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Preface 

This book presents a collection of invited works that consider constructive 
methods for neural networks, taken primarily from papers presented at a special 
session held during the 18th International Conference on Artificial Neural 
Networks (ICANN 2008) in September 2008 in Prague, Czech Republic.  

The book is devoted to constructive neural networks and other incremental 
learning algorithms that constitute an alternative to the standard method of finding 
a correct neural architecture by trial-and-error. These algorithms provide an 
incremental way of building neural networks with reduced topologies for 
classification problems. Furthermore, these techniques produce not only the 
multilayer topologies but the value of the connecting synaptic weights that are 
determined automatically by the constructing algorithm, avoiding the risk of 
becoming trapped in local minima as might occur when using gradient descent 
algorithms such as the popular back-propagation. In most cases the convergence 
of the constructing algorithms is guaranteed by the method used.  

Constructive methods for building neural networks can potentially create more 
compact and robust models which are easily implemented in hardware and used 
for embedded systems. Thus a growing amount of current research in neural 
networks is oriented towards this important topic. 

The purpose of this book is to gather together some of the leading investigators 
and research groups in this growing area, and to provide an overview of the most 
recent advances in the techniques being developed for constructive neural 
networks and their applications.  

The first chapter of the book presents a review of existing constructive neural 
network algorithms (M. Nicoletti,  J. Bertini, D. Elizondo and L. Franco). Next, 
four different constructing approaches to solving classification problems are 
presented:  Muselli and Ferrari introduce a constructing method for switching 
functions, Grochowski and Duck focus on a new method for highly complex 
functions, Anthony presents a constructive method based on decision lists and the 
SONN3 model is analyzed by Horzyk in chapter 5. Nguiph presents in chapter 6 
concept lattice-based neural networks, followed in chapter 7 by the work of 
Sussner and Esmi who discuss the theory and experiments using morphological 
neural networks. Two extensions of constructive algorithms to multiclass 
problems are introduced in chapters 8 and 9 by Bertini and Nicoletti and by  
Elizondo and Ortiz de Lazcano respectively . 



Preface 
 

VI 

The application of constructive algorithms is used by Franco, Jerez, and  
Subirats for active learning in chapter 10, while Ollington,Vamplew and Swanson 
explore the use of constructive algorithms in a reinforcement learning framework 
in chapter 11. Chapter 12 by Huemer, Elizondo and Góngora  shows the 
application of a constructive neural network for evolving a machine controller, 
followed by the contribution from Satizábal, Pérez-Uribe and  Tomassini about 
avoiding prototype proliferation. The volume ends with two works on self 
organizing neural networks: chapter 14 by Barreto et al. where the parameter 
setting in a fuzzy growing network is analysed, while chapter 15 discusses the 
method of Inoue on Self-Organizing Neural Grove.  

The editors wish to thank all the authors who contributed with their research in 
this volume and hope that the current snapshot of some of the latest work in the 
field of constructive neural network algorithms help in the further development of 
the field.  

 
 

February, 2009 

 
Leonardo Franco 

Málaga, Spain 
 

David A. Elizondo 
Leicester, UK 
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Málaga, Spain 
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Constructive Neural Network Algorithms for 
Feedforward Architectures Suitable for  
Classification Tasks 

Maria do Carmo Nicoletti, João R. Bertini Jr., David Elizondo,  
Leonardo Franco, and José M. Jerez* 

Abstract. This chapter presents and discusses several well-known constructive 
neural network algorithms suitable for constructing feedforward architectures 
aiming at classification tasks involving two classes. The algorithms are divided 
into two different groups: the ones directed by the minimization of classification 
errors and those based on a sequential model. In spite of the focus being on two-
class classification algorithms, the chapter also briefly comments on the multiclass 
versions of several two-class algorithms, highlights some of the most popular 
constructive algorithms for regression problems and refers to several other 
alternative algorithms. 

1   Introduction 

Conventional neural network (NN) training algorithms (such as Backpropagation ) 
require the definition of the NN architecture before learning starts. The common 
way for developing a neural network that suits a task consists of defining several 
different architectures, training and evaluating each of them, and then choosing 
the one most appropriate for the problem based on the error produced between the 
target and actual output values. Constructive neural network (CoNN) algorithms, 
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however, define the architecture of the network along with the learning process. 
Ideally CoNN algorithms should efficiently construct small NNs that have good 
generalization performance. As commented in (Muselli, 1998), “…the possibility 
of adapting the network architecture to the given problem is one of the advantages 
of constructive techniques… [This] has also important effects on the convergence 
speed of the training process. In most constructive methods, the addition of a new 
hidden unit implies the updating of a small portion of weights, generally only 
those regarding the neuron to be added”. 

The automated design of appropriate neural network architectures can be 
approached by two different groups of techniques : evolutionary and non-
evolutionary. In the evolutionary approach, a NN can be evolved by means of an 
evolutionary technique, i.e. a population-based stochastic search strategy such as a 
GA (see (Schaffer et al., 1992) (Yao, 1999)). In the non-evolutionary approach, 
the NN is built not as a result of an evolutionary process, but rather as the result of 
a specific algorithm designed to automatically construct it, as is the case with a 
constructive algorithm. 

CoNN algorithms, however, are not the only non-evolutionary approach to  
the problem of defining a suitable architecture for a neural network. The  
strategy implemented by the so called pruning methods can also be used and 
consists in training a larger than necessary network (which presumably is an easy 
task) and then, pruning it by removing some of its connections and/or nodes  
(see (Reed, 1993)). 

As approached by Lahnajärvi and co-workers in (Lahnajärvi et al., 2002), 
pruning algorithms can be divided into two main groups. Algorithms in the first 
group estimate the sensitivity of an error function to the removal of an element 
(neuron or connection); those with the least effect can be removed. Algorithms in 
the second group generally referred to as penalty-term as well as regularization 
algorithms, “add terms to the objective function that reward the network for 
choosing efficient and small solutions”. The same group of authors also detected 
in the literature what they call combined algorithms that take advantage of the 
properties of both, constructive and pruning algorithms, in order to determine the 
network size in a flexible way (see (Fiesler, 1994), (Gosh & Tumer, 1994)). 

There are many different kinds of neural network; new algorithms and 
variations of already known algorithms are constantly being published in the 
literature. Similarly to other machine learning techniques, neural network 
algorithms can also be characterized as supervised, when the target values are 
known and the algorithm uses the information, or as unsupervised, when such 
information is not given and/or used by the algorithm. The two main classes of 
NN architecture are feedforward, where the connections between neurons do not 
form cycles, and feedback (or recurrent), where the connections may form cycles. 
NNs may also differ in relation to the type of data they deal with; the two more 
popular being categorical and quantitative. Both, supervised and unsupervised 
learning with categorical targets are referred to as classification. Supervised 
learning with quantitative target values is known as regression. Classification 
problems can be considered a particular type of regression problems. 
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This chapter reviews some well-known CoNN algorithms for feedforward 
architectures, suitable for classification tasks, aiming to present the main ideas 
they are based upon as well as to stress their main similarities and differences. An 
empirical evaluation of several two-class and multiclass CoNN algorithms in a 
variety of knowledge domains can be seen in (Nicoletti & Bertini, 2007). 
Although focusing mainly on a particular class of constructive neural network 
algorithms, the chapter also aims at establishing the importance of using a 
constructive approach when working with neural networks, independent of  the 
application problem at hand. For this reason towards the end of the chapter a few 
other approaches will be briefly presented. 

The remainder of the chapter is organized as follows: Section 2 presents the 
main characteristics of constructive neural network algorithms. Section 3 
approaches several two-class CoNN algorithms by grouping them into (3.1) 
algorithms directed by the minimization of classification errors and (3.2) 
algorithms based on the sequential model. Section 4 briefly describes the 
multiclass versions of a few two-class CoNN previously presented as well 
highlighting the main characteristics of a few other multiclass proposals. Section 5 
introduces some CoNN algorithms for regression problem as well as other 
combined approaches. In Section 6 several CoNN algorithms that do not quite 
conform to the main focus of this chapter and others that do not qualify to be part 
of the groups characterized before are briefly presented and finally, in Section 7, 
the conclusions of this chapter are presented. 

2   Main Characteristics of CoNN Algorithms 

Several constructive algorithms that focus on feedforward architectures have been 
proposed in the literature. During the learning phase they all essentially repeat the 
same process: incrementally adding and training hidden neurons (generally 
Threshold Logic Units − TLUs) until a stopping criterion is satisfied. Generally 
they all begin the process having as the initial network only the input layer; output 
neuron(s) are then added and trained and, depending on their performance, the 
algorithm starts to add and connect hidden neurons to the current architecture and 
train them, aiming at improving the accuracy of  the network performance. 

The final result at the end of the constructive process implemented by these 
algorithms is a neural network that had its architecture defined along with its 
training. In spite of sharing the same basic mechanism, CoNN algorithms differ 
from each other in many different ways, such as: 

 
1. Number of nodes they add per layer at each iteration; 
2. Direction in which they grow the network: 

• forward, from input towards output nodes or  
• backward, from output towards input nodes; 

3. Functionality of the added neurons (do they all play the same role?); 
4. Stopping criteria; 
5. Connectivity pattern of the newly added neuron; 
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6. Algorithm used for training individual neuron, such as 
• The Fisher Discriminant 
• Pocket algorithm (Gallant, 1986a) 
• Pocket with Ratchet Modification (PRM) (Gallant, 1986a, 1990) 
• MinOver (Krauth and Mézard, 1987) 
• Quickprop (Fahlman, 1988) 
• AdaTron (Anlauf & Biehl, 1989) 
• Thermal Perceptron algorithm (Frean, 1992) 
• Loss minimization (Hrycej, 1992) 
• Modified Thermal algorithm (Burgess, 1994) 
• Maxover (Wendemuth, 1995) 
• Barycentric Correction Procedure (BCP) (Poulard, 1995); 

7. Type of input patterns they deal with: binary (or bipolar) valued, 
categorical or real valued attributes; 

8. Type of problems they solve: 
• classification (two-class or multi-class), where the input is assigned 

to one of two or more classes 
• regression problems, characterized by a continuous mapping from 

inputs to an output or 
• clustering, where the patterns are grouped according to some 

similarity measure; 
9. Topology of the connections among neurons (initially fixed or 

dynamically constructed); 
10. ‘Shape’ of the feedforward architecture (e.g. tower-like, cascade-like, 

etc…). 
 
Among the most well known CoNN algorithms for two-class classification 
problems are the Tower and the Pyramid (Gallant, 1986b), the Tiling (Mézard & 
Nadal, 1989), the Upstart (Frean, 1990), the Perceptron Cascade (Burgess, 1994), 
the PTI and the Shift (Amaldi & Guenin, 1997), the Irregular Partitioning 
Algorithm (IPA) (Marchand et al., 1990; Marchand & Golea, 1993), the Target 
Switch (Campbell & Vicente, 1995), the Constraint Based Decomposition (CBD) 
algorithm (Drăghici, 2001) and the BabCoNN (Bertini Jr. & Nicoletti, 2008a). 

Smieja, (1993), Gallant, (1994), Bishop, (1996), Mayoraz and Aviolat (1996), 
Campbell (1997) and Muselli (1998) discuss several CoNN algorithms in detail. 

3   A Closer Look at Several Two-Class CoNN Algorithms 

In order to review several of the two-class CoNN algorithms previously 
mentioned in a systematic way, this section divides them into two main categories: 
(3.1) those directed by the minimization of classification errors and (3.2) those 
based on the sequential learning model. 
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3.1   Algorithms Directed by the Minimization of Classification 
Errors 

Since most of the CoNN algorithms can be characterized as belonging to this 
category, a few sub-categories have been adopted in this review aimed at grouping 
algorithms that share similar characteristics.  

3.1.1   Growing NNs with Single-Neuron Hidden Layers 

The Tower and the Pyramid (Gallant, 1986b, 1994) algorithms are two-class 
CoNN algorithms that can be viewed as incremental versions of the PRM 
algorithm; both can be characterized as forward methods since they grow the NN 
layer by layer, from the input towards the output layer. In the Tower algorithm 
each new hidden node added to the network is connected to all input nodes and to 
the last previously added hidden node, making the architecture of the network 
look like a tower. 

The basic idea of the Tower algorithm is very simple. Initially the PRM 
algorithm is used for training the only node of the first hidden layer of the network 
which can be considered the output node. If p is the number of attributes that 
describe a training pattern, the first hidden node receives p + 1 inputs i.e., the 
input values associated with the p attributes plus the constant value associated 
with the bias. As  is well known a single neuron can learn with 100% precision 
only from linearly separable training sets. If that is the case, the first neuron added 
to the network and subsequently trained will correctly learn to separate both 
classes and the Tower algorithm is reduced to the PRM algorithm. However, if 
that is not the case, the Tower algorithm continues to add hidden layers to the 
network (each containing only one TLU) until a stopping criterion is satisfied. 

Generally three stopping criteria can be implemented: 1) the NN correctly 
classifies the training set; 2) adding a new hidden layer does not contribute to 
increasing the network accuracy and 3) a predefined maximum number of hidden 
neurons has been reached. Considering that the first step adds the first hidden node 
to the network, the kth step adds the kth hidden node. After the first hidden node is 
added, all the subsequent hidden nodes added will receive an extra input value, 
which corresponds to the output of the last added hidden node. This extra 
dimension, added after the first hidden node was created represents the behavior 
of the newly created hidden node.  

The Pyramid algorithm is very similar to the Tower algorithm. The only 
difference between them is that each new hidden node created by the Pyramid 
method is connected to every hidden node previously added to the network, as 
well as to the input nodes, making the network look like  a pyramid. Each step of 
the learning phase expands the training patterns in one dimension (which 
represents the last hidden neuron added). Considering that the first step adds the 
first hidden node to the network, the kth step adds the kth hidden node that receives 
the p+1 input values from the input layer plus bias, as well as the output of the 
(k−1) hidden nodes previously added.  



6 M. do Carmo Nicoletti et al. 
 

Gallant (1994) presents a detailed description of both algorithms as well as  
the proof of their convergence, by stating and proving the following theorem: 
“with arbitrarily high probability, the Tower (Pyramid) algorithm will fit 
noncontradictory sets of training examples with input values restricted to {+1,−1}, 
provided enough cells are added and enough iterations are taken for each added 
cell. Furthermore each added cell will correctly classify a greater number of 
training examples than any prior cell.” 

3.1.2   Growing NNs with Hidden Neurons Performing Different Functions 

The Tiling algorithm (Mézard & Nadal, 1989) is a CoNN algorithm originally 
proposed for Boolean domains that trains a multilayer feedforward NN where 
hidden nodes are added to a layer in a way comparable to the process of laying 
tiles. The neurons in each hidden layer in a Tiling NN perform one out of two 
different functions and their names reflect their functionality. Each layer has a 
master neuron that works as the output neuron for that layer. If the master neuron 
does not correctly classify all training patterns, however, the Tiling algorithm 
starts to add and train ancillary neurons, one at a time, aiming at obtaining a 
faithful representation of the training set. The output layer has only one master 
neuron. The faithfulness criterion employed by the Tiling algorithm establishes 
that no two training patterns, belonging to different classes, should produce the 
same outputs at any given layer.  

As commented by Gallant (1994), “The role of these units (ancillary) is to 
increase the number of cells for layer L so that no two training examples with 
different classifications have the same set of activations in layer L. Thus each 
succeeding layer has a different representation for the inputs, and no two training 
examples with different classifications have the same representation in any layer. 
Layers with this property are termed faithful layers, and faithfulness of layers is 
clearly a necessary condition for a strictly layered network to correctly classify all 
training examples”. 

In order to construct the network, the first step of the Tiling method is to train 
the master neuron of the first hidden layer, using the original training set, aiming 
at minimizing the classification error. If the master neuron does not classify the 
training set correctly, ancillary neurons are added to this layer and subsequently 
trained, one at a time, in order to obtain a faithful representation. Tiling constructs 
an NN in successive layers such that each new layer has a smaller number of 
neurons than the previous layer and  layer L only receives connections from 
hidden layer L − 1. 

The way the Tiling method operates assures that the master neuron in layer L 
classifies the training set with higher accuracy than the master neuron in layer  
L − 1. Assuming a finite training set with non-contradictory patterns, the Tiling 
algorithm is guaranteed to converge to zero classification errors (under certain 
assumptions) (Gallant, 1994). Once the first layer is finished, the Tiling algorithm 
goes on adding layers (with one master and a few ancillary neurons) until one out 
of four stopping criteria is satisfied: 1) the network converges; 2) the master 
neuron added degrades the performance of the network; 3) a pre-defined 
maximum number of layers is reached or 4) a pre-defined number of ancillary 
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neurons per layer is reached and the training set still does not have a faithful 
representation in this layer. The original Tiling algorithm as described in (Mézard 
& Nadal, 1989) uses the same TLU training algorithm for each neuron (master or 
ancillary) added to the NN; in the same article the authors state and prove a 
theorem that ensures its convergence. 

The unnamed algorithm proposed in (Nadal, 1989) and described by its author 
as an algorithm similar in spirit to the Tiling algorithm was named by Smieja in 
(Smieja, 1993) as Pointing. The Pointing algorithm constructs a feedforward 
neural network with the input layer, one output neuron and an ordered sequence of 
single hidden neurons, each one connected to the input layer and to the previous 
hidden neuron in the sequence. Despite its author claiming that the algorithm is 
very similar to the Tiling one, although more constrained (which is true), actually 
the Pointing algorithm corresponds to the Tower algorithm as proposed by Gallant 
(Gallant, 1986b). 

The Partial Target Inversion (PTI) algorithm is a CoNN algorithm proposed in 
(Amaldi & Guenin, 1997) that shares strong similarities with the Tiling algorithm. 
The PTI grows a multi-layer network where each layer has one master neuron and 
a few ancillary neurons. Following the Tiling strategy as well, the PTI adds 
ancillary neurons to a layer in order to satisfy the faithfulness criteria; the neurons 
in layer c are connected only to neurons in layer c − 1. If the training of the master 
neuron results in a weight vector that correctly classifies all training patterns or if 
the master neuron of layer c does not classify a larger number of patterns than the 
master neuron of layer c − 1, the algorithm stops. If a training pattern, however, 
was incorrectly classified by the master neuron, and the master neuron correctly 
classifies a greater number of patterns than the master of the previous layer, the 
algorithm starts adding ancillary neurons to the current layer aiming at its 
faithfulness. When the current c layer becomes faithful the algorithm adds a new 
layer, c + 1, initially only having the master neuron. The process continues until 
stopping criteria are met, such as when the number of master (or ancillary) 
neurons has reached a pre-defined threshold. The only noticeable difference 
between the Tiling and the PTI is the way the training set, used for training the 
ancillary neurons in the process of turning a layer faithful, is chosen. 

For training the master neuron of layer c, the PTI uses all the outputs from the 
previous layer. Considering that the layer c needs to be faithful, the first ancillary 
neuron added to layer c will be trained with those patterns (used to train the master 
neuron) that made layer c unfaithful. 

In addition, the patterns that activate the last added neuron (master, in this case) 
have their classes inverted. The authors justify this procedure by saying that 
“When trying to break several unfaithful classes simultaneously, it may be 
worthwhile to flip the target of the prototypes on layer c corresponding to several 
unfaithful classes. In fact, the specific targets are not important; the only 
requirement is that outputs corresponding to a different c−1 layer representation 
trigger a different output for at least one unit in the layer c”.  For clarification if 
after the addition of the first ancillary neuron the layer is not faithful yet, another 
ancillary neuron needs to be added to layer c. The second ancillary neuron will be 
trained with the c−1 outputs that provoked an unfaithful representation of layer c, 
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this time, however, taking also into consideration the master and first ancillary 
neuron previously added. The patterns that activated the first ancillary neuron 
have their class inverted when they are included in the training set for the second 
ancillary neuron. The name PTI (Partial Target Inversion) refers to the fact that 
when constructing training sets only a partial number of patterns have their class 
(target) inverted.  

3.1.3   Growing NNs Based on Wrongly-On and Wrongly-Off Errors 

Generally CoNN algorithms based on discriminating between the two types of 
errors (wrongly-on and wrongly-off) tend to grow the neural network in a 
backward way, i.e. from the output towards the input layer. 

The Upstart (Frean, 1990) is a constructive NN algorithm that dynamically 
grows a neural network whose structure resembles a binary tree. The algorithm 
starts the construction of the NN from the output layer towards the input layer and 
during the construction of an Upstart network, a neuron adds two other ancillary 
neurons in order to correct its misclassifications. 

Let un be a neuron that classifies training patterns but produces wrongly-off 
errors (i.e. positive training patterns are misclassified by un as negative). The 
Upstart algorithm deals with wrongly-off errors by adding a wrongly-off corrector 
as a ‘child’ neuron un+ which will try to correct the errors made by its parent un. 
The main tasks of neuron un+ are 1) to correct the classification of positive training 
patterns that have been misclassified by un as negative and 2) to keep unchanged 
the other classifications made by un (i.e. un+ should be inactive for any other 
pattern). The neuron un+ is trained with the subset of training patterns that were 
wrongly-off plus the set of negative patterns.  

Similarly, to deal with wrongly-on errors (i.e. negative training patterns that are 
misclassified by un as positive) the Upstart algorithm creates a wrongly-on 
corrector as a child neuron un− aiming: 1) to correct the classification of wrongly-
on training patterns and 2) keep unchanged the other classifications made by 
neuron un (i.e. un− should stay inactive for any other pattern). Neuron un− is trained 
with the subset of training patterns that were wrongly-on plus the set of positive 
patterns. 

When a neuron un does not correctly classify all training patterns, it gives rise to 
wrongly-off errors, wrongly-on errors or both. A hidden neuron in an Upstart 
network, therefore, can have up to two children. As can be seen in (Frean, 1990), 
two useful results follow from this training method because the children neurons 
have a simpler problem to solve than their parents. Children neurons can always 
make fewer misclassifications than their parents and connecting a child neuron to 
its parent with the appropriate weight will always reduce the misclassifications 
made by the parent . 

For a child neuron (either a wrongly-on or a wrongly-off corrector) that has 
been added in order to correct misclassifications made by its parent, it is 
mandatory that this child only changes the activations of patterns that provoked 
the error; for this reason, the inactive output of the neuron should be 0. For a 
detailed description of Upstart, see also (Kubat, 2000). 
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Another algorithm that adopts the same error-correction strategy of the Upstart 
is the Perceptron Cascade (PC) algorithm (Burgess, 1994); PC also borrows the 
architecture of neural networks created by the Cascade Correlation algorithm 
(Fahlman & Lebiere, 1990). 

PC begins the construction of the network by training the output neuron. If this 
neuron does not classify all training patterns correctly, the algorithm begins to add 
hidden neurons to the network. Each new added hidden neuron is connected to all 
previous hidden neurons as well as to the input neurons. The new hidden neuron is 
then connected to the output neuron; each time a hidden neuron is added, the 
output neuron needs to be retrained.  The addition of a new hidden neuron 
enlarges the space in one dimension. The algorithm has three stopping criteria: 1) 
the network converges i.e. correctly classifies all training patterns; 2) a  
pre-defined maximum number of hidden neurons has been achieved and 3) the 
most common, the addition of a new hidden neuron degrades the network’s 
performance. 

Similarly to the Upstart algorithm, hidden neurons are added to the network in 
order to correct wrongly-on and wrongly-off errors. Following the same strategy 
employed by Upstart, what distinguishes a neuron created for correcting wrongly-
on or for correcting wrongly-off errors caused by the output neuron is the training 
set used for training the neuron. To correct wrongly-on errors the training set used 
should have all negative patterns plus the patterns which produce wrongly-on 
errors. For correcting wrongly-off errors, the training set should have all positive 
patterns plus the negative patterns which produce wrongly-off patterns. Unlike 
Upstart, however, the PC algorithm only adds and trains one neuron at a time in 
order to correct the most frequent  wrongly-on and wrongly-off errors produced by 
the output neuron. 

Like the Upstart and Perceptron Cascade algorithms, the Shift algorithm 
(Amaldi & Guenin, 1997) also constructs the network beginning with the output 
neuron. This algorithm, however, creates only one hidden layer, iteratively adding 
neurons to it; each added neuron is connected to the input neurons and to the 
output neuron. The error correcting procedure used by the Shift method is similar 
to the one used by the Upstart method, in the sense that the algorithm also 
identifies wrongly-on and wrongly-off errors. However, it adds and trains a hidden 
neuron to correct the most frequent between these two types of errors. Also, the 
training set used for training a wrongly-off (or wrongly-on) corrector differs 
slightly from the training sets used by the Upstart algorithm. 

3.2   Algorithms Based on the Sequential Model 

The general CoNN model identified as sequential learning was proposed in 
(Marchand et al., 1990) for Boolean domains and is an improved version of a 
previous proposal described in (Ruján & Marchand, 1989). In (Marchand & 
Golea, 1993) the algorithm is extended to deal with real data. Contrary to many of 
the CoNN algorithms, the sequential learning model is not directed by the 
minimization of the classification error. 
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Typically, a sequential learning algorithm adds to the network hidden neurons 
that are partial classifiers i.e. they separate a group of training patterns belonging 
to the same class from the remaining patterns in the training set; this was formally 
stated in (Muselli, 1998) as: Let Q+ and Q− be two subsets of the input space; a 
neuron will be called a partial classifier if it provides an output of +1 for at least 
one pattern of Q+ and output of −1 for all elements of Q−. 

Any algorithm that implements the sequential learning model should use an 
efficient strategy for training individual TLUs as partial classifiers. Constructive 
algorithms based on the sequential learning model produce networks having 
partial classifiers as hidden nodes.  In the paper (Marchand et al., 1990) the 
authors describe a mechanism that uses the Perceptron as an auxiliary process for 
identifying the weight vector. However, as pointed out in (Poulard & Hernandez, 
1997), this mechanism is time consuming and becomes prohibitive for large 
training sets and the authors suggest the BCPMax instead (Poulard & Labreche, 
1995), which associates the BCP (Poulard, 1995) with a Pattern Exclusion 
Procedure (PEP); initially designed for the BCP the PEP finds the best value of the 
neuron’s threshold for a fixed value of the weight vector: the one maximizing the 
number of excluded patterns. 

The sequential learning model has been implemented by a few algorithms, 
namely  Marchand et al.´s own proposal known in the literature as the Irregular 
Partitioning Algorithm (IPA), the Carve algorithm (Young & Downs, 1998), the 
Target Switch algorithm (Campbell & Vicente, 1995), the Oil Spot Algorithm 
(Mascioli & Martinelli, 1995), the Constraint Based Decomposition (CBD) 
algorithm, proposed in (Drăghici, 2001) and the Decomposition Algorithm for 
Synthesis and Generalization (DASG) recently introduced in (Subirats, Jerez and 
Franco, 2008). 

The IPA algorithm creates a neural network with an input layer, a single hidden 
layer and the output neuron. The connections between the hidden layer and the 
output neuron have weights and the output neuron has a bias. The hidden layer is 
created by sequentially adding neurons to it; each added neuron represents a 
hyperplane that separates the greatest number of patterns belonging to the same 
class from the rest of the training set. Once the hyperplane is found, the identified 
patterns belonging to the same class are removed from the training set and the 
procedure is repeated. The process ends when the training set only has patterns 
belonging to the same class. 

The Target Switch algorithm was originally designed to deal with binary 
patterns. The algorithm can induce two different network structures, namely a 
cascade that uses linear neurons and a tree-like structure that uses threshold 
neurons. The algorithm is based on the concept of dichotomy which, for a 
classification problem with a training set E = E− ∪ E+ can be  summarised as: “A 
set of weights and thresholds which correctly store all the E+ patterns and some of 
the E− will be said to induce a (+)dichotomy while a (−)dichotomy will correspond 
to correct storage of all the E− patterns and some of the E+ ” (Campbell, 1997). 

For growing either type of structure, neurons are always added in pairs, one for 
inducing a (+)dichotomy and the other for inducing a (–)dichotomy. The patterns 
belonging to E− that are correctly stored by the (+)dichotomy and those belonging 
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to E+ that are correctly stored by the (–)dichotomy are the patterns that will be 
correctly separated by the neuron introduced in order to connect the above 
mentioned pair. 

When the architecture is a cascade type, the introduced neuron is a linear 
neuron that implements a summation function on the pair outputs. If the result is 
positive or negative the current pattern is correctly classified otherwise a 
misclassification is produced, which will be dealt with by the next pair of neurons 
to be added. For growing neural networks with a tree structure the introduced 
neuron is a threshold neuron that implements a threshold function on the pair 
outputs. Considering that the first iteration adds one threshold neuron (the output), 
each following iteration will add two more threshold neurons to those already 
added in the previous iteration.  

To obtain the dichotomies the authors propose the use of any Perceptron-like 
TLU training algorithm. Roughly speaking, the idea is to run the TLU training 
algorithm and then shift the resulting hyperplane in order to correctly classify all 
patterns of a given class. 

The Constraint Based Decomposition (CBD) is another algorithm that follows 
the sequential model. The algorithm builds an architecture with four layers which 
are named input, hyperplane, AND and OR layers respectively. The whole 
training set is used for training the first hidden neuron in the hyperplane layer. The 
next hidden neuron to be added will be trained with those training patterns that 
were misclassified by the first hidden neuron. The algorithm goes on adding 
neurons to the first layer until no pattern is left in the training set. For training a 
neuron ui, one pattern from each class is randomly chosen and removed from the 
training set E. These patterns are put in the training set Eui. After ui has been 
trained with Eui, the algorithm starts to add patterns to Eui, one at a time, in a 
random manner. Each time a pattern is added to the set, ui is retrained with the 
updated Eui. However, if the addition of a new pattern to Eui results in 
misclassification, the last pattern added is removed from Eui and marked as ´used´ 
by the neuron. Before adding a new hidden neuron, the algorithm considers all 
patterns in E for the current neuron. A new neuron will be added when all training 
patterns left have been tried for the current neuron. The neurons of the AND layer 
are connected only to relevant neurons from the hyperplane layer and in the OR 
layer the output neurons are connected only to neurons from the AND layer which 
are turned on for the given class.  

The recently introduced DASG algorithm belongs also to the class of sequential 
learning algorithm. It works with binary inputs by decomposing the original 
Boolean function (or partially defined Boolean function) into two new lower 
complexity functions, which in turn are decomposed until all obtained functions 
are threshold functions that can be implemented by a single neuron. The final 
solution incorporates all functions in a single hidden layer architecture with an 
output neuron that computes and OR or AND Boolean function. 

The BabCoNN (Barycentric-based CoNN) (Bertini Jr. & Nicoletti, 2008a) is a 
new two-class CoNN that borrows some of the ideas of the BCP (Barycentric 
Correction Procedure, see (Poulard, 1995), (Poulard & Labreche 1995)) and can 
be considered a representative of the sequential model. Like the Upstart,  
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Table 1 Overview of fourteen two-class CoNN algorithm characteristics 

Algorithm Group 
# HL 

Growth 
direction 

New Neuron 
Connected to Special Feature Stopping 

criteria 

Tower One HN per HL 
Various 

 
Forward 

Previously 
added HN 
and INs 

Weight update 
CON 
AD 

NHL 

Pyramid One HN per HL 
Various 

 
Forward 

All 
previously 
added HNs 

and INs 

Dimension of 
weight space 

increases 

CON 
AD 

NHL 

Tiling 

Neurons 
perform 
different 
functions 

Various 
 

Forward 

Previous 
layer 

Faithful layers – 
divide and conquer 

CON 
AD 

NHL 
NHN 

PTI 

Neurons 
perform 
different 
functions 

Various 
 

Forward 

Previous 
layer 

Faithful layers – 
inversion of 

classes 

CON 
AD 

NHL 
NHN 

Upstart 
Wrongly-on/off 

correctors 

Binary 
tree 

 
Backward 

Parent neuron 
Children correct 

the father’s 
mistakes 

CON 
AD 

NHL 

Shift 
Wrongly-on/off 

correctors 

One 
 

Backward 
INs 

Weighted 
connections are 

used to correct the 
output error 

CON 
AD 

NHL 

Perceptron 
cascade 

Wrongly-on/off 
correctors 

Cascade-
like 

 
Backward 

Previously 
added HNs 

and INs 

Output increases 
the dimension of 
its weight space 

every time a 
neuron is added 

CON 
AD 

NHL 

Cascade 
correlation 

Wrongly-on/off 
correctors 

Cascade-
like 

 
Backward 

Previously 
added HNs 

and INs 

Suitable for 
regression tasks 

CON 
AD 

NHL 

Offset 

Neurons 
perform 
different 
functions 

Two 
 

Forward 

Previous 
layer 

Parity machine 
CON 
AD 

NHL 

IPA Sequential 
One 

 
Forward 

INs 
Sequentially 
classifies the 
training set 

TSC 

Target 
switch 

Sequential 
Cascade 

(tree-like) 
Backward 

Previously 
added HNs 

and INs 

(+) and (–) 
dichotomies 

TSC 

CBD Sequential 
Three 

 
Forward 

Previous 
layer 

AND/OR layers TSC 

BabCoNN Sequential 
One 

 
Backward 

Input HN fires −1, 0 or 1 TSC 

 
DASG 

 
Sequential 

One 
 

Forward 
Input 

AND/OR output 
function 

TSC 
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Perceptron Cascade (PC) and Shift, the BabCoNN also constructs the network, 
beginning with the output neuron. However, it creates only one hidden layer; each 
hidden neuron is connected to the input layer as well as to the output neuron, like 
with the Shift algorithm. 

Although the Upstart, PC and Shift construct the network by adding new hidden 
neurons specialized in correcting wrongly-on and wrongly-off errors, the 
BabCoNN employs a different strategy. The BCP is used for constructing a 
hyperplane in the hyperspace defined by the training set; the classified patterns are 
removed from the set and the process is repeated again with the updated training 
set. Due to the way the algorithm works a certain degree of redundancy is inserted 
in the process, in the sense of a pattern being correctly classified by more than one 
hidden neuron. This has been fixed by the BabCoNN classification process, where 
hidden neurons have a particular way of firing their output. 

Table 1 summarizes the main characteristics of fourteen two-class algorithms 
previously discussed. For presenting the table the following abbreviations were 
adopted: Forward (the NN is grown from input towards output layer); Backward 
(the NN is grown from output towards input layer); INs: all neurons in the input 
layer; HN: a hidden neuron; HL: a hidden layer; #HL: number of hidden layers. 
The following abbreviations were adopted for stopping criteria: CON 
(convergence); AD (accuracy decay); NHL (number of hidden layers exceeds a 
given threshold); NHN (number of hidden neurons per hidden layer exceeds a 
given threshold); TSC (all training patterns have been correctly classified). 

4   A Brief Approach to Multiclass Classification Using CoNN 

A multiclass classification problem is a classification problem involving m (> 2) 
classes usually treated as m two-class problems. Generally multiclass CoNN start 
by training as many output neurons as there are classes in the training set, using 
one of  two strategies: individual (I) and  winner-takes-all (WTA). 

The multiclass versions of a few two-class algorithms have been proposed in 
(Parekh et al., 1995), (Yang et al., 1996), (Parekh et al., 1997a), (Parekh et al., 
1997b), (Parekh et al., 2000) and they are the MTower, MPyramid, MTiling, 
MUpstart and MPerceptron Cascade, which can be considered extensions of their 
two-class counterparts.  

The MTower algorithm deals with an m-class problem by adding and training 
m hidden neurons per hidden layer at each iteration. In an MTower architecture 
each of the m neurons in a certain hidden layer has connections with all the 
neurons of the input layer as well as with all the m neurons of the previous hidden 
layer. The MPyramid also deals with an m-class problem by adding and training m 
hidden neurons per hidden layer at each iteration. The m hidden neurons in each 
hidden layer, however, are connected to all the hidden neurons of all the hidden 
layers as well as to the input neurons. 

Although the two-class Upstart algorithm constructs the neural network as a 
binary tree of TLUs starting with the output neuron, its multiclass version, the 
MUpstart, creates a network with a single hidden layer where each single hidden 
neuron is directly connected to every neuron in the output layer. The input layer is 
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fully connected to the hidden neurons as well as to the output neurons. As 
mentioned before, each neuron added to a hidden layer by the Tiling algorithm can 
be a master (one per hidden layer) or an ancillary neuron (a few per layer). The 
MTiling also constructs a multi layer neural network where the first hidden layer 
has connections to the input layer and each subsequent hidden layer has 
connections only to the previous hidden layer. For  training data containing m 
classes (> 2), MTiling adds m master neurons and as many ancillary neurons as 
necessary to make the layer faithful. The output layer has exactly m neurons. 

The multiclass MPerceptron-Cascade is very similar to the MUpstart. Their 
main difference is the architecture of the neural network they induce. While the 
MUpstart adds the new hidden neurons in a single layer, the MPerceptron-Cascade 
adds the new hidden neurons in new layers. The MBabCoNN (Bertini Jr. & 
Nicoletti, 2008b) is the multiclass version of BabCoNN and constructs a network 
beginning with the output layer containing as many neurons as there are classes in 
the training set (each output neuron is associated to a class). The algorithm allows 
the neurons to be trained using any TLU algorithm combined with either strategy, 
individual or WTA. After adding m output neurons, the algorithm starts to add 
neurons to its single hidden layer in order to correct the classification mistakes 
made by the output neurons. A detailed description of MBabCoNN and an 
empirical evaluation of its performance versus the performance of several 
multiclass CoNN algorithms is described in one chapter of this book and is an 
extended version of the paper (Bertini Jr. & Nicoletti, 2008b). 

5   CoNN Algorithms for Regression Problems and Combined 
Approaches 

In spite of their strong focus on classification tasks, many CoNN proposals 
specifically aim at regression problems (see (Kwok & Yeung, 1997a), (Ma & 
Khorasani, 2003), (Ma & Khorasani, 2004)). A review of the CoNN algorithms 
for regression problems, approached from the perspective of a state-space search 
can be seen in (Kwok & Yeung, 1997a). 

In their proposed taxonomy Kwok & Yeung group the algorithms into six 
different categories, each named after its most representative algorithm (1) 
Dynamic node creation (DNC) (Ash, 1989); (2) Projection pursuit regression, 
based on the statistical technique proposed in (Friedman & Stuetzle, 1981); (3) 
Cascade-Correlation, that mostly groups  variants of the cascade-correlation 
architecture proposed in (Fahlman & Lebiere, 1990); (4) Resource-allocating 
networks (RAN) (Platt, 1991); (5) Group methods of data handling, a class of 
algorithms inspired by the GMDH proposed by Ivakhnenko and described in 
(Farlow, 1984) and (6) Miscellaneous, a category that groups CoNN that have 
‘multivaluated state transition mappings while still retraining the whole network 
upon hidden unit addition’. In the last category, however, the authors only talk 
about a hybrid algorithm, proposed in (Nabhan & Zomaya, 1994) that employs 
both, a constructive and a pruning strategy. 
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Kwok & Yeung in (Kwok & Yeung, 1997b) conducted a very careful 
investigation on the objective functions for training hidden neurons in CoNN for 
multilayer feedforward networks for regression problems, aiming at deriving a 
class of objective functions whose value and the corresponding weight updates 
could be computed in Ο(N) time, for a training set with N patterns. 

In spite of the many CoNN algorithms surveyed in (Kwok & Yeung, 1997a), 
the most popular for regression problems is no doubt the Cascade Correlation 
algorithm (CasCor) and maybe the second most popular is the DNC. While the 
DNC algorithm constructs neural networks with a single hidden layer, the CasCor 
creates them with multiple hidden layers, where each hidden layer has one hidden 
neuron. The popularity of CasCor can be attested by the various ways this 
algorithm has inspired new variations and also has been used in the combined 
approaches between learning methods. 

A similar approach to CasCor called Constructive Backpropagation (CBP) was 
proposed in (Lehtokangas, 1999). The RCC, a recurrent extension to CasCor is 
described in (Fahlman, 1991) and its limitations are presented and discussed in 
(Giles et al., 1995). In (Kremer, 1996) the conclusions of Giles et al. in relation to 
RCC are extended. An investigation into problems and improvements in relation 
to the basic CasCor can be found in (Prechelt, 1997), where  CasCor and five of its 
variations are empirically compared using 42 different datasets from the 
benchmark PROBEN1 (Prechelt, 1994). 

CasCor has also inspired the proposal of the Fixed Cascade Error (FCE), 
described in (Lahnajärvi et al., 1999c), (Lahnajärvi et al., 2002), which is an 
enhanced version of a previous algorithm proposed by the same authors known as 
Cascade Error (CE) (see (Lahnajärvi et al., 1999a), (Lahnajärvi et al., 1999b)). 
While the general structure of both algorithms is the same, they differ in the way 
the hidden neurons are created. 

The Rule-based Cascade-correlation (RBCC) proposed in (Thivierge et al., 
2004) is a collaborative symbolic-NN approach which is partially inspired by the 
KBANN (Knowledge-Based Artificial Neural Networks) model proposed in 
(Towel et al., 1990), (Towel, 1991) where the NN used is a CasCor network. In 
the KBANN an initial set of rules is translated into a neural network which is then 
refined using a training set of patterns; the refined neural network can undergo a 
further step and be converted into a set of symbolic rules which could, again, be 
used as the starting point for constructing a neural network and the whole cycle 
would be repeated. 

According to the authors the RBCC is a particular case of the Knowledge-
based Cascade-correlation algorithm (KBCC) (Shultz & Rivest, 2000) (Shultz & 
Rivest, 2001). The KBCC extends the CasCor by allowing as hidden neurons 
during the growth of a NN not only single neurons, but previously learned 
networks as well. In (Thivierge et al., 2003) an algorithm that implements 
simultaneous growing and pruning of CasCor networks is described; the pruning 
is done by removing irrelevant connections using the Optimal Brain Damage 
(OBD) procedure (Le Cun et al., 1990). 

In (Islam & Murase, 2001) the authors propose the CNNDA (Cascade Neural 
Network Design Algorithm) for inducing two-hidden-layer NNs. The method 
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automatically determines the number of nodes in each hidden layer and can also 
reduce a two-hidden-layer network to a single-layer network. It is based on the use 
of a temporary weight freezing technique. The Fast Constructive-Covering 
Algorithm (FCCA) for NN construction proposed in (Wang, 2008) is based on 
geometrical expansion. It has the advantage of each training example having to be 
learnt only once, which allows the algorithm to work faster than traditional 
training algorithms. 

6   Miscellaneous 

A few constructive approaches have also been devised for RBF (Radial Basis 
Function) networks, such the Orthogonal Least Squares (OLS) (Chen et al., 1989) 
(Chen et al., 1991) and the Growing Radial Basis Function (GRBF) networks 
(Karayiannis & Weiqun, 1997). 

Although CoNN algorithms seem to have a lot of potential in relation to both 
the size of the induced network and its accuracy, it is really surprising that their 
use, particularly in the area of classification problems, is not as widespread as it 
should be, considering their many advantages. In regression problems, however, 
CoNNs have been very popular, particularly the Cascade-Correlation algorithm 
and many of its variations. In what follows some of the most recent works using 
CoNN are mentioned. 

In (Lahnajärvi et al., 2004) four CasCor-based CoNN algorithms, have been 
used for evaluating the movements of a robotic manipulator. In (Huemer et al., 
2008) the authors describe a method for controlling machines, such as mobile 
robots, using a very specific CoNN. The NN is grown based on a reward value 
given by a feedback function that analyses the on-line performance of a certain 
task. In fact since conventional NNs are commonly used in controlling tasks 
(Alnajjar & Murase, 2005), this is a potential application area for CoNN 
algorithms as well. 

In (Giordano et al., 2008), a committee of CasCor neural networks was 
implemented as a software filter, for the online filtering of CO2 signals from a 
bioreactor gas outflow. The knowledge-based CasCor proposal (KBCC) previously 
mentioned has been used in a few knowledge domains, such as simulation of 
cognitive development (see e.g. (Mareschal & Schultz, 1999) and (Sirois & Shultz, 
1998)), vowel recognition (Rivest & Shultz, 2002) and for gene-splice-junction 
determination (Thivierge & Shultz, 2002), a benchmark problem from the UCI 
Machine Learning Repository (Asuncion & Newman, 2007). A more in depth 
investigation into the use of the knowledge-based neural learning implemented by 
the KBCC in developmental robotics can be seen in (Shultz et al., 2007). 

A few other non-conventional approaches to CoNN can be found in recent 
works, such as the one described in (García-Pedrajas & Ortiz-Boyer, 2007), based 
on cooperative co-evolution, for the automatic induction of the structure of an NN 
for classification purposes; the method partially tries to avoid the problems of 
greedy approaches. In (Yang et al., 2008) the authors combined the ridgelet 
function with feedforward neural networks in the ICRNN (Incremental 
Constructive Ridgelet Neural Network) model. The ridgelet function was chosen 
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as the activation function due to its efficiency in describing linear-, curvilinear- 
and hyperplane-like structures in its hidden layer; the structure of the network is 
induced via a constructive method. 

The CoNN classifier known as the Recursive Deterministic Perceptron (RDP) 
(Tajine & Elizondo, 1996) is a generalization of the Perceptron, capable of solving 
any two-class classification problem. It works by transforming any non-linearly 
separable two-class problem into a linearly one, which can be easily learnt by the 
Perceptron. Its multiclass version (Tajine et al. 1997) is a generalization that 
allows separation of the m-classes in a deterministic way. Results show that in 
certain domains, both the multiclass version and the backpropagation have similar 
performance (Elizondo et al., 2008). 

The Switching Neural Network (SNN) is a connectionist model recently 
proposed in (Muselli, 2006) suitable for classification problems. The first layer of 
an SNN contains converters, called latticizers that change the representation of the 
input vectors into binary strings. The two other layers of the SNN represent a 
Boolean function that solves, in the lattice domain, the original classification 
problem. As proposed in (Ferrari & Muselli, 2008) the construction of an SNN 
can be done by a constructive algorithm known as Switch Programming (SP) 
which is based on solutions of a linear programming problem. Good simulation 
results suggest that  this proposal is worthy of a deeper investigation. 

The constructive proposals CLANN and its multiclass version M-CLANN 
described in (Tsopzé et al., 2007) and (Nguifo et al., 2008) respectively are based 
on concept lattices and aim at a semantic interpretation of the involved neurons 
and consequently at an ‘interpretable’ (in the sense of comprehensibility) neural 
network. CLANN and M-CLANN can be approached as representation-
translators, in the same sense as the KBANN model is (Towel et al., 1990), 
(Towel, 1991). 

A different approach to CoNN can be found in (Barreto-Sanz et al., 2008), 
where the authors propose the FGHSON (Fuzzy Growing Hierarchical Self-
Organizing Networks), an adaptive network method capable of representing the 
underlying structure of the data, in a hierarchical fuzzy way.  

Transformation of original data features usually helps to find interesting low 
dimensional data that can reveal previously unseen structures. This process aims 
to ease the problem for a classifier. The simplest of these transformations is the 
linear projection. Many methods search for the optimal and the most informative 
linear projection. Friedman (Friedman, 1987) proposed a framework to find 
interesting data transformations by maximizing an index of projection pursuit. 
Grochowski and Duch in (Grochowski & Duch, 2008) proposed the QPC network, 
a constructive neural network that can implement this framework. The algorithm 
introduces a new index based on the quality of projected clusters that can be used 
to define specific representations for the hidden layer of a neural network and may 
help to construct the network.  

The recently introduced C-Mantec algorithm (Subirats, Franco et al, 2008) that 
works by error correction using the thermal perceptron (Frean, 1992)  incorporates 
competition between neurons in the hidden layer and it has been shown to lead to  
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very compact architectures. The intrinsic dynamics of the algorithm has been 
applied for detecting and filtering noisy instances, reducing overfitting and 
improving the generalization ability. 

7   Conclusions 

This chapter presents an overview of several CoNN algorithms and highlighted 
some of their applications and contributions. Although focusing on feedforward 
architectures for classification tasks, the chapter also tries to present a broad view 
of the area, discussing several of the most recent contributions. 

An interesting aspect of CoNN research is its chronological aspect. It may be 
noticeable that most of the CoNN algorithms for classification tasks were 
proposed in the nineties and since then not many new proposals have been 
published. Another point to consider also is the lack of real world applications 
involving the use of CoNN algorithms; this can be quite surprising, considering 
the many that are available and the fact that several have competitive 
performances in comparison to other more traditional approaches. The tendency in 
the area is for diversifying both the architecture and the constructive process itself, 
by means of including collaborative techniques. What has been surveyed in this 
chapter is just a part of the research work going on in the area of CoNN 
algorithms. As mentioned in the Introduction, there is a very promising area 
characterized as the group of evolutionary techniques that has been contributing a 
lot to the development of CoNNs and was not the subject of this chapter. 
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Efficient Constructive Techniques for Training
Switching Neural Networks

Enrico Ferrari and Marco Muselli

Abstract. In this paper a general constructive approach for training neural networks
in classification problems is presented. This approach is used to construct a partic-
ular connectionist model, named Switching Neural Network (SNN), based on the
conversion of the original problem in a Boolean lattice domain. The training of an
SNN can be performed through a constructive algorithm, called Switch Program-
ming (SP), based on the solution of a proper linear programming problem. Since the
execution of SP may require excessive computational time, an approximate version
of it, named Approximate Switch Programming (ASP) has been developed. Simula-
tion results obtained on the StatLog benchmark show the good quality of the SNNs
trained with SP and ASP.

Keywords: Constructive method, Switching Neural Network, Switch Program-
ming, positive Boolean function synthesis, Statlog benchmark.

1 Introduction

Solving a classification problem consists of finding a function g(x) capable of pro-
viding the most probable output in correspondence of any feasible input vector x,
when only a finite collection S of examples is available. Since the probability of
misclassifying a pattern x is generally unknown, classification algorithms work by
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minimizing at the same time the error on the available data and a measure of the
complexity of g. As a matter of fact, according to the Occam razor principle and
the main results in statistical learning theory [18] on equal training errors, a simpler
function g has a higher probability of scoring a good level of accuracy in examples
not belonging to S.

To pursue this double target any technique for the solution of classification prob-
lems must perform two different actions: choosing a class Γ of functions (model
definition) and retrieving the best classifier g ∈ Γ (training phase). These two tasks
imply a trade-off between a correct description of the data and the generalization
ability of the resulting classifier. In fact, if the set Γ is too large, it is likely to incur
the problem of overfitting: the optimal classifier g ∈ Γ has a good behavior in the
examples of the training set, but scores a high number of misclassifications in the
other points of the input domain. On the other hand, the choice of a small set Γ
prevents retrieval of a function with a sufficient level of accuracy on the training set.

Backpropagation algorithms [17] have been widely used to train multilayer per-
ceptrons: when these learning techniques are applied, the choice of Γ is performed
by defining some topological properties of the net, such as the number of hidden
layer and neurons. In most cases, this must be done without having any prior infor-
mation about the problem at hand and several validation trials are needed to find a
satisfying network architecture.

In order to avoid this problem, two different approaches have been introduced:
pruning methods [16] and constructive techniques [10]. The former consider an ini-
tial trained neural network with a large number of neurons and adopt smart tech-
niques to find and eliminate those connections and units which have a negligible
influence on the accuracy of the classifier. However, training a large neural network
may increase the computational time required to obtain a satisfactory classifier.

On the other hand, constructive methods initially consider a neural network in-
cluding only the input and the output layers. Then, hidden neurons are added itera-
tively until a satisfactory description of the examples in the training set is reached.
In most cases the connections between hidden and output neurons are decided be-
fore training, so that only a small part of the weight matrix has to be updated at each
iteration. It has been shown [10] that constructive methods usually present a rapid
convergence to a well-generalizing solution and allow also the treatment of complex
training sets. Nevertheless, since the inclusion of a new hidden unit involves only a
limited number of weights, it is possible that some correlations between the data in
the training set may be missed.

Here, we will present a new connectionist model, called Switching Neural Net-
work (SNN) [12], which can be trained in a constructive way while achieving gener-
alization errors comparable to those of best machine learning techniques. An SNN
includes a first layer containing a particular kind of A/D converter, called latticiz-
ers, which suitably transform input vectors into binary strings. Then, the subsequent
two layers compute a positive Boolean function that solves in a lattice domain the
original classification problem.

Since it has been shown [11] that positive Boolean functions can approximate
any measurable function within any desired precision, the SNN model is sufficiently
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rich to treat any real-world classification problem. A constructive algorithm, called
Switch Programming (SP) has been proposed [3] for training an SNN. It is based
on integer linear programming and can lead to an excessive computational burden
when a complex training set is analyzed. To allow a wider application of SNN, a
suboptimal method, named Approximate Switch Programming (ASP) will be intro-
duced here. Preliminary results on the Statlog benchmark [9] show that ASP is able
to considerably reduce the execution time while keeping a high degree of accuracy
in the resulting SNN.

The chapter is organized as follows. In Sec. 2 the considered classification prob-
lem is formalized, whereas in Sec. 3 a general schema for a wide class of construc-
tive methods is presented. The SNN model is presented in Sec. 4 and in Sec. 5 the
general schema introduced in Sec. 2 is employed to describe the SP and the ASP
algorithms.

Sec. 6 shows how it is possible obtain a set of intelligible rules starting from any
trained SNN, whereas Sec. 7 illustrates a very simple example with the purpose of
making clear the functioning of an SNN. Finally, Sec. 8 presents the good results
obtained with SP and ASP algorithms on the well-known datasets of the Statlog
benchmark. Some concluding remarks end the chapter.

2 Problem Setting

Consider a general binary classification problem, where d-dimensional patterns x
are to be assigned to one of two possible classes, labeled with the values of a
Boolean output variable y ∈ {0,1}. According to possible situations in real world
problems, the type of the components xi, i = 1, . . . ,d, may be one of the following:

• continuous ordered: when xi can assume values inside an uncountable subset Ui

of the real domain R; typically, Ui is an interval [ai,bi] (possibly open at one end
or at both the extremes) or the whole R.

• discrete ordered: when xi can assume values inside a countable set Ci, where a
total ordering is defined; typically, Ci is a finite subset of Z.

• nominal: when xi can assume values inside a finite set Hi, where no ordering
is defined; for example, Hi can be a set of colors or a collection of geometric
shapes.

If xi is a binary component, it can be viewed as a particular case of discrete ordered
variable or as a nominal variable; to remove a possible source of ambiguity, a binary
component will always be considered henceforth as a nominal variable.

Denote with Im the set {1,2, . . . ,m} of the first m positive integers; when the
domain Ci of a discrete ordered variable is finite, it is isomorphic to Im, with m = |Ci|,
being |A| the cardinality of the set A. On the other hand, if Ci is infinite, it can be
shown to be isomorphic to the set Z of the integer numbers (if Ci is neither lower
nor upper bounded), to the set N of the positive integers (if Ci is lower bounded), or
to the set Z\N (if Ci is upper bounded).
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For each of the above three types of components xi a proper metric can be defined.
In fact, many different distances have been proposed in the literature to characterize
the subsets of R. Also when the standard topology is assumed, different equivalent
metrics can be adopted; throughout this paper, the absolute metric da(v,v′) = |v−v′|
will be employed to measure the dissimilarity between two values v,v′ ∈ R assumed
by a continuous ordered component xi.

In the same way, when xi is a discrete ordered component, the above cited iso-
morphism between its domain Ci and a suitable subset K of Z makes it possible to
adopt the distance dc(v,v′) induced on Ci by the absolute metric da(v,v′) = |v − v′|
on K. Henceforth we will use the term counter metric to denote the distance dc.

Finally, if xi is a nominal component no ordering relation exists between any pair
of elements of its domain Hi; we can only assert that a value v assumed by xi is equal
or not to another value v′. Consequently, we can adopt in Hi the flat metric d f (v,v′)
defined as

d f (v,v′) =
{

0 if v = v′

1 if v �= v′

for every v,v′ ∈ Hi. Note that, by considering a counting function η which assigns a
different positive integer in Im to each element of the set Hi, being m = |Hi|, we can
substitute the domain Hi of xi with the set Im without affecting the given classifica-
tion problem. It is sufficient to employ the flat metric d f (v,v′) also in Im, which is
no longer seen as an ordered set.

According to this framework, to simplify the exposition we suppose henceforth
that the patterns x of our classification problem belong to a set X =∏d

i=1 Xi, where
each monodimensional domain Xi can be a subset of the real field R if xi is a contin-
uous ordered variable, a subset of integers in Z if xi is a discrete ordered component,
or the finite set Im (for some positive integer m) without ordering on it if xi is a nom-
inal variable.

A proper metric dX(x,x′) on X can be simply defined by summing up the contri-
butions di(xi,x′

i) given by the different components

dX(x,x′) =
d

∑
i=1

di(xi,x
′
i) , for any x,x′ ∈ X

where di is the absolute metric da if xi and x′
i are (continuous or discrete) ordered

variables or the flat metric d f if xi and x′
i are nominal variables.

The target of a binary classification problem is to choose within a predetermined
set Γ of decision functions the classifier g : X → {0,1} that minimizes the number
of misclassifications on the whole set X . If Γ is equal to the collection M of all the
measurable decision functions, this amounts to selecting the Bayes classifier gopt(x)
[2]. On the other hand, if Γ is a proper subset of M , the optimal decision function
corresponds to the classifier g∗ ∈Γ that best approximates gopt according to a proper
distance in M .

Unfortunately, in real world problems we have only access to a training set S,
i.e. a collection of s observations (xk,yk), k = 1, . . . ,s, for the problem at hand.
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Thus, the solution to the binary classification problem is produced by adopting a
learning algorithm A that employs the information contained in the training set to
retrieve the best classifier g∗ in Γ or a good approximation ĝ to it.

This approach consists therefore of two different stages:

1. at first the class Γ of decision functions must be suitably determined (model
selection);

2. then, the best classifier g∗ ∈ Γ (or a good approximation ĝ) is retrieved through
the learning algorithm A (training phase).

In the next section we will introduce a general constructive model, which is suffi-
ciently rich to approximate within an arbitrary precision any measurable function
g : X → {0,1}.

3 A General Structure for a Class of Constructive Methods

Denote with S1 = {xk | yk = 1} the set of positive examples in the training set S and
with S0 = {x | yk = 0} the set of negative examples. Moreover, let s1 = |S1| and
s0 = |S0|.

In many constructive methods the function ĝ is realized by a two layer neural
network; the hidden layer is built incrementally by adding a neuron at each iteration
of the training procedure. In order to characterize the hidden neurons consider the
following

Definition 1. A collection {{Lh, ŷh} , h = 1, . . . ,t +1}, where Lh ⊂ X and ŷh ∈{0,1}
for each h = 1, . . . ,t, will be called a decision list for a two class problem if Lt+1 = X .

In [10] the decision list is used hierarchically: a pattern x is assigned to the class yh,
where h is the lower index such that x ∈ Lh. It is possible to consider more general
criteria in the output assignment: for example a weight wh > 0 can be associated
with each domain Lh, measuring the reliability of assigning the output value ŷh to
every point in Lh.

It is thus possible to associate with every pattern x a weight vector u, whose h-th
component is defined by

uh =
{

wh if x ∈ Lh

0 otherwise

for h = 1, . . . ,t. The weight uh can be used to choose the output for the pattern x.
Without loss of generality suppose that the decision list is ordered so that ŷh = 0
for h = 1, . . . ,t0, whereas ŷh = 1 for h = t0 + 1, . . . ,t0 + t1, where t0 + t1 = t. The
value of ŷt+1 is the default decision, i.e. the output assigned to x if x �∈ Lh for each
h = 1, . . . ,t.

In order to fix a criterion in the output assignment for an input vector x let us
present the following
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Definition 2. A function σ(u) ∈ {0,1} is called an output decider if

σ(u) =

⎧⎨
⎩

yt+1 if u1 = . . . = ut0 = ut0+1 = . . . = ut = 0
1 if u1 = . . . = ut0 = 0 and some uh > 0 with t0 < h ≤ t
0 if ut0+1 = . . . = ut = 0 and some uh > 0 with 0 < h ≤ t0

This classifier can then be implemented in a two layer neural network: the first
layer retrieves the weights uh for h = 1, . . . ,t, whereas the second one realizes the
output decider σ . The behavior of σ is usually chosen a priori so that the training
phase consists of finding a proper decision list and the relative weight vector w. For
example, σ can be made equivalent to a comparison between the sum of the weights
of the two classes:

σ(u) =

⎧⎨
⎩

0 if ∑t0
h=1 uh > ∑t

h=t0+1 uh

1 if ∑t0
h=1 uh < ∑t

h=t0+1 uh

ŷt+1 otherwise

The determination of the decision list {Lh, ŷh}, h = 1, . . . ,t, can be performed in
a constructive way, by adding at each iteration h the best pair {Lh, ŷh} according to a
smart criterion. Each domain Lh corresponds to a neuron characterized through the
function introduced by the following

Definition 3. Consider a subset T ⊂ Sy, y ∈ {0,1}. The function

ĝh(x) =
{

1 if x ∈ Lh

0 otherwise

is called a partial classifier for T if T ∩Lh is not empty whereas Lh ∩\S1−y = /0. If
ĝh(x) = 1 the h-th neuron will be said to cover x.

The presence of noisy data can also be taken into account by allowing a small
number of errors in the training set. To this aim Def. 3 can be generalized by the
following

Definition 4. Consider a subset T ⊂ Sy, y ∈ {0,1}. The function

ĝh(x) =
{

1 if x ∈ Lh

0 otherwise

is called a partial classifier with error ε for T if T ∩ Lh is not empty whereas∣∣Lh ∩S1−y
∣∣≤ ε|S1−y|.

It is easy to notice that Def. 3 is recovered when setting ε = 0.
Since the target of the training phase is to find the simplest network satisfying the

input-output relations in the training set, the patterns already covered by at least one
neuron can be ignored when training further neurons having the same value of ŷh.

Fig. 1 shows a general constructive procedure for training a neural network in the
case of binary output. At each iteration the set T contains the patterns belonging to
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Constructive training for a two layer perceptron

For y ∈ {0,1} do

1. Set T = Sy and h = 1.
2. Find a partial classifier ĝh for T .
3. Let W = {{xk,yk} ∈ T | ĝh(xk) = 1}.
4. Set T = T \W and h = h + 1.
5. If T is nonempty go to step 2.
6. Prune redundant neurons and set ty = h.

Fig. 1 General constructive procedure followed for neural network training.

the current output value not covered by the neurons already included in the network.
Notice that removing elements from T allows a considerable reduction of the train-
ing time for each neuron since a lower number of examples has to be processed at
each iteration.

A pruning phase is performed at the end of the training process in order to elimi-
nate redundant overlaps among the sets Lh, h = 1, . . . ,t.

Without entering into details about the general theoretical properties of con-
structive techniques, which can be found in [10], in the following sections we will
present the architecture of Switching Neural Networks and an appropriate training
algorithm.

4 Switching Neural Networks

A promising connectionist model, called Switching Neural Network (SNN), has
been developed recently[12]. According to this model, the input variables are
transformed into n-dimensional Boolean strings by means of a particular mapping
ϕ : X → {0,1}n, called latticizer.

Consider the Boolean lattice {0,1}n, equipped with the well known binary oper-
ations ‘+’ (logical sum or OR) and ‘·’ (logical product or AND). To improve read-
ability, the elements of this Boolean lattice will be denoted henceforth as strings of
bits: in this way, the element (0,1,1,0) ∈ {0,1}4 will be written as 0110. The usual
priority on the execution of the operators + and · will be adopted; furthermore, when
there is no possibility of misleading, the symbol · will be omitted, thus writing vv′

instead of v ·v′.
A standard partial ordering on {0,1}n can be defined by setting v ≤ v′ if and

only if v + v′ = v′; this definition is equivalent to writing v ≤ v′ if and only if
vi ≤ v′

i for every i = 1, . . . ,n. According to this ordering, a Boolean function
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f : {0,1}n → {0,1} is called positive (resp. negative) if v ≤ v′ implies f (v) ≤ f (v′)
(resp. f (v) ≥ f (v′)) for every v,v′ ∈ {0,1}n. Positive and negative Boolean func-
tions form the class of monotone Boolean functions.

Since the Boolean lattice {0,1}n does not involve the complement operator NOT,
Boolean expressions developed in this lattice (sometimes called lattice expressions)
can only include the logical operations AND and OR. As a consequence, not every
Boolean function can be written as a lattice expression. It can be shown that only
positive Boolean functions are allowed to be put in the form of lattice expressions.

A recent theoretical result [11] asserts that positive Boolean functions are uni-
versal approximators, i.e. they can approximate every measurable function g : X →
{0,1}, being X the domain of a general binary classification problem, as defined in
Sec. 2. Denote with Ql

n the subset of {0,1}n containing the strings of n bits hav-
ing exactly l values 1 inside them. A possible procedure for finding the positive
Boolean function f that approximates a given g within a desired precision is based
on the following three steps:

1. (Discretization) For every ordered input xi, determine a finite partition Bi of the
domain Xi such that a function ĝ can be found, which approximates g on X within
the desired precision and assumes a constant value on every set B ∈ B, where
B = {∏d

i=1 Bi : Bi ∈ Bi, i = 1, . . . ,d}.
2. (Latticization) By employing a proper function ϕ , map the points of the domain

X into the strings of Ql
n, so that ϕ(x) = ϕ(x′) if x and x′ belong to the same set

B ∈ B, whereas ϕ(x) �= ϕ(x′) if x ∈ B and x′ ∈ B′, being B and B′ two different
sets in B.

3. (Positive Boolean function synthesis) Select a positive Boolean function f .

If g is completely known these three steps can be easily performed; the higher the
required precision is, the finer the partitions Bi for the domains Xi must be. This
affects the length n of the binary strings in Ql

n, which has to be big enough to allow
the definition of the 1-1 mapping ϕ .

If a ∈ {0,1}n, let P(a) be the subset of In = {1, . . . ,n} including the indexes i for
which ai = 1. It can be shown [14] that a positive Boolean function can always be
written as

f (z) =
∨
a∈A

∧
j∈P(a)

z j (1)

where A is an antichain of the Boolean lattice {0,1}n, i.e. a set of Boolean strings
such that neither a < a′ nor a′ < a holds for each a, a′ ∈ A. It can be proved that a
positive Boolean function is univocally specified by the antichain A, so that the task
of retrieving f can be transformed into searching for a collection A of strings such
that a′ < a for each a, a′ ∈ A.

The symbol
∨

(resp.
∧

) in (1) denotes a logical sum (resp. product) among the
terms identified by the subscript. The logical product

∧
j∈P(a) z j is an implicant for

the function f ; however, when no confusion arises, the term implicant will also be
used to denote the corresponding binary string a ∈ A.

Preliminary tests have shown that a more robust method for classification prob-
lems consists of defining a positive Boolean function fy (i.e. an antichain Ay to be
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Fig. 2 The schema of a Switching Neural Network

inserted on (1)) for each output value y and in properly combining the functions
relative to the different output classes. To this aim, each generated implicant can be
characterized by a weight wh > 0, which measures its significance level for the ex-
amples in the training set. Thus, to each Boolean string z can be assigned a weight
vector u whose h-th component is

uh = Fh(z) =
{

wh if
∧

j∈P(ah) z j = 1
0 otherwise

where ah ∈ A0 ∪A1 for h = 1, . . . ,t.
At the final step of the classification process, an output decider σ(u) assigns the

correct class to the pattern z according to a comparison between the weights uh of the
different classes. If no h exists such that uh > 0, the default output is assigned to z.

The device implementing the function ĝ(x) = σ(F(ϕ(x))) is shown in Fig. 2.
It can be considered a three layer feedforward neural network. The first layer is
responsible for the latticization mapping ϕ ; the second realizes the function F as-
signing a weight to each implicant. Finally, the third layer uses the weight vector
u = F(z) to decide the output value for the pattern x.

Every AND port in the second layer is connected only to some of the outputs
leaving the latticizers; they correspond to values 1 in the associated implicant. The
choice of such values is performed by a switch port. For this reason the connectionist
model shown in Fig. 2 is called Switching Neural Network.

Notice that the device can be subdivided into two parts: the left part includes
the t0 neurons characterizing the examples having output y = 0, whereas the right
part involves the t1 = t − t0 implicants relative to the output y = 1. For this reason,
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the generalization of an SNN to a multiclass problem (where y ∈ {1, . . . ,c}, c > 2)
is immediate: it is sufficient to create a set of implicants for each output value. In
addition, the default decision has to be transformed into a default decision list, so
that if two (or more) output values score the same level of confidence (according to
the criterion fixed by σ ), the device selects the one with a higher rank in the list.

It is interesting to observe that, unlike standard neural networks, SNNs do not
involve floating point operations. In fact the weights w are provided by the training
process and can be chosen from a set of integer values. Moreover, the antichain A
can be converted into a set of intelligible rules in the form

if < premise > then < consequence >

through the application of a smart inverse operator [12] of ϕ to the elements of A.

4.1 Discretization

Since the exact behavior of the function g is not known, the approximating function
ĝ and the partition B have to be inferred from the samples (xk,yk) ∈ S. It follows
that at the end of the discretization task every set Bi ∈ Bi must be large enough
to include the component xki of some point xk in the training set. Nevertheless, the
resulting partition B must be fine enough to capture the actual complexity of the
function g.

Several different discretization methods for binary classification problems have
been proposed in the literature [1, 5, 6, 7]. Usually, for each ordered input xi a set
of mi − 1 consecutive values ri1 < ri2 < · · · < ri,mi−1 is generated and the parti-
tion Bi is formed by the mi sets Xi ∩ Ri j, where Ri1 = (−∞,ri1), Ri2 = (ri1,ri2),
. . . , Ri,mi−1 = (ri,mi−2,ri,mi−1), Rimi = (ri,mi−1,+∞). Excellent results have been ob-
tained with the algorithms ChiMerge and Chi2 [5, 7], which employ the χ2 statistic
to decide the position of the points ri j , k = 1, . . . ,mi −1, and with the technique Ent-
MDL [6], which adopts entropy estimates to achieve the same goal. An alternative
and promising approach is offered by the method used in the LAD system [1]: in
this case an integer programming problem is solved to obtain optimal values for the
cutoffs ri j .

By applying a procedure of this kind, the discretization task defines for each
ordered input xi a mappingψi : Xi → Imi , where ψi(z) = j if and only if z ∈ Ri j. If we
assume that ψi is the identity function with mi = |Xi| when xi is a nominal variable,
the approximating function ĝ is uniquely determined by a discrete function h : I →
{0,1}, defined by h(ψ(x)) = ĝ(x), where I = ∏d

i=1 Imi and ψ(x) is the mapping
from X to I, whose ith component is given by ψi(xi).

By definition, the usual ordering relation is induced by ψi on Imi when xi is an
ordered variable. On the other hand, since in general ψi is not 1-1, different choices
for the metric on Imi are possible. For example, if the actual distances on Xi must be
taken into account, the metric di( j,k) = |ri j − rik| can be adopted for any j,k ∈ Imi ,



Efficient Constructive Techniques for Training Switching Neural Networks 35

having set ri,mi = 2ri,mi − ri,mi−1. Alternative definitions employ the mean points of
the intervals Rik or their lower boundaries.

According to statistical non parametric inference methods a valid choice can also
be to use the absolute metric da on Imi , without caring about the actual value of
the distances on Xi. This choice assumes that the discretization method has selected
correctly the cutoffs ri j , sampling with greater density the regions of Xi where the
unknown function g changes more rapidly. In this way the metric d on I =∏d

i=1 Imi

is given by

d(v,v′) =
d

∑
i=1

di(ui,vi)

where di is the absolute metric da (resp. the flat metric d f ) if xi is an ordered (resp.
nominal) input.

4.2 Latticization

It can be easily observed that the function ψ provides a mapping from the domain X
onto the set I =∏d

i=1 Imi , such that ψ(x) = ψ(x′) if x and x′ belong to the same set
B ∈ B, whereas ψ(x) �=ψ(x′) if x ∈ B and x′ ∈ B′, being B and B′ two different sets
in B. Consequently, the 1-1 function ϕ from X to Ql

n, required in the latticization
step, can be simply determined by defining a proper 1-1 function β that maps the
elements of I into the binary strings of Ql

n. In this way, ϕ(x) = β (ψ(x)) for every
x ∈ X .

A possible way of constructing the function β is to define properly d mappings
β i : Imi → Qli

ni ; then, the binary string β(v) for an integer vector v ∈ I is obtained
by concatenating the strings β i(vi) for i = 1, . . . ,d. With this approach, β (v) always
produces a binary string with length n =∑d

i=1 ni having l =∑d
i=1 li values 1 inside it.

The mappings β i can be built in a variety of different ways; however, it is im-
portant that they fulfill the following two basic constraints in order to simplify the
generation of an approximating function ĝ that generalizes well:

1. β i must be an isometry, i.e. Di(β i(vi),β i(v′
i)) = di(vi,v′

i), where Di(·, ·) is the
metric adopted on Qli

ni and di(·, ·) is the distance on Imi (the absolute or the flat
metric depending on the type of the variable xi),

2. if xi is an ordered input, β i must be full order-preserving, i.e. β i(vi) � β i(v′
i) if

and only if vi ≤ v′
i, where ≺ is a (partial or total) ordering on Qli

ni .

A valid choice for the definition of ≺ consists of adopting the lexicographic ordering
on Qli

ni , which amounts to asserting that z ≺ z′ if and only if zk < z′
k for some k =

1, . . . ,ni and zi = z′
i for every i = 1, . . . ,k−1. In this way ≺ is a total ordering on Qli

ni

and it can be easily seen that Qli
ni becomes isomorphic to Im with m =

(
ni

li

)
. As a

consequence the counter metric dc can be induced on Qli
ni ; this will be the definition

for the distance Di when xi is an ordered input.
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Note that if li = ni − 1, binary strings in Qli
ni contain a single value 0. Let us

suppose that two elements z and z′ ∈ Qni−1
ni have the value 0 at the jth and at the

j′ position, respectively; then, we have z ≺ z′ if and only if j < j′. Moreover, the
distance Di(z,z′) between z and z′ is simply given by the absolute difference |k −
k′|. As an example, consider for ni = 6 the strings z = 101111 and z′ = 111101,
belonging to Q5

6. The application of the above definitions gives z ≺ z′ and Di(z,z′) =
3, since the value 0 is at the 2nd place in z and at the 5th place in z′.

If xi is a nominal variable, the flat metric can also be adopted for the elements of
Qli

ni , thus obtaining

Di(z,z′) =
{

0 if z = z′

1 if z �= z′ , for every z,z′ ∈ Qli
ni

With these definitions, a mapping β i that satisfies the two above properties (isometry
and full order-preserving) is the inverse only-one code, which maps an integer vi ∈
Imi into the binary string zi ∈ Qmi−1

mi having length mi and jth component zi j given by

zi j =
{

0 if vi = j
1 otherwise

, for every j = 1, . . . ,mi

For example, if mi = 6 we have β i(2) = 101111 and β i(5) = 111101.
It can be easily seen that the function β , obtained by concatenating the d binary

strings produced by the components β i, maps the integer vectors of I into the set
Qm−d

m , being m = ∑d
i=1 mi. If the metric D(z,z′) = ∑d

i=1 Di(zi,z′
i) is employed on

Qm−d
m , where zi is the binary string formed by the mi bits of z determined by Imi

through β i, we obtain that the 1-1 mapping β is an isometry.
The behavior of the mapping β allows us to retrieve a convenient form for the

1-1 function ϕ from X to Ql
n, to be introduced in the latticization step, if the dis-

cretization task has produced for each ordered input xi a set of mi − 1 cutoffs ri j,
as described in the previous subsection. Again, let ϕ(x) be obtained by the con-
catenation of d binary strings ϕ i(xi) in Qmi−1

mi . To ensure that ϕ(x) = β(ψ(x)), it is
sufficient to define the jth bit zi j of zi = ϕ i(xi) as

zi j =
{

0 if xi ∈ Ri j

1 otherwise
, for every j = 1, . . . ,mi (2)

if xi is an ordered variable and as

zi j =
{

0 if xi = j
1 otherwise

, for every j = 1, . . . ,mi (3)

if xi is a nominal input. Note that xi ∈ Ri j if and only if xi exceeds the cutoff ri, j−1

(if j > 1) and is lower than the subsequent cutoff ri j (if j < mi).
Consequently, the mapping ϕ i can be implemented by a simple device that re-

ceives in input the value xi and compares it with a sequence of integers or real
numbers, according to definitions (2) or (3), depending on whether xi is an ordered
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or a nominal input. This device will be called latticizer; it produces mi binary out-
puts, but only one of them can assume the value 0. The whole mapping ϕ is realized
by a parallel of d latticizer, each of which is associated with a different input xi.

5 Training Algorithm

Many algorithms are present in literature to reconstruct a Boolean function start-
ing from a portion of its truth table. However two drawbacks prevent the use of
such techniques for the current purpose: these methods usually deal with general
Boolean functions and not with positive ones and they lack generalization ability.
In fact, the aim of most of these algorithms is to find a minimal set of implicants
which satisfies all the known input-output relations in the truth table. However, for
classification purposes, it is important to take into account the behavior of the gen-
erated function on examples not belonging to the training set. For this reason some
techniques [1, 4, 13] have been developed in order to maximize the generaliza-
tion ability of the resulting standard Boolean function. On the other hand, only one
method, named Shadow Clustering [14], is expressly devoted to the reconstruction
of positive Boolean functions.

In this section a novel constructive algorithm for building a single fy (denoted
only by f for simplicity) will be described. The procedure must be repeated for each
value of the output y in order to find an optimal classifier for the problem at hand.
In particular, if the function fy is built, the Boolean output 1 will be assigned to the
examples belonging to the class y, whereas the Boolean output 0 will be assigned to
all the remaining examples.

The architecture of the SNN has to be constructed starting from the converted
training set S′, containing s1 positive examples and s0 negative examples. Let us
suppose, without loss of generality, that the set S′ is ordered so that the first s1

examples are positive. Since the training algorithm sets up, for each output value,
the switches in the second layer of the SNN, the constructive procedure of adding
neurons step by step will be called Switch Programming (SP).

5.1 Implicant Generation

When a Boolean string z is presented as input, the output of the logical product∧
j∈P(a) z j at a neuron is positive if and only if a ≤ z according to the standard

ordering in the Boolean lattice. In this case a will be said to cover z.
The aim of a training algorithm for an SNN is to find the simplest antichain A

covering all the positive examples and no negative examples in the training set. This
target will be reached in two steps: first an antichain A′ is generated, then redundant
elements of A′ are eliminated thus obtaining the final antichain A. A constructive ap-
proach for constructing A′ consists of generating implicants one at a time according
to a smart criterion of choice determined by an objective functionΦ(a).
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In particular Φ(a) must take into account the number of examples in S′ covered
by a and the degree of complexity of a, usually defined as the number of elements
in P(a) or, equivalently, as the sum ∑m

i=1 ai. These parameters will be balanced in
the objective function through the definition of two weights λ and μ .

In order to define the constraints to the problem, define, for each example zk, the
number ξk of indexes i for which ai = 1 and zki = 0. It is easy to show that a covers
zk if and only if ξk = 0. Then, the quantity

s1

∑
k=1

θ (ξk)

where θ represents the usual Heaviside function (defined by θ (u) = 1 if u > 0,
θ (u) = 0 otherwise), is the number of positive patterns not covered by a. However,
it is necessary that ξk > 0 for each k = s1 + 1, . . . ,s, so that any negative pattern is
not covered by a.

Starting from these considerations, the best implicant can be retrieved by solving
the following optimization problem:

min
ξ ,a

λ
s1

s1

∑
k=1

ξk +
μ
m

m

∑
i=1

ai

subj to
m

∑
i=1

ai(ai − zki) = ξk for k = 1, . . . ,s1

m

∑
i=1

ai(ai − zki) ≥ 1 for k = s1 + 1, . . . ,s (4)

ξk ≥ 0 for k = 1, . . . ,s1

ai ∈ {0,1} for i = 1, . . . ,d

where the Heaviside function has been substituted by its argument in order to avoid
nonlinearity in the cost function. Notice that the terms in the objective function are
normalized in order to be independent of the complexity of the problem at hand.

Since the determination of a sufficiently great collection of implicants, from
which the antichain A is selected, requires the repeated solution of problem (4), the
generation of an already found implicant must be avoided at any extraction. This
can be obtained by adding the following constraint

m

∑
i=1

a ji(1 − ai) ≥ 1 for j = 1, . . . ,q − 1 (5)

where a is the implicant to be constructed and a1,. . . , aq−1 are the already found
q − 1 implicants.

Additional requirements can be added to problem (4) in order to improve the
quality of the implicant a and the convergence speed. For example, in order to better
differentiate implicants and to cover all the patterns in fewer steps, the set S′′

1 of
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positive patterns not yet covered can be considered separately and weighted by a
different factor ν �= λ .

Moreover, in the presence of noise it would be useful to avoid excessive adher-
ence of a with the training set by accepting a small fraction ε of errors.

In this case a further term is added to the objective function, measuring the level
of misclassification, and constraints in (4) have to be modified in order to allow at
most εs0 patterns to be misclassified by the implicant a. In particular, slack vari-
ables ξk, k = s1 + 1, . . . ,s are introduced such that ξk = 1 corresponds to a violated
constraints (i.e. to a negative pattern covered by the implicant). For this reason the
sum ∑s

k=s1+1 ξ , which is just the number of misclassified patterns, must be less than
ε0s0. If the training set is noisy, the optimal implicant can be found by solving the
following LP problem, where it is supposed that the first s′

1 positive patterns are not
yet covered:

min
ξ ,a

ν
s′

1

s′1

∑
k=1

ξk +
λ

s1 − s′
1

s1

∑
k=s′1+1

ξk +
μ
m

m

∑
i=1

ai +
ω
s0

s

∑
k=s1+1

ξk

subj to
m

∑
i=1

ai(1 − zki) = ξk for k = 1, . . . ,s1

m

∑
i=1

ai(1 − zki) ≥ 1 − ξk for k = s1 + 1, . . . ,s (6)

s

∑
k=s1+1

ξk ≤ ε0s0 , ai ∈ {0,1} for i = 1, . . . ,m

ξk ≥ 0 for k = 1, . . . ,s1 , ξk ∈ {0,1} for k = s1 + 1, . . . ,s

If desired, only the implicants covering at least a fraction η1 of positive examples
may be generated. To this aim it is sufficient to add the following constraint

s1

∑
k=1

ξk ≤ (1 −η1)s1

Notice that further requirements have to be imposed when dealing with real-
world problems. In fact, due to the coding (2) or (3) adopted in the latticization
phase, only some implicants correspond to a condition consistent with the original
inputs. In particular at least one zero must be present in the substring relative to each
input variable.

5.2 Implicant Selection

Once the antichain A′ has been generated, it will be useful to look for a subset A of
A′ which is able to describe the data in the training set with sufficient accuracy. To
this aim both the number of implicants included in A and the number Nk of nonnull
components in each element ak ∈ A must be minimized.



40 E. Ferrari and M. Muselli

Denote with a1, a2, . . . , aq the q implicants obtained in the generation step and
with ck j a binary variable asserting if the input vector zk, k = 1, . . . ,s1, is covered
by a j:

ck j =
{

1 if zk is covered by a j

0 otherwise

In addition, consider the binary vector ζ having as jth component the value
ζ j = 1 if the corresponding implicant a j is included in the final collection A. Then,
an optimal subset A ⊂ A′ can be found by solving the following constrained opti-
mization problem:

min
ζ

q

∑
j=1
ζ j(α+βNj))

subj to
q

∑
j=1

ck jζ j ≥ 1 for k = 1, . . . ,s1 (7)

ζ j ∈ {0,1} for j = 1, . . . ,q

where α and β are constants.
Additional requirements can be added to the problem (7) in order to improve the

generalization ability of A. For example, if the presence of noise has to be taken
into account, the antichain A can be allowed not to cover a small fraction of positive
examples. In this case, the problem (7) becomes

min
ζ

q

∑
j=1

ζ j(α+βNj))

subj to
q

∑
j=1

ck jζ j ≥ 1 − ξk for k = 1, . . . ,s1

q

∑
j=1

ck jζ j ≤ ξk for k = s1, . . . ,s (8)

s1

∑
k=1

ξk ≤ εs1

s

∑
k=s1+1

ξk ≤ εs0 ζ j ∈ {0,1} for j = 1, . . . ,q

ξ j ∈ {0,1} for j = 1, . . . ,s1 ξ j ≥ 0 for j = s1, . . . ,s

5.3 An Approximate Method for Solving the LP Problem

The solution of the problems (4) (or (6)) and (7) (or (8)) allows the generation of a
minimal set of implicants for the problem at hand. Nevertheless, in the presence of
a large amount of data, the number of variables and constraints for the LP problems
increases considerably, thus making the SP algorithm very slow.
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Conversion of the continuous solution into a binary vector

1 Set ai = 0 for each i = 1, . . . ,m.

2 While the constraints in (4) are violated

a. Select ı̂ = argmaxi ai.
b. Set aı̂ = 1.

3. While the constraints in (4) are satisfied

a. Pick an index ı̂.
b. Set aı̂ = 0.
c. If a constraints in (4) is violated, set aı̂ = 1.

Fig. 3 A greedy method for converting a continuous solution of problem (4) into a binary
vector.

In this subsection, an approximate algorithm able to reduce the execution time
of the training algorithm for huge datasets will be introduced. The method will be
described for the minimization problem (4), as its generalization to the case of (6),
(7) or (8) is straightforward.

Most of the LP methods perform the minimization of a function Φ(a) through
the following phases:

1. A continuous solution ac is retrieved by suppressing the constraints ai ∈ {0,1}.
2. Starting from ac the optimal binary vector a is obtained through a branch and

bound approach.

In particular, during phase 2, the algorithm must ensure that all the constraints of
the original LP problem (4) are still satisfied by the binary solution. The search for
an optimal integer solution can thus require the exploration of many combinations
of input values. Preliminary tests have shown that, when the number of integer input
variables in an LP problem increases, the time employed by Phase 2 may be much
longer than that needed by Phase 1.

For this reason, an approximate algorithm will be proposed to reduce the num-
ber of combinations explored in the conversion of the continuous solution to the
binary one.

Of course, the higher the number of 1s in a vector a, the higher is the probability
that it satisfies all the constraints in (4), since the number of covered patterns is
usually smaller. Therefore, the vector ac can be employed in order to retrieve a
minimal subset of indexes to be set to one, starting from the assumption that a higher
value of (ac)i corresponds to a higher probability that ai has to be set to 1 (and
vice versa).
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The algorithm for the conversion of the continuous solution to a binary one is
shown in Fig. 3. The method starts by setting ai = 0 for each i; then the ai corre-
sponding to the highest value of (ac)i is set to 1. The procedure is repeated con-
trolling at each iteration if the constraints (4) are satisfied. When no constraint is
violated the procedure is stopped; smart lattice descent techniques [14] may be
adopted to further reduce the number of active bits in the implicant.

These methods are based on the definition of proper criteria in the choice of the
bit to be set to zero. Of course, when the implicant does not satisfy all the constraints,
the bit is set to one again, the algorithm is stopped and the resulting implicant is
added to the antichain A. The same approach may be employed in the the pruning
phase, too.

The approximate version of the SP algorithm, obtained by employing the greedy
procedure for transforming the continuous solution of each LP problem involved in
the method into a binary one, is named Approximate Switch Programming (ASP).

6 Transforming the Implicants into a Set of Rules

If the discretization task described in Subsection 4.1 is employed to construct the
latticizers, every implicant a ∈ {0,1}m generated by SC can be translated into an
intelligible rule underlying the classification at hand. This assertion can be verified
by considering the substrings ai of a that are associated with the ith input xi to the
network. The logical product

∧
j∈P(a) z j, performed by the AND port corresponding

to a, gives output 1 only if the binary string z = ϕ(x) presents a value 1 in all the
positions where ai has value 1.

If xi is an ordered variable, this observation gives rise to the condition xi ∈⋃
j∈Imi \P(ai) Ri j. However, in the analysis of real-world problems, the execution of

SP and ASP is constrained to generate only binary strings ai (for ordered variables)
having a single sequence of consecutive values 0, often called a run of 0. In this case
the above condition can simply be written in one of the following three ways:

• xi ≤ ri j, if the run of 0 begins at the first position and finishes at the jth bit of ai,
• ri j < xi ≤ rik, if the run of 0 begins at the ( j + 1)th position and finishes at the

kth bit of ai,
• xi > ri j , if the run of 0 begins at the ( j + 1)th position and finishes at the last

(mith) bit of ai.

As an example, suppose that an ordered variable xi has been discretized by using the
four cutoffs 0.1, 0.25, 0.3, 0.5. If the implicant a with ai = 10011 has been produced
by SC, the condition 0.1 < xi ≤ 0.3 has to be included in the if part of the if-then
rule associated with a.

On the other hand, if xi is a nominal variable the portion ai of an implicant a gives
rise to the condition xi ∈ ⋃ j∈Imi \P(ai){ j}. Again, if the implicant a with ai = 01101
has been produced by SC, the condition xi ∈ {1,4} has to be included in the if part
of the if-then rule associated with a. In any case, if the binary string ai contains only
values 0, the input xi will not be considered in the rule for a.
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Thus, it follows that every implicant a gives rise to an if-then rule, having in its if
part a conjunction of the conditions obtained from the substrings ai associated with
the d inputs xi. If all these conditions are verified, to the output y = ĝ(x) will be
assigned the value 1.

Due to this property, SP and ASP (with the addition of discretization and latticiza-
tion) become rule generation methods, being capable of retrieving from the training
set some kind of intelligible information about the physical system underlying the
binary classification problem at hand.

7 An Example of SNN Training

A simple example will be presented in this section in order to make the training
of an SNN clearer. Consider the problem of forecasting the quality of the layer
produced by a rolling mill starting from the knowledge of two continuous values:
Pressure (x1) and rolling Speed (x2). The behavior of the rolling mill can be de-
scribed by a function g : R2 → {0,1}, whose output y may be either 0 (Bad layer) or
1 (Good layer). The aim of the classification task is therefore to realize a function ĝ
which constitutes a valid approximation for g starting from the training set S shown
in Tab. 1.

As Tab. 1 shows, S is composed of 20 examples: 10 of those are Good and 10
are Bad. Suppose that the discretization process has subdivided the values of Pres-
sure into three intervals (−∞,1.63), (1.63,1.56), (2.56,∞), whereas the domain
for Speed has been partitioned into 4 intervals (−∞,3.27), (3.27,4.9), (4.9,6.05),
(6.05,∞).

Through the discretization phase, it is possible to define a mapping ψ : R2 →
I3 × I4, which associates two integer values v1 and v2 with each input pattern x.
Starting from the vector v obtained at the discretization step, the latticizer associates
a binary string z = ϕ(x) with each pattern x. Since the number of intervals for x1

and x2 is respectively 3 and 4, the latticizer produces a 7-dimensional binary string,
obtained by concatenating the substrings relative to each input variable.

For example, the input pattern x = (3.12,3.90) belongs to the interval (2.56,∞)
for x1 and to the interval (3.27,4.90) for x2. Therefore the integer vector v = (3,2)
and the binary string 1101011, obtained through the inverse-only one coding, are
associated with x. Starting from the original data, it is possible to obtain a binary
training set S′, which is used to perform the classification. In fact the function ĝ can
be retrieved as ĝ(x) = σ(F(ϕ(x)).

Since the expected noise in the training data is negligible, the problem (6) can be
solved by setting ε = ω = 0, whereas a standard choice for the other coefficients in
the cost function is given by λ = μ = ν = 1.

Suppose that the neurons for the output class 1 are generated initially. A first
execution of the SP algorithm on the rolling mill problem produces the implicant
1000001. In fact it can be easily verified that this binary string satisfies all the con-
straints in (6) since it does not cover any example labelled by 0. Moreover, it covers
7 positive examples (all those after the third one) and has only two active bits, thus
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Table 1 The original and transformed dataset for the problem of controlling the quality of a
layer produced by a rolling mill. x1 and x2 are the original values for Pressure and Speed, v1
and v2 are the discretized values, whereas z is the binary string obtained through the latticizer.
The quality of the resulting layer is specified by the value of the Boolean variable y.

x1 x2 v1 v2 z y
0.62 0.65 1 1 0110111 1
1.00 1.95 1 1 0110111 1
1.31 2.47 1 1 0110111 1
1.75 1.82 2 1 1010111 1
2.06 3.90 2 2 1011011 1
2.50 4.94 2 3 1011101 1
2.62 2.34 3 1 1100111 1
2.75 1.04 3 1 1100111 1
3.12 3.90 3 2 1101011 1
3.50 4.94 3 3 1011110 1
0.25 5.20 1 3 0111101 0
0.87 6.01 1 3 0111101 0
0.94 4.87 1 2 0111011 0
1.87 4.06 1 2 0111011 0
1.25 8.12 1 4 0111110 0
1.56 6.82 1 4 0111110 0
1.87 8.75 2 4 1011110 0
2.25 8.12 2 4 1011110 0
2.50 7.15 2 4 1011110 0
2.81 9.42 3 4 1101110 0

scoring a very low value of the objective function. Nevertheless, the first three ex-
amples are still to be covered, so the SP algorithm must be iterated.

The constraint (5) has to be added

(1 − a1)+ (1 − a7) ≥ 1

and the first three examples constituting the set S′′ must be considered separately in
the cost function (6).

A second execution of the SP algorithm generates the implicant 0000111, which
covers 6 examples among which are the ones not yet covered. Therefore the an-
tichain A = {1000001,0000111}, corresponding to the PDNF f (z) = z1z7 + z5z6z7,
correctly describes all the positive examples. It is also minimal since the pruning
phase cannot eliminate any implicant.

In a similar way an antichain is generated for the output class labelled by 0, thus
producing the second layer of the SNN.

A possible choice for the weight uh to be associated with the h-th neuron is given
by its covering, i.e. the fraction of examples covered by it. For example, the weights
associated with the neurons for the class 1 may be u1 = 0.7 for 1000001 and u2 = 0.6
for 0000111.
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In addition the retrieved implicants can be transformed in intelligible rules in-
volving the input variables. For example the implicant 1000001, associated with the
output class 1, corresponds to the rule:

if x1 < 1.63 AND x2 > 6.05 then y = 1

8 Simulation Results

To obtain a preliminary evaluation of the performances achieved by SNNs trained
with SP or ASP, the classification problems included in the well-known StatLog
benchmark [9] have been considered. In this way the generalization ability and the
complexity of resulting SNNs can be compared with those of other machine learning
methods, among which are the backpropagation algorithm (BP) and rule generation
techniques based on decision trees, such as C4.5 [15].

All the experiments have been carried out on a personal computer with an Intel
Core Quad Q6600 (CPU 2.40 GHz, RAM 3 GB) running under the Windows XP
operative system.

The tests contained in the Statlog benchmark presents different characteristics
which allow the evaluation of different peculiarities of the proposed methods. In par-
ticular, four problems (Heart, Australian, Diabetes, German) have a binary output;
two of them (Heart and German) are clinical datasets presenting a specific weight
matrix which aims to reduce the number of misclassifications on ill patients. The re-
maining datasets present 3 (Dna), 4 (Vehicle) or 7 (Segment, Satimage, Shuttle) out-
put classes. In some experiments, the results are obtained through a cross-validation
test; however, in the presence of large amount of data, a single trial is performed
since the time for many executions may be excessive.

The generalization ability of each technique is evaluated through the level of
misclassification on a set of examples not belonging to the training set; on the other
hand, the complexity of an SNN is measured using the number of AND ports in
the second layer (corresponding to the number of intelligible rules) and the average
number of conditions in the if part of a rule. Tab. 2 presents the results obtained on
the datasets, reported in increasing order of complexity. Accuracy and complexity
of resulting SNNs are compared to those of rulesets produced by C4.5. In the same
table is also shown the best generalization error included in the StatLog report [9]
for each problem, together with the rank scored by SNN when its generalization
error is inserted into the list of available results.

The performances of the different techniques for training an SNN depend on the
characteristics of the different problems. In particular the SP algorithm scores a bet-
ter level of accuracy with respect to ASP in the datasets Heart and Australian. In
fact, these problems are characterized by a small amount of data so that the execu-
tion of the optimal minimization algorithm may obtain a good set of rules within a
reasonable execution time.

On the other hand, the misclassification of ASP is lower than that of SP in all
the other problems (except for Shuttle), which are composed of a greater amount of
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Table 2 Generalization error of SNN, compared with C4.5, BP and other methods, on the
StatLog benchmark.

Test Generalization error Rank
Problem SP ASP C4.5 BP Best SP ASP
HEART 0.439 0.462 0.781 0.574 0.374 6 9

AUSTRALIAN 0.138 0.141 0.155 0.154 0.131 3 3
DIABETES 0.246 0.241 0.270 0.248 0.223 7 5
VEHICLE 0.299 0.291 0.266 0.207 0.150 18 15
GERMAN 0.696 0.568 0.985 0.772 0.535 10 3
SEGMENT 0.0424 0.042 0.040 0.054 0.030 8 8

DNA 0.0658 0.056 0.076 0.088 0.041 7 3
SATIMAGE 0.168 0.149 0.150 0.139 0.094 19 10
SHUTTLE 0.0001 0.0001 0.001 0.43 0.0001 1 1

data. The decrease of the performances of SP in the presence of huge datasets is due
to the fact that simplifications in the LP problem are necessary in order to make it
solvable within a reasonable period of time. For example, some problems may be
solved by setting ε =ω = 0, since taking into account the possible presence of noise
gives rise to an excessive number of constraints in (6).

Notice that in one case (Shuttle), SP and ASP achieve the best results among
the methods in the StatLog archive, whereas in four other problems ASP achieves
one of the first five positions. However, ASP is in the first ten positions in all the
problems except for Vehicle.

Moreover, a comparison of the other methods reported in Tab. 2 with the best
version of SNN for each problem illustrates that:

• Only in one case (Vehicle) the classification accuracy achieved by C4.5 is higher
than that of SNN; in two problems (Satimage and Segment) the performances are
similar, whereas in all the other datasets SNN scores significantly better results.

• In two cases (Vehicle and Satimage), BP achieves better results with respect to
SNN; in all the other problems the performances of SNN are significantly better
than those of BP.

These considerations highlight the good quality of the solutions offered by the
SNNs, trained by the SP or ASP algorithm.

Nevertheless, the performances obtained by SP are conditioned by the number
of examples s in the training set and by the number of input variables d. Since the
number of constrains in (4) or (6) depends linearly on s, SP becomes slower and
less efficient when dealing with complex training sets. In particular, the number of
implicants generated by SP in many cases is higher than that of the rules obtained
by C4.5, causing an increase in the training time.

However a smart combination of the standard optimization techniques with the
greedy algorithm in Sec. 5.3 may allow complex datasets to be handled very ef-
ficiently. In fact the execution of ASP requires at most three minutes for each
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execution of the first six problems, about twenty minutes for the Dna dataset and
about two hours for Satimage and Shuttle.

Notice that the minimization of (4) or (6) is obtained using the package Gnu
Linear Programming Kit (GLPK) [8], a free library for the solution of linear pro-
gramming problems. It is thus possible to improve the above results by adopting
more efficient tools to solve the LP problem for the generation of implicants.

Concluding Remarks

In this paper a general schema for constructive methods has been presented and em-
ployed to train a Switching Neural Network (SNN), a novel connectionist model for
the solution of classification problems. According to the SNN approach, the input-
output pairs included in the training set are mapped to Boolean strings according to
a proper transformation which preserves ordering and distance. These new binary
examples can be viewed as a portion of the truth table of a positive Boolean function
f , which can be reconstructed using a suitable algorithm for logic synthesis.

To this aim a specific method, named Switch Programming (SP), for reconstruct-
ing positive Boolean functions from examples has been presented. SP is based on
the definition of a proper integer linear programming problem, which can be solved
with standard optimization techniques. However, since the treatment of complex
training sets with SP may require an excessive computational cost, a greedy ver-
sion, named Approximate Swith Programming (ASP), has been proposed to reduce
the execution time needed for training SNN.

The algorithms SP and ASP have been tested by analyzing the quality of the
SNNs produced when solving the classification problems included in the Statlog
archive. The results obtained show the good accuracy of classifiers trained with SP
and ASP. In particular, ASP turns out to be very convenient from a computational
point of view.
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Constructive Neural Network Algorithms That
Solve Highly Non-separable Problems

Marek Grochowski and Włodzisław Duch

Abstract. Learning from data with complex non-local relations and multimodal
class distribution is still very hard for standard classification algorithms. Even if
an accurate solution is found the resulting model may be too complex for a given
data and will not generalize well. New types of learning algorithms are needed to ex-
tend capabilities of machine learning systems to handle such data. Projection pursuit
methods can avoid “curse of dimensionality” by discovering interesting structures in
low-dimensional subspace. This paper introduces constructive neural architectures
based on projection pursuit techniques that are able to discover simplest models
of data with inherent highly complex logical structures. The key principle is to look
for transformations that discover interesting structures, going beyond error functions
and separability.

Keywords: Constructive neural networks, projection pursuit, non-separable prob-
lems, Boolean functions.

1 Introduction

Popular statistical and machine learning methods that rely solely on the assump-
tion of local similarity between instances (equivalent to a smoothness prior) suffer
from the curse of dimensionality [2]. When high-dimensional functions are not suf-
ficiently smooth learning becomes very hard, unless extremly large number of train-
ing samples is provided. That leads to a dramatic increase in cost of computations
and creates complex models which are hard to interpret. Many data mining prob-
lems in bioinformatics, text analysis and other areas, have inherent complex logic.
Searching for the simplest possible model capable of representing that kind of data
is still a great challenge that has not been fully addressed.

Marek Grochowski and Włodzisław Duch
Department of Informatics, Nicolaus Copernicus University, Toruń, Poland
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One of the simplest examples of such hard problems is the n-bit parity problem.
It has a very simple solution (one neuron with all weights wi = 1 implementing a
periodic transfer function with a single parameter [3]), but popular kernel methods
and algorithms that depend only on similarity relations, or only on discrimination,
have strong difficulties in learning this function. Linear methods fail completely,
because this problem is highly non-separable. Gaussian-based kernels in SVMs use
all training vectors as support vectors, because in case of parity function all points
have closest neighbors from the opposite class. The nearest neighbor algorithms
(with the number of neighbors smaller than 2n) and the RBF networks have the same
problem. For multilayer perceptrons convergence is almost impossible to achieve
and requires many initiations to find accurate solution. Special feedforward neural
network architectures have been proposed to handle parity problems [16, 30, 31,
28, 21] but they are designed only for this function and cannot be used for other
Boolean functions, even very similar to parity.

Learning systems are frequently tested on benchmark datasets that are almost
linearly separable and relatively simple to handle, but without a strong prior knowl-
edge it is very hard to find satisfactory solution for really complex problems. One
can estimate how complex a given data is using the k-separability index introduced
in [3]. Consider a dataset X = {x1, . . . ,xn} ⊂ Rd , where each vector xi belongs to
one of the two classes.

Definition 1. Dataset X is called k-separable if a direction w exist such that all
vectors projected on this direction yi = wT xi are clustered in k separated intervals,
each containing instances from a single class only.

For example, datasets with two classes that can be separated by a single hyperplane
have k = 2 and are thus 2-separable. XOR problem belongs to the 3-separable cat-
egory, as projections have at least three clusters that contain even, odd and even in-
stances (or odd, even and odd instances). n-bit parity problems are n + 1-separable,
because linear projection of binary strings exists that forms at least n + 1 separated
alternating clusters of vectors for odd and even cases. Please note that this is equiv-
alent to a linear model with n parallel hyperplanes, or a nearest-prototype model
in one dimension (along the line) with n + 1 prototypes. This may be implemented
as a Learning Vector Quantization (LVQ) model [19] with strong regularization. In
both cases n linear parameters define direction w, and n parameters define thresh-
olds placed on the y line (in case of prototypes there are placed between thresholds,
except for those on extreme left and extreme right, placed on the other side of the
threshold in the same distance as the last prototype), so the whole model has 2n
parameters.

It is obvious that complexity of data classification is proportional to the k-
separability index, although for some datasets additional non-linear transformations
are needed to avoid overlaps of projected clusters. For high values of k learning
becomes very difficult and most classifiers, based on the Multi-Layer Perceptron
(MLPs), Radial Basis Function (RBF) network, or Support Vector Machine (SVM)
data models, as well as almost all other systems, are not able to discover sim-
ple data models. Linear projections are the simplest transformations with an easy
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interpretation. For many complicated situations proper linear mapping can discover
interesting structures. Local and non-local distributions of data points can be clus-
tered and discriminated by hyperplanes. Often a simple linear mapping exists that
leaves only trivial non-linearities that may be separated using neurons that imple-
ment a window-like transfer function:

M̃(x;w,a,b) =
{

1 if wx ∈ [a,b]
0 if wx /∈ [a,b] (1)

This function is suitable for learning all 3-separable data (including XOR). The
number of such Boolean functions for 3 or more bits is much greater than of the
linearly separable functions [3]. For data which is more than k = 3 separable this
will not give an optimal solution, but it will still be simpler than the solution con-
structed using hyperplanes. There are many advantages of using window-type func-
tions in neural networks, especially in difficult, highly non-separable classification
problems [7]. One of the most interesting learning algorithms in the field of learn-
ing Boolean functions is the constructive neural network with Sequential Window
Learning (SWL), an algorithm described by Muselli [26]. This network also uses
window-like transfer function, and in comparison with other constructive methods
[26] outperforms similar methods with threshold neurons, leading to models with
lower complexity, higher speed and better generalization [12]. SWL works only for
binary data and therefore some pre-processing is needed to use it for different kind
of problems.

The k-separability idea is a good guiding principle that facilitates searching for
transformations that can create non-separable data distributions that will be easy
to handle. In the next section constructive network is presented that uses window-
like transfer functions to distinguish clusters created by linear projections. A lot of
methods that search for optimal and most informative linear transformations have
been developed. Projection pursuit is a branch of statistical methods that search for
interesting data transformations by maximizing some “index of interest” [18, 10].
First a c3sep network that has nodes designed to discover 3-separable structures is
presented and tested on learning Boolean functions and some benchmark classifi-
cation problems. Second, a new “Quality of Projected Clusters” index designed to
discover k-separable structures is introduced, and applied to visualization of data in
low-dimensional spaces. Constructive networks described in section 3 use this in-
dex with the projection pursuit methodology for construction of an accurate neural
QPCNN architecture for solving complex problems. The paper ends with a discus-
sion and conclusion.

2 Constructive 3-Separability Model (c3sep)

With growing k-separability index problems quickly become intractable for general
classification algorithms. Although some problems with high k may also be solved
using complex models it is rather obvious that simplest linear solutions, or solutions
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involving smooth minimal-complexity non-linear mappings combined with inter-
val non-linearities, should show better generalization and such solutions should be
easier to comprehend. In feedforward multilayer neural networks hidden layers rep-
resents some data transformation which should lead to linear separation of samples
in the output layer. For highly-nonseparable data this transformation in very hard
to find.

In case of backpropagation procedure, when all network weights are adjusted in
each iteration, convergence to the optimal solution is almost impossible. The final
MLP model gives no information about the structure of the problem, representing
data structures in completely distributed way. Using constructive methods, a single
node can be trained separately, providing a partial solution. As a result each net-
work node represents a chunk of knowledge about the whole problem, focusing on
different subsets of data and facilitating interpretation of the data structure.

Window-Type Transfer Functions

In the brain neurons are organized in cortical column microcircuits [22] that res-
onate with certain frequencies whenever they receive specific signals. Threshold
neurons split input space in two disjoint regions, with hyperplane defined by the w
direction. For highly non-separable data searching for linear separation is useless,
while finding interesting clusters for projected data, corresponding to an active mi-
crocircuit, is more likely. Therefore network nodes should implement a window-like
transfer functions (Eq. 1) that solve 3-separable problems by combination of projec-
tion and clustering, separating some (preferably large) number of instances from a
single class in the [a,b] interval. This simple transformation may handle not only lo-
cal neighborhoods, as Gaussian functions in SVM kernels or RBF networks do, but
also non-local distributions of data that typically appear in the Boolean problems.
For example, in the n-bit parity problem projection on the [1,1..1] direction creates
several large clusters with vectors that contain fixed number of 1 bits.

Optimization methods based on gradient descent used in the error backpropaga-
tion algorithm require continuous and smooth functions, therefore soft windowed-
type functions should be used in the training phase. Good candidate functions
include a combination of two sigmoidal functions:

M(x;w,a,b,β ) = σ (β (wx− a))−σ (β (wx− b)) . (2)

For a > b an equivalent product form, called bicentral function [5], is:

M(x;w,a,b,β ) = σ (β (wx− a))(1 −σ(β (wx− b)) . (3)

Parameter β controls slope of the sigmoid functions and can be adjusted during
training together with weights w and biases a and b. Bicentral function (3) has values
in the range [0,1], while function (2) for b < a may become negative, giving values
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in the [−1,+1] range. This property may be useful in constructive networks for
“unlearning” instances, misclassified by previous hidden nodes. Another interesting
window-type function is:

M(x;w,a,b,β ) =
1
2

(
1 − tanh(β (wx− a)) tanh(β (wx− b))

)
. (4)

This function has one interesting feature: for points wx = a or wx = b and for
any value of slope β it is equal to 1/2. By setting large value of β hard-window type
function (1) is obtained

M(x;w,a,b,β )
β→∞−→ M̃(x;w,a′,b′) , (5)

where for function (4) boundaries of the [a,b] interval do not change (a = a′ and
b = b′), while for the bicentral function (3) value of β has influence on the interval
boundaries, so for β → ∞ they are different than [a,b]. Another way to achieve
sharp decision boundaries is by introduction of an additional threshold function and
parameter:

M̃(x;w,a′,b′) = sgn(M(x;w,a,b,β )−θ ) . (6)

Many other types of transfer functions can be used for practical realization of
3-separable models. For detailed taxonomy of neural transfer functions see [7, 8].

Modified Error Function

Consider a dataset X ⊂ Rd , where each vector x ∈ X belongs to one of the two
classes c(x) ∈ {0,1}. To solve this classification problem neural network should
minimize an error measure:

E(X ;Γ ) = Ex||y(x;Γ )− c(x))|| , (7)

where y(x;Γ ) is the network output and Γ denotes a set of all parameters that need
to be adjusted during training (weights, biases, etc.). The expectation value is calcu-
lated over all training vectors using the mean square error, or cross entropy, or other
norms suitable for error measures. However, in constructive networks nodes may
be trained separately, one at a time, and a partial solution in form of pure clusters
for some range of [ai,bi] output values created by each M(x;Γi) node are used to
improve the network function. To evaluate a usefulness of a new node M(x;Γi) for
the network y(x;Γ ), where Γ represents all parameters, including Γi, an extra term
is added to the standard error measure:

E(X ;Γ ;a,b,λ ) = Ex||y(x;Γ )− c(x))||+λiEM∈[ai,bi]||M(x;Γi)− c(x))|| , (8)

where λi controls the tradeoff between the covering and the quality of solution af-
ter the new M(x;Γi) hidden node is added. For nodes implementing wx projections
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(or any other functions with outputs restricted to [ai,bi] interval) largest pure cluster
will give the lowest contribution to the error, lowering the first term while keeping
the second one equal to zero. If such cluster is rather small it may be worthwhile to
create a slightly bigger one, but not quite pure, to lower the first term at the expense
of the second. Usually a single λi parameter is taken for all nodes, although each pa-
rameter could be individually optimized to reduce the number of misclassification.

The current version of the c3sep constructive network assumes binary 0/1 class
labels, and uses the standard mean square error (MSE) measure with two additional
terms:

E(x;Γ ,λ1,λ2) =
1
2∑x

(y(x;Γ )− c(x))2 +

+λ1∑
x

(1 − c(x))y(x;Γ )−λ2∑
x

c(x)y(x;Γ ) . (9)

The term scaled by λ1 represents additional the penalty for “unclean” clusters, in-
creasing the total error for vectors from class 0 that falls into at least one interval
created by hidden nodes. The term scaled by λ2 represents reward for large clusters,
decreasing the value of total error for every vector that belongs to class 1 and was
correctly placed inside created clusters.

The c3sep Architecture and Training

The output of the c3sep network is given by:

y(x;Γ ) = σ

(
∑

i

M(x;Γi)−θ
)

, (10)

where Γi = {wi,ai,bi,βi} ⊂Γ denote subset of parameters of i-th node. All connec-
tions between hidden and output layer are fixed with strength 1, although in the final
step they could be used as a linear layer for additional improvement of the network.
One can use linear node as an output, but in practice sigmoidal function provides
better convergence. The architecture of this network is shown in Fig. 1. Each hidden
node tries to separate a large group of vectors that belong to class c = 1. Learn-
ing procedure starts with an empty hidden layer. In every phase of the training one
new window-type unit is added and trained by minimization of the error function
(9). Weights of each node are initialized with small random values before training.
Initial values for biases a and b can be set to

a = (wx)min +
1
3
|(wx)max − (wx)min|

b = (wx)min +
2
3
|(wx)max − (wx)min|
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Fig. 1 Example of the c3sep
network with three hidden
neurons. Only parameters
of the last node are adjusted
during training (dotted line),
the first and the second node
have been frozen, with large
value of β used to obtain
sharp interval boundaries.

In most cases this should provide a good starting point for optimization with gradient
based methods.

Network construction proceeds in a greedy manner. First node is trained to sep-
arate as large group of class 1 vectors as possible. After convergence is reached the
slope of transfer function is set to a large value to obtain hard-windowed function,
and the weights of this neuron are kept frozen during further learning. Samples from
class 1 correctly handled by the network do not contribute to the error, and can be
removed from the training data to further speed up learning (however, leaving them
may stabilize learning, giving a chance to form more large clusters). After that, the
next node is added and the training is repeated on the remaining data, until all vec-
tors are correctly handled. To avoid overfitting, one may use pruning techniques, as
it is done in the decision trees. The network construction should be stopped when
the number of cases correctly classified by a new node becomes too small, or when
the crossvalidation tests show that adding such node will decrease generality.

Experiments

2.1 Boolean Functions

The c3sep network has been tested on several types of problems. Figures 2 and 3
shows results of learning on Boolean problems with systematically increasing com-
plexity. Results are compared with a few neural constructive algorithms designed
to deal with Boolean functions. All these algorithms may be viewed as a realiza-
tion of general sequential constructive method [26] (this method is briefly described
in subsection 3), and differ by strategy of searching for the best hidden nodes.
Irregular Partitioning algorithm [23] uses threshold perceptrons optimized with lin-
ear programing. Carve [32] is trained by the convex hull traversing algorithm. Oil
Spot algorithm [24] searches for connected subgraphs and proper edge orientation
in hypercube graph. Sequential Window Learning method [25] uses window trans-
fer functions for which weights are obtained from solution of a system of algebraic
equations. Target Switch algorithm [33] use traditional perceptron learning.
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Fig. 2 Number of hidden
units created, and time
consumed during learning
of parity problems. Each
result is averaged over 10
trials.
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Fig. 2 presents results of learning of constructive methods applied to the parity
problems from 2 bits to 10 bits, and Fig. 3 shows the results of learning randomly
selected Boolean functions, where labels for each string of bits have been drawn
with equal probability P(C(x) = 1) = 0.5. The same random function was used to
train all algorithms. These figures show the size of networks constructed by a given
algorithm, and the time needed for learning until a given problem has been solved
without mistakes.

The c3sep network avoids small clusters increasing generalization, and uses
stochastic gradient algorithm, that avoids local minima through multistarts, and
thus leads to small errors in some runs. Values of the training error are placed in
corresponding points of Fig. 2 and Fig. 3. The n-dimensional parity problem can
be solved by a two-layer neural network with n threshold neurons or (n + 1)/2
window-like neurons in the hidden layer[3]. Sequential window learning and irreg-
ular partitioning algorithms were able do obtain optimal solution for all dimensions.

Learning of random Boolean functions is much more difficult, and upper bound
for the number of neurons needed for solving of this kind of functions is not known.
This purpose of these tests is to check the ability of each algorithm to discover
simple models of complex logical functions. Algorithms capable of exact learning of
every example by creating separate node for single vectors are rarely useful as they
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Fig. 3 Number of hidden
units created and time con-
sumed during learning of
random Boolean functions.
Each result is averaged over
10 trials.
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will overfit the data. Therefore the ability to find simple, but approximate, solutions
is very useful. One should expect that such approximate models should be more
robust than perfect models if the training is carried on slightly different subset of
examples for a given Boolean function.

Irregular partitioning produces small networks, but the training time is very high,
while on the other hand the fastest methods (Oil Spot) needs many neurons. Sequen-
tial window learning gave solutions with a small number of neurons and rather low
computational cost. The c3sep network was able to create smallest architectures, but
the average times of computations are somehow longer than needed by most other
algorithms. This network provides near optimal solution, as not all patterns were
correctly classified.

2.2 Real World Problems

Tables 1 and 2 present results of a generalization tests for a few benchmark datasets
from the UCI repository [1]. The Iris dataset is perhaps the most widely used sim-
ple problem, with 3 types of Iris flowers described by 4 real valued attributes. The
Glass identification problem has 9 real valued features with patterns divided into
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Table 1 30x3 CV test accuracy.

Iris Glass Voting0 Voting1
Carve 90.18±1.58 74.17± 3.28 93.24± 1.00 87.45± 1.37
Irregular Partitioning 90.98±2.29 72.29± 4.39 93.41± 1.13 86.96± 1.43
Target Switch 65.45±5.05 46.76± 0.91 94.64± 0.63 88.13± 1.47
c3sep 95.40±1.30 70.68± 2.97 94.38± 0.72 90.42± 1.15

binary features
Oil Spot 75.16±2.86 66.05± 2.41 90.93± 0.90 86.68± 1.47
Carve 71.84±3.46 62.08± 4.55 91.79± 1.22 86.77± 1.43
Irregular Partitioning 75.53±3.20 62.38± 3.66 92.73± 1.19 86.79± 2.20
Target Switch 84.93±3.28 71.69± 3.42 94.66± 0.69 88.36± 0.98
Sequential Window 77.36±4.71 54.18± 3.50 91.40± 1.21 82.28± 1.82
c3sep 75.58±6.15 60.92± 4.47 94.50± 0.89 89.78± 1.26

Table 2 Average number of hidden neurons generated during 30x3 CV test.

Iris Glass Voting0 Voting1
Carve 5.72±0.46 7.00±0.50 4.99±0.39 8.34±0.45
Irregular Partitioning 5.49±0.53 4.69±0.26 2.04±0.21 3.48±0.30
Target Switch 22.76±2.17 55.49± 2.38 3.69±0.29 9.22±0.85
c3sep 3.00±0.00 1.14±0.26 1.00±0.00 1.02±0.12

binary features
Oil Spot 27.78±1.41 21.54± 1.80 22.76± 1.39 37.32± 2.32
Carve 8.02±0.52 6.79±0.26 5.56±0.32 8.59±0.46
Irregular Partitioning 3.00±0.00 1.00±0.00 0.99±0.06 2.50±0.30
Target Switch 3.07±0.14 1.72±0.25 3.20±0.26 7.46±0.48
Sequential Window 9.90±0.68 5.54±0.40 5.46±0.50 7.10±0.61
c3sep 3.30±0.35 1.03±0.10 1.00±0.00 1.00±0.00

float-processed and non float-processed pieces of glass. United States congressional
voting record database, denoted here as Voting0 dataset, contains 12 features that
record decisions of congressmans who belong to a democratic or republican party.
The Voting1 dataset has been obtained from the Voting0 by removing the most in-
formative feature. Each input can assume 3 values: yes, no or missing.

Some algorithms used for comparison work only for binary features, therefore
their application requires additional pre-processing of data vectors. Real valued fea-
tures have been transformed to binary features by employing Gray coding [27].
Resulting Iris and Glass dataset in binary representation have 22 and 79 features,
respectively. For the three-valued input of Voting dataset a separate binary feature
has been associated with the presence of each symbolic value, resulting in 48 binary
features for Voting0, and 45 for Voting1 datasets.

Algorithms that can handle real features have been applied to both original
data and binarized data (Tab. 1). Although dimensionality of binary data is higher
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(and thus more adaptive parameters are used by standard MLP networks and other
algorithms), results of most methods on binary data are significantly worse, partic-
ularly in the case of Iris and Glass where all features in the original data are real
valued.

In all these tests c3sep network gave very good accuracy with low variance, better
on statistically equivalent to the best solutions, with a very small number of neurons
created in the hidden layer. The ability to solve complex problems in an approxi-
mate way is evidently helpful also for relatively simple data used here, showing the
universality of constructive c3sep networks.

3 Projection Pursuit Constructive Neural Network

Projection pursuit (PP) is a generic name given to all algorithms that search for
the most “interesting” linear projections of multidimensional data, maximizing (or
minimizing) some objective functions or indices [11, 10]. Many projection pursuit
indices may be defined to characterize different aspects or structures that the data
may contain. Modern statistical dimensionality reduction approaches, such as the
principal component analysis (PCA), Fisher’s discriminant analysis (FDA) or inde-
pendent component analysis (ICA) may be seen as special cases of projection pur-
suit approach. Additional directions may be generated in the space orthogonalized
to the already found directions.

PP indices may be introduced both for unsupervised and for supervised learning.
By working in a low-dimensional space based on linear projections projection pur-
suit methods are able to avoid the “curse of dimensionality” caused by the fact that
high-dimensional space is mostly empty [15]. In this way noisy and non-informative
variables may be ignored. In contrast to most similarity-based methods that opti-
mize metric functions to capture local clusters, projection pursuit may discover also
non-local structures. Not only global, but also local extrema of the PP index are of
interest and may help to discover interesting data structures.

A large class of PP constructive networks may be defined, where each hidden
node is trained by optimization of some projection pursuit index. In essence the
hidden layer defines a transformation of data to low dimensional space based on se-
quence of projections. This transformation is then followed by linear discrimination
in the output layer. PCA, FDA or ICA networks are equivalent to linear discrimi-
nation on pre-processed suitable components. In the next section more interesting
index, in the spirit of k-separability, is defined.

The QPC Projection Index

Consider a dataset X = {x1, . . . ,xn} ⊂ Rd , where each vector xi belongs to one of
the k different classes. Let Cx denote the set of all vectors that have the same label as
x. The following index achieves maximum value for projections on the direction w
that groups all vectors from class Cx into a compact cluster separated from vectors
that belong to other classes:
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Q(x;w) = A+ ∑
xk∈Cx

G
(
wT (x − xk)

)
− A− ∑

xk /∈Cx

G
(
wT (x− xk)

)
, (11)

where G(x) is a function with localized support and maximum in x = 0, for exam-
ple a Gaussian function. The first term in Q(x;w) function is large if all vectors
from class Cx are placed close to x after the projection on direction defined by w,
indicating how compact and how large is this cluster of vectors. The second term
depends on distance beetwen x and all patterns that do not belong to class Cx, there-
fore it represents penalty for placing vector x too close to the vectors from opposite
classes. The Quality of Projected Clusters (QPC) index is defined as an average of
the Q(x;w) for all vectors:

QPC(w) =
1
n ∑x∈X

Q(x;w) , (12)

providing a leave-one-out estimator that measures quality of clusters projected on
w direction. This index achieves maximum value for projections w that create small
number of pure, compact and well separated clusters. For linearly separable prob-
lems function QPC(w) achieves maximum for projections wx that create two well-
separated pure clusters of vectors. In case of k-separable dataset maximization of
QPC index leads to a projection with k separated clusters. Thus optimization of
QPC should discover k-separable solutions if they exist.

Parameters A+,A− control influence of each term in Eq. (11). If A− is large strong
separation between classes is enforced, while large A+ impacts mostly compactness
and purity of clusters. For example, by setting A+ = p(Cx) and A− = 1 − p(Cx)
(where p(Cx) is the a priori class probability), projection index is balanced in re-
spect to the size of classes. If in addition G(x) is normalized, such that G(0) = 1,
then the upper limit of QPC index is 1 and it occurs only when all vectors from
the same class after projection are placed in a single very narrow cluster and the
gap beetwen each cluster is greater than the range of G(x) function. All bell-shaped
functions that achieve maximum value for x = 0 and vanish for x → ±∞ are suitable
for G(x), including Gaussian, bicentral functions Eq. (3) and Eq. (2), or an inverse
quartic function:

G(x) =
1

1 +(bx)4 , (13)

where parameter b controls the width of G(x).
These functions are continuous and thus may be used in gradient-based meth-

ods. Iterative gradient optimization procedures applied to functions with multiple
local minima do no guarantee that an optimal solution will be found, and may con-
verge slowly. Direct calculation of the QPC index (12) requires O(n2) operations
(after projection distances beetwen all pairs of vectors are computed), as in the
nearest neighbor methods. For large datasets this may be excessive.To overcome
this problem various “editing techniques”, or instance selection algorithms devel-
oped for the nearest neighbor methods may be used [17, 13, 29]. By sorting pro-
jected vectors and restricting computations of the sum in Eq. (11) only to vectors xi

with G(w(x−xi)) > ε computational time is easily decreased to O(n logn). Further
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improvements in speed may be achieved if the sum in Eq. (12) is restricted only to a
few centers of projected clusters ti. This may be done after projection w stabilizes,
as at the beginning of the training the number of clusters in the projection is not
known without some prior knowledge about the problem. For k-separable datasets
k centers are sufficient and the cost of computing QPC index drops to O(kn). Gra-
dient descent methods may be replaced by more sophisticated approaches [14, 20]),
although in practice multistart gradient methods have been quite effective in search-
ing for interesting projections. It is worth to notice that although global extrema of
QPC index give most valuable projections, suboptimal solutions may also provide
useful insight into the structure of data.

First QPC Direction

Figure 4 presents projections for 4 very different kinds of datasets: Wine, Monk1,
10-bit Parity and Concentric Rings. All projections were obtained taking quartic
function (13) for G(x), with b = 3, and using simple gradient descent maximization
initialized 10 times, selecting after a few iterations the most promising solution that
is trained until convergence. Values of weights and the value of QPC(w) are shown
in the corresponding figures. Positions of projected vectors on the line are shown for
each class below the projection line. Smoothed histograms for these projections may
be normalized and taken as estimations of class conditionals p(x|C), from which
posterior probabilities p(C|x) = p(x|C)p(C)/p(x) are easily calculated.

The first two datasets are taken from the UCI repository [1]. The Wine data con-
sist of 178 vectors, 13 continuous features and 3 classes. It can be classified using
a single linear projection that gives 3 groups of vectors (one for each class). The
weight for “flavanoids” feature dominates and is almost sufficient to separate all
3 classes. Monk 1 is an artificial datasets [1], with 6 symbolic features and two
classes, defined by two simple rules: given object is “a monk” if “the head shape”
(first attribute) = “body shape” (second attribute) or “jacket color” (fifth attribute)
= red. Direction generated by maximization of the QPC index produces large clus-
ter of vectors in the middle of the projection. First two coefficients are large and
equal, others are essentially zero. This corresponds to the first rule, but the second
rule cannot be captured by the same projection. To separate the remaining cases
a second projection is needed (see below). These logical rules have also been ex-
tracted using a special version of MLP network [5]. The 10 bit parity is an example
of a hard Boolean problem, where 1024 samples are divided into even and odd bi-
nary strings. This problem is 11-separable, with a maximum value of projection
index obtained for diagonal direction in the 10 dimensional hypercube, therefore all
weights have the same value. Although a perfect solution using a single projection
has been found clusters at the extreme left and right of the projection are quite small,
therefore finding another direction that puts these vectors in larger clusters may be
useful. Convergence of MLP or RBF networks for such complex data is quite un-
likely, but also standard SVM approaches fail completely if crossvalidation tests are
performed. The final dataset (Concentric Rings) contains 800 samples distributed in
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Fig. 4 Examples of four projections found by maximization of the QPC index using gradient
descent for the Wine data (top-left), the Monk1 problem (top-right), the 10-bit Parity (bottom-
left) and the noisy Concentric Rings (bottom-right).

4 classes, each with 200 samples defined by 4 continuous features. Only the first
and the second feature is relevant, vectors belonging to the same class are located
inside one of the 4 concentric rings. The last two noisy features are uniformly dis-
tributed random numbers. For this dataset the best projection that maximizes the
QPC index reduces influence of noisy features, with weights for dimensions 3 and
4 close to zero. This shows that the QPC index may be used for feature selection,
but also that linear projections have limited power: a complicated solution requiring
many projections at different angles to delineate the rings is needed. Of course a
much simpler network using localized functions will solve this problem more ac-
curately. The need for networks with different types of transfer functions [7, 9] has
been stressed some time ago, but still there are no programs capable of finding the
simplest data models in all cases.

Second QPC Direction

For complex problems usually more than one projection is required. Using QPC in-
dex searching for additional interesting projections can be realized in several ways.
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Sequence of unique directions may be generated applying repeatedly QPC opti-
mization in the subspace orthogonal to all directions found earlier. Another possible
approach is to focus on subsets of vectors with poor separation and search for an-
other direction only for overlapping clusters until separation is attained. The third
possibility is to search for the next linear projection with additional penalty term
that will punish solutions similar to those found earlier:

QPC(w;w1) = QPC(w)−λ f (w,w1) (14)

The value of f (w,w1) should be large if the current direction w is close to the
previous direction w1. For example, some power of the scalar product between these
directions may be used: f (w,w1) = (w1

T ·w)2. Parameter λ scales the importance
of enforcing this condition during the optimization process.

Scatterplots of data vectors projected on two directions may be used for visual-
ization. Figure 5 presents such scatterplots for the four datasets used in the previous
section. The second direction w, found by gradient descent optimization of function
(14) with λ = 0.5, is used for the horizontal axis. The final weights of the second
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Fig. 5 Scatterplots created by projection on two QCP directions for the Wine and Monk1
data (top-left/right), 10-bit parity and the noisy Concentric Rings data (bottom-left/right).
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direction, value of the projection index QPC(w) and the inner product of w1 and
w are shown in the corresponding figures. For the Wine problem first projection
was able to separate almost perfectly all three classes. Second projection (Fig. 5)
gives additional insight into the structure of this data, leading to a better separation
of vectors placed near decision boundary. Two-dimensional projection of Monk1
data shows separate and compact clusters. The 5th feature (which forms the sec-
ond rule describing this dataset) has significant value, and all unimportant features
have weights equal almost zero, allowing for simple extraction of correct logical
rules. In case of the 10-bit parity problem each diagonal direction of a hypercube
representing Boolean function gives a good solution with large cluster in the cen-
ter. Two such orthogonal directions have been found, projecting each data vector
into large pure cluster, either in the first or in the second dimension. In particular
small, one or two-vector clusters at the extreme ends of the first projection belong
to the largest clusters in the second direction, ensuring good generalization in this
two-dimensional space using naive Bayes estimation of classification probabilities.
Results for the noisy Concentric Rings dataset show that maximization of the QPC
index has caused vanishing of noisy and uninformative features, and has been able to
discover two-dimensional relations hidden in this data. Although linear projections
in two directions cannot separate this data, such dimensionality reduction is suffi-
cient for any similarity-based method, for example the nearest neighbor method, to
perfectly solve this problem.

A single projection allows for estimation and drawing class-conditional and pos-
terior probabilities, but may be not sufficient for optimal classification. Projections
on 2 or 3 dimensions allow for visualization of scatterograms, showing data struc-
tures hidden in the high-dimensional distributions, suggesting how to handle the
problem in the simplest way: adding linear output layer (Wine), employing localized
functions, decision trees or covering algorithms, using intervals (parity) or naive
Bayes, or using the nearest neighbor rule (Concentric Rings). If this is not sufficient
more projections should be used as a pre-processing for final classification, trying
different approaches in a meta-learning scheme [6].

Coefficients of the projection vectors may be used directly for feature rank-
ing/selection, because maximization of the QPC index gives negligible weights to
noisy or insignificant features, while important attributes have distinctly larger val-
ues. This method might be used to improve learning for many machine learning
models sensitive to feature weighting, such as all similarity-based methods. Inter-
esting projections may also be used to initialize weights in various neural network
architectures.

Constructive Neural Network Based on the QPC Index

Projection pursuit methods in a natural way may be used for constructive neural
networks learning, where each hidden node coresponds to a linear mapping obtained
by optimization of a projection index. To build a neural network architecture using



Constructive Neural Network Algorithms 65

QPC index general sequential constructive method may be used [26]. For the two-
class problems this method is described as follows:

1. start learning with an empty hidden layer;
2. if there are some misclassified vectors do:
3. add a new node;
4. train the node to obtain a partial classiffier;
5. remove all vectors for which the current node outputs +1;
6. enddo.

A partial classiffier is a node with output +1 for at least one vector from one of
the classes, and −1 for all vectors from the opposite classes. After a finite number
of iterations this procedure leads to a construction of neural network that classifies
all training vectors (unless there are conflicting cases, i.e. identical vectors with
different labels, that should be removed). Weights in the output layer do not take part
in the learning phase and their values can be determined from a simple algebraic
equation, assigning the largest weight to the node created first, and progressively
smaller weights to subsequently created nodes, for example:

u0 =
h

∑
j=1

u j + dh+1 , u j = d j2h− j for j = 1, . . . ,h (15)

where h is the number of hidden neurons, di = {−1,+1} denotes label for which
i-th hidden node gives output +1 and dh+1 = dh.

The sequential constructive method critically depends on construction of good
partial classifier. A method to create it is described below. Consider a node M im-
plementing the following function:

M(x) =
{

1 if |G(w(x − t))−θ | ≥ 0
−1 otherwise

(16)

where the weights w are obtained by maximization of the QPC index, θ is a thresh-
old parameter which determines the window width, and t is the center of a cluster
of vectors projected on w, estimated by:

t = argmax
x∈X

Q(w,x) (17)

If the direction w corresponds to the maximum of QPC index then t should be
at the center of a large, clean and well separated cluster. Thus the node (16) splits
input space into two disjoint subspaces, with output +1 for each vector that belongs
to the cluster, and −1 for all other vectors. Large, clean and well-separated clusters
may be achieved by maximization of the function Q(t;w) with respect to weights w
and cluster center t, or by minimization of an error function:

E(x) = Ex||G(w(x − t))− δ (cx,ct)|| (18)

where δ (cx,ct) is equal to 1 when x belongs to the class associated with the cluster
centered at t, and 0 if it does not. This error function has twice as many parameters
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to optimize (both the weights and the center are adjusted), but computational cost
of calculations here is linear in the number of vectors O(n), and since only a few
iterations are needed this part of learning is quite fast.

If all vectors for which the trained node gives output +1 have the same label then
this node is a good partial classifier and sequential constructive method described
above can be used directly for network construction. However, for some datasets lin-
ear projections cannot create pure clusters, as for example in the Concentric Rings
case. Creation of a partial classifier may then be done by searching for additional di-
rections by optimization of Q(t;w) function (11) in respect to weights w and center t
restricted to the subset of vectors that fall into the impure cluster. Resulting direction
and center define the next network node according to Eq. 16. If this node is not pure,
that is it provides +1 output for vectors from more than one class, then more nodes
are required. This leads to the creation of a sequence of neurons {Mi}K

i=1, where the
last neuron MK separates some subset of training vectors without mistakes. Then the
following function:

M̄(x) =
{

+1 if 1
K ∑

K
i=1 Mi(x)− 1

2 > 0
−1 otherwise

(19)

is a partial classifier. In neural network function Eq. 19 is realized by group of
neurons Mi placed in the first hidden layer and connected to a threshold node M̄ in
the second hidden layer with weight equal to 1

K and bias 1
2 . This approach has been

implemented and the test results are reported below.

QPCNN Tests

Table 3 presents comparison of results of the nearest neighbor (1-NN), naive Bayes
classifier, support vector machine (SVM) with Gaussian kernel, the c3sep network
described in this article, and the constructive network based on the QPC index
(QPCNN). 9 datasets from the UCI repository [1] have been used in 10-fold cross-
validation to test generalization capabilities of these systems. For the SVM classifier
parameters γ and C have always been optimized using an inner 10-fold crossvalida-
tion procedure, and those that produced the lowest error have been used to learn the
model on the whole training data.

Most of these datasets are relatively simple and require networks with only a few
neurons in the hidden layer. Both the c3sep and the QPCNN networks achieve good
accuracy, in most cases comparable with 1-NN, Naive Bayes and SVM algorithms.
General constructive sequence learning in original formulation applied to QPCNN
may lead to overfitting. This effect have occurred for Glass and Pima-diabetes where
average size of created networks is higher than in the case of c3sep network, while
the average accuracy is lower. To overcome this problem proper stop criterion for
growing the network should be considered, e.g. by tracking test error changes esti-
mated on a validation subset.
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Table 3 Average classification accuracy for 10 fold crossvalidation test. Results are averaged
over 10 trials. For SVM average number of support vectors (#SV) and for neural networks
average number of neurons (#N) are reported.

dataset 1-NN N. Bayes SVM C3SEP QPCNN
acc. acc. acc. # SV acc. # N acc. # N

Appendicitis 81.3± 1.5 85.3± 1.0 86.5±0.3 32.1 85.3± 1.0 4.2 83.4± 1.0 4.0
Flag 50.1± 1.1 41.1± 1.1 51.1±1.1 315.2 53.6± 1.8 26.7 52.9± 2.8 10.7
Glass 76.9± 2.0 61.5± 1.1 78.9±2.0 80.3 70.5± 1.8 1.9 64.6± 2.7 12.1
Ionosphere 85.2± 1.2 82.2± 0.2 90.8±1.1 63.9 85.1± 1.5 7.9 81.3± 1.5 6.3
Iris 95.9± 0.5 94.9± 0.2 95.5±0.3 43.4 95.7± 1.0 5.0 95.3± 1.0 3.0
Pima-diabetes 70.5± 0.5 75.2± 0.5 70.3±1.0 365.3 76.3± 0.4 9.1 65.2± 0.4 13.1
Promoters 78.5± 1.8 85.8± 1.3 73.1±1.5 77.2 74.7± 5.6 3.7 78.8± 2.4 2.6
Sonar 86.8± 1.8 67.8± 1.2 84.2±1.1 109.7 77.9± 2.4 8.5 80.2± 2.4 5.1
Wine 95.1± 0.8 98.1± 0.3 95.1±0.2 63.3 97.1± 0.8 4.0 97.4± 0.8 3.0

4 Discussion and Conclusions

The big challenge facing computational intelligence is to discover correct bias for a
given data, creating a simple but accurate models [4]. Many datasets, such as those
arising from the natural language processing and problems in bioinformatics, may
have an inherent complex logics that we are unable to decipher. This challenge has
not yet been met by the existing systems and may require a tailor-made methods
for a given data that may be created by meta-learning [6, 4]. Neural networks and
kernel classifiers are universal approximators and thus they may learn any problem
creating a highly complex solution. However, this leads to a poor generalization,
because the correct underlying model that represents data cannot be discovered.

Each learning procedure is based on some guiding principles. Minimization of er-
ror rarely leads to the discovery of the simplest data models and thus cannot be the
only basis for optimal learning systems. Linear separability is also not the best goal
for learning. In many cases k-separable solutions are much simpler to achieve, leav-
ing non-separable clusters that are easily handled. They may be treated as strongly
regularized (all prototypes on a single line) nearest prototype models. The QPC in-
dex provides one way to find k-separable projections. It allows to solve problems
that go well beyond capabilities of standard neural networks, such as the classifi-
cation of Boolean functions in high-dimensional cases. It also enables visualization
of data in one or more dimensions, allowing for estimation of reliability of classi-
fication for individual cases. It will also be useful for dimensionality reduction and
feature selection.

The c3sep and QPCNN networks presented in this article are also designed
to deal with complex data using a very simple model. The c3sep approach tries
to find a simplification of the k-separable projection, with each node designed to
discriminate a single large cluster. This is done using the error function with ad-
ditional penalty and reward terms, showing many advantages when dealing with
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complex logical problems. This network is able to discover simple models for diffi-
cult Boolean functions and works also well for real benchmark problems.

Many other variants of the constructive networks based on the guiding princi-
ples that may be implemented using projection pursuit indices are possible. From
Fig. 5 it is evident that an optimal model should use transformations that discover
important features, followed in the reduced space by a specific approach, depending
on the character of a given data. The class of PP networks is quite broad. One can
implement various transformations in the hidden layer, explicitly creating hidden
representations that are used as new inputs for further network layers, or used for
initialization of standard networks. Brains are capable of deep learning, with many
specific transformations that lead from simple contour detection to final invariant
object recognition. Studying linear and non-linear projection pursuit networks will
be most fruitful in combination with the meta-learning techniques, searching for the
simplest data models in the low-dimensional spaces after initial PP transformation.
This approach should bring us a bit closer to the powerful methods required for deep
learning and for discovering hidden knowledge in complex data.
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On Constructing Threshold Networks for
Pattern Classification

Martin Anthony

Abstract. This paper describes a method of constructing one-hidden layer feedfor-
ward linear threshold networks to represent Boolean functions (or partially-defined
Boolean functions). The first step in the construction is sequential linear separation,
a technique that has been used by a number of researchers [7, 11, 2]. Next, from a
suitable sequence of linear separations, a threshold network is formed. The method
described here results in a threshold network with one hidden layer. We compare
this approach to the standard approach based on a Boolean function’s disjunctive
normal form and to other approaches based on sequential linear separation [7, 11].

1 Introduction

It is well known that any Boolean function can be represented by a feedforward
linear threshold network with one hidden layer. The simplest way to see this is
via the disjunctive normal form representation of the function (see later). Here, we
discuss an alternative way of representing Boolean functions (or partially-defined
Boolean functions, by which we mean restrictions Boolean functions to a specified
domain). This alternative approach arises from considering a fairly natural way of
classifying points by iterative or sequential linear separation.

The problem considered, to be more precise, is the following. Given disjoint sub-
sets T and F of {0,1}n, for some natural number n, we want to produce a feed-
forward linear threshold network whose output is 1 if its input is in T , and whose
output is 0 if its output is in F . We refer to the pair (T,F) as a partially-defined
Boolean function (pdBf), and if T ∪F = {0,1}n, then the partially-defined Boolean
function is simply a Boolean function (since its value is defined for all elements of
{0,1}n). The set T is called the set of true points, or those labelled 1; and the set
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F is the set of false points, labelled with 0. We focus on two-class classification
problems in the Boolean domain, but much of what we say can be generalised to
deal with multi-class classification, or classification on more general domains (such
as the whole of Rn) [2].

We start by describing what we call the ‘standard’ approach, which is based on
a disjunctive normal form representation of the Boolean function (or of a Boolean
function that is consistent with a partially-defined Boolean function). Then we de-
scribe an approach in which we first find a threshold decision list that represents
the pdBf (T,F) and, from this threshold decision list, produces a threshold network.
We compare our method with other approaches. The threshold networks we pro-
duce have a single hidden layer of units, as do those resulting from the standard
approach, but we show that there can be some advantages in the method we discuss
here. Some previous work [7, 11, 12] also involved sequential linear separation, but
resulted in networks with a different structure, in which there were many single-unit
hidden layers, with connectivity between them.

2 Simple Threshold Networks Representing Boolean Functions:
The Standard Approach

There is a very straightforward way in which to represent partially-defined Boolean
functions by threshold networks having one hidden layer of units. This is based on
the existence, for each Boolean function, of a disjunctive normal form for the func-
tion. We first briefly review key ideas on threshold networks and Boolean functions.

2.1 Threshold Functions and Threshold Networks

A function t : {0,1}n → {0,1} is a (Boolean) threshold function if there are w ∈ R
n

and θ ∈ R such that

t(x) =
{

1 if 〈w,x〉 ≥ θ
0 if 〈w,x〉 < θ ,

where 〈w,x〉 is the standard inner product of w and x. Thus, t(x) = sgn(〈w,x〉−θ ),
where sgn(z) = 1 if z ≥ 0 and sgn(z) = 0 if z < 0. Given such w and θ , we say that t
is represented by [w,θ ] and we write t ← [w,θ ]. The vector w is known as the weight
vector, and θ is known as the threshold.

A threshold network is formed when combine together threshold units, each of
which computes a threshold function. More precisely, we have a directed graph,
at each vertex of which is a ‘unit’, and with the arcs of the digraph representing
the flows of signals between units. Some of the units are termed input units: these
receive signals not from other units, but have their signals applied from outside. In
our case, there will be n input units, each of which receives 0 or 1 as an input. In
this situation, the set of all input patterns, or just ‘inputs’, is {0,1}n. Units that do
not transmit signals to other units are termed output units. We will be interested in
networks with one output unit. The network is said to be a feed-forward network
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if the underlying directed graph is acyclic (that is, it has no directed cycles). This
feed-forward condition means that the units (both the input units and the threshold
units) can be labeled with integers in such a way that if there is a connection from
the unit labeled i to the unit labeled j then i < j. In any feed-forward network, the
units may be grouped into layers, labeled 0,1,2, . . . , �, in such a way that the input
units form layer 0, these feed into the threshold units, and if there is a connection
from a threshold unit in layer r to a threshold unit in layer s, then we must have
s > r. Note, in particular, that there are no connections between any two units in a
given layer. The ‘top’ layer consists of output units. The layers that are not inputs or
outputs are called hidden layers.

We will be primarily interested in linear threshold networks having just one hid-
den layer, and it is useful to give an explicit description in this case of the function-
ality of the network. Such a network will consist of n inputs and some number, k,
of threshold units in a single hidden layer, together with one output threshold unit.
Each threshold unit computes a threshold function of the n inputs. The (binary-
valued) outputs of these hidden nodes are then used as the inputs to the output node,
which calculates a threshold function of these. Thus, the threshold network com-
putes a threshold function of the outputs of the k threshold functions computed by
the hidden nodes. If the threshold function computed by the output node is described
by weight vector β ∈ Rk and threshold φ , and the threshold function computed by
hidden node i is fi ← [w(i),θ (i)], then the threshold network as a whole computes
the function f : {0,1}n → {0,1} given by

f (y) = 1 ⇐⇒
k

∑
i=1

βi fi(y) ≥ φ ;

that is,

f (y1y2 . . .yn) = sgn

(
k

∑
i=1

βi sgn

(
n

∑
j=1

w(i)
j y j −θ (i)

)
−φ
)

,

where sgn(x) = 1 if x ≥ 0 and sgn(x) = 0 if x < 0. The state of the network is the
(concatenated) vector

ω = (w(1),θ (1),w(2),θ (2), . . . ,w(k),θ (k),β ,φ) ∈ R
nk+2k+1.

A fixed network architecture of this type (that is, fixing n and k), computes a param-
eterised set of functions { fω : ω ∈ Rnk+2k+1}. In state ω , the network computes the
function fω : {0,1}n → {0,1}.

2.2 Boolean Functions and DNF Representations

Any Boolean function can be expressed by a disjunctive normal formula (or DNF),
using literals u1,u2, . . . ,un, ū1, . . . , ūn, where the ūi are known as negated literals. A
disjunctive normal formula is one of the form
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T1 ∨T2 ∨·· ·∨Tk,

where each Tl is a term of the form

Tl =

(∧
i∈P

ui

)∧(∧
j∈N

ū j

)
,

for some disjoint subsets P,N of {1,2, . . . ,n}.
Given a disjunctive normal form for a Boolean function, there may be a number

of ways of simplifying it. For two Boolean functions f and g, we write f ≤ g if
f (x) ≤ g(x) for all x; that is, if f (x) = 1 implies g(x) = 1. Similarly, for two Boolean
formulae φ ,ψ , we shall write φ ≤ ψ if, when f and g are the functions represented
by φ and ψ , then f ≤ g. A term T of a DNF is said to absorb another term T ′ if
T ′ ≤ T . For example, T = ū1u4 absorbs the term T ′ = ū1u3u4. That is, whenever T ′

is true, so is T . This means, for example, that the formula

ū1u4 ∨u1u2ū3 ∨ ū1u3u4

is equivalent to ū1u4 ∨ u1u2ū3. A term T is an implicant of f if T ≤ f ; in other
words, if T true implies f true. The terms in any DNF representation of a function f
are implicants of f . The most important type of implicants are the prime implicants.
These are implicants with the additional property that there is no other implicant of
f absorbing T . Thus, a term is a prime implicant of f if it is an implicant, and the
deletion of any literal from T results in a non-implicant T ′ of f (meaning that there
is some x such that T ′(x) = 1 but f (x) = 0). If we form the disjunction of all prime
implicants of f , we have a particularly important DNF representation of f .

2.3 From DNF to Threshold Network

Suppose that (T,F) is a partially-defined Boolean function and that the Boolean
function f is some ‘extension’ of (T,F), meaning that f (x) = 1 for x ∈ T and f (x) =
0 for x ∈ F . Let φ be a DNF formula for f . Suppose φ = T1 ∨ T2 ∨ ·· · ∨ Tk, where
each Ti is a term of the form Ti =

(∧
j∈Pi

u j
)∧(∧

j∈Ni
ū j
)
, for some disjoint subsets

Pi,Ni of {1,2, . . . ,n}. We form a network with k hidden units, one corresponding to
each term of the DNF. Labelling these threshold units 1,2, . . . ,k, we set the weight
vector w(i) from the inputs to hidden threshold unit i to correspond directly to Ti, in

the sense that w(i)
j = 1 if j ∈ Pi, w(i)

j = −1 if j ∈ Ni, and w(i)
j = 0 otherwise. We take

the threshold θ (i) on hidden unit i to be |Pi|. We set the weight on the connection
between each hidden threshold unit and the output unit to be 1, and the threshold
on the output unit to be 1/2. That is, we set β to be the all-1 vector of dimension
k, and set the threshold φ to be 1/2. It is clear that hidden threshold unit i outputs 1
on input x precisely when x satisfies the term Ti, and that the output unit computes
the ‘or’ of all the outputs of the hidden units. Thus, the output of the network is the
disjunction of the terms Ti, and hence equals f .
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Note that this does not describe a unique threshold network representing the pdBf
(T,F), for there may be many choices of extension function f and, given f , there
may be many possible choices of DNF for f . In the case in which T ∪F = {0,1}n,
so that the function is fully defined, we could, for the sake of definiteness, use the
particular DNF formula described above, the disjunction of all ‘prime implicants’.

In general, a simple counting argument establishes that, whatever method is be-
ing used to represent Boolean functions by threshold networks, for most Boolean
functions a high number of units will be required in the resulting network. Explic-
itly, suppose we have an n-input threshold network with one output and one hidden
layer comprising k threshold units. Then, since the number of threshold functions is
at most 2n2

(see [1, 3], for instance), the network computes no more than (2n2
)k+1

different Boolean functions, this being an upper bound on the number of possible
mappings from the input set {0,1}n to the vector of outputs of all the k+1 threshold
units. This bound, 2n2(k+1) is, for any fixed k, a tiny proportion of all the 22n

Boolean
functions and, to be comparable, we need k = Ω(2n/n2). (This is a very quick and
easy observation. For more detailed bounds on the sizes of threshold networks re-
quired to compute general and specific Boolean functions, see [10], for instance.)

It is easy to give an explicit example of a function for which this standard method
produces an exponentially large threshold network. The parity function f on {0,1}n

is given by f (x) = 1 if and only if x has an odd number of ones. It is well known that
any DNF formula φ for f must have 2n−1 terms. To see this, note first that each term
of φ must have degree n. For, suppose some term Ti contained fewer than n literals,
and that neither u j nor ū j were present in Ti. Then there are x,y ∈ {0,1}n which are
true points of Ti, but which differ only in position j. Then, since Ti is a term in the
DNF representation of the parity function f , we would have f (x) = f (y) = 1. But
this cannot be: one of x,y will have an odd number of entries equal to 1, and one
will have an even number of such entries. It follows that each term must contain n
literals, in which case each term has only one true point, and so we must have 2n−1

distinct terms, one for each true point. It follows that the resulting network has 2n−1

threshold units in the hidden layer.

3 Decision Lists and Threshold Decision Lists

We now present a different approach to the problem of finding a threshold network
representation of a partially-defined Boolean function. To explain this, we first dis-
cuss decision lists and threshold decision lists.

3.1 Decision Lists

We start by describing decision lists, introduced by Rivest [9]. Suppose that G is any
set of Boolean functions. A function f : {0,1}n → {0,1} is said to be a decision list
based on G if for some positive integer r, there are functions f1, f2, . . . , fr ∈ G and
bits c1,c2, . . . ,cr ∈ {0,1} such that f acts as follows. Given an example y, we first
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evaluate f1(y). If f1(y) = 1, we assign the value c1 to f (y); if not, we evaluate f2(y),
and if f2(y) = 1 we set f (y) = c2, otherwise we evaluate f3(y), and so on. If y fails
to satisfy any fi then f (y) is given the default value 0. The evaluation of a decision
list f can therefore be thought of as a sequence of ‘if then else’ commands,
as follows:
if f1(y) = 1 then set f (y) = c1

else if f2(y) = 1 then set f (y) = c2

. . .

. . .
else if fr(y) = 1 then set f (y) = cr

else set f (y)= 0.
We define DL(G), the class of decision lists based on G, to be the set of finite

sequences
f = ( f1,c1), ( f2,c2), . . . , ( fr ,cr)

such that fi ∈ G, ci ∈ {0,1} for 1 ≤ i ≤ r. The values of f are defined by f (y) = c j

where j = min{i : fi(y) = 1}, or 0 if there are no j such that f j(y) = 1. We call each
f j a test (or, following Krause [6], a query) and the pair ( f j,c j) is called a term of
the decision list.

3.2 Threshold Functions and Threshold Decision Lists

We now consider the class of decision lists in which the tests are threshold functions.
We shall call such decision lists threshold decision lists, but they have also been
called neural decision lists [7] and linear decision lists [13]. Formally, a threshold
decision list

f = ( f1,c1),( f2,c2), . . . ,( fr,cr)

has each fi : Rn → {0,1} of the form fi(x) = sgn(〈wi,x〉−θi) for some wi ∈ Rn and
θi ∈ R. The value of f on y ∈ Rn is f (y) = c j if j = min{i : fi(y) = 1} exists, or 0
otherwise (that is, if there are no j such that f j(y) = 1).

3.3 A Geometrical Interpretation: Iterative Linear Separation

Threshold decision lists are, in fact, quite a natural way in which to classify points,
and a useful geometrical motivation can be given. Suppose we are given a partially-
defined Boolean function (T,F). We can use a hyperplane to separate off a set of
points all having the same classification label (that is, all of which are from T , or all
of which are from F). At least one point can always be separated off in this way. For,
given any x ∈ {0,1}n, x and {0,1}n \{x} are linearly separable. To see this, we can
suppose, without any loss of generality, that x is the origin. Then the hyperplane with
equation ∑n

i=1 xi = 1/2 achieves the required separation. (Note that this argument is
contingent on the geometry of {0,1}n. For more general subsets of Rn, some addi-
tional properties, such as general position, would need to hold to make the argument
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work.) The points that have been ‘chopped off’ can then be removed from consider-
ation and the procedure iterated until no points remain. In general, we would hope
to be able to separate off more than one point at each stage, but the argument given
above establishes that, at each stage, at least one point can indeed be ‘chopped off’,
so since the set of points is finite, the procedure does indeed terminate.

We may regard the chopping procedure as a means of constructing a threshold
decision list consistent with the data set. If, at stage i of the procedure, the hyper-
plane with equation ∑n

i=1αiyi = θ chops off points all having label j, with these
points in the half-space with equation ∑n

i=1αiyi ≥ θ , then we take as the ith term
of the threshold decision list the pair ( fi, j), where fi ← [α,θ ]. Therefore, given
any partially-defined Boolean function (T,F), there will always be some threshold
decision list representing the pdBf.

3.4 A Related Approach

This sequential linear separation, or ‘chopping’, procedure is similar to one em-
ployed by Jeroslow [5], but at each stage in his procedure, only examples from T
may be ‘chopped off’ (and one cannot choose instead to chop off a subset of points
from F).

Note that if the ‘chopping’ method of constructing a threshold decision list is
applied to the sequence of hyperplanes resulting from the Jeroslow method, a re-
stricted form of decision list results, namely one in which all terms are of the form
( fi,1). But such a decision list is quite simply the disjunction f1 ∨ f2 ∨ ·· · . For
Boolean functions, the problem of decomposing a function into the disjunction of
threshold functions has been given substantial consideration by Hammer et al. [4]
and Zuev and Lipkin [14]. Hammer et al. defined the threshold number of a Boolean
function to be the minimum s such that f is a disjunction of s threshold functions,
and they showed that there is an increasing function with threshold number

( n
n/2

)
/n.

(A function is increasing if, when f (x) = 1 and xi = 0, then f (x+ei) = 1 too, where
ei is the unit basis vector with ith entry equal to 1 and all other entries equal to
0.) Zuev and Lipkin showed that almost all increasing functions have this order of
threshold number, and that almost all Boolean functions have a threshold number
that is Ω(2n/2) and O(2n lnn/n).

We give an example for illustration, which demonstrates the advantages to be
gained by the threshold decision list approach over the Jeroslow approach.

Example: Consider again the parity function f on {0,1}n, given by f (x) = 1 if
and only if x has an odd number of ones. We first find a hyperplane such that all
points on one side of the plane are either positive or negative. It is clear that all we
can do at this first stage is chop off one of the points since the nearest neighbours
of any given point have the opposite classification. Let us suppose that we decide
to chop off the origin. We may take as the first hyperplane the plane with equation
y1 +y2+ · · ·+yn = 1/2. We then ignore the origin and consider the remaining points.
We can next chop off all neighbours of the origin, all the points which have precisely
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one entry equal to 1. All of these are positive points and the hyperplane y1 + y2 +
· · ·+yn = 3/2 will separate them from the other points. These points are then deleted
from consideration. We can continue in this way. The procedure iterates n times,
and at stage i in the procedure we ‘chop off’ all data points having precisely (i− 1)
ones, by using the hyperplane y1 + y2 + · · · + yn = i − 1/2, for example. (These
hyperplanes are in fact all parallel, but this is not in general possible.) So we can
represent the parity function by a threshold decision list with n terms. By contrast,
Jeroslow’s method requires 2n−1 iterations, since at each stage it can only ‘chop
off’ one positive point: that is, it produces a disjunction of threshold functions (or a
special type of threshold decision list) with an exponential number of terms.

3.5 Algorithmics

The chopping procedure as we have described it is in some ways merely a device to
help us see that threshold decision lists have a fairly natural geometric interpretation.
But the algorithmic practicalities have been investigated by Marchand et al. [7, 8]
and Tajine and Elizondo [11]. Marchand et al. derive a greedy heuristic for con-
structing a sequence of ‘chops’, where the aim is to separate as large a set (all of
the same class) as possible at each stage. This relies on an incremental heuristic for
the NP-hard problem of finding at each stage a hyperplane that chops off as many
remaining points as possible. Tajine and Elizondo consider batch and incremental
and modular algorithms and also focus on greedy strategies.

4 Threshold Networks from Threshold Decision Lists

4.1 From a Threshold Decision List to a Threshold Network with
One Hidden Layer

We now show how we can make use of the chopping procedure to find a threshold
network representing a given Boolean function by giving an explicit way in which
a threshold decision list can be represented by a threshold network with one hidden
layer.

Theorem 1. Suppose we have a threshold decision list

f = ( f1,c1),( f2,c2), . . . ,( fk,ck)

in which fi is represented by weight vector w(i) and threshold θ (i), so that fi ←
[w(i),θ (i)]. Consider a threshold network architecture having n inputs, k threshold
units in a single hidden layer, and one output. Let ω be the state given as follows:

ω = (w(1),θ (1),w(2),θ (2), . . . ,w(k),θ (k),β ,1),

where
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β = (2k−1(2c1 − 1),2k−2(2c2 − 1), . . . ,2(2ck−1 − 1),(2ck − 1));

that is, βi = 2k−i(2ci − 1). Then fω , the function computed by the network in state
ω , equals f .

Proof: We prove the result by induction on k, the length of the decision list (and
number of hidden threshold units in the network).

The base case is k = 1. Since the default output of any decision list is 0, we may
assume that f takes the form f = ( f1,1) where f1 ← [w,θ ] for some w ∈ Rn and
θ ∈ R. Then, β is the single number 21−1(2c1 − 1) = 1 and φ = 1. So

fω(y1y2 . . .yn)= sgn

(
sgn

(
n

∑
j=1

w(i)
j y j −θ (i)

)
−1

)
= sgn

(
n

∑
j=1

w(i)
j y j −θ (i)

)
= f1(y1y2 . . .yn),

so fω = f1 = f .
Now suppose that the result is true for threshold decision lists of length k, where

k ≥ 1. Consider a threshold decision list

f = ( f1,c1),( f2,c2), . . . ,( fk,ck),( fk+1,ck+1).

Let g denote the threshold decision list

g = ( f2,c2), . . . ,( fk,ck),( fk+1,ck+1).

Then, the inductive assumption implies that, for all y,

g(y) = sgn

(
k

∑
i=1

2k−i(2ci+1 − 1) fi+1(y)− 1

)
= sgn(G(y))),

say. What we need to prove is that for all y,

f (y) = sgn(F(y)),

where

F(y) =
k+1

∑
i=1

2k+1−i(2ci − 1) fi(y)− 1.

Now,

F(y) = 2k(2c1 − 1) f1(y)+
k+1

∑
i=2

2k+1−i(2ci − 1) fi(y)− 1

= 2k(2c1 − 1) f1(y)+
k

∑
i=1

2k−i(2ci+1 − 1) fi+1(y)− 1

= 2k(2c1 − 1) f1(y)+ G(y).
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Now, suppose f1(y) = 0. In this case, by the way in which decision lists are
defined to operate, we should have f (y) = g(y). This is indeed the case, since

sgn(F(y)) = sgn(2k(2c1 − 1) f1(y)+ G(y)) = sgn(0 + G(y)) = sgn(G(y)) = g(y).

Suppose now that f1(y) = 1. In this case we have f (y) = c1 and so we need to verify

that sgn(F(y)) = c1. We have

(2c1 − 1)F(y) = 2k(2c1 − 1)2 f1(y)+ (2c1 − 1)G(y)

= 2k +(2c1 − 1)
k

∑
i=1

2k−i(2ci+1 − 1) fi+1(y)− 1

≥ 2k −
k

∑
i=1

2k−i − 1

= 2k − (2k − 1)− 1

= 0.

That is, (2c1 − 1)F(y) ≥ 0, so sgn(F(y)) = sgn(2c1 − 1) = c1. This completes the
proof.

4.2 Using Other Types of Threshold Network

Marchand et al. [7, 8] and Tajine and Elizondo [11] have also studied the construc-
tion of threshold networks through a consideration of how the points to be classi-
fied can be separated iteratively by hyperplanes. However, the threshold networks
arising in [7] and (from the batch algorithm) in [11], have different architectures to
those constructed above, in that there are connections between hidden units (making
the networks have more than one layer). By contrast, like the standard representa-
tion based on DNF, our construction gives a network with only one hidden layer. A
characteristic feature of decision lists which must be captured by the corresponding
threshold networks is the ‘if-then-else’ nature of their definition: there is a prece-
dence or hierarchy among the tests. The first test is conducted and, if passed, the
output is determined. Only if the first test is failed, do we move on to the next test.
In the construction of Theorem 1, the precedence structure is encoded into the net-
work by the exponentially-decreasing weights in the β -vector: the output if the first
hidden unit is weighted twice as much as that of the second, and so on. In [7, 11],
the precedence structure is built in with lateral connections between hidden units.
For instance, in [7], the network constructed has a ‘cascade’ structure: the hidden
threshold units are labelled 1 to k and there are connections between unit i and unit j
for all j < i. The weights on these connections are large enough to enable the output
of unit i to dominate (or inhibit) that of unit j.
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5 Comparison with an Approach Based on Disjunctive Normal
Form

5.1 Comparing the DNF-Based Approach and the Threshold
Decision List Approach

The parity function demonstrates that the representation arising from Theorem 1 can
differ considerably from the one described earlier. For, we have seen that the parity
function can be represented by a threshold decision list with n terms, and hence the
network given by Thoerem 1 has only n hidden units. By contrast, as noted earlier,
the standard DNF-based construction will, necessarily, have at least 2n−1 hidden
units.

A useful observation in comparing the two approaches is the following: if T is
any term of a DNF formula, then T can be represented by a threshold function.
This is quite easy to see and, indeed, is implicit in our description of the standard
construction of a network from a DNF. For, suppose that

T =

(∧
j∈P

u j

)∧(∧
j∈N

ū j

)
,

where P ∩N = /0. Then T ← [w, |P|] where wj = 1 if j ∈ P, wj = −1 if j ∈ N, and
wj = 0 otherwise. So if φ = T1 ∨T2 ∨·· ·∨Tk is a DNF representation of the function
f , then f is also represented by the threshold decision list

(T1,1),(T2,1), . . . ,(Tk,1).

Applying Theorem 1 now to this threshold decision list would give a threshold net-
work representing f . That network would have exactly the same structure as the one
obtained by using the standard DNF-based method, using DNF formula φ . (How-
ever, the weights from the hidden layer to the output would be different, with expo-
nentially decreasing, rather than constant, values.) What this demonstrates is that, in
particular, there is always a threshold decision list representation whose length is no
more than that of any given DNF representation of the function. There may, as in the
case of parity, be a significantly shorter threshold decision list. So the decision list
approach (and application of Theorem 1) will, for any function (or partially-defined
function), in the best case, give a network that is no larger than that obtained by the
standard method.

6 Conclusions

We have shown that a natural approach to data classification by successive linear
separation can be used to construct threshold networks of simple architecture to
represent Boolean or partially-defined Boolean functions. Such an approach differs
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from previous constructions which have also been based on iterative linear sepa-
ration, in that the networks constructed have only one hidden layer. Furthermore, it
can always produce a network that is no larger than that which follows from the stan-
dard translation from a Boolean function’s disjunctive normal form into a threshold
network.
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Self-Optimizing Neural Network 3

Adrian Horzyk

Abstract. This paper describes an efficient construction of a partially-connected
multilayer architecture and a computation of weight parameters of Self-Optimizing
Neural Network 3 (SONN-3) that can be used as a universal classifier for various
real, integer or binary input data, even for highly non-separable data. The SONN-3
consists of three types of neurons that play an important role in a process of ex-
traction and transformation of important features of input data in order to achieve
correct classification results. This method is able to collect and to appropriately re-
inforce values of the most important input features so that achieved generalization
results can compete with results achieved by other existing classification methods.
The most important aspect of this method is that it neither loses nor rounds off any
important values of input features during this computation and propagation of par-
tial results through a neural network, so the computed classification results are very
exact and accurate. All the most important features and their most distinguishing
ranges of values are effectively compressed and transformed into an appropriate
network architecture with weight values. The automatic construction process of this
method and all optimization algorithms are described here in detail. Classification
and generalization results are compared by means of some examples.

Keywords: Lossy binarization, data conversion, discrimination, architecture con-
struction and optimization, classification, compression of representation.

1 Introduction

Nowadays, various types of constructive neural networks and other incremental
learning algorithms play an increasingly important role in neural computations.
These algorithms usually provide an incremental method of building neural net-
works with reduced topologies for classification problems. Furthermore, this method
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produces a multilayer network architecture, which together with the weights, is de-
termined automatically by the introduced constructive algorithm. Another advantage
of these algorithms is that convergence is guaranteed by the method [1], [3],[4], [6],
[8], [13]. A growing amount of the current research in neural networks is oriented
towards this important topic. Providing constructive methods for building neural net-
works can potentially create more compact models which can easily be implemented
in hardware and used in various embedded systems.

There are many classification methods in the world today. Many of them need
to set up some training parameters, initialize network parameters or build an initial
network architecture before a training process can be initiated. Some of them suffer
from limitations in the input value ranges or from the curse of the dimensionality
problem [1], [8]. Some methods favour certain data values or treat data in a dif-
ferent way depending on the number of cases that represent classes [1], [3]. Not
many methods can automatically manage, reduce or simplify an input data space
and their training processes are sometimes unsuccessful when exposed to the influ-
ence of minor values of weakly differentiating input features. Moreover, the model
size (e.g. the architecture size) and the time necessary for training and evaluating
are also significant. Many neural methods compete for a better generalization us-
ing various training strategies and parameters, neuron functions, various quantities
of layers, neurons and interconnections [1], [3], [8], [13]. This paper confirms that
generalization potential is also hidden in suitable preprocessing of training data and
an appropriate covering of an input data space.

This paper describes constructive Self-Optimizing Neural Network 3 [4] that is
devoided of many of the limitations described above and thanks to the proposed for-
mulas for estimating of discrimination of input features it can build a suitable neural
network architecture and precisely compute weight values. This neural solution can
automatically reduce and simplify an input data space, specifically converting real
input vectors into bipolar binary vectors {−1;+1}, which can be used to aggregate
equal binary values into a compact neural model of training data. A human brain
works in a very similar way. It gathers data using sensors that are able to convert
various physical data from the surrounding world into some frequencies of binary
signals. Binary information is then used to perform the relevant computations until
actuators are activated and the information is transformed into physical reactions
[6], [10], [12]. It is very interesting that nature has also chosen binary signals to
carry out complex computations in our brains instead of real signals. The SONN-3
converts all real vectors into binary ones using the specialist algorithm (ADLBCA),
which cleverly transforms values of real input features into bipolar binary values
so that discrimination properties of real input data are not lost. It also automati-
cally rejects all useless values of real input features that have minor significance
for classification. All complex computations for discrimination of classes are car-
ried out on the bipolar binary values. Network outputs take the real values from
a continuous range [−1;+1] to emphasize degrees of similarity of input vector to
defined classes.
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There are a few algorithms that can also reduce or simplify input data space, e.g.
PCA, ICA, roughs sets, SSV trees [7], [9], [11], but they do not transform real inputs
into binary inputs, so it is not easy to compare their performance.

The SONN-3 performs many analyses on bipolar binary vectors to optimize a
neural network model. It aggregates the most discriminating and most frequent sim-
ilar values for various training cases, transforms them into an appropriate network
architecture and reinforces them in accordance with their discrimination proper-
ties, rejecting all useless features for classification and builds a classification model.
Thanks this ability, this method is devoided of the curse of the ddimensionality
problem.

The SONN-3 analytically computes a network architecture and weight values, so
it is also devoided of convergence problems. It always finds a solution that differ-
entiates all defined classes provided that training cases are not contradictory, e.g.
two or more cases from different classes can be differentiated neither by a single
value nor by their combinations. If training data are not contradictory, SONN-3 al-
ways produces a neural solution that always correctly classifies all training data. It
also generalizes well. This method does not memorize training data using a huge
number of network parameters but builds a very compact neural model (figs. 8, 9)
that represents only major ranges of values of real input features for all classes and
considers the discrimination of all training cases of different classes.

Chapter 2 describes construction elements and development of a network archi-
tecture of the SONN-3. Global Discrimination Coefficients used for optimization
processes of SONN-3 are introduced in chapter 3. Chapter 4 describes the construc-
tion of a Lossy Binarizing Subnetwork, which is an input subnetwork of a SONN-3
network. Chapter 5 combines the Lossy Binarizing Subnetwork with an Aggregation
Reinforcement Subnetwork that aggregates and performes lossless compression of
same values and appropriately reinforces inputs. Chapter 6 describes a Maximum
Selection Subnetwork that selects maximum outputs for each class and produces
an ultimate classification. Comparisons of various soft-computing methods can be
found in chapter 7.

2 The SONN-3 Architecture and Construction Elements

The SONN-3 consists of three subnetworks specializing in different tasks:
The first part of the SONN-3 is a single layer Lossy Binarizing Subnetwork

(LBS) (figs. 4, 7), consisting of Lossy Binarizing Neurons (LBNs) (fig. 1a), which
transform special ranges of real input values into binary ones. The ranges are com-
puted by the ADLBCA algorithm described in the fourth chapter of this paper. The
LBN layer is responsible for binarizing and emphasizing important ranges of real
input features that will be used to construct a neural model built using the most
differentiating features and their ranges of values.

The second subnetwork (Aggregation Reinforcement Subnetwork - ARS) (figs.
6, 7) takes bipolar binary outputs from the first subnetwork LBS. The ARS con-
sists of a number of layers and a number of neurons. The numbers of layers and



86 A. Horzyk

Fig. 1 Three types of SONN-3 neurons: (a) Lossy Binarizing Neuron (LBN) (b) Aggregation
Reinforcement Neuron (ARN), (c) Maximum Selection Neuron (MSN)

neurons are data dependent. If data are not very correlated - there is a small num-
ber of layers and vice versa. This subnetwork is responsible for extraction, counting
and aggregation of equal binary values of various cases and various classes and for
their appropriate reinforcement depending on their discrimination properties com-
puted after the Global Discrimination Coefficients (GDCs) (1) described in the third
chapter of this paper. The aggregation of equal binary values enables the SONN-3
to lossless compress equal binary values of training data and transform these val-
ues into single connections and a special architecture of Aggregation Reinforcement
Neurons (ARN) (fig. 1b). Each ARN represents a subset of training cases. Each one
is determined during the special data division process described in the fifth chapter
of this paper. The subset of training cases can consist of training cases of one or
of many classes. ARNs that represent training cases of more than a single class are
intermediate (hidden) neurons that do not produce their outputs for the next subnet-
work (MSS) but only for some other ARNs.

The third subnetwork (Maximum Selection Subnetwork - MSS) (fig. 7) consists
of a single layer of Maximum Selection Neurons (MSNs) (fig. 1c). Each defined
class is represented by a single MSN. Each MSN is responsible for the selection
of a maximum output value for the class it represents. The maximum output value
is taken from all outputs of all parentless ARNs that represent a subset of training
cases of a single class which is the same as a class for which MSN is created.

3 Global Discrimination Coefficients

The Global Discrimination Coefficients (GDCs) play the most significant role in all
optimization processes during network construction and the computation of weights.
The GDCs are computed for all LBS bipolar binary outputs (i.e. all ARS bipolar
binary inputs) computed for all training cases separately. They precisely determine
the discrimination ability of all LBS bipolar binary outputs (i.e. all ARS bipolar
binary inputs) and are insensitive to the differences in a number of training cases
that represent various defined classes thanks to the normalization factor Qm (1).
They can determine the representativeness of a given bipolar binary value for a
given class thanks to the quotients Pm

k /Qm or Nm
k /Qm (1). In other words, the more
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representative for a given class a given bipolar binary value +1 or −1 is the bigger
value has the quotients Pm

k /Qm or Nm
k /Qm respectively (1). The GDCs also include

the coefficient defining the differentiating ability of a given bipolar binary value for
a given class from other classes represented as the sum normalized by M − 1 in
equation 1. In other words, the more frequent a given bipolar binary value +1 or
−1 is in other classes the less discriminating is this value for a class of a considered
training case.

The GDCs (1) are computed for each k-th bipolar binary feature value vk for each
n-th raw training case vn of the m-th class Cm:

∀m∈{1,...,M}∀un∈Cm∀n∈{1,...Q}∀k∈{1,...K} :

dn
k+ =

⎧⎨
⎩

Pm
k

(M−1)·Qm ∑M
h=1∧h �=m

(
1 − Ph

k
Qh

)
i f f LB

k (vn
r ,R) > 0 ∧ vn ∈ Cm

0 i f f LB
k (vn

r ,R) < 0 ∧ vn ∈ Cm
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⎩

Nm
k

(M−1)·Qm ∑M
h=1∧h �=m

(
1 − Nh

k
Qh

)
i f f LB

k (vn
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0 i f f LB
k (vn

r ,R) > 0 ∧ vn ∈ Cm

(1)

where M denotes a number of defined classes in training data, Q is a number of
all training cases, R is a range for which binarized data take value +1 (6), K is a
number of bipolar binary inputs of the ARS (or a number of bipolar binary outputs
of the LBS), V is a set of real training data input vectors {v1,v2, ...,vn}, U is the set
of binary transformed training data input vectors {u1,R,u2,R, ...,un,R}, vn

k is the k-th
real input feature value for the n-th training case, un,R

r is the r-th bipolar binary input
feature value for the range R and for the n-th training case, the f LB

k is the function
computing an output value for an LBN and Pm

k , Nm
k , Qm are defined by the following

equations:

un,R
k = f LB

k (vn
r ,R) (2)

∀m∈{1,..,M} Qm =
∥∥∥{un,R ∈ U

⋂
Cm : n ∈ {1, ...Q}

}∥∥∥ (3)

∀m∈{1,...,M}∀k∈{1,...,K} : Pm
k = ∑

un,R
k ∈{u∈U∨Cm: f LB

k (vn
r )>0, n∈{1,...,Q}}

un,R
k (4)

∀m∈{1,...,M}∀k∈{1,...,K} : Nm
k = ∑

un,R
k ∈{u∈U∨Cm: f LB

k (vn
r )<0, n∈{1,...,Q}}

−un,R
k (5)

In order to compute GDCs, all training cases have to be available at the begin-
ning of a construction and training process. It is impossible to compute GDCs if
some parts of training cases are not available or when some parts of training cases
change during a construction or training process. If training data change or are sup-
plemented then GDCs have to be computed once again and a construction process of
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SONN-3 has to be repeated from the very beginning. This drawback is not very sig-
nificant because training data rarely change during a construction or training process
and even if this occurs a construction process of SONNs-3 is so quick that it can be
quickly repeated in order to build an improved solution based on a new architecture
and new values of weights.

GDCs allow SONN-3 to globally estimate the significance of each bipolar bi-
nary value computed for each real input feature value. The GDCs are the basis for
constructing an ARS architecture and computing the values of ARN weights.

4 Construction of a Lossy Binarizing Subnetwork

The Lossy Binarizing Subnetwork (LBS) is responsible for a suitable transforma-
tion of selected real values of input features into a set of special ranges R that that
differentiate classes very well. Next, values of input features inside these ranges are
transformed into the value +1 for each training case and into the value −1 otherwise
(6). The question is how to find these ranges optimally?

The presented algorithm starts its lossy binary conversion from an input data
analysis that takes into consideration the following goals:

• the lossy binary conversion ranges should be wide in order to cover important
parts of an input data space sufficiently and to achieve good generalization,

Fig. 2 The comparison of the simple smooth and ADLBCA transformations of real values
into binary ones for the Iris data from the ML Repository.
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• the number of lossy binary conversion ranges should be as minimal as possible
in order to simplify or even reduce the binary input data space and computational
cost of the classification method that will use it,

• the computed lossy binary conversion ranges should enable the ARS to discrim-
inate all training cases of all classes provided that TD are not contradictory,

• a discriminative property of lossy binary conversion ranges should be estimated
using statistical analysis of training data,

• the computational and memory costs of the method should be as low as possible.

The main goal of this algorithm is to find a possibly minimal set of discriminative
lossy binary conversion ranges (DLBCRs) for all real data input features and to con-
vert the values vt from these ranges R = [Lt

m;Pt
m] into the value +1 and other values

outside these ranges R = [Lt
m;Pt

m] into the value −1 (6). Moreover, an appropriate se-
lection of these ranges can predifferentiate and prediscriminate some training cases
and help the following subnetwork (e.g. ARS - described in the next chapter) ulti-
mately to discriminate them. Real input values from these ranges R are transformed
into bipolar binary values {+1;−1} using Lossy Binarizing Neurons (LBNs) (fig.
1a) that compute their outputs using equation (6). First, real data inputs have to be
sorted and indexed separately for each input feature. Figure 2 illustrates the sorted
Iris data after all input features. The heapsort algorithm should be used, which com-
putational cost is always O(nlogn). The stability of the sorting algorithm does not
matter for this method. After all input data features are sorted, the algorithm starts
to search for a minimal set of DLBCRs taking into account the following criteria:

1. The selected range should contain as many cases of the same class and as few
cases of different classes as possible,

2. The ranges containing cases of a smaller number of classes are preferred. The
best discriminative ranges contain cases from a single class.

3. The ranges can contain training cases from other classes only if they are discrim-
inated by other ranges.

f LB
k (vr,R) =

{
+1 Lk

m ≤ vr ≤ Pk
m where R = [Lk

m;Pk
m]

−1 otherwise
(6)

These criteria are important to satisfy the requirements mentioned at the begin-
ning of this paper, especially in view of good generalization properties. The algo-
rithm sorts and indexes training data after all input features separately and then looks
for optimal ranges R in the following way:

1. First, all training cases are marked as indiscriminated for all classes except the
classes they represent.

2. Next, all yet indiscriminated data cases for all input features are looked through
in the sorted order and a range containing a maximal number of training cases
and the minimum number of classes are sought. Each range is described by an
input feature and its range of values.

3. All yet indiscriminated cases for which the range was chosen are marked as dis-
criminated for all classes which this range does not contain.
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Sample 1 of class 1

Differentiated from classes:

YES YES

Class 1 Class 2 Class 3

Sample 2 of class 1 YES YES

Sample 3 of class 1 YES YES

Sample 50 of class 1 YES YES

Sample 1 of class 2 YES YES

Sample 2 of class 2 YES NO

Sample 3 of class 2 YES

Sample 50 of class 2 NO YES

Sample 1 of class 3 YES NO

Sample 2 of class 3 NO NO

Sample 3 of class 3 YES YES

Sample 50 of class 3 YES NO

...

...

...

...

...

...

Fig. 3 The exemplar tables of the discriminated classes for the Iris cases.

4. Next, all fully discriminated training cases for all input features are looked
through in order to remove their indexes from the sorted index tables.

5. Steps 2, 3 and 4 are repeated until all TD cases are discriminated from all other
classes (fig. 3) or there is no more range to consider.

6. If not all training cases are discriminated and no more ranges can be used to carry
out their discrimination, all the atomic ranges are chosen for all input features that
contain indiscriminated training cases and are added to the previously selected
ranges in steps 2, 3 and 4. The atomic ranges always contain a sequence of cases
of one class or they may represent a few classes but the range is narrowed to a
single value (fig. 2).

If step 6 occurs it means that some training cases are contradictory or they can be
differentiated later by a soft-computing algorithm (e.g. the ARS) that can combine
these ranges.

5 Construction of an Aggregation Reinforcement Subnetwork

The Aggregation Reinforcement Subnetwork (ARS) is a special kind of construc-
tive ontogenic partially connected multilayer neural network that is able to evalu-
ate input data from the range of [−1;+1]. The ARS is not trained, its architecture,
connections and weights can be automatically and very quickly constructed, set up
and computed using algorithms described in this chapter. This subnetwork neither
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Fig. 4 The LBS constructed for the Iris data with the specified lossy binarization ranges.

loses nor rounds off any important representative input values but aggregates them
and appropriately reinforces them. This algorithm lossless compresses input data
and makes it possible to join computations for the same values of input features.
It reinforces input features suitable to the values of Global Discrimination Coeffi-
cients (GDC) (1) computed for given data and described in the third chapter of this
paper. The ARS architecture is always constructed individually for each data set
and weights are precisely computed to reflect the discrimination and representative
property of any given data. The described ARS automatic configuration can be pro-
ceeded only for bipolar binary inputs {−1;+1}. The ARS construction algorithm
can automatically and very quickly find appropriate combinations of binary inputs
and automatically simplify or even reduce a bipolar binary input data space. The
ARS is placed in the middle part of the SONN-3 architecture (figs. 7,8,9).

Construction of an Aggregation Reinforcement Subnetwork (ARS) begins with
computation of GDCs (1) for all bipolar binarized inputs uk1 , ...,ukt achieved from
binary outputs (6) of the previous LBS described in the previous chapter. The ARS
consists of Aggregation Reinforcement Neurons (ARNs) (fig. 1b). These neurons
need bipolar binary inputs during their construction and adaptation process. They
aggregate inputs of various cases together (fig. 6) if they have the same values (with-
out losing or rounding off any values) and reinforce the values which best discrimi-
nate and best represent training cases in-between various classes. All reinforcement
factors and weights (9)-(10) are dependent on the appropriate values of Global Dis-
crimination Coefficients (1). The ARNs always produce their outputs in the range of
[−1;+1] and are interconnected to the other ARNs or Maximum Selection Neurons
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(MSNs) described in the next chapter. ARNs propagate the sum of discrimination
coefficient values of all previous connections to ARNs of the next layer (8) dur-
ing the ARS construction (8). In this way, proper reinforcement is appropriately
promoted and propagated through a network without a loss of information about
discrimination. The ARNs compute their outputs as an appropriately weighted sum
of their inputs (7). The ARNs are connected to a compact subset of bipolar binary
ARS inputs (LBS outputs) {uk1 , ...,ukt } and to a single ARN of a previous layer (if
it exists) in order to supplement its discrimination ability (fig. 7). The propagation
of information between ARNs never spoils discrimination properties of neurons of
previous layers because interneuron weights (9) are computed to keep the influence
of GDCs of all previous layers on a computation in the next layers (8).

xi = f AR
i (uks , ...,ukt ,xp) = w

xp
0 xp + ∑

j∈{ks,...,kt}
wxi

j u j (7)

where

d
ARp
0 =∑

j∈J
d j (8)

w
ARp
0 =

d
ARp
0

∑ j∈{ks,...,kt} d j
(9)

wARr
j =

⎧⎪⎨
⎪⎩

un,R
k d+

k
∑ j∈{ks ,...,kt} d j

i f un,R
k ≥ 0

un,R
k d−

k
∑ j∈{ks ,...,kt} d j

i f un,R
k < 0

(10)

After the GDCs (1) have been computed for all bipolar binary input features
of all training cases, it is determined which GDCs will be used as obligatory (fig.
5) to achieve the correct discrimination of all training cases. The goal is to find
a minimal subset of GDCs of the largest values that can do this. The larger GDC
value is the better discrimination property it represents. Besides obligatory GDCs
there are usually many other GDCs with large values that can have values equal
to values of the appropriate obligatory GDCs. The GDC with an equal value to the
obligatory one is called optional because it can sometimes be represented in the ARS
architecture without additional construction elements. All other not null values that
are established for the same input features as obligatory ones should be taken into
account when discriminating in order to achieve unambiguous discrimination and
classification. The determination of the obligatory and optional GDCs proceeds in
the following way:

For each training case find the GDCs which have the largest values that discrim-
inate it from other training cases of all other classes in the following way:

1. For each not obligatory GDC of this case compute a number of potentially dis-
criminable training cases of other classes from the indiscriminated cases list
and multiply it by the GDC value. This product determines how many training
cases can be discriminated using this GDC taking into account the discrimination
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property of this bipolar binary input. Only those cases can be discriminated that
have an opposite value of that binary input feature to the value of the appropriate
binary input of the ARS (e.g. −1 is opposite to +1, +1 is opposite to −1).

2. Choose a maximal value from the products computed for all not obligatory GDC
values.

3. Use this maximal value to discriminate a subset of training cases from the indis-
criminated cases list and remove all discriminated training cases from the indis-
criminated cases list. If the GDC value for the checked case is null (or its suitable
bipolar binary input feature value is the opposite of the bipolar binary input fea-
ture value of the given discriminated case) then its training case can be removed
from this list.

4. If not all training cases have been discriminated against the given training case
then return to step 2.

This algorithm is executed once for each training case and when it finishes all train-
ing cases are discriminated against all training cases from all other classes. This
guarantees 100% discrimination of all not contradictory training cases and is an
important part of the ARS optimization algorithms. Figure 5 presents the obliga-
tory and optional GDCs computed for the Iris data from MLRepository. The black
rectangles map the obligatory GDCs that have to be used to totally discriminate all
Iris training cases against all cases of all other classes. The dark grey rectangles
map the optional GDCs that can be without additional costs included in the ARS.
The light grey rectangles map the not null GDC values that have to be taken into

Fig. 5 The GDC characters computed for the lossy binarized Iris cases.
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account in order to achieve unambiguous discrimination and classification. The
white rectangles do not play an important role in classification and can be skipped.

ε j = S j(Cj − 1) (11)

After all GDCs of all training cases are classified as obligatory, optional, con-
sidered or irrelevant (fig. 5), the obligatory GDCs of various training cases can be
grouped together only if they have equal values for some bipolar binary input. The
obligatory and optional GDCs are grouped in such a way as to minimize a number
of network construction elements (a number of connections and a number of neu-
rons) that will represent them in the network simultaneously, without limiting exact
representation of the obligatory GDCs in this network. The obligatory and optional
GDCs that have equal values for the same input features and for different training
samples can be grouped together and represented using a single connection. Such
grouping and transformation efficiently lossless compress GDC information in the
neural network. So called Aggregation Effectiveness Coefficients (AECs) (11) are
used to count how many obligatory GDCs can be grouped and aggregated for each
obligatory GDC value and the cost of representation of the compressed obligatory
GDCs in the network is subtracted. The AECs are used to recursively divide bipo-
lary lossy binarized training cases U into subsets (e.g. {U1,U2,U3,U4,U5} for the
Iris data (fig. 6)) and to create ARNs for these subsets. The maximum value of the
AEC in each division step is transformed into an ARN. Each AEC can group many
different GDC values (fig. 6) if they are equal for all samples of each input feature
and occur for the same samples of various input features simultaneously. The vari-
ous GDC values are transformed into connections for the ARN created for a given
AEC (figs. 6, 7). The AECs also count numbers of saved connections that can be
omitted thanks to the aggregations found of GDCs. The AEC (11) is computed as a
product of a number of training cases Cj that have equal GDC values for each input
k minus one (because the equal GDC values are always represented by a single con-
nection - this is the cost of representation of the aggregated GDCs in the network)
and a number S j of different GDC values that are equal for the same subset found
of training cases for various inputs. After AECs are computed for all different GDC
values for all inputs, the maximal AEC value is chosen in order to use it to divide
the training cases U into two subsets: The first subset consists of the training cases
that the obligatory and optional GDC values are equal to and all obligatory GDC
values are determined in the maximal AEC. The second subset consists of other
training cases that do not belong to the first subset. The division of training cases is
demonstrated in fig. 6 for the Iris data. In each division step AECs are computed for
one of the divided subsets of training cases until all training cases in subsets belong
to single classes and all obligatory GDCs are represented in the ARS connections.

During the process of division of the transformed training cases (fig. 6), the con-
nections are established (fig. 7) and weights are computed (9), (10). The interneuron
weights (9) according to the sum (8) of all previously connected GDCs of bipolar
binary inputs appropriately reinforce an interneuron input value (fig. 7).
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Fig. 6 The division and construction process of the ARS for the Iris data.
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Fig. 7 The architecture of the SONN-3 constructed for the Iris data. The architecture includes
all the subnetworks: the LBS, the ARS and the MSS and all computed weights.

6 Construction of a Maximum Selection Subnetwork

The construction of a Maximum Selection Subnetwork (MSS) is carried out during
the construction of the ARS. Each subset Us of training cases (for which all obliga-
tory GDCs have been transformed to the connections) is not farther divided but the



Self-Optimizing Neural Network 3 97

Fig. 8 The SONN-3 architecture (11 LBNs, 14 ARNs, 2 MSNs, 61 connections, 5 layers)
automatically constructed for the Iris data.

appropriate ARN (created for the subset Us) is connected to a Maximum Selection
Neuron (MSN) (fig. 1c). This represents the class to which training cases of this
subset belong. All training cases of this last undividable subset always belong to a
single class.

ym = f MS
m (uks , ...,ukt ,xig , ...,xih) = max{ uks , ...,ukt ,xig , ...,xih} (12)

The MSNs compute the maximum of outputs of all ARNs that represent an undi-
vidable subset of training cases of a single class (12). The output value of the MSN
can be interpreted as the similarity of an input vector to a considered class. The in-
puts of MSNs are not weighted (fig. 7). If some MSN has a single input then this
MSNs can be reduced. Such situation can occur for some very correlated and easy
to discriminate classes of training cases (compare figs. 7 and 8). If some training
cases can be discriminated using a single bipolar binary input feature then the MSN
can even be connected to this input and a suitable ARN can be reduced (compare
figs. 7 and 8).

7 Experiments and Comparisons

The three subnetworks (the LBS, the ARS and the MSS) described in the previ-
ous sections constitute the SONN-3 (fig. 7) that can be used as a universal efficient
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Table 1 Comparison of the classification results for the Iris data.

Table 2 Comparison of the classification results for the Wine data.

classifier for various classification tasks, even to highly non-separable data [1], [8].
The SONN-3 can precisely adjust its architecture and weights to given training data
taking into consideration complexity and correlations of them. This adjustment abil-
ity of this network is similar to the plasticity processes [5] that take place in natural
nervous systems [10].

This chapter compares the classification performance of the SONN-3 with that
of other top classification soft-computing methods (tabs. 1-2). The Iris and Wine
data from the ML Repository are used to carry out comparisons. Figures 4-8 illus-
trate the topologies of the SONNs-3 constructed for the above-mentioned training
data. The Iris and Wine data from the ML Repository have been used to construct
various soft-computing models, i.e. SVM, IncNet, k-NN, FSM, SSV Tree, MLP,
RBF, PNN and SONN-3. The 4 dimensional Iris data consists of 150 training cases
and 3 classes. The 13 dimensional Wine data consists of 178 training cases and 3
classes. The GhostMiner 3.0 solvers and the Statistica NN automatic designer with
10-fold cross-validation have been used to find the best solutions for these soft-
computing methods. Moreover various configurations and parameters have been
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Fig. 9 The SONN-3 architecture (6 LBNs, 7 ARNs, 3 MSNs, 32 connections, 4 layers) au-
tomatically constructed for the Wine data.

tested. My own implementation of the SONN-3 has been used to verify assumptions
of this method and to construct the solutions (figs. 8-9). Tables 1-2 contain the best
results achieved for all tested soft-computing methods mentioned above.

The presented comparisons (tabs. 1-2) confirm that the SONN-3:

• creates very compact architectures,
• is constructed very quickly,
• always classifies all training cases correctly and unambiguously,
• automatically sets up all training parameters,
• achieves results which are competitive with other soft-computing methods,
• generalizes very well [4].

8 Conclusions

The paper deals with the fully automatic construction of the universal ontogenic
neural network classifier SONN-3, which is able to automatically adapt itself using
binary, integer or real input data without any limitations. It analyses and processes
training data very quickly and finds a compact SONN-3 architecture and weights for
any given training data set. It can also automatically simplify and reduce an input
data space which is very desirable in many practical situations. It is also devoided
of the curse of the dimensionality problem.

Moreover, not many soft-computing methods can automatically and effectively
select the most discriminative input, so classification results are often influenced by
minor or irrelevant parameters that can also spoil them and generalization properties
of an achieved soft-computing solution. The SONN-3 reduces original real inputs
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to a set of the best discriminating inputs and transforms them to bipolar binary ones
(figs. 4-8) used in further computations.

The comparison results (tabs. 1-2) show that the SONN-3 is not only very quick
and easy to use but it also achieves very good classification and generalization re-
sults in comparison with the other popular soft-computing classification methods
[4],[6]. Not many other algorithms for training neural networks can effectively com-
pute an architecture and all weights for all training cases using a global analysis of
them. Furthermore, the SONN-3 has many interesting features that can be com-
pared with biological neural networks and various neural processes in biological
brains [5].

The second main strength of the SONN-3 is that it uses two kinds of information
that is very useful for the discrimination: the existence and non-existence of some
input values for some classes. This kind of information is rarely used by other soft-
computing models. The majority of soft-computing models and methods are limited
to using only the information about the existence of some input values for some
classes. The SONN methodology expands these abilities and offers better possibili-
ties for a generalization.

The third strength of the SONN-3 is that it is able to construct a compact model
without either rounding off or losing any important values of input data. This makes
all computations very exact and accurate. Moreover, the SONN-3 can automati-
cally and very accurately estimate discrimination and representative properties of
the data. These estimations are used to group and aggregate the most important
values of input features in order to produce a compact classification model of any
given data using Global Discrimination Coefficients (1). Figures 8 and 9 show how
compact and consistent the architectures constructed by the SONN-3 algorithms
described in this paper can be.

The fourth strength of the SONN-3 is that it always builds a solution using the
most important, well-differentiating and well-discriminating features of all training
cases after the global analysis of training data. The SONN-3 also automatically
excludes data artifacts because it focuses on the most discriminative features, which
are not artifacts.

Finally, the SONN-3 is very quickly, cost-effective and fully automatic. On the
other hand, a computer implementation of this method is not easy because of the
huge number of optimization algorithms that gradually analyze training data, trans-
form them, develop a final neural network architecture and compute its weights. The
interactive website with the implemented SONN-3 algorithms will be published at
http://home.agh.edu.pl/˜horzyk soon.
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ICANN 2008,, Part II. LNCS, vol. 5164, pp. 803–811. Springer, Heidelberg (2008)



M-CLANN: Multiclass Concept
Lattice-Based Artificial Neural Network

Engelbert Mephu Nguifo1,3, Norbert Tsopze1,2, and Gilbert Tindo2

Abstract. Multilayer feedforward neural networks have been successfully
applied in different domains. Defining an interpretable architecture of a mul-
tilayer perceptron (MLP) for a given problem is still challenging. We propose
a novel approach based on concept lattices to automatically design a neural
network architecture. The designed architecture can then be trained with
the backpropagation algorithm. We report experimental results obtained on
different datasets, and then discuss our contribution as a means to provide
semantics to each neuron in order to build an interpretable neural network.

1 Introduction

A growing number of real world applications have been tackled with artificial
neural networks (ANNs). ANN is an adaptive system that changes its struc-
ture based on external or internal information that flows through the network
during the learning phase. ANNs offer a powerful and distributed computing
architecture, with significant learning abilities and they are able to represent
highly nonlinear and multivariable relationships. ANNs have been success-
fully applied to solve a variety of specific tasks (pattern recognition, function
approximation, clustering, feature extraction, optimization, pattern matching
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and associative memories) of importance to many applications [28, 39]. ANNs
are useful especially when data is plentiful and prior knowledge is limited.
Different ANN types have been reported in the literature, among which the
multilayer feed-forward network, also called multi-layer perceptron (MLP),
was the first and arguably simplest type of ANN devised, and is the main
concern of this chapter.

MLP networks trained using the backpropagation learning algorithm are
limited to search for a suitable set of weights in an apriori fixed network topol-
ogy. The selection of a network architecture for a specific problem has to be
done carefully. In fact there isn’t a fixed and efficient method for determining
the optimal network topology of a given problem. Too small networks are
unable to adequately learn the problem well while overly large networks tend
to overfit the training data and consequently result in poor generalization
performance. In practice, a variety of architectures are tried out and the one
that appears best suited to the given problem is picked. Such a trial-and-error
approach is not only computationally expensive but also does not guarantee
that the selected network architecture will be close to optimal or will gener-
alize well. An ad-hoc and simple manner deriving from this approach is to
use one hidden layer with a number of neurons equal to the average num-
ber of neurons in both input and output layers. In the literature, different
automatic approaches have been reported to dynamically build the network
topology. These works could be divided into two groups:

1- The first group uses prior knowledge (set of implicative rules) of the
application to derive the neural network topology [32]. The prior knowl-
edge is provided by an expert of the domain. The main advantage here
is that each node in the network represents one variable in the rule set
and each connection between two nodes represents one dependency be-
tween variables. The obtained neural network is a comprehensible ANN
since each node is semantically meaningful, and the ANN’s decision is not
viewed as deriving from a black-box system, but could easily be explain
using a subset of rules from the prior knowledge. The KBANN system
(Knowledge-Based ANN) [32] is an example of such an approach. But this
solution is limited while the prior knowledge is not available as might be
the case in practice.

2- The second group of techniques searches for an optimal network to min-
imize the number of units in the hidden layers [28, 34]. These techniques
bring out a dynamic solution to the ANN topology problem when a pri-
ori knowledge is not available. One technique suggests to construct the
model by incrementally adding hidden neurons or hidden layers to the
network until the obtained network becomes able to better classify the
training data set. Another technique is network pruning which begins by
training an oversized network and then eliminate weights and neurons
that are deemed redundant. An alternative approach consists of using
the linear separability [3] approach or the genetic approach [8] even if
the latter is computationally expensive. All these (incremental, pruning,
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genetic) techniques result to neural networks that can be seen as black
box systems, since no meaning is associated to each hidden neuron. Their
main limitation is the intelligibility of the resulting network (black-box
prediction is not satisfactory [1, 11]).

We propose here a novel solution, M-CLANN (Multi-class Concept Lattices-
based Artificial Neural Networks), to build a network topology where each
node has an associated semantic without using any prior knowledge. M-
CLANN is an extended version of the CLANN approach [35]. Both ap-
proaches uses formal concept analysis (FCA) theory to build a semi-lattice
from which the NN topology is derived and trained by error backpropagation.
The main difference between M-CLANN and CLANN are two-folds. First M-
CLANN can deal with multi-class classification problems, while CLANN is
limited to two-classes. Second, the derived topologies from the semi-lattice
are different in both systems.

Our proposed approach presents many advantages: (1) the generated ar-
chitecture is a multi-layer feed-forward network, such that the use of the
backpropagation algorithm is obvious; (2) each neuron has a semantic as it
corresponds to a formal concept in the semi-lattice, which is a way to jus-
tify the presence of a neuron; (3) each connection (between input neuron
and hidden neuron, and between neurons of different hidden layers) in the
derived ANN also has a semantic as it is associated to a link in the Hasse
diagram of the semi-lattice; (4) the knowledge for other systems (such as ex-
pert systems) could be extracted from the training data through the model;
(5) Experimental results have shown the efficiency of the approach compared
to other well-known techniques.

The rest of this chapter is organized as follows: the next section provides
an overview of some related works. Section three recalls some background
knowledge on formal concept analysis theory and supervised classification;
the fourth section describes our approach M-CLANN (Multiclass CLANN).
Experimental studies are reported in section five. Section six discusses the
soundness and efficiency of our approach.

2 Related Works

Research works about neural network architecture design could be divided
into two groups as mentioned above. The first group uses prior knowledge
to propose a MLP topology, while the second group searches for an optimal
topology minimizing the number of hidden neurons and layers.

2.1 Defining Neural Topology Using Prior Knowledge

An interesting framework is proposed in [32] to design the ANN topology
using the domain theory represented as a set of rules. The derived system
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KBANN (Knowledge Based Artificial Neural networks) [32] use a set of rules
represented as a set of Horn clauses. From these rules an items hierarchy is
defined and the architecture of the neural network is derived from this hierar-
chy. The hierarchy between items is defined using the following equivalences:

1. Final conclusions ⇔ output units;
2. Intermediate conclusions ⇔ internal units;
3. Hypothesis ⇔ input units;
4. Dependency between items ⇔ connection links.

The different steps of KBANN are as follows:

1. Rewriting. This step consists of writing the rules such that disjuncts are
expressed as a set of rules (each rule has only one antecedent).

2. Mapping. The hierarchy between items is defined and directly mapped to
the network.

3. Labeling. Each unit is numbered by its level.
4. Adding new hidden units. In order to make the network able to learn

derived features not specified in the initial rule set, it is advised to add
new units in the hidden layer.

5. Adding input units. Some relevant features which are referred to by the
initial rule set are added.

6. Adding links. Links are added to connect each unit numbered n − 1 to
each unit numbered n. The connection weights of these links are set to 0.

7. Perturbing. A small random number is added to each weight.
8. Initialization of connection weights and ANN training by error backprop-

agation.

The connection weights and the bias neurons are initialized as follows:

• w for the positive antecedents
• −w for the negated antecedents.
• The bias on the unit corresponding to the rules consequent to (p − 1/2)w

where p is the number of positive antecedents of the unit.

w is a positive number having 4 (empirically defined) as the default value.

Example 1. Figure 1 presents a simplified example of defining the neural
topology by KBANN approach. In the first column, are the initial rules which
are rewritten and presented in the second column. And the final network is
presented in the third column.

2.2 Defining Neural Topology without Prior
Knowledge

When the prior knowledge is unavailable, it is not possible to use KBANN. To
avoid this, there are reported methods that directly define the ANN topology
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A

A1
A2

B C E

D F G H

Initial rules set Rewritten rules Resulting neural network

A:-B
A:-C,E
B:-D,F,not H
C:-F,not G
E:-not F,G,H

A:-A1
A:-A2
A1:-B
A2:-C,E
B:-D,F,not H
C:-F,not G
E:-not F,G,H

positive connections

negative connections

added connections

Fig. 1 Example of ANN topology definition with KBANN.

from the data. These methods start with a small network and dynamically
grow the network by adding and training neurons as needed until better
classification is achieved. These methods can be divided into two subgroups:
those with many hidden layers [28] and those with only one hidden layer [38].

2.2.1 Many Hidden Layers

In [28] the authors provide a survey of these methods including MTiling,
MUpstart, and MTower. The new added neuron is trained using a vari-
ant of perceptron similar to the pocket perceptron with rachet modification
[15]. The process adds layers in the existing network until better classifica-
tion is achieved or the maximum number of layers (user specified value) is
attempted.

1. MTiling. It constructs a strictly layered network of threshold neurons.
Apart from the most top layer (which is also the output layer) which
receives inputs from the layer immediately bellow it and to the inputs
neurons, each layer receives input from the layer immediately bellow it.
Two kinds of neurons are distinguished: the master unit and the ancillary
neurons that are added and trained to ensure a faithful representation of
the training data. After training, some ancillary neurons could be pruned
to minimize the network structure.

2. MUpstart. The network is constructed as a binary tree. Two kinds of errors
are defined: wrongly off (output = 0 while the target = 1) and wrongly
on (output = 1 while the target = 0). In case of wrongly off (rep. on), one
left (resp. right) child neuron is added to the wrong neuron and trained
to correct this error.
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a b c d e f

C1 C2 C3 Output layer

Full connection

Master neuron

Ancillary neuron

Hidden layer

Hidden layer

Input layer

Fig. 2 Example of neural network topology definition by MTiling method.

3. MTower. The resulting network is like a tower. It successively adds new
layers in the network until better classification is achieved. The newly
added layer is fully connected to the input layer and to the output layer.
After connecting this layer, it becomes the new output layer.

Example 2. Figure 2 is an example of a network constructed by MTiling.

Recently an approach based on linear separability was introduced in [3] which
relies on barycentric correction procedure algorithm for training the individ-
ual threshold logic unit.

2.2.2 One Hidden Layer

The Distal method [38] belongs to this category. It builds a 3 layer neural
network. Each neuron of the input layer is linked to an attribute. Each neuron
of the output layer is associated to a predefined class. The process essentialy
consists of defining the hidden layer. Distal clusters training data in disjoint
subsets and represents each subset in the hidden layer by one neuron.

Example 3. Figure 3 presents a neural network defined by Distal. (a) is the
initial state of the network and (b) is the generated network.

There are also in the literature many works which help the user to optimize
[37] or prune networks by pruning some connections [23] or by selecting some
variables [5] among the entire set of initial variables, or by detecting and
filtering noisy examples [34]. These works do not propose an efficient method
to build neural network topology, but they can be classified in the second
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O1,O2,...,O10

C1 C2 C3 C1 C2 C3

(a) Initial state
(b) Final neural network

Full connection

Fig. 3 Example of neural network topology definition by Distal method.

group, since by reducing the number of input neurons, the number of neurons
in the hidden layer could also vary.

3 Background - Classification and Formal Concept
Analysis

In this section we recall what is supervised classification task, then define
basic notions of FCA, and finally presents constraints that can be used to
prune the concept lattice in supervised classification.

3.1 Classification

The classification task consists of labelling unknown patterns into a prede-
fined class. The classification process builds a model and trains it for making
this model able to affect the unseen patterns to one of the output classes.
Here, each known pattern is presented as a pair (x, y) where x is the vector
containing different values taken by the pattern on different attributes and y
is its class value represented by a particular attribute. The training data is
divided into two sets: the training set and the test set. The system operates
in two phases: the training phase consists in designing the model while the
second step evaluates the trained model.

For instance, in the data table 1, objects or patterns 1 to 6 can be asso-
ciated to the positive class (+), while patterns 7 to 10 can be associated to
the negative class (-).



110 E.M. Nguifo, N. Tsopze, and G. Tindo

The model evaluation (or test) consists of calculating its accuracy rate as
the ratio between the number of well classified patterns and the total number
of patterns. There are many techniques to determine accuracy rate among
which:

1. K-fold cross validation. The training data is divided into k disjoint subsets
and the model is trained and tested k times. At each iteration i, the
ith subset is used to test the model built and trained using the other
k − 1 subsets (all other subsets except ith subset). The accuracy rate is
calculated as the average of the different accuracy rates obtained at each
iteration. Empirically it is advised to take k = 10.

2. Leave-one-out is a variant of k-fold cross validation where k is to the
number of patterns on the training set.

3. Holdout. The training set is randomly separated into two disjoint subsets.
One of these subsets is used to build and train the model while the other
is used for test.

Classification as well as supervised learning are more detailed in [7, 20].

3.2 Formal Concept Analysis

Formal Concept Analysis (FCA) is a mathematical framework that models
the world as being composed of objects and attributes, describing an appli-
cation [40, 16].

Definition 1. A formal context is a triplet C = (O, A, I) where O is a
non empty finite set of objects, A is a non empty finite set of attributes (or
items) and I is a binary relation between O and A (formally I ⊆ O × A).

The formal context (binary) C could be represented as a binary matrix such
that Cij = 1 if the object represented in row i verifies the attribute repre-
sented in column j and 0 if not.

Example 4. Table 1 is an example of a binary formal context.
O = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} is the set of objects or patterns while A =
{a, b, c, d, e, f} is a set of attributes.

The fundamental intuition of FCA relies on the fact that a concept is repre-
sented by an intent and an extent.

Definition 2. Let f and g be two applications defined as follows:

• f : 2O −→ 2A, s.t. f(O1) = O′
1 = {a ∈ A / ∀o ∈ O1 , (o, a) ∈ I} ,

O1 ⊆ O;
• g : 2A −→ 2O, s.t. g(A1) = A′

1 = {o ∈ O / ∀a ∈ A1 , (o, a) ∈ I} ,
A1 ⊆ A;
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Table 1 Example of a formal context presented as boolean matrix.

O/A a b c d e f

1 1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1
5 1 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1
9 1 1 1
10 1 1 1

A pair (O1, A1) is called formal concept iff O1 = A′
1 and A1 = O′

1. O1

(resp. A1) is the extent (resp. intent) of the concept.

Example 5. From table 1, ({1, 2, 5, 6, 10}, {a, e}) is a formal concept where
{1, 2, 5, 6, 10} is the extent and {a, e} is the intent. While ({1, 2, 5}, {a, e}) is
not a formal concept since {1, 2, 5} is not the largest set for which each object
verifies all attributes of the set {a, e}.

Definition 3. Let L be the entire set of concepts extracted from the formal
context C and ≤ a relation defined as (O1, A1) ≤ (O2, A2) ⇒ (O1 ⊂ O2) (or
A1 ⊃ A2). The relation ≤ defines the order relation on L [16].

If (O1, A1) ≤ (O2, A2) is verified (without intermediate concept) then the
concept (O1, A1) is called the successor of the concept (O2, A2) and (O2, A2)
the predecessor of (O1, A1).

The Hasse diagram is the graphical representation of the relation succes-
sor/predecessor on the entire set L of concepts.

The fundamental theorem of FCA [40] states that the set of formal con-
cepts of a formal context forms a complete lattice, called a concept lattice.
A complete lattice is a partial order in which the greatest lower bound and
least upper bound of any subset of the elements in the lattice must exist.

FCA have shown to be useful in data mining for generating concise rep-
resentations of implicative rules [19] or association rules [2, 18], but also for
supervised classification [14]. More details on FCA could be found in [16, 4].

3.3 Constraints

In order to reduce the size of concept lattice and consequently the time com-
plexity, we introduce some constraints regularly used to select concepts during
the learning process.
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3.3.1 Frequency of Concept

A concept is frequent if it contains at least α (also refered to as minsupp, is
specified by the user) objects. The support s of a concept (X, Y ) is the ratio
between the cardinality of the set X and the total number of objects (|O|)
(s = 100×|X|

|O| %). Frequency is an anti-monotone constraint which helps prune
the lattice and reduce its computational complexity. Minimum support is the
minimal number of objects that the intent of a concept must verify to be
selected.

3.3.2 Validity of Concept

A concept (X, Y ) is complete if Y recognizes all positive examples. A con-
cept (X, Y ) is consistent if Y throws back all counter examples or negative
examples (formally, the set of consistent concepts is {(X, Y )/Y ∩ O− = {}}
where O = O+ ∪ O−). Both completeness and consistency constraints are
restrictive and can lead to overfitting. Other weak constraints are then
introduced:

1. Validity. A concept (X, Y ) is valid if its description recognizes many
examples; a valid concept is a frequent concept on the set of examples O+;
formally the set of valid concepts is defined as {(X, Y ) / |X+| ≥ α} where
0 < α ≤ |O+|.

2. Quasi-consistency. A concept (X, Y ) is quasi-consistent if it is valid
and its extent contains few counter examples. Formally, the set of quasi-
consistent concepts is defined as {(X, Y ) / |X+| ≥ α and |X−| ≤ β}.

3.3.3 Height of a Semi-lattice

The level of a concept c is defined as the minimal number of connections
from the supreme concept to c. The height of a semi-lattice is the greatest
value of the level of concepts. Using levelwise approach to generate the join
semi-lattice, a given constraint can be set to stop concept generation at a
fixed level. The height of the lattice could be performed as the depth without
considering the cardinality of concept extents (or intents). In fact at each
level, concept extents (or intents) do not have the same cardinality. The
number of layers of the semi-lattice is a parameter corresponding to the
maximum level (height) of the semi-lattice.

4 Concept Lattice-Based Artificial Neural network

We describe in this section the different steps of our new approach,
M-CLANN, as shown by figure 4. The process of finding the architecture of
neural networks has three steps: (1) build a joint semi-lattice of formal con-
cepts by applying constraints to select relevant concepts [24, 33]; (2) translate
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the join semi-lattice into a topology of the neural network, and set the initial
connections weights; (3) train the neural network.

Variables used in the algorithms defined in this section are : C is a formal
context (dataset); L is the semi-lattice built from the training dataset K; c
and c′ are formal concepts; n is the number of attributes in each training
pattern; m is the number of output classes in the training dataset; c a formal
concept, element of L; NN is the comprehensive neural network build to
classify the data.

4.1 Semi-lattice Construction

There are different algorithms [22] which can be used to generate formal con-
cepts; only a few of them build the Hasse diagram. Lattice could be processed
using top-down or bottom-up techniques. In our case, a levelwise approach
presents advantage to successively generate concepts of the join semi-lattice
and the Hasse diagram. For this reason, we choose to implement the Bordat
algorithm [22] which is suitable here. Concepts included in the lattice are
only those which satisfy the defined constraints.

In order to prune the concept lattices, we can use one or multiple con-
straints to select concepts during this step. The constraints used in M-
CLANN are frequency of concept and the height of the semi-lattice. For
example it is possible to combine frequency and height constraints, or to use
only one of them. The semi-lattice construction process starts by finding the
supreme element. The process continues by generating the successors of the
concepts that belong to the existing set until there are no concepts which
satisfies the specified constraints.



114 E.M. Nguifo, N. Tsopze, and G. Tindo

Algorithm 1. Modified Bordat algorithm
Require: Binary context C
Ensure: concept lattices (concepts extracted from C) and the Hasse diagram of

the order relation between concepts.
1: Init the list L of the concepts (O, {}) (L ← (O, {}))
2: repeat
3: for concept c ∈ L such that his successors are not yet been calculated do
4: Calculate the successors c′ of c.
5: if the specified constraint is verified by c′ then
6: add c′ in L as successor of c if c′ does not exit in L else connect c′ as

successor of c.
7: end if
8: end for
9: until no concept is added in L.

10: derive the neural network architecture from the concept semi-lattice.

4.2 Generation of ANN Topology

In the second step, the join semi-lattice is translated into a neural network
architecture. Algorithm 2 presents the M-CLANN method to translate the
semi-lattice into ANN.

Example 6. Figure 5 presents an example ANN topology designed with M-
CLANN. In this figure, (a) is the semi-lattice while (b) is the corresponding
neural network topology.

Objects used in this algorithm are defined as follows: K is a formal context
(dataset); L is the semi-lattice built from the training dataset K; c and c′ are
formal concepts; n is the number of attributes in each training pattern; m is the
number of output classes in the training dataset; c a formal concept, element
of L; NN is the comprehensive neural network build to classify the data.

 {},{123456} 

{e},{12356} {c},{2346} {bd},{1345} 

{ce},{236} {ae},{2356} {bde},{135} 
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Input 

(a)
(b)

Fig. 5 Example of ANN architecture design using M-CLANN



M-CLANN: Multiclass Concept Lattice-Based Artificial Neural Network 115

Algorithm 2. Translation of semi-lattice into ANN topology
Require: L a semi-lattice structure built using specified constraints.
Ensure: NN initial topology obtained from the semi-lattice L
1: for each concept c ∈ L do
2: if the set of predecessor of c is empty mark its successor as ”last hidden

neuron”;
3: Else c becomes neurons and add to NN with the successor and predecessor

as in L; if the set of successor of c is empty then mark c as ”first hidden
neuron”.

4: Endif
5: end for
6: Create a new layer of n neurons and connect each neuron of this layer to the

neurons marked as ”first hidden neuron” in NN .
7: Create a new layer of m neurons and connect each neuron of this layer to the

neurons marked as ”last hidden neuron” in NN .
8: Initialize connection weights and train them.

Threshold is zero for all units and the connection weights are initialized as
follows:

• Connection weights between neurons derived directly from the lattice is
initialized to 1. This implies that when the neuron is active, all its prede-
cessors are active too.

• Connection weights between the input layer and hidden layer are initial-
ized as follows: 1 if the attribute represented by the input appears in the
intention Y of the concept associated to the ANN node and -1 otherwise.
This implies that the hidden unit connected to the input unit will be active
only if the majority of its input (attributes including in its intent) is 1.

4.3 Training the Generated Topology

The last step of M-CLANN is to train the obtained neural network. This is
done using the error backpropagation algorithm [30]. This algorithm searches
the appropriate connection weights between the different units by propagat-
ing the input signals through the network and backpropagating the error from
the output units to the input units. This is done by minimizing the quadratic
sum of the error.

5 Experimentations and Results

5.1 Data

To examine the practical aspect of the approach presented above, we run
the experiments on the data available on the UCI repository [26]. The
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Table 2 Experimental data sets

Dataset #Train #Test #Class #Nom #Bin

Balance-scale (Bal) 625 0 3 4 20
Chess 3 196 0 2 36 38
Hayes-roth (Hayes) 132 28 3 5 15
Tic-tac-toe (Tic) 958 0 2 9 26
Spect 80 187 2 22 22
Monks1 124 432 2 6 15
Monks2 169 432 2 6 15
Monks3 122 432 2 6 15
Lymphography (lympho) 148 0 3 18 51
Solar-flare1 (Solar1) 323 0 7 12 40
Solar-flare2 (Solar2) 1066 0 7 12 40
Soybean-backup (Soyb) 307 376 19 35 151
Lenses 24 0 3 4 12

characteristics of this data is shown in the table 2 which contains the name
of the dataset, the number of training patterns (#Train), the number of test
patterns (#Test), the number of output classes (#Class), the initial number
of (nominal) attributes in each pattern (#Nom), the number of binary at-
tributes obtained after binarization (#Bin). Attributes were binarized by the
Weka [36] binarization procedure “Filters.NominalToBinary”. The diversity
of this data (from 24 to 3196 training patterns; from 2 to 19 output classes)
helps in revealing the behavior of each model in many situations. There are
no missing values in these datasets.

Two constraints presented above (frequency and height) have been applied
in selecting concepts during experimentation. We first separately use each of
them and then we combine them.

5.2 Results

Experimental results are obtained from the model trained by error back-
propagation [30] and validated by 10-fold cross-validation or holdout [20].
The learning parameters are the following: as activation function, we use the
sigmoid (f(x) = 1

1+expx ), 500 iterations in the weight modification process
and 1 as learning rate.

Table 3 presents the accuracy rate (percentage) obtained with data in
table 2. In table 3, the symbol ”-” indicates that no formal concept satisfies
the constraints and the process was stopped. The symbol ”x” indicates that
the classifier CLANN was not applied for those multiclass problem.

In this table, MCL1 is M-CLANN built from a semi-lattice with one level
while MCL30 and MCL20 are M-CLANN built using respectively 30 and 20
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Table 3 Accuracy rates of MCLANN classifier with some varied input parameters.

Dataset CLANN MCL1 MCL2 MCL30 MCL20 MC1-30 MC1-20

Bal x 99,76 96,23 - 99,89 - 99,89
Chess 93,60 99,87 91,70 93,60 93,78 99,87 99,87
Hayes x 75,72 76.85 78,58 85,72 78,57 85,71
Tic 94,45 89,64 90.21 99,67 99,86 99,32 100
Spect 93,90 72,74 72,56 92,56 96,73 73,66 77,57
Monks1 82,70 91,67 95,56 91,17 91,17 91,67 91,71
Monks2 78,91 100 98,65 100 100 100 99,67
Monks3 83,61 93,51 100 91,17 93,52 92,59 93,52
Lympho x 80,78 90,24 84,67 88,91 85,71 92,56
Solar1 x 79,42 78,87 78,67 69,58 71,10 71,10
Solar2 x 75,00 72,62 76,71 70,91 75,34 78,95
Soyb x 81,33 79,01 89,34 86,95 83,11 84,04
Lenses x 98,67 90,00 100 99,87 98,67 99,87

Average 86,05 86,62 86,97 89,67 90,53 87,57 90,37

percent as frequency threshold. MC1-30 (respectively MC1-20) is M-CLANN
built with a combination of semi-lattice height equals to 1 and 30% (resp.
20%) as frequency threshold. CLANN column represents the precision rate
obtained using the original version of CLANN (with lattice height threshold
equals to one).

With high minimum support values, sometimes the semi-lattice does not
contain sufficient concepts to better classify the data. For instance, with
the minimum support value set to 35%, the semi-lattice built from Balance-
scale is empty. The best results (accuracy rate) of M-CLANN are obtained
with the α value equal to 20% (MCL20). These results are comparable to
those of other classifiers as shown in table 4 using some standard machine
learning classifiers or some constructive multilayer perceptrons. In table 4,
the symbol ”x” indicates that the classifier does not converge. The standard
classifiers are taken from the WEKA platform [36] and are MLP (a multilayer
perceptron classifier), C4.5 (a decision tree based classifier), IB1 (a case based
learning classifier model). The constructive multilayer perceptrons are the
original versions of author’s implementation of Mtiling, Mtower, Mupstart
and Distal.

M-CLANN was not compared with KBANN because we have no prior
knowledge about this data. The goal of this comparison is to see the behavior
(on the supervised classification problems) of M-CLANN regarding those of
other standard learning models.

Using different parameters settings, M-CLANN outperfomed standard ma-
chine learning classifiers in terms of accuracy on the experimental datasets.
MLP is better than C4.5 and IB1.
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Table 4 Accuracy rate of other classifiers.

Dataset MCL20 MLP C4.5 IB1 MTiling MUpstart MTower Distal

Bal 99,89 98,40 77,92 66,72 94,27 100 95,16 96,77
Chess 93,78 99,30 98,30 89,90 96,24 97,18 96,87 89,74
Hayes 85,72 82,15 89,28 75,00 89,29 90,01 78,57 54,32
Tic 99,86 96,86 93,21 81,63 75,52 73,03 64,21 61,23
Spect 96,73 65,77 66,70 66,31 89,60 83,29 71,40 83,90
Monks1 91,17 100 100 89,35 81,71 77,21 78,01 90,23
Monks2 100 100 70,37 66,89 85,42 82,43 77,87 89,10
Monks3 93,52 93,52 100 81,63 100 89,42 91,21 86,46
Lympho 88,91 81,76 74,32 80,41 85,71 78,57 78,57 86,45
Solar1 69,58 72,79 74,30 68,39 100 100 98,89 x
Solar2 70,91 68,11 69,97 66,56 96,88 93,75 96,88 68,23
Soyb 86,95 92,02 88,83 89,89 83,23 85,45 84,34 x
Lenses 99,87 95,83 91,67 100 99,50 99,00 98,50 99,88

Average 90.59 88,57 84,22 78,67 90,81 87,39 84,43 88.90

Another advantage of M-CLANN over MLP is that each neuron has a
semantic as it is associated to each intent of a formal concept. During the
experimentations, the running time of MLP and M-CLANN are similar but
much higher compared to that of C4.5 and IB1.

MTiling has the best average accuracy rate over the whole dataset, even
if this accuracy rate is only slightly greater than that of MCLANN.

6 Discussion

As presented in the previous section, there exists many algorithms which
could be used to define the neural network architecture. Each of those algo-
rithms present advantages but they also have issues:

1. Input data. Many algorithms could not process other data than numeric.
Apart from Distal where the authors have defined the distance between
symbolic data, all others only treat numeric data. In addition of the train-
ing data, using KBANN method requires a domain theory which is not
always available. The choice of the method could hardly be influenced by
the input data.

2. Interpretability of ANN. It is well known that the ANN is one of the
most commonly used methods in classification. As it is seen as ’Black
box’, it is not used in the domain where result explanations are impor-
tant. Among the previous methods, only M-CLANN and KBANN present
interpretable architectures. So, it could not be advised to use other ap-
proaches than M-CLANN and KBANN, while in M-CLANN, each node
is associate to one formal concept and each formal concept is formed by
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a set of objects (extent) and and a set of attributes (intent) shared by
these objects; in KBANN, each node is associated to one variable on the
rules set.

3. Choice of the algorithm’s parameters. One problem with ANN topol-
ogy design algorithm is the choice of network and training parameters. This
problem is avoided in KBANN method where only the maximum number
of iterations is needed. In addition to the maximum iterations number (500
as default value), M-CLANN needs to define the constraints value. Other
constructive algorithms (except Distal) need to define the maximum layers
number, the choice of training algorithm, the maximum iterations number
in the training process.

Recently different works showing links between FCA and ANN were reported
in the literature. Except from our previous method CLANN, those are dif-
ferent from MCLANN. [12] uses the FCA approach to encode the neural
network function, while [31] proposes two ways of directly encoding closure
operators on finite sets in a 3 layered feed forward neural network.

7 Conclusion

In this chapter, a new approach of finding the ANN topology is presented.
This method is based on concept lattices and is able to define an interpretable
ANN topology without any prior domain knowledge. This proposal extends
our previous method CLANN in order to treat multi-class supervised classi-
fication problems.

Some empirical classification results presented above show its efficiency
compared to standard machine learning classification and other constructive
multilayer perceptrons.
The extension of this approach will consist of extracting rules from the net-
work after training and the treatment of multivalued context. A more the-
oretical study of [29] discusses the fact some neural networks compute and
others don’t. We will explore the link with our proposal.
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25. Mephu Nguifo, E., Tsopzé, N., Tindo, G.: M-CLANN: Multi-class concept
lattice-based artificial neural network for supervised classification. In: Kůrková,
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Constructive Morphological Neural Networks:
Some Theoretical Aspects and Experimental
Results in Classification

Peter Sussner and Estevão Laureano Esmi

Abstract. Morphological neural networks are rooted in mathematical morphology
(MM). Several constructive learning algorithms for morphological neural networks
have been proposed during the last decade. Since MM can be conducted very gener-
ally in the complete lattice setting, MNNs are closely related to other lattice-based
neurocomputing models.

This paper reviews and analyzes some important types of constructive mor-
phological neural networks including their learning algorithms from the lattice-
theoretical perspective of mathematical morphology. In particular, we present an
improved version of the learning algorithm for the morphological perceptron (MP).
Moreover, we incorporate competitive nodes into the two variants of the MP and in-
troduce an approach for training these models. Finally, we compare the performance
of several constructive morphological models and of conventional multi-layer per-
ceptrons in some classification problems.

1 Introduction

Mathematical Morphology (MM) is a theory that uses concepts from set theory, ge-
ometry and topology to analyze geometrical structures in an image [21, 28, 45, 44].
MM has found wide-spread applications over the entire imaging spectrum [7, 19,
20, 26, 32, 47, 48]. Morphological operators were originally developed for binary
and grayscale image processing. The subsequent generalization to complete lattices
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is widely accepted today as the appropriate theoretical framework for mathematical
morphology [21, 42, 44]. In the complete lattice setting, there are four elementary
morphological operators - namely erosion, dilation, anti-erosion, and anti-dilation -
which allow for the decomposition of every mapping between complete lattices [4].

Morphological neural networks incorporate morphological operators into the ar-
tificial neural network setting. More precisely, a morphological neural network per-
forms a morphological operation at every node. Since the concept of morphological
operator is not clearly defined [21], we have suggested to formally define a MNN
as an artificial neural network that performs one of the four elementary operators
of MM, possibly followed by the application of an activation function, at every
node [55].

Several particular morphological models and their respective training algorithms
have been proposed in recent years, including morphological perceptrons (MPs)
[54], morphological perceptrons with dendrites (MPDs) [38], (fuzzy) morphological
associative memories [55, 50, 51, 52, 55], modular morphological neural networks
[3], and morphological shared-weight and regularization neural networks [22, 25].
This paper clarifies that fuzzy lattice neural networks (FLNNs) [24] can also be
viewed as MNNs. Morphological and hybrid morphological/rank/linear neural net-
works [30] have been successfully applied to a variety of problems such as pattern
recognition [24, 46], prediction [1, 50], automatic target recognition [25], handwrit-
ten character recognition [30], control of vehicle suspension [15], self-localization,
and hyperspectral image analysis [34, 17].

Although the theory of morphological neural networks (MNNs) and its applica-
tions has experienced a steady and consistent growth in the last few years [53], only
a brief review and comparison of MNNs has appeared in the literature in the form of
a conference paper [29]. The present article focusses on constructive MNNs which
automatically update their architecture during the learning phase. Additionally, we
provide more background information on MNNs, on the connections between indi-
vidual models of MNNs, and on the learning algorithms of MPs and FLNNs, the
main constructive morphological models [40, 54, 31, 23]. For instance, we present
an improved version of the training algorithm for MPs, introduce MPs and MPDs
with competitive neurons and show how to train them. Finally, we elaborate on the
foundations of morphological perceptrons (MPs) and fuzzy lattice neural networks
(FLNNs) in lattice theory [4, 5]. Moreover we explain why fuzzy lattice neural net-
works can be viewed as morphological models, include some further comparisons
with MPs, and provide additional details with respect to the experimental results
and the computational effort involved in using morphological models.

The paper is organized as follows. After presenting the lattice background of
MNNs, we investigate the most important types of constructive MNNs, namely mor-
phological perceptrons (MPs), morphological perceptrons with dendrites (MPDs),
and fuzzy lattice neural networks (FLNNs). Section 4 compares the performances
of morphological models and MLPs in some classification problems. We finish the
paper with some concluding remarks.
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2 Lattice Background for Morphological Neural Networks

Morphological neural networks are geared at merging techniques of artificial neu-
ral networks and mathematical morphology. Although mathematical morphology
was conceived as a set-theoretic approach to image processing, its theoretical foun-
dations can be found in lattice algebra. This paper concentrates on morphological
models of neural networks whose operations can not only be described in terms of
set-theoretic ideas but also in terms of the complete lattice framework of mathemat-
ical morphology [21, 42, 44].

A partially ordered set L is called a lattice if and only if every finite, non-empty
subset of L has an infimum and a supremum in L. For simplicity, we assume that a
partially ordered set is non-empty [18]. A lattice L is complete if every non-empty
(finite or infinite) subset has an infimum and a supremum in L [5]. Every (non-
empty) complete lattice has a least element denoted by 0L and a greatest element
denoted by 1L. The extended real numbers R̄ and the unit interval [0,1] represent
specific examples of complete lattices. For any Y ⊆ L, we denote the infimum of Y
by the symbol

∧
Y and we write

∧
j∈J y j instead of

∧
Y if Y = {y j, j ∈ J} for a index

set J. We use similar notations to denote the supremum of Y .
If L1, . . .Ln are lattices, a partial order on L = L1 × . . .× Ln can be defined by

setting

(x1, . . . ,xn) ≤ (y1, . . . ,yn) ⇔ xi ≤ yi ∀i ∈ {1, . . . ,n} . (1)

The resulting partially ordered set L is also a lattice and is called the product
lattice with constituents L1, . . .Ln. If the lattices L1, . . .Ln are complete then the
product lattice L = L1 × . . .× Ln is complete as well. For notational convenience,
the product lattice corresponding to the product of n copies of L is denoted using
the symbol Ln. Suppose that L and M are lattices. A function ϕ : L → M that
satisfies the following equations for all x ∈ L and for all y ∈ M is called lattice
homomorphism.

ϕ(x ∨ y) = ϕ(x)∨ϕ(y) and ϕ(x ∧ y) = ϕ(x)∧ϕ(y) . (2)

A bijective lattice homomorphism is called lattice isomorphism. Equivalently, we
have that ϕ : L → M is a lattice isomorphism if ϕ is bijective and order preserving,
that is ϕ(x) ≤ ϕ(y) for all x ≤ y.

A central issue in mathematical morphology is the decomposition of mappings
between complete lattices in terms of elementary operations.

Definition 1. Let ε,δ , ε̄ , δ̄ be operators from the complete lattice L to the complete
lattice M, and let Y ⊆ L.

ε is called erosion ⇔ ε(
∧

Y ) =
∧
y∈Y

ε(y); (3)

δ is called dilation ⇔ δ (
∨

Y ) =
∨
y∈Y

δ (y); (4)
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ε̄ is called anti-erosion ⇔ ε̄(
∧

Y ) =
∨
y∈Y

ε̄(y); (5)

δ̄ is called anti-dilation⇔ δ̄ (
∨

Y ) =
∧
y∈Y

δ̄ (y). (6)

The following theorem establishes representations of anti-dilations and anti-erosions
in terms of erosions, dilations and negations.

Theorem 1. Let L and M be complete lattices with negations νL and νM, respec-
tively.

• An operator δ̄ : L → M is an anti-dilation ⇔ δ̄ = ε ◦νL or δ̄ = νM ◦δ , where δ
is a dilation and ε is a erosion.

• An operator ε̄ : M → L is an anti-erosion ⇔ ε̄ = δ ◦νM or ε̄ = νL ◦ ε , where ε
is an erosion and δ is a dilation.

Banon and Barrera [4] showed that for every mapping ψ : L −→ M there exist
erosions ε i and anti-dilations δ̄ i for some index set I such that

ψ =
∨
i∈I

(ε i ∧ δ̄ i) . (7)

Similarly, the mapping ψ can be written as an infimum of supremums of pairs of
dilations and anti-erosions. In the special case that ψ is increasing, ψ can be repre-
sented as a supremum of erosions or as an infimum of dilations.

Many models of MNNs can alternatively be defined in terms of certain matrix
products in minimax algebra [13, 11]. Minimax algebra is a lattice algebra whose
origins lie in the field of operations research and machine scheduling [9, 12, 16, 57].

In minimax algebra, we consider certain algebraic structures called belts and
bounded lattice ordered groups. For our purposes, it is enough to consider the
bounded lattice ordered group (G,∨,∧,+,+′), where the symbol G denotes R̄ =
R∪{−∞,∞} or Z̄ = Z∪{−∞,∞}. The symbols ∨ and ∧ denote the binary opera-
tions of maximum and minimum, respectively. The operations + and +′ act like the
usual sum operation on G and only differ from each other in the following respect:

∞+(−∞) = (−∞)+∞= ∞ (8)

∞+′ (−∞) = (−∞)+′∞= −∞ (9)

There are two types of matrix products with entries in G. Given a matrix A ∈
Gm×p and a matrix B ∈ Gp×n, the matrix C = A ∨� B, called the max-product of A
and B, and the matrix D = A ∧� B, called the min-product of A and B, are defined by
the following equations:

ci j =
p∨

k=1

(aik + bk j), di j =
p∧

k=1

(aik +′ bk j) . (10)
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Let A ∈ Gn×m. Consider the following operators εA and δA:

εA(x) = At ∨� x, (11)

δA(x) = At ∧� x. (12)

Note that the operators εA and δA represent erosions and dilations from the com-
plete lattice Gn to the complete lattice Gm, respectively. The theory of minimax
algebra includes a theory of conjugation. For more information, we refer the reader
to the treatises of Cuninghame-Green [13, 11]. The bounded lattice ordered group
(G,∨,∧,+,+′) is self-conjugate. The conjugate of an element x ∈ G is denoted
using the symbol x∗ and is defined as follows:

x∗ =

⎧⎪⎪⎨
⎪⎪⎩

−x, if x ∈ G\ {−∞,+∞}
+∞, if x = −∞
−∞, if x = ∞

(13)

The operator of conjugation gives rise to a negation ν∗ on Gn which maps the
i-th component of x to its conjugate. Formally, we have

(ν∗(x))i = (xi)∗ ∀ i = 1, . . . ,n . (14)

3 Some Constructive Morphological Neural Network Models

Morphological neural networks are equipped with morphological neurons. We
speak of a morphological neuron if its aggregation function corresponds to an el-
ementary morphological operation. As mentioned before, the emphasis in this pa-
per is on constructive MNNs. To our knowledge, the class of constructive MNNs
consists of morphological perceptrons, morphological perceprons with dendrites,
and - as shown in this section - fuzzy lattice neural networks (FLNNs).

This sections provides a new perspective on constructive MNNs by exhibiting
the relations between these models. In addition, we introduce a modified version of
the training algorithm for morphological perceptron which has led to better experi-
mental results in Section 4 when compared to the original algorithm [54].

3.1 Morphological Perceptron (MP)

Morphological perceptrons [40, 54] grew out of the minimax subalgebra of image
algebra [11, 41, 39]. Although MPs have been formulated in terms of matrix prod-
ucts in minimax algebra, it was not until a recent conference paper that MPs were
viewed in terms of the complete lattice framework of mathematical morphology
[29]. Here, we provide some more details on this issue.

Recall that R̄ and R̄n represent complete lattices. Given a vector of inputs x ∈ R̄n

(in practice, we restrict ourselves to input vectors x ∈ R
n), a vector of synaptic

weights w ∈ R̄n and an activation function f , a neuron of the morphological percep-
tron calculates the output y according to one of the following rules:
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y = f (εw(x)), where εw(x) = wt ∧� x =
n∧

i=1

(xi + wi); (15)

y = f (δw(x)), where δw(x) = wt ∨� x =
n∨

i=1

(xi + wi); (16)

y = f (ε̄w(x)), where ε̄w(x) = δw(x)◦ν∗(x) =
n∨

i=1

(x∗
i + wi); (17)

y = f (δ̄w(x)), where δ̄w(x) = εw(x)◦ν∗(x) =
n∧

i=1

(x∗
i + wi). (18)

Note that εw represents an erosion from the complete lattice R̄n to the complete
lattice R̄ in the special form of Equation 11. Similarly, δw represents a dilation
R̄n → R̄ in the special form of Equation 12. By Theorem 1, the composition of the
negation ν∗ followed by the erosion εw yields an anti-erosion that we denoted by
ε̄w and the composition of the negation ν∗ followed by the dilation δw yields an
anti-dilation that we denoted by δ̄w.

The values of the morphological perceptron’s weights must be determined be-
fore it can act as a classifier. More precisely, the weights are determined using a
supervised learning algorithm [54] that constructs n-dimensional boxes around sets
of points which share the same class value. Convergence occurs in a finite number
of steps.

In this paper, we present an improved version of the original training algorithm
for MPs that was proposed to solve two-class classification problems [54]. To this
end, let us introduce some relevant notations.

The vectors x1,x2, . . . ,xk ∈ R
n denote the given training patterns. The set of train-

ing patterns belonging to class 0 is denoted using the symbol C0 and the set of train-
ing patterns belonging to class 1 is denoted using the symbol C1. We define the
following index sets:

K(0) = { j ∈ {1, . . . ,k} : x j ∈ C0}. (19)

K(1) = { j ∈ {1, . . . ,k} : x j ∈ C1}. (20)

Let P be the hyperbox box(p⊥,p�) = {x ∈ Rn : p⊥ ≤ x ≤ p�}, where the sym-
bols p⊥ and p� ∈ R̄n represent the lower vertex and upper vertex, respectively. The
symbol P◦ stands for the interior of P and the symbol ∂P stands for the boundary of
P, that is P◦ = {x ∈ Rn : p⊥ < x < p�} and ∂P = P\P◦. Furthermore, let us define
the following half-spaces H+

i (x) and H−
i (x) for every input pattern x ∈ Rn:

H+
i (x) = {y ∈ R̄

n : yi ≥ xi } and H−
i (x) = {y ∈ R̄

n : yi ≤ xi } . (21)

The training algorithm will automatically produce the arquitecture depicted in
Figure 1(a). The staircase symbol for the activation function at the output node
represents the Heaviside step function given by
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f (x) =

{
1, if x ≥ 0 ,

0, if x < 0 .
(22)

Given an arbitrary input pattern x ∈ Rn, the MP computes the output in terms
of f (g(x)), where g is some function Rn → R̄. Let L(0) denote the set of in-
dices j ∈ {1, . . . ,k} such that f (g(x j)) ∈ C0 and let L(1) denote the set of indices
j ∈ {1, . . . ,k} such that f (g(x j)) ∈ C1. The symbol D refers to the set of indices
corrsponding to class 1 patterns that are currently misclassified. Formally, we have
D = { j ∈ L(0)∩K(1)}.

We initialize the function g : Rn → R̄ by setting g(x) = −∞ for all x ∈ Rn. Thus,
initially we have L(0) = {1, . . . ,k} and D = K(1).

Step 1 (Find a Hyperbox containing only Class 1 Patterns)

1 While D �= /0

1.1 Let P = box(p⊥,p�) where the vertices p⊥ and p� satisfy:

p�
i =

∨
j∈D

x j
i ∀ i = 1, . . . ,n , (23)

p⊥
i =

∧
j∈D

x j
i ∀ i = 1, . . . ,n . (24)

1.2 If there exists an index i0 such that p�
i0

= p⊥
i0

then perform the following
steps.

(a) If, in addition, the set P ∩C0 is empty then select the pattern x j ∈ P ∩C1

such that j is minimal and set P = {x j}.
(b) In any event, modify the upper and lower corner of P as follows:

p⊥
i = sup{xi < p⊥

i : x ∈ C0}. (25)

p�
i = inf{xi > p�

i : x ∈ C0}. (26)

Here, the supremum and the infimum are taken in R̄. In particular, we
have sup /0 = −∞ and inf /0 = ∞.

1.3 Otherwise, proceed as follows. Consider the set S = C0 ∩P.
(a) If S = /0 then use Equations 25 and 26 to expand the hyperbox P.
(b) If S �= /0 then continue as follows

(i) For all j = 1, . . . ,k such that x j ∈ C0 ∩P execute the following steps.
Set x = x j. Consider the hyperboxes H+

i (x)∩P and H−
i (x)∩P for i =

1, . . .n. Among these 2n hyperboxes, choose the hyperbox P′ ⊆ P that
contains the largest number of currently misclassified patterns in C1

such that x does not belong to P′ (if more than one of the hyperboxes
H±

i (x)∩P meets these criteria then randomly select one of the these).
Update P by setting P = P′.
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(ii) Expand the hyperbox P that was obtained in item (a) by applying
Equations 25 and 26.

1.4 Determine the smallest hyperbox B = box(b⊥,b�) which contains all the
misclassified patterns of class 1 in the interior of P. Formally, we have

b�
i =

∨
x j∈P◦

x j
i ∀ i = 1, . . . ,n (27)

b⊥
i =

∧
x j∈P◦

x j
i ∀ i = 1, . . . ,n (28)

If B = /0 then choose the pattern x j ∈ ∂P∩C1 such that j is minimal, redefine
P as P = {x j}, and return to Step 1.3(b)(ii) (the next time around, B �= /0).

1.5 Determine an intermediary hyperbox C whose upper and lower corner, de-
note respectively by c� and c⊥, are given by the averages of the correspond-
ing vertices of B and P.

c�
i =

b�
i + p�

i

2
, (29)

c⊥
i =

b⊥
i + p⊥

i

2
. (30)

Step 2 (Update the Architecture of the Morphological Perceptron) At the end of this
step, the patterns in the hyperbox C are assigned to class 1.

2.1 Update the function g as follows:

g(x) = g(x)∨
[

n∧
i=1

(xi − c�
i )∧

n∧
i=1

(c⊥
i − xi)

]
. (31)

2.2 Compute f (g(x)) for all x ∈ D, update the set D, and return to Step 1.

Note that the function g determines a union of hyperboxes. An arbitrary input pattern
x is assigned to class 1 if and only if it lies in this union of hyperboxes. The term∧n

i=1(xi − c�
i ) ∧∧n

i=1(c
⊥
i − xi) of Equation 31 is non-negative if and only if x is

between the upper and lower vertices of C. The term
∧n

i=1(xi − c�
i ) corresponds to

the erosion εv where v = −c� and the term
∧n

i=1(c
⊥
i − xi) corresponds to an anti-

dilation δ̄w = εw ◦ ν∗ where w = c⊥. During the training phase, pairs of erosive
and anti-dilative neurons are added to the hidden layer of the MP that is pictured
in Figure 1(a). This process ends once all training patterns are classified correctly.
After convergence, the output of the MP is determined by the following equation
for some m ∈ N:

y = f (
m∨

j=1

(εv j (x)∧ δ̄w j(x))) (32)
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Fig. 1 Architectures of a morphological perceptron (a) and of an MPD (b), respectively.

An arbitrary input pattern x is classified as belonging to class 1 if and only if
y = 1. According to Equation 34 and Figure 1(a), the MP calculates a maximum
of pair-wise minimums of erosions and anti-dilations which approximates the de-
composition suggested by Banon and Barrera [4] (cf. Equation 7) followed by the
application of a hard-limiting function f .

The modifications of the original algorithm proposed in [54] can be found in
Steps 1.2, 1.3, and 1.4. We have in particular taken additional measures in order
to circumvent situations in which the original algorithm failed to converge. The
modified version is guaranteed to converge in a finite number of steps yielding a
decision surface that perfectly separates the class 0 and the class 1 training data and
led to better results in the classification problems described in Section 4.

In a previous conference paper, we have allocated three morphological neurons
to perform a minimum of an erosion εv and an anti-dilation δ̄w although one could
argue that forming

εv(x)∧ δ̄w(x) =
n∧

i=1

(xi + vi)∧
n∧

i=1

(x∗
i + wi) (33)

only requires one single morphological neuron or processing element with inputs
of the form (x1, . . . ,xn,x∗

1, . . . ,x
∗
n) and weights in R̄2n. Therefore, we associate only

one morphological neuron to the computation of Equation 33. In other words, the
number of hidden morphological neurons corresonds to the number of hyperboxes
that are generated during the learning phase.

Suppose we have an S-class classification problem. If S > 2 then the MP approach
has to be adapted so as to be able to deal with multiple classes. Let C̄s ⊆ {x1, . . . ,xk}
denote the set of training patterns belonging to the sth class where s = 1, . . . ,S. For
each s = 1, . . .S, we simply set C1 = C̄s and C0 =

⋂
t �=s C̄t and apply the MP training

algorithm. This procedure generates weights vs
j and ws

j for every s = 1, . . .S. Thus,
we obtain S MPs with threshold activation functions at their respective output nodes
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of the form pictured in Figure 1(a). Removing the thresholds at the outputs yields S
MPs that are given by the following equations for s = 1, . . .S:

ys =
ms∨
j=1

(εvs
j
(x)∧ δ̄ws

j
(x)) (34)

An MP for multi-class classification problems arises by joining the S MPs and by
introducing competitive output neurons. In other words, an input pattern x will be
classified as belonging to class y = argmaxs ys. For simplicity, we use the acronym
MP/C to denote the resulting morphological perceptron with competitive neurons.

3.2 Morphological Perceptrons with Dendrites (MPD)

Recent research in neuroscience has given considerable importance to dendritic
structures in a single neuron cell [43]. Ritter and Urcid developed a new paradigm
for computing with morphological neurons where the process occurs in the den-
drites [37, 38]. Figure 1(b) provides a graphical representation of an MPD that has
a single output neuron N.

The architecture of an MPD is not determined beforehand. During the training
phase, the MPD grows new dendrites while the input neurons expand their axonal
branches to synapse on the new dendrites. The weight of an axonal branch of input
neuron Ni terminating on the k-th dendrite of the output neuron N is denoted by
wl

ki where the superscript l ∈ {0,1} distinguishes between excitatory (l = 1) and
inhibitory (l = 0) input to the dendrite. The k-th dendrite of N will produce either an
excitatory (pk = 1) or an inhibitory (pk = −1) response to the total input received
from the input neurons Ni. To summarize, the computation performed by the k-th
dendrite is given by

τk(x) = pk

n∧
i=1

∧
l∈L

(−1)l+1(xi + wl
ki) , (35)

where L ⊆ {0,1} corresponds to the set of terminal fibers on Ni that synapse on the
k-th dendrite of N. After passing the value τk(x) to the cell body, the state of N is
given by

∨K
k=1 τk(x), where K denotes the total number of dendrites of N. Finally,

an application of the hard limiting function f defined in Equation 22 yields the next
state of N, in other words the output y of the MPD depicted in Figure 1(b).

y = f (
K∧

k=1

τk(x)) = f (
K∧

k=1

pk

n∧
i=1

∧
l∈L

(−1)l+1(xi + wl
ki)) . (36)

Leaving the biological motivation aside, the MPD training algorithm that was
proposed for binary classification problems [38] resembles the one for MPs [54].
As is the case for MPs, the MPD training algorithm is guaranteed to converge in a
finite number of steps and, after convergence, all training patterns will be classified
correctly. Learning is based on the construction of n-dimensional hyperboxes. Given
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two classes C0 and C1, an input pattern x is classified as belonging to class C1 if and
only if x is contained in one of the constructed hyperboxes. In fact, each dendrite
corresponds to a hyperbox. Therefore, we can convert an MPD into an MP and
express the computation performed by a dendrite in terms of Equation 33.

When faced with multi-class classification problems, we propose to construct a
MPD with competitive output units and to proceed in the same way as we did with
MPs at the end of Section 3.1. We will refer to the resulting MNN as morphological
perceptron with dendrites and competitive neurons (MPD/C).

3.3 Fuzzy Lattice Neural Network-FLNN

The theoretical framework of FLNN constitutes a successful combination of fuzzy
sets [56], lattice theory [21] and adaptive resonance theory [8]. Figure 2 illustrates
the architecture of the FLNN that consists of an input layer and a category layer.
The input layer has N artificial neurons used for storing and comparing input data.
The category layer has L artificial neurons that define M classes.

Given a vector of inputs x and a vector of synaptic weights w, a neuron of an
FLNN [31, 24] computes the degree of inclusion of x in w in terms of p(x,w)
where p is a fuzzy partial order relation. In general, we refer to p as a fuzzy partial
order on a lattice L if p is a function L × L → [0,1] that satisfies the equation
p(x,y) = 1 if and only if x ≤ y. (We prefer to speak of a fuzzy partial order instead
of a fuzzy membership function or fuzzy inclusion measure because p generalizes
the conventional partial order.) A pair (L, p) consisting of a lattice L and a fuzzy
partial order p is called a fuzzy lattice.

In the case of FLNNs, both the input vector x and the vector of synaptic weights
w are hyperboxes in LN where L is a complete lattice. For the special case where

Fig. 2 Architecture of the FLNN.
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N = 1, a hyperbox in LN corresponds to a closed interval in L and can be written in
the form [a,b] where a,b ∈ L. In particular, if L = [0,1] we obtain a closed subinter-
val of the unit interval. The partial order on a given lattice L induces a partial order
on set of intervals IL = {[a,b] : a,b ∈ L and a ≤ b} which turns IL into a lattice
as well:

[a,b] ≤ [c,d] ⇔ a ≥ c and b ≤ d . (37)

Unfortunately, the lattice of the closed intervals is not complete even if L is com-
plete because

∧
IL does not exist in IL. There are however two closely related

complete lattices. The first one, called the complete lattice of the generalized in-
tervals, is denoted using the symbol PL and arises by leaving away the restriction
a ≤ b. Formally, we have PL = {[a,b] : a,b ∈ L}. If 0L and 1L denote the least el-
ement of L and the greatest element of L, respectively, then the least element of PL

is given by [1L,0L] and the greatest element of PL is given by [0L,1L]. The second
complete lattice of interest is denoted by VL and is given by adjoining [1L,0L] to
IL. We obtain VL = IL ∪{[1L,0L]}.

The FLNN model employs a fuzzy partial order relation p : (VL)N × (VL)N →
[0,1]. In this context, the fuzzy partial order is of a special form. Specifically, the
fuzzy partial order relation employed in the FLNN is based on a ”function-h” or -
as we prefer to call it - a generating function [31]. Similar fuzzy lattice models use
fuzzy partial order relations based on positive valuation functions [5, 24, 23].

In applications of the FLNN to classification tasks such as the ones discussed in
Section 4, it suffices to consider - after an appropriate normalization - the complete
lattice U = [0,1], i.e., the unit interval. Thus, the input and weight vectors are N-
dimensional hyperboxes in (VU)N . In this case, we can show that p(.,w) : (VU)N →
[0,1] represents an elementary operation on mathematical morphology, namely both
an anti-erosion and an anti-dilation, if the underlying generating function h : U →
R is continuous. The proof of this result is beyond the scope of this paper since
it involves further details on fuzzy lattice neuro-computing models, in particular
the construction of a fuzzy partial order from a generating function. Therefore, we
postpone the proof to a future paper where we will show a more general result
that uses additional concepts of lattice theory. Anyway, the fact that every node in
the category layer of an FLNN with a continuous generating function performs an
elementary operation of MM has led us to classify FLNNs as belonging to the class
of morphological neural networks.

FLNNs can be trained in supervised or unsupervised fashion [31, 24]. Both ver-
sions generate hyperboxes that determine the output of the FLNN. In this paper, we
focus on the supervised learning algorithm that is used in classification tasks. Here
we have a set of n training patterns x1, . . . ,xn ∈ (VL)N together with their class la-
bels c1, . . . ,cn ∈ {1, . . . ,M}. Therefore, the basic arquitecture of the FLNN has to be
adapted so as to accomodate the class information. This can be achieved by allowing
for the storage of a class index in each node of the category layer, by augmenting
the input layer by one node that carries the class information ci corresponding to the
pattern xi during the training phase, and by fully interconnecting the two layers.
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During the training phase, the FLNN successively constructs nodes in the cate-
gory layer each of which is associated with an N-dimensional hyperbox wi - i.e., an
element of (VL)N - together with its respective class label ci. Training in the original
FLNN model is performed using an exhaustive search and takes O(N3) operations
[31]. (A modification of the FLNN called fuzzy lattice reasoning (FLR) classifier
requires O(N2) for training if one renounces on optimizing the outcome of training
[23].) After training, we obtain L N-dimensional hyperboxes wi ∈ (VL)N that cor-
respond to the L nodes that appear in the category layer of the FLNN (cf. Figure
2(b)). A class label ci ∈ {1, . . . ,M} is associated with each hyperbox wi ∈ (VL)N .

In the testing phase, an input pattern x ∈ (VL)N is presented to the FLNN and the
values p(x,wi) are computed for i = 1, . . . ,L. A competition takes place among the
L nodes in the category layer and the input pattern x is assigned to the class ci that
is associated with the hyperbox wi exhibiting the highest value p(x,w). Informally
speaking, the degree of inclusion of x in wi is higher than the degree of inclusion
of x in w j for all j �= i. In particular, if x is contained in wi but not contained in w j

for all j �= i, i.e., p(x,wi) = 1 and p(x,w j) < 1 for all j �= i, the x is classified as
belonging to class ci.

Occasionally, the training algorithms for FLNNs and its modifications produce
overlapping hyperboxes with disparate class memberships although - according to
Kaburlasos et al. - this event occurs rarely [23]. In the experiments we conducted in
Section 4, this situation did in fact occur as evidenced by the decision surface that
is visualized in Figure 5. For more information, we refer the reader to Section 4.

4 Experimental Results

In this section we compare the classification performance of the constructive mor-
phological models and the conventional multi-layer perceptron in a series of experi-
ments on two well known datasets: Ripley’s synthetic dataset [35, 36] and the image
segmentation dataset that can be found in the UCI Machine Learning Repository [6].
In addition, we have used Ripley’s synthetic dataset to visualize the respective de-
cision surfaces. In contrast to our previous conference paper, we have decided to
omit morphological models with a fixed architecture such as the modular morpho-
logical neural network (MMNN) and the hybrid morphological/rank/linear neural
network (MRL-NN) since these models produced poor classification results in our
simulations [29].

Tables 1 and 2 display the percentages of the misclassified training and test-
ing patterns. Since the type of operations performed by the individual models in
a training epoch varies greatly from one model to another we have also included
the average CPU time (on a AMD Athlon 64 X2 Dual Core Processor 4200+ with
a processing speed of 2.221 GHz) of each individual model until convergence of
the training algorithm. We trained the constructive morphological models until their
decision surfaces succeeded in perfectly separating the two classes of training data.
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Table 1 Percentage of misclassified patterns for training (Etr) and testing (Ete) in the ex-
periments, CPU time in seconds for learning (Tcpu) and number of hidden artificial neurons
(hyperboxes for MNNs) (Ha).

Ripley’s Synthetic Dataset

Model Etr(%) Ete(%) Tcpu Ha

MP 0.0 11.70 1.1 18
MPD 0.0 17.80 0.58 19
MP/C 0.0 10.80 2.63 38
MPD/C 0.0 13.90 1.26 38
FLNN 0.0 11.4/12.0 75.41 46
MLP 8.41 12.55 144.48 10

Table 2 Percentage of misclassified patterns for training (Etr) and testing (Ete) in the ex-
periments, CPU time in seconds for learning (Tcpu) and number of hidden artificial neurons
(hyperboxes for MNNs) (Ha).

Image Segmentation Dataset

Model Etr(%) Ete(%) Tcpu Ha

MP/C 0.0 17.38 3.29 88
MPD/C 0.0 13.05 0.21 20
FLNN 0.0 10.00 26.87 17
MLP 15.71 26.81 58.41 20

All the models and algorithms were implemented using MATLAB which favors
linear operations over morphological operations. We believe that the CPU times for
learning in the constructive MP, MPD, MPD/C, and MPD/C models would be even
lower if more efficient implementations of the max-product and min-product were
used [33].

For a fair comparison of the number of artificial neurons or processing elements
in the constructive MNNs, we have implicitly expressed each individual model as a
feedforward model with one hidden layer and competitive output nodes and we have
counted the number of hidden nodes or hyperboxes that were constructed during the
learning phase. The same sequence of training patterns appearing on the respective
internet sites were employed for training the constructive MNNs [36, 6].

4.1 Ripley’s Synthetic Problem

Ripley’s synthetic dataset [36] consists of data samples from two classes [35, 36].
Each sample has two features. The data are divided into a training set and a test set
consisting of 250 and 1000 samples, respectively, with the same number of sam-
ples belonging to each of the two classes. Thus, we obtain a binary classification
problem in R2. Figures 3, 4, and 5 provide for more insight into the constructive
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Fig. 3 Decision surfaces of an MP represented by by the continuous line and of an MP
with competitive output nodes represented by the difference in shading. Training patterns
belonging to class 0 are plotted using ”+” symbols. Training patterns belonging to class 1 are
plotted using ”◦” symbols.

MNNs by visualizing the decision surfaces that are generated by these models after
training (Figure 5 also includes the decision surface corresponding to an MLP with
ten hidden nodes). Here, we have used the same order in which the training patterns
appear on Ripley’s internet site. We would like to clarify that the decision surfaces
vary slightly depending on the order in which the training patterns are presented to
the constructive morphological models.

Recall that the decision surfaces of the constructive morphological models are
determined by N-dimensional hyperboxes, i.e., rectangles for N = 2. This fact is
clearly visible in the decision surfaces of the MP and the MPD with hardlimiting
output units, that are pictured by means of the continuous lines in Figures 3 and 4.

In addition, Figures 3, 4, and 5 reveal that the decision surfaces generated by
the MP/C, MPD/C, and FLNN models deviate from rectangular appearance of the
ones generated by the basic MP and MPD models. In this context, recall that the
MP/C and MPD/C models construct separate families of hyperboxes for the training
patterns of each class. Each family of hyperboxes is associated to a different class
and corresponds to a certain output node. Upon presentation of an input pattern x
to the MP/C or MPD/C model a competition among the output nodes occurs that
determines the result of classification.

In the FLNN model a similar competition occurs in the category layer. More
precisely, the FLNN uses information on the degrees of inclusion p(x,wi) of an
input pattern x in the hyperboxes wi for classification by associating x to the class
of the hyperbox wi in which x exhibits the highest degree of inclusion. This property
of the FLNN is evidenced by the diagonal lines in its decision surface (cf. Figure 5).

The training algorithms of all types of constructive MNNs are guaranteed to
produce decision surfaces that perfectly separate the training patterns with differ-
ent class labels. However, the training algorithms of the MP/C, the MPD/C, and
the FLNN may result in overlapping hyperboxes with distinct class memberships
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Fig. 4 Decision surfaces of
an MPD represented by by
the continuous line and of
an MPD with competitive
output nodes represented by
the difference in shading.
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although this event did not happen in our simulations with Ripley’s synthetic dataset
when using the MP/C and MPD/C models. Concerning the FLNN, Figure 5 depicts
intersections of rectangles with distinc class labels using a darker shade of gray.
These sets of intersection correspond to regions of indecision since a pattern x that
is contained in both wi and w j with ci �= c j satisfies p(x,wi) = 1 = p(x,w j).

Table 1 exhibits the results that we obtained concerning the classification per-
formance and the computational effort required by the individual models. The MP
training algorithm described in Section 3.1.1 automatically generated 19 hyperboxes
corresponding to 19 (augmented) hidden neurons capable of evaluating Equation 33.
In a similar manner, training an MPD using the constructive algorithm of Ritter and
Urcid [38] yielded 19 dendrites that correspond to 19 hidden computational units.
In contrast to the basic MP and MPD models, the MP/C and MPD/C generate one
family of hyperboxes for each class of training patterns. Since Ripley’s synthetic
problem represents a binary classification problem, the number of hidden compu-
tational units in the MP/C and MPD/C models is approximately twice as high as
in the MP and MPD. The FLNN grew 46 neurons in the category layer during the
training phase. Moreover, we compared the morphological models with an MLP
with ten hidden nodes that was trained using gradient descent with momentum and
adaptive step backpropagation rule (learning rate η = 10−4, increase and decrease
parameters 1.05 and 0.5 respectively, momentum factor α = 0.9). In addition, we
used 25-fold cross-validation in conjunction with the MLP and chose the weights
that led to the least validation error.

Table 1 reveals that the MP and MPD models including their variants with com-
petitive nodes converge rapidly to a set of weights that yield perfect separation of
the training data. The FLNN model also produces no training error but the conver-
gence of the training algorithm is slower yet not quite as slow as MLP training. All
the models we tested exhibited satisfactory results in classification. The MPD yields
the highest classification error for testing which is due to the fact that, in contrast
to the MP training algorithm, no expansion of the hyperboxes corresponding to C1

patterns takes place in MPD training (this is why the MPD learns faster than the
MP). This lack of expansion does not cause any problems if competing hyperboxes
are constructed for patterns of both classes as is the case for the MPD/C.
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Fig. 5 Decision surfaces of an FLNN represented by the difference in shading (dark regions
refer to areas of uncertainty where hyperboxes with different class labels overlap) and of an
MLP represented by the continuous line.

As the reader may recall by taking a brief glance at Figure 5, the FLNN produces
areas of indecision, i.e., overlapping hyperboxes with distinct class memberships.
If these areas of indecision are assigned to either one of the two classes, the per-
centages of misclassification for testing are 11.40% and 12.00%, respectively. Oth-
erwise, if no decision is taken then we obtain a classification error of 14.2%. In any
case, the MP/C model exhibits the best classification performance.

4.2 Image Segmentation Problem

The Image Segmentation Dataset was donated by the Vision Group, University of
Massachussets, and is included in the Machine Learning Repository of the Univer-
sity of California, Irvine [6]. This dataset consists of 210 samples for training and
2100 samples for testing. The data have 19 continous attributes. Each sample is
decribed by 19 continous attributes and corresponds to a 3 × 3 region that was ran-
domly drawn from an outdoor image. The images were handsegmented to create a
classification for every pixel. The goal is to distinguish between 7 different classes:
grass, cement, foliage, brickface, path, sky, and window. The MP and MPD can not
be applied directly to such a multi-class problem.

Therefore, we considered the MP/C, the MPD/C, the FLNN, and a MLP. We
chose to train an MLP with twenty hidden neurons using the Levenberg-Marquardt
algorithm because this algorithm produced the lowest classification error for testing
with the Image Segmentation Dataset in a recent paper [10]. Actually, we found
a testing error of 26.81% that is slightly lower than the error of 28.13% found by
Coskun and Yildirim.

The FLNN yields an excellent recognition rate of 90% of the test patterns without
the use of any fine tuning as required by other networks [27]. In this case no action



140 P. Sussner and E.L. Esmi

with respect to the region of indecision was taken. The classification error can be
lowered to 9.6% by associating a pattern x contained in the region of indecision with
the first class label having value 1. The MLD/C and MP/C also exhibit a better clas-
sification performance than the MLP. The high number of hidden neurons grown by
the MP/C is probably due to the provisions that were taken to circumvent problems
of convergence of the training algorithm. We suspect that these problems are caused
by integer-valued attributes of training patterns with different class labels.

5 Conclusions

This paper provides an overview and a comparison of morphological neural net-
works (MNNs) for pattern recognition with an emphasis on constructive MNNs,
which automatically grow hidden neurons during the training phase. We have de-
fined MNNs as models of artificial neural networks that perform an elementary op-
eration of mathematical morphology at every node followed by the application of an
activation function. The elementary morphological operations of erosion, dilation,
anti-erosion, and anti-dilation can be defined in an arbitrary complete lattice.

In many cases, the underlying complete lattice of choice is R̄n which has allowed
researchers to formulate morphological neurons (implicitly) in terms of the additive
maximum and additive minimum operations in the bounded lattice ordered group
(R̄,∨,∧,+,+′) - often without being aware of this connection to minimax algebra
[13, 51]. In this setting, the elementary morphological operations can be expressed
in terms of maximums (or minimums) of sums, which lead to fast neural computa-
tional and easy hardware implementation [33, 38].

As to the resulting models of morphological neurons, recent research results have
revealed that the maximum operation lying at the core of morphological neurons is
neurobiologically plausible [58]. We have to admit though that there is no neuro-
physiological justification for summing the inputs and the synaptic weights. This
lack of neurobiological plausibility can be overcome by means of the isomorphism
between the algebraic structure (R̄,∨,∧,+,+′) and (R≥0

∞ ,∨,∧, ·, ·′) that transforms
additive maximum/minimum operations into multiplicative maximum/minimum
operations [52]. In this context, we intend to investigate the connections between
MNNs and min-max or adaptive logic networks that combine linear operations with
minimums and maximums [2].

In this paper, we have related another lattice based neuro-computing model,
namely the fuzzy lattice neural network (FLNN), to MNNs. Specifically, we ex-
plained that the FLNN can be considered to be one of the constructive MNN models.
Morphological perceptrons (MPs) and morphological perceptrons with dendrites
(MPDs) also belong to the class of constructive MNN models. In this paper, we
introduced a modified MP training algorithm that only requires a finite number of
epochs to converge, resulting in a decision surface that perfectly separates the train-
ing data. Furthermore, incorporating competitive neurons into the MP and MPD
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models led to the MP/C and MPD/C models that can be trained using extensions
of the MP and MPD training algorithms. Further research has to be conducted to
devise more efficient training algorithms for these new morphological models.

Finally, this article has empirically demonstrated the effectiveness of constructive
morphological models in simulations with two well-know datasets for classification
[36, 6] by analyzing and comparing the error rates and the computational effort for
learning. In general, the constructive morphological models exhibited very satisfac-
tory classification results and - except for the FLNN - extremely fast convergence of
the training algorithms. On one hand, the constructive morphological models often
require more artificial neurons or computational units than conventional models. On
the other hand, morphological neural computations based on max-products or min-
products are much less complicated than the usual semi-linear neural computations.
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A Feedforward Constructive Neural Network 
Algorithm for Multiclass Tasks Based on Linear 
Separability 

João Roberto Bertini Jr. and Maria do Carmo Nicoletti1 

Abstract. Constructive neural network (CoNN) algorithms enable the architecture 
of a neural network to be constructed along with the learning process. This chapter 
describes a new feedforward CoNN algorithm suitable for multiclass domains 
named MBabCoNN, which can be considered an extension of its counterpart Bab-
CoNN, suitable for two-class classification tasks. Besides describing the main con-
cepts involved in the MBabCoNN proposal, the chapter also presents a comparative 
analysis of its performance versus the multiclass versions of five well-known con-
structive algorithms, in eight knowledge domains, as empirical evidence of the 
MBabCoNN suitability and efficiency for multiclass classification tasks. 

Keywords: Constructive neural network algorithm, LS-discriminant learning, 
Barycentric Correction Procedure, Multiclass classification. 

1   Introduction 

There are many different methods that allow the automatic learning of concepts, 
as can be seen in [1] and [2]. One particular class of relevant machine learning 
methods is based on the concept of linear separability (LS). 

The concept of linear separability permeates many areas of knowledge and 
based on the definition given in [3] it can be stated as: Let E be a finite set of N 
distinct patterns {E1, E2, …, EN}, each pattern Ei (1 ≤ i ≤ N) described as Ei = 
〈x1,…,xk〉, where k is the number of attributes that defines a pattern. Let the pat-
terns of E be classified in such a way that each pattern in E belongs to only one of 
the M classes Cj (1 ≤ j ≤ M). This classification divides the set of patterns E into 
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the subsets EC1, EC2, …, ECM, such that each pattern in ECi belongs to class Ci, 
for i = 1, …, M. If a linear machine can classify the patterns in E into the proper 
class, the classification of E is a linear classification and the subsets EC1, EC2, …, 
ECM are linearly separable. Stated another way, a classification of E is linear and 
the subsets EC1, EC2, …, ECM, are linearly separable if and only if linear dis-
criminant functions g1, g2, …, gM exist such that 

gi(E) > gj(E) 

j = 1, …, M, j≠i 

for all E ∈ ECi 

for all i = 1, …, M 

Since the decision regions of a linear machine are convex, if the subsets EC1, 
EC2, …, ECM are linearly separable, then each pair of subsets ECi, ECj, i, j = 1, …, 
M, i ≠ j, is also linearly separable. That is, if EC1, EC2, …, ECM, are linearly sepa-
rable, then EC1, EC2, …, ECM, are also pairwise linearly separable. 

According to Elizondo [4], linearly separable based learning methods can  
be divided into four groups. Depending on their main focus they may be based 
on linear programming, computational geometry, neural networks or quadratic 
programming. 

This chapter describes a new neural network algorithm named MBabCoNN 
(Multiclass Barycentric-based Constructive Neural Network) suitable for multi-
class classification problems. The algorithm incrementally constructs a neural 
network by adding hidden nodes that linearly separate sub-regions of the feature 
space. It can be considered a multiclass version of the two-class CoNN named 
BabCoNN (Barycentric-based Constructive Neural Network) proposed in [5]. 

The chapter is an extended version of an earlier paper [6] and is organized as fol-
lows. Section 2 stresses the importance of CoNN algorithms and discusses the role 
played by the algorithm used for training individual Threshold Logic Units (TLU), 
particularly focusing on the BCP algorithm [7]. Section 3 highlights the main char-
acteristics of the five well-known CoNN multiclass algorithms used in the empirical 
experiments described in Section 5. Section 4 initially outlines the basic features of 
the two-class BabCoNN algorithm briefly presenting the main concepts and strate-
gies used by BabCoNN when learning and classifying and,presents a detailed de-
scription of the multiclass MBabCoNN algorithm divided into two parts: learning 
the neural network and using the network learnt for classifying previously unseen 
patterns. Section 5 presents and discusses the results of 16 algorithms; four of them 
are versions of PRM and BCP for multiclass tasks and the other 12 are variants of 
the basic multiclass algorithms used, namely: MTower, MPyramid, MUpstart, 
MTiling, MPerceptron-Cascade and MBabCoNN in eight knowledge domains from 
the UCI Repository [8]. The Conclusion section ends the chapter by presenting a 
summary of the main results highlighting a few possible research lines to investi-
gate, aiming at improving the MBabCoNN algorithm. 

2   Constructive NN and the Relevance of TLU Training 

Whereas conventional neural network (NN) training algorithms such as the Back-
propagation algorithm require the NN architecture to be defined before learning 
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can begin, constructive neural network (CoNN) algorithms allow the network ar-
chitecture to be constructed simultaneously with the learning process; both sub-
processes, learning and constructing the network, are interdependent. 

Constructive neural network (CoNN) algorithms do not assume fixed network 
architecture before training begins. The main characteristic of a CoNN algorithm 
is the dynamic construction of the network’s hidden layer(s), which occurs simul-
taneously with training. A description of a few well-known CoNN algorithms can 
be found in [9] and [10]; among the most well-known are: Tower and Pyramid 
[11], Tiling [12], Upstart [13], Perceptron-Cascade [14], Pti and Shift [15]. 

2.1   Training Individual TLUs 

Usually the basic function performed by a CoNN algorithm is the addition to the net-
work architecture of a new TLU and its subsequent training. For this reason CoNN al-
gorithms are very dependent on the TLU training algorithm used. For training a TLU, 
a constructive algorithm generally employs the Perceptron or any of its variants, such 
as Pocket or Pocket with Ratchet Modification (PRM) [11]. Considering that CoNN 
algorithms depend heavily on an efficient TLU training algorithm, there is still a need 
for finding new and better methods, although some of the Perceptron variants (espe-
cially the PRM) have been widely used with good results. 

The Barycentric-based Correction Procedure (BCP) algorithm [7] [16], al-
though not widely adopted, has performed well when used for training individual 
TLUs (see [17] for instance) and has established itself as a good competitor com-
pared to the PRM when used by CoNN algorithms (see [18] for a performance 
comparison). Good results have also been obtained by allowing both algorithms 
(BCP and PRM) to compete for training the next neuron to be added to the net-
work; the proposal of this hybrid constructive algorithm and its results can be 
found in [19]. In spite of BCP being poorly explored in the literature, its good per-
formance motivated the choice of this algorithm as the TLU’s training algorithm 
embedded in both the BabCoNN and its multiclass version MBabCoNN, de-
scribed in this chapter. 

The BCP is based on the geometric concept of the barycenter of a convex hull 
and the algorithm (for a two-class problem) iteratively calculates the barycenters 
of the regions defined by the positive and the negative training patterns. Unlike 
Perceptron based algorithms, this algorithm calculates the weight vector and the 
bias separately. The BCP defines the weight vector as the vector that connects two 
points: the barycenter of the convex hull of positive patterns (class +1) and the 
barycenter of the convex hull defined by negative patterns (class −1). The convex 
hull of an n-dimensional set of points E is the intersection of all convex sets con-
taining E, and the barycenter stands for its center of mass [20]. It follows a brief 
overview of the BCP algorithm. 

Let E = E1 ∪ E2 be a training set such that E1 is the subset of training patterns 
with class 1 and E2 the set of training patterns with class −1, and let |E1| = k1 and 
|E2| = k2. The barycenters b1 and b2 represent the center of mass of the convex hull 
formed by patterns belonging to each class, respectively. In the algorithm they are 
defined as the weighted averages of patterns in E1 and E2 respectively as de-
scribed by eq. (1), 
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where α and μ are weight vectors, α = 〈α1,α2, …, αk
1
〉 and μ = 〈μ1, μ2, …, μk

2
〉, re-

sponsible for modifying the position of the barycenters. For the experiments de-
scribed in Section 5, both weight vectors were randomly initialized in the range 
[1,2], as recommended in [17]. They are used to vary the barycenters, at each exe-
cution, increasing the probability of finding a better weight vector. 

In the BCP procedure the weight vector is defined as W = b1 – b2 and the hy-
perplane it defines is given by W.x + θ = 0, where θ is the bias term. Once W is 
determined, the bias term θ is separately defined according to the following pro-
cedure. Let p be a pattern and consider the function V: Rn → R given by eq. (2). 

V(p) = −W.p  (2)

Consider subsets V1 = {V(p) | p ∈ E1} and V2 = {V(p) | p ∈ E2} and let V = 
V1 ∪ V2. The greatest and the smallest values of V1 and V2 are then determined. 
If max(V1) < min(V2), the training set is linearly separable and θ is chosen such 
that max(V1) < θ < min(V2) and the algorithm ends. Otherwise either the set is 
not linearly separable or the current weight vector is not correctly positioned.  

If max(V1) ≥ min(V2) the chosen value for θ should minimize the misclassifi-
cations. To do so, consider the set Ex = {ext1, ext2, ext3, ext4} whose values cor-
respond to the smallest and biggest values of V1 and V2 respectively. Consider P− 
= [ext1,ext2) ∩ V; P+ = [ext3,ext4) ∩ V and Pov = [ext2,ext3) ∩ V. As sets P− and 
P+ have patterns belonging to only one class, they are called exclusion zones. 
Since Pov has patterns belonging to both classes it is called the overlapping zone. 
To choose an appropriate bias, the algorithm iteratively establishes its value as the 
arithmetic mean of two consecutive values in the overlapping zone. The value that 
correctly classifies the greatest number of patterns is chosen as bias. 

At a certain, iteration let R and S be the sets of patterns belonging to classes 1 
and −1 respectively and let b1 and b2 be the barycenters of region R and S respec-
tively (calculated as in eq. (1)). Let RE ⊂ R and SE ⊂ S be the subsets of misclas-
sified patterns. The algorithm determines the barycenters be1’ and be2’ of RE and 
SE respectively and then, creates two vectors e1 = b1 − be1’ and e2 = b2 − be2’. The 
two vectors are then multiplied by random values from [0,1], say r1 and r2, giving 
rise to the new barycenters b1’ = r1.e1 and b2’ = r2.e2. A new weight vector W’ (and 
consequently the new hyperplane H’), is then obtained by connecting the new 
barycenters. The process continues while wrongly classified patterns remain or the 
number of iterations has not reached its predefined value. Due to its geometric ap-
proach, the BCP ends after a few iterations and the final hyperplane tends to be a 
good separator between the two classes, even in situations where the training set is 
not linearly separable. 
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3   Reviewing Five Well-Known Multiclass CoNN Algorithms 

Multiclass classification tasks are common in pattern recognition. Frequently a 
classification task with M (> 2) classes is treated as M two-class tasks. Although 
this approach may be suitable for some applications, there is still a need for more 
effective ways of dealing with multiclass problems. CoNNs have proved to be a 
good alternative for two-class tasks and have the potential to become good alterna-
tives for multiclass domains as well. 

Multiclass constructive algorithms start by training as many output neurons as 
there are classes in the training set; generally two different strategies can be em-
ployed for the task, the independent (I) and the winner-takes-all (WTA). As stated 
in [21] in the former strategy each output neuron is trained independently of the 
others. The WTA strategy, however, explores the fact that the membership of a 
pattern in one class prevents its belonging to any other class. Using the WTA 
strategy, for any pattern, the output neuron with the highest net input is assigned 
an output of 1 and all other neurons are assigned outputs of −1. In the case of a tie 
for the highest net input all neurons are assigned an output of −1, thereby render-
ing the pattern incorrectly classified.  

The main goal of this section is to provide a brief overview of the five well-
known multiclass CoNN algorithms used in the experiments (for a more detailed 
description see [9]) described in Section 5 and to describe the new multiclass algo-
rithm MBabCoNN. So far, multiclass problems have not been the main focus of 
CoNN research and consequently most of the multiclass algorithms available are 
extensions of their two-class counterparts.  

The multiclass MTower algorithm was proposed in [22] and can be considered 
a direct extension of the two-class Tower algorithm. The Tower creates a NN with 
only one TLU per hidden layer. In a Tower network [11] each new hidden neuron 
introduced is connected to all the input neurons and to the hidden neuron previ-
ously created – this causes the network to resemble a tower. Similarly to the two-
class Tower, the MTower adds TLUs to the network; instead of one at a time, like 
the Tower, it adds as many hidden neurons as there are classes. 

For an M-class problem, the MTower adds M hidden neurons per hidden layer. 
Each one of the M neurons in a certain hidden layer has connections with all the 
neurons in the input layer as well as connections with all the M neurons of the 
previously added hidden layer. The addition of new layers to the network ends 
when any of the following stopping criteria is satisfied: (1) the current network 
correctly classifies all the training patterns; (2) the threshold on the number of lay-
ers has been reached; (3) the current network accuracy is worse than the accuracy 
of the previous network (i.e., the current network without the addition of the last 
hidden layer). If (3) happens the algorithm removes the last layer added and ends 
the process, returning the network constructed so far. 

The multiclass MPyramid, also proposed in [22], is a direct extension of its 
two-class counterpart Pyramid algorithm, described in [11]. MPyramid extends 
the Pyramid simply by adding M hidden neurons per layer (corresponding to the 
existing M classes in the training set) instead of only one at each step. The differ-
ence between the Tower and Pyramid algorithms (and consequently between their 
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M-class versions) lies on the connections. In a Pyramid network each newly added 
hidden neuron has connections with all the previously added hidden ones as well 
as with the input neurons. 

The two-class Upstart algorithm [13] constructs the neural network as a binary 
tree of TLUs and it is governed by the addition of new hidden neurons, specialized 
in correcting wrongly-on or wrongly-off errors made by the previously added neu-
rons. A natural extension of this algorithm for multiclass tasks would be an algo-
rithm that constructs M binary trees, each one responsible for the learning of one 
of the M classes found in the training set. This approach, however, would not take 
into account a possible relationship that might exist between the M different 
classes. The MUpstart proposal, described in [23], tries to circumvent the problem 
by grouping the created hidden neurons in a single hidden layer. Each hidden neu-
ron is created aiming at correcting the most frequent error (wrongly-on or 
wrongly-off) committed by a single neuron among the M output neurons. The hid-
den neurons are trained with patterns labeled with two classes only and they can 
fire 0 or 1. Each hidden neuron is directly connected to every neuron in the output 
layer. The input layer is connected to the hidden neurons as well as to the output 
neurons. 

The Tiling algorithm [12] constructs a neural network where hidden nodes are 
added to a layer in a similar fashion to laying tiles. Each hidden layer in a Tiling 
network has a master neuron and a few ancillary neurons. The output layer has 
only one master neuron. Tiling constructs a neural network in successive layers 
such that each new layer has a smaller number of neurons than the previous layer. 
Similarly to this approach, the MTiling method, as proposed in [24], constructs a 
multi-layer neural network where the first hidden layer has connections to the in-
put layer and each subsequent hidden layer has connections only to the previous 
hidden layer. Each layer has master and ancillary neurons with the same functions 
they perform in a Tiling network i.e., the master neurons are responsible for classi-
fying the training patterns and the ancillary ones are responsible for making the 
layer faithful. The role played by the ancillary neurons in a hidden layer is to 
guarantee that the layer does not produce the same output for any two training pat-
terns belonging to different classes. In the MTiling version the process of adding a 
new layer is very similar to the one implemented by Tiling. However, while the 
Tiling algorithm adds only one master neuron per layer, the MTiling adds M mas-
ter neurons (where M is the number of different classes in the training set). 

The Perceptron Cascade algorithm [14] is a neural constructive algorithm that 
constructs a neural network with an architecture resembling the one constructed 
by the Cascade Correlation algorithm [25] and it uses the same approach for  
correcting the errors adopted by the Upstart algorithm [13]. Unlike the Cascade 
Correlation however, the Perceptron Cascade uses the Perceptron (or any of its 
variants) for training individual TLUs). Like the Upstart algorithm, the Perceptron 
Cascade starts the construction of the network by training the output neuron and 
hidden neurons are added to the network similarly to the process adopted by the 
Cascade Correlation: each new neuron is connected to both the output and input 
neurons and has connections with all hidden neurons previously added to the net-
work. The MPerceptron-Cascade version, proposed in [22], is very similar to the 
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MUpstart described earlier in this section, the main difference between them being 
that the neural network architecture induced by both. The MPerceptron-Cascade 
adds the new hidden neurons in new layers while the MUpstart adds them in one 
single layer. 

4   The Multiclass MBabCoNN Proposal 

The MBabCoNN proposal can be considered an extension of the two-class algo-
rithm called BabCoNN [5], suitable for classification tasks involving M > 2 
classes. In order to present and discuss the MBabCoNN proposal, this section ini-
tially presents a brief description of the most important features of the BabCoNN 
algorithm, paying particular attention to the mechanism employed by the hidden 
neurons for firing their outputs, since the MBabCoNN shares the same strategy. 
To facilitate the understanding of MBabCoNN, the learning and the classification 
processes implemented by the algorithm are approached separately; the trace of 
both processes is shown via an example. 

4.1   The Two-Class BabCoNN Algorithm 

BabCoNN is a new proposal that borrows some ideas from the BCP to build a 
neural network. Like Upstart, Perceptron Cascade (PC) and Shift, BabCoNN also 
constructs the network beginning with the output neuron. However, it creates only 
one hidden layer; each hidden neuron is connected to the input layer as well as to 
output neuron, like the Shift algorithm [15]. Unlike Shift however, the connections 
created by BabCoNN do not have an associated weight. The Upstart, PC and Shift 
algorithms construct the network by adding new hidden neurons specialized in 
correcting wrongly-on or wrongly-off errors. The BabCoNN, however, employs a 
different strategy to add new hidden neurons to the network. 

Network construction starts by training the output neuron, using the BCP. Next, 
the algorithm identifies all the misclassified training patterns; if there are none, the 
algorithm stops, otherwise it starts adding neurons (one at a time) to the single 
hidden layer of the network, in order not to have misclassified patterns. A hidden 
neuron added to the hidden layer will be trained with the training patterns that 
were misclassified by the last added neuron; the first hidden neuron will be trained 
with the patterns that were misclassified by the output neuron; the second hidden 
neuron will be trained with the set containing the patterns that the first hidden neu-
ron was unable to classify correctly, and so on. The process continues up to the 
point where no training patterns remain or all the remaining patterns belong to the 
same class. 

The process of building the network architecture is described by the pseu-
docode given in Fig. 1, where E = {E1, E2,…EN} represents the training set and 
each training pattern is described as Ei = 〈x1, x2,…xk, C〉, i.e., k attributes and an 
associated class C ∈ {–1, 1}. 

In Fig. 1 the variables output and hiddenLayer[ ] define the neural network. 
The variable output represents a single neuron, and hiddenLayer[ ] is a vector  
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representing the hidden neurons. The function bcp( ) stands for the BCP algo-
rithm, used for training individual neurons. The function removeClassifiedPat-
terns( ) removes from the training set the patterns that were correctly classified  
by the last added neuron and bothClasses( ) is a Boolean function that returns 
‘true’ if the current training set still has patterns belonging to both classes and 
‘false’ otherwise.  

Due to the way the learning phase is conducted by BabCoNN, each hidden neu-
ron of the network is trained using patterns belonging to a region of the training 
space (i.e., the one defined by the patterns that were misclassified by the previous 
hidden neuron added to the network). This particular aspect of the algorithm has 
the effect of introducing an undesirable ‘redundancy’, in the sense that a pattern 
may be correctly classified by more than one hidden neuron. This has been sorted 
out by implementing a classification process where the neurons of the hidden layer 
have a particular way of firing their output. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 BabCoNN algorithm for constructing a neural network. 

Given an input pattern to be classified by a BabCoNN network, each hidden 
neuron has three possible outputs: 1, when the input pattern is classified as posi-
tive; −1, when the pattern is classified as negative and 0, when the pattern is clas-
sified as undetermined. Aiming at stressing the classification power of the hidden 
neurons, as well as providing a way for them to deal with unknown patterns, a 
limited ‘region of action’ is assigned to each hidden neuron. The region is limited 
by two thresholds associated to each hidden neuron, one for the positive class and 
the other for the negative class. The threshold values are determined as the largest 
Euclidean distance between the barycenter of a given class and the patterns of the 
same class are used to train the current neuron.  

Figure 2 illustrates the process. The two-dimensional patterns used for training 
the hidden neuron are represented by ‘+’ (positive) and ‘–’ (negative); b1 and b2 
are the barycenters of the regions defined by the ‘+’ and the ‘−’ patterns respec-
tively; W is the weight vector after the training and H is the hyperplane defined by 

procedure BabCoNN_learner(E) 
begin 

output ← bcp(E) 
nE ← removeClassifiedPatterns(E) 
h ← 0 
while bothClasses(nE) do 
  begin 

h ← h + 1 
hiddenLayer[h] ← bcp(nE) 
nE ← removeClassifiedPatterns(nE) 

  end 
end procedure. 
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both, W and the bias. For each class, the region is defined as the hypersphere 
whose radius is given by the largest distance between all correctly classified pat-
terns and the corresponding barycenter of the region. 

To exemplify how a hidden neuron behaves during the classification phase, let 
each Yi = 〈yi1, yi2〉, i = {1, 2 ,3 ,4} be a given pattern to be classified. As can be 
seen in Figure 2, four situations may occur:  

(1) The new pattern (Y1) is in the positive classification region of the hidden 
neuron. The pattern Y1 is classified as positive by the neuron, which 
fires +1;  

(2) The new pattern (Y2) is in the positive region, but now lying on the other 
side of the hyperplane; this would make the neuron classify Y2 as nega-
tive. However, the neuron will fire the value 0 since there is no guarantee 
that the pattern is negative; 

(3) The new pattern (Y3) is not part of any region; in this case the neuron fires 
the value 0 independently of the classification given by the hyperplane it 
represents; 

(4) The new pattern (Y4) is in the negative classification region of the hidden 
neuron. The pattern Y4 is classified as negative and the neuron fires the 
value −1. Note that the regions may overlap with each other and, eventu-
ally, a pattern may lie in both regions. When that happens, the hidden neu-
ron (as implemented by the version used in the experiments described in 
Section 5) assigns the pattern the class is given by the hyperplane.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2 BabCoNN hidden neuron firing process. 

The pseudocode of the classification procedure is described in Fig. 3. After 
each hidden neuron fires its output, the output neuron decides which class the 
given pattern belongs to. The decision process is based on the sum of all the  
responses; if the resulting value is positive, the pattern is classified as positive, 
otherwise, as negative. If the sum result is 0, the output node is in charge of classi-
fying the pattern.  
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The function classification( ) returns the neuron classification (1 or –1), this is 
the usual classification that uses the weight vector and bias. Both functions  
belongsToPositive( ) and belongsToNegative( ) are Boolean functions. The first 
returns ‘true’ if the pattern lies in the positive region and ‘false’ otherwise. The 
second returns ‘true’ if the pattern lies in the negative region and ‘false’ otherwise. 
The Hlc[ ] vector stores the classifications given by all hidden neurons, for a 
given pattern and the last conditional command in the classification algorithm de-
fines the class associated with the input pattern X.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 BabCoNN classification process. 

4.2   The MBabCoNN Learning Algorithm 

Figure 4 presents the pseudocode of the algorithm that implements the MBab-
CoNN learning process; the input to the algorithm is the training set E with pat-
terns belonging to M > 2 classes. MBabCoNN can deal with Boolean, integer and 
real-valued tasks.  

MBabCoNN constructs the network beginning with the output layer containing 
as many neurons as there are classes in the training set (each output neuron is as-
sociated to a class). The algorithm is flexible enough to allow the output neurons 
to be trained using any TLU algorithm combined with either strategy, independent 
or WTA. 

After adding and training the M output neurons using procedure MTluTraining( ), 
the algorithm identifies the misclassifications the current network makes on the 
training set, via procedure evaluateNetwork( ), and starts to add neurons to its single 
hidden layer in order to correct the classification mistakes made by the output  
neurons. 

procedure BabCoNN_classifier(X) 
{X is the pattern to be classified} 
begin 

for i ← 1 to h do 
  begin 

C ← classification(hiddenLayer[i], X) 
Bp ← belongsToPositive(hiddenLayer[i], X) 
Bn ← belongsToNegative(hiddenLayer[i], X) 
if (C = 1 and Bp) then Hlc[i] ← 1 
                             else if (C = –1 and Bn)  

                                   then Hlc[i] ← –1  
                                   else Hlc[i] ← 0 

  end 
sum ← 0 
for j ← 1 to h do  
     sum ← Hlc[j] + sum 
if sum ≠ 0 then sum / |sum| 
                  else classification(output,X) 

end procedure. 
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In a MBabCoNN neural network each hidden neuron can be considered a  
two-class BabCoNN-like hidden neuron, i.e. it only fires 1, −1 or 0 values. In or-
der to add a hidden neuron, MBabCoNN first finds which output neuron (class) is 
responsible for the greatest number of misclassifications in relation to patterns be-
longing to all the other output classes, via highest_wrongly-on_error( ), detailed in 
Figure 5. 

A hidden neuron is then added to the hidden layer and is trained with a set con-
taining patterns of two classes only: those belonging to the class the output neuron 
represents (which are relabeled as class −1) and those belonging to the misclassi-
fied class (which are relabeled as class 1). 

Each newly added hidden neuron is then connected only to the two output neu-
rons whose classes it separates. The connection to the neuron responsible for the 
misclassifications has weight 1 and the other −1. In fact the classes’ labels can be 
arbitrarily chosen, the only proviso is that the weight must correspond to the rela-
beled class of the output neuron in question, e.g. the connection associated with a 
neuron recently represented by label 1 must be 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Pseudocode of the MBabCoNN learning procedure. 

As mentioned before in situations of uncertainty, BabCoNN neurons fire 0; 
this is convenient in a multiclass situation because it causes no side effects con-
cerning the other patterns that do not belong to either two classes responsible for 
the hidden neuron creation. After a hidden neuron is added, the whole training set 
is input to the network grown so far and the classification process is repeated  
 

procedure MBabCoNNLearner(E)  
begin 
   currentAccuracy ← 0, 
   previousAccuracy ← 0 
   output ← MTluTraining(E)   {output layer with M neurons for a M-class problem} 
   currentAccuracy ←  evaluateNetwork(E) 
   h ← 0 {hidden neuron index} 
   while (currentAccuracy > previousAccuracy) and (currentAccuracy < 1) do 
      begin 
         highest_wrongly-on_error(E,WrongNeuron,Wrongly-onClass) 
         twoClassesE ← createTrainingSet(WrongNeuron,Wrongly-onClass,E) 
         h ← h + 1 
         hiddenLayer[h] ← bcp(twoClassesE)               {hidden BabCoNN neuron} 
         previousAccuracy ←  currentAccuracy 
         currentAccuracy ← evaluateNetwork(E) 
      end 
   if currentAccuracy ≠ 1 then begin  
                                                    remove(hiddenLayer,h) 
                                                    h ← h – 1 
                                                 end 
end procedure. 
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again. Depending on the classification accuracy, new hidden neurons may be 
added to the network in a similar fashion as the one previously described. If with  
 

the addition of a new hidden neuron the accuracy of the network decreases, the 
new hidden neuron is removed and the learning process ends. The other trivial 
stopping criteria is the convergence of the network i.e., when the network makes 
no mistakes).  

Fig. 5 Pseudocode for determining the neuron responsible for the highest number of 
wrongly-on misclassifications as well as for the corresponding misclassified class. 

4.3   An Example of the MBabCoNN Learning Algorithm 

This section shows a simple example of the MBabCoNN learning algorithm ac-
cording to the pseudocode described in Fig. 4. The example considers a training 
set with six training patterns identified by numbers 1 to 6 describing three classes 
identified by numbers 1 to 3. The figure on the left shows a MBabCoNN network 
after training the output neurons and, on the right, the four misclassifications it 
makes. The following figures show the evolution of the network implemented by 
MBabCoNN in the process of correcting the misclassifications. 
 
 

procedure highest_wrongly-on_error(E,WrongNeuron,Wrongly-onClass) 
begin 
{initializing error matrix} 
 for i  ← 1 to M do 
   for j  ← 1 to M do  
      outputErr[i,j] ← 0 
{collecting errors made by output neurons in training set E={E1,E2,…,EN} } 
  for i  ← 1 to N do 
   begin 
       predClass ← MBabCoNN(Ei) 
       if predClass ≠ class(Ei) 
            then outputErr[predClass,class(Ei)] ← outputErr[predClass,class(Ei)] + 1 
   end 
{identifying which neuron makes the highest number of wrongly-on errors within a class} 
highWrong ← 0 
highErr ← 0 
highWrongly-onClass ← 0 
for i ← 1 to M do  
    for j  ← 1 to M do 
    if outputErr[i,j] > highErr 
      then begin 
                 highErr ← outputErr[i,j] 
                 highWrong ← i 
                 highWrongly-onClass ← j 
               end 
WrongNeuron ← highWrong  
Wrongly-onClass ← highWrongly-onClass 
end procedure. 
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Number of wrongly-on errors by u1: 0 
Number of wrongly-on errors by u2: 1 
Number of wrongly-on errors by u3: 3 (patterns #2, #3 (class 2) and #4 (class 1)) 
u3: has the highest number of wrongly-on errors within a class (misclassifies #2 and #3 from 
class 2). A new hidden neuron (h1) is added to the network and trained with all patterns be-
longing to class 2 and class 3 i.e., hidden neuron h1 is trained with E = {#2,#3,#5,#6}. 

                  class     new class label 
#2 2                    1 
#3 2                    1 
#5 3                  −1 
#6 3                  −1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Number of wrongly-on errors by u1: 0 
Number of wrongly-on errors by u2: 1 
Number of wrongly-on errors by u3: 1 (pattern #4 (class 1)) 
u2 and u3 have the highest number of wrongly-on errors within a class. Randomly choose one 
of them; u3 for example.  A new hidden neuron (h2) is added to the network and trained with 
all patterns belonging to class 1 and class 3 i.e., trained with E = {#1,#4,#5,#6}. 

                   class     new class label 
#1 1                    1 
#4 1                    1 
#5 3                  −1 
#6 3                  −1 

#P: pattern id; C: correctly classified; 
W: wrongly classified 
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Training set: {#1, #2, #3, #4, #5, #6} 
After the addition of h1, patterns #2 and #3 are 
correctly classified. 
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Number of wrongly-on errors by u1: 0 
Number of wrongly-on errors by u2: 1 (pattern #5 (class 3)) 
Number of wrongly-on errors by u3: 0 
u2 has the highest number of wrongly-on errors within a class. A new hidden neuron (h3) is 
added to the network and trained with all patterns belonging to class 3 and class 2 i.e., 
trained with E = {#5, #6, #2, #3}. 

                 class     new class label 
#5 3                    1 
#6 3                    1 
#2 2                  −1 
#3 2                  −1 

 
 
 
 
 
 
 
 
 
 
 
 
 

4.4   The MBabCoNN Classifying Algorithm 

The MBabCoNN classifying algorithm is described in Fig. 6. For the classification 
process an output neuron that has any connections to hidden neurons is said to 
have dependencies. 

In the pseudocode of Fig. 6, the procedure classification( ) approaches the 
network as constituted by a single output node indexed by output[ ] and no hidden 
neurons; the procedure gives as result the classification of the input pattern by the 
output node. 
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The classification process promotes the lack of dependency; if an output neuron 
fires 1 and has no dependencies then the class given to the pattern being classified 
is the class the neuron represents. Intuitively, an output neuron that does not create 
dependencies reflects the fact that it has not been associated with misclassifica-
tions during training. This can be an indication that the class represented by this 
particular neuron is reasonably easy to identify from the others (i.e., is linearly 
separable from the others). Figure 7 shows an example of this situation. 

 

 

Fig. 6 Pseudocode of the MBabCoNN procedure for classifying a new pattern. 

procedure MBabCoNN_classifier(X) 
{X: new pattern} 
{MBabCoNN network with M output neurons} 
begin 
 result ← 0, counter ← 0, neuronIndex ← 0  
j ← 1 
while (j ≤ M) and (counter < 2) do  
   begin 
     OutputClassification[j] ← classification(output[j],X)  {retrieves 1 or -1} 
     if OutputClassification[j] = 1 then  
            begin 
                 counter ← counter + 1 
                  neuronIndex ← j  
            end 
     j ←  j + 1 
   end  
 if ( (counter = 1) and not hasDependencies(output[neuronIndex]) ) 
   then result ← class(neuronIndex) 
   else 
     begin 
        for j  ← 1 to M do  
          begin 
           sum ← 0 
           for k ← 1 to h do  
                begin      {h is the number of  hidden neurons}  
                  if isConected(k,j)  then   {verifies connection between hidden neuron k and output j} 
                          sum ← sum + classification(hiddenLayer[k], X) {BabCoNN-like neuron} 
                   hiddenClassification[j] ←  sum 
               end 
         end  
       result ← class(greatest(hiddenClassification)) 
       {returns the class associated with the  index of the greatest value in hiddenClassification} 
    end 
end  procedure. 
  
 
 
 
 
 
 
end procedure. 
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Fig. 7 Two out of three output neurons have dependencies. 

In Fig. 7, two of the output neurons, u2 and u3 have dependencies (have con-
nections with hidden neurons) and neuron u1 does not have dependencies. If a new 
pattern is to be classified, the classification procedure checks if the output given 
by the node(s) that has (have) no dependencies (in this example, the u1) is +1; if 
that is the case the new pattern is assigned the class represented by u1 otherwise, 
the classification procedure takes into consideration only the sum of the outputs by 
the hidden neurons. 

In cases where hidden neurons fire value 0, the classification procedure ig-
nores the hidden neurons and takes into account the information given by the  
output neurons only. If, however, the output neuron that classifies the pattern has 
dependencies, the output result will be the sum of the outputs of all hidden neu-
rons. If the sum is 0 the output neuron will be in charge of classifying the pattern.  

The three output neurons, u1, u2 and u3, in the MBabCoNN network of Fig. 8 
have dependencies. Each output node has two connections with the added hidden 
neurons. A pattern to be classified will result in three outputs, one from each of 
the three hidden nodes (+1, −1 or 0), which will be multiplied by the connection  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 MBabCoNN network where the three output neurons have dependencies. 
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weight, producing values +1, −1 or 0. Each output neuron will sum the input re-
ceived from the hidden neurons and the pattern will be assigned the class repre-
sented by the output neuron with the highest score. 

5   Experimental Results and Discussion 

This section presents and compares the results of using MBabCoNN and the five 
other multiclass CoNN algorithms previously described, when learning from eight 
multiclass knowledge domains. Each algorithm was implemented in Java using 
two different algorithms for training individual TLUs, namely, the PRM and  
the BCP, identified in tables 2 to 9 by the suffixes P and B added to their names 
respectively. 

Also for comparative purposes, the results of running a multiclass version of 
PRM and BCP, each implemented in two versions, WTA and independent(I),  are 
presented. The eight knowledge domains used in the experiments have been 
downloaded from the UCI-Repository [8] and are summarized in Table 1. 

Taking into consideration the MBabCoNN proposal (implemented in two ver-
sions: MBabCoNNP and MBabCoNNB), the two different versions implemented 
for each of the five algorithms (MTower, MPyramid, MUpstart, MTiling and 
MPerceptron-Cascade) and the two different strategies employed for implement-
ing the MPRM and the MBCP, a total of 16 different algorithms have been im-
plemented and evaluated. 

Versions MBabCoNNP and MBabCoNNB differ in relation to the algorithm 
used for training their output neurons, the PRMWTA and the BCPWTA respec-
tively, since both versions use the BCP for training hidden neurons. In the ex-
periments, the accuracy of each neural network is based on the percentage of suc-
cessful predictions on test sets for each domain. For each of the eight datasets the 
experiments consisted of performing a ten-fold cross-validation process with 
each of the 16 algorithms. The results are the average of the ten runs followed by 
their standard deviation.  

Table 1 Domain Specifications 

Domain # PATTERNS # ATTRIBUTES # CLASSES 

Iris 150 4 3 

E. coli 336 7 8 

Glass 214 9 6 

Balance 625 4 3 

Wine 178 13 3 

Zoo 101 17 7 

Car 1,728 6 4 

Image Segmentation 2,310 19 7 
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Runs with the various learning procedures were carried out on the same train-
ing sets and evaluated on the same test sets. The cross-validation folds were the 
same for all the experiments in each domain. For each domain, each learning pro-
cedure was run considering one, ten, a hundred and a thousand iterations; only the 
best test accuracy among these iterations for each algorithm is presented. All the 
results obtained with MBabCoNN and the other algorithms (and their variants) are 
presented in tables 2 to 9, organized by knowledge domain. 

The following abbreviations were adopted for presenting the tables: #I: number 
of iterations, TR training set, TE testing set. The accuracy (Acc) is given as a per-
centage followed by the standard deviation value. The ‘Absolute Best’ (AB) col-
umn gives the best performance of the learning procedure (in TE) over the ten 
runs and the ‘Absolute Worst’ (AW) column gives the worst performance of the 
learning procedure (in TE) over the ten runs; #HN represents the number of hid-
den nodes; AB(HN) gives the smallest number of hidden nodes created and 
AW(HN) gives the highest number of hidden nodes created. 

Obviously the PRMWTA, PRMI, BCPWTA and BCPI do not have values for 
#HN, AB(HN) and AW(HN) because the networks they create only have input 
and output layers. 

In relation to the results obtained in the experiments shown in tables 2 to 9, it 
can be said that as far as accuracy in test sets is concerned, MBabCoNNP has 
shown the best performance in four out of eight domains, namely the Iris, E. Coli, 
Wine and Zoo. In the Balance domain, although its result is very close to the best  
 
Table 2 Iris 

Algorithm #I Acc(TR) Acc(TE) #HN AB(TE) AW(TE) AB(HN) AW(HN)

MBabCoNNP 103 98.7~0.4 98.0~3.2 3.1~0.3 100.0 93.3 3.0 4.0 

MBabCoNNB102 94.2~3.1 94.0~4.9 4.9~0.6 100.0 86.7 6.0 4.0 

PRMWTA 102 98.7~0.4 95.3~8.9 − 100.0 7.3.3 − − 

PRMI 102 89.3~2.6 86.7~18.1 − 100.0 46.7 − − 

BCPWTA 102 87.9~1.4 84.0~13.4 − 100.0 53.3 − − 

BCPI 1 85.0~7.3 72.7~41.3 − 100.0 6.7 − − 

MTowerP 102 98.9~0.4 96.7~6.5 3.6~1.3 100.0 80.0 3.0 6.0 

MTowerB 102 87.8~1.6 83.3~14.5 3.3~0.9 100.0 53.3 3.0 6.0 

MPyramidP 102 98.8~0.4 96.0~8.4 3.3~0.9 100.0 73.3 3.0 6.0 

MPyramidB 102 88.3~1.4 82.7~13.8 3.6~1.3 100.0 53.3 3.0 6.0 

MUpstartP 102 98.9~0.4 93.3~12.9 3.3~0.0 100.0 60.0 3.0 3.0 

MUpstartB 102 88.6~1.6 80.7~13.9 3.6~0.5 100.0 53.3 3.0 4.0 

MTilingP 10 98.2~0.8 95.3~8.9 3.0~0.0 100.0 73.3 3.0 3.0 

MTilingB 102 89.6~4.7 84.0~14.5 7.0~8.8 100.0 53.3 3.0 28.0 

MPCascadeP 102 98.8~0.4 95.3~8.9 3.0~0.0 100.0 73.3 3.0 3.0 

MPCasdadeB 102 88.5~1.4 80.7~13.5 3.3~0.5 100.0 53.3 3.0 4.0 
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Table 3 E. Coli 

Algorithm #I Acc(TR) Acc(TE) #HN AB(TE) AW(TE) AB(HN) AW(HN)

MBabCoNNP102 90.6~0.6 83.9~5.3 8.2~0.6 91.2 75.8 8.0 9.0 

MBabCoNNB102 85.1~1.5 81.0~5.2 9.1~0.7 88.2 73.5 10.0 8.0 

PRMWTA 102 90.8~1.3 77.8~18.9 − 100.0 52.9 − − 

PRMI 102 87.2~2.6 73.8~24.0 − 100.0 42.4 − − 

BCPWTA 102 76.5~3.0 69.1~15.0 − 97.1 42.4 − − 

BCPI 10 85.1~3.3 72.0~28.2 − 100.0 27.3 − − 

MTowerP 10 90.2~1.5 78.4~22.2 27.8~14.1 100.0 30.3 6.0 56.0 

MTowerB 102 76.6~2.9 69.2~14.4 9.2~3.2 97.1 48.5 8.0 16.0 

MPyramidP 10 90.1~1.3 79.6~18.3 29.1~10.3 100.0 42.4 14.0 48.0 

MPyramidB 102 76.6~2.8 69.5~16.2 8.4~2.1 97.1 36.4 6.0 14.0 

MUpstartP 102 90.7~1.6 76.9~19.7 8.1~1.3 100.0 50.0 6.0 10.0 

MUpstartB 102 80.5~2.8 75.2~10.4 8.9~1.3 97.1 60.7 6.0 11.0 

MTilingP 10 87.9~2.2 76.3~20.7 7.7~0.7 100.0 38.2 6.0 8.0 

MTilingB 102 76.3~3.3 67.3~18.0 25.3~55.4 97.1 33.3 6.0 183.0 

MPCascadeP 10 88.8~1.2 82.9~16.2 8.6~1.3 100.0 57.8 8.0 11.0 

MPCasdadeB 102 79.6~2.7 70.1~15.3 9.0~1.7 97.0 42.4 6.0 12.0 

Table 4 Glass 

Algorithm  #I Acc(TR) Acc(TE) #HN AB(TE) AW(TE) AB(HN) AW(HN)

MBabCoNNP103 64.7~2.5 60.3~12.7 7.5~0.7 68.4 60.6 85.7 42.9 

MBabCoNNB103 63.2~2.2 56.1~8.1 7.4~0.5 66.8 60.9 66.7 40.9 

PRMWTA 103 55.7~1.4 48.1~14.3 − 57.5 52.3 71.4 23.8 

PRMI 103 53.9~2.6 46.8~14.0 − 57.3 50.0 81.0 28.6 

BCPWTA 102 54.3~2.7 49.6~10.2 − 59.6 48.7 66.7 36.4 

BCPI 103 58.8~5.2 54.2~5.8 − 66.7 51.6 66.7 47.6 

MTowerP 103 61.2~2.5 56.1~10.8 21.6~8.6 65.8 58.0 71.4 33.3 

MTowerB 103 56.1~1.9 50.6~6.8 18.6~10.4 60.4 53.4 61.9 36.4 

MPyramidP 102 64.9~5.0 56.3~13.9 33.0~17.7 71.0 56.5 77.3 28.6 

MPyramidB 102 55.1~2.3 51.5~11.0 17.4~4.4 59.1 52.1 66.7 36.4 

MUpstartP 103 72.2~1.5 63.6~6.8 8.3~0.9 74.6 69.3 76.2 52.4 

MUpstartB 102 64.3~4.7 54.7~8.4 7.9~1.0 68.2 52.8 66.7 42.9 

MTilingP 102 79.9~16.5 55.9~15.2 81.5~63.1 92.7 54.9 72.7 23.8 

MTilingB 103 54.6~1.5 50.0~8.2 6.0~0.0 57.5 52.1 61.9 38.1 

MPCascadeP 103 71.4~1.8 62.7~10.4 7.6~1.2 73.6 68.2 81.0 42.9 

MPCasdadeB 102 57.6~5.2 54.4~13.4 7.2~1.2 65.8 48.7 76.2 36.4 
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Table 5  Balance 

Algorithm    #I Acc(TR) Acc(TE) #HN AB(TE) AW(TE) AB(HN) AW(HN)

MBabCoNNP10 92.1~0.8 91.4~2.3 3.5~0.7 93.7 87.1 3.0 5.0 

MBabCoNNB10 92.1~0.9 89.3~2.5 5.3~0.5 93.5 85.5 6.0 5.0 

PRMWTA 102 92.2~0.5 90.1~3.7 − 96.8 84.1 − − 

PRMI 10 89.1~1.6 89.3~4.8 − 98.4 84.1 − − 

BCPWTA 102 80.1~4.4 77.9~9.9 − 91.9 65.1 − − 

BCPI 10 89.5~1.7 88.0~3.5 − 93.5 82.3 − − 

MTowerP 10 94.8~1.1 90.6~6.2 20.4~5.8 98.4 79.4 12.0 30.0 

MTowerB 102 83.6~4.8 80.8~8.0 9.0~3.5 91.9 65.1 6.0 15.0 

MPyramidP 10 95.1~0.9 90.1~6.3 24.0~6.2 96.8 76.2 15.0 33.0 

MPyramidB 102 83.3~4.1 83.1~5.8 6.2~2.2 93.5 76.2 3.0 9.0 

MUpstartP 10 91.8~0.4 91.2~4.7 3.4~0.9 98.4 85.5 3.0 6.0 

MUpstartB 102 82.1~4.9 81.1~6.9 4.0~0.8 91.9 69.8 3.0 5.0 

MTilingP 102 95.5~2.9 92.3~3.3 28.1~21.8 96.8 88.9 3.0 49.0 

MTilingB 102 79.8~4.5 76.4~8.4 3.0~0.0 91.9 66.7 3.0 3.0 

MPCascadeP 102 92.1~0.6 90.0~4.5 3.2~0.4 98.4 84.1 3.0 4.0 

MPCasdadeB 102 81.6~4.7 78.6~9.9 4.0~0.8 91.9 66.7 3.0 5.0 

Table 6 Wine 

Algorithm    #I Acc(TR) Acc(TE) #HN AB(TE AW(TE) AB(HN) AW(HN)

MBabCoNNP103 94.2~0.9 92.7~5.5 3.3~0.5 95.0 93.1 100.0 82.4 

MBabCoNNB102 76.2~2.2 75.8~8.8 4.4~0.5 81.9 73.8 88.9 58.8 

PRMWTA 103 85.8~3.3 81.9~10.4 − 90.1 78.9 100.0 64.7 

PRMI 103 92.0~1.4 88.3~8.9 − 94.4 90.0 100.0 66.7 

BCPWTA 103 74.0~1.4 70.8~7.1 − 75.6 70.8 82.4 61.1 

BCPI 10 73.7~1.7 71.9~7.3 − 75.8 70.0 77.8 58.8 

MTowerP 103 86.5~3.5 83.1~13.5 4.2~2.1 90.0 81.2 100.0 61.1 

MTowerB 102 73.6~0.9 69.1~7.6 4.2~1.5 74.5 71.9 83.3 61.1 

MPyramidP 103 87.3~2.7 81.5~17.1 8.1~4.9 90.7 83.1 100.0 50.0 

MPyramidB 103 73.6~0.9 69.1~7.6 4.2~15 74.5 71.9 83.3 61.1 

MUpstartP 103 94.5~0.5 91.6~6.0 3.1~0.3 95.6 93.8 100.0 83.3 

MUpstartB 102 74.1~1.6 71.4~11.3 3.2~0.4 76.2 70.8 94.1 55.6 

MTilingP 102 86.7~5.0 82.5~11.2 13.1~31.9 99.4 81.9 94.4 61.1 

MTilingB 102 73.8~2.1 74.8~8.7 3.0~0.0 76.2 69.6 88.9 61.1 

MPCascadeP 103 92.1~0.7 84.9~9.0 3.1~0.3 93.1 91.2 94.1 66.7 

MPCasdadeB 10 75.7~1.2 74.1~9.2 3.2~0.4 77.5 73.3 88.9 61.1 
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Table 7 Zoo  

Algorithm    #I Acc(TR) Acc(TE) #HN AB(TE) AW(TE) AB(HN)AW(HN)

MBabCoNNP 102 100.0~0.0 97.0~4.8 7.0~0.0 100.0 100.0 100.0 90.0 

MBabCoNNB 102 89.5~5.1 85.1~12.7 9.3~0.9 95.6 77.8 100.0 60.0 

PRMWTA 102 100.0~0.0 95.2~6.7 − 100.0 100.0 100.0 81.8 

PRMI 102 100.0~0.0 95.0~7.1 − 100.0 100.0 100.0 80.0 

BCPWTA 103 78.4~7.5 71.3~16.6 − 89.0 65.6 90.0 40.0 

BCPI 10 64.9~16.0 65.5~16.1 − 94.5 36.3 90.0 40.0 

MTowerP 102 100.0~0.0 95.0~7.1 7.0~0.0 100.0 100.0 100.0 80.0 

MTowerB 102 79.0~5.3 70.4~7.7 9.1~3.4 86.8 72.5 80.0 60.0 

MPyramidP 102 100.0~0.0 95.0~8.5 7.0~0.0 100.0 100.0 100.0 80.0 

MPyramidB 102 78.2~7.9 74.3~15.0 9.8~4.9 86.7 64.8 100.0 50.0 

MUpstartP 103 100.0~0.0 96.0~7.0 7.0~0.0 100.0 100.0 100.0 80.0 

MUpstartB 102 81.0~6.6 74.4~13.1 7.9~0.7 90.1 70.3 90.0 50.0 

MTilingP 103 100.0~0.0 97.0~4.8 7.0~0.0 100.0 100.0 100.0 90.0 

MTilingB 103 78.5~7.9 72.4~12.8 13.3~10.290.1 65.9 90.0 50.0 

MPCascadeP 103 100.0~0.0 95.1~7.0 7.0~0.0 100.0 100.0 100.0 80.0 

MPCasdadeB 102 77.8~6.2 72.4~15.2 7.4~0.7 85.7 68.1 100.0 50.0 

Table 8 Car  

Algorithm    #I Acc(TR) Acc(TE) #HN AB(TE)AW(TE) AB(HN) AW(HN)

MBabCoNNP 103 81.2~0.7 80.1~2.8 4.7~0.5 82.8 80.4 83.8 76.3 

MBabCoNNB 102 78.3~3.6 77.5~4.4 5.8~0.9 80.5 68.2 84.4 70.5 

PRMWTA 102 80.5~0.5 79.7~1.7 − 81.4 79.9 82.7 78.0 

PRMI 102 79.1~0.5 78.9~4.0 − 80.2 78.3 83.8 72.1 

BCPWTA 103 68.7~0.6 68.5~3.1 − 69.4 67.3 73.8 63.0 

BCPI 102 77.3~1.1 76.3~2.7 − 79.4 75.8 81.5 73.4 

MTowerP 102 82.7~1.2 81.5~2.4 26.8~18.4 85.1 81.6 86.1 78.5 

MTowerB 103 73.8~2.1 73.3~3.7 5.2~2.7 75.4 68.2 78.6 65.7 

MPyramidP 10 83.6~1.3 80.4~3.8 32.8~14.2 85.7 81.1 86.7 73.8 

MPyramidB 102 68.6~1.2 68.5~4.1 5.2~2.7 71.2 67.2 78.0 64.7 

MUpstartP 102 81.9~1.7 80.8~2.3 5.3~1.6 85.3 80.3 85.5 77.5 

MUpstartB 10 75.3~0.3 74.8~3.3 4.3~0.5 76.1 74.9 79.2 69.4 

MTilingP 102 89.2~3.0 83.0~3.9 88.1~30.3 91.1 80.6 86.7 73.4 

MTilingB 10 74.9~0.5 74.7~2.3 4.0~0.0 75.3 73.6 79.8 72.1 

MPCascadeP 103 82.8~1.4 81.2~4.4 6.3~1.7 84.3 80.2 87.9 74.4 

MPCasdadeB 103 74.8~1.7 73.8~4.9 4.7~0.8 75.8 70.1 79.2 62.2 
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Table 9 Image Segmentation  

Algorithm    #I Acc(TR) Acc(TE) #HN AB(TE) AW(TE) AB(HN) AW(HN)

MBabCoNNP 103 92.2~1.6 83.3~7.2 7.9~0.7 95.2 89.4 95.2 71.4 

MBabCoNNB 103 74.0~4.7 70.0~9.5 8.8~0.9 81.5 68.8 85.7 52.4 

PRMWTA 103 91.2~0.9 83.8~10.6 − 92.6 89.4 100.0 66.7 

PRMI 103 88.9~1.5 83.8~6.4 − 91.5 86.8 90.5 71.4 

BCPWTA 102 62.2~2.3 60.5~6.8 − 65.6 57.1 71.4 52.4 

BCPI 102 67.6~5.9 63.8~15.9 − 78.8 60.3 81.0 33.3 

MTowerP 102 91.7~1.2 82.4~9.0 14.0~8.1 93.1 88.9 95.2 71.4 

MTowerB 102 67.9~3.7 63.8~14.1 11.9~4.7 72.0 61.9 85.7 42.9 

MPyramidP 103 92.0~1.1 81.4~4.7 11.2~4.9 93.1 89.9 85.7 71.4 

MPyramidB 103 61.3~3.0 60.5~8.7 9.1~3.4 68.3 57.7 81.0 52.4 

MUpstartP 103 94.8~0.7 85.2~10.9 7.1~0.3 95.8 93.7 100.0 66.7 

MUpstartB 103 64.7~2.9 59.5~8.5 7.3~0.7 68.8 58.2 71.4 47.6 

MTilingP 102 93.4~4.0 82.4~7.1 35.5~65.9 100.0 89.9 90.5 71.4 

MTilingB 102 64.7~5.0 63.8~8.8 7.0~0.0 70.9 54.0 76.2 52.4 

MPCascadeP 102 88.8~1.2 86.2~6.1 7.3~0.5 90.5 87.3 90.5 76.2 

MPCasdadeB 103 66.7~4.0 64.8~10.3 7.4~0.7 70.4 57.1 81.0 47.6 

 
result (obtained with MTilingP), it is worth noting that MTilingP created 28.1 hid-
den neurons on average while MBabCoNN created only 3.5. A similar situation 
occurred in the Car domain.  

All the algorithms with a performance higher than 80% induced networks big-
ger than the network induced by MBabCoNNP, especially the MTilingP, the 
MPyramid and the MTowerP, although the accuracy values of the three were very 
close to those of MBabCoNN. In the Glass domain, MBabCoNNP is ranked third 
considering only accuracy; however, when taking into account the standard  
deviation as well, it can be said that the MBabCoNNP and MPCascadeP (second 
position in the rank) are even. In the last domain, Image Segmentation, MBab-
CoNNP accuracy was average while the best performance was obtained with the 
MPCascadeP. 

In relation to the versions that used BCPWTA for training the output neuron, 
MBabCoNNB outperformed all the other algorithms in the eight domains. The re-
sults however were inferior to those obtained using the PRMWTA for training the 
output nodes. This fact is due to the particular characteristics of the two training 
approaches; in general the BCPWTA is not a good match for the PRMWTA. Fu-
ture work concerning BCPWTA needs to be done in order for this algorithm to be 
considered an option for network construction.  

Now, considering the PRMWTA versions of all algorithms, it is easy to see 
that the test accuracies are more standardized. In order to have a clearer view  
of the algorithm performances, Table 10 presents the values for the average  
ranks considering the test accuracy for all PRMWTA based CoNN algorithms. In 
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the table the results are ranked in ascending order of accuracy. Ties in accuracy 
were sorted out by averaging the corresponding ranks. 

According to Demšar [26], average ranks provide a fair comparison of the al-
gorithms. Taking into account the values obtained with the average ranks it can be 
said that, as far as the eight datasets are concerned, MBabCoNN is the best choice 
among the six algorithms. As can be seen in Table 10, MBabCoNNP obtained the 
smallest value, followed by MPCascadeP and MUpstartP. MBabCoNNP was 
ranked last in only one domain (Car); in the Car domain, however, the test accura-
cies among the six algorithms were very close, i.e. the maximum difference was 
about 3.0%. 

It is worth noticing that the three algorithms ranked first in the average rank-
ings, construct the network by first adding the output neurons and then starting to 
correct their misclassifications by adding two-class hidden neurons. The good per-
formance may be used to corroborate the efficiency of this technique. Based on 
the empirical results obtained, it can be said that the MBabCoNN algorithm is a 
good choice among the multiclass CoNN algorithms available. 

Table 10 Average rank over PRMWTA based algorithms concerning test accuracy 

Domain MBabCoNNP MTowerP MPyramidP MUpstartP MTilingP MPCascadeP 
Iris 98.0~3.2 (1) 96.7~6.5(2) 96.0~8.4(3) 93.3~12.9(6) 95.3~8.9(4.5) 95.3~8.9(4.5) 
EColi 83.9~5.3(1) 78.4~22.2(4) 79.6~18.3(3) 76.9~19.7(5) 76.3~20.7(6) 82.9~16.2(2) 
Glass 60.3~12.7(3) 56.1~10.8(5) 56.3~13.9(4)  63.6~6.8(1) 55.9~15.2(6) 62.7~10.4(2) 
Balance 91.4~2.3(2) 90.6~6.2(4) 90.1~6.3(5) 91.2~4.7(3) 92.3~3.3(1) 90.0~4.5(6) 
Wine 92.7~5.5(1) 83.1~13.5(4) 81.5~17.1(6) 91.6~6.0(2) 82.5~11.2(5) 91.0~6.1(3) 
Zoo 97.0~4.8(1.5) 95.0~7.1(5.5) 95.0~8.5(5.5) 96.0~7.0(3) 97.0~4.8(1.5) 95.1~7.0(4) 
Car 80.1~2.8(6) 81.5~2.4(2) 80.4~3.8(5) 80.8~2.3(4) 83.0~3.9(1) 81.2~4.4(3) 
Image 83.3~7.2(3) 82.4~9.0(4.5) 81.4~4.7(6) 85.2~10.9(2) 82.4~7.1(4.5) 86.2~6.1(1) 

       
Average 

Rank 
2.312 3.875 4.687 3.25 3.687 3.187 

5   Conclusions 

This chapter proposes the multiclass version, MBabCoNN, of a recently proposed 
constructive neural network algorithm named BabCoNN, which is based on the 
geometric concept of convex hull and uses the BCP algorithm for training individ-
ual TLUs added to the network during learning. The chapter presents the accuracy 
results of learning experiments conducted in eight multiclass knowledge domains, 
using the MBabCoNN implemented in two different versions: MBabCoNNP and 
MBabCoNNB, versus five well-known multiclass algorithms (each implemented 
in two versions as well). Both versions of the MBabCoNN use the BCP for train-
ing the hidden neurons and differ from each other in relation to the algorithm used 
for training their output neurons (PRMWTA and BCPWTA respectively). 

As far as results in eight knowledge domains are concerned, it can (easily) be 
observed that all algorithms performed better when using PRMWTA for training 
the output neurons. This may occur because BCPWTA is not a good strategy for 
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training M (>2) classes. Now considering the PRMWTA versions, it can be said 
the MBabCoNNP version has shown superior average performance in relation to 
both accuracy in test sets and the size of the induced neural network. This work 
had established MBabCoNN as a good option among other CoNNs for multiclass 
domains. 
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Analysis and Testing of the m-Class RDP
Neural Network

David A. Elizondo, Juan M. Ortiz-de-Lazcano-Lobato, and Ralph Birkenhead

Abstract. The Recursive Deterministic Perceptron (RDP) feed-forward multilayer
neural network is a generalisation of the single layer perceptron topology. This
model is capable of solving any two-class classification problem unlike the single
layer perceptron which can only solve classification problems dealing with linearly
separable sets. For all classification problems, the construction of an RDP is done
automatically and convergence is always guaranteed. A generalisation of the 2-class
Recursive Deterministic Perceptron (RDP) exists. This generalisation always allows
the deterministic separation of m-classes. It is based on a new notion of linear sep-
arability and it arises naturally from the 2 valued RDP. The methods for building
2-class RDP neural networks have been extensively tested. However, no testing has
been done before on the m-class RDP method. For the first time, a study on the
performance of the m-class method is presented. This study will allow the high-
lighting of the main advantages and disadvantages of this method by comparing the
results obtained while building m-class RDP neural networks with other more clas-
sical methods such as Backpropagation and Cascade Correlation in terms of level
of generalisation and topology size. The networks were trained and tested using the
following standard benchmark classification datasets: Glass, Wine, Zoo, Iris, Soy-
bean, and Wisconsin Breast Cancer.

1 Introduction

The RDP for 2-class classification problems was introduced in [12]. This topol-
ogy is a generalisation of the single layer perceptron topology (SLPT) developed
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by Rosenblatt [11]. This generalisation is capable of transforming any non-linearly
separable (NLS) 2-class classification problem into a linearly separable (LS) one,
thus making it possible for the SLPT to find a solution to the problem. An exten-
sion of the RDP algorithm to m-class problems (with m ≥ 2) was introduced in
[13]. This extension is based on a new notion of linear separability and, it evolves
naturally from the 2-valued RDP.

1.1 Preliminaries

We use the following standard notions:
• Sm stands for the set of permutations of {1, ..., m}.
• If u = (u1, ..., ud),v = (v1, ..., vd) ∈ IRd, then uT v stands for u1v1 + ...+udvd;
and u(j) = uj (i.e. u(j) is the j-th component of u).
• Π{i1,...,ik}u = (ui1 , ..., uik

) and by extension,
if S ⊂ IRd then Π{i1,...,ik}S = {Π{i1,...,ik} x | x ∈ S}.
• Let r ∈ IR, Adj(u, r) = (u1, ..., ud, r) and by extension,
if S ⊂ IRd, Adj(S, r) = {Adj(x, r) | x ∈ S}.
• Im(E, F ) = {(x1, ..., xd, xd+1) ∈ F | (x1, ..., xd) ∈ E} is defined for E ⊂ IRd

and F ⊂ IRd+1.
• P(w, t) stands for the hyperplane {x ∈ IRd | wT x + t = 0} of IRd.

1.2 Some Definitions and Properties

In this section, we introduce the notions of convex hull(CH), [10], and of linear
separability. A discussion on the different methods for testing linear separability
can be found in [12].

Definition 1. Let S be a sub-set of IRd,CH(S)={t1x1+. . .+tkxk | x1, . . . ,xk ∈ S,
t1, . . . , tk ∈ [0, 1] and t1 + . . . + tk = 1}.
Thus, if S is finite, then there exists a1, ...,ak ∈ IRd and b1, ..., bk ∈ IR such that
CH(S) = {x ∈ IRd | aT

i x ≥ bi for 1 ≤ i ≤ k}.

Definition 2. Two subsets X and Y of IRd are said to be linearly separable if there
exists a hyperplane P(w, t) of IRd, such that (∀x ∈ X, wT x + t > 0 and ∀y ∈
Y, wT y + t < 0). In the following we will denote the fact that X and Y are LS
by X || Y or X || Y (P(w, t)) if we want to specify the hyperplane which linearly
separates X and Y .

This paper is divided into four sections. The m-class generalisation of the RDP neu-
ral network, based on a notion of linear separability for m classes, is presented in
section two. In this section also, some of the notions used throughout this paper are
introduced. In section three, the procedure used to evaluate the generalisation of the
m-class RDP model is presented. Six machine learning benchmarks (Iris, Soybean,
and Wisconsin Breast Cancer) were used [3] and datasets were generated using
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cross validation. The method is compared with Backpropagation and Cascade Cor-
relation in terms of their level of generalisation. A summary and some conclusions
are presented in section four.

2 The m-Class RDP Algorithm

The m-class RDP algorithm is an adaptation of the 2-class RDP based on the fol-
lowing notion of linear separability for m classes (m > 2).

Definition 3. Let X1, ..., Xm ⊂ IRd and a0 < a1 < ... < am, X1, ..., Xm are
said to be linearly separable relatively to the ascending sequence of real numbers
a0, ..., am if
∃σ ∈ Sm, ∃w ∈ IRd, ∃t ∈ IR such that ∀i, ∀x ∈ Xσ(i), ai−1 < wT x+ t < ai.

Remarks
Let X1, ..., Xm ⊂ IRd and a0 < a1 < a2 < ... < am,
• X1, ..., Xm are linearly separable relatively to a0, ..., am iff CH(X1), ..., CH(Xm)
are linearly separable relatively to a0, ..., am.
• Let σ ∈ Sm.
Put: Xσ = Adj(Xσ(1), −a0) ∪ Adj(Xσ(2), −a1)... ∪ Adj(Xσ(m), −am−1),
Y σ = Adj(Xσ(1), −a1) ∪ Adj(Xσ(2), −a2)... ∪ Adj(Xσ(m), −am), then, X1, ...,
Xm are linearly separable relatively to a0, ..., am by using σ iff Xσ || Y σ . In other
words, we reduce the problem of linear separability for m classes to the problem
of linear separability for 2 classes. We do this by augmenting the dimension of the
input vectors with the ascending sequence a0, ..., am.
• If X1 || X2 (P(w, t)) and α = Max({|wT x+ t| ; x ∈ (X1 ∪X2)}, then X1, X2

are linearly separable relatively to −α, 0, α.

Proposition 1. Let X1, ..., Xm ⊂ IRd, a, b ∈ IR, h, k > 0 and let ai = a + ih, bi =
b+ik, for 0 ≤ i ≤ m, then X1, ..., Xm are linearly separable relatively to a0, ..., am

iff they are linearly separable relatively to b0, ..., bm. In other words, the linear
separability between m classes is independent of the arithmetic sequence.

Proof. Let σ ∈ Sm represent a class, and let w ∈ IRd, t ∈ IR such that ∀i, ∀x ∈
Xσ(i), ai−1 < wT x + t < ai.

Thus, ∀i, ∀x ∈ Xσ(i), bi−1 < k
hwT x+ k

h (t−a)+b < bi ��

Definition 4. X1, ..., Xm ⊂ IRd are said to be linearly separable if there exists a ∈
IR, h > 0 such that X1, ..., Xm are linearly separable relatively to a, a + h, ...,
a + mh.

Definition 5. A m-SLPT with the weight w ∈ IRd, the threshold t ∈ IR, the values
v1, v2, ..., vm ∈ IR and the characteristic (c, h) ∈ IR × IR+ (c represents the value
corresponding to the starting hyperplane, and h a chosen distance between a hyper-
plane which we will call the step size), has the same topology as the 2-class SLPT.



174 D.A. Elizondo, J.M. Ortiz-de-Lazcano-Lobato, and R. Birkenhead

The only difference is that the function corresponding to a m-SLPT is a m−valued
function f defined by : ∀y ∈ IRd

f(y) =

⎧⎪⎨
⎪⎩

v1 if wT y + t < c + h

vi if c + (i − 1)h < wT y + t < c + ih, for 1 < i < m

vm if wT y + t > c + (m − 1)h
(1)

2.1 The Specialised NLS to LS Transformation Algorithm for m
Classes

A specialised version of the transformation algorithm , from two to m classes, was
proposed in [12]. This extension is based on the notion of linear separability for m
classes described above.

Let c ∈ IR, h > 0, m be the number of classes and b = −(m − 3
2 )h,for 1 ≤ i < m

bi = c + (m − i)b + ( (m−1)(m−2)
2 − (i−1)(i−2)

2 )h and bm = c.

Table 1 shows the specialized NLS to LS transformation algorithm for m classes.
We proceed as in the 2-class specialized transformation algorithm. That is to say, at
each step we select a LS sub-set which belongs to a single class and add an artificial
variable to the entire input data set. To this artificial variable we assign a value bi

for all the input vectors belonging to the selected LS sub-set and a value bj to the
rest of the set of input vectors, where bi �= bj . Two cases for assigning the values
to the artificial inputs are possible depending on the class to which the LS sub-set
belongs:

1. If the selected LS sub-set belongs to the jth class, with j < m, we add to its
input vector a new component with value bj and we add to the rest of the input
vector a new component with value bj+1.

2. If the selected LS sub-set belongs to the last class (mth class), we add to its input
vector a new component with value bm and we add to the rest of the input vector
a new component with value bm−1.

In the following theorem we prove the correctness and the termination of the
algorithm presented in table 1 which allows the construction of an m−RDP for
linearly separating any given m classes.

Theorem 1. If X i
1, ..., X

i
m are not linearly separable, then there exists Zi such that

(Zi ⊂ X ′
1
i or ... or Zi ⊂ X ′

m
i), Zi �= ∅ and Zi || (Si \ Zi).

Proof. We will prove that, there exists x ∈ X ′
1
i ∪ ... ∪ X ′

m
i such that {x} || (Si \

{x}).
Assume that ∀x ∈ X ′

1
i ∪ ... ∪ X ′

m
i
, {x} and (Si \ {x}) are not linearly

separable, then X ′
1
i ∪ ... ∪ X ′

m
i ⊂ CH(Si \ (X ′

1
i ∪ ... ∪ X ′

m
i)).
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Table 1 Specialized NLS to LS transformation algorithm for m classes.

SNLS2LS(X1, .., Xm, X0i, .., Xmi)
– data: m data set vectors, X0, .., Xm representing m NLS classes
– result: A m-RDP [(w0, t0, a0, h0, b0,1, b0,2), ..., (wi−1, ti−1, ai−1, hi−1, bi−1,1, bi−1,2),
(wi, ti, ai, hi, b1, ..., bm)] which linearly separates X1, ..., Xm.
INITIALIZE : Let i := 0; X0

1 := X1; ...; X
0
m := Xm; X ′

1
0

:= X1; ...; X
′
m

0
:= Xm;

S0 = X1 ∪ ... ∪ Xm;
WHILE (Xi

1, ..., X
i
m) are not linearly separable

BEGIN
SELECT : Select a non-empty sub-set Zi from X ′

1
i or ... or from X ′

m
i

(if it exists) such that Zi, (Si \ Zi) are linearly separable
(i.e. (Zi ⊂ X ′

1
i or ... or Zi ⊂ X ′

m
i) and Zi || (Si \ Zi)) (P(wi, ti)) ;

CASE :
Case Zi ⊂ X ′

1
i :

Si+1 := Adj(Zi, b1) ∪Adj(Si \ Zi, b2);

X ′
1

i+1
:= Im(X ′

1
i
, Si+1) \ Im(Zi, Si+1);

X ′
2

i+1
:= Im(X ′

2
i
, Si+1); ...;

X ′
2

i+1
:= Im(X ′

m
i
, Si+1);

Xi+1
1 := Im(Xi

1, Si+1);
Xi+1

2 := Im(Xi
2, Si+1); ...;

Xi+1
m := Im(Xi

m, Si+1);
i := i + 1;
.........

Case Zi ⊂ X ′
j
i :

Si+1 := Adj(Zi, bj) ∪Adj(Si \ Zi, bj+1);

X ′
1

i+1
:= Im(X ′

1
i
, Si+1); ...;

X ′
j−1

i+1
:= Im(X ′

j−1
i
, Si+1);

X ′
j
i+1

:= Im(X ′
j
i
, Si+1) \ Im(Zi, Si+1);

X ′
j+1

i+1
:= Im(X ′

j+1
i
, Si+1); ...;

X ′
m

i+1
:= Im(X ′

m
i
, Si+1);

Xi+1
1 := Im(Xi

1, Si+1);
Xi+1

2 := Im(Xi
2, Si+1); ...;

Xi+1
m := Im(Xi

m, Si+1);
i := i + 1;
.........

Case Zi ⊂ X ′
m

i :
Si+1 := Adj(Zi, bm) ∪Adj(Si \ Zi, bm−1);

X ′
1

i+1
:= Im(X ′

1
i
, Si+1); ...;

X ′
m−1

i+1
:= Im(X ′

m−1
i
, Si+1);

X ′
m

i+1
:= Im(X ′

m
i
, Si+1) \ Im(Zi, Si+1);

Xi+1
1 := Im(Xi

1, Si+1);
Xi+1

2 := Im(Xi
2, Si+1); ...;

Xi+1
m := Im(Xi

m, Si+1);
i := i + 1;

END
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So, if Si = {v1, . . . ,vk,vk+1, . . . ,vk+r1 ,vk+r1+1, . . . ,vk+r1+r2 , . . . ,
vk+r1+...+rm}

where X ′
1
i ∪ ... ∪ X ′

m
i = {v1, ...,vk} and

X i
j \ X ′

j
i = {vk+r1+...+rj−1+1, ...,vk+r1+...+rj} for 1 ≤ j ≤ m.

Let x ∈ X ′
1
i ∪ ... ∪ X ′

m
i, then x = t1vk+1 + ... + tr1+...+rmvk+r1+...+rm ,

t1, ..., tr1+...+rm ≥ 0 and t1 + ... + tr1+...+rm = 1.
Let j < m, 1 ≤ l ≤ rj and el such that vk+r1+...+rj−1+l(el) = bj and vf (el) =

bj+1 for vf �∈ X i
j \ X ′

j
i ( bj < bj+1, x(el) = bj+1 ) . If tr1+...+rj−1+l > 0

then bj+1 = x(ej) < (t1 + ... + tk+r1+...+rm)bj+1 = bj+1, which is absurd; thus,
∀j ≤ r1 + ... + rm−1, tj = 0.

Let j < rm and 1 ≤ l ≤ i such that vk+r1+...+rm−1+j(l) = bm and vf (l) =
bm−1 for vf �∈ X i

m \ X ′
m

i (bm−1 < bm, x(l) = bm−1). If tr1+...+rm−1+j > 0 then
bm−1 = x(l) > (tr1+...+rm−1+1 + ... + tr1+...+rm−1+rm)bm−1 = bm−1, which is

absurd; then, ∀j ≤ rm, tr1+...+rm−1+j = 0. Thus x �∈ CH((Si \ (X ′
1
i ∪ ... ∪

X ′
m

i)).
So, there exists x ∈ X ′

1
i ∪ ...∪X ′

m
i such that {x} || (Si \ {x}) ��

Theorem 2. If X ′
1
i ∪ ...∪X ′

m
i = ∅ then X ′

1
i, ..., X ′

m
i are linearly separable. Thus,

the algorithm stops, in the worse case, after Card(X1 ∪ . . . ∪ Xm) − 1 steps, and
the result [(w0, t0, a0, h0, b0,1, b0,2), ..., (wi−1, ti−1, ai−1, hi−1, bi−1,1, bi−1,2),
(wi, ti, ai, hi, b1, ..., bm)] is a m-RDP separating X1, ..., Xm, where bj,1, bj,2 are
bk, bk+1 if at step j, Zj ⊂ X ′

k
j and k ≤ m−1 or bm−1, bm if at step j, Zj ⊂ X ′

m
j .

Proof. Let w = (0, ..., 0, 1, ..., 1) ∈ IRd+i with d times 0 and i times 1, and let t =
−(kX1(i)b2+...+kXm−1(i)bm+kXm(i)bm−1). Thus, ∀j < m, ∀x ∈ X i

j , wT x+
t = bj−bj+1 = b+(j−1)h, and ∀x ∈ X i

m, wT x+t = bm−bm−1 = b+(m−1)h.
Let a0 = b − h

2 , ai = a0 + ih for 1 ≤ i ≤ m, thus ∀j ≤ m, ∀x ∈ X i
j , aj−1 ≤

wT x + t ≤ aj .
So, X i

1, ..., X
i
m are linearly separable by the hyperplane P(w, t) ��

3 Comparison Procedure

The six machine learning benchmark data sets used in the comparison study identi-
fied in section 1 are described briefly.

The Glass benchmark relates to the classification of types of glass on criminolog-
ical investigation. The glass found at the scene of a crime can be used as evidence.
This benchmark consists of nine inputs and six classes (2). The dataset contains a
total of 214 samples.

The Wine dataset contains results of a chemical analysis of wines grown in the
same region in Italy derived from three different crops. The analysis determined the
quantities of 13 constituents found in each of the three types of wines (3).
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Table 2 Inputs and outputs used in the Glass classification problem.

Attributes (In cm) Output Output Classes

RI: refractive index Type of Glass building windows float processed
Na: Sodium building windows non float processed
Mg: Magnesium vehicle windows float processed
Al: Aluminium containers
Si: Silicon tableware
K: Potassium headlamps
Ca: Calcium
Ba: Barium
Fe: Iron

Table 3 Inputs and outputs used in the Wine classification problem.

Attributes (1 - 13) Output Output Classes

Alcohol Class 1
Malic acid 2
Ash 3
Alcalinity of ash
Magnesium
Total phenols
Flavanoids
Nonflavanoid phenols
Proanthocyanins
Colour intensity
Hue
OD280/OD315 of diluted wines
Proline

Table 4 Inputs and outputs used in the Soybean classification problem.

Attributes Output Output classes

Date leaf-shred Disease type brown-spot
plant-stand stem alternarialeaf-spot
precipitation stem-cankers frog-eye-leaf-spot
temperature canker-lesion
hail fruiting-bodies
crop-hist external decay
area-damaged fruit-pods
severity fruit spots
seed-tmt seed
germination plant-growth
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Table 5 Inputs and outputs used in the Zoo classification problem.

Attributes (1 - 17) Output Output Classes

animal name Animal 1 (41 samples of mammals)
hair 2 (20 samples of birds)
feathers 3 (5 samples of reptiles)
eggs 4 (13 samples of fish)
milk 5 (4 samples of frogs)
airborne 6 (8 samples of insects)
aquatic 7 (10 samples of sea shell)
predator
toothed
backbone
breathes
venomous
fins
legs
tail
domestic
catsize
type

Table 6 Inputs and outputs used in the Iris classification problem.

Attributes (In cm) Output Output Classes

Sepal Length Iris plant type Iris Setosa
Sepal Width Iris Versicolour
Petal Length Iris Virginica
Petal Width

Table 7 Inputs and outputs used in the Wisconsin Breast Cancer classification problem.

Attributes (1 - 10) Output Output Classes

Clump Thickness Class Benign
Uniformity of Cell Size Malignant
Uniformity of Cell Shape
Marginal Adhesion
Single Epithelial Cell Size
Bare Nuclei
Bland Chromatin
Normal Nucleoli
Mitoses
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The Zoo benchmark data set contains 17 Boolean-valued attributes with a type of
animal as output (5). A total of 101 samples are included (mammals, birds, reptiles,
fish, frogs, insects and sea shells).

The Iris dataset classifies a plant as being an Iris Setosa, Iris Versicolour or Iris
Virginica. The dataset describes every iris plant using four input parameters (Table
6). The dataset contains a total of 150 samples with 50 samples for each of the three
classes. All the samples of the Iris Setosa class are linearly separable from the rest
of the samples (Iris Versicolour and Iris Virginica). Some of the publications that
used this benchmark include: [7] [8] [2] and [4].

The Soybean classification problem contains data for the disease diagnosis of
the Soybean crop. The dataset describes the different diseases using symptoms. The
original dataset contains 19 diseases and 35 attributes. The attribute list was limited
to those attributes that had non trivial values in them (Table 4). Thus there were only
20 out of the 35 attributes included in the tests. Only 15 of the 19 have no missing
values. Therefore, only these 15 classes were used for the comparisons.

The Wisconsin Breast Cancer dataset [9, 1, 15] consists of a binary classification
problem to distinguish between benign and malignant breast cancer. The data set
contains 699 instances and 9 attributes (Table 7). The class distribution is: Benign
458 instances (65.5 %), and Malignant 241 instances (34.5 %).

The technique of cross validation was applied to split the benchmarks into train-
ing and testing data sets. The datasets were randomly divided into ’n’ equal sized
testing sets that were mutually exclusive [14]. The remaining samples were used
to train the networks. In this study, the classification benchmark data sets were di-
vided into ten equally sized data sets. On one hand sixty percent of the samples
were used for training the networks and the remaining forty percent were used for
testing purposes. On the other hand the training dataset consisted of eighty per-
cent of the samples and the remaining twenty percent were used for the testing
dataset.

The simplex algorithm was used on this study for testing for linear separabil-
ity. This algorithm was remarkably faster than the Perceptron one when searching
for LS subsets. Other algorithms for testing linear separability include the Class of
Linear Separability [5] and the Fisher method (see [6] for a survey on methods for
testing linear separability).

These results provide a good basis for further developing this study and com-
paring the effects of using single or multiple output neurons for multiple class
classification problems using the m-class RDP method and Backpropagation and
Cascade Correlation. After describing the experimental setup, some conclusions are
presented in the next section.

4 Results and Discussion

We now present a comparison of the m-class RDP construction method, Backprop-
agation and Cascade Correlation based on their level of generalisation on previously
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Table 8 Results obtained with the m-class, and backpropagation, using the Glass data set
benchmark in terms of the level of generalisation with 60% of the data used for training and
40% for testing.

Data Set m-RDP BackProp BP 1 out CC Mout
1 48.84 56.98 52.33 53.49
2 52.33 61.63 53.49 60.47
3 53.49 61.63 59.30 56.98
4 52.33 65.12 55.81 54.65
5 51.16 65.12 50.00 62.79
6 66.28 62.79 55.81 58.14
7 63.95 72.09 51.16 59.30
8 52.33 55.81 59.30 52.33
9 59.30 56.98 61.63 48.84
10 55.81 62.79 52.33 55.81
Mean 55.58 62.01 55.12 56.28
Std 5.76 4.84 3.92 4.14

Table 9 Results obtained with the m-class, and backpropagation, using the Glass data set
benchmark in terms of the level of generalisation with 80% of the data used for training and
20% for testing.

Data Set m-RDP BackProp BP 1 out CC Mout
1 67.44 67.44 67.44 51.16
2 65.12 65.12 55.81 62.79
3 53.49 72.09 55.81 58.14
4 60.47 62.79 60.47 48.84
5 44.19 76.74 62.79 65.12
6 58.14 76.74 65.12 67.44
7 67.44 62.79 51.16 58.14
8 53.49 58.14 51.16 55.81
9 58.14 55.81 55.81 65.12
10 46.51 74.42 67.44 51.16
Mean 57.44 67.21 59.30 58.37
Std 8.13 7.55 6.23 6.62

unseen data and the number of neurons needed for each method to solve the classi-
fication problems (i.e. the size of the topology).

As specified before, the m-class RDP uses a single output neuron for multiple
classes. Backpropagation and Cascade Correlation are tested using two different
topologies. The first one uses a unique output neuron and is named BP 1out and
CC 1out in the tables. The second type of topology uses as many neurons in the
output layer as the number of classes in the data set (Backprop and CC Mout in the
tables). Only the first type of topology is used when the dataset defines a binary
classification problem such as the Wisconsin Breast Cancer dataset.
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Table 10 Results obtained with the m-class, and backpropagation, using the Wine data set
benchmark in terms of the level of generalisation with 60% of the data used for training and
40% for testing.

Data Set m-RDP BackProp BP 1out CC Mout
1 93.06 95.83 94.44 90.28
2 93.06 95.83 98.61 93.06
3 88.89 97.22 95.83 90.29
4 87.50 97.22 94.44 90.28
5 94.44 97.22 95.83 86.11
6 91.67 97.22 93.06 93.06
7 90.28 97.22 94.44 91.67
8 91.67 98.61 95.83 91.67
9 95.83 95.83 94.44 90.28
10 95.83 94.44 95.83 91.67
Mean 92.22 96.66 95.27 90.84
Std 2.79 1.17 1.49 1.99

Table 11 Results obtained with the m-class, and backpropagation, using the Wine data set
benchmark in terms of the level of generalisation with 80% of the data used for training and
20% for testing.

Data Set m-RDP BP 1out CC Mout
1 88.89 100.00 88.89
2 86.11 97.22 91.67
3 86.11 97.22 91.67
4 94.44 100.00 94.44
5 94.44 94.44 94.44
6 97.22 100.00 94.44
7 97.22 100.00 97.22
8 97.22 100.00 100.0
9 97.22 97.22 94.44
10 94.44 97.22 91.67
Mean 88.57 98.33 93.88
Std 7.84 1.94 3.15

Overall, considering all the results obtained from tables 8 to 19 in terms of gen-
eralisation obtained using the m-class RDP, it appears that the method is broadly
comparable with CC and BP, but has slightly poorer results. It appears to be more
variable in its performance. While it does generally perform better than the other
methods when they are used with a single output neuron, it is arguable that the
nature of the data makes this an inappropriate choice of topology for a BP or CC
network.

Considering the size of the network produced (tables 20 to 31), the number of
neurons in an m-class RDP is usually significantly lower than in the corresponding
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Table 12 Results obtained with the m-class, and backpropagation, using the Zoo data set
benchmark in terms of the level of generalisation with 60% of the data used for training and
40% for testing.

Data Set m-RDP BackProp BP 1out CC Mout CC 1out
1 90.24 87.80 90.24 78.05 97.56
2 92.68 87.80 90.24 92.68 97.56
3 95.12 95.12 95.12 90.24 100.00
4 87.80 97.56 95.12 95.12 97.56
5 92.68 100.00 95.12 92.68 100.00
6 90.24 100.00 97.56 92.68 100.00
7 90.24 100.00 97.56 97.56 100.00
8 92.68 100.00 97.56 97.56 100.00
9 90.24 95.12 100.00 90.24 95.12
10 85.37 90.24 97.56 82.93 92.68
Mean 90.73 95.36 95.60 90.97 98.04
Std 2.77 5.07 3.21 6.20 2.52

Table 13 Results obtained with the m-class, and backpropagation, using the Zoo data set
benchmark in terms of the level of generalisation with 80% of the data used for training and
20% for testing.

Data Set m-RDP BackProp BP 1out CC Mout CC 1out
1 80.95 100.00 100.00 95.24 100.00
2 80.95 100.00 100.00 95.24 100.00
3 95.24 100.00 100.00 95.24 100.00
4 95.24 95.24 90.48 95.24 100.00
5 85.71 100.00 100.00 95.24 90.48
6 90.48 100.00 100.00 100.00 90.48
7 95.24 95.24 100.00 95.24 100.00
8 76.19 95.24 100.00 85.71 100.00
9 85.71 95.24 100.00 85.71 100.00
10 100.00 100.00 100.00 100.00 100.00
Mean 88.57 98.10 99.05 94.28 98.10
Std 7.84 2.46 3.01 4.92 4.01

BP and CC networks with multiple output neurons. The single output neuron BP
and CC networks sometimes have fewer neurons but, as discussed above, this is
probably an inappropriate architecture for the data. This will lead to future research
and exploring a multiple output architecture for the m-class RDP model.
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Table 14 Results obtained with the m-class, and backpropagation, using the Iris data set
benchmark in terms of the level of generalisation with 60% of the data used for training and
40% for testing.

Data Set m-RDP BackProp BP 1out CC Mout CC 1out
1 98.33 98.33 98.33 98.33 98.33
2 98.33 98.33 98.33 96.67 98.33
3 95.00 96.67 96.67 95 96.67
4 95.00 98.33 98.33 96.67 100.00
5 91.67 98.33 98.33 95 98.33
6 91.67 96.67 96.67 91.67 98.3
3 7 96.67 98.33 96.67 93.33 96.67
8 96.67 96.67 98.33 95 100.00
9 95.00 96.67 96.67 93.33 98.33
10 93.33 91.67 96.67 91.67 96.6
Mean 95.167 97 97.5 94.667 98.166
Std 2.41 2.05 0.87 2.19 1.23

Table 15 Results obtained with the m-class, and backpropagation, using the Iris data set
benchmark in terms of the level of generalisation with 80% of the data used for training and
20% for testing.

Data Set m-RDP BackProp BP 1out CC Mout CC 1out
1 90.00 93.33 96.67 93.33 91.67
2 90.00 96.67 96.67 93.33 96.67
3 93.33 100.00 100.00 100.00 100.00
4 100.00 100.00 100.00 100.00 96.67
5 96.67 100.00 100.00 100.00 93.33
6 93.33 96.67 100.00 100.00 100.00
7 100.00 96.67 100.00 96.67 96.67
8 96.67 100.00 100.00 100.00 100.00
9 96.67 96.67 96.67 96.67 96.67
10 90.00 93.33 90.00 90.00 93.33
Mean 94.67 97.33 98.00 97 96.50
Std 3.91 2.63 3.22 3.67 2.98
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Table 16 Results obtained with the m-class, and backpropagation, using the Soybean data
set benchmark in terms of the level of generalisation with 60% of the data used for training
and 40% for testing.

Data Set m-RDP BackProp BP 1out CC Mout CC 1out
1 83.18 87.85 49.53 87.85 54.21
2 73.83 87.85 54.21 89.71 50.47
3 74.77 84.11 45.79 85.98 47.66
4 61.68 80.37 37.38 83.17 54.21
5 75.70 84.11 45.79 84.11 51.40
6 70.09 81.31 39.25 85.05 51.40
7 75.70 84.11 43.93 85.50 52.34
8 74.77 78.50 47.66 82.24 52.34
9 73.83 84.11 45.79 85.98 52.34
10 71.03 85.05 48.60 91.58 57.94
Mean 73.46 83.74 45.79 86.12 52.43
Std 5.42 3.0 4.87 2.89 2.70

Table 17 Results obtained with the m-class, and backpropagation, using the Soybean data
set benchmark in terms of the level of generalisation with 80% of the data used for training
and 20% for testing.

Data Set m-RDP BackProp BP 1out CC Mout CC 1out
1 74.07 88.89 38.89 83.33 51.85
2 62.96 87.04 40.74 81.48 38.89
3 77.78 92.59 44.44 85.19 64.81
4 87.04 90.74 61.11 92.59 61.11
5 74.07 85.19 42.59 81.48 33.33
6 72.22 90.74 50.00 85.19 50.00
7 83.33 90.74 53.70 87.04 50.00
8 77.78 94.44 55.56 88.89 61.11
9 68.52 92.59 48.15 88.89 55.56
10 74.07 87.04 48.15 88.89 50.00
Mean 75.18 90 48.33 86.30 51.66
Std 6.90 2.92 7.01 3.62 9.85
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Table 18 Results obtained with the m-class, and backpropagation, using the Wisconsin
Breast Cancer data set benchmark in terms of the level of generalisation with 60% of the
data used for training and 40% for testing.

Data Set m-RDP BackProp CC
1 94.16 97.08 98.17
2 95.62 95.26 97.08
3 94.53 95.26 96.00
4 95.62 96.72 97.00
5 93.07 98.18 96.35
6 91.61 97.45 97.00
7 94.16 95.62 96.70
8 89.78 97.45 97.00
9 91.61 97.45 97.45
10 94.53 97.45 98.54
Mean 93.47 96.79 97.13
Std 1.92 1.04 0.77

Table 19 Results obtained with the m-class, and backpropagation, using the Wisconsin
Breast Cancer data set benchmark in terms of the level of generalisation with 80% of the
data used for training and 20% for testing.

Data Set m-RDP BackProp CC
1 97.08 95.62 93.43
2 94.16 97.81 94.89
3 94.89 97.81 97.08
4 94.16 98.54 93.43
5 95.62 97.81 97.08
6 94.89 96.35 94.16
7 94.16 97.08 94.16
8 92.70 95.62 93.20
9 93.43 96.35 94.16
10 93.43 96.35 93.43
Mean 94.45 96.93 94.65
Std 1.25 1.02 1.46
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Table 20 Results obtained with the m-class, and backpropagation, using the Glass data set
benchmark in terms of the topology size (number of hidden/intermediate neurons) with 60%
of the data used for training and 40% for testing.

Data Set m-RDP BackProp BP 1out CCMout
1 13.00 22.00 7.00 51.00
2 12.00 22.00 7.00 50.00
3 13.00 22.00 7.00 50.00
4 14.00 22.00 7.00 47.00
5 14.00 22.00 7.00 51.00
6 15.00 22.00 7.00 41.00
7 16.00 22.00 7.00 57.00
8 13.00 22.00 7.00 47.00
9 15.00 22.00 7.00 68.00
10 13.00 22.00 7.00 46.00
Mean 13.8 22 7 7.57
Std 1.23 0 0 7.33

Table 21 Results obtained with the m-class, and backpropagation, using the Glass data set
benchmark in terms of the topology size (number of hidden/intermediate neurons) with 80%
of the data used for training and 20% for testing.

Data Set m-RDP BackProp BP 1out CC Mout
1 18.00 32.00 16.00 47
2 19.00 32.00 16.00 49
3 18.00 32.00 16.00 55
4 16.00 32.00 16.00 55
5 20.00 32.00 16.00 44
6 18.00 32.00 16.00 53
7 17.00 32.00 16.00 61
8 20.00 32.00 16.00 59
9 17.00 32.00 16.00 53
10 20.00 32.00 16.00 47
Mean 18.3 32 16 52.3
Std 1.42 0 0 5.50
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Table 22 Results obtained with the m-class, and backpropagation, using the Wine data set
benchmark in terms of the topology size (number of hidden/intermediate neurons) with 60%
of the data used for training and 40% for testing.

Data Set m-RDP BackProp BP 1out CCMout
1 4.00 28.00 31.00 6.00
2 4.00 28.00 31.00 93.00
3 4.00 28.00 31.00 50.00
4 4.00 28.00 31.00 89.00
5 4.00 28.00 31.00 123.00
6 4.00 28.00 31.00 86.00
7 4.00 28.00 31.00 99.00
8 4.00 28.00 31.00 123.00
9 4.00 28.00 31.00 10.00
10 4.00 28.00 31.00 32.00
Mean 4 28 31 71.1
Std 0 0 0 43.63

Table 23 Results obtained with the m-class, and backpropagation, using the Wine data set
benchmark in terms of the topology size (number of hidden/intermediate neurons) with 80%
of the data used for training and 20% for testing.

Data Set m-RDP BP 1out CC Mout
1 4.00 31.00 123
2 4.00 31.00 123
3 4.00 31.00 123
4 4.00 31.00 107
5 4.00 31.00 59
6 4.00 31.00 123
7 4.00 31.00 123
8 4.00 31.00 60
9 4.00 31.00 76
10 4.00 31.00 123
Mean 4 31 104
Std 0 0 27.73
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Table 24 Results obtained with the m-class, and backpropagation, using the Zoo data set
benchmark in terms of the topology size (number of hidden/intermediate neurons) with 60%
of the data used for training and 40% for testing.

Data Set m-RDP BackProp BP 1out CCMout CC out
1 8.00 32.00 7.00 7.00 1.00
2 8.00 32.00 7.00 7.00 1.00
3 8.00 32.00 7.00 7.00 1.00
4 8.00 32.00 7.00 7.00 1.00
5 8.00 32.00 7.00 7.00 1.00
6 8.00 32.00 7.00 7.00 1.00
7 8.00 32.00 7.00 7.00 1.00
8 8.00 32.00 7.00 7.00 1.00
9 8.00 32.00 7.00 7.00 1.00
10 8.00 32.00 7.00 7.00 1.00
Mean 8 32 7 7 0
Std 0 0 0 0 0

Table 25 Results obtained with the m-class, and backpropagation, using the Zoo data set
benchmark in terms of the topology size (number of hidden/intermediate neurons) with 80%
of the data used for training and 20% for testing.

Data Set m-RDP BackProp BP 1out CC Mout CC 1out
1 8.00 27.00 3.00 7 1
2 8.00 27.00 3.00 7 1
3 8.00 27.00 3.00 7 1
4 8.00 27.00 3.00 7 1
5 8.00 27.00 3.00 7 1
6 8.00 27.00 3.00 7 1
7 8.00 27.00 3.00 7 1
8 8.00 27.00 3.00 7 1
9 8.00 27.00 3.00 7 1
10 8.00 27.00 3.00 7 1
Mean 8 27 3 7 0
Std 0 0 0 0 0
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Table 26 Results obtained with the m-class, and backpropagation, using the Iris data set
benchmark in terms of the topology size (number of hidden/intermediate neurons) with 60%
of the data used for training and 40% for testing.

Data Set m-RDP BackProp BP 1out Cc Mout CC 1out
1 4.00 9.00 5.00 6.00 12.00
2 4.00 9.00 5.00 7.00 13.00
3 4.00 9.00 5.00 6.00 10.00
4 5.00 9.00 5.00 8.00 13.00
5 5.00 9.00 5.00 6.00 11.00
6 5.00 9.00 5.00 8.00 11.00
7 4.00 9.00 5.00 6.00 13.00
8 4.00 9.00 5.00 6.00 13.00
9 4.00 9.00 5.00 6.00 13.00
10 4.00 9.00 5.00 5.00 10.00
Mean 4.3 9 5 6.4 11.9
Std 0.48 0 0 0.97

Table 27 Results obtained with the m-class, and backpropagation, using the Iris data set
benchmark in terms of the topology size (number of hidden/intermediate neurons) with 80%
of the data used for training and 20% for testing.

Data Set m-RDP BackProp BP 1out CC Mout CC 1out
1 4.00 13.00 5.00 4 14
2 4.00 13.00 5.00 6 15
3 6.00 13.00 5.00 8 15
4 6.00 13.00 5.00 9 16
5 6.00 13.00 5.00 8 16
6 6.00 13.00 5.00 7 15
7 6.00 13.00 5.00 10 16
8 7.00 13.00 5.00 8 16
9 6.00 13.00 5.00 8 16
10 5.00 13.00 5.00 6 13
Mean 5.6 13 5 7.4 15.2
Std 0.97 0 0 1.71 1.03
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Table 28 Results obtained with the m-class, and backpropagation, using the Soybean data
set benchmark in terms of the topology size (number of hidden/intermediate neurons) with
60% of the data used for training and 40% for testing.

Data Set m-RDP BackProp BP 1out CCMout CC 1out
1 19.00 60.00 51.00 17.00 15.00
2 17.00 60.00 51.00 17.00 15.00
3 18.00 60.00 51.00 17.00 15.00
4 16.00 60.00 51.00 17.00 14.00
5 17.00 60.00 51.00 16.00 14.00
6 16.00 60.00 51.00 16.00 14.00
7 16.00 60.00 51.00 16.00 15.00
8 16.00 60.00 51.00 16.00 14.00
9 16.00 60.00 51.00 16.00 14.00
10 16.00 60.00 51.00 17.00 15.00
Mean 16.7 60 51 16.5 14.5
Std 1.06 0 0 0.53 0.53

Table 29 Results obtained with the m-class, and backpropagation, using the Soybean data
set benchmark in terms of the topology size (number of hidden/intermediate neurons) with
80% of the data used for training and 20% for testing.

Data Set m-RDP BackProp BP 1out CC Mout CC 1out
1 17.00 50.00 51.00 17 18
2 19.00 50.00 51.00 17 17
3 18.00 50.00 51.00 18 18
4 17.00 50.00 51.00 17 18
5 17.00 50.00 51.00 17 17
6 19.00 50.00 51.00 17 18
7 17.00 50.00 51.00 17 18
8 18.00 50.00 51.00 18 17
9 17.00 50.00 51.00 18 18
10 17.00 50.00 51.00 18 19
Mean 17.6 50 51 17.4 17.8
Std 0.84 0 0 0.52 0.63
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Table 30 Results obtained with the m-class, and backpropagation, using the Wiscon-
sin Breast Cancer data set benchmark in terms of the topology size (number of hid-
den/intermediate neurons) with 60% of the data used for training and 40% for testing.

Data Set m-RDP BackProp CC
1 10.00 16.00 6.00
2 7.00 16.00 5.00
3 9.00 16.00 5.00
4 10.00 16.00 7.00
5 11.00 16.00 8.00
6 12.00 16.00 7.00
7 11.00 16.00 7.00
8 9.00 16.00 7.00
9 10.00 16.00 6.00
10 11.00 16.00 6.00
Mean 10 16 6.4
Std 1.41 0 0.97

Table 31 Results obtained with the m-class, and backpropagation, using the Wiscon-
sin Breast Cancer data set benchmark in terms of the topology size (number of hid-
den/intermediate neurons) with 80% of the data used for training and 20% for testing.

Data Set m-RDP BackProp CC
1 11.00 16.00 7
2 11.00 16.00 8
3 12.00 16.00 8
4 14.00 16.00 8
5 13.00 16.00 9
6 12.00 16.00 7
7 14.00 16.00 8
8 12.00 16.00 7
9 11.00 16.00 6
10 10.00 16.00 8
Mean 12 16 7.67
Std 1.33 0 0.87
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Active Learning Using a Constructive Neural
Network Algorithm

José L. Subirats, Leonardo Franco, Ignacio Molina, and José M. Jerez

Abstract. Constructive neural network algorithms suffer severely from overfitting
noisy datasets as, in general, they learn the set of available examples until zero error
is achieved. We introduce in this work a method for detect and filter noisy examples
using a recently proposed constructive neural network algorithm. The new method
works by exploiting the fact that noisy examples are in general harder to be learnt
than normal examples, needing a larger number of synaptic weight modifications.
Different tests are carried out, both with controlled and real benchmark datasets,
showing the effectiveness of the approach. Using different classification algorithms,
it is observed an improved generalization ability in most cases when the filtered
dataset is used instead of the original one.

1 Introduction

A main issue at the time of implementing feed-forward neural networks in classifi-
cation or prediction problems is the selection of an adequate architecture [1, 2, 3].
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Feed-forward neural networks trained by back-propagation have been widely used
in several problems but still the standard approach for selecting the number of lay-
ers and number of hidden units of the neural architecture is the inefficient trial-by-
error method. Several constructive methods and pruning techniques [1] have been
proposed as an alternative for the architecture selection process but it is a research
issue whether these methods can achieve the same level of prediction accuracy. Con-
structive algorithms start with a very small network, normally comprising a single
neuron, and work by adding extra units until some convergence condition is met
[4, 5, 6, 7, 8]. A totally opposite approach is the used by pruning techniques, as
these methods start with large architectures and work by eliminating unnecessary
weights and units [9].

Despite the existence of several constructive algorithms, they have not been ex-
tensively applied in real problems. This fact is relatively surprising, given that they
offer a systematic and controlled way of obtaining a neural architecture together
with the set of weights, and also because in most cases they offer the possibility of
an easier knowledge extraction procedure. In a 1993 work, Smieja [10] argued that
constructive algorithms might be more efficient in terms of the learning process but
cannot achieve a generalization ability comparable to back-propagation neural net-
works. Smieja arguments were a bit speculative rather than based on clear results,
but nevertheless might explain the fact that constructive methods have not been
widely applied to real problems. In recent years new constructive algorithms have
been proposed and analyzed, and the present picture might have changed [8, 7].

One of the problems that affects predictive methods in general, is the problem of
overfitting [11, 12]. The problem of overfitting arises when an algorithm specializes
in excess in learning the available training data causing a reduction on the general-
ization ability, computed on unseen data. In particular, overfitting affects severely
neural network constructive algorithms as they, in general, learn towards zero error
on the training set. One of the strategies used in constructive algorithms for avoid-
ing overfitting is the search of very compact architectures, as models with fewer
number of parameters may suffer less from overfitting. Other standard methods to
avoid overfitting, like early stopping using a validation set or weight decay, can also
be applied to constructive methods but they tend to be computationally costly and
sometimes difficult to adapt to work in conjunction with some constructive algo-
rithms. When the input data is noisy, as it is normally the case of real data, the
simple use of compact architectures is not enough to avoid overfitting as it will
be shown later in this chapter. A possible solution to this problem might be the
implementation of methods that exclude noisy instances from the training dataset
[13, 14, 15, 16, 17, 18], in a process that is usually considered a pre-processing
stage. In this work, we refer to the whole problem of learning and filtering noisy
examples as “Active learning”, as we considered both stages together in an on-line
procedure in which noisy instances are eliminated during the learning procedure.
Nevertheless, we also show in this work that the new introduced filtering process
can be applied as a separate stage and the selected instances used later with any
available predictive algorithm. The usual name given to the process of selecting or
filtering some examples from the available dataset is “Instance selection” and we
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refer to [19] for previous work on the field. Instance selection can be also used for
reducing the size of the dataset in order to speed up the training process and can be
also lead to prototype selection when the selected data are very much reduced. The
approach taken in this chapter is to use the proposed instance selection method as a
pre-processing step , as way of improving the generalization ability of predictive al-
gorithms. The method is developed inside a recently introduced constructive neural
network algorithm named C-Mantec [20] (Competitive MAjority Network Trained
by Error Correction) and leads to an improvement in the generalization ability of the
algorithm, permitting also to obtain more compact neural network architecures. The
reduced, filtered, datasets are also tested with other standard classification methods
like standard multilayer perceptrons, decision trees and support vector machines,
analyzing the generalization ability obtained. This chapter is organized as follows:
Next we give details about the C-Mantec constructive neural network algorithm and
in Section 3 the method for eliminating noisy instances is introduced, to follow with
some experiments, results and conclusions.

2 The C-Mantec Algorithm

The C-Mantec algorithm is a constructive neural network algorithm that creates ar-
chitectures with a single layer of hidden nodes with threshold activation functions.
For the most general case of input data comprising 2 output classes, the constructed
networks have a single output neuron computing the majority function of the re-
sponses of the hidden nodes (i.e., if more than half of the hidden neurons are ac-
tivated the output neuron will be active). The case of multiclass classification will
be considered separately below. The learning procedure starts with an architecture
comprising a single neuron in the hidden layer and as the learning advances more
neurons are added every time the present ones are not able to learn the whole set of
training examples. The synaptic weight modification rule used at the single neuron
level is the thermal perceptron learning rule proposed by Frean [5, 21]. The thermal
perceptron rule is a modification of the standard perceptron rule [22] that incorpo-
rates a modulation factor that makes the perceptron to learn only inputs that are
similar to the already acquired knowledge, as the introduced factor limits the value
of the modifications of the synaptic vector. The idea behind the thermal perceptron
is to introduce stability to the standard perceptron for the case of non-linearly sep-
arable tasks and this is achieved by permitting large changes of the synaptic vector
only at the beginning and later on only allow small modifications.

We consider neurons with a threshold activation function receiving input signals
ψi through synaptic weights wi that are active if the synaptic potential, φ is larger
than zero. The synaptic potential is defined as:

φ = (∑
i

ψi ∗ wi)− b. (1)

Note that the definition of the synaptic potential includes the value of the thresh-
old or bias, b, as this will be useful because for wrongly classified inputs the
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absolute value of the synaptic potential, |φ |, quantifies the error committed as it
gives the distance to the bordering hyperplane dividing the classification regions.

The neuron model used is a threshold gate where the output of the neuron, S, is
given by a step function depending on the value of the synaptic potential.

S = f (p) =
{

1 if p ≥ 0
0 otherwise

(2)

As said above, the synaptic modification rule that is used by the C-Mantec al-
gorithm is the thermal perceptron rule for which the change of the weights, δwi, is
given by the following equation:

δwi = (t − S)ψi
T
T0

exp{−|φ |
T

} , (3)

where t is the target value of the example being considered, S represents the ac-
tual output of the neuron and ψ is the value of the input unit i. T is a parameter
introduced in the thermal perceptron definition, named temperature, T0 the starting
temperature value and φ , the synaptic potential defined in Eq. 1. For rightly classi-
fied examples, the factor (t − S) is equals to 0 and then no synaptic weight changes
take place. The thermal perceptron rule can be seen as a modification to the standard
perceptron rule where the change of weights is modified by the factor, m, equals to:

m =
T
T0

exp{−|φ |
T

} . (4)

At the single neuron level the C-Mantec algorithm uses the thermal perceptron
rule, but at a global network level the C-Mantec algorithm incorporates competition
between the neurons, making the learning procedure more efficient and permitting
to obtain more compact architectures [20]. The main novelty introduced in the new
C-Mantec algorithm is the fact that once a new neuron is added to the network,
the existing synaptic weights are not frozen, as it is the standard procedure in con-
structive algorithms. Instead, after an input instance is presented to the network all
existing neurons can learn the incoming information by modifying its weights in
a competitive way, in which only one neuron will learn the incoming information.
The norm in standard constructive algorithms is to freeze weights not connected to
the last added neurons in order to preserve the stored information, in the C-Mantec
algorithm this is not necessary as the thermal perceptron is a quite conservative
learning algorithm and also because the C-Mantec algorithm incorporates a param-
eter g f ac that further controls the size of the allowed changes in synaptic weights,
in particular when the Temperature is large when this large changes are allowed at
the single neuron level by the thermal perceptron.

The C-Mantec algorithm generates architectures with a single hidden layer of
neurons. The output neuron of the network computes the majority function of the
activation values of the hidden units and thus the set of weights connecting the
hidden neurons with the output are fix from the beginning and not modified during
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1. Start a network with one hidden neuron and one output
neuron.
2. Input a random training example and check the output of
the network.
3. If the input example is not rightly classified then:

3a. Compute the value of φ for all existing hidden neurons
that wrongly classify the input example.

3b. Modify the weights of the neuron with the smallest
value of φ, provided that the value of the factor m is larger
than the value of the parameter g f ac. Lower the internal
temperature of the modified neuron.

3c. If there is no neuron with a value of m larger than g f ac
then introduce a new neuron that learns the incoming example.
4. Go to instruction 2 until all examples are classified
correctly.

Fig. 1 Pseudocode of the C-Mantec algortihm

the learning procedure. As the output neuron computes the majority of the hidden
layer activations, a correct functioning of the network is a state in which for every
instance in the training set the output of more than half of the hidden units coincides
with the respective target value of the instances.

As mentioned before, the algorithm also incorporates a parameter named grow-
ing factor, gfac, as it adjustment affects the size of the resulting architecture. Once
an instance is presented and the output of the network does not coincide with the
target value, a neuron in the hidden layer will be selected to learn it if some con-
ditions are met. The selected neuron will be the one with the lowest value of φ
among those neurons whose output is different from the target one, but only if the
value of m (see Eq. 4) is larger than the gfac value, set at the beginning of the
learning process. Thus, the gfac parameter will prevent the learning of misclassified
examples that will involve large weight modifications, as for high values of T the
thermal perceptron rule would not avoid these large changes, that can cause insta-
bility to the algorithm. After a neuron modifies it weights, its internal temperature
value is lowered. In the case in which for a wrongly classified instance there are
no neurons available for learning, a new neuron is added to the network and this
unit will learn the current input, ensuring the convergence of the algorithm. After a
new unit is added to the network the temperature, T , of all neurons is reset to the
initial value T0 and the learning process continues until all training examples are
correctly classified. In Fig. 1 a pseudocode of the algorithm is shown, summarizing
the most important steps of the C-Mantec algorithm and in Fig. 2 a flow diagram of
the algorithm is shown.

Regarding the setting of the two parameters of the algorithm, T0 and gfac, sev-
eral experiments have shown that the C-Mantec algorithm is quite robust against
changes of these two parameters and the finding of some optimal values is not diffi-
cult. The parameter T0 (initial temperature) ensures that a certain number of learn-
ing iterations will take place, permitting an initial phase of global exploration for
the weights values, as for high temperature values larger changes are easier to be
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Input random example

Select wrong neuron closest to the 

right classifi cation region 

acceptable for learning

Add a new neuron and reset 

temperatures

Eliminate noisy instancesLearn using the thermal perceptron

FINISH

START

Training.Set.Count > 0

Is there neuron 

that want learn?

YES

YES

YES

NO

NO

NO

Output = Target ?

Fig. 2 Flow diagram corresponding to the C-Mantec constructive algorithm.

accepted. The value of the parameter g f ac affects the size of the final architecture,
and it has been observed that different values are needed in order to optimize the
algorithm towards obtaining more compact architectures or a network with a better
generalization ability.

The convergence of the algorithm is ensured because the learning rule is very
conservative in their changes, preserving the acquired knowledge of the neurons
and given by the fact that new introduced units learn at least one input example.
Tests performed with noise-free Boolean functions using the C-Mantec algorithm
show that it generates very compact architectures with less number of neurons than
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existing constructive algorithms [20]. However, when the algorithm was tested on
real datasets, it was observed that a larger number of neurons was needed because
the algorithm overfit noisy examples. To avoid this overfitting problem the method
introduced in the next section is developed in this work .

3 The “Resonance Effect” for Detecting Noisy Examples

We introduce in this section a method designed to eliminate instances considered
noisy, as a way to increase the classification ability of predictive algorithms. It is
worth mentioning that deciding whether an input example is a true input datum or a
noise-contaminated one is a difficult issue that can in principle be carried out only
if one knows a priori the level of noise present in the system. However, a reason-
able approach is to discard suspicious noisy inputs and test the generalization ability
obtained, without making claims about whether the eliminated instances are noise
or not. The filtering method to be introduced is developed from an effect observed
during the application of the C-Mantec algorithm to real datasets. The effect, named
“resonance effect” can be exemplified by the picture displayed in Fig. 3, where an
schematic drawing shows the effect that is produced when a thermal perceptron tries
to learn a set of instances containing a contradictory pair of examples. In Fig. 3, the
set of “good” examples is depicted in the left part of the figure, while the contradic-
tory pair is on the right. When a single neuron tries to learn this set, the algorithm
will find an hyperplane from a beam of the possible ones (indicated in the figure)
that classifies correctly the whole set except for one of the noisy examples. Further

P2

P1

C1

C2

Fig. 3 Schematic drawing of the “Resonance effect” that occurs when noisy examples are
present in the training set. A thermal perceptron will learn the “good” examples, represented
at the left of the figure, but will classify rightly only one of the noisy samples. Further learning
iterations in which the neuron tries to learn the wrongly classified example will produce
an oscillation of the separating hyperplane. The number of times the synaptic weights are
adjusted upon presentation of an example can be used to detect noisy inputs.
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Fig. 4 The effect of adding attribute noise. Top: Generalization ability as a function of the
level of attribute noise for the “modified” Pima indians diabetes dataset for the C-Mantec
algorithm applied with and without the filtering stage. Bottom: The number of neurons of the
generated architectures as a function of the level of noise. The maximum number of neurons
was set to 101.

learning iterations produce a resonant behavior, as the dividing hyperplane oscillates
trying to classify correctly the wrong example. Eventually, the iterations will end as
the whole set cannot be learnt by a simple perceptron and a new neuron will be
added to the network. It was observed that these noisy examples make the network
to grow in excess, degrading the generalization ability. The filtering method works
by counting the number of times each training example is presented to the network,
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Fig. 5 The effect of adding class noise to the dataset. Top: Generalization ability as a function
of the level of class noise for the modified Pima indians diabetes dataset for the cases of
implementing the filtering stage and for the case of using the whole raw dataset. Bottom:
The number of neurons of the generated architectures for the two mentioned cases of the
implementation of the C-Mantec algorithm.

and if the number of presentations for an example is larger by two standard devia-
tions from the mean, it is removed from the training set. The removal of examples is
made on-line as the architecture is constructed and a final phase is carried out where
no removal of examples is allowed.

To test the new method for removal of noisy examples a “noise-free” dataset is
created from a real dataset, and then controlled noise was added to the attributes (in-
put variables) and to the class (output), in separate experiments to analyze whether
there is any evident difference between the two cases [23]. Knowing the origin of
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the noise is an interesting issue with practical applications, as it can help to de-
tect the sources of noise and consequently help to eliminate it. The dataset chosen
for this analysis is the Pima Indians Diabetes dataset, selected because it has been
widely studied and also because it is considered a difficult set with an average gen-
eralization ability around 75%. To generate the “noise-free” dataset, the C-Mantec
algorithm was run with a single neuron that classified correctly approximately 70%
of the dataset, and then the “noise-free” dataset was constructed by presenting the
whole set of inputs through this network to obtain the “noise-free” output. Two
different experiments were carried out: in the first one, noise was added to the at-
tributes of the dataset and the performance of the C-Mantec algorithm was analyzed
with and without the procedure for noisy examples removal. In Fig. 4 (top) the gen-
eralization ability for both cases is shown for a level of noise between 0 and 0.8 and
the results are the average over 100 independent runs. For a certain value of added
noise, x, the input values were modified by a random uniform value between −x
and x. The bottom graph shows the number of neurons in the generated architec-
tures when the filtering process was and was not applied as a function of the added
attribute noise. It can be clearly seen that the removal of the noisy examples helps
to obtain much more compact architectures while a better generalization ability is
observed. The second experiment consisted in adding noise to the output values and
the results are shown on Fig. 5. In this case the noise level indicate the probability
of modifying the class value to a binary value, chosen randomly between 0 or 1.

From the experiments carried out with the two types of noise introduced to the
Diabetes dataset we can observe that the resonance effect helps to detect and elimi-
nate the noisy instances in both cases, helping to increase the generalization ability,
even if the change is not enough to recover the generalization ability obtained in
the noise-free case. It can also be observed that the size of the neural architectures
obtained after the removal of the noisy instances is much lower than the size of the
architectures needed for the noisy cases. Also, it has to be said that the experiments
did not lead to a way of differentiating the sources of noise, as the results obtained
for the two noise-contaminated datasets considered were not particularly different.

4 Experiments and Results on Public Domain Datasets

We tested the noise filtering abilities of the method introduced in this work using
the C-Mantec constructive algorithm on a set of 11 well known benchmark func-
tions [24]. The set of analyzed functions contains 6 two-classes functions and 5
multi-class problems with a number of classes up to 19. The C-Mantec algorithm
was run with a maximum number of iterations of 50.000 and an initial temperature
value (T0) equals to the number of inputs of the analyzed functions. It is worth not-
ing that different tests showed that the algorithm is quite robust to changes on these
parameter values. The results are shown in Table 1, where it is shown the number
of neurons of the obtained architectures and the generalization ability obtained, in-
cluding the standard deviation values, computed over 100 independent runs. The
last column of Table 1 shows, as a comparison, the generalization ability values
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Table 1 Results for the number of neurons and the generalization ability obtained with the
C-Mantec algorithm using the data filtering method introduced in this work. The last column
shows the results from [25] (See text for more details).

Function Inputs Classes Neurons Generalization Generalization
C-Mantec NN [25]

Diab1 8 2 3.34±1.11 76.62±2.69 74.17±0.56
Cancer1 9 2 1±0.0 96.86±1.19 97.07±0.18
Heart1 35 2 2.66±0.74 82.63±2.52 79.35±0.31
Heartc1 35 2 1.28±0.57 82.48±3.3 80.27±0.56
Card1 51 2 1.78±0.87 85.16±2.48 86.63±0.67

Mushroom 125 2 1±0.0 99.98±0.04 100.00±0.0
Thyroid 21 3 3±0.0 91.91±0.59 93.44±0.0
Horse1 58 3 3±0.0 66.56±5.08 73.3±1.87
Gene1 120 3 3.03±0.22 88.75±1.07 86.36±0.1
Glass 9 6 17.84±1.19 63.75±6.38 53.96±2.21

Soybean 82 19 171±0.0 91.63±1.89 90.53±0.51
Average 50.27 4.18 18.99±0.43 84.21±2.03 82.50±0.63

obtained by Prechelt [25] in a work where he analyzed in a systematic way the
prediction capabilities of different topologies neural networks. The size of training
and test sets were chosen in a similar way in both compared cases: the training set
comprises 75% of the total number of instances and the remaining 25% was used
for testing the generalization ability. The results obtained with the C-Mantec algo-
rithm outperforms the ones obtained by Prechelt in 6 out of 11 problems and on
average the generalization ability is 2.1% larger. Regarding the size of the networks
obtained using the new method introduced, the architectures are very small for all
problems with 2 or 3 classes, for which the architectures contain less than 4 neurons.
For multi-class problems the algorithm generates networks with a larger number of
hidden neurons but this is because of the method used to treat multiclass problems
that will be reported elsewhere [20].

A further set of experiments was carried out using as classification algorithms
other standard methods in machine learning. Three different available algorithms
were used and tested on the original datasets and on the filtered dataset where the
noisy examples were eliminated. The three algorithms used were standard mul-
tilayer perceptrons (MLP) trained by backpropagation, Support Vector Machines
(SVM) [27] and the C4.5 algorithm based on decision trees (C4.5) [26], all imple-
mented under the WEKA package ([28]) using the default parameter settings. The
results are presented in table 2 where the generalization ability obtained for six dif-
ferent datasets are shown for the two cases considered: filtered and original datasets.
It can be observed that when multilayer perceptron are used, in all analyzed cases
the generalization ability obtained with the filtered dataset was larger than with the
original set and the difference was on average larger by a 1.31%, with values in
some cases as large as 2.32%. For the case of the C4.5 algorithm the results with
and without filtering instances were similar with an average difference of 0.18% in
favor of the filtered case. When the support vector machines were tested with both
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Table 2 Results for generalization ability obtained using standard multilayer perceptrons
(MLP), decision trees (C4.5) and support vector machines (SVM) algorithms using both the
filtered and original datasets (See the text for more details).

Filtered data Original data
MLP C4.5 SVM MLP C4.5 SVM

Diab1 75.63 ± 4.21 75.21 ± 2.85 76.36 ± 3.43 74.58 ± 2.36 73.54 ± 2.78 77.81 ± 1.57
Cancer1 95.06 ± 0.78 93.91 ± 2.05 95.63 ± 1.00 94.84 ± 1.28 93.93 ± 1.83 95.90 ± 0.95
Heart1 82.49 ± 2.87 79.44 ± 1.15 81.80 ± 2.70 80.17 ± 2.23 78.70 ± 2.94 81.74 ± 2.38
Heartc1 83.20 ± 4.43 78.13 ± 3.22 82.13 ± 4.58 81.05 ± 2.70 79.47 ± 5.23 84.74 ± 4.21
Card1 85.81 ± 2.50 85.81 ± 3.68 86.74 ± 2.71 83.72 ± 1.81 85.93 ± 2.55 86.05 ± 1.90

Mushroom 100.00 ± 0.00 99.95 ± 0.05 100.00 ± 0.00 100.00 ± 0.00 99.86 ± 0.07 100.00 ± 0.00
Average 87.04 ± 3.65 85.41 ± 3.99 87.11 ± 3.69 85.73 ± 3.95 85.23 ± 4.09 87.71 ± 3.48

datasets, the generalization ability observed decreases with the filtered instances in
average by approximately 0.61%, but noting that in 2 out of the 6 cases considered
the prediction improved.

Regarding the generalization ability obtained by the different methods, we first
note that the average generalization ability for the 6 functions shown in table 2
is of 87.29 ± 3.72 for the C-Mantec algorithm with the active learning procedure
incorporated. Thus, the best method with these limited set of 6 functions turns out
to be the SVM approach, close followed by the constructive C-Mantec algorithm
and by the MLP; while the C4.5 came last with a lower generalization ability.

The number of instances in the filtered datasets was on average 2.73% smaller
than the original sets, being the smaller ones found in those for which the gener-
alization ability was lower, as for Diabetes dataset. The standard deviation of the
results shown in tables 1 and 2 is computed over 5 randomly selected datasets, us-
ing 75% of the examples for training the models and the remaining 25% for testing
the generalization ability.

5 Discussion

We introduced in this chapter a new method for filtering noisy examples using a
recently developed constructive neural network algorithm. The new C-Mantec al-
gorithm generalizes very well on free-noise dataset but have shown to overfit with
noisy datasets and thus, a filtering scheme for noisy instances have been imple-
mented. The filtering method devised is based on the observation that noisy ex-
amples needs more number of weights updates than regular ones. This “resonant
effect” observed, permits to distinguish these instances and eliminate them in an
on-line procedure. Simulations performed show that the generalization ability and
size of the resulting networks are very much improved after the removal of the
noisy examples. A comparison of results was done against previous reported val-
ues obtained using standard feed-forward neural networks [25] and showed that the
generalization ability was on average a 2.1% larger, indicating the effectiveness of
the C-Mantec algorithm implemented with the new filtering stage. The introduced
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method of data selection can also be used as a pre-processing stage for other pre-
diction algorithms, and for this reason a second comparison was carried out using
three well known predictive algorithms: MLP, C4.5 decision trees and SVM. The
results obtained and shown in table 2 indicate that the instance selection procedure
appears to work quite well with MLP and less with the other two algorithms. It
might be possible, given the neural nature of the C-Mantec algorithm, that the fil-
tering stage developed works better with neural-based algorithms but further studies
might be needed to extract a final conclusion. Overall we have observed that the ac-
tive learning procedure implemented using the new C-Mantec algorithm is working
very efficiently in the task of avoiding overfitting problems and that comparable re-
sults to those obtained using MLP’s and SVM’s can be obtained with a constructive
neural network algorithm.
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Incorporating Expert Advice into 
Reinforcement Learning Using Constructive 
Neural Networks 

Robert Ollington, Peter Vamplew, and John Swanson1 

Abstract. This paper presents and investigates a novel approach to using expert 
advice to speed up the learning performance of an agent operating within a rein-
forcement learning framework. This is accomplished through the use of a  
constructive neural network based on radial basis functions. It is demonstrated that 
incorporating advice from a human teacher can substantially improve the perform-
ance of a reinforcement learning agent, and that the constructive algorithm pro-
posed is particularly effective at aiding the early performance of the agent, whilst 
reducing the amount of feedback required from the teacher. The use of construc-
tive networks within a reinforcement learning context is a relatively new area of 
research in itself, and so this paper also provides a review of the previous work in 
this area, as a guide for future researchers. 

1   Introduction 

Reinforcement learning is a learning paradigm in which an autonomous agent 
learns to execute actions within an environment in such a way as to maximise the 
reinforcement which it receives from the environment. Scaling reinforcement 
learning to large, complex problems is an ongoing area of research, and this paper 
deals with the combination of two approaches which have been applied to this 
scaling issue – the use of constructive neural networks, and the incorporation of 
human guidance into the learning process. Specifically we propose and empiri-
cally test a novel algorithm for utilising human advice within a reinforcement 
learning system, which exploits the properties of a particular constructive neural 
network known as the Resource Allocating Network. 
                                                           
Robert Ollington and John Swanson 
School of Computing and Information Systems, University of Tasmania, Tasmania, 
Australia 

Peter Vamplew 
Center for Informatics and Applied Optimisation, School of Information Technology and 
Mathematical Sciences, University of Ballarat, Victoria, Australia 
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As many readers of this volume may not previously be familiar with reinforce-
ment learning, Section 2 will present a brief introduction to this learning paradigm 
– for a more thorough review the reader is directed to the excellent textbook by 
Sutton and Barto (1998). This section will also discuss the relationship between 
reinforcement learning and function approximation methods such as neural net-
works, whilst Section 3 will review the previous research on utilising constructive 
neural networks within a reinforcement learning context. The following sections 
examine how a reinforcement learning agent can be aided in learning a difficult 
task. Section 4 reviews existing approaches to guiding an agent during learning, 
whilst Section 5 proposes a new algorithm for incorporating human advice into the 
learning process, based on the use of a constructive radial basis function network. 
Section 6 documents experiments carried out to assess the effectiveness of this 
new algorithm relative to alternative approaches. Section 7 offers conclusions and 
suggestions for future work. 

2   Reinforcement Learning and Function Approximation 

Reinforcement learning addresses the problem of an autonomous agent learning to 
perform a particular task whilst interacting with an environment. The agent is re-
quired to carry out a series of actions which will lead to the overall task being 
achieved. Unlike other forms of machine learning such as supervised learning, the 
agent is given no direct instructions on the decisions it should make and the ac-
tions which it should select to perform. Instead it receives indirect feedback in the 
form of a reward signal, which is highest when the desired results are achieved. At 
each time-step the agent observes the current state and selects an action. The ac-
tion is executed, which may change the environment, and the agent receives a sca-
lar reward1 and observes the new state of the environment. 

The agent attempts over time to learn a mapping from state-to-action to maxi-
mise the long-term reward. This mapping, which determines the behaviour of the 
agent, is known as its policy. Policies which achieve higher long-term rewards will 
be favoured over those achieving lesser rewards, and in this way the reward signal 
guides the agent towards behaviour which is desirable, without explicitly instruct-
ing the agent on which actions to take in a specific state. This leaves the agent free 
to discover effective policies which may previously have been unknown. In  
contrast a system trained using supervised learning methods will be limited to re-
producing the policy embedded in the training data provided to it. Perhaps the 
best-known example illustrating this difference between reinforcement learning 
and supervised learning is the work on backgammon carried out by Tesauro 
(1995). An agent trained to play backgammon using reinforcement learning meth-
ods over a large number of games played against itself (TDGammon) was shown 
to significantly outperform another agent trained using supervised learning on a 

                                                           
1 In fact, whilst the majority of reinforcement learning signals use a scalar reward signal, 

tasks which require the agent to balance multiple conflicting objectives may be dealt with 
by using a vector reward, with an element for each distinct objective – see for example 
(Vamplew et al. 2008).   
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large data-set of game states labelled by a human expert. In fact, TDGammon 
achieved an extremely high level of play, comparable to that of human experts.  
Of course, the benefits of reinforcement learning do not come without cost – the 
reinforcement learning task is considerably harder and slower than supervised 
learning. 

One common approach to reinforcement learning is to learn the expected return 
associated with each state and action. Once these state-action values have been 
learnt, an optimal policy can be found simply by following the greedy policy of 
selecting at each state the action which has the highest expected return for that 
state. Many of the algorithms for learning these values are based on the use of the 
method of temporal differences (TD) where the value of the current state at each 
step is used to update the estimated value of previous states (Sutton, 1988).  

In order for TD-based methods to work successfully, it is important that all 
states and actions are sampled a large number of times – in fact formal proofs of 
the convergence of TD algorithms generally require the assumption that all states 
and actions are visited an infinite number of times. Whilst clearly this can not be 
achieved in practice, experience has shown that excellent results can still be ob-
tained on many tasks as long as a degree of exploration is implemented by the 
agent. That is to say, the agent must not simply follow the greedy policy dictated 
by its current estimate of the state-action values, as this could easily lead to it be-
come trapped in a sub-optimal policy. Instead on some time-steps exploratory, 
non-greedy actions must be selected. Two broad categories of TD methods exist – 
on-policy methods such as Q-learning (Watkins and Dayan, 1992) in which the 
values learnt are those corresponding to the greedy policy (i.e. ignoring the ex-
ploratory actions), and off-policy methods such as SARSA (Rummery and Niran-
jan, 1994) in which the values learnt are for the policy actually being followed by 
the agent (i.e. including the exploratory actions).  

The earliest work on TD methods examined simple problems with relatively 
small, discrete state-spaces, which allowed the state-action values to be stored in a 
lookup table. However the storage requirements of these tabular methods rapidly 
become impractical as the dimensionality or resolution of the state associated with 
the problem environment increases. In addition learning can be extremely slow, as 
tabular algorithms can only learn about states and actions which the agent has ex-
perienced. Therefore in order to scale TD methods to larger, more complex tasks 
function approximation must be used to estimate the values. The number of pa-
rameters required by the function approximator is generally far fewer than the 
number of discrete states, thereby reducing storage requirements. In addition func-
tion approximators can generalise from states which have been experienced to 
similar states that are yet to be visited, which can substantially increase the rate of 
learning. 

Two main approaches to function approximation have been explored in the re-
inforcement learning literature. One involves the use of global approximators such 
as neural networks. These have been applied successfully to a range of problems, 
such as elevator control (Crites and Barto, 1996) and the previously mentioned 
work on backgammon (Tesauro, 1996). However this success has failed to be rep-
licated on other, seemingly similar tasks. The second approach is to use locally 
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sensitive approximators such as CMACs (Sutton, 1996) or radial-basis functions 
(Kretchmar and Anderson, 1997). The local approach has been shown to be both 
more stable and more amenable to formal analysis, but may scale less well to 
higher-dimensional input spaces (Coulom, 2002). 

Function approximation is, of course, not specific to the field of reinforcement 
learning, and many different approaches to function approximation have previ-
ously been investigated within the context of supervised learning. One of the most 
promising approaches (as evidenced by the existence of this volume!) is the use of 
constructive neural networks. Unlike many other forms of function approximation 
(including fixed-architecture neural networks), constructive networks do not have 
a fixed structure. They generally start with a minimal architecture and add proc-
essing units (neurons) during the training process, thereby tailoring their structure 
to the demands of the task being learnt. A wide variety of constructive algorithms 
have been proposed so, rather than replicate material which will be covered in 
more detail elsewhere in this volume, the next section of this paper will focus on 
the particular constructive network algorithms which have so far been applied 
within the context of reinforcement learning. 

3   Reinforcement Learning Using Constructive Neural 
Networks 

3.1   Motivation for Using Constructive Networks in 
Reinforcement Learning 

Various studies have previously identified that constructive neural networks can 
be an extremely effective tool for function approximation, both in terms of the 
speed of learning and the accuracy of their approximation (see for example, Pre-
chelt (1997). This in itself would make them of interest for application in rein-
forcement learning tasks. However there are also a number of other reasons why 
constructive approaches may be particularly beneficial for reinforcement learning. 

Thrun and Schwartz (1993) provides both a theoretical argument and empirical 
evidence that function approximators are prone to systematic overestimation of 
values when used with temporal difference algorithms (particularly for off-policy 
algorithms). Whilst not directly advocating the use of constructive networks, this 
work argues that function approximators with a bounded memory (such as a fixed-
architecture neural network) are less likely to overcome this systematic bias than 
those with an unbounded memory (such as a constructive network). Therefore it 
may be that constructive algorithms can overcome some of the failures which have 
been observed when fixed forms of function-approximation have been applied to 
large, complex reinforcement learning tasks. 

Whilst Tesauro (1996) achieved exceptional results in backgammon from the 
combination of temporal difference learning and fixed multi-layer perceptron neu-
ral networks, he suggests the use of cascade-correlation networks as a future de-
velopment of TD-Gammon, to avoid the need to completely retrain the network 
when new input features are added. More generally, constructive algorithms are 
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well-suited to tasks which require building on previously acquired knowledge. 
This aspect of constructive networks forms the rationale for the experimental work 
reported later in this paper, and so we will explore this issue in greater detail in 
Sections 4 and 5. 

Finally we observe that the fundamental characteristic of reinforcement learn-
ing is that it aims to produce autonomous learning agents that can adapt to carry 
out tasks in an unknown environment with relatively little guidance. Using a con-
structive neural network as the function approximator allows the agent to deter-
mine its own internal structure, thereby further increasing its level of autonomy. 

3.2   Previous Work on Reinforcement Learning Using 
Constructive Networks 

3.2.1   Locally Responsive Constructive Reinforcement Learning 

The first application of a constructive algorithm within a reinforcement learning 
context was probably by Anderson (1993) who adapted the constructive Resource 
Allocating Network (RAN) (Platt 1991) for use within the Q-learning algorithm. 
In a strict sense Anderson’s RAN was no longer a constructive algorithm, as it 
used a fixed number of hidden nodes. Rather than adding a new node when an un-
expectedly large error was detected, the algorithm identified the least useful cur-
rent hidden node, and reinitialised its weights to correct for the current error. 

Since Anderson’s pioneering work, constructive networks for reinforcement 
learning based on radial basis functions have been further developed and applied 
by a number of other authors. For example, Jun and Duckett (2005) applied a 
combination of Q-learning and a Resource Allocating Network to train a robot to 
carry out a wall-following task. An interesting observation of this work is that  
the temporal difference error fails to converge to zero during learning, and in fact 
oscillates over the entire training period. This illustrates an unusual aspect of func-
tion approximation within TD algorithms - unlike most regression tasks, in this 
case the absolute accuracy of the function approximator is less relevant than its 
relative accuracy. As long as the optimal action for each state is valued higher 
than the other actions then the optimal policy will be followed. 

Santos and Touzet (1999) also applied a constructive radial basis function net-
work to a robotic navigation task (wall following). Their work differs from that of 
Li and Duckett in that it is not based on temporal difference methods for learning 
state-action values – instead the network is trained to directly perform a mapping 
from state to actions. Hence in this work the constructive network is being used as 
a classifier rather than as a function approximation system. 

An issue which arises in many systems based on radial basis functions is the 
setting of appropriate widths for the basis functions. A constructive reinforcement 
learning system which neatly addresses this problem was proposed by Šter and 
Dobnikar (2003). Their Adaptive Radial Basis Decomposition algorithm imple-
ments two different methods of adding new hidden neurons. If a large error is de-
tected in a currently unoccupied region of state space, a new neuron is added 
much as in a conventional RAN. In addition the local TD error is monitored for 
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each hidden neuron, and if this is found to be high the neuron is decomposed, and 
replaced by two neurons with narrower widths. This algorithm is particularly ef-
fective in problems where the value function is smooth in some areas but with 
large local variations in other regions of the state space. 

3.3.2   Globally-Responsive Constructive Reinforcement Learning 

All of the systems described above use neurons with radial basis functions, where 
each neuron responds only to inputs within localised regions of the state-space. 
The application in reinforcement learning of constructive networks based on neu-
rons with non-local response functions has been minimal, despite this style of sys-
tem being widely and successfully applied within the supervised learning field. 
Many constructive algorithms have been proposed in the supervised learning lit-
erature, but amongst the most widely adopted has been Cascade-Correlation 
(Cascor) (Fahlman and Lebiere, 1990). This constructive algorithm, based on non-
localised neurons, has been shown to equal or outperform fixed-architecture net-
works on a wide range of supervised learning tasks (Fahlman and Lebiere, 1990; 
Waugh 1995) and its possible utility for reinforcement learning was first identified 
by Tesauro (1993). Despite this, the first work using a cascade constructive net-
work for reinforcement learning appears to be by (Rivest and Precup (2003); 
Bellemare, Precup and Rivest, (2004)). Possibly this is explained by the added dif-
ficulty in incorporating this style of network into a reinforcement learning envi-
ronment. Whereas the RAN was initially designed for on-line learning where the 
network is updated after each input, Cascade-Correlation is usually used in con-
junction with batch training algorithms such as Quickprop. The approach used by 
this group was to modify the reinforcement learning process so as to allow direct 
application of the Cascor algorithm. They propose a learning algorithm with two 
alternating stages. In the first stage the agent selects and executes actions, and 
stores the input state and the target value generated via TD in a cache. Once the 
cache is full, a network is trained on the cached examples, using the standard 
Cascor algorithm. Once the network has been trained, the cache is cleared and the 
algorithm returns to the cache-filling phase. 

In contrast Vamplew and Ollington (2005) adapted the training algorithm for the 
cascade network to use simple gradient descent backpropagation, thereby allowing 
it to be trained in a fully on-line fashion within the temporal difference algorithm 
with no need for caching. They propose the use of parallel candidate training 
whereby the weights for both the output and candidate neurons in the cascade net-
work are updated after each interaction with the environment. This eliminates the 
need to maintain a cache, and ensures that the policy is updated immediately after 
the results of each action are known. However a possible disadvantage of parallel 
candidate training is the issue of moving targets. The temporal difference errors 
used as targets for the candidate nodes are themselves changing during training as 
the weights of the output neurons are adapted. Therefore the task facing the candi-
date neurons is more complex than it would be if these values were static. 

Nissen (2007) provides the most extensive examination so far of the use of  
cascade networks for reinforcement learning, and introduces algorithms which  
attempt to find a middle-ground between the two previous approaches. Nissen’s 
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algorithms allow batched training algorithms such as Quickprop to be applied in 
an on-line fashion by dynamically maintaining a ‘sliding window’ cache of the 
most recent states, actions and temporal difference errors. 

Most recently Girgin and Preux (2008) have explored the use of Cascade-
Correlation networks in conjunction with the Least Squares Policy Iteration rein-
forcement learning algorithm. In this case the candidate neurons trained using the 
cascade-correlation algorithm form the basis features for the LSPI algorithm, 
which forms a linear weighting of these basis features. 

3.3   Summary of Previous Work 

At this point in time very little evidence exists on which to judge the relative mer-
its of the different approaches to constructive reinforcement learning. No large-
scale comparative studies have been performed, and there is little overlap in the 
sample problems used by different authors.  

Vamplew and Ollington provide results comparing their cascade algorithm 
against a RAN-based reinforcement learning algorithm on a small set of simple 
test problems. These results show that in some cases the cascade approach can 
perform comparably or even slightly better than the RAN system, whilst produc-
ing a much more compact network. However the cascade network is less stable, 
and has much poorer worst-case performance than the RAN. Similarly Precup, 
Rivest and Bellemare report promising results for tic-tac-toe and car-rental tasks, 
but their system did not perform well on the more complex backgammon task. 
Nissen’s system demonstrates improved performance on the backgammon task, 
but is still very sensitive to some of the parameter settings. 

The ability of the globally-responsive networks to learn policies based on a far 
smaller number of neurons would appear to hold potential for scaling to more 
complex and higher-dimensional state spaces. However in practice the instability 
of the learning algorithms based on these networks means this potential has yet to 
be fulfilled.  

A possible clue to the cause of this instability may lie in the observations made 
by Baird (1995) regarding the potential for divergence when even simple linear 
function approximators are combined with the TD algorithm. The ‘bootstrapping’ 
nature of TD, in which the estimated value of the current state-action pair is up-
dated based on an error derived from the estimate of the next state-action can lead 
to instability when those estimates are based on common weights. As the weights 
are modified to improve the estimate for the current state and action, this may in 
fact also affect the estimated value of the next state and action. If these states are 
revisited in the future, this can easily lead to an endless cycle driving both esti-
mates towards infinite values. Clearly this problem is more likely to arise if tem-
porally adjacent states share similar features – this is more likely to occur in a 
network in which the hidden neurons have globally responsive behaviour than in a 
network with locally-responsive hidden neurons. Baird (1995) has proposed  
the residual gradient algorithm as a means of addressing this issue of diverging 
values. The application of residual gradient learning in combination with cascade 
networks remains an interesting possibility for future research. 
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4   Guiding Reinforcement Learning 

One of the major tasks facing reinforcement learning researchers is to develop 
techniques which effectively and efficiently scale to large, complex problems. 
Whilst there have been some spectacular successes such as TDGammon, often al-
gorithms which been effective on simple test problems have failed when applied 
to more difficult, real-world applications.  

Learning to perform a task based only on a simple reinforcement signal with no 
other guidance may simply be too difficult to be practical for complex problems. 
Therefore a variety of methods have been proposed to aid the agent in this learn-
ing process. Transfer of knowledge between tasks (Perkins and Precup, 1999) and 
shaping (Randlov and Alstrom, 1998) aim to allow the agent to apply learning 
from previous, possibly simpler, tasks to the task currently being learnt. Another 
way to aid the agent is to allow it to initially learn the values of policies being 
executed by a human expert or another program, before entering a reinforcement 
learning phase during which it may improve on these initial policies (Nechyba and 
Bagnell, 1999). All of these approaches require the agent to be able to build on 
previously acquired knowledge. Constructive networks are well suited to this style 
of learning, as they have the ability to extend their structure to support new 
knowledge, whilst retaining the learnt knowledge encapsulated in their existing 
structure and weights, and so some attempts have been made to use them in this 
manner within reinforcement learning tasks. 

Both Jun and Duckett (2005) and Großmann and Poli (1998) have utilised con-
structive networks within robot learning applications in which the robot first 
learns to mimic actions selected by a human expert, before using reinforcement 
learning methods to find an improved policy. Jun and Duckett use a RAN as their 
choice of network, whilst Großmann and Poli’s system is based on a specialised 
high-order constructive network known as the Temporal Transition Hierarchy. 
Nissen (2007) discusses the possible extension of the NFQ-SARSA(λ) algorithm 
to this combination of reinforcement learning and ‘learning-by-example’, but does 
not actually implement or test this approach. 

One of the difficulties faced when using reinforcement learning algorithms is 
the almost random nature of exploration in the early stages of training.  This is 
particularly problematic when the agent has a manifestation in the real world or 
when there is some real cost associated with poor action selection.  In many such 
cases, a human (or non-human) expert may have already learned a reasonable, if 
not optimal, solution to the problem.  It would be nice to be able to incorporate 
that knowledge into the reinforcement learning agent. 

One approach to achieving this is to allow an external expert to provide advice 
to the learning agent (Clouse and Utgoff, 1991, 1992; Maclin and Shavlik, 1996; 
Papudesi and Huber, 2003; Maclin et al., 2005).  There are two questions that need 
to be answered when designing a RL agent that receives advice - “how should the 
advice be represented?” and “how should the advice be utilized?”. 

Ideally advice would be represented in a manner that is easy to describe and in 
a format that is easily understood by the expert.  The simplest method that satis-
fies these criteria is for the expert to observe a situation and suggest the action 
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that they would perform in that situation.  Such a system has been used success-
fully by Clouse and Utgoff (1992).  However, incorporating this form of advice 
directly into the agent is not as straightforward. Clouse and Utgoff (1992) incor-
porated the advice by forcing the agent to perform the suggested action, and pro-
viding an additional bonus reward to encourage similar behaviour in the future.  
This method has two main disadvantages.  Firstly, there is no guarantee that the 
bonus reward provided will be enough to make this action more favourable than 
alternative actions.  Secondly, it is likely that such a method will result in incor-
rect action values being learnt by the agent – and unlearnt when the expert stops 
providing advice. 

Therefore we have investigated an alternative approach to providing advice 
based on directly adding neurons to a constructive network when advice is pro-
vided to the agent. Section 5 describes this new algorithm, whilst Section 6 pro-
vides experimental results comparing it against an agent learning without advice, 
and an agent learning via the ‘bonus reward’ approach to advice-giving. 

5   Providing Expert Advice via a Resource Allocating Network 

Using a RAN (or other locally constructive algorithm) for function approximation, 
as described in the previous sections, allows a more direct method of incorporat-
ing advice that results in faster and more robust learning.  The method, which we 
will refer to as the difference advice method, is implemented as follows.   

If advice is presented to the agent, and that advice contradicts the agent’s own 
action choice for the current state, the error novelty criterion for the RAN is con-
sidered to be satisfied automatically, and the ‘error’ for that action is set to a value 
that will make the action more favourable than the agent’s own action choice.  The 
error for actions other than the advised action is set to zero. This has the effect of 
immediately making this action the preferred choice for states that are locally 
similar to the current state, without affecting action values for dissimilar states.  In 
addition, assuming the expert’s action choice is better than the agent’s preferred 
action, the action value learnt is at least no more incorrect than the learnt value for 
the agent’s own action choice. Figure 1 provides a formal description of the inte-
gration of this difference advice method into the Q-learning framework. 

6   Experimental Methodology and Results 

To test this new algorithm for providing expert advice to a reinforcement learning 
agent, experiments were conducted for a simple car-racing game, where a human 
expert could clearly visualise the current state and provide on-line advice using 
keyboard input. The simulation environment was configured to ensure the learning 
agent was able to learn the problem domain sufficiently enough to draw strong  
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Fig. 1 The Q-Learning algorithm using a Resource Allocating Network, incorporating the 
difference advice method (α is the learning rate, ρ is the overlap parameter, h indicates a 
hidden node weight, w indicates an output weight). 
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Fig. 2 The test environment, showing the track boundaries, and the waypoint configuration. 

 

Fig. 3 The input and output structure of the Resource Allocating Network used in all trials. 

conclusions on the effectiveness between an RL agent that receives advice and one 
that does not. 

The simulation problem domain is a car navigation task loosely based on the 
Race Track game (Gardner 1973). Adaptions of this problem domain have also 



218 R. Ollington, P. Vamplew, and J. Swanson
 

been used in other advice systems (Clouse and Utgoff 1992, Clouse 1995). The 
track can be described as being of any length and shape with a left boundary, a 
right boundary, a start line, a finish line and way-points in between. Figure 2 de-
picts an outline of the track employed in the simulation environment. In our adap-
tion the objective is to drive the car from the start line to the finish line, while 
avoiding colliding with the track walls and minimising lap time. The reward signal 
combines a positive reward based on progress around the track and a negative 
term for collisions.  

Figure 3 shows the input and output configuration of an agent RAN for this 
task. There are 12 inputs for state information and 9 outputs for action Q-values. 
The first nine inputs correspond to a set of sensors that record the relative place-
ment of the car between track boundaries. The sensor configuration can be seen in 
Figure 4. The tenth input value corresponds to the car’s speed, where a positive 
value means that the car is travelling forward and a negative value means the car 
is travelling in reverse. The eleventh input is the direction to the nearest way-
point. The final input corresponds to the direction to the second nearest way-point. 
These directional values were provided to encourage smoother movement between 
way-points. 

 

Fig. 4 The placement of the position sensors on the simulated car. 

5 trials were run for each of three different learning agents – one using the new 
method of providing advice (referred to as the difference method), an agent receiv-
ing bonus rewards for advised actions, and an agent receiving no advice.  For each 
of five trials, the agent received advice for the first 250000 steps.  Performance 
was then monitored for a further 250000 steps during which standard Q-learning  
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Fig. 5 Cumulative reward received by networks trained using the difference and bonus ad-
vice methods, and by a network trained with no advice.  Advice was provided for the first 
250000 steps only. (Error bars show 95% confidence intervals) 

was performed with no advice being provided. The same system parameters were 
used for all trials. 

Figure 5 compares the performance of these three agents based on cumulative 
reward. The results show that the new method produces more rapid early learning 
than either an agent receiving no advice or the bonus reward agent.  However, the 
bonus reward agent does learn a better final solution to the problem, as indicated 
by the upward trend of its curve in Figure 5.  This may be due to the difference 
agent exploring less and in particular exploring fewer difficult situations and 
therefore, when the teacher is no longer available, not knowing how to deal with 
these difficult situations when they arise.  Another possible reason for this is over-
fitting.  As will be discussed below, the difference method tends to produce a 
much larger network, which may be resulting in overfitting. 

Figure 6 illustrates the number of advice actions provided by the human teacher 
during the first 250,000 training steps. Clearly the difference method places a 
much lower load on the teacher than the bonus method.  This is due to the teacher 
being more satisfied with the performance of the agent and therefore not feeling 
the need to provide advice as frequently. 

As noted above, the difference method results in a much larger network than 
the bonus method or an agent trained without advice, as shown in 7.  This is not 
surprising as this method does not require the error novelty criterion of the RAN 
to be satisfied when advice is given to the network. 

Finally, Figure 8 shows the number of collisions experienced over time.  This is 
important since, while the teacher did not have an accurate idea of the reward re-
ceived at each time step, the concept of avoiding collisions is intuitive to a human 
teacher in this context.  As with the cumulative reward indicator, the difference  
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Fig. 6 Cumulative average of advice actions given to networks trained using the difference 
and bonus methods. (Error bars show 95% confidence intervals). 
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Fig. 7 Network growth for the difference and bonus advice methods, and for a network 
trained with no advice. Advice was provided for the first 250000 steps only. (Error bars 
show 95% confidence intervals). 

agent performs considerably better than the bonus reward agent in terms of num-
ber of collisions while advice is being provided.  In contract to cumulative reward 
however, the difference agent appears to perform equally as well as the bonus 
agent, and better than the control agent, even after advice from the teacher has  
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Fig. 8 Cumulative average of track collisions for networks trained using the difference and 
bonus advice methods, and by a network trained with no advice. Advice was provided for 
the first 250000 steps only. (Error bars show 95% confidence intervals). 

ceased. The strong performance of the ‘no advice’ agent on this metric is ac-
counted for by its tendency to drive slowly, which reduces the size of the penalty 
imposed when a collision occurs. 

It should be noted that, for one of the five difference method trials, almost dou-
ble the number of hidden nodes were added during the advice period (compared to 
the next highest for the other trials), as a result of the teacher providing more than 
double the amount of advice.  This agent also performed the most poorly in terms 
of cumulative reward, and number of collisions.  If this trial was not included in 
the results, we would expect to see even better results for the difference agent. 

7   Conclusion 

The results presented here have showed significant benefits for using human ad-
vice to guide the learning of a reinforcement learning agent for this particular 
learning problem. Both agents which were provided with advice during training 
performed significantly better than the pure reinforcement-learning agent. The use 
of the constructive Resource Allocation Network for the function approximation 
component of the Q-learning algorithm enabled the implementation of a new 
method for directly incorporating expert advice into the training procedure.  This 
new difference method of advice-giving resulted in better performance early in 
training than for competing methods, while at the same time placing a lesser load 
on the teacher.  

Once the teacher stopped providing advice however, the results were mixed.  
While the agent was able to maintain good performance in terms of catastrophic 
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failures (collisions), it performed worse in terms of overall reward.  The agent 
taught with the new method also tended to result in a much larger network size. 
Closer examination of the results show the large average network size and the 
subsequent poor average performance of the network, were in part due to a single 
trial where the teacher provided much more advice than for the other trials.  This 
may be an indicator that the proposed method is more influenced by the quality of 
the teacher, and suggests that with some coaching of the teacher even better per-
formance could be achieved. 

The results presented here clearly warrant further investigation of methods of 
using constructive networks to incorporate advice into the learning of an agent in a 
reinforcement-learning task. The proposed algorithm needs to be tested within a 
wider variety of learning tasks to ensure that the results observed in this case are 
representative of the more general situation. In particular it needs to be established 
whether the larger networks produced by our new algorithm are a significant hin-
drance to the performance of the agent, and if so, how the algorithm can be modi-
fied to address this issue. One possible modification would be to periodically 
‘prune’ the network by removing those hidden neurons which are contributing 
least to the agent’s performance (Yingwei et al, 1998). 
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A Constructive Neural Network for Evolving a
Machine Controller in Real-Time

Andreas Huemer, David Elizondo, and Mario Gongora

Abstract. A novel method is presented to allow a machine controller to evolve
while the machine is acting in its environment. The method uses a single spiking
neural network with a minimum number of neurons and no initial connections. New
connections and neurons are grown by evaluating reward values which can represent
either the internal state of the machine or the rating of its task performance. This way
the topology and the level of connectivity of the network are kept to a minimum. The
method will be applied to a controller for an autonomous mobile robot.

Keywords: Constructive Neural Network, Spiking Neural Network, Reinforce-
ment Learning, Growing Machine Controller.

1 Introduction

Typically constructive neural networks are used to solve classification problems. It
has been shown that using this type of network results in less computation require-
ment, smaller topologies, faster learning and better classification [5, 9]. Addition-
ally, [4] shows that certain constructive neural networks can always be evolved to a
stage in which it can classify 100% of the training data correctly.

For machine controllers, classification is only a secondary issue, but still an im-
portant one, as will be discussed later. The main machine task is to select a suitable
action in a certain situation. It need not be the best possible action but must certainly
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be suitable. Much more important is that the action is selected in the required time:
machines, especially mobile robots, must act in real-time. In [10] real-time systems
are discussed and a definition is provided.

One approach to enable a machine acting in real-time is to create the controller in
advance and then use it on the machine without further intervention. This is the tra-
ditional way, but it works only for simple applications or it needs much development
time for more complex applications.

As machines are required to fulfil increasingly complex tasks, people have looked
for various possible solutions to this problem. On the one hand, methods were
sought to speed up the development of the controller, which is then used on the
machine. The other idea was to improve the controller when already in use.

Both approaches are useful and can also be combined, and have resulted in meth-
ods inspired by nature. Evolutionary algorithms are inspired by the evolution of life
an can be used to improve the controller. For example [23] presents a very effective
method for evolving neural networks that can be used to control robots.

However, the power of this approach is limited, because it does not work with a
single controller but with a whole population of controllers. More controllers require
more computational power, which either may not be available or if available, may
slow down the embedded computer thereby making this option too expensive. Of
course there could also be a population of machines and not only a population of
controllers, but the increasing expense in material and energy is obvious in this case.

Alternatively, machines or their controllers could be simulated on a computer,
but this only transfers several problems from the robot to the computer and involves
the additional problem of it being hard to simulate the complex environments that
robots should often act in.

On-line learning, which means adapting the machine controller while it is run-
ning, can help with overcoming the problems of evolutionary methods, but it does
not substitute them. The remainder of this chapter is dedicated to on-line learning.
In Sect. 2 we summarise the history of on-line learning up to the current state-of-
the-art methods and we identify remaining problems tackled in this chapter.

Section 3 shows the basic characteristics of a novel constructive machine con-
troller. The crucial issue of how feedback can be defined, how it is fed into the
controller and how it is used for basic learning strategies is discussed in Sect. 4.
Section 5 shows how the feedback is used for the more sophisticated methods of
growing new neurons and connections.

A simulation of a mobile robot was used to test the novel methodology. The
robot learns to wander around in a simulated environment avoiding obstacles, such
as walls. The results are presented in Sect. 6, and Sect. 7 draws some conclusions
and outlines future lines of work.

2 History of Machine Controllers

This section will provide a brief overview of the history of machine controllers. A
machine controller is needed as soon as a machine is required to behave differently
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in different situations. The controller decides which parts of the machine to adjust
(output) in which situation (input). The complexity of the controller increases with
the number of different situations that can be sensed and the number of different
actions that can be chosen.

We do not cover the history of control technologies (e.g. mechanical or electronic
control) here but we discuss control concepts with respect to control methods. Also
remote control is not given explicit consideration, because we interpret the remote
signals as an input to the actual controller.

2.1 Fixed Behaviour

Early controllers were developed so that they behaved in a strictly predefined way as
long as no error occurred. These controllers are still needed and it is hard to imagine
why they should not be needed in the future.

However, each decision of the machine is planned and programmed manually
and the number of situations that have to be considered grows exponentially:

NI =∏Nv (1)

where the number of all input combinations NI is the product of all states that have
to be considered for the input variables Nv. Because of this, the development time
or the number of errors increases dramatically with the number of states that have
to be differentiated for an input variable and especially with the number of input
variables. This is without even considering the output side.

Consequently, there have been different approaches to tackle this problem. One
idea was to adapt the environment in which the machine is situated. For example
by situating a mobile robot in a laboratory where the ground is level and there is
constant standardized lighting the number of situations the controller has to consider
is minimised.

The problem is that mobile robots and other machines are usually not needed in a
quasi-perfect environment. Many robots are however required to fulfil increasingly
complex tasks in our real and complex world. The good news is that many of those
robots need not act in a perfect way but just in a way that is good enough. There is
some room for error and it is possible to concentrate on minimising the time required
to develop a controller.

Controllers that have a fixed behaviour for regular operations have one impor-
tant advantage and one important drawback by definition. The advantage is that
the machines do not change their behaviour in known situations: their behaviour
is predictable. The drawback is that the machines do not change their behaviour
in unknown situations either, which may result in intolerable errors. An increas-
ing complexity of the environment increases the probability for intolerable errors,
if the time for developing a controller that should work in it is not increased
significantly.
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2.2 Adaptive Behaviour

This problem has led to research in on-line adaptation processes for machines, espe-
cially for mobile robots used in real-world applications. Traditional methods work
with controller parts which all have a certain predefined task. Adaptation processes
can change the reactions to certain input, but the machine is still limited to the be-
haviour of preprogrammed modules of different complexity. An interesting example
of these adaptation methods was presented in [20].

Increased flexibility can be achieved by keeping the modules as simple as possi-
ble and as similar as possible. This way it is not only possible to change the interac-
tions between existing preprogrammed modules but it is also possible to change
those modules themselves. Additionally, it is possible to create completely new
modules.

Artificial neural networks can achieve a high level of flexibility and therefore are
a useful tool for reducing development time to a minimum. For example Alnajjar
and Murase [1] have shown that a controller consisting of a spiking neural network
(SNN) enables a robot to learn certain tasks successfully.

Spiking neurons, unlike traditional artificial neurons, encode the information they
send to other neurons, called postsynaptic neurons, in a sequence of spikes (Boolean
signals) instead of a single value. Spiking neurons can have a lot of features that are
impossible or at least difficult to implement with traditional neurons, which encode
their information in a single value and send them to other neurons at a particular
moment. In [12] some interesting features that can be implemented in different types
of spiking neural networks are discussed.

Some advantages of spiking neural networks compared to traditional neural net-
works are:

• Single spikes are not very important to the overall behaviour of the network.
This network behaviour is probabilistic and fuzzy and is therefore more robust
to errors. For example, if a neuron sends spikes at a slightly higher frequency,
it obtains slightly more influence; if a neuron sends a few additional spikes, its
influence lasts a little longer; if a spike is sent a little late, it may already be
compensated for by the next spike. There are no drastic effects as there would be
with wrong single values that transport the whole information.

• Spiking neurons can react faster to certain time-dependent input patterns (e.g.
a sound). Those input patterns can be easily implemented in spiking patterns
because of their time-dependent nature. If a time-dependent input pattern has to
be encoded in a single value, the controller has to wait some time before being
able to calculate a statistic value.

• Probably the most interesting advantage regarding reinforcement learning is that
feedback assignment is much easier with spiking neural networks. An action is
not initiated at a certain moment and then left alone, but rather it is encoded in
a continuous spike train. This way the neurons that are responsible for a certain
action can still be active when the machine starts to receive feedback for that
action. This issue is discussed in more detail in Sect. 4.3.
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2.3 Constructive Machine Controllers

For full flexibility, to create completely new behaviour that reacts to completely
new situations, the spiking neural network must be constructive. This means that
new connections and new neurons need to be created in certain circumstances.

Alternative approaches that try to generate neurons at the beginning and later
only change the connections of the network (e.g. “Echo State Networks” [14] and
“Liquid State Machines” [19]) have two main disadvantages for adaptive control
systems:

• Usually, not all parts of the network are needed for the control task. The unnec-
essary parts are processed anyway and decrease the performance of the system.

• It cannot be guaranteed that the network can learn all tasks successfully, because
its general structure is fixed after its random initialisation.

A very flexible and effective approach for classification problems is the “Grow-
ing Neural Gas” algorithm [7, 8], which is an improvement of the “Neural Gas”
algorithm [21]. Drawbacks of “Neural Gases” that are similar to the problems men-
tioned previously with “Echo State Networks” and “Liquid State Machines”, could
be solved successfully with the “Growing Neural Gas” algorithm.

Examples for constructive neural networks for classification problems without
the need for recurrent connections are “Support Vector Machines” [22] and the “Re-
cursive Deterministic Perceptron” [24].

In recent years some ideas for constructive methods have been published for
control problems. A typical test application for the adaptive controllers is to enable
a two-wheeled mobile robot to learn to run around while avoiding crashing into
obstacles.

In [17, 18] a robot controller is presented that creates neurons to map a certain
input pattern to an output using “pleasure cells”. In [2] a two-level control system
has been introduced. A low-level unit contains a number of spiking neural networks
which are all trained to perform the robot’s task in a local environment. The high-
level unit switches between the SNNs depending on the current environment or it
can create a new SNN, if it cannot find an SNN for the current environment.

The constructive neural network discussed in this chapter integrates the com-
plete control task into a single neural network. The construction method enables
the network to evolve from an initial stage with a minimum number of neurons and
no connections. Even basic movements are learnt autonomously (in [18] “random
cells” are used for random initial behaviour, in [2] the robot initially goes straight
forward). The main goal of the work presented here is to minimise the time for de-
veloping a highly adaptive control system by making it as flexible and autonomous
as possible.

3 A Constructive Machine Controller

Based on the issues we have discussed in the previous sections we present a con-
structive neural network that will enable a machine to learn to fulfil its tasks



230 A. Huemer, D. Elizondo, and M. Gongora

autonomously. In addition to the main task, the action selection, we also discuss
classification. In a machine controller, classification can be used to reduce the size
of the network.

A novel method is presented which not only includes the classification task and
the action selection task in a single neural network, but it is also capable of defining
the classes autonomously and it can grow new neurons and connections to learn to
select the correct actions from the controller’s experience based on reward values.
Positive and negative reward values build the feedback, which can be generated
internally, without human intervention. Alternatively it is possible for a human to
feed the controller with feedback during runtime acting as a teacher.

The initial neural network consists of a minimum number of neurons and no
connections. The designer of the controller need not concern him/herself with the
topology of the network. Only the interface from the controller to the machine has
to be defined, which reduces the design effort considerably.

The interface includes:

• Input neurons, which convert sensory input into values that can be sent to other
neurons. For our experiments we used spiking neurons, so the sensory values are
converted into spikes by the input neurons.

• Output neurons, which convert the output of the neural network into values that
can be interpreted by the actuators.

• A reward function, which feeds feedback into the machine controller.

3.1 Controller Characteristics

Our “growing” machine controller consists of a layered spiking neural network as
illustrated in Fig. 1.a, in which neurons send Boolean signals that transport the in-
formation depending on whether or not the presynaptic neuron (the first of two con-
nected neurons) was activated and fired (a spike). The hidden layer “B” contains
two neurons that store input combinations. One of them excites dendrite “a” via
axon “d”, which itself excites an output neuron. The neuron in layer “C” inhibits
the same output neuron by axon “c”. Also axon “b” inhibits that neuron but imple-
ments local inhibition. A neuron is activated when a certain threshold potential is
exceeded. The neuron potential is increased by spikes arriving at excitatory connec-
tions and decreased by spikes arriving at inhibitory connections. A basic explanation
of spiking neural networks can be found in [25].

For a controller system it is evident, that the action selection task needs to be
fulfilled. Classification of input signals and recursive classification of classes are
important issues, because this reduces the necessary number of neurons and con-
nections.

The use of sparse neural networks has been discussed in [5] and [9]. These
models result in fewer computational requirements and better development of the
network as well as smaller topologies. The main reason for obtaining smaller topolo-
gies when using classification is obvious:
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(a) (b)

Fig. 1 (a) Neural network topology after a short simulation period. For clarity not all con-
nections are shown. Layer A consists of the input neurons which are connected to sensors A
to F from the robot shown in (b). Layer D contains the motor neurons, connected to G and H
in (b).

If there are no specialised neurons that represent a certain class in the subsequent
layers in the network, all neurons of this class have to connect to the next layer
separately and not with a single connection from the specialised “class neuron”.
There is no problem if one neuron connects only to one other neuron. In this case no
additional connections are required. However, when a neuron connects to a second
neuron, only one additional connection is made instead of more connections from
all the neurons of a class. Also the total number of neurons is reduced if the neurons
represent the possible combinations of neurons in the previous layer, because in a
subsequent layer only the class neurons have to be considered.

To achieve an efficient topology along with action selection and classification,
in a single neural network, we separate the connections into two parts: artificial
dendrites and axons. An axon of the presynaptic neuron is connected to a dendrite
of the postsynaptic neuron. Excitatory connections have to be used for operations
that are similar to the logical AND and OR operations. For inhibitory connections
this separation is not necessary, because they represent an operation similar to the
logical NOT operation.

A dendrite has a low threshold potential and is activated when only one presy-
naptic neuron (or a few neurons) have fired a spike via their axons. All presynaptic
neurons are handled equally at this point (logical OR operation) and represent neu-
rons which are combined into one class. An axon weight defines to what degree one
presynaptic neuron belongs to the class.

The neuron finally fires only if a certain combination of dendrites has fired (logi-
cal AND operation). For this operation, the threshold of the neuron potential, which
is modified by the dendrites, is very high. This causes a neuron to select an action for
a certain combination of input signals. The dendrite weight defines the importance
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of a class in the action selection process. In our model a single neuron can fulfil both
tasks, classification and action selection, and it learns both tasks automatically.

In the following we show the computations performed when signals travel from
one neuron to another.

Input of a dendrite:
Id =∑Oa+ ·wa+ (2)

where Id is the dendrite input. Oa+ is the output of an excitatory axon, which is 1
if the presynaptic neuron has fired and 0 otherwise. wa+ is the weight of the same
excitatory axon, which must be a value between 0 and 1.

Output of a dendrite:

Od =
1

1 + e−b·(Id−θd) (3)

where Od is the dendrite output and Id its input. θd is a threshold value for the
dendrite. b is an activation constant and defines the abruptness of activation.

Input of a neuron:
I j =∑Od ·wd −∑Oa− ·wa− (4)

where I j is the input of the postsynaptic neuron j, Od is the output of a dendrite, wd

is the weight of this dendrite, Oa− is the output of an inhibitory axon and wa− is the
weight of this inhibitory axon. Dendrite weights and axon weights are in the range
[0,1] and all dendrite weights add up to 1.

Change of neuron potential:

Pj(t + 1) = δ ·Pj(t)+ I j (5)

where the new neuron potential Pj(t + 1) is calculated from the potential of the
last time step t, Pj(t), and the current contribution by the neuron input I j. δ is a
constant between 0 and 1 for recovering the resting potential with time (which is 0 in
this case).

The postsynaptic neuron is activated when its potential reaches the threshold θ j

and becomes a presynaptic neuron for neurons which its own axons are connected
to. After firing, the neuron resets its potential to the resting state. In contrast to
similar neuron models that are for example summarised by [15], a refractory period
is not implemented here.

4 Feedback and Reward Values

4.1 Calculation of Reward Values

The main challenge for the designer of a machine controller that uses the meth-
ods described in this chapter, is to define an appropriate reward function. Pos-
itive and negative reward values are fed into the neural network as explained
below and are used for all adaptation processes, like basic learning (adaptation of
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connection weights), creating new connections and creating new neurons (growing
mechanisms).

In our experiments we have used a single global reward value, which represents
a positive “rewarding“ or negative “aversive” feedback depending on the machine’s
performance in the task that it has been assigned. The objective is to create a network
which maximises positive feedback.

Depending on current measurements like fast movement, crashes, recovering
from crashes, or the energy level, the reward value is set from −1 (very bad), to
1 (very good). The challenge is to provide a useful value in all situations. For exam-
ple, as experiments have shown (see Sect. 6), a reward function that is not capable of
providing enough positive feedback may result in a machine malfunction, because
despite all of its effort to find a good action, it is not evaluated properly. Also uni-
form positive feedback may result in a similar situation because of a lack of contrast.

The reward value ρ(t), which is the result of the reward function at time t, has to
be back-propagated to all neurons, where it is analysed and used for the adaptation
mechanisms. To do so, the neurons of each layer, starting with the output layer and
going back to the input layer, calculate their own reward value. The value of the
output neurons is equivalent to the global reward value. All other neurons calculate
their reward as follows:

ρi(t) =
∑ρ j+(t)−∑ρ j−(t)

N+ + N−
(6)

where ρi(t) is the reward value of the presynaptic neuron i at time step t. ρ j+(t) is
the reward value of a postsynaptic neuron that has an excitatory connection from
neuron i, while j− refers to a postsynaptic neuron that has an inhibitory connection
from neuron i. N+ is the number of postsynaptic neurons of the first kind and N− is
the number of the other postsynaptic neurons.

4.2 Adaptation of Connection Weights

First the reward value of a neuron is used to adapt the connection weights. This is
done after the basic processes of Sect. 3 for each neuron. All calculations for all
neurons are done once at each time step t.

The reward value can be added to a learning rule as an additional factor. Dif-
ferent authors, all of them using different neuron functions and learning functions,
have shown that this surprisingly simple method can be used successfully to imple-
ment reinforcement learning in a neural network [3, 6, 13]. Networks no longer
need an external module that evaluates and changes the connections after each
processing step.

Activation Dependent Plasticity is used to adapt connection weights in the exper-
iments. Activation Dependent Plasticity (ADP) is based on Hebb’s ideas of strength-
ening connections that fire together [11]. As shown by [6, 13] reward can also be
integrated into the more sophisticated Spike Time Dependent Plasticity (STDP)
learning model.
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Adaptation of an excitatory axon weight (axon connected to dendrite):

wa+(t + 1) = wa+(t)+ηa ·ρ j(t) ·φi ·φ j (7)

where wa+(t) and wa+(t + 1) are the axon weights before and after the adaptation.
ηa is the learning factor for axons and ρ j(t) is the current reward value of the post-
synaptic neuron. φi and φ j represent the recent activity of the presynaptic and the
postsynaptic neuron. In our experiments φi was kept between -1 and 0 for very little
activity and from 0 to 1 for more activity, φ j is kept between 0 and 1. For positive
reward much activity in the presynaptic neuron strengthens the axon weight if also
the postsynaptic neuron was active but little presynaptic activity weakens the axon
weight. A negative reward value reverses the direction of change.

Adaptation of a dendrite weight (always excitatory):

wd(t + 1) = wd(t)+ηd ·ρ j(t) ·φd ·φ j (8)

where wd(t) and wd(t + 1) are the dendrite weights before and after the adaptation.
ηd is the learning factor for dendrites. φd represents the recent dendrite activity
(which joins the activity of the connected axons) and is kept between 0 and 1. ρ j(t)
and φ j are discussed with Equ. 7. When all dendrite weights of a neuron are adapted
they are normalised to add up to 1 again because of the dependencies between the
weights (see Sect. 3).

Adaptation of an inhibitory axon weight (axon connected to neuron):

wa−(t + 1) = wa−(t)−ηa ·ρ j(t) ·φi ·φ j (9)

where wa−(t) and wa−(t + 1) are the axon weights before and after the adaptation.
ηa, ρ j(t), φi and φ j are discussed in Equ. 7. Axons that are part of local inhibition,
were not changed in our experiments. Also if φi is negative, the weight was kept
equal. An inhibitory axon is strengthened, if it was not able to prevent bad feedback,
and it is weakened, if it tried to prevent good feedback.

4.3 Delayed Feedback

An important issue to consider when dealing with feedback from the environment
and the resulting rewards is delayed feedback. When weights are adapted and, as
discussed later, neurons are created based on the current reward, it may at first seem
to be the wrong time to do so. Typically, the feedback is received after the action
responsible is executed. In fact, the time difference can vary significantly.

However, because in spiking neural networks there is no single event that is re-
sponsible for an action, but a continuous flow of spikes, the discussed methods can
be efficient anyway. The input pattern, and hence the spiking pattern, usually does
not change rapidly if a certain feedback is received. Figure 2 shows an example
situation for this issue.
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Fig. 2 When a spiking neural network controls a machine, there are two short periods where
the assignment of the feedback to the corresponding action is problematic. Whenever an
action is active for a longer period the feedback can be assigned correctly to the active neurons
that are responsible for the current action.

Of course there remain situations in which it is difficult to assign the feedback
correctly, for example if there is a big time difference between action and feedback,
or if there are many competing actions or feedback values at the same time. How-
ever, even humans do not always arrive at the correct conclusions. They can deal
with very complex relations but not with all of them.

5 Autonomous Creation of the Neural Network

The methods that were discussed in Sect. 4 tune a neural network. They are neces-
sary to reinforce neural paths that were responsible for good actions and to weaken
and finally remove connections that made a neuron output classify incorrectly.

There are different methods that result in new connections or even new neurons.
If a neuron has no input connections, it can connect to a random new predecessor

in the previous layer. In our experiments the randomness was reduced by looking
for neurons that have similar relative positions. Such a new connection is always
excitatory and consists of a single axon and a single dendrite. This makes the post-
synaptic neuron (or better: its single dendrite) represent a new class and it has the
potential to carry out a new action when activated. Other neurons can be added to
the class by creating new axons occasionally. An axon that does not fit into the class
will be weakened by the mechanisms of Sect. 4.

New neurons are created to remember activation patterns that were responsible
for good or bad actions. Liu, Buller and Joachimczak have already shown that corre-
lations between certain input patterns and a certain reward can be stored by creating
new neurons [17, 18]. For this task we add a new potential value to each neuron. The
common “neuron potential” function defines when a neuron fires a spike. Our new
“reward potential” function defines when a neuron has enough feedback to create a
new neuron:

R j(t + 1) = δR ·R j(t)+φ j ·ρ j(t) (10)

where R j(t + 1) is the new reward potential of neuron j while R j(t) is the old one.
φ j is the value for the recent activity that was also used in Sect. 4 and ρ j(t) is the
current reward value of neuron j.

When |R j| reaches a certain threshold θR (different thresholds for positive and
negative feedback are possible) all dendrites (excitatory connections) that were ac-
tive recently are evaluated. Young dendrites are ignored, because they have not yet
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proved themselves. For a dendrite with more than one axon it may be worth remem-
bering an activation combination. A single axon may still be interesting if there was
bad feedback, because the axon should have been inhibitory in this case. A list of
axons, that had an influence on the activation of the neuron, is kept. If this com-
bination is not yet stored in an existing preceding neuron, a new neuron is created
and each axon of the list is copied. However, each of the new axons is connected to
its own dendrite to record the combination. The new neuron will only be activated
when the same combination is activated again. When the reward potential is posi-
tive, the new neuron is connected to the existing one by a new axon to the currently
evaluated dendrite (neurons in layer B in Fig. 1.a and neurons in Fig. 3). A nega-
tive reward potential results in the addition of a new inhibitory axon to the existing
neuron (neuron in layer C in Fig. 1.a).

Generally, the new neuron is then inserted into the layer previous to the existing
postsynaptic neuron as shown in Fig. 3.a. The relative position of the new neuron
will be similar to the relative position of the existing one.

However, if one of the axons to the new neuron has its source in the layer the
new neuron should be inserted into, a new layer is created in front of the layer of
the existing postsynaptic neuron as shown in Fig. 3.b. This way the feed-forward
structure which our methods are based on can be preserved.

Once the new neuron is inserted, local inhibition will be generated. Experiments
have shown that local inhibition makes learning much faster and much more reli-
able (see Sect. 6). Hence, new inhibitory axons are created to and from each new
neuron. This inhibitory web has been automatically created within one layer in our
experiments. In more sophisticated future developments this web should perhaps be
limited to certain areas within a layer. Nested layers with neuron containers, which

(a) (b)

Fig. 3 (a) The new neuron n is created and active axons (a) are used to create new connections
(b) to it. Then the new neuron is connected to the existing one (c). In (b) the new layer H2 is
created before neuron n is inserted, because the output neuron already has a connection to a
neuron in layer H1.
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are basically supported by our implementation but are not used for the growing
mechanisms yet, could help with this task.

6 Experiments

6.1 Setup

Our novel method for the autonomous creation of machine controllers was tested in
a simulation of a mobile robot which moves using differential steering, as shown in
figure Fig. 1.b. The initial neural network consists of 12 input neurons (2 for each
sensor) and 4 output neurons (2 for each motor, see Fig. 1.a).

The input neurons are fed by values from 6 sonar sensors as shown in Fig. 1.b,
each sensor feeds the input of 2 neurons. The sonar sensors are arranged so that 4
scan the front of the robot and 2 scan the rear as shown in the figure. The distance
value is processed so that one input neuron fires more frequently as the measured
distance increases and the other neuron connected to the same sensor fires more
frequently as the distance decreases.

For the actuator control, the output connections are configured so that the more
frequently one of the output neurons connected to each motor fires, the faster this
motor will try to drive forward. The more frequently the other output neuron con-
nected to the same motor fires, the faster that motor will try to turn backwards. The
final speed at which each motor will drive is calculated by the difference between
both neurons.

Fig. 4 A simulated Peoplebot is situated in this simulated office provided by MobileR-
obots/ActivMedia.
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Fig. 5 The three curves show the reward values the robot received in simulation runs of the
same duration and starting from the same position. In “Run 1” only forward movement is
rewarded. The robot learns to hold its position to minimise negative feedback. In “Run 2”
“activity reward” was introduced. In “Run 3” the same reward algorithm is used as in “Run
2”, but in “Run 3” no or only small forward movement is punished. The robot learns to receive
positive feedback with time which makes it more stable.

With this experimental setup the robot should learn to wander around in the sim-
ulated environment shown in Fig. 4 while avoiding obstacles.

The original robot’s bumpers are included in the simulation and are used to de-
tect collisions with obstacles, and are used to penalise significantly the reward val-
ues when such a collision occurs. The reward is increased continuously as the robot
travels farther during its wandering behaviour. Backward movement is only accept-
able when recovering from a collision, therefore it will only be used to increase
the robot’s reward value in that case, while it is used to decrease this value for all
other cases. As time increases, linear forward movement will receive higher positive
reward and this will discourage circular movement.

6.2 Results

This section discusses the challenges when finding an appropriate reward function.
Additionally, we show the importance of local inhibition for the reliability of the
learning methods. Finally, we present some results considering the performance and
the topology of the constructive neural network.

The reward function that we have used in our experiments delivers −1 in the
case where the robot crashes into an obstacle. Backward movement is punished
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Fig. 6 “Run 1” shows the development of the reward value without local inhibition. This
contrasting method increases the produced reward values significantly in “Run 2”.

(negative value). There are two features that are not implemented in all of the three
simulation runs of Fig. 5: First, no or only small forward movement is punished;
second, backward movement is rewarded (positive value), if the robot received bad
feedback for a while, to keep the robot active.

Figure 6 shows the importance of local inhibition. Without local inhibition the
simulation run did not produce a single phase in which significant positive feedback
was received. Only short periods of positive reward can be identified where the robot
acted appropriately by chance. Local inhibition increases the contrast of spiking
patterns, which makes single neurons and hence single motor actions more powerful
and the assignment of reward to a certain spiking pattern more reliable.

Table 1 shows the results of a test of 50 simulation runs. In many cases the robot
was able to learn the wandering task with the ability to avoid obstacles. Each run of
the test sample was stopped after 20000 control cycles (processing the whole neural
network in each cycle).

Table 1 Results of 50 simulation runs.

Performance of the controller

Min. Max. Avg.
Total reward 664.82 7486.24 4014.02
Average reward 0.03 0.37 0.20
Maximum speed 657.00 1056.00 1015.92
Average speed 102.74 971.63 260.37
Crashes 0.00 13.00 4.50

Topology of the controller

Min. Max. Avg.
Neurons 16.00 38.00 22.46
Excitatory axons 14.00 178.00 45.28
Excitatory dendrites 4.00 139.00 27.88
Inhibitory axons 4.00 7.00 4.36
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The neural network contained no hidden neurons and no connections at the begin-
ning. Connections for local inhibition were created when the controller was started.
The speed values of the table are given in internal units of the simulation.

7 Conclusions and Further Work

We have shown that a neural network can be grown based on the reward measured
by a feedback function which analyses the performance of a task in real-time. The
neural network can control a machine such as a mobile robot in an unpredictable or
unstructured environment.

Since the controller constructs itself, only the input layer, the output layer and a
feedback function that measures the task performance of the machine and rewards
the controller have to be defined. This means that the task of the designer involves
only the definition of these elements, no effort is required for the actual design of
the network.

Because controlling the machine and learning from experience continuously
when running is integrated into a single and robust stage, the system can adapt to
completely new situations without changing any part of the control structure man-
ually. This involves three advantages in addition to the possibility of evolving a
control system from scratch:

1. The machine can learn to react appropriately in situations that it has encountered
previously but can use the experience it has gathered so far.

2. The machine can learn to handle changes to its hardware, for example if a sensor
breaks.

3. When new machines are developed, it may be possible to use the neural network
of established machines to reduce the time necessary for training them by starting
from a semi-optimal state rather than from scratch. This could not only help to
save time but also material, because a machine that has no knowledge at the
beginning may easily damage itself.

Further analysis and improvements of the growing methodology are necessary to
gain even better results from the growing methods for the neural network. For ex-
ample it will be necessary to investigate the behaviour of the system with concurrent
tasks and conflicting or noisy sensory data.

Also time dependent situations like action sequences and timed input (speech,
objects moving through a visual field, . . . ) will be important issues for future re-
search. Combining our results with other work may be very helpful for these issues,
for example using Spike Time Dependent Plasticity (STDP) methods and recurrent
connections. Another essential issue of further research is to investigate different
reward functions for different tasks, because this is the key to effective evolutions
of neural networks. Sophisticated reward functions will probably make a machine
learn its tasks sooner and fulfil its tasks better (faster, more precisely, . . . ).
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Avoiding Prototype Proliferation in Incremental
Vector Quantization of Large Heterogeneous
Datasets

Héctor F. Satizábal, Andres Pérez-Uribe, and Marco Tomassini

Abstract. Vector quantization of large datasets can be carried out by means of an
incremental modelling approach where the modelling task is transformed into an
incremental task by partitioning or sampling the data, and the resulting datasets are
processed by means of an incremental learner. Growing Neural Gas is an incremen-
tal vector quantization algorithm with the capabilities of topology-preserving and
distribution-matching. Distribution matching can produce overpopulation of proto-
types in zones with high density of data. In order to tackle this drawback, we intro-
duce some modifications to the original Growing Neural Gas algorithm by adding
three new parameters, one of them controlling the distribution of the codebook and
the other two controlling the quantization error and the amount of units in the net-
work. The resulting learning algorithm is capable of efficiently quantizing large
datasets presenting high and low density regions while solving the prototype prolif-
eration problem.
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1 Introduction

Processing information from large databases has become an important issue since
the emergence of the new large scale and complex information systems (e.g., satel-
lite images, bank transaction databases, marketing databases, internet). Extracting
knowledge from such databases is not an easy task due to the execution time and
memory constraints of actual systems. Nonetheless, the need for using this informa-
tion to guide decision-making processes is imperative.

Classical data mining algorithms exploit several approaches in order to deal with
this kind of dataset [8, 3]. Sampling, partitioning or hashing the dataset drives the
process to a split and merge, hierarchical or constructive framework, giving the
possibility of building large models by assembling (or adding) smaller individual
parts. Another possibility to deal with large datasets is incremental learning [9]. In
this case, the main idea is to transform the modelling task into an incremental task1

by means of a sampling or partitioning procedure, and the use of an incremental
learner that builds a model from the single samples of data (one at a time).

Moreover, large databases contain a lot of redundant information. Thus, having
the complete set of observations is not mandatory. Instead, selecting a small set of
prototypes containing as much information as possible would give a more feasible
approach to tackle the knowledge extraction problem. One well known approach
to do so is Vector Quantization (VQ). VQ is a classical quantization technique that
allows the modelling of a distribution of points by the distribution of prototypes or
reference vectors. Using this approach, data points are represented by the index of
their closest prototype. The codebook, i.e. the collection of prototypes, typically has
many entries in high density regions, and discards regions where there is no data [1].

A widely used algorithm implementing VQ in an incremental manner is Grow-
ing Neural Gas (GNG) [7]. This neural network is part of the group of topology-
representing networks which are unsupervised neural network models intended to
reflect the topology (i.e. dimensionality, distribution) of an input dataset [12]. GNG
generates a graph structure that reflects the topology of the input data manifold
(topology learning). This data structure has a dimensionality that varies with the di-
mensionality of the input data. The generated graph can be used to identify clusters
in the input data, and the nodes by themselves could serve as a codebook for vector
quantization [5].

In summary, building a model from a large dataset could be done by splitting
the dataset in order to make the problem an incremental task, then applying an
incremental learning algorithm performing vector quantization in order to obtain
a reduced set of prototypes representing the whole set of data, and then using the
resulting codebook to build the desired model.

Growing Neural Gas suffers from prototype proliferation in regions with high
density due to the absence of a parameter stopping the insertion of units in
sufficiently-represented2 areas. This stopping criterion could be based on a local

1 A learning task is incremental if the training examples used to solve it become available
over time, usually one at a time [9].

2 Areas with low quantization error.
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measure of performance. One alternative that exploits this approach to overcome
the aforementioned drawback was proposed by Cselenyi [4]. In this case, the pro-
posed method introduces eight new parameters to the GNG algorithm proposed by
Fritzke [7]. In our case, we propose a modification that adds three new parameters
to the original GNG algorithm in order to restrict the insertion of new units due
to points belonging to already covered areas. This approach promotes the insertion
of new units in areas with higher quantization error in order to produce network
structures covering a higher volume of data using the same number of units.

The rest of the article is structured as follows. In section 2 we make a brief de-
scription of the original GNG algorithm. Section 3 describes the proposed modifi-
cations made to the algorithm. Section 4 describes some of the capabilities of the
resulting method using some “toy” datasets. Section 5 shows two tests of the mod-
ified algorithm with a real large size dataset and finally, in section 6 we give some
conclusions and insights about prototype proliferation and the exploitation of large
datasets.

2 Growing Neural Gas

Growing Neural Gas (GNG) [7] is an incremental point-based network [2] which
performs vector quantization and topology learning. The algorithm builds a neural
network by incrementally adding units using a competitive hebbian learning strat-
egy. The resulting structure is a graph of neurons that reproduces the topology of the
dataset by keeping the distribution and the dimensionality of the training data [5].

The classification performance of GNG is comparable to conventional ap-
proaches [10] but has the advantage of being incremental. This gives the possibility
of training the network even if the dataset is not completely available all the time
while avoiding the risk of catastrophic interference. Moreover, this feature makes
GNG also suitable for incremental modelling taks where processing a large dataset
is not possible due to memory constraints. In such cases, one should proceed in two
steps. First, the dataset of the process to be modelled should be split in smaller parts
having a size that the system can manage. Second, the resulting parts should be
used to train a model like GNG by feeding incrementally each one of the individual
datasets resulting from the partitioning procedure. In summary, the methodology
consists of transforming the modelling task into an incremental-modelling task, and
training an incremental learner in order to build a model of the complete dataset [9].

The algorithm proposed by Fritzke is shown in table 1. In such an approach,
every λ iterations (step 8), one unit is inserted halfway between the unit q having
the highest error and its neighbour f having also the highest error. Carrying out this
insertion without any other consideration makes the network converge to a structure
where each cell is the prototype for approximately the same number of data points
and hence, keeping the original data distribution.

As an example, a GNG network was trained using the dataset shown in figure
1, and the training parameters shown in table 2. These values were selected after
several runs of the algorithm.
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Table 1 Original growing neural gas algorithm proposed by Fritzke.

Step 0: Start with two units a and b at random positions wa and wb in ℜn

Step 1: Generate an input signal ξ according to a (unknown) probability density func-
tion P(ξ )

Step 2: Find the nearest unit s1 and the second-nearest unit s2

Step 3: Increment the age of all edges emanating from s1

Step 4: Add the squared distance between the input signal and the nearest unit in input
space to a local counter variable:

Δerror (s1) = ‖ws1 −ξ‖2 (1)

Step 5: Move s1 and its direct topological neighbours towards ξ by fractions εb and εn,
respectively, of the total distance:

Δws1 = εb (ξ −ws1) (2)

Δwn = εn (ξ −wn) for all direct neighbours n of s1 (3)

Step 6: If s1 and s2 are connected by an edge, set the age of this edge to zero. If such an
edge does not exist, create it

Step 7: Remove edges with an age larger than amax. If the remaining units have no
emanating edges, remove them as well

Step 8: If the number of input signals generated so far is an integer multiple of a param-
eter λ , insert a new unit as follows:

• Determine the unit q with the maximum accumulated error.
• Insert a new unit r halfway between q and its neighbour f with the largest

error variable:
wr = 0.5

(
wq +w f

)
(4)

• Insert edges connecting the new unit r with units q and f , and remove the
original edge between q and f .

• Decrease the error variables of q and f by multiplying them with a constant
α . Initialize the error variable of r with the new value of the error variable
of q.

Step 9: Decrease all error variables by multiplying them with a constant d

Step 10: If a stopping criterion (e.g., net size or some performance measure) is not yet
fulfilled go to step 1

Figure 2 shows the position and distribution of the 200 cells of the resulting
structure. As we can see, the distribution of each one of the variables is reproduced
by the group of prototypes required.

The GNG algorithm is a vector quantizer which places prototypes by perform-
ing entropy maximization [6]. This approach, while allowing the vector prototypes
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Fig. 1 a) Two dimensional non-uniform data distribution. b) Histogram of variable X. c)
Histogram of variable Y.

Fig. 2 Positions of neurons of the GNG model. a) Position of the neuron units. b) Distribution
of X. c) Distribution of Y.

Table 2 Parameters for the Growing Neural Gas algorithm.

Parameter εb εn λ amax α d

value 0.05 0.005 100 100 0.5 0.9

to preserve the distribution of the original data, promotes the overpopulation of
vector prototypes in high density regions, and therefore, this situation is desirable if
the goal is a distribution-matching codebook. Conversely, if we have a huge dataset
where there is a lot of redundant information, and we want to keep only a relatively
small number of prototypes describing the data with some distortion, then we are
not interested in reproducing the data distribution. Instead, we would want to dis-
tribute the prototypes over the whole volume of data without exceeding a maximum
quantization error or distortion. In such a case, some modifications to the original
algorithm are needed in order to modulate the distribution matching property of the
algorithm, and therefore, replacing the entropy maximization behaviour in high den-
sitiy regions by an error minimization policy being capable of stopping the insertion
of prototypes.
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3 Proposed Modifications to the Algorithm

This section describes the three main modifications we propose. As already men-
tioned, the main goal of modifying the original algorithm is avoiding prototype
proliferation in high density regions of data, or in other words, to modulate the dis-
tribution matching property of the algorithm. The modified version adds three new
parameters to the original algorithm, whose operation is explained in the following
subsections.

3.1 Modulating the Local Measure of Error

The criterion driving the insertion of units in the GNG algorithm is the accumulated
error of each unit (equation 1). This local error measure grows each time a cell
becomes the winner unit (i.e. the closest unit to the current data point), producing
the insertion of more cells in zones with higher densities of data.

In order to attenuate that effect, we propose the error signal Δerror when it is
produced by a data point having a quantization error smaller than a threshold qE by
multiplying it by a factor h, as show in equation 5.

accumulatedError =
{

accumulatedError +Δerror if Δerror ≥ qE
accumulatedError +(h ∗Δerror) if Δerror < qE

(5)

where 0 ≤ h ≤ 1

3.2 Modulating the “Speed” of Winner Units

The proliferation of prototypes could also be due to neuron movement. Neuron units
located in zones with higher densities are chosen as winners with higher probability,
attracting their neighbours belonging to less populated zones. As in the previous
case, parameter h can be used to modulate the change of position, or speed, of the
units in each iteration, replacing equations 2 and 3, by equations 6 and 7.

Δws1 =
{
εb (ξ − ws1) if Δerror ≥ qE
h ∗ εb (ξ − ws1) if Δerror < qE

(6)

Δwn =
{
εn (ξ − wn) if Δerror ≥ qE
h ∗ εn (ξ − wn) if Δerror < qE

for all direct neighbours n of s1 (7)

3.3 Modulating the Overlapping of Units

Parameter qE is the radius of a hypersphere determining the region of influence of
each prototype. These regions of influence could overlap to a certain extent. In our
approach this amount of superposition can be controlled by a parameter sp. Every λ
iterations (step 8), one unit is inserted halfway between the unit q having the highest
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Table 3 Proposed modification to the original algorithm.

Step 8: If the number of input signals generated so far is an integer multiple of a param-
eter λ , insert a new unit as follows:

• Determine the unit q with the maximum accumulated error.
• Determine the unit f in the neighbourhood of q with the maximum accumu-

lated error.
• Calculate the distance dist between units q and f .

dist = ‖q− f ‖ (8)

• Calculate the available space between the two units as follows:

available = dist −qE (9)

If equation 10 yields true, goto step 9.

(available > (sp×qE)) (10)

where 0 ≤ sp ≤ 1

Else,

• Insert a new unit r halfway between q and its neighbour f with the largest
error variable:

wr = 0.5
(
wq +w f

)
(11)

• Insert edges connecting the new unit r with units q and f , and remove the
original edge between q and f .

• Decrease the error variables of q and f by multiplying them with a constant
α . Initialize the error variable of r with the new value of the error variable
of q.

error and its neighbour f having also the highest error (see equation 4). Knowing
the distance between unit q and unit f (equation 8), and taking the quantization error
qE as the radius of each unit, one could change the step 8 of the original algorithm
proposed by Fritzke as shown in table 3. Hence, we propose to insert a new unit as
in the original version (equation 11), but only if there is enough place between unit
q and unit f (equation 10).

3.4 Insights about the Proposed Modification

In summary, the proposed modifications add three parameters, qE , sp and h, to
the original GNG algorithm. Parameters quantization error qE and superposi-
tion percent sp depend on the application and are strongly related. Both con-
trol the amount of units in the resulting neural network structure, the former by
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controlling the region of influence of each unit, and the latter by controlling the
superposition of units. These natural meanings allow them to be tuned according to
the requirements of each specific application.

In a less obvious sense, parameter h controls the distribution of units between
high and low density areas, modulating the distribution-matching property of the
algorithm. In order to do so, parameter h modulates the signal that drives the inser-
tion of new units in the network only if the best matching neuron fulfills a given
quantization error condition. In this way, the algorithm does not insert unnecessary
units in well represented zones, even if the local error measure increases due to high
data density. Some examples exploring this parameters are given in section 4.

4 Toyset Experiments

In section 2, a non-uniform distribution of points in two dimensions was used to
train a GNG network. Figure 2 shows a high concentration of prototypes in the zone
with higher density due to the property of density matching of the model. This is
an excellent result if we do not have any constraint on the amount of prototypes.
In fact, having more prototypes increases the execution time of the algorithm since

Fig. 3 Results of the modified algorithm varying parameter h (qE = 0.1 and sp = 0.75). a)
Using the original GNG algorithm b) Using h = 1.00 c) Using h = 0.75 d) Using h = 0.50 e)
Using h = 0.25 f) Using h = 0.00.
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Fig. 4 The original and the modified version of GNG trained with a dataset like the one
used by Cselenyi [4]. a) Training data. b) Algorithm of GNG by Fritzke. c) Modified GNG
algorithm, qE = 0.1, h = 0.1, sp = 0.5.

there are more units to evaluate each time a new point is evaluated, and this is not
desirable if we have a very large dataset. Moreover, we apply vector quantization
in order to reduce the number of points to process by choosing a suitable codebok,
and therefore, redundant prototypes are not desirable. This section shows how the
proposed modification to controlling prototype proliferation allows us to overcome
this situation. Two experiments with controlled toysets should help in the testing
and understanding of the modified algorithm.

Figure 3 shows the results of the modified algorithm when trained with the data
distribution showed in figure 1. Figure 3 shows how parameter h effectively controls
the proportion of units assigned to regions with high and low densities. In this case
the parameters qE and sp were kept constant (qE = 0.1 and sp = 0.75) since their
effects are more global and depend less on the data distribution. The rest of the
parameters were set as shown in table 2.

Another interesting test consists of using a dataset similar to the one proposed
by Martinetz [13] in the early implementations of this kind of network (neural gas,
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growing cell structures, growing neural gas) [5]. This distribution of data has been
used by several researchers [4, 5, 7, 12, 13] in order to show the ability of the
topology-preserving networks in modelling the distribution and dimensionality of
data. The generated dataset shown in figure 4 a) presents two different levels of den-
sities for points situated in three, two and one dimension, and has points describing
a circle.

When this dataset is used, the model has to deal with data having different di-
mensionalities, different densities and different topologies. Figures 4 b) and 4 c)
show the position of the units of two GNG networks, one of them using the original
algorithm and the other one using the modified version. Both structures preserve
the topology of the data in terms of dimensionality by placing and connecting units
depending on local conditions. Conversely, the two models behave differently in
terms of the distribution of the data. The codebook of the original GNG algorithm
reproduces the distribution of the training data by assigning almost the same quan-
tity of data points to each vector prototype. In the case of the modified version, the
parameter h set to 0.1 makes the distribution of prototypes more uniform due to the
fact that the insertion of new units is conditioned with the quantization error. Other
parameters were set as shown in table 2.

5 Obtaining a Codebook from a Large Dataset

This section summarizes a series of experiments using a large database of cli-
mate. The database contains information of the temperature (minimum, average, and
maximum) and the precipitation over approximately the last fifty years in Colom-
bia, with a spatial resolution of 30 seconds (≈900m) (WORLDCLIM) [11]. This
database is part of a cooperative project between Colombia and Switzerland named
“Precision Agriculture and the Construction of Field-Crop Models for Tropical
Fruits”, where one of the objectives is finding geographical zones with similar envi-
ronmental conditions, in order to facilitate the implementation or migration of some
crops. There are 1,336.025 data points corresponding to the amount of pixels cover-
ing the region, and each one has twelve dimensions corresponding to the months of
the year (i.e. one vector of twelve dimensions per pixel), and each month has four
dimensions corresponding to the aforementioned variables.

Processing the whole dataset3 implies the use of a lot of memory resources and
takes hours of calculation. Moreover, the situation could get even worse if we con-
sider the use of the whole set of variables at the same time. Therefore, instead of
processing every pixel in the dataset, we could use vector quantization to extract a
codebook representing the data, and then to process this set of prototypes finding
the zones that have similar properties.

3 Finding zones with similar environmental conditions (i.e, temperature) by means of some
measure of distance.
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5.1 Incremental Learning of a Non-incremental Task

The first test was done by taking only the data corresponding to the average tem-
perature from the dataset described in section 5. The resulting dataset has 1,336.025
observations corresponding to the amount of pixels on the map, and each one has
twelve dimensions corresponding to the months of the year. Figure 5 shows the
resulting quantization errors using both algorithms.

Both neural networks have only 89 neuron units, which means having a codebook
with only 0.007% of the original size of the dataset. Nonetheless, the quantization
error is astonishingly low. This reduction is possible due to the low local dimension-
ality of the data, and the low range of the variables. Figure 5 shows that the modified
algorithm presents quantization error values that are comparable to those from the
original version, but with a slightly different distribution.

Having a dataset which allows a representation over two dimensions has some
advantages. In this case, we can draw some information from the geographic dis-
tribution of the prototypes. Figure 6 shows the geographic representation of the
boundaries (white lines) of the Voronoi region of each prototype. The region de-
limited with a circle is a wide plain at low altitudes which presents homogeneous
conditions in terms of temperature. Therefore, this large amount of pixels belongs
to a high density zone in the space of twelve dimensions of our data. In this case,
this high density zone does not mean more information to quantize. However, the
original GNG algorithm is “forced” to proliferate prototypes due to its property of
distribution matching. Thus incurring in a high computational cost when one uses
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Fig. 5 Histogram of the quantization error for a large dataset. a) Fritzke’s original GNG
algorithm. b) Modified GNG algorithm, qE = 1 ◦C, h = 0.1, sp = 0.5.
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Fig. 6 Prototype boundaries. a) Original algorithm. b) Modified algorithm.

the resulting model. Instead of representing better these areas, our approach is to
avoid prototype proliferation in regions with regular conditions in order to better
represent heterogeneous zones (e.g., mountains). Figure 6.b) shows that the modi-
fied version of GNG places less prototypes in flat areas (i.e., high density regions)
than the original version (Figure 6.a), and assigns more prototypes (i.e., cluster
centres) to the lower density points belonging to mountain areas (i.e., low density
regions).

5.2 Incremental Learning of an Incremental Task

Even if the dataset used in section 5.1 was a large one, and its codebook was ex-
tracted by using an incremental algorithm, it was not processed by using the incre-
mental approach. In this case, the whole dataset was used for training, and therefore,
the algorithm had access to every point in the dataset at every iteration. Incremen-
tal modelling, instead, proposes dividing the dataset, and training on an incremental

Table 4 Parameters for the modified Growing Neural Gas algorithm.

Parameter εb εn λ amax α d qError h sp

value 0.05 0.005 250 1000 0.5 0.9 0.1 0.1 0.5
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Fig. 7 Error distributions after each incremental step. Each line shows the evolution of the
quantization error for a given subset when adding new knowledge to the model.

learner by using the individual parts. This scenario was tested by using the complete
dataset mentioned in section 5.

The complete dataset of climate with 1,336.025 data points and forty-eight di-
mensions was divided in an arbitrary way (i.e. from north to south) into 7 parts; six
parts of 200.000 observations, and one final part having 136.025 data points. These
individual subsets were used in order to incrementally train a model using our mod-
ified version of the GNG algorithm. The parameters used are shown in table 4.
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Fig. 8 Error distributions after each training-repetition step. Each line shows the evolution of
the quantization error for a given subset.
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Fig. 9 Histogram of the quantization error for codebook obtained with the modified version
of GNG, after feeding in the whole climate dataset

Figure 7 shows the evolution of the quantization error after adding each one of
the seven subsets. Each horizontal line of boxplots represents the error for a given
subset, and each step means the fact of training the network with a new subset. As
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Fig. 10 Prototype boundaries of the final GNG network projected on the geographic map.

can be seen in figure 7, the quantization error for a subset presented in previous
steps increases in further steps with the addition of new knowledge. Such behaviour
suggests that, even if the GNG algorithm performs incrementally, the addition of
new data can produce interference with the knowledge already stored within the
network. This undesirable situation happens if the new data are close enough to the
existant prototypes to make them move, forgetting the previous information.

In order to overcome this weakness of the algorithm, a sort of repetition policy
was added to the training procedure, as follows. The GNG network was trained sev-
eral times with the same sequence of subsets, from the first to the seventh subset. At
each iteration4 the algorithm had two possibilities: choosing a new observation from
the input dataset, or taking one of the prototype vectors from the current codebook
as input. The former option, which we named exploration, could be taken with a

4 Each time a new point is going to be presented to the network.
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pre-defined probability. Figure 8 shows the evolution of the quantization error for
five training-repetition steps of the algorithm, using an exploration level of 50%.

As can be seen in figure 8, the quantization error for each one of the seven subsets
decreases with each iteration of the algorithm. Such behaviour means that the GNG
network is capable of avoiding catastrophic forgetting of knowledge when using
repetition. Moreover, after five iterations the network reaches a low quantization
error over the whole dataset. This result is shown in figure 9.

The resulting network has 14.756 prototype vectors in its codebook, which rep-
resents 1.1% of the total amount of pixels in the database. The number of prototypes
is larger than in the case of the temperature because of the larger dimensionality of
the observations (i.e. forty-eight dimensions instead of twelve). Moreover, precipi-
tation data have a wider range than temparature, increasing the area where prototype
vectors should be placed.

Figure 10 shows the Voronoi region of each prototype projected over the two-
dimensional geographic map. As in the previous case, one can see that prototypes
are distributed over the whole map, and they are more concentrated in mountain
zones, as desired.

Finally, after quantizing the dataset of 1,336.025 observations, the sets of similar
climate zones could be found by analyzing the 14.756 prototypes obtained from the
GNG network. This compression in the amount of data to be analyzed is possible
due to the existance of redundancy in the original dataset. In other words, pixels with
similar characteristics are represented by a reduced number of vector prototypes,
even if they are located in regions which are not geographically adjacent.

6 Conclusions

Nowadays, there is an increasing need for dealing with large datasets. A large dataset
can be split or sampled in order to divide the modelling task into smaller subtasks
that can be merged in a single model by means of an incremental learning tech-
nique performing vector quantization. In our case, we chose the Growing Neural
Gas (GNG) algorithm as the vector quantization technique. GNG allows us to get
a reduced codebook to analyse, instead of analysing the whole dataset. Growing
Neural Gas is an excellent incremental vector quantization technique, allowing us
to preserve the topology and the distribution of a set of data.

However, in our specific application, we found it necessary to modulate the topol-
ogy matching property of the GNG algorithm in order to control the distribution of
units between zones with high and low density. To achieve this, we modified the
original algorithm proposed by Fritzke by adding three new parameters, two con-
trolling the quantization error and the amount of neuron units in the network, and
one controlling the distribution of these units. The modified version still has the
property of topology-preservation, but contrary to the original version it permits
the modulation of the distribution matching capabilities of the original algorithm.
These changes allow the quantization of datasets having high contrasts in density
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while keeping the information of low density areas, and using a limited number of
prototypes.

Moreover, we tested the modified algorithm on the task of quantizing a heteroge-
neous set of real data. First, the difference in the distribution of prototypes between
the original and the modified version was tested by using the classical modelling
approach where the whole set of data is available during the training process. By
doing so, we verified that the modified version modulates the insertion of prototypes
in high density regions of data. Finally, we used the modified version of the algo-
rithm to perform an incremental modelling task over a larger version of the former
dataset. A repetition policy had to be added to the incremental training procedure
in order to carry out this test. This repetition strategy allowed the GNG network to
remember previous information, preventing catastrophic forgetting caused by new
data interfering with the already stored knowledge.
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Tuning Parameters in Fuzzy Growing
Hierarchical Self-Organizing Networks

Miguel Arturo Barreto-Sanz1,2, Andrés Pérez-Uribe2,
Carlos-Andres Peña-Reyes2, and Marco Tomassini1

Abstract. Hierarchical Self-Organizing Networks are used to reveal the
topology and structure of datasets. These methodologies create crisp parti-
tions of the dataset producing tree structures composed of prototype vectors,
permitting the extraction of a simple and compact representation of a dataset.
However, in many cases observations could be represented by several proto-
types with certain degree of membership. Nevertheless, crisp partitions are
forced to classify observations in just one group, losing information about the
real dataset structure. To deal with this challenge we propose Fuzzy Growing
Hierarchical Self-Organizing Networks (FGHSON). FGHSON are adaptive
networks which are able to reflect the underlying structure of the dataset
in a hierarchical fuzzy way. These networks grow by using three parameters
which govern the membership degree of data observations to the prototype
vectors and the quality of the hierarchical representation. However, different
combinations of values of these parameters can generate diverse networks.
This chapter explores how these combinations affect the topology of the
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network and the quality of the prototypes; in addition the motivation and
the theoretical basis of the algorithm are presented.

1 Introduction

We live in a world full of data. Every day we are confronted with the handling
of large amounts of information. This information is stored and represented
as data, for further analysis and management. One of the essential means in
dealing with data is to classify or group it into categories or clusters. In fact,
as one of the most ancient activities of human beings [1], classification plays
a very important role in the history of human development. In order to learn
a new object or distinguish a new phenomenon, people always try to look for
the features that can describe it and further compare it with other known
objects or phenomena, based on the similarity or dissimilarity, generalized as
proximity, according to some standards or rules.

In many cases classification must be done without a priori knowledge of
the classes in which the dataset is divided (unlabeled pattern). This kind of
classification is called clustering (unsupervised classification). On the con-
trary, discriminant analysis (supervised classification) is made by providing a
collection of labeled patterns; so the problem is to label a newly encountered,
unlabeled pattern. Typically, the given labeled patterns are used to learn de-
scriptions of classes which in turn are used to label a new pattern. In the case
of clustering, the problem is to group a given collection of unlabeled patterns
into meaningful clusters. In a sense, labels are associated with clusters also,
but these category labels are data driven; that is, they are obtained solely
from the data [15, 23].

Even though the unsupervised classification presents many advantages over
supervised classification1, it is a subjective process in nature. As pointed out
by Backer and Jain [2], “in cluster analysis a group of objects is split up into
a number of more or less homogeneous subgroups on the basis of an often
subjectively chosen measure of similarity (i.e., chosen subjectively based on
its ability to create “interesting” clusters), such that the similarity between
objects within a subgroup is larger than the similarity between objects be-
longing to different subgroups”. Clustering algorithms partition data into a
certain number of clusters (groups, subsets, or categories). There is no uni-
versally agreed upon definition [8].

Thus, methodologies to evaluate clusters with different levels of abstraction
in order to find “interesting” patterns are useful; these methodologies could
help to improve the analysis of cluster structure creating representations,
facilitating the selection of clusters of interest. Methods for tree structure
1 For instance, no extensive prior knowledge of the dataset is required, and it can

detect “natural” groupings in feature space.
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representation and data abstraction have been used for this task, revealing
the topology and organization of clusters.

On the one hand, hierarchical methods are used to help explain the inner
organization of datasets, since the hierarchical structure imposed by the data
produces a separation of clusters that is mapped onto different branches. Hi-
erarchical clustering algorithms organize data into a hierarchical structure
according to a proximity matrix. The results of Hierarchical clustering are
usually depicted by a binary tree or dendrogram. The root node of the den-
drogram represents the whole data set and each leaf node is regarded as a data
object. The intermediate nodes describe to what extent the objects are prox-
imal among them; and the height of the dendrogram usually expresses the
distance between each pair of objects or clusters, or an object and a cluster.
The ultimate clustering results can be obtained by cutting the dendrogram
at different levels. This representation provides very informative descriptions
and visualization for the potential data clustering structures, especially when
real hierarchical relations exist in the data, like the data from evolutionary
research on different species of organisms. Therefore, this hierarchical organi-
zation enables us to analyze complicated structures as well as the exploration
of the dataset at multiple levels of detail [23].

On the other hand, data abstraction permits the extraction of a simple
and compact representation of a data set. Here, simplicity is either from the
perspective of automatic processing (so that a machine can perform further
processing efficiently) or is human-oriented (so that the representation ob-
tained is easy to comprehend and intuitively appealing). In the clustering
context, a typical data abstraction is a compact description of each clus-
ter, usually in terms of cluster prototypes or representative patterns such as
the centroid of the cluster [7]. Soft competitive learning methods [11] are em-
ployed on data abstraction in a self-organizing way. These algorithms attempt
to distribute a number of vectors (prototype vectors) in a potentially low-
dimensional space. The distribution of these vectors should reflect (in one of
several possible ways) the probability distribution of the input signals which
in general is not given explicitly but through sample vectors. Two principal
approaches have been used for this purpose. The first is based on a fixed
network dimensionality (i.e. Kohonen maps [16]). In the second approach,
non fixed dimensionality is imposed on the network; hence, this network can
automatically find a suitable structure and size through a controlled growth
process [19].

Different approaches have been introduced in order to combine the capabil-
ities of tree structure of the hierarchical methods and the advantages of soft
competitive learning methods used for data abstraction [20, 13, 6, 22, 12, 18],
obtaining networks capable of representing the structure of clusters and their
prototypes in a hierarchical self-organizing way. These networks are able to
grow and adapt their structure in order to represent the characteristics of
clusters in the most accurate manner. Although these hybrid models provide
satisfactory results, they generate crisp partitions of the datasets. The crisp
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segmentations tend to allocate elements of the dataset in just one branch of
the tree in each level of the hierarchy and assign just one prototype to repre-
sent one cluster, so the membership to other branches or prototypes is zero.
Nevertheless, in many applications crisp partitions in hierarchical structures
are not the optimal representation of the clusters, since some elements of the
dataset could belong to multiple clusters or branches with a certain degree
of membership.

One example of this situation is presented in Geographic Information Sys-
tems (GIS) applications. One of the topics treated by GIS researchers refers to
the classification of geographical zones with similar characteristics to climate,
soil and terrain (conditions relevant to agricultural production) in order to
create the so called agro-ecological zones (AEZ) [9]. AEZ provide the frame for
various applications, such as quantification of land productivity, estimation
of land’s population supporting capacity, and optimization of land resource
use and development. Many institutions, governments and enterprises need
to know which AEZ a particular region belongs to (allocating the region to
a certain AEZ cluster), in order to apply policies to invest, for instance in
new cropping systems for economic viability, and sustainability. However, the
geographical region of interest can vary in range of resolution depending on
the application or context (i.e. countries, states, cities, parcels). In addition,
the fuzzy and implicit nature of the geographic zones (in which geographical
boundaries are not hard, but rather soft boundaries) transform the bound-
aries of the AEZ in zones of transition rather than sharp boundaries. Thus,
the soft boundaries make it possible that regions in the middle of two AEZ
have membership of both. The clustering method to deal with this situation
has to provide views of AEZ at multiple levels, preferably in a hierarchical
way. In addition, it should be capable of discovering fuzzy memberships of
geographical regions to the AEZ.

For the purpose of representing degrees of membership, fuzzy logic is a
feature that could be added to hierarchical self-organized hybrid models. We
propose, thus Fuzzy Growing Hierarchical Self-Organizing Networks (FGH-
SON), with the intention of synergistically combining the advantages of Self-
Organizing Networks, hierarchical structures, and fuzzy logic. FGHSON are
designed to improve the analysis of datasets where it is desirable to obtain
a fuzzy representation of a dataset in a hierarchical way, then discovering
its structure and topology. This new model will be able to obtain a growing
hierarchical structure of the dataset in a self-organizing fuzzy manner. This
kind of network is based on the Fuzzy Kohonen Clustering Networks (FKCN)
[4] and Hierarchical Self-Organizing Structures (HSS) [17, 21, 20, 22].

This book chapter is organized as follows: In the next section the Hierarchi-
cal Self-Organizing Structures and the Fuzzy Kohonen Clustering Networks
will be explained then, our model will be described. Section 3 focuses on
the application of the methodology using the Iris benchmark and an exam-
ple dataset, a further example where model parameters are tuned is also
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presented. Finally, in Section 4 conclusions are drawn and future extensions
of the work described.

2 Methods

2.1 Hierarchical Self-Organizing Structures

The ability to obtain hierarchically structured knowledge from a dataset using
autonomous learning has been widely used in many areas. This is due to the
fact that hierarchical self-organizing structures permit unevenly distributed
real-world data to be represented in a suitable network structure, during an
unsupervised training process. These networks capture the unknown data
topology in terms of hierarchical relationships and cluster structures.

Different methodologies have been presented in this area with various ap-
proaches. It is possible to classify hierarchical self-organizing structures in
two classes taking into account the algorithm of self-organization used. The
first family of models is based on Kohonen self-organizing maps (SOM), and
the second on Growing Cell Structures (GCS) [10].

With respect to approaches based on GCS, Hierarchical Growing Cell
Structures (HiGCS) [5], TreeGCS [13] and the Hierarchical topological clus-
tering (TreeGNG) [6] have been proposed. The algorithms derived from GCS
are based on periodic node deletion, node activity and the volume of the input
space classified by the node. This approach tends to represent examples with
high occurrence rates, and therefore takes low frequency examples as outliers
or noise. As a result, examples with low presence rates are not represented
in the model. Nevertheless, in many cases it is desirable to discover novelties
in the dataset, so taking into account the observations with low occurrence
rates could allow discovery of those exceptional behaviors.

For this reason, we focused our research on approaches based on SOM
[17, 21, 20], particularly the Growing Hierarchical Self-Organizing Map
(GHSOM)[22] due to its ability to take into account the observations with
low presence rates as part of the model. This is possible since the hierar-
chical structure of the GHSOM is adapted according to the requirements of
the input space. Therefore, areas in the input space that require more units
for appropriate data representation create deeper branches than others. This
process is done without eliminating nodes that represent examples with low
occurrence rates.

2.2 Fuzzy Kohonen Clustering Networks

FKCN [4] integrate the idea of fuzzy membership from Fuzzy C-Means
(FCM), with the updating rules of SOM. Thus, creating a self-organizing
algorithm that automatically adjusts the size of the updated neighborhood
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during a learning process, which usually terminates when the FCM objec-
tive function is minimized. The update rule for the FKCN algorithm can be
given as:

Wi,t = Wi,t−1 +αik,t(Zk −Wi,t−1); for k = 1, 2, ..., n; for i = 1, 2, ..., c (1)

where Wi,t represents the centroid2 of the ith cluster at iteration t , Zk is
the kth vector example from the dataset and αik is the only parameter of the
algorithm and according to [14]:

αik,t = (Uik,t)m(t) (2)

Where m(t) is an exponent like the fuzzification index in FCM and Uik,t is
the membership value of the compound Zk to be part of cluster i. Both of
these constants vary at each iteration t according to:

Uik =

⎛
⎝ c∑

j=1

(
‖Zk − Wi‖
‖Zk − Wj‖

)2/(m−1)
⎞
⎠

−1

; 1 ≤ k ≤ n ; 1 ≤ i ≤ c (3)

m(t) = m0 − mΔ · t ; mΔ = (m0 − mf )/iterate limit (4)

Where m0 is a constant value greater than the final value (mf ) of the fuzzifi-
cation parameter m. The final value mf should not be less than 1.1, in order
to avoid a divide by zero error in equation (3). The iterative process will
stop if

∥∥Wi,(t) − W(i,t−1)

∥∥2 < ε , where ε is a termination criterion or after a
given number of iterations. At the end of the process, a matrix U is obtained,
where Uik is the degree of membership of the Zk element of the dataset to
the cluster i. In addition, the centroid of each cluster will form the matrix
W where Wi is the centroid of the ith cluster. The FKCN algorithm is given
below:

1. Fix c, and ε > 0 to some small positive constant.
2. Initialize W0 = (W1,0, W2,0, · · · , Wc,0) ∈ �c.

Choose m0 > 1 and tmax = max. number of iterations.
3. For t = 1, 2, · · · , tmax

a. Compute all cn learning rates αik,t with equations (2) and (3).
b. Update all c weight vectors Wi,t with
Wi,t = Wi,t−1 + [

∑n
k=1 αik,t(Zk − Wi,t−1)] /

∑n
j=1 αij,t

c. Compute Et =
∥∥Wi,(t) − W(i,t−1)

∥∥2 =
∑c

i=1

∥∥Wi,(t) − W(i,t−1)

∥∥2
d. If Et < ε stop.

2 In the perspective of neural networks it represents a neuron or a prototype vector.
So the number of neurons or prototype vectors will be equal to the number of
clusters.
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2.3 Fuzzy Growing Hierarchical Self-Organizing
Networks

Fuzzy Growing Hierarchical Self-Organizing Networks (FGHSON) are based
on a hierarchical fuzzy structure of multiple layers, where each layer consists
of several independent growing FKCNs. This structure can grow by means
of an unsupervised self-organizing process in two manners (inspired by [22]):

a. Individually, in order to find the more suitable number of prototypes
(which compose a FKCN) that may represent in an accurate manner the
input dataset.
b. On groups of FKCNs in a hierarchical mode, permitting the hierarchy to
reveal a particular set of characteristics of data.

Both growing processes are modulated by three parameters that regulate the
breadth (growth of the layers), depth (hierarchical growth) and membership
degree of data to the prototype vectors.

The FGHSON works as follows:

1) Initial Setup and Global Network Control
The main motivation of the FGHSON algorithm is to properly represent a
given dataset. The quality of this representation is measured in terms of the
difference between a prototype vector and the example vectors represented
by this. The quantization error qe is used for this purpose. The qe measures
the dissimilarity of all input data mapped onto a particular prototype vector,
hence it can be used to guide a growth process with the aim of achieving an
accurate representation of the dataset reducing the qe. The qe of a prototype
vector Wi is calculated according to (5) as the mean Euclidean distance
between its prototype and the input vectors Zc that are part of the set of
vectors Ci mapped onto this prototype.

qei =
∑

Zc∈Ci

‖Wi − Zc‖ ; Ci �= φ (5)

The first step of the algorithm is focused on obtaining a global measure
that allows us to know the nature of the whole dataset. For this purpose the
training process begins with the computation of a global measure of error
qe0. qe0 represents the qe of the single prototype vector W0 that forms the
layer 0, see figure 1(a), calculated as shown in (6). Where, Zk represents the
input vectors from the whole data set Z and W0 is defined as a prototype
vector W0 = [μ01 , μ02 , . . . , μ0n ], where μ0i for i = 1, 2, . . . , n; is computed
as the average of μ0i in the complete input dataset. In other words W0 is a
vector that corresponds to the mean of the input variables.

qe0 =
∑

Zk∈Z

‖W0 − Zk‖ (6)
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Fig. 1 (a) Hierarchical structure showing the prototype vectors and FKCNs cre-
ated in each layer for a supposed case. (b) Membership degrees in each layer, corre-
sponding to the network shown in the diagram. The parameter ϕ (the well known
α − cut) represents the minimal degree membership of an observation to be part
of the dataset represented by a prototype vector, the group of data with a desired
membership to a prototype will be used for the training of a new FCKN in the
next layer (depth process). In this particular diagram the dataset is unidimensional
(represented by the small circles below the membership plot) in order to simplify
the example

The value of qe0 will help to measure the minimum quality of data representa-
tion of the prototype vectors in the subsequent layers. Succeeding prototypes
have the task of reducing the global representation error qe0.

2) Breadth growth process
The construction of the first layer starts after the calculation of qe0. This
first layer consists of a FKCN (FKCN1) with two initial prototype vectors.
The growth process of the FKCN1 begins by adding a new prototype vector
and training it until a suitable representation of the dataset is achieved.
Each of these prototype vectors is an n-dimensional vector Wi (with the
same dimensionality as the input patterns), which is initialized with random
values. The FKCN1 is trained as shown in section 2.2, taking as input (in
the exceptional case of the first layer) the whole dataset. More precisely, the
FKCN1 is allowed to grow until the qe of the prototype for its preceding
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layer (qe0 in the case of layer 1) is reduced to at least a fixed percentage τ1.
Continuing with the creation of the first layer, the number of prototypes in
the FKCN1 will be adapted. To achieve this, the mean quantization error of
the map (MQE) is computed according to expression (7), where d refers to
the number of prototype vectors contained in the FKCN, and qei represents
the quantization error of the prototype Wi.

MQEm =
1
d

·
∑

i

qei (7)

The MQE is evaluated using (8) to measure the quality of data represen-
tation, and is used also as stopping criterion for the growing process of the
FKCN. In (8) qeu represents the qe of the corresponding prototype u in the
upper layer. In the specific case of the first-layer, the stopping criterion is
shown in (9).

MQE < τ1 · qeu (8)

MQElayer1 < τ1 · qe0 (9)

If the stopping criterion (8) is not fulfilled, it is necessary to aggregate more
prototypes for a more accurate representation. For this aim, the prototype
with the highest qe is selected and is denoted as the error prototype e. A new
prototype is inserted in the place where e was computed. After the insertion,
all the FKCN parameters are reset to the initial values (except for the values
of the prototype vectors) and the training begins according to the standard
training process of FKCN. Note that the same value of the parameter τ1 is
used in each layer of the FGHSON. Thus, at the end of the process, a layer 1
is obtained with a FKCN1 formed by a set of prototype vectors W , see figure
1(a). In addition, a membership matrix U is obtained. This matrix contains
the membership degree of the dataset elements to the prototype vectors, as
explained in section 2.2.

3) Depth growth process
As soon as the breadth process of the first layer is finished, its prototypes are
examined for further growth (depth growth or hierarchical growth). In par-
ticular, those prototypes with a large quantization error will indicate which
clusters need a better representation by means of new FKCNs. The new
FKCNs form a second layer, for instance W1 and W3 in figure 1(a). The se-
lection of these prototypes is regulated by qe0 (calculated previously in step
1) and a parameter τ2 which is used to describe the desired level of granu-
larity in the data representation. More precisely, each prototype Wi in the
first layer that does not fulfill the criterion given in expression (10) will be
subject to hierarchical expansion.

qei < τ2 · qe0 (10)
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After the expansion process and creation of the new FKCNs, the breadth
process described in stage 2 begins with the newly established FKCNs, for
instance, FKCN2 and FKCN3 in figure 1(a). The methodology for adding
new prototypes, as well as the termination criterion of the breadth process,
is essentially the same as used in the first layer. The difference between the
training processes of the FKCNs in the first layer and all subsequent layers, is
that only a fraction of the whole input data is selected for training. This por-
tion of data will be selected according to a minimal membership degree (ϕ).
This parameter ϕ (an α − cut) represents the minimal degree of membership
for an observation to be part of the dataset represented by a prototype vector.
Hence, ϕ is used as a selection parameter, so all the observations represented
by Wi have to fulfill expression (11), where Uik is the degree of membership
of the Zk

th element of the dataset to the cluster i. As an example, figure 1(b)
shows the membership functions of the FKCNs in each layer, and how ϕ is
used as a selection criteria to divide the dataset.

ϕ < Uik (11)

At the end of the creation of layer two, the same procedure described in step
2 is applied to build layer 3 and so forth.

The training process of the FGHSON is terminated when no prototypes
require further expansion. Note that this training process does not necessarily
lead to a balanced hierarchy, i.e., a hierarchy with equal depth in each branch.
Rather, the specific distribution of the input data is modeled by a hierarchical
structure, where some clusters require deeper branching than others.

3 Experimental Testing

3.1 Iris Data Set

In this experiment the Iris dataset3 is used in order to show the adaptation of
the FGHSON to those areas where an absolute membership to a single proto-
type is not obvious. Therefore, FGHSON must (in an unsupervised manner)
look at the representation of the dataset on the areas where observations of
the same category share similar zones. For instance in the middle of the data
cloud formed by the Virginica and Versicolor observations (see figure 2(a)).

The parameters of the algorithm were set to τ1 = 0.2, τ2 = 0.03, and ϕ =
0.2. After training, a structure of four layers was obtained. The zero layer is
used to measure the whole deviation of the dataset as was presented in sec-
tion 2.3. The first layer consist of a FKCN with three prototype vectors as
shown in figure 2(b), this distribution of prototypes aim to represent three Iris

3 There are three categories in the data set : Iris Setosa, Iris Versicolor and Iris
Virginical. Each having 50 observations with four features: sepal length (SL),
sepal width (SW), petal length (PL), and petal width (PW).
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categories. The second layer (figure 2(c)) reaches a more fine-grained descrip-
tion of the dataset, placing prototypes in almost all of the data distribution,
adding prototypes in the zones where more representation was needed. Fi-
nally in figure 2(d), it is possible to observe an over population of prototypes
in the middle of the cloud of Virginica and Versicolor observations. This oc-
curs because this part of the dataset presents observations with ambiguous
membership in the previous layer, then, several prototypes are placed in this
new layer for proper representation. Hence, permitting those observations
to obtain a higher membership of its new prototypes. The outcome of the
process is a more accurate representation of this zone.

Fig. 2 Distribution of the prototype vectors, represented by stars, in each layer of
the hierarchy. (a) Iris data set. There are three Iris categories: Setosa, Versicolor,
and Virginica represented respectively by triangles, plus symbols, and dots. Each
has 50 samples with 4 features. Here, only three features are used: PL, SW, and
SL. (b) First layer (c) Second layer and (d) Third layer of the FGHSON, in this
layer prototypes are presented only in the zone where observations of Virginica and
Vesicolor share the same area, so the new prototypes represent each category in a
more accurate manner.
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3.2 Example Set

An exmaple set, as presented by Martinez et al [19] is used in order to show
the capabilities of the FGHSON to represent a dataset that has multiple
dimensionalities. In addition, it is possible to illustrate how the model stops
the growing process in those parts where the desired representation is reached
and keep growing where a low membership or poor representation is present.
The parameters of the algorithm were set to τ1 = 0.3, τ2 = 0.065, and ϕ =
0.2. Four layers were created after training the network. In figure 3(a) the
first layer is shown, in this case seven prototypes were necessary to represent
the dataset at this level, one for the 1D oval, one for the 2D plane and five for
the 3D parallelepiped (note that there are no prototypes clearly associated
to the line).

Fig. 3 Distribution of the prototype vectors (represented by black points) (a) First
layer (b) Second layer (c) Third layer.

In the second layer shown in the figure 3, a more accurate distribution
of prototypes is reached, so it is possible to observe prototypes adopting the
form of the dataset. Additionally, in regions where the quantization error was
large, the new prototypes allow a better representation (e.g., along the line).
In layer three (see figure 3(c)), no more prototypes are needed to represent the
circle, the line and the plane; but a third hierarchical expansion was necessary
to represent the parallelepiped. In addition, due to the data density in the
parallelepiped, many points are members of multiple prototypes, so several
prototypes were created.

3.3 Tuning the Model Parameters

In order to explore the performance of the algorithm, different values for
the parameters ϕ, τ1 and τ2 were tested using the Iris dataset. The tests
were performed using ten different values of τ1 (breadth parameter), ten of
τ2 (depth parameter) and eight of ϕ (α − cut), forming 800 triplets. For each
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triplet (ϕ, τ1 and τ2) a FGHSON was trained using the following fixed param-
eters: tmax = 100 (maximum number of iterations), ε= 0.0001 (termination
criterion) and m0 = 2 (fuzzification parameter).

Several variables were obtained in order to measure the quality of the
networks created for every FGHSON generated; for instance the number of
hierarchical levels of the obtained network, the number of FKCNs created
for each level, and finally the quantization error by prototype and level. The
analysis of these values will allow discovery of the relationships between the
parameters (ϕ, τ1 and τ2) and the topology of the networks (represented in
this experiment by the levels reached for each network and the number of
FKCN created). In addition, it will be possible to observe the relationship
between the quantization errors of prototypes by level and the parameters
of the algorithm. This activity makes it possible for us to find values of the
parameters that allow us to build the most accurate structure, based on the
number of prototypes, the quantization error and the number of levels present
in the network.

Due the large amount of information involved, a graphical representation
of the obtained data was used in order to facilitate visualization of the results.
For this, 3D plots were used as follows: the parameter τ1 (which regulates the
breadth of the networks) and the parameter τ2 (which regulates the depth of
the hierarchical architecture) are shown on the x-axis and y-axis respectively.
The z-axis shows the quantity of levels in the hierarchy (see figure 4 and
figure 5 ). Each 3D plot corresponds to one fixed value of ϕ. Hence, eight
3D plots represent the eight different values evaluated for ϕ, then each 3D
plot contains 100 possible combinations of the duple (τ1,τ2) for a specific ϕ.
Therefore, analysis of τ1, τ2 and ϕ and the levels of the 800 networks were
generated and plotted.

Furthermore, additional information was added to the 3D plots. The num-
ber of FKCNs created for level were represented by a symbol in the 3D plots
(see figure 4 and figure 5 left side). The higher quantization error of the pro-
totypes that were expanded is shown in a new group of 3D plots; in others
words this prototype is the “father” of the prototypes in that level4. The
rounded value of the quantization error is shown as a mark in the 3D plot
for each triplet of values, in each level (see figure 4 and figure 5 right side).

Examining the obtained results, there are some interesting results related
to the quantization error and the topology of the network. For instance, figure
4 and figure 5 show the different networks created. It can be seen that for
values of τ2 above 0.3 the model generates networks with just one level, so
an interesting area to explore lies between the values of τ2 = 0.1, 0.2 and 0.3.
With respect to the quantization error (figure 4 and figure 5 right side) for
almost all values of ϕ, the lower quantization error with the lower number of
4 For this reason, in level one all the values are 291 (see figure 4 and figure 5 right

side) because the prototype “father” that is expanded has the same quantization
error for all networks; in the case of the first level this error is called qe0, as is
described in section 2.3.
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Fig. 4 The figure has 3D plots showing the results obtained using ϕ = 0.1, 0.2, 0,3
and 0.4. On the left side it is possible observe the levels obtained for each triplet
(ϕ, τ1, τ2), in addition the number of FKCN created for each level are represented
by a symbol. On the right side the higher quantization error of the prototypes that
were expanded is shown; in others words this prototype is the “father” (with higher
quantization error of the prototypes in that level). In the special case of the first
level all the values are 291, because the prototype “father” that is expanded has
the same quantization error for all the networks; in the case of the first level this
error is called qe0, as described in section 2.3.
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Fig. 5 The figure shows 3D plots of the results obtained using ϕ = 0.5, 0.6, 0.7
and 0.8, in addition the number of FKCN created for each level are represented by
a symbol. On the right side the higher quantization error of the prototypes that
were expanded is shown; in others words this prototype is the “father” (with higher
quantization error) of the prototypes in that level.
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Fig. 6 Structures obtained tuning the model with the values (a) ϕ = 0.1, τ1 =
0.2, τ2 = 0.1 (b) ϕ = 0.3, τ1 = 0.2, τ2 = 0.1, and (c) ϕ = 0.3, τ1 = 0.2, τ2 = 0.1.
In this figure it is possible to observe the distribution of the prototype vectors; the
prototypes of the first level are represented by circles and the prototypes of the
second level are represented by triangles.

levels was presented in the points (τ1 = 0.1, τ2 = 0.2) and(or) (τ1 = 0.2, τ2

= 0.1) (see figure 4 and figure 5).
In the next step of the analysis, the value of the parameters which gener-

ated the best networks so far were selected, based on the premise that the
most accurate network has to present a lower number of levels, FKCNs, and
a lower quantization error. For a selected group of three networks (see table
1), the distribution of the prototypes on the dataset were plotted in order to
analyze how the prototypes of these selected networks had been adapted to
the dataset (see figure 6).

Some remarks could be made about the plots obtained. In the first example
(ϕ = 0.1, τ1 = 0.2, τ2 = 0.1) shown in figure 6(a), there are four prototypes in
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Table 1 Parameters and results of the best networks selected

ϕ τ1 τ2 Levels qea FKCNs

0.1 0.2 0.1 2 43 3
0.3 0.2 0.1 2 50 2
0.6 0.2 0.1 2 50 1

a The higher quantization error of the “father” prototype of the prototypes in that
level.

the first level of the hierarchy; these prototypes represent four classes5. Then,
the prototypes of this layer represent the three classes of iris, in addition they
also take the problematic region between Versicolor and Virginica as a fourth
class. Furthermore, new prototypes are created in the second layer in order to
obtain a more accurate representation of the dataset, creating a proliferation
of prototypes. This phenomena is due to the low ϕ (0.1) being selected. This
is because the quantity of elements represented for each prototype is large
(due to low membership, a lot of data can be a member of one prototype)
so, many prototypes are necessary to reach a low quantization error.

In the next example with ϕ = 0.3, τ1 = 0.2, τ2 = 0.1, it is possible observe
(figure 6(b)) the three prototypes created in the first level. In this case the
number of the prototypes matches the number of classes in the iris dataset.
Nevertheless, there is (as in the previous example) an abundance of pro-
totypes in the Virginica-Versicolor group. But in this case the number of
prototypes is lower compared with the preceding example, showing how ϕ
affects the quantity of prototypes created.

Finally, in the last example with ϕ = 0.6, τ1 = 0.2, τ2 = 0.1. Three proto-
types are created in the first level of the network matching the classes of the
Iris dataset (figure 6(c)); additionally, in the second layer one of the previous
prototypes is expanded to three prototypes in order to represent the fuzzy
areas of the data set. This last network presents the lower values of vector
quantization, levels of hierarchy, and FKCNs; so it is possible to select this as
the more accurate topology. Consider the previously defined premise which
said that the most accurate network had to present lower number of levels,
number of FKCNs, and the lower quantization error.

4 Conclusion

The Fuzzy Growing Hierarchical Self-organizing Networks are fully adaptive
networks able to hierarchically represent complex datasets. Moreover, they
allow a fuzzy clustering of the data, allocating more prototype vectors or
5 It knows that there are three classes (iris Setosa, Virginica and Versicolor) but

the fourth exists in an area where Versicolor and Virginica present similar char-
acteristics.
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branches to heterogeneous areas or to regions where the data have similar
membership degree to several clusters. This property can help to better de-
scribe the structure of the dataset and the inner data relationships.

In this book chapter the effects of using different values for the parameters
of the algorithm, have been presented using the Iris dataset as an example. It
was shown how the different parameters affect the topology and quantization
error of the networks created. In addition, some of the better networks created
were examined in order to show how different representations of the same
dataset can be obtained with similar accuracy.
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Self-Organizing Neural Grove: Efficient
Multiple Classifier System with Pruned
Self-Generating Neural Trees

Hirotaka Inoue

Abstract. Multiple classifier systems (MCS) have become popular during the last
decade. Self-generating neural tree (SGNT) is a suitable base-classifier for MCS
because of the simple setting and fast learning capability. However, the computation
cost of the MCS increases in proportion to the number of SGNTs. In an earlier
paper, we proposed a pruning method for the structure of the SGNT in the MCS to
reduce the computational cost. In this paper, we propose a novel pruning method
for more effective processing and we call this model self-organizing neural grove
(SONG). The pruning method is constructed from both an on-line and an off-line
pruning method. Experiments have been conducted to compare the SONG with an
unpruned MCS based on SGNT, an MCS based on C4.5, and the k-nearest neighbor
method. The results show that the SONG can improve its classification accuracy as
well as reducing the computation cost.

1 Introduction

Classifiers need to find hidden information in the large amount of given data ef-
fectively and must classify unknown data as accurately as possible [1]. Recently,
to improve the classification accuracy, multiple classifier systems (MCS) such as
neural network ensembles, bagging, and boosting have been used for practical data
mining applications [2, 3, 4, 5]. In general, the base classifiers of the MCS use tra-
ditional models such as neural networks (backpropagation network and radial basis
function network) [6] and decision trees (CART and C4.5) [7].

Neural networks have great advantages of adaptability, flexibility, and univer-
sal nonlinear input-output mapping capability. However, to apply these neural
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networks, it is necessary that human experts determine the network structure and
some parameters, and it may be quite difficult to choose the right network structure
suitable for a particular application at hand. Moreover, a long training time is re-
quired to learn the input-output relation of the given data. These drawbacks prevent
neural networks being the base classifier of the MCS for practical applications.

Self-generating neural trees (SGNTs) [8] have simple network design and high
speed learning. SGNTs are an extension of the self-organizing maps (SOM) of Ko-
honen [9] and utilize competitive learning. The SGNT capabilities make it a suitable
base classifier for the MCS. In order to improve the accuracy of SGNN, we propose
ensemble self-generating neural networks (ESGNN) for classification [10] as one of
the MCS. Although the accuracy of ESGNN improves by using various SGNTs, the
computational cost, that is, the computation time and the memory capacity increases
in proportion to the increasing number of SGNNs in the MCS.

In an earlier paper [11], we proposed a pruning method for the structure of the
SGNN in the MCS to reduce the computational cost. In this paper, we propose a
novel MCS pruning method for more effective processing and we call this model
a self-organizing neural grove (SONG). This pruning method is comprised of two
stages. At the first stage, we introduce an on-line pruning method to reduce the com-
putational cost by using class labels in learning. At the second stage, we optimize
the structure of the SGNT in the MCS to improve the generalization capability by
pruning the redundant leaves after learning. In the optimization stage, we introduce
a threshold value as a pruning parameter to decide which subtree’s leaves to prune
and estimate using 10-fold cross-validation [12]. After the optimization, the SONG
can improve its classification accuracy as well as reducing the computational cost.
Bagging [2] is used as a resampling technique for the SONG.

In this work, we investigate the improvement performance of the SONG by com-
paring it with an MCS based on C4.5 [13] using ten problems in a UCI machine
learning repository [14]. Moreover, we compare the SONG with k-nearest neighbor
(k-NN) [15] to investigate the computational cost and the classification accuracy.
The SONG demonstrates higher classification accuracy and faster processing speed
than k-NN on average.

The rest of the paper is organized as follows: the next section shows how to
construct the SONG. Then Section 3 is devoted to some experiments to investi-
gate its performance. Finally we present some conclusions, and outline plans for
future work.

2 Constructing Self-Organizing Neural Grove

In this section, we describe how to prune redundant leaves in the SONG. First, the
on-line pruning method used in learning the SGNT is outlined. Second, we show the
optimization method in constructing the SONG. Finally, we show a simple example
of the pruning method for a two dimensional classification problem.
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2.1 On-Line Pruning of Self-Generating Neural Tree

SGNT is based on SOM and implemented as a competitive learning algorithm. The
SGNT can be constructed directly from the given training data without any human
intervention required. The SGNT algorithm is defined as a tree construction problem
of how to construct a tree structure from the given data, which consist of multiple
attributes, under the condition that the final leaves correspond to the given data.

Before we describe the SGNT algorithm, we explain some notations used.

• input data vector: ei ∈ IRm.
• root, leaf, and node in the SGNT: n j.
• weight vector of n j: wj ∈ IRm.
• the number of the leaves in n j: c j.
• distance measure: d(ei,w j).
• winner leaf for ei in the SGNT: nwin.

The SGNT algorithm is a hierarchical clustering algorithm. The pseudo C code of
the SGNT algorithm is given in Figure 1 where several sub procedures are used.
Table 1 shows the sub procedures of the SGNT algorithm and their specifications.

In order to decide the winning leaf nwin in the sub procedurechoose(e i,n 1),
competitive learning is used. If an n j includes the nwin as its descendant in the SGNT,
the weight wjk (k = 1,2, . . . ,m) of the n j is updated as follows:

wjk ← wjk +
1
c j

· (eik − wjk), 1 ≤ k ≤ m. (1)

Input:
A set of training examples E = {e_i}, i = 1, ... , N.
A distance measure d(e_i,w_j).

Program Code:
copy(n_1,e_1);
for (i = 2, j = 2; i <= N; i++) {
n_win = choose(e_i, n_1);
if (leaf(n_win)) {

copy(n_j, w_win);
connect(n_j, n_win);
j++;

}
copy(n_j, e_i);
connect(n_j, n_win);
j++;
prune(n_win);

}
Output:
Constructed SGNT by E.

Fig. 1 SGNT algorithm
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Table 1 Sub procedures of the SGNT algorithm

Sub procedure Specification
copy(n j,ei/wwin) Create n j , copy ei/wwin as w j in n j .
choose(ei,n1) Decide nwin for ei.
lea f (nwin) Check nwin whether nwin is a leaf.
connect(n j ,nwin) Connect n j as a child leaf of nwin.
prune(nwin) Prune leaves if they have the same class.

After all training data are inserted into the SGNT as the leaves, each one has a class
label as the outputs and the weights of each node are the averages of the correspond-
ing weights of all its leaves. The topology of the whole SGNT network reflects the
given feature space. For more details concerning how to construct and perform the
SGNT, see [8]. Note, to optimize the structure of the SGNT effectively, we remove
the threshold value of the original SGNT algorithm in [8] to control the number of
leaves based on the distance because of the trade-off between the memory capacity
and the classification accuracy. In order to avoid the above problem, we introduce a
new pruning method in the sub procedure prune(n win). We use the class label
to prune leaves. For leaves that have the nwin parent node, if all leaves belong to the
same class, then these leaves are pruned and the parent node is given the class.

2.2 Optimization of the SONG

The SGNT has a high speed processing capability. However, the accuracy of the
SGNT is inferior to the conventional approaches, such as nearest neighbor, because
the SGNT cannot guarantee reaching the nearest leaf for unknown data. Hence, we
construct the SONG by taking the majority of plural SGNT outputs to improve the
accuracy.

Although the accuracy of the SONG is superior or comparable to the accuracy
of conventional approaches, the computational cost increases in proportion to the
increase in the number of SGNTs in the SONG. In particular, the huge memory
requirement prevents the use of the SONG for large datasets even with the most
advance computers.

In order to improve the classification accuracy, we propose an optimization
method of SONG for classification. This method has two parts, the merge phase
and the evaluation phase. The merge phase is performed as a pruning algorithm to
reduce dense leaves (Figure 2). This phase uses the class information and a thresh-
old value α to decide which subtree’s leaves to prune or not. For leaves that have
the same parent node, if the proportion of the most common class is greater than or
equal to the threshold value α , then these leaves are pruned and the parent node is
given the most common class.

The optimum threshold values α of the given problems are different from each
other. The evaluation phase is performed to choose the best threshold value by in-
troducing 10-fold cross validation (Figure 3).
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1 begin initialize j = the height of the SGNT
2 do for each subtree’s leaves in the height j
3 if the ratio of the most class ≥ the threshold value α ,
4 then merge all leaves to parent node
5 if all subtrees are traversed in the height j,
6 then j ← j −1
7 until j = 0
8 end.

Fig. 2 The merge phase

1 begin initialize α = 0.5
2 do for each α
3 evaluate the merge phase with 10-fold cross validation
4 if the best classification accuracy is obtained,
5 then record the α as the optimal threshold value
6 α ← α+0.05
7 until α = 1
8 end.

Fig. 3 The evaluation phase

2.3 An Example of the Pruning Method for SONG

We show an example of the pruning method for SONG in Figure 4. This is a two-
dimensional classification problem with two equal circular Gaussian distributions
that have an overlap. The shaded plane is the decision region of class 0 and the
other plane is the decision region of class 1 by the SGNT. The dotted line is the
ideal decision boundary. The number of training samples is 200 (class0: 100,class1:
100) (Figure 4(a)).

The unpruned SGNT is given in Figure 4(b). In this case, 200 leaves and 120
nodes are automatically generated by the SGNT algorithm. In this unpruned SGNT,
the height is 7 and the number of units is 320. In this, we define the unit to count
the sum of the root, nodes, and leaves of the SGNT. The root is the node which is
of height 0. The unit is used as a measure of the memory requirement in the next
section. Figure 4(c) shows the pruned SGNT after the optimization stage in α = 1.
In this case, 159 leaves and 107 nodes are pruned away and 48 units remain. The
decision boundary is the same as the unpruned SGNT. Figure 4(d) shows the pruned
SGNT after the optimization stage in α = 0.6. In this case, 182 leaves and 115
nodes are pruned away and only 21 units remain. Moreover, the decision boundary
is improved more than the unpruned SGNT because this case can reduce the effect
of the overlapping class by pruning the SGNT.
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Fig. 4 An example of the SONG pruning algorithm, (a) a two dimensional classification
problem with two equal circular Gaussian distribution, (b) the structure of the unpruned
SGNT, (c) the structure of the pruned SGNT (α = 1), and (d) the structure of the pruned
SGNT (α = 0.6). The shaded plane is the decision region of class 0 by the SGNT and the
dotted line shows the ideal decision boundary
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Fig. 5 An example of the SONG’s decision boundary (K = 25), (a) α = 1, and (b) α = 0.6.
The shaded plane is the decision region of class 0 by the SONG and the dotted line shows the
ideal decision boundary
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In the above example, we use all training data to construct the SGNT. The struc-
ture of the SGNT is changed by the order of the training data. Hence, we can con-
struct the SONG from the same training data by changing the input order.

To show how well the SONG is optimized by the pruning algorithm, we show an
example of the SONG in the same problem used above. Figure 5(a) and Figure 5(b)
show the decision region of the SONG in α = 1 and α = 0.6, respectively. We set
the number of SGNTs K to 25. The result of Figure 5(b) is a better estimation of
the ideal decision region than the result of Figure 5(a). We investigate the pruning
method for more complex problems in the next section.

3 Experimental Results

We investigate the computational cost (the memory capacity and the computation
time) and the classification accuracy of the SONG with bagging for ten benchmark
problems in the UCI machine learning repository [14]. Table 2 presents the abstract
of the datasets.

We evaluate how SONG is pruned using 10-fold cross-validation for the ten
benchmark problems. In this experiment, we use a modified Euclidean distance
measure for the SONG and k-NN. Since the performance of the SONG is not sen-
sitive in the threshold value α , we set the different threshold values α which are
moved from 0.5 to 1; α = [0.5,0.55,0.6, . . . ,1]. We set the number of SGNTs K in
the SONG to 25 and execute 100 trials by changing the sampling order of each train-
ing set. All experiments in this section were performed on an UltraSPARC worksta-
tion with a 900MHz CPU, 1GB RAM, and Solaris 8.

Table 3 shows the average memory requirement and classification accuracy of
100 trials for the SONG. As the memory requirement, we count the number of units
which is the sum of the root, nodes, and leaves of the SGNT. The average memory
requirement is reduced from between 65% to 96.6% and the classification accu-
racy is improved by 0.1% to 2.9% by optimizing the SONG. This confirms that the

Table 2 Brief summary of the datasets. N is the number of instances, m is the number of
attributes

Dataset N m classes
balance-scale 625 4 3
breast-cancer-w 699 9 2
glass 214 9 6
ionosphere 351 34 2
iris 150 4 3
letter 20000 16 26
liver-disorders 345 6 2
new-thyroid 215 5 3
pima-diabetes 768 8 2
wine 178 13 3
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Table 3 The average memory requirement and classification accuracy of 100 trials for the
bagged SGNT in the SONG. The standard deviation is given inside the bracket on classifica-
tion accuracy (×10−3)

memory requirement classification accuracy
Dataset pruned unpruned ratio pruned unpruned ratio
balance-scale 107.68 861.18 12.5 0.866(6.36) 0.837(7.83) +2.9
breast-cancer-w 30.88 897.37 3.4 0.97(2.41) 0.966(2.71) +0.4
glass 104.33 297.75 35 0.714(13.01) 0.709(14.86) +0.5
ionosphere 50.75 472.39 10.7 0.891(6.75) 0.862(7.33) +2.9
iris 15.64 208.56 7.4 0.962(6.04) 0.955(5.45) +0.7
letter 6197.5 27028.56 22.9 0.956(0.77) 0.955(0.72) +0.1
liver-disorders 163.12 471.6 34.5 0.648(12.89) 0.636(13.36) +1.2
new-thyroid 49.45 298.21 16.5 0.958(7.5) 0.957(7.49) +0.1
pima-diabetes 204.4 1045.03 19.5 0.749(7.05) 0.728(7.83) +2.1
wine 15 238.95 6.2 0.976(4.41) 0.972(5.57) +0.4
Average 693.88 3181.96 16.9 0.869 0.858 +1.1

Table 4 The improved performance of the pruned MCS and the MCS based on C4.5 with
bagging

MCS based on SGNT MCS based on C4.5
Dataset SGNT MCS ratio C4.5 MCS ratio
balance-scale 0.779 0.866 +8.7 0.795 0.827 +3.2
breast-cancer-w 0.956 0.97 +1.4 0.946 0.963 +1.7
glass 0.642 0.714 +7.2 0.664 0.757 +9.3
ionosphere 0.852 0.891 +3.9 0.897 0.92 +2.3
iris 0.943 0.962 +1.9 0.953 0.947 −0.6
letter 0.879 0.956 +7.7 0.880 0.938 +5.8
liver-disorders 0.59 0.648 +5.8 0.635 0.736 +10.1
new-thyroid 0.939 0.958 +1.9 0.93 0.94 +1
pima-diabetes 0.695 0.749 +5.4 0.749 0.767 +1.8
wine 0.955 0.976 +2.1 0.927 0.949 +2.2
Average 0.823 0.869 +4.6 0.837 0.874 +3

SONG can be effectively used for all datasets with regard to both the computational
cost and the classification accuracy.

To evaluate SONG’s performance, we compare it with an MCS based on C4.5.
We set the number of classifiers K in the MCS to 25 and we construct both MCSs
by bagging. Table 4 shows the improved performance of the SONG and the MCS
based on C4.5. The results of the SGNT and the SONG are the average of 100 trials.
The SONG performs better than the MCS based on C4.5 for 6 of the 10 datasets. Al-
though the MCS based on C4.5 degrades the classification accuracy for iris, SONG
can improve the classification accuracy for all problems. Therefore, SONG is an
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Table 5 The classification accuracy, the memory requirement, and the computation time of
ten trials for the best pruned SONG and k-NN

classification acc. memory requirement computation time (s)
Dataset SONG k-NN SONG k-NN SONG k-NN
balance-scale 0.878 0.888 109.93 562.5 0.82 1.14
breast-cancer-w 0.974 0.969 26.8 629.1 1.18 1.25
glass 0.758 0.701 91.33 192.6 0.36 0.08
ionosphere 0.912 0.866 51.38 315.9 1.93 0.2
iris 0.973 0.96 11.34 135 0.13 0.05
letter 0.958 0.96 6208.03 18000 208.52 503.14
liver-disorders 0.685 0.653 134.17 310.5 0.54 0.56
new-thyroid 0.972 0.972 45.74 193.5 0.23 0.05
pima-diabetes 0.764 0.751 183.57 691.2 1.72 2.49
wine 0.983 0.977 11.8 160.2 0.31 0.15
Average 0.885 0.869 687.41 2119.1 21.57 50.91

efficient MCS on the basis of both the scalability for large scale datasets and the
robust improving generalization capability for the noisy datasets comparable to the
MCS with C4.5.

To show the advantages of SONG, we compare it with k-NN on the same prob-
lems. The best classification accuracy of 100 trials with bagging were chosen. In
k-NN, we choose the best accuracy where k is 1,3,5,7,9,11,13,15, and 25 with 10-
fold cross-validation. All methods are compiled using gcc with the optimization
level -O2 on the same workstation.

Table 5 shows the classification accuracy, the memory requirement, and the com-
putation time achieved by the SONG and k-NN. Although there are compression
methods available for k-NN [16], they take enormous computation time to construct
an effective model. We use the exhaustive k-NN in this experiment. Since k-NN does
not discard any training sample, the size of this classifier corresponds to the train-
ing set size. The results of k-NN correspond to the average measures obtained by
10-fold cross-validation, the same experimental procedure adapted in SONG. Next,
we show the results for each category.

First, with regard to the classification accuracy, SONG is superior to k-NN for
8 of the 10 datasets and gives 1.6% improvement on average. Second, in terms of
the memory requirement, even though the SONG includes the root and the nodes
which are generated by the SGNT generation algorithm, this is less than k-NN for
all problems. Although the memory requirement of the SONG is totally used K
times in Table 5, we release the memory of SGNT for each trial and reuse the mem-
ory for effective computation. Therefore, the memory requirement is suppressed by
the size of the single SGNT. Finally, in view of the computation time, although the
SONG consumes the cost of K times the SGNT to construct the model and test
for the unknown dataset, the average computation time is faster than k-NN. The
SONG is slower than k-NN for small datasets such as glass, ionosphere, and iris.
However, it is faster than k-NN for large datasets such as balance-scale, letter, and
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pima-diabetes. In the case of letter, in particular, the computation time of the SONG
is faster than k-NN by about 2.4 times. We need to repeat 10-fold cross validation
many times to select the optimum parameters for α and k. This evaluation consumes
much computation time for large datasets such as letter. Therefore, the SONG based
on the fast and compact SGNT is useful and practical for large datasets. Moreover,
the SONG is capable parallel computation because each classifier behaves indepen-
dently. In conclusion, the SONG is a practical method for large-scale data mining
compared with k-NN.

4 Conclusions

In this paper, we proposed a new pruning method for the MCS based on SGNT,
which is called SONG, and evaluated the computation cost and the accuracy.We
introduced an on-line and off-line pruning method and evaluated the SONG by 10-
fold cross-validation. Experimental results showed that the memory requirement
is significant reduce, and by using the pruned SGNT as the base classifier of the
SONG, accuracy is increased. The SONG is a useful and practical MCS to classify
large datasets. In future work, we will study an incremental learning and a parallel
and distributed processing of the SONG for large scale data mining.
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