Avoiding Prototype Proliferation in Incremental
Vector Quantization of Large Heterogeneous
Datasets

Héctor F. Satizabal, Andres Pérez-Uribe, and Marco Tomassini

Abstract. Vector quantization of large datasets can be carried out by means of an
incremental modelling approach where the modelling task is transformed into an
incremental task by partitioning or sampling the data, and the resulting datasets are
processed by means of an incremental learner. Growing Neural Gas is an incremen-
tal vector quantization algorithm with the capabilities of topology-preserving and
distribution-matching. Distribution matching can produce overpopulation of proto-
types in zones with high density of data. In order to tackle this drawback, we intro-
duce some modifications to the original Growing Neural Gas algorithm by adding
three new parameters, one of them controlling the distribution of the codebook and
the other two controlling the quantization error and the amount of units in the net-
work. The resulting learning algorithm is capable of efficiently quantizing large
datasets presenting high and low density regions while solving the prototype prolif-
eration problem.

Keywords: Large Datasets, Vector Quantization, Topology-Preserving Networks,
Distribution-matching, Prototype Proliferation, Growing Neural Gas Algorithm.

Héctor F. Satizabal

Institut des Systémes d’Information (ISI), Hautes Etudes Commerciales (HEC),
Université de Lausanne, Switzerland

e-mail: Hector.SatizabalMejia@unil.ch

Andres Pérez-Uribe

Reconfigurable and Embeded Digital Systems (REDS), University of Applied Sciences of
Western Switzerland (HES-SO) (HEIG-VD)

e-mail: andres .perez-uribeheig-vd.ch

Marco Tomassini

Institut des Systemes d’Information (ISI), Hautes Etudes Commerciales (HEC), Université
de Lausanne, Switzerland

e-mail: Marco.Tomassini@unil.ch

L. Franco et al. (Eds.): Constructive Neural Networks, SCI 258, pp. 243
springerlink.com (© Springer-Verlag Berlin Heidelberg 2009

Hector.SatizabalMejia@unil.ch
andres.perez-uribe@heig-vd.ch
Marco.Tomassini@unil.ch

244 H.F. Satizabal, A. Pérez-Uribe, and M. Tomassini

1 Introduction

Processing information from large databases has become an important issue since
the emergence of the new large scale and complex information systems (e.g., satel-
lite images, bank transaction databases, marketing databases, internet). Extracting
knowledge from such databases is not an easy task due to the execution time and
memory constraints of actual systems. Nonetheless, the need for using this informa-
tion to guide decision-making processes is imperative.

Classical data mining algorithms exploit several approaches in order to deal with
this kind of dataset [8] [3]. Sampling, partitioning or hashing the dataset drives the
process to a split and merge, hierarchical or constructive framework, giving the
possibility of building large models by assembling (or adding) smaller individual
parts. Another possibility to deal with large datasets is incremental learning [9]. In
this case, the main idea is to transform the modelling task into an incremental tas
by means of a sampling or partitioning procedure, and the use of an incremental
learner that builds a model from the single samples of data (one at a time).

Moreover, large databases contain a lot of redundant information. Thus, having
the complete set of observations is not mandatory. Instead, selecting a small set of
prototypes containing as much information as possible would give a more feasible
approach to tackle the knowledge extraction problem. One well known approach
to do so is Vector Quantization (VQ). VQ is a classical quantization technique that
allows the modelling of a distribution of points by the distribution of prototypes or
reference vectors. Using this approach, data points are represented by the index of
their closest prototype. The codebook, i.e. the collection of prototypes, typically has
many entries in high density regions, and discards regions where there is no data [[I].

A widely used algorithm implementing VQ in an incremental manner is Grow-
ing Neural Gas (GNG) [[7]. This neural network is part of the group of topology-
representing networks which are unsupervised neural network models intended to
reflect the topology (i.e. dimensionality, distribution) of an input dataset [12]. GNG
generates a graph structure that reflects the topology of the input data manifold
(topology learning). This data structure has a dimensionality that varies with the di-
mensionality of the input data. The generated graph can be used to identify clusters
in the input data, and the nodes by themselves could serve as a codebook for vector
quantization [3]].

In summary, building a model from a large dataset could be done by splitting
the dataset in order to make the problem an incremental task, then applying an
incremental learning algorithm performing vector quantization in order to obtain
a reduced set of prototypes representing the whole set of data, and then using the
resulting codebook to build the desired model.

Growing Neural Gas suffers from prototype proliferation in regions with high
density due to the absence of a parameter stopping the insertion of units in
sufﬁciently-representecﬂ areas. This stopping criterion could be based on a local

' A learning task is incremental if the training examples used to solve it become available
over time, usually one at a time [9].
2 Areas with low quantization error.

Avoiding Prototype Proliferation 245

measure of performance. One alternative that exploits this approach to overcome
the aforementioned drawback was proposed by Cselenyi [4]. In this case, the pro-
posed method introduces eight new parameters to the GNG algorithm proposed by
Fritzke [[7]. In our case, we propose a modification that adds three new parameters
to the original GNG algorithm in order to restrict the insertion of new units due
to points belonging to already covered areas. This approach promotes the insertion
of new units in areas with higher quantization error in order to produce network
structures covering a higher volume of data using the same number of units.

The rest of the article is structured as follows. In section [2] we make a brief de-
scription of the original GNG algorithm. Section 3] describes the proposed modifi-
cations made to the algorithm. Section [4] describes some of the capabilities of the
resulting method using some “toy” datasets. Section [5lshows two tests of the mod-
ified algorithm with a real large size dataset and finally, in section [6]l we give some
conclusions and insights about prototype proliferation and the exploitation of large
datasets.

2 Growing Neural Gas

Growing Neural Gas (GNG) [[7]] is an incremental point-based network [2]] which
performs vector quantization and topology learning. The algorithm builds a neural
network by incrementally adding units using a competitive hebbian learning strat-
egy. The resulting structure is a graph of neurons that reproduces the topology of the
dataset by keeping the distribution and the dimensionality of the training data [3].

The classification performance of GNG is comparable to conventional ap-
proaches [10] but has the advantage of being incremental. This gives the possibility
of training the network even if the dataset is not completely available all the time
while avoiding the risk of catastrophic interference. Moreover, this feature makes
GNG also suitable for incremental modelling taks where processing a large dataset
is not possible due to memory constraints. In such cases, one should proceed in two
steps. First, the dataset of the process to be modelled should be split in smaller parts
having a size that the system can manage. Second, the resulting parts should be
used to train a model like GNG by feeding incrementally each one of the individual
datasets resulting from the partitioning procedure. In summary, the methodology
consists of transforming the modelling task into an incremental-modelling task, and
training an incremental learner in order to build a model of the complete dataset [9].

The algorithm proposed by Fritzke is shown in table [l In such an approach,
every A iterations (step 8), one unit is inserted halfway between the unit ¢ having
the highest error and its neighbour f having also the highest error. Carrying out this
insertion without any other consideration makes the network converge to a structure
where each cell is the prototype for approximately the same number of data points
and hence, keeping the original data distribution.

As an example, a GNG network was trained using the dataset shown in figure
[[l and the training parameters shown in table 2l These values were selected after
several runs of the algorithm.

246

H.F. Satizabal, A. Pérez-Uribe, and M. Tomassini

Table 1 Original growing neural gas algorithm proposed by Fritzke.

Step 0:
Step 1:

Step 2:

Step 3:
Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:
Step 10:

Start with two units a and b at random positions w, and wy, in R”

Generate an input signal £ according to a (unknown) probability density func-
tion P (&)

Find the nearest unit s; and the second-nearest unit s,
Increment the age of all edges emanating from s

Add the squared distance between the input signal and the nearest unit in input
space to a local counter variable:

Aerror(s1) = ||ws, —‘:HZ M

Move s; and its direct topological neighbours towards & by fractions €, and &,
respectively, of the total distance:

Aws, = € (& —wy,) 2)
Awy, =€, (& —wy) for all direct neighbours 7 of s 3)

If 51 and s, are connected by an edge, set the age of this edge to zero. If such an
edge does not exist, create it

Remove edges with an age larger than d,y. If the remaining units have no
emanating edges, remove them as well

If the number of input signals generated so far is an integer multiple of a param-
eter A, insert a new unit as follows:

Determine the unit ¢ with the maximum accumulated error.
Insert a new unit » halfway between ¢ and its neighbour f with the largest
error variable:

w,=0.5 (wq + Wf) 4)

o Insert edges connecting the new unit r with units ¢ and f, and remove the
original edge between g and f.

e Decrease the error variables of ¢ and f by multiplying them with a constant
o Initialize the error variable of r with the new value of the error variable
of g.

Decrease all error variables by multiplying them with a constant d

If a stopping criterion (e.g., net size or some performance measure) is not yet
fulfilled go to step 1

Figure [2] shows the position and distribution of the 200 cells of the resulting
structure. As we can see, the distribution of each one of the variables is reproduced
by the group of prototypes required.

The GNG algorithm is a vector quantizer which places prototypes by perform-
ing entropy maximization [6]. This approach, while allowing the vector prototypes

Avoiding Prototype Proliferation

Fraquency
1000 1500 2000 2500 3000

500

a

1000

=
=
2

247

Fig. 1 a) Two dimensional non-uniform data distribution. b) Histogram of variable X. c)

Histogram of variable Y.

10

04

Frequency

40

30

0

Frequency

15 20

10

02
L
@
=)

oo
o |edece o © o @

ST T T T T T T T T 1 T T T T T 1
0.0 0z

04 06 03 00 02 04 05 0B 00 02 04 05 03 10
a) ~ b) * c) Y

Fig. 2 Positions of neurons of the GNG model. a) Position of the neuron units. b) Distribution
of X. ¢) Distribution of Y.

Table 2 Parameters for the Growing Neural Gas algorithm.

Parameter & & A Amax o d

value 0.05 0.005 100 100 0.5 0.9

to preserve the distribution of the original data, promotes the overpopulation of
vector prototypes in high density regions, and therefore, this situation is desirable if
the goal is a distribution-matching codebook. Conversely, if we have a huge dataset
where there is a lot of redundant information, and we want to keep only a relatively
small number of prototypes describing the data with some distortion, then we are
not interested in reproducing the data distribution. Instead, we would want to dis-
tribute the prototypes over the whole volume of data without exceeding a maximum
quantization error or distortion. In such a case, some modifications to the original
algorithm are needed in order to modulate the distribution matching property of the
algorithm, and therefore, replacing the entropy maximization behaviour in high den-
sitiy regions by an error minimization policy being capable of stopping the insertion
of prototypes.

248 H.F. Satizabal, A. Pérez-Uribe, and M. Tomassini

3 Proposed Modifications to the Algorithm

This section describes the three main modifications we propose. As already men-
tioned, the main goal of modifying the original algorithm is avoiding prototype
proliferation in high density regions of data, or in other words, to modulate the dis-
tribution matching property of the algorithm. The modified version adds three new
parameters to the original algorithm, whose operation is explained in the following
subsections.

3.1 Modulating the Local Measure of Error

The criterion driving the insertion of units in the GNG algorithm is the accumulated
error of each unit (equation [I}). This local error measure grows each time a cell
becomes the winner unit (i.e. the closest unit to the current data point), producing
the insertion of more cells in zones with higher densities of data.

In order to attenuate that effect, we propose the error signal Aerror when it is
produced by a data point having a quantization error smaller than a threshold gE by
multiplying it by a factor A, as show in equation[3

accumulatedError + Aerror if Aerror > qE
accumulatedError+ (hx Aerror) if Aerror < gE

where 0 <h <1

&)

accumulatedError = {

3.2 Modulating the “Speed” of Winner Units

The proliferation of prototypes could also be due to neuron movement. Neuron units

located in zones with higher densities are chosen as winners with higher probability,

attracting their neighbours belonging to less populated zones. As in the previous

case, parameter & can be used to modulate the change of position, or speed, of the

units in each iteration, replacing equations2]andBl by equations[6l and 7l
& (&E—wy) if Aerror > gE

-) (6)
hxg,(§ —wy,) if Aerror < gE

& (E—wy) if Aerror > gE

Awp, = { ik o (& — wp) if Aerror < gE for all direct neighbours n of 51 (7)

3.3 Modulating the Overlapping of Units

Parameter gE is the radius of a hypersphere determining the region of influence of
each prototype. These regions of influence could overlap to a certain extent. In our
approach this amount of superposition can be controlled by a parameter sp. Every A
iterations (step 8), one unit is inserted halfway between the unit ¢ having the highest

Avoiding Prototype Proliferation 249

Table 3 Proposed modification to the original algorithm.

Step 8: If the number of input signals generated so far is an integer multiple of a param-
eter A, insert a new unit as follows:

Determine the unit ¢ with the maximum accumulated error.
Determine the unit f in the neighbourhood of ¢ with the maximum accumu-
lated error.

e Calculate the distance dist between units ¢ and f.

dist = |lg— £ ®)
e Calculate the available space between the two units as follows:
available = dist — qF 9)
If equation [[Qlyields true, goto step 9.

(available > (sp x gE)) (10)
where 0 <sp <1

Else,

e Insert a new unit » halfway between ¢ and its neighbour f with the largest

error variable:
Wr:O.S(Wq+Wf> (11)

e Insert edges connecting the new unit r with units ¢ and f, and remove the
original edge between ¢ and f.

e Decrease the error variables of ¢ and f by multiplying them with a constant
o Initialize the error variable of r with the new value of the error variable
of g.

error and its neighbour f having also the highest error (see equation). Knowing
the distance between unit ¢ and unit f (equation[§)), and taking the quantization error
qFE as the radius of each unit, one could change the step 8 of the original algorithm
proposed by Fritzke as shown in table Bl Hence, we propose to insert a new unit as
in the original version (equation[IT)), but only if there is enough place between unit
g and unit f (equation [I0).

3.4 Insights about the Proposed Modification

In summary, the proposed modifications add three parameters, gE, sp and h, to
the original GNG algorithm. Parameters quantization error gE and superposi-
tion percent sp depend on the application and are strongly related. Both con-
trol the amount of units in the resulting neural network structure, the former by

250 H.F. Satizabal, A. Pérez-Uribe, and M. Tomassini

controlling the region of influence of each unit, and the latter by controlling the
superposition of units. These natural meanings allow them to be tuned according to
the requirements of each specific application.

In a less obvious sense, parameter 4 controls the distribution of units between
high and low density areas, modulating the distribution-matching property of the
algorithm. In order to do so, parameter # modulates the signal that drives the inser-
tion of new units in the network only if the best matching neuron fulfills a given
quantization error condition. In this way, the algorithm does not insert unnecessary
units in well represented zones, even if the local error measure increases due to high
data density. Some examples exploring this parameters are given in section[dl

4 Toyset Experiments

In section 21 a non-uniform distribution of points in two dimensions was used to
train a GNG network. Figure[2shows a high concentration of prototypes in the zone
with higher density due to the property of density matching of the model. This is
an excellent result if we do not have any constraint on the amount of prototypes.
In fact, having more prototypes increases the execution time of the algorithm since

0.8
0.8

{) __\' !

Y
(e LA g I'\ /'I
© / S~ T
g cs-xg}—\p{“jg) O ~
- = =y L i
- -+ ‘g-'{;j})"*}(‘) ‘r\.. \“)
s SR :}(>.. =T '

0.2

0.8

0.6

0.4

0.2

Fig. 3 Results of the modified algorithm varying parameter 4 (gE = 0.1 and sp = 0.75). a)
Using the original GNG algorithm b) Using 2 = 1.00 c¢) Using & = 0.75 d) Using & = 0.50 e)
Using h = 0.25 f) Using & = 0.00.

Avoiding Prototype Proliferation 251

o
T 0@
gy 00 Doy

o
%
&
&
¢80¢)G¢ 0000000000
s}
% ° ok
Lr]
)
2
L 00000

Fig. 4 The original and the modified version of GNG trained with a dataset like the one
used by Cselenyi [4]]. a) Training data. b) Algorithm of GNG by Fritzke. ¢) Modified GNG
algorithm, g£ = 0.1, h=0.1, sp = 0.5.

there are more units to evaluate each time a new point is evaluated, and this is not
desirable if we have a very large dataset. Moreover, we apply vector quantization
in order to reduce the number of points to process by choosing a suitable codebok,
and therefore, redundant prototypes are not desirable. This section shows how the
proposed modification to controlling prototype proliferation allows us to overcome
this situation. Two experiments with controlled toysets should help in the testing
and understanding of the modified algorithm.

Figure 3] shows the results of the modified algorithm when trained with the data
distribution showed in figure[Il Figure[3]shows how parameter h effectively controls
the proportion of units assigned to regions with high and low densities. In this case
the parameters gE and sp were kept constant (¢E = 0.1 and sp = 0.75) since their
effects are more global and depend less on the data distribution. The rest of the
parameters were set as shown in table[2l

Another interesting test consists of using a dataset similar to the one proposed
by Martinetz in the early implementations of this kind of network (neural gas,

252 H.F. Satizabal, A. Pérez-Uribe, and M. Tomassini

growing cell structures, growing neural gas) [5]]. This distribution of data has been
used by several researchers [4} [5] [7, [12} [13] in order to show the ability of the
topology-preserving networks in modelling the distribution and dimensionality of
data. The generated dataset shown in figure[d]a) presents two different levels of den-
sities for points situated in three, two and one dimension, and has points describing
a circle.

When this dataset is used, the model has to deal with data having different di-
mensionalities, different densities and different topologies. Figures @ b) and M ¢)
show the position of the units of two GNG networks, one of them using the original
algorithm and the other one using the modified version. Both structures preserve
the topology of the data in terms of dimensionality by placing and connecting units
depending on local conditions. Conversely, the two models behave differently in
terms of the distribution of the data. The codebook of the original GNG algorithm
reproduces the distribution of the training data by assigning almost the same quan-
tity of data points to each vector prototype. In the case of the modified version, the
parameter 4 set to 0.1 makes the distribution of prototypes more uniform due to the
fact that the insertion of new units is conditioned with the quantization error. Other
parameters were set as shown in table 2]

5 Obtaining a Codebook from a Large Dataset

This section summarizes a series of experiments using a large database of cli-
mate. The database contains information of the temperature (minimum, average, and
maximum) and the precipitation over approximately the last fifty years in Colom-
bia, with a spatial resolution of 30 seconds (~900m) (WORLDCLIM) [11]]. This
database is part of a cooperative project between Colombia and Switzerland named
“Precision Agriculture and the Construction of Field-Crop Models for Tropical
Fruits”, where one of the objectives is finding geographical zones with similar envi-
ronmental conditions, in order to facilitate the implementation or migration of some
crops. There are 1,336.025 data points corresponding to the amount of pixels cover-
ing the region, and each one has twelve dimensions corresponding to the months of
the year (i.e. one vector of twelve dimensions per pixel), and each month has four
dimensions corresponding to the aforementioned variables.

Processing the whole datasefd implies the use of a lot of memory resources and
takes hours of calculation. Moreover, the situation could get even worse if we con-
sider the use of the whole set of variables at the same time. Therefore, instead of
processing every pixel in the dataset, we could use vector quantization to extract a
codebook representing the data, and then to process this set of prototypes finding
the zones that have similar properties.

3 Finding zones with similar environmental conditions (i.e, temperature) by means of some
measure of distance.

Avoiding Prototype Proliferation 253

5.1 Incremental Learning of a Non-incremental Task

The first test was done by taking only the data corresponding to the average tem-
perature from the dataset described in section[3 The resulting dataset has 1,336.025
observations corresponding to the amount of pixels on the map, and each one has
twelve dimensions corresponding to the months of the year. Figure [3] shows the
resulting quantization errors using both algorithms.

Both neural networks have only 89 neuron units, which means having a codebook
with only 0.007% of the original size of the dataset. Nonetheless, the quantization
error is astonishingly low. This reduction is possible due to the low local dimension-
ality of the data, and the low range of the variables. Figure Blshows that the modified
algorithm presents quantization error values that are comparable to those from the
original version, but with a slightly different distribution.

Having a dataset which allows a representation over two dimensions has some
advantages. In this case, we can draw some information from the geographic dis-
tribution of the prototypes. Figure [0l shows the geographic representation of the
boundaries (white lines) of the Voronoi region of each prototype. The region de-
limited with a circle is a wide plain at low altitudes which presents homogeneous
conditions in terms of temperature. Therefore, this large amount of pixels belongs
to a high density zone in the space of twelve dimensions of our data. In this case,
this high density zone does not mean more information to quantize. However, the
original GNG algorithm is “forced” to proliferate prototypes due to its property of
distribution matching. Thus incurring in a high computational cost when one uses

0
?
>
& @
E]
o Yo}
e 2
[T
o
o
o
+
8 [T T T T 1
0 5 10 15 20 25
Quantization error [°C]
a)
Yo}
o
+
()
<
>
Q
c
[[Te)
=] o
o +
o o
\C o
o
o
+
8 [T T T 1

0 2 4 6 8

Quantization error [°C]
b)

Fig. 5 Histogram of the quantization error for a large dataset. a) Fritzke’s original GNG
algorithm. b) Modified GNG algorithm, gE = 1°C, h=0.1, sp =0.5.

254 H.F. Satizabal, A. Pérez-Uribe, and M. Tomassini

Fig. 6 Prototype boundaries. a) Original algorithm. b) Modified algorithm.

the resulting model. Instead of representing better these areas, our approach is to
avoid prototype proliferation in regions with regular conditions in order to better
represent heterogeneous zones (e.g., mountains). Figure [6lb) shows that the modi-
fied version of GNG places less prototypes in flat areas (i.e., high density regions)
than the original version (Figure [6la), and assigns more prototypes (i.e., cluster
centres) to the lower density points belonging to mountain areas (i.e., low density
regions).

5.2 Incremental Learning of an Incremental Task

Even if the dataset used in section [5.1] was a large one, and its codebook was ex-
tracted by using an incremental algorithm, it was not processed by using the incre-
mental approach. In this case, the whole dataset was used for training, and therefore,
the algorithm had access to every point in the dataset at every iteration. Incremen-
tal modelling, instead, proposes dividing the dataset, and training on an incremental

Table 4 Parameters for the modified Growing Neural Gas algorithm.

Parameter & & A Amax o d gError h sp

value 0.05 0.005 250 1000 0.5 0.9 0.1 0.1 0.5

Avoiding Prototype Proliferation 255

o - T T
o T —— —— —
- - - = = : 1
o _| = L L L 1 1 L
= I T T T I I I
<
= T T
ol — T
-
- - 1 .'_I_| !
- —_ —— —
= —— I 1 1 1 L 1
| — T T T
[=T - - - -
o T T T T T T T
l"’)ﬂ_ e - -
d_ 1 1
[] I 1 L]
o f i
=2 % — L . L
L= I T T I I I
-
T} -
[ir]
8w o -
v h
(5]] T
- - — == =3
I .
2 T 1 1 i
=] T T I I I
=
0 o
- B
— -1 ——
[S— | S—
L] a1 J 1
[~ I T T T T T T T
L
o
— h
o —_ ==
=] I | | I
M~ o
i -
ul
g =
=) ——
I T T T I I I
1 2 3 4 b B Fi
Steps

Fig. 7 Error distributions after each incremental step. Each line shows the evolution of the
quantization error for a given subset when adding new knowledge to the model.

learner by using the individual parts. This scenario was tested by using the complete
dataset mentioned in section

The complete dataset of climate with 1,336.025 data points and forty-eight di-
mensions was divided in an arbitrary way (i.e. from north to south) into 7 parts; six
parts of 200.000 observations, and one final part having 136.025 data points. These
individual subsets were used in order to incrementally train a model using our mod-
ified version of the GNG algorithm. The parameters used are shown in table 4]

256 H.F. Satizabal, A. Pérez-Uribe, and M. Tomassini

T -
=]
S = ——
o — — —— —— —
[=] T T T T 1
<
(\Io— -
<
3 7 = . - — -
(= —_ — 1 _ ?
[=] T T T T 1
I
=+ -1
° == — - —_—
- =3 = T
- L — — = —
=] T T T T 1
-
by -
2 +
= g— -
® . = —_— - - -
o — — = = =
=] T T T T 1
D"‘._
[=]
T
. = _ — - T
a | — — = = =
(=] T T T T 1
© o |
— T
o = — —_— o ——
[=] T T T T 1
.
!“-o'_
— -1 T T T -
a I———1 =" = I—"1 ==
o — 1 L 1 —1
T T T T 1
1 2 a 4 5
Steps

Fig. 8 Error distributions after each training-repetition step. Each line shows the evolution of
the quantization error for a given subset.

Frequency
2e+05 4e+05

0e+00
[

[T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Quantization error

Fig. 9 Histogram of the quantization error for codebook obtained with the modified version
of GNG, after feeding in the whole climate dataset

Figure [shows the evolution of the quantization error after adding each one of
the seven subsets. Each horizontal line of boxplots represents the error for a given
subset, and each step means the fact of training the network with a new subset. As

Avoiding Prototype Proliferation 257

Fig. 10 Prototype boundaries of the final GNG network projected on the geographic map.

can be seen in figure [7l the quantization error for a subset presented in previous
steps increases in further steps with the addition of new knowledge. Such behaviour
suggests that, even if the GNG algorithm performs incrementally, the addition of
new data can produce interference with the knowledge already stored within the
network. This undesirable situation happens if the new data are close enough to the
existant prototypes to make them move, forgetting the previous information.

In order to overcome this weakness of the algorithm, a sort of repetition policy
was added to the training procedure, as follows. The GNG network was trained sev-
eral times with the same sequence of subsets, from the first to the seventh subset. At
each iterationf] the algorithm had two possibilities: choosing a new observation from
the input dataset, or taking one of the prototype vectors from the current codebook
as input. The former option, which we named exploration, could be taken with a

4 Each time a new point is going to be presented to the network.

258 H.F. Satizabal, A. Pérez-Uribe, and M. Tomassini

pre-defined probability. Figure Bl shows the evolution of the quantization error for
five training-repetition steps of the algorithm, using an exploration level of 50%.

As can be seen in figure[8] the quantization error for each one of the seven subsets
decreases with each iteration of the algorithm. Such behaviour means that the GNG
network is capable of avoiding catastrophic forgetting of knowledge when using
repetition. Moreover, after five iterations the network reaches a low quantization
error over the whole dataset. This result is shown in figure [0

The resulting network has 14.756 prototype vectors in its codebook, which rep-
resents 1.1% of the total amount of pixels in the database. The number of prototypes
is larger than in the case of the temperature because of the larger dimensionality of
the observations (i.e. forty-eight dimensions instead of twelve). Moreover, precipi-
tation data have a wider range than temparature, increasing the area where prototype
vectors should be placed.

Figure [L0 shows the Voronoi region of each prototype projected over the two-
dimensional geographic map. As in the previous case, one can see that prototypes
are distributed over the whole map, and they are more concentrated in mountain
zones, as desired.

Finally, after quantizing the dataset of 1,336.025 observations, the sets of similar
climate zones could be found by analyzing the 14.756 prototypes obtained from the
GNG network. This compression in the amount of data to be analyzed is possible
due to the existance of redundancy in the original dataset. In other words, pixels with
similar characteristics are represented by a reduced number of vector prototypes,
even if they are located in regions which are not geographically adjacent.

6 Conclusions

Nowadays, there is an increasing need for dealing with large datasets. A large dataset
can be split or sampled in order to divide the modelling task into smaller subtasks
that can be merged in a single model by means of an incremental learning tech-
nique performing vector quantization. In our case, we chose the Growing Neural
Gas (GNGQG) algorithm as the vector quantization technique. GNG allows us to get
a reduced codebook to analyse, instead of analysing the whole dataset. Growing
Neural Gas is an excellent incremental vector quantization technique, allowing us
to preserve the topology and the distribution of a set of data.

However, in our specific application, we found it necessary to modulate the topol-
ogy matching property of the GNG algorithm in order to control the distribution of
units between zones with high and low density. To achieve this, we modified the
original algorithm proposed by Fritzke by adding three new parameters, two con-
trolling the quantization error and the amount of neuron units in the network, and
one controlling the distribution of these units. The modified version still has the
property of topology-preservation, but contrary to the original version it permits
the modulation of the distribution matching capabilities of the original algorithm.
These changes allow the quantization of datasets having high contrasts in density

Avoiding Prototype Proliferation 259

while keeping the information of low density areas, and using a limited number of
prototypes.

Moreover, we tested the modified algorithm on the task of quantizing a heteroge-
neous set of real data. First, the difference in the distribution of prototypes between
the original and the modified version was tested by using the classical modelling
approach where the whole set of data is available during the training process. By
doing so, we verified that the modified version modulates the insertion of prototypes
in high density regions of data. Finally, we used the modified version of the algo-
rithm to perform an incremental modelling task over a larger version of the former
dataset. A repetition policy had to be added to the incremental training procedure
in order to carry out this test. This repetition strategy allowed the GNG network to
remember previous information, preventing catastrophic forgetting caused by new
data interfering with the already stored knowledge.

Acknowledgements. This work is part of a joint project between BIOTEC, CIAT,
CENICANA (Colombia) and HEIG-VD (Switzerland) named “Precision agriculture and
the construction of field-crop models for tropical fruits”. The financial support is given by
several institutions in Colombia (MADR, COLCIENCIAS, ACCI) and the State Secretariat
for Education and Research (SER) in Switzerland.

References

1. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)

2. Bouchachia, A., Gabrys, B., Sahel, Z.: Overview of Some Incremental Learning Algo-
rithms. In: Fuzzy Systems Conference. FUZZ-IEEE 2007, vol. 23-26, pp. 1-6 (2007)

3. Bradley, P., Gehrke, J., Ramakrishnan, R., Srikant, R.: Scaling mining algorithms to large
databases. Commun. ACM 45, 38-43 (2002)

4. Cselenyi, Z.: Mapping the dimensionality, density and topology of data: The growing
adaptive neural gas. Computer Methods and Programs in Biomedicine 78, 141-156
(2005)

5. Fritzke, B.: Unsupervised ontogenic networks. In: Handbook of Neural Computation,
ch. C 2.4, Institute of Physics, Oxford University Press (1997)

6. Fritzke, B.: Goals of Competitive Learning. In: Some Competitive Learning
Methods (1997), http://www.neuroinformatik.rub.de/VDM/research/
gsn/JavaPaper/ (Cited October 26, 2008)

7. Fritzke, B.: A Growing Neural Gas Learns Topologies. In: Advances in Neural Informa-
tion Processing Systems, vol. 7. MIT Press, Cambridge (1995)

8. Ganti, V., Gehrke, J., Ramakrishnan, R.: Mining very large databases. Computer 32, 38—
45 (1999)

9. Giraud-Carrier, C.: A note on the utility of incremental learning. Al Commun. 13, 215—
223 (2000)

10. Heinke, D., Hamker, F.H.: Comparing neural networks: a benchmark on growing neural
gas, growing cell structures, and fuzzy ARTMAP. IEEE Transactions on Neural Net-
works 9, 1279-1291 (1998)

http://www.neuroinformatik.rub.de/VDM/research/gsn/JavaPaper/
http://www.neuroinformatik.rub.de/VDM/research/gsn/JavaPaper/

260 H.F. Satizabal, A. Pérez-Uribe, and M. Tomassini

11. Hijmans, R., Cameron, S., Parra, J., Jones, P., Jarvis, A.: Very High Resolution Interpo-
lated Climate Surfaces for Global Land Areas. Int. J. Climatol 25, 1965-1978 (2005)

12. Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7, 507—
522 (1994)

13. Martinetz, T., Schulten, K.: A neural gas network learns topologies. Artificial Neural
Networks, 397-402 (1991)

	Avoiding Prototype Proliferation in Incremental Vector Quantization of Large Heterogeneous Datasets
	Introduction
	Growing Neural Gas
	Proposed Modifications to the Algorithm
	Modulating the Local Measure of Error
	Modulating the ``Speed'' of Winner Units
	Modulating the Overlapping of Units
	Insights about the Proposed Modification

	Toyset Experiments
	Obtaining a Codebook from a Large Dataset
	Incremental Learning of a Non-incremental Task
	Incremental Learning of an Incremental Task

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

