
Efficient Constructive Techniques for Training
Switching Neural Networks

Enrico Ferrari and Marco Muselli

Abstract. In this paper a general constructive approach for training neural networks
in classification problems is presented. This approach is used to construct a partic-
ular connectionist model, named Switching Neural Network (SNN), based on the
conversion of the original problem in a Boolean lattice domain. The training of an
SNN can be performed through a constructive algorithm, called Switch Program-
ming (SP), based on the solution of a proper linear programming problem. Since the
execution of SP may require excessive computational time, an approximate version
of it, named Approximate Switch Programming (ASP) has been developed. Simula-
tion results obtained on the StatLog benchmark show the good quality of the SNNs
trained with SP and ASP.

Keywords: Constructive method, Switching Neural Network, Switch Program-
ming, positive Boolean function synthesis, Statlog benchmark.

1 Introduction

Solving a classification problem consists of finding a function g(x) capable of pro-
viding the most probable output in correspondence of any feasible input vector x,
when only a finite collection S of examples is available. Since the probability of
misclassifying a pattern x is generally unknown, classification algorithms work by
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minimizing at the same time the error on the available data and a measure of the
complexity of g. As a matter of fact, according to the Occam razor principle and
the main results in statistical learning theory [18] on equal training errors, a simpler
function g has a higher probability of scoring a good level of accuracy in examples
not belonging to S.

To pursue this double target any technique for the solution of classification prob-
lems must perform two different actions: choosing a class Γ of functions (model
definition) and retrieving the best classifier g ∈ Γ (training phase). These two tasks
imply a trade-off between a correct description of the data and the generalization
ability of the resulting classifier. In fact, if the set Γ is too large, it is likely to incur
the problem of overfitting: the optimal classifier g ∈ Γ has a good behavior in the
examples of the training set, but scores a high number of misclassifications in the
other points of the input domain. On the other hand, the choice of a small set Γ
prevents retrieval of a function with a sufficient level of accuracy on the training set.

Backpropagation algorithms [17] have been widely used to train multilayer per-
ceptrons: when these learning techniques are applied, the choice of Γ is performed
by defining some topological properties of the net, such as the number of hidden
layer and neurons. In most cases, this must be done without having any prior infor-
mation about the problem at hand and several validation trials are needed to find a
satisfying network architecture.

In order to avoid this problem, two different approaches have been introduced:
pruning methods [16] and constructive techniques [10]. The former consider an ini-
tial trained neural network with a large number of neurons and adopt smart tech-
niques to find and eliminate those connections and units which have a negligible
influence on the accuracy of the classifier. However, training a large neural network
may increase the computational time required to obtain a satisfactory classifier.

On the other hand, constructive methods initially consider a neural network in-
cluding only the input and the output layers. Then, hidden neurons are added itera-
tively until a satisfactory description of the examples in the training set is reached.
In most cases the connections between hidden and output neurons are decided be-
fore training, so that only a small part of the weight matrix has to be updated at each
iteration. It has been shown [10] that constructive methods usually present a rapid
convergence to a well-generalizing solution and allow also the treatment of complex
training sets. Nevertheless, since the inclusion of a new hidden unit involves only a
limited number of weights, it is possible that some correlations between the data in
the training set may be missed.

Here, we will present a new connectionist model, called Switching Neural Net-
work (SNN) [12], which can be trained in a constructive way while achieving gener-
alization errors comparable to those of best machine learning techniques. An SNN
includes a first layer containing a particular kind of A/D converter, called latticiz-
ers, which suitably transform input vectors into binary strings. Then, the subsequent
two layers compute a positive Boolean function that solves in a lattice domain the
original classification problem.

Since it has been shown [11] that positive Boolean functions can approximate
any measurable function within any desired precision, the SNN model is sufficiently
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rich to treat any real-world classification problem. A constructive algorithm, called
Switch Programming (SP) has been proposed [3] for training an SNN. It is based
on integer linear programming and can lead to an excessive computational burden
when a complex training set is analyzed. To allow a wider application of SNN, a
suboptimal method, named Approximate Switch Programming (ASP) will be intro-
duced here. Preliminary results on the Statlog benchmark [9] show that ASP is able
to considerably reduce the execution time while keeping a high degree of accuracy
in the resulting SNN.

The chapter is organized as follows. In Sec. 2 the considered classification prob-
lem is formalized, whereas in Sec. 3 a general schema for a wide class of construc-
tive methods is presented. The SNN model is presented in Sec. 4 and in Sec. 5 the
general schema introduced in Sec. 2 is employed to describe the SP and the ASP
algorithms.

Sec. 6 shows how it is possible obtain a set of intelligible rules starting from any
trained SNN, whereas Sec. 7 illustrates a very simple example with the purpose of
making clear the functioning of an SNN. Finally, Sec. 8 presents the good results
obtained with SP and ASP algorithms on the well-known datasets of the Statlog
benchmark. Some concluding remarks end the chapter.

2 Problem Setting

Consider a general binary classification problem, where d-dimensional patterns x
are to be assigned to one of two possible classes, labeled with the values of a
Boolean output variable y ∈ {0,1}. According to possible situations in real world
problems, the type of the components xi, i = 1, . . . ,d, may be one of the following:

• continuous ordered: when xi can assume values inside an uncountable subset Ui

of the real domain R; typically, Ui is an interval [ai,bi] (possibly open at one end
or at both the extremes) or the whole R.

• discrete ordered: when xi can assume values inside a countable set Ci, where a
total ordering is defined; typically, Ci is a finite subset of Z.

• nominal: when xi can assume values inside a finite set Hi, where no ordering
is defined; for example, Hi can be a set of colors or a collection of geometric
shapes.

If xi is a binary component, it can be viewed as a particular case of discrete ordered
variable or as a nominal variable; to remove a possible source of ambiguity, a binary
component will always be considered henceforth as a nominal variable.

Denote with Im the set {1,2, . . . ,m} of the first m positive integers; when the
domain Ci of a discrete ordered variable is finite, it is isomorphic to Im, with m = |Ci|,
being |A| the cardinality of the set A. On the other hand, if Ci is infinite, it can be
shown to be isomorphic to the set Z of the integer numbers (if Ci is neither lower
nor upper bounded), to the set N of the positive integers (if Ci is lower bounded), or
to the set Z\N (if Ci is upper bounded).
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For each of the above three types of components xi a proper metric can be defined.
In fact, many different distances have been proposed in the literature to characterize
the subsets of R. Also when the standard topology is assumed, different equivalent
metrics can be adopted; throughout this paper, the absolute metric da(v,v′) = |v−v′|
will be employed to measure the dissimilarity between two values v,v′ ∈ R assumed
by a continuous ordered component xi.

In the same way, when xi is a discrete ordered component, the above cited iso-
morphism between its domain Ci and a suitable subset K of Z makes it possible to
adopt the distance dc(v,v′) induced on Ci by the absolute metric da(v,v′) = |v − v′|
on K. Henceforth we will use the term counter metric to denote the distance dc.

Finally, if xi is a nominal component no ordering relation exists between any pair
of elements of its domain Hi; we can only assert that a value v assumed by xi is equal
or not to another value v′. Consequently, we can adopt in Hi the flat metric d f (v,v′)
defined as

d f (v,v′) =
{

0 if v = v′

1 if v �= v′

for every v,v′ ∈ Hi. Note that, by considering a counting function η which assigns a
different positive integer in Im to each element of the set Hi, being m = |Hi|, we can
substitute the domain Hi of xi with the set Im without affecting the given classifica-
tion problem. It is sufficient to employ the flat metric d f (v,v′) also in Im, which is
no longer seen as an ordered set.

According to this framework, to simplify the exposition we suppose henceforth
that the patterns x of our classification problem belong to a set X = ∏d

i=1 Xi, where
each monodimensional domain Xi can be a subset of the real field R if xi is a contin-
uous ordered variable, a subset of integers in Z if xi is a discrete ordered component,
or the finite set Im (for some positive integer m) without ordering on it if xi is a nom-
inal variable.

A proper metric dX(x,x′) on X can be simply defined by summing up the contri-
butions di(xi,x′

i) given by the different components

dX(x,x′) =
d

∑
i=1

di(xi,x
′
i) , for any x,x′ ∈ X

where di is the absolute metric da if xi and x′
i are (continuous or discrete) ordered

variables or the flat metric d f if xi and x′
i are nominal variables.

The target of a binary classification problem is to choose within a predetermined
set Γ of decision functions the classifier g : X → {0,1} that minimizes the number
of misclassifications on the whole set X . If Γ is equal to the collection M of all the
measurable decision functions, this amounts to selecting the Bayes classifier gopt(x)
[2]. On the other hand, if Γ is a proper subset of M , the optimal decision function
corresponds to the classifier g∗ ∈ Γ that best approximates gopt according to a proper
distance in M .

Unfortunately, in real world problems we have only access to a training set S,
i.e. a collection of s observations (xk,yk), k = 1, . . . ,s, for the problem at hand.
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Thus, the solution to the binary classification problem is produced by adopting a
learning algorithm A that employs the information contained in the training set to
retrieve the best classifier g∗ in Γ or a good approximation ĝ to it.

This approach consists therefore of two different stages:

1. at first the class Γ of decision functions must be suitably determined (model
selection);

2. then, the best classifier g∗ ∈ Γ (or a good approximation ĝ) is retrieved through
the learning algorithm A (training phase).

In the next section we will introduce a general constructive model, which is suffi-
ciently rich to approximate within an arbitrary precision any measurable function
g : X → {0,1}.

3 A General Structure for a Class of Constructive Methods

Denote with S1 = {xk | yk = 1} the set of positive examples in the training set S and
with S0 = {x | yk = 0} the set of negative examples. Moreover, let s1 = |S1| and
s0 = |S0|.

In many constructive methods the function ĝ is realized by a two layer neural
network; the hidden layer is built incrementally by adding a neuron at each iteration
of the training procedure. In order to characterize the hidden neurons consider the
following

Definition 1. A collection {{Lh, ŷh} , h = 1, . . . ,t +1}, where Lh ⊂ X and ŷh ∈{0,1}
for each h = 1, . . . ,t, will be called a decision list for a two class problem if Lt+1 = X .

In [10] the decision list is used hierarchically: a pattern x is assigned to the class yh,
where h is the lower index such that x ∈ Lh. It is possible to consider more general
criteria in the output assignment: for example a weight wh > 0 can be associated
with each domain Lh, measuring the reliability of assigning the output value ŷh to
every point in Lh.

It is thus possible to associate with every pattern x a weight vector u, whose h-th
component is defined by

uh =
{

wh if x ∈ Lh

0 otherwise

for h = 1, . . . ,t. The weight uh can be used to choose the output for the pattern x.
Without loss of generality suppose that the decision list is ordered so that ŷh = 0
for h = 1, . . . ,t0, whereas ŷh = 1 for h = t0 + 1, . . . ,t0 + t1, where t0 + t1 = t. The
value of ŷt+1 is the default decision, i.e. the output assigned to x if x �∈ Lh for each
h = 1, . . . ,t.

In order to fix a criterion in the output assignment for an input vector x let us
present the following
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Definition 2. A function σ(u) ∈ {0,1} is called an output decider if

σ(u) =

⎧⎨
⎩

yt+1 if u1 = . . . = ut0 = ut0+1 = . . . = ut = 0
1 if u1 = . . . = ut0 = 0 and some uh > 0 with t0 < h ≤ t
0 if ut0+1 = . . . = ut = 0 and some uh > 0 with 0 < h ≤ t0

This classifier can then be implemented in a two layer neural network: the first
layer retrieves the weights uh for h = 1, . . . ,t, whereas the second one realizes the
output decider σ . The behavior of σ is usually chosen a priori so that the training
phase consists of finding a proper decision list and the relative weight vector w. For
example, σ can be made equivalent to a comparison between the sum of the weights
of the two classes:

σ(u) =

⎧⎨
⎩

0 if ∑t0
h=1 uh > ∑t

h=t0+1 uh

1 if ∑t0
h=1 uh < ∑t

h=t0+1 uh

ŷt+1 otherwise

The determination of the decision list {Lh, ŷh}, h = 1, . . . ,t, can be performed in
a constructive way, by adding at each iteration h the best pair {Lh, ŷh} according to a
smart criterion. Each domain Lh corresponds to a neuron characterized through the
function introduced by the following

Definition 3. Consider a subset T ⊂ Sy, y ∈ {0,1}. The function

ĝh(x) =
{

1 if x ∈ Lh

0 otherwise

is called a partial classifier for T if T ∩Lh is not empty whereas Lh ∩\S1−y = /0. If
ĝh(x) = 1 the h-th neuron will be said to cover x.

The presence of noisy data can also be taken into account by allowing a small
number of errors in the training set. To this aim Def. 3 can be generalized by the
following

Definition 4. Consider a subset T ⊂ Sy, y ∈ {0,1}. The function

ĝh(x) =
{

1 if x ∈ Lh

0 otherwise

is called a partial classifier with error ε for T if T ∩ Lh is not empty whereas∣∣Lh ∩S1−y
∣∣ ≤ ε|S1−y|.

It is easy to notice that Def. 3 is recovered when setting ε = 0.
Since the target of the training phase is to find the simplest network satisfying the

input-output relations in the training set, the patterns already covered by at least one
neuron can be ignored when training further neurons having the same value of ŷh.

Fig. 1 shows a general constructive procedure for training a neural network in the
case of binary output. At each iteration the set T contains the patterns belonging to
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Constructive training for a two layer perceptron

For y ∈ {0,1} do

1. Set T = Sy and h = 1.
2. Find a partial classifier ĝh for T .
3. Let W = {{xk,yk} ∈ T | ĝh(xk) = 1}.
4. Set T = T \W and h = h + 1.
5. If T is nonempty go to step 2.
6. Prune redundant neurons and set ty = h.

Fig. 1 General constructive procedure followed for neural network training.

the current output value not covered by the neurons already included in the network.
Notice that removing elements from T allows a considerable reduction of the train-
ing time for each neuron since a lower number of examples has to be processed at
each iteration.

A pruning phase is performed at the end of the training process in order to elimi-
nate redundant overlaps among the sets Lh, h = 1, . . . ,t.

Without entering into details about the general theoretical properties of con-
structive techniques, which can be found in [10], in the following sections we will
present the architecture of Switching Neural Networks and an appropriate training
algorithm.

4 Switching Neural Networks

A promising connectionist model, called Switching Neural Network (SNN), has
been developed recently[12]. According to this model, the input variables are
transformed into n-dimensional Boolean strings by means of a particular mapping
ϕ : X → {0,1}n, called latticizer.

Consider the Boolean lattice {0,1}n, equipped with the well known binary oper-
ations ‘+’ (logical sum or OR) and ‘·’ (logical product or AND). To improve read-
ability, the elements of this Boolean lattice will be denoted henceforth as strings of
bits: in this way, the element (0,1,1,0) ∈ {0,1}4 will be written as 0110. The usual
priority on the execution of the operators + and · will be adopted; furthermore, when
there is no possibility of misleading, the symbol · will be omitted, thus writing vv′

instead of v ·v′.
A standard partial ordering on {0,1}n can be defined by setting v ≤ v′ if and

only if v + v′ = v′; this definition is equivalent to writing v ≤ v′ if and only if
vi ≤ v′

i for every i = 1, . . . ,n. According to this ordering, a Boolean function
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f : {0,1}n → {0,1} is called positive (resp. negative) if v ≤ v′ implies f (v) ≤ f (v′)
(resp. f (v) ≥ f (v′)) for every v,v′ ∈ {0,1}n. Positive and negative Boolean func-
tions form the class of monotone Boolean functions.

Since the Boolean lattice {0,1}n does not involve the complement operator NOT,
Boolean expressions developed in this lattice (sometimes called lattice expressions)
can only include the logical operations AND and OR. As a consequence, not every
Boolean function can be written as a lattice expression. It can be shown that only
positive Boolean functions are allowed to be put in the form of lattice expressions.

A recent theoretical result [11] asserts that positive Boolean functions are uni-
versal approximators, i.e. they can approximate every measurable function g : X →
{0,1}, being X the domain of a general binary classification problem, as defined in
Sec. 2. Denote with Ql

n the subset of {0,1}n containing the strings of n bits hav-
ing exactly l values 1 inside them. A possible procedure for finding the positive
Boolean function f that approximates a given g within a desired precision is based
on the following three steps:

1. (Discretization) For every ordered input xi, determine a finite partition Bi of the
domain Xi such that a function ĝ can be found, which approximates g on X within
the desired precision and assumes a constant value on every set B ∈ B, where
B = {∏d

i=1 Bi : Bi ∈ Bi, i = 1, . . . ,d}.
2. (Latticization) By employing a proper function ϕ , map the points of the domain

X into the strings of Ql
n, so that ϕ(x) = ϕ(x′) if x and x′ belong to the same set

B ∈ B, whereas ϕ(x) �= ϕ(x′) if x ∈ B and x′ ∈ B′, being B and B′ two different
sets in B.

3. (Positive Boolean function synthesis) Select a positive Boolean function f .

If g is completely known these three steps can be easily performed; the higher the
required precision is, the finer the partitions Bi for the domains Xi must be. This
affects the length n of the binary strings in Ql

n, which has to be big enough to allow
the definition of the 1-1 mapping ϕ .

If a ∈ {0,1}n, let P(a) be the subset of In = {1, . . . ,n} including the indexes i for
which ai = 1. It can be shown [14] that a positive Boolean function can always be
written as

f (z) =
∨
a∈A

∧
j∈P(a)

z j (1)

where A is an antichain of the Boolean lattice {0,1}n, i.e. a set of Boolean strings
such that neither a < a′ nor a′ < a holds for each a, a′ ∈ A. It can be proved that a
positive Boolean function is univocally specified by the antichain A, so that the task
of retrieving f can be transformed into searching for a collection A of strings such
that a′ < a for each a, a′ ∈ A.

The symbol
∨

(resp.
∧

) in (1) denotes a logical sum (resp. product) among the
terms identified by the subscript. The logical product

∧
j∈P(a) z j is an implicant for

the function f ; however, when no confusion arises, the term implicant will also be
used to denote the corresponding binary string a ∈ A.

Preliminary tests have shown that a more robust method for classification prob-
lems consists of defining a positive Boolean function fy (i.e. an antichain Ay to be
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Fig. 2 The schema of a Switching Neural Network

inserted on (1)) for each output value y and in properly combining the functions
relative to the different output classes. To this aim, each generated implicant can be
characterized by a weight wh > 0, which measures its significance level for the ex-
amples in the training set. Thus, to each Boolean string z can be assigned a weight
vector u whose h-th component is

uh = Fh(z) =
{

wh if
∧

j∈P(ah) z j = 1
0 otherwise

where ah ∈ A0 ∪A1 for h = 1, . . . ,t.
At the final step of the classification process, an output decider σ(u) assigns the

correct class to the pattern z according to a comparison between the weights uh of the
different classes. If no h exists such that uh > 0, the default output is assigned to z.

The device implementing the function ĝ(x) = σ(F(ϕ(x))) is shown in Fig. 2.
It can be considered a three layer feedforward neural network. The first layer is
responsible for the latticization mapping ϕ ; the second realizes the function F as-
signing a weight to each implicant. Finally, the third layer uses the weight vector
u = F(z) to decide the output value for the pattern x.

Every AND port in the second layer is connected only to some of the outputs
leaving the latticizers; they correspond to values 1 in the associated implicant. The
choice of such values is performed by a switch port. For this reason the connectionist
model shown in Fig. 2 is called Switching Neural Network.

Notice that the device can be subdivided into two parts: the left part includes
the t0 neurons characterizing the examples having output y = 0, whereas the right
part involves the t1 = t − t0 implicants relative to the output y = 1. For this reason,
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the generalization of an SNN to a multiclass problem (where y ∈ {1, . . . ,c}, c > 2)
is immediate: it is sufficient to create a set of implicants for each output value. In
addition, the default decision has to be transformed into a default decision list, so
that if two (or more) output values score the same level of confidence (according to
the criterion fixed by σ ), the device selects the one with a higher rank in the list.

It is interesting to observe that, unlike standard neural networks, SNNs do not
involve floating point operations. In fact the weights w are provided by the training
process and can be chosen from a set of integer values. Moreover, the antichain A
can be converted into a set of intelligible rules in the form

if < premise > then < consequence >

through the application of a smart inverse operator [12] of ϕ to the elements of A.

4.1 Discretization

Since the exact behavior of the function g is not known, the approximating function
ĝ and the partition B have to be inferred from the samples (xk,yk) ∈ S. It follows
that at the end of the discretization task every set Bi ∈ Bi must be large enough
to include the component xki of some point xk in the training set. Nevertheless, the
resulting partition B must be fine enough to capture the actual complexity of the
function g.

Several different discretization methods for binary classification problems have
been proposed in the literature [1, 5, 6, 7]. Usually, for each ordered input xi a set
of mi − 1 consecutive values ri1 < ri2 < · · · < ri,mi−1 is generated and the parti-
tion Bi is formed by the mi sets Xi ∩ Ri j, where Ri1 = (−∞,ri1), Ri2 = (ri1,ri2),
. . . , Ri,mi−1 = (ri,mi−2,ri,mi−1), Rimi = (ri,mi−1,+∞). Excellent results have been ob-
tained with the algorithms ChiMerge and Chi2 [5, 7], which employ the χ2 statistic
to decide the position of the points ri j , k = 1, . . . ,mi −1, and with the technique Ent-
MDL [6], which adopts entropy estimates to achieve the same goal. An alternative
and promising approach is offered by the method used in the LAD system [1]: in
this case an integer programming problem is solved to obtain optimal values for the
cutoffs ri j .

By applying a procedure of this kind, the discretization task defines for each
ordered input xi a mapping ψi : Xi → Imi , where ψi(z) = j if and only if z ∈ Ri j. If we
assume that ψi is the identity function with mi = |Xi| when xi is a nominal variable,
the approximating function ĝ is uniquely determined by a discrete function h : I →
{0,1}, defined by h(ψ(x)) = ĝ(x), where I = ∏d

i=1 Imi and ψ(x) is the mapping
from X to I, whose ith component is given by ψi(xi).

By definition, the usual ordering relation is induced by ψi on Imi when xi is an
ordered variable. On the other hand, since in general ψi is not 1-1, different choices
for the metric on Imi are possible. For example, if the actual distances on Xi must be
taken into account, the metric di( j,k) = |ri j − rik| can be adopted for any j,k ∈ Imi ,
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having set ri,mi = 2ri,mi − ri,mi−1. Alternative definitions employ the mean points of
the intervals Rik or their lower boundaries.

According to statistical non parametric inference methods a valid choice can also
be to use the absolute metric da on Imi , without caring about the actual value of
the distances on Xi. This choice assumes that the discretization method has selected
correctly the cutoffs ri j , sampling with greater density the regions of Xi where the
unknown function g changes more rapidly. In this way the metric d on I = ∏d

i=1 Imi

is given by

d(v,v′) =
d

∑
i=1

di(ui,vi)

where di is the absolute metric da (resp. the flat metric d f ) if xi is an ordered (resp.
nominal) input.

4.2 Latticization

It can be easily observed that the function ψ provides a mapping from the domain X
onto the set I = ∏d

i=1 Imi , such that ψ(x) = ψ(x′) if x and x′ belong to the same set
B ∈ B, whereas ψ(x) �= ψ(x′) if x ∈ B and x′ ∈ B′, being B and B′ two different sets
in B. Consequently, the 1-1 function ϕ from X to Ql

n, required in the latticization
step, can be simply determined by defining a proper 1-1 function β that maps the
elements of I into the binary strings of Ql

n. In this way, ϕ(x) = β (ψ(x)) for every
x ∈ X .

A possible way of constructing the function β is to define properly d mappings
β i : Imi → Qli

ni ; then, the binary string β(v) for an integer vector v ∈ I is obtained
by concatenating the strings β i(vi) for i = 1, . . . ,d. With this approach, β (v) always
produces a binary string with length n = ∑d

i=1 ni having l = ∑d
i=1 li values 1 inside it.

The mappings β i can be built in a variety of different ways; however, it is im-
portant that they fulfill the following two basic constraints in order to simplify the
generation of an approximating function ĝ that generalizes well:

1. β i must be an isometry, i.e. Di(β i(vi),β i(v′
i)) = di(vi,v′

i), where Di(·, ·) is the
metric adopted on Qli

ni and di(·, ·) is the distance on Imi (the absolute or the flat
metric depending on the type of the variable xi),

2. if xi is an ordered input, β i must be full order-preserving, i.e. β i(vi) � β i(v′
i) if

and only if vi ≤ v′
i, where ≺ is a (partial or total) ordering on Qli

ni .

A valid choice for the definition of ≺ consists of adopting the lexicographic ordering
on Qli

ni , which amounts to asserting that z ≺ z′ if and only if zk < z′
k for some k =

1, . . . ,ni and zi = z′
i for every i = 1, . . . ,k−1. In this way ≺ is a total ordering on Qli

ni

and it can be easily seen that Qli
ni becomes isomorphic to Im with m =

(
ni

li

)
. As a

consequence the counter metric dc can be induced on Qli
ni ; this will be the definition

for the distance Di when xi is an ordered input.
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Note that if li = ni − 1, binary strings in Qli
ni contain a single value 0. Let us

suppose that two elements z and z′ ∈ Qni−1
ni have the value 0 at the jth and at the

j′ position, respectively; then, we have z ≺ z′ if and only if j < j′. Moreover, the
distance Di(z,z′) between z and z′ is simply given by the absolute difference |k −
k′|. As an example, consider for ni = 6 the strings z = 101111 and z′ = 111101,
belonging to Q5

6. The application of the above definitions gives z ≺ z′ and Di(z,z′) =
3, since the value 0 is at the 2nd place in z and at the 5th place in z′.

If xi is a nominal variable, the flat metric can also be adopted for the elements of
Qli

ni , thus obtaining

Di(z,z′) =
{

0 if z = z′

1 if z �= z′ , for every z,z′ ∈ Qli
ni

With these definitions, a mapping β i that satisfies the two above properties (isometry
and full order-preserving) is the inverse only-one code, which maps an integer vi ∈
Imi into the binary string zi ∈ Qmi−1

mi having length mi and jth component zi j given by

zi j =
{

0 if vi = j
1 otherwise

, for every j = 1, . . . ,mi

For example, if mi = 6 we have β i(2) = 101111 and β i(5) = 111101.
It can be easily seen that the function β , obtained by concatenating the d binary

strings produced by the components β i, maps the integer vectors of I into the set
Qm−d

m , being m = ∑d
i=1 mi. If the metric D(z,z′) = ∑d

i=1 Di(zi,z′
i) is employed on

Qm−d
m , where zi is the binary string formed by the mi bits of z determined by Imi

through β i, we obtain that the 1-1 mapping β is an isometry.
The behavior of the mapping β allows us to retrieve a convenient form for the

1-1 function ϕ from X to Ql
n, to be introduced in the latticization step, if the dis-

cretization task has produced for each ordered input xi a set of mi − 1 cutoffs ri j,
as described in the previous subsection. Again, let ϕ(x) be obtained by the con-
catenation of d binary strings ϕ i(xi) in Qmi−1

mi . To ensure that ϕ(x) = β(ψ(x)), it is
sufficient to define the jth bit zi j of zi = ϕ i(xi) as

zi j =
{

0 if xi ∈ Ri j

1 otherwise
, for every j = 1, . . . ,mi (2)

if xi is an ordered variable and as

zi j =
{

0 if xi = j
1 otherwise

, for every j = 1, . . . ,mi (3)

if xi is a nominal input. Note that xi ∈ Ri j if and only if xi exceeds the cutoff ri, j−1

(if j > 1) and is lower than the subsequent cutoff ri j (if j < mi).
Consequently, the mapping ϕ i can be implemented by a simple device that re-

ceives in input the value xi and compares it with a sequence of integers or real
numbers, according to definitions (2) or (3), depending on whether xi is an ordered
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or a nominal input. This device will be called latticizer; it produces mi binary out-
puts, but only one of them can assume the value 0. The whole mapping ϕ is realized
by a parallel of d latticizer, each of which is associated with a different input xi.

5 Training Algorithm

Many algorithms are present in literature to reconstruct a Boolean function start-
ing from a portion of its truth table. However two drawbacks prevent the use of
such techniques for the current purpose: these methods usually deal with general
Boolean functions and not with positive ones and they lack generalization ability.
In fact, the aim of most of these algorithms is to find a minimal set of implicants
which satisfies all the known input-output relations in the truth table. However, for
classification purposes, it is important to take into account the behavior of the gen-
erated function on examples not belonging to the training set. For this reason some
techniques [1, 4, 13] have been developed in order to maximize the generaliza-
tion ability of the resulting standard Boolean function. On the other hand, only one
method, named Shadow Clustering [14], is expressly devoted to the reconstruction
of positive Boolean functions.

In this section a novel constructive algorithm for building a single fy (denoted
only by f for simplicity) will be described. The procedure must be repeated for each
value of the output y in order to find an optimal classifier for the problem at hand.
In particular, if the function fy is built, the Boolean output 1 will be assigned to the
examples belonging to the class y, whereas the Boolean output 0 will be assigned to
all the remaining examples.

The architecture of the SNN has to be constructed starting from the converted
training set S′, containing s1 positive examples and s0 negative examples. Let us
suppose, without loss of generality, that the set S′ is ordered so that the first s1

examples are positive. Since the training algorithm sets up, for each output value,
the switches in the second layer of the SNN, the constructive procedure of adding
neurons step by step will be called Switch Programming (SP).

5.1 Implicant Generation

When a Boolean string z is presented as input, the output of the logical product∧
j∈P(a) z j at a neuron is positive if and only if a ≤ z according to the standard

ordering in the Boolean lattice. In this case a will be said to cover z.
The aim of a training algorithm for an SNN is to find the simplest antichain A

covering all the positive examples and no negative examples in the training set. This
target will be reached in two steps: first an antichain A′ is generated, then redundant
elements of A′ are eliminated thus obtaining the final antichain A. A constructive ap-
proach for constructing A′ consists of generating implicants one at a time according
to a smart criterion of choice determined by an objective function Φ(a).
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In particular Φ(a) must take into account the number of examples in S′ covered
by a and the degree of complexity of a, usually defined as the number of elements
in P(a) or, equivalently, as the sum ∑m

i=1 ai. These parameters will be balanced in
the objective function through the definition of two weights λ and μ .

In order to define the constraints to the problem, define, for each example zk, the
number ξk of indexes i for which ai = 1 and zki = 0. It is easy to show that a covers
zk if and only if ξk = 0. Then, the quantity

s1

∑
k=1

θ (ξk)

where θ represents the usual Heaviside function (defined by θ (u) = 1 if u > 0,
θ (u) = 0 otherwise), is the number of positive patterns not covered by a. However,
it is necessary that ξk > 0 for each k = s1 + 1, . . . ,s, so that any negative pattern is
not covered by a.

Starting from these considerations, the best implicant can be retrieved by solving
the following optimization problem:

min
ξ ,a

λ
s1

s1

∑
k=1

ξk +
μ
m

m

∑
i=1

ai

subj to
m

∑
i=1

ai(ai − zki) = ξk for k = 1, . . . ,s1

m

∑
i=1

ai(ai − zki) ≥ 1 for k = s1 + 1, . . . ,s (4)

ξk ≥ 0 for k = 1, . . . ,s1

ai ∈ {0,1} for i = 1, . . . ,d

where the Heaviside function has been substituted by its argument in order to avoid
nonlinearity in the cost function. Notice that the terms in the objective function are
normalized in order to be independent of the complexity of the problem at hand.

Since the determination of a sufficiently great collection of implicants, from
which the antichain A is selected, requires the repeated solution of problem (4), the
generation of an already found implicant must be avoided at any extraction. This
can be obtained by adding the following constraint

m

∑
i=1

a ji(1 − ai) ≥ 1 for j = 1, . . . ,q − 1 (5)

where a is the implicant to be constructed and a1,. . . , aq−1 are the already found
q − 1 implicants.

Additional requirements can be added to problem (4) in order to improve the
quality of the implicant a and the convergence speed. For example, in order to better
differentiate implicants and to cover all the patterns in fewer steps, the set S′′

1 of
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positive patterns not yet covered can be considered separately and weighted by a
different factor ν �= λ .

Moreover, in the presence of noise it would be useful to avoid excessive adher-
ence of a with the training set by accepting a small fraction ε of errors.

In this case a further term is added to the objective function, measuring the level
of misclassification, and constraints in (4) have to be modified in order to allow at
most εs0 patterns to be misclassified by the implicant a. In particular, slack vari-
ables ξk, k = s1 + 1, . . . ,s are introduced such that ξk = 1 corresponds to a violated
constraints (i.e. to a negative pattern covered by the implicant). For this reason the
sum ∑s

k=s1+1 ξ , which is just the number of misclassified patterns, must be less than
ε0s0. If the training set is noisy, the optimal implicant can be found by solving the
following LP problem, where it is supposed that the first s′

1 positive patterns are not
yet covered:

min
ξ ,a

ν
s′

1

s′1

∑
k=1

ξk +
λ

s1 − s′
1

s1

∑
k=s′1+1

ξk +
μ
m

m

∑
i=1

ai +
ω
s0

s

∑
k=s1+1

ξk

subj to
m

∑
i=1

ai(1 − zki) = ξk for k = 1, . . . ,s1

m

∑
i=1

ai(1 − zki) ≥ 1 − ξk for k = s1 + 1, . . . ,s (6)

s

∑
k=s1+1

ξk ≤ ε0s0 , ai ∈ {0,1} for i = 1, . . . ,m

ξk ≥ 0 for k = 1, . . . ,s1 , ξk ∈ {0,1} for k = s1 + 1, . . . ,s

If desired, only the implicants covering at least a fraction η1 of positive examples
may be generated. To this aim it is sufficient to add the following constraint

s1

∑
k=1

ξk ≤ (1 − η1)s1

Notice that further requirements have to be imposed when dealing with real-
world problems. In fact, due to the coding (2) or (3) adopted in the latticization
phase, only some implicants correspond to a condition consistent with the original
inputs. In particular at least one zero must be present in the substring relative to each
input variable.

5.2 Implicant Selection

Once the antichain A′ has been generated, it will be useful to look for a subset A of
A′ which is able to describe the data in the training set with sufficient accuracy. To
this aim both the number of implicants included in A and the number Nk of nonnull
components in each element ak ∈ A must be minimized.
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Denote with a1, a2, . . . , aq the q implicants obtained in the generation step and
with ck j a binary variable asserting if the input vector zk, k = 1, . . . ,s1, is covered
by a j:

ck j =
{

1 if zk is covered by a j

0 otherwise

In addition, consider the binary vector ζ having as jth component the value
ζ j = 1 if the corresponding implicant a j is included in the final collection A. Then,
an optimal subset A ⊂ A′ can be found by solving the following constrained opti-
mization problem:

min
ζ

q

∑
j=1

ζ j(α + β Nj))

subj to
q

∑
j=1

ck jζ j ≥ 1 for k = 1, . . . ,s1 (7)

ζ j ∈ {0,1} for j = 1, . . . ,q

where α and β are constants.
Additional requirements can be added to the problem (7) in order to improve the

generalization ability of A. For example, if the presence of noise has to be taken
into account, the antichain A can be allowed not to cover a small fraction of positive
examples. In this case, the problem (7) becomes

min
ζ

q

∑
j=1

ζ j(α + β Nj))

subj to
q

∑
j=1

ck jζ j ≥ 1 − ξk for k = 1, . . . ,s1

q

∑
j=1

ck jζ j ≤ ξk for k = s1, . . . ,s (8)

s1

∑
k=1

ξk ≤ εs1

s

∑
k=s1+1

ξk ≤ εs0 ζ j ∈ {0,1} for j = 1, . . . ,q

ξ j ∈ {0,1} for j = 1, . . . ,s1 ξ j ≥ 0 for j = s1, . . . ,s

5.3 An Approximate Method for Solving the LP Problem

The solution of the problems (4) (or (6)) and (7) (or (8)) allows the generation of a
minimal set of implicants for the problem at hand. Nevertheless, in the presence of
a large amount of data, the number of variables and constraints for the LP problems
increases considerably, thus making the SP algorithm very slow.
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Conversion of the continuous solution into a binary vector

1 Set ai = 0 for each i = 1, . . . ,m.

2 While the constraints in (4) are violated

a. Select ı̂ = argmaxi ai.
b. Set aı̂ = 1.

3. While the constraints in (4) are satisfied

a. Pick an index ı̂.
b. Set aı̂ = 0.
c. If a constraints in (4) is violated, set aı̂ = 1.

Fig. 3 A greedy method for converting a continuous solution of problem (4) into a binary
vector.

In this subsection, an approximate algorithm able to reduce the execution time
of the training algorithm for huge datasets will be introduced. The method will be
described for the minimization problem (4), as its generalization to the case of (6),
(7) or (8) is straightforward.

Most of the LP methods perform the minimization of a function Φ(a) through
the following phases:

1. A continuous solution ac is retrieved by suppressing the constraints ai ∈ {0,1}.
2. Starting from ac the optimal binary vector a is obtained through a branch and

bound approach.

In particular, during phase 2, the algorithm must ensure that all the constraints of
the original LP problem (4) are still satisfied by the binary solution. The search for
an optimal integer solution can thus require the exploration of many combinations
of input values. Preliminary tests have shown that, when the number of integer input
variables in an LP problem increases, the time employed by Phase 2 may be much
longer than that needed by Phase 1.

For this reason, an approximate algorithm will be proposed to reduce the num-
ber of combinations explored in the conversion of the continuous solution to the
binary one.

Of course, the higher the number of 1s in a vector a, the higher is the probability
that it satisfies all the constraints in (4), since the number of covered patterns is
usually smaller. Therefore, the vector ac can be employed in order to retrieve a
minimal subset of indexes to be set to one, starting from the assumption that a higher
value of (ac)i corresponds to a higher probability that ai has to be set to 1 (and
vice versa).
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The algorithm for the conversion of the continuous solution to a binary one is
shown in Fig. 3. The method starts by setting ai = 0 for each i; then the ai corre-
sponding to the highest value of (ac)i is set to 1. The procedure is repeated con-
trolling at each iteration if the constraints (4) are satisfied. When no constraint is
violated the procedure is stopped; smart lattice descent techniques [14] may be
adopted to further reduce the number of active bits in the implicant.

These methods are based on the definition of proper criteria in the choice of the
bit to be set to zero. Of course, when the implicant does not satisfy all the constraints,
the bit is set to one again, the algorithm is stopped and the resulting implicant is
added to the antichain A. The same approach may be employed in the the pruning
phase, too.

The approximate version of the SP algorithm, obtained by employing the greedy
procedure for transforming the continuous solution of each LP problem involved in
the method into a binary one, is named Approximate Switch Programming (ASP).

6 Transforming the Implicants into a Set of Rules

If the discretization task described in Subsection 4.1 is employed to construct the
latticizers, every implicant a ∈ {0,1}m generated by SC can be translated into an
intelligible rule underlying the classification at hand. This assertion can be verified
by considering the substrings ai of a that are associated with the ith input xi to the
network. The logical product

∧
j∈P(a) z j, performed by the AND port corresponding

to a, gives output 1 only if the binary string z = ϕ(x) presents a value 1 in all the
positions where ai has value 1.

If xi is an ordered variable, this observation gives rise to the condition xi ∈⋃
j∈Imi \P(ai) Ri j. However, in the analysis of real-world problems, the execution of

SP and ASP is constrained to generate only binary strings ai (for ordered variables)
having a single sequence of consecutive values 0, often called a run of 0. In this case
the above condition can simply be written in one of the following three ways:

• xi ≤ ri j, if the run of 0 begins at the first position and finishes at the jth bit of ai,
• ri j < xi ≤ rik, if the run of 0 begins at the ( j + 1)th position and finishes at the

kth bit of ai,
• xi > ri j , if the run of 0 begins at the ( j + 1)th position and finishes at the last

(mith) bit of ai.

As an example, suppose that an ordered variable xi has been discretized by using the
four cutoffs 0.1, 0.25, 0.3, 0.5. If the implicant a with ai = 10011 has been produced
by SC, the condition 0.1 < xi ≤ 0.3 has to be included in the if part of the if-then
rule associated with a.

On the other hand, if xi is a nominal variable the portion ai of an implicant a gives
rise to the condition xi ∈ ⋃

j∈Imi \P(ai){ j}. Again, if the implicant a with ai = 01101
has been produced by SC, the condition xi ∈ {1,4} has to be included in the if part
of the if-then rule associated with a. In any case, if the binary string ai contains only
values 0, the input xi will not be considered in the rule for a.
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Thus, it follows that every implicant a gives rise to an if-then rule, having in its if
part a conjunction of the conditions obtained from the substrings ai associated with
the d inputs xi. If all these conditions are verified, to the output y = ĝ(x) will be
assigned the value 1.

Due to this property, SP and ASP (with the addition of discretization and latticiza-
tion) become rule generation methods, being capable of retrieving from the training
set some kind of intelligible information about the physical system underlying the
binary classification problem at hand.

7 An Example of SNN Training

A simple example will be presented in this section in order to make the training
of an SNN clearer. Consider the problem of forecasting the quality of the layer
produced by a rolling mill starting from the knowledge of two continuous values:
Pressure (x1) and rolling Speed (x2). The behavior of the rolling mill can be de-
scribed by a function g : R

2 → {0,1}, whose output y may be either 0 (Bad layer) or
1 (Good layer). The aim of the classification task is therefore to realize a function ĝ
which constitutes a valid approximation for g starting from the training set S shown
in Tab. 1.

As Tab. 1 shows, S is composed of 20 examples: 10 of those are Good and 10
are Bad. Suppose that the discretization process has subdivided the values of Pres-
sure into three intervals (−∞,1.63), (1.63,1.56), (2.56,∞), whereas the domain
for Speed has been partitioned into 4 intervals (−∞,3.27), (3.27,4.9), (4.9,6.05),
(6.05,∞).

Through the discretization phase, it is possible to define a mapping ψ : R
2 →

I3 × I4, which associates two integer values v1 and v2 with each input pattern x.
Starting from the vector v obtained at the discretization step, the latticizer associates
a binary string z = ϕ(x) with each pattern x. Since the number of intervals for x1

and x2 is respectively 3 and 4, the latticizer produces a 7-dimensional binary string,
obtained by concatenating the substrings relative to each input variable.

For example, the input pattern x = (3.12,3.90) belongs to the interval (2.56,∞)
for x1 and to the interval (3.27,4.90) for x2. Therefore the integer vector v = (3,2)
and the binary string 1101011, obtained through the inverse-only one coding, are
associated with x. Starting from the original data, it is possible to obtain a binary
training set S′, which is used to perform the classification. In fact the function ĝ can
be retrieved as ĝ(x) = σ(F(ϕ(x)).

Since the expected noise in the training data is negligible, the problem (6) can be
solved by setting ε = ω = 0, whereas a standard choice for the other coefficients in
the cost function is given by λ = μ = ν = 1.

Suppose that the neurons for the output class 1 are generated initially. A first
execution of the SP algorithm on the rolling mill problem produces the implicant
1000001. In fact it can be easily verified that this binary string satisfies all the con-
straints in (6) since it does not cover any example labelled by 0. Moreover, it covers
7 positive examples (all those after the third one) and has only two active bits, thus
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Table 1 The original and transformed dataset for the problem of controlling the quality of a
layer produced by a rolling mill. x1 and x2 are the original values for Pressure and Speed, v1
and v2 are the discretized values, whereas z is the binary string obtained through the latticizer.
The quality of the resulting layer is specified by the value of the Boolean variable y.

x1 x2 v1 v2 z y
0.62 0.65 1 1 0110111 1
1.00 1.95 1 1 0110111 1
1.31 2.47 1 1 0110111 1
1.75 1.82 2 1 1010111 1
2.06 3.90 2 2 1011011 1
2.50 4.94 2 3 1011101 1
2.62 2.34 3 1 1100111 1
2.75 1.04 3 1 1100111 1
3.12 3.90 3 2 1101011 1
3.50 4.94 3 3 1011110 1
0.25 5.20 1 3 0111101 0
0.87 6.01 1 3 0111101 0
0.94 4.87 1 2 0111011 0
1.87 4.06 1 2 0111011 0
1.25 8.12 1 4 0111110 0
1.56 6.82 1 4 0111110 0
1.87 8.75 2 4 1011110 0
2.25 8.12 2 4 1011110 0
2.50 7.15 2 4 1011110 0
2.81 9.42 3 4 1101110 0

scoring a very low value of the objective function. Nevertheless, the first three ex-
amples are still to be covered, so the SP algorithm must be iterated.

The constraint (5) has to be added

(1 − a1)+ (1 − a7) ≥ 1

and the first three examples constituting the set S′′ must be considered separately in
the cost function (6).

A second execution of the SP algorithm generates the implicant 0000111, which
covers 6 examples among which are the ones not yet covered. Therefore the an-
tichain A = {1000001,0000111}, corresponding to the PDNF f (z) = z1z7 + z5z6z7,
correctly describes all the positive examples. It is also minimal since the pruning
phase cannot eliminate any implicant.

In a similar way an antichain is generated for the output class labelled by 0, thus
producing the second layer of the SNN.

A possible choice for the weight uh to be associated with the h-th neuron is given
by its covering, i.e. the fraction of examples covered by it. For example, the weights
associated with the neurons for the class 1 may be u1 = 0.7 for 1000001 and u2 = 0.6
for 0000111.
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In addition the retrieved implicants can be transformed in intelligible rules in-
volving the input variables. For example the implicant 1000001, associated with the
output class 1, corresponds to the rule:

if x1 < 1.63 AND x2 > 6.05 then y = 1

8 Simulation Results

To obtain a preliminary evaluation of the performances achieved by SNNs trained
with SP or ASP, the classification problems included in the well-known StatLog
benchmark [9] have been considered. In this way the generalization ability and the
complexity of resulting SNNs can be compared with those of other machine learning
methods, among which are the backpropagation algorithm (BP) and rule generation
techniques based on decision trees, such as C4.5 [15].

All the experiments have been carried out on a personal computer with an Intel
Core Quad Q6600 (CPU 2.40 GHz, RAM 3 GB) running under the Windows XP
operative system.

The tests contained in the Statlog benchmark presents different characteristics
which allow the evaluation of different peculiarities of the proposed methods. In par-
ticular, four problems (Heart, Australian, Diabetes, German) have a binary output;
two of them (Heart and German) are clinical datasets presenting a specific weight
matrix which aims to reduce the number of misclassifications on ill patients. The re-
maining datasets present 3 (Dna), 4 (Vehicle) or 7 (Segment, Satimage, Shuttle) out-
put classes. In some experiments, the results are obtained through a cross-validation
test; however, in the presence of large amount of data, a single trial is performed
since the time for many executions may be excessive.

The generalization ability of each technique is evaluated through the level of
misclassification on a set of examples not belonging to the training set; on the other
hand, the complexity of an SNN is measured using the number of AND ports in
the second layer (corresponding to the number of intelligible rules) and the average
number of conditions in the if part of a rule. Tab. 2 presents the results obtained on
the datasets, reported in increasing order of complexity. Accuracy and complexity
of resulting SNNs are compared to those of rulesets produced by C4.5. In the same
table is also shown the best generalization error included in the StatLog report [9]
for each problem, together with the rank scored by SNN when its generalization
error is inserted into the list of available results.

The performances of the different techniques for training an SNN depend on the
characteristics of the different problems. In particular the SP algorithm scores a bet-
ter level of accuracy with respect to ASP in the datasets Heart and Australian. In
fact, these problems are characterized by a small amount of data so that the execu-
tion of the optimal minimization algorithm may obtain a good set of rules within a
reasonable execution time.

On the other hand, the misclassification of ASP is lower than that of SP in all
the other problems (except for Shuttle), which are composed of a greater amount of
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Table 2 Generalization error of SNN, compared with C4.5, BP and other methods, on the
StatLog benchmark.

Test Generalization error Rank
Problem SP ASP C4.5 BP Best SP ASP
HEART 0.439 0.462 0.781 0.574 0.374 6 9

AUSTRALIAN 0.138 0.141 0.155 0.154 0.131 3 3
DIABETES 0.246 0.241 0.270 0.248 0.223 7 5
VEHICLE 0.299 0.291 0.266 0.207 0.150 18 15
GERMAN 0.696 0.568 0.985 0.772 0.535 10 3
SEGMENT 0.0424 0.042 0.040 0.054 0.030 8 8

DNA 0.0658 0.056 0.076 0.088 0.041 7 3
SATIMAGE 0.168 0.149 0.150 0.139 0.094 19 10
SHUTTLE 0.0001 0.0001 0.001 0.43 0.0001 1 1

data. The decrease of the performances of SP in the presence of huge datasets is due
to the fact that simplifications in the LP problem are necessary in order to make it
solvable within a reasonable period of time. For example, some problems may be
solved by setting ε = ω = 0, since taking into account the possible presence of noise
gives rise to an excessive number of constraints in (6).

Notice that in one case (Shuttle), SP and ASP achieve the best results among
the methods in the StatLog archive, whereas in four other problems ASP achieves
one of the first five positions. However, ASP is in the first ten positions in all the
problems except for Vehicle.

Moreover, a comparison of the other methods reported in Tab. 2 with the best
version of SNN for each problem illustrates that:

• Only in one case (Vehicle) the classification accuracy achieved by C4.5 is higher
than that of SNN; in two problems (Satimage and Segment) the performances are
similar, whereas in all the other datasets SNN scores significantly better results.

• In two cases (Vehicle and Satimage), BP achieves better results with respect to
SNN; in all the other problems the performances of SNN are significantly better
than those of BP.

These considerations highlight the good quality of the solutions offered by the
SNNs, trained by the SP or ASP algorithm.

Nevertheless, the performances obtained by SP are conditioned by the number
of examples s in the training set and by the number of input variables d. Since the
number of constrains in (4) or (6) depends linearly on s, SP becomes slower and
less efficient when dealing with complex training sets. In particular, the number of
implicants generated by SP in many cases is higher than that of the rules obtained
by C4.5, causing an increase in the training time.

However a smart combination of the standard optimization techniques with the
greedy algorithm in Sec. 5.3 may allow complex datasets to be handled very ef-
ficiently. In fact the execution of ASP requires at most three minutes for each
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execution of the first six problems, about twenty minutes for the Dna dataset and
about two hours for Satimage and Shuttle.

Notice that the minimization of (4) or (6) is obtained using the package Gnu
Linear Programming Kit (GLPK) [8], a free library for the solution of linear pro-
gramming problems. It is thus possible to improve the above results by adopting
more efficient tools to solve the LP problem for the generation of implicants.

Concluding Remarks

In this paper a general schema for constructive methods has been presented and em-
ployed to train a Switching Neural Network (SNN), a novel connectionist model for
the solution of classification problems. According to the SNN approach, the input-
output pairs included in the training set are mapped to Boolean strings according to
a proper transformation which preserves ordering and distance. These new binary
examples can be viewed as a portion of the truth table of a positive Boolean function
f , which can be reconstructed using a suitable algorithm for logic synthesis.

To this aim a specific method, named Switch Programming (SP), for reconstruct-
ing positive Boolean functions from examples has been presented. SP is based on
the definition of a proper integer linear programming problem, which can be solved
with standard optimization techniques. However, since the treatment of complex
training sets with SP may require an excessive computational cost, a greedy ver-
sion, named Approximate Swith Programming (ASP), has been proposed to reduce
the execution time needed for training SNN.

The algorithms SP and ASP have been tested by analyzing the quality of the
SNNs produced when solving the classification problems included in the Statlog
archive. The results obtained show the good accuracy of classifiers trained with SP
and ASP. In particular, ASP turns out to be very convenient from a computational
point of view.
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