
Hardware-Assisted Application-Level Access

Control

Yu-Yuan Chen and Ruby B. Lee

Princeton University, Princeton NJ 08544, USA
{yctwo,rblee}@princeton.edu

Abstract. Applications typically rely on the operating system to en-
force access control policies such as MAC, DAC, or other policies. How-
ever, in the face of a compromised operating system, such protection
mechanisms may be ineffective. Since security-sensitive applications are
most motivated to maintain access control to their secret or sensitive in-
formation, and have no control over the operating system, it is desirable
to provide mechanisms to enable applications to protect information with
application-specific policies, in spite of a compromised operating system.
In this paper, we enable application-level access control and information
sharing with direct hardware support and protection, bypassing the de-
pendency on the operating system. We analyze an originator-controlled
information sharing policy (ORCON), where the content creator speci-
fies who has access to the file created and maintains this control after
the file has been distributed. We show that this policy can be enforced
by the software-hardware mechanisms provided by the Secret Protection
(SP) architecture, where a Trusted Software Module (TSM) is directly
protected by SP’s hardware features. We develop a proof-of-concept text
editor application which contains such a TSM. This TSM can imple-
ment many different policies, not just the originator-controlled policy
that we have defined. We also propose a general methodology for trust-
partitioning an application into security-critical and non-critical parts.

1 Introduction

Access control in a computer system mediates and controls accesses to resources.
It is an essential part of the security of a computer system, preventing illegitimate
access to sensitive or protected information. Various access control policies exist,
e.g. mandatory access control (MAC), discretionary access control (DAC), role-
based access control (RBAC), etc. One access control policy that has been hard
to achieve is ORCON [1,2], or originator-controlled access. This is neither a
MAC nor a DAC policy. It is not specified by a central authority (like DAC),
but its subsequent re-distribution by legitimate recipients must be controlled
(like MAC). While DAC allows individuals to specify the access policy for their
files, it cannot control how a legitimate user re-distributes those files. In this
paper, we propose a hardware-software mechanism for achieving flexible access
control and information sharing policies, including ORCON-like policies.

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 363–378, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

364 Y.-Y. Chen and R.B. Lee

Access control mechanisms are usually implemented by the operating system
(OS), which also enforces the access control policies. However, if the OS is com-
promised, then the access control policy enforcement can also be compromised.
Applications need some way to protect secret or sensitive information, in spite
of a compromised OS, over which they typically have no control. Hence, we ex-
amine how an application can be provided a flexible mechanism to achieve an
application-level access control or information sharing policy, without depending
on the OS.

In addition to conventional access control mechanisms, cryptographic mecha-
nisms have also been used to control access to protected information. For example,
Digital Rights Management (DRM) systems[3,4,5] use cryptographic mechanisms
for copy protection of digital media. Here, anyone can get access to the encrypted
material, but only legitimate recipients may gain access to the plaintext material –
at least, that is the goal of DRM systems. Strong cryptography can be used to pro-
tect the contents of sensitive files by encrypting them into an unintelligible mass,
while decrypting them only when needed or authorized. However, two critical is-
sues arise: how the keys are managed and how the decrypted plaintext is managed.
Commercial DRM systems such as Advanced Access Content System (AACS) [3]
are broken not because they use weak cryptography (as in the case of Content
Scramble System (CSS) [4]), but because of the unsafe storage of the keys used
by the application software [5]. Hardware protection mechanisms such as TPM [6]
are designed to protect cryptographic keys by sealing them in the TPM hardware,
and the keys are only retrieved when the system is running in a verified condition.
TPM offers greater protection to the keys and includes the measurements of the
integrity of the operating system in the trust chain to make sure that it has not
been compromised. However, TPM’s protection model does not consider how the
keys are used and where they are stored after they are unsealed, therefore the ac-
cess control of the decrypted sensitive information is still left to the application
and the decrypted symmetric keys from the TPM chip can still be obtained by
examining the memory contents[7,8]. Hence, it all boils down to the management
of the keys and the decrypted plaintext.

The access control to keys is often delegated to the operating system, since
it governs all accesses to resources. However, modern operating systems are
large and complex, and hence more prone to software vulnerabilities. Further,
in the monolithic kernel model of common operating systems such as Linux
and Windows, all kernel modules have equal privilege, so that one compromised
kernel module can access the memory of another kernel module, which may
be security-critical. An attacker can gain control of the operating system by
targeting one of the many device drivers, bypass the access control and retrieve
the application’s secret or sensitive information.

In this paper, we propose the following solution: A small, verifiable application
module that enforces its own policy with direct hardware protection that cannot be
bypassed or manipulated by the operating system. Implementing access control or
information sharing policies in the application-space removes the dependency on
the operating system and adds the flexibility of incorporating different policies.

Hardware-Assisted Application-Level Access Control 365

Our solution architecture builds on top of the Secret Protection (SP) architecture
[9,10], which requires a small addition to the processor hardware to protect a
Trusted Software Module (TSM). We provide protection of the application by
modifying it slightly to incorporate a TSM directly protected by the hardware
to prevent any undesired information leakage. We implement an ORCON-like
access control policy for protected documents that is designed to be enforced in
a distributed manner.

The contributions of the paper are as follows:

– Proof-of-concept implementation of a distributed access control policy that
is difficult to enforce, e.g. ORCON.

– Developing a methodology for trust-partitioning of an application.
– Demonstrating the versatility of the SP architecture for implementing dif-

ferent access control or information sharing policies.

Section 2 gives the detailed definition of our target access control policy. Sec-
tion 3 describes the threat and trust models considered in this paper. Section 4
describes our solution architecture. Section 5 explains the methodology we de-
veloped to partition an application into a trusted and an untrusted part. Section
6 gives the security analysis of our solution. Section 7 describes related work in
this area and Section 8 concludes the paper.

2 Problem Statement

Information sharing has different requirements in different contexts. For exam-
ple, confidentiality is of top concern in a military system, whereas integrity is
essential in commercial systems. We consider an information sharing policy that
could be tailored to work in both environments, to meet the needs of both con-
fidentiality and integrity. Consider the case where a secret document is to be
distributed to selected recipients of different clearance levels, while the content
of the original document cannot be modified. Further, the re-distribution of the
content has to be approved by the content creator. This policy, previously known
as Originator-Controlled policy (ORCON) [1,2], was proposed to address such a
scenario. Since the control point of the policy is neither entirely centralized nor
entirely distributed, it cannot be directly solved by applying Mandatory Access
Control (MAC) or Discretionary Access Control (DAC).

In such an information sharing policy, the key players include the content
creator, the recipients and the trust group (Figure 1). The recipients can be
further categorized as authorized recipients, who are within the trust group and
are allowed access to the content of the document by the content creator, and
unauthorized recipients who are outside the trust group. Not all members of
the trust group are authorized recipients of a given document. We formalize the
problem statements of the information sharing policy as follows.

– Problem 1: Dissemination to authorized recipients
The content creator wants to restrict access to the content to authorized
recipients only. In other words, recipients who have not gained explicit ap-
proval from the content creator will not have access to the content.

366 Y.-Y. Chen and R.B. Lee

Recipient

Content
creator

Trust Group

Recipient

Recipient

Recipient

Recipient

Fig. 1. Players in the information sharing
policy. Gray circles represent unautho-
rized recipients, while white circles rep-
resent authorized recipients.

HW SP

OS

App Editor TSM

Fig. 2. Using SP architecture for flexi-
ble access-control enforcement. Grey parts
are the untrusted system, white parts are
trusted.

– Problem 2: Prevent illegitimate re-dissemination
After the authorized recipients have gained access to the content, it should
not be possible to redistribute or copy the original content to any unautho-
rized recipients. An unauthorized recipient must ask the content creator for
explicit access rights in order to access the protected content.

– Problem 3: Allow legitimate appending to the content
In the case where the content creator allows for appending extra information
to the original content, an authorized recipient must be able to append to
the original content, while preserving the authorized recipients of the original
policy dictated by the content creator, i.e. the protected content may grow
but the list of authorized recipients should remain unchanged.

To solve the above problems, we identify the requirements that must be met:
– The policy dictated by the content creator has to be tied to the corresponding

protected content.
– The policy has to be enforced regardless of the presence of the content cre-

ator, i.e. the enforcement is distributed among the recipients.
– Updating (appending) the content should allow changes only in the content,

not the policy. Therefore the policy should be physically separated from the
content but logically tied to it.

Our solution architecture, as described in the following sections, adheres to these
requirements and hence guarantees that the policy is never violated.

3 Threat and Trust Models

We assume that every recipient uses some type of computing device to access the
content in the protected document, where each device has a Central Processing

Hardware-Assisted Application-Level Access Control 367

Unit (CPU) that is trusted. Further, the content of the protected document is
accessed by a piece of editor software that can read, display or modify the content
in the document. For simplicity, we consider the protected content as digital text
documents in this paper, although our proposed solution and methodology apply
to any digital multimedia contents, e.g. digital photos, video or music.

The goal of an adversary is to gain access to the information in the protected
content without explicit approval from the content creator. The adversary may
have obtained the file of the protected document and have physical access to the
computing device, and he can write his own software to run on the computing
device to try to gain as much information as possible. Since the adversary has
physical access, memory bus tapping or access to raw bits on disk are considered
valid attacks. However, we do not consider any analog attacks, e.g. shoulder
surfing or social engineering, since these attacks are out-of-band exploits that
are not within the control of a computer system.

We divide the editor program into a trusted and an untrusted part, where the
trusted part is guaranteed to perform the desired functions and any tampering
with the trusted part will be detected, by means of our hardware protection
mechanisms. However, the adversary can modify the untrusted part or the op-
erating system to perform any malicious activities.

On the recipients’ computing devices, we assume that a trusted path exists
between the user input and the trusted CPU, and between the CPU and the
display output. Hence, the device user can be assured that the input comes
directly from him and that what is displayed is indeed that which is processed
by the CPU. Various techniques exist [11,12,13] to support a trusted input path
and a trusted display.

4 Architecture

Our solution consists of a combination of CPU hardware and application soft-
ware, which builds upon the Secret Protection (SP) [9,10] architecture to provide
direct hardware protection of the application. In essence, we partition the editor
application into a trusted and an untrusted part and provide protection of the
trusted part directly by the hardware, as shown in Figure 2.

4.1 SP Architecture

SP Architecture was first proposed [10] to protect the user’s secret or sensitive
information (user mode) and later modified [9] to protect a remote authority’s
and third parties’ secret or sensitive information (authority mode). Our solu-
tion builds upon the authority mode SP [9]. We highlight the key architectural
features of SP below.

The architecture consists of the Trusted Software Module (TSM) in the user-
level application and the SP hardware in the microprocessor chip. There are two
hardware trust anchors in the microprocessor chip: Device Root Key (DRK) and
Storage Root Hash (SRH). The DRK is unique for each chip; it never leaves the

368 Y.-Y. Chen and R.B. Lee

chip and can not be read or written by any software. The only software that
can use the DRK is the TSM, via a special instruction that can derive a new
key from the DRK given nonces and/or constants. The SRH securely stores the
root hash of a secure user-defined storage structure (on disk or on-line storage)
accesssible only to the TSM. The SRH is accessible only to the TSM. Other
software cannot read or write the SRH, including the operating system.

Hardware Code Integrity Checking (CIC) ensures the integrity of the TSM
code while executing. Each instruction cache line embeds a MAC (a keyed hash),
with the DRK as the key. The hash is verified before the instruction cache line
is brought on-chip. Hardware Concealed Execution Mode (CEM) protects the
TSM’s data while it is executing, to guarantee confidentiality and integrity of any
temporary data that the TSM uses, whether this is in on-chip registers or caches,
or evicted to off-chip memory. During interrupt handling, hardware protects the
contents of general registers and the interrupt return address from a potentially
corrupted OS. All data cache lines containing protected data are encrypted and
hashed when evicted from the microprocessor chip. A hardware encryption and
hashing engine accelerates the automatic encryption (or decryption) and hash
generation (or verification), reducing cryptographic overhead to the infrequent
cache-miss handling of the last level of on-chip caches.

4.2 Distributed Access Control Architecture

The access control required by our information sharing policy is enforced by
the new trusted part of the editor application, i.e. the TSM in the user-space.
To guarantee the confidentiality and integrity of the protected document while
it is opened by the editor, and to simplify the access control mechanism, we
dedicate a special TSM buffer for use only by the TSM to store and manipulate
any temporary data it uses. All the data in the TSM buffer are tagged as secure
data in the processor’s on-chip caches. When secure data cache lines are evicted
from on-chip caches out to the main memory, the SP hardware mechanism will
ensure that they are encrypted and hashed, by a key that is derived from the
DRK. The TSM buffer does not interfere with the internal buffer structures of
the editor program, so that the editor functions that do not involve the TSM
are not modified at all. The TSM buffer is used by the TSM to hold temporary
decrypted lines of the protected content. In other words, the protected content
remains encrypted inside all internal buffers of temporary files used by the editor,
only decrypted by the TSM in the TSM buffer when the TSM is active.

As mentioned in Section 2, the policy and the content should be physically
separated but logically tied. We store the policy dictated by the content creator
in the secure storage maintained by the SP hardware, and we tie together the
policy and the content by a cryptographic hash that is also stored and protected
in the secure storage. The root of trust of the secure storage (SRH) is protected
on-chip and accessible only by the TSM, and only the TSM can legitimately
access or modify the stored policies in the secure storage. Any illegitimate mod-
ifications to the stored policies will be caught by the TSM when checking the

Hardware-Assisted Application-Level Access Control 369

Editor

TSM

Editor
buffer

TSM
buffer

RAM

Secure
storage

Persistent
storage

(a)

License

Policy

Content Creator: Jeff

Expiration date: 01012011

Alice, PK_A, read, -

Bob, PK_B, read, append

...

Metadata

Filename storm

Size 60KB

Key

K

Signature

Sign(Hash(Policy))

Hash

Hash(Enc(Storm) || Policy || Metadata

|| Key || Signature)

(b)

Fig. 3. (a): Partitioning the editor application and the system into untrusted (grey) and
trusted (white) parts. The TSM gets its own buffer to work with temporary data, and
it can access both the secure storage where the policies are stored and normal storage
where the protected (encrypted) content is stored. (b): A license for the document.
This contains a policy dictated by the content creator (PK A represents the public key
of Alice).

integrity of the secure storage. Figure 3(a) shows the interaction between the
editor application (trusted and untrusted parts), the temporary buffers (SP-
protected and unprotected), and the persistent storage (secure and unsecured).
Physically separating the data and the policy reduces the amount of information
that needs to be directly protected in the secure storage of SP, since a file can
be very large.

The sensitive content is protected by encrypting the document with a key
that is stored in the secure storage, along with the policy dictated by the con-
tent creator. Since the document is encrypted, it can be safely stored in any
public storage without additional access control protection. The key to decrypt
it is bound by the policy and the policy is enforced by the TSM. The TSM
always controls the access to the decryption keys according to the corresponding
policies. To ensure compliance with the requirements described in Section 2, in
addition to the policy and the key, we store other pertinent information of the
protected document in a data structure called a license, (see Figure 3(b)), which
is stored in SP-protected secure storage. A license contains the access control
policy, metadata, the key to decrypt the document, the originator’s signature on
the policy, and a hash over the encrypted document and all items in the license.

Before the user is allowed access to the content in the document, the TSM
first checks the integrity (Hash) of the encrypted document and the license, to
make sure they have not been tampered with. Then the TSM checks if the policy
allows the particular recipient access to the content of the document. After all
checks are successfully passed, the TSM decrypts the content of the document
and stores it in the temporary TSM buffer and, through the trusted display link,
displays the contents to the authenticated recipient.

370 Y.-Y. Chen and R.B. Lee

4.3 TSM Architecture

Figure 4 shows a general structure of the TSM consisting of several modules
(libraries) that perform different functionalities required by the TSM. The TSM
is not limited to a specific application and a specific access control policy.

Since in our threat model we assume a trusted I/O path exists, a trusted
I/O module serves as the gateway for the TSM to receive user input, to display
output or to connect with other TSMs. A crypto module that implements sym-
metric key encryption/decryption, asymmetric key encryption/decryption and
cryptographic hash functions, and a random number generation (RNG) are in-
cluded in the TSM, so that the TSM does not need to depend on the operating
system for these functions. The core of the TSM is the policy enforcement mod-
ule that interacts with the TSM buffer and interprets the policy stored in the
secure storage to mediate the I/O of the TSM. The policy enforcement module
acts as the TSM resource manager that can be tailored to implement various
access control policies. A user authentication module, along with a set of PKI
interfaces is included in the TSM to take care of the user authentication required
to guarantee that the owner of the public/private key pair specified in the policy
is correctly authenticated. User authentication is described in Section 4.5.

Policy
enforcement

module

PKI APIsTrusted I/O
module

non-TSM

TSM

keyboard
display
network

Crypto
module

RNG
module

TSM
buffer

User
authentication

module

PGP TPM

secure storage

storage

Fig. 4. TSM architecture. The trusted (white) parts of the system are the TSM and
the SP-protected secure memory and secure storage.

4.4 Operation

We walk through an example to show how the TSM and the SP hardware protect
and enforce the access control of the protected document.
1. The content creator creates the document containing sensitive data using

any application he/she chooses.
2. The content creator dictates the policy he/she would like to enforce, e.g. who

has what access to the content.

Hardware-Assisted Application-Level Access Control 371

3. The content creator runs the editor application which contains the TSM, to
turn the document into a protected document. A series of steps occur.
(a) The TSM first randomly generates a new symmetric key.
(b) The TSM encrypts the contents using the generated key and erases the

plaintext.
(c) The TSM calculates the hash of the policy and asks the content creator

to sign the hash.
(d) The TSM calculates the hash of the encrypted document, policy, meta-

data, key and the signature, and stores them in a newly created license
in the secure storage.

4. The content creator can now distribute the encrypted document to all recip-
ients he/she desires.

5. The TSM on the content creator side encrypts the license using the group
encryption scheme [14] for the recipients (group encryption scheme and the
trust group are described in Section 4.6).

6. The TSMs of the recipients’ devices decrypt the license with their group
decryption keys and securely store the license in the secure storage.

7. The TSM on the recipient side authenticates the recipient and checks the
policy before granting access to the contents of the protected document.

4.5 User Authentication

User authentication is a difficult problem for the TSM, since we cannot rely
on the operating system for existing user authentication mechanisms. To sim-
plify the design of the TSM and not burden it with complex user authenti-
cation functions, we propose a public/private key authentication solution. We
build a generic API interface that can interact with and make use of different
public/private key applications, e.g. OpenPGP or GnuPG, that manage users’
private keys. Below, we outline the protocol used by the TSM to authenticate a
user utilizing other PKI applications.

When invoked by the user to read a policy-protected document, the TSM
prompts the user for identity, for example, Alice. The TSM reads the corre-
sponding policy in the secure storage to locate Alice’s public key, PK_A. The
TSM calls the RNG module to generate a new random number and uses PK_A
to encrypt the random number as a challenge. The TSM sends the random chal-
lenge to the PKI application through the PKI interface and asks it to decrypt
the random challenge.

The PKI application authenticates the user via its normal mechanisms, e.g.
passphrase or TPM [6]. The PKI application returns the decrypted challenge to
the TSM. The TSM checks for the validity of the random challenge to determine
if the user has been successfully authenticated.

Ideally, the whole PKI application should be included in the TSM, since it
is a security-critical function. If we consider the operating system as untrusted,
the PKI application could also be compromised. However, our architecture still
ensures that the keys that are used to decrypt the document, and the plaintext
of the document, are never released outside the TSM.

372 Y.-Y. Chen and R.B. Lee

4.6 Group Encryption and Trust Groups

We use group encryption [14] for distributing the protected license to the autho-
rized recipients. Group encryption is the dual of the well-known group signature
scheme [15,16,17]. In a group signature scheme, a member of a group can anony-
mously sign a message on behalf of the group, without revealing his/her identity.
In a group encryption scheme, the sender can encrypt a piece of data and later
convince a verifier that it can be decrypted by the members of a group without
revealing the identity of the recipient. The authority in both cases is the only
entity that can reveal the identity of the signer in the group signature scheme
or the recipient of the group encryption scheme. One group in a group encryp-
tion scheme has one group encryption key and multiple group decryption keys
associated with it. The group encryption key is public and is used to encrypt
messages, while the group decryption keys are private.

In SP architecture [9], a trusted authority installs all TSMs and knows the
DRKs of all the SP devices. This is also the authority in the group encryption
scheme. In our architecture, the authority that initializes and installs the TSMs
creates a group that includes all SP devices, and assigns each SP hardware a
unique group decryption key, while publishing the group encryption key for that
group, such that in the secure storage of each SP device a pair of group en-
cryption and decryption keys is stored and tied to the particular SP hardware.
Therefore the content creator can be assured that the license can only be de-
crypted by SP-enabled devices in the same group. For simplicity, we assume that
all SP-enabled devices are in the same group, although different groups of SP-
enabled devices can be established depending on application requirements. Note
that the authority that governs the SP-enabled devices and the trust groups
need not be the same as the certificate authority in the PKI systems for user
authentication.

In practice we may desire to have multiple trust groups, where each group may
contain an arbitrary number of SP devices. Since each originator may need to
distribute the protected document to a different set of authorized recipients, it
is desirable, although not necessary, to have separate groups for each originator.
This scheme can be easily incorporated in our solution since we can store multiple
group encryption-decryption key-pairs in the secure storage of each SP device,
and the TSM is responsible for distinguishing between different trust groups
and making sure that there is no information flow between trust groups, unless
it is explicitly allowed by the originator. Therefore, a recipient can belong to
multiple trust groups without the need to use multiple devices. However, since
there is only one authority that knows the DRKs of all devices and hence the
only authority that can properly insert group encryption-decryption key-pairs
into the devices, we cannot allow multiple authorities in a trust group without
extending the SP architecture [9].

5 Trust-Partitioning an Application

We developed a methodology for partitioning an existing application into a trusted
and an untrusted part. We chose vi [18] as our proof-of-concept application

Hardware-Assisted Application-Level Access Control 373

to implement the application-level information sharing policy, since it is one of
the most common text editors in the Unix operating system. Our methodology
can also be applied to other applications.

To partition an application, we need to identify the entry and exit points into
and out of the TSM. We first categorize the commands available in vi. Figure 5
shows the flow chart used to categorize the various commands of vi into 5 generic
groups.

Table 1 shows the commands in each group. In particular, we are interested
in the commands that are relevant to our information sharing policy, e.g. dis-
playing the content of a file or appending new content to the original file, etc.
The commands in bold (i.e., ex and quit) are modified vi commands and the
commands in italic are new commands. These commands are the entry and exit
points of the TSM and are the only commands that can legitimately manipulate

Commands Read input
file?

Group I:
Read
input

YES

Manipulate
buffer?NO

YES

Commit
output file?NO

Group III:
Commit
output

YES

End session?NO

Group IV:
End

session

YES

Group V:
OthersNO

Make new commands
for reading protected
documents.
Modify original command
to call TSM first.

Group II:
Manipulate

buffer

Display or
append?

YES

NO

Make new commands
for displaying or
appending to TSM
buffer.
Keep original
commands
as is.

Make new command for
committing protected documents.
Keep original commands as is.

Modify original
command to call
TSM first.

Keep original
commands as is.

Fig. 5. Categorization of functions within an application for TSM protection

Table 1. The groups of vi commands after categorization

Group I Group II Group III Group IV Group V
Read input Manipulate buffer Commit output End session Others

ex print write quit abbreviate
tsm ex read tsm write args

tsm print cd
tsm read delete

...
tsm create

374 Y.-Y. Chen and R.B. Lee

Table 2. New and modified vi commands

tsm ex filename Open a protected document.

tsm print line number Display the contents of a protected document.

tsm read filename Append the contents of filename to current pro-
tected document.

tsm write Automatically re-encrypt the protected document
(with any appended data) and update the length
and the hash stored in the license.
EK(document || appended data)

tsm create filename Turn a document into a protected document.

quit & ex Erase the plaintext in TSM buffer.

the TSM buffer. They start by bringing the processor into SP CEM mode and
finish by exiting CEM mode, hence each of these commands is protected by the
SP hardware to ensure they perform the desired functions. All other commands
of vi remain unchanged. There are a total of 70 commands in the original vi,
with 2 modified, 5 new ones added and the remaining 68 unmodified. The new
and modified commands are described in Table 2.

The above partitioning steps, although applied to vi specifically, can also be
applied to other applications, with the goal of identifying the entry and exit
points of the TSM. We propose the following general methodology for trust-
partitioning an application:

1. Identify the security-critical information that needs to be protected.
2. Identify the liveness of the information, i.e. transient data or persistent data.
3. Identify the input and output paths leading to and leaving from the protected

information.
4. Relocate the information to the TSM buffer (transient data) or the secure

storage (persistant data).
5. Rebuild or modify the input and output paths using the new TSM function-

alities.

6 Security Analysis

We analyze the security of our proposed solution according to three main security
concerns: confidentiality, integrity and availability.

6.1 Confidentiality

In the information sharing policy, the content creator is most concerned with
the confidentiality of the sensitive content in the protected document – only the
authorized recipients can have access to the decrypted content.

We first consider the case where the adversary is outside the trust group,
e.g., the adversary does not have a legitimate SP-enabled device. The adversary

Hardware-Assisted Application-Level Access Control 375

can try to attack the system by intercepting the communication (1) when the
content creator is sending the encrypted document over to the recipients, or
(2) when the content creator’s device is sending the license to the recipients’
devices. The adversary does not gain any information in the first case since the
document sent over the communication is encrypted, and we assume the use of
strong cryptography. Similarly, the communication channel intercepted in the
second attack is also encrypted, using the group encryption key, which is known
only by an SP device in the same group.

The attacker can also steal one of the recipients’ devices and try to imper-
sonate the authorized recipient. In this attack, in order for the adversary to
successfully authenticate himself as the authorized recipient, he must know, or
have access to, the private key of the authorized recipient.

We now consider the case where the adversary has a legitimate SP-enabled
device and belongs to the correct trust group, but is not on the list of autho-
rized recipients. The adversary now is also able to perform the previous three
attacks. Further, the adversary can impersonate an authorized recipient and try
to communicate with the content creator directly to ask for a legitimate license.
However, the most that the adversary can do is to have both the encrypted
document and the legitimate license stored in his/her device; the adversary still
needs to have the private key of an authorized recipient to authenticate himself.

In the extreme case where the adversary is in the authorized recipient list –
an insider attack – the adversary can access the contents of the document but
has no way of digitally copying the contents to another file, since the plaintext
document is only present in the TSM buffer during CEM mode and there is
no command that allows direct memory copy of the plaintext from the TSM
buffer to unprotected memory. The adversary can take pictures of the displayed
content or memorize the content and later re-create it in another file. However,
these attacks are not within the control of the computer system and hence, not
in our threat model, as stated in Section 3.

Our solutions did not require the application used by the originator to create
a new document to be trusted. Although the information could be stolen at
this point, this is out-of-scope for this paper, since we are concerned not with
the leaking of information when it is being created, but the leaking after it is
recognized as important and being distributed.

6.2 Integrity and Availability

The integrity of the protected document and the corresponding policy is enforced
by the Hash that ties together all the pertinent information of a policy-protected
document. The Hash is stored in the secure storage, which is itself encrypted and
integrity protected by the TSM using the keys accessible only by the TSM. The
root of trust of the integrity of the secure storage is stored on the processor chip
(SRH). Therefore, there is an integrity trust-chain from the protected content and
license to the SRH, that does not depend on the potentially compromised OS.

SP architecture does not directly address denial-of-service attacks, therefore
if the adversary modifies or completely deletes the document, or the license in

376 Y.-Y. Chen and R.B. Lee

the secure storage, any access to the protected information is lost. Although it
is easy to achieve such denial-of-service attacks, they are not considered detri-
mental since no security-critical information is leaked by these attacks. In fact,
these attacks show the fail-safe nature of the access control implementation.
Nevertheless, SP architecture does provide intrinsic support for availability, in
terms of the resiliency of the TSM to unrelated attacks. Since the trust chain
consists only of the SP hardware and the TSM, attacks on the untrusted part
of the application and the OS do not prevent the TSM from enforcing its access
control functions.

7 Related Work

Several commercial solutions have been proposed to address the issue of informa-
tion sharing, both in the context of digital media and digital documents. DRM
solutions [3,4,5] focus on the copy-protection of the digital media, with a threat
model that assumes that the whole box of the computing device is trusted, thus
leading to the compromise of the encryption keys as described in Section 1. Cryp-
tolope [19], known as cryptographic envelopes, also decouples the distribution
of information and its license (called superdistribution) - similar to our solution.
Cryptolope enables a commercial platform for the content creator and the pub-
lisher to license their content to the customers, by controlling the distribution
of the decryption keys. However, Cryptolope assumes the same threat model
as other DRM solutions – the device or the software on the device is trusted.
Therefore, if an attacker can compromise the operating system or tap the mem-
ory bus, the attacker can have access to the decryption keys. Adobe Acrobat [20]
has the ability to set permissions to protect sensitive files in the application level,
including viewing, printing, changing, copying or commenting. But the password
protection employed by Acrobat can be more easily defeated and is vulnerable
to a malicious operating system as well. SISA [21] is a recent alliance of several
industry companies, aiming to provide a secure end-to-end architecture for infor-
mation sharing in a distributed environment. It involves several levels of access
control, e.g. physical access control, network access control, storage access con-
trol, etc. Although the architecture provides extensive defense-in-depth, it still
assumes the computing box as trusted. Also, the complexity of the architecture
may make it more suitable only for large organizations.

Another area of related work is in hardware protection of application software.
XOM [22] is another secure processor architecture that protects applications in
an untrusted operating system environment. The protected applications running
on XOM are kept in different compartments, each with its own compartment key.
Like SP architecture, XOM has the ability to protect registers and encrypt mem-
ory traffic. Therefore, our application-level solution can also be mapped on the
XOM processor by executing the TSM in a separate compartment. However,
XOM is much more complicated than SP. TPM [6] is an industry solution to
support trusted computing. Essentially TPM can be used to provide password
protection, disk encryption and, most importantly, a trusted boot-chain. When

Hardware-Assisted Application-Level Access Control 377

employing TPM protection, applications can safely seal a piece of sensitive in-
formation inside the TPM chip. In other words, TPM can essentially bind a
set of files to a particular host. However, since the TPM itself is not designed
to provide protection of the decrypted plaintext once it leaves the TPM chip,
a malicious operating system or hardware attacker can intercept the decrypted
traffic in memory, although he/she cannot obtain the decryption keys in the
TPM chip. Flicker [23] employs the newly introduced late launch instructions
(both AMD and Intel) together with TPM to achieve a trusted execution en-
vironment for the protected part of an application. Like our proposal, it tries
to minimize the trusted code base. However, unlike our proposal, Flicker does
not consider hardware attacks. Also, our solution can achieve the same level of
security without an external TPM chip. Overshadow [24] presented a framework
for protecting applications without trusting the operating system. They do not
require special hardware (like TPM, XOM or SP) but implement the protection
mechanisms in the virtual machine monitor (VMM). They also do not consider
hardware attacks and the TCB is larger since it has to include the entire VMM.

8 Conclusion

The SP security architecture provides a simple yet flexible software-hardware
mechanism for protecting a Trusted Software Module (TSM) directly by SP
hardware. This enables applications to express and enforce different security
policies, without depending on the operating system over which they have no
control. In this paper, we demonstrated the implementation of an originator-
controlled (ORCON) distributed information sharing policy for documents. Such
an access control policy is difficult to achieve with only MAC or DAC mech-
anisms. We achieve this in the user-space vi application, without relying on
the operating system which can be compromised. The SP protection is rooted
in the CPU hardware, defending against both software and hardware attacks.
Our modified vi application is a proof-of-concept of the effectiveness of the SP
hardware-software architecture. We also developed a general methodology for
trust-partitioning an application, which is useful not only for our information
sharing policy, but more generally for separating out the security-critical parts
of applications.

References

1. Graubart, R.: On The Need for A Third Form of Access Control. In: 12th National
Computer Security Conference Proceedings, October 1989, pp. 296–303 (1989)

2. McCollum, C.J., Messing, J.R., Notargiacomo, L.: Beyond the Pale of MAC and
DAC – Defining New Forms of Access Control. In: IEEE Computer Society Sym-
posium on Research in Security and Privacy, pp. 190–200 (1990)

3. Advanced Access Content System (AACS), http://www.aacsla.com/home
4. Content Scramble System (CSS), http://www.dvdcca.org/css/
5. Leyden, J.: Blu-ray DRM Defeated: Copy-protection Cracked Again (January 23,

2007), http://www.theregister.co.uk/2007/01/23/blu-ray_drm_cracked/

http://www.aacsla.com/home
http://www.dvdcca.org/css/
http://www.theregister.co.uk/2007/01/23/blu-ray_drm_cracked/

378 Y.-Y. Chen and R.B. Lee

6. Trusted Computing Group: Trusted Platform Module,
https://www.trustedcomputinggroup.org/home

7. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember: Cold Boot
Attacks on Encryption Keys. In: SS 2008: Proceedings of the 17th Conference on
Security Symposium, Berkeley, CA, USA, pp. 45–60. USENIX Association (2008)

8. Kumar, A.: Discovering Passwords in the Memory, White Paper, Paladion Net-
works (November 2003)

9. Dwoskin, J.S., Lee, R.B.: Hardware-rooted Trust for Secure Key Management and
Transient Trust. In: Proceedings of the ACM Conference on Computer and Com-
munications Security (CCS 2007), October 2007, pp. 389–400 (2007)

10. Lee, R.B., Kwan, P.C.S., McGregor, J.P., Dwoskin, J., Wang, Z.: Architecture for
Protecting Critical Secrets in Microprocessors. In: ISCA 2005: Proceedings of the
32nd Intl. Symposium on Computer Architecture, pp. 2–13 (2005)

11. Challener, D., Yoder, K., Catherman, R., Safford, D.: 15. In: A Practical Guide to
Trusted Computing, pp. 271–276. IBM Press (2008)

12. Epstein, J.: Fifteen Years after TX: A Look Back at High Assurance Multi-Level
Secure Windowing. In: ACSAC 2006, pp. 301–320 (2006)

13. Ocheltree, K., Millman, S., Hobbs, D., Mcdonnell, M., Nieh, J., Baratto, R.:
Net2Display: A Proposed VESA Standard for Remoting Displays and I/O De-
vices over Networks. In: Proceedings of the 2006 Americas Display Engineering
and Applications Conference (ADEAC 2006) (October 2006)

14. Kiayias, A., Tsiounis, Y., Yung, M.: Group Encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 181–199. Springer, Heidelberg (2007)

15. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups
(Extended Abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 410–424. Springer, Heidelberg (1997)

16. Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

17. Chen, L., Pedersen, T.P.: New Group Signature Schemes. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 171–181. Springer, Heidelberg (1995)

18. The Traditional vi, http://ex-vi.sourceforge.net/
19. Kohl, U., Lotspiech, J., Nusser, S.: Security for the Digital Library - Protectiong

Documents Rather Than Channels. In: DEXA 1998: Proceedings of the 9th Inter-
national Workshop on Database and Expert Systems Applications, p. 316 (1998)

20. Adobe Acrobat Family, http://www.adobe.com/products/acrobat
21. Secure Information Sharing Architecture (SISA) Alliance (2007),

http://www.sisaalliance.com/

22. Lie, D., Thekkath, C.A., Horowitz, M.: Implementing an Untrusted Operating
System on Trusted Hardware. In: SOSP 2003: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pp. 178–192 (2003)

23. McCune, J.M., Parno, B.J., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: an ex-
ecution infrastructure for tcb minimization. In: Eurosys 2008: Proceedings of the
3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008, pp.
315–328. ACM, New York (2008)

24. Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.: Overshadow: a virtualization-based approach
to retrofitting protection in commodity operating systems. In: ASPLOS XIII, pp.
2–13 (2008)

https://www.trustedcomputinggroup.org/home
http://ex-vi.sourceforge.net/
http://www.adobe.com/products/acrobat
http://www.sisaalliance.com/

	Hardware-Assisted Application-Level Access Control
	Introduction
	Problem Statement
	Threat and Trust Models
	Architecture
	SP Architecture
	Distributed Access Control Architecture
	TSM Architecture
	Operation
	User Authentication
	Group Encryption and Trust Groups

	Trust-Partitioning an Application
	Security Analysis
	Confidentiality
	Integrity and Availability

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

