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Abstract. Applications in wireless sensor networks (WSNs) experience
the routing hole problem. That is, the current node cannot forward to
the destination, although it is the closest node, but not a neighbor of the
destination. Accordingly, the packets from the source cannot be delivered
to the destination. Jiang et al. recently proposed a SLGF approach to
address this problem. However, SLGF still has long routing paths, since it
uses the right-hand rule. In this paper, we describe Predictive Geographic
greedy Forwarding, PGF. PGF uses information on the hole to build the
virtual convex polygon, predict the routing path and choose the shorter
path. PGF reduces the length and the number of hops of routing paths.
Computer simulation shows our PGF scheme can reduce the average
number of hops of routing paths by about 32% compared to Geographic
greedy Forwarding, GF, and about 15% compared to SLGF.
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1 Introduction

A typical wireless sensor network (WSN) is formed by a large number of dis-
tributed sensors together with an information collector [1]. These sensors are de-
ployed to collect information and monitor situations in scenarios, such as forests,
farmlands, harbors, and coal mines. They offer special benefits and versatility for
wide applications in landslide prediction, object localization, and surveillance.
However, due to the preservation of limited resources of sensor nodes, energy
efficiency is a crucial objective of protocols designed in WSNs. Since routing is
the most energy consumption operation of sensor nodes (hereinafter, referred to
as nodes), it is very important to have a short routing path, i.e., the number of
nodes attending to forwarding operation is small. Greedy forwarding has been
proven the most promising way for routing in WSNs. In greedy forwarding, each
sensor forwards its packets to a 1-hop neighbor that is closer to the destination
than it is. This method is repeated until the packet reaches the destination.
However, geographic forwarding suffers from the so called local minimum phe-
nomenon. In this, a node cannot forward its packet to its 1-hop neighbor, because
all its 1-hop neighbors are further from the destination.

A BOUNDHOLE process [3] is used to construct the boundary of the hole,
where the packets may be stuck, to mitigate the local minimum phenomenon.
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When a packet is stuck at a node, the routing process will start a perimeter
routing phase, where the packet is routed by the downstream node, until it
reaches a node that is closer to the destination than that stuck node. Then, the
routing returns to the greedy forwarding. Recently, Jiang et al. [5] proposed a
new information model in which nodes are marked as either safe or unsafe nodes.
This safety information is used to bypass the hole. However, these approaches
may experience a long detour path in the perimeter routing. In this paper, we
propose PGF, a Predictive Geographic greedy Forwarding approach to reduce
the number of forwarding nodes. The information of the boundary hole is used
to build a virtual convex polygon, form the virtual routing paths, select the
shorter one, and create the real routing path that includes neighbor nodes in the
network. Therefore, PGF can achieve a short routing path, i.e., the number of
forwarding nodes is small.

We implement our proposed PGF scheme using a simulator built in C++ to
evaluate performance. We also implement and compare our proposed scheme to
Geographic greedy Forwarding [3], GF, which uses the BOUNDHOLE algorithm,
and Safety Information based Limited Geographic greedy Forwarding [5], SLGF.
Since these schemes address the routing hole problem using different approaches,
we think they are good benchmarks for our proposal. Simulation shows PGF can
reduce the average number of hops of routing paths about 32% compared to GF,
and about 15% compared to SLGF. The remainder of the paper is organized as
follows. In section 2, we briefly describe related work. Our proposed scheme
PGF is presented in section 3. Section 4 provides the performance evaluation
with simulation results. Finally, we conclude our work in the last section.

2 Related Work

Greedy-Face-Greedy (GFG) [2], Greedy Perimeter Stateless Routing (GPSR)
[6], and Greedy-Other-Adaptive-Face Routing (GOAFR) [7] are currently the
most popular methods to mitigate the local minimum issue. When the routing
process becomes stuck at an intermediate node, it will start a perimeter routing
phase. In this, the packet is routed by the ”right-hand rule” counter-clockwise
along a face of the planar graph that represents the same connectivity as the
original network, until it reaches a node that is closer to the destination than the
stuck node. Then, the routing returns to the greedy forwarding phase. In recent
work [4], such a routing scheme is proved to guarantee delivery in any arbitrary
planar graph. However, without sufficient shape information about the holes,
such a routing may use a long detour path in the perimeter routing, compared
to the shortest path to the destination. The work in [3] focused on the use of the
hole area that contains the stuck nodes. The hole is detected at a stuck node,
where the packet can get the local minimum in greedy forwarding routing [2,6].
A process called BOUNDHOLE is initiated to form a closed circle (also called
the boundary of the hole or the boundary hole). The region enclosed by the
boundary will be identified as the hole area (Fig. 1). For each node along the
boundary, its successor node along the boundary in clockwise order (or counter
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Fig. 1. (a) GF Routing. (b) SLGF Routing

clockwise order) is marked as the downstream node, e.g., node w is downstream
of node u, (or upstream node). Geographic greedy Forwarding, GF, is used to
forward packets to the destination. In GF, when a package is stuck at a node in
the boundary, e.g., node u in Fig. 1a, it is forwarded to the downstream node of
the current node, e.g., node w in Fig. 1a, until it reaches a node that is closer to
the destination than the stuck node, e.g., node v in Fig. 1a. Then, the routing
returns to the greedy forwarding phase.

Jiang et al. [5] recently proposed the Safety Information based Limited Ge-
ographic greedy Forwarding, SLGF. SLGF uses a new information model, in
which nodes are labeled as safe or unsafe nodes in four quadrants. A node is
labeled as an unsafe node in a quadrant if there is no safe neighbor in that
quadrant. The unsafe information is spread until no new unsafe node is formed.
SLGF tries to avoid forwarding packets to unsafe nodes, since using unsafe nodes
will cause the local minimum. When a node has a packet, it tries to find a safe
neighbor in the requesting zone, which is rectangle formed by its coordinate,
and the coordinate of the destination to forward. If it cannot find a safe node
in that area, it finds the first safe node in a counter clockwise direction. In the
case where the destination is an unsafe node and is in the request zone of the
current node, unsafe nodes are used to forward packets to the destination. How-
ever, both GF and SLGF approaches may experience a long detour path in the
perimeter routing, since they find the forwarder in one direction only.

3 Predictive Geographic Greedy Forwarding Approach

We assume that each node knows its position, position of 1-hop neighbors, and
position of the destination using either GPS or other location services. In this
section, we describe the Predictive Geographic greedy Forwarding approach. It
uses information about the hole to predict the short path to route between the
source and destination nodes.

3.1 Overview

After checking if nodes are stuck nodes, the BOUNDHOLE [3] is run to build
the boundary of the hole. The information of the boundary, i.e., the position and
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Fig. 2. (a) Boundary hole and virtual convex polygon; (b) Case 1; (c) Case 2; (d) Case
3; (e) Case 4; (f) Case 5

order of nodes in the boundary, is transferred to the source. When a source wants
to transfer a packet to a destination, it first builds a virtual convex polygon of
the hole. The source node determines its position and position of the destination
compared to the virtual convex polygon to form two virtual routing paths in
which adjacent nodes may be not forward to each other. By calculating the
distance of two virtual paths, the source node chooses the shorter one to form
the real routing path. The real routing path is formed using greedy forwarding
between adjacent nodes that are not neighbors.

3.2 Forming the Virtual Convex Polygon

As mentioned in section II, after checking if nodes are stuck nodes, a BOUND-
HOLE is run to build the boundary of the hole. When this process finishes, nodes
know if they belong to a boundary. The node that gets the information of the
hole, i.e., the position of nodes in the boundary in the downstream order, will
transfer this information to nodes in the boundary. In our proposal, the infor-
mation about the hole is transferred to the source by flooding. The source node
keeps this information to predict the path to the destination. Each time a source
node wants to transfer to a destination, the source node builds a virtual convex
polygon and determines its position, the position of the destination compared
to the virtual convex polygon. The source node finds the nodes belonging to the
virtual vertex polygon to build the virtual convex polygon. Node u calculates
its rotation angle to check if it belongs to the virtual vertex polygon:

Rotation angle: Rotation angle of a boundary node u, ζu, is the angle spanned
by a pair of adjacent neighbors of node u and is in the direction of the hole.



Bypassing Routing Holes in WSNs 175

We can see that the rotation angle is formed by rotating the edge between u
and its previous node in the boundary to the edge between u and its following
node in the boundary counter clockwise. Node u belongs to the virtual vertex
polygon if its rotation angle is less than 180 degrees, i.e., ζu < 1800. This process
is run until all nodes in the virtual convex polygon have a rotation angle less
than 180 degrees. The virtual convex polygon is formed by connecting nodes
satisfying the above condition. Nodes that are neighbors in the virtual convex
polygon may not be neighbors in the hole boundary. Fig. 2a shows an example
of the virtual convex polygon of a hole boundary. We also define the concave
area. A concave area is the area that lies between the hole and the virtual convex
polygon (Fig. 2). If the hole and the virtual convex polygon are the same, there
is no concave area.

The cases for finding a route from source S to destination D.

SD doesn’t  intersect the hole. SD intersects the hole.

SD intersects the VP SD doesn’t intersect the VP

SD intersects 
the VP at 2 points.

SD intersects 
the VP at 1 point.

S and D are in the 
different concave areas.

S and D are in the same 
concave area.

Case 1

Case 2 Case 3 Case 4 Case 5

(SD: Line segment between source 
and destination)

Fig. 3. Five cases for finding a route to the destination in PGF

3.3 Finding the Path to the Destination

After determining the shape of the virtual convex polygon, the source node finds
the path to the destination based on its relative position and the position of the
destination compared to the position of nodes in the virtual convex polygon.
With different relative positions of the source S and destination D, we have a
different way to find the path. The five cases are shown in Fig. 3. Each case
is differentiated by the number of intersection points of the line segment SD
with the hole boundary and the virtual convex polygon. These five cases are
complementary. A different way to find the routing path is used for each different
case. We will detail each case in the following section. The first case is the
simplest case. In this case, the line segment SD does not intersect with the
virtual convex polygon (Fig. 2b), we use greedy forwarding to transfer packets
to the destination, because the hole does not affect the route between the source
and destination. For the remaining cases, we can always find two paths to pass
over the hole, i.e., the path in the left side and the path in the right side of SD
(Figs. 2c, 2d, 2e, or 2f), because the line segment SD intersects with the hole.
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The routing path from the source to the destination will be the shortest path, if
two paths are the shortest paths among paths in two sides and the chosen path
is the shorter one between these two paths. We find the start and end nodes
defined below to find these two paths. We have the routing path between the
source and destination over the hole S ⇒ u1 ⇒ u2 ⇒ ... ⇒ ui ⇒ D; u1, u2,
..., ui are nodes in the boundary, then we name u1 the start node and ui the
end node of this routing path. Each path has one start node and one end node.
Therefore, we have two start nodes and two end nodes. Now, we will discuss
how to find these nodes for each case. In the second case, the line segment SD
intersects with the hole. SD also intersects with the virtual convex polygon at
two points. That is, both S and D are outside the virtual convex polygon and
the hole (Fig. 2c). The line segment SD divides the virtual convex polygon into
two sides, i.e., the left side and the right side. We only find the start and end
nodes among nodes belonging to the boundary of the hole. A node u is a start
node if it satisfies the following conditions:

1. Condition 1: u is a node of the virtual convex polygon of the hole.
2. Condition 2: The ray Su intersects with the virtual convex polygon at

only u.

Since u is a node of the virtual convex polygon, i.e., node in the boundary of the
hole, and the ray Su intersects with the virtual convex polygon at only u, packets
transferred from S to D through u will not be stuck at u. These conditions also
make the routing paths more straightforward. The end nodes are found using
the same conditions with the only change being that the ray Du intersects with
the virtual convex polygon at only u. Nodes s1, s2 and e1, e2 are start and end
nodes, respectively. After that, two virtual routing paths are formed as: S ⇒
start node ⇒ adjacent nodes in the virtual convex polygon ⇒ end node ⇒ D.

From S, we transfer packets to the start node. Next, the adjacent node, i.e.,
the neighbor node, of the start node is chosen as forwarder. If the start node is to
the left side of the line segment SD, the chosen neighbor of the start node is the
neighbor in the downstream direction. Conversely, if the start node is in the right
side of the line segment SD, the chosen neighbor of the start node is the neighbor
in the upstream direction. This selection is repeated until it meets the end node.
Finally, we transfer from the end node to the destination (Fig. 2c). We calculate
the total distance between nodes from S to D in two paths to choose a shorter
path. The path that has the lesser distance will be selected as the routing path
to transfer packets to the destination, e.g., the solid red line in Fig. 2c. Since the
distance between nodes in the above routing path, e.g., from the source node to
the start node s2 in Fig. 2c, may be longer than the node radio range, we use
greedy forwarding transfer to packets.

For the third case, the line segment SD intersects with the hole. SD also inter-
sects with the virtual convex polygon, but at only one point. Since SD intersects
with the virtual convex polygon at only one point, S or D must be inside the vir-
tual convex polygon, i.e., inside the concave area; the other is outside the virtual
convex polygon, e.g., node S is inside and node D is outside the virtual convex
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polygon in Fig. 2c. We also use the line segment SD to determine two sides and
two routing paths. However, instead of dividing the virtual convex polygon, SD
divides the boundary hole into two sides and categorizes nodes in the boundary
hole into two sets, i.e., the set in the left side and the set in the right side. The
way to find the start nodes (or end nodes) for a node that is outside the virtual
convex polygon is the same as for case 2, e.g., node D in Fig. 2c finds two end
nodes e1 and e2. For that node inside the concave area, we select from two sets
of nodes, i.e., the set of nodes in the left side and the set of nodes in the right
side, two nodes that satisfy condition 2 as end nodes (or start nodes), e.g., node
S in Fig. 2c finds two start nodes s1 and s2. Next, two virtual routing paths are
formed as: S ⇒ start node ⇒ adjacent nodes in the boundary hole ⇒ adjacent
nodes in the virtual convex polygon ⇒ end node ⇒ D.

After getting to the start node from S, the adjacent node in the boundary
hole, i.e., the neighbor in the boundary hole, of the start node is chosen as the
next forwarder. If the start node is in the left side (or right side) of the SD,
the downstream neighbor (or the upstream neighbor) will be chosen as the next
forwarder. This selection is repeated until finding a node in the virtual convex
polygon, also in the boundary hole. From this point, only neighbors in the virtual
convex polygon can be the next forwarder, e.g., two red paths in Fig. 2c. After
reaching the destination, we calculate the total distance of two paths and choose
the shorter one for transferring packets, e.g., the solid red line in Fig. 2c. As
before, greedy forwarding is used to transfer packets between nodes that are not
neighbors in the virtual routing path.

For the remaining cases, we use the same method as for case 3 to find start
nodes, end node, s to form two virtual routing paths, and to select the shorter
one for transferring packets.

3.4 Multiple Holes

For cases in which there are multiple holes between the source and the desti-
nation, the source node finds the routing path and transfers packets to the end
node using the method as in the previous section. When the end node receives
packets, it applies the same method as the source node to transfer packets to
the destination. In Fig. 4, the packet from node S bypasses the first hole at node

S

U

V

Hole 2

Fig. 4. Multiple holes
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U, the end node in the routing path from S to D. U applies the same method
as S and bypasses the second hole at node V. Finally, the packet arrives at the
destination.

4 Performance Evaluation

In this section, we study the average-case performance of the proposed infor-
mation model and routing algorithms, using a simulator built in C++. The
performance metrics used in the evaluation are the number of hops and the
length of the routing path.

In the simulations, nodes with a transmission radius of 20 meters are deployed
to cover an area of 200m × 200m, under different deployment models. We evalu-
ate approaches in two models. First, the nodes will be deployed uniformly. This
is the ideal model (denoted by IA), in which the hole is only caused by sparse
deployment. Usually, the size of a hole is very small. Second, we randomly set
some forbidden areas inside the network area, where no nodes can be deployed.
The forbidden areas, which may be irregular, are constructed to study the im-
pact of larger holes on the proposed algorithms. Such a model is denoted by FA.
We assume that the destination and the source are randomly selected, including
both safe sources and unsafe sources. Before we test the routing performance
for routing time, boundary information [3] is constructed for GF routing; safety
information [5] is constructed for SLGF routing; and the virtual convex poly-
gon is constructed for our PGF routing. Then, we test the networks when the
number of nodes in the area is varied from 400 to 800 in increments of 50. For
each case, 100 networks are randomly generated, and the average routing per-
formance over all of these randomly sampled networks is reported. Fig. 5a shows
the upper bound of the number of hops of the routing path. Fig. 5b shows the
average number of hops of the routing path. As mentioned in section II, PGF
can predict the routing path by forming the virtual routing paths, so the number
of forwardings in PGF is small also.

Section II, when holes exist in the networks, GF routing may experience a
long detour, because the packets are transferred to a node in the boundary hole
and detour to downstream nodes before arriving at the destination. In the case of
SLGF, because it uses the right-hand rule to select the next forwarder, although
the right-side has the shorter path, the left-side path is still chosen. This causes
a long detour. For PGF, the source node predicts the stuck nodes and chooses
the shorter of the path on the left side and the path on the right side. As a result,
PGF has a shorter path than GF and SLGF. As shown in Fig. 5a, PGF routing
reduces the number of routing hops by about 15 percent compared to SLGF, and
about 32 percent compared to GF. The above property still holds when more
large holes occur under the FA model. In WSNs, the packet is forwarded hop-by-
hop along the path. Reducing the number of hops can reduce end-to-end delay
and furthermore support quick response to routing requests. Fig. 5c shows the
corresponding average length of the entire routing path. Since PGF chooses the
shorter path by comparing the total distance (length) of two paths, the length
of the routing path in PGF is smaller than in GF and SLGF.
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5 Conclusion

In this paper, we have shown the way to bypass the routing hole using Predictive
Geographic greedy Forwarding, PGF. A virtual convex polygon is built based
on the information of the boundary hole to predict the routing path. Further-
more, simulations show that PGF efficiently reduces the number of hops and the
length of routing paths. In future work, we will extend our work to increase the
adaptability of the scheme so that it can be more efficient in networks where
topology changes frequently.
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