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Abstract. We present the first fair e-cash system with a compact wal-
let that enables users to spend efficiently k coins while only sending to
the merchant O(λ log k) bits, where λ is a security parameter. The best
previously known schemes require to transmit data of size at least linear
in the number of spent coins. This result is achieved thanks to a new way
to use the Batch RSA technique and a tree-based representation of the
wallet. Moreover, we give a variant of our scheme with a less compact
wallet but where the computational complexity of the spend operation
does not depend on the number of spent coins, instead of being linear at
best in existing systems.
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1 Introduction

Electronic cash systems allow users to withdraw electronic coins from a bank,
and then to pay merchants using these coins preferably in an off-line manner,
i.e. with no need to communicate with the bank or a trusted party during the
payment. Finally, the merchant deposits the coins he has received to the bank.

An e-cash system should provide user anonymity against both the bank and
the merchant during a purchase in order to emulate the perceived anonymity
of regular cash. However, it seems that the necessity to fight against money
laundering encourages the design of fair e-cash systems where a trusted party
can, at any time when it’s needed, revoke the anonymity of users. We thus focus
on the design of fair e-cash systems. In order to reach the privacy target while
being reasonably practical, it is necessary to focus on the efficiency of the most
repeated protocol, namely the spending one between the user and the merchant.
It should also be possible to withdraw or spend several coins more efficiently
than repeating a single withdrawal or spending protocol. At last, we must pay
attention to the compactness of the data that are exchanged in all protocols.
� This work has been financially supported by the French Agence Nationale de la
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Related Works. The compact e-cash system [1] has recently aroused a new inter-
est in e-cash by proposing the first e-cash system permitting a user to efficiently
withdraw a wallet with 2L coins such that the space required to store these
coins, and the complexity of the withdrawal protocol, are proportional to L
rather than to 2L. Another possibility of efficient withdrawal is also given in [2].
These schemes fulfill all security properties usually required in the non-fair set-
ting but do not consider the efficiency of the spending phase. One solution to
improve it is to manage a wallet that contains coins with several monetary values
[3]. The main drawback of this solution is that the user must choose during the
withdrawal protocol how many coins he wants for each monetary value. In [4],
the initial compact e-cash scheme is modified to improve the spending phase;
however, the overall cost is still linear in the number of spent coins and, again,
the paper only consider non-fair e-cash. Consequently, there exists no privacy-
preserving fair e-cash system allowing the user to both (i) withdraw compact
wallets and (ii) spend several coins while the transmitted data size is less than
linear in the number of spent coins.

Our Contributions. This paper presents a fair e-cash system with a compact
wallet that allows users to spend efficiently k coins while sending to the mer-
chant only O(λ log k) bits, with λ a security parameter, while preserving the
privacy of the users. Our proposal makes use of two main cryptographic build-
ing blocks: blind signatures [5] and batch cryptography [6]. The concept of blind
signature is the essence of many e-cash systems [7,8,9]. However, many of these
suffer from a lack of efficiency since they usually use the cut-and-choose method
in order to identify double-spenders [7]. The Batch RSA method makes it pos-
sible to efficiently obtain multiple RSA signatures of multiple messages. Batch
cryptography has been used to build several e-cash systems, in order to get ad-
ditional properties [10,11], to decrease the amount of processing done by the
merchant [12], or to improve the efficiency of the withdrawal process at the cost
of the linkability of coins withdrawn together [13].

To the best of our knowledge, our proposal is the most efficient (fair) e-cash
system in terms of wallet storage size, computational complexity of spending
and spending transfer size, which is strongly unforgeable. Note that the level
of anonymity achieved by our scheme is strong but it is not perfect. Indeed it
is strong because it is impossible to link (i) a withdrawal protocol with a user
identity, (ii) a spending protocol to a withdrawal protocol, and (iii) two spending
protocols but only under specific constraints. The anonymity property achieved
by our scheme cannot be perfect since some information related to the coin
number (with respect to the wallet) leaks during the spending phase.

2 Security Model

2.1 Algorithms

A fair e-cash system involves four kinds of players: a user U , a bank B, a merchant
M and a judge J . Each user is able to withdraw a wallet with � coins. Such
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wallet consists of an identifier and a proof of validity. A fair e-cash scheme is
defined by the following algorithms, where λ is a security parameter.

– ParamGen(1λ) is a probabilistic algorithm that outputs the parameters of the
system params. In the sequel, all algorithms take as input 1λ and params.

– JKeyGen(), BKeyGen() and UKeyGen() are key generation algorithms for J ,
B and U , respectively. The key pairs are denoted by (skJ , pkJ ), (skB, pkB),
and (skU , pkU ). Note that UKeyGen() also provides the keys of merchants
that can be seen as users in e-cash systems.

– Register(J (skJ , pkU),U(skU , pkJ )) is an interactive protocol whose outcome
is a notification decision of J together with a certificate of validity of U ’s
public key which guarantee that U knows his secret key.

– Withdraw(U(pkB, skU , �),B(pkU , skB)) is an interactive protocol that allows
U to withdraw a wallet W of � coins. The output of U is a wallet W , i.e. an
identifier I and a proof of validity Π , or an error message ⊥. The output of
B is its view VWithdraw

B of the protocol.
– Spend(U(W, pkM, pkB, k),M(skM, pkB)) is an interactive protocol enabling

U to spend k coins. M outputs the serial numbers S0, · · · , Sk−1 and a proof
of validity π. U ’s output is an updated wallet W ′ or an error message ⊥.

– Deposit(M(skM, (S0, . . . , Sk−1), π, pkB),B(pkM, skB)) is an interactive pro-
tocol allowing M to deposit the coins, i.e. S0, . . . , Sk−1 and π. B adds the
coins to the list of spent coins or outputs an error message ⊥.

– Identify(S, π1, π2, skJ ) is an algorithm executed by J which outputs a proof
ΠG and either a registered public key pkU or ⊥.

– VerifyGuilt(S, pkU , ΠG, pkJ ) is an algorithm allowing to publicly verify the
proof ΠG that the Identify has been done correctly.

2.2 Security Properties

We informally describe the security statements of a fair e-cash scheme.

Unforgeability. From the bank point of view, what matters is that no coalition
of users can ever spend more coins than they have withdrawn:
– let A be an adversary that has access to the public key pkB of the system;
– A, playing a user, executes in a concurrent manner Withdraw and Deposit

protocols with the bank. A can legitimately withdraw f wallets; we de-
note by wf the number of coins withdrawn during these executions.

– the adversary A wins the game if, at any time, the honest bank accepts
more than wf coins (without detecting a double-spending).

We require that no PPT adversary succeeds in this game with non-negligible
probability.

Anonymity. From the user privacy point of view, the bank, even when cooper-
ating with malicious users and merchants, should not learn anything about
a user’s spending other than from the environment. We capture a weaker no-
tion of anonymity by assuming that the targeted users withdraw and spend
the same number of coins (see discussion in Section 5.2):
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– let A be an adversary that has access to the secret key skB of the bank;
– A executes Withdraw (as the bank) and Spend (as the merchant) proto-

cols any number of times. A can also corrupt players;
– at any time of the game, A chooses two honest users U0 and U1 such

that both U0 and U1 has withdrawn and spent the same number of
coins. Then, a bit b ∈ {0, 1} is chosen and a Spend protocol is played
between Ub and A. At the same time, we assume that Ub̄ also plays a
Spend protocol that is not observed by A. Next, A can again executes
Withdraw (as the bank) and Spend (as the merchant) protocols;

– the adversary A finally outputs a bit b′.
We require that for any PPT adversary, the probability that b′ = b differs
significantly from 1/2 is negligible.

Identification of double-spenders. From the bank’s point of view, no col-
lection of users should be able to double-spend a coin without revealing one
of their identities:
– let A be a an adversary that has access to pkB;
– A executes, as a user, Withdraw and Spend protocols as many time as it

wishes;
– A wins the game if, at any time, the bank outputs ⊥ while the merchant

executes the Deposit protocol and Identify outputs ⊥.
We require that no PPT adversary succeeds with non-negligible probability.

Exculpability. The bank, even cooperating with malicious users, cannot falsely
accuse honest users from having double-spent a coin, and only users who
double-spent a coin can be convicted:
– let A be an adversary that has access to both the secret key skB of the

bank and the one skJ of the judge;
– the adversary A can create as many users as he wants and corrupt some

of them. All along the game, A plays the bank side of the Withdraw and
Deposit protocols, A can play either the role of the user (as a corrupted
user) or the role of the merchant during Spend protocols;

– the adversary A wins the game if, at any time, the Identify algorithm
outputs the public key of an honest user together with a valid proof ΠG.

We require that no PPT adversary succeeds with non-negligible probability.

3 Useful Tools, Notations and Conventions

In the sequel, λ is the general security parameter. In a withdrawal protocol, the
user withdraws � ≤ K = 2L coins from the bank, and every coin is labeled with
a serial number Sj , 0 ≤ j < �. In a spending protocol, the number of remaining
coins in the wallet before spending and the number of coins to be spent is denoted
by K ′ and k, respectively.

3.1 Batch RSA Method

The Batch RSA method [6] makes it possible, for a given RSA modulus, to
efficiently obtain multiple RSA signatures whose public exponents are coprime
pairwise.
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Let n be an RSA modulus for which the factorization is only known by the
signer. Let e0, . . . , e�−1 be � exponents, coprime both pairwise and with φ(n),
with � ≤ K = 2L. As the efficiency of the Batch RSA depends on the size
of these exponents, a generic suitable choice is the � first odd prime numbers.
Let E =

∏�−1
i=0 ei. Given messages S0, S1, . . . , S�−1, it is possible to generate

the � roots S
1/e0
0 (mod n), . . . , S1/e�−1

�−1 (mod n) in O(log K log E + log n) mod-
ular multiplications and O(K) divisions. We sketch the steps of the Batch RSA
description and complexity proof described in [6]:

– (B1) compute the product M =
∏�−1

i=0 S
E/ei

i along a binary tree as shown
in Figure 1 for the case � = 5. Every complete binary tree with � leaves
is suitable. However, for efficiency purpose, we suppose the height of the
tree is O(log K) = O(L). Each node in the tree contains a value M[i1...i2] =
∏i2

i=i1
S

E[i1...i2]/ei

i with E[i1...i2] =
∏i2

i=i1
ei. In order to compute this tree,

the number of operations is O(log K log E + log n) multiplications;
– (B2) compute the batch signature M1/E =

∏�−1
i=0 S

1/ei

i , as a usual RSA
signature with public exponent E;

– (B3) decompose M1/E in order to obtain the values S
1/ei

i . In this step, the
binary tree built at the first step is parsed down, and at each node of the tree
the value M

1/E[i1...i2]

[i1...i2] =
∏i2

i=i1
S

1/ei

i is computed and broken into two factors
(one for each son) by using the Chinese remainder theorem and the values
computed in (B1). The cost of this last step is O(K) modular divisions and
O(log E log K) operations.

M =
∏5

i=1 S
E
ei
i

S1 S2

e2 e1

Se2
1 Se1

2

Se2e3
1 Se1e3

2 Se1e2
3

e3

e4e5

e1e2

S3 S4

e5 e4

S5

Se5
4 Se4

5

e1e2e3

Fig. 1. Withdrawal binary tree for the computation of M

Use of Batch RSA in our proposal. The messages signed using Batch RSA
are the serial numbers of coins. For efficiency purpose, the Batch RSA exponents
ei are the K first prime numbers. Therefore, we have log E = V(eK−1), where V
is the Chebyshev function1. This yields log E ∼ K ln K.
1 We recall that the Chebyshev function is V(x) =

∑
p≤x prime log(p).
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During the withdrawal, the user has to perform steps (B1) and (B2) (see
Section 3.2) in order to receive an aggregated signature on all the serial numbers
that he has chosen. The aggregated value M1/E represents his wallet.

One novel aspect of our scheme is that it is never necessary to fully decompose
the aggregated signature into all the signatures of spent coins during the spend-
ing phase. Indeed, at each spending, the current aggregated signature is split into
two parts following a single node operation from step (B3), the first part being
the aggregated signature of the coins to be spent, and the second part being
the new wallet signature representing the remaining coins. Suppose that a user
still owns an aggregated signature M

1/E′

F =
∏

i∈F S
1/ei

i , with F ⊂ {0, . . . , �− 1}
and E′ =

∏
i∈F ei. This user wants to spend a subset F1 of the coins in F . Let

F2 = F \F1. In order to compute the aggregated signature M
1/E′

1
F1

=
∏

i∈F1
S

1/ei

i ,
the user creates two binary trees, corresponding to the subsets F1 and F2, re-
spectively, and connects them at the root of a new binary tree. Then, the user
computes the resulting tree as in step (B1) above in order to obtain the two
factors MF1 and MF2 . The cost is O(log #F log E′ + log n). Using the values
computed for the roots of each subset Fi, the user can now retrieve the aggre-
gated signature to be spent and the remainder as another aggregated signature.
The cost of this operation is 2 modular divisions and O(log E′) multiplications.
An example is shown in Figure 2.

M
1

E[1...4]

[1...4] =
∏4

i=1 S
e1e2e3e4

ei
i

S
1

e1
1

M
1

E[2...4]

[2...4] = S
1

e2
2 S

1
e3
3 S

1
e4
4

S1

S2

S3 S4

Se4
3 Se3

4

M[2...4] = Se3e4
2 Se4e2

3 Se3e2
4

Fig. 2. Binary tree built to spend coins 2, 3, 4 from a wallet with 4 remaining coins

This technique allows a user to carry a very small amount of data and to
transfer reduced signature data. Indeed, in this case, only the non-spent interval
and the remaining aggregated signature must be stored in the wallet, while a
single aggregated signature is sent to the merchant. There are several trade-offs
related to how we use the Batch RSA signatures. We detail them in Section 6.

3.2 RSA Blind Signature Scheme

A blind signature [5] is a protocol between a user and a signer where the user gets
a signature from the signer in a way that the signer does not know the content
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of the message he is signing. Furthermore, the signer cannot link afterward his
views of the protocol to the resulting signatures.

A common blind signature is the RSA blind signature scheme from Chaum
[5,14]. This three-move blind signature scheme is defined by a set of five algo-
rithms BS=(KeyGen, Blind, Sign, UnBlind, Verif), where Blind corresponds to the
computation of M̃ = re.H(M) (mod n) where r is a secret random value, M
is the message to be blindly signed and H is a one-way collision-resistant hash
function, while Unblind consists in computing σ = σ̃/r (mod n), where σ̃ is a
classical RSA signature on the message M̃ . Thus, it is obvious that σ is also a
classical RSA signature of the message M .

Use of the RSA blind signature scheme in our proposal. Our scheme re-
lies on blind RSA signatures using the Batch RSA technique, for which we choose
a modulus n, where log n is polynomial in λ. The messages signed using the RSA
blind signature are serial numbers of coins. During step (B2), the batch signature
is replaced by a blind signature process. Thus, for M =

∏�−1
i=0 H(Si)E/ei , instead

of simply computing the message M1/E =
∏�−1

i=0 H(Si)1/ei , the signer obtains
from the user M̃ = rEM (mod n) and computes σ̃ = M̃1/E = r

∏�−1
i=0 H(Si)1/ei

(mod n). The user finally computes, as for the traditional RSA blind signature
scheme, σ = σ̃/r (mod n), which corresponds to

∏�−1
i=0 H(Si)1/ei , as desired.

3.3 Signature of Knowledge

Zero-knowledge proofs of knowledge (ZKPK) are interactive protocols between
a verifier and a prover allowing a prover to assure the verifier his knowledge of a
secret, without any leakage of it. In the following, we use proofs of knowledge of
a discrete logarithm [15,16], of a representation, proof of equality of two known
representations in the same or in different groups [17]. In the following, we denote
by PK(α1, . . . , αq : R(α1, . . . , αq)) a proof of knowledge of the secrets α1, . . . , αq

verifying the relation R. Note that the combination of these proofs and the
underlying security have been studied in [18,19] and refined in [20].

These interactive proofs can also be used non interactively (a.k.a. signatures
of knowledge) by using the Fiat-Shamir heuristic [21].

3.4 Camenisch-Lysyanskaya Type Signature Schemes

Camenisch and Lysyanskaya have proposed in [22] various signature schemes
which include new features. These signatures, called CL signatures for short, are
based on Pedersen’s commitment scheme which allows a user to commit some
values without revealing them. CL signatures should satisfy the unforgeability
property and have the following protocols.

– KeyGen: a key generation algorithm which outputs a key pair (sk, pk).
– Sign: an efficient protocol between a user and a signer that permits the

user to obtain from the signer a signature Σ of some commitment C =
Commit(x1, . . . , xk) such that (x1, . . . , xk) are unknown from the signer. The
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latter uses the CLSign algorithm on input C and the user obtains a signature
Σ on the messages (x1, . . . , xk), such that Verif(Σ, (x1, . . . , xk)) = 1.

– ZKPK: an efficient ZKPK of a signature of some values that are moreover
(may be independently) committed.

– Verif: a procedure verifying the signature Σ on the messages (x1, . . . , xk).

One possible choice is to take the construction from [22], which is secure under
the flexible RSA assumption (a.k.a. strong RSA assumption), and where the
signature on values (x0, . . . , xk) is (A, e, s) such that Ae = a0a

x1
1 · · · axk

k bs, where
the ai’s and b are public.

4 Compact Spending

In this section, we first give a high level description of our proposal before de-
scribing the procedure and protocols of our scheme.

4.1 Overview of Our Scheme

In e-cash systems, a withdrawal protocol allows a user to get from the bank, a
wallet of coins that can be represented by a set of serial numbers and a signature
of the bank that will allow him to prove the validity of the coins. The spending
protocol of a fair e-cash system usually includes the generation of � valid serial
numbers S0, . . . , S�−1 (to allow the detection of double-spending by the bank
during the deposit protocol), a verifiable encryption of the spender public key,
and a proof of validity of the Si’s and of the encryption of the user public key
without revealing any information about his identity.

Serial numbers. As we have seen, the Batch RSA technique can be used to
obtain compact spendings by aggregating signatures. However, the transmission
of the serial numbers also has to get more compact in order to decrease the
overall spending complexity. In order to compact data related to serial numbers,
we use a tree with a derivation mechanism from the root to the leaves which
represent the serial numbers of the coins. In our scheme, the maximal number of
coins that can be withdrawn during a protocol is a fixed parameter of the system
K = 2L. Each wallet of monetary value � ≤ K = 2L withdrawn from the bank
is mapped to a binary tree of L + 1 levels2. The tree root is assigned a compact
serial number S0,0. For every level i, 0 ≤ i < L, the 2i nodes are assigned each
a compact serial number denoted by Si,j with 0 ≤ j < 2i. The values SL,j with
0 ≤ j < 2L related to the leaves of the tree are called the serial numbers of the
purse and denoted Sj .

The derivation is illustrated by Figure 3 and it works as follows: the descen-
dants from a node Si,j are given by a public function F(·, ·) that, on input a

2 The user may withdraw less than 2L coins, but still has to work with a tree of depth
L + 1, because the number of derivations to get the serial number of a coin must be
the same for all users in order to prevent linking.
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F(·, 0)

S0,0

S2,0

S3,0 = S0 S3,1 = S1

F(·, 1)F(·, 0)

S1,1

S2,1 S2,2

S3,2 = S2 S3,3 = S3 S3,4 = S4

F(·, 0)

F(·, 0)

F(·, 1)

S1,0

F(·, 1)

F(·, 0)

F(·, 0) F(·, 1)

Fig. 3. Serial number binary tree for � = 5 and K = 23

compact serial number Si,j and a bit b ∈ {0, 1} to indicate left or right, outputs
the (compact) serial number Si+1,2j+b of the left or right descendant of Si,j in
the tree. Thus, from the tree root S0,0, it is possible to compute all the serial
numbers Si,j , 0 ≤ i ≤ L, 0 ≤ j < 2i. The idea used to obtain compact spendings
with serial numbers is that it is possible to send the serial number of a node Si,j

instead of the serial numbers of all the leaves that come from him. Conversely,
once a node Si,j is revealed, none of its descendants or ascendants can be spent,
and no node can be spent more than once. This rule is necessary to protect
against over-spending. It must also be impossible to compute a serial number
without the knowledge of one of its ascendants. Finally, for security reasons,
function F must be collision-free.

Withdrawal. During the withdrawal protocol, the user chooses a number � ≤
K = 2L of coins to withdraw. For every j, 0 ≤ j ≤ � − 1, the serial number Sj

is the message related to the exponent ej (see Section 3.1). The user computes
the � serial numbers S0, . . . , S�−1 from a compact serial number S0,0 = s, where
s is a random value known only by the user but computed jointly by the bank
and the user, so as to prevent an attack where two users use the same compact
serial number. The user at last obtains from the bank both a blind Batch RSA
signature on the serial numbers S0, . . . , S�−1 with exponents e0, . . . , e�−1 and a
CL signature on s and her identity u.

Spending. When a user wants to spend k coins, she does not need to send k serial
numbers and k proofs of validity but only one batch signature (see Section 3.1)
and O(λ log(k)) nits corresponding to “compact serial numbers”, assuming that
the user spends the coins by increasing (or decreasing) exponents. As the size
of the remaining values transmitted during spending is at most O(λ log k) bits,
this is also the overall size of the data transmitted during the spending protocol.

Finally, the merchant can verify the correctness of the serial numbers (w.r.t.
the bank) using a ZKPK of the CL signature on the values s and u done by the
user, following a technique given in [9] which permits us not to prove that the
spent serial numbers are indeed generated from the value s signed by the bank.
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4.2 Setup Procedure

The ParamGen procedure first sets 2L = K as the maximum number of coins in
a wallet and e0, . . . , eK−1 as K distinct small prime numbers. For all i ∈ [1, K],
Ei =

∏i−1
j=0 ej . Next EncJ (·) is an encryption function of the judge’s IND-CPA

public key cryptosystem (e.g. the El Gamal encryption scheme), H(·) and F(·, ·)
are two one-way collision resistant (hash) functions, g is a generator of a cyclic
group G of prime or unknown order (the structure of the group depends on the
chosen CL signature scheme). Next, the bank B (resp. the judge J ) executes the
BKeyGen (resp. JKeyGen) procedure by executing the KeyGen algorithms of the
CL and blind signature schemes (resp. of the encryption scheme).

During the UKeyGen procedure, each user U is finally associated to a long-
term private key skU = u and a corresponding public key pkU = gu, where g is
a public parameter.

4.3 Withdrawal Protocol

Let U be a user who wants to withdraw � (with 0 < � ≤ K) coins to the bank
B. The protocol between U and B is described in Figure 4. Note that B can
compute the commitment C on u, s = s′ + s′′ and w using only C′ and s′′ and
without needing to know s′ and thus s. Next, the computation of E� and the
serial numbers S0, . . . , S�−1 is done using the tree structure we described above
with F as function and S0,0 = s as the tree root (see Sections 3.1 and 4.1 for
details). The user U now possesses a wallet determined by the set (s, u, w, Σ, σ).

M̃ = rE� M (mod n)

Σ = CLSign(C)

C = Commit(s = s′ + s′′, u, w)

σ̃ = M̃1/E� (mod n)

VWithdraw
B

= (C, pkU , U, s′′, Σ, E�, M̃, σ̃)

Verify U
C′, U, pkU

σ̃

s′′, Σ

M̃, E�

Verif(Σ, (s = s′ + s′′, u, w))
?
= 1

U B

C′ = Commit(s′, u, w)

Choose s′, w at random

U = PK(α, β, γ : pkU = gα ∧ C′ = Commit(β, α, γ))

σ = σ̃/r (mod n)

W = (s, u, w, Σ, σ)

Choose r at random

M = H(S0)E�/e0 · · ·H(S�−1)
E�/e�−1

Compute E� and S0, · · · , S�−1 using F and S0,0 = s

Choose s′′ at random

Fig. 4. Withdrawal Protocol
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4.4 The Spend Protocol

Assume that a user U owns a wallet (s, u, w, Σ, σ) and wants to spend k coins
to a merchant M. The spend protocol works as follows:

1. M sends some public information info concerning the transaction (typically
the time and date of the ongoing transaction);

2. U knows the smallest i such that Si, · · · , Si+k−1 are unspent serial numbers;
3. U does not need to compute the values of the serial numbers Si, · · · , Si+k−1.

Indeed, she only needs to compute the smallest number of master serial num-
bers necessary to allow the computation by the merchant of Si, · · · , Si+k−1.
In the worst case, we need 2�log k� values Si1,j1 , . . . , Sin,jn , 0 ≤ i1, . . . , in
and 0 ≤ j1 ≤ 2i1 − 1, . . . , 0 ≤ jn ≤ 2in − 1. U sends to the merchant
Si1,j1 , . . . , Sin,jn and the index value i;

4. using the batch RSA signature described in Section 3.1, U computes the
batch signature σ[i,i+k−1] on Si, · · · , Si+k−1 (further denoted σk);

5. U computes R = H(info||pkM||σk) which is used as a freshness indicator;
6. next U computes two values C1 = EncJ (pkU ) and C2 = EncJ (s);
7. U produces a signature of knowledge Π which proves that:

– C1 and C2 are well-formed, that is C1 is an encryption of pkU = gu and
C2 is an encryption of s under the judge’s public key encryption scheme,
without revealing pkU nor s;

– U knows a CL bank’s signature Σ on u, s and w without revealing u, s,
w nor σ.

She uses c = H(Si1,j1‖ . . . ‖Sin,jn‖σk‖R‖C1‖C2) as a challenge;
8. at the end, the user has sent (i, Si1,j1 , . . . , Sin,jn , σk, C1, C2, Π, R);
9. the merchant M computes Si, · · · , Si+k−1 from Si1,j1 , . . . , Sin,jn and checks

the validity of the coin by verifying the validity of σk and Π ;

4.5 Deposit Protocol

During this step, a merchant M sends to the bank B the values (i, Si, . . . ,
Si+k−1, σk, C1, C2, Π , R). The bank checks the validity of the spending by
verifying the batch signature σk on the values Si, . . . , Si+k−1 using the index i,
and the validity of the proof Π using R, C1 and C2. If the spending is valid, the
bank checks whether at least one of the serial numbers S ∈ {Si, . . . , Si+k−1} is
already in its database. If not, B adds them into the database. Otherwise, the
bank verifies the freshness of the spending using the value R. If it is fresh, the
bank asks the judge to execute the identification of double spender procedure.
Otherwise, the merchant is a cheater and the bank rejects the deposit.

4.6 Identification of Double Spender and Verification of Guilt

In this procedure, the bank sends to the judge two spendings (i, Si, . . . , Si+k−1,
σk, C1, C2, Π , R) and (i′, S′

i′ , . . . , S′
i′+k′−1, σ′

k′ , C′
1, C′

2, Π ′, R′) such that
there exists i0 and i′0 with i ≤ i0 ≤ i + k − 1 and i′ ≤ i′0 ≤ i′ + k′ − 1 with
Si0 = S′

i′0
= S. This latter verifies the validity of both spendings, decrypts C2

and C′
2 to retrieve s and s′, and next decrypts C1 and/or C′

1 if necessary.
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– If S cannot be computed from s (resp. s′), then the judge decrypts C1 (resp.
C′

1) and concludes that pkU (resp. pkU ′) is guilty.
– Else, with high probability s = s′ (since H and F are collision-free) and

pkU = pkU ′ (since it is unlikely that two different users obtain the same
wallet secret s in the withdrawal phase and since F is collision-free). Thus,
the judge concludes that pkU = pkU ′ is guilty. Note that if the case s = s′ and
pkU 
= pkU ′ happens, that means that user U has proven the knowledge of a
bank’s signature on the values (s, u) and user U ′ has proven the knowledge
of a bank’s signature on the values (s, u′). In this case, the two spendings
are valid and the judge sends back a false alarm message since there is no
double-spending.

– At the end, the judge produces a proof ΠG that the public key of the guilty
user has been correctly decrypted. The proof consists of the values (s and
pkU ) related to the cheater and of a ZKPK that the secret key skJ embedded
in pkJ has correctly been used to decrypt s and pkU .

The verification of guilt consists in verifying the judge’s proof ΠG on pkU and s.

5 Security Analysis

In this section, we give the security arguments for our construction. We first
detailed the security assumptions we use and next give the security theorem;
security proofs are not included in the paper due to space restrictions.

5.1 Security Assumptions

One-More Unforgeability. In 2001, Bellare et al. [23] introduced the notion
of one-more one-way function, and showed how it leads to a proof of security
of Chaum’s RSA-based blind signature scheme [14] in the random oracle model.
We now introduce a variant of the one-more RSA problem in order to prove the
security of the Batch variant of Chaum’s blind signatures. The one-more flexible
(or strong) RSA-problem is defined by the following game for an algorithm A.

– the adversary A gets an RSA modulus n and a public exponent E made of
the product of � prime numbers E = e0 . . . e�−1;

– it is given access to an inversion oracle that given y ∈ Z
∗
n returns x ∈ Z

∗
n

such that xE = y mod N ;
– it is given access to a challenge oracle that returns � random challenges point

from Z
∗
n;

– eventually, A wins the game if it succeeds in inverting q · �+1 points output
by the challenge oracle using less than q queries to the inversion oracle3.

The strong one-more RSA assumption states that no probabilistic polynomial-
time algorithm A may win the previous game with non-negligible probability.
3 Using q times the inversion oracle and the batch RSA technique given in Section 3.1,

the adversary can easily invert q · � points.
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Following, Bellare et al.’s technique from [23], it is readily seen that in the
random oracle model, the Batch-RSA blind signature scheme is one-more un-
forgeable under the strong one-more RSA assumption:

Lemma 1. If the one-more flexible RSA problem is hard, then the Batch-RSA
blind signature scheme is polynomially-secure against one-more forgery in the
random oracle model.

Proof. It is almost identical to the one of [23, Theorem 16]. ��
Strong Blindness Property. In the security proof of our e-cash system, we
need a Strong Blindness property for this Batch-RSA blind signature scheme.
More precisely, we have the following experiment:

– let A be a PPT Turing Machine having access to the signer’s key pair and
being able to participate to the blind process from the signer’s point of view,
obtain resulting message/signature (M, σ) and obtain chosen partial pairs
message/signature, that is all Si ∈ F and the signature

∏
i∈F H(Si)1/ei for

any F ⊂ {0, · · · , �−1} of the adversary’s choice (see Section 3.1 for details);
– at any time of the game, the adversary outputs two transcripts I0 and I1 of

a blind signature process (from the signer’s point of view) and a challenge
F̃ ⊂ {0, · · · , � − 1}. The challenger next chooses at random a bit b ∈ {0, 1}
and outputs the messages and the signature corresponding to the transcript
Ib and the set F̃ ;

– the adversary finally outputs a bit b′.

The Strong Blindness property says that the probability that b′ = b differs
significantly from 1/2 is negligible.

Lemma 2. The Batch-RSA Blind signature scheme unconditionally verifies the
Strong Blindness property.

Proof. Straightforward as the proof is similar to the security proof of the initial
RSA blind signature scheme, which is unconditionally blind. ��
Unforgeability of signature of knowledge. In our construction, we use
the Fiat-Shamir heuristic to make non-interactive traditional interactive zero-
knowledge proofs of knowledge. In [24], Pointcheval and Stern prove that this
transformation is secure in the random oracle model.

Camenisch-Lysyanskaya type signature schemes. We need the CL type
signature scheme to be unforgeable, saying that even if an adversary has oracle
access to the signing algorithm which provides signatures on messages of the
adversary’s choice, the adversary cannot create a valid signature on a message
not explicitly queried. If we choose the CL signature scheme in [22], we need to
assume that the flexible RSA problem is hard.

The One-more discrete logarithm assumption. The one-more discrete
logarithm problem [23] is the following one. Given l+1 values and having access
to a discrete logarithm oracle at most l times, find the discrete logarithm of all
these values.
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5.2 Security Statement

Theorem 1. Our e-cash system is a secure fair e-cash system:

– unforgeability under the one-more unforgeability of the Batch-RSA blind sig-
nature scheme and the non-malleability of the signature of knowledge, in the
random oracle model;

– anonymity under the strong blindness of the Batch-RSA blind signature
scheme and the indistinguishability of the encryption scheme, in the ran-
dom oracle model;

– identification of double-spenders under the unforgeability of the CL signature
scheme, in the random oracle model;

– exculpability under the one-more discrete logarithm assumption, in the ran-
dom oracle model.

Note that our construction does not provide a perfect anonymity property since
it is possible to know which leaves in the serial number binary tree are used
during the spending. For example, if two spendings are from the same part of
the tree, everyone can conclude that the spendings are from different wallets.

6 Efficiency Considerations

In order to simplify the complexity statements, we consider � = K, so that
the exponents used for a wallet are the first K = 2L prime numbers; we have
log E ∼ K ln K. The coins are spent following the decreasing order of exponents.
We denote by E′ the product of exponents corresponding to the number K ′ of
coins remaining in the wallet. As seen in Section 4, the data transfer size is
always at least O(λ log k).

Using Batch RSA as described in Section 3.1 as our default variant (V 0) for
the scheme yields the following efficiency trade-off: only the highest remaining
exponent and one aggregated signature have to be stored in the wallet, with
storage size O(log n). During the spending phase, a binary tree has to be re-
built, requiring O(log K ′ log E′) = O(K ′ log2 K ′ + log n) multiplications, and
the current signature has to be broken up in two pieces, which costs O(1) mod-
ular divisions plus O(log E′) = O(K ′ log K ′) modular multiplications. At last, a
single aggregated signature is sent to the merchant, together with the number
of coins and the biggest exponent, thus requiring transfer of O(log n) bits. As
this variant is targeted at reduced storage, it is relevant to store also the root
serial number only and compute the needed serial numbers at each spending,
thus minimizing the storage cost.

Instead of reducing the storage cost, we can also manage the Batch RSA tree
similarly to the tree of serial numbers. This yields variant (V 1): we store the
initial withdrawal binary tree so that, during the spending, the user sends the
aggregated signatures corresponding to the nodes of the tree closest to the root
and such that all the corresponding leaves are in the spending set. The whole
binary tree is stored, hence the initial storage size is O(K log n). During the
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Table 1. Efficiency trade-offs

Default variant (V0) Variant (V1)

Wallet storage size O(λ + log n) O(K(λ + log n))

Computational complexity O(K′ log2 K′ + log n)M O(1)

of spending +O(1)D + O(log k)F

Spending transfer size O(λ log k + log n) O((λ + log n) log k)

spending phase, the user needs to send at most 2�log2(k + 1)� aggregated signa-
tures corresponding to tree nodes to the merchant, hence a data transfer of size
O(log n log k). The computational cost for the user is the cost of retrieving the
aggregated signatures corresponding to the nodes spent and to their remaining
counterparts. At most, this requires O(log K) signature break-ups (in case sin-
gle coins must be retrieved), each of which costs O(1) modular divisions plus
at most (for nodes closest to the tree root) O(log E′) = O(K ′ log K ′) modular
multiplications. However, these values can be pre-computed off-line after the
withdrawal of the wallet, and stored in the tree, thus achieving a O(1) on-line
computational cost. This variant aims at reducing computations during spend-
ing, so it is relevant to store also the whole serial number tree in order to retrieve
the needed serial numbers at each spending in O(1).

The relative storage, spending computational complexity and data transfer
size of our schemes are summed up in Table 1; M and D are the respective costs of
exponentiation, multiplication and division modulo n, F is the cost of derivation
with function F , λ is a security parameter, K is the number of withdrawn coins,
k the number of spent coins and K ′ the number of remaining coins in the wallet
after spending. They take into account the complexities related to the serial
numbers mentioned in Section 4, which provides the overall picture as the proof
Π and the remaining data only have a constant complexity.
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19. Canard, S., Coisel, I., Traoré, J.: Complex zero-knowledge proofs of knowledge are
easy to use. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 122–137. Springer, Heidelberg (2007)

20. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009)

21. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

22. Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

23. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-
RSA-Inversion Problems and the Security of Chaum’s Blind Signature Scheme.
J. Crypt. 16(3), 185–215 (2003)

24. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. J. Crypt. 13(3), 361–396 (2000)


	Fair E-Cash: Be Compact, Spend Faster
	Introduction
	Security Model
	Algorithms
	Security Properties

	Useful Tools, Notations and Conventions
	Batch RSA Method
	RSA Blind Signature Scheme
	Signature of Knowledge
	Camenisch-Lysyanskaya Type Signature Schemes

	Compact Spending
	Overview of Our Scheme
	Setup Procedure
	Withdrawal Protocol
	The Spend Protocol
	Deposit Protocol
	Identification of Double Spender and Verification of Guilt

	Security Analysis
	Security Assumptions
	Security Statement

	Efficiency Considerations



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




