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Constructive Neural Network Algorithms for 
Feedforward Architectures Suitable for  
Classification Tasks 

Maria do Carmo Nicoletti, João R. Bertini Jr., David Elizondo,  
Leonardo Franco, and José M. Jerez* 

Abstract. This chapter presents and discusses several well-known constructive 
neural network algorithms suitable for constructing feedforward architectures 
aiming at classification tasks involving two classes. The algorithms are divided 
into two different groups: the ones directed by the minimization of classification 
errors and those based on a sequential model. In spite of the focus being on two-
class classification algorithms, the chapter also briefly comments on the multiclass 
versions of several two-class algorithms, highlights some of the most popular 
constructive algorithms for regression problems and refers to several other 
alternative algorithms. 

1   Introduction 

Conventional neural network (NN) training algorithms (such as Backpropagation ) 
require the definition of the NN architecture before learning starts. The common 
way for developing a neural network that suits a task consists of defining several 
different architectures, training and evaluating each of them, and then choosing 
the one most appropriate for the problem based on the error produced between the 
target and actual output values. Constructive neural network (CoNN) algorithms, 
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however, define the architecture of the network along with the learning process. 
Ideally CoNN algorithms should efficiently construct small NNs that have good 
generalization performance. As commented in (Muselli, 1998), “…the possibility 
of adapting the network architecture to the given problem is one of the advantages 
of constructive techniques… [This] has also important effects on the convergence 
speed of the training process. In most constructive methods, the addition of a new 
hidden unit implies the updating of a small portion of weights, generally only 
those regarding the neuron to be added”. 

The automated design of appropriate neural network architectures can be 
approached by two different groups of techniques : evolutionary and non-
evolutionary. In the evolutionary approach, a NN can be evolved by means of an 
evolutionary technique, i.e. a population-based stochastic search strategy such as a 
GA (see (Schaffer et al., 1992) (Yao, 1999)). In the non-evolutionary approach, 
the NN is built not as a result of an evolutionary process, but rather as the result of 
a specific algorithm designed to automatically construct it, as is the case with a 
constructive algorithm. 

CoNN algorithms, however, are not the only non-evolutionary approach to  
the problem of defining a suitable architecture for a neural network. The  
strategy implemented by the so called pruning methods can also be used and 
consists in training a larger than necessary network (which presumably is an easy 
task) and then, pruning it by removing some of its connections and/or nodes  
(see (Reed, 1993)). 

As approached by Lahnajärvi and co-workers in (Lahnajärvi et al., 2002), 
pruning algorithms can be divided into two main groups. Algorithms in the first 
group estimate the sensitivity of an error function to the removal of an element 
(neuron or connection); those with the least effect can be removed. Algorithms in 
the second group generally referred to as penalty-term as well as regularization 
algorithms, “add terms to the objective function that reward the network for 
choosing efficient and small solutions”. The same group of authors also detected 
in the literature what they call combined algorithms that take advantage of the 
properties of both, constructive and pruning algorithms, in order to determine the 
network size in a flexible way (see (Fiesler, 1994), (Gosh & Tumer, 1994)). 

There are many different kinds of neural network; new algorithms and 
variations of already known algorithms are constantly being published in the 
literature. Similarly to other machine learning techniques, neural network 
algorithms can also be characterized as supervised, when the target values are 
known and the algorithm uses the information, or as unsupervised, when such 
information is not given and/or used by the algorithm. The two main classes of 
NN architecture are feedforward, where the connections between neurons do not 
form cycles, and feedback (or recurrent), where the connections may form cycles. 
NNs may also differ in relation to the type of data they deal with; the two more 
popular being categorical and quantitative. Both, supervised and unsupervised 
learning with categorical targets are referred to as classification. Supervised 
learning with quantitative target values is known as regression. Classification 
problems can be considered a particular type of regression problems. 
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This chapter reviews some well-known CoNN algorithms for feedforward 
architectures, suitable for classification tasks, aiming to present the main ideas 
they are based upon as well as to stress their main similarities and differences. An 
empirical evaluation of several two-class and multiclass CoNN algorithms in a 
variety of knowledge domains can be seen in (Nicoletti & Bertini, 2007). 
Although focusing mainly on a particular class of constructive neural network 
algorithms, the chapter also aims at establishing the importance of using a 
constructive approach when working with neural networks, independent of  the 
application problem at hand. For this reason towards the end of the chapter a few 
other approaches will be briefly presented. 

The remainder of the chapter is organized as follows: Section 2 presents the 
main characteristics of constructive neural network algorithms. Section 3 
approaches several two-class CoNN algorithms by grouping them into (3.1) 
algorithms directed by the minimization of classification errors and (3.2) 
algorithms based on the sequential model. Section 4 briefly describes the 
multiclass versions of a few two-class CoNN previously presented as well 
highlighting the main characteristics of a few other multiclass proposals. Section 5 
introduces some CoNN algorithms for regression problem as well as other 
combined approaches. In Section 6 several CoNN algorithms that do not quite 
conform to the main focus of this chapter and others that do not qualify to be part 
of the groups characterized before are briefly presented and finally, in Section 7, 
the conclusions of this chapter are presented. 

2   Main Characteristics of CoNN Algorithms 

Several constructive algorithms that focus on feedforward architectures have been 
proposed in the literature. During the learning phase they all essentially repeat the 
same process: incrementally adding and training hidden neurons (generally 
Threshold Logic Units − TLUs) until a stopping criterion is satisfied. Generally 
they all begin the process having as the initial network only the input layer; output 
neuron(s) are then added and trained and, depending on their performance, the 
algorithm starts to add and connect hidden neurons to the current architecture and 
train them, aiming at improving the accuracy of  the network performance. 

The final result at the end of the constructive process implemented by these 
algorithms is a neural network that had its architecture defined along with its 
training. In spite of sharing the same basic mechanism, CoNN algorithms differ 
from each other in many different ways, such as: 

 
1. Number of nodes they add per layer at each iteration; 
2. Direction in which they grow the network: 

• forward, from input towards output nodes or  
• backward, from output towards input nodes; 

3. Functionality of the added neurons (do they all play the same role?); 
4. Stopping criteria; 
5. Connectivity pattern of the newly added neuron; 
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6. Algorithm used for training individual neuron, such as 
• The Fisher Discriminant 
• Pocket algorithm (Gallant, 1986a) 
• Pocket with Ratchet Modification (PRM) (Gallant, 1986a, 1990) 
• MinOver (Krauth and Mézard, 1987) 
• Quickprop (Fahlman, 1988) 
• AdaTron (Anlauf & Biehl, 1989) 
• Thermal Perceptron algorithm (Frean, 1992) 
• Loss minimization (Hrycej, 1992) 
• Modified Thermal algorithm (Burgess, 1994) 
• Maxover (Wendemuth, 1995) 
• Barycentric Correction Procedure (BCP) (Poulard, 1995); 

7. Type of input patterns they deal with: binary (or bipolar) valued, 
categorical or real valued attributes; 

8. Type of problems they solve: 
• classification (two-class or multi-class), where the input is assigned 

to one of two or more classes 
• regression problems, characterized by a continuous mapping from 

inputs to an output or 
• clustering, where the patterns are grouped according to some 

similarity measure; 
9. Topology of the connections among neurons (initially fixed or 

dynamically constructed); 
10. ‘Shape’ of the feedforward architecture (e.g. tower-like, cascade-like, 

etc…). 
 
Among the most well known CoNN algorithms for two-class classification 
problems are the Tower and the Pyramid (Gallant, 1986b), the Tiling (Mézard & 
Nadal, 1989), the Upstart (Frean, 1990), the Perceptron Cascade (Burgess, 1994), 
the PTI and the Shift (Amaldi & Guenin, 1997), the Irregular Partitioning 
Algorithm (IPA) (Marchand et al., 1990; Marchand & Golea, 1993), the Target 
Switch (Campbell & Vicente, 1995), the Constraint Based Decomposition (CBD) 
algorithm (Drăghici, 2001) and the BabCoNN (Bertini Jr. & Nicoletti, 2008a). 

Smieja, (1993), Gallant, (1994), Bishop, (1996), Mayoraz and Aviolat (1996), 
Campbell (1997) and Muselli (1998) discuss several CoNN algorithms in detail. 

3   A Closer Look at Several Two-Class CoNN Algorithms 

In order to review several of the two-class CoNN algorithms previously 
mentioned in a systematic way, this section divides them into two main categories: 
(3.1) those directed by the minimization of classification errors and (3.2) those 
based on the sequential learning model. 
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3.1   Algorithms Directed by the Minimization of Classification 
Errors 

Since most of the CoNN algorithms can be characterized as belonging to this 
category, a few sub-categories have been adopted in this review aimed at grouping 
algorithms that share similar characteristics.  

3.1.1   Growing NNs with Single-Neuron Hidden Layers 

The Tower and the Pyramid (Gallant, 1986b, 1994) algorithms are two-class 
CoNN algorithms that can be viewed as incremental versions of the PRM 
algorithm; both can be characterized as forward methods since they grow the NN 
layer by layer, from the input towards the output layer. In the Tower algorithm 
each new hidden node added to the network is connected to all input nodes and to 
the last previously added hidden node, making the architecture of the network 
look like a tower. 

The basic idea of the Tower algorithm is very simple. Initially the PRM 
algorithm is used for training the only node of the first hidden layer of the network 
which can be considered the output node. If p is the number of attributes that 
describe a training pattern, the first hidden node receives p + 1 inputs i.e., the 
input values associated with the p attributes plus the constant value associated 
with the bias. As  is well known a single neuron can learn with 100% precision 
only from linearly separable training sets. If that is the case, the first neuron added 
to the network and subsequently trained will correctly learn to separate both 
classes and the Tower algorithm is reduced to the PRM algorithm. However, if 
that is not the case, the Tower algorithm continues to add hidden layers to the 
network (each containing only one TLU) until a stopping criterion is satisfied. 

Generally three stopping criteria can be implemented: 1) the NN correctly 
classifies the training set; 2) adding a new hidden layer does not contribute to 
increasing the network accuracy and 3) a predefined maximum number of hidden 
neurons has been reached. Considering that the first step adds the first hidden node 
to the network, the kth step adds the kth hidden node. After the first hidden node is 
added, all the subsequent hidden nodes added will receive an extra input value, 
which corresponds to the output of the last added hidden node. This extra 
dimension, added after the first hidden node was created represents the behavior 
of the newly created hidden node.  

The Pyramid algorithm is very similar to the Tower algorithm. The only 
difference between them is that each new hidden node created by the Pyramid 
method is connected to every hidden node previously added to the network, as 
well as to the input nodes, making the network look like  a pyramid. Each step of 
the learning phase expands the training patterns in one dimension (which 
represents the last hidden neuron added). Considering that the first step adds the 
first hidden node to the network, the kth step adds the kth hidden node that receives 
the p+1 input values from the input layer plus bias, as well as the output of the 
(k−1) hidden nodes previously added.  
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Gallant (1994) presents a detailed description of both algorithms as well as  
the proof of their convergence, by stating and proving the following theorem: 
“with arbitrarily high probability, the Tower (Pyramid) algorithm will fit 
noncontradictory sets of training examples with input values restricted to {+1,−1}, 
provided enough cells are added and enough iterations are taken for each added 
cell. Furthermore each added cell will correctly classify a greater number of 
training examples than any prior cell.” 

3.1.2   Growing NNs with Hidden Neurons Performing Different Functions 

The Tiling algorithm (Mézard & Nadal, 1989) is a CoNN algorithm originally 
proposed for Boolean domains that trains a multilayer feedforward NN where 
hidden nodes are added to a layer in a way comparable to the process of laying 
tiles. The neurons in each hidden layer in a Tiling NN perform one out of two 
different functions and their names reflect their functionality. Each layer has a 
master neuron that works as the output neuron for that layer. If the master neuron 
does not correctly classify all training patterns, however, the Tiling algorithm 
starts to add and train ancillary neurons, one at a time, aiming at obtaining a 
faithful representation of the training set. The output layer has only one master 
neuron. The faithfulness criterion employed by the Tiling algorithm establishes 
that no two training patterns, belonging to different classes, should produce the 
same outputs at any given layer.  

As commented by Gallant (1994), “The role of these units (ancillary) is to 
increase the number of cells for layer L so that no two training examples with 
different classifications have the same set of activations in layer L. Thus each 
succeeding layer has a different representation for the inputs, and no two training 
examples with different classifications have the same representation in any layer. 
Layers with this property are termed faithful layers, and faithfulness of layers is 
clearly a necessary condition for a strictly layered network to correctly classify all 
training examples”. 

In order to construct the network, the first step of the Tiling method is to train 
the master neuron of the first hidden layer, using the original training set, aiming 
at minimizing the classification error. If the master neuron does not classify the 
training set correctly, ancillary neurons are added to this layer and subsequently 
trained, one at a time, in order to obtain a faithful representation. Tiling constructs 
an NN in successive layers such that each new layer has a smaller number of 
neurons than the previous layer and  layer L only receives connections from 
hidden layer L − 1. 

The way the Tiling method operates assures that the master neuron in layer L 
classifies the training set with higher accuracy than the master neuron in layer  
L − 1. Assuming a finite training set with non-contradictory patterns, the Tiling 
algorithm is guaranteed to converge to zero classification errors (under certain 
assumptions) (Gallant, 1994). Once the first layer is finished, the Tiling algorithm 
goes on adding layers (with one master and a few ancillary neurons) until one out 
of four stopping criteria is satisfied: 1) the network converges; 2) the master 
neuron added degrades the performance of the network; 3) a pre-defined 
maximum number of layers is reached or 4) a pre-defined number of ancillary 
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neurons per layer is reached and the training set still does not have a faithful 
representation in this layer. The original Tiling algorithm as described in (Mézard 
& Nadal, 1989) uses the same TLU training algorithm for each neuron (master or 
ancillary) added to the NN; in the same article the authors state and prove a 
theorem that ensures its convergence. 

The unnamed algorithm proposed in (Nadal, 1989) and described by its author 
as an algorithm similar in spirit to the Tiling algorithm was named by Smieja in 
(Smieja, 1993) as Pointing. The Pointing algorithm constructs a feedforward 
neural network with the input layer, one output neuron and an ordered sequence of 
single hidden neurons, each one connected to the input layer and to the previous 
hidden neuron in the sequence. Despite its author claiming that the algorithm is 
very similar to the Tiling one, although more constrained (which is true), actually 
the Pointing algorithm corresponds to the Tower algorithm as proposed by Gallant 
(Gallant, 1986b). 

The Partial Target Inversion (PTI) algorithm is a CoNN algorithm proposed in 
(Amaldi & Guenin, 1997) that shares strong similarities with the Tiling algorithm. 
The PTI grows a multi-layer network where each layer has one master neuron and 
a few ancillary neurons. Following the Tiling strategy as well, the PTI adds 
ancillary neurons to a layer in order to satisfy the faithfulness criteria; the neurons 
in layer c are connected only to neurons in layer c − 1. If the training of the master 
neuron results in a weight vector that correctly classifies all training patterns or if 
the master neuron of layer c does not classify a larger number of patterns than the 
master neuron of layer c − 1, the algorithm stops. If a training pattern, however, 
was incorrectly classified by the master neuron, and the master neuron correctly 
classifies a greater number of patterns than the master of the previous layer, the 
algorithm starts adding ancillary neurons to the current layer aiming at its 
faithfulness. When the current c layer becomes faithful the algorithm adds a new 
layer, c + 1, initially only having the master neuron. The process continues until 
stopping criteria are met, such as when the number of master (or ancillary) 
neurons has reached a pre-defined threshold. The only noticeable difference 
between the Tiling and the PTI is the way the training set, used for training the 
ancillary neurons in the process of turning a layer faithful, is chosen. 

For training the master neuron of layer c, the PTI uses all the outputs from the 
previous layer. Considering that the layer c needs to be faithful, the first ancillary 
neuron added to layer c will be trained with those patterns (used to train the master 
neuron) that made layer c unfaithful. 

In addition, the patterns that activate the last added neuron (master, in this case) 
have their classes inverted. The authors justify this procedure by saying that 
“When trying to break several unfaithful classes simultaneously, it may be 
worthwhile to flip the target of the prototypes on layer c corresponding to several 
unfaithful classes. In fact, the specific targets are not important; the only 
requirement is that outputs corresponding to a different c−1 layer representation 
trigger a different output for at least one unit in the layer c”.  For clarification if 
after the addition of the first ancillary neuron the layer is not faithful yet, another 
ancillary neuron needs to be added to layer c. The second ancillary neuron will be 
trained with the c−1 outputs that provoked an unfaithful representation of layer c, 
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this time, however, taking also into consideration the master and first ancillary 
neuron previously added. The patterns that activated the first ancillary neuron 
have their class inverted when they are included in the training set for the second 
ancillary neuron. The name PTI (Partial Target Inversion) refers to the fact that 
when constructing training sets only a partial number of patterns have their class 
(target) inverted.  

3.1.3   Growing NNs Based on Wrongly-On and Wrongly-Off Errors 

Generally CoNN algorithms based on discriminating between the two types of 
errors (wrongly-on and wrongly-off) tend to grow the neural network in a 
backward way, i.e. from the output towards the input layer. 

The Upstart (Frean, 1990) is a constructive NN algorithm that dynamically 
grows a neural network whose structure resembles a binary tree. The algorithm 
starts the construction of the NN from the output layer towards the input layer and 
during the construction of an Upstart network, a neuron adds two other ancillary 
neurons in order to correct its misclassifications. 

Let un be a neuron that classifies training patterns but produces wrongly-off 
errors (i.e. positive training patterns are misclassified by un as negative). The 
Upstart algorithm deals with wrongly-off errors by adding a wrongly-off corrector 
as a ‘child’ neuron un+ which will try to correct the errors made by its parent un. 
The main tasks of neuron un+ are 1) to correct the classification of positive training 
patterns that have been misclassified by un as negative and 2) to keep unchanged 
the other classifications made by un (i.e. un+ should be inactive for any other 
pattern). The neuron un+ is trained with the subset of training patterns that were 
wrongly-off plus the set of negative patterns.  

Similarly, to deal with wrongly-on errors (i.e. negative training patterns that are 
misclassified by un as positive) the Upstart algorithm creates a wrongly-on 
corrector as a child neuron un− aiming: 1) to correct the classification of wrongly-
on training patterns and 2) keep unchanged the other classifications made by 
neuron un (i.e. un− should stay inactive for any other pattern). Neuron un− is trained 
with the subset of training patterns that were wrongly-on plus the set of positive 
patterns. 

When a neuron un does not correctly classify all training patterns, it gives rise to 
wrongly-off errors, wrongly-on errors or both. A hidden neuron in an Upstart 
network, therefore, can have up to two children. As can be seen in (Frean, 1990), 
two useful results follow from this training method because the children neurons 
have a simpler problem to solve than their parents. Children neurons can always 
make fewer misclassifications than their parents and connecting a child neuron to 
its parent with the appropriate weight will always reduce the misclassifications 
made by the parent . 

For a child neuron (either a wrongly-on or a wrongly-off corrector) that has 
been added in order to correct misclassifications made by its parent, it is 
mandatory that this child only changes the activations of patterns that provoked 
the error; for this reason, the inactive output of the neuron should be 0. For a 
detailed description of Upstart, see also (Kubat, 2000). 
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Another algorithm that adopts the same error-correction strategy of the Upstart 
is the Perceptron Cascade (PC) algorithm (Burgess, 1994); PC also borrows the 
architecture of neural networks created by the Cascade Correlation algorithm 
(Fahlman & Lebiere, 1990). 

PC begins the construction of the network by training the output neuron. If this 
neuron does not classify all training patterns correctly, the algorithm begins to add 
hidden neurons to the network. Each new added hidden neuron is connected to all 
previous hidden neurons as well as to the input neurons. The new hidden neuron is 
then connected to the output neuron; each time a hidden neuron is added, the 
output neuron needs to be retrained.  The addition of a new hidden neuron 
enlarges the space in one dimension. The algorithm has three stopping criteria: 1) 
the network converges i.e. correctly classifies all training patterns; 2) a  
pre-defined maximum number of hidden neurons has been achieved and 3) the 
most common, the addition of a new hidden neuron degrades the network’s 
performance. 

Similarly to the Upstart algorithm, hidden neurons are added to the network in 
order to correct wrongly-on and wrongly-off errors. Following the same strategy 
employed by Upstart, what distinguishes a neuron created for correcting wrongly-
on or for correcting wrongly-off errors caused by the output neuron is the training 
set used for training the neuron. To correct wrongly-on errors the training set used 
should have all negative patterns plus the patterns which produce wrongly-on 
errors. For correcting wrongly-off errors, the training set should have all positive 
patterns plus the negative patterns which produce wrongly-off patterns. Unlike 
Upstart, however, the PC algorithm only adds and trains one neuron at a time in 
order to correct the most frequent  wrongly-on and wrongly-off errors produced by 
the output neuron. 

Like the Upstart and Perceptron Cascade algorithms, the Shift algorithm 
(Amaldi & Guenin, 1997) also constructs the network beginning with the output 
neuron. This algorithm, however, creates only one hidden layer, iteratively adding 
neurons to it; each added neuron is connected to the input neurons and to the 
output neuron. The error correcting procedure used by the Shift method is similar 
to the one used by the Upstart method, in the sense that the algorithm also 
identifies wrongly-on and wrongly-off errors. However, it adds and trains a hidden 
neuron to correct the most frequent between these two types of errors. Also, the 
training set used for training a wrongly-off (or wrongly-on) corrector differs 
slightly from the training sets used by the Upstart algorithm. 

3.2   Algorithms Based on the Sequential Model 

The general CoNN model identified as sequential learning was proposed in 
(Marchand et al., 1990) for Boolean domains and is an improved version of a 
previous proposal described in (Ruján & Marchand, 1989). In (Marchand & 
Golea, 1993) the algorithm is extended to deal with real data. Contrary to many of 
the CoNN algorithms, the sequential learning model is not directed by the 
minimization of the classification error. 
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Typically, a sequential learning algorithm adds to the network hidden neurons 
that are partial classifiers i.e. they separate a group of training patterns belonging 
to the same class from the remaining patterns in the training set; this was formally 
stated in (Muselli, 1998) as: Let Q+ and Q− be two subsets of the input space; a 
neuron will be called a partial classifier if it provides an output of +1 for at least 
one pattern of Q+ and output of −1 for all elements of Q−. 

Any algorithm that implements the sequential learning model should use an 
efficient strategy for training individual TLUs as partial classifiers. Constructive 
algorithms based on the sequential learning model produce networks having 
partial classifiers as hidden nodes.  In the paper (Marchand et al., 1990) the 
authors describe a mechanism that uses the Perceptron as an auxiliary process for 
identifying the weight vector. However, as pointed out in (Poulard & Hernandez, 
1997), this mechanism is time consuming and becomes prohibitive for large 
training sets and the authors suggest the BCPMax instead (Poulard & Labreche, 
1995), which associates the BCP (Poulard, 1995) with a Pattern Exclusion 
Procedure (PEP); initially designed for the BCP the PEP finds the best value of the 
neuron’s threshold for a fixed value of the weight vector: the one maximizing the 
number of excluded patterns. 

The sequential learning model has been implemented by a few algorithms, 
namely  Marchand et al.´s own proposal known in the literature as the Irregular 
Partitioning Algorithm (IPA), the Carve algorithm (Young & Downs, 1998), the 
Target Switch algorithm (Campbell & Vicente, 1995), the Oil Spot Algorithm 
(Mascioli & Martinelli, 1995), the Constraint Based Decomposition (CBD) 
algorithm, proposed in (Drăghici, 2001) and the Decomposition Algorithm for 
Synthesis and Generalization (DASG) recently introduced in (Subirats, Jerez and 
Franco, 2008). 

The IPA algorithm creates a neural network with an input layer, a single hidden 
layer and the output neuron. The connections between the hidden layer and the 
output neuron have weights and the output neuron has a bias. The hidden layer is 
created by sequentially adding neurons to it; each added neuron represents a 
hyperplane that separates the greatest number of patterns belonging to the same 
class from the rest of the training set. Once the hyperplane is found, the identified 
patterns belonging to the same class are removed from the training set and the 
procedure is repeated. The process ends when the training set only has patterns 
belonging to the same class. 

The Target Switch algorithm was originally designed to deal with binary 
patterns. The algorithm can induce two different network structures, namely a 
cascade that uses linear neurons and a tree-like structure that uses threshold 
neurons. The algorithm is based on the concept of dichotomy which, for a 
classification problem with a training set E = E− ∪ E+ can be  summarised as: “A 
set of weights and thresholds which correctly store all the E+ patterns and some of 
the E− will be said to induce a (+)dichotomy while a (−)dichotomy will correspond 
to correct storage of all the E− patterns and some of the E+ ” (Campbell, 1997). 

For growing either type of structure, neurons are always added in pairs, one for 
inducing a (+)dichotomy and the other for inducing a (–)dichotomy. The patterns 
belonging to E− that are correctly stored by the (+)dichotomy and those belonging 
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to E+ that are correctly stored by the (–)dichotomy are the patterns that will be 
correctly separated by the neuron introduced in order to connect the above 
mentioned pair. 

When the architecture is a cascade type, the introduced neuron is a linear 
neuron that implements a summation function on the pair outputs. If the result is 
positive or negative the current pattern is correctly classified otherwise a 
misclassification is produced, which will be dealt with by the next pair of neurons 
to be added. For growing neural networks with a tree structure the introduced 
neuron is a threshold neuron that implements a threshold function on the pair 
outputs. Considering that the first iteration adds one threshold neuron (the output), 
each following iteration will add two more threshold neurons to those already 
added in the previous iteration.  

To obtain the dichotomies the authors propose the use of any Perceptron-like 
TLU training algorithm. Roughly speaking, the idea is to run the TLU training 
algorithm and then shift the resulting hyperplane in order to correctly classify all 
patterns of a given class. 

The Constraint Based Decomposition (CBD) is another algorithm that follows 
the sequential model. The algorithm builds an architecture with four layers which 
are named input, hyperplane, AND and OR layers respectively. The whole 
training set is used for training the first hidden neuron in the hyperplane layer. The 
next hidden neuron to be added will be trained with those training patterns that 
were misclassified by the first hidden neuron. The algorithm goes on adding 
neurons to the first layer until no pattern is left in the training set. For training a 
neuron ui, one pattern from each class is randomly chosen and removed from the 
training set E. These patterns are put in the training set Eui. After ui has been 
trained with Eui, the algorithm starts to add patterns to Eui, one at a time, in a 
random manner. Each time a pattern is added to the set, ui is retrained with the 
updated Eui. However, if the addition of a new pattern to Eui results in 
misclassification, the last pattern added is removed from Eui and marked as ´used´ 
by the neuron. Before adding a new hidden neuron, the algorithm considers all 
patterns in E for the current neuron. A new neuron will be added when all training 
patterns left have been tried for the current neuron. The neurons of the AND layer 
are connected only to relevant neurons from the hyperplane layer and in the OR 
layer the output neurons are connected only to neurons from the AND layer which 
are turned on for the given class.  

The recently introduced DASG algorithm belongs also to the class of sequential 
learning algorithm. It works with binary inputs by decomposing the original 
Boolean function (or partially defined Boolean function) into two new lower 
complexity functions, which in turn are decomposed until all obtained functions 
are threshold functions that can be implemented by a single neuron. The final 
solution incorporates all functions in a single hidden layer architecture with an 
output neuron that computes and OR or AND Boolean function. 

The BabCoNN (Barycentric-based CoNN) (Bertini Jr. & Nicoletti, 2008a) is a 
new two-class CoNN that borrows some of the ideas of the BCP (Barycentric 
Correction Procedure, see (Poulard, 1995), (Poulard & Labreche 1995)) and can 
be considered a representative of the sequential model. Like the Upstart,  
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Table 1 Overview of fourteen two-class CoNN algorithm characteristics 

Algorithm Group 
# HL 

Growth 
direction 

New Neuron 
Connected to Special Feature Stopping 

criteria 

Tower One HN per HL 
Various 

 
Forward 

Previously 
added HN 
and INs 

Weight update 
CON 
AD 

NHL 

Pyramid One HN per HL 
Various 

 
Forward 

All 
previously 
added HNs 

and INs 

Dimension of 
weight space 

increases 

CON 
AD 

NHL 

Tiling 

Neurons 
perform 
different 
functions 

Various 
 

Forward 

Previous 
layer 

Faithful layers – 
divide and conquer 

CON 
AD 

NHL 
NHN 

PTI 

Neurons 
perform 
different 
functions 

Various 
 

Forward 

Previous 
layer 

Faithful layers – 
inversion of 

classes 

CON 
AD 

NHL 
NHN 

Upstart 
Wrongly-on/off 

correctors 

Binary 
tree 

 
Backward 

Parent neuron 
Children correct 

the father’s 
mistakes 

CON 
AD 

NHL 

Shift 
Wrongly-on/off 

correctors 

One 
 

Backward 
INs 

Weighted 
connections are 

used to correct the 
output error 

CON 
AD 

NHL 

Perceptron 
cascade 

Wrongly-on/off 
correctors 

Cascade-
like 

 
Backward 

Previously 
added HNs 

and INs 

Output increases 
the dimension of 
its weight space 

every time a 
neuron is added 

CON 
AD 

NHL 

Cascade 
correlation 

Wrongly-on/off 
correctors 

Cascade-
like 

 
Backward 

Previously 
added HNs 

and INs 

Suitable for 
regression tasks 

CON 
AD 

NHL 

Offset 

Neurons 
perform 
different 
functions 

Two 
 

Forward 

Previous 
layer 

Parity machine 
CON 
AD 

NHL 

IPA Sequential 
One 

 
Forward 

INs 
Sequentially 
classifies the 
training set 

TSC 

Target 
switch 

Sequential 
Cascade 

(tree-like) 
Backward 

Previously 
added HNs 

and INs 

(+) and (–) 
dichotomies 

TSC 

CBD Sequential 
Three 

 
Forward 

Previous 
layer 

AND/OR layers TSC 

BabCoNN Sequential 
One 

 
Backward 

Input HN fires −1, 0 or 1 TSC 

 
DASG 

 
Sequential 

One 
 

Forward 
Input 

AND/OR output 
function 

TSC 
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Perceptron Cascade (PC) and Shift, the BabCoNN also constructs the network, 
beginning with the output neuron. However, it creates only one hidden layer; each 
hidden neuron is connected to the input layer as well as to the output neuron, like 
with the Shift algorithm. 

Although the Upstart, PC and Shift construct the network by adding new hidden 
neurons specialized in correcting wrongly-on and wrongly-off errors, the 
BabCoNN employs a different strategy. The BCP is used for constructing a 
hyperplane in the hyperspace defined by the training set; the classified patterns are 
removed from the set and the process is repeated again with the updated training 
set. Due to the way the algorithm works a certain degree of redundancy is inserted 
in the process, in the sense of a pattern being correctly classified by more than one 
hidden neuron. This has been fixed by the BabCoNN classification process, where 
hidden neurons have a particular way of firing their output. 

Table 1 summarizes the main characteristics of fourteen two-class algorithms 
previously discussed. For presenting the table the following abbreviations were 
adopted: Forward (the NN is grown from input towards output layer); Backward 
(the NN is grown from output towards input layer); INs: all neurons in the input 
layer; HN: a hidden neuron; HL: a hidden layer; #HL: number of hidden layers. 
The following abbreviations were adopted for stopping criteria: CON 
(convergence); AD (accuracy decay); NHL (number of hidden layers exceeds a 
given threshold); NHN (number of hidden neurons per hidden layer exceeds a 
given threshold); TSC (all training patterns have been correctly classified). 

4   A Brief Approach to Multiclass Classification Using CoNN 

A multiclass classification problem is a classification problem involving m (> 2) 
classes usually treated as m two-class problems. Generally multiclass CoNN start 
by training as many output neurons as there are classes in the training set, using 
one of  two strategies: individual (I) and  winner-takes-all (WTA). 

The multiclass versions of a few two-class algorithms have been proposed in 
(Parekh et al., 1995), (Yang et al., 1996), (Parekh et al., 1997a), (Parekh et al., 
1997b), (Parekh et al., 2000) and they are the MTower, MPyramid, MTiling, 
MUpstart and MPerceptron Cascade, which can be considered extensions of their 
two-class counterparts.  

The MTower algorithm deals with an m-class problem by adding and training 
m hidden neurons per hidden layer at each iteration. In an MTower architecture 
each of the m neurons in a certain hidden layer has connections with all the 
neurons of the input layer as well as with all the m neurons of the previous hidden 
layer. The MPyramid also deals with an m-class problem by adding and training m 
hidden neurons per hidden layer at each iteration. The m hidden neurons in each 
hidden layer, however, are connected to all the hidden neurons of all the hidden 
layers as well as to the input neurons. 

Although the two-class Upstart algorithm constructs the neural network as a 
binary tree of TLUs starting with the output neuron, its multiclass version, the 
MUpstart, creates a network with a single hidden layer where each single hidden 
neuron is directly connected to every neuron in the output layer. The input layer is 
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fully connected to the hidden neurons as well as to the output neurons. As 
mentioned before, each neuron added to a hidden layer by the Tiling algorithm can 
be a master (one per hidden layer) or an ancillary neuron (a few per layer). The 
MTiling also constructs a multi layer neural network where the first hidden layer 
has connections to the input layer and each subsequent hidden layer has 
connections only to the previous hidden layer. For  training data containing m 
classes (> 2), MTiling adds m master neurons and as many ancillary neurons as 
necessary to make the layer faithful. The output layer has exactly m neurons. 

The multiclass MPerceptron-Cascade is very similar to the MUpstart. Their 
main difference is the architecture of the neural network they induce. While the 
MUpstart adds the new hidden neurons in a single layer, the MPerceptron-Cascade 
adds the new hidden neurons in new layers. The MBabCoNN (Bertini Jr. & 
Nicoletti, 2008b) is the multiclass version of BabCoNN and constructs a network 
beginning with the output layer containing as many neurons as there are classes in 
the training set (each output neuron is associated to a class). The algorithm allows 
the neurons to be trained using any TLU algorithm combined with either strategy, 
individual or WTA. After adding m output neurons, the algorithm starts to add 
neurons to its single hidden layer in order to correct the classification mistakes 
made by the output neurons. A detailed description of MBabCoNN and an 
empirical evaluation of its performance versus the performance of several 
multiclass CoNN algorithms is described in one chapter of this book and is an 
extended version of the paper (Bertini Jr. & Nicoletti, 2008b). 

5   CoNN Algorithms for Regression Problems and Combined 
Approaches 

In spite of their strong focus on classification tasks, many CoNN proposals 
specifically aim at regression problems (see (Kwok & Yeung, 1997a), (Ma & 
Khorasani, 2003), (Ma & Khorasani, 2004)). A review of the CoNN algorithms 
for regression problems, approached from the perspective of a state-space search 
can be seen in (Kwok & Yeung, 1997a). 

In their proposed taxonomy Kwok & Yeung group the algorithms into six 
different categories, each named after its most representative algorithm (1) 
Dynamic node creation (DNC) (Ash, 1989); (2) Projection pursuit regression, 
based on the statistical technique proposed in (Friedman & Stuetzle, 1981); (3) 
Cascade-Correlation, that mostly groups  variants of the cascade-correlation 
architecture proposed in (Fahlman & Lebiere, 1990); (4) Resource-allocating 
networks (RAN) (Platt, 1991); (5) Group methods of data handling, a class of 
algorithms inspired by the GMDH proposed by Ivakhnenko and described in 
(Farlow, 1984) and (6) Miscellaneous, a category that groups CoNN that have 
‘multivaluated state transition mappings while still retraining the whole network 
upon hidden unit addition’. In the last category, however, the authors only talk 
about a hybrid algorithm, proposed in (Nabhan & Zomaya, 1994) that employs 
both, a constructive and a pruning strategy. 
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Kwok & Yeung in (Kwok & Yeung, 1997b) conducted a very careful 
investigation on the objective functions for training hidden neurons in CoNN for 
multilayer feedforward networks for regression problems, aiming at deriving a 
class of objective functions whose value and the corresponding weight updates 
could be computed in Ο(N) time, for a training set with N patterns. 

In spite of the many CoNN algorithms surveyed in (Kwok & Yeung, 1997a), 
the most popular for regression problems is no doubt the Cascade Correlation 
algorithm (CasCor) and maybe the second most popular is the DNC. While the 
DNC algorithm constructs neural networks with a single hidden layer, the CasCor 
creates them with multiple hidden layers, where each hidden layer has one hidden 
neuron. The popularity of CasCor can be attested by the various ways this 
algorithm has inspired new variations and also has been used in the combined 
approaches between learning methods. 

A similar approach to CasCor called Constructive Backpropagation (CBP) was 
proposed in (Lehtokangas, 1999). The RCC, a recurrent extension to CasCor is 
described in (Fahlman, 1991) and its limitations are presented and discussed in 
(Giles et al., 1995). In (Kremer, 1996) the conclusions of Giles et al. in relation to 
RCC are extended. An investigation into problems and improvements in relation 
to the basic CasCor can be found in (Prechelt, 1997), where  CasCor and five of its 
variations are empirically compared using 42 different datasets from the 
benchmark PROBEN1 (Prechelt, 1994). 

CasCor has also inspired the proposal of the Fixed Cascade Error (FCE), 
described in (Lahnajärvi et al., 1999c), (Lahnajärvi et al., 2002), which is an 
enhanced version of a previous algorithm proposed by the same authors known as 
Cascade Error (CE) (see (Lahnajärvi et al., 1999a), (Lahnajärvi et al., 1999b)). 
While the general structure of both algorithms is the same, they differ in the way 
the hidden neurons are created. 

The Rule-based Cascade-correlation (RBCC) proposed in (Thivierge et al., 
2004) is a collaborative symbolic-NN approach which is partially inspired by the 
KBANN (Knowledge-Based Artificial Neural Networks) model proposed in 
(Towel et al., 1990), (Towel, 1991) where the NN used is a CasCor network. In 
the KBANN an initial set of rules is translated into a neural network which is then 
refined using a training set of patterns; the refined neural network can undergo a 
further step and be converted into a set of symbolic rules which could, again, be 
used as the starting point for constructing a neural network and the whole cycle 
would be repeated. 

According to the authors the RBCC is a particular case of the Knowledge-
based Cascade-correlation algorithm (KBCC) (Shultz & Rivest, 2000) (Shultz & 
Rivest, 2001). The KBCC extends the CasCor by allowing as hidden neurons 
during the growth of a NN not only single neurons, but previously learned 
networks as well. In (Thivierge et al., 2003) an algorithm that implements 
simultaneous growing and pruning of CasCor networks is described; the pruning 
is done by removing irrelevant connections using the Optimal Brain Damage 
(OBD) procedure (Le Cun et al., 1990). 

In (Islam & Murase, 2001) the authors propose the CNNDA (Cascade Neural 
Network Design Algorithm) for inducing two-hidden-layer NNs. The method 
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automatically determines the number of nodes in each hidden layer and can also 
reduce a two-hidden-layer network to a single-layer network. It is based on the use 
of a temporary weight freezing technique. The Fast Constructive-Covering 
Algorithm (FCCA) for NN construction proposed in (Wang, 2008) is based on 
geometrical expansion. It has the advantage of each training example having to be 
learnt only once, which allows the algorithm to work faster than traditional 
training algorithms. 

6   Miscellaneous 

A few constructive approaches have also been devised for RBF (Radial Basis 
Function) networks, such the Orthogonal Least Squares (OLS) (Chen et al., 1989) 
(Chen et al., 1991) and the Growing Radial Basis Function (GRBF) networks 
(Karayiannis & Weiqun, 1997). 

Although CoNN algorithms seem to have a lot of potential in relation to both 
the size of the induced network and its accuracy, it is really surprising that their 
use, particularly in the area of classification problems, is not as widespread as it 
should be, considering their many advantages. In regression problems, however, 
CoNNs have been very popular, particularly the Cascade-Correlation algorithm 
and many of its variations. In what follows some of the most recent works using 
CoNN are mentioned. 

In (Lahnajärvi et al., 2004) four CasCor-based CoNN algorithms, have been 
used for evaluating the movements of a robotic manipulator. In (Huemer et al., 
2008) the authors describe a method for controlling machines, such as mobile 
robots, using a very specific CoNN. The NN is grown based on a reward value 
given by a feedback function that analyses the on-line performance of a certain 
task. In fact since conventional NNs are commonly used in controlling tasks 
(Alnajjar & Murase, 2005), this is a potential application area for CoNN 
algorithms as well. 

In (Giordano et al., 2008), a committee of CasCor neural networks was 
implemented as a software filter, for the online filtering of CO2 signals from a 
bioreactor gas outflow. The knowledge-based CasCor proposal (KBCC) previously 
mentioned has been used in a few knowledge domains, such as simulation of 
cognitive development (see e.g. (Mareschal & Schultz, 1999) and (Sirois & Shultz, 
1998)), vowel recognition (Rivest & Shultz, 2002) and for gene-splice-junction 
determination (Thivierge & Shultz, 2002), a benchmark problem from the UCI 
Machine Learning Repository (Asuncion & Newman, 2007). A more in depth 
investigation into the use of the knowledge-based neural learning implemented by 
the KBCC in developmental robotics can be seen in (Shultz et al., 2007). 

A few other non-conventional approaches to CoNN can be found in recent 
works, such as the one described in (García-Pedrajas & Ortiz-Boyer, 2007), based 
on cooperative co-evolution, for the automatic induction of the structure of an NN 
for classification purposes; the method partially tries to avoid the problems of 
greedy approaches. In (Yang et al., 2008) the authors combined the ridgelet 
function with feedforward neural networks in the ICRNN (Incremental 
Constructive Ridgelet Neural Network) model. The ridgelet function was chosen 
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as the activation function due to its efficiency in describing linear-, curvilinear- 
and hyperplane-like structures in its hidden layer; the structure of the network is 
induced via a constructive method. 

The CoNN classifier known as the Recursive Deterministic Perceptron (RDP) 
(Tajine & Elizondo, 1996) is a generalization of the Perceptron, capable of solving 
any two-class classification problem. It works by transforming any non-linearly 
separable two-class problem into a linearly one, which can be easily learnt by the 
Perceptron. Its multiclass version (Tajine et al. 1997) is a generalization that 
allows separation of the m-classes in a deterministic way. Results show that in 
certain domains, both the multiclass version and the backpropagation have similar 
performance (Elizondo et al., 2008). 

The Switching Neural Network (SNN) is a connectionist model recently 
proposed in (Muselli, 2006) suitable for classification problems. The first layer of 
an SNN contains converters, called latticizers that change the representation of the 
input vectors into binary strings. The two other layers of the SNN represent a 
Boolean function that solves, in the lattice domain, the original classification 
problem. As proposed in (Ferrari & Muselli, 2008) the construction of an SNN 
can be done by a constructive algorithm known as Switch Programming (SP) 
which is based on solutions of a linear programming problem. Good simulation 
results suggest that  this proposal is worthy of a deeper investigation. 

The constructive proposals CLANN and its multiclass version M-CLANN 
described in (Tsopzé et al., 2007) and (Nguifo et al., 2008) respectively are based 
on concept lattices and aim at a semantic interpretation of the involved neurons 
and consequently at an ‘interpretable’ (in the sense of comprehensibility) neural 
network. CLANN and M-CLANN can be approached as representation-
translators, in the same sense as the KBANN model is (Towel et al., 1990), 
(Towel, 1991). 

A different approach to CoNN can be found in (Barreto-Sanz et al., 2008), 
where the authors propose the FGHSON (Fuzzy Growing Hierarchical Self-
Organizing Networks), an adaptive network method capable of representing the 
underlying structure of the data, in a hierarchical fuzzy way.  

Transformation of original data features usually helps to find interesting low 
dimensional data that can reveal previously unseen structures. This process aims 
to ease the problem for a classifier. The simplest of these transformations is the 
linear projection. Many methods search for the optimal and the most informative 
linear projection. Friedman (Friedman, 1987) proposed a framework to find 
interesting data transformations by maximizing an index of projection pursuit. 
Grochowski and Duch in (Grochowski & Duch, 2008) proposed the QPC network, 
a constructive neural network that can implement this framework. The algorithm 
introduces a new index based on the quality of projected clusters that can be used 
to define specific representations for the hidden layer of a neural network and may 
help to construct the network.  

The recently introduced C-Mantec algorithm (Subirats, Franco et al, 2008) that 
works by error correction using the thermal perceptron (Frean, 1992)  incorporates 
competition between neurons in the hidden layer and it has been shown to lead to  
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very compact architectures. The intrinsic dynamics of the algorithm has been 
applied for detecting and filtering noisy instances, reducing overfitting and 
improving the generalization ability. 

7   Conclusions 

This chapter presents an overview of several CoNN algorithms and highlighted 
some of their applications and contributions. Although focusing on feedforward 
architectures for classification tasks, the chapter also tries to present a broad view 
of the area, discussing several of the most recent contributions. 

An interesting aspect of CoNN research is its chronological aspect. It may be 
noticeable that most of the CoNN algorithms for classification tasks were 
proposed in the nineties and since then not many new proposals have been 
published. Another point to consider also is the lack of real world applications 
involving the use of CoNN algorithms; this can be quite surprising, considering 
the many that are available and the fact that several have competitive 
performances in comparison to other more traditional approaches. The tendency in 
the area is for diversifying both the architecture and the constructive process itself, 
by means of including collaborative techniques. What has been surveyed in this 
chapter is just a part of the research work going on in the area of CoNN 
algorithms. As mentioned in the Introduction, there is a very promising area 
characterized as the group of evolutionary techniques that has been contributing a 
lot to the development of CoNNs and was not the subject of this chapter. 
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