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Abstract. Hierarchical Self-Organizing Networks are used to reveal the
topology and structure of datasets. These methodologies create crisp parti-
tions of the dataset producing tree structures composed of prototype vectors,
permitting the extraction of a simple and compact representation of a dataset.
However, in many cases observations could be represented by several proto-
types with certain degree of membership. Nevertheless, crisp partitions are
forced to classify observations in just one group, losing information about the
real dataset structure. To deal with this challenge we propose Fuzzy Growing
Hierarchical Self-Organizing Networks (FGHSON). FGHSON are adaptive
networks which are able to reflect the underlying structure of the dataset
in a hierarchical fuzzy way. These networks grow by using three parameters
which govern the membership degree of data observations to the prototype
vectors and the quality of the hierarchical representation. However, different
combinations of values of these parameters can generate diverse networks.
This chapter explores how these combinations affect the topology of the
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network and the quality of the prototypes; in addition the motivation and
the theoretical basis of the algorithm are presented.

1 Introduction

We live in a world full of data. Every day we are confronted with the handling
of large amounts of information. This information is stored and represented
as data, for further analysis and management. One of the essential means in
dealing with data is to classify or group it into categories or clusters. In fact,
as one of the most ancient activities of human beings [1], classification plays
a very important role in the history of human development. In order to learn
a new object or distinguish a new phenomenon, people always try to look for
the features that can describe it and further compare it with other known
objects or phenomena, based on the similarity or dissimilarity, generalized as
proximity, according to some standards or rules.

In many cases classification must be done without a priori knowledge of
the classes in which the dataset is divided (unlabeled pattern). This kind of
classification is called clustering (unsupervised classification). On the con-
trary, discriminant analysis (supervised classification) is made by providing a
collection of labeled patterns; so the problem is to label a newly encountered,
unlabeled pattern. Typically, the given labeled patterns are used to learn de-
scriptions of classes which in turn are used to label a new pattern. In the case
of clustering, the problem is to group a given collection of unlabeled patterns
into meaningful clusters. In a sense, labels are associated with clusters also,
but these category labels are data driven; that is, they are obtained solely
from the data [15, 23].

Even though the unsupervised classification presents many advantages over
supervised classification1, it is a subjective process in nature. As pointed out
by Backer and Jain [2], “in cluster analysis a group of objects is split up into
a number of more or less homogeneous subgroups on the basis of an often
subjectively chosen measure of similarity (i.e., chosen subjectively based on
its ability to create “interesting” clusters), such that the similarity between
objects within a subgroup is larger than the similarity between objects be-
longing to different subgroups”. Clustering algorithms partition data into a
certain number of clusters (groups, subsets, or categories). There is no uni-
versally agreed upon definition [8].

Thus, methodologies to evaluate clusters with different levels of abstraction
in order to find “interesting” patterns are useful; these methodologies could
help to improve the analysis of cluster structure creating representations,
facilitating the selection of clusters of interest. Methods for tree structure
1 For instance, no extensive prior knowledge of the dataset is required, and it can

detect “natural” groupings in feature space.
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representation and data abstraction have been used for this task, revealing
the topology and organization of clusters.

On the one hand, hierarchical methods are used to help explain the inner
organization of datasets, since the hierarchical structure imposed by the data
produces a separation of clusters that is mapped onto different branches. Hi-
erarchical clustering algorithms organize data into a hierarchical structure
according to a proximity matrix. The results of Hierarchical clustering are
usually depicted by a binary tree or dendrogram. The root node of the den-
drogram represents the whole data set and each leaf node is regarded as a data
object. The intermediate nodes describe to what extent the objects are prox-
imal among them; and the height of the dendrogram usually expresses the
distance between each pair of objects or clusters, or an object and a cluster.
The ultimate clustering results can be obtained by cutting the dendrogram
at different levels. This representation provides very informative descriptions
and visualization for the potential data clustering structures, especially when
real hierarchical relations exist in the data, like the data from evolutionary
research on different species of organisms. Therefore, this hierarchical organi-
zation enables us to analyze complicated structures as well as the exploration
of the dataset at multiple levels of detail [23].

On the other hand, data abstraction permits the extraction of a simple
and compact representation of a data set. Here, simplicity is either from the
perspective of automatic processing (so that a machine can perform further
processing efficiently) or is human-oriented (so that the representation ob-
tained is easy to comprehend and intuitively appealing). In the clustering
context, a typical data abstraction is a compact description of each clus-
ter, usually in terms of cluster prototypes or representative patterns such as
the centroid of the cluster [7]. Soft competitive learning methods [11] are em-
ployed on data abstraction in a self-organizing way. These algorithms attempt
to distribute a number of vectors (prototype vectors) in a potentially low-
dimensional space. The distribution of these vectors should reflect (in one of
several possible ways) the probability distribution of the input signals which
in general is not given explicitly but through sample vectors. Two principal
approaches have been used for this purpose. The first is based on a fixed
network dimensionality (i.e. Kohonen maps [16]). In the second approach,
non fixed dimensionality is imposed on the network; hence, this network can
automatically find a suitable structure and size through a controlled growth
process [19].

Different approaches have been introduced in order to combine the capabil-
ities of tree structure of the hierarchical methods and the advantages of soft
competitive learning methods used for data abstraction [20, 13, 6, 22, 12, 18],
obtaining networks capable of representing the structure of clusters and their
prototypes in a hierarchical self-organizing way. These networks are able to
grow and adapt their structure in order to represent the characteristics of
clusters in the most accurate manner. Although these hybrid models provide
satisfactory results, they generate crisp partitions of the datasets. The crisp
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segmentations tend to allocate elements of the dataset in just one branch of
the tree in each level of the hierarchy and assign just one prototype to repre-
sent one cluster, so the membership to other branches or prototypes is zero.
Nevertheless, in many applications crisp partitions in hierarchical structures
are not the optimal representation of the clusters, since some elements of the
dataset could belong to multiple clusters or branches with a certain degree
of membership.

One example of this situation is presented in Geographic Information Sys-
tems (GIS) applications. One of the topics treated by GIS researchers refers to
the classification of geographical zones with similar characteristics to climate,
soil and terrain (conditions relevant to agricultural production) in order to
create the so called agro-ecological zones (AEZ) [9]. AEZ provide the frame for
various applications, such as quantification of land productivity, estimation
of land’s population supporting capacity, and optimization of land resource
use and development. Many institutions, governments and enterprises need
to know which AEZ a particular region belongs to (allocating the region to
a certain AEZ cluster), in order to apply policies to invest, for instance in
new cropping systems for economic viability, and sustainability. However, the
geographical region of interest can vary in range of resolution depending on
the application or context (i.e. countries, states, cities, parcels). In addition,
the fuzzy and implicit nature of the geographic zones (in which geographical
boundaries are not hard, but rather soft boundaries) transform the bound-
aries of the AEZ in zones of transition rather than sharp boundaries. Thus,
the soft boundaries make it possible that regions in the middle of two AEZ
have membership of both. The clustering method to deal with this situation
has to provide views of AEZ at multiple levels, preferably in a hierarchical
way. In addition, it should be capable of discovering fuzzy memberships of
geographical regions to the AEZ.

For the purpose of representing degrees of membership, fuzzy logic is a
feature that could be added to hierarchical self-organized hybrid models. We
propose, thus Fuzzy Growing Hierarchical Self-Organizing Networks (FGH-
SON), with the intention of synergistically combining the advantages of Self-
Organizing Networks, hierarchical structures, and fuzzy logic. FGHSON are
designed to improve the analysis of datasets where it is desirable to obtain
a fuzzy representation of a dataset in a hierarchical way, then discovering
its structure and topology. This new model will be able to obtain a growing
hierarchical structure of the dataset in a self-organizing fuzzy manner. This
kind of network is based on the Fuzzy Kohonen Clustering Networks (FKCN)
[4] and Hierarchical Self-Organizing Structures (HSS) [17, 21, 20, 22].

This book chapter is organized as follows: In the next section the Hierarchi-
cal Self-Organizing Structures and the Fuzzy Kohonen Clustering Networks
will be explained then, our model will be described. Section 3 focuses on
the application of the methodology using the Iris benchmark and an exam-
ple dataset, a further example where model parameters are tuned is also
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presented. Finally, in Section 4 conclusions are drawn and future extensions
of the work described.

2 Methods

2.1 Hierarchical Self-Organizing Structures

The ability to obtain hierarchically structured knowledge from a dataset using
autonomous learning has been widely used in many areas. This is due to the
fact that hierarchical self-organizing structures permit unevenly distributed
real-world data to be represented in a suitable network structure, during an
unsupervised training process. These networks capture the unknown data
topology in terms of hierarchical relationships and cluster structures.

Different methodologies have been presented in this area with various ap-
proaches. It is possible to classify hierarchical self-organizing structures in
two classes taking into account the algorithm of self-organization used. The
first family of models is based on Kohonen self-organizing maps (SOM), and
the second on Growing Cell Structures (GCS) [10].

With respect to approaches based on GCS, Hierarchical Growing Cell
Structures (HiGCS) [5], TreeGCS [13] and the Hierarchical topological clus-
tering (TreeGNG) [6] have been proposed. The algorithms derived from GCS
are based on periodic node deletion, node activity and the volume of the input
space classified by the node. This approach tends to represent examples with
high occurrence rates, and therefore takes low frequency examples as outliers
or noise. As a result, examples with low presence rates are not represented
in the model. Nevertheless, in many cases it is desirable to discover novelties
in the dataset, so taking into account the observations with low occurrence
rates could allow discovery of those exceptional behaviors.

For this reason, we focused our research on approaches based on SOM
[17, 21, 20], particularly the Growing Hierarchical Self-Organizing Map
(GHSOM)[22] due to its ability to take into account the observations with
low presence rates as part of the model. This is possible since the hierar-
chical structure of the GHSOM is adapted according to the requirements of
the input space. Therefore, areas in the input space that require more units
for appropriate data representation create deeper branches than others. This
process is done without eliminating nodes that represent examples with low
occurrence rates.

2.2 Fuzzy Kohonen Clustering Networks

FKCN [4] integrate the idea of fuzzy membership from Fuzzy C-Means
(FCM), with the updating rules of SOM. Thus, creating a self-organizing
algorithm that automatically adjusts the size of the updated neighborhood
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during a learning process, which usually terminates when the FCM objec-
tive function is minimized. The update rule for the FKCN algorithm can be
given as:

Wi,t = Wi,t−1 +αik,t(Zk −Wi,t−1); for k = 1, 2, ..., n; for i = 1, 2, ..., c (1)

where Wi,t represents the centroid2 of the ith cluster at iteration t , Zk is
the kth vector example from the dataset and αik is the only parameter of the
algorithm and according to [14]:

αik,t = (Uik,t)m(t) (2)

Where m(t) is an exponent like the fuzzification index in FCM and Uik,t is
the membership value of the compound Zk to be part of cluster i. Both of
these constants vary at each iteration t according to:

Uik =

⎛
⎝

c∑
j=1

(
‖Zk − Wi‖
‖Zk − Wj‖

)2/(m−1)
⎞
⎠

−1

; 1 ≤ k ≤ n ; 1 ≤ i ≤ c (3)

m(t) = m0 − mΔ · t ; mΔ = (m0 − mf )/iterate limit (4)

Where m0 is a constant value greater than the final value (mf ) of the fuzzifi-
cation parameter m. The final value mf should not be less than 1.1, in order
to avoid a divide by zero error in equation (3). The iterative process will
stop if

∥∥Wi,(t) − W(i,t−1)
∥∥2

< ε , where ε is a termination criterion or after a
given number of iterations. At the end of the process, a matrix U is obtained,
where Uik is the degree of membership of the Zk element of the dataset to
the cluster i. In addition, the centroid of each cluster will form the matrix
W where Wi is the centroid of the ith cluster. The FKCN algorithm is given
below:

1. Fix c, and ε > 0 to some small positive constant.
2. Initialize W0 = (W1,0, W2,0, · · · , Wc,0) ∈ �c.

Choose m0 > 1 and tmax = max. number of iterations.
3. For t = 1, 2, · · · , tmax

a. Compute all cn learning rates αik,t with equations (2) and (3).
b. Update all c weight vectors Wi,t with
Wi,t = Wi,t−1 + [

∑n
k=1 αik,t(Zk − Wi,t−1)] /

∑n
j=1 αij,t

c. Compute Et =
∥∥Wi,(t) − W(i,t−1)

∥∥2 =
∑c

i=1

∥∥Wi,(t) − W(i,t−1)
∥∥2

d. If Et < ε stop.

2 In the perspective of neural networks it represents a neuron or a prototype vector.
So the number of neurons or prototype vectors will be equal to the number of
clusters.
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2.3 Fuzzy Growing Hierarchical Self-Organizing
Networks

Fuzzy Growing Hierarchical Self-Organizing Networks (FGHSON) are based
on a hierarchical fuzzy structure of multiple layers, where each layer consists
of several independent growing FKCNs. This structure can grow by means
of an unsupervised self-organizing process in two manners (inspired by [22]):

a. Individually, in order to find the more suitable number of prototypes
(which compose a FKCN) that may represent in an accurate manner the
input dataset.
b. On groups of FKCNs in a hierarchical mode, permitting the hierarchy to
reveal a particular set of characteristics of data.

Both growing processes are modulated by three parameters that regulate the
breadth (growth of the layers), depth (hierarchical growth) and membership
degree of data to the prototype vectors.

The FGHSON works as follows:

1) Initial Setup and Global Network Control
The main motivation of the FGHSON algorithm is to properly represent a
given dataset. The quality of this representation is measured in terms of the
difference between a prototype vector and the example vectors represented
by this. The quantization error qe is used for this purpose. The qe measures
the dissimilarity of all input data mapped onto a particular prototype vector,
hence it can be used to guide a growth process with the aim of achieving an
accurate representation of the dataset reducing the qe. The qe of a prototype
vector Wi is calculated according to (5) as the mean Euclidean distance
between its prototype and the input vectors Zc that are part of the set of
vectors Ci mapped onto this prototype.

qei =
∑

Zc∈Ci

‖Wi − Zc‖ ; Ci �= φ (5)

The first step of the algorithm is focused on obtaining a global measure
that allows us to know the nature of the whole dataset. For this purpose the
training process begins with the computation of a global measure of error
qe0. qe0 represents the qe of the single prototype vector W0 that forms the
layer 0, see figure 1(a), calculated as shown in (6). Where, Zk represents the
input vectors from the whole data set Z and W0 is defined as a prototype
vector W0 = [μ01 , μ02 , . . . , μ0n ], where μ0i for i = 1, 2, . . . , n; is computed
as the average of μ0i in the complete input dataset. In other words W0 is a
vector that corresponds to the mean of the input variables.

qe0 =
∑

Zk∈Z

‖W0 − Zk‖ (6)
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Fig. 1 (a) Hierarchical structure showing the prototype vectors and FKCNs cre-
ated in each layer for a supposed case. (b) Membership degrees in each layer, corre-
sponding to the network shown in the diagram. The parameter ϕ (the well known
α − cut) represents the minimal degree membership of an observation to be part
of the dataset represented by a prototype vector, the group of data with a desired
membership to a prototype will be used for the training of a new FCKN in the
next layer (depth process). In this particular diagram the dataset is unidimensional
(represented by the small circles below the membership plot) in order to simplify
the example

The value of qe0 will help to measure the minimum quality of data representa-
tion of the prototype vectors in the subsequent layers. Succeeding prototypes
have the task of reducing the global representation error qe0.

2) Breadth growth process
The construction of the first layer starts after the calculation of qe0. This
first layer consists of a FKCN (FKCN1) with two initial prototype vectors.
The growth process of the FKCN1 begins by adding a new prototype vector
and training it until a suitable representation of the dataset is achieved.
Each of these prototype vectors is an n-dimensional vector Wi (with the
same dimensionality as the input patterns), which is initialized with random
values. The FKCN1 is trained as shown in section 2.2, taking as input (in
the exceptional case of the first layer) the whole dataset. More precisely, the
FKCN1 is allowed to grow until the qe of the prototype for its preceding
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layer (qe0 in the case of layer 1) is reduced to at least a fixed percentage τ1.
Continuing with the creation of the first layer, the number of prototypes in
the FKCN1 will be adapted. To achieve this, the mean quantization error of
the map (MQE) is computed according to expression (7), where d refers to
the number of prototype vectors contained in the FKCN, and qei represents
the quantization error of the prototype Wi.

MQEm =
1
d

·
∑

i

qei (7)

The MQE is evaluated using (8) to measure the quality of data represen-
tation, and is used also as stopping criterion for the growing process of the
FKCN. In (8) qeu represents the qe of the corresponding prototype u in the
upper layer. In the specific case of the first-layer, the stopping criterion is
shown in (9).

MQE < τ1 · qeu (8)

MQElayer1 < τ1 · qe0 (9)

If the stopping criterion (8) is not fulfilled, it is necessary to aggregate more
prototypes for a more accurate representation. For this aim, the prototype
with the highest qe is selected and is denoted as the error prototype e. A new
prototype is inserted in the place where e was computed. After the insertion,
all the FKCN parameters are reset to the initial values (except for the values
of the prototype vectors) and the training begins according to the standard
training process of FKCN. Note that the same value of the parameter τ1 is
used in each layer of the FGHSON. Thus, at the end of the process, a layer 1
is obtained with a FKCN1 formed by a set of prototype vectors W , see figure
1(a). In addition, a membership matrix U is obtained. This matrix contains
the membership degree of the dataset elements to the prototype vectors, as
explained in section 2.2.

3) Depth growth process
As soon as the breadth process of the first layer is finished, its prototypes are
examined for further growth (depth growth or hierarchical growth). In par-
ticular, those prototypes with a large quantization error will indicate which
clusters need a better representation by means of new FKCNs. The new
FKCNs form a second layer, for instance W1 and W3 in figure 1(a). The se-
lection of these prototypes is regulated by qe0 (calculated previously in step
1) and a parameter τ2 which is used to describe the desired level of granu-
larity in the data representation. More precisely, each prototype Wi in the
first layer that does not fulfill the criterion given in expression (10) will be
subject to hierarchical expansion.

qei < τ2 · qe0 (10)
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After the expansion process and creation of the new FKCNs, the breadth
process described in stage 2 begins with the newly established FKCNs, for
instance, FKCN2 and FKCN3 in figure 1(a). The methodology for adding
new prototypes, as well as the termination criterion of the breadth process,
is essentially the same as used in the first layer. The difference between the
training processes of the FKCNs in the first layer and all subsequent layers, is
that only a fraction of the whole input data is selected for training. This por-
tion of data will be selected according to a minimal membership degree (ϕ).
This parameter ϕ (an α − cut) represents the minimal degree of membership
for an observation to be part of the dataset represented by a prototype vector.
Hence, ϕ is used as a selection parameter, so all the observations represented
by Wi have to fulfill expression (11), where Uik is the degree of membership
of the Zk

th element of the dataset to the cluster i. As an example, figure 1(b)
shows the membership functions of the FKCNs in each layer, and how ϕ is
used as a selection criteria to divide the dataset.

ϕ < Uik (11)

At the end of the creation of layer two, the same procedure described in step
2 is applied to build layer 3 and so forth.

The training process of the FGHSON is terminated when no prototypes
require further expansion. Note that this training process does not necessarily
lead to a balanced hierarchy, i.e., a hierarchy with equal depth in each branch.
Rather, the specific distribution of the input data is modeled by a hierarchical
structure, where some clusters require deeper branching than others.

3 Experimental Testing

3.1 Iris Data Set

In this experiment the Iris dataset3 is used in order to show the adaptation of
the FGHSON to those areas where an absolute membership to a single proto-
type is not obvious. Therefore, FGHSON must (in an unsupervised manner)
look at the representation of the dataset on the areas where observations of
the same category share similar zones. For instance in the middle of the data
cloud formed by the Virginica and Versicolor observations (see figure 2(a)).

The parameters of the algorithm were set to τ1 = 0.2, τ2 = 0.03, and ϕ =
0.2. After training, a structure of four layers was obtained. The zero layer is
used to measure the whole deviation of the dataset as was presented in sec-
tion 2.3. The first layer consist of a FKCN with three prototype vectors as
shown in figure 2(b), this distribution of prototypes aim to represent three Iris

3 There are three categories in the data set : Iris Setosa, Iris Versicolor and Iris
Virginical. Each having 50 observations with four features: sepal length (SL),
sepal width (SW), petal length (PL), and petal width (PW).
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categories. The second layer (figure 2(c)) reaches a more fine-grained descrip-
tion of the dataset, placing prototypes in almost all of the data distribution,
adding prototypes in the zones where more representation was needed. Fi-
nally in figure 2(d), it is possible to observe an over population of prototypes
in the middle of the cloud of Virginica and Versicolor observations. This oc-
curs because this part of the dataset presents observations with ambiguous
membership in the previous layer, then, several prototypes are placed in this
new layer for proper representation. Hence, permitting those observations
to obtain a higher membership of its new prototypes. The outcome of the
process is a more accurate representation of this zone.

Fig. 2 Distribution of the prototype vectors, represented by stars, in each layer of
the hierarchy. (a) Iris data set. There are three Iris categories: Setosa, Versicolor,
and Virginica represented respectively by triangles, plus symbols, and dots. Each
has 50 samples with 4 features. Here, only three features are used: PL, SW, and
SL. (b) First layer (c) Second layer and (d) Third layer of the FGHSON, in this
layer prototypes are presented only in the zone where observations of Virginica and
Vesicolor share the same area, so the new prototypes represent each category in a
more accurate manner.
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3.2 Example Set

An exmaple set, as presented by Martinez et al [19] is used in order to show
the capabilities of the FGHSON to represent a dataset that has multiple
dimensionalities. In addition, it is possible to illustrate how the model stops
the growing process in those parts where the desired representation is reached
and keep growing where a low membership or poor representation is present.
The parameters of the algorithm were set to τ1 = 0.3, τ2 = 0.065, and ϕ =
0.2. Four layers were created after training the network. In figure 3(a) the
first layer is shown, in this case seven prototypes were necessary to represent
the dataset at this level, one for the 1D oval, one for the 2D plane and five for
the 3D parallelepiped (note that there are no prototypes clearly associated
to the line).

Fig. 3 Distribution of the prototype vectors (represented by black points) (a) First
layer (b) Second layer (c) Third layer.

In the second layer shown in the figure 3, a more accurate distribution
of prototypes is reached, so it is possible to observe prototypes adopting the
form of the dataset. Additionally, in regions where the quantization error was
large, the new prototypes allow a better representation (e.g., along the line).
In layer three (see figure 3(c)), no more prototypes are needed to represent the
circle, the line and the plane; but a third hierarchical expansion was necessary
to represent the parallelepiped. In addition, due to the data density in the
parallelepiped, many points are members of multiple prototypes, so several
prototypes were created.

3.3 Tuning the Model Parameters

In order to explore the performance of the algorithm, different values for
the parameters ϕ, τ1 and τ2 were tested using the Iris dataset. The tests
were performed using ten different values of τ1 (breadth parameter), ten of
τ2 (depth parameter) and eight of ϕ (α − cut), forming 800 triplets. For each
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triplet (ϕ, τ1 and τ2) a FGHSON was trained using the following fixed param-
eters: tmax = 100 (maximum number of iterations), ε= 0.0001 (termination
criterion) and m0 = 2 (fuzzification parameter).

Several variables were obtained in order to measure the quality of the
networks created for every FGHSON generated; for instance the number of
hierarchical levels of the obtained network, the number of FKCNs created
for each level, and finally the quantization error by prototype and level. The
analysis of these values will allow discovery of the relationships between the
parameters (ϕ, τ1 and τ2) and the topology of the networks (represented in
this experiment by the levels reached for each network and the number of
FKCN created). In addition, it will be possible to observe the relationship
between the quantization errors of prototypes by level and the parameters
of the algorithm. This activity makes it possible for us to find values of the
parameters that allow us to build the most accurate structure, based on the
number of prototypes, the quantization error and the number of levels present
in the network.

Due the large amount of information involved, a graphical representation
of the obtained data was used in order to facilitate visualization of the results.
For this, 3D plots were used as follows: the parameter τ1 (which regulates the
breadth of the networks) and the parameter τ2 (which regulates the depth of
the hierarchical architecture) are shown on the x-axis and y-axis respectively.
The z-axis shows the quantity of levels in the hierarchy (see figure 4 and
figure 5 ). Each 3D plot corresponds to one fixed value of ϕ. Hence, eight
3D plots represent the eight different values evaluated for ϕ, then each 3D
plot contains 100 possible combinations of the duple (τ1,τ2) for a specific ϕ.
Therefore, analysis of τ1, τ2 and ϕ and the levels of the 800 networks were
generated and plotted.

Furthermore, additional information was added to the 3D plots. The num-
ber of FKCNs created for level were represented by a symbol in the 3D plots
(see figure 4 and figure 5 left side). The higher quantization error of the pro-
totypes that were expanded is shown in a new group of 3D plots; in others
words this prototype is the “father” of the prototypes in that level4. The
rounded value of the quantization error is shown as a mark in the 3D plot
for each triplet of values, in each level (see figure 4 and figure 5 right side).

Examining the obtained results, there are some interesting results related
to the quantization error and the topology of the network. For instance, figure
4 and figure 5 show the different networks created. It can be seen that for
values of τ2 above 0.3 the model generates networks with just one level, so
an interesting area to explore lies between the values of τ2 = 0.1, 0.2 and 0.3.
With respect to the quantization error (figure 4 and figure 5 right side) for
almost all values of ϕ, the lower quantization error with the lower number of
4 For this reason, in level one all the values are 291 (see figure 4 and figure 5 right

side) because the prototype “father” that is expanded has the same quantization
error for all networks; in the case of the first level this error is called qe0, as is
described in section 2.3.
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Fig. 4 The figure has 3D plots showing the results obtained using ϕ = 0.1, 0.2, 0,3
and 0.4. On the left side it is possible observe the levels obtained for each triplet
(ϕ, τ1, τ2), in addition the number of FKCN created for each level are represented
by a symbol. On the right side the higher quantization error of the prototypes that
were expanded is shown; in others words this prototype is the “father” (with higher
quantization error of the prototypes in that level). In the special case of the first
level all the values are 291, because the prototype “father” that is expanded has
the same quantization error for all the networks; in the case of the first level this
error is called qe0, as described in section 2.3.
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Fig. 5 The figure shows 3D plots of the results obtained using ϕ = 0.5, 0.6, 0.7
and 0.8, in addition the number of FKCN created for each level are represented by
a symbol. On the right side the higher quantization error of the prototypes that
were expanded is shown; in others words this prototype is the “father” (with higher
quantization error) of the prototypes in that level.
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Fig. 6 Structures obtained tuning the model with the values (a) ϕ = 0.1, τ1 =
0.2, τ2 = 0.1 (b) ϕ = 0.3, τ1 = 0.2, τ2 = 0.1, and (c) ϕ = 0.3, τ1 = 0.2, τ2 = 0.1.
In this figure it is possible to observe the distribution of the prototype vectors; the
prototypes of the first level are represented by circles and the prototypes of the
second level are represented by triangles.

levels was presented in the points (τ1 = 0.1, τ2 = 0.2) and(or) (τ1 = 0.2, τ2
= 0.1) (see figure 4 and figure 5).

In the next step of the analysis, the value of the parameters which gener-
ated the best networks so far were selected, based on the premise that the
most accurate network has to present a lower number of levels, FKCNs, and
a lower quantization error. For a selected group of three networks (see table
1), the distribution of the prototypes on the dataset were plotted in order to
analyze how the prototypes of these selected networks had been adapted to
the dataset (see figure 6).

Some remarks could be made about the plots obtained. In the first example
(ϕ = 0.1, τ1 = 0.2, τ2 = 0.1) shown in figure 6(a), there are four prototypes in
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Table 1 Parameters and results of the best networks selected

ϕ τ1 τ2 Levels qea FKCNs

0.1 0.2 0.1 2 43 3
0.3 0.2 0.1 2 50 2
0.6 0.2 0.1 2 50 1
a The higher quantization error of the “father” prototype of the prototypes in that

level.

the first level of the hierarchy; these prototypes represent four classes5. Then,
the prototypes of this layer represent the three classes of iris, in addition they
also take the problematic region between Versicolor and Virginica as a fourth
class. Furthermore, new prototypes are created in the second layer in order to
obtain a more accurate representation of the dataset, creating a proliferation
of prototypes. This phenomena is due to the low ϕ (0.1) being selected. This
is because the quantity of elements represented for each prototype is large
(due to low membership, a lot of data can be a member of one prototype)
so, many prototypes are necessary to reach a low quantization error.

In the next example with ϕ = 0.3, τ1 = 0.2, τ2 = 0.1, it is possible observe
(figure 6(b)) the three prototypes created in the first level. In this case the
number of the prototypes matches the number of classes in the iris dataset.
Nevertheless, there is (as in the previous example) an abundance of pro-
totypes in the Virginica-Versicolor group. But in this case the number of
prototypes is lower compared with the preceding example, showing how ϕ
affects the quantity of prototypes created.

Finally, in the last example with ϕ = 0.6, τ1 = 0.2, τ2 = 0.1. Three proto-
types are created in the first level of the network matching the classes of the
Iris dataset (figure 6(c)); additionally, in the second layer one of the previous
prototypes is expanded to three prototypes in order to represent the fuzzy
areas of the data set. This last network presents the lower values of vector
quantization, levels of hierarchy, and FKCNs; so it is possible to select this as
the more accurate topology. Consider the previously defined premise which
said that the most accurate network had to present lower number of levels,
number of FKCNs, and the lower quantization error.

4 Conclusion

The Fuzzy Growing Hierarchical Self-organizing Networks are fully adaptive
networks able to hierarchically represent complex datasets. Moreover, they
allow a fuzzy clustering of the data, allocating more prototype vectors or
5 It knows that there are three classes (iris Setosa, Virginica and Versicolor) but

the fourth exists in an area where Versicolor and Virginica present similar char-
acteristics.
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branches to heterogeneous areas or to regions where the data have similar
membership degree to several clusters. This property can help to better de-
scribe the structure of the dataset and the inner data relationships.

In this book chapter the effects of using different values for the parameters
of the algorithm, have been presented using the Iris dataset as an example. It
was shown how the different parameters affect the topology and quantization
error of the networks created. In addition, some of the better networks created
were examined in order to show how different representations of the same
dataset can be obtained with similar accuracy.
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