
Active Learning Using a Constructive Neural
Network Algorithm

José L. Subirats, Leonardo Franco, Ignacio Molina, and José M. Jerez

Abstract. Constructive neural network algorithms suffer severely from overfitting
noisy datasets as, in general, they learn the set of available examples until zero error
is achieved. We introduce in this work a method for detect and filter noisy examples
using a recently proposed constructive neural network algorithm. The new method
works by exploiting the fact that noisy examples are in general harder to be learnt
than normal examples, needing a larger number of synaptic weight modifications.
Different tests are carried out, both with controlled and real benchmark datasets,
showing the effectiveness of the approach. Using different classification algorithms,
it is observed an improved generalization ability in most cases when the filtered
dataset is used instead of the original one.

1 Introduction

A main issue at the time of implementing feed-forward neural networks in classifi-
cation or prediction problems is the selection of an adequate architecture [1, 2, 3].

José L. Subirats
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,
Campus de Teatinos S/N, 29071 Málaga, Spain
e-mail: jlsubirats@lcc.uma.es

Leonardo Franco
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,
Campus de Teatinos S/N, 29071 Málaga, Spain
e-mail: lfranco@lcc.uma.es

Ignacio Molina
Departamento de Tecnologı́a Electrónica,, Universidad de Málaga,
Campus de Teatinos S/N, 29071 Málaga, Spain
e-mail: aimc@dte.uma.es

José M. Jerez
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga,
Campus de Teatinos S/N, 29071 Málaga, Spain
e-mail: jja@lcc.uma.es

L. Franco et al. (Eds.): Constructive Neural Networks, SCI 258, pp. 193–206.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

jlsubirats@lcc.uma.es
lfranco@lcc.uma.es
aimc@dte.uma.es
jja@lcc.uma.es

194 J.L. Subirats et al.

Feed-forward neural networks trained by back-propagation have been widely used
in several problems but still the standard approach for selecting the number of lay-
ers and number of hidden units of the neural architecture is the inefficient trial-by-
error method. Several constructive methods and pruning techniques [1] have been
proposed as an alternative for the architecture selection process but it is a research
issue whether these methods can achieve the same level of prediction accuracy. Con-
structive algorithms start with a very small network, normally comprising a single
neuron, and work by adding extra units until some convergence condition is met
[4, 5, 6, 7, 8]. A totally opposite approach is the used by pruning techniques, as
these methods start with large architectures and work by eliminating unnecessary
weights and units [9].

Despite the existence of several constructive algorithms, they have not been ex-
tensively applied in real problems. This fact is relatively surprising, given that they
offer a systematic and controlled way of obtaining a neural architecture together
with the set of weights, and also because in most cases they offer the possibility of
an easier knowledge extraction procedure. In a 1993 work, Smieja [10] argued that
constructive algorithms might be more efficient in terms of the learning process but
cannot achieve a generalization ability comparable to back-propagation neural net-
works. Smieja arguments were a bit speculative rather than based on clear results,
but nevertheless might explain the fact that constructive methods have not been
widely applied to real problems. In recent years new constructive algorithms have
been proposed and analyzed, and the present picture might have changed [8, 7].

One of the problems that affects predictive methods in general, is the problem of
overfitting [11, 12]. The problem of overfitting arises when an algorithm specializes
in excess in learning the available training data causing a reduction on the general-
ization ability, computed on unseen data. In particular, overfitting affects severely
neural network constructive algorithms as they, in general, learn towards zero error
on the training set. One of the strategies used in constructive algorithms for avoid-
ing overfitting is the search of very compact architectures, as models with fewer
number of parameters may suffer less from overfitting. Other standard methods to
avoid overfitting, like early stopping using a validation set or weight decay, can also
be applied to constructive methods but they tend to be computationally costly and
sometimes difficult to adapt to work in conjunction with some constructive algo-
rithms. When the input data is noisy, as it is normally the case of real data, the
simple use of compact architectures is not enough to avoid overfitting as it will
be shown later in this chapter. A possible solution to this problem might be the
implementation of methods that exclude noisy instances from the training dataset
[13, 14, 15, 16, 17, 18], in a process that is usually considered a pre-processing
stage. In this work, we refer to the whole problem of learning and filtering noisy
examples as “Active learning”, as we considered both stages together in an on-line
procedure in which noisy instances are eliminated during the learning procedure.
Nevertheless, we also show in this work that the new introduced filtering process
can be applied as a separate stage and the selected instances used later with any
available predictive algorithm. The usual name given to the process of selecting or
filtering some examples from the available dataset is “Instance selection” and we

Active Learning Using a Constructive Neural Network Algorithm 195

refer to [19] for previous work on the field. Instance selection can be also used for
reducing the size of the dataset in order to speed up the training process and can be
also lead to prototype selection when the selected data are very much reduced. The
approach taken in this chapter is to use the proposed instance selection method as a
pre-processing step , as way of improving the generalization ability of predictive al-
gorithms. The method is developed inside a recently introduced constructive neural
network algorithm named C-Mantec [20] (Competitive MAjority Network Trained
by Error Correction) and leads to an improvement in the generalization ability of the
algorithm, permitting also to obtain more compact neural network architecures. The
reduced, filtered, datasets are also tested with other standard classification methods
like standard multilayer perceptrons, decision trees and support vector machines,
analyzing the generalization ability obtained. This chapter is organized as follows:
Next we give details about the C-Mantec constructive neural network algorithm and
in Section 3 the method for eliminating noisy instances is introduced, to follow with
some experiments, results and conclusions.

2 The C-Mantec Algorithm

The C-Mantec algorithm is a constructive neural network algorithm that creates ar-
chitectures with a single layer of hidden nodes with threshold activation functions.
For the most general case of input data comprising 2 output classes, the constructed
networks have a single output neuron computing the majority function of the re-
sponses of the hidden nodes (i.e., if more than half of the hidden neurons are ac-
tivated the output neuron will be active). The case of multiclass classification will
be considered separately below. The learning procedure starts with an architecture
comprising a single neuron in the hidden layer and as the learning advances more
neurons are added every time the present ones are not able to learn the whole set of
training examples. The synaptic weight modification rule used at the single neuron
level is the thermal perceptron learning rule proposed by Frean [5, 21]. The thermal
perceptron rule is a modification of the standard perceptron rule [22] that incorpo-
rates a modulation factor that makes the perceptron to learn only inputs that are
similar to the already acquired knowledge, as the introduced factor limits the value
of the modifications of the synaptic vector. The idea behind the thermal perceptron
is to introduce stability to the standard perceptron for the case of non-linearly sep-
arable tasks and this is achieved by permitting large changes of the synaptic vector
only at the beginning and later on only allow small modifications.

We consider neurons with a threshold activation function receiving input signals
ψi through synaptic weights wi that are active if the synaptic potential, φ is larger
than zero. The synaptic potential is defined as:

φ = (∑
i

ψi ∗wi)−b. (1)

Note that the definition of the synaptic potential includes the value of the thresh-
old or bias, b, as this will be useful because for wrongly classified inputs the

196 J.L. Subirats et al.

absolute value of the synaptic potential, |φ |, quantifies the error committed as it
gives the distance to the bordering hyperplane dividing the classification regions.

The neuron model used is a threshold gate where the output of the neuron, S, is
given by a step function depending on the value of the synaptic potential.

S = f (p) =
{

1 if p ≥ 0
0 otherwise

(2)

As said above, the synaptic modification rule that is used by the C-Mantec al-
gorithm is the thermal perceptron rule for which the change of the weights, δwi, is
given by the following equation:

δwi = (t −S) ψi
T
T0

exp{−|φ |
T

} , (3)

where t is the target value of the example being considered, S represents the ac-
tual output of the neuron and ψ is the value of the input unit i. T is a parameter
introduced in the thermal perceptron definition, named temperature, T0 the starting
temperature value and φ , the synaptic potential defined in Eq. 1. For rightly classi-
fied examples, the factor (t −S) is equals to 0 and then no synaptic weight changes
take place. The thermal perceptron rule can be seen as a modification to the standard
perceptron rule where the change of weights is modified by the factor, m, equals to:

m =
T
T0

exp{−|φ |
T

} . (4)

At the single neuron level the C-Mantec algorithm uses the thermal perceptron
rule, but at a global network level the C-Mantec algorithm incorporates competition
between the neurons, making the learning procedure more efficient and permitting
to obtain more compact architectures [20]. The main novelty introduced in the new
C-Mantec algorithm is the fact that once a new neuron is added to the network,
the existing synaptic weights are not frozen, as it is the standard procedure in con-
structive algorithms. Instead, after an input instance is presented to the network all
existing neurons can learn the incoming information by modifying its weights in
a competitive way, in which only one neuron will learn the incoming information.
The norm in standard constructive algorithms is to freeze weights not connected to
the last added neurons in order to preserve the stored information, in the C-Mantec
algorithm this is not necessary as the thermal perceptron is a quite conservative
learning algorithm and also because the C-Mantec algorithm incorporates a param-
eter g f ac that further controls the size of the allowed changes in synaptic weights,
in particular when the Temperature is large when this large changes are allowed at
the single neuron level by the thermal perceptron.

The C-Mantec algorithm generates architectures with a single hidden layer of
neurons. The output neuron of the network computes the majority function of the
activation values of the hidden units and thus the set of weights connecting the
hidden neurons with the output are fix from the beginning and not modified during

Active Learning Using a Constructive Neural Network Algorithm 197

1. Start a network with one hidden neuron and one output
neuron.
2. Input a random training example and check the output of
the network.
3. If the input example is not rightly classified then:

3a. Compute the value of φ for all existing hidden neurons
that wrongly classify the input example.

3b. Modify the weights of the neuron with the smallest
value of φ, provided that the value of the factor m is larger
than the value of the parameter g f ac. Lower the internal
temperature of the modified neuron.

3c. If there is no neuron with a value of m larger than g f ac
then introduce a new neuron that learns the incoming example.
4. Go to instruction 2 until all examples are classified
correctly.

Fig. 1 Pseudocode of the C-Mantec algortihm

the learning procedure. As the output neuron computes the majority of the hidden
layer activations, a correct functioning of the network is a state in which for every
instance in the training set the output of more than half of the hidden units coincides
with the respective target value of the instances.

As mentioned before, the algorithm also incorporates a parameter named grow-
ing factor, gfac, as it adjustment affects the size of the resulting architecture. Once
an instance is presented and the output of the network does not coincide with the
target value, a neuron in the hidden layer will be selected to learn it if some con-
ditions are met. The selected neuron will be the one with the lowest value of φ
among those neurons whose output is different from the target one, but only if the
value of m (see Eq. 4) is larger than the gfac value, set at the beginning of the
learning process. Thus, the gfac parameter will prevent the learning of misclassified
examples that will involve large weight modifications, as for high values of T the
thermal perceptron rule would not avoid these large changes, that can cause insta-
bility to the algorithm. After a neuron modifies it weights, its internal temperature
value is lowered. In the case in which for a wrongly classified instance there are
no neurons available for learning, a new neuron is added to the network and this
unit will learn the current input, ensuring the convergence of the algorithm. After a
new unit is added to the network the temperature, T , of all neurons is reset to the
initial value T0 and the learning process continues until all training examples are
correctly classified. In Fig. 1 a pseudocode of the algorithm is shown, summarizing
the most important steps of the C-Mantec algorithm and in Fig. 2 a flow diagram of
the algorithm is shown.

Regarding the setting of the two parameters of the algorithm, T0 and gfac, sev-
eral experiments have shown that the C-Mantec algorithm is quite robust against
changes of these two parameters and the finding of some optimal values is not diffi-
cult. The parameter T0 (initial temperature) ensures that a certain number of learn-
ing iterations will take place, permitting an initial phase of global exploration for
the weights values, as for high temperature values larger changes are easier to be

198 J.L. Subirats et al.

Input random example

Select wrong neuron closest to the

right classifi cation region

acceptable for learning

Add a new neuron and reset

temperatures

Eliminate noisy instancesLearn using the thermal perceptron

FINISH

START

Training.Set.Count > 0

Is there neuron

that want learn?

YES

YES

YES

NO

NO

NO

Output = Target ?

Fig. 2 Flow diagram corresponding to the C-Mantec constructive algorithm.

accepted. The value of the parameter g f ac affects the size of the final architecture,
and it has been observed that different values are needed in order to optimize the
algorithm towards obtaining more compact architectures or a network with a better
generalization ability.

The convergence of the algorithm is ensured because the learning rule is very
conservative in their changes, preserving the acquired knowledge of the neurons
and given by the fact that new introduced units learn at least one input example.
Tests performed with noise-free Boolean functions using the C-Mantec algorithm
show that it generates very compact architectures with less number of neurons than

Active Learning Using a Constructive Neural Network Algorithm 199

existing constructive algorithms [20]. However, when the algorithm was tested on
real datasets, it was observed that a larger number of neurons was needed because
the algorithm overfit noisy examples. To avoid this overfitting problem the method
introduced in the next section is developed in this work .

3 The “Resonance Effect” for Detecting Noisy Examples

We introduce in this section a method designed to eliminate instances considered
noisy, as a way to increase the classification ability of predictive algorithms. It is
worth mentioning that deciding whether an input example is a true input datum or a
noise-contaminated one is a difficult issue that can in principle be carried out only
if one knows a priori the level of noise present in the system. However, a reason-
able approach is to discard suspicious noisy inputs and test the generalization ability
obtained, without making claims about whether the eliminated instances are noise
or not. The filtering method to be introduced is developed from an effect observed
during the application of the C-Mantec algorithm to real datasets. The effect, named
“resonance effect” can be exemplified by the picture displayed in Fig. 3, where an
schematic drawing shows the effect that is produced when a thermal perceptron tries
to learn a set of instances containing a contradictory pair of examples. In Fig. 3, the
set of “good” examples is depicted in the left part of the figure, while the contradic-
tory pair is on the right. When a single neuron tries to learn this set, the algorithm
will find an hyperplane from a beam of the possible ones (indicated in the figure)
that classifies correctly the whole set except for one of the noisy examples. Further

P2

P1

C1

C2

Fig. 3 Schematic drawing of the “Resonance effect” that occurs when noisy examples are
present in the training set. A thermal perceptron will learn the “good” examples, represented
at the left of the figure, but will classify rightly only one of the noisy samples. Further learning
iterations in which the neuron tries to learn the wrongly classified example will produce
an oscillation of the separating hyperplane. The number of times the synaptic weights are
adjusted upon presentation of an example can be used to detect noisy inputs.

200 J.L. Subirats et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Noise level

G
en

er
al

iz
at

io
n

ab
ili

ty
Filtered data
Noisy data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80

90

100

Noise level

N
um

be
r

of
 n

eu
ro

ns

Filtered data
Noisy data

Fig. 4 The effect of adding attribute noise. Top: Generalization ability as a function of the
level of attribute noise for the “modified” Pima indians diabetes dataset for the C-Mantec
algorithm applied with and without the filtering stage. Bottom: The number of neurons of the
generated architectures as a function of the level of noise. The maximum number of neurons
was set to 101.

learning iterations produce a resonant behavior, as the dividing hyperplane oscillates
trying to classify correctly the wrong example. Eventually, the iterations will end as
the whole set cannot be learnt by a simple perceptron and a new neuron will be
added to the network. It was observed that these noisy examples make the network
to grow in excess, degrading the generalization ability. The filtering method works
by counting the number of times each training example is presented to the network,

Active Learning Using a Constructive Neural Network Algorithm 201

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Noise level

G
en

er
al

iz
at

io
n

ab
ili

ty
Filtered data

Noisy data

0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

100

120

Noise level

N
um

be
r

of
 n

eu
ro

ns

Filtered data
Noisy data

Fig. 5 The effect of adding class noise to the dataset. Top: Generalization ability as a function
of the level of class noise for the modified Pima indians diabetes dataset for the cases of
implementing the filtering stage and for the case of using the whole raw dataset. Bottom:
The number of neurons of the generated architectures for the two mentioned cases of the
implementation of the C-Mantec algorithm.

and if the number of presentations for an example is larger by two standard devia-
tions from the mean, it is removed from the training set. The removal of examples is
made on-line as the architecture is constructed and a final phase is carried out where
no removal of examples is allowed.

To test the new method for removal of noisy examples a “noise-free” dataset is
created from a real dataset, and then controlled noise was added to the attributes (in-
put variables) and to the class (output), in separate experiments to analyze whether
there is any evident difference between the two cases [23]. Knowing the origin of

202 J.L. Subirats et al.

the noise is an interesting issue with practical applications, as it can help to de-
tect the sources of noise and consequently help to eliminate it. The dataset chosen
for this analysis is the Pima Indians Diabetes dataset, selected because it has been
widely studied and also because it is considered a difficult set with an average gen-
eralization ability around 75%. To generate the “noise-free” dataset, the C-Mantec
algorithm was run with a single neuron that classified correctly approximately 70%
of the dataset, and then the “noise-free” dataset was constructed by presenting the
whole set of inputs through this network to obtain the “noise-free” output. Two
different experiments were carried out: in the first one, noise was added to the at-
tributes of the dataset and the performance of the C-Mantec algorithm was analyzed
with and without the procedure for noisy examples removal. In Fig. 4 (top) the gen-
eralization ability for both cases is shown for a level of noise between 0 and 0.8 and
the results are the average over 100 independent runs. For a certain value of added
noise, x, the input values were modified by a random uniform value between −x
and x. The bottom graph shows the number of neurons in the generated architec-
tures when the filtering process was and was not applied as a function of the added
attribute noise. It can be clearly seen that the removal of the noisy examples helps
to obtain much more compact architectures while a better generalization ability is
observed. The second experiment consisted in adding noise to the output values and
the results are shown on Fig. 5. In this case the noise level indicate the probability
of modifying the class value to a binary value, chosen randomly between 0 or 1.

From the experiments carried out with the two types of noise introduced to the
Diabetes dataset we can observe that the resonance effect helps to detect and elimi-
nate the noisy instances in both cases, helping to increase the generalization ability,
even if the change is not enough to recover the generalization ability obtained in
the noise-free case. It can also be observed that the size of the neural architectures
obtained after the removal of the noisy instances is much lower than the size of the
architectures needed for the noisy cases. Also, it has to be said that the experiments
did not lead to a way of differentiating the sources of noise, as the results obtained
for the two noise-contaminated datasets considered were not particularly different.

4 Experiments and Results on Public Domain Datasets

We tested the noise filtering abilities of the method introduced in this work using
the C-Mantec constructive algorithm on a set of 11 well known benchmark func-
tions [24]. The set of analyzed functions contains 6 two-classes functions and 5
multi-class problems with a number of classes up to 19. The C-Mantec algorithm
was run with a maximum number of iterations of 50.000 and an initial temperature
value (T0) equals to the number of inputs of the analyzed functions. It is worth not-
ing that different tests showed that the algorithm is quite robust to changes on these
parameter values. The results are shown in Table 1, where it is shown the number
of neurons of the obtained architectures and the generalization ability obtained, in-
cluding the standard deviation values, computed over 100 independent runs. The
last column of Table 1 shows, as a comparison, the generalization ability values

Active Learning Using a Constructive Neural Network Algorithm 203

Table 1 Results for the number of neurons and the generalization ability obtained with the
C-Mantec algorithm using the data filtering method introduced in this work. The last column
shows the results from [25] (See text for more details).

Function Inputs Classes Neurons Generalization Generalization
C-Mantec NN [25]

Diab1 8 2 3.34±1.11 76.62±2.69 74.17±0.56
Cancer1 9 2 1±0.0 96.86±1.19 97.07±0.18
Heart1 35 2 2.66±0.74 82.63±2.52 79.35±0.31
Heartc1 35 2 1.28±0.57 82.48±3.3 80.27±0.56
Card1 51 2 1.78±0.87 85.16±2.48 86.63±0.67

Mushroom 125 2 1±0.0 99.98±0.04 100.00±0.0
Thyroid 21 3 3±0.0 91.91±0.59 93.44±0.0
Horse1 58 3 3±0.0 66.56±5.08 73.3±1.87
Gene1 120 3 3.03±0.22 88.75±1.07 86.36±0.1
Glass 9 6 17.84±1.19 63.75±6.38 53.96±2.21

Soybean 82 19 171±0.0 91.63±1.89 90.53±0.51
Average 50.27 4.18 18.99±0.43 84.21±2.03 82.50±0.63

obtained by Prechelt [25] in a work where he analyzed in a systematic way the
prediction capabilities of different topologies neural networks. The size of training
and test sets were chosen in a similar way in both compared cases: the training set
comprises 75% of the total number of instances and the remaining 25% was used
for testing the generalization ability. The results obtained with the C-Mantec algo-
rithm outperforms the ones obtained by Prechelt in 6 out of 11 problems and on
average the generalization ability is 2.1% larger. Regarding the size of the networks
obtained using the new method introduced, the architectures are very small for all
problems with 2 or 3 classes, for which the architectures contain less than 4 neurons.
For multi-class problems the algorithm generates networks with a larger number of
hidden neurons but this is because of the method used to treat multiclass problems
that will be reported elsewhere [20].

A further set of experiments was carried out using as classification algorithms
other standard methods in machine learning. Three different available algorithms
were used and tested on the original datasets and on the filtered dataset where the
noisy examples were eliminated. The three algorithms used were standard mul-
tilayer perceptrons (MLP) trained by backpropagation, Support Vector Machines
(SVM) [27] and the C4.5 algorithm based on decision trees (C4.5) [26], all imple-
mented under the WEKA package ([28]) using the default parameter settings. The
results are presented in table 2 where the generalization ability obtained for six dif-
ferent datasets are shown for the two cases considered: filtered and original datasets.
It can be observed that when multilayer perceptron are used, in all analyzed cases
the generalization ability obtained with the filtered dataset was larger than with the
original set and the difference was on average larger by a 1.31%, with values in
some cases as large as 2.32%. For the case of the C4.5 algorithm the results with
and without filtering instances were similar with an average difference of 0.18% in
favor of the filtered case. When the support vector machines were tested with both

204 J.L. Subirats et al.

Table 2 Results for generalization ability obtained using standard multilayer perceptrons
(MLP), decision trees (C4.5) and support vector machines (SVM) algorithms using both the
filtered and original datasets (See the text for more details).

Filtered data Original data
MLP C4.5 SVM MLP C4.5 SVM

Diab1 75.63 ± 4.21 75.21 ± 2.85 76.36 ± 3.43 74.58 ± 2.36 73.54 ± 2.78 77.81 ± 1.57
Cancer1 95.06 ± 0.78 93.91 ± 2.05 95.63 ± 1.00 94.84 ± 1.28 93.93 ± 1.83 95.90 ± 0.95
Heart1 82.49 ± 2.87 79.44 ± 1.15 81.80 ± 2.70 80.17 ± 2.23 78.70 ± 2.94 81.74 ± 2.38
Heartc1 83.20 ± 4.43 78.13 ± 3.22 82.13 ± 4.58 81.05 ± 2.70 79.47 ± 5.23 84.74 ± 4.21
Card1 85.81 ± 2.50 85.81 ± 3.68 86.74 ± 2.71 83.72 ± 1.81 85.93 ± 2.55 86.05 ± 1.90

Mushroom 100.00 ± 0.00 99.95 ± 0.05 100.00 ± 0.00 100.00 ± 0.00 99.86 ± 0.07 100.00 ± 0.00
Average 87.04 ± 3.65 85.41 ± 3.99 87.11 ± 3.69 85.73 ± 3.95 85.23 ± 4.09 87.71 ± 3.48

datasets, the generalization ability observed decreases with the filtered instances in
average by approximately 0.61%, but noting that in 2 out of the 6 cases considered
the prediction improved.

Regarding the generalization ability obtained by the different methods, we first
note that the average generalization ability for the 6 functions shown in table 2
is of 87.29± 3.72 for the C-Mantec algorithm with the active learning procedure
incorporated. Thus, the best method with these limited set of 6 functions turns out
to be the SVM approach, close followed by the constructive C-Mantec algorithm
and by the MLP; while the C4.5 came last with a lower generalization ability.

The number of instances in the filtered datasets was on average 2.73% smaller
than the original sets, being the smaller ones found in those for which the gener-
alization ability was lower, as for Diabetes dataset. The standard deviation of the
results shown in tables 1 and 2 is computed over 5 randomly selected datasets, us-
ing 75% of the examples for training the models and the remaining 25% for testing
the generalization ability.

5 Discussion

We introduced in this chapter a new method for filtering noisy examples using a
recently developed constructive neural network algorithm. The new C-Mantec al-
gorithm generalizes very well on free-noise dataset but have shown to overfit with
noisy datasets and thus, a filtering scheme for noisy instances have been imple-
mented. The filtering method devised is based on the observation that noisy ex-
amples needs more number of weights updates than regular ones. This “resonant
effect” observed, permits to distinguish these instances and eliminate them in an
on-line procedure. Simulations performed show that the generalization ability and
size of the resulting networks are very much improved after the removal of the
noisy examples. A comparison of results was done against previous reported val-
ues obtained using standard feed-forward neural networks [25] and showed that the
generalization ability was on average a 2.1% larger, indicating the effectiveness of
the C-Mantec algorithm implemented with the new filtering stage. The introduced

Active Learning Using a Constructive Neural Network Algorithm 205

method of data selection can also be used as a pre-processing stage for other pre-
diction algorithms, and for this reason a second comparison was carried out using
three well known predictive algorithms: MLP, C4.5 decision trees and SVM. The
results obtained and shown in table 2 indicate that the instance selection procedure
appears to work quite well with MLP and less with the other two algorithms. It
might be possible, given the neural nature of the C-Mantec algorithm, that the fil-
tering stage developed works better with neural-based algorithms but further studies
might be needed to extract a final conclusion. Overall we have observed that the ac-
tive learning procedure implemented using the new C-Mantec algorithm is working
very efficiently in the task of avoiding overfitting problems and that comparable re-
sults to those obtained using MLP’s and SVM’s can be obtained with a constructive
neural network algorithm.

Acknowledgements. The authors acknowledge support from CICYT (Spain) through grants
TIN2005-02984 and TIN2008-04985 (including FEDER funds) and from Junta de Andalucı́a
through grants P06-TIC-01615 and P08-TIC-04026. Leonardo Franco acknowledges support
from the Spanish Ministry of Science and Innovation (MICIIN) through a Ramón y Cajal
fellowship.

References

1. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan/IEEE Press
(1994)

2. Lawrence, S., Giles, C.L., Tsoi, A.C.: What Size Neural Network Gives Optimal Gener-
alization? Convergence Properties of Backpropagation. In: Technical Report UMIACS-
TR-96-22 and CS-TR-3617, Institute for Advanced Computer Studies, Univ. of Mary-
land (1996)

3. Gómez, I., Franco, L., Subirats, J.L., Jerez, J.M.: Neural Networks Architecture Selec-
tion: Size Depends on Function Complexity. In: Kollias, S.D., Stafylopatis, A., Duch,
W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 122–129. Springer, Heidelberg
(2006)

4. Mezard, M., Nadal, J.P.: Learning in feedforward layered networks: The tiling algorithm,
J. Physics A 22, 2191–2204 (1989)

5. Frean, M.: The upstart algorithm: A method for constructing and training feedforward
neural networks. Neural Computation 2, 198–209 (1990)

6. Parekh, R., Yang, J., Honavar, V.: Constructive Neural-Network Learning Algorithms for
Pattern Classification. IEEE Transactions on Neural Networks 11, 436–451 (2000)

7. Subirats, J.L., Jerez, J.M., Franco, L.: A New Decomposition Algorithm for Threshold
Synthesis and Generalization of Boolean Functions. IEEE Transactions on Circuits and
Systems I 55, 3188–3196 (2008)

8. Nicoletti, M.C., Bertini, J.R.: An empirical evaluation of constructive neural network al-
gorithms in classification tasks. International Journal of Innovative Computing and Ap-
plications 1, 2–13 (2007)

9. Reed, R.: Pruning algorithms - a survey. IEEE Transactions on Neural Networks 4, 740–
747 (1993)

206 J.L. Subirats et al.

10. Smieja, F.J.: Neural network constructive algorithms: trading generalization for learning
efficiency? Circuits, systems, and signal processing 12, 331–374 (1993)

11. Bramer, M.A.: Pre-pruning classification trees to reduce overfitting in noisy domains.
In: Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.) IDEAL 2002.
LNCS, vol. 2412, pp. 7–12. Springer, Heidelberg (2002)

12. Hawkins, D.M.: The problem of Overfitting. Journal of Chemical Information and Com-
puter Sciences 44, 1–12 (2004)

13. Angelova, A., Abu-Mostafa, Y., Perona, P.: Pruning training sets for learning of ob-
ject categories. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR 2005, vol. 1, pp. 494–501 (2005)

14. Cohn, D., Atlas, L., Ladner, R.: Improving Generalization with Active Learning. Mach.
Learn. 15, 201–221 (1994)

15. Cachin, C.: Pedagogical pattern selection strategies. Neural Networks 7, 175–181 (1994)
16. Kinzel, W., Rujan, P.: Improving a network generalization ability by selecting examples.

Europhys. Lett. 13, 473–477 (1990)
17. Franco, L., Cannas, S.A.: Generalization and Selection of Examples in Feedforward

Neural Networks. Neural Computation 12(10), 2405–2426 (2000)
18. Sánchez, J.S., Barandela, R., Marqués, A.I., Alejo, R., Badenas, J.: Analysis of new

techniques to obtain quality training sets. Pattern Recognition Letters 24, 1015–1022
(2003)

19. Jankowski, N., Grochowski, M.: Comparison of Instances Seletion Algorithms I. Algo-
rithms Survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.)
ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 598–603. Springer, Heidelberg (2004)

20. Subirats, J.L., Franco, L., Jerez, J.M.: Competition and Stable Learning for Growing
Compact Neural Architectures with Good Generalization Abilities: The C-Mantec Al-
gorithm (2009) (in preparation)

21. Frean, M.: Thermal Perceptron Learning Rule. Neural Computation 4, 946–957 (1992)
22. Rosenhlatt, F.: The perceptron: A probabilistic model for information storage and orga-

nization in the brain. Psychological Review 65, 386–408 (1959)
23. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study of their impacts.

Artif. Intell. Rev. 22, 177–210 (2004)
24. Merz, C.J., Murphy, P.M.: UCI Repository of Machine Learning Databases. Department

of Information and Computer Science. University of California, Irvine (1998)
25. Prechelt, L.: Proben 1 – A Set of Benchmarks and Benchmarking Rules for Neural Net-

work Training Algorithms. Technical Report (1994)
26. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffman, CA (1992)
27. Shawe-Taylor, J., Cristianini, N.: Support Vector Machines and other kernel-based learn-

ing methods. Cambridge University Press, Cambridge (2000)
28. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-

niques with Java Implementations. Morgan Kaufmann Publishers, San Francisco (2000),
http://www.cs.waikato.ac.nz/ml/weka

http://www.cs.waikato.ac.nz/ml/weka

	Active Learning Using a Constructive Neural Network Algorithm
	Introduction
	The C-Mantec Algorithm
	The ``Resonance Effect" for Detecting Noisy Examples
	Experiments and Results on Public Domain Datasets
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

