
L. Franco et al. (Eds.): Constructive Neural Networks, SCI 258, pp. 1–23.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Constructive Neural Network Algorithms for
Feedforward Architectures Suitable for
Classification Tasks

Maria do Carmo Nicoletti, João R. Bertini Jr., David Elizondo,
Leonardo Franco, and José M. Jerez*

Abstract. This chapter presents and discusses several well-known constructive
neural network algorithms suitable for constructing feedforward architectures
aiming at classification tasks involving two classes. The algorithms are divided
into two different groups: the ones directed by the minimization of classification
errors and those based on a sequential model. In spite of the focus being on two-
class classification algorithms, the chapter also briefly comments on the multiclass
versions of several two-class algorithms, highlights some of the most popular
constructive algorithms for regression problems and refers to several other
alternative algorithms.

1 Introduction

Conventional neural network (NN) training algorithms (such as Backpropagation)
require the definition of the NN architecture before learning starts. The common
way for developing a neural network that suits a task consists of defining several
different architectures, training and evaluating each of them, and then choosing
the one most appropriate for the problem based on the error produced between the
target and actual output values. Constructive neural network (CoNN) algorithms,

Maria do Carmo Nicoletti
CS Dept, UFSCar, S. Carlos, SP, Brazil
carmo@dc.ufscar.br

João R. Bertini Jr.
ICMC, USP, S. Carlos, SP, Brazil
bertini@icmc.usp.br

David Elizondo
De Monfort University, Leicester, UK
elizondo@dmu.ac.uk

Leonardo Franco and José M. Jerez
University of Málaga, Málaga, Spain
lfranco@lcc.uma.es,jja@lcc.uma.es

2 M. do Carmo Nicoletti et al.

however, define the architecture of the network along with the learning process.
Ideally CoNN algorithms should efficiently construct small NNs that have good
generalization performance. As commented in (Muselli, 1998), “…the possibility
of adapting the network architecture to the given problem is one of the advantages
of constructive techniques… [This] has also important effects on the convergence
speed of the training process. In most constructive methods, the addition of a new
hidden unit implies the updating of a small portion of weights, generally only
those regarding the neuron to be added”.

The automated design of appropriate neural network architectures can be
approached by two different groups of techniques : evolutionary and non-
evolutionary. In the evolutionary approach, a NN can be evolved by means of an
evolutionary technique, i.e. a population-based stochastic search strategy such as a
GA (see (Schaffer et al., 1992) (Yao, 1999)). In the non-evolutionary approach,
the NN is built not as a result of an evolutionary process, but rather as the result of
a specific algorithm designed to automatically construct it, as is the case with a
constructive algorithm.

CoNN algorithms, however, are not the only non-evolutionary approach to
the problem of defining a suitable architecture for a neural network. The
strategy implemented by the so called pruning methods can also be used and
consists in training a larger than necessary network (which presumably is an easy
task) and then, pruning it by removing some of its connections and/or nodes
(see (Reed, 1993)).

As approached by Lahnajärvi and co-workers in (Lahnajärvi et al., 2002),
pruning algorithms can be divided into two main groups. Algorithms in the first
group estimate the sensitivity of an error function to the removal of an element
(neuron or connection); those with the least effect can be removed. Algorithms in
the second group generally referred to as penalty-term as well as regularization
algorithms, “add terms to the objective function that reward the network for
choosing efficient and small solutions”. The same group of authors also detected
in the literature what they call combined algorithms that take advantage of the
properties of both, constructive and pruning algorithms, in order to determine the
network size in a flexible way (see (Fiesler, 1994), (Gosh & Tumer, 1994)).

There are many different kinds of neural network; new algorithms and
variations of already known algorithms are constantly being published in the
literature. Similarly to other machine learning techniques, neural network
algorithms can also be characterized as supervised, when the target values are
known and the algorithm uses the information, or as unsupervised, when such
information is not given and/or used by the algorithm. The two main classes of
NN architecture are feedforward, where the connections between neurons do not
form cycles, and feedback (or recurrent), where the connections may form cycles.
NNs may also differ in relation to the type of data they deal with; the two more
popular being categorical and quantitative. Both, supervised and unsupervised
learning with categorical targets are referred to as classification. Supervised
learning with quantitative target values is known as regression. Classification
problems can be considered a particular type of regression problems.

CoNN Algorithms for Feedforward Architectures Suitable for Classification Tasks 3

This chapter reviews some well-known CoNN algorithms for feedforward
architectures, suitable for classification tasks, aiming to present the main ideas
they are based upon as well as to stress their main similarities and differences. An
empirical evaluation of several two-class and multiclass CoNN algorithms in a
variety of knowledge domains can be seen in (Nicoletti & Bertini, 2007).
Although focusing mainly on a particular class of constructive neural network
algorithms, the chapter also aims at establishing the importance of using a
constructive approach when working with neural networks, independent of the
application problem at hand. For this reason towards the end of the chapter a few
other approaches will be briefly presented.

The remainder of the chapter is organized as follows: Section 2 presents the
main characteristics of constructive neural network algorithms. Section 3
approaches several two-class CoNN algorithms by grouping them into (3.1)
algorithms directed by the minimization of classification errors and (3.2)
algorithms based on the sequential model. Section 4 briefly describes the
multiclass versions of a few two-class CoNN previously presented as well
highlighting the main characteristics of a few other multiclass proposals. Section 5
introduces some CoNN algorithms for regression problem as well as other
combined approaches. In Section 6 several CoNN algorithms that do not quite
conform to the main focus of this chapter and others that do not qualify to be part
of the groups characterized before are briefly presented and finally, in Section 7,
the conclusions of this chapter are presented.

2 Main Characteristics of CoNN Algorithms

Several constructive algorithms that focus on feedforward architectures have been
proposed in the literature. During the learning phase they all essentially repeat the
same process: incrementally adding and training hidden neurons (generally
Threshold Logic Units − TLUs) until a stopping criterion is satisfied. Generally
they all begin the process having as the initial network only the input layer; output
neuron(s) are then added and trained and, depending on their performance, the
algorithm starts to add and connect hidden neurons to the current architecture and
train them, aiming at improving the accuracy of the network performance.

The final result at the end of the constructive process implemented by these
algorithms is a neural network that had its architecture defined along with its
training. In spite of sharing the same basic mechanism, CoNN algorithms differ
from each other in many different ways, such as:

1. Number of nodes they add per layer at each iteration;
2. Direction in which they grow the network:

• forward, from input towards output nodes or
• backward, from output towards input nodes;

3. Functionality of the added neurons (do they all play the same role?);
4. Stopping criteria;
5. Connectivity pattern of the newly added neuron;

4 M. do Carmo Nicoletti et al.

6. Algorithm used for training individual neuron, such as
• The Fisher Discriminant
• Pocket algorithm (Gallant, 1986a)
• Pocket with Ratchet Modification (PRM) (Gallant, 1986a, 1990)
• MinOver (Krauth and Mézard, 1987)
• Quickprop (Fahlman, 1988)
• AdaTron (Anlauf & Biehl, 1989)
• Thermal Perceptron algorithm (Frean, 1992)
• Loss minimization (Hrycej, 1992)
• Modified Thermal algorithm (Burgess, 1994)
• Maxover (Wendemuth, 1995)
• Barycentric Correction Procedure (BCP) (Poulard, 1995);

7. Type of input patterns they deal with: binary (or bipolar) valued,
categorical or real valued attributes;

8. Type of problems they solve:
• classification (two-class or multi-class), where the input is assigned

to one of two or more classes
• regression problems, characterized by a continuous mapping from

inputs to an output or
• clustering, where the patterns are grouped according to some

similarity measure;
9. Topology of the connections among neurons (initially fixed or

dynamically constructed);
10. ‘Shape’ of the feedforward architecture (e.g. tower-like, cascade-like,

etc…).

Among the most well known CoNN algorithms for two-class classification
problems are the Tower and the Pyramid (Gallant, 1986b), the Tiling (Mézard &
Nadal, 1989), the Upstart (Frean, 1990), the Perceptron Cascade (Burgess, 1994),
the PTI and the Shift (Amaldi & Guenin, 1997), the Irregular Partitioning
Algorithm (IPA) (Marchand et al., 1990; Marchand & Golea, 1993), the Target
Switch (Campbell & Vicente, 1995), the Constraint Based Decomposition (CBD)
algorithm (Drăghici, 2001) and the BabCoNN (Bertini Jr. & Nicoletti, 2008a).

Smieja, (1993), Gallant, (1994), Bishop, (1996), Mayoraz and Aviolat (1996),
Campbell (1997) and Muselli (1998) discuss several CoNN algorithms in detail.

3 A Closer Look at Several Two-Class CoNN Algorithms

In order to review several of the two-class CoNN algorithms previously
mentioned in a systematic way, this section divides them into two main categories:
(3.1) those directed by the minimization of classification errors and (3.2) those
based on the sequential learning model.

CoNN Algorithms for Feedforward Architectures Suitable for Classification Tasks 5

3.1 Algorithms Directed by the Minimization of Classification
Errors

Since most of the CoNN algorithms can be characterized as belonging to this
category, a few sub-categories have been adopted in this review aimed at grouping
algorithms that share similar characteristics.

3.1.1 Growing NNs with Single-Neuron Hidden Layers

The Tower and the Pyramid (Gallant, 1986b, 1994) algorithms are two-class
CoNN algorithms that can be viewed as incremental versions of the PRM
algorithm; both can be characterized as forward methods since they grow the NN
layer by layer, from the input towards the output layer. In the Tower algorithm
each new hidden node added to the network is connected to all input nodes and to
the last previously added hidden node, making the architecture of the network
look like a tower.

The basic idea of the Tower algorithm is very simple. Initially the PRM
algorithm is used for training the only node of the first hidden layer of the network
which can be considered the output node. If p is the number of attributes that
describe a training pattern, the first hidden node receives p + 1 inputs i.e., the
input values associated with the p attributes plus the constant value associated
with the bias. As is well known a single neuron can learn with 100% precision
only from linearly separable training sets. If that is the case, the first neuron added
to the network and subsequently trained will correctly learn to separate both
classes and the Tower algorithm is reduced to the PRM algorithm. However, if
that is not the case, the Tower algorithm continues to add hidden layers to the
network (each containing only one TLU) until a stopping criterion is satisfied.

Generally three stopping criteria can be implemented: 1) the NN correctly
classifies the training set; 2) adding a new hidden layer does not contribute to
increasing the network accuracy and 3) a predefined maximum number of hidden
neurons has been reached. Considering that the first step adds the first hidden node
to the network, the kth step adds the kth hidden node. After the first hidden node is
added, all the subsequent hidden nodes added will receive an extra input value,
which corresponds to the output of the last added hidden node. This extra
dimension, added after the first hidden node was created represents the behavior
of the newly created hidden node.

The Pyramid algorithm is very similar to the Tower algorithm. The only
difference between them is that each new hidden node created by the Pyramid
method is connected to every hidden node previously added to the network, as
well as to the input nodes, making the network look like a pyramid. Each step of
the learning phase expands the training patterns in one dimension (which
represents the last hidden neuron added). Considering that the first step adds the
first hidden node to the network, the kth step adds the kth hidden node that receives
the p+1 input values from the input layer plus bias, as well as the output of the
(k−1) hidden nodes previously added.

6 M. do Carmo Nicoletti et al.

Gallant (1994) presents a detailed description of both algorithms as well as
the proof of their convergence, by stating and proving the following theorem:
“with arbitrarily high probability, the Tower (Pyramid) algorithm will fit
noncontradictory sets of training examples with input values restricted to {+1,−1},
provided enough cells are added and enough iterations are taken for each added
cell. Furthermore each added cell will correctly classify a greater number of
training examples than any prior cell.”

3.1.2 Growing NNs with Hidden Neurons Performing Different Functions

The Tiling algorithm (Mézard & Nadal, 1989) is a CoNN algorithm originally
proposed for Boolean domains that trains a multilayer feedforward NN where
hidden nodes are added to a layer in a way comparable to the process of laying
tiles. The neurons in each hidden layer in a Tiling NN perform one out of two
different functions and their names reflect their functionality. Each layer has a
master neuron that works as the output neuron for that layer. If the master neuron
does not correctly classify all training patterns, however, the Tiling algorithm
starts to add and train ancillary neurons, one at a time, aiming at obtaining a
faithful representation of the training set. The output layer has only one master
neuron. The faithfulness criterion employed by the Tiling algorithm establishes
that no two training patterns, belonging to different classes, should produce the
same outputs at any given layer.

As commented by Gallant (1994), “The role of these units (ancillary) is to
increase the number of cells for layer L so that no two training examples with
different classifications have the same set of activations in layer L. Thus each
succeeding layer has a different representation for the inputs, and no two training
examples with different classifications have the same representation in any layer.
Layers with this property are termed faithful layers, and faithfulness of layers is
clearly a necessary condition for a strictly layered network to correctly classify all
training examples”.

In order to construct the network, the first step of the Tiling method is to train
the master neuron of the first hidden layer, using the original training set, aiming
at minimizing the classification error. If the master neuron does not classify the
training set correctly, ancillary neurons are added to this layer and subsequently
trained, one at a time, in order to obtain a faithful representation. Tiling constructs
an NN in successive layers such that each new layer has a smaller number of
neurons than the previous layer and layer L only receives connections from
hidden layer L − 1.

The way the Tiling method operates assures that the master neuron in layer L
classifies the training set with higher accuracy than the master neuron in layer
L − 1. Assuming a finite training set with non-contradictory patterns, the Tiling
algorithm is guaranteed to converge to zero classification errors (under certain
assumptions) (Gallant, 1994). Once the first layer is finished, the Tiling algorithm
goes on adding layers (with one master and a few ancillary neurons) until one out
of four stopping criteria is satisfied: 1) the network converges; 2) the master
neuron added degrades the performance of the network; 3) a pre-defined
maximum number of layers is reached or 4) a pre-defined number of ancillary

CoNN Algorithms for Feedforward Architectures Suitable for Classification Tasks 7

neurons per layer is reached and the training set still does not have a faithful
representation in this layer. The original Tiling algorithm as described in (Mézard
& Nadal, 1989) uses the same TLU training algorithm for each neuron (master or
ancillary) added to the NN; in the same article the authors state and prove a
theorem that ensures its convergence.

The unnamed algorithm proposed in (Nadal, 1989) and described by its author
as an algorithm similar in spirit to the Tiling algorithm was named by Smieja in
(Smieja, 1993) as Pointing. The Pointing algorithm constructs a feedforward
neural network with the input layer, one output neuron and an ordered sequence of
single hidden neurons, each one connected to the input layer and to the previous
hidden neuron in the sequence. Despite its author claiming that the algorithm is
very similar to the Tiling one, although more constrained (which is true), actually
the Pointing algorithm corresponds to the Tower algorithm as proposed by Gallant
(Gallant, 1986b).

The Partial Target Inversion (PTI) algorithm is a CoNN algorithm proposed in
(Amaldi & Guenin, 1997) that shares strong similarities with the Tiling algorithm.
The PTI grows a multi-layer network where each layer has one master neuron and
a few ancillary neurons. Following the Tiling strategy as well, the PTI adds
ancillary neurons to a layer in order to satisfy the faithfulness criteria; the neurons
in layer c are connected only to neurons in layer c − 1. If the training of the master
neuron results in a weight vector that correctly classifies all training patterns or if
the master neuron of layer c does not classify a larger number of patterns than the
master neuron of layer c − 1, the algorithm stops. If a training pattern, however,
was incorrectly classified by the master neuron, and the master neuron correctly
classifies a greater number of patterns than the master of the previous layer, the
algorithm starts adding ancillary neurons to the current layer aiming at its
faithfulness. When the current c layer becomes faithful the algorithm adds a new
layer, c + 1, initially only having the master neuron. The process continues until
stopping criteria are met, such as when the number of master (or ancillary)
neurons has reached a pre-defined threshold. The only noticeable difference
between the Tiling and the PTI is the way the training set, used for training the
ancillary neurons in the process of turning a layer faithful, is chosen.

For training the master neuron of layer c, the PTI uses all the outputs from the
previous layer. Considering that the layer c needs to be faithful, the first ancillary
neuron added to layer c will be trained with those patterns (used to train the master
neuron) that made layer c unfaithful.

In addition, the patterns that activate the last added neuron (master, in this case)
have their classes inverted. The authors justify this procedure by saying that
“When trying to break several unfaithful classes simultaneously, it may be
worthwhile to flip the target of the prototypes on layer c corresponding to several
unfaithful classes. In fact, the specific targets are not important; the only
requirement is that outputs corresponding to a different c−1 layer representation
trigger a different output for at least one unit in the layer c”. For clarification if
after the addition of the first ancillary neuron the layer is not faithful yet, another
ancillary neuron needs to be added to layer c. The second ancillary neuron will be
trained with the c−1 outputs that provoked an unfaithful representation of layer c,

8 M. do Carmo Nicoletti et al.

this time, however, taking also into consideration the master and first ancillary
neuron previously added. The patterns that activated the first ancillary neuron
have their class inverted when they are included in the training set for the second
ancillary neuron. The name PTI (Partial Target Inversion) refers to the fact that
when constructing training sets only a partial number of patterns have their class
(target) inverted.

3.1.3 Growing NNs Based on Wrongly-On and Wrongly-Off Errors

Generally CoNN algorithms based on discriminating between the two types of
errors (wrongly-on and wrongly-off) tend to grow the neural network in a
backward way, i.e. from the output towards the input layer.

The Upstart (Frean, 1990) is a constructive NN algorithm that dynamically
grows a neural network whose structure resembles a binary tree. The algorithm
starts the construction of the NN from the output layer towards the input layer and
during the construction of an Upstart network, a neuron adds two other ancillary
neurons in order to correct its misclassifications.

Let un be a neuron that classifies training patterns but produces wrongly-off
errors (i.e. positive training patterns are misclassified by un as negative). The
Upstart algorithm deals with wrongly-off errors by adding a wrongly-off corrector
as a ‘child’ neuron un+ which will try to correct the errors made by its parent un.
The main tasks of neuron un+ are 1) to correct the classification of positive training
patterns that have been misclassified by un as negative and 2) to keep unchanged
the other classifications made by un (i.e. un+ should be inactive for any other
pattern). The neuron un+ is trained with the subset of training patterns that were
wrongly-off plus the set of negative patterns.

Similarly, to deal with wrongly-on errors (i.e. negative training patterns that are
misclassified by un as positive) the Upstart algorithm creates a wrongly-on
corrector as a child neuron un− aiming: 1) to correct the classification of wrongly-
on training patterns and 2) keep unchanged the other classifications made by
neuron un (i.e. un− should stay inactive for any other pattern). Neuron un− is trained
with the subset of training patterns that were wrongly-on plus the set of positive
patterns.

When a neuron un does not correctly classify all training patterns, it gives rise to
wrongly-off errors, wrongly-on errors or both. A hidden neuron in an Upstart
network, therefore, can have up to two children. As can be seen in (Frean, 1990),
two useful results follow from this training method because the children neurons
have a simpler problem to solve than their parents. Children neurons can always
make fewer misclassifications than their parents and connecting a child neuron to
its parent with the appropriate weight will always reduce the misclassifications
made by the parent .

For a child neuron (either a wrongly-on or a wrongly-off corrector) that has
been added in order to correct misclassifications made by its parent, it is
mandatory that this child only changes the activations of patterns that provoked
the error; for this reason, the inactive output of the neuron should be 0. For a
detailed description of Upstart, see also (Kubat, 2000).

CoNN Algorithms for Feedforward Architectures Suitable for Classification Tasks 9

Another algorithm that adopts the same error-correction strategy of the Upstart
is the Perceptron Cascade (PC) algorithm (Burgess, 1994); PC also borrows the
architecture of neural networks created by the Cascade Correlation algorithm
(Fahlman & Lebiere, 1990).

PC begins the construction of the network by training the output neuron. If this
neuron does not classify all training patterns correctly, the algorithm begins to add
hidden neurons to the network. Each new added hidden neuron is connected to all
previous hidden neurons as well as to the input neurons. The new hidden neuron is
then connected to the output neuron; each time a hidden neuron is added, the
output neuron needs to be retrained. The addition of a new hidden neuron
enlarges the space in one dimension. The algorithm has three stopping criteria: 1)
the network converges i.e. correctly classifies all training patterns; 2) a
pre-defined maximum number of hidden neurons has been achieved and 3) the
most common, the addition of a new hidden neuron degrades the network’s
performance.

Similarly to the Upstart algorithm, hidden neurons are added to the network in
order to correct wrongly-on and wrongly-off errors. Following the same strategy
employed by Upstart, what distinguishes a neuron created for correcting wrongly-
on or for correcting wrongly-off errors caused by the output neuron is the training
set used for training the neuron. To correct wrongly-on errors the training set used
should have all negative patterns plus the patterns which produce wrongly-on
errors. For correcting wrongly-off errors, the training set should have all positive
patterns plus the negative patterns which produce wrongly-off patterns. Unlike
Upstart, however, the PC algorithm only adds and trains one neuron at a time in
order to correct the most frequent wrongly-on and wrongly-off errors produced by
the output neuron.

Like the Upstart and Perceptron Cascade algorithms, the Shift algorithm
(Amaldi & Guenin, 1997) also constructs the network beginning with the output
neuron. This algorithm, however, creates only one hidden layer, iteratively adding
neurons to it; each added neuron is connected to the input neurons and to the
output neuron. The error correcting procedure used by the Shift method is similar
to the one used by the Upstart method, in the sense that the algorithm also
identifies wrongly-on and wrongly-off errors. However, it adds and trains a hidden
neuron to correct the most frequent between these two types of errors. Also, the
training set used for training a wrongly-off (or wrongly-on) corrector differs
slightly from the training sets used by the Upstart algorithm.

3.2 Algorithms Based on the Sequential Model

The general CoNN model identified as sequential learning was proposed in
(Marchand et al., 1990) for Boolean domains and is an improved version of a
previous proposal described in (Ruján & Marchand, 1989). In (Marchand &
Golea, 1993) the algorithm is extended to deal with real data. Contrary to many of
the CoNN algorithms, the sequential learning model is not directed by the
minimization of the classification error.

10 M. do Carmo Nicoletti et al.

Typically, a sequential learning algorithm adds to the network hidden neurons
that are partial classifiers i.e. they separate a group of training patterns belonging
to the same class from the remaining patterns in the training set; this was formally
stated in (Muselli, 1998) as: Let Q+ and Q− be two subsets of the input space; a
neuron will be called a partial classifier if it provides an output of +1 for at least
one pattern of Q+ and output of −1 for all elements of Q−.

Any algorithm that implements the sequential learning model should use an
efficient strategy for training individual TLUs as partial classifiers. Constructive
algorithms based on the sequential learning model produce networks having
partial classifiers as hidden nodes. In the paper (Marchand et al., 1990) the
authors describe a mechanism that uses the Perceptron as an auxiliary process for
identifying the weight vector. However, as pointed out in (Poulard & Hernandez,
1997), this mechanism is time consuming and becomes prohibitive for large
training sets and the authors suggest the BCPMax instead (Poulard & Labreche,
1995), which associates the BCP (Poulard, 1995) with a Pattern Exclusion
Procedure (PEP); initially designed for the BCP the PEP finds the best value of the
neuron’s threshold for a fixed value of the weight vector: the one maximizing the
number of excluded patterns.

The sequential learning model has been implemented by a few algorithms,
namely Marchand et al.´s own proposal known in the literature as the Irregular
Partitioning Algorithm (IPA), the Carve algorithm (Young & Downs, 1998), the
Target Switch algorithm (Campbell & Vicente, 1995), the Oil Spot Algorithm
(Mascioli & Martinelli, 1995), the Constraint Based Decomposition (CBD)
algorithm, proposed in (Drăghici, 2001) and the Decomposition Algorithm for
Synthesis and Generalization (DASG) recently introduced in (Subirats, Jerez and
Franco, 2008).

The IPA algorithm creates a neural network with an input layer, a single hidden
layer and the output neuron. The connections between the hidden layer and the
output neuron have weights and the output neuron has a bias. The hidden layer is
created by sequentially adding neurons to it; each added neuron represents a
hyperplane that separates the greatest number of patterns belonging to the same
class from the rest of the training set. Once the hyperplane is found, the identified
patterns belonging to the same class are removed from the training set and the
procedure is repeated. The process ends when the training set only has patterns
belonging to the same class.

The Target Switch algorithm was originally designed to deal with binary
patterns. The algorithm can induce two different network structures, namely a
cascade that uses linear neurons and a tree-like structure that uses threshold
neurons. The algorithm is based on the concept of dichotomy which, for a
classification problem with a training set E = E− ∪ E+ can be summarised as: “A
set of weights and thresholds which correctly store all the E+ patterns and some of
the E− will be said to induce a (+)dichotomy while a (−)dichotomy will correspond
to correct storage of all the E− patterns and some of the E+ ” (Campbell, 1997).

For growing either type of structure, neurons are always added in pairs, one for
inducing a (+)dichotomy and the other for inducing a (–)dichotomy. The patterns
belonging to E− that are correctly stored by the (+)dichotomy and those belonging

CoNN Algorithms for Feedforward Architectures Suitable for Classification Tasks 11

to E+ that are correctly stored by the (–)dichotomy are the patterns that will be
correctly separated by the neuron introduced in order to connect the above
mentioned pair.

When the architecture is a cascade type, the introduced neuron is a linear
neuron that implements a summation function on the pair outputs. If the result is
positive or negative the current pattern is correctly classified otherwise a
misclassification is produced, which will be dealt with by the next pair of neurons
to be added. For growing neural networks with a tree structure the introduced
neuron is a threshold neuron that implements a threshold function on the pair
outputs. Considering that the first iteration adds one threshold neuron (the output),
each following iteration will add two more threshold neurons to those already
added in the previous iteration.

To obtain the dichotomies the authors propose the use of any Perceptron-like
TLU training algorithm. Roughly speaking, the idea is to run the TLU training
algorithm and then shift the resulting hyperplane in order to correctly classify all
patterns of a given class.

The Constraint Based Decomposition (CBD) is another algorithm that follows
the sequential model. The algorithm builds an architecture with four layers which
are named input, hyperplane, AND and OR layers respectively. The whole
training set is used for training the first hidden neuron in the hyperplane layer. The
next hidden neuron to be added will be trained with those training patterns that
were misclassified by the first hidden neuron. The algorithm goes on adding
neurons to the first layer until no pattern is left in the training set. For training a
neuron ui, one pattern from each class is randomly chosen and removed from the
training set E. These patterns are put in the training set Eui. After ui has been
trained with Eui, the algorithm starts to add patterns to Eui, one at a time, in a
random manner. Each time a pattern is added to the set, ui is retrained with the
updated Eui. However, if the addition of a new pattern to Eui results in
misclassification, the last pattern added is removed from Eui and marked as ´used´
by the neuron. Before adding a new hidden neuron, the algorithm considers all
patterns in E for the current neuron. A new neuron will be added when all training
patterns left have been tried for the current neuron. The neurons of the AND layer
are connected only to relevant neurons from the hyperplane layer and in the OR
layer the output neurons are connected only to neurons from the AND layer which
are turned on for the given class.

The recently introduced DASG algorithm belongs also to the class of sequential
learning algorithm. It works with binary inputs by decomposing the original
Boolean function (or partially defined Boolean function) into two new lower
complexity functions, which in turn are decomposed until all obtained functions
are threshold functions that can be implemented by a single neuron. The final
solution incorporates all functions in a single hidden layer architecture with an
output neuron that computes and OR or AND Boolean function.

The BabCoNN (Barycentric-based CoNN) (Bertini Jr. & Nicoletti, 2008a) is a
new two-class CoNN that borrows some of the ideas of the BCP (Barycentric
Correction Procedure, see (Poulard, 1995), (Poulard & Labreche 1995)) and can
be considered a representative of the sequential model. Like the Upstart,

12 M. do Carmo Nicoletti et al.

Table 1 Overview of fourteen two-class CoNN algorithm characteristics

Algorithm Group
HL

Growth
direction

New Neuron
Connected to Special Feature Stopping

criteria

Tower One HN per HL
Various

Forward

Previously
added HN
and INs

Weight update
CON
AD

NHL

Pyramid One HN per HL
Various

Forward

All
previously
added HNs

and INs

Dimension of
weight space

increases

CON
AD

NHL

Tiling

Neurons
perform
different
functions

Various

Forward

Previous
layer

Faithful layers –
divide and conquer

CON
AD

NHL
NHN

PTI

Neurons
perform
different
functions

Various

Forward

Previous
layer

Faithful layers –
inversion of

classes

CON
AD

NHL
NHN

Upstart
Wrongly-on/off

correctors

Binary
tree

Backward

Parent neuron
Children correct

the father’s
mistakes

CON
AD

NHL

Shift
Wrongly-on/off

correctors

One

Backward
INs

Weighted
connections are

used to correct the
output error

CON
AD

NHL

Perceptron
cascade

Wrongly-on/off
correctors

Cascade-
like

Backward

Previously
added HNs

and INs

Output increases
the dimension of
its weight space

every time a
neuron is added

CON
AD

NHL

Cascade
correlation

Wrongly-on/off
correctors

Cascade-
like

Backward

Previously
added HNs

and INs

Suitable for
regression tasks

CON
AD

NHL

Offset

Neurons
perform
different
functions

Two

Forward

Previous
layer

Parity machine
CON
AD

NHL

IPA Sequential
One

Forward

INs
Sequentially
classifies the
training set

TSC

Target
switch

Sequential
Cascade

(tree-like)
Backward

Previously
added HNs

and INs

(+) and (–)
dichotomies

TSC

CBD Sequential
Three

Forward

Previous
layer

AND/OR layers TSC

BabCoNN Sequential
One

Backward

Input HN fires −1, 0 or 1 TSC

DASG

Sequential

One

Forward
Input

AND/OR output
function

TSC

CoNN Algorithms for Feedforward Architectures Suitable for Classification Tasks 13

Perceptron Cascade (PC) and Shift, the BabCoNN also constructs the network,
beginning with the output neuron. However, it creates only one hidden layer; each
hidden neuron is connected to the input layer as well as to the output neuron, like
with the Shift algorithm.

Although the Upstart, PC and Shift construct the network by adding new hidden
neurons specialized in correcting wrongly-on and wrongly-off errors, the
BabCoNN employs a different strategy. The BCP is used for constructing a
hyperplane in the hyperspace defined by the training set; the classified patterns are
removed from the set and the process is repeated again with the updated training
set. Due to the way the algorithm works a certain degree of redundancy is inserted
in the process, in the sense of a pattern being correctly classified by more than one
hidden neuron. This has been fixed by the BabCoNN classification process, where
hidden neurons have a particular way of firing their output.

Table 1 summarizes the main characteristics of fourteen two-class algorithms
previously discussed. For presenting the table the following abbreviations were
adopted: Forward (the NN is grown from input towards output layer); Backward
(the NN is grown from output towards input layer); INs: all neurons in the input
layer; HN: a hidden neuron; HL: a hidden layer; #HL: number of hidden layers.
The following abbreviations were adopted for stopping criteria: CON
(convergence); AD (accuracy decay); NHL (number of hidden layers exceeds a
given threshold); NHN (number of hidden neurons per hidden layer exceeds a
given threshold); TSC (all training patterns have been correctly classified).

4 A Brief Approach to Multiclass Classification Using CoNN

A multiclass classification problem is a classification problem involving m (> 2)
classes usually treated as m two-class problems. Generally multiclass CoNN start
by training as many output neurons as there are classes in the training set, using
one of two strategies: individual (I) and winner-takes-all (WTA).

The multiclass versions of a few two-class algorithms have been proposed in
(Parekh et al., 1995), (Yang et al., 1996), (Parekh et al., 1997a), (Parekh et al.,
1997b), (Parekh et al., 2000) and they are the MTower, MPyramid, MTiling,
MUpstart and MPerceptron Cascade, which can be considered extensions of their
two-class counterparts.

The MTower algorithm deals with an m-class problem by adding and training
m hidden neurons per hidden layer at each iteration. In an MTower architecture
each of the m neurons in a certain hidden layer has connections with all the
neurons of the input layer as well as with all the m neurons of the previous hidden
layer. The MPyramid also deals with an m-class problem by adding and training m
hidden neurons per hidden layer at each iteration. The m hidden neurons in each
hidden layer, however, are connected to all the hidden neurons of all the hidden
layers as well as to the input neurons.

Although the two-class Upstart algorithm constructs the neural network as a
binary tree of TLUs starting with the output neuron, its multiclass version, the
MUpstart, creates a network with a single hidden layer where each single hidden
neuron is directly connected to every neuron in the output layer. The input layer is

14 M. do Carmo Nicoletti et al.

fully connected to the hidden neurons as well as to the output neurons. As
mentioned before, each neuron added to a hidden layer by the Tiling algorithm can
be a master (one per hidden layer) or an ancillary neuron (a few per layer). The
MTiling also constructs a multi layer neural network where the first hidden layer
has connections to the input layer and each subsequent hidden layer has
connections only to the previous hidden layer. For training data containing m
classes (> 2), MTiling adds m master neurons and as many ancillary neurons as
necessary to make the layer faithful. The output layer has exactly m neurons.

The multiclass MPerceptron-Cascade is very similar to the MUpstart. Their
main difference is the architecture of the neural network they induce. While the
MUpstart adds the new hidden neurons in a single layer, the MPerceptron-Cascade
adds the new hidden neurons in new layers. The MBabCoNN (Bertini Jr. &
Nicoletti, 2008b) is the multiclass version of BabCoNN and constructs a network
beginning with the output layer containing as many neurons as there are classes in
the training set (each output neuron is associated to a class). The algorithm allows
the neurons to be trained using any TLU algorithm combined with either strategy,
individual or WTA. After adding m output neurons, the algorithm starts to add
neurons to its single hidden layer in order to correct the classification mistakes
made by the output neurons. A detailed description of MBabCoNN and an
empirical evaluation of its performance versus the performance of several
multiclass CoNN algorithms is described in one chapter of this book and is an
extended version of the paper (Bertini Jr. & Nicoletti, 2008b).

5 CoNN Algorithms for Regression Problems and Combined
Approaches

In spite of their strong focus on classification tasks, many CoNN proposals
specifically aim at regression problems (see (Kwok & Yeung, 1997a), (Ma &
Khorasani, 2003), (Ma & Khorasani, 2004)). A review of the CoNN algorithms
for regression problems, approached from the perspective of a state-space search
can be seen in (Kwok & Yeung, 1997a).

In their proposed taxonomy Kwok & Yeung group the algorithms into six
different categories, each named after its most representative algorithm (1)
Dynamic node creation (DNC) (Ash, 1989); (2) Projection pursuit regression,
based on the statistical technique proposed in (Friedman & Stuetzle, 1981); (3)
Cascade-Correlation, that mostly groups variants of the cascade-correlation
architecture proposed in (Fahlman & Lebiere, 1990); (4) Resource-allocating
networks (RAN) (Platt, 1991); (5) Group methods of data handling, a class of
algorithms inspired by the GMDH proposed by Ivakhnenko and described in
(Farlow, 1984) and (6) Miscellaneous, a category that groups CoNN that have
‘multivaluated state transition mappings while still retraining the whole network
upon hidden unit addition’. In the last category, however, the authors only talk
about a hybrid algorithm, proposed in (Nabhan & Zomaya, 1994) that employs
both, a constructive and a pruning strategy.

CoNN Algorithms for Feedforward Architectures Suitable for Classification Tasks 15

Kwok & Yeung in (Kwok & Yeung, 1997b) conducted a very careful
investigation on the objective functions for training hidden neurons in CoNN for
multilayer feedforward networks for regression problems, aiming at deriving a
class of objective functions whose value and the corresponding weight updates
could be computed in Ο(N) time, for a training set with N patterns.

In spite of the many CoNN algorithms surveyed in (Kwok & Yeung, 1997a),
the most popular for regression problems is no doubt the Cascade Correlation
algorithm (CasCor) and maybe the second most popular is the DNC. While the
DNC algorithm constructs neural networks with a single hidden layer, the CasCor
creates them with multiple hidden layers, where each hidden layer has one hidden
neuron. The popularity of CasCor can be attested by the various ways this
algorithm has inspired new variations and also has been used in the combined
approaches between learning methods.

A similar approach to CasCor called Constructive Backpropagation (CBP) was
proposed in (Lehtokangas, 1999). The RCC, a recurrent extension to CasCor is
described in (Fahlman, 1991) and its limitations are presented and discussed in
(Giles et al., 1995). In (Kremer, 1996) the conclusions of Giles et al. in relation to
RCC are extended. An investigation into problems and improvements in relation
to the basic CasCor can be found in (Prechelt, 1997), where CasCor and five of its
variations are empirically compared using 42 different datasets from the
benchmark PROBEN1 (Prechelt, 1994).

CasCor has also inspired the proposal of the Fixed Cascade Error (FCE),
described in (Lahnajärvi et al., 1999c), (Lahnajärvi et al., 2002), which is an
enhanced version of a previous algorithm proposed by the same authors known as
Cascade Error (CE) (see (Lahnajärvi et al., 1999a), (Lahnajärvi et al., 1999b)).
While the general structure of both algorithms is the same, they differ in the way
the hidden neurons are created.

The Rule-based Cascade-correlation (RBCC) proposed in (Thivierge et al.,
2004) is a collaborative symbolic-NN approach which is partially inspired by the
KBANN (Knowledge-Based Artificial Neural Networks) model proposed in
(Towel et al., 1990), (Towel, 1991) where the NN used is a CasCor network. In
the KBANN an initial set of rules is translated into a neural network which is then
refined using a training set of patterns; the refined neural network can undergo a
further step and be converted into a set of symbolic rules which could, again, be
used as the starting point for constructing a neural network and the whole cycle
would be repeated.

According to the authors the RBCC is a particular case of the Knowledge-
based Cascade-correlation algorithm (KBCC) (Shultz & Rivest, 2000) (Shultz &
Rivest, 2001). The KBCC extends the CasCor by allowing as hidden neurons
during the growth of a NN not only single neurons, but previously learned
networks as well. In (Thivierge et al., 2003) an algorithm that implements
simultaneous growing and pruning of CasCor networks is described; the pruning
is done by removing irrelevant connections using the Optimal Brain Damage
(OBD) procedure (Le Cun et al., 1990).

In (Islam & Murase, 2001) the authors propose the CNNDA (Cascade Neural
Network Design Algorithm) for inducing two-hidden-layer NNs. The method

16 M. do Carmo Nicoletti et al.

automatically determines the number of nodes in each hidden layer and can also
reduce a two-hidden-layer network to a single-layer network. It is based on the use
of a temporary weight freezing technique. The Fast Constructive-Covering
Algorithm (FCCA) for NN construction proposed in (Wang, 2008) is based on
geometrical expansion. It has the advantage of each training example having to be
learnt only once, which allows the algorithm to work faster than traditional
training algorithms.

6 Miscellaneous

A few constructive approaches have also been devised for RBF (Radial Basis
Function) networks, such the Orthogonal Least Squares (OLS) (Chen et al., 1989)
(Chen et al., 1991) and the Growing Radial Basis Function (GRBF) networks
(Karayiannis & Weiqun, 1997).

Although CoNN algorithms seem to have a lot of potential in relation to both
the size of the induced network and its accuracy, it is really surprising that their
use, particularly in the area of classification problems, is not as widespread as it
should be, considering their many advantages. In regression problems, however,
CoNNs have been very popular, particularly the Cascade-Correlation algorithm
and many of its variations. In what follows some of the most recent works using
CoNN are mentioned.

In (Lahnajärvi et al., 2004) four CasCor-based CoNN algorithms, have been
used for evaluating the movements of a robotic manipulator. In (Huemer et al.,
2008) the authors describe a method for controlling machines, such as mobile
robots, using a very specific CoNN. The NN is grown based on a reward value
given by a feedback function that analyses the on-line performance of a certain
task. In fact since conventional NNs are commonly used in controlling tasks
(Alnajjar & Murase, 2005), this is a potential application area for CoNN
algorithms as well.

In (Giordano et al., 2008), a committee of CasCor neural networks was
implemented as a software filter, for the online filtering of CO2 signals from a
bioreactor gas outflow. The knowledge-based CasCor proposal (KBCC) previously
mentioned has been used in a few knowledge domains, such as simulation of
cognitive development (see e.g. (Mareschal & Schultz, 1999) and (Sirois & Shultz,
1998)), vowel recognition (Rivest & Shultz, 2002) and for gene-splice-junction
determination (Thivierge & Shultz, 2002), a benchmark problem from the UCI
Machine Learning Repository (Asuncion & Newman, 2007). A more in depth
investigation into the use of the knowledge-based neural learning implemented by
the KBCC in developmental robotics can be seen in (Shultz et al., 2007).

A few other non-conventional approaches to CoNN can be found in recent
works, such as the one described in (García-Pedrajas & Ortiz-Boyer, 2007), based
on cooperative co-evolution, for the automatic induction of the structure of an NN
for classification purposes; the method partially tries to avoid the problems of
greedy approaches. In (Yang et al., 2008) the authors combined the ridgelet
function with feedforward neural networks in the ICRNN (Incremental
Constructive Ridgelet Neural Network) model. The ridgelet function was chosen

CoNN Algorithms for Feedforward Architectures Suitable for Classification Tasks 17

as the activation function due to its efficiency in describing linear-, curvilinear-
and hyperplane-like structures in its hidden layer; the structure of the network is
induced via a constructive method.

The CoNN classifier known as the Recursive Deterministic Perceptron (RDP)
(Tajine & Elizondo, 1996) is a generalization of the Perceptron, capable of solving
any two-class classification problem. It works by transforming any non-linearly
separable two-class problem into a linearly one, which can be easily learnt by the
Perceptron. Its multiclass version (Tajine et al. 1997) is a generalization that
allows separation of the m-classes in a deterministic way. Results show that in
certain domains, both the multiclass version and the backpropagation have similar
performance (Elizondo et al., 2008).

The Switching Neural Network (SNN) is a connectionist model recently
proposed in (Muselli, 2006) suitable for classification problems. The first layer of
an SNN contains converters, called latticizers that change the representation of the
input vectors into binary strings. The two other layers of the SNN represent a
Boolean function that solves, in the lattice domain, the original classification
problem. As proposed in (Ferrari & Muselli, 2008) the construction of an SNN
can be done by a constructive algorithm known as Switch Programming (SP)
which is based on solutions of a linear programming problem. Good simulation
results suggest that this proposal is worthy of a deeper investigation.

The constructive proposals CLANN and its multiclass version M-CLANN
described in (Tsopzé et al., 2007) and (Nguifo et al., 2008) respectively are based
on concept lattices and aim at a semantic interpretation of the involved neurons
and consequently at an ‘interpretable’ (in the sense of comprehensibility) neural
network. CLANN and M-CLANN can be approached as representation-
translators, in the same sense as the KBANN model is (Towel et al., 1990),
(Towel, 1991).

A different approach to CoNN can be found in (Barreto-Sanz et al., 2008),
where the authors propose the FGHSON (Fuzzy Growing Hierarchical Self-
Organizing Networks), an adaptive network method capable of representing the
underlying structure of the data, in a hierarchical fuzzy way.

Transformation of original data features usually helps to find interesting low
dimensional data that can reveal previously unseen structures. This process aims
to ease the problem for a classifier. The simplest of these transformations is the
linear projection. Many methods search for the optimal and the most informative
linear projection. Friedman (Friedman, 1987) proposed a framework to find
interesting data transformations by maximizing an index of projection pursuit.
Grochowski and Duch in (Grochowski & Duch, 2008) proposed the QPC network,
a constructive neural network that can implement this framework. The algorithm
introduces a new index based on the quality of projected clusters that can be used
to define specific representations for the hidden layer of a neural network and may
help to construct the network.

The recently introduced C-Mantec algorithm (Subirats, Franco et al, 2008) that
works by error correction using the thermal perceptron (Frean, 1992) incorporates
competition between neurons in the hidden layer and it has been shown to lead to

18 M. do Carmo Nicoletti et al.

very compact architectures. The intrinsic dynamics of the algorithm has been
applied for detecting and filtering noisy instances, reducing overfitting and
improving the generalization ability.

7 Conclusions

This chapter presents an overview of several CoNN algorithms and highlighted
some of their applications and contributions. Although focusing on feedforward
architectures for classification tasks, the chapter also tries to present a broad view
of the area, discussing several of the most recent contributions.

An interesting aspect of CoNN research is its chronological aspect. It may be
noticeable that most of the CoNN algorithms for classification tasks were
proposed in the nineties and since then not many new proposals have been
published. Another point to consider also is the lack of real world applications
involving the use of CoNN algorithms; this can be quite surprising, considering
the many that are available and the fact that several have competitive
performances in comparison to other more traditional approaches. The tendency in
the area is for diversifying both the architecture and the constructive process itself,
by means of including collaborative techniques. What has been surveyed in this
chapter is just a part of the research work going on in the area of CoNN
algorithms. As mentioned in the Introduction, there is a very promising area
characterized as the group of evolutionary techniques that has been contributing a
lot to the development of CoNNs and was not the subject of this chapter.

Acknowledgments. To FAPESP and CAPES for the support provided to M. C. Nicoletti
and to J. R. Bertini Jr. respectively. L. Franco, D. Elizondo and J.M. Jerez acknowledge
support from MICIIN through grant TIN2008-04985 and to Junta de Andalucía grants P06-
TIC-01615 and P08-TIC-04026.

References

Alnajjar, F., Murase, K.: Self-organization of spiking neural network generating
autonomous behavior in a real mobile robot. In: Proceedings of The International
Conference on Computational Intelligence for Modeling, Control and Automation,
vol. 1, pp. 1134–1139 (2005)

Amaldi, E., Guenin, B.: Two constructive methods for designing compact feedfoward
networks of threshold units. International Journal of Neural System 8(5,6), 629–645
(1997)

Anlauf, J.K., Biehl, M.: The AdaTron: an adaptive perceptron algorithm. Europhysics
Letters 10, 687–692 (1989)

Ash, T.: Dynamic node creation in backpropagation networks, Connection Science, vol.
Connection Science 1(4), 365–375 (1989)

Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. University of California,
School of Information and Computer Science, Irvine (2007),
http://www.ics.uci.edu/~mlearn/MLRepository.html

CoNN Algorithms for Feedforward Architectures Suitable for Classification Tasks 19

Barreto-Sanz, M., Pérez-Uribe, A., Peña-Reyes, C.-A., Tomassini, M.: Fuzzy growing
hierarchical self-organizing networks. In: Kůrková, V., Neruda, R., Koutník, J. (eds.)
ICANN 2008,, Part II. LNCS, vol. 5164, pp. 713–722. Springer, Heidelberg (2008)

Bertini Jr., J.R., Nicoletti, M.C.: A constructive neural network algorithm based on the
geometric concept of barycenter of convex hull, Computational Intelligence: Methods
and Applications. In: Rutkowski, R.L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J. (eds.)
Academic Publishing House Exit, pp. 1–12. IEEE Computational Intelligence Society,
Poland (2008a)

Bertini Jr., J.R., Nicoletti, M.C.: MBabCoNN – A multiclass version of a constructive
neural network algorithm based on linear separability and convex hull. In: Kůrková, V.,
Neruda, R., Koutník, J. (eds.) ICANN 2008,, Part II. LNCS, vol. 5164, pp. 723–733.
Springer, Heidelberg (2008)

Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, USA
(1996)

Burgess, N.: A constructive algorithm that converges for real-valued input patterns. Int.
Journal of Neural Systems 5(1), 59–66 (1994)

Campbell, C.: Constructive learning techniques for designing neural network systems. In:
Leondes, C. (ed.) Neural Network Systems Technologies and Applications, vol. 2.
Academic Press, San Diego (1997)

Campbell, C., Vicente, C.P.: The target switch algorithm: a constructive learning procedure
for feed-forward neural networks. Neural Computation 7(6), 1245–1264 (1995)

Chen, S., Billings, S., Luo, W.: Orthogonal least squares learning methods and their
application to non-linear system identification. International Journal of Control 50,
1873–1896 (1989)

Chen, S., Cowan, C., Grant, P.M.: Orthogonal least squares learning algorithm for radial
basis function networks. IEEE Transactions on Neural Networks 2, 302–309 (1991)

Drăghici, S.: The constraint based decomposition (CBD) training architecture. Neural
Networks 14, 527–550 (2001)

Elizondo, D., Ortiz-de-Lazcano-Lobato, J.M., Birkenhead, R.: On the generalization of the
m-class RDP neural network. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN
2008, Part II. LNCS, vol. 5164, pp. 734–743. Springer, Heidelberg (2008)

Fahlman, S.E.: Faster-learning variations on backpropagation: an empirical study. In:
Touretzky, D.S., Hinton, G.E., Sejnowski, T.J. (eds.) Proceedings of the 1988
Connectionist Models Summer School, pp. 38–51. Morgan Kaufmann, San Mateo
(1988)

Fahlman, S., Lebiere, C.: The cascade correlation architecture, Advances in Neural
Information Processing Systems, vol. 2, pp. 524–532. Morgan Kaufman, San Mateo
(1990)

Fahlman, S.: The recurrent cascade-correlation architecture, Advances in Neural
Information Processing Systems, vol. 3, pp. 190–196. Morgan Kaufman, San Mateo
(1991)

Farlow, S.J. (ed.): Self-organizing methods in Modeling: GMDH Type Algorithms. In:
Statistics: Textbooks and Monographs, vol. 54. Marcel Dekker, New York (1984)

Ferrari, E., Muselli, M.: A constructive technique based on linear programming for training
switching neural networks. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008,
Part II. LNCS, vol. 5164, pp. 744–753. Springer, Heidelberg (2008)

Fiesler, E.: Comparative bibliography of ontogenic neural networks. In: Proceedings of The
International Conference on Artificial Neural Networks (ICANN), Sorrento, vol. 94, pp.
793–796 (1994)

20 M. do Carmo Nicoletti et al.

Frean, M.: The upstart algorithm: a method for constructing and training feedforward
neural networks. Neural Computation 2, 198–209 (1990)

Frean, M.: A thermal perceptron learning rule. Neural Computation 4, 946–957 (1992)
Friedman, J.H., Stuetzle, W.: Projection pursuit regression. Journal of the American

Statistical Association 76(376), 817–823 (1981)
Friedman, J.: Exploratory projection pursuit. Journal of the American Statistical

Association 82, 249–266 (1987)
Gallant, S.I.: Optimal linear discriminants. In: Proceedings of The Eighth International

Conference on Pattern Recognition, pp. 849–852 (1986a)
Gallant, S.I.: Three constructive algorithms for network learning. In: Proceedings of The

Eighth Annual Conference of the Cognitive Science Society, Amherst, Ma, pp. 652–660
(1986b)

Gallant, S.I.: Perceptron based learning algorithms. Proceedings of the IEEE Transactions
on Neural Networks 1(2), 179–191 (1990)

Gallant, S.I.: Neural Network Learning & Expert Systems. The MIT Press, England (1994)
García-Pedrajas, N., Ortiz-Boyer, D.: A cooperative constructive method for neural

networks for pattern recognition. Pattern Recognition 40, 80–98 (2007)
Ghosh, J., Tumer, K.: Structural adaptation and generalization in supervised feed-forward

networks. Journal of Artificial Neural Networks 1(4), 431–458 (1994)
Giles, C.L., Chen, D., Sun, G.-Z., Chen, H.-H., Lee, Y.-C., Goudreau, M.W.: Constructive

learning of recurrent neural network: limitations of recurrent cascade correlation and a
simple solution. IEEE Transactions on Neural Networks 6(4), 829–836 (1995)

Giordano, R.C., Bertini Jr., J.R., Nicoletti, M.C., Giordano, R.L.C.: Online filtering of CO2
signals from a bioreactor gas outflow using a committee of constructive neural
networks. Bioprocess and Biosystems Engineering 31(2), 101–109 (2008)

Grochowski, M., Duch, W.: Projection pursuit constructive neural networks based on
quality of projected cluster. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN
2008,, Part II. LNCS, vol. 5164, pp. 754–762. Springer, Heidelberg (2008)

Hrycej, T.: Modular Learning in Neural Networks. Addison Wiley, New York (1992)
Huemer, A., Elizondo, D., Gongora, M.: A reward-value based constructive method for the

autonomous creation of machine controllers. In: Kůrková, V., Neruda, R., Koutník, J.
(eds.) ICANN 2008,, Part II. LNCS, vol. 5164, pp. 773–782. Springer, Heidelberg
(2008)

Islam, M.M., Murase, K.: A new algorithm to design compact two-hidden-layer artificial
networks. Neural Networks 14, 1265–1278 (2001)

Karayiannis, N.B., Weiqun, G.: Growing radial basis neural networks: merging supervised
and unsupervised learning with network growth techniques. IEEE Transactions on
Neural Networks 8(6), 1492–1506 (1997)

Krauth, W., Mézard, M.: Learning algorithms with optimal stability in neural networks.
Journal of Physics A 20, 745–752 (1987)

Kremer, S.: Comments on constructive learning of recurrent neural networks: limitations of
recurrent cascade correlation and a simple solution. IEEE Transactions on Neural
Networks 7(4), 1047–1049 (1996)

Kubat, M.: Designing neural network architectures for pattern recognition. The Knowledge
Engineering Review 15(2), 151–170 (2000)

Kwok, T.-Y., Yeung, D.-Y.: Constructive algorithms for structure learning in feedforward
neural networks for regression problems. IEEE Transactions on Neural Networks 8(3),
630–645 (1997a)

CoNN Algorithms for Feedforward Architectures Suitable for Classification Tasks 21

Kwok, T.-Y., Yeung, D.-Y.: Objective functions for training new hidden units in
constructive neural networks. IEEE Transactions on Neural Networks 8(5), 1131–1148
(1997b)

Lahnajärvi, J.J.T., Lehtokangas, M.I., Saarinen, J.P.P.: Fast constructive methods for
regression problems. In: Proceedings of the 18th IASTED International Conference on
Modelling, Identification and Control (MIC 1999), Innsbruck, Austria, pp. 442–445
(1999a)

Lahnajärvi, J.J.T., Lehtokangas, M.I., Saarinen, J.P.P.: Comparison of constructive neural
networks for structure learning. In: Proceedings of the 18th IASTED International
Conference on Modelling, Identification and Control (MIC 1999), Innsbruck, Austria,
pp. 446–449 (1999b)

Lahnajärvi, J.J.T., Lehtokangas, M.I., Saarinen, J.P.P.: Fixed cascade error – a novel
constructive neural network for structure learning. In: Proceedings of the Artificial
Neural Networks in Engineering Conference (ANNIE 1999), St. Louis, USA, pp. 25–30
(1999c)

Lahnajärvi, J.J.T., Lehtokangas, M.I., Saarinen, J.P.P.: Evaluation of constructive neural
networks with cascaded architectures. Neurocomputing 48, 573–607 (2002)

Lahnajärvi, J.J.T., Lehtokangas, M.I., Saarinen, J.P.P.: Estimating movements of a robotic
manipulator by hybrid constructive neural networks. Neurocomputing 56, 345–363
(2004)

Le Cun, T., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Touretzky, D.S. (ed.)
Advances in Neural Information Processing Systems, vol. 2, pp. 598–605. Morgan
Kauffman, San Mateo (1990)

Lehtokangas, M.: Modelling with constructive backpropagation. Neural Networks 12, 707–
716 (1999)

Ma, L., Khorasani, K.: A new strategy for adaptively constructing multilayer feedforward
neural networks. Neurocomputing 51, 361–385 (2003)

Ma, L., Khorasani, K.: New training strategies for constructive neural networks with
application to regression problems. Neural Networks 17, 589–609 (2004)

Marchand, M., Golea, M., Ruján, P.: A convergence theorem for sequential learning in two-
layer perceptrons. Europhysics Letters 11(6), 487–492 (1990)

Marchand, M., Golea, M.: On learning simple neural concepts: from halfspace intersections
to neural decision lists. Network: Computation in Neural Systems 4(1), 67–85 (1993)

Mareschal, D., Schultz, T.R.: Development of children´s seriation: a connectionist
approach. Connection Science 11, 149–186 (1999)

Mascioli, F.M.F., Martinelli, G.: A constructive algorithm for binary neural networks: the
oil-spot algorithm. IEEE Transaction on Neural Networks 6, 794–797 (1995)

Mayoraz, E., Aviolat, F.: Constructive training methods for feedforward neural networks
with binary weights. International Journal of Neural Networks 7, 149–166 (1996)

Mézard, M., Nadal, J.: Learning feedforward networks: the tiling algorithm. J. Phys. A:
Math. Gen. 22, 2191–2203 (1989)

Muselli, M.: Sequential constructive techniques. In: Leondes, C. (ed.) Neural Network
Systems Techniques and Applications, vol. 2, pp. 81–144. Academic, San Diego (1998)

Muselli, M.: Switching neural networks: a new connectionist model for classification. In:
Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds.) WIRN 2005 and NAIS
2005. LNCS, vol. 3931, pp. 23–30. Springer, Heidelberg (2006)

Nabhan, T.M., Zomaya, A.Y.: Toward generating neural network structures for function
approximation. Neural Networks 7(1), 89–99 (1994)

22 M. do Carmo Nicoletti et al.

Nadal, J.-P.: Study of a growth algorithm for a feedforward network. International Journal
of Neural Systems 1(1), 55–59 (1989)

Nguifo, E.M., Tsopzé, N., Tindo, G.: M-CLANN: Multi-class concept lattice-based
artificial neural network for supervised classification. In: Kůrková, V., Neruda, R.,
Koutník, J. (eds.) ICANN 2008,, Part II. LNCS, vol. 5164, pp. 812–821. Springer,
Heidelberg (2008)

Nicoletti, M.C., Bertini Jr., J.R.: An empirical evaluation of constructive neural network
algorithms in classification tasks. International Journal of Innovative Computing and
Applications 1(1), 2–13 (2007)

Parekh, R.G., Yang, J., Honavar, V.: Constructive neural network learning algorithm for
multi-category classification, TR ISU-CS-TR95-15a, Iowa State University, IA (1995)

Parekh, R.G., Yang, J., Honavar, V.: MUpstart a constructive neural network learning
algorithm for multi-category pattern classification. In: Proceedings of the IEEE/INNS
International Conference on Neural Networks (ICNN 1997), vol. 3, pp. 1924–1929
(1997a)

Parekh, R.G., Yang, J., Honavar, V.: Pruning strategies for the MTiling constructive
learning algorithm. In: Proceedings of the IEEE/INNS International Conference on
Neural Networks (ICNN 1997), 3rd edn., pp. 1960–1965 (1997b)

Parekh, R.G., Yang, J., Honavar, V.: Constructive neural-network learning algorithms for
pattern classification. IEEE Transactions on Neural Networks 11(2), 436–451 (2000)

Platt, J.: A resource-allocating network for function interpolation. Neural Computation 3,
213–225 (1991)

Poulard, H.: Barycentric correction procedure: a fast method for learning threshold unit. In:
Proceedings of WCNN 1995, vol. 1, pp. 710–713 (1995)

Poulard, H., Estève, D.: A convergence theorem for barycentric correction procedure,
Technical Report 95180, LAAS-CNRS, Toulouse, France (1995)

Poulard, H., Labreche, S.: A new threshold unit learning algorithm, Technical Report
95504, LAAA-CNRS, Toulouse, France (1995)

Poulard, H., Hernandez, N.: Training a neuron in sequential learning. Neural Processing
Letters 5, 91–95 (1997)

Prechelt, L.: PROBEN1 A set of neural-network benchmark problems and benchmarking
rules, Fakultät für Informatik, Univ. Karlsruhe, Germany, Tech. Rep. 21/94 (1994)

Prechelt, L.: Investigation of the CasCor family of learning algorithms. Neural
Networks 10(5), 885–896 (1997)

Ruján, P., Marchand, M.: Learning by minimizing resources in neural networks. Complex
Systems 3, 229–241 (1989)

Reed, R.: Pruning algorithms – a survey. IEEE Transaction on Neural Networks 4(5), 740–
747 (1993)

Rivest, F., Shultz, T.R.: Application of knowledge-based cascade-correlation to vowel
recognition. In: Proceedings of The International Joint Conference on Neural Networks,
pp. 53–58 (2002)

Schaffer, J.D., Whitely, D., Eshelman, L.J.: Combinations of genetic algorithms and neural
networks: a survey of the state of the art. In: Proceedings of the International Workshop
of Genetic Algorithms and Neural Networks, pp. 1–37 (1992)

Shultz, T.R., Rivest, F.: Knowledge-based cascade-correlation. In: Proceedings of The
IEEE-INNS-ENNS International Joint Conference on Neural Networks, vol. 5, pp. 641–
646 (2000)

Shultz, T.R., Rivest, F.: Knowledge-based cascade-correlation: using knowledge to speed
learning. Connection Science 13, 1–30 (2001)

CoNN Algorithms for Feedforward Architectures Suitable for Classification Tasks 23

Shultz, T.R., Rivest, F., Egri, L., Thivierge, J.-P., Dandurand, F.: Could knowledge-based
neural learning be useful in developmental robotics? The case of KBCC. International
Journal of Humanoid Robotics 4(2), 245–279 (2007)

Sirois, S., Shultz, T.R.: Neural network modeling of developmental effects in
discrimination shifts. Journal of Experimental Child Psychology 71, 235–274 (1998)

Smieja, F.J.: Neural network constructive algorithms: trading generalization for learning
efficiency? Circuits, Systems and Signal Processing 12, 331–374 (1993)

Subirats, J.L., Jerez, J.M., Franco, L.: A new decomposition algorithm for threshold
synthesis and generalization of Boolean Functions. IEEE Transactions on Circuits and
Systems I 55, 3188–3196 (2008)

Subirats, J.L., Franco, L., Molina, I.A., Jerez, J.M.: Active learning using a constructive
neural network algorithm. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008,,
Part II. LNCS, vol. 5164, pp. 803–811. Springer, Heidelberg (2008)

Tajine, M., Elizondo, D.: Enhancing the perceptron neural network by using functional
composition. Technical Report 96-07, Computer Science Department, Université Louis
Pasteur, Strasbourg, France (1996)

Tajine, M., Elizondo, D., Fiesler, E., Korczak, J.: Adapting the 2-class recursive
deterministic perceptron neural network to m-classes. In: Proceedings of The IEEE
International Conference on Neural Networks (ICNN 1997), Los Alamitos, vol. 3, pp.
1542–1546 (1997)

Thivierge, J.-P., Dandurand, F., Shultz, T.R.: Transferring domain rules in a constructive
network: introducing RBCC. In: Proceedings of The IEEE International Joint
Conference on Neural Networks, vol. 2, pp. 1403–1408 (2004)

Thivierge, J.-P., Shultz, T.R.: Finding relevant knowledge: KBCC applied to DNA splice-
junction determination. In: Proceedings of The IEEE International Joint Conference on
Neural Networks, pp. 1401–1405 (2002)

Thivierge, J.-P., Rivest, F., Shultz, T.R.: A dual-phase technique for pruning constructive
networks. In: Proceedings of The IEEE International Joint Conference on Neural
Networks, vol. 1, pp. 559–564 (2003)

Towell, G.G., Shavlik, J.W., Noordewier, M.O.: Refinement of approximate domain
theories by knowledge-based neural networks. In: Proceedings of the Eight National
Conference on Artificial Intelligence, Boston, MA, pp. 861–866 (1990)

Tsopzé, N., Nguifo, E.M., Tindo, G.: Concept-lattice-based artificial neural network. In:
Diatta, J., Eklund, P., Liquiére, M. (eds.) Proceedings of the Fifth International
Conference on Concept Lattices and Applications (CLA 2007), Monpellier, France, pp.
157–168 (2007)

Towell, G.G.: Symbolic knowledge and neural networks: insertion, refinement and
extraction. Doctoral dissertation, Madison, WI. University of Wisconsin, USA (1991)

Wang, D.: Fast constructive-covering algorithm for neural networks and its implement in
classification. Applied Soft Computing 8, 166–173 (2008)

Yang, J., Parekh, R.G., Honavar, V.: MTiling – a constructive network learning algorithm
for multi-category pattern classification. In: Proceedings of the World Congress on
Neural Networks, pp. 182–187 (1996)

Yang, S., Wang, M., Jiao, L.: Incremental constructive ridgelet neural network.
Neurocomputing 72, 367–377 (2008)

Yao, X.: Evolving neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)
Young, S., Downs, T.: CARVE – a constructive algorithm for real-valued examples. IEEE

Transactions on Neural Network 9(6), 1180–1190 (1998)
Wendmuth, A.: Learning the unlearnable. Journal of Physics A 28, 5423–5436 (1995)

	Constructive Neural Network Algorithms for Feedforward Architectures Suitable for Classification Tasks
	Introduction
	Main Characteristics of CoNN Algorithms
	A Closer Look at Several Two-Class CoNN Algorithms
	Algorithms Directed by the Minimization of Classification Errors
	Algorithms Based on the Sequential Model

	A Brief Approach to Multiclass Classification Using CoNN
	CoNN Algorithms for Regression Problems and Combined Approaches
	Miscellaneous
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

