
Network Partitioning and Self-sizing Methods

for QoS Management with Autonomic
Characteristics

Romildo Martins da Silva Bezerra1 and Joberto Sérgio Barbosa Martins2

1 Federal Institute of Education, Science and Technology of Bahia (IFBA)
Salvador – Bahia – Brazil
romildo@ifba.edu.br

2 Salvador University (UNIFACS)
Salvador – Bahia – Brazil
joberto@unifacs.br

Abstract. The increasing complexity, heterogeneity and unpredictabil-
ity of networks make the task of managing these systems highly complex.
The autonomic computing paradigm brings innovative solutions to the
network management area with new adaptable and “clever” solutions
which should consider a heterogeneous functionality in a wide variety of
fields. One of the challenges involved in proposing autonomic solutions
for QoS management consists of dealing with the inherent complexity
and proposing solutions with feasible execution time. In brief, the auto-
nomic solution effective response time should be fast enough so that it
could be applied before any new important network state change. In this
paper, a framework that uses self-partitioning methods is considered as
the basis for evaluating a solution to the problem of dynamic LSPs setup
allocation in a general MPLS network topology focusing on keeping a low
complexity solution and aiming at achieving the best possible problem
solution identification response time.

Keywords: Network Management, Network Partitioning, Self-sizing
Networks, Bandwidth Allocation, Autonomic Computing, Computatio-
nal Complexity, Quality of Service, MPLS, LSPs.

1 Arguing on the Basic Characteristics of Autonomic
Frameworks - An Introduction

The identification of an autonomic computing solution typically requires the defi-
nition of an autonomic framework which considers the autonomic paradigm main
requirements such as adaptability, management of heterogeneous functionality
and to promote intelligent interactions by using learning and reasoning tech-
niques [1]. Besides that, one of the major challenges existing when proposing an
autonomic solution is that they typically have to deal with highly complex net-
works and should have a feasible execution time. Indeed, the needed autonomic
approach has to be computed in a feasible time in order to generate a “possibly

C.S. Hong et al. (Eds.): APNOMS 2009, LNCS 5787, pp. 151–160, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

152 R.M.d.S. Bezerra and J.S.B. Martins

valid solutions” applicable to the network being managed. Thus, we have to look
for a possible set of solutions and methods arranged in an adequate autonomic
framework such that we try to reduce the inherent complexity and, at same
time, we try to improve execution time performance in order to get a feasible
execution time. As such, approaches applied to lower network complexity and
to promote feasible execution time or improved performance are considered as
“autonomic characteristics” and are recommended for an autonomic framework.

Network self-sizing capabilities have been explored in global and local ap-
proaches [2]. In brief, self-sizing consists in employing the ability to compute
and allocate network resources using either a global or a local perspective. Dis-
covering community structures or network clusters in huge and complex networks
has been extensively studied by the research community [3] [4] [5] [6] . Network
clustering algorithms have been proposed with great success in social networks,
collaboration networks, gene networks, among others.. As a result, algorithms
which discover communities in networks are able to partitioning the network
and could be adjusted and/or adapted to take into account the autonomic sys-
tem’s complexity and response time requirements existing for autonomic network
management.

In brief, the approach proposed by this paper consists of applying the self-
sizing and partitioning methods considering the scope of an autonomic network
management framework in order to achieve a less complex computational sce-
nario resulting in a feasible execution time for the autonomic solution. The fact
of being able to compute in an autonomic way in a complex network topology
scenario is considered a basic characteristic that autonomic systems should be
engaged in. The paper evaluates the proposed partitioning and self-sizing ap-
proaches by establishing a huge amount of LSPs in a MPLS network with a
significant number of nodes and random topology.

In the next sections the autonomic network management framework is intro-
duced. In section 3 we argue on the use of self-sizing and partitioning methods
in autonomic frameworks. Section 4 evaluates a group of partitioning algorithms
and proposes a new partitioning algorithm which considers the autonomic char-
acteristics required. Section 5 evaluates the partitioning algorithm proposed con-
sidering the establishment of a set of LSPs in a random MPLS network with a
significant number of nodes. Section 6 presents the final considerations and fu-
ture works.

2 Autonomic Network Management Framework

The basic framework model adopted [7] to support dynamic resource allocation
algorithms with autonomic capabilities is able to manage quality of service in
computer networks using a Full Policy-based Management (FPBM) approach
as shown in Figure 1. The model uses a traditional Policy-based Management
strategy [8] to manage the policy lifecycle. To create new policies in an autonomic
way according to the new state of the network it is added a knowledge layer,
replacing the policy editor typically used in Policy-based Management systems.

Network Partitioning and Self-sizing Methods for QoS Management 153

By adopting this structure, the policies used by the execution plane are gen-
erated dynamically by the decision plane, replacing human intervention in this
function. This new autonomic management model divides the autonomic network
management for quality of service (QoS) in three planes: information, decision
and execution planes. The model planes structure and interrelation are show in
Figure 1.

Fig. 1. Autonomic Management Network Model [7]

The self-management process runs in a cyclic way, i.e. the network continu-
ously report its state, independently of the occurrence of problems, thus enabling
self-optimization and supporting problems prevention (self-healing). The net-
work state is analyzed (information plane), a solution is found (decision plane),
and this solution is converted into a high-level policy (execution plane). The
policies are translated into network technologies and mapped according with
device capabilities. The policy distribution is done by a Policy Decision Point.

It follows a brief description for each plane.

– Information Plane - The information plane receives data which contains the
network state and converts it to a standardized format in a high-level lan-
guage (XML format) that can be treated by the framework. This conver-
sion provides extensibility to the model since the creation of new converters
makes it compatible with other sub-systems or applications. After that, the
current network state (snapshot) is analyzed in order to verify its accor-
dance with the Service Level Agreement (SLA) looking for the maintenance
of pre-defined network parameters being managed.

– Decision Plane - The decision plane receives the network symptom and finds
a solution that meets the specified SLA, if it exists. It is important to observe
that the search for a solution, at first, considers an optimum solution which
is the best solution for a set of solutions. Meanwhile, the overall algorithm
complexity and time limitation in the searching process are considered. For
example, an optimum solution to a problem that is no longer occurring is
not the best strategy to be used.

154 R.M.d.S. Bezerra and J.S.B. Martins

– Execution Plane - The execution plane receives the diagnosis (solution) and
generates a policy through the policies compiler. Before being implemented,
the policy goes through a phase of syntax and semantics validation that does
not compromise the autonomic information base.

In terms of autonomic network management model described, the decision plane
is the focus. As indicated, the overall algorithm complexity and time limitation
in the searching process for the best solution have to be considered. The following
sections argue on the use of self-sizing and partitioning methods as a possible
solution to deal with these issues.

3 Using Network Self-sizing and Partitioning Capabilities
to Support Autonomic Management with Dynamic
Resource Allocation

One of the expected functionalities that should be considered in autonomic man-
agement system design is its ability to support a dynamic resource allocation
approach. Various dynamic resource allocation algorithms have been proposed
and, in brief, they provide optimized results based on various criteria and com-
puted based on near real time traffic data collected with various different mea-
surements approaches. When considering an autonomic management framework,
the dynamic resource allocation algorithm presents an additional requirement:
it should scale to support large and complex network topology structures while
keeping an “affordable” execution time. In our novel autonomic network man-
agement model, we propose an adaptable solution at the decision plane which
promotes the utilization of dynamic resource allocation algorithms by apply-
ing simultaneously self-sizing and partitioning principles to the network node
structure.

Networks with self-sizing capabilities have the ability to allocate resources
like link capacity automatically and adaptively using online gathered data traffic
information. Resource allocation decisions can be realized on self-sizing networks
“globally” or “locally”. A global self-sizing approach means a more centralized
solution typically based on a snapshot of the network. A local self-sizing approach
means that individual nodes should compute their new states based, typically,
on locally acquired information.

In [2], it is argued that an important aspect of the self-sizing capability is the
computation time required to find the optimal allocation. This computation time
depends on the efficiency of the algorithm, and also on the number of possible
solutions for the allocation problem. The number of possible allocations N can
be represented as follows:

N = klm (1)

where k, l and m are the routing alternatives, services supported and number
of source-destination (SD) pairs respectively. As such, the inherent complexity
and resulting computation time have a strong dependency on the network node
structure and grouping or communities.

Network Partitioning and Self-sizing Methods for QoS Management 155

Partitioning is a second principle proposed to be used in our autonomic frame-
work in order to better support its autonomic characteristics while making use
of dynamic resource allocation algorithms. Partitioning corresponds to the iden-
tification of community structures in networks. According to [4], community
structure is a property argued to be common in many networks corresponding
to the division of network nodes into groups within which the network connec-
tions are dense, but between which they are sparse. Community structures in
networks have been extensively studied and the concept is closely related to the
idea of graph partitioning in graph theory [3] [4] [5] [6]. In terms of the auto-
nomic network management model support for the adaptable use of dynamic
resource allocation algorithms the objective is to develop a recursive algorithm
that searches a maximum group of k communities with a maximum size of m
nodes keeping connections among k groups as sparse as possible. In network
terms this means that the partitioning algorithm should as much as possible to
minimize network traffic among partitioned communities.

As such, the set of principles adopted for the autonomic framework model is
to apply both partitioning and self-sizing methods in order to reduce the inher-
ent complexity and to promote an improved overall response time in complex
computer network structures.

4 A Recursive Partitioning Algorithm Based on Network
Topology Density

A computer network is an undirected connected graph G = (V, E) of sets such
that E ⊇ |V 2|, thus, the elements of E are two-element subsets of V 1. In graph
theory, the elements of V are the vertices (nodes or points) of graph G and the
elements of E are its edges (lines).

In this paper will use the following notations and definitions:

– The order of a graph G is |V | (vertex number). In this paper n = |V |.
– The vertex degree is the number of edges that connect to it.
– The density of a graph is the ratio between the number of edges and the

number of possible edges.

In general, the task of finding an exact solution to a graph partition is considered
a NP-complete problem, making difficult to solve it for huge network structures.
Many areas such as social networks, web graph, ecosystems and others use graphs
partitioning algorithms to find common properties or relationships between the
vertices. The property that seems to be common to many networks is to define
community structures. In other words, the main objective is to divide network
vertices into sub-graphs that have higher density.

When looking for higher density sub-graphs, one obtains a set of vertex where
the relationship between them is stronger, i.e., the number of edges that one is
larger. In the context of computer networks, this represents a greater number

1 Edges of type (ei, ei) will not be considered and (ei, ej) is equal to (ej , ei).

156 R.M.d.S. Bezerra and J.S.B. Martins

of paths between a vertices set. These vertices subsets of higher density are
seen as sub-domains. The edges that do not belong to any sub-domain are links
that allow inter-domain communication. As such, the algorithm originally used
for finding communities will be effectively used in our context to identify the
vertices for sub-domain creation. The algorithm will receive a graph G (network
topology) and number n indicating the required number of sub-domains arrange-
ments and then creates a new graph with the interconnection of communities,
in effect, sub-domains (Figure 2).

Fig. 2. Graph with two partitions and three partitions

The algorithms “walktrap”2 [3], “fast greedy” [6], “eigenvector” [5] and “edge
betweenness” [4] were initially evaluated to find communities (partitioning nodes)
from large computer network domains. The algorithm evaluation was based on
two metrics classified in terms of their relevant impact for dynamic resource
allocation complexity and execution time algorithms support: minimum number
of edges not belonging to the domain (higher density sub-domains) and execution
time. The eigenvector algorithm was immediately discarded because it does not
generated sub-graphs from certain pre-defined network sizes. The evaluation was
then carried out with related graphs, not complete, with the minimum degree
equal to two and randomly generated with n equal to 10, 50 and 100. The results
are indicated in Table 1.

The “edge betweenness” algorithm showed the best behavior and was chosen
as the algorithm to be used as the basic block towards the generation of sub-
graphs with high average density, considering the three parameters analyzed
(execution time, density and sub-domains size standard derivation). In brief its
partitioning into sub-domains resulted in a maximum number of edges within
the generated sub-graphs and the algorithm presented a satisfactory execution
time. Moreover, the variation in the sub-graphs cardinality was the lowest.

As the next step, it is necessary to have a new algorithm that considers com-
plexity and execution time in order to adequately support autonomic character-
istics. A new “edge betweenness with dense sub-domain partitions” algorithm
2 This algorithm uses random paths and their performance may not remain stable, be-

cause it is not deterministic.

Network Partitioning and Self-sizing Methods for QoS Management 157

Table 1. Algorithms evaluation results considering relevant metrics in order to find
communities for huge computer networks. Best choices are in bold.

Parameters execution time density standard deviation
seconds edges not used sub-domain size

Algorithms — Nodes 10 50 100 10 50 100 50 100 250

edge betweenness 0.141 0.172 0.872 5 17 30 2.05 6.83 12.09

fast greedy 0.125 0.188 1.106 5 17 35 4.27 7.06 14.55

walktrap 0.126 0.181 0.186 5 19 33 3.90 11.98 11.72

enforcing a greater network density was then implemented in language “R” [9]
following the steps illustrated in Algorithm 1.

input-graph(mynet, k);1

/* group vertices with edge.betweenness in k groups */;
wtc← edge.betweenness.community(mynet);2

mynetcsize← array(community.to.membership(mynet, wtc$merges,3

steps=find.steps(mynet,k))$csize);
mynetmembership← array(community.to.membership(mynet, wtc$merges,4

steps=find.steps(mynet,k))$membership);
/* create a list of vectors with subdomains membership */

subdomainslist← vector(“list”, dim(mynetcsize));
subdomainslist← create.subdomainslist(mynetcsize,mynetmembership);5

/* create subgraphs */;
subdomain=list();6

for i = 1 to dim(array(subdomainslist)) do7

subdomain[[i]]← subgraph(mynet,array(subdomainslist[[i]]));8

/* subgraphs union */;
subdomainsunion← graph.empty(n=0, directed=FALSE);9

subdomainsunion← subgraphs.union(subdomain, subdomainslist);10

/* identify interdomains edges */;
sdiff ← graph.difference(mynet,subdomainsunion);11

/* create the new graph */;
mynetup← newgraph(mynet,subdomainsunion,sdiff);12

Algorithm 1: The new “edge betweenness with dense sub-domain partitions”
algorithm

The proposed “edge betweenness with dense sub-domain partitions” algorithm
enforces a “network density” objective. It receives a graph (mynet) and a parti-
tions number . It returns to the user a set of high density sub-graphs and creates
a new graph (mynetup) indicating the relationship between the new set of sub-
domains (Figure 2).The goal achieved by the derived algorithm is to aggregate
the traffic on sub-graphs of higher density, reserving the edges not belonging to
any sub-graphs only for communication between domains. Being so, the network
is partitioned as the interconnection of a set of high-density subnets.

The “edge betweenness with dense sub-domain partitions” algorithm uses a
score for an edge and measures the number of shortest paths through it. This

158 R.M.d.S. Bezerra and J.S.B. Martins

procedure is repeated for all vertices for . The main idea of this new based
community structure detection algorithm is that it is likely that edges connecting
separate modules have high edge betweenness as all the shortest paths from one
module to another must traverse through them.

5 Self-sizing with Local Control and Partitioning
Algorithm Evaluation for LSPs Setup in a MPLS
Network

We consider now the allocation of resources using a self-sizing approach at sub-
domain level in order to evaluate the effectiveness and performance improve-
ments created by the partitioning approach used. The sequence of actions taken
to evaluate the partitioning algorithm used is as follows:

1. The “edge betweenness with dense sub-domain partitions” algorithm receives
network data (topology, number of partitions).

2. The “edge betweenness with dense sub-domain partitions” algorithm gener-
ates the set of high-density sub-domains (partitioning).

3. A set of sub-graphs is created and interconnection edges are identified (do-
mains interconnections).

4. An allocation resource algorithm is invoked and applied in order to establish
a huge set of LSPs through the entire network.

5. The resource allocation algorithm allocates LSPs for intra-domain traffic.
6. The resource allocation algorithm allocates LSPs for inter-domain traffic.
7. The sequence of actions 5 and 6 is repeated whenever the chosen resource

allocation algorithm must interact in order to setup LSPs interactively due to
restrictions occurring in terms of bandwidth allocation or another allocation
parameter constraint.

The resource allocation algorithm used for evaluating the partitioning algorithm
was the “penalty-based LSP allocation algorithm” [10]. This algorithm, in brief,
allocates LSPs according to their non allocation penalty and required bandwidth
assigned by the network manager. In effect, for the specific purpose of evaluating
the network partitioning into sub-domains any resource allocation algorithm
could be used. Our option was to evaluate the partitioning effect with a dynamic
allocation algorithm that will be used in the context of the autonomic network
management framework.

The evaluation results are illustrated in Figure 3 considering the following
evaluation scenarios. First, the setup of 3.000, 6.000 and 12.000 LSPs respec-
tively. Second, the distribution intra-domains and inter-domains traffic among
partitioned sub-domains follows the parameters 50%-50%, 80%-20% and 90%-
10% respectively.In the first evaluation scenario (Figure 3a) a set of 3.000 LSPs
was established considering the full interconnected network and the partitioned
one with different configurations for inter-domain traffic. The execution time
evaluated indicated an improvement in the overall execution time achieved with

Network Partitioning and Self-sizing Methods for QoS Management 159

reductions of approximately 10,25% to 29,37% depending on the inter-domain
traffic considered.

In the second evaluation scenario (Figure 3b) sets of 3.000, 6.000 and 12.000
LSPs were setup assuming an inter-domain distribution traffic of 50%-50%. The
evaluation results show that the execution time was improved by approximately
11,07% (3.000 LSPs) to 31,68% (with a greater set of established LSPs) by using
the partitioning algorithm.

(a) First Evaluation Scenario (b) Second Evaluation Scenario

Fig. 3. LSPs setup allocation execution time evaluation with network partitioning

6 Final Considerations and Future Work

The management of heterogeneous functionality, the need of adaptability and
the application of learning and reasoning techniques to support intelligent inter-
action are considered an essential requirement for achieving autonomic manage-
ment in most frameworks.

This paper introduces a new partitioning algorithm applicable to the man-
agement of quality of service in autonomic computer networks and, by applying
the self-sizing method, the evaluation results show that it promotes an overall
improvement in the autonomic framework performance (approximately between
10% to 30%) in terms of a specific resource allocation algorithm. The scenario
considered was the one where a dynamic allocation resource algorithm is used
to set up a significant amount of LSPs in a huge MPLS network generated
at random. In effect, dynamic resource allocation is a critical area since auto-
nomic systems should derive on the fly new network states for, typically, highly
complex topologies while keeping a feasible execution time to derive these solu-
tions. In other words, the most basic result shown in this paper is that by ap-
plying partitioning and self-sizing is possible to improve the autonomic system
performance.

160 R.M.d.S. Bezerra and J.S.B. Martins

Based on the results, authors argue that the partitioning of complex computer
network topologies coupled with the capability of self-sizing methods could pro-
mote the employment of dynamic resource allocation algorithms to derive new
solutions in complex networks and, as such, will pave the road to the creation
of more clever and effective autonomic management systems.

In terms of the autonomic framework model proposed, the solution described
effectively manages heterogeneous functionality, since the decision layer finds a
solution by adopting a set of established methods and paradigms (partitioning
and self-sizing) in a specific and focused way. Additional simulations will be
carried on considering others dynamic resource allocation algorithms in order to
evaluate dependencies with respect to the partitioning algorithm proposed and
its performance.

References

1. Jennings, B., van der Meer, S., Balasubramaniam, S., Botvich, D., Foghlu, M.,
Donnelly, W., Strassner, J.: Towards autonomic management of communications
networks. Communications Magazine, IEEE 45(10), 112–121 (2007)

2. Nalatwad, S., Devetsikiotis, M.: Self-sizing networks: local vs. global control. In:
Proceedings of IEEE International Conference on Communications, June 2004,
vol. 4, pp. 2163–2167 (2004)

3. Pons, P., Latapy, M.: Computing communities in large networks using random
walks. Journal of Graph Algorithms and Applications 10(2), 191–218 (2006)

4. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69 (2004)

5. Newman, M.E.J.: Finding community structure in networks using the eigenvectors
of matrices. Physical Review E 74 (2006)

6. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Physical Review E 70 (2004)

7. Bezerra, R.M.S., Martins, J.S.B.: A sense and react plane structured autonomic
model suitable for quality of service (qos) management. In: Proceedings of 5th
International IEEE Workshop on Management of Ubiquitous Communications and
Services, vol. 1 (Maio 2008)

8. Bezerra, R.M.S., Martins, J.S.B.: Functional decoupling principle applied to net-
work device and qos management. In: Proceedings of 7me Colloque Francophone
of Gestion of Rseaux et of Services, June 2006, vol. 1, pp. 47–58 (2006)

9. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2009) ISBN
3-900051-07-0

10. Bezerra, R.M.S., Martins, J.S.B.: Penalty-based lsp allocation algorithm. Technical
Report TR-01-AN2009, DMCC (2009)

	Network Partitioning and Self-sizing Methods for QoS Management with Autonomic Characteristics
	Arguing on the Basic Characteristics of Autonomic Frameworks - An Introduction
	Autonomic Network Management Framework
	Using Network Self-sizing and Partitioning Capabilities to Support Autonomic Management with Dynamic Resource Allocation
	A Recursive Partitioning Algorithm Based on Network Topology Density
	Self-sizing with Local Control and Partitioning Algorithm Evaluation for LSPs Setup in a MPLS Network
	Final Considerations and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

