The model evaluation (or test) consists of calculating its accuracy rate as
the ratio between the number of well classified patterns and the total number
of patterns. There are many techniques to determine accuracy rate among
which:

1. K-fold cross validation. The training data is divided into k disjoint subsets
and the model is trained and tested k times. At each iteration i, the
ith subset is used to test the model built and trained using the other
k − 1 subsets (all other subsets except ith subset). The accuracy rate is
calculated as the average of the different accuracy rates obtained at each
iteration. Empirically it is advised to take k = 10.

2. Leave-one-out is a variant of k-fold cross validation where k is to the
number of patterns on the training set.

3. Holdout. The training set is randomly separated into two disjoint subsets.
One of these subsets is used to build and train the model while the other
is used for test.

Classification as well as supervised learning are more detailed in [7, 20].

3.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical framework that models
the world as being composed of objects and attributes, describing an appli-
cation [40, 16].

Definition 1. A formal context is a triplet C = (O, A, I) where O is a
non empty finite set of objects, A is a non empty finite set of attributes (or
items) and I is a binary relation between O and A (formally I ⊆ O × A).

The formal context (binary) C could be represented as a binary matrix such
that Cij = 1 if the object represented in row i verifies the attribute repre-
sented in column j and 0 if not.

Example 4. Table 1 is an example of a binary formal context.
O = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is the set of objects or patterns while A =
{a, b, c, d, e, f} is a set of attributes.

The fundamental intuition of FCA relies on the fact that a concept is repre-
sented by an intent and an extent.

Definition 2. Let f and g be two applications defined as follows:

• f : 2O −→ 2A, s.t. f(O1) = O′
1 = {a ∈ A / ∀o ∈ O1 , (o, a) ∈ I} ,

O1 ⊆ O;
• g : 2A −→ 2O, s.t. g(A1) = A′

1 = {o ∈ O / ∀a ∈ A1 , (o, a) ∈ I} ,
A1 ⊆ A;
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Table 1 Example of a formal context presented as boolean matrix.

O/A a b c d e f

1 1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1
5 1 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1
9 1 1 1
10 1 1 1

A pair (O1, A1) is called formal concept iff O1 = A′
1 and A1 = O′

1. O1

(resp. A1) is the extent (resp. intent) of the concept.

Example 5. From table 1, ({1, 2, 5, 6, 10}, {a, e}) is a formal concept where
{1, 2, 5, 6, 10} is the extent and {a, e} is the intent. While ({1, 2, 5}, {a, e}) is
not a formal concept since {1, 2, 5} is not the largest set for which each object
verifies all attributes of the set {a, e}.
Definition 3. Let L be the entire set of concepts extracted from the formal
context C and ≤ a relation defined as (O1, A1) ≤ (O2, A2) ⇒ (O1 ⊂ O2) (or
A1 ⊃ A2). The relation ≤ defines the order relation on L [16].

If (O1, A1) ≤ (O2, A2) is verified (without intermediate concept) then the
concept (O1, A1) is called the successor of the concept (O2, A2) and (O2, A2)
the predecessor of (O1, A1).

The Hasse diagram is the graphical representation of the relation succes-
sor/predecessor on the entire set L of concepts.

The fundamental theorem of FCA [40] states that the set of formal con-
cepts of a formal context forms a complete lattice, called a concept lattice.
A complete lattice is a partial order in which the greatest lower bound and
least upper bound of any subset of the elements in the lattice must exist.

FCA have shown to be useful in data mining for generating concise rep-
resentations of implicative rules [19] or association rules [2, 18], but also for
supervised classification [14]. More details on FCA could be found in [16, 4].

3.3 Constraints

In order to reduce the size of concept lattice and consequently the time com-
plexity, we introduce some constraints regularly used to select concepts during
the learning process.
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3.3.1 Frequency of Concept

A concept is frequent if it contains at least α (also refered to as minsupp, is
specified by the user) objects. The support s of a concept (X, Y ) is the ratio
between the cardinality of the set X and the total number of objects (|O|)
(s = 100×|X|

|O| %). Frequency is an anti-monotone constraint which helps prune
the lattice and reduce its computational complexity. Minimum support is the
minimal number of objects that the intent of a concept must verify to be
selected.

3.3.2 Validity of Concept

A concept (X, Y ) is complete if Y recognizes all positive examples. A con-
cept (X, Y ) is consistent if Y throws back all counter examples or negative
examples (formally, the set of consistent concepts is {(X, Y )/Y ∩ O− = {}}
where O = O+ ∪ O−). Both completeness and consistency constraints are
restrictive and can lead to overfitting. Other weak constraints are then
introduced:

1. Validity. A concept (X, Y ) is valid if its description recognizes many
examples; a valid concept is a frequent concept on the set of examples O+;
formally the set of valid concepts is defined as {(X, Y ) / |X+| ≥ α} where
0 < α ≤ |O+|.

2. Quasi-consistency. A concept (X, Y ) is quasi-consistent if it is valid
and its extent contains few counter examples. Formally, the set of quasi-
consistent concepts is defined as {(X, Y ) / |X+| ≥ α and |X−| ≤ β}.

3.3.3 Height of a Semi-lattice

The level of a concept c is defined as the minimal number of connections
from the supreme concept to c. The height of a semi-lattice is the greatest
value of the level of concepts. Using levelwise approach to generate the join
semi-lattice, a given constraint can be set to stop concept generation at a
fixed level. The height of the lattice could be performed as the depth without
considering the cardinality of concept extents (or intents). In fact at each
level, concept extents (or intents) do not have the same cardinality. The
number of layers of the semi-lattice is a parameter corresponding to the
maximum level (height) of the semi-lattice.

4 Concept Lattice-Based Artificial Neural network

We describe in this section the different steps of our new approach,
M-CLANN, as shown by figure 4. The process of finding the architecture of
neural networks has three steps: (1) build a joint semi-lattice of formal con-
cepts by applying constraints to select relevant concepts [24, 33]; (2) translate
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Fig. 4 Neural network topology definition.

the join semi-lattice into a topology of the neural network, and set the initial
connections weights; (3) train the neural network.

Variables used in the algorithms defined in this section are : C is a formal
context (dataset); L is the semi-lattice built from the training dataset K; c
and c′ are formal concepts; n is the number of attributes in each training
pattern; m is the number of output classes in the training dataset; c a formal
concept, element of L; NN is the comprehensive neural network build to
classify the data.

4.1 Semi-lattice Construction

There are different algorithms [22] which can be used to generate formal con-
cepts; only a few of them build the Hasse diagram. Lattice could be processed
using top-down or bottom-up techniques. In our case, a levelwise approach
presents advantage to successively generate concepts of the join semi-lattice
and the Hasse diagram. For this reason, we choose to implement the Bordat
algorithm [22] which is suitable here. Concepts included in the lattice are
only those which satisfy the defined constraints.

In order to prune the concept lattices, we can use one or multiple con-
straints to select concepts during this step. The constraints used in M-
CLANN are frequency of concept and the height of the semi-lattice. For
example it is possible to combine frequency and height constraints, or to use
only one of them. The semi-lattice construction process starts by finding the
supreme element. The process continues by generating the successors of the
concepts that belong to the existing set until there are no concepts which
satisfies the specified constraints.
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Algorithm 1. Modified Bordat algorithm
Require: Binary context C
Ensure: concept lattices (concepts extracted from C) and the Hasse diagram of

the order relation between concepts.
1: Init the list L of the concepts (O, {}) (L← (O, {}))
2: repeat
3: for concept c ∈ L such that his successors are not yet been calculated do
4: Calculate the successors c′ of c.
5: if the specified constraint is verified by c′ then
6: add c′ in L as successor of c if c′ does not exit in L else connect c′ as

successor of c.
7: end if
8: end for
9: until no concept is added in L.

10: derive the neural network architecture from the concept semi-lattice.

4.2 Generation of ANN Topology

In the second step, the join semi-lattice is translated into a neural network
architecture. Algorithm 2 presents the M-CLANN method to translate the
semi-lattice into ANN.

Example 6. Figure 5 presents an example ANN topology designed with M-
CLANN. In this figure, (a) is the semi-lattice while (b) is the corresponding
neural network topology.

Objects used in this algorithm are defined as follows: K is a formal context
(dataset); L is the semi-lattice built from the training dataset K; c and c′ are
formal concepts; n is the number of attributes in each training pattern; m is the
number of output classes in the training dataset; c a formal concept, element
of L; NN is the comprehensive neural network build to classify the data.

 {},{123456} 

{e},{12356} {c},{2346} {bd},{1345} 

{ce},{236} {ae},{2356} {bde},{135} 

 

Output 

a f b c d e
 

Internal 

Input 

(a)
(b)

Fig. 5 Example of ANN architecture design using M-CLANN
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Algorithm 2. Translation of semi-lattice into ANN topology
Require: L a semi-lattice structure built using specified constraints.
Ensure: NN initial topology obtained from the semi-lattice L
1: for each concept c ∈ L do
2: if the set of predecessor of c is empty mark its successor as ”last hidden

neuron”;
3: Else c becomes neurons and add to NN with the successor and predecessor

as in L; if the set of successor of c is empty then mark c as ”first hidden
neuron”.

4: Endif
5: end for
6: Create a new layer of n neurons and connect each neuron of this layer to the

neurons marked as ”first hidden neuron” in NN .
7: Create a new layer of m neurons and connect each neuron of this layer to the

neurons marked as ”last hidden neuron” in NN .
8: Initialize connection weights and train them.

Threshold is zero for all units and the connection weights are initialized as
follows:

• Connection weights between neurons derived directly from the lattice is
initialized to 1. This implies that when the neuron is active, all its prede-
cessors are active too.

• Connection weights between the input layer and hidden layer are initial-
ized as follows: 1 if the attribute represented by the input appears in the
intention Y of the concept associated to the ANN node and -1 otherwise.
This implies that the hidden unit connected to the input unit will be active
only if the majority of its input (attributes including in its intent) is 1.

4.3 Training the Generated Topology

The last step of M-CLANN is to train the obtained neural network. This is
done using the error backpropagation algorithm [30]. This algorithm searches
the appropriate connection weights between the different units by propagat-
ing the input signals through the network and backpropagating the error from
the output units to the input units. This is done by minimizing the quadratic
sum of the error.

5 Experimentations and Results

5.1 Data

To examine the practical aspect of the approach presented above, we run
the experiments on the data available on the UCI repository [26]. The
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Table 2 Experimental data sets

Dataset #Train #Test #Class #Nom #Bin

Balance-scale (Bal) 625 0 3 4 20
Chess 3 196 0 2 36 38
Hayes-roth (Hayes) 132 28 3 5 15
Tic-tac-toe (Tic) 958 0 2 9 26
Spect 80 187 2 22 22
Monks1 124 432 2 6 15
Monks2 169 432 2 6 15
Monks3 122 432 2 6 15
Lymphography (lympho) 148 0 3 18 51
Solar-flare1 (Solar1) 323 0 7 12 40
Solar-flare2 (Solar2) 1066 0 7 12 40
Soybean-backup (Soyb) 307 376 19 35 151
Lenses 24 0 3 4 12

characteristics of this data is shown in the table 2 which contains the name
of the dataset, the number of training patterns (#Train), the number of test
patterns (#Test), the number of output classes (#Class), the initial number
of (nominal) attributes in each pattern (#Nom), the number of binary at-
tributes obtained after binarization (#Bin). Attributes were binarized by the
Weka [36] binarization procedure “Filters.NominalToBinary”. The diversity
of this data (from 24 to 3196 training patterns; from 2 to 19 output classes)
helps in revealing the behavior of each model in many situations. There are
no missing values in these datasets.

Two constraints presented above (frequency and height) have been applied
in selecting concepts during experimentation. We first separately use each of
them and then we combine them.

5.2 Results

Experimental results are obtained from the model trained by error back-
propagation [30] and validated by 10-fold cross-validation or holdout [20].
The learning parameters are the following: as activation function, we use the
sigmoid (f(x) = 1

1+expx ), 500 iterations in the weight modification process
and 1 as learning rate.

Table 3 presents the accuracy rate (percentage) obtained with data in
table 2. In table 3, the symbol ”-” indicates that no formal concept satisfies
the constraints and the process was stopped. The symbol ”x” indicates that
the classifier CLANN was not applied for those multiclass problem.

In this table, MCL1 is M-CLANN built from a semi-lattice with one level
while MCL30 and MCL20 are M-CLANN built using respectively 30 and 20
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Table 3 Accuracy rates of MCLANN classifier with some varied input parameters.

Dataset CLANN MCL1 MCL2 MCL30 MCL20 MC1-30 MC1-20

Bal x 99,76 96,23 - 99,89 - 99,89
Chess 93,60 99,87 91,70 93,60 93,78 99,87 99,87
Hayes x 75,72 76.85 78,58 85,72 78,57 85,71
Tic 94,45 89,64 90.21 99,67 99,86 99,32 100
Spect 93,90 72,74 72,56 92,56 96,73 73,66 77,57
Monks1 82,70 91,67 95,56 91,17 91,17 91,67 91,71
Monks2 78,91 100 98,65 100 100 100 99,67
Monks3 83,61 93,51 100 91,17 93,52 92,59 93,52
Lympho x 80,78 90,24 84,67 88,91 85,71 92,56
Solar1 x 79,42 78,87 78,67 69,58 71,10 71,10
Solar2 x 75,00 72,62 76,71 70,91 75,34 78,95
Soyb x 81,33 79,01 89,34 86,95 83,11 84,04
Lenses x 98,67 90,00 100 99,87 98,67 99,87

Average 86,05 86,62 86,97 89,67 90,53 87,57 90,37

percent as frequency threshold. MC1-30 (respectively MC1-20) is M-CLANN
built with a combination of semi-lattice height equals to 1 and 30% (resp.
20%) as frequency threshold. CLANN column represents the precision rate
obtained using the original version of CLANN (with lattice height threshold
equals to one).

With high minimum support values, sometimes the semi-lattice does not
contain sufficient concepts to better classify the data. For instance, with
the minimum support value set to 35%, the semi-lattice built from Balance-
scale is empty. The best results (accuracy rate) of M-CLANN are obtained
with the α value equal to 20% (MCL20). These results are comparable to
those of other classifiers as shown in table 4 using some standard machine
learning classifiers or some constructive multilayer perceptrons. In table 4,
the symbol ”x” indicates that the classifier does not converge. The standard
classifiers are taken from the WEKA platform [36] and are MLP (a multilayer
perceptron classifier), C4.5 (a decision tree based classifier), IB1 (a case based
learning classifier model). The constructive multilayer perceptrons are the
original versions of author’s implementation of Mtiling, Mtower, Mupstart
and Distal.

M-CLANN was not compared with KBANN because we have no prior
knowledge about this data. The goal of this comparison is to see the behavior
(on the supervised classification problems) of M-CLANN regarding those of
other standard learning models.

Using different parameters settings, M-CLANN outperfomed standard ma-
chine learning classifiers in terms of accuracy on the experimental datasets.
MLP is better than C4.5 and IB1.
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Table 4 Accuracy rate of other classifiers.

Dataset MCL20 MLP C4.5 IB1 MTiling MUpstart MTower Distal

Bal 99,89 98,40 77,92 66,72 94,27 100 95,16 96,77
Chess 93,78 99,30 98,30 89,90 96,24 97,18 96,87 89,74
Hayes 85,72 82,15 89,28 75,00 89,29 90,01 78,57 54,32
Tic 99,86 96,86 93,21 81,63 75,52 73,03 64,21 61,23
Spect 96,73 65,77 66,70 66,31 89,60 83,29 71,40 83,90
Monks1 91,17 100 100 89,35 81,71 77,21 78,01 90,23
Monks2 100 100 70,37 66,89 85,42 82,43 77,87 89,10
Monks3 93,52 93,52 100 81,63 100 89,42 91,21 86,46
Lympho 88,91 81,76 74,32 80,41 85,71 78,57 78,57 86,45
Solar1 69,58 72,79 74,30 68,39 100 100 98,89 x
Solar2 70,91 68,11 69,97 66,56 96,88 93,75 96,88 68,23
Soyb 86,95 92,02 88,83 89,89 83,23 85,45 84,34 x
Lenses 99,87 95,83 91,67 100 99,50 99,00 98,50 99,88

Average 90.59 88,57 84,22 78,67 90,81 87,39 84,43 88.90

Another advantage of M-CLANN over MLP is that each neuron has a
semantic as it is associated to each intent of a formal concept. During the
experimentations, the running time of MLP and M-CLANN are similar but
much higher compared to that of C4.5 and IB1.

MTiling has the best average accuracy rate over the whole dataset, even
if this accuracy rate is only slightly greater than that of MCLANN.

6 Discussion

As presented in the previous section, there exists many algorithms which
could be used to define the neural network architecture. Each of those algo-
rithms present advantages but they also have issues:

1. Input data. Many algorithms could not process other data than numeric.
Apart from Distal where the authors have defined the distance between
symbolic data, all others only treat numeric data. In addition of the train-
ing data, using KBANN method requires a domain theory which is not
always available. The choice of the method could hardly be influenced by
the input data.

2. Interpretability of ANN. It is well known that the ANN is one of the
most commonly used methods in classification. As it is seen as ’Black
box’, it is not used in the domain where result explanations are impor-
tant. Among the previous methods, only M-CLANN and KBANN present
interpretable architectures. So, it could not be advised to use other ap-
proaches than M-CLANN and KBANN, while in M-CLANN, each node
is associate to one formal concept and each formal concept is formed by
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a set of objects (extent) and and a set of attributes (intent) shared by
these objects; in KBANN, each node is associated to one variable on the
rules set.

3. Choice of the algorithm’s parameters. One problem with ANN topol-
ogy design algorithm is the choice of network and training parameters. This
problem is avoided in KBANN method where only the maximum number
of iterations is needed. In addition to the maximum iterations number (500
as default value), M-CLANN needs to define the constraints value. Other
constructive algorithms (except Distal) need to define the maximum layers
number, the choice of training algorithm, the maximum iterations number
in the training process.

Recently different works showing links between FCA and ANN were reported
in the literature. Except from our previous method CLANN, those are dif-
ferent from MCLANN. [12] uses the FCA approach to encode the neural
network function, while [31] proposes two ways of directly encoding closure
operators on finite sets in a 3 layered feed forward neural network.

7 Conclusion

In this chapter, a new approach of finding the ANN topology is presented.
This method is based on concept lattices and is able to define an interpretable
ANN topology without any prior domain knowledge. This proposal extends
our previous method CLANN in order to treat multi-class supervised classi-
fication problems.

Some empirical classification results presented above show its efficiency
compared to standard machine learning classification and other constructive
multilayer perceptrons.
The extension of this approach will consist of extracting rules from the net-
work after training and the treatment of multivalued context. A more the-
oretical study of [29] discusses the fact some neural networks compute and
others don’t. We will explore the link with our proposal.
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V., Neruda, R., Koutńık, J. (eds.) ICANN 2008,, Part II. LNCS, vol. 5164, pp.
812–821. Springer, Heidelberg (2008)

26. Newmann, D.J., Hettich, S., Blake, C.L., Merz, C.J.: (UCI)Repository of ma-
chine learning databases, Dept. Inform. Comput. Sci. Univ. California, Irvine,
CA (1998), http://www.ics.uci.edu/AI/ML/MLDBRepository.html

27. Parekh, R., Yang, J., Honavar, V.: Constructive Neural Networks Learning
Algorithms for Multi-Category Classification. Department of Computer Science
Lowa State University Tech. Report ISU CS TR 95-15 (1995)

28. Parekh, R., Yang, J., Honavar, V.: Constructive Neural-Network Learning Algo-
rithms for Pattern Classification. IEEE Transactions on neural networks 11(2),
436–451 (2000)

29. Piccinini, G.: Some neural networks compute, others dont. Neural Network 21
(special issue), 311–321 (2008)

30. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by
backpropagating errors. Nature (323), 318–362 (1986)

31. Rudolph, S.: Using FCA for Encoding Closure Operators into Neural Networks.
In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604,
pp. 321–332. Springer, Heidelberg (2007)

32. Shavlik, W.J., Towell, G.G.: Kbann: Knowledge based articial neural networks.
Artificial Intelligence (70), 119–165 (1994)

33. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Ice-
berg concept lattices with TITANIC. Journal on Knowledge and Data Engi-
neering (KDE) 2(42), 189–222 (2002)

34. Subirats, J.L., Franco, L., Molina Conde, I., Jerez, J.M.: Active learning using
a constructive neural network algorithm. In: Kůrková, V., Neruda, R., Koutńık,
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