
Self-Organizing Neural Grove: Efficient
Multiple Classifier System with Pruned
Self-Generating Neural Trees

Hirotaka Inoue

Abstract. Multiple classifier systems (MCS) have become popular during the last
decade. Self-generating neural tree (SGNT) is a suitable base-classifier for MCS
because of the simple setting and fast learning capability. However, the computation
cost of the MCS increases in proportion to the number of SGNTs. In an earlier
paper, we proposed a pruning method for the structure of the SGNT in the MCS to
reduce the computational cost. In this paper, we propose a novel pruning method
for more effective processing and we call this model self-organizing neural grove
(SONG). The pruning method is constructed from both an on-line and an off-line
pruning method. Experiments have been conducted to compare the SONG with an
unpruned MCS based on SGNT, an MCS based on C4.5, and the k-nearest neighbor
method. The results show that the SONG can improve its classification accuracy as
well as reducing the computation cost.

1 Introduction

Classifiers need to find hidden information in the large amount of given data ef-
fectively and must classify unknown data as accurately as possible [1]. Recently,
to improve the classification accuracy, multiple classifier systems (MCS) such as
neural network ensembles, bagging, and boosting have been used for practical data
mining applications [2, 3, 4, 5]. In general, the base classifiers of the MCS use tra-
ditional models such as neural networks (backpropagation network and radial basis
function network) [6] and decision trees (CART and C4.5) [7].

Neural networks have great advantages of adaptability, flexibility, and univer-
sal nonlinear input-output mapping capability. However, to apply these neural

Hirotaka Inoue
Kure National College of Technology, 2-2-11 Agaminami, Kure,
Hiroshima 737-8506, Japan
e-mail: hiro@kure-nct.ac.jp

L. Franco et al. (Eds.): Constructive Neural Networks, SCI 258, pp. 281–291.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

hiro@kure-nct.ac.jp

282 H. Inoue

networks, it is necessary that human experts determine the network structure and
some parameters, and it may be quite difficult to choose the right network structure
suitable for a particular application at hand. Moreover, a long training time is re-
quired to learn the input-output relation of the given data. These drawbacks prevent
neural networks being the base classifier of the MCS for practical applications.

Self-generating neural trees (SGNTs) [8] have simple network design and high
speed learning. SGNTs are an extension of the self-organizing maps (SOM) of Ko-
honen [9] and utilize competitive learning. The SGNT capabilities make it a suitable
base classifier for the MCS. In order to improve the accuracy of SGNN, we propose
ensemble self-generating neural networks (ESGNN) for classification [10] as one of
the MCS. Although the accuracy of ESGNN improves by using various SGNTs, the
computational cost, that is, the computation time and the memory capacity increases
in proportion to the increasing number of SGNNs in the MCS.

In an earlier paper [11], we proposed a pruning method for the structure of the
SGNN in the MCS to reduce the computational cost. In this paper, we propose a
novel MCS pruning method for more effective processing and we call this model
a self-organizing neural grove (SONG). This pruning method is comprised of two
stages. At the first stage, we introduce an on-line pruning method to reduce the com-
putational cost by using class labels in learning. At the second stage, we optimize
the structure of the SGNT in the MCS to improve the generalization capability by
pruning the redundant leaves after learning. In the optimization stage, we introduce
a threshold value as a pruning parameter to decide which subtree’s leaves to prune
and estimate using 10-fold cross-validation [12]. After the optimization, the SONG
can improve its classification accuracy as well as reducing the computational cost.
Bagging [2] is used as a resampling technique for the SONG.

In this work, we investigate the improvement performance of the SONG by com-
paring it with an MCS based on C4.5 [13] using ten problems in a UCI machine
learning repository [14]. Moreover, we compare the SONG with k-nearest neighbor
(k-NN) [15] to investigate the computational cost and the classification accuracy.
The SONG demonstrates higher classification accuracy and faster processing speed
than k-NN on average.

The rest of the paper is organized as follows: the next section shows how to
construct the SONG. Then Section 3 is devoted to some experiments to investi-
gate its performance. Finally we present some conclusions, and outline plans for
future work.

2 Constructing Self-Organizing Neural Grove

In this section, we describe how to prune redundant leaves in the SONG. First, the
on-line pruning method used in learning the SGNT is outlined. Second, we show the
optimization method in constructing the SONG. Finally, we show a simple example
of the pruning method for a two dimensional classification problem.

SONG: Efficient MCS with Pruned Self-Generating Neural Trees 283

2.1 On-Line Pruning of Self-Generating Neural Tree

SGNT is based on SOM and implemented as a competitive learning algorithm. The
SGNT can be constructed directly from the given training data without any human
intervention required. The SGNT algorithm is defined as a tree construction problem
of how to construct a tree structure from the given data, which consist of multiple
attributes, under the condition that the final leaves correspond to the given data.

Before we describe the SGNT algorithm, we explain some notations used.

• input data vector: ei ∈ IRm.
• root, leaf, and node in the SGNT: n j.
• weight vector of n j: wj ∈ IRm.
• the number of the leaves in n j: c j.
• distance measure: d(ei,w j).
• winner leaf for ei in the SGNT: nwin.

The SGNT algorithm is a hierarchical clustering algorithm. The pseudo C code of
the SGNT algorithm is given in Figure 1 where several sub procedures are used.
Table 1 shows the sub procedures of the SGNT algorithm and their specifications.

In order to decide the winning leaf nwin in the sub procedurechoose(e i,n 1),
competitive learning is used. If an n j includes the nwin as its descendant in the SGNT,
the weight wjk (k = 1,2, . . . ,m) of the n j is updated as follows:

wjk← wjk +
1
c j
· (eik−wjk), 1≤ k≤ m. (1)

Input:
A set of training examples E = {e_i}, i = 1, ... , N.
A distance measure d(e_i,w_j).

Program Code:
copy(n_1,e_1);
for (i = 2, j = 2; i <= N; i++) {
n_win = choose(e_i, n_1);
if (leaf(n_win)) {

copy(n_j, w_win);
connect(n_j, n_win);
j++;

}
copy(n_j, e_i);
connect(n_j, n_win);
j++;
prune(n_win);

}
Output:
Constructed SGNT by E.

Fig. 1 SGNT algorithm

284 H. Inoue

Table 1 Sub procedures of the SGNT algorithm

Sub procedure Specification
copy(n j,ei/wwin) Create n j , copy ei/wwin as w j in n j .
choose(ei,n1) Decide nwin for ei.
lea f (nwin) Check nwin whether nwin is a leaf.
connect(n j ,nwin) Connect n j as a child leaf of nwin.
prune(nwin) Prune leaves if they have the same class.

After all training data are inserted into the SGNT as the leaves, each one has a class
label as the outputs and the weights of each node are the averages of the correspond-
ing weights of all its leaves. The topology of the whole SGNT network reflects the
given feature space. For more details concerning how to construct and perform the
SGNT, see [8]. Note, to optimize the structure of the SGNT effectively, we remove
the threshold value of the original SGNT algorithm in [8] to control the number of
leaves based on the distance because of the trade-off between the memory capacity
and the classification accuracy. In order to avoid the above problem, we introduce a
new pruning method in the sub procedure prune(n win). We use the class label
to prune leaves. For leaves that have the nwin parent node, if all leaves belong to the
same class, then these leaves are pruned and the parent node is given the class.

2.2 Optimization of the SONG

The SGNT has a high speed processing capability. However, the accuracy of the
SGNT is inferior to the conventional approaches, such as nearest neighbor, because
the SGNT cannot guarantee reaching the nearest leaf for unknown data. Hence, we
construct the SONG by taking the majority of plural SGNT outputs to improve the
accuracy.

Although the accuracy of the SONG is superior or comparable to the accuracy
of conventional approaches, the computational cost increases in proportion to the
increase in the number of SGNTs in the SONG. In particular, the huge memory
requirement prevents the use of the SONG for large datasets even with the most
advance computers.

In order to improve the classification accuracy, we propose an optimization
method of SONG for classification. This method has two parts, the merge phase
and the evaluation phase. The merge phase is performed as a pruning algorithm to
reduce dense leaves (Figure 2). This phase uses the class information and a thresh-
old value α to decide which subtree’s leaves to prune or not. For leaves that have
the same parent node, if the proportion of the most common class is greater than or
equal to the threshold value α , then these leaves are pruned and the parent node is
given the most common class.

The optimum threshold values α of the given problems are different from each
other. The evaluation phase is performed to choose the best threshold value by in-
troducing 10-fold cross validation (Figure 3).

SONG: Efficient MCS with Pruned Self-Generating Neural Trees 285

1 begin initialize j = the height of the SGNT
2 do for each subtree’s leaves in the height j
3 if the ratio of the most class ≥ the threshold value α ,
4 then merge all leaves to parent node
5 if all subtrees are traversed in the height j,
6 then j← j−1
7 until j = 0
8 end.

Fig. 2 The merge phase

1 begin initialize α = 0.5
2 do for each α
3 evaluate the merge phase with 10-fold cross validation
4 if the best classification accuracy is obtained,
5 then record the α as the optimal threshold value
6 α ← α +0.05
7 until α = 1
8 end.

Fig. 3 The evaluation phase

2.3 An Example of the Pruning Method for SONG

We show an example of the pruning method for SONG in Figure 4. This is a two-
dimensional classification problem with two equal circular Gaussian distributions
that have an overlap. The shaded plane is the decision region of class 0 and the
other plane is the decision region of class 1 by the SGNT. The dotted line is the
ideal decision boundary. The number of training samples is 200 (class0: 100,class1:
100) (Figure 4(a)).

The unpruned SGNT is given in Figure 4(b). In this case, 200 leaves and 120
nodes are automatically generated by the SGNT algorithm. In this unpruned SGNT,
the height is 7 and the number of units is 320. In this, we define the unit to count
the sum of the root, nodes, and leaves of the SGNT. The root is the node which is
of height 0. The unit is used as a measure of the memory requirement in the next
section. Figure 4(c) shows the pruned SGNT after the optimization stage in α = 1.
In this case, 159 leaves and 107 nodes are pruned away and 48 units remain. The
decision boundary is the same as the unpruned SGNT. Figure 4(d) shows the pruned
SGNT after the optimization stage in α = 0.6. In this case, 182 leaves and 115
nodes are pruned away and only 21 units remain. Moreover, the decision boundary
is improved more than the unpruned SGNT because this case can reduce the effect
of the overlapping class by pruning the SGNT.

286 H. Inoue

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x 2

x1

class0
class1

(a)

class0
class1

node

0
0.2

0.4
0.6

0.8
1

x1 0
0.2

0.4
0.6

0.8
1

x2

0
1
2
3
4
5
6
7

Height

(b)

class0
class1

node

0
0.2

0.4
0.6

0.8
1

x1 0
0.2

0.4
0.6

0.8
1

x2

0
1
2
3
4
5
6
7

Height

(c)

class0
class1

node

0
0.2

0.4
0.6

0.8
1

x1 0
0.2

0.4
0.6

0.8
1

x2

0
1
2
3
4
5
6
7

Height

(d)

Fig. 4 An example of the SONG pruning algorithm, (a) a two dimensional classification
problem with two equal circular Gaussian distribution, (b) the structure of the unpruned
SGNT, (c) the structure of the pruned SGNT (α = 1), and (d) the structure of the pruned
SGNT (α = 0.6). The shaded plane is the decision region of class 0 by the SGNT and the
dotted line shows the ideal decision boundary

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x 2

x1

class0
class1

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x 2

x1

class0
class1

(b)

Fig. 5 An example of the SONG’s decision boundary (K = 25), (a) α = 1, and (b) α = 0.6.
The shaded plane is the decision region of class 0 by the SONG and the dotted line shows the
ideal decision boundary

SONG: Efficient MCS with Pruned Self-Generating Neural Trees 287

In the above example, we use all training data to construct the SGNT. The struc-
ture of the SGNT is changed by the order of the training data. Hence, we can con-
struct the SONG from the same training data by changing the input order.

To show how well the SONG is optimized by the pruning algorithm, we show an
example of the SONG in the same problem used above. Figure 5(a) and Figure 5(b)
show the decision region of the SONG in α = 1 and α = 0.6, respectively. We set
the number of SGNTs K to 25. The result of Figure 5(b) is a better estimation of
the ideal decision region than the result of Figure 5(a). We investigate the pruning
method for more complex problems in the next section.

3 Experimental Results

We investigate the computational cost (the memory capacity and the computation
time) and the classification accuracy of the SONG with bagging for ten benchmark
problems in the UCI machine learning repository [14]. Table 2 presents the abstract
of the datasets.

We evaluate how SONG is pruned using 10-fold cross-validation for the ten
benchmark problems. In this experiment, we use a modified Euclidean distance
measure for the SONG and k-NN. Since the performance of the SONG is not sen-
sitive in the threshold value α , we set the different threshold values α which are
moved from 0.5 to 1; α = [0.5,0.55,0.6, . . . ,1]. We set the number of SGNTs K in
the SONG to 25 and execute 100 trials by changing the sampling order of each train-
ing set. All experiments in this section were performed on an UltraSPARC worksta-
tion with a 900MHz CPU, 1GB RAM, and Solaris 8.

Table 3 shows the average memory requirement and classification accuracy of
100 trials for the SONG. As the memory requirement, we count the number of units
which is the sum of the root, nodes, and leaves of the SGNT. The average memory
requirement is reduced from between 65% to 96.6% and the classification accu-
racy is improved by 0.1% to 2.9% by optimizing the SONG. This confirms that the

Table 2 Brief summary of the datasets. N is the number of instances, m is the number of
attributes

Dataset N m classes
balance-scale 625 4 3
breast-cancer-w 699 9 2
glass 214 9 6
ionosphere 351 34 2
iris 150 4 3
letter 20000 16 26
liver-disorders 345 6 2
new-thyroid 215 5 3
pima-diabetes 768 8 2
wine 178 13 3

288 H. Inoue

Table 3 The average memory requirement and classification accuracy of 100 trials for the
bagged SGNT in the SONG. The standard deviation is given inside the bracket on classifica-
tion accuracy (×10−3)

memory requirement classification accuracy
Dataset pruned unpruned ratio pruned unpruned ratio
balance-scale 107.68 861.18 12.5 0.866(6.36) 0.837(7.83) +2.9
breast-cancer-w 30.88 897.37 3.4 0.97(2.41) 0.966(2.71) +0.4
glass 104.33 297.75 35 0.714(13.01) 0.709(14.86) +0.5
ionosphere 50.75 472.39 10.7 0.891(6.75) 0.862(7.33) +2.9
iris 15.64 208.56 7.4 0.962(6.04) 0.955(5.45) +0.7
letter 6197.5 27028.56 22.9 0.956(0.77) 0.955(0.72) +0.1
liver-disorders 163.12 471.6 34.5 0.648(12.89) 0.636(13.36) +1.2
new-thyroid 49.45 298.21 16.5 0.958(7.5) 0.957(7.49) +0.1
pima-diabetes 204.4 1045.03 19.5 0.749(7.05) 0.728(7.83) +2.1
wine 15 238.95 6.2 0.976(4.41) 0.972(5.57) +0.4
Average 693.88 3181.96 16.9 0.869 0.858 +1.1

Table 4 The improved performance of the pruned MCS and the MCS based on C4.5 with
bagging

MCS based on SGNT MCS based on C4.5
Dataset SGNT MCS ratio C4.5 MCS ratio
balance-scale 0.779 0.866 +8.7 0.795 0.827 +3.2
breast-cancer-w 0.956 0.97 +1.4 0.946 0.963 +1.7
glass 0.642 0.714 +7.2 0.664 0.757 +9.3
ionosphere 0.852 0.891 +3.9 0.897 0.92 +2.3
iris 0.943 0.962 +1.9 0.953 0.947 −0.6
letter 0.879 0.956 +7.7 0.880 0.938 +5.8
liver-disorders 0.59 0.648 +5.8 0.635 0.736 +10.1
new-thyroid 0.939 0.958 +1.9 0.93 0.94 +1
pima-diabetes 0.695 0.749 +5.4 0.749 0.767 +1.8
wine 0.955 0.976 +2.1 0.927 0.949 +2.2
Average 0.823 0.869 +4.6 0.837 0.874 +3

SONG can be effectively used for all datasets with regard to both the computational
cost and the classification accuracy.

To evaluate SONG’s performance, we compare it with an MCS based on C4.5.
We set the number of classifiers K in the MCS to 25 and we construct both MCSs
by bagging. Table 4 shows the improved performance of the SONG and the MCS
based on C4.5. The results of the SGNT and the SONG are the average of 100 trials.
The SONG performs better than the MCS based on C4.5 for 6 of the 10 datasets. Al-
though the MCS based on C4.5 degrades the classification accuracy for iris, SONG
can improve the classification accuracy for all problems. Therefore, SONG is an

SONG: Efficient MCS with Pruned Self-Generating Neural Trees 289

Table 5 The classification accuracy, the memory requirement, and the computation time of
ten trials for the best pruned SONG and k-NN

classification acc. memory requirement computation time (s)
Dataset SONG k-NN SONG k-NN SONG k-NN
balance-scale 0.878 0.888 109.93 562.5 0.82 1.14
breast-cancer-w 0.974 0.969 26.8 629.1 1.18 1.25
glass 0.758 0.701 91.33 192.6 0.36 0.08
ionosphere 0.912 0.866 51.38 315.9 1.93 0.2
iris 0.973 0.96 11.34 135 0.13 0.05
letter 0.958 0.96 6208.03 18000 208.52 503.14
liver-disorders 0.685 0.653 134.17 310.5 0.54 0.56
new-thyroid 0.972 0.972 45.74 193.5 0.23 0.05
pima-diabetes 0.764 0.751 183.57 691.2 1.72 2.49
wine 0.983 0.977 11.8 160.2 0.31 0.15
Average 0.885 0.869 687.41 2119.1 21.57 50.91

efficient MCS on the basis of both the scalability for large scale datasets and the
robust improving generalization capability for the noisy datasets comparable to the
MCS with C4.5.

To show the advantages of SONG, we compare it with k-NN on the same prob-
lems. The best classification accuracy of 100 trials with bagging were chosen. In
k-NN, we choose the best accuracy where k is 1,3,5,7,9,11,13,15, and 25 with 10-
fold cross-validation. All methods are compiled using gcc with the optimization
level -O2 on the same workstation.

Table 5 shows the classification accuracy, the memory requirement, and the com-
putation time achieved by the SONG and k-NN. Although there are compression
methods available for k-NN [16], they take enormous computation time to construct
an effective model. We use the exhaustive k-NN in this experiment. Since k-NN does
not discard any training sample, the size of this classifier corresponds to the train-
ing set size. The results of k-NN correspond to the average measures obtained by
10-fold cross-validation, the same experimental procedure adapted in SONG. Next,
we show the results for each category.

First, with regard to the classification accuracy, SONG is superior to k-NN for
8 of the 10 datasets and gives 1.6% improvement on average. Second, in terms of
the memory requirement, even though the SONG includes the root and the nodes
which are generated by the SGNT generation algorithm, this is less than k-NN for
all problems. Although the memory requirement of the SONG is totally used K
times in Table 5, we release the memory of SGNT for each trial and reuse the mem-
ory for effective computation. Therefore, the memory requirement is suppressed by
the size of the single SGNT. Finally, in view of the computation time, although the
SONG consumes the cost of K times the SGNT to construct the model and test
for the unknown dataset, the average computation time is faster than k-NN. The
SONG is slower than k-NN for small datasets such as glass, ionosphere, and iris.
However, it is faster than k-NN for large datasets such as balance-scale, letter, and

290 H. Inoue

pima-diabetes. In the case of letter, in particular, the computation time of the SONG
is faster than k-NN by about 2.4 times. We need to repeat 10-fold cross validation
many times to select the optimum parameters for α and k. This evaluation consumes
much computation time for large datasets such as letter. Therefore, the SONG based
on the fast and compact SGNT is useful and practical for large datasets. Moreover,
the SONG is capable parallel computation because each classifier behaves indepen-
dently. In conclusion, the SONG is a practical method for large-scale data mining
compared with k-NN.

4 Conclusions

In this paper, we proposed a new pruning method for the MCS based on SGNT,
which is called SONG, and evaluated the computation cost and the accuracy.We
introduced an on-line and off-line pruning method and evaluated the SONG by 10-
fold cross-validation. Experimental results showed that the memory requirement
is significant reduce, and by using the pruned SGNT as the base classifier of the
SONG, accuracy is increased. The SONG is a useful and practical MCS to classify
large datasets. In future work, we will study an incremental learning and a parallel
and distributed processing of the SONG for large scale data mining.

References

1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Pub-
lishers, San Francisco (2000)

2. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)
3. Schapire, R.E.: The strength of weak learnability. Machine Learning 5(2), 197–227

(1990)
4. Quinlan, J.R.: Bagging, Boosting, and C4.5. In: Proceedings of the Thirteenth National

Conference on Artificial Intelligence, Portland, OR, August 4-8, 1996, pp. 725–730.
AAAI Press, The MIT Press (1996)

5. Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for AdaBoost. Machine Learn-
ing 42(3), 287–320 (2001)

6. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New
York (1995)

7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons
Inc., New York (2000)

8. Wen, W.X., Jennings, A., Liu, H.: Learning a neural tree. In: the International Joint Con-
ference on Neural Networks, Beijing, China, November 3-6, 1992, vol. 2, pp. 751–756
(1992)

9. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1995)
10. Inoue, H., Narihisa, H.: Improving generalization ability of self-generating neural net-

works through ensemble averaging. In: Terano, T., Liu, H., Chen, A.L.P. (eds.) PAKDD
2000. LNCS, vol. 1805, pp. 177–180. Springer, Heidelberg (2000)

SONG: Efficient MCS with Pruned Self-Generating Neural Trees 291

11. Inoue, H., Narihisa, H.: Optimizing a multiple classifier system. In: Ishizuka, M., Sattar,
A. (eds.) PRICAI 2002. LNCS (LNAI), vol. 2417, pp. 285–294. Springer, Heidelberg
(2002)

12. Stone, M.: Cross-validation: A review. Math. Operationsforsch. Statist. Ser. Statis-
tics 9(1), 127–139 (1978)

13. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo
(1993)

14. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
15. Patrick, E.A., Frederick, P., Fischer, I.: A generalized k-nearest neighbor rule. Informa-

tion and Control 16(2), 128–152 (1970)
16. Zhang, B., Srihari, S.N.: Fast k-nearest neighbor classification using cluster-based trees.

IEEE Transactions on Pattern and Machine Intelligence 26(4), 525–528 (2004)

	Self-Organizing Neural Grove: Efficient Multiple Classifier System with Pruned Self-Generating Neural Trees
	Introduction
	Constructing Self-Organizing Neural Grove
	On-Line Pruning of Self-Generating Neural Tree
	Optimization of the SONG
	An Example of the Pruning Method for SONG

	Experimental Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

