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Abstract. This paper describes a method of constructing one-hidden layer feedfor-
ward linear threshold networks to represent Boolean functions (or partially-defined
Boolean functions). The first step in the construction is sequential linear separation,
a technique that has been used by a number of researchers [7, 11, 2]. Next, from a
suitable sequence of linear separations, a threshold network is formed. The method
described here results in a threshold network with one hidden layer. We compare
this approach to the standard approach based on a Boolean function’s disjunctive
normal form and to other approaches based on sequential linear separation [7, 11].

1 Introduction

It is well known that any Boolean function can be represented by a feedforward
linear threshold network with one hidden layer. The simplest way to see this is
via the disjunctive normal form representation of the function (see later). Here, we
discuss an alternative way of representing Boolean functions (or partially-defined
Boolean functions, by which we mean restrictions Boolean functions to a specified
domain). This alternative approach arises from considering a fairly natural way of
classifying points by iterative or sequential linear separation.

The problem considered, to be more precise, is the following. Given disjoint sub-
sets T and F of {0,1}n, for some natural number n, we want to produce a feed-
forward linear threshold network whose output is 1 if its input is in T , and whose
output is 0 if its output is in F . We refer to the pair (T,F) as a partially-defined
Boolean function (pdBf), and if T ∪F = {0,1}n, then the partially-defined Boolean
function is simply a Boolean function (since its value is defined for all elements of
{0,1}n). The set T is called the set of true points, or those labelled 1; and the set
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F is the set of false points, labelled with 0. We focus on two-class classification
problems in the Boolean domain, but much of what we say can be generalised to
deal with multi-class classification, or classification on more general domains (such
as the whole of R

n) [2].
We start by describing what we call the ‘standard’ approach, which is based on

a disjunctive normal form representation of the Boolean function (or of a Boolean
function that is consistent with a partially-defined Boolean function). Then we de-
scribe an approach in which we first find a threshold decision list that represents
the pdBf (T,F) and, from this threshold decision list, produces a threshold network.
We compare our method with other approaches. The threshold networks we pro-
duce have a single hidden layer of units, as do those resulting from the standard
approach, but we show that there can be some advantages in the method we discuss
here. Some previous work [7, 11, 12] also involved sequential linear separation, but
resulted in networks with a different structure, in which there were many single-unit
hidden layers, with connectivity between them.

2 Simple Threshold Networks Representing Boolean Functions:
The Standard Approach

There is a very straightforward way in which to represent partially-defined Boolean
functions by threshold networks having one hidden layer of units. This is based on
the existence, for each Boolean function, of a disjunctive normal form for the func-
tion. We first briefly review key ideas on threshold networks and Boolean functions.

2.1 Threshold Functions and Threshold Networks

A function t : {0,1}n→ {0,1} is a (Boolean) threshold function if there are w ∈R
n

and θ ∈ R such that

t(x) =
{

1 if 〈w,x〉 ≥ θ
0 if 〈w,x〉 < θ ,

where 〈w,x〉 is the standard inner product of w and x. Thus, t(x) = sgn(〈w,x〉−θ ),
where sgn(z) = 1 if z≥ 0 and sgn(z) = 0 if z < 0. Given such w and θ , we say that t
is represented by [w,θ ] and we write t← [w,θ ]. The vector w is known as the weight
vector, and θ is known as the threshold.

A threshold network is formed when combine together threshold units, each of
which computes a threshold function. More precisely, we have a directed graph,
at each vertex of which is a ‘unit’, and with the arcs of the digraph representing
the flows of signals between units. Some of the units are termed input units: these
receive signals not from other units, but have their signals applied from outside. In
our case, there will be n input units, each of which receives 0 or 1 as an input. In
this situation, the set of all input patterns, or just ‘inputs’, is {0,1}n. Units that do
not transmit signals to other units are termed output units. We will be interested in
networks with one output unit. The network is said to be a feed-forward network
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if the underlying directed graph is acyclic (that is, it has no directed cycles). This
feed-forward condition means that the units (both the input units and the threshold
units) can be labeled with integers in such a way that if there is a connection from
the unit labeled i to the unit labeled j then i < j. In any feed-forward network, the
units may be grouped into layers, labeled 0,1,2, . . . , �, in such a way that the input
units form layer 0, these feed into the threshold units, and if there is a connection
from a threshold unit in layer r to a threshold unit in layer s, then we must have
s > r. Note, in particular, that there are no connections between any two units in a
given layer. The ‘top’ layer consists of output units. The layers that are not inputs or
outputs are called hidden layers.

We will be primarily interested in linear threshold networks having just one hid-
den layer, and it is useful to give an explicit description in this case of the function-
ality of the network. Such a network will consist of n inputs and some number, k,
of threshold units in a single hidden layer, together with one output threshold unit.
Each threshold unit computes a threshold function of the n inputs. The (binary-
valued) outputs of these hidden nodes are then used as the inputs to the output node,
which calculates a threshold function of these. Thus, the threshold network com-
putes a threshold function of the outputs of the k threshold functions computed by
the hidden nodes. If the threshold function computed by the output node is described
by weight vector β ∈ R

k and threshold φ , and the threshold function computed by
hidden node i is fi ← [w(i),θ (i)], then the threshold network as a whole computes
the function f : {0,1}n→{0,1} given by

f (y) = 1⇐⇒
k

∑
i=1

βi fi(y)≥ φ ;

that is,

f (y1y2 . . .yn) = sgn

(
k

∑
i=1

βi sgn

(
n

∑
j=1

w(i)
j y j−θ (i)

)
−φ

)
,

where sgn(x) = 1 if x ≥ 0 and sgn(x) = 0 if x < 0. The state of the network is the
(concatenated) vector

ω = (w(1),θ (1),w(2),θ (2), . . . ,w(k),θ (k),β ,φ) ∈ R
nk+2k+1.

A fixed network architecture of this type (that is, fixing n and k), computes a param-
eterised set of functions { fω : ω ∈R

nk+2k+1}. In state ω , the network computes the
function fω : {0,1}n→{0,1}.

2.2 Boolean Functions and DNF Representations

Any Boolean function can be expressed by a disjunctive normal formula (or DNF),
using literals u1,u2, . . . ,un, ū1, . . . , ūn, where the ūi are known as negated literals. A
disjunctive normal formula is one of the form
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T1∨T2∨·· ·∨Tk,

where each Tl is a term of the form

Tl =

(∧
i∈P

ui

)∧( ∧
j∈N

ū j

)
,

for some disjoint subsets P,N of {1,2, . . . ,n}.
Given a disjunctive normal form for a Boolean function, there may be a number

of ways of simplifying it. For two Boolean functions f and g, we write f ≤ g if
f (x)≤ g(x) for all x; that is, if f (x) = 1 implies g(x) = 1. Similarly, for two Boolean
formulae φ ,ψ , we shall write φ ≤ ψ if, when f and g are the functions represented
by φ and ψ , then f ≤ g. A term T of a DNF is said to absorb another term T ′ if
T ′ ≤ T . For example, T = ū1u4 absorbs the term T ′ = ū1u3u4. That is, whenever T ′
is true, so is T . This means, for example, that the formula

ū1u4∨u1u2ū3∨ ū1u3u4

is equivalent to ū1u4 ∨ u1u2ū3. A term T is an implicant of f if T ≤ f ; in other
words, if T true implies f true. The terms in any DNF representation of a function f
are implicants of f . The most important type of implicants are the prime implicants.
These are implicants with the additional property that there is no other implicant of
f absorbing T . Thus, a term is a prime implicant of f if it is an implicant, and the
deletion of any literal from T results in a non-implicant T ′ of f (meaning that there
is some x such that T ′(x) = 1 but f (x) = 0). If we form the disjunction of all prime
implicants of f , we have a particularly important DNF representation of f .

2.3 From DNF to Threshold Network

Suppose that (T,F) is a partially-defined Boolean function and that the Boolean
function f is some ‘extension’ of (T,F), meaning that f (x) = 1 for x∈ T and f (x) =
0 for x ∈ F . Let φ be a DNF formula for f . Suppose φ = T1 ∨T2 ∨ ·· · ∨Tk, where
each Ti is a term of the form Ti =

(∧
j∈Pi

u j
)∧(∧

j∈Ni
ū j

)
, for some disjoint subsets

Pi,Ni of {1,2, . . . ,n}. We form a network with k hidden units, one corresponding to
each term of the DNF. Labelling these threshold units 1,2, . . . ,k, we set the weight
vector w(i) from the inputs to hidden threshold unit i to correspond directly to Ti, in

the sense that w(i)
j = 1 if j ∈ Pi, w(i)

j =−1 if j ∈ Ni, and w(i)
j = 0 otherwise. We take

the threshold θ (i) on hidden unit i to be |Pi|. We set the weight on the connection
between each hidden threshold unit and the output unit to be 1, and the threshold
on the output unit to be 1/2. That is, we set β to be the all-1 vector of dimension
k, and set the threshold φ to be 1/2. It is clear that hidden threshold unit i outputs 1
on input x precisely when x satisfies the term Ti, and that the output unit computes
the ‘or’ of all the outputs of the hidden units. Thus, the output of the network is the
disjunction of the terms Ti, and hence equals f .
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Note that this does not describe a unique threshold network representing the pdBf
(T,F), for there may be many choices of extension function f and, given f , there
may be many possible choices of DNF for f . In the case in which T ∪F = {0,1}n,
so that the function is fully defined, we could, for the sake of definiteness, use the
particular DNF formula described above, the disjunction of all ‘prime implicants’.

In general, a simple counting argument establishes that, whatever method is be-
ing used to represent Boolean functions by threshold networks, for most Boolean
functions a high number of units will be required in the resulting network. Explic-
itly, suppose we have an n-input threshold network with one output and one hidden
layer comprising k threshold units. Then, since the number of threshold functions is
at most 2n2

(see [1, 3], for instance), the network computes no more than (2n2
)k+1

different Boolean functions, this being an upper bound on the number of possible
mappings from the input set {0,1}n to the vector of outputs of all the k+1 threshold
units. This bound, 2n2(k+1) is, for any fixed k, a tiny proportion of all the 22n

Boolean
functions and, to be comparable, we need k = Ω(2n/n2). (This is a very quick and
easy observation. For more detailed bounds on the sizes of threshold networks re-
quired to compute general and specific Boolean functions, see [10], for instance.)

It is easy to give an explicit example of a function for which this standard method
produces an exponentially large threshold network. The parity function f on {0,1}n

is given by f (x) = 1 if and only if x has an odd number of ones. It is well known that
any DNF formula φ for f must have 2n−1 terms. To see this, note first that each term
of φ must have degree n. For, suppose some term Ti contained fewer than n literals,
and that neither u j nor ū j were present in Ti. Then there are x,y ∈ {0,1}n which are
true points of Ti, but which differ only in position j. Then, since Ti is a term in the
DNF representation of the parity function f , we would have f (x) = f (y) = 1. But
this cannot be: one of x,y will have an odd number of entries equal to 1, and one
will have an even number of such entries. It follows that each term must contain n
literals, in which case each term has only one true point, and so we must have 2n−1

distinct terms, one for each true point. It follows that the resulting network has 2n−1

threshold units in the hidden layer.

3 Decision Lists and Threshold Decision Lists

We now present a different approach to the problem of finding a threshold network
representation of a partially-defined Boolean function. To explain this, we first dis-
cuss decision lists and threshold decision lists.

3.1 Decision Lists

We start by describing decision lists, introduced by Rivest [9]. Suppose that G is any
set of Boolean functions. A function f : {0,1}n→{0,1} is said to be a decision list
based on G if for some positive integer r, there are functions f1, f2, . . . , fr ∈ G and
bits c1,c2, . . . ,cr ∈ {0,1} such that f acts as follows. Given an example y, we first
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evaluate f1(y). If f1(y) = 1, we assign the value c1 to f (y); if not, we evaluate f2(y),
and if f2(y) = 1 we set f (y) = c2, otherwise we evaluate f3(y), and so on. If y fails
to satisfy any fi then f (y) is given the default value 0. The evaluation of a decision
list f can therefore be thought of as a sequence of ‘if then else’ commands,
as follows:
if f1(y) = 1 then set f (y) = c1

else if f2(y) = 1 then set f (y) = c2

. . .

. . .
else if fr(y) = 1 then set f (y) = cr

else set f (y)= 0.
We define DL(G), the class of decision lists based on G, to be the set of finite

sequences
f = ( f1,c1), ( f2,c2), . . . , ( fr ,cr)

such that fi ∈ G, ci ∈ {0,1} for 1≤ i≤ r. The values of f are defined by f (y) = c j

where j = min{i : fi(y) = 1}, or 0 if there are no j such that f j(y) = 1. We call each
f j a test (or, following Krause [6], a query) and the pair ( f j,c j) is called a term of
the decision list.

3.2 Threshold Functions and Threshold Decision Lists

We now consider the class of decision lists in which the tests are threshold functions.
We shall call such decision lists threshold decision lists, but they have also been
called neural decision lists [7] and linear decision lists [13]. Formally, a threshold
decision list

f = ( f1,c1),( f2,c2), . . . ,( fr,cr)

has each fi : R
n→{0,1} of the form fi(x) = sgn(〈wi,x〉−θi) for some wi ∈R

n and
θi ∈ R. The value of f on y ∈ R

n is f (y) = c j if j = min{i : fi(y) = 1} exists, or 0
otherwise (that is, if there are no j such that f j(y) = 1).

3.3 A Geometrical Interpretation: Iterative Linear Separation

Threshold decision lists are, in fact, quite a natural way in which to classify points,
and a useful geometrical motivation can be given. Suppose we are given a partially-
defined Boolean function (T,F). We can use a hyperplane to separate off a set of
points all having the same classification label (that is, all of which are from T , or all
of which are from F). At least one point can always be separated off in this way. For,
given any x ∈ {0,1}n, x and {0,1}n \{x} are linearly separable. To see this, we can
suppose, without any loss of generality, that x is the origin. Then the hyperplane with
equation ∑n

i=1 xi = 1/2 achieves the required separation. (Note that this argument is
contingent on the geometry of {0,1}n. For more general subsets of R

n, some addi-
tional properties, such as general position, would need to hold to make the argument



On Constructing Threshold Networks for Pattern Classification 77

work.) The points that have been ‘chopped off’ can then be removed from consider-
ation and the procedure iterated until no points remain. In general, we would hope
to be able to separate off more than one point at each stage, but the argument given
above establishes that, at each stage, at least one point can indeed be ‘chopped off’,
so since the set of points is finite, the procedure does indeed terminate.

We may regard the chopping procedure as a means of constructing a threshold
decision list consistent with the data set. If, at stage i of the procedure, the hyper-
plane with equation ∑n

i=1 αiyi = θ chops off points all having label j, with these
points in the half-space with equation ∑n

i=1 αiyi ≥ θ , then we take as the ith term
of the threshold decision list the pair ( fi, j), where fi ← [α,θ ]. Therefore, given
any partially-defined Boolean function (T,F), there will always be some threshold
decision list representing the pdBf.

3.4 A Related Approach

This sequential linear separation, or ‘chopping’, procedure is similar to one em-
ployed by Jeroslow [5], but at each stage in his procedure, only examples from T
may be ‘chopped off’ (and one cannot choose instead to chop off a subset of points
from F).

Note that if the ‘chopping’ method of constructing a threshold decision list is
applied to the sequence of hyperplanes resulting from the Jeroslow method, a re-
stricted form of decision list results, namely one in which all terms are of the form
( fi,1). But such a decision list is quite simply the disjunction f1 ∨ f2 ∨ ·· · . For
Boolean functions, the problem of decomposing a function into the disjunction of
threshold functions has been given substantial consideration by Hammer et al. [4]
and Zuev and Lipkin [14]. Hammer et al. defined the threshold number of a Boolean
function to be the minimum s such that f is a disjunction of s threshold functions,
and they showed that there is an increasing function with threshold number

( n
n/2

)
/n.

(A function is increasing if, when f (x) = 1 and xi = 0, then f (x+ei) = 1 too, where
ei is the unit basis vector with ith entry equal to 1 and all other entries equal to
0.) Zuev and Lipkin showed that almost all increasing functions have this order of
threshold number, and that almost all Boolean functions have a threshold number
that is Ω(2n/2) and O(2n lnn/n).

We give an example for illustration, which demonstrates the advantages to be
gained by the threshold decision list approach over the Jeroslow approach.

Example: Consider again the parity function f on {0,1}n, given by f (x) = 1 if
and only if x has an odd number of ones. We first find a hyperplane such that all
points on one side of the plane are either positive or negative. It is clear that all we
can do at this first stage is chop off one of the points since the nearest neighbours
of any given point have the opposite classification. Let us suppose that we decide
to chop off the origin. We may take as the first hyperplane the plane with equation
y1 +y2+ · · ·+yn = 1/2. We then ignore the origin and consider the remaining points.
We can next chop off all neighbours of the origin, all the points which have precisely
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one entry equal to 1. All of these are positive points and the hyperplane y1 + y2 +
· · ·+yn = 3/2 will separate them from the other points. These points are then deleted
from consideration. We can continue in this way. The procedure iterates n times,
and at stage i in the procedure we ‘chop off’ all data points having precisely (i−1)
ones, by using the hyperplane y1 + y2 + · · ·+ yn = i− 1/2, for example. (These
hyperplanes are in fact all parallel, but this is not in general possible.) So we can
represent the parity function by a threshold decision list with n terms. By contrast,
Jeroslow’s method requires 2n−1 iterations, since at each stage it can only ‘chop
off’ one positive point: that is, it produces a disjunction of threshold functions (or a
special type of threshold decision list) with an exponential number of terms.

3.5 Algorithmics

The chopping procedure as we have described it is in some ways merely a device to
help us see that threshold decision lists have a fairly natural geometric interpretation.
But the algorithmic practicalities have been investigated by Marchand et al. [7, 8]
and Tajine and Elizondo [11]. Marchand et al. derive a greedy heuristic for con-
structing a sequence of ‘chops’, where the aim is to separate as large a set (all of
the same class) as possible at each stage. This relies on an incremental heuristic for
the NP-hard problem of finding at each stage a hyperplane that chops off as many
remaining points as possible. Tajine and Elizondo consider batch and incremental
and modular algorithms and also focus on greedy strategies.

4 Threshold Networks from Threshold Decision Lists

4.1 From a Threshold Decision List to a Threshold Network with
One Hidden Layer

We now show how we can make use of the chopping procedure to find a threshold
network representing a given Boolean function by giving an explicit way in which
a threshold decision list can be represented by a threshold network with one hidden
layer.

Theorem 1. Suppose we have a threshold decision list

f = ( f1,c1),( f2,c2), . . . ,( fk,ck)

in which fi is represented by weight vector w(i) and threshold θ (i), so that fi ←
[w(i),θ (i)]. Consider a threshold network architecture having n inputs, k threshold
units in a single hidden layer, and one output. Let ω be the state given as follows:

ω = (w(1),θ (1),w(2),θ (2), . . . ,w(k),θ (k),β ,1),

where
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β = (2k−1(2c1−1),2k−2(2c2−1), . . . ,2(2ck−1−1),(2ck−1));

that is, βi = 2k−i(2ci− 1). Then fω , the function computed by the network in state
ω , equals f .

Proof: We prove the result by induction on k, the length of the decision list (and
number of hidden threshold units in the network).

The base case is k = 1. Since the default output of any decision list is 0, we may
assume that f takes the form f = ( f1,1) where f1 ← [w,θ ] for some w ∈ R

n and
θ ∈ R. Then, β is the single number 21−1(2c1−1) = 1 and φ = 1. So

fω(y1y2 . . .yn)= sgn

(
sgn

(
n

∑
j=1

w(i)
j y j−θ (i)

)
−1

)
= sgn

(
n

∑
j=1

w(i)
j y j−θ (i)

)
= f1(y1y2 . . .yn),

so fω = f1 = f .
Now suppose that the result is true for threshold decision lists of length k, where

k ≥ 1. Consider a threshold decision list

f = ( f1,c1),( f2,c2), . . . ,( fk,ck),( fk+1,ck+1).

Let g denote the threshold decision list

g = ( f2,c2), . . . ,( fk,ck),( fk+1,ck+1).

Then, the inductive assumption implies that, for all y,

g(y) = sgn

(
k

∑
i=1

2k−i(2ci+1−1) fi+1(y)−1

)
= sgn(G(y))),

say. What we need to prove is that for all y,

f (y) = sgn(F(y)),

where

F(y) =
k+1

∑
i=1

2k+1−i(2ci−1) fi(y)−1.

Now,

F(y) = 2k(2c1−1) f1(y)+
k+1

∑
i=2

2k+1−i(2ci−1) fi(y)−1

= 2k(2c1−1) f1(y)+
k

∑
i=1

2k−i(2ci+1−1) fi+1(y)−1

= 2k(2c1−1) f1(y)+ G(y).
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Now, suppose f1(y) = 0. In this case, by the way in which decision lists are
defined to operate, we should have f (y) = g(y). This is indeed the case, since

sgn(F(y)) = sgn(2k(2c1−1) f1(y)+ G(y)) = sgn(0 + G(y)) = sgn(G(y)) = g(y).

Suppose now that f1(y) = 1. In this case we have f (y) = c1 and so we need to verify

that sgn(F(y)) = c1. We have

(2c1−1)F(y) = 2k(2c1−1)2 f1(y)+ (2c1−1)G(y)

= 2k +(2c1−1)
k

∑
i=1

2k−i(2ci+1−1) fi+1(y)−1

≥ 2k−
k

∑
i=1

2k−i−1

= 2k− (2k−1)−1

= 0.

That is, (2c1− 1)F(y) ≥ 0, so sgn(F(y)) = sgn(2c1− 1) = c1. This completes the
proof.

4.2 Using Other Types of Threshold Network

Marchand et al. [7, 8] and Tajine and Elizondo [11] have also studied the construc-
tion of threshold networks through a consideration of how the points to be classi-
fied can be separated iteratively by hyperplanes. However, the threshold networks
arising in [7] and (from the batch algorithm) in [11], have different architectures to
those constructed above, in that there are connections between hidden units (making
the networks have more than one layer). By contrast, like the standard representa-
tion based on DNF, our construction gives a network with only one hidden layer. A
characteristic feature of decision lists which must be captured by the corresponding
threshold networks is the ‘if-then-else’ nature of their definition: there is a prece-
dence or hierarchy among the tests. The first test is conducted and, if passed, the
output is determined. Only if the first test is failed, do we move on to the next test.
In the construction of Theorem 1, the precedence structure is encoded into the net-
work by the exponentially-decreasing weights in the β -vector: the output if the first
hidden unit is weighted twice as much as that of the second, and so on. In [7, 11],
the precedence structure is built in with lateral connections between hidden units.
For instance, in [7], the network constructed has a ‘cascade’ structure: the hidden
threshold units are labelled 1 to k and there are connections between unit i and unit j
for all j < i. The weights on these connections are large enough to enable the output
of unit i to dominate (or inhibit) that of unit j.
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5 Comparison with an Approach Based on Disjunctive Normal
Form

5.1 Comparing the DNF-Based Approach and the Threshold
Decision List Approach

The parity function demonstrates that the representation arising from Theorem 1 can
differ considerably from the one described earlier. For, we have seen that the parity
function can be represented by a threshold decision list with n terms, and hence the
network given by Thoerem 1 has only n hidden units. By contrast, as noted earlier,
the standard DNF-based construction will, necessarily, have at least 2n−1 hidden
units.

A useful observation in comparing the two approaches is the following: if T is
any term of a DNF formula, then T can be represented by a threshold function.
This is quite easy to see and, indeed, is implicit in our description of the standard
construction of a network from a DNF. For, suppose that

T =

(∧
j∈P

u j

)∧( ∧
j∈N

ū j

)
,

where P∩N = /0. Then T ← [w, |P|] where wj = 1 if j ∈ P, wj = −1 if j ∈ N, and
wj = 0 otherwise. So if φ = T1∨T2∨·· ·∨Tk is a DNF representation of the function
f , then f is also represented by the threshold decision list

(T1,1),(T2,1), . . . ,(Tk,1).

Applying Theorem 1 now to this threshold decision list would give a threshold net-
work representing f . That network would have exactly the same structure as the one
obtained by using the standard DNF-based method, using DNF formula φ . (How-
ever, the weights from the hidden layer to the output would be different, with expo-
nentially decreasing, rather than constant, values.) What this demonstrates is that, in
particular, there is always a threshold decision list representation whose length is no
more than that of any given DNF representation of the function. There may, as in the
case of parity, be a significantly shorter threshold decision list. So the decision list
approach (and application of Theorem 1) will, for any function (or partially-defined
function), in the best case, give a network that is no larger than that obtained by the
standard method.

6 Conclusions

We have shown that a natural approach to data classification by successive linear
separation can be used to construct threshold networks of simple architecture to
represent Boolean or partially-defined Boolean functions. Such an approach differs
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from previous constructions which have also been based on iterative linear sepa-
ration, in that the networks constructed have only one hidden layer. Furthermore, it
can always produce a network that is no larger than that which follows from the stan-
dard translation from a Boolean function’s disjunctive normal form into a threshold
network.
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