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Abstract. A novel method is presented to allow a machine controller to evolve
while the machine is acting in its environment. The method uses a single spiking
neural network with a minimum number of neurons and no initial connections. New
connections and neurons are grown by evaluating reward values which can represent
either the internal state of the machine or the rating of its task performance. This way
the topology and the level of connectivity of the network are kept to a minimum. The
method will be applied to a controller for an autonomous mobile robot.
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1 Introduction

Typically constructive neural networks are used to solve classification problems. It
has been shown that using this type of network results in less computation require-
ment, smaller topologies, faster learning and better classification [5, 9]. Addition-
ally, [4] shows that certain constructive neural networks can always be evolved to a
stage in which it can classify 100% of the training data correctly.

For machine controllers, classification is only a secondary issue, but still an im-
portant one, as will be discussed later. The main machine task is to select a suitable
action in a certain situation. It need not be the best possible action but must certainly
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be suitable. Much more important is that the action is selected in the required time:
machines, especially mobile robots, must act in real-time. In [10] real-time systems
are discussed and a definition is provided.

One approach to enable a machine acting in real-time is to create the controller in
advance and then use it on the machine without further intervention. This is the tra-
ditional way, but it works only for simple applications or it needs much development
time for more complex applications.

As machines are required to fulfil increasingly complex tasks, people have looked
for various possible solutions to this problem. On the one hand, methods were
sought to speed up the development of the controller, which is then used on the
machine. The other idea was to improve the controller when already in use.

Both approaches are useful and can also be combined, and have resulted in meth-
ods inspired by nature. Evolutionary algorithms are inspired by the evolution of life
an can be used to improve the controller. For example [23] presents a very effective
method for evolving neural networks that can be used to control robots.

However, the power of this approach is limited, because it does not work with a
single controller but with a whole population of controllers. More controllers require
more computational power, which either may not be available or if available, may
slow down the embedded computer thereby making this option too expensive. Of
course there could also be a population of machines and not only a population of
controllers, but the increasing expense in material and energy is obvious in this case.

Alternatively, machines or their controllers could be simulated on a computer,
but this only transfers several problems from the robot to the computer and involves
the additional problem of it being hard to simulate the complex environments that
robots should often act in.

On-line learning, which means adapting the machine controller while it is run-
ning, can help with overcoming the problems of evolutionary methods, but it does
not substitute them. The remainder of this chapter is dedicated to on-line learning.
In Sect. 2 we summarise the history of on-line learning up to the current state-of-
the-art methods and we identify remaining problems tackled in this chapter.

Section 3 shows the basic characteristics of a novel constructive machine con-
troller. The crucial issue of how feedback can be defined, how it is fed into the
controller and how it is used for basic learning strategies is discussed in Sect. 4.
Section 5 shows how the feedback is used for the more sophisticated methods of
growing new neurons and connections.

A simulation of a mobile robot was used to test the novel methodology. The
robot learns to wander around in a simulated environment avoiding obstacles, such
as walls. The results are presented in Sect. 6, and Sect. 7 draws some conclusions
and outlines future lines of work.

2 History of Machine Controllers

This section will provide a brief overview of the history of machine controllers. A
machine controller is needed as soon as a machine is required to behave differently
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in different situations. The controller decides which parts of the machine to adjust
(output) in which situation (input). The complexity of the controller increases with
the number of different situations that can be sensed and the number of different
actions that can be chosen.

We do not cover the history of control technologies (e.g. mechanical or electronic
control) here but we discuss control concepts with respect to control methods. Also
remote control is not given explicit consideration, because we interpret the remote
signals as an input to the actual controller.

2.1 Fixed Behaviour

Early controllers were developed so that they behaved in a strictly predefined way as
long as no error occurred. These controllers are still needed and it is hard to imagine
why they should not be needed in the future.

However, each decision of the machine is planned and programmed manually
and the number of situations that have to be considered grows exponentially:

NI = ∏Nv (1)

where the number of all input combinations NI is the product of all states that have
to be considered for the input variables Nv. Because of this, the development time
or the number of errors increases dramatically with the number of states that have
to be differentiated for an input variable and especially with the number of input
variables. This is without even considering the output side.

Consequently, there have been different approaches to tackle this problem. One
idea was to adapt the environment in which the machine is situated. For example
by situating a mobile robot in a laboratory where the ground is level and there is
constant standardized lighting the number of situations the controller has to consider
is minimised.

The problem is that mobile robots and other machines are usually not needed in a
quasi-perfect environment. Many robots are however required to fulfil increasingly
complex tasks in our real and complex world. The good news is that many of those
robots need not act in a perfect way but just in a way that is good enough. There is
some room for error and it is possible to concentrate on minimising the time required
to develop a controller.

Controllers that have a fixed behaviour for regular operations have one impor-
tant advantage and one important drawback by definition. The advantage is that
the machines do not change their behaviour in known situations: their behaviour
is predictable. The drawback is that the machines do not change their behaviour
in unknown situations either, which may result in intolerable errors. An increas-
ing complexity of the environment increases the probability for intolerable errors,
if the time for developing a controller that should work in it is not increased
significantly.
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2.2 Adaptive Behaviour

This problem has led to research in on-line adaptation processes for machines, espe-
cially for mobile robots used in real-world applications. Traditional methods work
with controller parts which all have a certain predefined task. Adaptation processes
can change the reactions to certain input, but the machine is still limited to the be-
haviour of preprogrammed modules of different complexity. An interesting example
of these adaptation methods was presented in [20].

Increased flexibility can be achieved by keeping the modules as simple as possi-
ble and as similar as possible. This way it is not only possible to change the interac-
tions between existing preprogrammed modules but it is also possible to change
those modules themselves. Additionally, it is possible to create completely new
modules.

Artificial neural networks can achieve a high level of flexibility and therefore are
a useful tool for reducing development time to a minimum. For example Alnajjar
and Murase [1] have shown that a controller consisting of a spiking neural network
(SNN) enables a robot to learn certain tasks successfully.

Spiking neurons, unlike traditional artificial neurons, encode the information they
send to other neurons, called postsynaptic neurons, in a sequence of spikes (Boolean
signals) instead of a single value. Spiking neurons can have a lot of features that are
impossible or at least difficult to implement with traditional neurons, which encode
their information in a single value and send them to other neurons at a particular
moment. In [12] some interesting features that can be implemented in different types
of spiking neural networks are discussed.

Some advantages of spiking neural networks compared to traditional neural net-
works are:

• Single spikes are not very important to the overall behaviour of the network.
This network behaviour is probabilistic and fuzzy and is therefore more robust
to errors. For example, if a neuron sends spikes at a slightly higher frequency,
it obtains slightly more influence; if a neuron sends a few additional spikes, its
influence lasts a little longer; if a spike is sent a little late, it may already be
compensated for by the next spike. There are no drastic effects as there would be
with wrong single values that transport the whole information.

• Spiking neurons can react faster to certain time-dependent input patterns (e.g.
a sound). Those input patterns can be easily implemented in spiking patterns
because of their time-dependent nature. If a time-dependent input pattern has to
be encoded in a single value, the controller has to wait some time before being
able to calculate a statistic value.

• Probably the most interesting advantage regarding reinforcement learning is that
feedback assignment is much easier with spiking neural networks. An action is
not initiated at a certain moment and then left alone, but rather it is encoded in
a continuous spike train. This way the neurons that are responsible for a certain
action can still be active when the machine starts to receive feedback for that
action. This issue is discussed in more detail in Sect. 4.3.
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2.3 Constructive Machine Controllers

For full flexibility, to create completely new behaviour that reacts to completely
new situations, the spiking neural network must be constructive. This means that
new connections and new neurons need to be created in certain circumstances.

Alternative approaches that try to generate neurons at the beginning and later
only change the connections of the network (e.g. “Echo State Networks” [14] and
“Liquid State Machines” [19]) have two main disadvantages for adaptive control
systems:

• Usually, not all parts of the network are needed for the control task. The unnec-
essary parts are processed anyway and decrease the performance of the system.

• It cannot be guaranteed that the network can learn all tasks successfully, because
its general structure is fixed after its random initialisation.

A very flexible and effective approach for classification problems is the “Grow-
ing Neural Gas” algorithm [7, 8], which is an improvement of the “Neural Gas”
algorithm [21]. Drawbacks of “Neural Gases” that are similar to the problems men-
tioned previously with “Echo State Networks” and “Liquid State Machines”, could
be solved successfully with the “Growing Neural Gas” algorithm.

Examples for constructive neural networks for classification problems without
the need for recurrent connections are “Support Vector Machines” [22] and the “Re-
cursive Deterministic Perceptron” [24].

In recent years some ideas for constructive methods have been published for
control problems. A typical test application for the adaptive controllers is to enable
a two-wheeled mobile robot to learn to run around while avoiding crashing into
obstacles.

In [17, 18] a robot controller is presented that creates neurons to map a certain
input pattern to an output using “pleasure cells”. In [2] a two-level control system
has been introduced. A low-level unit contains a number of spiking neural networks
which are all trained to perform the robot’s task in a local environment. The high-
level unit switches between the SNNs depending on the current environment or it
can create a new SNN, if it cannot find an SNN for the current environment.

The constructive neural network discussed in this chapter integrates the com-
plete control task into a single neural network. The construction method enables
the network to evolve from an initial stage with a minimum number of neurons and
no connections. Even basic movements are learnt autonomously (in [18] “random
cells” are used for random initial behaviour, in [2] the robot initially goes straight
forward). The main goal of the work presented here is to minimise the time for de-
veloping a highly adaptive control system by making it as flexible and autonomous
as possible.

3 A Constructive Machine Controller

Based on the issues we have discussed in the previous sections we present a con-
structive neural network that will enable a machine to learn to fulfil its tasks
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autonomously. In addition to the main task, the action selection, we also discuss
classification. In a machine controller, classification can be used to reduce the size
of the network.

A novel method is presented which not only includes the classification task and
the action selection task in a single neural network, but it is also capable of defining
the classes autonomously and it can grow new neurons and connections to learn to
select the correct actions from the controller’s experience based on reward values.
Positive and negative reward values build the feedback, which can be generated
internally, without human intervention. Alternatively it is possible for a human to
feed the controller with feedback during runtime acting as a teacher.

The initial neural network consists of a minimum number of neurons and no
connections. The designer of the controller need not concern him/herself with the
topology of the network. Only the interface from the controller to the machine has
to be defined, which reduces the design effort considerably.

The interface includes:

• Input neurons, which convert sensory input into values that can be sent to other
neurons. For our experiments we used spiking neurons, so the sensory values are
converted into spikes by the input neurons.

• Output neurons, which convert the output of the neural network into values that
can be interpreted by the actuators.

• A reward function, which feeds feedback into the machine controller.

3.1 Controller Characteristics

Our “growing” machine controller consists of a layered spiking neural network as
illustrated in Fig. 1.a, in which neurons send Boolean signals that transport the in-
formation depending on whether or not the presynaptic neuron (the first of two con-
nected neurons) was activated and fired (a spike). The hidden layer “B” contains
two neurons that store input combinations. One of them excites dendrite “a” via
axon “d”, which itself excites an output neuron. The neuron in layer “C” inhibits
the same output neuron by axon “c”. Also axon “b” inhibits that neuron but imple-
ments local inhibition. A neuron is activated when a certain threshold potential is
exceeded. The neuron potential is increased by spikes arriving at excitatory connec-
tions and decreased by spikes arriving at inhibitory connections. A basic explanation
of spiking neural networks can be found in [25].

For a controller system it is evident, that the action selection task needs to be
fulfilled. Classification of input signals and recursive classification of classes are
important issues, because this reduces the necessary number of neurons and con-
nections.

The use of sparse neural networks has been discussed in [5] and [9]. These
models result in fewer computational requirements and better development of the
network as well as smaller topologies. The main reason for obtaining smaller topolo-
gies when using classification is obvious:
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(a) (b)

Fig. 1 (a) Neural network topology after a short simulation period. For clarity not all con-
nections are shown. Layer A consists of the input neurons which are connected to sensors A
to F from the robot shown in (b). Layer D contains the motor neurons, connected to G and H
in (b).

If there are no specialised neurons that represent a certain class in the subsequent
layers in the network, all neurons of this class have to connect to the next layer
separately and not with a single connection from the specialised “class neuron”.
There is no problem if one neuron connects only to one other neuron. In this case no
additional connections are required. However, when a neuron connects to a second
neuron, only one additional connection is made instead of more connections from
all the neurons of a class. Also the total number of neurons is reduced if the neurons
represent the possible combinations of neurons in the previous layer, because in a
subsequent layer only the class neurons have to be considered.

To achieve an efficient topology along with action selection and classification,
in a single neural network, we separate the connections into two parts: artificial
dendrites and axons. An axon of the presynaptic neuron is connected to a dendrite
of the postsynaptic neuron. Excitatory connections have to be used for operations
that are similar to the logical AND and OR operations. For inhibitory connections
this separation is not necessary, because they represent an operation similar to the
logical NOT operation.

A dendrite has a low threshold potential and is activated when only one presy-
naptic neuron (or a few neurons) have fired a spike via their axons. All presynaptic
neurons are handled equally at this point (logical OR operation) and represent neu-
rons which are combined into one class. An axon weight defines to what degree one
presynaptic neuron belongs to the class.

The neuron finally fires only if a certain combination of dendrites has fired (logi-
cal AND operation). For this operation, the threshold of the neuron potential, which
is modified by the dendrites, is very high. This causes a neuron to select an action for
a certain combination of input signals. The dendrite weight defines the importance
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of a class in the action selection process. In our model a single neuron can fulfil both
tasks, classification and action selection, and it learns both tasks automatically.

In the following we show the computations performed when signals travel from
one neuron to another.

Input of a dendrite:
Id = ∑Oa+ ·wa+ (2)

where Id is the dendrite input. Oa+ is the output of an excitatory axon, which is 1
if the presynaptic neuron has fired and 0 otherwise. wa+ is the weight of the same
excitatory axon, which must be a value between 0 and 1.

Output of a dendrite:

Od =
1

1 + e−b·(Id−θd) (3)

where Od is the dendrite output and Id its input. θd is a threshold value for the
dendrite. b is an activation constant and defines the abruptness of activation.

Input of a neuron:
I j = ∑Od ·wd −∑Oa− ·wa− (4)

where I j is the input of the postsynaptic neuron j, Od is the output of a dendrite, wd

is the weight of this dendrite, Oa− is the output of an inhibitory axon and wa− is the
weight of this inhibitory axon. Dendrite weights and axon weights are in the range
[0,1] and all dendrite weights add up to 1.

Change of neuron potential:

Pj(t + 1) = δ ·Pj(t)+ I j (5)

where the new neuron potential Pj(t + 1) is calculated from the potential of the
last time step t, Pj(t), and the current contribution by the neuron input I j. δ is a
constant between 0 and 1 for recovering the resting potential with time (which is 0 in
this case).

The postsynaptic neuron is activated when its potential reaches the threshold θ j

and becomes a presynaptic neuron for neurons which its own axons are connected
to. After firing, the neuron resets its potential to the resting state. In contrast to
similar neuron models that are for example summarised by [15], a refractory period
is not implemented here.

4 Feedback and Reward Values

4.1 Calculation of Reward Values

The main challenge for the designer of a machine controller that uses the meth-
ods described in this chapter, is to define an appropriate reward function. Pos-
itive and negative reward values are fed into the neural network as explained
below and are used for all adaptation processes, like basic learning (adaptation of
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connection weights), creating new connections and creating new neurons (growing
mechanisms).

In our experiments we have used a single global reward value, which represents
a positive “rewarding“ or negative “aversive” feedback depending on the machine’s
performance in the task that it has been assigned. The objective is to create a network
which maximises positive feedback.

Depending on current measurements like fast movement, crashes, recovering
from crashes, or the energy level, the reward value is set from −1 (very bad), to
1 (very good). The challenge is to provide a useful value in all situations. For exam-
ple, as experiments have shown (see Sect. 6), a reward function that is not capable of
providing enough positive feedback may result in a machine malfunction, because
despite all of its effort to find a good action, it is not evaluated properly. Also uni-
form positive feedback may result in a similar situation because of a lack of contrast.

The reward value ρ(t), which is the result of the reward function at time t, has to
be back-propagated to all neurons, where it is analysed and used for the adaptation
mechanisms. To do so, the neurons of each layer, starting with the output layer and
going back to the input layer, calculate their own reward value. The value of the
output neurons is equivalent to the global reward value. All other neurons calculate
their reward as follows:

ρi(t) =
∑ρ j+(t)−∑ρ j−(t)

N+ + N−
(6)

where ρi(t) is the reward value of the presynaptic neuron i at time step t. ρ j+(t) is
the reward value of a postsynaptic neuron that has an excitatory connection from
neuron i, while j− refers to a postsynaptic neuron that has an inhibitory connection
from neuron i. N+ is the number of postsynaptic neurons of the first kind and N− is
the number of the other postsynaptic neurons.

4.2 Adaptation of Connection Weights

First the reward value of a neuron is used to adapt the connection weights. This is
done after the basic processes of Sect. 3 for each neuron. All calculations for all
neurons are done once at each time step t.

The reward value can be added to a learning rule as an additional factor. Dif-
ferent authors, all of them using different neuron functions and learning functions,
have shown that this surprisingly simple method can be used successfully to imple-
ment reinforcement learning in a neural network [3, 6, 13]. Networks no longer
need an external module that evaluates and changes the connections after each
processing step.

Activation Dependent Plasticity is used to adapt connection weights in the exper-
iments. Activation Dependent Plasticity (ADP) is based on Hebb’s ideas of strength-
ening connections that fire together [11]. As shown by [6, 13] reward can also be
integrated into the more sophisticated Spike Time Dependent Plasticity (STDP)
learning model.
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Adaptation of an excitatory axon weight (axon connected to dendrite):

wa+(t + 1) = wa+(t)+ ηa ·ρ j(t) ·φi ·φ j (7)

where wa+(t) and wa+(t + 1) are the axon weights before and after the adaptation.
ηa is the learning factor for axons and ρ j(t) is the current reward value of the post-
synaptic neuron. φi and φ j represent the recent activity of the presynaptic and the
postsynaptic neuron. In our experiments φi was kept between -1 and 0 for very little
activity and from 0 to 1 for more activity, φ j is kept between 0 and 1. For positive
reward much activity in the presynaptic neuron strengthens the axon weight if also
the postsynaptic neuron was active but little presynaptic activity weakens the axon
weight. A negative reward value reverses the direction of change.

Adaptation of a dendrite weight (always excitatory):

wd(t + 1) = wd(t)+ ηd ·ρ j(t) ·φd ·φ j (8)

where wd(t) and wd(t + 1) are the dendrite weights before and after the adaptation.
ηd is the learning factor for dendrites. φd represents the recent dendrite activity
(which joins the activity of the connected axons) and is kept between 0 and 1. ρ j(t)
and φ j are discussed with Equ. 7. When all dendrite weights of a neuron are adapted
they are normalised to add up to 1 again because of the dependencies between the
weights (see Sect. 3).

Adaptation of an inhibitory axon weight (axon connected to neuron):

wa−(t + 1) = wa−(t)−ηa ·ρ j(t) ·φi ·φ j (9)

where wa−(t) and wa−(t + 1) are the axon weights before and after the adaptation.
ηa, ρ j(t), φi and φ j are discussed in Equ. 7. Axons that are part of local inhibition,
were not changed in our experiments. Also if φi is negative, the weight was kept
equal. An inhibitory axon is strengthened, if it was not able to prevent bad feedback,
and it is weakened, if it tried to prevent good feedback.

4.3 Delayed Feedback

An important issue to consider when dealing with feedback from the environment
and the resulting rewards is delayed feedback. When weights are adapted and, as
discussed later, neurons are created based on the current reward, it may at first seem
to be the wrong time to do so. Typically, the feedback is received after the action
responsible is executed. In fact, the time difference can vary significantly.

However, because in spiking neural networks there is no single event that is re-
sponsible for an action, but a continuous flow of spikes, the discussed methods can
be efficient anyway. The input pattern, and hence the spiking pattern, usually does
not change rapidly if a certain feedback is received. Figure 2 shows an example
situation for this issue.
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Fig. 2 When a spiking neural network controls a machine, there are two short periods where
the assignment of the feedback to the corresponding action is problematic. Whenever an
action is active for a longer period the feedback can be assigned correctly to the active neurons
that are responsible for the current action.

Of course there remain situations in which it is difficult to assign the feedback
correctly, for example if there is a big time difference between action and feedback,
or if there are many competing actions or feedback values at the same time. How-
ever, even humans do not always arrive at the correct conclusions. They can deal
with very complex relations but not with all of them.

5 Autonomous Creation of the Neural Network

The methods that were discussed in Sect. 4 tune a neural network. They are neces-
sary to reinforce neural paths that were responsible for good actions and to weaken
and finally remove connections that made a neuron output classify incorrectly.

There are different methods that result in new connections or even new neurons.
If a neuron has no input connections, it can connect to a random new predecessor

in the previous layer. In our experiments the randomness was reduced by looking
for neurons that have similar relative positions. Such a new connection is always
excitatory and consists of a single axon and a single dendrite. This makes the post-
synaptic neuron (or better: its single dendrite) represent a new class and it has the
potential to carry out a new action when activated. Other neurons can be added to
the class by creating new axons occasionally. An axon that does not fit into the class
will be weakened by the mechanisms of Sect. 4.

New neurons are created to remember activation patterns that were responsible
for good or bad actions. Liu, Buller and Joachimczak have already shown that corre-
lations between certain input patterns and a certain reward can be stored by creating
new neurons [17, 18]. For this task we add a new potential value to each neuron. The
common “neuron potential” function defines when a neuron fires a spike. Our new
“reward potential” function defines when a neuron has enough feedback to create a
new neuron:

R j(t + 1) = δR ·R j(t)+ φ j ·ρ j(t) (10)

where R j(t + 1) is the new reward potential of neuron j while R j(t) is the old one.
φ j is the value for the recent activity that was also used in Sect. 4 and ρ j(t) is the
current reward value of neuron j.

When |R j| reaches a certain threshold θR (different thresholds for positive and
negative feedback are possible) all dendrites (excitatory connections) that were ac-
tive recently are evaluated. Young dendrites are ignored, because they have not yet
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proved themselves. For a dendrite with more than one axon it may be worth remem-
bering an activation combination. A single axon may still be interesting if there was
bad feedback, because the axon should have been inhibitory in this case. A list of
axons, that had an influence on the activation of the neuron, is kept. If this com-
bination is not yet stored in an existing preceding neuron, a new neuron is created
and each axon of the list is copied. However, each of the new axons is connected to
its own dendrite to record the combination. The new neuron will only be activated
when the same combination is activated again. When the reward potential is posi-
tive, the new neuron is connected to the existing one by a new axon to the currently
evaluated dendrite (neurons in layer B in Fig. 1.a and neurons in Fig. 3). A nega-
tive reward potential results in the addition of a new inhibitory axon to the existing
neuron (neuron in layer C in Fig. 1.a).

Generally, the new neuron is then inserted into the layer previous to the existing
postsynaptic neuron as shown in Fig. 3.a. The relative position of the new neuron
will be similar to the relative position of the existing one.

However, if one of the axons to the new neuron has its source in the layer the
new neuron should be inserted into, a new layer is created in front of the layer of
the existing postsynaptic neuron as shown in Fig. 3.b. This way the feed-forward
structure which our methods are based on can be preserved.

Once the new neuron is inserted, local inhibition will be generated. Experiments
have shown that local inhibition makes learning much faster and much more reli-
able (see Sect. 6). Hence, new inhibitory axons are created to and from each new
neuron. This inhibitory web has been automatically created within one layer in our
experiments. In more sophisticated future developments this web should perhaps be
limited to certain areas within a layer. Nested layers with neuron containers, which

(a) (b)

Fig. 3 (a) The new neuron n is created and active axons (a) are used to create new connections
(b) to it. Then the new neuron is connected to the existing one (c). In (b) the new layer H2 is
created before neuron n is inserted, because the output neuron already has a connection to a
neuron in layer H1.
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are basically supported by our implementation but are not used for the growing
mechanisms yet, could help with this task.

6 Experiments

6.1 Setup

Our novel method for the autonomous creation of machine controllers was tested in
a simulation of a mobile robot which moves using differential steering, as shown in
figure Fig. 1.b. The initial neural network consists of 12 input neurons (2 for each
sensor) and 4 output neurons (2 for each motor, see Fig. 1.a).

The input neurons are fed by values from 6 sonar sensors as shown in Fig. 1.b,
each sensor feeds the input of 2 neurons. The sonar sensors are arranged so that 4
scan the front of the robot and 2 scan the rear as shown in the figure. The distance
value is processed so that one input neuron fires more frequently as the measured
distance increases and the other neuron connected to the same sensor fires more
frequently as the distance decreases.

For the actuator control, the output connections are configured so that the more
frequently one of the output neurons connected to each motor fires, the faster this
motor will try to drive forward. The more frequently the other output neuron con-
nected to the same motor fires, the faster that motor will try to turn backwards. The
final speed at which each motor will drive is calculated by the difference between
both neurons.

Fig. 4 A simulated Peoplebot is situated in this simulated office provided by MobileR-
obots/ActivMedia.
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Fig. 5 The three curves show the reward values the robot received in simulation runs of the
same duration and starting from the same position. In “Run 1” only forward movement is
rewarded. The robot learns to hold its position to minimise negative feedback. In “Run 2”
“activity reward” was introduced. In “Run 3” the same reward algorithm is used as in “Run
2”, but in “Run 3” no or only small forward movement is punished. The robot learns to receive
positive feedback with time which makes it more stable.

With this experimental setup the robot should learn to wander around in the sim-
ulated environment shown in Fig. 4 while avoiding obstacles.

The original robot’s bumpers are included in the simulation and are used to de-
tect collisions with obstacles, and are used to penalise significantly the reward val-
ues when such a collision occurs. The reward is increased continuously as the robot
travels farther during its wandering behaviour. Backward movement is only accept-
able when recovering from a collision, therefore it will only be used to increase
the robot’s reward value in that case, while it is used to decrease this value for all
other cases. As time increases, linear forward movement will receive higher positive
reward and this will discourage circular movement.

6.2 Results

This section discusses the challenges when finding an appropriate reward function.
Additionally, we show the importance of local inhibition for the reliability of the
learning methods. Finally, we present some results considering the performance and
the topology of the constructive neural network.

The reward function that we have used in our experiments delivers −1 in the
case where the robot crashes into an obstacle. Backward movement is punished
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Fig. 6 “Run 1” shows the development of the reward value without local inhibition. This
contrasting method increases the produced reward values significantly in “Run 2”.

(negative value). There are two features that are not implemented in all of the three
simulation runs of Fig. 5: First, no or only small forward movement is punished;
second, backward movement is rewarded (positive value), if the robot received bad
feedback for a while, to keep the robot active.

Figure 6 shows the importance of local inhibition. Without local inhibition the
simulation run did not produce a single phase in which significant positive feedback
was received. Only short periods of positive reward can be identified where the robot
acted appropriately by chance. Local inhibition increases the contrast of spiking
patterns, which makes single neurons and hence single motor actions more powerful
and the assignment of reward to a certain spiking pattern more reliable.

Table 1 shows the results of a test of 50 simulation runs. In many cases the robot
was able to learn the wandering task with the ability to avoid obstacles. Each run of
the test sample was stopped after 20000 control cycles (processing the whole neural
network in each cycle).

Table 1 Results of 50 simulation runs.

Performance of the controller

Min. Max. Avg.
Total reward 664.82 7486.24 4014.02
Average reward 0.03 0.37 0.20
Maximum speed 657.00 1056.00 1015.92
Average speed 102.74 971.63 260.37
Crashes 0.00 13.00 4.50

Topology of the controller

Min. Max. Avg.
Neurons 16.00 38.00 22.46
Excitatory axons 14.00 178.00 45.28
Excitatory dendrites 4.00 139.00 27.88
Inhibitory axons 4.00 7.00 4.36
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The neural network contained no hidden neurons and no connections at the begin-
ning. Connections for local inhibition were created when the controller was started.
The speed values of the table are given in internal units of the simulation.

7 Conclusions and Further Work

We have shown that a neural network can be grown based on the reward measured
by a feedback function which analyses the performance of a task in real-time. The
neural network can control a machine such as a mobile robot in an unpredictable or
unstructured environment.

Since the controller constructs itself, only the input layer, the output layer and a
feedback function that measures the task performance of the machine and rewards
the controller have to be defined. This means that the task of the designer involves
only the definition of these elements, no effort is required for the actual design of
the network.

Because controlling the machine and learning from experience continuously
when running is integrated into a single and robust stage, the system can adapt to
completely new situations without changing any part of the control structure man-
ually. This involves three advantages in addition to the possibility of evolving a
control system from scratch:

1. The machine can learn to react appropriately in situations that it has encountered
previously but can use the experience it has gathered so far.

2. The machine can learn to handle changes to its hardware, for example if a sensor
breaks.

3. When new machines are developed, it may be possible to use the neural network
of established machines to reduce the time necessary for training them by starting
from a semi-optimal state rather than from scratch. This could not only help to
save time but also material, because a machine that has no knowledge at the
beginning may easily damage itself.

Further analysis and improvements of the growing methodology are necessary to
gain even better results from the growing methods for the neural network. For ex-
ample it will be necessary to investigate the behaviour of the system with concurrent
tasks and conflicting or noisy sensory data.

Also time dependent situations like action sequences and timed input (speech,
objects moving through a visual field, . . . ) will be important issues for future re-
search. Combining our results with other work may be very helpful for these issues,
for example using Spike Time Dependent Plasticity (STDP) methods and recurrent
connections. Another essential issue of further research is to investigate different
reward functions for different tasks, because this is the key to effective evolutions
of neural networks. Sophisticated reward functions will probably make a machine
learn its tasks sooner and fulfil its tasks better (faster, more precisely, . . . ).
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