


Lecture Notes in Computer Science 5735
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Pierangela Samarati Moti Yung
Fabio Martinelli Claudio A. Ardagna (Eds.)

Information Security

12th International Conference, ISC 2009
Pisa, Italy, September 7-9, 2009
Proceedings

13



Volume Editors

Pierangela Samarati
Claudio A. Ardagna
Università degli Studi di Milano
Dipartimento di Tecnologie dell’ Informazione
Via Bramante 65, 26013 Crema (CR), Italy
E-mail: {pierangela.samarati, claudio.ardagna}@unimi.it

Moti Yung
Google Inc. & Columbia University
Computer Science Department
Room 465, S.W. Mudd Building, New York, NY 10027, USA
E-mail: my123@columbia.edu

Fabio Martinelli
National Research Council (CNR)
Institute of Informatics and Telematics (IIT)
Information Security Group
Pisa Research Area, Via G. Moruzzi 1, 56125 Pisa, Italy
E-mail: fabio.martinelli@iit.cnr.it

Library of Congress Control Number: 2009934111

CR Subject Classification (1998): E.3, E.4, D.4.6, K.6.5, C.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-04473-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-04473-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12761302 06/3180 5 4 3 2 1 0



Message from the Program Chairs

These proceedings contain the papers selected for presentation at the 12th In-
formation Security Conference (ISC 2009), held September 7–9, 2009, in Pisa,
Italy.

In response to the call for papers, 105 papers were submitted to the con-
ference. These papers were evaluated on the basis of their significance, nov-
elty, technical quality, and practical impact. As in previous years, reviewing was
“double-blind”: the identities of reviewers were not revealed to the authors of the
papers and author identities were not revealed to the reviewers. The Program
Committee meeting was held electronically, yielding intensive discussions over a
period of two weeks. Of the papers submitted, 29 full papers and 9 short papers
were selected for presentation at the conference. Besides the technical program
composed of the papers collated in these proceedings, the conference included
two keynotes.

An event like ISC does not just happen; it depends on the volunteer efforts of
a host of individuals. There is a long list of people who volunteered their time and
energy to put together the conference and who deserve special thanks. Thanks
to all the members of the Program Committee and the external reviewers for all
the hard work they put in evaluating the papers. We are also very grateful to all
the people whose work ensured a smooth organization process: the ISC Steering
Committee, and Javier Lopez in particular, for their advice; Fabio Martinelli;
for his support for the overall organization as General Chair; Claudio Ardagna
for collating this volume, and Eros Pedrini, for taking care of publicity and
for maintaining the website. A special thanks to the two keynote speakers, Jan
Camenisch and Sushil Jajodia, for accepting our invitation to deliver keynote
talks at the conference.

Last but certainly not least, our thanks go to all the authors who submitted
papers and all the attendees. We hope you find the proceedings stimulating and
a source of inspiration for your future research and development programs.

September 2009 Pierangela Samarati
Moti Yung
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A New Approach to χ2 Cryptanalysis of
Block Ciphers

Jorge Nakahara Jr.1, Gautham Sekar4,5,�, Daniel Santana de Freitas2,
Chang Chiann3, Ramon Hugo de Souza2, and Bart Preneel4,5

1 EPFL, Lausanne, Switzerland
jorge.nakahara@epfl.ch

2 Federal University of Santa Catarina, Brazil
{santana,ramonh}@inf.ufsc.br
3 University of São Paulo, Brazil

chang@ime.usp.br
4 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium

5 Katholieke Universiteit Leuven, Belgium
{gautham.sekar,bart.preneel}@esat.kuleuven.be

Abstract. The main contribution of this paper1 is a new approach to
χ2 analyses of block ciphers in which plaintexts are chosen in a manner
similar to that in a square/saturation attack. The consequence is a faster
detection of χ2 correlation when compared to conventional χ2 cryptanal-
ysis. Using this technique we (i) improve the previously best-known χ2

attacks on 2- and 4-round RC6, and (ii) mount the first attacks on the
MRC6 and ERC6 block ciphers. The analyses of these fast primitives
were also motivated by their low diffusion power and, in the case of
MRC6 and ERC6, their large block sizes, that favour their use in the
construction of compression functions. Our analyses indicate that up to
98 rounds of MRC6 and 44 rounds of ERC6 could be attacked.

Keywords: Block ciphers, χ2, square and linear cryptanalysis.

1 Introduction

In this paper we present a new, generic approach to χ2 cryptanalysis which com-
bines conventional χ2 and integral techniques. In this approach, the plaintexts
are chosen like in a square/saturation attack, that is, part of the input is fixed
and the remaining part is varied exhaustively. Further, the attack is adaptive
in the sense that we keep on generating plaintexts until χ2 correlation is de-
tected. The advantage of this approach is that it allows faster detection of χ2

correlations in block ciphers compared to previous approaches. One drawback is
that it is not straightforward to turn the chosen-plaintext (CP) setting into a
known-plaintext (KP) one.
� This author is supported by an FWO project.
1 The work described in this paper has been supported, in part, by the European Com-

mission through the ICT programme under contract ICT-2007-216676 ECRYPT II.

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 J. Nakahara Jr. et al.

We apply this new approach to the block ciphers RC6, ERC and MRC6. RC6
[1] was designed by Rivest et al. for the AES Development Process [2]. RC6
was one of the five finalists in the AES competition and was also submitted to
NESSIE and CRYPTREC projects. ERC6 [3] is a wide-block variant of RC6,
designed by Ragab et al. in 2001. MRC6, proposed by El-Fishawy et al. in 2004
[4], is another wide-block variant of RC6.

In our attacks, the choice of the plaintext bits to be chosen and the ciphertext
bits to be analysed is based on prior linear analysis, which provided the bit
positions with highest expected non-uniform bias. Our attacks follow a similar
methodology as the mod-n attacks against the block ciphers RC5P and M6 [5].

Our considerations and conclusions of the analyses in this paper are based
on empirical data collected through several attack simulations. We have used χ2

threshold values corresponding to 25% significance level (or 75% specificity). See
Table 12 in the appendix. This choice was based on the following reasons:

1. Our aim is to show the effectiveness of our attacks on RC6, ERC6 and MRC6
when compared to conventional χ2 cryptanalysis with randomly generated
plaintexts. Hence, as long as the same significance level is used for the two
types of tests, the value of the significance level is irrelevant.

2. Our attack simulations show that the number of chosen plaintexts required
with a better (we considered 10%) significance level could be determined by
the number corresponding to 25% level.

3. In the literature 25% seems to be an acceptable value [6].

This paper is organized as follows. Section 2 briefly describes χ2 cryptanalysis
and introduces our technique; Sect. 3 gives the specifications of the RC6, ERC6
and MRC6 ciphers; Sect. 4 provides the experimental results of our χ2 attacks
on the three ciphers. Also, in Sect. 4 comparisons are drawn between our attacks
and previously applied methods. Section 5 concludes the paper.

2 The χ2 Test and Our Generic Approach

The χ2 statistical test has already been applied to a number of ciphers, such as
the DES in [7], on SEAL [8], on M6, MX and RC5P [5], on RC5, RC6 and many
simplified variants [9,10,11,12,13,14,1,15].

Consider an experiment E with k simple, mutually independent outcomes.
Let o1, . . . , ok and x1, . . . , xk denote the observed and expected frequencies, re-
spectively, of the k outcomes when E is performed N times. Therefore, N =∑k

i=1 oi =
∑k

i=1 xi. For each outcome, there can be a difference between the
observed and the expected frequencies. The idea behind a χ2 test is to combine
all these differences into one overall measure of the distance between the data
and the expectations of the model. The χ2 statistic with k−1 degrees of freedom
is defined [16] as,

Q =
k∑

i=1

(oi − xi)2

xi
, (1)
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where the sum is over xi �= 0. When the observed frequency is far from the
expected one, the corresponding term oi − xi in the sum is large; when they are
close, oi−xi is small. The quantity Q gives a measure of the distance between the
observed and expected frequencies; large values of Q indicate that the observed
frequencies are far from the expected ones. In a χ2 goodness-of-fit test, one
defines two hypotheses - the null hypothesis (denoted H0) and the alternative
hypothesis (H1). The null hypothesis is the one that exists solely to be falsified
by the sample. If the null hypothesis is rejected, the result is positive. When the
test result tallies with the actual reality, the result is true. The false-negative rate
of the test, that is, the fraction of positive instances that were falsely reported
as negative, is denoted by β. The sensitivity (or power) of the test is the true-
positive rate (1−β). The significance of the test is the false-positive rate (α) and
the specificity of the test is the true-negative rate (1− α). Let χ2

1−α,k−1 denote
the (1−α)-th lower quantile of a χ2 distribution with k− 1 degrees of freedom.
In a χ2 test, H0 is rejected (in other words, H1 is accepted), if Q > χ2

1−α,k−1
with 100α % error. We denote χ2

1−α,k−1 simply as χ2
1−α when k−1 is clear from

the context.
In our approach, N is the number of plaintexts - the parameter to be deter-

mined. Let E′ denote the experiment E repeated N times. To minimise error, we
consider q randomly generated keys and E′ is performed q times. We could esti-
mate the mean and variance of the χ2 values for the entire key space using the
Student’s t-distribution. But this requires that the population be normally dis-
tributed. This is nearly achieved when the number of degrees of freedom (k− 1)
is large since when k → ∞, the χ2 variate becomes a normal variate. Finally,
using q, the q-sample mean and sample variance, a confidence interval (CI) is
computed, using the t-curve, for the mean of the population. We use 90% confi-
dence interval in our tests. In other words, the chance that the population mean
falls below (or above) the interval is 5%. The lower end point of the interval
(minCI) is taken for the population mean. This means that there is 95% chance
that the actual population mean is above this value. In our experiments, we
accept H1 if minCI is greater than χ2

1−α,k−1. This automatically implies that
the actual population mean is greater than χ2

1−α,k−1 with 95% probability and
thus, the error is small.

In this paper, we use the χ2 test under the following settings (where XRC6
denotes RC6, MRC6 or ERC6 and r > 0):

H0: a subset of bits output by r-round XRC6 is uniformly distributed,
H1: a subset of bits output by r-round XRC6 is non-uniformly distributed.

Thus, (1) becomes

Q =
k∑

i=1

(ni −N/k)2

N/k
. (2)

A requirement in χ2 tests is that N ≥ 5 · k, so that the computed χ2 value is
valid. In conventional χ2 cryptanalysis, most of the plaintext bits are generated
at random. However, plaintexts can be chosen in the following way to yield more



4 J. Nakahara Jr. et al.

efficient attacks. Initially, a linear analysis (LC) is performed to determine which
z least significant bits (lsb) of d words, in an n-bit block are linearly correlated
to the same set of bits after a certain number r of rounds. This approach of using
LC results prior to the χ2 analysis has already been adopted in [13]. For RC6,
d = 2, z ≤ 5, n = 128 and r is multiple of 2, as indicated by (3) in Sect. 4.1. This
set of d ·z plaintext bits will be fixed (to an arbitrary value), while the remaining
n− d · z plaintext bits are free to vary. These two sets of bits are disjoint. These
plaintexts are encrypted across r rounds, and the χ2 value is computed for the
d ·z ciphertext bit positions given by the linear relation. If the resulting χ2 value
supports acceptance of H0, then we stop, record the number N of plaintexts
encrypted so far, and proceed the same analysis y rounds farther (in this paper,
y = 2). Otherwise, we consider the remaining n−d ·z plaintext bits as a counter,
increment it, and encrypt the corresponding plaintext for r rounds. The number
of degrees of freedom is k− 1 = 2d·z − 1. We look for the minimum N for which
H1 is accepted. Each test is repeated q times; we use q = 20. The following
pseudocode describes the overall procedure.

TEST (H0, H1, N , r, q, α)
(1.) for (i = 1; i ≤ q; i + +) {
(2.) for (j = 1; j ≤ N ; j + +) {
(3.) fix the given set of d · z bits of plaintext Pj

(4.) vary the remaining bits of Pj incrementally
(5.) encrypt Pj through r rounds and obtain Cj

(6.) let X be the concatenation of given d · z bits of Cj

(7.) increment counter T [X ] by 1
(8.) }
(9.) let Qi be the χ2 value of T [X ]’s
(10.) }
(11.) let m be the average over all Qi, 1 ≤ i ≤ q
(12.) let σ be the standard deviation over all Qi, 1 ≤ i ≤ q
(13.) let minCI = m− 1.729 · σ/

√
q (lower limit of a 90% CI)

(14.) let χ2
1−α,k−1 = value at 100(1− α)% in the χ2 cumulative distribution

with k − 1 degrees of freedom
(15.) if (minCI > χ2

1−α,k−1)
(16.) choose H1 and note the j corresponding to N
(17.) else choose H0

For our target ciphers, a further consequence of the new approach is a smaller
demand for chosen plaintexts, due to weak diffusion. As already pointed out in
[13], too small or too large rotation amounts lead to weak diffusion across multi-
ple rounds of RC6. The same phenomenon can be observed in ERC6 and MRC6.
This is an essential weakness exploited in our attacks since the linear relations
(3), (4) and (5), which indicate the d · z bits in lines (3.) and (6.) of TEST(),
rely on these assumptions. A smaller number of plaintexts implies a smaller en-
cryption time, and thus, faster attacks. It shall be observed that the more bits
are under analysis, the better the attack outcome. Nonetheless, the data (and
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time) complexities increased quickly beyond our computational resources. Con-
sequently, we used different value of z for the plaintext and ciphertext, unlike in
TEST() where z is identical for plaintext and ciphertext (here, we have followed
the approach of [12,14]).

Our attacks on RC6 and the approach used in [13] are different. We fix a
number of bits to zeros and vary the remaining bits incrementally; whereas in
the latter, the remaining bits are random. The result is that, with Knudsen
and Meier’s method, one can turn the CP setting into a KP one at the cost
of a factor of 2d·z in the data and time complexities. Secondly, we used 90%
confidence interval (CI) to minimise error, whereas [13] did not use CI.

3 The RC6, ERC6 and MRC6 Families of Block Ciphers

Initially, we provide some relevant notations: ’⊕’ denotes bitwise exclusive-OR;
’�’ denotes addition modulo 2w; ’∗’ denotes multiplication modulo 2w; x ≪ y,
where x and y are w-bit words, means that x is cyclically shifted to the left by
the amount given by least significant log2 w bits of y. The function F : ZZw

2 → ZZw
2

is given by F (X) = (2∗X2 �X) ≪ log2w. Notice that F has only one operand,
and is a bijective mapping. Thus, it behaves as a w × w-bit nonlinear S-box.

3.1 RC6

The RC6 cipher follows a generalized Feistel Network structure, and stands for
a family of ciphers formally denoted RC6-w/r/b, where w is the word size in
bits, r is the number of rounds, and b is the key size in bytes. For the AES
competition, w = 32, r = 20, and b ∈ {16, 24, 32}, and RC6 is a shorthand
for these parameter choices. All internal cipher operations are over w-bit words,
where w ∈ {8, 16, 32, 64}. Fig. 1 depicts the RC6 encryption algorithm. Each text
block contains four w-bit words. For instance, Ai, Bi, Ci, Di, denote the input
words to the i-th round. The w-bit round keys are indexed S[0], . . . , S[2r + 3].
The key schedule algorithm generates the round keys from the b-byte user key.
We do not exploit the key schedule algorithm in our analysis; therefore, we omit
its description and refer the interested reader to [1]. Former security analyses
of RC6 include differential and linear analyses [1], multiple linear relations [17],
and χ2 analyses [9,13,1,15].

3.2 MRC6

The MRC6 cipher follows a generalized Feistel Network structure and was pro-
posed in [4], with main focus on (software) performance. No security analysis was
presented. MRC6 is a parameterized family of ciphers formally denoted MRC6-
w/r/b, with the same meaning as for the parameters of RC6. But, nominal values
of these parameters were omitted in [4]; one can find the values w = 32, b = 16
and r = 16 when the software performance of MRC6 is compared with that of the
AES and RC6 (on Pentium-III, with the se parameters, MRC6 encrypts at about
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19.5 MB/sec making it nearly twice as fast as RC6). Otherwise, these parame-
ters are unspecified. The fact that these parameters are unrelated helps adapt
MRC6 as a compression function in hash modes [18] such as Miyaguchi-Preneel
and Matyas-Meyer-Oseas, where the key and text inputs have different sizes. An
MRC6 text block contains sixteen w-bit words, denoted Ai, Bi, . . . , Pi as inputs
to the i-th round. Moreover, the w-bit round keys are indexed S[0], . . . , S[8r+7].
Like in RC6, there are pre-whitening and post-whitening layers. Here again, we
omit the description of the key schedule algorithm and refer the reader to [4].
Fig. 3 depicts the MRC6 encryption algorithm. In our experiments, we use MRC6
with w = 32 and b = 16.

3.3 ERC6

The ERC6 cipher follows a generalized Feistel Network structure, and was pro-
posed in [3], as a parameterized family of ciphers formally denoted ERC6-w/r/b,
with w ∈ {16, 32, 64}, r ∈ {0, 1, 2, . . . , 255}, b ∈ {0, 1, 2, . . . , 255}. These parame-
ters appear to be loosely coupled. No attacks have been reported on any version
of ERC6. On Pentium-III, with parameters w = 32, b = 16 and r = 16, ERC6
encrypts at about 17.3 MB/sec making it about 1.7 times faster than RC6.
Each text block of ERC6 contains eight w-bit words, denoted Ai, Bi, Ci, Di,
Ei, Fi, Gi, Hi, as inputs to the i-th round. The w-bit round keys are indexed
S[0], . . . , S[4r + 7]. Here again, there are pre-whitening and post-whitening lay-
ers. Fig. 2 depicts the ERC6 encryption algorithm. In our experiments, we use
ERC6 with w = 32 and b = 16.

4 Experimental Observations

Our χ2 attacks operate in an adaptive chosen-plaintext (CP) setting.

4.1 Reduced-Round RC6

For RC6, the χ2 test is motivated by an ensemble of linear relations involving
up to the five least significant bits of words Ai and Ci for every two rounds [19].
These linear relations can be represented by

Ai · et1 ⊕ Ci · et2 = Ai+2 · et3 ⊕ Ci+2 · et4 , (3)

where Ai and Ci denote the first and third input words to the i-th round. Each
bitmask, ej = 2j , 0 ≤ j < 5, contains only a single bit equal to one, in the j-th
least significant bit (j = 0 denotes the lsb). This is the lowest possible Hamming
weight. Table 1 shows the result of the experiment on reduced-round RC6 using
our method in the case of ten bits: lsb5(A2i) and lsb5(C2i).

We use χ2
95 = 1098 (95% specificity) to facilitate comparison, since [13] also

uses the same threshold. Moreover, for the same comparison purpose, we did not
use confidence intervals this time. In Table 1, note that with 22 texts we already
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Table 1. χ2 attack simulations on RC6, 210 − 1 degrees of freedom and 20 tests

#Rounds log2 N average χ2 hypothesis
2 2 1071.2 H0

2 3 1169.6 H1

2 4 1398.4 H1

2 5 1561.6 H1

2 6 2009.6 H1

4 16 1039.5 H0

4 17 1066.3 H0

4 18 1094.2 H0

4 19 1151.6 H1

4 20 1267.6 H1

6 32 1030.6 H0

6 33 1036.0 H0

6 34 1020.6 H0

6 35 1018.1 H0

6 36 1028.4 H0

6 37 1009.6 H0

start to reach the same results of [13], whereas they needed 213 texts to arrive
at a χ2 value of 1098. For four rounds, we noticed very close approximations for
the same χ2 values with 218 texts, while [13] required 229 texts to arrive at data
with the same specificity.

The experimental results for 2-round RC6 show that our approach requires
only 23 texts to reach the same χ2 value that is obtained with 214 texts using
the approach in [13]. For 4-round RC6, these figures are 219 texts using our
technique against 230 for [13]. For 6-round RC6, our method required more than
237 texts to detect correlation. In this case (and for more rounds), it could not
be concluded whether our approach was better than [13].

4.2 MRC6

For MRC6, our χ2 attacks were motivated by the following 2-round iterative
linear relation (using Type-I approximations [19])

Ai · et1 ⊕ Ci · et2 ⊕ Ei · et3 ⊕Gi · et4 ⊕ Ii · et5 ⊕Ki · et6 ⊕Mi · et7 ⊕Oi · et8 =
Ai+2 · et9 ⊕ Ci+2 · et10 ⊕ Ei+2 · et11 ⊕Gi+2 · et12 ⊕
Ii+2 · et13 ⊕Ki+2 · et14 ⊕Mi+2 · et15 ⊕Oi+2 · et16 (4)

where Ai, Ci, Ei, Gi, Ii, Ki, Mi and Oi are input words to the i-th round. In
particular, the masks ej with highest bias are such that 0 ≤ j < 5, that is, the
bits in the masks are restricted to the five least significant bit (lsb) positions.
Our experiments distinguish r rounds of MRC6 from a random permutation,
where r is even. We fix up the 8 · log2 w least significant bits of words A0, C0,
E0, G0, I0, K0, M0 and O0 (that is, including the pre-whitening), and analyse
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Table 2. χ2 attack simulations on MRC6, 28 − 1 degrees of freedom and 20 tests

#Rounds log2 N average χ2 minCI #values> χ2
75 hypothesis

2 1 305.2 264.6 4 H0

2 2 444.0 376.8 18 H1

2 3 667.2 622.9 20 H1

4 3 299.2 262.8 8 H0

4 4 321.6 303.0 19 H1

4 5 368.8 353.7 20 H1

6 8 265.8 256.7 8 H0

6 9 282.1 270.6 11 H1

6 10 288.9 276.7 15 H1

6 11 316.5 298.1 16 H1

6 12 370.8 343.3 20 H1

8 18 273.0 265.0 11 H0

8 19 288.1 279.8 16 H1

8 20 327.5 311.1 20 H1

10 27 273.5 265.4 11 H0

10 28 288.2 275.7 12 H1

10 29 290.2 278.2 15 H1

10 30 336.2 317.2 19 H1

10 31 402.7 368.0 19 H1

10 32 407.8 357.0 19 H1

10 33 434.1 374.1 20 H1

the combined 8 · y least significant bits (y ∈ {1, 2}) of A2i, C2i, E2i, G2i, I2i,
K2i, M2i and O2i, for i > 0, that is, after an even number of rounds.

Table 2 shows the result of the experiment in the case of the eight bits: lsb1(A2i),
lsb1(C2i), lsb1(E2i), lsb1(G2i), lsb1(I2i), lsb1(K2i), lsb1(M2i), lsb1(O2i). We use
χ2

75 = 269.85. Starting from six rounds, the number of texts for which H0 is re-
jected starts to increase by a factor of about 210 every two rounds. Thus, for r
rounds (r even and r ≥ 6), the following is expected for N (numner of chosen
plaintexts) in terms of r: N = 29 · 210·(r−6)/2 = 25r−21. In TEST(), we choose
plaintexts such that the lsb5(A0), lsb5(C0), lsb5(E0), lsb5(G0), lsb5(I0), lsb5(K0),
lsb5(M0), lsb5(O0) are set to zero, while the remaining bits are changed incremen-
tally. This implies at most 2512−40 = 2472 plaintext blocks are available. Thus, we
require 25r−21 ≤ 2472, or 5r ≤ 493, or r ≤ 98. The data complexity is at most
2472 plaintext blocks. It means that MRC6 would require at least r = 99 rounds
to counter this χ2 attack.

Table 3 shows the result of the experiment in the case of 16 bits: lsb2(A2i),
lsb2(C2i), lsb2(E2i), lsb2(G2i), lsb2(I2i), lsb2(K2i), lsb2(M2i), and lsb2(O2i) after
an even number of rounds of MRC6. We use χ2

75 = 65779. Starting from six
rounds, the number of texts for which H0 is rejected starts to increase by a
factor of about 210 every two rounds. Thus, for r rounds (r even and r ≥ 6),
the following is expected for the number of chosen plaintexts in terms of r: N =
212 ·210·(r−6)/2 = 25r−18. The analysis is similar to the 8-bit case in the previous
paragraph. Following the same rationale, at most 2512−40 = 2472 plaintext blocks
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Table 3. χ2 attack simulations on MRC6, 216 − 1 degrees of freedom and 20 tests

#Rounds log2 N average χ2 minCI #values> χ2
75 hypothesis

2 1 68810.8 63145.2 1 H0

2 2 80277.6 72615.5 8 H1

2 3 90923.2 84597.2 18 H1

2 4 125731.2 116640.0 20 H1

4 4 65520.0 65520.0 0 H0

4 5 66732.8 65828.2 5 H1

4 6 67622.4 66920.0 14 H1

4 7 69913.6 68843.6 19 H1

4 8 74035.2 72727.0 20 H1

6 11 65804.8 65643.3 12 H0

6 12 66108.8 65941.0 16 H1

6 13 66850.4 66685.1 20 H1

8 20 65804.6 65648.0 11 H0

8 21 66090.0 65912.8 15 H1

8 22 66862.9 66608.5 19 H1

8 23 68275.1 67872.4 20 H1

10 30 65637.4 65450.0 9 H0

10 31 65916.7 65760.9 14 H1

10 32 65961.5 65778.7 11 H1

10 33 66128.2 65961.9 16 H1

10 34 66521.0 66262.4 18 H1

10 35 67043.6 66671.7 19 H1

will be available. Thus, this analysis holds as long as 25r−18 ≤ 2472, or 5r ≤ 490,
or r ≤ 98. Again, the data complexity is at most 2472 plaintext blocks, and
MRC6 requires at least 99 rounds to counter this χ2 attack.

In order to compare the approach in Table 2 with an alternative approach
used in [13], we provide Table 4.

Experimentally, we have observed that less chosen plaintexts are needed in
the new approach than in the conventional approach of [13], at least for two,
four and six rounds.

We point out that in Tables 2 and 3, the minimum value of N for which
H1 is accepted may be less than 5 · k when the number of rounds is small. For
example, the values of N for 2, 4 and 6 rounds in Table 2. This phenomenon is
particular for a small number of rounds, and is due to the large block size and the
slow diffusion in MRC6 (unlike the AES, in which diffusion is guaranteed by an
MDS matrix, in MRC6 the diffusion depends on appropriate rotation amounts).
Therefore, we also use these former values of N to estimate the minimum N for
which H1 is accepted, for higher numbers of rounds. For 8 or more rounds, the
(minimum) values for N are greater than 5 · k.

4.3 ERC6

For ERC6, our χ2 attacks were guided by the following 2-round iterative linear
relation (using Type-I approximations [19])
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Table 4. χ2 attack simulations on MRC6 using the approach in [13] with 28−1 degrees
of freedom

#Rounds log2 N average χ2 minCI #values> χ2
75 hypothesis

2 21 268.0 262.1 12 H0

2 22 276.8 271.4 11 H1

2 23 293.3 288.9 18 H1

2 24 326.4 320.1 20 H1

4 29 256.9 250.6 8 H0

4 30 251.1 245.8 4 H0

4 31 257.5 252.1 8 H0

4 32 258.7 254.0 5 H0

4 33 255.6 251.1 4 H0

6 25 265.5 258.4 9 H0

6 26 258.7 253.2 8 H0

6 27 253.0 247.8 6 H0

6 28 251.3 246.2 4 H0

6 29 254.9 248.6 6 H0

Table 5. χ2 attack simulations on ERC6, 24 − 1 degrees of freedom and 20 tests

#Rounds log2 N average χ2 minCI #values> χ2
75 hypothesis

2 1 18.0 15.25 5 H0

2 2 26.4 22.44 8 H1

2 3 37.8 34.20 20 H1

4 12 26.9 22.08 10 H0

4 13 38.7 28.95 14 H1

4 14 65.8 43.67 17 H1

4 15 120.8 78.61 18 H1

4 16 222.5 138.04 19 H1

4 17 446.8 276.82 20 H1

6 23 26.0 20.23 10 H0

6 24 37.9 27.31 13 H1

6 25 59.4 42.71 16 H1

6 26 99.0 68.65 17 H1

6 27 196.2 133.90 18 H1

6 28 375.3 258.18 20 H1

Ai ·et1⊕Ci ·et2⊕Ei ·et3⊕Gi ·et4 = Ai+2 ·et5⊕Ci+2 ·et6⊕Ei+2 ·et7⊕Gi+2 ·et8 , (5)

where Ai, Ci, Ei and Gi, are input words to the i-th round. In particular, the
masks ej with highest bias are such that 0 ≤ j < log2 w.

Table 5 shows the result of attack simulation in the case of 4 bits: lsb1(A2i),
lsb1(C2i), lsb1(E2i) and lsb1(G2i) after an even number of rounds of ERC6.
We use χ2

75 = 22.31. Starting from four rounds, the number of texts for which
H0 is rejected starts to increase by a factor of about 211 every two rounds.
Thus, for r rounds (r even and r ≥ 4), the following is expected for the number
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Table 6. χ2 attack simulations on ERC6 using the approach in [13] with 24−1 degrees
of freedom and 20 tests

#Rounds log2 N average χ2 minCI #values> χ2
75 hypothesis

2 15 17.1 14.1 8 H0

2 16 26.8 22.9 16 H1

2 17 35.2 31.3 20 H1

4 32 14.833 12.03 6 H0

4 33 16.633 13.87 6 H0

4 34 14.549 12.56 5 H0

4 35 15.257 13.20 4 H0

4 36 13.143 11.25 2 H0

Table 7. χ2 attack simulations on ERC6, 28 − 1 degrees of freedom and 20 tests

#Rounds log2 N average χ2 minCI #values> χ2
75 hypothesis

2 2 309.6 272.0 7 H0

2 3 356.8 316.6 15 H1

2 4 520.0 444.0 20 H1

4 11 284.5 270.3 9 H0

4 12 310.0 291.0 14 H1

4 13 366.8 334.6 17 H1

4 14 468.0 405.2 18 H1

4 15 711.6 579.7 20 H1

6 23 290.5 283.5 14 H0

6 24 325.6 311.9 18 H1

6 25 404.5 379.9 19 H1

6 26 549.3 491.7 20 H1

of chosen plaintexts: N = 213 · 211·(r−4)/2 = 25.5r−9. The algorithm TEST(.)
chooses plaintexts such that the lsb5(A0), lsb5(C0), lsb5(E0), lsb5(G0) are set to
zero. This implies at most 2256−20 = 2236 plaintext blocks are available. Thus,
this analysis holds as long as 25.5r−9 ≤ 2236, or 5.5r ≤ 245, or r ≤ 44. Since
the attack effort is at most 2236 encryptions equivalent number of text blocks,
it means that ERC6 would require at least 45 rounds to counter this χ2 attack.

In order to compare the approach in Table 5 with the approach used in [13],
we provide Table 6. Empirically, we have observed that significantly less chosen
plaintexts are needed in the new approach than in the conventional approach of
[13], at least for two and four rounds.

Table 7 shows the result of analysing the 8-bit value from the concatenation of
lsb2(A2i), lsb2(C2i), lsb2(E2i) and lsb2(G2i) after an even number of rounds of
ERC6. We use χ2

75 = 284.34. Starting from four rounds, the number of texts for
which H0 is rejected starts to increase by a factor of about 212 every two rounds.
Thus, for r rounds (r even and r ≥ 4), the following behaviour is expected for
the number of chosen plaintexts: N = 212 · 212·(r−4)/2 = 26r−12. Following a
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similar reasoning as in the previous paragraph, this analysis holds as long as
26r−12 ≤ 2236, or 6r ≤ 248, or r ≤ 41. Since the attack effort is at most 2236

encryption, ERC6 requires at least 42 rounds to counter this χ2 attack.

5 Conclusions and Further Work

This paper presented a new approach to the χ2 statistical test applied to RC6,
ERC6 and MRC6 block ciphers. These attacks were preceeded by a linear crypt-
analysis of these same ciphers, which provided promising bit positions to be
analysed by the χ2 tests. For 2-round and 4-round RC6, our method improves
the data complexity of the previously best-known χ2 attacks [13] by a factor of
about 211. Tables 8, 9, 10 and 11 summarize our attacks on ERC6 and MRC6.

Overall, our attacks reduced the number of chosen plaintexts to detect χ2

correlation when compared to conventional χ2 attacks. Consequently, we could
apply and check in practice our predictions on attacks up to 10-round MRC6

Table 8. Summary of χ2 attacks analysing 8 bits output by MRC6

#Rounds Time Data Memory Comment
2 22 22 CP 22 Table 2
4 24 24 CP 24 Table 2
r 25r−21 25r−21 CP 25r−21 6 ≤ r < 99, r even

Table 9. Summary of χ2 attacks analysing 16 bits output by MRC6

#Rounds Time Data Memory Comment
2 22 22 CP 22 Table 3
4 25 25 CP 25 Table 3
r 25r−18 25r−18 CP 25r−18 6 ≤ r < 99, r even

Table 10. Summary of χ2 attacks analysing 4 bits output by ERC6

#Rounds Time Data Memory Comment
2 22 22 CP 22 Table 5
4 213 213 CP 213 Table 5
r 25.5r−9 25.5r−9 CP 25.5r−9 4 ≤ r < 45, r even

Table 11. Summary of χ2 attacks analysing 8 bits output by ERC6

#Rounds Time Data Memory Comment
2 23 23 CP 23 Table 7
4 211 211 CP 211 Table 7
r 26r−12 26r−12 CP 26r−12 4 ≤ r < 42, r even
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and 6-round ERC6. The reduction in the data complexity of our attacks was
influenced by the weak diffusion in the target ciphers.

In the analyses of M6, MX and RC5P in [5], the χ2 tests were supported
by evidence collected from mod-n analyses of these ciphers. The nonuniform
distribution of residues modulo n of internal cipher components, for n a prime
number, was corroborated by experimental χ2 tests. Likewise, in this paper, our
results were supported by linear relations.

The analyses presented in this paper considered sets of randomly chosen keys,
that is, no particular (weak) keys were purposefully used. This implies that even
better results could have been achieved with keys that caused null rotation in
some rounds under analysis (as observed in [13]). This issue of weak keys for χ2

attacks is left as a problem for future work. Analogously, we have focused on
distinguishing attacks only. Key-recovery attacks are also left as further work.
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A Tables and Figures

Table 12. χ2 threshold values, specificities and degrees of freedom

Degrees of Freedom (k − 1)
χ2 24 − 1 28 − 1 212 − 1 216 − 1 220 − 1 224 − 1

0.60 15.73 260.09 4117.30 65626.10 1048941.26 16778682
0.70 17.32 266.34 4141.97 65724.37 1049333.93 16780252
0.75 18.24 269.85 4155.67 65778.82 1049551.40 16781122

Specificity 0.80 19.31 273.79 4170.96 65839.50 1049793.60 16782090
(1 − α) 0.85 20.60 278.43 4188.84 65910.27 1050075.96 16783219

0.90 22.31 284.34 4211.40 65999.39 1050431.31 16784639
0.95 24.99 293.25 4244.99 66131.63 1050958.14 16786744
0.99 30.58 310.46 4308.47 66380.16 1051946.85 16790690
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Abstract. The need for nodes to be able to generate their own address
and verify those from others, without relying on a global trusted author-
ity, is a well-known problem in networking. One popular technique for
solving this problem is to use self-certifying addresses that are widely
used and standardized; a prime example is cryptographically generated
addresses (CGA). We re-investigate the attack models that can occur in
practice and analyze the security of CGA-like schemes. As a result, an
alternative protocol to CGA, called CGA++, is presented. This protocol
eliminates several attacks applicable to CGA and increases the overall
security. In many ways, CGA++ offers a nice alternative to CGA and
can be used notably for future developments of the Internet Protocol
version 6.

1 Introduction

Cryptographically generated addresses (CGA) is a technique that creates a fixed
size address by hashing the address owner’s public key with the help of a cryp-
tographic hash function. This technique enables the address owner to assert
address ownership by creating a relation between the address and the address
owner’s public/private key pair.

An example where this technique can be used is in Internet Protocol version
6 (IPv6) addresses. The 64-bits of these addresses known to be the interface
identifier are then generated with the help of CGA as proposed by Aura [1,2].

The main advantage of CGAs is that they are self-certified; a trusted third
party or a public-key infrastructure (PKI) is not needed to generate the IPv6
address or to verify other addresses. Self-certified addresses are extensively used
in protocols such as Secure Neighbor Discovery [3], Shim6 [4] and the IPv6
mobility support [5]; they offer features such as duplicate address detection and
proof of address ownership.

The idea of cryptographically generated addresses first appeared in the child-
proof authentication for mobile-IPv6 (CAM) protocol by O’Shea and Roe [6];
this was later improved by Nikander [7]. An alternative method was proposed
by Montenegro and Castelluccia [8] under the name “statistically unique and
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cryptographically verifiable addresses” (SUCV). Finally, the actual model was
presented by Aura [1] and appears as an RFC [9].

The drawback of the early proposals of CGA, namely the small number of bits
of the address to accommodate the result of the cryptographic hash function, is
solved by Aura in [1] by using hash extensions. With this technique, the resis-
tance of the scheme against impersonation is increased at the cost of increasing
the time needed for address generation while keeping the necessary operations
required for the verification constant. This is realized by scaling, with the help
of a relation defined by the security parameter, the effort needed to break the
system in the future due to the progress of technology. This implies an increase
in the cost of address generation; the exponential growth over time of computing
power compensates this increase.

To the best of our knowledge, no work has been published, besides the RFC
documents and the unpublished work in [2], on the analysis of CGA since the
original proposal [1]. As also observed in the original proposal, CGA is suscep-
tible to a global time-memory trade-off attack that eliminates the effect of hash
extensions in the long run at the cost of storage. Such an attack is assumed to be
impractical in [1]. Moreover, due to lack of authentication, CGA is vulnerable to
a replay attack where an attacking node is capable of sniffing and storing signed
messages from a target node and replay them later.

In this work, we present a detailed security/efficiency analysis of CGA and
a proposal to solve security problems related to self-certifying address gener-
ation and verification in CGA. This protocol, mainly based on the ideas of
CGA, is called CGA++. In the analysis part, a novel security framework is
provided, which enables us to evaluate the security of CGA-like schemes, includ-
ing CGA++. In this design, we mitigate the global time-memory trade-off attack
by reducing its effect to a specific network. Furthermore, we introduce digital
signatures in order to overcome the lack of authenticity in CGA and to increase
the security when no hash extensions are used. CGA++ offers an alternative to
CGA and can be used in practice for future development of IPv6.

The organization of the paper is as follows. Section 2 introduces the prelimi-
naries for IPv6 addresses including the system model and the necessary notation
throughout the paper. In Section 3 and 4, we provide the specification and the
analysis of CGA, respectively. We introduce the design of CGA++ in Section 5
followed by its analysis in Section 6. The compatibility and the applications of
CGA++ are discussed in Section 7. We conclude the paper in Section 8.

2 Preliminaries

The objective for using CGA is to generate self-certified IPv6 addresses. For the
sake of clarity, we adhere to the conventions and the notations from [10,11].

IPv6 addresses are 128-bit data blocks constructed by the concatenation of
two 64-bit words: subnet prefix and interface identifier [10]. The former is located
on the most significant 64-bit, which is used to determine the nodes’ location in
the Internet topology. The latter, being comprised of the least significant 64-bits,
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Subnet Prefix

︷︸︸︷

sec
︷︸︸︷

𝑢, 𝑔

︸ ︷︷ ︸

64 bits

︸ ︷︷ ︸

Interface Identifier (64 bits)

Fig. 1. Format of an IPv6 address. The parameters sec, u and g are placed at the most
significant three, seventh and eighth bit of the interface identifier, respectively

acts as an identity of the node whose generation process is the main target of
this work. See Fig. 1 for the general overview of IPv6 addresses.

In the address format, there are several parameters in the interface identifier,
which have special semantics. The first parameter set is comprised of the u and
g bits, located in the seventh and the eighth bit of the interface identifier. The
combination u = g = 1 is unused for other purposes and suggested by Aura
to indicate the use of CGA [1]. The other value in the interface identifier is the
security parameter sec, a three-bit user defined parameter used to determine the
length of the hash extension in the protocol. In CGA, this parameter is used to
scale the relation in the hash extension. We provide the necessary notation used
in the rest of the paper in Table 1.

In the original RFC [9], the proposed hash function is SHA-1 [12]. The recently
discovered weaknesses of SHA-1 led to a modification of the CGA specification to
enable the support of alternative hash functions [13]. Therefore, in this paper, we
denote the hash function used in the protocol asH and assume this hash function
to be ideal: it is optimally collision, preimage and second-preimage resistant.

We assume, throughout the paper, that (mobile) nodes are capable of dealing
with Internet protocols and are also equipped with and capable of calculating
basic cryptographic algorithms. Moreover, we assume an increase of performance
of mobile nodes following Moore’s law. Yet, of course, there will always be a
market for low-end devices. But it is unlikely for them to be isolated and mobile,
and even if they are, they will not be security sensitive.

For the attacker, we ignore the time required to generate valid public/private
key pairs as these can easily be computed and stored, if necessary, in an initial-
ization phase.

3 CGA Specification

The actual protocol for self-certified address generation and verification for IPv6
using CGA appears in RFC 3972 [9], which is based on the ideas from [1]. In
this section, we recall the specification of CGA. CGA uses a technique called
hash extension, which is realized by the security parameter sec; this parameter
linearly scales the number of bits used in the hash extension by imposing 16×sec
many bits to zero in the hash value denoted by Hash2.
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Table 1. Notation and data sizes of the various fields used in this article

Data Notation Length
IPv6 Address IPv6 128-bit
Subnet Prefix SP 64-bit

Interface Identifier Interface ID 64-bit
Public-Key Kpub Variable length
Private-Key Kpriv Variable length

Digital Signature Sign Variable length
Modifier m 128-bit

Collision Count CC 8-bit
Security Parameter sec 3-bit

u,g flags u, g 1-bit each

The main idea behind CGA is to trade efficiency for security. When gen-
erating a new address, a node has to satisfy certain constraints, i.e. the hash
extension, which decreases the efficiency of the address generation. Because an
attacker needs to do this extra work as well, the level of security increases com-
pared to the setting where no hash extensions are used. The verification, on the
other hand, requires a constant amount of time and does not suffer from an
efficiency decrease. This ensures that an attacking node needs to perform all the
computational work, thereby preventing the denial of service of verifiers.

Address Generation. The procedure for generating an IPv6 address using
CGA is illustrated in Fig. 2 which can be described as follows.

1. Set the modifier to a random 128-bit value. Select the security parameter
sec and set the collision count to zero.

2. Concatenate the modifier, 64 + 8 zero bits, and the encoded public-key.
Execute the H algorithm on the concatenation. The leftmost 112 bits of
the result are Hash2.

3. Compare the 16 × sec leftmost bits of Hash2 with zero. If they are all zero
(or if sec = 0), continue with Step (4). Otherwise, increment the modifier
and go back to Step (2).

4. Concatenate the modifier, subnet prefix, collision count and encoded public-
key. Execute the H algorithm on the concatenation. The leftmost 64 bits of
the result are Hash1.

5. Form an interface identifier by setting the two reserved bits u and g in Hash1
both to 1 and the three leftmost bits to sec.

6. Concatenate the subnet prefix and interface identifier to form an 128-bit
IPv6 address.

7. If an address collision with another node within the same subnet is detected,
increment the collision count and go back to step (4). However, after three
collisions, stop and report the error.
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𝑚∥0∥0∥𝐾𝑝𝑢𝑏

Pick random 𝑚
select 𝑠𝑒𝑐
set 𝐶𝐶 = 0

ℋ Hash2
16× 𝑠𝑒𝑐
msb = 0?

No

Increment 𝑚

Get 𝑚
Yes

𝑚∥𝑆𝑃∥𝐶𝐶∥𝐾𝑝𝑢𝑏ℋHash1
Mask 𝑢, 𝑔
and 𝑠𝑒𝑐

Address
Collision?

Interface ID

No Yes

Increment 𝐶𝐶

Subnet Prefix

Fig. 2. Detailed data flow of the address generation in CGA

Verification of Address Ownership. The verification of address ownership is
realized by the execution of the following steps. Given the IPv6 address, collision
count and the modifier,

1. Check that the collision count is 0, 1 or 2 and that the subnet prefix is equal
to the subnet prefix of the address. The CGA verification fails if either check
fails.

2. Concatenate the modifier, subnet prefix, collision count and the public-key.
Execute the H algorithm on the concatenation. The 64 leftmost bits of the
result are Hash1.

3. Compare Hash1 with the interface identifier of the address. The differences
in the two reserved bits u and g and in the three leftmost bits are ignored.
If the 64-bit values differ (other than in the five ignored bits), the CGA
verification fails.

4. Concatenate the modifier, 64 + 8 zero bits and the public-key. Execute the
H algorithm on the concatenation. The leftmost 112 bits of the result are
Hash2.

5. Read the security parameter sec from the three leftmost bits of the interface
identifier of the address. Compare the 16× sec leftmost bits of Hash2 with
zero. If any one of these bits is nonzero, CGA verification fails. Otherwise,
the verification succeeds. If sec = 0, verification never fails at this step.

4 Analysis of CGA

4.1 Design Rationale

In order to have a better comprehension, we explain the design rationale of
CGA by going through the components inside CGA, especially the computation
of Hash1 and Hash2.
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Computation of Hash2. As stated by Aura in [1], the computation of Hash2
is introduced in order to gain security at the expense of efficiency. In CGA, the
values that are used in Hash2 are the modifier and the public-key. The subnet
prefix and the collision count are set to zero.

The idea is to use some common parameters in the domains of Hash1 and
Hash2. As Hash2 requires special constraints, the most efficient way to satisfy
this is to impose random data in the domain of Hash2. The modifier is used for
this purpose, it allows the node to comply with the conditions imposed by the
security parameter. The public-key is needed in this computation to assign this
modifier to this node. If the public-key, or any other property specific to address
generator, is not used in the computation of Hash2, an attacking node could
simply send a verification request to this node and retrieve its modifier value.
This would remove the need to compute a valid modifier for the attacker.

It was a design decision of Aura [1] not to include the subnet prefix in the
computation of Hash2 for the sake of efficiency. A mobile node travels frequently
from network to network and thus needs to regenerate its address over and over
again. Assuming a mobile node does not have much computation power, it would
be infeasible to search for a modifier every time it changes network. When not
including the subnet prefix in the Hash2, a mobile node has to regenerate its
Hash1, where the subnet prefix occurs, at the cost of only one hash function
evaluation. Following the same reasoning, the collision count parameter is set to
zero as well. This avoids computing Hash2 again when a collision of the interface
identifier is detected after the creation of the Hash1.

Computation of Hash1. In the computation of the Hash1, all parameters are
used. In the domain of Hash1, the subnet prefix is used in order to avoid a time-
memory trade-off attack as it would be possible to store valid addresses from
each network. Collision count is added to the domain to overcome the scenario
where a duplicate address is generated. Finally, the modifier is used as a “proof”
that the node generated a valid Hash2 and the public-key for the same reasons
as in the Hash2.

4.2 Security Framework

Assume a “CGA-like” protocol design is to be assessed for security with a focus
on the address generation and verification part. More precisely, a protocol is
considered which makes use of two different hash function evaluations where the
output of one is not used as the input for the other. A formal model can be useful
for this task, especially for assessing the security of the considered protocol. Such
a model is proposed in this section and is used in the remainder of this paper to
state facts about the security and efficiency of such “CGA-like” protocols.

Let us denote the time needed for a node to generate an address as TG, to
verify an address as TV and to impersonate an address as TA. These times are
stated as a function of T1 and T2, which denote the time to compute Hash1 and
Hash2, respectively and are expressed in hash function evaluations. The number
of available bits in the address, which is the number of (truncated) output of
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Hash1, is denoted by l. We denote the number of bits on which we put a special
condition by s, the (truncated) output of Hash2; here l, s ∈ IN.

Address Generation. Address generation for a legitimate node is not expected
to exceed 2s · T2 in order to meet the conditions of Hash2, plus T1 to generate
the address. The cost of address generation TG is therefore:

TG = 2s · T2 + T1. (1)

Address Verification. To verify an address, the conditions on Hash2 need
to be validated, representing a duration T2. If this validation is successful, the
address needs to be checked in time T1. The time needed for verification, TV , is

TV = T1 + T2. (2)

Impersonation. In order to impersonate a node, an attacker can proceed in
two ways: by first satisfying the constraints on Hash1 and then on Hash2 or vice
versa. Beginning with Hash1, the attacker must first perform a second-preimage
attack on Hash1, which is expected to take no more than 2l · T1 hash function
evaluations to find another valid parameter set to match the interface identi-
fier. Once fulfilled, the conditions on Hash2 for the generated modifier should
be satisfied, which happens with probability 2−s for an ideal hash function.
The total cost CA,H1 for impersonation, when beginning with Hash1, becomes
CA,H1 = (2l · T1 + T2) · 2s.

Starting from Hash2, the conditions on Hash2 are met at a cost of up to
2s ·T2 hash function evaluations. Next, Hash1 is created and verified if it collides
with the target address. The probability of hitting this specific Hash1 is 2−l.
Therefore, the total cost CA,H2 , when beginning with Hash2, becomes CA,H2 =
(2s · T2 + T1) · 2l. An attacker can choose either of these values in order to
minimize his attack cost. Hence, the time for impersonation, TA, in a generic
model becomes

TA = min(CA,H1 , CA,H2) = min((2l · T1 + T2) · 2s, (2s · T2 + T1) · 2l). (3)

4.3 Security of CGA

In order to assess the security of CGA, we begin with discussing the basic prin-
ciples of cryptographic hash functions: collision, preimage and second-preimage
resistance. This allows us to evaluate certain bounds in order to attack the
scheme, assuming that the underlying cryptographic hash function has no known
weaknesses. With the help of the birthday- and the brute-force attack, finding
a collision and a (second) preimage require O(

√
2n) and O(2n) hash function

evaluations, as the digest size n tends to infinity, respectively.
A collision attack is not very powerful in this setting as it means being able to

generate two nodes with the same address without having any control over the
generated address. The preimage attack is equivalent to the second preimage
attack since all the domain parameters of the hash function are known. The
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second preimage-attack is the most powerful attack model for this setting. It is
equivalent to being able to generate another valid CGA parameter from a given
address: i.e. impersonation. This attack model and its cost are treated in the
following where the proof follows directly from the cost needed to perform a
second-preimage attack when not using hash extensions (i.e. sec = 0) and our
security framework for the case sec > 0 (cf. Section 4.2).

Lemma 1. Given a network, assume the addresses are generated and verified
by CGA with security parameter sec. Then, the number of operations required
for the impersonation of a specific node is

TA =

⎧⎨⎩
259 if sec = 0,
259+16×sec + 216×sec if 1 ≤ sec ≤ 3,
259+16×sec + 259 otherwise.

hash function evaluations.

This shows that the resistance of CGA against impersonation is mainly domi-
nated by the increasing values of the security parameter sec.

A Time-Memory Trade-Off Attack on CGA. As observed in [1], a time-
memory trade-off attack can be mounted on CGA in order to impersonate a
node. Details of the time and memory complexities of this attack are not stated
in [1] and they are assumed to be impractical. The following lemma explains this
more specifically.

Lemma 2. Given a number of k > 0 networks each of size approximately 2ni

nodes, for 0 < i ≤ k, assume the nodes use CGA for address generation and
verification. Using a time-memory trade-off attack, an attacker needs at most
T calls to the hash function and comparisons of the hash-values in order to
impersonate one random node in the network of size 2ni . When the number of
attacks A→∞, the number of calls T per attack is asymptotically bounded by

T ≤ 259−min(ni). (4)

In other words, T is independent of the security parameter sec. The storage re-
quirement is 233−min(ni) gigabytes, where min(ni) denotes the smallest value ni.

Proof. Assume a database is given with valid modifier values mj , j ∈ IN, such
that the condition on Hash2 is satisfied. When targeting a network of size 2ni ,
a second-preimage for Hash1 of a random node is expected after 259−ni hash
function evaluations. The cost C, the number of hash function evaluations to
create the database of modifier values, is expected to take no more than C =
259+16×sec−ni . The database is independent of the used subnet prefix and can
be computed once and used for all subsequent attacks in the future. Then, the

average cost T per attack becomes T = 259−ni +
259+16×sec−ni

A
. By selecting the

smallest network size among ni, which maximizes the attack cost, the number
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of hash evaluations becomes asymptotically, when the number of attacks go
to infinity, T ≤ 259−min(ni). The storage cost is 128 · 259−min(ni) bits which
corresponds to 233−min(ni) gigabytes. ��
Note that this attack cannot be used to impersonate a specific node. Instead, it
can be used to impersonate a random node in the network. In order to illustrate
the required storage for such an attack, assume an attacker wants to impersonate
an address of a random node in a network of size 216, this requires 233−16 =
217 gigabytes = 128 terabyte of storage. This is significant but not infeasible.

Authentication. One of the known limitations of CGA, as mentioned in [1],
is the possibility for an attacking node to sniff and store signed messages from
a target node. Once this is done, the attacker obtains the public-key and the
modifier; with these values it can create a valid address using a different subnet
prefix. Sending forged, correctly signed messages is computationally infeasible
but by replaying the sniffed messages, an attacker can mislead legitimate nodes
by convincing them that he owns an address.

This type of attack can also be used to generate an address that already exists
in the network. That is, for a specific security parameter sec, the attacker can
collect many valid modifier and public-keys together with a certain amount of
signed messages from these nodes. Next, a subnet prefix is selected, and with
the help of the stored values, a search is started for a hit in one of the addresses.
This helps to reduce the complexity of the impersonation attack.

Another instance of such an attack is to search for nodes with a non-zero col-
lision count. In the address generation of CGA, the nodes generate an address
and look for a collision in the network. If there is a node with the generated
address, the new node has to generate a new address by increasing the collision
count. Hence, the attacker can look for a non-zero collision count in the network
and use the valid modifier and public-key of this node to generate an existing
address in the network with collision count zero. This helps the attacker to gen-
erate a duplicate addresses; he could even replay signed messages. Nevertheless,
the probability of having a collision in the addresses is low and this attack fully
depends on the non-zero collision count. Still, as the mobility property leads
to the need to generate new addresses for the nodes while travelling from one
network to another, the probability of address collision increases.

4.4 Efficiency of CGA

In CGA, the address generation time TG is equal to TG = 216×sec + 1, which
is dominated by the security parameter, assuming sec > 0, whereas the address
verification time TV is constant, namely equal to two. To illustrate the actual
computational demand, we make the optimistic assumption that a node has
computing power comparable to a modern CPU used in a workstation. Our
simple implementation of CGA, which uses the open source library OpenSSL
[14], computes approximately 218.5 digests/sec/CPU on a modern workstation
(AMD64). The estimated time needed to comply with Hash2 requirements are
provided in the following table
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sec value 1 2 3 4 5 6
Required Time 0.2 secs 3.2 hrs 24 yrs 1.6 · 106 yrs 1.0 · 1011 yrs 6.8 · 1015 yrs

These results correspond with the performance results from [1]. This table shows
that the required time for generating a valid address with a high security pa-
rameter sec is currently impractical. However, it will be feasible in the future
due to the exponential growth in the computational capabilities of the nodes. A
possible solution to the efficiency problem for the current use of larger sec values
is to generate these values off-line or search them in parallel, just as presented
in the time-memory trade-off attack.

5 CGA++ Specification

Design Rationale. The main design rationale behind CGA++ follows from the
fact that even if CGA offers a good protocol for self-certified address generation
and verification, it has some limitations. Therefore, our main goal is to fix these
weaknesses without losing too much efficiency. Considering the adoption and the
extensive future use of CGA, one of our main goals is to adhere as closely as
possible to CGA, thus offering an easy transition from CGA to CGA++.

As mentioned, a global time-memory trade-off attack is feasible at the cost of
memory. In order to prevent this global attack the first obvious modification is to
include the subnet prefix in the computation of Hash2. The verifier should make
sure to check full IPv6 addresses and not the so-called link-local addresses as
specified in IPv6 [10]. This has some efficiency loss; nevertheless, we believe this
to be tolerable. Furthermore, an extra authentication mechanism is introduced
by using digital signatures inside the verification process, preventing nearly all
the mentioned attacks against CGA. This has the additional advantage that
when no hash extensions are used (sec = 0) the security of the protocol is in-
creased, compared to CGA. As a result, we propose a more secure, easy to adopt
and compact alternative to CGA.

Address Generation. The general procedure of generating IPv6 address us-
ing CGA++ is depicted in Fig. 3 (note the similarities with Fig. 2). It can be
described as follows.

1. Choose security parameter sec ∈ {0, . . . , 7}. Set the modifier to a random
128-bit value and set the collision count to zero.

2. Concatenate the modifier, subnet prefix and the encoded public-key. Execute
the hash algorithm on the concatenation. Check the most significant 16×sec
bits of the result. Continue until 16× sec bits are zero by incrementing the
modifier.

3. Sign the modifier, collision count and subnet prefix with the private-key
corresponding to the public-key used.

4. Concatenate the encoded public-key and the signature. Execute the hash
algorithm on the concatenation. The most significant 64 bits of the result
are Hash1.
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𝑚∥𝑆𝑃∥𝐾𝑝𝑢𝑏

Pick random 𝑚
select 𝑠𝑒𝑐
set 𝐶𝐶 = 0

ℋ Hash2
16× 𝑠𝑒𝑐
msb = 0?

No

Increment 𝑚

Get 𝑚
Yes

𝐾𝑝𝑢𝑏∥Sign(𝑆𝑃,𝑚,𝐶𝐶)ℋHash1
Mask 𝑢, 𝑔
and 𝑠𝑒𝑐

Address
Collision?

Interface ID

No Yes

Increment 𝐶𝐶

Subnet Prefix

Fig. 3. Detailed data flow of the address generation in CGA++

5. Form an interface identifier by setting the two reserved bits in Hash1 both
to 1 and three bits to sec.

6. Concatenate the subnet prefix and interface identifier to form an 128-bit
IPv6 address.

7. If an address collision is detected, increment the collision count and go back
to step (3). However, after three collisions, stop and report the error.

The address generation of a node begins with satisfying the constraints in the
hash extension as in CGA. The collision count is omitted, instead of being set
to zero, which makes the input to the hash function smaller. Once this is satis-
fied, the address owner signs the subnet prefix, modifier and the collision count
with his private-key. The public-key is concatenated to the signature and the
corresponding interface identifier is obtained by hashing this concatenation.

Verification of Address Ownership. After the address generation has been
performed, the verification of the address ownership is realized by the execution
of the following steps. Given the IPv6 address, the signature and the public-key
of the node,

1. Verify the signature and obtain the modifier, collision count and subnet
prefix.

2. Check that the collision count is 0, 1, or 2 and that the subnet prefix is equal
to the subnet prefix of the address (not the link-local address but the full
IPv6 address). The CGA++ verification fails if either check fails.

3. Read the security parameter sec from the three leftmost bits of the interface
identifier of the address (sec is an unsigned 3-bit integer).

4. Concatenate the modifier, subnet prefix and the encoded public-key. Execute
the hash algorithm on the concatenation. Check if the most significant 16×
sec bits of the result are zero. The CGA++ verification fails if the check
fails.
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Table 2. Measurements taken from ECRYPT benchmarking of cryptographic systems
[15]. These median results are from runs on a AMD Athlon 64 X2 (2.0 GHz).

(a) Benchmark results, in cycles, of the RSA

public-key signature system.

x-bit Generate Sign Verify
signature a key pair 59 bytes 59 bytes

512 3.9 · 107 1.1 · 106 5.3 · 105

768 8.0 · 107 2.0 · 106 6.0 · 105

1,024 1.4 · 108 2.9 · 106 7.0 · 105

1,536 3.2 · 108 6.7 · 106 1.0 · 105

2,048 6.8 · 108 1.2 · 107 1.3 · 105

(b) Benchmark results of the

SHA-1 hash function.

Hashing Cycles Cycles per
x bytes per byte message

8 137.75 1,102
64 25.62 1,640
576 10.14 5,841

1, 536 8.91 13,686
4, 096 8.45 34,611

5. Concatenate the encoded public-key and the signature. Execute the hash
algorithm on the concatenation and compare the output with the interface
identifier. The differences in the two reserved bits and three bits for sec are
ignored. If the 64-bit values differ (other than in the five ignored bits), the
CGA++ verification fails.

The address verification starts with the usual checks, similar to CGA, in the
IPv6 address of the node to be verified. The signature is verified, then the mod-
ifier, collision count and subnet prefix are extracted. Note that, compared to
CGA, CGA++ does extra authenticity checks using the signature of the address
generator; in order to verify an address only the signature, public-key and the
address are needed.

6 Analysis of CGA++

6.1 Security of CGA++

We analyze CGA++ in a similar fashion as we did for CGA in Section 4. With
the help of digital signatures, we eliminate the lack of authentication in the
verification process. Including the subnet prefix in both domains of Hash1 and
Hash2 reduces the scope of a time-memory trade-off attack to a specific network.
The following lemma introduces the computational demand for impersonation,
again the proof follows from our security framework (cf. Section 4.2).

Lemma 3. Given a network, assume the addresses are generated and verified by
CGA++ with security parameter sec. Let S denote the time required to compute
a signature expressed in hash function evaluations and assume S < 216. Then,
the number of required hash function evaluations needed for impersonation of a
specific node is

TA =
{

259 · (1 + S) if sec = 0
259+16×sec + 259(1 + S) if sec > 0.
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Table 3. Signature and verification time expressed in SHA-1 hash function evaluations
for different RSA key sizes

RSA x-bit Signature time Log2 of the Verification time Log2 of the
key signature time verification time

512 707 9.5 35 5.1
768 1338 10.4 40 5.3
1024 1910 10.9 47 5.5
1536 4432 12.1 69 6.1
2048 7812 12.9 89 6.4

6.2 Attack Costs and the Efficiency of CGA++

In order to make a comparison with CGA, the timing results to measure the
computational cost of signing messages in terms of hash function evaluations
from ECRYPT Benchmarking of Cryptographic Systems (eBACS) [15] are used.
From now on, we assume the use of the RSA [16] public-key signature scheme
because this is the default in the RFC [9]. Note that CGA++ is independent
from the signature scheme used. The benchmark data regarding measurements
of the signature scheme are stated in Table 2(a) for different key sizes and the
benchmarks on the same architecture using the SHA-1 hash digest are stated in
Table 2(b).

Address Generation. Due to the use of digital signatures, moving from CGA
to CGA++, T1 increases from 1 to (1 + S) and T2 remains equal to 1. This
increase in time is only significant when sec = 0 as TG = 216×sec + S + 1.
Assuming the node uses a 1024-bit RSA key, the time increases from one hash
function evaluations in CGA to T1 ≈ 210.9 hash function evaluations in CGA++
(see Table 3). For sec > 0, the time increase is negligible as this is dominated
by the time required to compute the hash extensions.

Address Renewal. In CGA++, the address renewal time is equivalent to the
time needed for address generation to resist the global time-memory trade-off
attack. This is a drawback compared to the constant amount of time needed
by CGA. Assume a mobile node does not have much computation power, say
five times less compared to a more powerful machine. The address renewal time
is less than a second when using sec = 1. When sec > 1, the values of sec
which are currently impractical (cf. Section 4.4), we anticipate the fact that the
performance of mobile nodes (capable of performing cryptographic operations)
will increase accordingly in the future following Moore’s law, which would reduce
the efficiency problem significantly (cf. Section 2).

Address Verification. In both CGA and CGA++, address verification takes
a constant amount of hash function evaluations. In CGA, TV = 1, whereas
in CGA++ this amount is increased with a signature verification: TV = 1 +
S. Fortunately, the signature verification time is shorter compared to the time
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needed to sign a message, but it still consumes the same number of CPU cycles
as 47 hash function evaluations when using 1024-bit RSA keys, see Table 3.
This constant increase is tolerable considering the efficiency of evaluating hash
functions in practice.

Impersonation. The time needed for impersonation in CGA++ is roughly
equivalent to the time needed in CGA when sec > 1, not taking the possibility
of mounting the time-memory trade-off attack into account for CGA, see Lemma
1 and 3. The increase of time needed for impersonation, due to the use of digital
signatures, becomes negligible with respect to the hash extension time. However,
when no hash extensions are used, the digital signature time is significant. As-
suming the use of 1024-bit RSA keys, an attacker would need 259 hash function
evaluations using CGA, whereas this value increases to 269.9 in CGA++.

6.3 Comparison of CGA++ with CGA

Table 4 summarizes the comparison between CGA and CGA++. The overall
efficiency decreases when moving from CGA to CGA++. The time needed to
generate a new and verify a current address is increased by a constant amount
of time, whereas the time needed to renew an address increases exponentially
when hash extensions are used. The security of CGA++ is improved compared
to CGA. The global time-memory trade-off attack is no longer possible, increas-
ing the security level against impersonation attacks. Moreover, an additional
authentication mechanism is introduced by using digital signatures inside the
protocol. The constant amount of loss in efficiency and gain of security, when
no hash extensions are used, are due to the additional computation needed for
signing and verifying digital signatures.

7 Compatibility and Applications

To facilitate its adoption, it is desirable to design a protocol that is compatible
with the current schemes. Hence, when designing CGA++, one design crite-
rion was to adhere to CGA as closely as possible. CGA offers features for pro-
tocols that require self-certified address generation and verification, where the
nodes are assumed to be capable of signing messages as they are equipped with
public/private-key pairs. Therefore, our main contribution to the current design,
using digital signatures, does not harm the compatibility of CGA++ because the
rest of the protocol is nearly the same as CGA.

The Secure Neighbor Discovery [3], Shim6 [4] and IPv6 mobility support pro-
tocol [5] are the main protocols using CGA. The common feature of these pro-
tocols is to use CGA to prove address ownership and continue to sign addi-
tional data with the corresponding private key of the CGA. This is supported
by CGA++ as well.
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Table 4. Comparison between CGA and CGA++ for IPv6 using a 1024-bit RSA key.
All timings are expressed in hash function evaluations. The parameter sec = s is the
security parameter used for hash extensions.

CGA CGA++

Time to generate a new address when s = 0 1 1 + 210.9

Time to generate a new address when s > 0 216×s + 1 216×s + 1 + 210.9

Time to verify an address when s = 0 1 1 + 25.5

Time to verify an address when s > 0 2 2 + 25.5

Impersonation time when s = 0 259 269.9

Impersonation time when s > 0 259 259+16×s + 269.9

Time to renew the address when moving
to a different network when s = 0 1 1 + 210.9

Time to renew the address when moving
to a different network when s > 0 1 216×s + 1 + 210.9

Resistance against the global
time-memory trade-off attack No Yes
Authentication mechanism inside
the verification protocol No Yes

8 Conclusion

In this work, we have presented a detailed security/efficiency analysis of CGA
together with a proposal to solve some security problems and limitations related
to self-certifying address generation and verification in CGA. This new protocol,
which is very similar to and based on the ideas of CGA, is called CGA++. The
global time-memory trade-off attack, which eliminates the effect of hash exten-
sions in the long run for CGA, is no longer possible. CGA++ has an efficiency
drawback in that the address renewal costs as much as address generation. How-
ever, we believe that this is tolerable; the computational capabilities of mobile
nodes (able to perform cryptographic operations) increase with the progress of
technology and the current used hash extension values are still practical. As
another improvement, we have introduced the use of digital signatures in the
address generation and verification process, which provides authentication in
the protocol and eliminates the effect of replay attacks. Although this leads to
an increase in time required for address generation and verification, it increases
the security of the system, especially when no hash extensions are used. We be-
lieve that, in many ways, CGA++ is a nice practical alternative to CGA, e.g. in
IPv6.
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Abstract. We analyze the Password Authenticated Connection Estab-
lishment (PACE) protocol for authenticated key agreement, recently pro-
posed by the German Federal Office for Information Security (BSI) for
the deployment in machine readable travel documents. We show that the
PACE protocol is secure in the real-or-random sense of Abdalla, Fouque
and Pointcheval, under a number-theoretic assumption related to the
Diffie-Hellman problem and assuming random oracles and ideal ciphers.

1 Introduction

Authenticated key exchange is a fundamental cryptographic protocol in which
two parties, usually called the client and the server, establish a secure key. In
a password-based key-agreement protocol both parties only share a low-entropy
secret, usually drawn at random from a set of size N . Since the security only
relies on this short password an adversary can guess the right password with
probability at least 1/N and then impersonate another party in an execution
(in a so-called online dictionary attack). Ideally, this should also be an upper
bound on the adversary’s success probability, even if the adversary eavesdrops
or actively participates in other protocol executions. In particular, the adversary
should not be able to deduce the password of any party in an offline dictionary
attack by successfully matching password candidates to executions afterwards.

A widely accepted model to capture the above security requirements is the
real-or-random security notion of Abdalla, Fouque and Pointcheval [1], a refine-
ment of the model of Bellare, Pointcheval and Rogaway [2]. The original and the
refined model have been accepted as a profound approach to capture security
of key agreement protocols and several password based protocols for authenti-
cated key exchange (AKE) have been shown secure via this approach [2,1,3].
The real-or-random security model says that an adversary, mounting an active
attack on several concurrently running instances of the key agreement protocol,
cannot distinguish genuine keys from random strings.

The PACE Protocol. Here we investigate the security of the Password Authenti-
cated Connection Establishment (PACE) protocol. This protocol has been spec-
ified by the German Federal Office for Information Security (BSI) to secure the
communication between a chip contained in a machine readable travel document
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and a reader (terminal) [4]. The purpose of PACE is to establish a secure chan-
nel based on weak passwords like the personal data of the passport holder. The
protocol is currently under standardization of ISO/IEC JTC1/SC17/WG3.

The PACE protocol can be roughly divided into four phases (see also Figure 1
on Page 38): In the first phase the chip sends a random nonce s encrypted
with the password to the terminal. In the second phase both parties execute
an interactive protocol Map2Point, mapping the nonce to a random generator
Ĝ of a group, e.g., an elliptic curve (the group parameters are provided by the
chip and authenticated by a governmental authority). In the third phase the two
parties run a Diffie-Hellman (DH) key agreement on the agreed-upon generator
Ĝ and use the DH key to derive the actual keys for subsequent use. Finally, both
parties conclude the execution by sending some authentication data.

PACE is rather a framework allowing different instantiations than a single
protocol. Here we focus on the most prominent version based on elliptic curves.
Still, we look at different options to implement the Map2Point protocol in which
the nonce is thrown to a random generator. A candidate is the DH-based protocol
advocated in [4] where both parties generate a DH key H and define Ĝ = sG+H
for the generator G of the elliptic curve and the nonce s. Another option is to
use a coin-flipping protocol instead to generate H jointly and then again letting
Ĝ = sG + H . A third possibility is to hash into the elliptic curve directly. We
discuss these options in more detail later.

Security Result for PACE. In this paper we provide a security analysis of the
PACE framework. We remark that the purpose of this work here is not to in-
vestigate the design choices of the protocol (which are based on implementation
aspects and patent issues) but to analyze PACE as a given protocol with respect
to security. Some aspects of the protocol are, of course, security-related and in
this case we explore them in more detail.

We analyze PACE in the random oracle model and the ideal cipher model
(which have recently been shown to be equivalent [5]). These models entail ide-
alized assumptions about the hash function and cipher deployed in the protocol.
Namely, it is assumed that the hash function behaves like a random function,
and that the cipher acts like a random permutation. We note that neither model
may be instantiable in practice [6,5]. Yet, security shows that, in order to break
the scheme, some weaknesses of these primitives must be exploited.

We also introduce a new Diffie-Hellman-like problem, called PAssword-based
Chosen-E lement Diffie-Hellman (PACE-DH) problem. This problem basically
says that it is infeasible for an adversary to derive the final DH key of PACE,
even if the adversary impersonates one of the two parties and biases the outcome
of the Map2Point subprotocol. It follows that the PACE-DH problem is connected
to the specific choice of the Map2Point step in PACE.

Our PACE-DH problem resembles the password-based chosen-base (PCDH)
problem of Abdalla et al. [7]. Yet, while the PCDH problem is known to be
equivalent to the basic DH problem [7,3], hardness of the PACE-DH is not
known to imply the DH assumption. We nonetheless show that the PACE-DH
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problem is hard in Shoup’s generic group model [8] for the choices of Map2Point
discussed above.

Assuming the hardness of the PACE-DH problem we show that PACE is real-
or-random secure in the sense of [1], in the random oracle model and ideal cipher
model. We also discuss that the protocol provides forward security.

2 Security Model

We analyze the PACE protocol in the real-or-random security model of Abdalla
et al. [1] which extends the model of Bellare et al. [2]. Here we provide an
overview over the model, for more information and discussion about the choices
see [2] and [1].

Attack Model. The model considers a set of honest participants, also called users.
Each participant may run several instances of the key agreement protocol, and
the j-th instance of a user U is denoted by Uj or (U, j). Each pair of participants
shares a secret password π which may be used multiple times to generate session
keys. The password π is chosen randomly from a (public) dictionary with N
elements.

To obtain a session key the protocol P is executed between two instances of the
corresponding users. An instance is called an initiator or client (resp. respondent
or server) if it sends the first (resp. second) message in the protocol. For sake of
distinctiveness we often denote the client by A and the server by B.

We consider security against active attacks where the adversary’s goal is to
distinguish between genuine keys, derived in executions between honest parties,
and random keys. This corresponds to the so-called real-or-random setting [1],
a stronger model than the original find-then-guess model of [2], where the ad-
versary can see several test keys (instead of a single one only).

Each user instance is given as an oracle to which an adversary has access,
basically providing the interface of the protocol instance. By assumption, the
adversary is in full control of the network, i.e., decides upon message delivery.
The adversary can make the following queries to the oracles:

Execute(A, i, B, j). Causes the users A and B to run the protocol for (fresh)
instances i and j. The final output is the transcript of a protocol execution.
This query simulates a passive attack where the adversary merely eavesdrops
the network.

Send(U, i, m). Causes the instance i of user U to proceed with the protocol when
having received message m. The output is the message generated by U for
m and depends on the state of the instance. This query simulates an active
attack of the adversary where the adversary pretends to be the partner
instance.

Reveal(U, i). Returns the session key of the input instance. The query is answered
only if the session key was generated and the instance has terminated in
accepting state. This query models the case when the session key has been
leaked. We assume without loss of generality that the adversary never queries
about the same instance twice.
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Corrupt(U). The adversary obtains the party’s long-term key π. This is the so-
called weak-corruption model. In the strong-corruption model the adversary
also obtains the state information of all instances of user U . The corrupt
queries model a total break of the user and allow to model forward secrecy.

Test(U, i). The oracle test is initialized with a random bit b. Assume the adver-
sary makes a test query about (U, i) during the attack and that the instance
has terminated in accepting state, holding a secret key sk. Then the oracle
returns sk if b = 0 or a random key sk′ from the domain of keys if b = 1.
If the instance has not terminated yet or has not accepted, then the oracle
returns ⊥. This query should determine the adversary’s success to tell apart
a genuine session key from an independent random key. We assume again
without loss of generality that the adversary never queries about the same
instance twice.

In addition, since we work in the random oracle and ideal ciper model where
oracles providing a random hash function oracle and an encryption/decryption
oracle are available, the attacker may also query these oracles.

Partners, Correctness and Freshness. Upon successful termination we assume
that an instance Ui outputs a key sk, the session ID sid, and a user ID pid
identifying the intended partner (assumed to be empty in PACE for anonymity
reasons). We note that the session ID usually contains the entire transcript
of the communication but, for efficiency reasons, in PACE it only contains a
fraction thereof. We discuss the implications in more detail in Section 3. We
say that instances Ai and Bj are partnered if both instances have terminated
in accepting state with the same output. In this case the instance Ai is called a
partner to Bj and vice versa. Any untampered execution between honest users
should be partnered and, in particular, the users should end up with the same
key (this correctness requirement ensures the minimal functional requirement of
a key agreement protocol).

Neglecting forward security for a moment, an instance (U, i) is called fresh at
the end of the execution if there has been no Reveal(U, i) query at any point,
neither has there been a Reveal(B, j) query where Bj is a partner to Ui, nor has
somebody been corrupted. Else the instance is called unfresh. In other words,
fresh executions require that the session key has not been leaked (by neither
partner) and that no Corrupt-query took place.

To capture forward security we refine the notion of freshness and further
demand from a fresh instance (U, i) as before that the session key has not been
leaked through a Reveal-query, and that for each Corrupt(U)-query there has
been no subsequent Test(U, i)-query involving U , or, if so, then there has been
no Send(U, i, m)-query for this instance at any point. In this case we call the
instance fs-fresh, else fs-unfresh. This notion means that it should not help if the
adversary corrupts some party after the test query, and that even if corruptions
take place before test queries, then executions between honest users are still
protected (before or after a Test-query).
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AKE Security. The adversary eventually outputs a bit b′, trying to predict the
bit b of the Test oracle. We say that the adversary wins if b = b′ and instances
(U, i) in the test queries are fresh (resp. fs-fresh). Ideally, this probability should
be close to 1/2, implying that the adversary cannot significantly distinguish
random keys from session keys.

To measure the resources of the adversary we denote by t the number of
steps of the adversary, i.e., its running time, (counting also all the steps required
by honest parties); qe the maximal number of initiated executions (bounded
by the number of Send- and Execute-queries); qh the number of queries to the
hash oracle, and qc the number of queries to the cipher oracle. We often write
Q = (qe, qh, qc) and say that A is (t, Q)-bounded.

Define now the AKE advantage of an adversaryA for a key agreement protocol
P by

Advake
P (A) := 2 · Prob[A wins]− 1

Advake
P (t, Q) := max

{
Advake

P (A)
∣∣∣A is (t, Q)-bounded

}
The forward secure version is defined analogously and denoted by Advake-fs

P (t,Q).

3 The PACE Protocol

In this section we describe the PACE framework and options for its subprotocol
Map2Point.

3.1 The Main Protocol of PACE

We describe the elliptic curve instantiation of the PACE protocol [4]. Roughly,
the chip in the PACE protocol first transmits the authenticated group data G
and a nonce s, encrypted with (the hash value of) the password. The receiver
can recover this value with the matching password. Then both parties engage in
an interactive protocol Map2Point(s) to map s to a random group element Ĝ.
This generator is subsequently used to run a Diffie-Hellman key agreement to
derive a common key K. Once this key is agreed upon, the parties derive the
encryption and authentication keys by hashing K appropriately.

We let H be a hash function, C be a block cipher, and M be a MAC. We
use C(K; s) and C−1(K; z) to denote the encryption and decryption of s and z,
respectively, for a secret key K. Let G = (a, b, p, q, G, k) be the description of
an elliptic curve y2 = x3 + ax + b mod p where 〈G〉 is a group of prime order q.
The chip (A) and terminal (B) share a secret password π from a dictionary with
N elements, chosen at random, and use some mapping to generate the secret
key Kπ for the block cipher from π. Below we let Kπ = H(π||0). Note that we
implicitly assume that the parties know the right password when engaging in
an interaction, e.g., the user may enter the PIN at the reader or the terminal
optically scans the machine readable zone of the passport. The ellptic curve
version of the PACE protocol is given in Figure 1.
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A B

password π password π
authenticated EC parameters G = (a, b, p, q, G, k)

Kπ = H(π||0) Kπ = H(π||0)
choose s ← Zq

z = C(Kπ, s)
G, z−−−−−→ abort if G incorrect

s = C−1(Kπ, z)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Map2Point(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−−−−−→←−−−−−

jointly generate Ĝ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

choose yA ← Z∗
q choose yB ← Z∗

q

YA = yA · Ĝ YB = yB · Ĝ
YB←−−−−−

abort if YB /∈ 〈G〉 \{0}
YA−−−−−→ abort if YA /∈ 〈G〉 \{0}

K = yA · YB K = yB · YA

Kenc = H(K||1) Kenc = H(K||1)
Kmac = H(K||2) Kmac = H(K||2)
K′

mac = H(K||3) K′
mac = H(K||3)

TA ← M(K′
mac, (YB, Ĝ,G)) TB ← M(K′

mac, (YA, Ĝ,G))
TB←−−−−−

abort if TB invalid TA−−−−−→ abort if TA invalid

key= (Kenc, Kmac) key= (Kenc, Kmac)
sid = (YA, YB , Ĝ,G) sid = (YA, YB, Ĝ,G)
pid = ε pid = ε

Fig. 1. PACE based on DH over elliptic curves (with generic Map2Point protocol)

Remarks. Some remarks about the changes compared to the original protocol in
[4] and about underlying assumptions are in order.

Session IDs. In the definition of the protocol only the final values (and the group
parameters) enter the session ID. This is in order to spare the parties from
saving or processing the transcript data in the execution. It follows that the
partner definition is “more loose” than the common definition including the
whole transcript in sid. With this loose partnering approach here an adversary
may now be able to run a man-in-the-middle attack making the honest parties
assume they communicate with someone else, even though they hold the same
key. Still, the confidentiality of the key is not affected by this.
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The final authentication step. The original scheme uses the output key Kmac
for the MAC computations in the key-agreement protocol, too. This version,
however, may not be provable secure in the [2] and [1] model. The reason
is that with the Test query the adversary obtains a random or the genuine
secret key, including Kmac. Then the adversary can possibly test whether
this key part Kmac together with YA or YB and matches the transmitted
value TA or TB. Since Ĝ also enters the MAC computation the adversary
also needs to be able to compute all possible values for Ĝ (over the password
choices) for this attack. The adversary’s success thus heavily depends on the
specific Map2Point choice1 and for the general analysis we therefore suggest
to derive an ephemeral MAC key K ′

mac as K ′
mac = H(K||3) and use this key

for authentication. A similar strategy is recommended in [2].

3.2 The Map2Point Protocol

In this section we describe possible instantiations for the Map2Point sub routine.
We always implicitly assume that both parties check for the right format of
received values, e.g., that H is a group element. We take a closer look at the
security requirements for Map2Point in Section 4.2.

The Diffie-Hellman Mapping DH2Point. The DH2Point mapping is based on the
Diffie-Hellman key agreement. Both parties generate a DH key H (relative to
the generator G in G) by exchanging XA = xAG and XB = xBG and letting
H = xAxBG. The nonce s in then “added” to this DH key via Ĝ = sG +H .
Note that the parties should also check that H �= 0, otherwise the final
output would deterministically depend on the nonce s only.

The Coin-flipping Mapping Coin2Point. Also creates Ĝ as Ĝ = sG + H , but
both parties use a coin-flipping protocol to generate the random element H .
Namely, party A first generates XA = xAG and sends a hash value H(XA)
of XA, then party B transmits XB = xBG and A finally reveals XA to
B (who checks that this value matches the initial hash). Both parties set
H = XA + XB.

The Hash-into-the-Curve Mapping Hash2Point. Assume that we have an efficient
function s �→ hash2curve(s) allowing to throw the string s to the curve di-
rectly. Possible instantiations are given for example in [9,10]. Then this func-
tion can be combined with the two previous methods to generate Ĝ as Ĝ =
hash2curve(s) + H . A faster approach is to have party B contribute by re-
encryption of the nonce s, i.e., B sends a random key K ′ and both parties
compute s′ = C(K ′, s) and set Ĝ = hash2curve(s′).

The Power-to-Group Mapping Power2Point. This method only works for groups
over Z∗

p. Here the parties use a function s �→ sw mod p for p = wq + 1 for w
with large prime factors only to map s to a sub group element of Z∗

p. The fact
that w does not have small factors ensures that the mapping is statistically

1 Using randomized Map2Point strategies seem to impede such attacks significantly;
see also Section 4.2.
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close to uniform (given that the value s is uniform). One can again combine
this mapping with an interactive generation of H , or with the re-encryption
technique discussed in the previous case.

4 Security Assumptions

As remarked above we carry out our security analysis assuming an ideal hash
function (random oracle model) and an ideal encryption scheme (ideal cipher
model). Basically, the first assumption says that H acts like a random function
to which all parties have access. The second property says that for each key K
the mapping C(K, ·) is an independent random permutation and one can evaluate
both C(K, s) and C−1(K, z) for arbitrary values (K, s) and (K, z).

We also require that the message authentication codeM is unforgeable under
adaptively chosen-message attacks. We denote by Advforge

M (t, q) a (bound on
the) value ε for which no attacker in time t can output a new message and a
valid tag (after having seen at most q MACs for adaptively chosen messages)
with probability more than ε. For the analysis we even assume that M acts like
a pseudorandom function and denote by Advprf

M(t, q) the (maximal) advantage
of an attacker running in time t making at most q queries to a function oracle for
distinguishingM from a random function. Note that Advforge

M (t, q) ≤ Advprf
M(t+

O(�), q + 1) + 2−� where � denotes the output size of the MAC.

4.1 Number-Theoretic Assumptions

The PACE-DH Problem. For passive adversaries, merely eavesdropping the net-
work, security follows from the classical Diffie-Hellman (DH) assumption. Active
adversaries, injecting messages, can usually contribute to the input to the DH
problem and we thus require a stronger assumption based on the PAssword-based
Chosen-E lement (PACE) DH problem. Assume that we are given N values si

from Zq (each value corresponding to C−1(Kπ, z) for a possible password π) of
which one corresponds to the actual password sk. Potentially, these values si

are biased by the adversary through its choice of z so we precautiously let the
adversary fully determine them (with the only restriction that they are distinct).

Suppose further that we are given a random group element H (generated via
Map2Point and possibly known to the adversary), as well as yB(skG + H) for
a random yB (for the value YB sent by an honest party). Then the adversary’s
task is to find a group element YA (i.e., the YA sent in the protocol) and a key K
such that K = yBYA. Since the adversary may try different possibilities for K,
below we let the adversary output a set of q� possible key values K1, . . . , Kq�

.
We first remark that the setting above corresponds to the case that the ad-

versary impersonates the chip. This means that the adversary can adaptively
decide upon his choices after seeing the group elements (representing the chip’s
choices). The case that the adversary plays the terminal is a special case where
the adversary first ignores parts of the data. We also remark that, while we
consider concurrent executions of the key agreement protocol, for the analysis
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it suffices to consider our interactive number-theoretic problem in a somewhat
isolated setting.

Note that we cannot exclude trivial guessing strategies for our problem. That
is, if the adversary manages to guess k it can simply set YA = skG + H and
later choose K = YB . Similarly, it can choose any linear transformation YA =
a(skG+H) and K = aYB for a ∈ Zq (also covering the case that a = 0 in which
case the other party aborts). Hence, there is always an adversarial strategy with
success probability at least 1/N . Yet, this should be close to optimal:

Definition 1 (Password-Based Chosen-Element DH Problem). The
password-based chosen-element DH problem is (t, N, q�, ε)-hard if for any ad-
versary A = (A0,A1) running in total time t the probability that the following
experiments returns 1 is most 1

N + ε:

pick G (including a generator G)
let (st, s1, . . . , sN) ← A0(G, G, N)

where s1, . . . , sN are pairwise distinct and st is some local state
pick H ← 〈G〉, yB ← Zq and k ← {1, 2, . . . , N}
let (YA, K1, . . . , Kq�

)← A1(st, yB(skG + H), H)
output 1 iff YA �= 0 and Ki = yBYA for some i ∈ {1, 2, . . . , q�}

We let AdvPACE-DH(t, N, q�) denote a (bound on the) value ε for which the
PACE-DH problem is (t, N, q�, ε)-hard.

On the Hardness of the PACE-DH Assumption. The hardness of the PACE-DH
problem implies hardness of the discrete logarithm problem (see Section 4.2).
We note that the PACE-DH problem resembles the password-based chosen-basis
problem of Abdalla et al. [7,3]. Yet, while that problem has been proven to be
equivalent to the DH problem [7,3] (albeit with a loose security reduction),2

we are not aware if the PACE-DH problem here is also infeasible assuming the
hardness of the DH problem. However, in the generic model of Shoup [8] the
problem is also as hard as the DH problem, indicating that only “clever” attacks
exploiting the group representation can make a difference in comparison to the
regular DH problem. We discuss this in the full version.

The gPACE-DH Problem. In the PACE-DH problem above the group element H
is assumed to be random. In the actual protocol execution, however, it depends
on the execution of protocol Map2Point in which the adversary may control one
of the parties. Hence, in the general PACE-DH problem we mimic the generation
of H via Map2Point and thus lend the adversary more power in generating H :

Definition 2 (General Password-Based Chosen-Element DH Problem).
The general password-based chosen-element DH problem is (t, N, q�, ε)-hard (with
respect to Map2Point) if for any adversary A = (A0,A1,A2) running in total time
t the probability that the following experiments returns 1 is most 1

N + ε:
2 Note that the similar chosen-basis decisional Diffie-Hellman problems of Abdalla

and Pointcheval [11] have been shown to be insecure by Szydlo [12]; Szydlo’s attacks
do not transfer to the computational counterparts, though.



42 J. Bender, M. Fischlin, and D. Kügler

pick G (including a generator G)
let (st0, s1, . . . , sN ) ← A0(G, G, N)

where s1, . . . , sN are pairwise distinct and st0 is some local state
pick yB ← Zq and k ← {1, 2, . . . , N}
let Ĝ be the output of the honest party in an execution of Map2Point(sk),

where A1(st0) controls the other party (and generates the local state st1).
let (YA, K1, . . . , Kq�

)← A2(st1, yBĜ)
output 1 iff YA �= 0 and Ki = yBYA for some i ∈ {1, 2, . . . , q�}

We let AdvgPACE-DH
Map2Point (t, N, q�) denote a (bound on the) value ε for which the

gPACE-DH problem is (t, N, q�, ε)-hard (with respect to Map2Point).

PACE-DH vs. gPACE-DH. Using the coin flipping Coin2Point for Map2Point
the output H is (statistically close to) uniformly distributed and thus security
holds under the basic PACE-DH problem. Next consider the DH2Point protocol
which generates H as the DH key from XA and XB. Then the hardness of
the PACE-DH problem clearly implies hardness of the gPACE-DH problem for
DH2Point. That is, given adversary APACE breaking the case of a random H we
can easily build an adversaryADH2Point against the gPACE problem for DH2Point
by simply following the DH key agreement honestly, such that H is a random
element. Then any solution to the random case returned by APACE also gives
a solution to the DH2Point case. The converse is not known to hold, essentially
because the DH key agreement may not yield a uniformly distributed element
(if the honest party goes first). Still, we note again that in the generic group
model both problems are hard and we elaborate on the relationship in the full
version. Some potential advantages of the DH2Point approach over Coin2Point
are discussed in the next section.

4.2 Requirements for the Map2Point Protocol

A necessary functional requirement for the Map2Point protocol is that for any
s ∈ Zq the output Ĝ of an execution of Map2Point(s) between honest parties must
satisify Ĝ �= 0. Note that for DH2Point and Coin2Point, for example, there is a
small probability of 1/q that the output of Map2Point is 0, namely, if H = −sG.
We ignore this small term to simplify the presentation and merely note that such
cases can be easily thwarted by testing for trivial values and setting Ĝ = G in
this case.

As for security, assume that Map2Point consists of two phases, an interactive
step RndPoint() where both parties jointly generate some randomness, say, a
random group element H . This step should be independent of the nonce s and
only depend on the public data (including transmitted values). Only in the
final local step the parties compute Ĝ from this value H and the nonce s via
a non-interactive algorithm NncPoint(s, H). We call such Map2Point protocols
canonical.

To be suitable for the gPACE-DH problem any canonical Map2Point protocol
must guarantee that the adversary cannot bias the outcome of the Map2Point
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protocol such that it knows the logarithm a = logNncPoint(H,si) NncPoint(H, sj)
for distinct admissible passwords si, sj . Else, as we discuss in the full version, if
the adversary succeeds with probability ε, one can break the gPACE-DH problem
with advantage ε/N . In particular, for the DH2Point protocol it must be hard
to compute logG H .

The requirement also indicates that deterministic protocols Map2Point must
be treated with special care because then the outcome of the protocol may be
under full control of the adversary (if it acts as the chip and chooses z). It must
then be ensured that the adversary cannot find s1, . . . , sN such that it knows
the discrete logarithm of Map2Point(sj) with respect to Map2Point(si) for some
i �= j.

5 AKE-Security of PACE

We analyze the PACE protocol with respect to general Map2Point protocols:

Theorem 1. Let Map2Point be canonical and assume that the password is cho-
sen from a dictionary of size N . In the random oracle model and the ideal cipher
model we have

Advake
PACE(t, Q)

≤ qe

N
+ qe ·AdvgPACE-DH

Map2Point (t∗, N, qh)

+2qe ·Advprf
M (t∗ + O(�), 2qe + 1) +

2qeN
2 + 8q2

eN + qcqe

min{q, |Range(H)| , 2�}
where t∗ = t + O(kq2

e + kq2
h + kq2

c + k2) and Q = (qe, qc, qh) and � denotes the
output length of M.

We remark that the time t∗ covers the additional time to maintain lists and
perform look-ups.

Proof. Correctness of the protocol follows from the correctness of the MAC al-
gorithm M and the fact that Map2Point does not return a trivial group element
Ĝ = 0.

We show security via the common game based approach, gradually changing
the original attack Game0 (with random test bit b) via a sequence of experiments
Game1, Game2, . . . to a game where the adversary’s success probability to predict
b is bounded by the guessing probability of 1

2 . Each transition from Gamei to
Gamei+1 will only change the adversary’s probability only slightly (depending
on cryptographic assumptions), thus showing that the success probability in the
original attack cannot be significantly larger than 1

2 . (Formally we can condition
on all “bad” events ruled out in the previous games to not happen.)

Technically, we would like to conclude that the adversary never makes a hash
query about a Diffie-Hellman key from which an honest party has derived the
output keys. If such a query does not occur then, because we deploy a random
oracle, the final keys still look random. We show that this is essentially true under
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the hardness of the gPACE-DH problem (and in the course take advantage of the
random oracle and ideal cipher model and the pseudorandomness of the MAC).

But we also need to take into account attacks where the adversary manages
to find unpartnered instances but which derive the same keys. In this case the
adversary could easily distinguish the answer of a Test-query by posting a Reveal-
query for the unpartnered instance (if the instances are partnered then such a
Reveal-query is not admissible for a success). We prove that this is guaranteed
by the unforgeability of the MAC.

We also remark that we assume that no Corrupt-query takes place in this
setting (or else the adversary cannot win). We cover forward security and Cor-
rupt-queries in Section 6. We next define the games.

Description of Game0. Corresponds to the original attack on the protocol.

Description of Game1. As Game0 but abort in case of Kπ collisions.
We abort the experiment (declaring the adversary to lose) whenever there

are distinct passwords π �= π∗ yielding the same hash value Kπ = H(π||0) =
H(π∗||0). Since there are at most 1

2N2 admissible password pairs in total and
H is a random oracle, the adversary’s success probability decreases by at most
1
2N2/ |Range(H)| by the birthday bound.

Description of Game2. As Game1 but abort in case of collisions among decrypted
values.

We abort (again declaring the adversary to lose) if there appears some value
z in an execution such that for some admissible passwords π �= π∗ we have
C−1(Kπ, z) = C−1(K∗

π, z). Since π �= π∗ implies Kπ �= K∗
π by the first game and

the cipher is ideal, the probability that for any of the at most qe values z in the
executions we have a collision is at most 1

2qeN
2/q.

Description of Game3. As Game2 but abort in case two keys K �= K∗ of two
accepting user instances yield an identical key Kenc, Kmac or K ′

mac.
Since there are at most 1

2 (2qe)2 of such user instances and the probabil-
ity that two fixed ones yield a hash collision for one of the output keys is at
most 3/ |Range(H)|, the adversary’s success probability only drops by the term
6q2

e/ |Range(H)|.

Description of Game4. As Game3 but replace the MAC values by random values.
Instead of performing MAC computations we now let honest parties simply

transmit a random value and if we receive a putative MAC from the adversary
we reject this MAC as invalid. This basically cannot decrease the adversary’s
success probability significantly by the pseudorandomness of the MAC. This
holds as long as there are no inconsistencies in our answers due to (a) sending of
a new random value in an execution although the input data to the MAC and
the key are identical to a previous execution (in which case the party would send
the same value again for a deterministic MAC in Game3); and (b) rejecting an
adversarial MAC which the honest user would accept in Game3.
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For the analysis let THQ be the event that the adversary makes a so-called
target hash query about K||n for some n ∈ {1, 2, 3}, where K is the key some
honest user instance has derived (before computing the MACs). We will analyze
the probability of generating inconsistencies by our MAC simulation under the
condition that the adversary never makes a target hash query, and later bound
the probability for THQ by the hardness of the gPACE-DH problem. If the
adversary does not make a target hash query then the keys Kenc, Kmac and,
especially, K ′

mac are unknown random values to the adversary.
In the full version of the paper we show that, conditioning on event ¬THQ

and the fact that the adversary does not forge MACs, the difference between the
games is now bounded by the pseudorandomness of the MAC (times qe for the
number of executions) where we make at most 2qe queries. Details are omitted
from this version.

Description of Game5. As Game4 but simulate the ideal cipher.
We replace the actual ideal cipher C by a lazy-sampling like technique. Namely,

for honest users we maintain an intially empty list of tuples (A, B, s, z). For each
honest party (involved in a protocol instance between A and B) calling C about
(Kπ, s) we check the list for an entry (A, B, s, z) and, if there exists one, we
return z. Else we pick a random element z, return it and store (A, B, s, z) in the
list. For each call of an honest party (involved in instance (A, B)) to C−1 about
(Kπ, z) we also search for an entry (A, B, s, z) and return s if we find such an
entry; else we pick a random s, store (A, B, s, z) and return s.

For the adversary we keep a separate list. For any call of the adversary to
C about (Kπ, s) we check if there is already an entry (Kπ, s, z) and return z if
so; else we return a random value z and store (Kπ, s, z). For each call of the
adversary to C−1(Kπ, z) we search for an entry (Kπ, s, z) in the list and return s
if such an entry exist, else we pick a random s and return s and store (Kπ, s, z).

Note that the two lists may cause inconsistencies between the answers to
honest users and to the adversary. However, conditioning on the adversary never
making a hash query about a DH key derived by an accepting user instance
(event ¬THQ) the execution of Game5 does not reveal any information about
the s-values chosen by honest parties. In this case, the probability of making
an accidental query to C about an s-value chosen by an honest party is at most
qcqe/q. Analogously, if no target hash queries occur, then answering calls of the
adversary to C−1 as described above, does not lead to any difference in the
success probability.

We next bound the probability for event THQ by describing another game
in which we abort if this happens (and then show that under the gPACE-DH
assumption this cannot happen too often). To be precise we actually consider
the event THQ in Game3 where it occured for the first time. But since we are
only interested in the first target hash query and up to the point where this
target hash query is made the modifications from Game3 to Game5 cannot affect
the adversaries success probability significantly (as shown above), it suffices to
consider event THQ in Game5. An important observation here is that up to
the first target hash query the data in Game5 is independently distributed from



46 J. Bender, M. Fischlin, and D. Kügler

the actual passwords of users (because neither the simulated cipher nor the
MAC computations reveal anything about the password, the interactive runs of
protocol RndPoint are also password-independent, and the group elements in the
final DH exchange are distributed independently of Ĝ).

Description of Game6. As Game5 but stop if the adversary makes a hash query
about a DH-key of an accepting user instance (U, i).

We even declare the adversary victorious if it ever submits a query K||n for
n ∈ {1, 2, 3} to the hash oracle H such that a user instance (U, i) has computed
this key and sent out the final MAC (i.e., we even consider instances in which
the user may not accept eventually). We claim that this cannot occur with
probability more than qe/N , plus the advantage of breaking the gPACE-DH
problem (times qe). Consider a user instance (U, i) in accepting state and the
corresponding execution in which the DH-key K is derived.

We now break the gPACE-DH problem as follows. We are given (G, G, N) as
input. We initially make a guess for the execution number between 1 and qe for
which the adversary makes the first test query and, at the same time, a target
hash query. Then we simulate Game6. We wait to receive z in this execution and
then output the (possibly then chosen) values s1, . . . , sN for all passwords π and
all (unique) derived keys Kπ and for each call by the adversary to C−1.

In the predicted execution we run the Map2Point algorithm with the adver-
sary to obtain Ĝ (relaying the communication in the execution and the external
Map2Point instance in the gPACE-DH problem). We then receive yBĜ as addi-
tional input and feed these data into the execution. We finally pick random keys
Kenc, Kmac, K

′
mac (instead of querying H) and complete the protocol with the

help of these data. When the adversary eventually stops we output YA, trans-
mitted in the predicted execution by the adversary or the honest party, and the
list K1, . . . , Kqh

of values appearing in the at most qh hash queries of the form
K||n for n ∈ {1, 2, 3} . (If the adversary impersonates the chip then we output
the value YB , of course.)

It remains to analyze the probability that we obtain an admissible solution
to the gPACE-DH problem. Recall that we fail to win if we output YA = 0. But
this case leads the honest party to abort immediately. Hence, we can assume
YA �= 0. Also note that all possible nonces s1, . . . , sN for the different passwords
are distinct by Game2 and thus comply with the requirement for the gPACE-DH
game. Hence, up to the target hash query the distribution of the data is inde-
pendent of the password of the user instance, and we make the right execution
prediction with probability 1/qe, in which case we obtain a valid solution to the
gPACE-DH problem whenever the adversary makes a target hash query.

Overall, the success probability cannot decrease by more than

Prob[THQ] ≤ qe

N
+ qe ·

(
AdvgPACE-DH

Map2Point (t∗, N, qh)
)

From now on we can condition on the adversary not making a hash query about
the DH-key of an accepting user instance.
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Description of Game7. As Game6 but replace keys Kenc, Kmac in Test-queries by
random keys.

Note that, since we assume that the adversary never makes a hash query about
a DH-key of an accepting user instance, this simulation is perfect unless there is
an accepting instance (U, i) having the same DH-key as another instance (U∗, j)
but such that the two instances are not partnered. In this case the adversary
could make a Reveal-query to party (U∗, j) and could notice the difference to
the Test(U, i) query. Note that Reveal-queries to partnered instances do not lead
to a win for the adversary.

In the full version we show that, except with negligible probability, there
cannot exist some user U∗ in execution j such that this user also accepted with
output (Kenc, Kmac), sid = (Y ∗

A , Y ∗
B, Ĝ∗,G∗) and pid = ε, but such that the two

instances are not partnered. Security then follows. ��

6 Discussion

On Forward Secrecy. The above theorem remains true in the forward-secrecy
setting (assuming weak corruptions). To show forward security we need a slight
variant of the gPACE-DH problem in which the adversary first outputs YA,
then learns k and finally outputs q� potential keys K1, . . . , Kq�

. This (adaptive)
version of gPACE-DH for parameters (t, N, q�) can be shown to be as hard as
the (non-adaptive) gPACE-DH problem for parameters (Nt, N, Nq�). For this
simply let the non-adaptive adversary simulate the adaptive adversary up to the
point where it outputs YA. Instead of outputting YA the non-adaptive algorithm
internally completes N runs of the adaptive adversary for all N possible choices
of k, yielding at most N times q� possible keys. The non-adaptive adversary
finally outputs YA and this list of keys, and wins with the same probability as
the adaptive adversary.

Forward secrecy of the protocol follows under the adaptive gPACE-DH prob-
lem. If a party gets corrupted after a Test-query (in which case an honestly
or maliciously chosen YA has already been determined, before the adversary
learns the password and thus k) computing the DH key would require to solve
the adaptive gPACE-DH problem and thus the gPACE-DH problem. If a party
gets corrupted before a Test-query then this execution does not involve Send-
commands and the data are thus chosen honestly. In particular, one can think of
YA as being chosen at random before the adversary learns the password. Security
then also follows from the adaptive gPace-DH problem.
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Abstract. While code obfuscation attempts to hide certain characteris-
tics of a program independently of an application, white-box cryptography
(WBC) specifically focuses on software implementations of cryptographic
primitives in an application. The aim of WBC is to resist attacks from an
adversary having access to some ‘executable’ code with an embedded se-
cret key. WBC, if possible, would have several applications. However, un-
like obfuscation, it lacks a theoretical foundation. We present a first step
towards a theoretical model of WBC via white-box security notions. We
also present some positive and negative results on WBC and obfuscation.
In particular, we show that for most interesting programs (such as an en-
cryption algorithm), there are security notions that cannot be satisfied
when the adversary has white-box access, while they are satisfied when
it has black-box access. On the positive side, we show that there exists an
obfuscator for a symmetric encryption scheme in the context of a useful
security-notion (such as IND-CPA).

1 Introduction

White-box cryptography (WBC) aims to protect cryptographic keys embedded
in a program that is in the control of an attacker. The attacker can conduct non-
black-box attacks (such as code inspection, execution environment modification,
code modification, etc). Practical white-box implementations of DES and AES
encryption algorithms were proposed in [1,2]. However, no formal definitions
of white-box cryptography were given, neither were there any proofs of security.
With their subsequent cryptanalysis [3,4,5], it remains an open question whether
or not such white-box implementations exist.

Our Contribution: The contributions of this work are two-fold: (1) we for-
malize white-box cryptography using a white-box property (WBP) that captures
the security of an obfuscation with respect to an application, and (2) we present
some (im)possibility results about WBP and obfuscation. We show that for most
programs, there do not exist obfuscators satisfying WBP for all applications in
which P may be used. On the positive side, we show that there exist obfuscators
satisfying WBP for a meaningful program and application.

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 49–58, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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1.1 Notation and Preliminaries

Denote by P the set of all polynomials with coefficients in [0..∞] and by TM
the set of all Turing Machines (TMs). For X ∈ TM, |X | is the length of the
string description of X . A mapping f : N � x �→ f(x) ∈ R is negligible in
x (written f(x) ≤ negl(x)) if ∀p ∈ P, ∃x′ ∈ N, ∀x > x′ : f(x) < 1/p(x). For
X, Y ∈ TM we say X = Y iff ∀a : X(a) = Y (a). A PPT Algorithm is a TM with
an unknown source of randomness with running time polynomial in the length of
known inputs. A Turing Machine Family (TMF) is a TM with two read tapes: a
key and an input. For any TMF Q, we denote Q’s key-space (valid strings of the
key tape) of length k by Kk

Q, and the resulting TM when Q’s key tape contains
q by Q[q] ∈ TM. For any q ∈ Kk

Q, the input-space of Q[q] is fully defined by k,
and we denote this space by Ik

Q. A TMF Q is a Polynomial TMF (PTMF) if:

1. ∃PQ ∈ P, ∀k, ∀q ∈ Kk
Q, ∀x ∈ Ik

Q : |x| = PQ(k).
2. ∃p ∈ P, ∀k, ∀q ∈ Kk

Q, ∀a ∈ Ik
Q : Q[q](a) halts in at most p(k) steps.

Denote by PPT and PTF the set of all PPT algorithms and PTMFs respectively.

Definition 1. Q ∈ PTF is a learnable family (LF) if ∃(L, p) ∈ PPT× P, ∀k :

Pr
[
q

R← Kk
Q; X ← LQ[q](1k) : X = Q[q] ∧ |X | ≤ p(k)

]
≥ 1/p(k);

and ∀a : if Q[q](a) halts after t steps then X(a) halts in ≤ p(t) steps.

Definition 2. Q ∈ PTF is an approximate LF (ALF) if ∃(L, p) ∈ PPT×P, ∀k :

Pr
[
(q, a) R← Kk

Q × Ik
Q; X ← LQ[q](1k) : X(a) = Q[q](a) ∧ |X | ≤ p(k)

]
≥ 1/p(k);

and if Q[q](a) halts after t steps then X(a) halts in ≤ p(t) steps.

Denote by LF and ALF the set of all LFs and ALFs respectively.

2 Obfuscation

Informally, an obfuscator O transforms a program P into O(P ), which is func-
tionally equivalent to P but hides certain characteristics of P . The following
definitions are adapted from the literature [6,7,8,9,10,11,12,13,14].

Let Q ∈ PTF. We consider the obfuscation of Q[q] (an instantiation of Q with
key q). Let O : PTF× {0, 1}∗ �→ TM be a PPT algorithm.

Definition 3 (Correctness). O is an obfuscator for Q if:

1. (Functionality) ∀k, ∀(q, a) ∈ Kk
Q × Ik

Q : Pr [O(Q, q)(a) �= Q[q](a)] ≤ negl(k)
2. (Polynomial slowdown and expansion) ∃p ∈ P, ∀k, ∀q ∈ Kk

Q :
(a) |O(Q, q)| ≤ p(k)
(b) ∀a : Q[q](a) halts in t steps ⇒ O(Q, q)(a) halts in ≤ p(t) steps.



Towards Security Notions for White-Box Cryptography 51

Soundness is defined using a Virtual Black-Box Property (VBBP) [7,12,11]. let
Q[q] be a random instantiation of a PTMF Q using key q. The VBBP requires
that whatever information about q a PPT adversary extracts from O(Q, q), a
PPT simulator should also be able to extract with black-box access to Q[q].
Existing notions of VBBP fall into one of two broad categories as defined below.

Definition 4 (Soundness). O is sound if at least one of following holds:

1. Predicate VBBP: ∀A ∈ PPT, ∃S ∈ PPT : Advpvbbp
A,S,O,Q(k) ≤ negl(k), where

Advpvbbp
A,S,O,Q(k) =

∣∣∣∣Pr
q

R←Kk
Q

[
AQ[q](1k,O(Q, q)) = 1 ∧ SQ[q](1k) �= 1

]∣∣∣∣.
2. Indistinguishability: ∀A ∈ PPT, ∃S ∈ PPT : Advind

A,S,O,Q(k) ≤ negl(k), where

Advind
A,S,O,Q(k)=

∣∣∣∣Pr
q

R←Kk
Q

[
AQ[q](1k,O(Q, q))=1 ∧AQ[q](1k, SQ[q](1k)) �= 1

]∣∣∣∣.
Note that indistinguishability is too strong to yield interesting results [11,10]. On
the other hand, predicate VBBP is too weak to be meaningful in practice [7,11].
Nevertheless, it is conceivable that a meaningful definition of soundness falling
somewhere between the two extremes can be formulated. We show this is not the
case. Specifically, we show that, under every definition of soundness, for every
Q /∈ ALF, there exist (contrived) security notions for which white-box security
fails but the corresponding black-box construction is secure.

3 White-Box Cryptography

We formalize white-box cryptography using a white-box property (WBP), which
is defined using a game-based approach [15,16,17,18]. Loosely speaking, the WBP
is defined using two objects: a PTMF (such as an encryption algorithm family)
and a security notion (such as IND-CPA). A security notion (SN) is a formal
description of the security desired from a cryptographic scheme.

Definition 5. A Security Notion (SN) is a 5-tuple (n, pin,Q, Extr, Win) ∈
N × P × PTFn × TM × TM where Q = (Q1, Q2, . . . , Qn) ∈ PTFn is an n-tuple
of PTMFs, and Extr and Win are TMs of the type {0, 1}pin(k) �→ ×n

i=1KQi and
{0, 1}∗ �→ {0, 1} respectively. Denote by SN the set of all security notions. For
any sn = (n, pin,Q, Extr, Win) ∈ SN and any Q ∈ PTF, we say Q ∈ sn if Q ∈ Q.

Definition 6. A Black-box Game given in Algorithm 1 (GameBBA) is a TM
interacting with the adversary A ∈ PPT. It takes as input (1k, sn, r), where
sn = (n, pin,Q, Extr, Win) ∈ SN is a security notion, and r ∈ {0, 1}pin(k) is a
string (representing randomness). It outputs 0 or 1.

At any instant A can query at most one oracle, and each query by the ad-
versary takes one unit time irrespective of the amount of computation involved.
Queries is a set of ordered 4-tuples of type

(tj , ij, inj ,outj) ∈ N× {1, 2, . . . , n} × {0, 1}∗ × {0, 1}∗,
indicating respectively, the time, oracle, input, and the output of each query.
Define AdvBBsn

A (k)= Pr
[
r

R← {0, 1}pin(k) : GameBBA(1k, sn, r) = 1
]
.
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input : 1k, sn, r
Parse sn as (n, pin,Q, Extr, Win)
Parse Q as (Q1, Q2, . . . , Qn)
(q1, q2, . . . qn) ← Extr(r)
s ← AQ1[q1],Q2[q2],...,Qn[qn](1k, sn)
output: Win(r, Queries, s)

Algorithm 1. GameBBA(1k, sn, r)

Discussion. Consider the IND-CCA2 security notion for symmetric encryption,
which is defined as a game with three stages: (1) the adversary queries the
encryption/decryption oracles; (2) the adversary obtains a challenge ciphertext;
and (3) the adversary queries the oracles as in (1) except that decryption queries
on the challenge ciphertext are disallowed. The adversary wins if it guesses some
property of the challenge ciphertext. An example is given in Appendix A.

Let E = (G, E, D) be any IND-CCA2 secure symmetric encryption scheme
with the encryption/decryption key instantiated to K. Observe that the adver-
sary cannot be given an obfuscation of D[K], since this will render E insecure
under IND-CCA2 - once the adversary gets this obfuscation, we cannot prevent
it from querying D[K] (via the obfuscation) on the challenge ciphertext in phase
(3). On the other hand, E[K] is a candidate for obfuscation because the winning
condition does not depend on queries to E[K]. We generalize this intuition in
Definition 7 to describe when a family is a candidate for obfuscation.

Definition 7. For any sn ∈ SN and any PTMF Qi ∈ sn, define Queries(i) to
be the following set: {(tj , ij, inj ,outj)|(tj , ij, inj ,outj) ∈ Queries ∧ ij �= i}.

Qi is obfuscatable in sn (written Qi ∈obf sn) if

∀r, Queries, s : Win(r, Queries, s) = Win(r, Queries(i), s) .

In other words, Qi ∈obf sn if: (1) Qi ∈ sn, and (2) in the black-box game, the
output of Win is invariant w.r.t the entries of Queries for Qi[qi].

Observe that a meaningful notion of white-box security cannot exist for a
family under a security notion in which it is not obfuscatable. For instance, white-
boxing the decryption oracle of a symmetric encryption scheme, or the ‘signing’
oracle of a MAC scheme under standard security notions is not meaningful.

Definition 8. For (A,O, sn) ∈ PPT×PPT×SN, with sn = (n, pin,Q, Extr, Win)
s.t. Q = (Q1, Q2, . . . , Qn), the white-box game (GameWBA,O,Qi) for i ∈ [1..n]
is given in Algorithm 2. Define

AdvWBsn
A,O,Qi

(k)= Pr
[
r

R← {0, 1}pin(k) : GameWBA,O,Qi(1
k, sn, r) = 1

]
.

Definition 9. For any (O, Q, sn) ∈ PPT× PTF× SN such that Q ∈ sn, define
the White-box Advantage (WBA) AdvWBsn

O,Q(k) of O for (Q, sn) as:

AdvWBsn
O,Q(k) =

∣∣max(AdvWBsn
A,O,Q(k))−max(AdvBBsn

A (k))
∣∣ ,
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input : 1k, sn, r
Parse sn as (n, pin,Q, Extr, Win)
Parse Q as (Q1, Q2, . . . , Qn)
(q1, q2, . . . qn) ← Extr(r)
s ← AQ1[q1],Q2[q2],...,Qn[qn](1k, sn, i,O(Qi, qi))
output: Win(r, Queries, s)

Algorithm 2. GameWBA,O,Qi(1k, sn, r)

where for any function fA(k), max(fA(k)) is defined as follows: Let A′ ∈ PPT
be such that ∀A ∈ PPT : limk→∞ fA(k) ≤ fA′(k). Then max(fA(k)) = fA′(k).

The following two definitions capture white-box security.

Definition 10. For all (O, Q, sn) ∈ PPT × PTF × SN s.t. Q ∈ sn, O satisfies
White-box Property (WBP) for (Q, sn) if AdvWBsn

O,Q(k) ≤ negl(|k|).

Definition 11. For all (O, Q) ∈ PPT × PTF, O satisfies Universal WBP
(UWBP) for Q if ∀sn ∈ SN : Q �∈obf sn ∨ (O satisfies WBP for (Q, sn)).

4 Negative Results

Barak et al. [7] give several impossibility results on obfuscation; their main result
implies that there do not exist obfuscators satisfying UWBP for every Q ∈
PTF. However, they do not rule out obfuscators satisfying UWBP for a useful
family Q. Our main negative result is stronger - there do not exist obfuscators
satisfying UWBP for ‘interesting’ families. That is, we show that for any non-
approximately-learnable family, there exists a security notion that cannot be
satisfied when an adversary has white-box access to the program (Theorem 1).

Theorem 1. For every (Q,O) ∈ PTF\ALF × PPT, there exists sn ∈ SN such
that Q ∈obf sn but O fails to satisfy WBP for (Q, sn).

Proof. Let Q ∈ PTF\ALF. Let guess-x = (2, pin,Q, Extr, Win) ∈ SN be such
that Q = (Q, Q1); pin(k) = 2k + PQ(k); and other details in Algorithm 3.

Note that Q ∈obf guess-x. Since Q /∈ ALF, therefore due to Definitions 1
and 3, the following two inequalities are guaranteed to hold:

∀A ∈ PPT : 0 ≤ AdvBB
guess-x
A (k) < α(k),

∃A ∈ PPT : 1 ≥ AdvWB
guess-x
A,O,Q (k) ≥ 1− β(k),

where α, β are negligible functions. Hence, we have that AdvWB
guess-x
O,Q (k) is

larger than 1−α(k)−β(k), which is non-negligible in k. This proves the theorem.
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Function Q1[q1](Y1) :
Parse q1 as (q, x, a);
if (Y1(a) = Q[q](a)) then output x else output 0;

Function Extr(r) :

Parse r as (q, x, a); // x ∈ {0, 1}k, q ∈ Kk
Q, a ∈ Ik

Q ⊆ {0, 1}PQ(k),
set q1 ← (q, x, a);
output q, q1;

Function Win(r,Queries, s) :
Parse r as (q, x, a);
if (s 	= x) ∨ (more than one query to Q1[q1]) then output 0 else output 1

Algorithm 3. Q1, Extr and Win for guess-x

Simultaneous Obfuscation may be Insecure. When two families in the
same SN are white-boxed, a useful question is whether the resulting implementa-
tion remains secure assuming that it was secure when each family was separately
white-boxed. Theorem 2 states that simultaneous white-boxing of two families
can be insecure even if white-boxing of each family separately is secure.

Theorem 2. For every (Qi, Qj,O) ∈ (PTF\ALF)2×PPT, there exists sn ∈ SN
with Qi, Qj ∈obf sn such that even if O satisfies WBP for (Qi, sn) and (Qj , sn),
it fails to satisfy WBP for ((Qi, Qj), sn). (See the full version [19] for proof.)

5 Positive Results

Although Theorem 1 rules out obfuscators satisfying UWBP for most non-trivial
families, it does not imply that meaningful security in WBC cannot exist. In fact,
any asymmetric encryption scheme can be considered as a white-boxed version
of some symmetric scheme. We use this observation as a starting point of our
first positive result. A similar observation was used in the positive results of [12].

Theorem 3 (WBP for “Useful” Families). There exists a tuple (O, Q, sn) ∈
PPT × PTF\ALF × SN such that Q ∈obf sn and O is an obfuscator satisfying
WBP for (Q, sn) under reasonable computational assumptions.

We use the following definition in the proof of Theorem 3.

Definition 12. (Bilinear pairing) Let G1, G2 be cyclic multiplicative groups of
prime order w such that the discrete logarithm problem in both is hard. A bi-
linear pairing is a map ê : G1 × G1 �→ G2 that satisfies the following proper-
ties [20,21,22]:

1. Bilinearity: ê(ax, by) = ê(a, b)xy ∀a, b ∈ G1 and x, y ∈ Zw.
2. Non-degeneracy: If g is a generator of G1 then ê(g, g) is a generator of G2.
3. Computability: The map ê is efficiently computable.
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Proof. (of Theorem 3) We prove this by construction using an encryption scheme
described in [20]. Define a symmetric encryption scheme E = (G, E, D) as fol-
lows.

1. Key Generation: Let ê : G1 × G1 �→ G2 be a bilinear pairing over cyclic
multiplicative groups as defined above (such maps are known to exist). Let
|G1| = |G2| = w (prime) such that �log2(w)� = l. Pick random g

R← G1\{1}
and define H : G2 �→ {0, 1}l to be a hash function. Pick x

R← G1 and define
K = (ê, G1, G2, w, g,H, x). The encryption/decryption key is K.

2. Encryption: Parse K as (ê, G1, G2, w, g,H, x). Let m ∈ {0, 1}l be a message
and α ∈ Zw be a random value. The encryption family E is:

E[K] : {0, 1}l × Zw � (m, α) �→ (H(ê(xα, g))⊕m, gα) ∈ {0, 1}l ×G1 .

3. Decryption: Parse K as (ê, G1, G2, w, g,H, x). The decryption family D is:

D[K] : {0, 1}l ×G1 � (c1, c2) �→ H(ê(c2, x))⊕ c1 ∈ {0, 1}l .

It can be verified that D[K](E[K](m, α)) = m for valid values of (m, α). The
scheme can be proven to be CPA secure if H is a random oracle and w is suffi-
ciently large. We construct an obfuscation of the E[K] oracle that converts E into
a CPA secure asymmetric encryption scheme under a computational assumption.

The obfuscator O: The input is (E, K).

1. Parse K as (ê, G1, G2, w, g,H, x). Set y ← ê(x, g).
2. Set K ′ ← (ê, G1, G2, w, g,H, y) and define family F with key K ′ as:

F [K ′] : {0, 1}l × Zw � (m, α) �→ (H(yα)⊕m, gα) ∈ {0, 1}l ×G1 .

3. Output F [K ′].

Claim. O is an obfuscator satisfying WBP for (E, sn), where sn
def= “IND-CPA

security of E”, assuming that the bilinear Diffie-Hellman assumption [20] holds
in (G1, G2) and H is a random oracle.

Proof. Appendix A describes the IND-CCA2 security notion. IND-CPA is a
restricted version where the family D is absent. First note that the obfuscator
satisfies correctness for E because F [K ′] = E[K]. The proof of the above claim
follows from the security of the BasicPUB scheme of [20].

Claim. If H is one-way then E ∈ PTF\ALF. (See full version [19] for proof.)

This completes the proof of Theorem 3.

Remark 1. To justify the particular scheme (instead of RSA/ElGamal) in the
above proof, observe that RSA does not enjoy the security notion of IND-CPA,
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while encryption in ElGamal is learnable (to see this, consider access to the
ElGamal encryption oracle and obtain encryption of 1 using randomness 1).

Trivial Families: Let Q ∈ LF. Then it is easy to construct an obfuscator sat-
isfying UWBP for Q with a non-negligible probability (same as that of learning
Q). We call such families trivial.

Although Theorem 1 rules out the possibility of obfuscators satisfying UWBP
for a Q ∈ PTF\ALF (which includes most non-trivial families), it does not rule
out the possibility of obfuscators satisfying UWBP for some non-trivial Q ∈ ALF
(i.e., Q ∈ ALF\LF), which is our next positive result.

Theorem 4 (UWBP for a Non-Trivial Family). Under reasonable assump-
tions, there exists (O, Q) ∈ PPT× ALF\LF s.t. O satisfies UWBP for Q.

We refer to the full version [19] for the proof.

6 Conclusion

White-Box Cryptography (WBC) is of practical importance. Unfortunately, it
lacks a theoretical foundation. This paper provides an initial step towards a formal-
ization of WBC. To achieve this, we introduce the White-Box Property (WBP),
which defines how much ‘useful’ information is leaked via the obfuscation in the
context of an application. We present (im)possibility results about reductions be-
tween WBC and obfuscation. Specifically, we show that any obfuscator fails to
satisfy the Universal White-Box Property (UWBP) for non-learnable families by
presenting a (contrived) security notion that is satisfied in ‘black-box’ setting, but
fails when an adversaryhas white-box access to the obfuscation. However, we show
that UWBP can be achieved for non-learnable, but approximate learnable fami-
lies. Further, we show that there exists a non-learnable family and an obfuscator
satisfying WBP for that family under a meaningful security notion. In particular,
we described an obfuscator that turns a IND-CPA secure symmetric scheme into
an IND-CPA secure asymmetric encryption scheme.
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A The IND-CCA2 Security Notion

Let E = (G, E, D) be a symmetric encryption scheme. The key generation al-
gorithm, G takes in as input the security parameter (1k) and a k bit random
string. It outputs a k bit symmetric key K. As an example, we describe In-
distinguishability under Adaptive Chosen Ciphertext Attack (IND-CCA2) of E
using security notion ind-cca2-E = (3, pin,Q, Extr, Win), with pin(k) = 2k + 1
and Q = (E,D,C) (see Algorithm 4).

Function E[K](α, m) :
output E(K,α, m); // (K, α, m) = (key, randomness, plaintext)

Function D[K](c) :
output D(K, c); // (K, c) = (key, ciphertext)

Function C[(b, K, β)](m0, m1) :
// The challenge oracle. (b, K, β) = (bit, key, randomness)

if (|m0| = |m1|) then output E(K,β, mb) else output 0.
Function Extr(r) :

parse r as (γ, β, b); // r ∈ {0, 1}2k+1;(γ, β, b) ∈ {0, 1}k × {0, 1}k × {0, 1}
K ← G(1|γ|, γ);
output K, K, (b, K, β);

Function Win(r,Queries, s) :
Parse r as (γ, β, b);
if (≤ 1 query to C) ∧ (no query to D on output of C) ∧ (s = b) then
output 1 else output 0.

Algorithm 4. Security Notion ind-cca2-E

http://eprint.iacr.org/
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Abstract. We present a calculus for detecting guessing attacks, based
on oracles that instantiate cryptographic functions. Adversaries can ob-
serve oracles, or control them either on-line or off-line. These relations
can be established by protocol analysis in the presence of a Dolev-Yao
intruder, and the derived guessing rules can be used together with stan-
dard intruder deductions. Our rules also handle partial verifiers that fit
more than one secret. We show how to derive a known weakness in the
Anderson-Lomas protocol, and new vulnerabilities for a known faulty
ATM system.

1 Introduction and Related Work

Analyzing vulnerability to guessing attacks is of high practical relevance. A value
is deemed guessable if it has small entropy (is chosen from a small cardinality
set), and the guess can be verified. An adversary can perform guessing by off-line
computation, or on-line, exploiting the interaction with honest participants.

Conceptually, guessing involves two steps. Any protocol must have a genera-
tion oracle which computes some value (the verifier), given the secret as input.
Next, a boolean verification oracle compares a verifier for the guess with one
computed for the actual secret. We use the term oracle for an abstract object
that produces a value, regardless of how the computation is done. In particular,
the adversary might use other participants as on-line oracles for this purpose.

Separating the verifier generation from the verification itself, and modeling
them as oracles is key to our analysis of guessing attacks in both off-line and
on-line settings. It is often argued that on-line guessing can be blocked after a
threshold of incorrect guesses. However, if the adversary’s guesses are cached as
valid protocol interactions, relying on blocking is not a justified defense.

Our analysis identifies various guessing situations with partial or complete
view over inputs and outputs of oracles and with off-line, on-line or blockable on-
line oracle access. We provide inference rules which can detect guessing attacks
in these situations. Once such a vulnerability is detected, it is up to further
review to decide if it can be removed by limiting protocol runs. We will also
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distinguish pre-computed dictionary guessing as a particularly dangerous case:
the adversary can build an off-line dictionary which is reusable and constitutes
a time-memory trade-off.

Related Work

A classification into off-line, detectable, and undetectable on-line guessing at-
tacks is given in [1], recognizing that principals can be used to perform computa-
tion, without this being detectable. However, attack detection is not formalized.

Lowe’s rules [2] construct new terms of intruder knowledge from the guessed
value. Tracking that a term is obtained in two different ways confirms the guess.
Special cases avoid false deductions. In [3], substituting the guess with a fresh
term provides the second derivation; [4] has a dual set of Dolev-Yao deduction
rules with an explicit comparison rule and gives complexity results. In [5], an
intruder checks that two maps of terms constructed by exhaustive candidate
enumeration correspond on exactly one entry. This approach can model simul-
taneous guesses of several message components but is limited to off-line attacks.

Equational theories and static equivalence are used in [6] for applied pi-
calculus, and in [7] showing computational indistinguishability; [8] uses a con-
straint solving algorithm for an equational theory given as a convergent term
rewriting system. Blanchet’s tool ProVerif [9] detects off-line guessing attacks.

Our approach is based on Dolev-Yao-style deductions, with an adversary ob-
serving or controlling oracles for functions that are injective in the secret. Correct
guessing is confirmed by checking relations on inputs and outputs of the oracle,
or on the output of its inverse (e.g., in the case of encryption). We extend this to
functions that match several secrets, but allow verification based on more than
one observation, giving guessing a probabilistic meaning. Our guessing rules con-
tain bounds that are sufficient to achieve a correct guess in the average case.

2 Adversary Relations with Oracles

We write A � x if A can guess x, and A �D x for guessing using pre-computed
dictionaries. These are a space-time tradeoff: if A �D x, then A can also guess
without pre-computed dictionaries by just repeating the dictionary construction.

A value is guessed only if it is also verified. Thus, if A can guess x, then A
knows x, i.e., a guessed value can be used in further reasoning, together with the
usual rules that describe how a Dolev-Yao intruder can acquire its knowledge.

We denote by Of(·) an oracle which computes the value of function f for any
provided input. We define two relations between adversary and oracles: observes
and controls, with different variants: off-line, on-line and on-line blockable, when
the adversary presence is detected and the protocol stopped.

The adversary observes the output of oracle Of(·), written Adv � Of(·), if
a protocol state is reachable where Adv knows f(T ) for some term T . Thus,
observes is a protocol property. The placeholders � and � specify whether oracle
inputs are known, completely or in part, e.g., Adv � Of(�) means that Adv
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observes the output of an oracle but knows only part of its input. This allows us
to relate the adversary’s observation of oracle outputs with that of its inputs.

Adv may observe Of(·) using on-line access to the protocol, initial knowledge,
standard Dolev-Yao deductions, and off-line computation. In a stronger case, Adv
might know the function f , and apply it off-line to any known term.

Adv controls the oracle Of(·), i.e., can compute f(x) for an input x of its
choice if for any x ∈ dom f chosen by Adv in the initial protocol state, a state
where Adv knows f(x) is reachable, regardless of the actions chosen by the other
participants. As with observations, this can occur off-line or on-line.

In the strongest case, Adv knows all oracle parameters, and can compute f
off-line: Adv ctloff Of(·). Second, Adv can have on-line control of an oracle if a
protocol participant provides this service. However, it is important to distinguish
whether the protocol ends normally or adversary intervention may be detected.

Let (1) A→ B : m and (2) B → A : Ek(m). Adv can send B any value m; the
protocol ends normally, and Adv knows Ek(m). Thus, Adv has unrestricted, non-
blockable online control of the oracle, Adv ctlnbOf(·). Now let (1) A → B : mA,
(2) B → A : mB, Ek(mA), (3) A→ B : Ek(mB). Again, Adv obtains Ek(m), but
cannot compute Ek(mB), so the protocol is not completed. Adv has blockable
control of the oracle, denoted Adv ctlblOf(·), since incorrect termination may be
detected and subsequent protocol runs be blocked by the honest participant(s).

Controlling an oracle implies seeing both its inputs and outputs, therefore:

Adv ctloff Of(·)
Adv �Of(�)

Adv ctlnbOf(·)
Adv � nbOf(�)

Adv ctlblOf(·)
Adv � blOf(�)

(1)

Observation, off-line or non-blocking on-line control produce no different protocol
behavior, thus guesses can go undetected. Yet, guessing using blockable access is
also feasible, if a single oracle access suffices for verification.

The number of oracle accesses affects the feasibility of a guess. We specify
lower bounds for observes and controls : Adv � bO

f(·) and Adv ctlbOf(·) mean
that Adv observes at least b distinct independent outputs of Of(·) (respectively,
observes outputs of Of(·) for b chosen inputs) over different protocol runs. Bounds
on these relations are deduced from the protocol description. If A→ B : H(NA),
then since NA is randomly chosen, Adv � bO

g(·) for any b ≤ |NA| (set cardinal-
ity). However, if A → B : idA, H(idA.kAB), the oracle input is constant (and only
partially visible, since kAB is unknown), and we can only state Adv � 1O

g(�).
Our goal is to conservatively warn for guessing attacks, thus we do not use upper
bounds to rule out attacks, although the approach could be extended.

3 Rules for Guessing

3.1 Outline of the Approach

We formalize guessing attacks done under two distinct circumstances:

1) Adv knows the output of a function f computed on the secret (and optionally,
known additional inputs). Using an oracle Of(·) for f , Adv computes f on all
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possible secret values (with the known extra inputs), and verifies the guess com-
paring with the known output for the secret. Examples are: Adv knows H(s),
i.e., the output of the function f(x) = H(x) on s, or Adv knows m,MAC s(m),
i.e., the output of the f(x, y) = MAC x(y) on s and a second known input m.
To verify the guess, f must be injective, otherwise more secrets can verify one
output. In this case, we will formalize guessing using several outputs for the
same secret (with different additional inputs).

2) Adv knows one or more outputs of an invertible function f computed on the
secret and some additional, possibly unknown inputs. The adversary uses an
oracle for the inverse of f and computes the inputs to the known output(s) for
each possible value of the secret. A guess is verified using a known property that
identifies the correct input(s) to f . This may be: (1) a relation to a known value
(a known part of the input to f), (2) a relation between different parts of the
same input, or, (3) if there are several inputs, a relation between them. For (1),
knowing Es(idA.m), Adv can guess s by checking for the known value idA in the
input (obtained by inverting the output, i.e. by decryption with all s). For (2), if
Adv knows Es(m, m), he can check for which value of s the result of decryption
(inversion) has identical halves (a relation between parts of the original input).
For (3), knowing Es(H(m)) and Es(m), Adv inverts both outputs and checks if
the two inputs are related by means of H .

This way of verifying the guess is valid only if the inverse of f behaves as a
pseudo-random function for a wrong value of s. Therefore, we allow this guessing
rule only for encryption and decryption functions with keys dependent on s.

Our proposed approach works as follows: first, potential guessing opportuni-
ties are detected by matching them with one of the aforementioned situations,
which are formalized in the guessing lemma of the next section. Next, oracle def-
inition rules based on Dolev-Yao intruder capabilities are used to infer whether
Adv has access to the required oracles. If so, we warn that guessing is feasible.

3.2 The Guessing Lemma

Definition 1. Given σ ∈ {0, 1}k, we call a function f(σ, x) distinguishing in
its first argument if there exists an algorithm Df , polynomial-time in k, that
outputs a set S = {x1, x2, ..., xp(k)} such that the probability that there exists
s1 �= s2 such that ∀xi ∈ S . f(s1, xi) = f(s2, xi) is negligible, i.e., Pr[f(s1, xi) =
f(s2, xi), i = 1 .. p(k), s1 �= s2] ≤ v(k).

Here p(k) is a polynomial in k and v(k) is a negligible function, i.e., ∀c ≥ 0 there
exists kc such that ∀k ≥ kc . v(k) < k−c. For our calculus we use a notion that
is more precise quantitatively, strongly distinguishing function in q queries :

Definition 2. Given σ ∈ {0, 1}k, we call a function f(σ, x) strongly distin-
guishing in the first argument after q queries, if given any q distinct queries
{x1, x2, ..., xq}, ∀s1 �= s2 the probability that f(s1, xi) = f(s2, xi) for all i = 1 .. q
is at most 2−k, i.e., ∀s1 �= s2 . Pr[f(s1, xi) = f(s2, xi), i = 1 .. q] ≤ 2−k.
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Note that any injective function with one argument is strongly distinguishing in
one query, if we consider the second argument to be null.

The second definition allows us to give a quantitative bound on the number
of attempts needed for guessing. Assuming we know q outputs of f(s1, x) for
the unknown secret s1 and x ∈ {x1, x2, ..., xq}, then after q queries to f(s, x)
for each candidate value s ∈ {0, 1}k, in average only the correct secret s1 will
match all known outputs of f . With our definition of distinguishing and strongly
distinguishing functions we do not aim to guarantee uniqueness of the secret,
but to give guessing a probabilistic meaning which addresses the average case.

Example 1. Let 	s	 denote a term obtained by concatenating something to
s (to the left, right of s or both). Then E�s�(·), D�s�(·) are distinguishing and
strongly distinguishing in one query assuming that encryption and decryption
with different keys performed on the same value cannot yield the same result.
Also, H(	s	) is distinguishing and strongly distinguishing in one query if H is
collision-free on the argument range of 	s	.

Example 2. Let g(σ, x) = H(σ, x) mod 2l, s ∈ {0, 1}k. If H outputs more than
l bits, one query is not sufficient to distinguish the secret. After q queries with
x ∈ {x1, x2, ..., xq} we have Pr[H(s1, x) = H(s2, x)] = 2−ql for any s1 �= s2.
If the input space is {0, 1}k, the average number of values for which collisions
occur after q queries is 2k−ql, therefore g is strongly distinguishing in k/l queries.

To express our guessing rules, we first formalize the ability of the adversary to
find relations between oracle observations or subterms thereof.

Definition 3. Given a function h and a list of terms α, we say there is a relation
under h with arguments from α, denoted R(h, α), if the adversary can establish
an equality h(β) = γ such that: i) β, γ are terms constructed from the adversary
knowledge and two disjoint subsets of terms from α, with at least one subset
non-empty; ii) h(β) is injective in at least one input that comes from α, with all
other inputs kept constant.

This relation is used in the guessing lemma. Condition i) forces Adv to validate
a guess by using at least one term deduced after the guess, while condition ii)
avoids trivial identities with terms that can result from a wrong guess.

Lemma 1 (Guessing Lemma). Let s ∈ {0, 1}k be a low-entropy value (i.e.,
2k computation steps are feasible), and f an strongly distinguishing function in
q queries. The following guessing rules hold:

i) If Adv � b1O
f(s, �) and Adv ctlb2Of(·, ·), then Adv can guess s with q obser-

vations of Of(s, ·) and q ·2k queries to Of(·, ·), i.e.

Adv� b1Of(s,�) ∧ Adv ctlb2Of(·, ·)
Adv � s

b1 ≥ q

b2 ≥ q · 2k (2)

ii) If Adv � b1O
Ef(s,�)(α), Adv ctlb2{ODf(·,·)(·), Oh(·)}, and R(h, α), then Adv

can guess s with q observations of OEf(s,·)(·) and q·2k queries to ODf(·,·)(·), Oh(·).
Adv� b1OEf(s,�) (α) ∧ Adv ctlb2{ODf(·,·) (·), Oh(·)} ∧ R(h, α)

Adv � s

b1 ≥ q

b2 ≥ q ·2k (3)
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iii) If Adv � b1O
Ef(s,�)(αi), with distinct αi, Adv ctlb2{ODf(·,·) (·), Oh(·)}, and

R(h, α), with α = (α1, . . . , αn), then Adv can guess s with q observations of
OEf(s,·)(·) and q ·2k queries to ODf(·,·) (·), Oh(·).

Adv� b1OEf(s,�) (αi) ∧ Adv ctlb2{ODf(·,·) (·), Oh(·)} ∧ R(h, α)
Adv � s

b1 ≥ q
b2 ≥ q ·2k (4)

Proof sketch. In case i) by Def. 2, for q observations of Of(s, ·), in average only
one s verifies the input-output relation, so b1 ≥ q suffices. Thus, Adv can find s
by making queries to Of(·, ·) with all 2k values of s and the q observed inputs,
then verify them against the q observed outputs for Of(s, ·).

A sufficient bound on queries is q ·2k, however fewer queries are needed since
each query reduces the number of candidates for s in average by a factor of 2k/q.

Cases ii) and iii) are similar, but require the additional queries to Oh(·). If
R(h, α) holds for the encryption input, this confirms the secret.

Case (i) is a direct match of the oracle output. Case (ii) matches the input and
part of the decryption output, e.g., when Adv knows {m, Es(	H(m)	)} or a rela-
tion between parts of the decrypted output, e.g., if Adv knows Es(	m	H(m)	).
Adv controls the decryption oracle and thus can check for H(m) in the decryp-
tion result for all values of the secret. Case (iii) matches different inputs to the
same oracle, e.g., when Adv knows {Es(	m	), Es(	H(m)	}.
Corollary 1. In case i) of the Guessing Lemma, if Of(s, ·) has no random inputs,
or Adv controls the oracle Of(s, ·) (i.e., can choose all inputs, the q observations
become queries), then Adv can do pre-computed dictionary guessing:

Adv� b1Of(s, �) ∧ Adv ctlb2Of(·, ·)
Adv �D s

Adv ctlb1Of(s, ·) ∧ Adv ctlb2Of(·, ·)
Adv �D s

b1≥q
b2≥q ·2k (5)

Example 3. Let E be deterministic encryption and H a hash function. Then,
Ek(·), H(·), and E·(α) are injective, and thus strongly distinguishing in one query.

By Corollary 1: Adv� 1O
g(s) ∧ Adv ctlnb Og(·)
Adv �D s

Adv� 1O
Ek (s) ∧ Adv ctlnb OEk (·)

Adv �D s

Adv� 1O
E(α)(s) ∧ Adv ctlnb OE(α)(·)

Adv �D s
(6)

We have used ctlnb which is weaker than ctloff but sufficient to verify a guess.

4 Case Studies

4.1 Anderson-Lomas Protocol

We focus on protocols which expose verifiers that fit more than one secret, a
case not previously addressed using guessing rules. The Anderson-Lomas proto-
col [10] is relevant for the ingenuity in constructing password verifiers by using a
collisionful hash function, i.e., a function q(k, x) for which given x one can find
k′ �= k such that q(k, x) = q(k′, x). The protocol description is as follows:
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(1) A→ B : grA (3) A→ B : H(MAC pwgrArB mod 2m, grArB )
(2) B → A : grB (4) B → A : H(MACH(pw)g

rArB mod 2m, grArB )

Here, grArB is the regular key from the Diffie-Hellman-Merkle key exchange
protocol and pw is the password shared between A and B while m is a fixed
constant suggested to be n/2 if the size of the password space is 2n.

Let Adv play the role of B and consider the oracle Of(·, ·), with f(x, y) =
H(MAC x(y) mod 2m, y). If the secret has k bits then f is strongly distinguishing
in k/m queries. By choosing grA , Adv can compute grArB and therefore knows
both the input and output of Of . Then, we have

Adv � b1Of(s, �) ∧ Adv ctlb2Of(·, ·)
Adv � pw

b1 ≥ k
m

b2 ≥ k
m

· 2k (7)

according to case (i) of the guessing lemma which allows us to formalize the
attack originally presented in [10] and explain it using a general guessing rule.

4.2 The Norwegian ATM

With our calculus we formalize attacks in a Norwegian ATM system, shown to
be flawed in [11]. The system attempts to increase password security by hiding
the verifier. Cards store the PIN encrypted with a bank key BK , truncated to
16 bits: �DESBK (PIN )�16 (simplified, since the PIN is not encrypted directly).

To find the PIN of a stolen card, Adv cannot guess the PIN off-line without
BK , since for each PIN about 240 of 256 DES keys match. However, [11] presents
a more subtle attack. Adv gets several honest cards from the same bank. Each
known PIN reduces the number of candidate keys by a factor of 216. On average,
4 honest cards suffice to find BK , and then guess the PIN of the stolen card.

The services provided by the bank and ATM to a user are summarized below:

Card issuing stage: Bank → User : �DESBK (PIN )�16,PIN
PIN change procedure: User → ATM : �DESBK (PIN old )�16,PIN old ,PIN new

ATM → User : �DESBK (PIN new )�16
We assume PIN and card (holding �DESBK (PIN )�16) are issued securely,

otherwise a Dolev-Yao adversary could get the PIN directly from the protocol.
Since log2 |PIN | < 16, �DESBK (·)�16 is strongly distinguishing in one query

and Adv can guess the PIN using the PIN change procedure as oracle:

Adv knows DESBK (PIN )�16
Adv � 1O

�DESBK (·)�16(PIN )

Adv → PIN new ATM → DESBK (PIN new )�16
Adv ctlnbO�DESBK (·)�16(·)

Adv �D PIN (8)

In reality, the PIN is encrypted concatenated with a card-specific value CV .
Thus, changing the PIN no longer controls the encryption oracle. To find the
PIN, Adv must simulate the oracle himself, and for this, BK must be known:

Adv knows DESBK (PIN .CV )�16
Adv � 1O

�DESBK (·)�16(PIN .CV )
Adv knows BK

Adv ctloff O�DESBK (·)�16

Adv � PIN (9)
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For this goal, Adv needs to observe an oracle output on BK . One possibility
is in the card issuing stage. Let f(σ, x) = �DESσ(x)�16. Then, f is strongly
distinguishing in 4 queries since the DES key has 56 bits, and we have:

Adv knows PIN .CV1..4, DESBK (PIN .CV1..4)�16
Adv � 4O

f(BK , ·) Adv ctloff Of(·, ·)
Adv � BK (10)

Another option comes again from controlling the PIN change procedure. Let
g(σ, x) = �DESσ(CV.x)�16 for a card of the adversary with value CV . Then,

Adv ctlnbOg(BK , ·) Adv ctloff Og(·, ·)
Adv � BK (11)

This attack fits the real-world situation where the adversary can change his own
PIN and is new to the best of our knowledge. In [11], only the attack using several
cards from the bank (to guess all DES key bits) is given. Moreover, our calculus
distinguishes two ways to find BK . The attacks illustrate both dictionary and
and pre-computed dictionary guessing.

5 Conclusions

We have introduced a calculus based on oracles for detecting guessing attacks,
with rules that supplement the deductions of a Dolev-Yao intruder. The rules
are based on observes and controls relations between the adversary and oracles.
Conceptually separating generating the verifier from verifying the guess justifies
consideration of on-line guessing attacks which may not be detected and blocked.
The calculus can be used in a mixed on-line/off-line setting. Our guessing rules
also handle protocols with verifiers that match more than one secret. In this
case, guessing has a probabilistic meaning, and our rules give sufficient bounds
on the number of observations for successful attacks. We formalize the known
flaws in the Anderson-Lomas and Norwegian ATM protocols in this framework.
For the ATM protocol, our calculus finds new attacks based on a PIN change
procedure and on the use of the ATM as encryption oracle.

Acknowledgments. Thanks to Cas Cremers who helped clarify a first writeup
of our approach and to the anonymous reviewers for their valuable comments.
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Abstract. The recently started SHA-3 competition in order to find a
new secure hash standard and thus a replacement for SHA-1/SHA-2 has
attracted a lot of interest in the academic world as well as in industry.
There are 51 round one candidates building on sometimes very different
principles.

In this paper, we show how to attack two of the 51 round one hash
functions. The attacks have in common that they exploit structural weak-
nesses in the design of the hash function and are independent of the
underlying compression function. First, we present a preimage attack on
the hash function Blender-n. It has a complexity of about n · 2n/2 and
negligible memory requirements. Secondly, we show practical collision
and preimage attacks on DCH-n. To be more precise, we can trivially
construct a (28 + 2)-block collision for DCH-n and a 1297-block preim-
age with only 521 compression function evaluations. The attacks on both
hash functions work for all output sizes and render the hash functions
broken.

Keywords: Hash functions, collision attacks, preimage attacks, SHA-3,
Blender, DCH.

1 Introduction

Until 2005, the number of papers on the cryptanalysis of hash functions was
quite easy to overlook. This changed significantly with the dawn of the work
of Wang et al. [1,2]. The weaknesses discovered in MD5 and SHA-1 had wide
reaching consequences and were a wake-up call for both academia and industry.
The SHA-2 family [3] was only considered to be a temporary solution. Although
no full attacks on a member of SHA-2 have been found to date, the fact that
the design and security principles are very close to those of SHA-1 raised doubts
about the long term security of the SHA-2 family.

As a consequence, the National Institute of Standards and Technology (NIST)
has launched a similar competition [4] as it has done for the Advanced Encryption
Standard (AES) to replace DES. This time, the goal is to find a new secure hash
standard SHA-3. As of now, 51 submissions have advanced to the first round of
the SHA-3 competition. Supported by the cryptographic community, the task
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of NIST is now to find the best hash function in terms of a wide spectrum of
requirements, such as speed and security.
The proposals of round one are based on a great variety of security considerations
and design principles. Many of them are block cipher based, using especially AES
or parts of AES as building blocks. Some hash functions are based on asymmetric
primitives and again others are mere curiosities. From the design perspective,
there are Merkle-Damg̊ard [5,6] constructions and variations thereof, sponge
constructions [7], HAIFA constructions [8], wide pipe constructions [9], etc.

In this paper, we want to demonstrate vulnerabilities of two designs, namely
the hash functions Blender-n [10] and DCH-n [11]. Although they are both based
on quite different design principles, they have in common that an attacker can
omit the tedious task of going into the details of the respective round transfor-
mations. We have identified weaknesses in both design principles.

We present a structural preimage attack on the hash function Blender-n that
has a complexity of about n · 2n/2 and negligible memory requirements. Fur-
thermore, we show practical collision and preimage attacks on DCH-n and show
that we can trivially construct a 28 + 2-block (multi)-collision for DCH-n and
1297-block preimages with only 521 compression function evaluations.

Our paper underlines the importance of a well founded design principle for a
hash function since a bad choice of the iteration mode renders the efforts put in
the compression function design ineffectual.

The paper is organized as follows. Section 2 describes our preimage attack
on Blender-n. Then, Section 3 demonstrates a practical collision and a practical
(second) preimage attack on DCH-n. In Section 4 we conclude.

2 A Preimage Attack on Blender-n

In this section, we present a preimage attack on Blender-n with a complexity of
about n · 2n/2 and negligible memory requirements. The attack is independent
of the compression function of Blender-n and works for all output sizes. A very
similar preimage attack for Blender-n was independently proposed in [12]. It has
a slightly higher attack complexity of about n ·2(n+w)/2, where w is 32 or 64 bits
depending on the word size of the hash function. We are well aware of the attacks
on Blender-n which concentrate on the internal structure of the compression
function presented in [13,14,15]. Even though our attack is less efficient compared
to the attack [14], it is superior in the sense that it isn’t affected by any tweak to
the compression function. Furthermore, due to the generic nature of our attack,
it may be applicable to a wider range of hash function designs. For example,
the SHA-3 candidate AURORA has been recently broken by similar principles
[16,17,18].

2.1 Description of Blender-n

The hash function Blender-n is an iterated hash function. It processes message
blocks of 32 (or 64) bits and produces a hash value of 224, 256 (or 384, 512)
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f f f ff

1 2 t 1 2

Fig. 1. Structure of the hash function Blender-n

bits. If the message length is not a multiple of 32 (or 64) bits, an unambiguous
padding method is applied. For the description of the padding method we refer
to [10]. Let W = W1‖W2‖ · · · ‖Wt be a t-block message (after padding).

In the following ¬ denotes the bitwise complement and Σ denotes summation
modulo 2w where w is the wordsize (32 or 64-bit). The hash value h is computed
from the chaining values Ai as follows (see Figure 1):

h = Σt+2
i=1Ai .

The chaining values Ai are computed as follows:

A0 = IV (1)
Ai = f(Ai−1, Wi) for 0 < i ≤ t (2)

At+1 = f(At, Σ1) (3)
At+2 = f(At+1, Σ2) , (4)

where Σ1 = ¬Σt
i=1Wi, Σ2 = Σt

i=1¬Wi and IV is a predefined initial value.
As can be seen in (3) and (4), Blender-n specifies two checksums (Σ1 and

Σ2) consisting of the modular addition of all message blocks, which are then
input to the two final application of the compression function f . Computing this
checksum is not part of most commonly used hash functions such as MD5 and
SHA-1.

The compression function f basically consist of 4 steps:

1. Compute the preliminary intermediate values using add-with-carry.
2. Compute the rotation factor r.
3. Rotate the intermediate values.
4. Compute the next state Ai.

For a detailed description of the Blender-n compression function we refer to [10],
since we do not need it for our analysis.

2.2 A Preimage Attack on Blender-n

In this section, we present a preimage attack on the hash function Blender-n.
It has a complexity of about n · 2n/2 and negligible memory requirements. It is
based on the following two observations.
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Observation 1. The checksums Σ1 and Σ2 are strongly related.

In other words, the second checksum does not increase the security of Blender-n.
This will be very useful for our attack. Let X = Σt

i=1Wi then:

Σ1 = ¬Σt
i=1Wi = ¬X

Σ2 = Σt
i=1¬Wi = Σt

i=1(−Wi − 1) = −t−Σt
i=1Wi = −t−X

Note that −Wi = ¬Wi + 1 and hence ¬Wi = −Wi − 1.

Observation 2. The final hash value h of Blender-n is computed from the
chaining values Ai by modular additions.

In other words, the computation of h is invertible. This will be very useful for
our attack. Assume, that we can find 2n messages w∗ (and hence chaining values
A∗

i for 0 < i ≤ t), such that all produce the same value At and X , then we have
constructed a preimage for h. This is similar to recent attacks on GOST [19] and
Damg̊ard-Merkle hash functions with linear or additive checksums [20].

Based on this short description, we will now show how to find messages w∗

which all produce the same value At and lead to the same checksum value with
a complexity of about n ·2n/2 and negligible memory requirements. For the sake
of simplicity let n = 512 for the remainder of this section. Note that the attack
works similar for the other output sizes of Blender-n.

Assume we want to construct a preimage for Blender-512 consisting of 2561
message blocks, i.e. m = W1‖W2‖ · · · ‖W2561. The attack basically consists of
two steps and uses multicollisions. It can be summarized as follows.

STEP 1: Constructing the multicollision. A multicollision is a set of mes-
sages of equal length that all lead to the same hash value. As shown in [21],
constructing a 2t collision, i.e. 2t messages consisting of t message blocks which
all lead to the same chaining value, can be done with a complexity of about
t · 2n/2 for any iterated hash function.

In the attack we want to construct a 2512 collision for the iterative part (chain-
ing values), to get 2512 messages w∗ (and hence chaining values A∗

i ) leading to
the same value At and X . This has a complexity of about 512 · 2288 = 2297.

However, in the case of Blender-n constructing a multicollision is slightly more
complicated. First, due to the small size of the message blocks (64 bits) we need
several blocks to construct a collision in the chaining values. Second, to ensure
that Σ1 and Σ2 (respectively, X = Σk

i=1Wi) are equal we need one additional
block. In detail, by using 5 message blocks we can construct a collision in the
iterative part (chaining values) and the checksums. Since for Blender-512 the
chaining value has 512 bits and X has 64 bits, this has a complexity of about
2288 using a generic birthday attack.

However, due to the simple structure of the checksum value X , we can easily
guarantee that X collides by choosing the message blocks carefully in the attack.
It can be summarized as follows:
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1. Choose an arbitrary value for d.
2. For all 24·64 = 2256 choices of Wi, . . . , Wi+3 adjust Wi+4 accordingly such

that Σi+4
j=iWj = d is fulfilled and compute Ai+4 with i > 0.

3. After computing all 2256 candidates for Ai+4 we expect to find a collision
due to the birthday paradox.

In other words, we can find a collision for the iterative part (chaining values) and
X with a complexity of about 2256 instead of 2288. Furthermore, the memory
requirements can be significantly reduced by applying a memory-less variant of
the birthday attack [22].

Hence, we can construct a 2512 collision with a complexity of about 512·2256 =
2265 and negligible memory requirements.

STEP 2: Constructing the preimage for h. In the previous step we con-
structed a 2512 collision in the first 5 ·512 = 2560 iterations of the hash function.
Hence, we have 2512 messages w∗ leading to the same chaining value A2560 and
to a collision in X (and hence in the two checksums Σ1 and Σ2).

Next we append an additional message block W2561 to w∗ such that the
padding of each of the messages m∗ = w∗‖W2561 is correct. It is easy to see
that appending one message block has no effect on the multicollision in the
iterative part and the checksums.

From this set of 2512 messages m∗ that all lead to the same chaining value
A2560 and X , we now have to find a message m∗ having h as hash value. We
write h = h∗ + A2561 + A2562 + A2563 where h∗ is one of the 2512 values:

h∗ = Σ512
i=1(A

ri

5i−4 + Ari

5i−3 + · · ·+ Ari

5i),

with ri ∈ {0, 1}. Here, (A0
5i−4, A

0
5i−3, . . . , A

0
5i) and (A1

5i−4, A
1
5i−3, . . . , A

1
5i) are

the corresponding 5-block chaining values constituting the multicollision. To
find the correct h∗ and hence the message leading to the preimage of h we make
use of a meet-in-the-middle attack.

First, we save all values for

S1 = Σ256
i=1(A

ri

5i−4 + Ari

5i−3 + · · ·+ Ari

5i)

in the list L. Note that we have in total 2256 values for S1 in L. Second, we
compute

S2 = Σ512
i=257(A

ri

5i−4 + Ari

5i−3 + · · ·+ Ari

5i)

and check if h∗ − S2 is in the list L. After testing all 2256 values for S2, we
expect to find a matching entry in the list L and hence a message w∗ that
leads to h∗ = S1 + S2. This step of the attack has a complexity of 2256 and
memory requirements of 2256. Once we have found w∗, we have found a preimage
for Blender-512 consisting of 2560+1 message blocks, namely m∗ = w∗‖W2561.
Note that the memory requirements of the attack can significantly be reduced
by applying a memory-less variant of the meet-in-the-middle attack introduced
by Quisquater and Delescaille in [22].
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Hence, a preimage can be constructed for Blender-512 with a complexity of
2265 and negligible memory requirements. Note that in a similar way one can
construct preimages for all output sizes of Blender-n with a complexity of about
n · 2n/2.

3 Practical Collision and Preimage Attacks on DCH-n

3.1 Description of DCH-n

The hash function DCH-n [11], proposed by Wilson, is an iterated hash function
based on the Merkle-Damg̊ard design principle and produces a hash value of n =
224, 256, 384 or 512 bits. It processes message blocks of 504 bits and preprocesses
the input blocks by adding 8 bits of dithering input. At the end, standard MD
strengthening is applied.

In each iteration the compression function f is used to update the chaining
value of 512 bits as follows:

Hi+1 = f(Hi, Mi) = Hi ⊕Mi ⊕ g(Mi) , (5)

where g(M) is some non-linear transformation. The author of DCH-n claims
that the hash function makes use of the Miyaguchi-Preneel mode of operation
for block cipher based hash constructions [23]. Nevertheless, a quick look at
equation (5) shows that the chaining value Hi is not introduced to the non-linear
function g. This fact will be exploited by our attack. For a detailed description
of DCH-n we refer to [11].

3.2 Cryptanalysis

In this section, we will present our collision and preimage attack on DCH-n.
The attack is an extension of the attack of Khovratovich and Nikolic [24] and is
based on similar principles as the attacks on SMASH [25].

A 512-bit block Mi in iteration i consists of mi‖M ′
i , where mi is the 8-bit

dithering input and M ′
i is the original message block. The 8-bit dithering mi

consists of two parts. The 5 least significant bits are a simple counter, that
increments with every iteration. The 3 most significant bits are determined by
an encoding of the optimal moves in the “Towers of Hanoi”-sequence, where a
new step is generated whenever the 5-bit counter is reset. This sequence is a
square-free sequence and therefore assumed to be a good choice for dithering.
For closer details, we refer to [11]. At this point, we also want to refer to the
work of Andreeva et al. [26] that studies the limits on dithering based designs
in general.

Let us introduce the function γi(M ′
i) := g(mi‖M ′

i) ⊕ (mi‖M ′
i), that is, we

combine the XOR from the definition and the dithering corresponding to block
i into one function. Then (5) can be rewritten as:

Hi+1 = H0 ⊕ γ0(M ′
0)⊕ γ1(M ′

1)⊕ · · · ⊕ γi(M ′
i) (6)
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Collision Attack. We now describe the collision attack. We start with a mes-
sage consisting of N + 1 message blocks, m = M0‖M1‖ . . . ‖MN . Each Mi =
mi‖M ′

i , where mi is computed according to the dithering rule, for i = 0, . . . , N .
For an 8-bit dithering, there are only 28 possible dithering blocks, so if N is large
enough, there must be 0 ≤ i, j ≤ 28 with i �= j such that mi = mj and thus,
γi = γj . Based on (6), we have

HN+1 = H0 ⊕ γ0(M ′
0)⊕ γ1(M ′

1)⊕ · · · ⊕ γN (M ′
N).

So setting M ′
i = M ′

j = a ∈ {0, 1}504 for the above i �= j implies that these blocks
don’t contribute to the value HN+1 and can thus be freely chosen.

Without looking on the dithering rule for DCH-n, we simply could set N = 28

to get colliding messages having 28 + 2 blocks (one final block for the padding).
Note, that since the “Towers of Hanoi”-sequence only has 6 valid states, a smaller
choice for N would be N = 6 · 25 = 192. The bottom line is that we can trivially
construct collisions for DCH-n, independently of the concrete dithering method.
The messages in the colliding message pair consist of 28 + 2 message blocks.

Every choice of a ∈ {0, 1}504 leads to a collision. Hence, we can trivially
construct t-collisions (for 0 < t < 2504) for DCH-n. Note that these attacks
apply to DCH-n for all output sizes. Due to size considerations, we don’t include
an actual colliding message pair.

Preimage Attack. The core observation for the preimage attack is that the
outputs of DCH-n form a vector space of dimension n over GF (2). This can
be easily seen when looking at the alternative description of DCH-n in (6). A
similar approach was used in the attack on the hash function family SMASH-n
in [25]. Therefore, the task is to compute a basis of the vector space generated
by the DCH-n outputs in order to construct preimages for DCH-n. Again, the
only technicality we have to take care of is the dithering of the message blocks.

In the following we assume n = 512 since the other output lengths of DCH-n
result from truncations of DCH-512. To describe our preimage attack, we will
use he following two technical lemmas. As in the collision case we will need to
find different indices (i, j) for which the dithering blocks mi and mj , and thus,
γi and γj , are the same. For the collision attack we needed only one such index
pair whereas for the preimage case this won’t suffice. The first lemma will tell
us how many message blocks our preimage needs to have to guarantee a certain
number of such index pairs.

Lemma 1. For a message having N = 2 · � + 28 or more message blocks, we
can be certain to have at least � index pairs (i0, j0), . . . , (i�−1, j�−1) that satisfy
γik

= γjk
for all k and where all occurring indices are unique.

Proof. We need to guarantee that among all indices from 0, . . . , N − 1 we can
find � pairs as described above. If we take a look at the 8-bit dithering strings
mi for i = 0, . . . , N − 1 we know, that the 3 non-counter bits can only have 8
different values 0, 1, . . . 7 (actually 6 for the “Towers of Hanoi”-sequence). Let
n0, . . . , n7 denote the frequencies with which the values 0, . . . , 7 occur in the non-
counter part of the first N dithering messages. To every non-counter block, there
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correspond 25 counter blocks. Thus, N = 32 ·∑7
i=0 ni. From this, the number

of sought pairs (ik, jk) is

32 ·
7∑

i=0

⌊ni

2

⌋
= 32 ·

7∑
i=0

(ni

2
−

{ni

2

})
≥ N

2
− 27.

Therefore, N = 2 · � + 28 is a valid choice of N . ��
The second lemma is concerned with the probability that random vectors from
GF (2)n contain a basis and is a well known result (cf. [27]).

Lemma 2. The probability for � ≥ n vectors drawn uniformly at random from
GF (2)n, to span a space of dimension n is

n−1∏
i=0

2� − 2i

2�
=

n−1∏
i=0

(1 − 2i−�).

Now, the attack can be summarized as follows:

1. Assume we want to construct a preimage for h consisting of N + 1 message
blocks. Thus, we have to find a message M such that:

h = H0 ⊕
N⊕

i=0

γi(Mi) .

2. We choose the last message block MN such that the padding is correct.
3. Once we have fixed the last message block, we have to find the remaining

message blocks M ′
i for 0 ≤ i < N such that:

N−1⊕
i=0

γi(M ′
i) = h⊕H0 ⊕ γN (M ′

N ) (7)

4. According to Lemma 1 we choose N = 2 · � + 28 in order to have � ≥ 512
index pairs (i0, j0), . . . , (i�−1, j�−1) satisfying γik

= γjk
(where every ik, jk is

unique).
5. Next, we compute � vectors ak = γik

(Mk
0
′) ⊕ γjk

(Mk
1
′) for k = 0, . . . , �− 1

with random Mk
0
′ and Mk

1
′ and save the triples (ak, Mk

0
′
, Mk

1
′) in a list L.

6. From the set of � ≥ 512 vectors ak we try to compute a basis of the out-
put vector space of DCH-n. If we succeed, this means that we can basically
construct such a basis with a complexity of 2 · � compression function evalu-
ations. This can be reduced to � +1 evaluations of the compression function
by fixing the block Mk

0
′ and letting only the block Mk

1
′ vary when generating

the vectors ak in the previous step.
Lemma 2 implies that for a choice of � = 520 we already have a probability

of 0.9961 for finding a basis among the ak and thus need 521 compression
function evaluations. Note, that constructing the basis is a one time effort.
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Let now B = {ak0 , . . . , ak511} denote the basis for the output vector space
and let I =

⋃511
k=0 ik ∪ jk be the union of all the indices contributing to these

basis vectors. (For simplicity we assume that the first n pairs correspond to
the basis vectors.)

7. We divide the indices N = {0, . . . , N−1} into I and N \I. For every index i
in N \I we set M ′

i = 0 . . . 0. These message blocks correspond to the indices
not contributing to the basis. From (7) we thus get⊕

I
γi(M ′

i) = h⊕H0 ⊕ γN (M ′
N )

⊕
N\I

γi(0 . . . 0).

Once a basis B and the indices I are computed, the right side of the equation
is completely known and thus we have⊕

I
γi(M ′

i) = c

8. An arbitrary c can be represented with respect to this basis c = x0a
k0 +

· · ·+ x511a
k511 by solving the linear system over GF (2). Now we choose the

blocks M ′
i for i ∈ I as follows:

– If xk = 0 for 0 ≤ k < n, we set M ′
ik

= α and M ′
jk

= α for some arbitrary
value of α ∈ {0, 1}504 (as in the collision attack). In this case, γik

and γjk

are equal, these two values cancel out and don’t contribute to the result.
– If xk = 1 for 0 ≤ k < n, we set M ′

ik
= Mk

0
′ and M ′

jk
= Mk

1
′ such that

γik
(Mk

0
′)⊕ γjk

(Mk
1
′) = ak for 0 ≤ k < n.

Hence we can construct a preimage by solving a linear system of equations of
dimension 512 × 512 over GF (2). Constructing the basis has a complexity of
� + 1 compression function evaluations and is a one time effort.

Furthermore, the preimage attack can be used to construct second preimages
for DCH-n with the same complexity. Note that by using the above described
method, preimages (or second preimages) always consist of N + 1 = 2� + 28 + 1
message blocks.

4 Conclusion

In this paper, we were investigating two round one candidates of the SHA-3 hash
function competition of NIST. Namely, we were interested in a cryptanalysis of
DCH-n and Blender-n by solely investigating the iteration mode.

We showed a preimage attack on the hash function Blender-n for all out-
put sizes. The attack has a complexity of about n · 2n/2 compression function
evaluations and negligible memory requirements. It is based on structural weak-
nesses in the design of the hash function and is independent of the compression
function f . Furthermore, we also presented that it is trivial to construct colli-
sions and (second) preimages for DCH-n. The presented attack applies to all
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similar constructions not introducing the chaining variable into the compression
function.

We want to emphasize once more that the main target of the underlying
paper was to identify weak design philosophies of hash functions and to learn our
lessons from the attacks. It has to be noted that the vulnerabilities pinpointed
in this paper are not isolated cases. Our attack on Blender-n has quite some
resemblance to the attack on the Russian hash function standard GOST [19]
and the recent attack on the SHA-3 candidate AURORA [16,17,18]. The attacks
on DCH-n are relying on similar principles as the attacks on the hash function
SMASH [25].
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Abstract. We propose preimage and pseudo-preimage attacks on short
output lengths of the hash function 3-pass HAVAL, which is designed
to be able to output various hash lengths by one algorithm. HAVAL
executes a truncate function at the end of the hash computation in or-
der to produce various output lengths. If the hash value is truncated,
the internal state size becomes larger than the hash length. Hence, it
appears that finding attacks faster than the exhaustive search becomes
relatively hard. In this paper, we propose two types of preimage and
pseudo-preimage attacks based on the meet-in-the-middle attack. A key
point of our attack is how to deal with input information for truncate
functions. The first approach works for various types of truncate func-
tions. The second approach uses a property particular to the truncate
function of HAVAL. As far as we know, these are the first preimage and
pseudo-preimage attacks that work for short output lengths of HAVAL.

Keywords: HAVAL, hash, truncate, wide pipe, meet-in-the-middle,
preimage, pseudo-preimage.

1 Introduction

Due to a widespread use of cryptographic hash functions in many applications
such as digital signatures, password-based authentication, random number gen-
erators, they deserve a proper level of cryptanalytical attention. Hash functions
are required to satisfy security properties such as collision resistance, 2nd preim-
age resistance, and preimage resistance. When the length of the hash value is n
bits, collisions, 2nd preimages, and preimages should not be computed with less
than 2n/2, 2n, and 2n operations, respectively.

Designing secure hash functions is a challenging task. In fact, several hash
functions designed in the past such as MD5 [1] are now known to be vulner-
able against a collision attack [2]. Moreover, a preimage attack has also been
discovered recently [3]. To solve vulnerability of recent hash functions, NIST is
conducting SHA-3 competition [4] to determine a new hash function standard.

Several hash functions designed so far have a structure where the size of the
internal state is larger than that of the final output, and at the end of the com-
putation, the internal state is truncated to produce a desired output size. For
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example, HAVAL for short output lengths [5], SHA-224, and SHA-384 [6] have
such a structure. Intuitively, this structure contributes to prevent shortcut at-
tacks on hash functions because attackers need to control larger internal state
than the final output. Recently, several researches have shown that possessing
the larger internal state results in the strong or provable security of modes of
operation of hash functions. For example, Coron et al. proposed the chopMD
construction and proved its indifferentiability [7], Chang et al. improved its se-
curity bound [8], and Lucks proposed wide-pipe construction and showed its
security [9]. Note that many hash proposals to the SHA-3 competition have the
wide-pipe structure. Finally, we can say that it is important to analyze hash
functions whose internal state is larger than the output.

HAVAL [5] is a hash functions designed by Zheng, Pieprzyk, and Seberry
in 1992. It was designed so that various hash lengths could be produced by
one algorithm. HAVAL has three variants with different security levels called
x-pass HAVAL (x = 3, 4, 5). In this paper, we analyze 3-pass HAVAL. HAVAL is
based on Merkle-Damg̊ard construction, and its compression function is similar
to MD5. The internal state of HAVAL is 256 bits and the hash length can be
chosen from 128, 160, 192, 224, or 256 bits. When HAVAL produces a 128-, 160-,
192-, or 224-bit value, the last internal state is tailored by the truncate function.

Due to the simple structure, several attacks on 3-pass HAVAL are known
[10,11,12,2,13]. The first preimage attack on 3-pass HAVAL was proposed by
Aumasson et al. [14], where the attack complexity is 2230, and this was later
improved by Sasaki and Aoki [15] into 2225. (In this paper, the unit of the com-
plexity is one 3-pass HAVAL compression function operation.) Both preimage
attacks are targeting only 256-bit output. Since their complexities are more than
2224, they cannot be directly applied to 128-, 160-, 192-, and 224-bit output.

Another interesting concern is the importance of pseudo-preimage attacks.
A pseudo-preimage is a pair of a chaining variable x and a message M such
that CF (x, M) = y, where x may not be the initial value, y is a given hash
value, and CF is a compression function. It is known that if the size of x is
the same as the hash size1, a pseudo-preimage attack can be converted to a
preimage attack [16, Fact9.99]. In addition, we point out that regardless of the
size of the internal state, finding pseudo-preimages has stronger meaning than
breaking the Enhanced Target Collision Resistance (eTCR) property [17] as a
keyed hash function, where keys are used in the Key-via-IV approach. Hence, we
can say that hash functions should be strong against pseudo-preimage attacks.

One should note a preimage attack by Mendel et al. [18] on hash function
HAS-V [19] that can produce various hash lengths. Their attack and ours are
partially identical in terms of targeting short output variants. However, Mendel
et al. use almost the same technique to attack the short output variants.

1.1 Our Contributions

We present preimage and pseudo-preimage attacks on short output lengths of
3-pass HAVAL. We present two meet-in-the-middle based approaches.
1 Ref. [9] calls such a structure “narrow-pipe.”
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1. The first approach uses the property where the output length is shorter than
the internal state. This can be applied to not only the truncate function of
HAVAL, but also other ones as long as they can be inverted at a reasonable
cost. This approach finds pseudo-preimages of 3-pass HAVAL for 224-, 192-,
and 160-bit output.

2. The second approach performs the meet-in-the-middle attack at an appro-
priate position so that results of two independent searches can be compared
on variables of truncated size. This approach uses the property particular
to the truncate function of HAVAL. This approach finds pseudo-preimages
of 224-, 192-, 160-, and 128-bit output. Furthermore, the pseudo-preimage
attack on 224-bit output can be converted to a preimage attack.

The complexity of our attacks are summarized in Table 1. In this paper, due to
the limited space, we mainly discuss the attack framework and detailed procedure
for 224-bit output.

Table 1. Comparison of previous and our attacks

Reference Attack type 256 bits 224 bits 192 bits 160 bits 128 bits

Aumasson et al. [14] Pseudo-preimage 2224 - - - -
Preimage 2230 - - - -

Sasaki et al. [15] Pseudo-preimage 2192 - - - -
Preimage 2225 - - - -

Approach 1 Pseudo-preimage not target 2192 2160 2144 -
Ours Preimage not target - - - -

Approach 2 Pseudo-preimage not target 2160 2128 2106 284

Preimage not target 2209 - - -

Organization. In section 2, we describe HAVAL specification and related work.
In section 3, we explain new attacks based on the first approach. In section 4,
we explain new attacks based on the second approach. In section 5, we conclude
this paper.

2 Related Works

2.1 Description of 3-Pass HAVAL

HAVAL [5] is a hash function which compresses a message up to (264−1) bits into
128, 160, 192, 224, or 256 bits. HAVAL has the Merkle-Damg̊ard structure, which
uses a 256-bit (8-word) chaining variable and an 1024-bit (32-word) message
block to compute a compression function. After the last iteration of the Merkle-
Damg̊ard, a 256-bit chaining variable is processed by a truncate function to
obtain a desired length. We describe only part of the specification of 3-pass
HAVAL related to this paper. Please refer to Ref. [5] for details.
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Table 2. Message expansion πj

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
5 14 26 18 11 28 7 16 0 23 20 22 1 10 4 8 30 3 21 9 17 24 29 6 19 12 15 13 2 25 31 27

19 9 4 20 28 17 8 22 29 14 25 12 24 30 16 26 31 15 7 3 1 0 18 27 13 6 21 10 23 11 5 2

An input message M is padded to be a multiple of 1024 bits. A single bit
‘1’ is appended followed by ‘0’s until the length becomes 944 modulo 1024. At
the end, 3 bits representing the version number of HAVAL, 3 bits representing
the number of the pass, 10 bits representing the output length, and 64 bits
representing the unpadded message length are appended.

A padded message M∗ is separated into 1024-bit message blocks (M0, M1, . . . ,
Mn−1). Let CF : {0, 1}256 × {0, 1}1024 → {0, 1}256 be the compression function.
A hash value is computed as follows.

1. H0 ← IV,
2. Hi+1 ← CF(Hi, Mi) for i = 0, 1, . . . , n− 1,

where Hi is a 256-bit chaining variable and IV is the initial value defined in the
specification. Finally, Hn is tailored by the truncate function explained later,
and is output as a hash value of M .

Compression Function. The compression function iteratively computes a step
function 96 times to compute a hash value. Let pj be a 256-bit value. Hi+1 ←
CF(Hi, Mi) is computed as follows.

1. Mi is divided into 32-bit message words mj (j = 0, 1, . . . , 31).
2. p0 ← Hi.
3. pj+1 ← Rj(pj , mπ(j)) for j = 0, 1, . . . , 95.
4. Output Hi+1(= p96 + Hi), where “+” denotes a 32-bit word-wise addition.

In this paper, we similarly use “−” to denote a 32-bit word-wise subtraction.

Rj is a step function for Step j. Let Qj be a 32-bit value that satisfies pj =
(Qj−7‖Qj−6‖Qj−5‖Qj−4‖Qj−3‖Qj−2‖Qj−1‖Qj). Rj is defined as follows:⎧⎨⎩

T = fj ◦ φj(Qj−6, Qj−5, Qj−4, Qj−3, Qj−2, Qj−1, Qj),
Qj+1 = (Qj−7 ≫ 11) + (T ≫ 7) + mπ(j) + Kj ,

Rj(pj , mπ(j)) = (Qj−6‖Qj−5‖Qj−4‖Qj−3‖Qj−2‖Qj−1‖Qj‖Qj+1),

where fj, φj , ≫ n, and Kj are a bitwise Boolean function, word-wise permu-
tation, n-bit right rotation, and constant number defined in the specification,
respectively. πj is a message expansion shown in Table 2. In our attacks, we
do not consider the values of fj , φj , ≫ n, and Kj , but πj is heavily related.
We graphically show the step function in Fig. 1. Note that R−1

j (·, mπ(j)) can be
computed in almost the same complexity as Rj .

Truncate function. Let the 256-bit chaining variable after the last iteration of
the Merkle-Damg̊ard be Hn = D7‖D6‖D5‖D4‖D3‖D2‖D1‖D0. Let L represent
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Qj-7 Qj-6 Qj-5 Qj-4 Qj-3 Qj-2 Qj-1 Qj

Qj-6 Qj-5 Qj-4 Qj-3 Qj-2 Qj-1 Qj Qj+1

>>11

>>7
fj �j

m
�( j )

K j

Fig. 1. Step function Rj

the output length. If L = 256, Hn is directly output. If L ∈ {128, 160, 192, 224},
the hash value is computed with a truncate function Trunc : {0, 1}256 → {0, 1}L.
Here, if a variable X is t bits, we use a notion X [t] to explicitly indicate the length
of X . We show only the case for L = 224. For other case, please refer to [5].

L=224: Divide D7 in the following way.

D7 = X
[5]
7,6‖X [5]

7,5‖X [4]
7,4‖X [5]

7,3‖X [4]
7,2‖X [5]

7,1‖X [4]
7,0.

The 224-bit hash value Y6‖Y5‖Y4‖Y3‖Y2‖Y1‖Y0 is computed as follows.

Y6 = D6 + X
[4]
7,0, Y5 = D5 + X

[5]
7,1, Y4 = D4 + X

[4]
7,2, Y3 = D3 + X

[5]
7,3,

Y2 = D2 + X
[4]
7,4, Y1 = D1 + X

[5]
7,5, Y0 = D0 + X

[5]
7,6.

2.2 Converting Pseudo-preimages to a Preimage

In x-bit narrow-pipe hash functions, a pseudo-preimage attack whose complexity
is 2y, y < x−2 can be converted to a preimage attack with a complexity of 2

x+y
2 +1

[16, Fact9.99]. Note this algorithm cannot always be applied if the internal state
is larger than the hash length. This algorithm has been used in previous preimage
attacks on narrow-pipe hash functions [20,14,21,15,3].

2.3 Preimage Attacks on 3-Pass HAVAL

Aumasson et al. proposed two attacks that find pseudo-preimages with a com-
plexity of 2224 and preimages with a complexity of 2230 [14]. The attacks require
16× 264 words of memory. Both attacks are the meet-in-the-middle attack.

In these meet-in-the-middle attacks, results of two independent searches are
compared on a 256-bit intermediate chaining variable. Therefore, even if the
hash length is truncated, comparison of two independent searches needs to be
performed on a 256-bit variable. Therefore, the attack complexity for 256-bit
output and shorter outputs are identical. Since the attacks require 2224 to find
pseudo-preimages, the attacks cannot be applied to shorter hash lengths directly.
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2.4 Preimage Attacks on 3, 4, and 5-Pass HAVAL

Sasaki and Aoki [15] showed how to find pseudo-preimages of 3-pass HAVAL
with a complexity of 2192 and preimages with a complexity of 2225. The attack
requires 13× 264 words of memory. The attack is the meet-in-the-middle attack,
which is a base of our attack explained in this paper. In particular, techniques
called splice-and-cut, partial-matching, and partial-fixing in [15], which were first
proposed by Aoki and Sasaki [21], are utilized in this paper.

Splice-and-cut technique considers the last and first steps as consecutive steps
and divide the attack target into two chunks of steps so that each chunk includes
at least one message word that is independent of the other chunk. These message
words are called neutral words. Then, pseudo-preimages are computed by the
meet-in-the-middle attack. Partial-matching technique skips several steps of the
attack target when the meet-in-the-middle attack is performed. Assume that one
of chunks provides the value of pi, where pi = (Qi−7‖Qi−6‖ · · · ‖Qi) and the other
chunk provides the value of pi−7, where pi−7 = (Qi−14‖Qi−13‖ · · · ‖Qi−7). pi and
pi−7 cannot be directly compared, however, part of these values, i.e. Qi−7 can be
compared. Therefore, results of two independent computations can be compared
without a knowledge of mπ(i−1), mπ(i−2), · · ·mπ(i−7). Partial-fixing technique
enables attackers to skip more steps. It fixes part of the neutral words so that
attackers can partially compute the step function even if a neutral word for the
other chunk appears. For example, consider the step function Rj . Assume the
lower n bits of mπ(j) are fixed, the upper 32−n bits of mπ(j) are unknown, and
other variables are fully fixed. We can still compute the lower n bits of Qj+1
with a probability of 1.

Since the attack of Ref. [15] costs 2225, it can attack 256-bit output but cannot
attack 224-, 192-, 160-, and 128-bit output.

3 Approach 1: Increasing Neutral Words Using Trunc−1

In this section, we propose new attacks on 3-pass HAVAL that find pseudo-
preimages of 224-, 192-, and 160-bit hash values. In this attack, the attacker
essentially uses the property where the hash value is shorter than the internal
chaining variables. The attack works for not only the truncate function of HAVAL
but also other truncate functions as long as they can be inverted.

3.1 Attack Outline

When we divide 96 steps of 3-pass HAVAL into two chunks, the followings fre-
quently occur.

96 steps are separated so that one chunk includes one neutral word
(232freedom) but the other chunk includes several neutral words.

Since one of chunks includes only one neutral word, previous attacks can find a
pseudo-preimage faster than the brute force attack by the factor of at most 232

even though the other chunk includes more than one neutral words. Therefore, if
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start step

1st chunk 2nd chunk2nd

chunk

T
runcate

H
ash

match

neutral words
1

neutral word

X neutral words

X+1

Fig. 2. Approach 1: increasing neutral words by inverting truncate function

Input: 224-bit hash value Y6‖Y5‖Y4‖Y3‖Y2‖Y1‖Y0

Output: 232 256-bit chaining variables D7‖D6‖D5‖D4‖D3‖D2‖D1‖D0

1. for D7 = 0 to 0xffffffff {
2. Separate D7 to obtain X

[5]
7,6‖X [5]

7,5‖X [4]
7,4‖X [5]

7,3‖X [4]
7,2‖X [5]

7,1‖X [4]
7,0.

3. Compute Dk = Yk − X7,6−k, k = 0, 1, . . . , 6.
4. }

Fig. 3. Inverse computation of truncate function for HAVAL 224-bit output

the hash length is shorter by 32 bits or more, the attacks cannot be faster than
the brute force attack.

In our approach, we focus attention on the fact that there are many values of
256-bit intermediate chaining variables that reach a given hash value of the trun-
cated size. If we can find those 256-bit values by inversely computing the truncate
function, the number of neutral words in a chunk increases and the meet-in-the-
middle attack can be performed more efficiently. We summarize this strategy for
X-word truncating hash functions. This is also illustrated in Fig. 2.

Separate the attack target so that one chunk that does not include IV has
at least 1+X neutral words and the other chunk that includes IV has at
least 1 neutral word. Then, compute inversion of the truncate function
to find all inverse images of the given hash value so that both chunks
include at least 1 + X neutral words. Finally, the meet-in-the-middle
attack with 1+X freewords is performed to find pseudo-preimages.

3.2 Inverse Computation of Truncate Function

Our attack works for various truncate functions as long as all inverse images of
a given hash value can be found at a reasonable cost. The truncate function of
HAVAL is an example of this case. We explain how to find all inverse images in
the truncate function of HAVAL.

For a given output Y of the truncate function Trunc, the goal of the inverse
computation is finding all Ds such that Trunc(D) = Y . Therefore, if t bits are
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truncated, we find 2t values of D. Inversion of the truncate function of HAVAL
can be easily computed. In Fig. 3, we show the procedure using the 224-bit case
as an example.

By the similar way, the inverse computation for other output lengths can be
computed. The complexity is 2t truncate function operations. Note that this is
negligible compared to the computation of chunks, which requires the complexity
of at least 2t+32 compression function operations.

3.3 Attack Description

Attack on 224-bit output. The chunk separation for 224-bit output is shown
in Table 3. The attack procedure for a given 224-bit hash value Hn is as follows.

Table 3. Chunk separation for 224-bit output

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · · 21 22 23 24 25 26 27 28 29 30 31
index 0 1 2 3 4 5© 6 7 8 9 10 11 12 13 · · · 21 22 23 24 25 26 27© 28© 29 30 31

first chunk skip
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 · · · 53 54 55 56 57 58 59 60 61 62 63
index 5© 14 26 18 11 28© 7 16 0 23 20 22 1 10 · · · 24 29 6 19 12 15 13 2 25 31 27©

second chunk
Step 64 65 66 67 68 69 70 71 72 73 74 75 · · · 83 84 85 86 87 88 89 90 91 92 93 94 95
index19 9 4 20 28© 17 8 22 29 14 25 12 · · · 3 1 0 18 27© 13 6 21 10 23 11 5© 2

second chunk ← → first chunk

Attack procedure
1. Fix m29, m30, and m31 to satisfy the padding for a 1-block message.
2. Fix mi (i �∈ {5, 27, 28, 29, 30, 31}) and p88 to randomly chosen values.
3. For all (m27, m28), do:

pj ← R−1
j (pj+1, mπ(j)) for j = 87, 86, . . . , 33.

4. Make a table of (m27, m28, p33)s which are computed in the last step, where
p33 = (Q26‖Q27‖Q28‖Q29‖Q30‖Q31‖Q32‖Q33).

5. For a given Hn, with the algorithm shown in Fig. 3, inversely compute the
truncate function to find 232 values of 256-bit Ds s.t. Trunc(D) = Hn.

6. For all (m5, D),
(a) do the following:⎧⎨⎩

pj+1 ← Rj(pj , mπ(j)) for j = 88, 89, . . . , 95,
p0 ← D − p96,
pj+1 ← Rj(pj , mπ(j)) for j = 0, 1, . . . , 26,

where, p27 = (Q20‖Q21‖Q22‖Q23‖Q24‖Q25‖Q26‖Q27).
(b) Check whether Q27 and Q26 match those in the table.
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(c) If they match, compute pj+1 ← Rj(pj , mπ(j)) for j = 27, 28, . . . , 32 by
using the matched messages, and check whether all of them match or
not.

(d) If match, the corresponding message and p0 is a pseudo-preimage of Hn.

Let the complexity of 1 step function operation be 1
96 compression function

operation. In the above procedure, Step 3 and Step 6a cost 264 · 55
96 and 264 ·

35
96 , respectively. At Step 6b, 2128(= 264 · 264) pairs are compared and 264(=
2128 · 2−64) pairs will remain after 64-bit matching. At Step 6c, we need the
complexity of 264 · 6

96 to compute p20 to p25. Since p20 to p25 can match with a
probability of 2−192, we expect 2−128(= 264 · 2−192) pair will remain. Therefore,
we repeat the above procedure 2128 times and obtain a pair that will match in
all bits. Therefore, the complexity to find a pseudo-preimage is 2128 iteration of
264(= 264 · 55

96 + 264 · 35
96 + 264 · 6

96 ) computations, which is 2192 computations.
In this attack, we use a memory to store (264 × 10) words at Step 4, so the
memory complexity is the order of 264. Note that we assume the memory access
is performed in negligible time compared to 1 step operation. Also note that
the attack can be memoryless using the technique in [16, Remark 9.93], which
requires 2193 computation and negligible memory.

Attacks on other output lengths. Attacks on 192-bit and 160-bit output are
also possible. The chunk separation and attack procedure are almost the same
as those of 224-bit. Hence, we explain details of the attacks in Appendices. Note
that to attack 192-bit output, one of two chunks needs to have at least three
neutral words. Similarly, to attack 160-bit output, one of two chunks needs to
have at least four neutral words. Also note that the more neutral words we use,
the more memory we need to store the result of chunk computations. This attack
cannot be applied to 128-bit output because meet-in-the-middle attack on 256-
bit internal chaining variables will cost at least 2128. In such a case, we need
another attack explained in the next section.

4 Approach 2: Meet-in-the-Middle on Efficient Place

4.1 Attack Outline

In this approach, we focus attention on the following property2.

In the previous meet-in-the-middle attack [15], results of two independent
searches are compared on a part of bits. For other bits, attackers just wait
until all of those bits happen to match.

Based on the above observation, we explain how to attack the truncated output
lengths by using the example shown in Fig. 4.

The case (1) in Fig. 4 shows the meet-in-the-middle attack for 256-bit output
that checks the match of the 96 bits of (Qj−5, Qj−4, Qj−3). In order to find a
pair where all bits match, this meet-in-the-middle attack must be repeated 2160

2 This property is also summarized by Isobe and Shibutani [22].
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Qj-7 Qj-6 Qj-5 Qj-4 Qj-3 Qj-2 Qj-1 Qj

Qj-7 Qj-6 Qj-5 Qj-4 Qj-3 Qj-2 Qj-1 Qj

Qj-5 Qj-4 Qj-3 Qj-2 Qj-1 Qj

Truncate

Efficient matchRandomly satisfy

Efficient match Randomly satisfyDiscard

(1)

(2)

Randomly satisfy

Fig. 4. Approach 2: meet-in-the-middle attack on truncated size

Table 4. Chunk separation for approach 2

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · · 21 22 23 24 25 26 27 28 29 30 31
index 0© 1© 2 3 4 5© 6 7 8 9 10 11© 12 13 · · · 21 22 23 24 25 26 27 28 29 30 31

skip first chunk
Step 32 33 34 35 36 37 38 39 40 41 42 43 44 45 · · · 53 54 55 56 57 58 59 60 61 62 63
index 5© 14 26 18 11© 28 7 16 0© 23 20 22 1© 10 · · · 24 29 6 19 12 15 13 2 25 31 27

first chunk ← → second chunk
Step 64 65 66 67 68 69 70 71 72 73 74 75 · · · 83 84 85 86 87 88 89 90 91 92 93 94 95
index19 9 4 20 28 17 8 22 29 14 25 12 · · · 3 1© 0© 18 27 13 6 21 10 23 11© 5© 2

second chunk skip

times so that 160 bits of Qj−7, Qj−6, Qj−2, Qj−1, and Qj will randomly match.
The case (2) in Fig. 4 shows the similar case but the truncate function discards
the left 64 bits of the last 256-bit chaining variables and outputs only the right
192 bits3. In this case, the number of the repetition that the attacker needs is
only 296 times. This means that the efficiency of the meet-in-the-middle attack
is the same and the complexity for the brute force part is reduced. Hence, the
attack works at the same efficiency even if the output length is truncated.

4.2 Chunk Separation

In the approach 2, we use the same chunk separation in common for all hash
lengths. We separate 96 steps into two chunks so that results from two chunks
are compared on the input of the truncate function. The chunk separation is
shown in Table 4. Note this chunk separation is the same as the one used in [15].
We exhaustively searched for the best chunks and found this was the best.

4.3 Attack Description

The above chunk separation can perform the efficient match on input chaining
variables of the truncate function as shown in (2) of Fig. 4. In fact, the first
3 This truncate function is different from that of HAVAL, but is useful to understand

the attack concept.
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chunk produces p2 = (Q−5‖Q−4‖ · · · ‖Q2) and the second chunk produces p93 =
(Q86‖Q87‖ · · · ‖Q93). We thus can compute three words of (p0 + p96), namely,
(Q−3 + Q93), (Q−4 + Q92), and (Q−5 + Q91). Therefore, if the truncate function
is just discarding several words, the attack is possible as explained in Fig. 4.
However, since the truncate function of HAVAL is more complicated, we need
more effort to attack it.

Attack on 224-bit output. Let Hn = Y6‖Y5‖ · · · ‖Y0 be a given 224-bit hash
value. We rewrite the truncate function shown in Section 2.1 with variables Qj .

Q89 + Q−7 = X
[5]
7,6‖X [5]

7,5‖X [4]
7,4‖X [5]

7,3‖X [4]
7,2‖X [5]

7,1‖X [4]
7,0.

Y6 = Q90 + Q−6 + X
[4]
7,0 → Y6 −Q90 = Q−6 + X

[4]
7,0,

Y5 = Q91 + Q−5 + X
[5]
7,1 → Y5 −Q91 = Q−5 + X

[5]
7,1,

Y4 = Q92 + Q−4 + X
[4]
7,2 → Y4 −Q92 = Q−4 + X

[4]
7,2,

Y3 = Q93 + Q−3 + X
[5]
7,3 → Y3 −Q93 = Q−3 + X

[5]
7,3,

Y2 = Q94 + Q−2 + X
[4]
7,4 → Y2 −Q94 = Q−2 + X

[4]
7,4,

Y1 = Q95 + Q−1 + X
[5]
7,5 → Y1 −Q95 = Q−1 + X

[5]
7,5,

Y0 = Q96 + Q0 + X
[5]
7,6 → Y0 −Q96 = Q0 + X

[5]
7,6.

The attack procedure is as follows. Hereafter, we use a notation AU [n] to explic-
itly denote the upper n bits of a variable A.

Attack procedure
1. Fix m29, m30, and m31 to satisfy the padding for a 1-block message for the

pseudo-preimage attack or 2-block message for the preimage attack.
2. Fix mi (i �∈ {0, 1, 5, 11, 29, 30, 31}) and p40 to randomly chosen values.
3. For all (m0, m1), do: pj+1 ← Rj(pj , mπ(j)) for j = 40, 41, . . . , 92, where p93 =

(Q86‖Q87‖Q89‖Q89‖Q90‖Q91‖Q92‖Q93), and compute (Y6−Q90), (Y5−Q91),
(Y4 −Q92), and (Y3 −Q93).

4. Make a table of (m0, m1, Q86, Q87, Q88, Q89, (Y6 − Q90), (Y5 − Q91), (Y4 −
Q92), (Y3 −Q93)).

5. For all (m5, m11),
(a) do the following: pj ← R−1

j (pj+1, mπ(j)) for j = 39, 38, . . . , 2,
where, p2 = (Q−5‖Q−4‖Q−3‖Q−2‖Q−1‖Q0‖Q1‖Q2).

(b) Compute possible values of (Q−5 +X
[5]
7,1)

U [27]. Since X
[5]
7,1 is unknown, we

cannot compute it with a probability of 1. However, there are only two
possibilities of the carry from bit position 4 to 5. Let this carry number be
C5(∈ {0, 1}). For each C5, we compute corresponding (Q−5 +X

[5]
7,1)

U [27],

and store the tuple of (C5, (Q−5 + X
[5]
7,1)

U [27]). Similarly, for each C4, we

compute (Q−4+X
[4]
7,2)

U [28] and for each C3, we compute (Q−3+X
[5]
7,3)

U [27].
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(c) Check whether (Q−5+X
[5]
7,1)

U [27], (Q−4+X
[4]
7,2)

U [28], and (Q−3+X
[5]
7,3)

U [27]

match (Y5−Q91)U [27], (Y4−Q92)U [28], and (Y3−Q93)U [27] stored in Step 4.
(d) If match, compute X

[5]
7,1 using the equation Y5 −Q91 = Q−5 + X

[5]
7,1 and

check whether the guess of carry C5 is correct or not. Similarly, compute
X

[4]
7,2 and X

[5]
7,3, and check whether C4 and C3 are correct or not.

(e) If C5, C4 and C3 are correct, compute pj+1 ← Rj(pj , mπ(j)) for j =
93, 94, 95 and pj ← R−1

j (pj+1, mπ(j)) for j = 1. Then, with the similar
manner to Steps 5b and 5c, check the match of (Y2 − Q94)[U28] and
(Q−2 +X

[4]
7,4)

[U28], (Y1−Q95)[U27] and (Q−1 +X
[5]
7,5)

[U27], (Y0−Q96)[U27]

and (Q0 + X
[5]
7,6)

[U27], and (Y6 −Q90)[U28] and (Q−6 + X
[4]
7,0)

[U28].

(f) If match, in the same way as Steps 5d, compute X
[4]
7,2, X

[5]
7,1, X

[5]
7,0, and

X
[4]
7,6, and check whether corresponding C2, C1, C0 and C6 are correct.

(g) If they are correct, X7 = X7,6‖X7,5‖ · · · ‖X7,0 have already been deter-
mined. Compute p0 and check whether Q89 + Q−7 = X7 is satisfied.

(h) If satisfied, the corresponding message and p0 is a pseudo-preimage.

In the above procedure, the complexity of Step 3 and Step 5a is approximately
264(= 264· 5396+264· 3896 ). Each of Step 3 and Step 5a produces 264 items. In Step 5b,
the number of items for the first chunk becomes 267(= 23 ·264). In Step 5c, 82-bit
matching is performed for 2131(= 264 · 267) pairs. Hence, 249(= 2131 · 2−82) pairs
are expected to remain. Step 5d requires the complexity of 249 · 3

96 operations,
and the number of remaining pair will be 246(= 249 · 2−3). In Step 5e, we need
the complexity of 242(< 246 · 4

96 ). Then, because we consider two carry number
patterns for 4 addition operations, the number of remaining pair will be 250(=
246 · 24). Finally, after the 110-bit matching, 2−60(= 250 · 2−110) pair is expected
to remain. In Step 5f, the complexity is negligible. By checking the correctness of
C2, C1, C0, and C6, the number of remaining pair will be 2−64(= 2−60 · 2−4). In
Step 5g, the complexity is negligible. The equation is satisfied with a probability
of 2−32, hence, the number of remaining pair will be 2−96(= 2−64 · 2−32).

So far, the dominant complexity is 264 of Steps 3 and 5a. Finally, by repeating
the above procedure 296 times, we can obtain a pseudo-preimage. The complexity
of this pseudo-preimage attack is 2160(= 264 · 296). This is converted to the
preimage attack whose complexity is 2209(= 21+(160+256)/2) by the conversion
algorithm explained in Section 2.2. This attack needs to store 264 items in Step 4.
Therefore, the memory complexity is (264 × 10) words.

Attack on 192-bit output. The attack is almost the same as that of 224-bit.
Different from the attack on 224-bit, the attack on 192-bit can compare only 64
bits at the Step 5c of the attack procedure for 224-bit output. However, checking
the match of 64 bits are enough to efficiently reduce the candidates of matching
pairs since each chunk produces only 264 candidates. The efficiency of the attack
is the same as that of 224-bit, therefore, pseudo-preimages are computed faster
than the brute force attack by the factor of 264, which is 2128.
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Attack on 160-bit output. The attack strategy is the same as those of 224-
and 192-bit output. However, due to the structure of the truncate function,
the number of bits that we can compare at the Step 5c of the attack proce-
dure for 224-bit is only 38 bits. (Lower 7 bits and upper 12 bits of Y4 = D4 +
X

[7]
7,4‖X [6]

6,3‖X [7]
5,2 and lower 6 bits and upper 13 bits of Y3 = D3+X

[6]
7,3‖X [7]

6,2‖X [6]
5,1.)

Comparing 38 bits is not enough for chunks with 64 free bits.
Our idea to solve this problem is using the partial-fixing technique, which

can increase the number of matching bits by reducing the free bits of neutral
words. We fix neutral words so that the number of matching bits and free bits
of neutral words are balanced and the attack efficiency is maximized. We found,
by fixing the lower 6 bits of m11, we can additionally perform 6-bit matching
of Y2 = D2 + X

[7]
7,2‖X [6]

6,1‖X [6]
5,0. Similarly, by fixing bit positions 1-10 of m1,

additional 7 bits of Y3 = D3+X
[6]
7,3‖X [7]

6,2‖X [6]
5,1 and additional 3 bits of Y4 = D4+

X
[7]
7,4‖X [6]

6,3‖X [7]
5,2 can be compared. Therefore, we can perform 54-bit matching

with keeping 54 free bits in (m0, m1) and 58 free bits in (m5, m11). Finally,
pseudo-preimages are found faster than the brute force attack by the factor of
254, which is 2106.

Attack on 128-bit output. The attack is almost the same as 160-bit output.
We found, by fixing the lower 20 bits of m11 and bit positions 29, 30, 31, and
0-12 of m1, we can perform 44-bit matching with keeping 48 free bits in (m0, m1)
and 44 free bits in (m5, m11). Hence, the attack finds pseudo-preimages faster
than the brute force attack by the factor of 244, which is 284.

5 Conclusions

We proposed two types of preimage and pseudo-preimage attacks on short out-
put lengths of 3-pass HAVAL. The first approach uses the property where the
output length is shorter than the intermediate chaining variables, so it can work
for various truncate functions. This approach finds pseudo-preimages of 224-,
192-, and 160-bit output with a complexity of 2192, 2160, and 2144, respectively.
In the second approach, we apply the meet-in-the-middle attack so that two
independent results can match at a variable of truncated size. This approach
finds pseudo-preimages of 224-, 192-, 160-, and 128-bit output with a complex-
ity of 2160, 2128, 2106 and 284, respectively. Considering the low complexity for
224-bit output, we also can find preimages of 224-bit output with a complexity
of 2209.

We tried to apply our techniques to 4-pass and 5-pass HAVAL and found
that they appeared to be enough strong against our attacks. This is because
they have more steps than 3-pass HAVAL and good chunks does not exist.
Hence, attacks on 4-pass and 5-pass HAVAL for short output sizes are open
problems.
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A Attack on 192-Bit Output by Approach 1

The chunk separation for 192-bit output is shown in Table 5. The attack pro-
cedure is almost the same as that of 224-bit output. Therefore, we explain only
differences of attack procedures.

Table 5. Chunk separation for 192-bit output

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 · · · 20 21 22 23 24 25 26 27 28 29 30 31
index 0 1 2 3 4 5© 6 7 8 9 10 11 12 · · · 20 21 22 23 24 25 26 27 28© 29© 30© 31

first chunk skip
Step 32 33 34 35 36 37 38 39 40 · · · 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 5© 14 26 18 11 28© 7 16 0 · · · 30© 3 21 9 17 24 29© 6 19 12 15 13 2 25 31 27

second chunk
Step 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 · · · 86 87 88 89 90 91 92 93 94 95
index19 9 4 20 28© 17 8 22 29© 14 25 12 24 30© 16 · · · 18 27 13 6 21 10 23 11 5© 2

second chunk ← → first chunk

1. We find 264 inputs of Trunc−1 that result in the given output.
2. m29 is selected as neutral words. However, at least 17 bits of m29 are fixed

by the message padding. Therefore, when all bits of m29 are used to compute
a chunk, the attack is considered as the attack on the compression function.
Remember, the pseudo-preimage attack on HAVAL is still possible by using
the remaining free-bits of m29 though the attack efficiency decreases.

3. In terms of the attack on the compression function, pseudo-preimages can be
discovered faster than the brute force attack by the factor of 232. Therefore,
the time complexity is 2160. Since both chunks include three neutral words,
the memory complexity is approximately 296.
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B Attack on 160-Bit Output by Approach 1

The chunk separation for 160-bit output is shown in Table 6. Both chunks include
4 neutral words but the partial-matching technique allows the comparison of
only 3 words, hence, meet-in-the-middle attack cannot be efficiently applied.
This problem can be solved by increasing the number of bits compared with the
partial-fixing technique proposed by [21]. We fix the lower 16-bits of m28, and
when we compute the first chunk, we partially compute p29 ← R28(p28, m28).
Consequently, both chunks have 3.5 neutral words and 3.5 words are compared
in the matching part. The attack is faster than the brute force attack by the
factor of 216, which costs 2144. Because both chunks include 3.5 neutral words,
the memory complexity is approximately 2112.

Table 6. Chunk separation for 160-bit output

Step 0 1 2 3 4 5 6 7 8 9 10 11 12 · · · 20 21 22 23 24 25 26 27 28 29 30 31
index 0 1 2 3 4 5© 6 7 8 9 10 11 12 · · · 20 21 22 23 24 25 26 27 28© 29© 30© 31©

first chunk skip
Step 32 33 34 35 36 37 38 39 40 · · · 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
index 5© 14 26 18 11 28© 7 16 0 · · · 30© 3 21 9 17 24 29© 6 19 12 15 13 2 25 31© 27

second chunk
Step 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 · · · 88 89 90 91 92 93 94 95
index19 9 4 20 28© 17 8 22 29© 14 25 12 24 30© 16 26 31© · · · 13 6 21 10 23 11 5© 2

second chunk ← → first chunk
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Abstract. In this paper, we present free-start collisions for the TIB3
hash functions with a complexity of about 232 compression function eval-
uations. By using message modification techniques the complexity can be
further reduced to 224. Furthermore, we show how to construct collisions
for TIB3 slightly faster than brute force search using the fact that we
can construct several (different) free-start collisions for the compression
function. The complexity to construct collisions is about 2122.5 for TIB3-
256 and 2242 for TIB3-512 with memory requirements of 253 and 2100

respectively. The attack shows that compression function attacks have
been underestimated in the design of TIB3. Although the practicality
of the proposed attacks might be debatable, they nevertheless exhibit
non-random properties that are not present in the SHA-2 family.

Keywords: Hash function, SHA-3 competition, TIB3, free-start colli-
sion, collision attack.

1 Introduction

A hash function maps an input of arbitrary finite length to an output of a
fixed length. An important basic security requirement for a cryptographic hash
function is its collision resistance – it should be computationally infeasible to
find two different inputs, which hash to the same output. Recently, the collision
resistance of many commonly used hash functions has been broken or doubted.
Therefore, NIST has started the SHA-3 competition [1] to find a successor of
the SHA-1 and SHA-2 hash functions. The cryptanalysis of the proposed SHA-3
candidates is of high importance to find a valuable hash function which is fast
but still secure within the next few decades.

Many new and interesting hash functions have been proposed and some of
these algorithms have a remarkable speed on certain platforms. The SHA-3 can-
didate TIB3 [2] is one of the fastest submissions with a speed of about 6-8
cycles/byte for all output sizes on 64-bit platforms [3]. The main design idea be-
hind TIB3 is to use extensive parallelism by designing a “shorter” but “wider”
compression function. To strengthen this short but fast compression function
and to counter differential attacks, each message block is used in two subsequent
compression function calls. However, in this paper we show that it is still possible
to construct collisions for the hash function TIB3 below the generic complexity.

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 95–106, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Table 1. Summary of results on TIB3

type of attack target hash size complexity memory

free-start collision compression function all 224 -
collision hash function 256 2122.5 253

collision hash function 512 2242 2100

Using high-probability iterative characteristics, we can construct many prac-
tical free-start collisions for the compression function of TIB3 (Sect. 3). These
free-start collisions are then used for the collision attacks on both TIB3-256
(Sect. 4) and TIB3-512 (Sect. 5) with a complexity slightly below the birthday
bound. The results of our work are summarized in Table 1. In the following
section, we first give a short description of the hash function TIB3.

2 Description of TIB3

The hash function TIB3 is an iterated hash function based on the Merkle-
Damg̊ard design principle [4,5]. The two main instances of TIB3 are called TIB3-
256 and TIB3-512. TIB3-256 processes message blocks of 512 bits and produces
hash values of 224 or 256 bits, while TIB3-512 processes message blocks of 1024
bits and produces hash values of 384 or 512 bits. If the message length is not a
multiple of the block size, an unambiguous padding method is applied. For the
description of the padding method we refer to [2]. Let m = M1‖M2‖ · · · ‖Mt be
a t-block message (after padding). Then, the hash value h = H(m) is computed
as follows:

H0 = IVH , M0 = IVM

Hi = f(Hi−1, Mi‖Mi−1) for 1 ≤ i ≤ t

Ht+1 = f(Ht, 0‖Ht‖Mt) = h

where IVH and IVM are predefined initial values. Note that each message block
is used in two compression function calls (see Fig. 1). The compression function
f is used in Davies-Meyer mode [6] and consist of 2 parts: the key schedule and
the state update transformation.

f f f

M1

f
IVM
IVH

0||Ht

H1 Ht

M2 Mt

Fig. 1. The iteration mode of TIB3 uses the previous and current message block in
each compression function call
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The key schedule (or message expansion) of TIB3 takes as input the current
and previous message block to compute a 4096-bit key for TIB3-256 and a 8192-
bit key for TIB3-512. This key is split into 16 roundkeys kj , where each roundkey
is used in round j of the state update transformation. For a detailed description
of the key schedule function we refer to [2], since we do not need it in our analysis.
In the following, we describe the state update transformation for TIB3-256 and
TIB3-512 in more detail.

2.1 State Update Transformation for TIB3-256

The state update transformation of TIB3-256 starts from a (fixed) initial value
IVH of four 64-bit words and updates them in 16 rounds each. In each round
one 256-bit roundkey kj is used to update the four state variables A, C, E and
G as follows:

G = G⊕ C

(A, C, E, G) = (A, C, E, G) ⊕ kj

(A, C, E) = Sbox(A, C, E)
G = PHTX(G)
C = PHTX(C)
A = A �32 G

G = E �32 G

(A, C, E, G) = (C, E, G, A),

where Sbox is a 3-bit S-box, PHTX is a bit-mixing function and �32 denotes
two 32-bit modular additions in parallel. One round of the TIB3-256 compression
function is shown in Fig. 2. For the definition of the S-boxes we refer to [2]. The
function O = PHTX(I) is defined as follows:

T = I + (I � 32) + (I � 47)
O = T ⊕ (T � 32)⊕ (T � 43)

After the last round of the state update transformation, the chaining values A0,
C0, E0, G0 are XORed with the output values of the last round A16, C16, E16,
F16 (feed-forward), resulting in the final value of one compression function f .
For a detailed description of the hash function we refer to [2].

2.2 State Update Transformation for TIB3-512

In TIB3-512, two instances of the TIB-256 compression function are computed
in parallel. The two parallel instances are mixed by two PHTXD functions with
inputs C, D and G, H . A short description of the state update of TIB3-512 is
given below, for more details we refer to [2].
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Fig. 2. One round of the TIB3-256 compression function
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64 3-bit Sboxes

PHTX
PHTX

B D F H

ro
u

n
d

k
ey

Fig. 3. One round of the TIB3-512 compression function

The state update transformation of TIB3-512 updates eight 64-bit words A,
B, C, D, E, F , G and H in 16 rounds. One round of TIB3-512 is shown in Fig. 3
and defined as follows:
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G = G⊕ C

H = H ⊕D

(A, B, C, D, E, F, G, H) = (A, B, C, D, E, F, G, H) ⊕ kj

(A, C, E) = Sbox(A, C, E)
(B, D, F ) = Sbox(B, D, F )

(G, H) = PHTXD(G, H)
(C, D) = PHTXD(C, D)

A = A � G

B = B � H

G = E � G

H = F � H

(A, B, C, D, E, F, G, H) = (C, D, E, F, G, H, A, B),

where kj is the current 512-bit roundkey, Sbox is the same 3-bit S-box as in
TIB3-256 and � denotes a 64-bit modular addition. The function (O, P ) =
PHTXD(I, J) is a “double” version of PHTX and is defined as follows:

P = I ⊕ J

P = PHTX(P )
O = I ⊕ P

O = PHTX(O)

3 Free-Start Collisions for TIB3-256

In this section, we present a free-start collision attack on the compression func-
tion of TIB3-256 with a complexity of about 224 compression function evalua-
tions. Note that we use only differences in the chaining inputs and no differences
in the message inputs are allowed. This is similar to the attack of den Boer and
Bosselaers on MD5 [7]. However, in the case of TIB3 the complexity of the attack
is much better due to its short compression function.

The attack is based on the fact that we can construct several 1-round iterative
characteristics for the compression function of TIB3-256 with a probability be-
tween 2−2 and 2−4, depending on the bit position of the differences. The 1-round
characteristic is shown below:

(−, Δ[i], Δ[i], Δ[i])→ (−, Δ[i], Δ[i], Δ[i]) (1)

where Δ[i] denotes a difference at bit position i. By subsequently using this
1-round characteristic 16 times, we will get a free-start collision for the whole
16-round compression function of TIB3-256. Note that the differences of the last
round in C16, E16 and G16 will be canceled due to the feed-forward, i.e. A0⊕A16,
C0 ⊕ C16, E0 ⊕ E16, and G0 ⊕G16.
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Table 2. Differential distribution table for the 3-bit S-box of TIB3 (cf. [2, page 15]) with
input difference Si = (A, C, E) and corresponding output difference So. Probabilities
are given in base 2 logarithms.

Si \ So 001 010 011 100 101 110 111
001 -2 -2 -2 -2
010 -2 -2 -2 -2
011 -2 -2 -2 -2
100 -2 -2 -2 -2
101 -2 -2 -2 -2
110 -2 -2 -2 -2
111 -2 -2 -2 -2

A C E G

64 3-bit Sboxes

PHTX PHTX

A C E G

ro
u

n
d
k
ey

32

32

2-2

(2-1)
(2-1)

=2i =2i =2i

=2i =2i =2i

Fig. 4. The 1-round iterative differential characteristic for TIB3-256 which completely
avoids the PHTX functions. We get a differential probability of 2−2 for the S-box, and
2−1 for the modular addition if i 	= {32, 64}.

3.1 On the Probability of the Characteristic

Now, lets take a closer look at the probability of the characteristic for each round
j which is shown in Fig. 4. Note that the xor of the roundkey in each round never
changes the difference. The probabilities for all input/output differences of the
3-bit S-box of TIB3 are shown in Table 2.

– We start with the differences Δ[i] in C, E and G. After the first xor operation,
the difference in G is canceled. In order to guarantee that the characteristic
holds, we need that the differences Δ[i] in C and E at the input of the S-box
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propagate to the differences Δ[i] in A and E after the S-box. This holds with
a probability of 2−2, see Table 2.

– Note that there are no differences in the PHTX functions.
– In the case of i = {32, 64}, no carry occurs in the four 32-bit modular

additions and the differences Δ[i] in A and E propagate to Δ[i] in G, C and
E with a probability of 1. In the case of i �= {32, 64} no carry occurs in the
two additions with a probability of 2−2.

– Hence, the resulting difference Δ[i] in C, E and G after one round is the
same as in the input to this round.

The characteristic holds for one round with a probability of 2−2 for i = {32, 64}
and 2−4 for i �= {32, 64} and we get a characteristic for all 16 rounds with a
probability of 2−32 and 2−64, respectively. Thus, we can construct a free-start
collision for the compression function of TIB3-256 with a complexity of about
232 for i = {32, 64} and 264 for i �= {32, 64} instead of 2128 as expected for
a compression function with 256 bits. An example for a free-start collision for
TIB3-256 with i = 64 is given in Table 3.

3.2 Improving the Attack Complexity

The complexity of the free-start collision attack can be significantly improved by
using message modification techniques. Message modification was introduced by
Wang et al. in the cryptanalysis of MD5 and SHA-1 [8,9]. The idea of message
modification is to use the degrees of freedom one has in the choice of the message
words to fulfill conditions on the chaining variables.

Table 3. A free-start collision for TIB3-256 with differences at bit position 64

H ′
1 H ′′

1 ΔH1

00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 80000000 00000000 80000000 00000000

00000000 00000000 80000000 00000000 80000000 00000000

00000000 00000000 80000000 00000000 80000000 00000000

M1 M2 ΔM1, ΔM2

90BDD5C0 451CE787 E75BFF16 FACB4B84 00000000 00000000

6BB03ABE 8141141B 6D6A0C85 52A79F37 00000000 00000000

F45283B2 4019E54C AECE5E32 A5F07508 00000000 00000000

68D47A8C EC658400 A64F3E2B E51D1923 00000000 00000000

20AC1B8D 5C4F42F0 E5079CCA 5CC28EBE 00000000 00000000

B239522C 8BF26045 1E7E2827 4E8C6B37 00000000 00000000

E0EC45C2 3ACE0DE7 808C0A2F B5E1F9AA 00000000 00000000

2FB7DEBD 84DDCF10 3BBF29A5 FAB148DF 00000000 00000000

H ′
2 H ′′

2 ΔH2

55F5547C 6AA5CC12 55F5547C 6AA5CC12 00000000 00000000

40831045 5CC5F776 40831045 5CC5F776 00000000 00000000

43E53C0C 4C64F862 43E53C0C 4C64F862 00000000 00000000

DD750B01 DA7AD37F DD750B01 DA7AD37F 00000000 00000000
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In the case of TIB3-256 we can at least use the current 1024 bit message block
for message modification. Using these 1024 degrees of freedom, the 16 conditions
in the first 4 rounds can be fulfilled using basic message modification. In other
words, we do not care about the probability of the characteristic in this part,
since a message following the characteristic in the first 4 rounds can be found
deterministically. Hence, the complexity of the attack can be reduced to 224 for
i = {32, 64} and to 248 for i �= {32, 64}. We expect that the complexity can be
further improved by using more sophisticated message modification techniques.

4 Collision Attack for TIB3-256

In this section, we show how the free-start collision attack on the compression
function can be extended to a collision attack on the hash function. Even though
the complexity of the attack is only slightly faster than a generic birthday attack,
it exhibits some non-random properties that are not present in SHA-256. The
attack uses the fact, that we can find several high-probability free-start collision
producing characteristics for the compression function of TIB3-256.

4.1 Increasing the Number of Free-Start Collisions

In the previous section, we have constructed 64 different free-start collisions for
i = 1, . . . , 64. To increase the number of characteristics, we can fit two high
probability characteristics with bit position i �= j into the compression function:

(−, Δ[i, j], Δ[i, j], Δ[i, j])→ (−, Δ[i, j], Δ[i, j], Δ[i, j])

In the case of i, j �= {32, 64}, we get a total probability of 2−128 which can be
reduced to 2−96 by message modification. Note that we can further increase the
number of characteristics by allowing carries at the beginning (first rounds) and
end (last rounds). Hence, we can construct at least

(64
2

) ∼ 211 different free-start
collision.

4.2 From Free-Start Collisions to Collisions

In this section, we show how to use 2x free-start collisions of the compression
function to find collisions for the full hash function with a complexity of 2

n−x
2 .

In the case of TIB3-256 we have constructed 211 free-start collisions character-
istics. Hence, the collision attack on TIB3-256 has a complexity of about 2122.5

compression function calls.
The collision attack uses 3 message blocks M1, M2 and M3 (see Fig. 5). The

main idea of the attack is to find two different first message blocks M ′
1 and M ′′

1
which result in one of the 211 differences of the free-start collision in H2. Then,
the according free-start collision is used to get a collision in H3 after the second
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f f f h=H4

M1 0

f
IVM
IVH

0||H3

H1 0 H2 0 H3=0

M2=0 M3=0

Fig. 5. In the collision attack on TIB3, three message blocks are used with differences
only in M1. The resulting near-collision in H2 is transformed into a collision in H3.
The last message block M3 is used for message modification.

compression function call. Note that we need a third message block M3 for the
message modification of the free-start collision:

H1 = f(IVH , M1‖IVM )
H2 = f(H1, M2‖M1)
H3 = f(H2, M3‖M2)
H4 = f(H3, 0‖H3‖M3) = h

The collision attack on TIB3-256 can then be summarized as follows:

1. Choose an arbitrary value for the message block M2.
2. Use a birthday attack to find a ΔH2 (near-collision) which matches one of

the 211 free-start collision producing characteristics. Note that M2 is fixed in
the attack and only M1 can be modified. This is important, since we do not
allow any differences in M2. The birthday phase has a complexity of about
2

256−11
2 = 2122.5 compression function evaluations and can be implemented

as follows:
(a) Choose 2122.5 different random message blocks M1 and store the mes-

sages and resulting chaining values H2 in a set S. Then, we need to
find those two messages M ′

1, M ′′
1 with M ′

1 ⊕ M ′′
1 = ΔM1, such that

H ′
2 ⊕H ′′

2 = ΔH2 belongs to the set of 211 free-start collision producing
characteristics:

(b) From the set S find all pairs (M ′
1, M

′′
1 ) with H ′

2 = A′‖C′‖E′‖G′ and
H ′′

2 = A′′‖C′′‖E′′‖G′′ such that A′ = A′′, (C′ ⊕ E′) = (C′′ ⊕ E′′) and
(C′ ⊕ G′) = (C′′ ⊕ G′′). Note that this can be done with a standard
birthday attack (using a hash table) and we get 2122.5× 2122.5× 2−192 =
253 pairs.

(c) For each pair, compute C′ ⊕ C′′ and check if the Hamming weight
HW (C′⊕C′′) ≤ 2. In other words, check if C′⊕C′′ (and hence, H ′

2⊕H ′′
2 )

belongs to the set of 211 free-start collision producing characteristics.
This step of the attack has a complexity of about 264−11 = 253 XOR
operations which is negligible compared to 2122.5 compression function
evaluations.

3. Finally, we use the according free-start collision producing characteristic to
turn the near-collision of ΔH2 into a collision in H3 by using the message
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blocks M2 and M3. Note that there are no differences in these two message
blocks, which is needed for the free-start collision producing characteristic
to work (cf. Section 3). Note that M3 can still be chosen freely in the attack
and hence, used for message modification. This step of the attack has a
complexity of about 296 compression function evaluations.

Alltogether, we can construct collisions in TIB3-256 with a complexity of about
2122.5 compression function evaluations and similar memory requirements. The
complexity of this attack can be improved as soon as more than 211 free-start
collision characteristics have been constructed. One possibility to increase the
number of characteristics is by allowing carries at the beginning (first rounds)
and end (last rounds) of the compression function. Furthermore, the memory
requirements of the attack can be significantly reduced. By using distinguished
points [10,11] the first part of the birthday attack, i.e. 2.(a)-2.(b) can be imple-
mented with memory requirements of 253 instead of 2122.5.

5 Collision Attack for TIB3-512

The collision attack on TIB-256 can be extended to the hash function TIB3-512
as well. Since TIB3-512 uses two instances of TIB3-256 in parallel, we can reuse
the free-start collision producing characteristic of TIB3-256 (Sect. 3).

5.1 Free-Start Collisions for TIB3-512

Since we do not have differences at the input of any PHTXD (mixing) function,
the same free-start collisions of TIB3-256 can indeed be used without modi-
fication for TIB3-512. Hence, we can construct two different and independent
1-round characteristic for TIB-512 with differences in C, E, G:

(−,−, Δ[i],−, Δ[i],−, Δ[i],−)→ (−,−, Δ[i],−, Δ[i],−, Δ[i],−)

and/or with differences in D, F , H :

(−,−,−, Δ[i],−, Δ[i],−, Δ[i])→ (−,−,−, Δ[i],−, Δ[i],−, Δ[i])

where Δ[i] denotes a difference at bit position i. The probability is 2−4 for
i �= 64 and 2−2 for i = 64 since one 64-bit addition is used instead of two 32-
bit additions. TIB-512 has 16 rounds as well and we can construct a free-start
collision for the compression function of TIB3-512 with a complexity of 232 for
i = 64 and 264 for i �= 64 again. Using basic message modification we can reduce
the complexity to 224 and 248 respectively. An example for a free-start collision
with a difference in bit position 64 is given in Table 4.

5.2 From Free-Start Collisions to Collisions

In the case of TIB3-512, the generic complexity for a collision attack is 2256.
Therefore, we can easily fit up to 5 high probability characteristics next to each
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Table 4. A free-start collision for TIB3-512 with differences at bit position 64

H ′
1 H ′′

1 ΔH1

00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 80000000 00000000 80000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 80000000 00000000 80000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 80000000 00000000 80000000 00000000

M1 M2 ΔM1, ΔM2

246B6D96 2C90A727 240E562C 5C5D4627 00000000 00000000

6139BD35 C099E9CC 31C0A3B0 B3CC94A5 00000000 00000000

5533B6BF D6B80FB1 94E6BEBD 91BC6264 00000000 00000000

099868E2 8C9A5821 BB665DC4 B5C3E598 00000000 00000000

08ED963E A808F1E6 7AEFABF8 3DF12657 00000000 00000000

1658D8E1 94925F32 A4D3961F 2C8BFCF8 00000000 00000000

AF7DE86F 4013CAD4 626DED61 3B3BE4F7 00000000 00000000

24573C4C 867D59A2 873613B2 C1F4B14A 00000000 00000000

H ′
2 H ′′

2 ΔH2

8011137D 30451AA0 8011137D 30451AA0 00000000 00000000

5791600A B98C1C4A 5791600A B98C1C4A 00000000 00000000

60570740 31EEA496 60570740 31EEA496 00000000 00000000

31FB13D0 8A58960D 31FB13D0 8A58960D 00000000 00000000

15C9B361 99054AB7 15C9B361 99054AB7 00000000 00000000

B6312CAB 57CF73AE B6312CAB 57CF73AE 00000000 00000000

C7055809 B6B3BB6A C7055809 B6B3BB6A 00000000 00000000

422F8F0B 9DCCC9A4 422F8F0B 9DCCC9A4 00000000 00000000

other (complexity 25·48 = 2240). Hence, we can construct at least
(128

5

) ∼ 228 dif-
ferent free-start collision producing characteristics for TIB3-512. The resulting
collision attack has a complexity of about 2

512−28
2 = 2242 and memory require-

ments of about 2128−28 = 2100 using distinguished points.

6 Conclusion

In this paper, we have presented free-start collisions for TIB3 with a complexity
of about 232 compression function evaluations. By using message modification
techniques the complexity can be reduced to 224. Furthermore, we can construct
at least 211 free-start collision producing characteristics for TIB3-256 and 228

for TIB3-512. We show how to use these free-start collisions to construct colli-
sions for TIB3 slightly faster than brute force search, and get a complexity of
about 2122.5 compression function calls for TIB3-256 and 2242 for TIB3-512 with
memory requirements of 253 and 2100, respectively.

TIB3 is one of the fastest submissions due to its parallelism but short com-
pression function. In the design of TIB3, compression function attacks have been
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underestimated. In this paper, we have shown how to find high-probability free-
start collisions and turn them into an attack on the hash function. Although
the practicality of the proposed attacks might be debatable, they nevertheless
exhibit non-random properties that are not present in the SHA-2 family. Since
there is still room for improvements, this analysis can be a starting point for
future attacks on TIB3.
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Abstract. This paper presents a novel approach for detecting intrusions
in databases based on fuzzy logic, which combines evidences from user’s
current as well as past behavior. A first-order Sugeno fuzzy model is
used to compute an initial belief for each transaction. Whether the cur-
rent transaction is genuine, suspicious or intrusive is first decided based
on this belief. If a transaction is found to be suspicious, its posterior belief
is computed using the previous suspicion score and the fuzzy evidences
obtained from the history databases by applying fuzzy-Bayesian inferenc-
ing. Final decision is made about a transaction according to its current
suspicion score. Evaluation of the proposed method clearly shows that
the application of fuzzy logic significantly reduces the number of false
alarms, which is one of the core problems of existing database intrusion
detection systems.

Keywords: Database security, Intrusion detection, Fuzzy logic, Fuzzy-
Bayesian inference, Suspicion score.

1 Introduction

Ubiquitous use of database systems by organizations for daily operations and
due to a surge in the importance of e-commerce to the world economy, concern
regarding the security of databases has become crucial. Some of the data con-
tained in these databases are quite sensitive in nature. Organizations manage
access to such data meticulously with respect to internal users as well as external
perpetrators. Murray [1] has found that the primary security threats come from
internal misuse rather than external attacks.

Standard database security mechanisms such as authentication, authorization,
access control and data encryption are often limited in their ability to protect
database management systems (DBMS) from insiders. It is the presence of such
inadvertent threats that have made intrusion detection systems (IDS) one of the
fundamental security strategies for protecting databases.

Most of the existing IDSs are designed for networks and operating systems
and hence, are not capable of detecting intrusions in databases. Also, every
database user has a certain access pattern which is captured by almost all the
database intrusion detection systems (DIDSs) as rules. Any violation of the
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stored patterns is reported as anomalous. These rules are static in nature and
result in large number of false alarms when the user develops new patterns of
behavior that are not yet known to the DIDS. Moreover, attackers can learn the
static rules to a certain extent and, thus, avoid detection. Therefore, there is
a need for developing database intrusion detection systems which can integrate
multiple evidences [2] including patterns of genuine users as well as intruders
and learn the behavior of users dynamically so as to minimize overall damage to
the database.

It is well known that the real world is pervasively imprecise and uncertain,
and hence, requires tolerance for imprecision and uncertainty to achieve better
consonance with reality − features that can be exploited by fuzzy logic [3]. We
feel that the use of fuzzy logic is appropriate for database intrusion detection
due to two primary reasons. Firstly, several quantitative parameters that are
used in the context of this problem can potentially be viewed as fuzzy variables.
Secondly, the boundary between normal and anomalous behavior in databases
is fuzzy.

In this paper, a novel two-stage fuzzy database intrusion detection system
(TSFDIDS) is proposed, which utilizes fuzzy logic for integrating evidences from
different sources to achieve flexibility and for smoothing the abrupt separation
of genuine from intrusive behavior. Besides combining evidences, learning is also
incorporated in TSFDIDS through application of prior knowledge and observed
data on suspicious users by using fuzzy Bayesian decision method [4].

The rest of the paper is organized as follows. We present related work in
database intrusion detection in Section 2. The components of our proposed sys-
tem is discussed in Section 3 along with a description of the methodology. In
Section 4, we discuss the results obtained from various experiments. Finally, we
conclude in Section 5 of the paper.

2 Related Work

Research on intrusion detection has been ongoing for more than two decades and
several host-based intrusion detection systems (HIDSs) and network intrusion
detection systems (NIDSs) have been developed [5][6]. However, in spite of the
significant role of databases in information systems, very limited research has
been carried out in the field of intrusion detection in databases.

The approaches used in detecting database intrusions mainly include data
mining and Hidden Markov Model (HMM). Chung et al. [7] present DEMIDS, a
misuse detection system for relational database systems. This method assumes
some consistency in database usage by the legitimate users. However, if this
assumption does not hold, it results in a large number of false positives. Lee et al.
[8] have described a method to discover intrusions in real-time databases. They
have employed the time semantics of temporal data objects to detect intrusions.
Barbara et al. [9] use HMM and time series to find malicious corruption of data
by building database behavioral models that capture the changing behavior over
time.
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Lee et al. [10] designed a signature-based DIDS which matches new SQL
statements against a set of legitimate transaction fingerprints to detect database
intrusions. Nevertheless, if any of the legitimate transaction fingerprints are miss-
ing due to incomplete training data, it can cause many false alarms. Another
relevant DIDS was proposed by Hu et al. [11]. In this approach, the data depen-
dency relationships among the transactions are mined and this information is
used to detect anomalies. Bertino et al. [12] have developed a DIDS which mines
database log files to generate user profiles that model normal user actions and is
used to identify intrusions. Kamra et al. [13] have proposed another method for
detecting anomalous user requests by learning profiles of users and applications
interacting with a database. Srivastava et al. [14] propose a data mining based
IDS that considers sensitivity of attributes while mining the dependency rules.

Majority of the DIDSs as discussed above show a lot of variation in their
accuracy. The main challenge identified by most of them is that any attempt to
improve the rate of correct detection of intrusion, usually causes a rise in the
false alarms as well. One of the motivations of our current research is to address
this challenge.

We present a unique fuzzy database intrusion detection system (TSFDIDS)
with learning and adaptation capabilities, which ensures high assurance and
security. As mentioned previously, fuzzy logic has several important characteris-
tics, which make it suitable for intrusion detection in databases. However, fuzzy
logic has found only limited application in intrusion detection so far and that
too in host-based IDSs and network-based IDSs. Dickerson et al. [15] developed
a fuzzy intrusion recognition engine (FIRE) using fuzzy sets and fuzzy rules.
FIRE uses simple data mining techniques to process the network input data and
generate fuzzy sets for every observed feature. Seo et al. [16] have used fuzzy
logic in distributed intrusion detection for network protection.

To the best of our knowledge, this is the first ever attempt to develop a
database IDS using fuzzy information fusion and fuzzy-Bayesian inferencing.

3 Proposed Approach

The proposed approach uses a number of rules to analyze the deviation of each
incoming transaction from the normal profile of users by assigning beliefs to it.
The belief values from each rule are combined to obtain an initial belief. This
initial belief is further strengthened or weakened according to its similarity with
intrusive or genuine transaction history.

To meet the functionality as identified above, a comprehensive architecture
as shown in Fig. 1, which integrates an Input Pattern Matching Component
(IPMC), Fuzzy Combination Component (FCC), Fuzzy Evidences Component
(FEC) and Fuzzy-Bayesian Inferencing Component (FBIC), has been proposed.
Each incoming transaction of a user is first examined by the IPMC component of
the system. It employs two techniques− sequence alignment and spatio-temporal
outlier detection for selecting the suitable input rules that measure the deviation
of an incoming transaction from the normal patterns.
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Fig. 1. Block Diagram of the Two-Stage Fuzzy Database Intrusion Detection System

A database user normally follows a specific sequence of database operations
to accomplish a certain task. Each query in a transaction is chosen appropri-
ately to achieve a meaningful purpose. Therefore, sequence is an effective way of
representing user profiles and sequence alignment scores can be used to detect
any anomalous activity. Sequence alignment is a technique used to quantify and
evaluate similarity between two or more sequences. Kundu et al. [17] have in-
troduced a novel way of applying sequence alignment for two-stage credit card
fraud detection.

We use sequence alignment as a tool for comparing database access patterns of
genuine users and intruders. The basic idea of our approach is that intruders are
not entirely familiar with the normal database access patterns of legitimate users
and they show some inter-transactional as well as intra-transactional deviation
in their database access. Basic Local Alignment Search Tool (BLAST) [18] is
one of the most popular heuristic approaches for sequence alignment, which is
used in our database IDS for comparing sequence information.

Each new transaction is passed through the Input Pattern Matching Compo-
nent (IPMC) and the new attribute sequence is aligned with each of the normal
profile sequences. The degree of dissimilarity (x) is determined based on the
dissimilarity between the new sequence and the user’s normal profile (good) se-
quences. We use a simple scoring system to evaluate the degree of dissimilarity.
A unit match score δ (0 < δ ≤ 1) is assigned to each matched element and a
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unit mismatch score δ′ (0 < δ′ ≤ 1) to each mismatched element. Let L be the
length of the new sequence and M be the number of matches with the aligned
good sequence. The degree of dissimilarity (x), where 0 ≤ x ≤ 1, is given by the
following expression:

x =

{
δ′(L−M)− δM

L
if δ′(L−M) > δM

0 otherwise
(1)

In the current work, we use access sequence of table attributes for sequence
alignment based deviation detection. The algorithm can be extended to include
other transactional features as well.

It is also seen that the analysis of the spatio-temporal characteristics of a
user’s current behavior gives useful information on abnormal behavior in terms
of his position (physical location of the user) and time of accessing the database.
Thus, the normal spatio-temporal profile associated with each user is mined and
used for the detection of intrusive activities in databases. Since an intruder is not
likely to have complete knowledge regarding the normal spatio-temporal access
patterns of users, some deviation from the user’s profile is usually observed in its
transactions, which are detected as spatio-temporal outliers. A spatio-temporal
outlier (ST-outlier) can be defined as a spatio-temporal referenced object whose
thematic attribute values are significantly different from those of other spatially
and temporally referenced objects in its spatial and temporal neighborhood.

An approach based on the distance-based outlier (DB-outlier) detection tech-
nique [19] is utilized to filter out the ST-outliers. Other existing methods for
outlier detection can efficiently handle only two dimensions or attributes of a
dataset. However, the concept of DB-outlier can be applied to detect outliers ef-
fectively for any dimensional dataset. Let N be the number of objects in the input
dataset T and let DF be the underlying distance function that gives the distance
between any pair of objects in T. An object O in a dataset T is considered to
be a DB(p, d) outlier if at least a fraction p of the objects in T lie at a distance
greater than d from O (d-neighborhood denoted by dN ). Let M represent the
maximum number of data points within an outlier’s dN (i.e., M = N(1 − p)). It
means that an outlier needs to have less than M objects within its dN .

The clusters can be formed by using different attributes, although in the cur-
rent work, we use the attributes 〈loc ID, time slot, table ID seq〉 for generating
ST -outliers where:

– loc ID: location where a transaction was carried out
– time slot: time slot in which a transaction occurs. We have used the 24 hour

clock and partitioned a day into 48 time slots, each of thirty minute duration.
For example, at time = 6 pm (≡ 18hour), time slot = 36

– table ID seq: table access sequence in a transaction

The distance function (DF ) can be expressed as follows:

DF =
√

(loc diff )2 + (time diff )2 + (tdist diff )2 (2)
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where loc diff : distance between current transaction location and the user’s
normal profile transaction location, time diff : distance between current trans-
action time slot and the user’s normal profile time slot, tdist diff : schema dis-
tance between current transaction table ID seq and the user’s normal profile
table ID seq.

For computing tdist diff, we use a distance measure similar to that suggested
in [7]. We assume a database schema S with a set RS of relation schemas.
Consider two attributes Ai ∈ R1 and Aj ∈ R2 where R1, R2 ∈ RS and i, j ∈
{1, . . . , n} where n is the number of attributes in S. The pairwise schema distance
between Ai and Aj , denoted by PS dist, is defined as:

PS Dist(Ai, Aj) =
SD(R1, R2)

max{SD(Rk, Rl)|Rk, Rl ∈ RS} (3)

where SD(R1, R2) computes the shortest distance between the two relations R1
and R2 based on the primary and foreign keys by which they can be related.
Given a set of attributes A = {A1, A2, ..., An} ⊆ attributes(S), the schema
distance function denoted by tdist diff, is defined as:

tdist diff(A1, ..., An) = avg{PS dist(Ai, Aj)} (4)

We measure the extent of deviation of an incoming transaction by its degree of
ST outlierness. Suppose DFavg(T Uk

j,ρ ) and DFmax(T Uk
j,ρ ) respectively denote the

average distance and maximum distance of an outlier transaction T Uk

j,ρ from the
set of existing clusters. The degree of ST outlierness (y), where 0 ≤ y ≤ 1 is
then given by:

y =

⎧⎪⎨⎪⎩
DFavg(T Uk

j,ρ )

DFmax(T Uk

j,ρ )
if |dN | ≤ M

0 otherwise

(5)

Three trapezoidal fuzzy sets − low x (Lx ), medium x (Mx ) and high x (Hx )
are defined for the input x having membership functions (MFs) μLx(x), μMx(x)
and μHx(x) respectively. Three similar trapezoidal fuzzy sets − low y (Ly),
medium y (My) and high y (Hy) are also defined for the input y with MFs
μLy(y), μMy(y) and μHy(y) respectively. The MFs can be expressed as follows:

μLt(t) = max

(
min

(
1,

0.4− t

0.2

)
, 0

)
(6)

μMt(t) = max

(
min

(
t− 0.2

0.2
, 1,

0.8− t

0.2

)
, 0

)
(7)

μHt(t) = max

(
min

(
t− 0.6

0.2
, 1

)
, 0

)
(8)

where t ∈ {x, y}. Here the trapezoidal MF parameters (0.2, 0.4, 0.6 and 0.8) were
chosen by fitting experimental data with initially assumed function definitions.
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The fuzzy inference module FCC determines whether the current transaction
is normal or intrusive, based on the inputs x and y. For each incoming trans-
action, it utilizes a two-input, single-output first-order Sugeno fuzzy model [20]
to combine the inputs x and y for computing an initial belief (z). The Sugeno
model is used since it uses a simple inference procedure without involving the
computationally expensive defuzzification operation. Based on the input MFs,
FCC uses the following nine fuzzy if-then rules:

– Rule 1: if x is low x and y is low y then z1 = 0.5x + 0.5y.
– Rule 2: if x is low x and y is medium y then z2 = 0.5x + 0.5y.
– Rule 3: if x is low x and y is high y then z3 = 0.5x + 0.5y.
– Rule 4: if x is medium x and y is low y then z4 = 0.5x + 0.5y.
– Rule 5: if x is medium x and y is medium y then z5 = 0.5x + 0.5y.
– Rule 6: if x is medium x and y is high y then z6 = 0.5x + 0.5y.
– Rule 7: if x is high x and y is low y then z7 = 0.5x + 0.5y.
– Rule 8: if x is high x and y is medium y then z8 = 0.5x + 0.5y.
– Rule 9: if x is high x and y is high y then z9 = 0.5x + 0.5y.

For simplicity, a coefficient of 0.5 is used in each of the fuzzy rules. Other values
may be suitably chosen based on the specific requirements of the application.
The consequents are aggregated to produce an inferred global crisp output initial
belief (z ) by using the following expression:

z =
w1z1 + w2z2 + . . . + w9z9

w1 + w2 + . . . + w9
where, 0 ≤ z ≤ 1 (9)

The membership values on the premise part are combined using min operator
to get the firing strength or weight (wi) of each rule. Three output fuzzy sets −
genuine z (Gz ), suspicious z (Sz ) and intrusion z (Iz ) are defined for the initial
belief (z ) having MFs μGz(z), μSz(z) and μIz(z) respectively. The membership
grade of z is computed in all the three output fuzzy sets and the incoming
transaction is initially categorized as genuine, suspicious or intrusive depending
on the corresponding fuzzy set in which the membership value is maximum.
If μSz(z) is maximum, the transaction is allowed but the user is labeled as
suspicious and any further transaction carried out by the user is investigated by
the TSFDIDS for possibility of intrusion.

For the database intrusion detection problem, there can be two possible values
(hypothesis) for any suspected transaction: h1 = intrusion, h2 = ¬intrusion.
When the next transaction occurs by the same user, it is again passed through the
TSFDIDS. IPMC examines the new transaction, assigns the basic probabilities,
and then FCC computes the initial belief for this transaction. In case the trans-
action is again found to be suspicious, more information (evidence) regarding
the user’s database access behavior is obtained prior to deciding. The new infor-
mation is expressed in the form of conditional probabilities. For accomplishing
this, we have built a legitimate transactions history (LTH) for individual users
from their past behavior and a generic malicious transactions history (MTH)
from different types of past intrusive data.
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It is observed that, in every database, there are a few attributes that are more
important to be tracked for malicious modifications or leakage as compared
to other attributes. We categorize all the attributes into the following three
sensitivity levels − High Sensitivity (HS), Medium Sensitivity (MS) and Low
Sensitivity (LS) by introducing weights for each attribute based on its sensitivity
group. Also, modification (write) of an attribute of a particular sensitivity level
is considered more important than accessing (read) the same attribute, from a
database integrity point of view.

For a suspicious transaction, the initial observation done by the input pattern
matching component is further strengthened by monitoring the frequency of
transactions in terms of time gap from the previous transaction by the same
user along with the most sensitive attribute operation in the current transaction.
Thus, the parameters (evidences) considered during inspection are− time gap (t)
and sensitivity (s). However, the quality of these parameters is inherently fuzzy.
Hence, fuzzy events [4] and associated MFs are defined for each parameter.

Three orthogonal fuzzy events − low t (Lt), medium t (Mt) and high t (Ht)
are defined for time gap (t) that are characterized by trapezoidal MFs μLt(t),
μMt(t) and μHt(t) respectively. The conditional probabilities of the fuzzy events
known as fuzzy conditional probabilities are determined in a manner similar to
that suggested in [4] from the history databases. Table 1 shows the sample time
gap fuzzy conditional probabilities for each hypothesis. The other parameter,
namely, sensitivity is also dealt in a similar manner. Table 2 shows the sample
sensitivity fuzzy conditional probabilities for each hypothesis.

Table 1. Fuzzy conditional probabilities for time gap

P (Lt|hi) P (Mt|hi) P (Ht|hi)
h1 0.502 0.457 0.041
h2 0.124 0.182 0.693

Table 2. Fuzzy conditional probabilities for sensitivity

P (Ls|hi) P (Ms|hi) P (Hs|hi)
h1 0.062 0.301 0.637
h2 0.671 0.272 0.057

Other than combining evidences, learning is also incorporated in TSFDIDS
through application of prior knowledge and observed data on suspicious users by
using the fuzzy-Bayesian decision method [4]. Bayesian learning usually fails to
adequately address the uncertainties of the subjective parameters that are asso-
ciated with intrusion detection. With the introduction of fuzzy set theory, it is
possible to quantify the qualitative evaluation of the various subjective parame-
ters and incorporate it into the database security problem. The two theories are
therefore combined, which is popularly known as Fuzzy-Bayesian inferencing.
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The fuzzy-Bayesian inferencing component employs the fuzzy-Bayesian deci-
sion method to update the suspicion score (v) of the current transaction in light
of the new evidence from the FEC. The fuzzy posterior probabilities (w) are cal-
culated for each hypothesis (hi) by using the fuzzy-Bayesian inference rule given
as follows:

w = P (hi|F1F2) =
P (F1|hi)P (F2|hi)P (hi)∑2

j=1 P (F1|hj)P (F2|hj)P (hj)
(10)

where, F1 and F2 are fuzzy information. Since there are two evidence parameters
and each parameter has been defined to have three possible quality ratings as
discussed above, there are a total of 32 = 9 combinations of inspection results for
each hypothesis, namely, P (hi|LtLs), P (hi|LtMs), P (hi|LtHs), P (hi|MtLs),
P (hi|MtMs), P (hi|MtHs), P (hi|HtLs), P (hi|HtMs) and P (hi|HtHs). When
F1 = Lt and F2 = Ls, fuzzy posterior probability of h1 denoted by P (h1|LtLs)
is given by the following expression:

P (h1|LtLs) =
P (Lt|h1)P (Ls|h1)P (h1)∑2
j=1 P (Lt|hj)P (Ls|hj)P (hj)

(11)

where, P (Lt|h1) and P (Ls|h1) are obtained as discussed in [4]. Derivation of the
remaining posterior probabilities follows from the above Eq. (10).

Maximum A Posteriori (MAP) hypothesis is then applied, which yields the
hypothesis with the highest fuzzy posterior probability as the output and is
expressed as follows:

hMAP = max
hi∈H

P (hi|e) (12)

The fuzzy posterior probabilities are the updated beliefs about the last trans-
action by user based on the evidence from FEC and previous round suspicion
score v (last round). Since for the second suspicious transaction on a user, there
is no v (last round), the initial belief of the first round is itself taken as v (last
round) and the fuzzy posterior probabilities are computed based on this value
in the second round.

The FCC applies a first-order Sugeno fuzzy model to combine the inputs −
current round initial belief z and highest posterior belief w in the antecedent
to get the output suspicion score (current round) v in the same way as dis-
cussed earlier. Three output fuzzy sets − genuine v (Gv), suspicious v (Sv)
and intrusion v (Iv) are defined for the suspicion score, characterized by trape-
zoidal MFs μGv(v), μSv(v) and μIv(v) respectively. The membership values of
v are computed in all the three output fuzzy sets and the FCC then decides
whether the incoming transaction is legitimate, suspicious or intrusive depend-
ing on the corresponding fuzzy set in which the highest membership value is
acquired.

4 Experimental Evaluation

In this section, we outline the results from an experimental evaluation of the
proposed approach and illustrate its performance. The transactional web bench-
mark (TPC-W) [21] schema has been used for large scale simulation.
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A extensive simulator has been developed which can handle various real life
scenarios that are normally experienced in actual database applications. Firstly,
any real-world database application contains malicious transactions interspersed
with regular genuine transactions. Secondly, the genuine transactions are mostly
consistent for a given user profile and are dependent on space and time. Thirdly,
the genuine transactions and malicious transactions are independent events gen-
erated by two different parties and they have possibly different arrival rates.
We capture such real life situations using a Markov Modulated Poisson Process
(MMPP). The MMPP consists of a legitimate state L and malicious state M
with arrival rates λL and λM respectively. Mixing of legitimate and malicious
transactions is controlled by the transition between L and M states. Transition
from L to M takes place with probability qLM and from M to L with probability
qML.

We have used eight different simulation parameter settings (SS1 to SS8) as
shown in Table 3 to show the efficacy of the proposed method. The parameter
values in each setting SSi are chosen in such a way that the occurrence of intrusive
transactions gradually reduces from SS1 to SS8. Standard performance metrics,
namely, true positives (TP) and false positives (FP) are used to analyze the
performance of the system under different test cases.

Table 3. Simulator Settings for arrival rate variations

Simulator Setting qLM qML λL λM

SS1 50 50 1 4
SS2 15 50 1 4
SS3 15 70 1 4
SS4 10 80 1 4
SS5 10 80 1 2
SS6 10 90 3 1
SS7 5 96 4 1
SS8 5 99 8 1

4.1 Performance Analysis

We first study the performance of the system with variation in the percentage of
overlap between the intrusive query set and the genuine query set. It is evident
from the plot shown in Fig. 2 that TSFDIDS yields up to 92% TP and less
than 5% FP. However, the TP rate gradually decreases with increase in the
percentage of overlapping queries and the performance is worst (lowest TP) at
the point of 100% overlap. With increase in the percentage of overlap, similarity
among intrusive query set and genuine query set increases making it difficult to
distinguish them, thus leading to degraded performance. It is seen that FP rate
also reduces with rise in the percentage of overlapping queries, but the reduction
is comparatively slower.
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Fig. 2. Variation of TP/FP with intrusive and genuine query set overlap

In Fig. 3, we show the performance of the proposed system over various
rounds. The first round commences with the first suspect transaction of a partic-
ular user. TSFDIDS is able to update the belief values over successive rounds and
the process continues as long as the suspicion score is within the two threshold
limits. It is seen that with each successive round the number of intrusive trans-
action detected as well as the false alarm rate rises. As a result the cumulative
TP and cumulative FP increases at the end of each round.
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Fig. 3. Variation of TP/FP over Successive Rounds

4.2 Comparative Performance

We next compare the performance of TSFDIDS with two other systems proposed
respectively by Hu et al. [11], which uses data dependency relationships, and
Srivastava et al. [14], which uses weighted sequence mining. DDIDS represent
the DIDS in [11] and WDIDS the DIDS in [14]. We compute TP and FP at
each SSi for all the three DIDSs as mentioned above. It is evident from the plot
shown in Fig. 4 that the TP rate gradually decreases from SS1 to SS8 with
decrease in the percentage on intrusive transactions for all the three DIDSs.
However, TSFDIDS is able to detect intrusive transactions more correctly (TP)
as compared to DDIDS and WDIDS.
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It is found that choosing support and confidence values is a problem in DDIDS
as well as WDIDS. The TP rate in these two systems is highly dependent on
the number of attribute dependency rules mined. Even if a low support value
is chosen, the number of rules mined is quite less, which results in degraded
performance for these systems. Moreover, the performance of TSFDIDS is also
better in case of FP (lower value of FP) than the other two approaches as shown
in Fig. 5.
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Fig. 4. Variation of TP with different simulator settings for TSFDIDS, DDIDS and
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5 Conclusions

In this paper, we have developed an innovative approach for database intrusion
detection by combining evidences using fuzzy rules. In addition, belief update
also takes place by means of fuzzy-Bayesian inferencing. A DIDS consisting of
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four components, namely, input pattern matching component, fuzzy combina-
tion component, fuzzy evidences component and fuzzy-Bayesian inference com-
ponent, has been proposed. Sugeno fuzzy model is applied to combine inputs
from the IPMC for computation of initial belief about each incoming trans-
action. Belief is updated by means of fuzzy-Bayesian inferencing using history
database of both genuine users as well as intruders. MTH is built from history
data about past malicious behaviors detected by any organization. The experi-
ments yielded up to 92% TP and less than 5% FP. Combining rules using fuzzy
logic accelerates detection rate while keeping the FP rate low and the use of
fuzzy-Bayesian inference method further stimulates the system accuracy.
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Abstract. In a logical setting, consistency of a database instance with
constraints is a fundamental requirement. We show how satisfaction of a
set of constraints guarantees confidentiality of some information declared
secret by a security policy – albeit at the cost of some modified database
entries. We identify a very general class of constraints for which this
problem is effectively and in many cases efficiently solvable by means
of an automatic procedure. A distance minimization ensures maximal
availability of correct database entries.

1 Introduction and Related Work

Intelligent database systems can react in a personalized way depending on the
user profile of an interacting user. Hence the protection of confidential and pri-
vate information can be achieved based on a personalized security policy and a
user’s a priori knowledge.

In addition to denial of access, modification of database entries has been in
use for some time to achieve protection of secrets. Cover stories [1,2,3,4] in
MLS databases ensure a consistent database view to a low-level user without
revealing high-level information; this is basically achieved by adding harmless
tuples that cover up for confidential tuples. It is argued in [1,3] that without cover
stories (that is, by just refusing to answer), the existence of sensitive information
can be disclosed. The belief-based approach [5] presents differing views of the
world according to a user’s clearance; their partial databases can thus be seen
as containing cover stories for users of insufficient clearance. The “provable data
privacy” approach for incomplete ALC knowledge bases [6] also deceives a user
about the correct evaluation of some queries: They use a view that omits some
answers and hence makes them undefined instead of denying them. All of these
approaches however address management and evaluation of cover stories but not
their automatic generation. The approach in [3] restores consistency of an MLS
database after an update (which we do not consider) by inserting or modifying
cover stories. In contrast to our approach they do not minimize the amount of
cover stories with respect to the original instance.

As for consistency, it is also of paramount importance in other related research
areas: Data exchange aims at adding as much data as possible from source to
target instances; Fagin et al. [7] allow an infinite set of null values – hence their
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Fig. 1. Concept of preprocessing

chase procedure can potentially be infinite. Consistent query answering identifies
those answers that are common to all consistent “repairs” of an inconsistent
database instance; Chomicki [8] assumes an infinite domain of constant symbols.

This article regards the problem of finding a database instance that first of all
is consistent with a user profile (including a set of database constraints) and sec-
ond guarantees confidentiality of data that are specified in a security policy. We
present a model generation procedure called preCQE that achieves both goals at
the same time. In a strict logical setting, preCQE is hence a fully automatic pro-
cedure that generates a solution instance containing cover stories. As a tertiary
goal, the procedure ensures maximal availability of correct data by optimization
with respect to the input instance; in other words, the amount of cover stories is
kept minimum. Figure 1 illustrates the general concept of the transformation of
an input instance db into a solution instance db ′ that ensures consistency with
constraints in a user profile prior and confidentiality of secrets in a security pol-
icy pot sec. The work contained in this article extends and improves upon its
propositional predecessor in [9] as follows. The incorporation of first-order logic
significantly adds to expressiveness and user-friendliness of the system: first-order
logic enables us to handle relational databases and allows for an easy declaration
of database constraints, user profiles and security policies. The assumption of an
infinite set of constants (combined with usage of quantifiers) enforces a purely
first-order procedure and hence we avoided a direct propositionalization of the
problem at hand. In contrast to the propositional case, termination as well as
soundness and completeness results have been established.

We briefly outline the contributions of this article. Section 2 formalizes the
logical background. Section 3 identifies a very general condition for the existence
of a solution instance. Section 4 presents the preCQE algorithm that uses addi-
tions and deletions of tuples to achieve consistency and confidentiality. Lastly,
Section 5 puts the achievements in context.

2 System Settings

In this section we provide formal definitions of the system settings and all the
components visualized in Figure 1. A comprehensive example at the end of this
section illustrates the settings.
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Data Model: To specify the vocabulary of an application, the database ad-
ministrator dbadm fixes an infinite (albeit recursive) domain dom of constant
symbols and a finite set P of predicate symbols. Each predicate symbol P ∈ P
has an assigned arity arity(P ). Hence, dbadm implicitly defines a first-order lan-
guage L (without function symbols and equality) that is based on dom and P ;
L further includes an infinite set V of variables, the quantifiers ∃ and ∀ and
the connectives ¬ (negation), ∨ (disjunction) and ∧ (conjunction). On occasion,
material implication → is used as an abbreviation (for a negation and a dis-
junction). Next, to express the invariant part of the application, dbadm declares
a finite set D of closed formulas of L as database constraints. The predicate
symbols and the constraints together form the database schema DS = 〈P ,D〉; in
Definition 2, DS will also denote the set of all the instances that are compatible
with the schema.

Lastly, dbadm maintains the data in an instance db of the database. From
a logical perspective, all data tuples in db can be represented as a finite set
of ground atoms of L . By employing a closed world assumption, the database
becomes a “complete” database (that returns a definite answer to any query).
A database instance then induces a Herbrand-like “DB-interpretation” for L ;
its characteristics are that (1) the universe of discourse uniformly coincides with
dom , (2) predicates have a finite positive part and (3) each constant is interpreted
by itself. Accordingly, we can speak of “DB-satisfiability” of a set of formulas of
L (using the model operator |= to denote satisfaction); these notions originate
from [10].

Definition 1 (DB-interpretation, DB-satisfiability). Consider a logical
structure I = 〈U , i , j 〉 where U is the universe of discourse, and i and j give
meaning to predicate symbols and constant symbols, respectively. I is a DB-
interpretation for L iff

1. U = dom
2. i(P ) ⊂finite dom × . . .× dom︸ ︷︷ ︸

arity(P ) times

for every P in P

3. j (a) = a for every a in dom

A set S of closed formulas is DB-satisfiable iff there is a DB-interpretation I
such that for all formulas Φ ∈ S, I |= Φ.

To denote the interpretation that is induced by a specific database instance db
we write Idb .

User Model: The user administrator models each user by a finite and consistent
set prior of closed formulas as his assumed a priori knowledge before interacting
with db. We assume that the user is aware of dependencies between the data
as modeled by dbadm in the database constraints D – in this case, D ⊆ prior .
He may command over other (for example, instance-dependent) knowledge not
explicitly modeled by dbadm ; it is thus useradm’s task to identify user profiles
and make such knowledge explicit in the user model prior .

Over the time, the user’s knowledge is augmented with the responses that the
database returns to his queries. Moreover, the system must be designed to protect
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sensitive information against a user who possesses some meta-knowledge – for
example, knowledge about the data model. In particular, we need a query eval-
uation function that explicitly accounts for the closed world assumption. That
is why we will formally define that open queries always return an infinite answer
set (although for safe and domain-independent queries it is finitely representable
by its positive part and an appropriate closure statement; see [10]).

Definition 2 (Query evaluation for complete db). An open formula Φ is
evaluated in a complete database instance db according to the following function
that returns a set of closed formulas (where ℘ is the power set operator, x a
vector of free variables and a a vector of constants):

eval∗(Φ(x)) : DS → ℘{ Ψ | Ψ is a closed formula of L }
with

eval∗(Φ(x))(db) := {Φ(a) | a ⊂ dom and Idb |= Φ(a)}
∪ {¬Φ(a) | a ⊂ dom and Idb �|= Φ(a)}

For a closed formula Φ, ordinary query evaluation reduces to a singleton set (for
which curly braces are skipped):

eval∗(Φ)(db) :=
{

Φ if Idb |= Φ
¬Φ else

Next, we want to analyze what the user is able to do with his knowledge; we
will formalize his inference capabilities with a special form of model-theoretic
implication. Again we assume that the user is aware of the data model and
knows that he is querying a complete database; we encode this in the notion of
“DB-implication”.

Definition 3 (DB-implication). For a set S of closed formulas and a closed
formula Φ, S implies Φ by DB-implication (written as S |=DB Φ) iff for all
DB-interpretations I such that I |= S holds also I |= Φ holds.

That is, the user’s inferences comprise the closure of prior and the query re-
sponses under |=DB .

Policy Model: To capture the application-specific security requirements, the
security administrator secadm declares a security policy (more precisely confi-
dentiality policy) pot sec of “potential secrets”. pot sec is a finite set of closed
formulas specifying sensitive information that is not to be revealed to the user
if it holds (is true) in the instance db; the user may however assume that a
potential secret does not hold (is false).

Notably, consistency of the database responses with the user profile (including
the database constraints) is crucial for the enforcement of the confidentiality pol-
icy in this strict logical setting: once the user knowledge contains contradicting
information, DB-implication reveals any logical sentence (including the sensitive
information). Hence, enforcement of confidentiality amounts to finding a DB-
interpretation that satisfies the a priori knowledge prior but does not satisfy
any of the potential secrets. We name this property “inference-proofness”.
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Definition 4 (Inference-proofness for complete database). Given a set
prior and a set pot sec, a complete database instance db ′ is called inference-
proof (with respect to prior and pot sec) if and only if

(i) Idb′ |= prior
(ii) Idb′ �|= Ψ for every Ψ ∈ pot sec

Note that an inference-proof database instance is also complete; it has to return
a definite answer to each query – even one implying a potential secret. A well-
informed database user might know (or at least suspect) what kind of information
is sensitive. We thus assume that the user is aware of the policy specification
pot sec and knows that the database system will never tell him that a potential
secret is true. He expects that instead the database system will insist that each
potential secret is false. Hence, dealing with complete instances and a known
policy specification, Item (ii) is equivalent to requiring Idb′ |= ¬Ψ . In sum,
we have to find a DB-interpretation Idb′

that satisfies the following “constraint
set” C:

Definition 5 (Constraint set). For a set prior and a set pot sec, the con-
straint set is

C := prior ∪ Neg(pot sec)

where Neg(pot sec) := {¬Ψ |Ψ ∈ pot sec}.
We employ a data modification technique to achieve this, but refrain from using
data restriction (“refusal” or “denial of access”). More precisely, we allow addi-
tions and deletions of data tuples to present the user with a view of the data
that is consistent with C. In this way, our kind of data modification coincides
with the one used in cover story management.

While in general a constraint set C might contain contradictions and hence
is unsatisfiable, we identify a general condition that guarantees the existence of
an inference-proof instance. Let pot sec disj :=

∨
Ψ∈pot sec Ψ .

Theorem 1 (Satisfiability of constraint set). Under the condition that
prior �|=DB pot sec disj , the constraint set C is DB-satisfiable.

Proof. The assumption ensures that pot sec disj is not a tautology (otherwise
it would be implied by prior ) such that Neg(pot sec) is indeed satisfiable. prior
itself is satisfiable, too, as we require the user knowledge to be consistent. More
precisely, applying the Definition 3 of DB-implication in contraposition, there is
a DB-interpretation I such that I |= prior and I �|= pot sec disj . But then, for
all Ψ ∈ pot sec also I �|= Ψ holds and thus (for complete db) I |= ¬Ψ holds. In
other words, I |= Neg(pot sec). This ensures that indeed I |= C.

In addition to inference-proofness that is intended to ensure both consistency
and confidentiality,“distortion minimality” responds to the issue of availability of
correct data: only a minimum of the original database entries should be modified.
We define the “distortion distance”of a database instance db ′ with respect to the
original input instance db as the number of ground atoms that have a different
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evaluation in db ′ than in db. In essence, we calculate the cardinality of the
symmetric difference db ⊕ db ′ := (db \ db ′)∪ (db ′ \ db) of the two instances. The
symmetric difference is the standard cardinality-based distance, which is widely
used in belief revision and related fields; there it is often called“Dalal’s distance”
(see [11] for a comparison of several minimal change semantics).

Definition 6 (Distortion distance). The distortion distance of an instance
db ′ with respect to the input instance db is

db dist(db ′) := card(db ⊕ db ′).

A distortion minimal database instance is one that minimizes the distortion
distance over all inference-proof instances.

Definition 7 (Distortion minimality). An inference-proof instance db′ is
distortion-minimal, iff there is no other inference-proof instance db ′′ such that
db dist(db ′) > db dist(db ′′).

We illustrate the system settings with an example. We consider a database with
medical data consisting of two relations: the one called“Ill” relates a person with
a diagnosis, the one called “Treat” relates a person with a medical treatment.

Example 1. The database administrator dbadm specifies the language L as hav-
ing the finite set of predicate symbols

P = {Ill(Name,Diagnosis),Treat(Name,Treatment)}.

In this example, we assume the predicates to be sorted and have the following
infinite sort subsets of dom

Name = {Pete, Mary, Lisa, Paul, . . .}
Diagnosis = {Aids, Flu, Cancer, Migraine, . . .}
Treatment = {MedA, MedB, MedC, . . .}

such that dom = Name ∪Diagnosis ∪ Treatment.
As the original database instance db, we have

Ill Name Diagnosis
Pete Aids
Mary Cancer

Treat Name Treatment
Pete MedA
Mary MedB

The user’s a priori knowledge is declared in prior by the user administrator
useradm; we assume in this example, that if the user knows the treatment of a
patient, then he can narrow down the set of possible diagnoses (these formulas
could also be present in the set D of database constraints):

prior = {∀x(Treat(x, MedA)→ Ill(x, Aids) ∨ Ill(x, Cancer)),
∀x(Treat(x, MedB)→ Ill(x, Cancer) ∨ Ill(x, Flu))}
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The security administrator secadm specifies the potential secrets; in our example,
the modeled user should neither be able to infer that there is a patient with the
diagnosis Cancer nor a patient with the diagnosis Aids:

pot sec = {∃xIll(x, Aids), ∃xIll(x, Cancer)}

Unfortunately, some ordinary query responses enable the user (as modeled by
prior ) to infer a potential secret; for instance:

eval∗(Ill(Pete, Aids))(db) |=DB ∃xIll(x, Aids)
prior ∪ eval∗(∃x(Treat(x, MedB) ∧ ¬Ill(x, Flu)))(db) |=DB ∃xIll(x, Cancer)

We see that the precondition of Theorem 1 is satisfied in this example, that
is (after standardizing variables apart in pot sec disj ) it holds that prior �|=DB

∃xIll(x, Aids) ∨ ∃yIll(y, Cancer). From Theorem 1 we know that the constraint
set C = prior ∪Neg(pot sec) is DB-satisfiable. Indeed we notice that the empty
database instance db ′

1 = ∅ is a solution candidate: Idb′
1 is a model of prior ,

but it’s not a model of any of the potential secrets. We can calculate that its
distortion distance is db dist(db ′

1) = 4. A second inference-proof instance is the
following db ′

2:

Ill Name Diagnosis
Mary Flu

Treat Name Treatment
Mary MedB

The distortion distance is db dist(db ′
2) = 4. Both instances are distortion-

minimal: all other inference-proof instances have greater distances.

3 Conditions for DB-Satisfiability

Deciding whether a set of formulas is satisfiable is an undecidable problem for
general first-order logic (see [12]). We are interested in establishing syntactic
conditions for DB-satisfiability of input constraints C; in other words, by look-
ing at the syntax of formulas in C we can say whether there is a model with
a finite positive part in the infinite domain dom . We adopt well-known results
from investigations surrounding “safe queries” to our problem – that is, queries
that have a finite response based on a fixed domain. As safety of queries is unde-
cidable, syntactic restrictions for queries that define a decidable subclass of safe
queries were seeked. Several characterizations of differing complexity have been
proposed; see for example [13] for an overview. We singled out the definitions of
van Gelder and Topor (see [14]) for their “allowed” formulas as appropriate for
our case. Intuitively, the allowed property ensures that each subformula that has
to be evaluated returns a finite result; in other words, variables that, in principle,
could be bound to infinitely many values when evaluating one subformula are
actually bound to only finitely many values when evaluating another subformula
and additionally this second subformula can be evaluated first. Van Gelder and
Topor define the allowed property by stating a set of rules and taking the closure
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of these rules after a finite number of applications. This includes ground formulas
of any kind.

We will apply the definition of the allowed property to formulas with only uni-
versal quantification. More precisely, we require that the formulas be in prenex
literal normal form (PLNF, a term also borrowed from [14]): all quantifiers are
moved into a prenex such that the remaining matrix is quantifier-free; addition-
ally, the matrix is in negation normal form (NNF) – that is, negation signs only
appear in front of atoms. In contrast to conjunctive normal form (CNF), a trans-
formation to PLNF does not cause any loss of structural information and it does
not increase the length of a formula; it is thus a very general class of formulas.

The following theoretical result will be of great use in the upcoming Sec-
tion 4; it establishes the following: if an allowed universal formula is negated,
transformed into PLNF and stripped of its prenex, then the resulting formula
also has the allowed property (we implicitly introduce the function dropprenex
here that returns the matrix of its input formula).

Lemma 1 (Negations of allowed universal formulas). If Φ is an allowed
universal formula, dropprenex (plnf (¬Φ)) is an allowed formula.

Proof. (Sketch) As Φ is allowed universal of the form Φ = ∀x Ψ(x), the PLNF of
its negation has the form plnf (¬Φ) = ∃x nnf (¬Ψ(x)). We drop the prenex such
that dropprenex (plnf (¬Φ)) = nnf (¬Ψ(x)). We have not listed the definition of
allowed formulas, but negation signs can be pushed inwards with it and thus the
allowed property carries over to nnf (¬Ψ(x)).

4 Automating Inference-Proofness

Based on the theoretical background of the previous section, we present the
preCQE algorithm for the case of allowed universal constraints. We find the
solution instance db ′ by searching along branches in a binary“search tree”. Some
leaf in the search tree is then chosen as an instruction how to transform the
original instance db into the solution instance db ′.

Branches are constructed by a “splitting” operation that creates two child
nodes. It assigns a ground atom the value false in the left child node; in other
words, the ground atom is either removed from the database instance (if it was
included in db) or left out of the instance (if it was not included). In the right
child node, the ground atom is assigned true; in other words, the ground atom
is either added to or kept in the instance.

Yet, it may occur that there is actually no need for a splitting operation: only
one of the two truth values (either true or false) for a ground atom promises the
opportunity to satisfy a constraint. Then no new nodes are created but instead
the unique truth value is assigned to the ground atom in the current node. In
particular, this strategy applies to “unit constraints” – the ones containing only
a single literal. Before starting with the technical details we give an example of
an input in Example 2 and show its associated search tree in Figure 2.
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Example 2. We continue Example 1. That is, we have the constraint set

C = {∀x(¬Treat(x, MedA) ∨ Ill(x, Aids) ∨ Ill(x, Cancer)),
∀x(¬Treat(x, MedB) ∨ Ill(x, Cancer) ∨ Ill(x, Flu)),
∀x¬Ill(x, Aids),
∀x¬Ill(x, Cancer) }

Figure 2 shows how a solution for this input could be found; this procedure re-
sults exactly in the solution candidates db ′

1 and db ′
2 from Example 1. At first, we

satisfy the two constraints ∀x¬Ill(x, Aids) and ∀x¬Ill(x, Cancer): the removal of
the two entries Ill(Pete, Aids) and Ill(Mary, Cancer) in the root node is unequiv-
ocal. The first splitting step then corresponds to the decision whether to keep
the atom Treat(Pete, MedA) or not. The splitting gives rise to a further splitting
step in the left child node v1 where ultimately in node v2 the solution instance
db ′

1 is found.
Node v3 also yields a solution instance – db ′

2 – in the following manner: after
the splitting operation, we have to add Ill(Mary, Flu) (in order to satisfy the
second constraint formula). In this situation we do not have to split anymore
because the other atoms in the formula (in this case, Treat(Mary, MedB) and
Ill(Mary, Cancer)) have already been treated.

Lastly, the root’s right child v4 fails (its branch is“pruned”): with the splitting
operation we decided to keep the database entry Treat(x, MedA) but then the
atom Ill(Pete, Cancer) has to be added (in order to satisfy the first constraint
formula). This indeed constitutes an unresolvable conflict with the constraint
∀x¬Ill(x, Cancer).

We now move on to a technical description of the preCQE algorithm. It assigns
truth values by “marking” ground atoms in the original database instance: a

Fig. 2. Example of search tree
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special value is temporarily appended to the ground atom that designates the
intended truth valuation for the ground atom in the resulting instance db ′. In
the following, we will speak of a “marked database instance” dbv and mean by it
the database instance with marked ground atoms in a node v of the search tree.
More precisely, a marked database instance dbv is a finite set of ground atoms
some of which are marked. The following markers are used:

1. “keep” (k): the according ground atom of db should be retained in db ′

2. “add” (a): the according ground atom is not contained in db but should be
added to db′

3. “remove” (r): the according ground atom of db should not occur in db ′

4. “leave” (l): the according ground atom is not contained in db and should
also be left out of db ′

As a more general notation, we use the function markerv (γ) to access and set
the marker for a ground atom γ in a marked database instance dbv. We can for
example write markerv (P(a)) := a to set a marker a for a ground atom P (a);
its meaning is that P (a) was false in the input instance db, but that it has to be
true in the solution instance db ′. Markers can be implemented by an additional
attribute in each relation. Yet, when using a ground atom γ in the theoretical
exposition we will not include the marker as an additional attribute; instead, we
will access the marker only with the help of the marker -function.

1. GROUND(v): Determine ground violations in node v
1.1. Cvio

v := {Φ ∈ C | evalv(Φ) = ¬Φ};
1.2. if (Cvio

v = ∅)
1.2.1. dbbest := dbv;
1.2.2. min liesbest := min liesv;

1.3. else
1.3.1. foreach Φi ∈ Cvio

v

1.3.1.1. Φ′
i := plnf (¬Φi);

1.3.1.2. Φ′′
i := dropprenex (Φ′

i);
1.3.2. Vv :=

⋃
i evalposv (Φ′′

i );
1.3.3. SIMP(v);
1.3.4. if ( there is ψ ∈ Vv with card(unmarkedv (ψ)) = 0 )

1.3.4.1. PRUNE; //(conflicting markers)
1.3.5. else if ( there is ψ ∈ Vv with card(unmarkedv (ψ)) = 1 )

1.3.5.1. take unique literal λ ∈ unmarkedv (ψ);
1.3.5.2. MARK(v,λ);
1.3.5.3. GROUND(v);

1.3.6. else
1.3.6.1. SPLIT(v);

Listing 1. Computing ground violations

As mentioned earlier, in this section we concentrate on an algorithm for al-
lowed universal formulas. preCQE for allowed universal constraints comprises
some procedures operating on marked database instances; the main procedures
are given in pseudo code in Listings 1 to 3 with numbered lines. It starts with
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2. SPLIT(v): Splitting on a ground atom in node v
2.1. choose ψ ∈ Vv;
2.2. choose λ ∈ unmarkedv (ψ);
2.3. generate two child nodes vleft and vright;
2.4. dbvleft := dbvright := dbv;

2.5. min liesvleft := min liesvright := min liesv;

2.6. MARK(vleft,¬|λ|);
2.7. GROUND(vleft);
2.8. MARK(vright,|λ|);
2.9. GROUND(vright);

Listing 2. Splitting on a ground atom

3. MARK(v,λ): Marking an unmarked ground atom γ in dbv

3.1. γ := |λ|;
3.2. if (λ = γ and evalv(γ) = γ )

3.2.1. markerv (γ) :=k;
3.3. else if (λ = γ and evalv(γ) = ¬γ )

3.3.1. markerv (γ) :=a;
3.3.2. min liesv++;

3.4. else if (λ = ¬γ and evalv(γ) = γ )
3.4.1. markerv (γ) :=r;
3.4.2. min liesv++;

3.5. else if (λ = ¬γ and evalv(γ) = ¬γ )
3.5.1. markerv (γ) :=l;

3.6. if (min liesv ≥min liesbest) PRUNE; //(bad bound)

Listing 3. Marking a ground atom

some initialization in the root node of the search tree which is not explicitly
listed here; then the GROUND procedure is called.

The GROUND procedure computes in the set Cvio
v those constraints that are

violated in the current marked database dbv (Line 1.1.); violated constraints are
identified by evaluating them in dbv respecting the markers with evalv: ground
atoms marked with r or l (or not contained in dbv) are evaluated to false; ground
atoms marked with k or a (or contained but unmarked in dbv) are evaluated to
true. If there are no violated constraints, a new optimum is found and saved
in dbbest (Line 1.2.1.). Otherwise a “violation set” Vv is computed (Line 1.3.2.):
according to Lemma 1, the evaluation of the positive part (with evalposv ) returns a
finite set due to the allowed property. The SIMP procedure (called in Line 1.3.3.) is
responsible for simplifying ground violations according to already marked literals
but is not explicitly adduced here. The algorithm tries marking ground literals
in violation formulas in order to satisfy the violated constraints. Hence, if there
is no unmarked ground literal left (as determined by the function unmarkedv

in Line 1.3.4.) we encountered a conflict in the current interpretation according
to dbv and can stop (“prune”) exploration of the current branch; the PRUNE
procedure (which is not listed here either) is responsible for backtracking in the
search tree. If there is only one unmarked ground literal, we try marking it in the
only way that could potentially satisfy the original constraint (1.3.5.2.). Lastly,
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if none of the previous cases holds, we know that there is a violation formula
with more than one unmarked literal; we try both truth values for one of them
with a splitting step (Line 1.3.6.1.).

In the SPLIT procedure two new child nodes are created in the search tree. In
the left child node, the value false is tried for the chosen ground atom (Line 2.6.);
in the right child node true is tried (Line 2.8.).

In the MARK procedure, a local lower bound min liesv of the distortion distance
(that is, the amount of distortion in comparison to db) is increased whenever the
new marker causes a change in the interpretation (Lines 3.3.2. and 3.4.2.); a
branch is also pruned whenever a better solution was already found and saved
in dbbest in a previous branch (Line 3.6.).

A marked instance corresponds to a “normal” unmarked instance when all
the ground atoms that are marked with r or l are ignored; that is, the marked
database instance is restricted to the “positive” ground atoms:

Definition 8 (Positive restriction of dbv). The positive restriction of a
marked database dbv is:

dbpos
v := { γ | γ ∈ dbv and markerv (γ) �∈ {r, l} }

That is, if a marked database instance was saved in dbbest , we take its positive
restriction as an inference-proof and distortion minimal solution.

We have proven the preCQE algorithm to have several nice properties we are
interested in as surveyed in the remainder of this section.

1. The algorithm achieves both consistency and confidentiality (by means of
inference-proofness) as well as availability (by means of distortion minimal-
ity). Note that the preCQE algorithm is guaranteed to find a distortion-
minimal solution due to the Branch-and-Bound approach. If there is more
than one optimal solution candidate, the first of them is chosen as the so-
lution instance. This makes the algorithm dependent on the order of chosen
violated constraints and unmarked literals therein. Yet, the security admin-
istrator secadm can additional state an explicit availability policy: the avail-
ability policy indicates preferences of (non-)distortion and can hence guide
the choice of one of the optimal solution instances; see [9] for details. We also
studied the use of a preference hierarchy of alternating confidentiality and
availability policies in [15]. The advantage of such a preference declaration
is that the algorithm remains non-interactive and the security administrator
must not be asked to manually choose a solution from a set of candidates
each time the algorithm is executed.

2. For allowed universal constraints we proved that the algorithm is guaran-
teed to terminate. We sketch the termination proof as follows. As already
mentioned, the violation sets Vv are finite and contain only constants of the
“active domain” – that is, constants that either occur in the input instance
db or the input constraint set C. As the active domain is finite and markers
are only set for ground atoms occuring in some formula in Vv, each branch
has to terminate.
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3. We investigated satisfiability soundness and satisfiability completeness – the
algorithm finds a marked database instance if and only if there exists an
inference-proof solution. Based on the termination result, we have equiva-
lently shown the algorithm’s refutation soundness and refutation complete-
ness – the algorithm does not return a marked database instance if and only
if there does not exist a solution.

4. The runtime of the algorithm is exponential in the cardinality of the ac-
tive domain but it can be stopped prematurely with the first inference-proof
solution when distortion minimality can be neglected. A prototypical imple-
mentation for propositional input showed favorable performance for a mag-
nitude of ten thousands of propositional variables; a comprehensive study of
the prototype is given in [16].

The somewhat lengthy proofs cannot be adduced here; especially the proof of
refutation soundness requires an intricate construction using a “semantic tree”
(see [17]) and Herbrand’s theorem.

5 Discussion and Conclusion

We presented a terminating, sound and complete algorithm for allowed universal
formulas that introduces a minimum of lies (cover stories) into a database in-
stance. The algorithm has been extended to formulas with existential quantifiers:
purely existential formulas (that can describe knowledge about the existence of
some database entries) as well as tuple-generating dependencies (TGDs; see [7])
can be used in the constraint set. Existentially quantified variables are handled
with “finite invention” (see [18]). This handling of existentially quantified vari-
ables differs from the one in [7,8] as it does not introduce null values and hence
the output database instance is still complete. The most comprehensive class of
constraints we have shown termination, soundness and completeness for are sets
of TGDs plus denial (see [8]) and existential constraints.

The purpose of this work was to present a fully automatic procedure that runs
without interaction from the administrators’ side. The procedure is also more
flexible than using the chase procedure (as in [7]) or just using tuple deletions
(as in [8]): our algorithm incorporates both addition and deletion of tuples. In
comparison to [8] we also handle a much more general class of formulas with
only minor syntactic restrictions. Respecting the minimal change semantics, we
achieve high availability assurance.

Future work can integrate built-in predicates (as in [14]) and examine their in-
fluence on data modification. A major open question is how to regain consistency
after an update (by the user or the administrator).

We also consider it an interesting new field to combine our approach with
fragmentation and encryption techniques as in [19].
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Abstract. The concept of cancelable biometrics provides a way to pro-
tect biometric templates. A possible technique to achieve such protection
for iris images is to apply a repeatable, non-reversible transformation in
the image domain prior to feature extraction. We applied two classical
transformations, block re-mapping and texture warping, to iris textures
obtained from the CASIA V3 Iris database and collected experimental
results on the matching performance and key sensitivity of a popular iris
recognition method.

1 Introduction

The use of biometrics comes with different problems as compared to conven-
tional authentication systems. As biometric features are specific to an individual
person, they cannot be changed (or not often, one person for example has only
ten fingerprints and two iris patterns available). So where a password can simply
be changed or an e-card invalidated, this is not possible with biometrics. In the
same way, it is not possible to use different keys for different applications - for
example if one wants to use a different key for the bank account and for access
to the workplace computer.

This gets problematic further as the biometrics of a person are not even very
secret - for example low-quality fingerprints are left everywhere, and eye images
could be captured by hidden cameras. This does not only open the possibility to
forge biometrics (like showing a picture of a person to a face recognition system),
but also can raise privacy concerns. Large databases with biometric data would
gain the potential of misuse, for example by cross-matching.

There exist several approaches in the area of biometric cryptosystems to cope
with these issues - one of them is cancelable biometrics [1], which implements
security by applying a key-dependent transformation to the captured biometric
signals. The transformation must be non-invertible so that the original data
cannot be reconstructed from the stored transformed version. At the same time
matching still has to be possible with the distorted version.
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The concept of cancelable biometrics has been applied to various kinds of bio-
metric features, like fingerprints, palmprints, face recognition and iris recognition
[2,3,4].

The classical approach for cancelable biometrics [1] which we examined in this
work for the case of iris recognition is to apply transformations in the image do-
main prior to feature extraction. This has the additional advantage that existing
iris recognition algorithms can be used unmodified for the later feature extrac-
tion and matching stages. In section 2 we describe the iris recognition system we
used for our tests, and in section 3 the transformations we applied - one which
permutates blocks, and one which distorts images along translated grid points.
Section 4 presents our experimental results.

2 Iris Recognition

Many iris recognition methods follow a quite common scheme [5], close to the
well known and commercially most successful approach by Daugman [6]. After
image acquisition, in a first step the iris texture is localised and extracted. From
this texture, discriminative features are derived, which then can be used for
comparison.

Since only the iris part of captured eye images is used for later feature extrac-
tion, it makes sense to consider only the iris textures in our image transformation
experiments. We therefore always extract an iris texture from eye images as a
first step. In our approach (following e.g. Ma et al. [7]) we assume the texture to
be the area between the two almost concentric circles of the pupil and the outer
iris. These two circles are found by contrast adjustment, followed by Canny edge
detection and Hough transformation. After the circles are detected, unwrapping
along polar coordinates is done to obtain a rectangular texture of the iris (as
shown in Fig. 1.a). In our case, we always resample the texture to a size of 512x64
pixels.

Working now only on such textures, we employ a wavelet-based approach
proposed by Ma et al. [7] to extract a bit-code. The texture is divided into N
stripes to obtain N one-dimensional signals, each one averaged from the pixels
of M adjacent rows. We used N = 10 and M = 5 for our 512x64 pixel textures
(only the 50 rows close to the pupil are used from the 64 rows, as suggested in
[7]). A dyadic wavelet transform is then performed on each of the resulting 10
signals, and two fixed subbands are selected from each transform. This leads to
a total of 20 subbands. In each subband we then locate all local minima and
maxima above some threshold, and write a bitcode alternating between 0 and 1
at each extreme point. Using 512 bits per signal, the final code is then 512x20
bit.

Once bitcodes are obtained, matching can be performed on them and Ham-
ming distance lends itself as a very simple distance measure. For matching to
work well, we compensate for eye tilt by shifting the bit-masks during matching
and use the concept of a “noise mask” to take care of hidden or distorted parts
of the iris [6].
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3 Cancelable Iris Templates

Using a key to seed a pseudo-random-number generator, we construct trans-
formed versions of our textures. In the first transformation, each block of the
target texture is mapped to a block from the source texture. An actual example
with a block size of 16x16 pixel is shown in Fig. 1.b.

(a)

(b)

(c)

Fig. 1. (a) An example iris texture; (b) after randomly re-mapping blocks; (c) after
warping along a grid with randomly offset vertices

As stated in [1], using a re-mapping of blocks instead of a permutation should be
preferred for the application of cancelable biometrics, as it is not reversible. Source
blocks which are not part of the mapping are not contained in the transformed
texture at all, and therefore it is impossible to reconstruct the complete original.

The possible key space for n blocks are the nn different mappings - however
many mappings are not suitable as keys. They can be close to the original -
for example if the key corresponds to the identity mapping. Or if the mapping
is a permutation, as mentioned above, it still contains all information from the
source. The other kind of unwanted key is when it corresponds to a mapping
which will not include enough information from the original texture for reason-
able matching performance to be achievable - for example a mapping which maps
all blocks to the same source block.

We could therefore require some properties for mappings generated from a
key to be allowed. The number of used source blocks should be within a reason-
able choice of [a; b], 1 < a ≤ b < n, and the re-mapped texture also should be
sufficiently different from the original.

Using 30 blocks which was a reasonable number according to our experiments,
there would be 3030 or about 2147 different mappings. When requiring a number
of blocks to be present, the number will be reduced, down to 30! or about 2107 with
only permutations. When for example using only derangements out of those, so no



138 J. Hämmerle-Uhl, E. Pschernig, and A. Uhl

block retains its original position, it would be further reduced to about 2106 pos-
sibilities. Treating them all as keys still has the problem that many keys are close
to each other - so this cannot directly be seen as possible key strength. Our exper-
imental results in Section 4 use randomly generated keys out of all possibilities,
so they include a degradation in matching performance from such similar keys. At
the same time results from settings with fewer overall blocks have a greater chance
of containing similar keys, so the effect is more notable there.

The second type of transformation we applied to textures is a distortion called
mesh warping [8]. In this approach the texture is re-mapped according to a
distorted grid mesh laid over it. A key is used to specify one particular distortion,
by offsetting each vertex in the original mesh by some amount. This is done by
starting with a regular grid placed over the texture, in which the vertices are then
randomly displaced using the key as seed to a pseudo random number generator.

The transformation distorts the texture by sampling each pixel in the target
texture from the corresponding area in the source texture, so that each vertex
of the source mesh is placed to its translated position in the target mesh, inter-
polating pixels inside grid cells accordingly. In the version we used, this works
in two passes, distorting rows along the offset of vertical splines through the
mesh vertices, and then columns along offsets of horizontal splines. In the case
of miniaturisation, a box-filter is applied to rows and columns, and linear in-
terpolation is used in case of magnification. An example of the transformation
applied to iris texture is shown in Fig. 1.c. Due to the interpolation strategies
applied, the transformation is non-reversible as the original data may not be
exactly recovered even if the warping parameters are known. The effect of non-
revertability is more pronounced of course in the case of miniaturisation.

The maximum theoretical key space is the number of different meshes we can
generate by offsetting vertices. It is mn if n is the number of vertices, and m is
the number of possible offsets for one vertex. When choosing these parameters,
the grid should not be distorted so much that large areas of the source texture
are compressed to a single pixel in the target or are overlapped by other parts,
as there may not be enough information left for matching. On the other hand,
if the distorted picture too closely resembles the original, it is not of good use
as a key-dependent signal either.

A realistic size used in our experiments would be a grid of 32x32 pixel cells -
for our 512x64 pixel texture a regular grid with 16x2 vertices inside the texture
can then be fit over it. If each vertex can be moved by 8 pixels horizontally
and vertically, there are 172 possibilities and a total of 28932 different transfor-
mations. Like in the case of re-mapped blocks, many transformations are very
similar though. Using only 8 vectors with maximum offset as possible transla-
tions for each vertex, the total number of possible transformations would be
832 = 296. Like in the case of re-mapped blocks, we use a pseudo random num-
ber generator to generate one of the possible transformations for each key and
therefore the experimental results use random offsets out of all possibilities. The
effect of similar keys is therefore again reflected in the results, especially when
there is a small parameter space.
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4 Experiments

4.1 Experimental Setup

For testing, we used the Interval dataset out of the CASIA Iris V3 database,
consisting of 2653 images in 396 classes (i.e. persons). In a first test, we as-
signed a random key to each class, then calculated the Hamming distance of
resulting bit-codes between any two images (3517878 iris comparisons, 9008 of
which are intra-class comparisons). If irises from the same class match worse
after transformation, or irises from different classes match better after trans-
formation, this shows in the match results as increased false non-match rate
(FNMR) and increased false match rate (FMR), respectively. We plot the re-
sulting FNMR against FMR as receiver operating characteristics (ROC) curves,
and also indicate the equal error rate (EER) where FNMR and FMR are closest
to each other. This is then used as indication of how usable transformed textures
remain for the used feature extraction.

However, even when we can see no degradation in matching performance,
this does not mean the key-dependent transformations increase security. For
example applying the same key to each class could lead to good results in the
first test. Therefore we performed another test to evaluate how discernible one
transformation is from another, when they result from different keys (i.e. key-
sensitivity is investigated). For this purpose, an iris class is copied multiple times,
and each such class is then assigned a random key as before. If the key-dependent
transformations don’t lead to sufficiently distinct features, in this case it will
shows up as high FMR because features from different classes will match. For
this second test, we used the first 20 classes with at least 10 samples out of
the Interval dataset, and created 50 random keys for each to have a roughly
similar number of comparisons to the first test (2495000 iris comparisons, 45000
of which are intra-class).

4.2 Experimental Results

Figure 2.a shows the matching results using different block sizes for block re-
mapping. For comparison, also the ROC curve for matching without any trans-
formation applied is included. It is the lowest curve, obtaining an EER of about
1.1% with the used data and our implementation. Using random re-mappings of
32x32 pixel blocks (only 32 such blocks fit into the used 512x64 pixel textures),
matching performance decreases, with a resulting EER of 1.6%. Matching per-
formance decreases further using 16x16, 8x8 and 4x4 pixel sized blocks - which
corresponds to 128, 512 and 2048 blocks respectively. The resulting EERs are
7.0%, 10.3% and 17.6%. Surprisingly, for the case of 2x2 and 1x1 blocks, where
the latter amounts to a random re-mapping of single pixels, EER values decrease
again to 5.6% and 7.3%. This means that even textures looking like random noise
can be classified by the matching algorithm to some extent. Instead of quadratic
blocks, blocks also can be rectangles. Table 1 compares the matching results
when using different rectangular grid sizes for the block re-mapping, from fit-
ting 81 blocks of 56x7 pixels to the 512x64 texture, down to fitting 16 blocks of
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Fig. 2. ROC curves for block re-mapping with different block sizes

128x16 pixel. The used sizes all obtain EERs below 1.6%. We notice, that we are
able to obtain almost identical behaviour as compared to the original algorithm
when choosing appropriate block re-mapping parameters.

Figure 2.b shows the result of using the same block sizes as figure 2.a, but now
using the same images and only different keys for each class, to get an indication
on the security of the keys, as described earlier. The big 32x32 pixel blocks
obtain an EER of 0.8%, which in this case is an indicator for how distinct keys
are from each other. A FMR of 1% means that 1% of comparisons of images from
different classes resulted in a wrong match. As all classes use the same images,
it means despite having different keys and therefore different block re-mappings,
they were still close enough to match. As in the case when using actual eye
classes instead of only copies with different keys, a block size of 4x4 pixels yields
the worst results. The rectangular block sizes in Table 2 all result in an EER
below 1%. Overall, the best results from the compared sizes are obtained when
using 73x9 or 85x10 pixel sized blocks, with an EER of 1.2% for normal matching
and 0.2% when only comparing different keys.

When using the mesh warping transformation, the size of the used mesh as
well as the range of random offsets available can be adjusted. Figure 3.a compares

Table 1. EER with block re-mapping for different rectangular block sizes, using a
random key for each class

size(pixel) 56x7 64x8 73x9 85x10 102x12 128x16
blocks 81 64 49 36 25 16

EER (%) 1.3 1.6 1.2 1.2 1.2 1.6

Table 2. EER with block re-mapping for different block sizes, same textures for each
class

size(pixel) 56x7 64x8 73x9 85x10 102x12 128x16
blocks 81 64 49 36 25 16

EER (%) 0.2 0.4 0.2 0.2 0.3 1.0
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Fig. 3. ROC curves for warping a grid of 32x32 pixel blocks by different amounts
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Fig. 4. ROC curves for warping with different (rectangular) block sizes

matching performance when using a fixed grid with 128 vertices, consisting of
16x16 pixel sized blocks (note the expression 32 × 4 in the legend of the figure
designates the number of 16x16 pixel blocks that can be accommodated in our
texture patch). In the transformed grid, varying ranges for the horizontal and
vertical pixel offsets of each mesh vertex are used. An offset in the range of 8
pixels increases the EER to 1.6%, an offset of 16 pixels to over 6%. In the case of
8 pixels offset and a 16 pixel grid, in the worst case two vertices can coincide if
they are offset by the maximum of 8 pixels towards each other. In the case of 16
pixels however, the grid will overlap often, which loses even more information and
also introduces additional features to the transformed texture. Figure 3.b shows
the result when using the same iris textures in each class again. As expected,
using only small translation offsets results in high FNMR, as transformations
are too similar. The case of 8x8 pixel offsets with an EER of 4% has the best
result of the compared offsets for 16x16 pixel blocks.



142 J. Hämmerle-Uhl, E. Pschernig, and A. Uhl

Always using half the block size as maximum offset, Figs. 4.a and 4.b compare
different (rectangular) block sizes. The EER for matching always stays below
1.6% with the used sizes. Using a grid of of only 4 nodes has the lowest EER
with 1.2% for the matching test, but in figure 4.b this results in high FNMR
when keeping the same FMR, which means keys are often similar. Looking at
all compared parameters, the best result is using a mesh with 9x9 vertices and
offsets of up to 28x3 pixel - with an EER of 1.3% in Fig. 4.a and an EER of
0.9% in Fig. 4.b.

5 Conclusion

We applied the concept of cancelable biometrics to iris recognition by performing
two transformations to iris textures.

The best parameters found for block re-mapping resulted in an EER of 1.2%
when applying the transformation instead of 1.1% without transformations. For
the mesh-warping transformation, our tests resulted 1.3% instead of 1.1% EER.

Therefore, this means that we are able to maintain ROC values (only a very
slight degradation is observed) when the key-dependent transformations are used
in case appropriate parameters are chosen. While we have demonstrated sensible
key-sensitivity for the settings considered, a restriction of the keyspace will prob-
ably further improve the results. This is subject to future work as is the question
if an attacker given the parameters of the transformations might be able to re-
cover an iris code that is close enough to the original to pass the authenticity
threshold.
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Abstract. Most of the state-of-the-art iris recognition algorithms focus on pro-
cessing and recognition of the ideal iris images which are captured in a controlled
environment. In this paper, we process the nonideal iris images which are ac-
quired in an unconstrained situation and are affected severely by gaze deviation,
eyelids and eyelashes occlusion, non uniform intensity, motion blur, reflections,
etc. To segment the nonideal iris images accurately, we deploy a variational level
set based curve evolution scheme, which uses significantly larger time step for
numerically solving the evolution partial differential equation (PDE), and there-
fore, speeds up the curve evolution process drastically. Genetic Algorithms (GAs)
are deployed to select the subset of informative features by combining the valu-
able outcomes from the multiple feature selection criteria without compromising
the recognition accuracy. The verification performance of the proposed scheme
is validated using three nonideal iris datasets, namely, UBIRIS Version 2, ICE
2005, and WVU datasets.

Keywords: Iris recognition, variational level set method, curve evolution, genetic
algorithms, nonideal situations.

1 Introduction

Iris recognition has been in the limelight for high security biometrics applications. Most
state-of-the-art literatures on iris biometrics focused on processing of frontal view iris
image of an eye [1,2]; however, a few new dimensions have been identified in iris bio-
metric research, including processing and recognition of ’non frontal irises’ and ’iris at
a distance’ [3]. For iris segmentation, most of the researchers assume that iris is circular
or elliptical. However, in the cases of nonideal iris images, which are affected by gaze
direction, motion blur, pupil dilation, nonlinear deformations, eyelids and eyelashes oc-
clusions, reflections, etc, iris may appear as noncircular or nonelliptical [4,5]. In this
paper, we use the methodologies to account for the nonideal irises to develop a non-
ideal iris recognition scheme. Previous techniques for the nonideal iris recognition do
not adjust specifically for the nonideal situation [3]. Recently, several researchers have
proposed different nonideal iris segmentation algorithms [3,4,5]. Most of the current
nonideal iris segmentation schemes based on active contours take huge computational
time due to expensive curve evolution approach [3,4,5]. In this research effort, we apply
a variational level set based curve evolution approach to find the inner and outer bound-
aries accurately [6]. The proposed segmentation scheme with the variational level set
approach uses larger time step to numerically solve the evolution partial differential
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equation (PDE), and thereby, speeding up the curve evolution process drastically [6].
The applied variational level set evolution could be developed using a simple finite dif-
ference scheme, and the level set function could be initialized as more efficient function
than the traditional signed distance function. Also, the contours represented by the level
set may break and merge naturally during evolution, and thus, the topological changes
are handled automatically. Prior to applying the curve evolution approach using the
active contours, we deploy an elliptical model to approximate the pupil and the iris
boundaries. The iris biometrics template with the huge number of features increases the
computational time. Hence, the optimal features set selection from a feature sequence
with a relative high dimension has become an important issue in the field of iris recogni-
tion. The conventional feature selection techniques require sufficient number of samples
per subjects to select the most representative features sequence. The Genetic Algorithms
(GAs) suggest a particularly attractive approach to solve this kind of problem since they
are generally quite effective in rapid global search of large, non-linear and poorly under-
stood spaces [7]. Furthermore, different feature selection algorithms based on various
theoretical arguments may produce different results on the same data set [7]. This makes
selecting the optimal features subset from the original data set difficult. Therefore, we
propose GAs to select the significant features subset by combining the valuable out-
comes from the multiple feature selection criteria, and the proposed approach provides
a convenient way of selecting a better feature subset based on the performance of the
different feature selection schemes. To evaluate the proposed scheme, Support Vector
Machine (SVM)-Recursive Feature Elimination (RFE), k-Nearest Neighbor (k-NN), T-
statistics, and entropy-based methods are used to provide the candidate features for the
selection of optimal features subset using GAs [8,9].

2 Nonideal Iris Segmentation

The segmentation of the nonideal iris image is a difficult task because of the noncircular
shape of the pupil and the iris, and the shape differs depending on the image acquisition
techniques [3]. First, we segment the iris and pupil boundaries from the eye image and
then unwrap the localized iris region into a rectangular block of fixed dimension. We
divide the iris segmentation process into two steps. In the first step, we use an elliptical
model to approximate the inner (pupil) and outer (iris) boundaries of the iris, and then,
we apply the geometric active contours with the variational formulation to find the exact
inner and outer boundaries of the iris based on the estimated boundaries obtained in the
previous step.

To find an approximation of the inner boundary, we select an elliptical region with
the five parameters (p1, p2, r1, r2, φ1):horizontal and vertical coordinates of the pupil
center (p1, p2) , length of the major and minor axes (r1, r2), and the orientation of the
ellipse φ1 and measure the intensity values for a fixed number of points on the pupil
circumference. We vary the ellipse parameters with a small step size of three pixels to
increase the ellipse size, and choose a fixed number of points randomly on the circum-
ference to calculate the total intensity value. We repeat this process to find the boundary
with a maximum variation in luminance and the center of the pupil [4]. The approxi-
mate estimate, (I1, I2,R1,R2, φ2) for the outer boundary, on the other hand, can be found
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in the similar way. Based on the approximation of the inner and outer boundaries, the
curve is evolved by using the level set with a variational formulation technique for ac-
curate segmentation of the pupil and the iris regions. In the following paragraph, we
briefly discuss the segmentation process based on variational level set approach.

In the level set formulation, the active contours, denoted by C, can be represented by
the zero level set C(t) = {(x, y)|φ(t, x, y) = 0} of a level set function φ(t, x, y). To evolve
the curve towards the inner and outer boundaries, we define the following total energy
functional [6]

ε(φ) = μρ(φ) + εg,λ,v(φ) (1)

where εg,λ,v(φ) denotes the external energy, which depends on the image data and drives
the zero level set toward the object boundaries, and μρ(φ)(μ > 0) denotes the internal
energy, which penalizes the deviation of φ from the signed distance function during
evolution and is defined as below

ρ(φ) =
∫
Ω

1
2

(|�φ| − 1)2dxdy (2)

where Ω is the image domain. In (1), g is the edge detector function and defined by

g =
1

1 + |�Gσ∗I |2 (3)

where Gσ is the Gaussian kernel with standard deviation σ, and I denotes an input
image. We can further define the external energy term εg,λ,v(φ) of (1) as follows

εg,λ,v(φ) = λŁg(φ) + vAg(φ) (4)

where λ > 0 and v are constants, and the terms Lg(φ) and Ag(φ) in (4) are defined by

Lg(φ) =
∫
Ω

gδ(φ)|�φ|dxdy (5)

and

Ag(φ) =
∫
Ω

gH(−φ)dxdy (6)

respectively, where δ is the univariate Dirac function, and H is the Heaviside function.
The energy functional Lg(φ) measures the length of the zero level set curve of φ, and
Ag(φ) is used to speed up curve evolution. From the calculus of variations, the Gateaux
derivative of the functional ε in (1) can be written as

δε

δφ
= −μ[�φ − div(

�φ
|�φ| )] − λδ(φ)div(g

�φ
|�φ|) − vgδ(φ) (7)

where� is the Laplacian operator. The function φ that minimizes this functional satisfies
the Euler-Lagrange equation δε

δφ=0. Now, the desired evolution equation of the level set
function is defined as

δφ

δt
= μ[� φ − div(

�φ
|�φ| )] + λδ(φ)div(g

�φ
|�φ|) + vgδ(φ) (8)
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The second and third terms in the right hand side of (8) represent the gradient flows of
the energy functional and are responsible of driving the zero level set curve towards the
object boundaries. The Dirac function δ(x) in (8) is defined by [6]

δε(x) =
{0, |x|>ε

1
2ε [1+cos( πx

ε )], |x|≤ε (9)

In order to estimate the exact boundary of the pupil, we initialize the active contour
φ to the approximated pupil boundary, and evolve the curve in the narrow band of 10
pixels. We evolve the curve from outside the approximated inner boundary to suppress
the effect of reflections. Similarly, for computing outer boundary, the active contour φ is
initialized to the estimated iris boundary, and the optimal estimation of the iris boundary
is computed by evolving the curve in a narrow band of 20 pixels. In this case, the curve
is evolved from inside the approximated iris boundary to reduce the effect of the eyelids
and the eyelashes. Fig. 1(b, c) shows the segmentation results.

(a) (b) (c)

(d) (e)

Fig. 1. (a) Original image from WVU dataset (b) Pupil detection (c) Iris detection (d) Normalized
image (e) Enhanced image

Besides reflections, eyelid occlusion, and camera noise, the iris image data may be
corrupted by the occlusion of the eyelashes [8,9]. We deploy one dimensional Gabor
filters and variance of intensity to isolate the eyelashes. We unwrap the iris region to
a normalized rectangular block with a fixed dimension of size 64 × 512 [9]. Since the
normalized iris image has relatively low contrast and may have non-uniform intensity
values due to the position of the light sources, a local intensity based histogram equal-
ization technique is applied to enhance the contrast of the normalized iris image within
a small image block of size 10 × 10. Fig. 1(d, e) shows the unwrapped image and the
effect of contrast enhancement.In this paper, Daubechies Wavelet Transform (DBWT)
is used to extract the distinctive features set from normalized and enhanced iris image
block of size 64 × 512 pixels [8]. We first divide the normalized image block into four
sub images of size 32 × 256, and then apply the Daubechies four coefficient wavelet
transform to each sub image [9]. Therefore, the normalized image is represented by a
distinctive features set of (2 × 16 + 3) × 4 = 140 components.

3 Best Features Selection

In this paper, we apply GAs to select the prominent features based on the outcomes of
the four feature selection algorithms as discussed in our previous work[8]. In order to
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choose the sets of feature selected by several feature selection algorithms, we deploy
four existing feature selection algorithms, two filters (entropy-based, T-statistics) ap-
proaches and two wrapper (SVM-RFE, k-NN) approaches to form the f eature pool.
We apply each algorithm to the extracted features sequence and generate a ranking of
those features. Given a ranking of features, we pick a number of top ranked features
from each algorithm and provide these top-ranked features into the feature pool. In this
paper, we propose the following fitness function

Fitness = W1.(1−RR)+W2.FAR+W3.FRR+W4.
(Feature S ize)

(Total Number o f Features)
(10)

where W1,W2,W3 and W4 are constant weighting parameters which reflect the
relative importance between Recognition Rate (RR), False Accept Rate (FAR),
False Re ject Rate (FRR) and Feature S ize. In this paper, we use asymmetrical SVMs
classifier as an induction algorithm in the experiments to separate the cases of false ac-
cepts and false rejects [8]. We use Roulette wheel selection to probabilistically select
individuals from a population for latter breeding.

4 Experimental Results

We conduct the experimentation on three iris datasets namely, the ICE (Iris Challenge
Evaluation) dataset, [12], the WVU (West Virginia University) dataset [13], and the
UBIRIS version 2 dataset [14]. The ICE 2005 [12] contains 2953 images correspond-
ing to 244 classes. The ICE database consists of left and right iris images for experi-
mentation (1528 left iris images from 120 classes and 1425 right iris images from 124
classes). We evaluated the performance of the proposed iris recognition scheme on the
WVU dataset [13]. The WVU iris dataset has a total of 1852 iris images from 380 differ-
ent persons. The performance is also evaluated using UBIRIS version 2 (session 1 and
session 2) dataset [14] which contains 2410 iris images from 241 different persons. In
order to perform an extensive experimentation and to validate our proposed scheme, we
generate a non- homogeneous dataset by combining the above three datasets, and this
dataset contains 865 classes and 7215 images. We select a common set of curve evo-
lution parameters based on variational level set approach to segment the nonideal iris

(a) (b) (c)

Fig. 2. Segmentation results on datasets (a) WVU, (b) ICE, and (c) UBIRIS
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Fig. 3. Cross validation accuracy vs. top ranked features on combined dataset

(a) (b)

(c) (d)

Fig. 4. ROC curve showing the performance on (a) ICE (b) WVU (c) UBIRIS, and (d) Combined
datasets

images accurately. The selected parameters values to find the inner and outer bound-
aries using the variational level set algorithm are μ = 0.001, v = 2.0, λ = 5.0, time
step,τ = 3.0. Fig 2 shows the segmentation results on three datasets.We deploy the
SVMs for iris pattern classification due to its outstanding generalization performance
[10,11]. To speed up the matching process and to control the misclassification error,
we apply a combined approach called Adaptive Asymmetrical SVMs (AASVMs) as
proposed in our early work [8,9].The proposed GAs based feature selection approach is
used to reduce the feature dimension without compromising the recognition rate based
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on the multiple outcomes of four feature selection algorithms. Since the number of sam-
ples from most iris research is limited, cross-validation procedure is commonly used to
evaluate the performance of a classifier. Leave-One-Out Cross Validation (LOOCV) is
used for ICE dataset, and for WVU and UBIRIS datasets, we use 3-fold cross valida-
tion to obtain the training accuracy for GAs. Fig. 3 shows the accuracy of the selected
feature subsets with a different number of top-ranked features from the four feature se-
lection algorithms on the combined data set. Fig. 3 demonstrates the performance of
four feature selection algorithms for the first 130 top ranked features. For the combined
dataset, we can see that SVM-RFE finds the better accuracy than the other the algo-
rithms with the 130-top ranked features. Therefore, after obtaining the 130 top-ranked
features from different feature reduction algorithms, we input them to the feature pool
used by the GAs. The proposed GAs based scheme reduces the features dimension from
140 to 105.In order to provide a comparative analysis, we apply the proposed level set
approach (LS), integro-differential operator (IDO) method [1], and the Canny edge de-
tection and Hough transform (CHT) based traditional approach for segmentation on all
the datasets. ROC curves in Fig. 4 show that the matching performance is improved
when the variational level set approach is used for segmentation on all the datasets.
The Genuine Accept Rate (GAR) at a fixed FAR of 0.001% is (a) 96.24% in WVU, (b)
98.16% in ICE, and (c) 97.17% in UBIRIS datasets. However, the overall GAR on the
combined dataset at the fixed FAR of 0.001% is 97.30%.

5 Conclusions

The accurate segmentation of the iris plays an important role in iris recognition. In
this paper, we present a nonideal iris segmentation scheme using the variational level
set based curve evolution approaches. The GAs are used to find the subset of infor-
mative texture features that can improve the analysis of iris data. The experimental
results show that the proposed method is capable of finding feature subsets with better
classification accuracy and/or smaller size than each single individual feature selec-
tion algorithm does. We validate the proposed iris recognition scheme on the ICE, the
WVU, the UBIRIS, and the nonhomogeneous combined datasets with an encouraging
performance.
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Abstract. Recently, a variant of proxy re-encryption, named condi-
tional proxy re-encryption (C-PRE), has been introduced. Compared
with traditional proxy re-encryption, C-PRE enables the delegator to
implement fine-grained delegation of decryption rights, and thus is more
useful in many applications. In this paper, based on a careful observa-
tion on the existing definitions and security notions for C-PRE, we re-
formalize more rigorous definition and security notions for C-PRE. We
further propose a more efficient C-PRE scheme, and prove its chosen-
ciphertext security under the decisional bilinear Diffie-Hellman (DBDH)
assumption in the random oracle model. In addition, we point out that
a recent C-PRE scheme fails to achieve the chosen-ciphertext security.

Keywords: Conditional proxy re-encryption, chosen-ciphertext security,
random oracle.

1 Introduction

In 1998, Blaze, Bleumer and Strauss [1] introduced the notion of proxy re-
encryption (PRE). In a PRE scheme, a proxy is given a re-encryption key, and
thus can translate ciphertexts under Alice’s public key into ciphertexts under
Bob’s public key1. The proxy, however, cannot learn anything about the mes-
sages encrypted under either key. PRE turns out to be a useful primitive, and
has found many applications requiring delegation of decryption right, such as
encrypted email forwarding, secure distributed file systems, and outsourced fil-
tering of encrypted spam.

Nevertheless, there exist some situations which are hard for traditional PRE
to tackle. For example, suppose some of Alice’s second level ciphertexts are highly
1 In [2,3,4], the original ciphertext is called second level ciphertext, and the transformed

ciphertext is named first level ciphertext. Through out this paper, we will follow these
notations.
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secret, and she wants to decrypt these ciphertexts only by herself. Unfortunately,
traditional PRE enables the proxy to convert all of Alice’s second level cipher-
texts, without any discrimination. To address this issue, two variants of PRE
were independently introduced: one is named type-based proxy re-encryption
(TB-PRE) introduced by Tang [5], and the other is named conditional proxy re-
encryption (C-PRE) introduced by Weng et al. [6]. Although different in naming,
C-PRE and TB-PRE are the same in spirit (for consistency, in the rest of the
paper, we use C-PRE to denote the two variants.). In such systems, ciphertexts
are generated with respect to a certain condition, and the proxy can translate
a ciphertext only if the associated condition is satisfied. Compared with tradi-
tional PRE, C-PRE enables the delegator to implement fine-grained delegation
of decryption rights, thereby more useful in many applications.

1.1 Our Motivations and Results

We first investigate the definitions and security notions for C-PRE defined in
[6,5]. Both have their respective pros and cons: (i) In Weng et al.’s definition, the
proxy needs two key pairs (i.e., the partial re-encryption key and the condition
key) to perform the transformation, while the proxy in Tang et al.’s definition
has only one key pair; (ii) In Tang’s definition, the delegators and the delegatees
have to be in different systems, which means that the user in a given system can
only act as either (not both) a delegator or a delegatee. In contrast, in Weng et
al.’s definition, a user can be the delegator for any other users, and can also be
the delegatee for any other users. (iii) Both of the security notions in [5, 6] only
consider the second level ciphertext security, and do not address the first level
ciphertext security.

In this paper, we re-formalize the definition for C-PRE by incorporating the
advantages in [6, 5]. More specifically, in our formalization the proxy holds only
one key (re-encryption key) for performing transformations, and a user can act as
the delegator or the delegatee for any other users. We also define the first level
ciphertext security for C-PRE. We then propose a new C-PRE scheme, and
prove its CCA-security under the well-studied decisional bilinear Diffie-Hellman
(DBDH) assumption in the random oracle model. Our scheme has better overall
efficiency in terms of both computation and communication than Tang’s and
Weng et al.’s schemes. In addition, we show that Weng et al.’s C-PRE scheme
fails to achieve the CCA-security.

1.2 Related Work

Mambo and Okamoto [7] firstly introduced the concept of delegation of de-
cryption rights, as a better-performance alternative to the trivial approach of
decrypting-then-encrypting of ciphertexts. Blaze, Bleumer and Strauss [1] for-
malized the concept of proxy re-encryption, and proposed the first bidirectional
PRE scheme (in which the delegation from Alice to Bob also allows re-encryption
from Bob to Alice). In 2005, Ateniese et al. [2, 3] presented unidirectional PRE
schemes based on bilinear pairings.
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The schemes in [1,2,3] are only secure against chosen-plaintext attacks (CPA).
However, applications often require the CCA-security. In ACM CCS’07, Canetti
and Hohenberger [8] presented a CCA-secure bidirectional PRE scheme from
bilinear pairings. Later, Libert and Vergnaud [4] gave a unidirectional PRE
scheme secure against replayable chosen-ciphertext attacks (RCCA) [9]. In their
extended version, Libert and Vergnaud [10] further consider the the problem of
conditional proxy re-encryption, and suggested a RCCA-secure C-PRE scheme
in the standard model without assuming registered public keys2.

Previous PRE schemes rely on the costly bilinear pairings. Thus Canetti and
Hohenberger [8] left an open question to construct CCA-secure PRE without
pairings. In CANS’08, Deng et al. [11] proposed a CCA-secure bidirectional PRE
scheme without pairings. In PKC’09, Shao and Cao [12] proposed a unidirectional
PRE scheme without pairings, and claimed that their scheme is CCA-secure.
However, Weng et al. [13] pointed out that Shao and Cao’s PRE scheme is not
CCA-secure by presenting a concrete attack. Weng et al. [13] further presented
an efficient CCA-secure unidirectional PRE scheme without pairings.

Traceable proxy re-encryption, introduced by Libert and Vergnaud [14], at-
tempts to solve the problem of disclosing re-encryption keys, by tracing the prox-
ies who have done so. Proxy re-encryption has also been studied in identity-based
scenarios, such as [15, 16, 17]. Recently, Chu et al. [18] introduced a generalized
version of C-PRE named conditional proxy broadcast re-encryption (CPBRE),
in which the proxy can re-encrypt the ciphertexts for a set of users at a time.

2 Model of Conditional Proxy Re-encryption

Before re-formalizing the definition and security notions for C-PRE, we first ex-
plain some notations used in the rest of this paper. For a finite set S, x ∈R S
means choosing an element x from S with a uniform distribution. For a string
x, |x| denotes its bit-length. We use A(x, y, · · · ) to indicate that A is an al-
gorithm with the input (x, y, · · · ). By z ← A(x, y, · · · ), we indicate the run-
ning of A(x, y, · · · ) and letting z be the output. We use AO1,O2,···(x, y, · · · )
to denote that A is an algorithm with the input (x, y, · · · ) and can access
to oracles O1,O2, · · · . By z ← AO1,O2,···(x, y, · · · ), we denote the running of
AO1,O2,···(x, y, · · · ), and letting z be the output.

2.1 Definition of C-PRE Systems

Weng et al.’s definition differentiates between partial re-encryption key and con-
dition key. A more standard model should combine them into an integral entity.
Our definition is standard in this regard, having only re-encryption key; and we
allow the delegators and the delegatees to share the same systems, unlike Tang’s
model. Formally, a C-PRE scheme consists of the following algorithms:
2 We sincerely thank one of the anonymous reviewers for pointing out that, Libert

and Vergnaud [10] also suggested a C-PRE scheme in the standard model without
assuming registered public keys.
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Setup(1κ): On input a security parameter 1κ, this algorithm outputs a global
parameter param, which includes the message space M. For brevity, we
assume that param is implicitly included in the input of the rest algorithms.

KeyGen(1κ): all parties use this randomize key generation algorithm to generate
a public/private key pair (pki, ski).

ReKeyGen(ski, w, pkj): On input the delegator’s private key ski, a condition w
and the delegatee’s public key pkj , the re-encryption key generation algo-
rithm outputs a re-encryption key rk

i
w→j

.
Enc2(pk, m, w): On input a public key pk, a plaintext m ∈ M and a condition

w, the second encryption algorithm outputs a second level ciphertext CT,
which can be re-encrypted into a first level one (intended for a possibly
different receiver) using the suitable re-encryption key.

Enc1(pk, m): On input a public key pk and a plaintext m ∈ M, this first en-
cryption algorithm outputs a first level ciphertext CT that cannot be re-
encrypted for another party.

ReEnc(CTi, rki
w→j

): On input a second level ciphertext CTi associated with
w under public key pki, and a re-encryption key rk

i
w→j

, this re-encryption
algorithm, run by the proxy, outputs a first level ciphertext CTj under public
key pkj .

Dec2(CT, sk): On input a second level cipertext CT and a private key sk, this
second decryption algorithm outputs a message m or the error symbol ⊥.

Dec1(CT, sk): On input a first level cipertext CT and a private key sk, this
first decryption algorithm outputs a message m or the error symbol ⊥.

The correctness of C-PRE means that, for any condition w, any m ∈ M, and
any couple of private/public key pairs (pki, ski), (pkj , skj), it holds that

Dec2(Enc2(pki, m, w), ski) = m, Dec1(Enc1(pki, m), ski) = m,

Dec1 (ReEnc(Enc2(pki, m, w), ReKeyGen(ski, w, pkj)), skj) = m.

2.2 Security Notions

In this subsection, we will define the security notions for C-PRE systems. Be-
fore giving these security notions, we first consider the following oracles which
together model the ability of an adversary. These oracles are provided for the
adversary A by a challenger C who simulates an environment running C-PRE.

– Uncorrupted key generation oracle Ou(i): C runs algorithm KeyGen to gen-
erate a public/private key pair (pki, ski), and returns pki to A.

– Corrupted key generation oracle Oc(i): C runs algorithm KeyGen to generate
a public/private key pair (pkj , skj),, and returns (pkj , skj) to A.

– Re-encryption key oracle Ork(pki, w, pkj): Challenger C first runs rk
i

w→j
←

ReKeyGen(ski, w, pkj), and then returns rk
i

w→j
to A.

– Re-encryption oracle Ore(pki, pkj , (w, CTi)): Challenger C first runs CTj ←
ReEnc(CTi, rki

w→j
), where rk

i
w→j

= ReKeyGen(ski, w, pkj), and then returns
CTj to A.
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– First level decryption oracle O1d(pk, CT): Here CT is a first level ciphertext.
C runs Dec1(CT, sk), and returns the corresponding result to A.

Note that for the last three oracles, it is required that pki, pkj and pk
were generated beforehand by either Oc or Ou.

We are now ready to define the semantic security for C-PRE under chose-
ciphertext attacks. Libert and Vergnaud [4]differentiated two kinds of semantic
security for traditional (single-hop) unidirectional PRE systems: first level ci-
phertext security and second level ciphertext security. We here follow Libert and
Vergnaud’s definitions, and define these two kinds security notions for C-PREs.

Second level ciphertext security. Intuitively speaking, second level cipher-
text security models the scenario that the adversary A is challenged with a
second level ciphertext CT∗ encrypted under a target public key pki∗ and a
target condition w∗. A can issue a series of queries to the above five ora-
cles. These queries are allowed as long as they would not allow A to decrypt
trivially. For examples, A should not query on Ork(pki∗ , w∗, pkj) to obtain an
re-encryption key rk

i∗w∗→j
where pkj came from oracle Oc. Otherwise, A can

trivially decrypt the challenge ciphertext by first re-encrypting it into a first
level ciphertext and then decrypting it with skj . Similarly, A cannot query on
Ore(pki∗ , pkj , (w∗, CT∗)) where pkj came from oracle Oc. Also, for a first level ci-
phertext CT′ = ReEnc(CT∗, rk

i∗w∗→j
), A is disallowed to query on O1d(pkj , CT′).

One might wonder that why we do not provide the second level decryption or-
acle for A. In fact, explicitly providing adversary A with this oracle is useless,
since (i). for the challenge ciphertext CT∗, A is obviously not allowed to ask
the second level decryption oracle to decrypt it; (ii). while for any other second
level ciphertext CTt encrypted under public key pkt and condition w such that
(pkt, w, CTt) �= (pki∗ , w∗, CT∗), adversaryA can first issue a re-encryption query
Ore(pkt, pkj , (w, CTt)) to obtain a first level ciphertext CTj , and then issue a
first level decryption query O1d(pkj , CTj) to obtain the underlying plaintext.
Below gives the formal definition for second level ciphertext’s sematic security
under adaptive chosen ciphertext attack (IND-2CPRE-CCA).

Definition 1. For a C-PRE scheme E and a probabilistic polynomial time ad-
versary A running in two stages find and guess, we define A’s advantage
against the IND-2CPRE-CCA security of E as

AdvIND-2CPRE-CCA
E,A (1κ)=

∣∣∣∣∣∣∣∣∣∣
Pr

⎡⎢⎢⎢⎢⎣δ′ = δ

∣∣∣∣∣∣∣∣∣∣
param ← Setup(1κ)

(pki∗ , w
∗, (m0, m1), st) ← AOu,Oc,Ork,Ore,O1d

find (param)
δ ∈R {0, 1}, CT∗ ← Enc2(pki∗ , mδ, w

∗)

δ′ ← AOu,Oc,Ork,Ore,O1d
guess (param, CT∗, st)

⎤⎥⎥⎥⎥⎦− 1
2

∣∣∣∣∣∣∣∣∣∣
,

where st is some internal state information of adversary A. Here it is mandated
that |m0| = |m1|, and the following requirements are simultaneously satisfied: (i).
pki∗ is generated by oracle Ou; (ii). For a public key pkj generated by oracle Oc,
A cannot issue the query Ork(pki∗ , w

∗, pkj); (iii) For a public key pkj generated
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by oracle Oc, A cannot issue the query Ore(pki∗ , pkj , (w∗, CT∗)); (iv). For a
public key pkj and the first level ciphertext CT′ = ReEnc(CT∗, rk

i∗w∗→j
), A cannot

issue the query O1d(pkj , CT′).
We refer to adversary A as an IND-2CPRE-CCA adversary. A C-PRE scheme

E is said to be (t, qu, qc, qrk, qre, q1d, ε)-IND-2CPRE-CCA secure, if for any t-time
IND-2CPRE-CCA adversary A, who makes at most qu, qc, qrk, qre and qd queries
to Ou,Oc,Ork,Ore and O1d, respectively, we have AdvIND-2CPRE-CCA

E,A (1κ) ≤ ε.

First Level Ciphertext Security. The above definition provides the adver-
sary with a second level ciphertext in the challenge phase. Next, we define a
complementary definition of security (denote by IND-1CPRE-CCA) by providing
the adversary with a first level ciphertext in the challenge phase. Note that,
since the first level ciphertext cannot be re-encrypted in a single hop C-PRE
scheme, A is allowed to obtain any re-encryption keys. Furthermore, given these
re-encryption keys, A can re-encrypt ciphertexts by himself, and hence there is
no need to provide the re-encryption oracle Ore for him. As argued before, the
second level decryption oracle is also unnecessary.

Definition 2. For a C-PRE scheme E and a probabilistic polynomial time ad-
versary A running in two stages find and guess, we define A’s advantage
against the IND-1CPRE-CCA security of E as

AdvIND-1CPRE-CCA
E,A (1κ) =

∣∣∣∣∣∣∣∣∣∣
Pr

⎡⎢⎢⎢⎢⎣δ′ = δ

∣∣∣∣∣∣∣∣∣∣
param ← Setup(1κ)

(pki∗ , (m0, m1), st) ← AOu,Oc,Ork,O1d
find (param)

δ ∈R {0, 1}, CT∗ ← Enc1(pki∗ , mδ)

δ′ ← AOu,Oc,Ork,O1d
guess (param, CT∗, st)

⎤⎥⎥⎥⎥⎦− 1
2

∣∣∣∣∣∣∣∣∣∣
,

where st is some internal state information of adversary A. Here it is man-
dated that, |m0| = |m1|, pki∗ is generated by Ou, and A cannot issue the query
O1d(pki∗ , CT∗).

We refer to the above adversary A as an IND-1CPRE-CCA adversary. We say
that a C-PRE scheme E is (t, qu, qc, qrk, q1d, ε)-IND-1CPRE-CCA secure, if for any
t-time IND-1CPRE-CCA adversary A that makes at most qu, qc, qrk and qd queries
to oracles Ou,Oc,Ork and O1d, respectively, we have AdvIND-1CPRE-CCA

E,A (1κ) ≤ ε.

Remark. In [2], Ateniese et al. defined the notion master secret security, for
unidirectional proxy re-encryption. This security notion catches the intuition
that, even if the dishonest proxy colludes with the delegatee, it is still impossible
for them to derive the delegator’s private key. Note that for C-PREs, there is no
need to define master secret security, since this security is implied by the first
level ciphertext security. This is due to the fact that, if the dishonest proxy and
the delegatee can collude to derive the delegator’s private key, they can certainly
use this private key to decrypt the challenge ciphertext, and thus break the first
level ciphertext security.
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3 Proposed CCA-Secure C-PRE Scheme

In this section, we propose a new C-PRE scheme with CCA-security. Before pre-
senting our scheme, we list three important and necessary principles for design-
ing CCA-secure C-PRE schemes: (i) the validity of the second level ciphertexts
should be publicly verifiable; otherwise, it will suffer from a similar attack as
illustrated in [11, 19]; (ii) the second level ciphertexts should be able to resist
the adversary’s malicious manipulating; (iii) it should also be impossible for the
adversary to maliciously manipulate the first level ciphertext. We remark that it
is non-trivial to design a C-PRE scheme satisfying these three requirements, es-
pecially the last one. To help understand our scheme, we first present an insecure
attempt, and then improve it to obtain our final CCA-secure scheme.

3.1 A First Attempt

We denote this first attempt by S1, which is specified as below:

Setup(1κ): On input a security parameter 1κ, the setup algorithm first deter-
mines (q, G, GT , e), where q is a κ-bit prime, G and GT are two cyclic groups
with prime order q, and e is the bilinear pairing e : G × G → GT . Next, it
chooses g ∈R G, and five hash functions H1, H2, H3, H4 and H5 such that
H1 : {0, 1}∗ → Zq, H2 : {0, 1}∗ → G, H3 : G → {0, 1}n, H4 : {0, 1}∗ → G
and H5 : G → Zq, where n is polynomial in κ and the message space is M =
{0, 1}n. The global parameter is param = ((q, G, GT , e), g, n, H1, · · · , H5).

KeyGen(1κ): To generate the public/private key pair for user Ui, it picks xi ∈R

Zq, and sets the public key and private key to be pki = gxi and ski = xi,
respectively.

ReKeyGen(ski, w, pkj): On input a private key ski, a condition w and a pub-
lic key pkj , this algorithm randomly picks s ∈R Zq, and outputs the re-
encryption key as

rk
i

w→j
= (rk1, rk2) =

((
H2(pki, w)pks

j

)−ski
, pks

i

)
. (1)

Enc2(pk, m, w): On input a public key pk, a condition w and a message m ∈M,
the sender first picks R ∈R GT . Then he computes r = H1(m, R), and
outputs the second level ciphertext CT = (C1, C2, C3, C4) as(

gr, R · e(pk, H2(pk, w))r , m⊕H3(R), H4(C1, C2, C3)r
)
. (2)

Note that the last ciphertext component, C4, is used to ensure the public
verifiability of the ciphertext, while the first three components, (C1, C2, C3),
are in fact the ciphertext of the CCA-secure ElGamal encryption scheme [20]
applying the Fujisaki-Okamoto transformation [21].

Enc1(pk, m): On input a public key pk and a message m ∈ M, the sender first
picks R ∈R GT and s ∈R Z∗

q . Then he computes r = H1(m, R), and outputs
the first level ciphertext CT as

CT = (C1, C2, C3, C4) =
(
gr, R · e(g, pk)−r·s, m⊕H3(R), gs

)
. (3)
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ReEnc(CTi, rki
w→j

): On input a second level ciphertext CTi = (C1, C2, C3, C4)
associated with condition w under public key pki, and a re-encryption key
rk

i
w→j

= (rk1, rk2), it generates the first level ciphertext under public key
pkj as follows: Check whether the following equality holds:

e(C1, H4(C1, C2, C3)) = e(g, C4). (4)

If not, output ⊥; else output CTj = (C1, C2, C3, C4) as

C1 = C1, C2 = C2 · e(C1, rk1), C3 = C3, C4 = rk2. (5)

Observe that CTj = (C1, C2, C3, C4) is indeed of the following form:

C1 = gr, C3 = m⊕H3(R), C4 = pks
i = gs·ski ,

C2=R · e(pki, H2(pki, w))r · e
(
gr,

(
H2(pki, w)pks

j

)−ski
)
=R · e (g, pkj)

−r·s·ski .

Letting s = s · ski, it can be seen that the above first level ciphertext has the
same form as Eq. (3).

Dec2(CT, sk): On input a private key sk and a second level ciphertext CT =
(C1, C2, C3, C4), it first checks whether Eq. (4) holds. If not, it returns ⊥.

Otherwise, it computes R =
C2

e(C1, H2(pk, w))sk
, m = C3⊕H3(R), and check

whether gH1(m,R) = C1 holds. If yes, it returns m; else it returns ⊥.
Dec1(CT, sk): On input a private key sk and a first level ciphertext CT =

(C1, C2, C3, C4) under public key pk, it computes R = C2 · e(C1, C4)sk and
m = C3 ⊕H3(R). Return m if gH1(m,R) = C1 holds and ⊥ otherwise:

Analysis. At first glance, it seems that scheme S1 is CCA-secure. Unfortunately,
this is not true, since the adversary can maliciously manipulate the first level
ciphertext to get a new yet valid one. Concretely, given the first level ciphertext
as in Eq. (3), the adversary can pick � ∈R Zq and produces another first level
ciphertext CT′ = (C

′
1, C

′
2, C

′
3, C

′
4) such that:

C
′
1 = C1 = gr, C

′
2 = C2 · e(C1, pk)−� = R · e(g, pk)−r·(s+�).

C
′
3 = C3 = mδ ⊕H3(R), C

′
4 = C4 · g� = gs+�.

Letting s =′ s+�, we can easily see that CT′ is another new and valid ciphertext
as Eq. (3). Thus the CCA-security can be trivially broken.

3.2 CCA-Secure C-PRE Scheme

Indeed, the insecurity of S1 lies in the construction of the re-encryption key,
i.e., rk2 is loosely integrated with rk1. This enables the adversary to maliciously
manipulate the resulting first level ciphertext and obtain another valid first
level ciphertext. So, to design a CCA-secure C-PRE scheme, we should carefully
design the re-encryption key, so that the resulting first level ciphertext cannot be
maliciously manipulated by the adversary. Based on this observation, we present
our CCA-secure C-PRE scheme (denoted by S2) as below:
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Setup(1κ) and KeyGen(1κ): The same as in S1.
ReKeyGen(ski, w, pkj): On input a private key ski, a condition w and a public

key pkj , this algorithm picks s ∈R Zq, and outputs rk
i

w→j
= (rk1, rk2) as

rk2 = pks
i , rk1 =

(
H2(pki, w)pk

s·H5(pk
s·ski
j )

j

)−ski

.

Observe that in the re-encryption key rk
i

w→j
, rk2 is now seamlessly integrated

with rk1. That is, we integrate rk2 with rk1 by embedding H5(pks.ski

j ) =

H5(rk
skj

2 ) in rk1. This is an important trick for scheme S2 to achieve the
CCA-security.

Enc2(pk, m, w): The same as in S1.
Enc1(pk, w): On input a public key pk and a message m ∈ M, the sender first

picks R ∈R GT and s ∈R Z∗
q . Then he computes r = H1(m, R), and outputs

the first level ciphertext CT = (C1, C2, C3, C4) as(
gr, R · e(g, pk)−r·s·H5(pks), m⊕H3(R), gs

)
. (6)

ReEnc(CTi, rki
w→j

): The same as in S1. Note that, since the re-encryption
key is different from that in S1, the resulting first level ciphertext CTj =
(C1, C2, C3, C4) is of the following forms:(

gr, R · e (g, pkj)
−r·s·ski·H5(pk

s·ski
j )

, m⊕H3(R), gs·ski

)
,

where r = H1(m, R) and R ∈R GT . Letting s = s · ski, it can be seen that
the above first level ciphertext has the same form as Eq. (6).
Note also that, now C4 is tightly integrated with C2 by embedding C4 in
H5(C

skj

4 ) = H5(pks·ski

j ), and hence it is unable for the adversary to modify
the first level ciphertext to obtain a new and valid one. Therefore, the attack
against scheme S1 does not apply to scheme S2.

Dec2(CT, sk): The same as in S1.
Dec1(CT, sk): On input a private key sk and a first level ciphertext CT =

(C1, C2, C3, C4) under public key pk, this algorithm first computes R = C2 ·
e(C1, C4)sk·H5(Csk

4 ) and m = C3 ⊕H3(R). Next, it returns m if gH1(m,R) =
C1 holds and ⊥ otherwise.

3.3 Security Analysis

The CCA-security of our schemes S2 is based on a complexity assumption called
decisional Bilinear Diffie-Hellman (DBDH) assumption. The DBDH problem
in groups (G, GT ) is, given a tuple (g, ga, gb, gc, Z) ∈ G4 × GT with unknown
a, b, c ∈R Zq, to decide whether Z = e(g, g)abc. A polynomial-time algorithm B
has advantage ε in solving the DBDH problem in groups (G, GT ), if∣∣∣Pr

[B (
g, ga, gb, gc, Z =e(g, g)abc

)
=1

]−Pr
[B (

g, ga, gb, gc, Z =e(g, g)d
)
=1

]∣∣∣ ≥ ε,

where the probability is taken over the random choices of a, b, c, d in Zq, the
random choice of g in G, and the random bits consumed by B.
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Definition 3. We say that the (t, ε)-DBDH assumption holds in groups (G, GT ),
if there exists no t-time algorithm B that has advantage ε in solving the DBDH
problem in (G, GT ).

For our scheme’s CCA-security at the second level, we have the following theo-
rem, whose detailed proof can be found in Appendix B.

Theorem 1. Our scheme S2 is IND-2CPRE-CCA secure in the random or-
acle model, assuming the DBDH assumption holds in groups (G, GT ). More
specifically, if there exists an IND-2CPRE-CCA adversary A, who asks at
most qHi random oracle queries to Hi with i ∈ {1, · · · , 5} and breaks the
(t, qu, qc, qrk, qre, qd, ε)-IND-2CPRE-CCA security of scheme S2, then there exists
an algorithm B that can break the (t′, ε′)-DBDH assumption in groups (G, GT )
with

ε′ ≥ ε

ė(1 + qrk)
− qH1 + qH5 + qre + qd

q
,

t′ ≤ t +O(τ(qH2 + qH4 + qu + qc + 3qrk + qH1qre + (qH1 + qH5)qd)),

where τ is the maximum over the time to compute an exponentiation in G,GT ,
and the time to compute a pairing; ė denotes the base of the natural logarithm.

The first level ciphertext security of S2 is ensured by the following theorem.

Theorem 2. Our scheme S2 is IND-1CPRE-CCA secure in the random or-
acle model, assuming the DBDH assumption holds in groups (G, GT ). More
specifically, if there exists an IND-1CPRE-CCA adversary A, who asks at most
qHi random oracle queries to Hi with i ∈ {1, · · · , 5} and can break the
(t, qu, qc, qrk, qd, ε)-IND-1CPRE-CCA security of scheme S2, then there exists an
algorithm B that can break the (t′, ε′)-DBDH assumption in groups (G, GT ) with

ε′ ≥ ε− qH1 + qH5 + qd

q
,

t′ ≤ t +O(τ(qH2 + qH4 + qu + qc + 3qrk + (qH1 + qH5)qd)),

where τ and ė have the same meaning as in Theorem 1.

The proof for Theorem 2 is similar to that of Theorem 1 with some modifications.
For example, the simulation for the random oracle H2 no longer need to flip a
biased coin, and the simulation for oracle Ork has to successfully answer all the
re-encryption key queries without aborting. Due to the space limit, we give the
detailed proof in the full paper.

3.4 Comparisons

In Table 1, we compare our scheme with Tang’s scheme [5] 3, Weng et al.’s scheme
[6] and Livert-Vergnaud’s scheme [10]. We first explain some notations used in
3 Tang presented two schemes: one is CPA-secure, and the other is CCA-secure. To

be fair, we here choose Tang’s CCA-secure scheme for comparison.
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Table 1. Comparisons among Ours Scheme and the C-PRE Schemes in [5,6,4]

Schemes Our Scheme S2 Tang’s Scheme [5] Weng’s Scheme [6] Livert-Vergnaud’s Scheme [10]
2nd-level ciphtxt 2|G|+1|GT |+1|M| 2|G|+1|GT |+1|M| 3|G|+1|M|+l1 |svk|+3|G|+1|GT |+|σ|
1st-level ciphtxt 2|G|+1|GT |+1|M| 2|CPKE|+1|G|+1|GT |+1|M| 1|GT |+1|M|+l1 |svk|+7|G|+1|GT |+1|σ|

Length public key 1|G| 1|G| 2|G| (n+2)|G|
private key 1|Zq| 1|Zq| 1|Zq| 1|Zq|

re-encryption key 2|G| 1|CPKE|+ 1|G| 2|G| 2|G|
Enc2 1tp + 3te 1tp + 3te 1tp + 5te 1ts + 4te
Enc1 1tp + 4te 1tp + 2te + 2tEncPKE 1tp + 2te 1ts + 8te

Cost ReEnc 3tp 3tp + 1tEncPKE 3tp + 2te 4tp + 6te
Dec2 3tp + 2te 3tp + 2te 4tp + 5te 1tp + 1te + 1tv
Dec1 1tp + 3te 2tDecPKE + 1tp + 1te 2te 9tp + 1te + 1tv

Security CCA CCA Not CCA RCCA
Without RO? No No No Yes

Table 1. Here |M|, |G|, |GT |, |svk| and |σ| denote the bit-length of a plaintext,
an element in groups G and GT , the verification key and signature of one-time
signature, respectively. We use tp, te, ts, tv to represent the computational cost of
a bilinear pairing, an exponentiation, signing and verifying a one-time signature,
respectively. l1 denotes the security parameter used in Weng et al.’s scheme.
Tang’s scheme needs an additional public key encryption scheme PKE, which
is assumed to be deterministic and one-way4. We here use tEncPKE and tDecPKE

to represent the computational cost of an encryption and a decryption in the
public key encryption(PKE) scheme used in Tang’s scheme. For |CPKE|, it denotes
the ciphertext length of scheme PKE used in Tang’s scheme.

The comparison results indicate that our scheme S2 outperforms Tang’s
scheme in terms of both computational and communicational costs. Our scheme
has a better overall performance than Weng et al.’s scheme: The ciphertext
length and computation cost for first level encryption and decryption in Weng
et al.’s scheme lead ours, while ours beats theirs in the other metrics; most impor-
tantly, our scheme is CCA-secure, while theirs fails. Our scheme also has a better
overall performance than Libert-Vergnaud’s scheme. Besides, ours is CCA-secure
under the well-studied DBDH assumption, while Libert-Vergnaud’s scheme only
satisfies the RCCA-security (which is a weaker variant of CCA-security assum-
ing a harmless mauling of the challenge ciphertext is tolerated) under a less
studied assumption, named 3-weak decisional bilinear Diffie-Hellman inversion
(3-wDBDH) assumption. However, like Tang and Weng et al.’s schemes, our
scheme suffers from a limitation that its security relies on the random oracle
in the know secret key model, while Libert-Vergnaud’s scheme can be proved
without random oracles in the chosen-key model.

4 Conclusions

We re-formalized the definition and security notions for conditional proxy re-
encryption (C-PRE), and proposed an efficient CCA-secure C-PRE scheme un-
4 To the best of our knowledge, the ciphertext in such a PKE scheme needs at least two

group elements, and its computational cost for encryption and decryption involves
at least two exponentiations and one exponentiation respectively. Hence, we have
|CPKE| ≥ 2|G|, tEncPKE ≥ 2te, tDecPKE ≥ 1te.
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der our model. In addition, we gave an attack to Weng et al.’s C-PRE scheme,
showing that it fails to achieve the CCA-security.

This work motivates some interesting open questions. One is how to construct
a CCA-secure (instead of RCCA-secure) C-PRE scheme without random oracles.
Another is how to construct CCA-secure C-PRE schemes supporting “OR” and
“AND” gates over conditions.
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Appendix

A Cryptanalysis of Weng et al.’s C-PRE Scheme

In this section, we will explain why Weng et al.’s C-PRE scheme [6] fails to
achieve the CCA-security. Due to the space limit, here we only give a brief review
of the scheme (please refer to [6] for the detailed scheme and the corresponding
security notions). In Weng et al.’s scheme, a user’s private key for the user is sk =
x ∈ Z∗

q , and his public key is pk = (gx, g
1/x
1 ). The re-encryption key, from one

public key pki = (gxi , g
1/xi

1 ) to another public key pkj = (gxj , g
1/xj

1 ) associated
with condition w, consists of two parts: a partial re-encryption key rki,j = gxj/xi

and a condition key cki,w = H3(w, pki)1/xi . A second level ciphertext CTi =
(A, B, C, D) under pki is(

gr
1, (gxi)r , H2 (e(g, g)r) ⊕ (m‖r′) ⊕H4 (e(Qi, H3(w, pki))r) , H5(A, B, C)r

)
,

while a first level ciphertext CTj = (B′, C) re-encrypted from pki to pkj is(
e(g, gskj )r, H2(e(g, g)r) ⊕ (m‖r′)) .

http://eprint.iacr.org/
http://eprint.iacr.org/
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According to the security model defined in [6], for a target public key pki∗ and
a target condition w∗, even if the adversary has corrupted another user’s secret
key skj , he is still allowed to obtain one (not both) of the partial re-encryption
key rki∗ ,j and the condition key cki∗,w∗ . Now, we explain how an adversary can
break the CCA-security of Weng et al.’s scheme: she first obtains skj = xj and

rki∗,j = gxj/xi∗ , and then computes g1/xi∗ =
(
gxj/xi∗

)1/xj . Next, she calculates
e(g, g)r as e

(
(gxi∗ )r , g1/xi∗

)
, where (gxi∗ )r is exactly the second component of

the second level ciphertext. Using e(g, g)r, she can certainly decrypt the first
level ciphertext to obtain the underlying plaintext.

B Security Proof for Theorem 1

Proof. Suppose algorithm B is given a DBDH instance (g, ga, gb, gc, Z) ∈ G4×GT

with unknown a, b, c ∈R Zq. B’s goal is to decide whether Z = e(g, g)abc. B works
by interacting with adversary A in the IND-2CPRE-CCA game as follows:

Initialize Stage. B gives param = ((q, G, GT , e), g, n, H1, · · · , H5) to A.
Here H1, · · · , H5 are the random oracles controlled by B and can be adaptively
asked by A at any time. B maintains five hash lists H list

i with i ∈ {1, · · · , 5},
which are initially empty, and responds the random oracle queries for A as shown
in Figure 1.

– H1(m, R): If this query already appears on H list
1 in a tuple (m, R, r), return r. Otherwise,

choose r ∈R Zq, add the tuple (m, R, r) to the H list
1 and respond with H1(m, R) = r.

– H2(pki, w): If this query already appears on the H list
2 , then return the predefined value.

Otherwise, choose μ, μ′ ∈R Zq, and use the Coron’s proof technique [22] to flip a biased coin
coini ∈ {0, 1} that yields 1 with probability θ and 0 with probability 1 − θ. If coini = 0,
define H2(pki, w) = gμ · (gb)−μ′

; otherwise, define H2(pki, w) = gμ+μ′
. Finally, add the tuple

(pki, w, coini, μ, μ′) to the list H list
2 and respond with H2(pki, w).

– H3(R): If this query already appears on the H list
3 , then return the predefined value. Otherwise,

choose ω ∈R {0, 1}n, add the tuple (R, ω) to the H list
3 and respond with H3(R) = ω.

– H4(C1, C2, C3): If this query already appears on the H list
4 , then return the predefined value.

Otherwise, choose γ ∈R Zq, add the tuple (C1, C2, C3, γ) to the H list
4 and respond with

H4(C1, C2, C3) = gγ .
– H5(V ): If this query already appears on the H list

5 , then return the predefined value. Otherwise,
choose λ ∈R Zq, add the tuple (V, λ) to the H list

5 and respond with H5(V ) = λ.

Fig. 1. The Simulations for Hi for i = 1, · · · , 5

Find Stage. In this stage, adversary A issues a series of queries subject to
the restrictions of the IND-2CPRE-CCA game. B maintains a list K list which is
initially empty, and answers these queries for A as follows:

– Uncorrupted key generation oracle Ou(i): Algorithm B first picks xi ∈R Zq,
and defines pki = (ga)xi . Next, it sets ci = 0 and adds the tuple (pki, xi, ci)
to the K list. Finally, it returns pki to adversary A.

– Corrupted key generation oracle Oc(j): B first picks xj ∈R Zq and defines
pkj = gxj and cj = 1. Next, it adds the tuple (pkj , xj , cj) to the K list and
returns (pkj , xj) to adversary A.
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– Re-encryption key oracleOrk(pki, w, pkj): B first recovers (pki, w, coini, μ, μ′)
from the H list

2 and tuples (pki, xi, ci) and (pkj , xj , cj) from the K list. Next,
it constructs the re-encryption key rk

i
w→j

for adversary A according to the
following situations:
• Case 1: ci = 1, it means that ski = xi. Using ski, B can certainly generate

the re-encryption key rk
i

w→j
for A as in algorithm ReKeyGen.

• Case 2: (ci = 0 ∧ cj = 1 ∧ coini = 1), it means that ski = axi, skj = xj

and H2(pki, w) = gμ+μ′
. B picks s ∈R Zq, computes rk2 = pks

i , rk1 =
(ga)−(μ+μ′+xj ·s·H5((ga)xi·s·xj ))xi and returns (rk1, rk2) to A. Observe that
this is indeed a valid re-encryption key, since

rk1 = (ga)−(μ+μ′+xj·s·H5((ga)xi·s·xj ))xi =
(
gμ+μ′+skj ·s·H5(pk

s·ski
j )

)−a·xi

=
(
gμ+μ′

gskj ·s·H5(pk
s·ski
j )

)−ski

=
(
H2(pki, w)pk

s·H5(pk
s·ski
j )

j

)−ski

.

• Case 3: (ci = 0∧ cj = 0∧ coini = 1), it means that ski = axi, skj = axj

and H2(pki, w) = gμ+μ′
. B picks s′ ∈R Zq, computes rk2 = gxis

′
, rk1 =

(ga)−(μ+μ′+xjs′·H5(pk
s′ ·xi
j ))xi , and returns (rk1, rk2) to A. Observe that,

letting s = s′
a , one can see that it is indeed a valid re-encryption key.

• Case 4: (ci = 0∧ cj = 0∧ coini = 0), it means that ski = axi, skj = axj

and H2(pki, w) = gμ · (gb)−μ′
. B picks s ∈R Zq, computes rk2 = pks

i ,
rk1 = pk−u

i , and returns returns rk
i

w→j
= (rk1, rk2) to A. Observe that,

if implicitly let H5(pks·ski

j ) = b·μ′

s·a·xj
(note that pks·ski

j is unknown to A,
since ski, skj and s are all unknown to him), we can easily see that this
is indeed a valid re-encryption key as required.

• Case 5: (ci = 0∧ cj = 1∧ coini = 0), B outputs β′ ∈R {0, 1} and aborts.
– Re-encryption oracle Ore(pki, pkj, (w, CTi)): B parses CTi =

(C1, C2, C3, C4). If Eq. (4) does not hold, it outputs ⊥; otherwise, it
works as follows:
1. Recover (pki, xi, ci) and (pkj , xj , cj) from the K list and

(pki, w, coini, μ, μ′) from the H list
2 .

2. If (ci = 0 ∧ cj = 1 ∧ coini = 0) does not hold, then B can construct the
re-encryption key rk

i
w→j

as in the re-encryption key query, and then can
certainly generate the first level ciphertext CTj for A.

3. Otherwise, it implies that cj = 1, i.e., skj = xj . In this case, B
picks s ∈R Zq and generates the first level ciphertext as follows:
search whether there exists a tuple (m, R, r) ∈ H list

1 such that gr
1 =

C1, R ·e(pki, H2(pki, w))r = C2, m⊕H3(R) = C3 and H4(C1, C2, C3)r =
C4 hold. If yes, pick s ∈R Zq, compute C4 = pks

i , C2 = R ·
e
(
C1, pk

s·H5(C
xj
4 )

i

)−xj , and return CTj = (C1, C2, C3, C4) as the first
level ciphertext to A; otherwise return ⊥. Note that we can store s in
a table to keep the consistency of s for the same re-encryption queries
Ore(pki, pkj , (w, ∗)).
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– First level decryption oracle O1d(pkj , CT): B first recovers (pkj , xj , cj) from
the K list. If cj = 1 (meaning skj = xj), B decrypts the ciphertext using
skj and returns the plaintext to A. Otherwise, it searches H list

1 and H list
5 to

see whether there exist a tuple (m, R, r) ∈ H list
1 and a tuple (V, λ) ∈ H list

5

such that gr = C1, R · e (C4, pkj

)−r·λ
= C2, m ⊕H3(R) = C3 and e(V, g) =

e(C4, pkj). If yes, return m to A; else return ⊥.

Challenge Stage. When A decides that Find stage is over, it outputs a target
public key pki∗ , a condition w∗ and two equal-length messages m0, m1 ∈ {0, 1}n.
B responds as follows:

1. Recover (pki∗ , xi∗ , ci∗) from the K list and (pki∗ , w
∗, coini∗ , μ, μ′) from the

H list
2 . If coini∗ = 1, output a random bit β′ ∈R {0, 1} and aborts. Otherwise,

it means that H2(pki∗ , w∗) = gμ · (gb)−μ′
.

2. Flip a random coin δ ∈R {0, 1} and pick R∗ ∈R GT . Compute C∗
1 = gc,

C∗
2 = R∗ · Z−μ′·xi∗ · e(ga, gc)xi∗μ and C∗

3 = mδ ⊕H3(R∗).
3. Issue an H4 query on (C∗

1 , C∗
2 , C∗

3 ) to obtain the tuple (C∗
1 , C∗

2 , C∗
3 , γ∗), and

define C∗
4 = (gc)γ∗

.
4. Finally, give CT∗ = (C∗

1 , C∗
2 , C∗

3 , C∗
4 ) to A.

Note that by the above construction, if Z = e(g, g)abc, CT∗ is indeed a valid
ciphertext for mδ under pki∗ and w∗. To see this, implicit letting H1(mδ, R

∗) = c,
we have

C∗
2 = R∗ · Z−μ′·xi∗ · e(ga, gc)xi∗μ = R∗ · e(g, g)−μ′·abc·xi∗ · e(ga, gc)xi∗μ

= R∗ · e(ga·xi∗ , gμg−μ′·b)c = R∗ · e(pki∗ , H2(pki∗ , w
∗))c,

C∗
1 = gc, C∗

3 = mδ ⊕H3(R∗), C∗
4 = (gc)γ∗

=
(
gγ∗)b = H4(C∗

1 , C∗
2 , C∗

3 )c.

On the other hand, when Z is uniform and independent in GT , the challenge
ciphertext CT∗ is independent of δ in the adversary’s view.

Guess Stage. A continues to issue the rest of queries as in Find stage, with the
restrictions described in the IND-2CPRE-CCA game. B responds to these queries
as in Find stage.

Output Stage. Eventually, adversaryA returns a guess δ′ ∈ {0, 1} to B. If δ′ = δ,
B outputs β′ = 1; otherwise, B outputs β′ = 0.

This completes the description of the simulation. Due to space limit, in the
full paper, we will show that B’s advantage against the DBDH assumption is
at least ε′ ≥ ε

ė(1+qrk) −
qH1+qH5+qre+qd

q , and B’s running time is bounded by
t′ ≤ t +O(τ(qH2 + qH4 + qu + qc + 3qrk + qH1qre + (qH1 + qH5)qd)). ��
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Abstract. Hitag2 is a stream cipher that is widely used in RFID car
locks in the automobile industry. It can be seen as a (much) more secure
version of the [in]famous Crypto-1 cipher that is used in MiFare Classic
RFID products [14,20,15]. Recently, a specification of Hitag2 was circu-
lated on the Internet [29]. Is this cipher secure w.r.t. the recent algebraic
attacks [8,17,1,25] that allowed to break with success several LFSR-based
stream ciphers? After running some computer simulations we saw that
the Algebraic Immunity [25] is at least 4 and we see no hope to get a
very efficient attack of this type.

However, there are other algebraic attacks that rely on experimenta-
tion but nevertheless work. For example Faugère and Ars have discov-
ered that many simple stream ciphers can be broken experimentally with
Gröbner bases, given an extremely small quantity of keystream, see [17].
Similarly reduced-round versions of DES [9] and KeeLoq [11,12] were
broken using SAT solvers, that actually seem to outperform Gröbner
basis techniques. Thus, we have implemented a generic experimental al-
gebraic attack with conversion and SAT solvers, [10,9]. As a result we
are able to break Hitag2 quite easily, the full key can be recovered in
a few hours on a PC. In addition, given the specific protocol in which
Hitag2 cipher is used in cars, some of our attacks are practical.

Keywords: RFID tags, Hitag 2 algorithm, MiFare Crypto-1 cipher,
stream ciphers, algebraic cryptanalysis, Boolean functions, Gröbner bases,
SAT solvers.

1 Introduction

Hitag2 is a stream cipher that is primarily used in RFID transponder systems
manufactured by Philips/NXP, and used by many car manufacturers for unlock-
ing car doors remotely. According to [33] it is used for example in all Alfa Romeo
156 and 166 models, Ford Galaxy and Transit, GM Corsa and Zafira, numerous
Nissan, Opel, Peugeot, Seat and Volvo models, most Honda cycles and most
Iveco trucks. It is not clear whether this cipher is still used in many new cars,
but it is used in numerous models still in widespread use.

This system was introduced by Philips Semiconductors in the late 90’s. The
security level of this cipher was quite moderate from the start. The key is only 48

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 167–176, 2009.
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bits. Moreover, the internal state is also only 48 bits, not bigger than the key size,
which makes Hitag2 vulnerable to time/data/memory tradeoff attacks [3]. These
however require both large quantities of keystream and large quantities of RAM,
and therefore are neither practical to run nor it is very realistic for the attacker
to get a large amount of keystream generated with the same key. However given
the key length, exhaustive search is feasible and requires a tiny quantity of data.
In this paper we show that in identical (or very close) conditions: given a very
tiny amount of known (or chosen) plaintext, attacks substantially faster than
brute force do exist.

The security of Hitag2 can be compared to the security of the famous MiFare
Crypto 1 cipher that is used in hundreds of millions of smart cards worldwide
[14,20,15]. In MiFare Crypto 1, the taps of the Boolean function are regular
which makes it indeed breakable by SAT solver attacks [14], but these actually
have very soon became obsolete, because there is an even faster direct attack
that takes 0.05 seconds on a PC [20]. In Hitag 2 the taps are not regular. Yet
we will show that the cipher is still breakable faster than by brute force, with
this type of automated cryptanalysis with SAT solvers.

1.1 Algebraic Cryptanalysis

In the past, many researchers asked if ciphers such as the DES could be broken
by solving a system of Boolean equations, see for example [32,22,16,23,7,28]
following the idea of algebraic cryptanalysis (breaking cipher seen as solving a
system of equations) that was formulated as early as by Shannon in 1949, see [31].
It turns out that so far nobody has been able to break standard cryptography
such as the DES or the AES, see [9,7]. Moreover, very few block ciphers were ever
broken. Many researchers have tried to crack small scale variants of AES [5] and
similar toy ciphers [18]. However the authors also showed very strong limitations
of these attacks, for example these attacks can break (only) 6 rounds of the DES,
but this is accomplished given 1 single known plaintext [9], compared to linear
and differential cryptanalysis that require larger amounts of encrypted material
in order to work. So far, only one full-round block cipher that is used in practice
can be broken by an algebraic attack. This cipher is KeeLoq, an industrial cipher
used by hundreds of millions of people every day to unlock their cars. Here the
algebraic attacks can break up to 160 rounds of the cipher, but can also break
the full 528 rounds of the cipher if one uses another weakness of the cipher: its
periodic structure, see [11]. In this paper we break another cipher that is used
in automobile locks and alarms, Hitag2.

Algebraic cryptanalysis was much more successful for LFSR-based stream
ciphers. Several stream ciphers were broken since 2003 Courtois, Meier, Krause
et al, see [1,8,17]. These attacks exploit low degree I/O relations for the output
filter/combiner Boolean function of the cipher (and augmented versions of it),
and we have verified that these attacks cannot break Hitag2 algorithm, because
the Boolean function used is quite large and has good ”Algebraic Immunity” of
at least 4. However, Faugère and Ars have discovered another major attack on
LFSR-based stream ciphers that is not widely known: they showed that many
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simple stream ciphers can be broken experimentally with Gröbner bases, given
an extremely small quantity of keystream, see [17], not much more than one
needs to make the solution uniquely defined. This type of attack is a bit obscure
and relies on experimentation. It remains quite rare, and the bottom line is that
more or less any cipher can be broken provided that it is ”not too complex”,
and this in an automated way without human intervention.

In this paper we will break Hitag2 in a similar way, showing that it is a very weak
design. We do not however use Gröbner bases. In fact, it appears that Gröbner
bases algorithms such as F4 or F5 are not always necessary, in several cases they
either they can be replaced by a simpler attack that does not require a fixed mono-
mial ordering and is essentially a linear algebra attack [9,11], or there is a faster
attack. For example, the method of solving multivariate low-degree equations via
algebraic representation and later conversion to a logical SAT problem [10,9], (see
also [24,27]) is in almost all that cases we are aware of, much faster and can break
much more instances than the current Gröbner basis techniques.

Algebraic representation and conversion to SAT is also the method we exploit
in the present paper. Other very promising algorithms were also proposed for
solving systems of equations derived from symmetric ciphers, see [30], but so far
they (or at least their current implementation) still lag behind the SAT solvers.
For example they allow to break only 4 rounds of DES, cf. [30].

1.2 Our Contribution

In this paper we show that Hitag2 is extremely weak w.r.t. algebraic attacks.
This result surprised us, as nothing in the description of Hitag2 allows to believe
that it will be weak. In fact, we will demonstrate that if we simply XOR two
of the LFSR bits to the output of the nonlinear function used in Hitag2, it
will already be much stronger against our attacks achieving a level of security
close to its key size. So there is a real mystery here that remains unsolved: why
is this cipher comparatively quite weak? We don’t answer this question, just
demonstrate the weakness experimentally and compare to the tweaked version.

The attacks described in this paper are essentially black box attacks: we try
some tools, they are able to recover the key, and we have a limited understanding
of why these attacks work. The method — write equations, convert and solve —
is very general and applicable to any block or stream cipher, see [10,9]. It is very
hard to know what exactly makes systems efficiently solvable, but it appears
that sparsity alone can make systems efficiently solvable, both by SAT solvers
and classical Gröbner bases methods, see [10,30]. However these attacks are far
from being obscure attacks that nobody can reproduce: They are very simple to
implement following [10] and combined with a public domain SAT solver MiniSat
2.0. [26]. We contend that any researcher who is also a good programmer can
implement this attack in one day.

2 Cipher Description

Hitag2 is a very simple cipher: a filter generator with 48-bit LFSR and a non-
linear function with 20 inputs, that produces 1 output bit per clock (the other
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components on the picture are not used for encryption, only at the initialisation
stage). The reference source code together with test vectors can be downloaded
from [29]. The picture below (Fig. 1) describes both the encryption (keystream
generation) and the initialisation process.

First, the state is filled with 32 bits of the serial number and 16 lower-ranking
bits of the key. Then for 32 steps, the LFSR feedback is not used, instead the
state is filled on the right with 32 bits, each of them being a XOR of three bits:
one output by the Boolean function applied to the previous state, one bit of the
key, and one bit of the IV. After 32 steps the state of the cipher becomes the
initial setting of the LFSR.

Then the keystream is generated as follows. At each clock, the LFSR is up-
dated first, and then the output bit is computed by using the whole Boolean
function on 20 inputs. This large Boolean function is composed of 6 instantia-
tions of 3 smaller Boolean functions that are described on this picture by their
truth tables and their Algebraic Normal Forms (ANF).

Fig. 1. Hitag2 Initialization and Encryption

3 The Hitag 2 Protocol

According to [21] HITAG2 RFID chips have 256-bit of data that is divided in
8 pages of 32-bits. They have several read-only modes (A, B and C) in which
data are broadcast in cleartext. These modes are suitable for applications such
as animal identification, but offer no security. When Hitag2 systems are used
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in automobile locks, they work in a more secure so called “Crypto mode” as
described in Section 4.2.1. of [21]. The protocol works as follows:

1. The reader (embedded inside a car) sends the command 0x18 to the
transponder (which is battery-powered and embedded in the portable key-
fob).

2. The tag responds by 11111 followed by 32-bit serial number (SN).
3. Then the reader sends a pseudo-random IV on 32 bits and the authentica-

tor on 32 bits. The authenticator is the first 32 bits of the keystream (but
transmitted in the reverse order), that are obtained from the Hitag2 cipher
as on Fig. 1 initialised with this IV and with the secret key shared both by
the reader and the transponder key.

4. If the key is happy with the 32-bit authenticator that should match the
one it has computed itself, it sends 11111 followed by the content of Page
3 of its memory (these are 8 bits of configuration flags and 24 bits of some
personalised ”transponder password” denoted PSWT) that are encrypted by
bitwise XOR with the next 32 bits of the keystream.

Important Remarks. This isn’t a classical challenge-response authentication
protocol, it is the car that proves his identity to the key first, and clearly a
chosen-IV attack is not possible here (this would allow us to break the system in
6 hours, see Section 7). Moreover, unless the attacker already knows the content
of Page 3 of the transponder memory, the attacker obtains only 32 bits of the
keystream, which makes that not all our attacks are practical, see Section 6.

4 Handling Algebraic Attacks

All key recovery attacks in this paper are algebraic attacks with SAT solvers
[10,9] that work as follows:

1. First we write the key recovery problem as a large system of equations with
a very large number of unknowns over GF (2) with non-linear components
of the cipher being described by a localised small system of very sparse low-
degree Boolean equations. This is done by following directly the description
of the cipher. Linear operations give linear equations, and nonlinear opera-
tions can be written as multivariate polynomials in their Algebraic Normal
Form (ANF). There is however a better method: in order to keep equations
as simple as possible, we may add additional variables. Thus, Boolean func-
tions are actually implemented by cutting them in smaller chunks, following
closely their gate-efficient (bitslice) representation that can be found directly
in the Hitag2 reference code [29]. In this bitslice representation each bit is
computed using negations, OR gates and AND gates with two inputs. All
these gates are then directly described as quadratic equations as follows:
a OR b ≡ a + b + ab and a AND b ≡ ab and NOT a ≡ 1 + a. With
an appropriate naming scheme for variables, our equations look typically as
follows:

R_905_0_4=S_938_0*S_947_0+S_938_0+S_947_0
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Writing these equations present no difficulty. It requires just to follow step
by step the source code of an efficient implementation of the cipher [29] that
is decomposed in elementary operations on bits.

2. We will fix some g key bits to their correct values (in a full attack all 2g

possibilities are checked until the correct key is found). Typically g is between
0 and 16. There is a right number of key bits that one needs to guess. If we
get too few the attack will be slower. (Quite surprisingly, also when we guess
too many, the attack can frequently be slower, but when guess even more,
at some moment the system will be solved instantly).

3. Then we use a conversion to a SAT problem, we use exactly the same general-
purpose program that is described and used in [10,9].

4. Then the key and all the other variables are determined in seconds by an
open-source program MiniSat 2.0. [26]. We assume that this takes time T .

5. We run our attack with the correct key and we get time T . The total com-
plexity of the whole attack is estimated to be 2g · T for chance of success of
at least 80 %, see below for additional explanations.

Notes on the Total Complexity. There are two basic ways of handling such
an attack, that can be called serial and parallel, and these will lead to various
trade-offs between the speed and success probability. In the parallel version, we
run all the computation in parallel, and abort as long as one of them finds the key.
The total time is 2g · T for 100 % success probability. In practice, this it cannot
be done because this would result in much lower speeds due to the influence of
the CPU cache, and the amounts of RAM needed to run processes concurrently.
However it is a good strategy for a distributed attack. In the serial version, we
assume in advance that T lies in a certain interval, for example T < 2 · E(T ),
where E(T ) is the average value. Then we abort all computations after time
2 · E(T ). This an early abort strategy and the success probability will be, this
is a rough estimation, about 80 %. Only in about 20 % of cases the time will
exceed 2 · E(T ). With this strategy, 80 % of the time we do only 2g−1 trials on
average, and in 20 % of cases we do full 2g trials and fail to find the key. Here
the total time is also on average about 0.8 · 2g−1 · 2T + 0.2 · 2g · 2T ≈ 2g · T but
for the success probability of only about 80 %.

Further Remarks. In addition, we can also restart all the processes with a
slightly bigger interval, this would be a mix of parallel and serial strategy. The
exact complexity of such attacks simply cannot be computed without extra con-
siderations such as number of CPUs available, memory bandwidth of the solver
program that is function that depends on time, and will greatly depend on the
sizes and speeds of the CPU cache, the RAM and disk drives available. So we
keep a simple estimate as above.

5 Brute Force Attacks

We assume that in a software implementation, 1 output bit for Hitag2 cipher
requires about 40 CPU clocks. The reference implementation of Hitag2 can be
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found here [29]. Accordingly, to output 48 keystream bits: we need abut 211 CPU
clocks. Then 220 Keys will be checked in 0.5 s on average with 2 GHz CPU, and
232 Keys will be checked in 2000s on average. The full key space can therefore
be checked in about 4 years on average.

We don’t consider FPGA implementations, these would considerably speed-up
both the brute force and our attacks. However since no FPGA implementations of
SAT solvers or other algebraic attacks are known, we cannot make comparisons.
Therefore we consider and compare only software attacks.

6 Known-IV Attacks

The equations that we are solving include the complete initialisation process of
the cipher. The results are as follows:

Given 1 single known IV and 50 known keystream bits, and if we guess cor-
rectly 16 key bits, the remaining 32 key bits are found by a SAT solver in 0.6 s
on a 2 GHz Centrino CPU. This is about 4000x faster than brute force. The full
attack on full 48-bit key takes about 216 · 0.6s which is about 11 hours.

In contrast, for our tweaked strengthened version of the cipher with a linear
function of two state bits (we chose bits number 3 and 47) XORed to the output,
the fastest attack we found takes 216 · 300 seconds which is equivalent to 1 year.
This is only very marginally faster than brute force (that would be about 4
years).

Is this practical? Following Section 3, only 32 keystream bits per IV (the
authenticator) are known to the attacker, this attack with 50 output bits is not
practical.

6.1 Practical Known-IV Attacks

In the real-life, when only 32 bits of the keystream per known IV are available,
we have the following attack: We fix 14 bits of the key and write our equations
for four known IVs. The solution is then found in 10 seconds on a PC. Then a
full attack on a full 48-bit key takes about 214 · 10s which is less than 2 days.

7 Chosen-IV Attacks

In our chosen IV attacks, the IVs are chosen to be consecutive integers encoded
on 32 bits in the inversed order: i.e. the least significant bit is the one that enters
the cipher the last. The first IV is chosen at random.

For Hitag2, our fastest attack requires 16 chosen IVs, and takes 6 hours.
For the tweaked cipher, our fastest attack requires 16 chosen IVs, and takes

6 months.

Is this chosen IV attack practical? Following Section 3, this chosen IV
attack is not practical. The fastest practical attack remains the attack with 4
known IVs form Section 6.1 that takes less than 2 days.
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8 Conclusion

In this paper we show that, it is not easy to know if a cipher is broken by an
already published attack in a matter of hours, until we actually try the attack.
Even though the notion Algebraic Immunity [25] suggests that Hitag2 should be
secure, there is a larger variety of algebraic attacks on stream cipher, and this
cipher simply isn’t so secure. We also demonstrated that a minor modification of
this cipher may render it secure (or secure enough) for reasons that are far from
being understood. It appears that experimental cryptanalysis is now well ahead
of theory and we are surprised by the very existence attacks that are practical
enough to be exploited by hackers. Many older and simple industrial ciphers
can be broken, and examples of Hitag2 (this paper), KeeLoq [2] and MiFare
Classic [20,15] show that the common industrial practice of choosing some fast
or economical cipher and using it in products for many years to come is now
bankrupted. Weak ciphers should be discontinued before they are broken, and
not after.

Trying to keep the specification of insufficiently secure products secret may
make things even worse. Then the security of real-life products does collapse
very badly in one day, when the cipher is reverse engineered [20,29].

We will not however fall into the trap of believing that ’open source cryptogra-
phy’ is a solution to this problem. Maybe open-source cryptography is a plausible
and economical solution. Really good security however, occurs when there are
several layers of security, and the confidentiality of the cryptographic algorithm
can help. Especially in the embedded hardware world, where some attacks such
as side channel attacks are hard and costly to avoid, a secret algorithm can be an
effective barrier that prevents this type of analysis. So a cryptographic algorithm
can be secret. Provided it is as good as a standard ’open source’ cipher and does
not mislead the customer about the security level offered.

In this paper we are dealing with automated cryptanalysis techniques, that
are computer programs that recover they key from the specification of the ci-
pher. This opens new interesting perspectives for the industry. Traditionally, the
industrial firm would develop or just use a cipher and would (or rather should)
ask cryptanalysts to evaluate its security. But then they have to disclose their
algorithms. Now however, the firm can also ask cryptanalysts to develop soft-
ware that to a large extent automates the cryptanalysis process, and therefore
the industry might also be able to evaluate the security of their (confidential)
designs themselves, at least against attacks such as described in this paper.

References

1. Armknecht, F., Krause, M.: Algebraic Atacks on Combiners with Memory. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–176. Springer, Heidelberg
(2003)

2. Biham, E., Dunkelman, O., Indesteege, S., Keller, N., Preneel, B.: How to Steal
Cars – A Practical Attack on KeeLoq. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 1–18. Springer, Heidelberg (2008)



Practical Algebraic Attacks on the Hitag2 Stream Cipher 175

3. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

4. Buchmann, J., Pychkine, A., Weinmann, R.-P.: Block Ciphers Sensitive to Gröbner
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Abstract. Because of the algebraic attacks, a high algebraic immunity
is now an important criteria for Boolean functions used in stream ci-
phers. In this paper, we study the construction of Boolean functions
with maximum algebraic immunity. We first present a new method to
construct Boolean functions, in any number of variables, with maximum
algebraic immunity(AI), and we also improve our algorithm to construct
balanced functions with optimum algebraic immunity for any even num-
ber of variables. Furthermore, the enumeration and algebraic degree of
the constructed Boolean functions are investigated.

Keywords: Boolean Function, Algebraic Attacks, Algebraic Immunity,
Balancedness.

1 Introduction

Algebraic attack to LFSR-based stream cipher was proposed by Coutois and
Meier in 2003 [1]. Its main idea is to deduce the security of a stream cipher to
solve an over-defined system of multivariate nonlinear equations whose unknowns
are the bits of the initialization of the LFSR. By searching low degree annihilator,
some LFSR-based stream ciphers such as Toyocrypt [2], LILI-128 [1] and SFINKS
[3] etc were successfully attacked.

To resist algebraic attack, a new cryptographic property of Boolean func-
tions which is known as algebraic immunity (AI) has been proposed by Meier
et al [4]. The AI of a Boolean function expresses its ability to resist standard
algebraic attack. Thus the AI of Boolean function used in cryptosystem should
be sufficiently high. Courtois and Meier [1,4] showed that, for any n-variable
Boolean function, its AI is bounded by �n/2�. If the bound is achieved, we say
the Boolean function has maximum AI. Obviously, a Boolean function with max-
imum AI has strongest ability to resist standard algebraic attack. Therefore, the
construction of Boolean functions with maximum AI is of great importance, and
several classes of Boolean functions with large algebraic immunity have been
investigated and constructed [5,6,7,8,9,4,10,11,12].
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In this paper, we use a specific order on elements of Fn
2 and divide the ele-

ments of Fn
2 with weight no more than �n/2� − 1 into some intervals, then we

construct Boolean functions with the support from the intervals. We also improve
our method to construct balanced functions with optimum algebraic immunity
for any even number of variables. Then we enumerate the constructed Boolean
functions, and we also study the case that the constructed Boolean functions
have optimum algebraic degree.

The paper is organized as follows. Section 2 provides basic definitions and
notations. In Section 3, we present our main construction of Boolean functions,
in any number of variables, with maximum algebraic immunity. In Section 4,
we improve our method to construct balanced maximum AI Boolean functions
on even number of variables. the enumeration and algebraic degree of the con-
structed Boolean functions are investigated in Section 5. Section 6 concludes this
paper.

2 Preliminaries

Let F2 be the binary finite field, the vector space of dimension n over F2 is
denoted by Fn

2 . A Boolean function on n variables may be viewed as a mapping
from Fn

2 into F2. The set of all n-variable Boolean function is denoted by Bn. A
Boolean function f(x1, x2, · · · , xn) is also interpreted as the output column of
its truth table, that is, a binary string of length 2n having the form:

{f(0, 0, · · · , 0), f(0, 0, · · · , 1), · · · , f(1, 1, · · · , 1)}.

The weight of f is the number of ones in its output column, and is denoted by
wt(f). The support of f denoted by supp(f) is the set of inputs X ∈ Fn

2 such
that f(X) = 1, that is,

supp(f) = {X ∈ Fn
2 |f(X) = 1}.

For vector X = (x1, · · · , xn) and Y = (Y1, · · · , Yn), we denote XY = xY1
1 · · ·xYn

n ,
and the support of X is denoted by supp(X) = {i|xi = 1}.
Definition 1. An n-variable function f is balanced if and only if wt(f) = 2n−1.

Let us denoted the addition operator over F2 by +. An n-variable function
f(x1, · · · , xn) can be seen as a multivariate polynomial over F2, that is,

f(x1, · · · , xn) = a0 +
n∑

i=1

aixi +
n∑

1≤i<j≤n

ai,jxixj + · · ·+ a1,2,··· ,nx1x2 · · ·xn

where the coefficients a0, ai, ai,j , a1,2,··· ,n are constants in F2. This representation
of f is called the algebraic normal form (ANF) of f . The algebraic degree deg(f)
of f is the number of variables in the highest order term with nonzero coefficient.
A Boolean function is affine if it has algebraic degree at most 1.
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A nonzero n-variable Boolean function g is called an annihilator of an n-
variable Boolean function f if f ∗ g = 0. We denote the set of all annihilators of
f by AN(f). That is,

AN(f) = {g ∈ Bn|g ∗ f = 0}
Definition 2. For f ∈ Bn, the algebraic immunity(AI) of f is the minimum
degree of non-zero functions g ∈ Bn such that g ∗ f = 0 or g ∗ (f + 1) = 0.
Namely,

AI(f) = min{deg(g)|0 �= g ∈ AN(f) ∪ AN(1 + f)}
Lemma 1. [1] Let f be an n-variable boolean functions, then AI(f) ≤ �n/2�.
If a function has maximum algebraic immunity AI(f) = �n/2� with n odd,
then it is balanced, and the algebraic immunity property takes care of three
fundamental properties of a Boolean function, balancedness, algebraic degree
and nonlinearity, but it does this incompletely in the case of balancedness when
n is even.

3 Construction of Boolean Functions with Maximum AI

In this section, We will present the main idea of our construction. We will use a
specific order on elements of Fn

2 . This order is induced by the integer order on
the set of integers [0, 2n− 1] by viewing an n-tuple X as a binary representation
of an integer. More precisely an element X = (x1, . . . , xn) are associated to
the integer

∑n
i=1 xi2i−1. This identification allows us to compare elements in

Fn
2 and to speak about intervals. For instance, for Y1 = (y(1)

1 , . . . , y
(1)
n ), Y2 =

(y(2)
1 , . . . , y

(2)
n ) ∈ Fn

2 , Y1 < Y2 means that
∑n

i=1 y
(1)
i 2i−1 <

∑n
i=1 y

(2)
i 2i−1, and

we define
[Y1, Y2) = {Y ∈ Fn

2 |Y1 ≤ Y < Y2}.
We index from Y0 to Yk the elements Y in Fn

2 of weight ≤ �n/2� − 1 arranged
in increasing order, so k =

∑
n/2�−1
i=0

(
n
i

)− 1.
The following results advance the ability to decide whether a boolean function

has maximum algebraic immunity.

Lemma 2. [13] Let n be odd, and f ∈ Bn be balanced. Then AI(f) = �n/2� if
and only if f does not have a nonzero annihilator of degree≤ �n/2� − 1.

Lemma 3. [14] Let n be even, f ∈ Bn, and its weight equals to
∑
n/2�−1

i=0

(
n
i

)
.

Then AI(f) = �n/2� if and only if f does not have a nonzero annihilator of
degree≤ �n/2� − 1.

Lemma 4. Given a monomial xy1
1 . . . xyn

n of degree d, the associated monomial
function is 1 on X = (x1, . . . , xn) ∈ Fn

2 if and only if Y = (y1, . . . , yn) ⊂ X
which means supp(Y ) ⊂ supp(X). Moreover, this function is equal to zero on
the interval [0, Y ), and is equal to 1 on the interval [Y, Y

′
) where Y

′
is the first

point in Fn
2 greater than Y of weight≤ d.
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Proof. The monomial function xy1
1 . . . xyn

n evaluates to 1 on an n-tuple X =
(x1, . . . , xn) if and only if for all 1 ≤ i ≤ n such that yi = 1 we also have xi = 1,
which means supp(Y ) ⊂ supp(X). We also have,

n∑
i=1

yi2i−1 ≤
n∑

i=1

xi2i−1

so this function is equal to zero on the interval [0, Y ).
Now, let us define j to be the minimum of the set {i|yi �= 0}. Denote by Y

′

the first point greater than Y of weight less than or equal to d. The last assertion
follows from the fact that all X strictly between Y and Y

′
coincide with Y for all

positions greater than or equal to j. This implies that the monomial evaluates
to 1 on the interval [Y, Y

′
). 	

Our new idea is mainly based on Lemma 4. Now, the new algorithm to construct
Boolean functions with maximum algebraic immunity is given below.

Algorithm 1

Step 1: For i = 0 to k − 1, choose element Xi in [Yi, Yi+1);
Step 2: if i = k, choose Xi such that Yi ⊂ Xi ;
Step 3: Construct Boolean function f ∈ Bn such that supp(f) = ∪k

i=0{Xi};
Step 4: Output f , then AI(f) = �n/2�.
Theorem 1. The Boolean functions constructed in Algorithm 1 have maximum
algebraic immunity.

Proof. Suppose the constructed Boolean function is f(X), and the support of
f(X) is ∪k

i=0{Xi}. If it has an annihilator g(X) of degree ≤ �n/2� − 1, then we
have g(Xi) = 0 for all Xi(0 ≤ i ≤ k), and the ANF of g is of form as follows

g(X) =
k∑

i=0

aiX
Yi

where ai is the coefficient of the monomial XYi and is from F2. Then we have a
homogeneous linear equation for each input Xi ∈ supp(f),

g(Xi) =
k∑

i=0

aiXi
Yi = 0

We prove all ai = 0(0 ≤ i ≤ k) by induction on i.
When i = 0, Y0 = (0, 0 · · · , 0) and Y1 = (1, 0 · · · , 0), then X0 = (0, 0 · · · , 0),

By lemma 4, we get g(X0) = a0, which gives a0 = 0.
Now we prove the inductive step. Assume that, for all i < l, the induction

assumption holds. We will show it for i = l. Since ai = 0 for all 0 ≤ i < l, then

g(X) =
k∑

i=l

aiX
Yi
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By Lemma 4, we have Xl
Yl = 1 and Xl

Yi = 0 for all l < i, then we get g(Xl) = al,
which implies al = 0. So ai = 0(0 ≤ i ≤ k), which is to say that g(X) ≡ 0. So
f does not have a nonzero annihilator of degree≤ �n/2� − 1. For n is odd (or
even), we can obtain that f has maximum algebraic immunity because of lemma
2(or 3). 	

4 Constructing Balanced Boolean Functions with
Maximum AI on Even Numbers of Variables

It is obvious that when n is even the weights of constructed Boolean functions in
Algorithm 1 are

∑n/2−1
i=0

(
n
i

)
, so the functions are not balanced. In this section we

will give another algorithm for even n so that the constructed Boolean functions
are also balanced. Now let’s begin with some existing results.

Lemma 5. [8]Let n be an even number, and define Fn(X) as follows,

Fn(X) =

{
1, wt(X) ≤ n

2 ,

0, wt(X) > n
2 .

then AI(Fn) = n
2 .

Given an even number n and x ∈ Fn
2 , let v(x) be a vector,

v(x) = (1, x1, · · · , xn, x1x2, · · · , xn−1xn, · · · , x1 · · ·xn/2−1, · · · , xn/2+1 · · ·xn)

that is, v(x) is the vector generated by monomials of degree less than n/2 valued
at x.

Definition 3. Given f ∈ Bn, let M(f) be the wt(f)×∑n/2−1
i=0

(
n
i

)
matrix defined

as

M(f) =

⎛⎜⎜⎜⎝
v(X1)
v(X2)

...
v(Xwt(f))

⎞⎟⎟⎟⎠
where {X1, · · · , Xwt(f)} are the support of f .

Lemma 6. [15] Let f be an n-variable boolean functions, then f does not have
a nonzero annihilator of degree≤ �n/2� − 1 if and only if M(f) has column full
rank.

The Algorithm is as below.

Algorithm 2 (only for n is even)

Step 1: For i = 0 to k − 1, choose element Xi in [Yi, Yi+1) and wt(Xi) ≤ n/2;
Step 2: if i = k, choose Xi such that Yi ⊂ Xi and wt(Xi) ≤ n/2;
Step 3: for i = k + 1 to 2n−1 − 1, choose any Xi /∈ ∪i−1

j=0{Xj} and wt(Xi) ≤ n/2;

Step 4: Construct Boolean function f ∈ Bn such that supp(f) = ∪2n−1−1
i=0 {Xi};

Step 5: Output f , then AI(f) = n/2 and wt(f) = 2n−1.
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Theorem 2. The Boolean functions constructed in Algorithm 2 is balanced and
have maximum algebraic immunity.

Proof. Let f be the functions constructed in Algorithm 2, and it is clear that
f is balanced. Then wt(f) = 2n−1 > k + 1 =

∑n/2−1
i=0

(
n
i

)
. From Lemma 6 and

Theorem 1 we have

M(f∗) =

⎛⎜⎜⎜⎝
v(X0)
v(X1)

...
v(Xk)

⎞⎟⎟⎟⎠
have column full rank. Then column rank of

M(f) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

v(X0)
v(X1)

...
v(Xk)

...
v(Xwt(f)−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is no less than M(f∗), which indicates M(f) has column full rank, that is, f
does not have a nonzero annihilator of degree less than n/2.

In Lemma 5, the function Fn has maximum AI, then the corresponding Matrix
M(Fn + 1) of the function Fn + 1 have column full rank, and it is obvious
that M(f + 1) can be obtained by inserting some rows into M(Fn + 1), then
M(f + 1) have column full rank, which indicates that f + 1 does not have a
nonzero annihilator of degree≤ �n/2� − 1 = n/2− 1. 	

5 The Enumeration and Property of the Constructed
Maximum AI Functions

In this section, we discuss how many maximum AI functions can be constructed
by using our algorithm. It is obvious that the two algorithm can construct
Boolean functions. We can especially suppose Xi = ai(0 ≤ i ≤ k). As to Algo-
rithm 2, for i = k + 1 to 2n−1 − 1, we can choose any Xi ∈ Fn

2 whose weight is
n/2. We first discuss the enumeration of Algorithm 1.

Theorem 3. Let c = �n/2�−1, then the number of n-variable Boolean functions
with maximum AI constructed in Algorithm 1 is

2n−c
n∏

d=3

min{c,n−d+1}∏
t=max{1,c+3−d}

2(t+d−2−c)(n−d
t−1).
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Proof. It is obvious that the accurate enumeration of Algorithm 1 is

2n−c
k∏

i=1

|Yi − Yi−1|,

where |Yi − Yi−1| is the choices of Xi−1 and 2n−c denotes the choices of Xk. So
if we want Xi−1 to have more than one choice, then Yi ≥ Yi−1 + 2, which means
that wt(Yi − 1) > c.

For Yi = (y1, · · · , yn), let d be its first position such that yd �= 0 and t be
the weight of Yi. Then the weight of Yi − 1 is t + d − 2. So if t + d − 2 > c,
the choices of Xi−1 are 2t+d−2−c. The number of such Yi are

(
n−d
t−1

)
. Because of

t + d − 2 > c, d > c + 2 − t ≥ 3, and max{1, c + 3 − d} ≤ t ≤ min{c, n− d + 1}.
So the enumeration of Algorithm 1 is

2n−c
n∏

d=3

min{c,n−d+1}∏
t=max{1,c+3−d}

2(t+d−2−c)(n−d
t−1).

Different from Algorithm 1, the accurate number of the constructed functions in
Algorithm 2 is hard to calculate. Note that the constructed Boolean functions
have the property that the weight of any element in their support does not
exceed n/2, so the number of this case is much fewer than that of Algorithm 1,
and the bound of this case can be given as follows.

Theorem 4. Let n be an even integer, c = n/2−1, and Enum2 denote the num-
ber of n-variable Boolean functions with maximum AI constructed in Algorithm
2. Let Λ(d, t) = (n− c)

∏n
d=3

∏min{c,n−d+1}
t=max{1,c+3−d} (t + d − 1 − c)

(
n−d
t−1

)
. Then

Λ(d, t) ≤ Enum2 ≤
( (

n
n/2

)(
n

n/2

)
/2

)
Λ(d, t).

Proof. Similar to Algorithm 1, let d denote the first position d(1 ≤ d ≤ n)
of Yi where yd �= 0 and t be the weight of Yi. If t + d − 2 > c, the choices
of Xi−1 are t + d − 1 − c. So for all Xi(0 ≤ i ≤ k), the choices of all such
Xi are Λ(d, t) = (n − c)

∏n
d=3

∏min{c,n−d+1}
t=max{1,c+3−d} (t + d− 1 − c)

(
n−d
t−1

)
, and this

enumeration has no repeated cases. The number of remaining vectors of weight≤
n/2 are

(
n

n/2

)
, and we need choice

(
n

n/2

)
/2 vectors randomly, so the choices of

Xi(k +1 ≤ i ≤ 2n−1− 1) are
( ( n

n/2)
( n

n/2)/2

)
. But it is obvious that the enumeration of

all Xi(0 ≤ i ≤ 2n−1 − 1) has some repeated cases. From the analysis of above,
we can gain the conclusion. 	
In the rest of this section, we will study the case that the constructed functions
have optimum algebraic degree.

Theorem 5. Suppose f ∈ Bn, and its support is ∪k
i=0{Xi}, x

(i)
d denotes the

d-th position of Xi, then deg(f) = n − 1 if and only if k is odd and there is a
number d(1 ≤ d ≤ n) such that td = |{Xi|x(i)

d = 0, 0 ≤ i ≤ k}| is odd.
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Proof. If k is odd, which means wt(f) is even, it is obvious deg(f) ≤ n − 1. If
there is a number d(1 ≤ d ≤ n) such that td is odd, then the ANF of f is

f(y1, y2, · · · , yn) = (y1 + x
(1)
1 ) · (y2 + x

(1)
2 ) · · · (yd + x

(1)
d ) · · · (yn + x(1)

n ) + · · ·
+(y1 + x

(k)
1 ) · (y2 + x

(k)
2 ) · · · (yd + x

(k)
d ) · · · (yn + x(k)

n ).

Then the coefficient of the monomial y1y2 · · · yd−1yd+1 · · · yn is
∑k

i=0 x
(i)
d =

1(mod 2), so deg(f) = n− 1.
If deg(f) = n− 1, it is obvious k is odd. If there is not a number d(1 ≤

d ≤ n) such that td is odd, then the ANF of f does not contain the term
y1y2 · · · yd−1yd+1 · · · yn for any d(1 ≤ d ≤ n), so deg(f) < n− 1, which is con-
trary. So there is a number d(1 ≤ d ≤ n) such that td is odd. 	

Based on theorem 5, we can modify both Algorithm 1 and Algorithm 2 so that
the degree of the constructed Boolean functions is n − 1. As to Algorithm 1,
this can be achieved by choosing Xi(0 ≤ i ≤ k) so that there is a number
d (1 ≤ d ≤ n) such that td is odd. The modify for Algorithm 2 is similar.

Example 1. For n = 5 by using Algorithm 1, k =
∑2

i=0

(5
i

) − 1 = 15, we can
choose Xi(0≤ i ≤ 15) as ∪k

i=0{Xi}={(00000), (10000), (01000), (11000), (00100),
(10100), (11100), (00010), (10010), (11010), (11110), (00001), (10001), (11001),
(11101), (00011)}, Let Xi(0 ≤ i ≤ 15) be the support of the Boolean function f ,
then ANF of f is as below:

f(x) = 1 + x2x4 + x2x5 + x3x4 + x2x3 + x3x4 + x1x2x3 + x1x2x4 + x2x4x5 +
x1x2x5 + x1x4x5 + x3x4x5 + x1x2x3x4 + x1x2x4x5 + x1x2x3x5 + x1x3x4x5,
the AI of f is 3, and it is obvious that the degree of f is 4.

6 Conclusion

Possessing a high algebraic immunity is a necessary criteria for Boolean functions
used in stream ciphers against algebraic attacks. In this paper, we present a new
method to construct Boolean functions, in any number of variables, with max-
imum algebraic immunity. We also improve our method to construct balanced
Boolean functions with maximum algebraic immunity for any even number of
variables. However, it is still an open problem to generalize our construction to
obtain more balanced Boolean functions with maximum algebraic immunity on
even variables. Furthermore, there are still some problems need to be studied
such as whether the constructed functions can achieve high nonlinearities and
be robust against fast algebraic attacks.
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Abstract. Continued improvements in network bandwidth, cost, and ubiquitous
access are enabling service providers to host desktop computing environments to
address the complexity, cost, and mobility limitations of today’s personal com-
puting infrastructure. However, distributed denial of service attacks can deny use
of such services to users. We present A2M, a secure and attack-resilient desktop
computing hosting infrastructure. A2M combines a stateless and secure commu-
nication protocol, a single-hop Indirection-based network (IBN) and a remote
display architecture to provide mobile users with continuous access to their desk-
top computing sessions. Our architecture protects both the hosting infrastructure
and the client’s connections against a wide range of service disruption attacks.
Unlike any other DoS protection system, A2M takes advantage of its low-latency
remote display mechanisms and asymmetric traffic characteristics by using multi-
path routing to send a small number of replicas of each packet transmitted from
client to server. This packet replication through different paths, diversifies the
client-server communication, boosting system resiliency and reducing end-to-
end latency. Our analysis and experimental results on PlanetLab demonstrate that
A2M significantly increases the hosting infrastructure’s attack resilience even for
wireless scenarios. Using conservative ISP bandwidth data, we show that we can
protect against attacks involving thousands (150, 000) attackers, while providing
good performance for multimedia and web applications and basic GUI interac-
tions even when up to 30% and 50%, respectively, of indirection nodes become
unresponsive.

1 Introduction

In today’s world of commodity computers and increasing broadband network connec-
tivity, the existing computing infrastructure imposes severe limitations on increasingly
mobile users. Such users lack a common computing environment as they move be-
tween home, office, and while on the road. Mobile users have been forced to adapt by
carrying around bulky laptop computers and other stateful devices with battery drain-
ing power needs. This approach is increasingly unsustainable as the management and
security costs of owning and maintaining these devices grow, especially for large orga-
nizations with many users. Maintenance is particularly difficult with devices that may
be roaming anywhere, on any network. Furthermore, these portable devices are inher-
ently physically insecure and it is not uncommon for these machines to be damaged or
stolen, resulting in the loss of any important data stored on them. This is a critical prob-
lem especially in health care computing, where HIPAA compliance is a requirement in
supporting the clinical information access of highly mobile medical professionals. Even

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 186–201, 2009.
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when such data can be recovered from backup, the time-consuming process of recon-
stituting the state of the lost machine on another device results in a huge disruption in
critical computing service for the user.

Outsourced IT systems often utilize a thin-client computing model to decouple a
user’s applications and desktop computing session from any particular end-user device
by moving all application logic to hosting providers. Graphical displays are virtualized
and served across a network to a client device using a remote-display protocol, with
application logic executed on the server. Clients transmit user input to the server, and the
server returns screen updates. Examples of popular thin-client platforms include Citrix
MetaFrame [1], Microsoft Terminal Services [2], AT&T Virtual Network Computing
(VNC) [3]. Because all application processing is done on the server, the client only
needs to be able to display and manipulate the user interface, enabling clients to be
simple and stateless.

A key issue that must be addressed to ensure that users obtain reliable and secure
access to hosted computing services is protection of the server infrastructure and the
client’s connection against denial of service attacks, particularly of the distributed kind
(DDoS). DDoS attacks are an increasing occurrence in today’s Internet, aiming to deny
use of a service to legitimate users [4]. The same ubiquitous network connectivity that
improves access to a service provider for legitimate mobile users, also increases an at-
tacker’s ability to launch a DDoS against a service provider, sometimes as part of an
extortion scheme [5]. One type of DoS attack that is difficult to identify and isolate in-
volves sending enough attack traffic which will cause the links close to the servers to be
congested and eventually drop all useful traffic. The potential of such attacks to disrupt
user access to applications and data is an important challenge that must be addressed
before ASPs can achieve mass acceptance. Unfortunately, existing DDoS protection
mechanisms either require large-scale deployment, or offer unacceptably high latency
and latency variance [6,7], especially when under attack. To be of any practical use, in-
teractive and real-time applications such as GUI operations and multimedia streaming
demand a low-latency pipe at all times.

In this context, we introduce Access-Assured Mobile (A2M) desktop computing, a
hosted computing infrastructure that combines a remote-display architecture with a
stateless indirection-based network (IBN) composed of dedicated nodes. A2M provides
both protected and efficient access to hosted desktop computing environments, even in
the presence of denial of service attacks. Nodes participating in the IBN communicate
only to exchange control messages, but not to route the client’s data, unlike previous
overlay-based approaches [6, 7]. A2M clients exploit the path diversity naturally ex-
hibited by a distributed IBN to “spread” their traffic such that directed attacks do not
cause service disruptions. To further alleviate any potential delays introduced by the
IBN and reduce the latency in the end-to-end communication, A2M uses a number of
other optimizations at the remote display level to minimize the impact these delays
may have on the user’s experience. A2M combines a simple low-level display proto-
col and a server-push model to minimize client-server synchronization and network
round-trips. Atop this basic model, A2M implements higher-lever mechanisms, such
as client-managed cursor display, shortest-job-first display command scheduling, and
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a non-blocking drawing pipeline, further increasing the overall interactive response of
the system. The contributions of our work are:

• We implement and evaluate A2M in the real Internet using PlanetLab. Our experi-
ments show that A2M introduces very little latency in most scenarios.
• We are the first to conduct realistic (non-simulation) experiments to evaluate the
resilience of our system against DDoS attacks using wireless nodes, and its performance
under attack. Our results validate the design of A2M, showing good performance for
multimedia and interactive applications even with 30%–50% of the IBN nodes under
attack.

2 A2M Architecture

As shown in Figure 1, A2M’s architecture is divided in two major components: the host-
ing infrastructure and the access infrastructure. The hosting infrastructure provides an
environment for desktop sessions where a user’s session is decoupled from any particu-
lar end-user access device, by moving all application state to hosting servers. Applica-
tions run within these servers, and their display output is redirected over the network to
the access device. Redirection is performed by a per-session virtual display driver that
translates from application display-draw commands to A2M’s display protocol com-
mands. The protocol commands are then forwarded to the client device for display.
A2M extends previous work on desktop hosting infrastructures such as MobiDesk [8]
by providing mechanisms that provide continuous access to hosted desktop sessions,
even in the presence of distributed denial of service attacks on the hosting servers.

A2M’s access infrastructure provides the connection between users on the network
and the applications running on the hosting servers. Users make use of a simple client
application that merely forwards input events to the applications running on the server,

Fig. 1. A2M Architecture. The two directions of the client-server connection take different paths:
the client-to-server direction goes over the indirection-based network, while the server-to-client
direction goes directly to the client (not through the infrastructure).
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and processes display updates generated in response to these events. This application
model results in a highly asymmetric network traffic pattern. On one side, input events
(headed uplink, or upstream toward the server) are very small pieces of information that
are generated at a relatively slow, human-dependent rate. On the other hand, display
updates (headed downlink, or downstream toward the client) are orders of magnitude
larger and are generated as fast bursts of activity. For example, during web browsing, a
single user input event (a mouse click on a link) results in a full-screen update having
to be displayed (the destination web page).

The traffic asymmetry is made more pronounced when we consider the different roles
and importance of input events and display updates. In an interactive system user ex-
perience is dictated by the response time, which in turn is determined by how quickly
input events are processed and display updates are made visible to the user. If response
time is too high, the user will become exasperated and frustrated with the system. Since
a single input event triggers the generation of display updates, guaranteed delivery of
each event becomes crucial for the performance of the system. On the other hand, hu-
mans are known to be more tolerant to partial updates than to longer response times,
because partial updates provide feedback to their actions. Delivery of updates should
then be made such that updates can begin to be displayed as soon as possible, even if
the complete update takes longer to appear.

The resource centralization around the hosting infrastructure results in a threat model
where denial of service attacks on the system will only affect the uplink direction, i.e.,
the traffic to the hosting servers, by saturating the network links and queuing buffers
close to the servers or by directly attacking the hosting infrastructure servers. There-
fore, it is crucial for A2M to protect this communications channel from interference,
blocking unwanted traffic close to the attacker before it can reach the service providing
machines. On the other hand, the downlink direction will for the most part be relatively
free of noise, and without any need to be protected. Note that denial of service attacks
typically affect the uplink direction, i.e., the traffic to the server, by saturating the net-
work links and queuing buffer close to the server. The downlink direction is relatively
free of noise. Thus, we are primarily interested in protecting the client-to-server traffic
from interference; the opposite direction does need typically any such protection.

Taking advantage of both the traffic asymmetry and the threat model, A2M partitions
bi-directional connections between the client and the server into an indirected client-
to-server multi-path and a direct server-to-client path. The IBN takes care of routing
input events and other client-to-server traffic and protects the hosting infrastructure.
Protection is performed by acting as a distributed firewall that conceptually distin-
guishes between authorized client-generated traffic, and unauthorized and possibly ma-
licious traffic. Traffic permitted to traverse through the IBN is directed to a filtering
router close to the hosting servers, whereas all other traffic is dropped or rate-limited
providing a distributed “shield” against both network congestion and host directed at-
tacks. In Section 2.2, we provide an estimation of the resistance of the system, using
this filtering mechanism, to denial of service attacks, in terms of the average number of
machines that must participate in the attack.

The direct server-client path in turn ensures that large and bursty display updates
are delivered to the client as quickly as possible, even if parts of them are lost or
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delayed and need to be retransmitted. A2M’s approach represents a sharp departure
from traditional interactive client-server architectures, where a vulnerable bi-directional
direct connection provides the only means of communication between the client and the
server. We should note that A2M does not preclude routing both traffic directions over
the IBN, albeit at a possible increase in the end-to-end latency when no replication of
packets is present. Since this mode is not necessary for our usage scenario, we do not
further consider it in this paper.

2.1 System Operation

To provide seamless and ubiquitous connectivity, A2M encapsulates all functionality
within a self-contained client application that manages communication with the indirec-
tion infrastructure, forwards user events to hosted applications, and displays application
output on the local device. To access a desktop session, users must first obtain access to
the IBN, which in turn allows them to authenticate with the hosting infrastructure, and
then gain access to their session. Users need to be recognized as legitimate in order for
the IBN to distinguish their traffic from other unauthorized, possibly malicious traffic.
In contrast to traditional service providing infrastructures such as web-content distrib-
utors, A2M requires users to be authenticated and does not allow anonymous users,
because only authorized users should be able to connect to the hosting infrastructure.
A2M ties the authentication requirements of the IBN and the hosting infrastructure into
a single, seamless process.

Client Authentication: Before a client is allowed to send traffic through the IBN, it
must obtain a ticket, which is then included in all subsequent packets sent to the IBN,
until it expires. The ticket is used by the IBN nodes to authenticate the user, validate the
routing decisions, and prevent malicious (or subverted) clients from utilizing a dispro-
portionate amount of bandwidth. To obtain a ticket, the client contacts an indirection
node at random using a ticket establishment protocol described in detail in previous
work [9]. This protocol is fully distributed and resilient to CPU exhaustion attacks. Fur-
thermore, the ticket issuing process is protected against replay and IP spoofing attacks.
At the end of the protocol, the client and the IBN have authenticated each other, and
the client is in possession of a ticket. The ticket contains a session key Ku, a range
of sequence numbers for which it is valid (more on this later), and the IP address of
the client, all encrypted under KM , a secret key negotiated periodically (e.g., every few
hours) among all indirection nodes. Note that only the indirection nodes can decrypt
the ticket; clients treat the ticket as an opaque value that they must provide to the AAN
with each packet they need to forward. A second copy of Ku is independently encrypted
under the client’s public key. This ticket can only be used by the client to continue the
authentication protocol (i.e., prove liveness for both the IBN nodes and the client. Once
the full two-party authentication is completed, the last indirection node provides the
client with a ticket that is not “restricted,” i.e., the corresponding flag inside the ticket is
cleared. As we discussed in the previous section, the tickets are periodically refreshed,
to avoid situations where a malicious user distributes a valid session key and ticket to a
large number of zombies that then simultaneously send attack traffic through the IBN.
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The connections to the hosting infrastructure are asymmetric: the client-to-server
traffic will travel through the IBN, while the server-to-client traffic will use regular
Internet routing. In the case where a session does not already exist, a new session is
created and populated, before the client is allowed to connect to it. The authentication
and connection setup process is done transparently by the client application, and it does
not require special support from the underlying devices. This simplicity allows A2M
users to access their sessions from almost any number of Internet-enabled devices.

Once the connection to the hosting server is established, the client will be recognized
as a legitimate user, and user input events will be allowed to traverse the indirection
nodes and be routed to the hosted applications. This process continues until the user
disconnects from the session, at which point the client’s ticket is revoked and the con-
nections are closed. Since a disconnected client is no longer allowed to use the system,
previously legitimate devices cannot be reused as attack tools on the infrastructure.

2.2 Assured Access Indirection Network

We have implemented the Assured Access Network (AAN), which significantly extends
the ideas of SOS [6] and Mayday [7]. Our approach, shown in Figure 1, is to spread the
packets from the client across all indirection nodes in a pseudo-random manner. This
new communication mechanism protects the client-server connection establishment and
provides uninterrupted connectivity to the target server throughout the client’s session.
The admitted packets are internally forwarded to a secret forwarder (selected at ran-
dom, and changing over time), which is allowed to forward traffic to the utility server.
Only authorized clients are allowed to use the IBN and contact the hosting servers and
these clients are provisioned in advance (e.g., at registration time) with the appropriate
authentication material, such as an RSA public/private key pair and a public-key cer-
tificate [10, 11]. AAN works in conjunction with filtering routers close to the hosting
infrastructure, to allow only traffic from the IBN’s secret forwarders to reach A2M’s
hosting servers. All other traffic is considered unauthorized and possibly malicious, and
therefore filtered out.

Contrary to previous overlay architectures, our system achieves this filtering without
the use of overlay routing to transfer the client’s request to the server. In our system,
legitimate packets are reflected to the secret servlet(s) generating a one-hop indirection
network. As shown in Figure 1 there is no single path between the client and the server -
instead packets are spread from the client to the indirection nodes creating a single-hop
multi-path effect. Both the use of the single-hop indirection and the multi-path routing
permit our system to scale well in terms of latency, as we shall see in Section 3. For
more details on the overlay architecture itself, see [9].

2.3 AAN Encapsulation

When using AAN, every packet sent by a client to an indirection node contains four
fields: a client identifier, the ticket, an authenticator, and a monotonically increasing
sequence number. Recall that the ticket contains the session key and the maximum
sequence number for which the ticket is valid, and is encrypted and authenticated under
a secret key known only to the indirection nodes. Note that these indirection nodes are
not user machines, but are hosts dedicated to offering a DoS protection service.
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The sequence number is a 32-bit value that is incremented by the client for each
packet transmitted through the IBN with a given session key. The client identifier is a
random 32-bit value that is selected by the indirection node that authenticated the client,
and is used as an index in the table of last-seen sequence number, maintained by each
indirection node for each active client. The authenticator is a fast hash function, such as
UMAC [12], computed over the session key and the whole packet (including the ticket,
sequence number, and client identifier). Thus, the only amount of state each indirection
node needs to maintain per active client are the client’s identifier and the last sequence
number seen from that particular client. Assuming that both the client identifier and the
sequence number are 32-bit values, each indirection node needs to maintain only 64
bits of state for each client; thus, if the system has 1 million active clients, we will only
need 8 MB of state — easily manageable even if it is stored in main memory, given
current prices of RAM.

2.4 AAN Operation

A client transmitting a packet through the IBN uses the session key and the sequence
number as inputs to a pseudo-random function (PRF). The output is treated as an in-
dex to a publicly available list of indirection nodes, through which the packet will be
routed. The list of available indirection nodes does not need to change frequently, even
if nodes become unavailable (e.g., for maintenance purposes), and can be downloaded
by clients independently of the protected communication. For the purposes of this pa-
per, we assume that clients trust the IBN’s entry points. Discussion and analysis of an
environment where access points cannot be safely trusted can be found in [13].

The client encapsulates the original packet (addressed to the final destination) inside
a packet for the indirection node, along with the information identified above (client
identifier, ticket, sequence number, authenticator). The packet is then forwarded through
the IBN to the secret forwarder for that particular destination, and from there to the final
destination.

An indirection node that receives such a packet first verifies that the sequence num-
ber on the packet is larger than the last sequence number seen from that client, by using
the client identifier to index the internal table. It then decrypts the ticket, obtaining the
session key for that client, with which it verifies the authenticator. The indirection node
also verifies that the sequence number is within the acceptable range of sequence num-
bers for this ticket. Finally, it uses the key and the sequence number along with the PRF
to determine whether the client correctly routed the traffic. If all steps are successful, the
indirection node updates the sequence number table and forwards the packet to the se-
cret forwarder. Packets with lower or equal sequence numbers are considered duplicates
(either accidental artifacts of the underlying network, or malicious replays by attackers)
and are quietly dropped.

2.5 Attack Resistance

Here we attempt to give a simple analysis on the expected resiliency of our system.
Additional work is needed to further refine the model and validate our assumptions.
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However, this analysis should serve as a good first-order approximation on the effec-
tiveness of the approach.

Since the Internet (and ISPs’) backbones are well provisioned, the limiting factors
are going to be the links close to the target of the attack. The aggregate bandwidth
for most major ISP POPs is on the order of 10 to 20 Gbps, according to an informal
poll of several providers. If the aggregate bandwidth of the attack plus the legitimate
traffic is less than or equal to the POP capacity, legitimate traffic will not be affected,
and the POP routers can drop the attack traffic (by virtue of dropping any traffic that
did not arrive through the IBN). Unfortunately, there do not exist good data on DDoS
attack volumes; network telescopes [14] tend to underestimate their volume, since they
only detect response packets to spoofed attack packets. However, we can attempt a
simple, back of the envelope calculation of the effective attack bandwidth available
to an attacker that controls X hosts that are (on average) connected to an aDSL or
cable network, each with 256Kbps uplink capacity. Assuming an effective yield (after
packet drops, self-interference, and lower capacity than the nominal link speed) of 50%,
the attacker controls 128 × X Kbps of attack traffic. If the POP has an OC-192 (10
Gbps) connection to the rest of the ISP, an attacker needs 78, 000 hosts to saturate
the POP’s links. If the POP has a capacity of 20 Gbps, the attacker needs 156, 000
hosts. Although we have seen attack clouds of that magnitude (or larger), the ones used
in actual attacks are much smaller in practice. Thus, an IBN-protected system should
be able to withstand the majority of DDoS attacks. If attacks of that magnitude are a
concern, we can expand the scope of the filtering region to neighboring POPs of the
same ISP (and their routers); this would increase the link capacity of the filtered region
significantly, since each of the neighboring POPs see only a fraction of the attack traffic.
Additional work is needed to determine the practical limits of the system. In Section 3
we give some experimental results on the resilience of our system against attacks that
target the IBN itself.

3 Implementation and Experimental Results

To demonstrate the feasibility of the proposed architecture, we have implemented an
A2M prototype which hosts and protects Linux-based desktop sessions. We deployed
the indirection nodes of our prototype in 80 PlanetLab nodes, while having the client
and server reside in our local network. Our architecture spreads the packets across all
indirection nodes. Perhaps the most surprising aspect of our implementation is its size:
excluding cryptographic libraries and the JFK protocol, the code implementing the com-
plete functionality of the system consists of 1,600 lines of well commented C code. The
JFK implementation itself adds another 2,500 lines of code. Although this is a prototype
implementation and does not include management code and other facilities that would
be required in a production system, we feel that the system is surprisingly lightweight
and easy to comprehend.

The implementation consists of the code for the indirection nodes, as well as code
running on each client that does the encapsulation and initial routing. A detailed de-
scription of MobiDesk may be found in [8]. On the client, a routing-table entry redirects
all IP packets destined for the protected servers to a virtual interface, implemented using
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the tun pseudo-device driver. This device consists of a linked pairs of virtual network
interfaces and character devices that a user-level process can read and write. IP pack-
ets sent to the tun0 network interface can be read by a user process reading the device
/dev/tun0. Similarly, if the process writes 1a complete IP packet to /dev/tun0 this will ap-
pear in the kernel’s IP input queue as if it were coming from the network interface tun0.
Thus, whenever an application on the client tries to access a protected server, all out-
going traffic is intercepted by the virtual interface. A user-level proxy daemon process
reading from the corresponding device captures each outgoing IP packet, encapsulates
it in a UDP packet along with authentication information, and sends it to one of the indi-
rection nodes according to the protocol. The code running on indirection nodes receives
these UDP packets, authenticates and forwards them to the secret forwarder, which for-
wards them to the final destination. There, the packets are decapsulated and delivered
to the original intended recipient (e.g., web server). The decapsulation can be done by
a separate box or by the end-server itself. In addition to the decapsulation code on the
indirection nodes, there is also a daemon listening for connection establishment packets
from the clients.

In evaluating A2M, we focused on two metrics: the quality of service in terms of
latency, as this is perceived by the end user, and the system’s resilience when under
attack i.e., node failures. PlanetLab provides a realistic network environment for our
experiments that stresses the performance of our system because the packets follow
different, highly variant paths to reach the protected server. In our experiments, we
protected the uplink traffic from the client to the server routing it through the IBN,
while the return path followed normal Internet routing (outside the IBN).

Our testbed consisted of a client PC simulating a typical remote-display access de-
vice, a server where the benchmark applications executed, and 80 indirection hosts de-
ployed across various PlanetLab locations in the US and Canada. The client computer
had a 450Mhz Intel Pentium-II CPU and 128MB RAM running Debian with Linux
2.4.27. Our client PC was chosen to reflect the type of low-power, thin-client devices
which we expect to become A2M’s access devices. The laptop PC had a 1.5Ghz Intel
Pentium M and 1GB RAM running Debian with Linux 2.6.10. The server was an Intel
dual-Xeon 2.80GHz with 1GB of RAM running RedHat 9 with Linux 2.4.20.

We measured the performance of A2M in web, video, and basic interactive tasks as
representative applications of typical desktop usage. Our web measurements used the
Mozilla 1.6 browser to run a benchmark based on the Web Page Load test from the
Ziff-Davis i-Bench benchmark suite. The benchmark consists of a sequence of 54 web
pages containing a mix of text and graphics. The browser window was set to full-screen
resolution for all platforms measured. Video playback performance was measured using
Mplayer 1.0pre3 to play a 34.75 second video clip of original size 352x240 pixels dis-
played at full-screen resolution. For our interactive tests we recorded a number of ses-
sions where simple interactive tasks were performed. Recording the sessions allowed us
to reliably play back the exact same tasks under different network conditions. The mea-
sure of performance for these tests was the latency experienced by a user performing
the specific task. The primary measure of web browsing performance was the average
page-download latency in response to a mouse-click on a web page link. To minimize
any additional overhead from the retrieval of web pages, we used a conservative setup
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where the web server was directly connected to the hosting server through a LAN con-
nection. The primary measure of video playback performance was video quality [15],
which accounts for both playback delays and frame drops that degrade playback qual-
ity. For example, 100% video quality means that all video frames were displayed at
real-time speed. On the other hand, 50% video quality means either that half the video
frames were dropped when displayed at real-time speed or that the clip took twice as
long to play even though all of the video frames were displayed.

We first examined the effects that the basic indirection network and various levels
of packet replication had on the overall performance of the system. The levels of repli-
cation tested were no replication, 50% (meaning one extra copy of each packet with
probability 0.5), 100% replication (one extra copy of each packet) and 200% replica-
tion (two extra copies of each packet). We also measured the impact of the IBN size by
running our experiments on 8 and 80 nodes participating in the IBN. We ran a baseline
test where we used a direct LAN connection between the client and the server. Since
the indirection nodes were deployed over a wide area with varying network latency, this
test provided us with a very conservative measurement of the indirection overhead. In a
realistic A2M deployment, the client and server will typically reside at different, topo-
logically distant locations. In that case, it is entirely possible for the indirection path to
provide better connectivity characteristics than a direct connection due to the multi-path
effect, which allows the packets originating from the client to follow a route with lower
latency towards the end server [16, 17, 18, 19]. Although not shown in our results for
ease of viewing, we also compared the performance of A2M to that of MobiDesk and
found it to be the same on the direct connection case.

Figure 2 illustrates the end-to-end average web latency results as perceived by the
client. We can see that even for the worst-case scenario, an 80-node IBN without packet
replication, the overhead from the indirection results in a latency increase of only 2
(i.e., twice the latency of the baseline direct connection). When 50% packet replication
is used (i.e., replicating a packet with probability 0.5), the overhead drops significantly
to 40% for the 80-node IBN. The drop in the overhead is due to the variant path latency

Fig. 2. Web latency vs. packet replication. The
leftmost bar shows the latency when con-
nected directly to the server using a LAN and
no protection.

Fig. 3. Video quality vs. packet replication —
video quality remains 100% under all test sce-
narios even for a 80-node IBN with no packet
replication
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of nodes participating in the IBN. TCP does not behave optimally when packets ap-
pear to have high variance when arriving at the end server out of order. Adding packet
replication decreases this variance, as the same packet follows more than one paths
with different latency and the end server uses the one that arrives first. Boosting the
replication beyond 50% follows the law of diminishing returns, as each additional in-
crease in replication gives us less latency improvements. Care must be taken however,
as too much packet replication can cause performance degradation, since bandwidth
is “wasted” on duplicate packets. This is better exemplified by the results on the 8-
node network using 200% replication. The 80-node network does not exhibit the same
adverse affect because its average path latency is higher, allowing the secret gateway
enough time to process the encapsulated packets received by the IBN.

To measure our system with an application that could generate more upstream traffic
and required the system to maintain its quality of service above a threshold for latency,
we used video playback. Figure 3 shows the results for video quality as measured at the
client side. We can clearly see that A2M performs optimally under all test scenarios,
providing the same perfect video quality as the direct LAN connection scenario, even
for the worst-case scenario of the 80-node IBN deployed over a WAN with no packet
replication.

The behavior of the overall system under attack was measured using a simulated
denial of service attack that targeted the IBN itself. Our threat model assumes that the
attacker can render a fraction of the nodes participating in the IBN unresponsive, thus
inducing packet loss in the TCP connection of a user connected to the hosting server.
All resilience tests were run on the 80-node IBN network. When attacked, a node stops
forwarding packets from the client to the end host, acting as a mute node. Since there
is no immediate feedback, clients do not know which A2M nodes are operating and
which are suppressed by the attacker. Figure 4 illustrates the effects on the average web
page latency as we increase the percentage of node failure, and demonstrates both the
resilience of A2M and the advantages of packet replication. Without packet replication,
latency quickly degrades to twice that of the direct connection when we have 15%
of node failures, and reaches three times for 20% node failure. On the other hand,

Fig. 4. Web latency under DDoS attack. La-
tency increases in response to increased
nodes failure.

Fig. 5. Video quality under DDoS attack.
Video quality drops only after a substantial
percentage of nodes become unresponsive.
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Fig. 7. Interactive performance for mini-
mize/maximize window test. Without replica-
tion and for attacks affecting up to 20% of the
IBN nodes, the client’s end-to-end latency in-
creases only by a factor of 2.

employing packet replication allows A2M to maintain an almost constant latency that
is very close to the direct connection, even under 50% A2M node failure, in the case of
200% replication.

Interactive Applications. Although video streaming and web browsing are both repre-
sentative and demanding applications, we felt that we needed to include another set of
experiments that require a high level of synchronization between the upstream and the
downstream channel. We performed four different tests, each representing typical inter-
active operations on a desktop environment. The tests were performed by first recording
a session of a user performing the appropriate operation, and then playing back the ses-
sion in a number of different experimental scenarios. Our measure of performance was
the user-perceived latency in response to the interactive operations. The four tests per-
formed were: echo, minimize/maximize window, scroll, and move window. The echo
test measured the time it takes for a line of text to appear on the screen after the user has
pressed and depressed a key. The minimize/maximize window tests measures the time
it takes to maximize a window after the user has pressed the maximize button, and then
(after the window has been maximized) to minimize it after the user has pressed the
minimize button. The scroll test measures the time it takes to scroll down a full-screen
web page in response to a single Page Down key-press, and then the time it takes to
scroll back to the top by leaving the Arrow Up key pressed. Finally, the move window
test measures the time it takes to move a window across the screen. The window’s size
is about one fifth of the screen’s size, and it is moved by dragging the window while the
left-mouse button is pressed. The window operation is opaque, i.e., the contents of the
window are continuously redrawn as the user performs the move operation.

The end-to-end latency the end users experience for these operations is shown in
Figures 6, 7. These measurements show that without using packet replication, and for
attacks up to 20% of the indirection nodes, the client’s end-to-end latency increases
only by a factor of 2.5 when compared to the direct, non-protected case. On the other
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hand, if we permit packet replication, we notice an increase in latency only after 50%
of the indirection nodes become unresponsive. In some cases, for attack intensities that
exceeded 20% of the indirection nodes and without replication the network conditions
were too adverse for the test to complete.

4 Related Work

The need to protect against or mitigate the effects of DoS attacks has been recog-
nized by both the commercial and research world, given the ease with which such at-
tacks can be launched and their frequency [14]. A2M provides an attack-resilient utility
infrastructure for mobile desktop computing. Due to space limitations, we do not dis-
cuss here the extensive work on DDoS prevention or mitigation that requires wide-
spread deployment inside the network or the use of new protocols and end-applications
[20, 21, 22, 23, 24, 25, 26, 27, 28].

A2M builds on the ideas proposed by the MobiDesk [8] desktop hosting infrastruc-
ture, and its remote display architecture, THINC [29]. In contrast to A2M, MobiDesk
and THINC do not address the problem of potential attacks on their infrastructure and
use a direct connection to communicate between user devices and hosting servers. This
makes the system defenseless and vulnerable to simple denial of service attacks that
may cause hosted desktop sessions to become unavailable to users. Attacks may either
target the hosting infrastructure or the communication channels providing the service,
and render the MobiDesk infrastructure useless.

SOS [6] first suggested the concept of using an overlay network to preferentially
route traffic, using multi-hop overlay routing, from legitimate users to a secret node
that is allowed to reach the protected server. All other traffic is restricted at the Internet
Service Provider’s Point-of-Presence (POP), which in most cases has enough capac-
ity to handle all attack and legitimate traffic. The same idea is used in MayDay [7].
WebSOS [30] relaxes the requirement for a priori knowledge of the legitimate users,
by adding a Graphic Turing Test to the overlay, allowing the system to differentiate
between human users and attack zombies. MOVE [31] eliminates the dependency on
network filtering at the ISP POP routers by keeping the current location of the server
secret and using process migration to move away from targeted locations. A system
similar to MOVE is described in [32]. There, it is observed that in some cases the var-
ious security properties offered by SOS can still be maintained using mechanisms that
are simpler and more predictable. However, some second-order properties, such as the
ability to rapidly reconfigure the architecture in anticipation of or in reaction to a breach
of the filtering identity (e.g., identifying the secret forwarder) are compromised.

All of these overlay-based systems impose a high latency overhead, making them
unfit for time-critical applications. To route the client traffic, these systems create an
overlay route whose length increases with the number of overlay nodes (usually with
O(log(n)), where n is the size of the overlay). Such an increase in the path length leads
to higher (and highly varying) end-to-end latency. Moreover, these systems are vul-
nerable to attacks that target the connection state that is kept by each of their overlay
nodes: by attacking a specific node, the attacker forces the users connected to it to de-
tect this attack and re-establish both their connectivity and authentication credentials to
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another, potentially healthy, overlay node. An attacker can force the users to reset their
connections repeatedly, making the system impractical.

Several remote display and thin-client architectures are widely used today, including
the X-Window System [33], Citrix MetaFrame (ICA) [1], Microsoft Terminal Services
(RDP) [2], VNC [3], and SunRay [34]. However, none of these systems provide re-
siliency against DoS attacks as A2M does. None of these systems take advantage of
the asymmetry in remote-display traffic to improve performance in environments with
high variability of network latency. As shown on previous studies [15, 35], all of these
systems suffer major performance degradations in high-latency network environments.
X, ICA, and RDP use high-level display protocol primitives that can result in worse
performance due to the additional synchronization required.

5 Conclusions

We presented A2M, an attack-resilient and latency efficient desktop hosting infrastruc-
ture based on a single-hop indirection network. A2M exploits multi-path routing, packet
replication, and the high asymmetry inherent to interactive display traffic, to assure
access to remote desktop sessions, even in the presence of high-volume DoS attacks.
Contrary to the current DoS protection mechanisms, our system guarantess both avail-
ability and uninterrupted connectivity to the end server providing a truly secure end-
to-end connectivity model. Furthermore, in a departure from traditional client-server
systems, A2M provides an asymmetric client-server connection consisting of an in-
directed client-to-server multi-path, and a direct server-to-client connection. A2M’s
indirection-based overlay acts both as a first-level distributed firewall and as a redi-
rection mechanism for performance-critical user input-events going from the client de-
vice to the hosting servers. In turn, the direct server-to-client connection provides quick
delivery of display updates, to provide quick response time and good user experience.

A prototype of A2M was implemented in Linux and we evaluated its performance on
PlanetLab. Our experimental results show that, as opposed to existing DDoS protection
mechanisms, A2M has minimum latency overhead and can provide good interactive per-
formance for web, video, and general interactive applications. Furthermore, we demon-
strate that A2M significantly increases the attack resilience of the hosting infrastructure,
being able to provide perfect video playback and low-latency web browsing and GUI
interactions even in the presence of large attacks on the infrastructure. A2M maintains
100% video quality in a number of remote video display scenarios, despite the use of
overlay routing. Furthermore, end-to-end latency increases by less than 5% even when
40% of nodes have been rendered unusable by an attacker. Given its performance and
resilience to DoS attacks, A2M represents a step forward towards realizing the vision
of computer utilities that provide ubiquitous, secure, and assured-access desktop com-
puting.
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Abstract. Various online studies on the prevalence of spyware attest
overwhelming numbers (up to 80%) of infected home computers. How-
ever, the term spyware is ambiguous and can refer to anything from
plug-ins that display advertisements to software that records and leaks
user input. To shed light on the true nature of the spyware problem, a re-
cent measurement paper attempted to quantify the extent of spyware on
the Internet. More precisely, the authors crawled the web and analyzed
the executables that were downloaded. For this analysis, only a single
anti-spyware tool was used. Unfortunately, this is a major shortcoming
as the results from this single tool neither capture the actual amount
of the threat, nor appropriately classify the functionality of suspicious
executables in many cases.

For our analysis, we developed a fully-automated infrastructure to
collect and install executables from the web. We use three different tech-
niques to analyze these programs: an online database of spyware-related
identifiers, signature-based scanners, and a behavior-based malware de-
tection technique. We present the results of a measurement study that
lasted about ten months. During this time, we crawled over 15 million
URLs and downloaded 35,853 executables. Almost half of the spyware
samples we found were not recognized by the tool used in previous work.
Moreover, a significant fraction of the analyzed programs (more than
80%) was incorrectly classified. This underlines that our measurement
results are more comprehensive and precise than those of previous ap-
proaches, allowing us to draw a more accurate picture of the spyware
threat.

1 Introduction

In general, spyware is used to describe a broad class of software that is sur-
reptitiously installed on a user’s machine to intercept or take control over the
interaction between the user and her computer. This broad definition includes
programs that monitor a user’s Internet surfing habits, but might also apply
to software that redirects browser activity, commits click fraud, or downloads
additional malware. Unfortunately, over time, the term spyware has become in-
creasingly imprecise, and different companies or researchers often label the same
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program differently. In this paper, we use the term spyware in a more narrow
sense – as browser-based software that records privacy-sensitive information and
transmits it to a third party without the user’s knowledge and consent. This def-
inition is more faithful to the “original” purpose of spyware, which is to record
the activity of a user while surfing the web.

A host can become infected with spyware in various ways. For example, the
spyware component might come bundled with shareware, such as a peer-to-
peer client or a supposed Internet “accelerator.” It is common practice that
small software companies, unable to sell their products in retail, cooperate with
spyware/adware distributors to fund the development of their products [1]. Most
of the time, however, users have no choice to “unselect” the installation of the
piggybacked nuisance without disrupting the desired software functionality.

In this paper, we are interested in the extent to which executables on the web
present a spyware threat. This allows us to compare our results to a previous
study [2]. For our analysis, we focus on spyware that uses Microsoft’s Internet
Explorer to monitor the actions of a user. Typically, this is done either by using
the Browser Helper Object (BHO) interface or by acting as a browser toolbar.
We feel that this focus is justified by the fact that the overwhelming majority of
spyware uses a component based on one of these two technologies, a fact that is
confirmed by a number of previous papers [3,4,5,6].

As mentioned above, the authors of a previous measurement study [2] at-
tempted to assess the prevalence of spyware on the Internet. To this end, they
crawled the web for executables, downloaded them, and installed the programs
in an automated fashion. Then, the authors executed a single anti-spyware pro-
gram, Lavasoft’s Ad-Aware [7], to assess the threat level of each program.

Unfortunately, in the previous study, little attention was devoted to the fact
that relying on the output and correctness of a single tool can significantly mis-
represent the true problem, and thus, the perception of the spyware threat. Obvi-
ously, scanner-based systems cannot detect novel threats for which no signature
exists. Also, such systems are often trivial to evade by using techniques such as
obfuscation or code substitution. Hence, scanner-based systems may introduce
false negatives, and as a result, cause the threat to be underestimated. However,
it is also possible that a detection tool mislabels programs as being more dan-
gerous than they actually are. Such false positives may cause an overestimation
of the threat.

In our work, one of the aims was to show the bias that is introduced by
deriving statistics from the results of a single tool. Obviously, we did not simply
want to re-run the experiments with more anti-spyware tools (although we did
employ a second, scanner-based application). Instead, we wanted to perform our
analysis using substantially different approaches that aim to detect spyware. To
this end, we checked for spyware-related identifiers in the Windows registry, using
a popular, publicly-available database [8]. Moreover, we employed a behavior-
based approach [3] that monitors the execution of a component in a sandbox and
checks for signs of suspicious behavior. By combining multiple techniques and
employing further, manual analysis in cases for which different tools disagree,
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we aimed to establish a level of “ground truth” for our sample set. Based on this
ground truth, we identify the weaknesses of each technique when exposed to a
large set of real-world, malicious code.

In summary, the contributions of this paper are the following:

– In about ten months, we crawled over 15 million URLs on the Internet and
analyzed 35,853 executables for the presence of spyware components.

– We employed three different analysis techniques and devoted additional man-
ual effort to identify the true nature of the components that we obtained.
This allows us to expose the weaknesses of individual analysis approaches.

– We compare our results to a previous study that attempted to measure the
spyware threat on the Internet and critically review their results.

2 Methodology

In this section, we describe our approach to analyze the extent of spyware on
the Internet. In order to keep a consistent terminology within the rest of the
paper, we first define the behavior that constitutes spyware activity. Then, we
explain how we crawl the web for executables and briefly discuss our approach
to automatically install these programs. Finally, we describe how we identify a
program as spyware,

As mentioned previously, the term spyware is overloaded. For example, it
is not uncommon that a component that displays advertisements is considered
spyware, even it does not read nor leak any privacy-related information. Other
examples of mislabeled spyware are toolbars that provide search fields that send
input to a search engine of the user’s choice. Clearly, information that is entered
into the search field is forwarded to the search engine. Hence, the component is
not malicious, as it informs the user where the data is sent to.

Because of the ambiguous use of the spyware term, it is possible that the actual
risk of downloading a spyware-infected executable is overstated. Consequently,
we need a more precise discrimination between different classes of activity. As
mentioned previously, we focus in our study on browser extensions (BEs) for the
Microsoft Internet Explorer (from now on, we use the term browser extension to
refer to both BHOs and toolbars). To make our discussion of browser extensions
more precise, we propose the following taxonomy:

Benign. An extension is benign when it does not perform any function that
might be undesirable from a privacy-related point of view, nor exposes the user
to unwanted content.

Adware. Adware is benign software with the purpose of advertising a certain
product, e.g., via pop-up windows. These components do not leak any sensitive
information, though.

We also consider a toolbar as adware when it provides a search field to the
user that sends the input to a particular (often, less well-known) search engine.
The reason is that the toolbar promotes, or advertises, the use of a particular
search engine. Of course, the user is free to use the toolbar or not.
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Grayware. Grayware occasionally performs actions that send sensitive data to
third parties in a way that is not completely transparent to users, especially
inexperienced ones.

An important class of grayware are browser hijacker components. A browser
hijacker is software that modifies the default browser behavior. Depending on the
resource that is controlled, we distinguish between different types of hijackers.
A homepage hijacker modifies the default home page that is displayed when the
browser is launched. A search hijacker modifies the default search engine of the
browser. It allows the user to enter keywords directly into the browser’s address
bar without the need to request the website of a search engine. Typically, the user
is redirected to a less popular search engine with sponsored results. Similarly, a
error page hijacker causes the browser to display a particular web site whenever
a misspelled URL is entered into the address bar. Usually, the original URL is
passed as a query parameter to this web site. While a hijacker component might
appear to be a useful feature, it is also profitable for the author of the landing
site. This is for two reasons: First, it increases the hit count for his site (which
drives up advertising revenue) and second, it reveals popular URL misspellings
to facilitate domain squatting. Since a hijacker component is not triggered for
regular pages that are visited, it is not a means to capture all of the user’s
surfing activity. Also, an alert user can notice the modified browser behavior
and reset it accordingly. These are the two differences that distinguish grayware
from spyware.

Spyware. Spyware, as defined in this paper, serves the purpose of secretly and
comprehensively collecting data about the user, such as her surfing habits or
form inputs. The data collection process is invisible, and a significant amount of
user data (for example, most or all of the visited URLs) are leaked to a third,
untrusted party.

Malware. Some components are reported to perform actions that are typically
associated with “regular” malware. An example are Trojan downloaders that run
in the context of the browser when accessing malicious content on the Internet
so that they can bypass personal firewalls. These components do not necessarily
access private information, but perform clearly undesirable activity. For such
components, we use the generic term malware.

It is possible that the same component implements functionalities that fall
into different categories. For example, a spyware component could also display
ads. In this case, the program is assigned to the category that captures the more
malicious behavior (spyware, for this example).

2.1 Web Crawling

To find a representative amount of programs that install spyware components, we
developed a fully automated system that crawls the web for potential candidates
and downloads them. To this end, we make use of the Heritrix [9] web crawler,
which can be easily extended and customized. For downloading interesting web
resources, we focus on binary content, such as executables or zip archives. Similar
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to [2], we identify such content by examining two properties for each candidate
URL. If either (1) the URL’s file extension is .exe, or (2) the “Content-type”
HTTP header of the corresponding web resource is application/octet-stream,
we download the file. We then check the first bytes of the file header and com-
pare it with the “magic” value that denotes a Windows executable. We perform
similar checks for zip, cabinet (.cab), and MS Installer files (.msi).

To determine whether Internet users with a specific field of interest are more
likely to encounter spyware on the web, we defined eight categories, similar to [2]:
adult, games, kids, music, desktop (office), pirate, shareware, and toolbar. For
each category, we fed the Google search engine with category-specific keywords
and used the fifty most relevant search results as a seed for our crawler. We
consider this a reasonable approach, because these are the pages that users would
most likely encounter when searching for content in the categories mentioned
above. To focus our crawling to those web sites that are found by the Google
search, we do a breath-first crawl only up to a depth of three links away from
the seed.

2.2 Automatic Installation

To determine whether an executable contains spyware, we install it on a Windows
guest system running on top of a Qemu virtual machine emulator [10]. Each
executable is installed on a system that has been reverted to a known, clean
state. Since we wish to analyze thousands of programs, the installation process
has to be performed automatically. To this end, we had to find a way to simulate
user interaction, which is typically necessary when navigating through Windows
installation wizards that have a graphical user interface.

Once an executable is successfully installed, we have to determine whether
a browser extension (BE) is present or not. Fortunately, this is quite straight-
forward. The reason is that, in order to be loaded on startup by the Internet
Explorer, a BE must register its CLSID (i.e., Component ID) under a partic-
ular (directory) key in the Windows Registry. Thus, after each installation, we
simply check for the presence of CLSIDs in this special directory. Note that it is
difficult for a spyware to avoid setting this key, as the Internet Explorer would
otherwise simply not load the BE at startup. We proceed with the subsequent
analysis phase when any BE is identified.

2.3 Analysis

The purpose of the analysis phase is to determine whether a BE is malicious or
not. More precisely, we attempt to classify each browser extension based on the
taxonomy introduced previously. We use three different approaches to determine
the type of a BE: an identifier-based mechanism, two scanner-based tools, and
a behavior-based technique. They are discussed in more detail below.

Identifier-based Detection. The identifier-based detection relies on the value
of the CLSID of the BE component. Interestingly, many spyware programs use
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the same CLSID to register their component (possibly because the developers
were lazy or use the same code base). Thus, the value of the identifier can provide
some insight into the nature of the corresponding program. Moreover, also the
file name of the extension component can be revealing. Of course, both identifiers
can be easily modified by miscreants.

CastleCops [8] is1 a community of security professionals that provides a free
and searchable database of BHOs and toolbars. At the time of writing, it con-
tained 41,144 entries. For each BE, the database lists various information, includ-
ing the BE’s CLSID and its file name. Furthermore, a classification is provided.
This classification includes X for spyware and malware, O for programs that are
open to debate (such as grayware and adware), and L for legitimate items.

To perform identifier-based detection, we use HijackThis [11], a free util-
ity that scans a computer for installed browser extensions, reporting both the
CLSIDs and path names of the identified components. Based on the informa-
tion provided by HijackThis, we consult the CastleCops database. Using the
classification provided by this database, we can classify the browser extension
accordingly. The absence of any entry results in the BE being classified as legit-
imate.

Scanner-based Detection. Our scanner-based detection was based on two
commercial anti-spyware products, Ad-Aware [7] and Spybot [12] – both popular
and well-known spyware scanners.

Ad-Aware uses a number of threat categories to specify the precise nature of
a sample. During our analysis, we encountered the following categories:

– Adware: Programs displaying advertising on the user’s computer, without
leaking sensitive information.

– Data miner : Programs designed to collect and transmit private user infor-
mation to a third party. This behavior may be disclosed to the user through
to the EULA. This is the equivalent to our spyware definition.

– Malware: A generic category for harmful programs, equivalent to our mal-
ware class.

To ensure that we had the newest signatures, we always updated Ad-Aware’s
signature database before launching a scan. To check for suspicious code, we
perform a full system scan. Once the tool is finished, we check the report for the
presence of any component that is recognized as being suspicious. If this is the
case, we record the corresponding threat category.

Spybot is a spyware scanner that attempts to detect threats on the user’s com-
puter by comparing registry entries and files against a database with signatures
of well-known malware samples. This tool allows to choose the threat categories
for which a user wants to check. For our study, we chose those categories that
we assumed to be most-closely related to spyware: hijackers, keyloggers, mal-
ware, potentially unwanted programs, and spyware. After we run a system scan,
Spybot lists each detected threat, without providing any further classification.
1 Unfortunately, CastleCops has recently ceased its operations, but was still active

while we performed our analysis.
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Behavior-based Detection. To perform behavior-based detection, we build
upon an analysis tool that we obtained from the authors of [3]. This tool allows
the identification of unknown browser components as spyware by dynamically
observing their behavior. Specifically, the tool monitors the flow of sensitive in-
formation (such as the URL that a user visits or the content of the web pages
that are loaded) as it is processed by the Internet Explorer and any loaded
browser extension (BHOs and toolbars). Whenever it observes any leak of sensi-
tive information on behalf of a BE, such as submitting data to a remote server,
this BE is considered spyware. For its analysis, two types of sensitive data are
considered:

– URLs that the browser navigates to, and
– the contents of web pages retrieved by the browser in response to browser

navigation.

Whenever sensitive (tainted) information is written out on behalf of the mon-
itored BE, this action is recorded as suspicious. Writing out information can
refer to saving data in a file, but also considers the case when data is sent over
a network socket. This allows one to identify two different kinds of suspicious
behavior:

– Browser hijackers (grayware): As mentioned previously, hijacker components
modify the default browser behavior such that certain user input is redirected
to particular web sites. This behavior is detected when search terms or mal-
formed URLs are entered into the browser address bar and then leaked by
the BE.

– Spyware: These programs are detected when URLs are secretly leaked to an
entity outside the browser (such as a remote host or a local file).

The behavior-based analysis is dynamic. Hence, it is necessary to monitor the
activity of a BE while the browser is used to surf the web. To perform the
dynamic analysis in an automated fashion, we had to develop an additional
tool that allows us to drive the browser and simulate a user surfing the web
(while monitoring the activity of browser extensions). This tool interacts with
the browser in three different ways: by entering data directly into the address
bar, by filling out and submitting form fields, and by following links on web
pages. This variety of actions should provide for the realistic simulation of a
user that browses the web. Moreover, to trigger hijacker programs, the tool
enters keywords directly into the browser’s address bar and intentionally requests
malformed web addresses.

To simulate a browsing session, we require a list of URLs that should be
visited as well as a number of keywords that we can enter into form fields. Our
list of URLs included various popular search engine sites, such as google.com,
yahoo.com, and altavista.com. During our browsing session, we surfed these
sites and entered numerous keywords with the aim to “trigger” the spyware
program to leak information to a remote server or redirect the browser to a
different site. We compiled our list of keywords using Google HotTrends, selecting
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the most popular search terms. Besides search engine sites, we also entered some
of these keywords directly into the browser’s address bar. To trigger BEs that
hijack error pages, we also entered misspelled URLs.

3 Results

In this section, we discuss the results of our measurement study. More precisely,
we show the prevalence of spyware-infected executables for a number of differ-
ent “regions” on the web. Moreover, we compare the effectiveness of different
detection techniques, examining their strengths and limitations. In particular,
we are interested in the possible bias that Ad-Aware introduces, since this was
the sole tool used in a previous attempt to quantify the extent of spyware on
the Internet [2]. Finally, we compare the findings in the previous study to the
results of our analysis.

3.1 Overall Results

We crawled the web for ten months (from January 2007 until the end of October
2007), visited over 15 million URLs, and found 35,853 executables. Table 1 shows
the number of binary resources that we discovered, categorized by their file type.
The vast majority of downloads were Win32 executables and Zip archives. As
shown in Table 2, 9.4% of all executables were installing at least one BHO
or toolbar. This underlines the popularity of these techniques. Each browser
extension that we obtained during the ten month crawl period was analyzed
using the three approaches described in the previous section. Then, based on
the (often differing) results of the individual techniques, we performed manual
analysis to obtain a “ground truth” for our data set.

To obtain ground truth, we inspected those BEs for which the analysis meth-
ods reported different results. The manual analysis was carried out by launching
the sample in a virtual machine, manually monitoring its network traffic as well
as other system modifications (e.g., created files or registry entries). Also, we per-
formed more extensive web surfing. The recorded behavior was then compared

Table 1. Crawler results by file type

Win32 exec. Zip archive MS install Cabinet

Files 29,104 (72.5%) 10,260 (25.6%) 425 (1.1%) 335 (0.8%)

Table 2. Overall crawler results

URLs executables executables unique
crawled found w/ BEs BEs

15,111,548 35,853 3,356 (9.4%) 512
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to various, online malware descriptions, and, based on all available information,
a final classification was assigned to each sample. Moreover, especially in cases
where a particular BE was more popular (i.e., part of several executables), we
contacted the developers of the anti-spyware products to resolve classification
errors. Although small errors are clearly possible, we believe that we have estab-
lished a solid data set of benign and malicious components that can meaningfully
serve as ground truth for our evaluation.

Table 3. Overall analysis results

executables w/ unique executables w/ unique
non-benign BEs non-benign BEs spy/malware BEs spy/malware BEs

2,384 (6.6%) 205 (40.0%) 117 (0.3%) 22 (4.3%)

Table 3 shows the overall analysis results. It can be seen that about 6.6%
of all executables contain non-benign BEs. However, most of these programs
belong to the adware category, while the fraction of executables that contain
malicious components (spyware and malware) is significantly less - only 0.3% or
117 executables. This clearly underlines that the spyware threat might appear
much more dramatic when the analysis does not distinguish precisely between
non-invasive adware and malicious spyware. A breakdown of the non-benign BEs
according to our taxonomy is presented in Table 4.

3.2 Distribution of Infected Executables

In this section, we discuss in more detail the prevalence of particular, malicious
browser extensions, as well as their habitat (i.e., domains and regions on the web
that are primary sources for these browser extensions).

Table 5 shows those ten browser extensions that we encountered most fre-
quently in executables. Note that, for this table, we only consider grayware,
spyware, and malware extensions. The reason for not considering adware is that
we want to specifically focus on the more invasive, malicious programs. It can be
seen that NewDotNet is by far the most popular component found by our crawler,
being bundled with 197 executables. Most of these executables are peer-to-peer
software (e.g., Limewire, Gnutella) and download accelerators. NewDotNet is an
error hijacker that redirects URLs that cannot be resolved via DNS to various
remote hosts, such as r404.qsrch.net. Webhancer is the most popular spy-
ware component, and it is bundled particularly often with screensavers. In our
experiments, this component secretly recorded the URLs that were visited and
forwarded them to dr2.webhancer.com.

In the next step, we analyzed the prevalence of malicious browser extensions
based on the categories of the web sites that are serving them. As mentioned
in Section 2.1, for finding sites to crawl, we seeded the Google searches with
keywords that were chosen from eight categories (adult, games, kids, music,
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Table 4. Non-benign BEs, by class

class # BEs times observed

adware 162 (79.0%) 1,985 (83.3%)
grayware 21 (10.2%) 282 (11.8%)
spyware 18 (8.8%) 91 (3.8%)
malware 4 (2.0%) 26 (1.1%)

Table 5. Top 10 BEs - counting only
grayware, spyware, and malware

name class times
observed

NewDotNet grayware 197
Webhancer spyware 60
P2P Energy grayware 45
TR/Agent.A malware 24
NavExcel grayware 21
Acez.SiteError grayware 6
Pal.PCSpy spyware 6
ClickSpring spyware 5
SmartKeyLogger spyware 5
CasinoBar spyware 2

desktop (office), pirate, shareware, and toolbar). The results for the prevalence
of non-benign components on pages of these categories are shown in Table 6. As
the numbers demonstrate, we encountered spyware in all categories.

Before analyzing the results in detail, we conjectured that most spyware would
be found on shareware or freeware sites. This is not only because of the large
amount of executables hosted on those sites, but also because shareware is often
offered together with dubious adware to finance its development. Our results
confirm the initial intuition: The shareware category is not only the richest
source for executables in general, but also holds the largest number of executables
that install a BE. Interestingly, although over 15% of the shareware applications
come with a non-benign BE, the actual fraction causing a spyware or malware
infection is comparatively low (0.4%). The categories of the sites where BEs
are most likely misused for malicious purposes are adult, desktop (office), and
games, as indicated by the highest fraction of spyware BEs (last row in Table 6).

3.3 Detection Effectiveness

This section provides a detailed comparison between the ground truth and the
results delivered by each detection technique that we used for our study. This
allows us to identify interesting cases in which a certain technique is particularly
effective or ineffective.

Identifier-based Detection. Table 7 contrasts our ground truth classification
with the labeling according to CastleCops. Each table entry shows the number
of unique BEs and, in parenthesis, the number of corresponding executables,
based on their classification by CastleCops versus their true nature.

When examining this table, the considerable number of debatable components
reflects the general difficulty analysts face when they have to assign a certain
category to a certain browser extension. Often, it is up to the user whether they
consider the behavior of a component acceptable or not. Also, there are a quite
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Table 6. Penetration of non-benign BEs across different web categories

adult games kids music office pirate share toolbar

URLs (in K) 660 536 2,375 3,573 1,089 4,589 1,791 498
domains 790 1,678 1,821 1,662 1,911 3,795 3,298 2,087
executables 1,298 3,048 3,732 3,053 3,363 6,586 11,043 3,730
executables 49 85 278 273 59 143 2,270 199
w/ BEs (3.8%) (2.8%) (7.4%) (8.9%) (1.8%) (2.2%) (20.6%) (5.3%)
executables w/ 30 14 158 163 31 81 1,825 82
non-ben. BEs (2.3%) (0.5%) (4.2%) (5.3%) (0.9%) (1.2%) (16.5%) (2.2%)
domains w/ 16 9 48 56 26 44 88 39
non-ben. BEs (2.0%) (0.5%) (2.6%) (3.4%) (1.4%) (1.2%) (2.7%) (1.9%)
executables w/ 7 3 13 22 10 12 42 8
spy/mal. BEs (0.5%) (0.1%) (0.3%) (0.7%) (0.3%) (0.2%) (0.4%) (0.2%)
domains w/ 5 3 10 16 7 8 15 7
spy/mal. BEs (0.6%) (0.2%) (0.5%) (1.0%) (0.4%) (0.2%) (0.5%) (0.3%)
BEs 17 13 201 208 32 79 232 172
non-benign 6 4 120 127 16 25 110 68
BEs (35.3%) (30.8%) (59.7%) (61.1%) (50.0%) (31.6%) (47.4%) (39.5%)
spy/malware 3 2 8 12 5 9 10 5
BEs (17.6%) (15.4%) (4.0%) (5.8%) (15.6%) (11.4%) (4.3%) (2.9%)

Table 7. Ground truth vs. CastleCops

- legitimate debatable ad-/spyware

benign 62 (166) 186 (583) 57 (220) 2 (3)
adware 106 (278) 4 (10) 31 (1,641) 21 (56)
grayware 2 (2) 1 (3) 6 (52) 12 (225)
spyware 2 (4) 0 (0) 4 (15) 12 (72)
malware 0 (0) 0 (0) 0 (0) 4 (26)

large number of CLSIDs (106) used by adware BEs that we could not find in the
online database. This is mainly due to Softomate components, discussed in the
following paragraph.

In general, it can be seen that identifier-based identification works surprisingly
well. Unfortunately, this kind of detection can be easily evaded, and certain
spyware variants (e.g., Win32.Stud.A) already use randomly-generated CLSIDs.

Scanner-based Detection. Table 8 shows our comparison with the reports
provided by Ad-Aware. When we consider the similarity of our definition of spy-
ware and Ad-Aware’s description of a data miner, our results show a surprising
mismatch in the number of detected samples. During our analysis, Ad-Aware
(mis)labeled 130 unique adware components as data miner. All other techniques
could not confirm these threats.

Closer examination of Ad-Aware’s report showed that 92% of these mislabeled
components are toolbars. To determine whether these components only track
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Table 8. Ground truth vs. Ad-Aware

benign adware data miner malware

benign 303 (963) 4 (9) 0 (0) 0 (0)
adware 15 (20) 14 (99) 130 (1,863) 3 (3)
grayware 8 (238) 3 (8) 10 (36) 0 (0)
spyware 4 (9) 2 (3) 7 (67) 5 (12)
malware 4 (26) 0 (0) 0 (0) 0 (0)

user data that is entered into the toolbar, we additionally performed manual
testing. Some of these toolbars provide search results for paid advertisers, but
only when we use the search function of the toolbar. Clearly, this is the expected
behavior, and thus, should not be classified as data miner. We also contacted
Lavasoft to resolve this issue. We were told that one possible cause for their
classification might be the fact that the installation routine does not clearly
state the purpose of an adware program, and thus, it is labeled as data miner.
Additionally, they admit that some samples were misclassified.

One particular problem was caused by the Softomate Toolbar, which is a devel-
oper aid for creating customized Internet Explorer components. A few malicious
samples are created using this tool. However, Ad-Aware tags all toolbars that
are developed with the help of Softomate as data miner. This is unfortunate,
because we observed that over 50% of all executables with browser extensions
were using a component produced by Softomate. However, only a tiny fraction
is recognized as malicious by all other detection techniques. Given the signifi-
cant amount of adware BEs that were tagged as data miners by Ad-Aware, we
recognize a significant bias that overstates the actual threat.

On the other hand, we also found four actual spyware threats not reported
by Ad-Aware. Three of these threats were revealed by the behavior-based de-
tection technique (as we show later below), and three could also be identified
using Spybot. This demonstrates the limitations of signature-based detection
and the possibility to underestimate the threat because of novel, malicious code
instances. However, four cases are still a relatively small number. In two addi-
tional cases, a spyware threat was misclassified as adware.

Table 9 shows our comparison with Spybot. At first glance, it appears that
Spybot misses a considerable amount of adware samples. On further examina-
tion, 93% of these BEs are Softomate Toolbars, a popular type of extension. As
we discussed previously, we labeled these BEs as (mildly annoying) adware, but
one could also argue that they are benign. Therefore, we consider this mismatch
as negligible.

Behavior-based Detection. Table 10 shows the performance of our taint anal-
ysis with respect to ground truth. As expected, those BEs leaking sensitive user
information, such as URLs surfed by the user, could be found in the categories
grayware and spyware. Since benign software and adware do not disclose pri-
vate user information to a remote server, we cannot distinguish between these
components.
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Table 9. Ground truth vs. Spybot

not detected detected

benign 304 (965) 3 (7)
adware 131 (1,831) 31 (154)
grayware 8 (59) 13 (223)
spyware 3 (7) 15 (84)
malware 1 (2) 3 (24)

Table 10. Ground truth vs. behavior-based

not detected detected

benign 300 (956) 7 (16)
adware 161 (1,984) 1 (1)
grayware 6 (8) 15 (274)
spyware 4 (13) 14 (78)
malware 4 (26) 0 (0)

A significant advantage of behavior-based, dynamic analysis is the fact that also
novel threats can be identified. Thus, we would expect that the behavior-based
approach can identify more spyware components than scanner-based techniques.
Table 11 lists those BEs that were detected by the behavior-based analysis but
missed by Ad-Aware. For seven unique extensions, we detected redirections for
keywords entered directly into the browser’s address bar. Two different, unique
BEs leaked all surfed URLs to a remote third party.

Table 11. BEs detected by behavioral
analysis but not Ad-Aware

name # variants class

811 Toolbar 1 grayware
Camfrog Toolbar 1 grayware
CasinoDownloader 2 spyware
CyberDefender 1 grayware
NewDotNet 4 grayware
Offsurf Proxy 1 grayware
P2P Energy 1 grayware
Win32.Stud.A 1 spyware

Table 12. False positives raised by
behavior-based detection

name # variants
ChildWebGuardian 3
GL-AD Popup Term. 1
PCTools Browser 1
SurfLogger 1
WhereWasI 1

The fact that Ad-Aware misses NewDotNet is problematic, as this compo-
nent is the most popular grayware found by our crawler (accounting for 197
infected executables, as can be seen in Table 5). This introduces an imprecision
into statistics that depend on Ad-Aware output. In addition to the seven gray-
ware components, Ad-Aware also missed two spyware programs. Both programs
transmit all the URLs that are surfed to a third party. More precisely, Casino-
Downloader transmits all surfed URLs to ad.outerinfoads.com and various
other affiliated severs. Win32.Stud.A is a BHO that is installed silently by a
free picture viewer application. Interestingly, we observed that different CLSIDs
are used every time the BHO is installed. This clearly indicates an attempt to
evade identifier-based detection. This BHO records the URLs visited by the user
and transmits them encrypted to www.googlesyndikation.com. When it detects
certain keywords or URLs, it aggressively displays pop-up advertisements.
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The behavioral analysis failed to recognize a few malicious components as
spyware. One important reason was that several components attempted to con-
nect to remote hosts that were no longer available. Thus, collected information
could not be leaked. In other cases, the components were waiting for a particular
trigger (a specific URL) that was not part of our set of visited URLs.

The behavior-based analysis considers a BE as spyware whenever it leaks
tainted (sensitive) user information from the Internet Explorer process. How-
ever, there might be cases in which this operation is legitimate, giving raise to
false positives. In the following, we discuss the samples that have been incor-
rectly labeled as spyware, although their behavior is (likely) legitimate. Table 12
provides an overview. For example, ChildWebGuardian tracks user surfing habits
and is intended to give parental control over the sites visited by a child. Thus,
it logs the list of URLs that a user visits to a local file, presenting it later to the
parent for inspection.

It is interesting to note that all components that caused false positives write
information (such as URLs) to the local file system only. Thus, the behavioral
analysis could be modified so that a component is marked as spyware only when
sensitive information is sent over the network (possibly via the file system or
another process). For the analyzed components, this would not have caused
additional false negatives.

Overall, the behavioral analysis captured the spyware threat most accurately.
Together with Spybot, this technique correctly detected the largest fraction of
malicious browser extensions. Moreover, it raised by far the smallest number of
false positives (and this number could be further decreased, as discussed previ-
ously). Thus, when repeating our experiments without any manual analysis, the
results of the behavioral technique can be used to classify unknown components.
Adding tools such as Spybot can improve detection rates but also incorrectly
inflates the number of spyware components due to false positives.

3.4 Comparison to Previous Work

When we compare our measurement results to findings in the previous study [2],
we note certain similarities. For example, the previous study observed that be-
tween 5.5% and 13.4% of all crawled executables are spyware-infected. If we
consider non-benign BEs of all categories, the fraction of infected executables
we detect in our study is 6.6%. However, this number does not reflect the ac-
tual spyware threat present on the Internet. Rather than focusing on the real
spyware-threat, it only provides a rough estimate of the number of programs that
ship with possibly annoying, but nevertheless non-intrusive, advertising compo-
nents. The reason is that only a small fraction of non-benign samples actually
perform privacy-invasive operations (as shown in Table 4). A major reason for
the different assessment of the threat level between our study and previous work
is Ad-Aware. Ad-Aware was the only tool used in the previous study, and it mis-
labels a significant number of non-malicious adware programs as spyware (data
miner). This leads to an overestimation of the actual number of executables that
are infected with privacy-invasive components.
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4 Related Work

As detailed in previous sections, our work was inspired by the measurement
study presented in [2]. Similar to the methodology presented in that paper,
we crawled the web for executables that were then automatically installed and
analyzed. The major difference of our work is the way in which we perform our
analysis. Instead of relying on a single tool, we use three different approaches
to classify each executable. This allows us to derive a more precise assessment
of the extent of the spyware threat on the Internet than was reported by the
authors of the study in [2]. Moreover, we are able to identify the weaknesses of
individual detection and analysis techniques. As a result, we can understand in
which ways the results reported in the previous work might be biased.

Since malicious code is an important problem, a number of researchers have
proposed techniques to analyze and detect malware. The details of the behavioral-
based approach, which we used and extended in this paper to automatically iden-
tify spyware components, were previously presented in [4]. Other dynamic
approaches [13,14] to identify more general classes of malware based on their be-
havior often use taint propagation to detect suspicious information flows. Com-
plementary to dynamic techniques, there are static analysis approaches [15] to
identify malicious code patterns, and techniques [16] to extract network-based sig-
natures that capture suspicious traffic flows.

5 Conclusion

In this paper, we present the results of a measurement study that attempts to
quantify the extent of spyware-infected executables on the Internet. Inspired
by previous work, we crawled the web for executables that were then installed
and analyzed. In total, our experiment lasted around ten months. We crawled
over 15 million URLs and downloaded more than 35 thousand executables. An
important difference to previous work is the fact that we used three different
analysis techniques. By combining the views from different vantage points, we
were able to identify the limitations of each individual technique. In particular,
we found that Ad-Aware, the tool used for the previous study, significantly over-
estimates the severity of many samples. As a result, previous work might have
overestimated the prevalence of privacy-invasive spyware. While we did find a
non-negligible number of spyware-infested executables, the vast majority of non-
benign browser extensions were not stealing private information but displaying
annoying advertisements.
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Abstract. Attack graph is used as an effective method to model, ana-
lyze, and evaluate the security of complicated computer systems or net-
works. The attack graph workflow consists of three parts: information
gathering, attack graph construction, and visualization. To construct an
attack graph, runtime information on the target system or network envi-
ronment should be monitored, gathered, and later evaluated with existing
descriptions of known vulnerabilities. The output will be visualized into
a graph structure for further measurements. Information gatherer, vul-
nerability repository, and the visualization module are three important
components of an attack graph constructor. However, high quality attack
graph construction relies on up-to-date vulnerability information. There
are already some existing databases maintained by security companies, a
community, or governments. Such databases can not be directly used for
generating attack graph, due to missing unification of the provided infor-
mation. This paper challenged the automatic extraction of meaningful
information from various existing vulnerability databases. After com-
paring existing vulnerability databases, a new method is proposed for
automatic extraction of vulnerability information from textual descrip-
tions. Finally, a prototype was implemented to proof the applicability of
the proposed method for attack graph construction.

1 Introduction

Along with the rapid development and extension of IT-Technology, computer
and network attacks and their countermeasures become more and more compli-
cated. Attack Graphs have been proposed for years as a formal way to simplify
the modeling of complex attacking scenarios. Based on the interconnection of
single attack steps, they describe multi-step attacks [1]. Attack Graphs not only
describe one possible attack, but many potential ways for an attacker to reach a
goal. In an attack graph, each node represents a single attack step in a sequence
of steps. Each step may require a number of previous attack steps before it can
be executed, denoted by incoming edges, and on the other hand may lead to
several possible next steps, denoted by outgoing edges. With the help of attack
graphs most of possible ways for an attacker to reach a goal can be computed.

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 218–233, 2009.
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This takes the burden from security experts to evaluate hundreds and thousands
of possible options. Thus, a program can identify weak spots much faster than
a human. At the same time, representing attack graphs visually allows security
personal a faster understanding of the problematic pieces of a network [2,3].

As depicted in Figure 1, the attack graph workflow consists of three inde-
pendent phases: Information Gathering, Attack Graph Construction, as well as
Visualization and Analysis. In the information gathering phase, all necessary
information to construct attack graphs is collected and unified, such as informa-
tion on network structure, connected hosts, and running services. In the attack
graph construction phase, a graph is computed based on the gathered system
information and existing vulnerability descriptions. Finally, the attack graph is
processed in the visualization and analysis phase. Attack graphs always require
a certain set of input information. For one, a database of existing vulnerabilities
has to be available, as without it, it would not be possible to identify or eval-
uate the effects of host-specific weaknesses. Also, the network structure must
be known beforehand. It is necessary to identify which hosts can be reached by
the attacker. Often, an host-based vulnerability analysis is performed before the
attack graph is constructed.

Fig. 1. Workflow of Attack Graph Construction and Analysis

Vulnerability information is stored in so called vulnerability databases (VDB),
which collect known software vulnerabilities. Such databases comprehend large
compilations of software weaknesses in a non-uniform manner. Well known
databases are the VDB from SecurityFocus [9], advisories from Secunia [5], and
the Open Source Vulnerability Database (OSVDB) [6], operated by the Open
Security Foundation. Besides these known VDB from different providers, there
is another important effort called the Common Vulnerabilities and Exposures
list (CVE) [7], which is a meta vulnerability database. Its goal is to provide a
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common identifier for known weaknesses which can be used across various VDBs.
Before 1999, each vulnerability database has its own name and it was difficult
to detect when entries referred to the same weakness. With the help of CVE
entries, vulnerabilities at least have a unique identifier.

For attack graph construction, up-to-date vulnerability information is crucial
to provide high quality results. Automatic extraction of up-to-date vulnerability
descriptions provide capabilities to build high quality attack graphs. As vulnera-
bility descriptions are stored in semi-structured textual descriptions, automatic
extraction is a challenging task. However, we address this task in this paper
and present our approach and some preliminary results. Existing vulnerability
databases are analyzed in terms of usability for attack graph construction. The
information provided by these databases is unified by means of a data structure,
which is later used for attack graph construction. Furthermore, a prototype is
developed for automatic extraction of vulnerability descriptions from several
databases. An analysis of the transformation shows between 70-90 percent of
correctness in extraction from textual descriptions. The integration of the third
party tool MulVAL [4] proofs that automatic extraction can be used to create
meaningful attack graphs.

This paper is organized as follows. Section 2 provides a short analysis of
existing vulnerability databases and description standards. Section 3 presents the
way and design to extract existing vulnerability descriptions from vulnerability
databases. A prototype implementation and some statistical results are described
in Section 4 as a proof of our concept. Finally, we conclude the paper in Section 5.

2 Sources of Vulnerability Information

2.1 Comparison of Vulnerability Databases

Vulnerability information is available from basically two types of sources. On the
one hand, commercial or non-profit organizations act as vulnerability providers,
such as Secunia security advisories [5] or the Open Source Vulnerability Database
[6]. On the other hand, vulnerability information is described with standardiza-
tion efforts, for example the Common Vulnerabilities and Exposures list (CVE)
[7]. In this section, the most popular commercial and non-profit vulnerability
providers will be examined. A closer look is taken at the information each of
them provides about a vulnerability and which of them may be useful in the
context of attack graph construction. Not included are sources which focus pri-
mary on virus and exploit descriptions, because they rather describe how an
attack is conducted instead of stating what the preconditions and postcondi-
tions are.

As commercial vulnerability database providers, DragonSoft (D.Soft)1, Se-
cunia [5], SecurityFocus (S.Focus) [9], Securiteam2, and X-Force [10] are se-
lected. As non-commercial providers, the Cooperative Vulnerability Database
1 http://vdb.dragonsoft.com/
2 http://www.securiteam.com/cves/

http://vdb.dragonsoft.com/
http://www.securiteam.com/cves/
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(CoopVDB)3, the Department of Energy Cyber Incident Response Capability
(DoE-CIRC)4, the National Vulnerability Database (NVD) [11], the Open Source
Vulnerability Database (OSVDB) [6], and the United States Computer Emer-
gency Readiness Team (US-CERT) [12] have been chosen. Besides the US-CERT,
many other regional computer security incident response teams, such as the Aus-
tralian CERT AusCERT and the German CERT-Bund exist. The US-CERT was
chosen as a representative.

Fig. 2. Comparison of Vulnerability Databases

Except for the NVD, all VDBs provide a title for a listed vulnerability as well
as textual descriptions. Both are intended for human readers to grasp the context
and impact of a weakness. Several VDBs have their own vendor-specific identifier
for each vulnerability, but all of them also provide the corresponding CVE ID, the
unified identifier. This allows to quickly identify information on the same subject
provided by different vendors. All but the CoopVDB list the release date of a
weakness, only half provide information on when a vulnerability was updated
the last time. Especially the update information can be useful to decide whether
previously gained knowledge may have become outdated. The Secunia as well
as the OSVDB also give a popularity indicator, i.e., how often information on a
specific weakness was requested. Four out of ten databases state who discovered
a vulnerability. The range from which a vulnerability can be exploited is given by
all but the DoE-CIRC database. The operating system on which a weakness may
occur can be specified in all VDBs, whereas it is sometimes subsumed in a generic
software section. On the other hand, Secunia and the CoopVDB are the only one
having a distinct software section. Only four VDBs use Common Vulnerability
Scoring System (CVSS) values to indicate how critical a weakness is, two more
have their own benchmark. The impact is provided by all but SecurityFocus,
where it is described in the title of an advisory. The NVD is the only one that
3 https://cirdb.cerias.purdue.edu/coopvdb/public/
4 http://doecirc.energy.gov/ciac/

https://cirdb.cerias.purdue.edu/coopvdb/public/
http://doecirc.energy.gov/ciac/
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also provides information about the complexity of an attack as well as whether
some kind of authentication is required. Links to exploit descriptions are given
by half of the here presented vulnerability databases, but all provide a status
indicator to show if a weakness has been addressed with, for example, a software
update. A description of mitigation measurements is given in all cases, except
by the NVD and the DoE-CIRC.

Most vulnerability information of these sources are only available as HTML
page descriptions. Only the NVD and the OSVDB provide this data in additional
formats, such as XML. Last but not least, all vulnerability databases provide
cross-references to entries in other VDBs as well as software vendors describing
a weakness. HTML has the disadvantage of being more difficult for information
extraction. Instead of data which is gathered in a single file, it is distributed
over thousands of web pages. The references between VDB entries are helpful to
find new information on vulnerabilities of HTML-based vulnerability databases.
Without knowing the vendor-specific ID assigned to a weakness, it is often dif-
ficult to deduce the correct URL for it. With the provided links, these can be
found easily in a web-crawling-like fashion. Also helpful in this process is the
extraction of the CVE identifier which can serve as a validation that the correct
entry has been found. The range is an important piece of information for attack
graph construction, because it allows to determine whether network or local ac-
cess to a machine is required. Also important to determine the preconditions of
an attack is data on the targeted programs. Once a vulnerability scanner has
identified the software configuration of a host, matching vulnerabilities can be
inferred. Title and textual description of a vulnerability seem to be less useful on
first sight, but it will be shown in Section 4 that this does not have to be true.

The impact of security advisories can be used to gather information on the
postcondition of an attack. If it states, for example, ’gain root access’ a vio-
lation at the highest level is given, providing the attacker with access to every
given resource. Therefore, this means that all, confidentiality, integrity, and avail-
ability of the target system and the hosted programs and data are violated. A
classification of an attack may provide useful input as well, since a class such
as ’Code Injection’ indicates an integrity violation. Furthermore, information
whether some kind of authentication is required for an exploitation can be used
to deduce precondition information. More explicit are vulnerability databases
with CVSS values, such as X-Force or NVD. The CVSS provides a rating of
the extend to which a vulnerability may violate CIA security goals. Instead of
inferring these values from impact descriptions, CVSS values can be extracted.

Not explicitly described by any of the VDBs are affected programs and data of
an attack. Currently, only programs required for an attack are defined. This in-
formation is provided only implicitly in impact and textual descriptions, such as
’root access’ indicates that the operating system is affected. Exploit information
are often given in the form of references to exploit implementations and there-
fore not regarded as useful for vulnerability information generation. Similar, the
fact that a solution exists is by itself not helpful to deduce pre- or postcondi-
tions of an attack. Solution descriptions are often references to patches from the
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vendor of the vulnerable software. Thus, they provide merely more information
than the list of affected programs. Release and popularity information as well
as who discovered a weakness is of no affect to attack graph generation, but
data on latest updates can be. It can be used to check for outdated vulnerability
descriptions, for instance, if an additional security violation caused by a vulner-
ability is found. Both, access complexity and criticality of a vulnerability may
provide useful input, if the corresponding attack graph tool models the attacker
as well. But if the assumption is made that an attacker will exploit any given
vulnerability, access complexity, and criticality can be disregarded.

The National Vulnerability Database (NVD) provides most of the presented
vulnerability information. It also has the advantage of making this data available
in a well-defined XML format, which alleviates the amount of work to imple-
ment a parser. Except for the OSVDB, all other vulnerability databases will
require a web scraping approach to retrieve data. Another benefit of the NVD is
the explicit inclusion of extensive CVSS information. This means no additional
source must be parsed to extract this data. Additionally, the NVD refers to Open
Vulnerability and Assessment Language (OVAL) descriptions, that is detailed
characterizations of the software configuration which is vulnerable. For these
reasons, the NVD should be chosen as the primary source of input for vulner-
ability information generation. Nevertheless, other vulnerability databases can
not be disregarded. Especially for cross-verification of retrieved information an
analysis of these VDBs will be helpful. Finally, although different databases pro-
vide the same type of information, it does not mean they provide them to the
same extend.

2.2 Common Vulnerability Scoring System

The Common Vulnerability Scoring System (CVSS) [13] addresses the prob-
lem of incompatible vulnerability assessments. Based on different metrics, every
vulnerability is evaluated and scored. Each vulnerability is attributed with val-
ues for base metrics, temporal metrics, and environmental metrics. Base metrics
include access vector and access complexity information, the degree of Confiden-
tiality, Integrity, and Availability (CIA) violations, and the number of required
authentication steps. Temporal metrics note, for example, if a vulnerability has
already been verified, and environmental metrics are specific to, for example, a
company. The scoring is done by analysts who dissect a weakness. This means
that different VDB vendors can possibly provide different CVSS scores for the
same vulnerability.

Compared to the other information provided by vulnerability databases,
the CVSS shows several similarities. The access vector is similar to the range
attribute, and the CIA impacts are a formalization of the textual impact
description given by other VDBs. Also, temporal metrics reflect information
about the availability of exploits and solutions. Only the environmental metrics
have no counterpart, since they are specific to each organization and their threat
exposure. One could argue that this eliminates the need to extract the same
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information twice, but it will be shown in Section 4 that CVSS scores are not
always conform with other facts given in security advisories.

Of the three possible metrics defined by the CVSS, only base metric informa-
tion are provided by the National Vulnerability Database (NVD). The X-Force
VDB additionally provides temporal information.

2.3 Open Vulnerability and Assessment Language

The Open Vulnerability and Assessment Language (OVAL) [8] allows to give
detailed and structured description of configurations affected by vulnerabilities.
In contrast to the CVSS scores, these vulnerability definitions do not contain
information on the severity or locality, but on installed programs. Definitions are
created and submitted by security experts. After a review by the OVAL team,
these definitions are made public in the OVAL repository. An OVAL entry could
be one of the following five types. Vulnerability definitions describe tests which
determine the presence of vulnerabilities, compliance definitions are tests that
determine whether the configuration settings of a system meets a specific security
policy, inventory definition tests describe whether a specific piece of software is
installed on the system, and patch definition tests determine whether a particular
patch has been applied. Additionally, a miscellaneous type is available for any
other test description not fitting in one of the first four categories. Of these
types, we focus on work with vulnerability definitions. The other four can be
useful to determine how a system is configured, but the former helps to describe
requirements and effects of a specific vulnerability. OVAL definitions are based on
XML schemes. A core schema defines a common set of XML elements which can
be used by any OVAL definition. Additionally, component schemes are available
for various systems such as Microsoft Windows or Sun Solaris, each containing
element definitions specific to the corresponding system.

The topmost element of an OVAL definition is the definition element which
has three attributes: an id, a version, and a class attribute. The id attribute
gives a unique identifier for this definition in the scope of the OVAL namespace.
The version indicates the number of times a definition was modified. As pointed
out above, we will rely on vulnerability definitions which is reflected in the class
attribute with the value ’vulnerability’. The first child element of a definition is
the non-optional metadata element. It starts with a title describing the vulner-
ability definition. Next, the affected systems are enumerated. This enumeration
may contain two different types, platform and product entries. Then, references
can be given, e.g., to the CVE entry found at the MITRE website. Note that the
reference element includes a source attribute and an id attribute. Since OVAL
vulnerability definitions are based on CVE entries, it is possible to link a vul-
nerability definition to a specific CVE entry. Also required is the specification
of a description element, which gives a human-readable description of a vulner-
ability. Not used in many definitions is the note element. It is therefore omitted
from further considerations. The last element of a definition is of the type cri-
teria, which can have three attributes: ’operator’, ’negate’, and ’comment’. The
operator attribute defines boolean-like operators, such as AND and OR. The
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negate attribute enables the unary boolean operator NOT . Finally, the comment
attribute allows to describe the corresponding criteria.

A major advantage of OVAL definitions is their detail level. Compared to
other vulnerability descriptions, system configurations specified with OVAL are
structured and explicitly described. Additionally, the enumeration of affected
platforms and programs allow to deduce not only software requirements for pre-
conditions, but also the affected postcondition programs. This is an advantage
over current attack graph approaches, which always assume that the attacked
host will be affected by an exploit. But sometimes this assumption is not cor-
rect, and only the attacked program will suffer a loss of either confidentiality,
integrity, or availability. Note that version definitions in criteria elements allow
to define ranges of affected software versions. The SecurityFocus VDB, for ex-
ample, explicitly lists all vulnerable versions, such as “Microsoft Windows XP
Professional”, “Microsoft Windows XP Professional SP1”, “Microsoft Windows
XP Professional SP2”, and “Microsoft Windows XP Professional SP3”, whereas
for OVAL definitions it is sufficient to state “Microsoft Windows XP Profes-
sional less or equal SP3”. A drawback of the existing vulnerability definitions is
that they are usually provided by vendors and therefore sometimes too specific.
The Unix-based Mail Transfer Agent sendmail5 is vulnerable to remote code
execution as specified in CVE entry 2006-00586. But although sendmail can be
installed and executed on any Unix-based operating system, the corresponding
OVAL definition only refers to the Redhat distribution of Linux: “The operating
system installed on the system is Red Hat Enterprise Linux 4 [..].” Finally, note
that criteria definitions with operators need to be comparable.

3 Automatic Extraction of Vulnerability Information

3.1 A Data Model for Vulnerability Descriptions

To use vulnerability descriptions from different databases in attack graph con-
struction, these descriptions need to be unified. We used a flexible and exten-
sible data model to unify vulnerability descriptions of multiple vulnerability
databases. The data model is capable to express vulnerability descriptions pro-
vided by vulnerability databases. The logical data model describes system, in-
fluence, and range properties. System properties describe states a system can
be in, e.g., running programs, existing accounts, and existing databases. Influ-
ence properties describe the influence an attacker has on system properties by
successful exploitation. Range properties describe the location from which an at-
tacker can perform successful exploitation, e.g., local or remote. As depicted in
Figure 3, a vulnerability requires a precondition and a postcondition, which can
be represented by system properties. Two basic types are used for descriptions:
properties and sets. Properties represent predicates and sets allow a grouping
of properties based on boolean logic. Both types facilitate a simple evaluation
5 http://www.sendmail.org/
6 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0058

http://www.sendmail.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0058
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Fig. 3. Vulnerability Concept

Fig. 4. Logical Data Model of System Properties

based on matching of True or False values. Finally, descriptions link different
system states together, one as the requirement and the other as the result of an
attack. Based on this properties and sets, we can flexibly describe many different
system states.

System properties are characteristics and resources of a computer system
which are considered relevant vulnerability information. Each system property
describes one specific attribute of such a system, whereas properties are related
to one another as depict in Figure 4. For example, the installed version of an
application can be a system property. An application’s version is meaningless
if it cannot be linked to a certain application. Properties and their relations
may change over time due to modifications, such that an application may be
upgraded to a newer version. System properties can be found in two layers, the
network layer and the software layer. The network layer describes properties of
interconnected computers, such as network addresses and port numbers. The
software layer describes properties of software systems, such as programs, data,
and account information. We defined several different system properties which
are useful to create attack graphs, such as network properties, host connectivity,
programs, protocols, data, accounts, and others. To describe actions performed
on systems, influence properties will be used. Influence properties describe the
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Fig. 5. Influence Properties

relationship between a potential attacker and system properties which represent
computer resources (see Figure 5).

3.2 Extracting Textual Descriptions

Textual descriptions of facts cannot be neglected for an important reason. Many
values of important attributes, for example the attack range and the impact,
are described with a selection of English words. This is adequate for human
readers who can interpret the meaning of these words, but will not be sufficient
by itself for an application to put logic into it. What is needed instead is a
mapping of these words to distinct, well-defined values which can be interpreted
and compared by a program.

With the Common Vulnerability Scoring System, one such approach was
already presented and considered to be valuable for vulnerability information
generation. Whereas the CVSS targets at a common evaluation of impact a
vulnerability can have, the Common Platform Enumeration (CPE)7 creates a
concerted naming convention for software applications. It is supported by the
NVD, but fairly new and therefore currently not widely adopted. For this reason,
current approaches have to rely on other means to extract comparable program
names and versions. Nevertheless, future undertakings should consider the use
of the CPE to obtain this information. We realized that names can be extracted
fairly simple from OVAL criteria definition comments, because they follow a
simple pattern. Take a look at the definition given in in CVE 2008-4250[14] for
the Windows 2000 installation: “Microsoft Windows 2000 SP4 or later is
installed”.

These descriptions always begin with the product name, followed by the ver-
sion, and optionally a version relation stating if vulnerable versions of the de-
scribed program are either equal to, smaller than, smaller than or equal to, greater
than, or greater or equal to the given version. Therefore, an extraction of the pro-
gram name can be done easily.

The program version can be extracted from OVAL definitions in the same
fashion program names can be. But similarly, a comparable and distinct naming
schema which at the same time provides unique identifiers for the corresponding
7 http://cpe.mitre.org/

http://cpe.mitre.org/
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programs is missing. Again, the Common Platform Enumeration addresses this
deficiency, but can currently not be used, because it has not been widely adopted,
yet. Having a closer look at common version descriptions, it turns out that appli-
cation versions are generally described with consecutive numerical, alphabetical,
or alpha-numerical expressions. Additionally, major and minor versions are com-
monly used. Examples for this are Windows XP SP1, SP2, or SP3 or the Apache
HTTP daemon version 1.3.41, 2.0.63, or 2.2.11. Taking into account that many
programming languages rank the string “2.0.63” to be smaller than “2.2.11”, dis-
tinct and comparable version numbers are already given in the form of textual
descriptions.

The next relevant attribute that has to be retrieved in order to create attack
descriptions is the range from which an attack can be conducted. If the range
of a certain vulnerability cannot be retrieved from CVSS encoded data, another
vulnerability database or the short textual description of a given CVE entry has
to be used. As shown in section 2, almost all vulnerability databases provide a
range evaluation that can be used as an alternative input. The provided values
have to be mapped to values included in the data model. Additionally, most
of these textual vulnerability descriptions contain phrases such as ’local user’
or ’remote attacker’ which can be used to identify the range from within an
attack can take place. Comparing the results of this analysis to existing CVSS
definitions for vulnerabilities discovered in 2008, 95% of the range values were
identified correctly. The remaining 5% are due to unspecific attacker descrip-
tions or incorrect CVSS assignments, such as the CVSS attack vector assigned
to CVE-2008-0840 is ’local’ although the vulnerability is described as “Direc-
tory traversal vulnerability in Public Warehouse LightBlog 9.6 allows
remote attackers to execute arbitrary local files”.

Similar to range information, loss type data or impact descriptions are pro-
vided by most VDBs, but can also be extracted from CVSS entries. Again, a
mapping for each vulnerability database has to be found which converts the
given values to distinct and measurable values. It is important to create infor-
mation which can be interpreted as both, preconditions and postconditions. For
this reason, the notion of influence on passive and active resources is used. To
convert the three CIA values confidentiality, integrity, and availability to either
influence category, the following mapping is used. Confidentiality loss for pas-
sive resources is comparable to read access, integrity loss to write access, and
availability loss to the deletion of data. Influence on active resources, that is
influence on the input, the output or the existence of this resource is not af-
fected by confidentiality loss. Confidentiality violations can be caused by active
resources, but factually confidential are considered only passive resources. As a
consequence, the disclosure of secret procedures can not be addressed by this
mapping, which is justified by the fact that this case is not covered in common
vulnerability databases. On the other hand, integrity loss is mapped to influence
on the output of an active resource, and availability loss to the existence of an
active resource.
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4 Proof of Concept

We implemented a prototype to proof the applicability of automatic extraction
from vulnerability databases. The prototype will use a designed data structure
as an exchange format between components which extract information from
various VDBs as well as components which output information for attack graph
tools and related applications. As shown in Figure 6, the prototype is based on
plugins: readers and writers. In the following, the extracting components will
be referred to as readers, because they read information from a vulnerability
database or some other source. Every reader is able to extract information from
a specific data source. For example, an NVD reader is able to filter relevant
attack information from the National Vulnerability Database (NVD) [11]. The
counterpart of readers are writers, which output vulnerability information in
different formats. Gathered data can be read by various source, e.g., attack
graph tools or vulnerability analysis programs. Thus, it is reasonable to provide
a writer for each target application.

The suggested design is based on plugins of readers and writers. Readers are
able to read vulnerability information from a specific source, such as the NVD.
Writers on the other hand can store vulnerability information, for example in a
format interpretable by an attack graph tool. All plugins provide a simple inter-
face and communicate based on a common data structure. This allows to link
existing plugins into a tool chain and therefore convert vulnerability information
from any source format for which a reader exists to any target format for which
a writer exists. Finally, vulnerability information was transformed from vulner-
ability databases to serve as input for the MulVAL attack graph tool. Based
on this, it was shown that sufficient data could be automatically transformed
to identify an attack path in a company computer network, using the proposed

Fig. 6. Design of the Vulnerability Database Extractor
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Fig. 7. Logical Data Model Example

data structure as an intermediary format. The internal data structure is based
on sets and properties while sets can contain properties of further subsets, as
shown in Figure 7.

Readers such as the NVD Reader or the OVAL Reader transform informa-
tion from one XML representation into another XML representation, but the
transformed information remains the same. The major benefit of this type of
readers is the increased amount of available vulnerability information provided
by a common vulnerability database which is based on the data structure used
in the implementation. The CVE Reader on the other hand extracts information
from textual descriptions of vulnerabilities. To be able to evaluate how much of
the encoded information can be retrieved, it is useful to have a closer look at
the extracted information. For this, the retrieved data will be compared to the
data which is available in the form of CVSS entries. Those CVSS entries provide
range and impact information of vulnerabilities in a standardized format. The
NVD contains both, textual descriptions as well as CVSS values for all entries.
Both information sets should contain the same data, therefore the comparison is
based on these two sets. Note that this evaluation aims not at the evaluation of
vulnerabilities itself, but rather at an analysis of how much of the information
encoded in textual descriptions can be extracted correctly.

The data set on which this analysis is based consists of NVD entries for
vulnerabilities identified in the year 2008. An analysis of the NVD vulnerability
entries of the years 2006 and 2007 produces comparable and partially even better
results. Figure 8 depicts the number of correctly identified attributes encoded
in textual descriptions of vulnerabilities. The analyzed attributes are the range
from which an attack can take place as well as which of the three security
goals confidentiality, integrity, and availability can be violated by exploiting a
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Fig. 8. Correctly Identified Attributes of Textual Description

vulnerability. The range information can be identified correctly in more than 90
percent of the cases, confidentiality violations in almost 82 percent of the cases,
integrity violations in more than 85 percent, and availability violations in almost
75 percent of the analyzed descriptions.

When manually verifying the extracted information, a few interesting obser-
vations could be made, for example inconsistent CVSS classifications for same
type of attacks. As this extraction process is based on a mapping of phrases such
as “execute arbitrary code” to violations of security goals such as an integrity
violation, not all phrase mappings matched the corresponding CVSS assessment.
For example, vulnerabilities which lead to an arbitrary code execution are not
necessarily categorized as integrity violations (e.g., CVE-2008-0387). Another
example is the assessment of cross-site scripting vulnerabilities present in web
applications. For the year 2008, 585 out of 602 cross-site scripting attacks are
categorized as integrity violations, but only 72 percent of them as confiden-
tiality loss and about 5 percent as availability loss. This assessment is at least
disputable, because in the authors opinion being able to change the content and
behavior of a website brings along a possible violation of both availability and
confidentiality of the attacked service. Similar to these examples, a further anal-
ysis of how textual descriptions and CVSS entries correspond or contradict can
be conducted, following up on the work done by Franqueira and van Keulen [15].

5 Conclusion

As MulVAL was the only available attack graph tool for this paper, we did
not focus on additional writer plugins. In the future, writer plugins could be
developed, providing further attack graph tools with the transformation capa-
bilities of the proposed system. At the same time, reader plugins for additional
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vulnerability database could be developed, supplying a wider variety of attack
information or enabling the cross-validation of vulnerability information from
different sources. Based on the extended vulnerability information, which have
been made available by the work presented, it should be evaluated whether new
possibilities for attack graph research in particular, or vulnerability research in
general have emerged. Because we realized that the information extraction from
textual vulnerability description is feasible, algorithms to automatically create
entries for vulnerability databases, such as the NVD, should be researched. At
the same time, this would enhance the understanding of semantics of textual de-
scriptions and could provide new means to a common vulnerability description.
As the current results are promising, further research can focus on improving
the algorithms used to extract information from textual descriptions. By using
semantic techniques, this seems to be possible.

In this paper, we analyzed existing vulnerability databases concerning their
usability in attack graph construction. The 10 most popular VDB providers were
selected as the base for this evaluation. Most valuable attributes of vulnerabil-
ity entries in this process include CVE identifiers, the impact of a vulnerability,
the range from which an attack can be conducted, and the required or affected
programs. The OVAL provides a framework to describe exploitable software con-
figurations affected by a vulnerability. Similar to CVSS, OVAL is standardized
and used by several organizations. For this paper, only vulnerability definitions
are considered. Based on XML, such definitions consist of meta-data and criteria
elements, whereas criteria elements are recursive and therefore allow configura-
tion specifications at an arbitrary level of detail. Because important attributes,
such as the attack range and the impact, are often described with a selection
of English words, the interpretation of textual descriptions cannot be neglected.
Not all information is available in CVSS format and OVAL definitions also rely
on the use of English phrases. Nevertheless, it has been demonstrated that ver-
balization is often semi-formal and therefore easily parsable. Finally, a prototype
implementation was analyzed in terms of correctness. The analyzed attributes
are the range from which an attack can take place as well as which of the three
security goals confidentiality, integrity, and availability can be violated by ex-
ploiting a vulnerability. The range information can be identified correctly in more
than 90 percent of the cases, confidentiality violations in almost 82 percent of
the cases, integrity violations in more than 85 percent, and availability violations
in almost 75 percent of the analyzed descriptions. The extracted vulnerability
information was used to construct attack graphs by means of the MulVAL tool.
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Abstract. Traitor tracing is an essential mechanism for discouraging
the piracy in digital content distribution. An adversarial model is identi-
fied as rebroadcasting the content encrypting keys or the content in the
clear form. It is possible to fight against these piracy models by employ-
ing a fingerprinting code that gives a way to differentiate the encryption
capability of each individual. We point three important characteristics
of a fingerprinting code that affects its deployment in traitor tracing
scheme against pirate rebroadcasting: (i) A robust fingerprinting code
tolerates an adversary that chooses not to rebroadcast some messages.
(ii) A tracing algorithm for fingerprinting code that does not require
a priori upper-bound on coalition size to be successful in detecting a
traitor. (iii) Extending the length of the fingerprinting code which refers
to traitor-identification procedure of the code that doesn’t depend on
the length of the code or the distribution of the markings over the code.

We presented the first traitor tracing scheme with formal analysis of
its success in traitor-identification that doesn’t assume a priori bound on
a traitor-coalition size while at the same time it is possible to extend the
code without degrading the success of traitor identification due to non-
extended part. This construction also supports the robustness without
requiring a high pirate rebroadcasting threshold.

1 Introduction

Traitor tracing has been an active research area since its inception in [1]. It gen-
erally refers to a mechanism that detects the guilty users who have participated
in a pirate attack when pirate evidences become available. Different types of
traitor tracing schemes have been designed for different types of pirate attacks.
One particular attack is called re-broadcasting attack (or anonymous attack)
where the attackers re-distribute the content encrypting keys or the decrypted
plain content to stay anonymous. When pirated copies of content or keys are
recovered, traitor tracing scheme for re-broadcasting attack aims to detect the
users who participated in the re-distribution of the pirated copies.
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To defend against re-broadcasting attack, one naturally wants to build many
versions of the content (typically using watermarking and different encryptions)
and assign different users different copies of the content. The recovered pirated
copies (as feedback) will link back to the original users who were assigned those
versions. Typically a content is divided into multiple segments, each segment can
have different versions created from different watermarking and different encryp-
tions. There is a separate marking allocation table that specifies what marking
version of each segment that a user should be assigned. While dynamic traitor
tracing [2] allocates the versions in-real time, sequential traitor tracing of [3,4]
suggests a pre-determined mark allocation table that is based on fingerprinting
codes [5,6,7,8,9].

Preliminaries
Fingerprinting Codes. A codeword over an alphabet Q is an �-tuple x=(x1, . . . , x�)
where xi ∈ Q for 1 ≤ i ≤ �. If a code W = {a1, . . . , an} ⊆ Q� consists of n code-
words, then we will call it an (�, n, q)-code where |Q| = q.

For any set of indices T ⊆ [n], we define the set of pirate codewords due to T,
denoted desc(CT) by

desc(CT) = {x ∈ Q� : xi ∈ {ai : a ∈ CT}, 1 ≤ i ≤ �}
where CT = {aj | j ∈ T} and xi, ai are the i-th symbol of the codewords.

In other words, the descendent set desc(CT) is the set of pirate codewords
that could be produced by the coalition of the set T. We are also interested in
partial codewords which are missing some positions in the pirate codeword. We
will denote the missing part by ⊥. Formally, we define desc⊥(CT) accordingly:

desc⊥(CT) = {x ∈ {{⊥} ∪ Q}� : xi ∈ {⊥} ∪ {ai : a ∈ CT}, 1 ≤ i ≤ �}
For the purpose of simplifying the notation, later in the paper, a pirate codeword
due to the set T of a length i < � will refer to codeword in desc⊥(CT) whose last
�− i positions are filled with ⊥.

A fingerprinting code is a pair of algorithms (CodeGen, Tracing) that generates
a code for which it is possible to detect piracy:

– CodeGen is an algorithm, given input (n, ν, q) with a security parameter
ν = log(1

ε ) for some small ε, that samples a pair (C, tk) ← CodeGen(n, ν, q)
where C is an (�, n, q)-code defined over an alphabet Q, and tracing key tk
is some auxiliary information to be used for tracing that may be empty.

– Tracing is a deterministic algorithm that takes input the tracing key tk as
well as a pair (c, T), where c ∈ {{⊥} ∪ Q}� and T ⊆ [n] , and it outputs a
codeword-index t ∈ [n] \ T or fails. The fingerprinting code is called open if
tk is empty.

Sequential Traitor Tracing Scheme: A sequential traitor tracing scheme against
pirate rebroadcasting is based on an underlying fingerprinting code (CodeGen,
Identify) as a marking table for matching the content-versions to the receivers.
A sequential traitor tracing scheme consists of the following algorithms:
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– KeyDist: Given (n, ν, q) it first produces a (�, n, q)-code W = {w1, . . . , wn}
where (W , tk) ← Codegen(n, ν, q) over an alphabet Q.
It, then, produces a collection of keys ek = {ki

j}i∈[�]
j∈[q] ⊆ K. The user key sku

is set to 〈k1
wu

1
, k2

wu
2
, . . . , k�

wu
�
〉 where wu = 〈wu

1 , wu
2 , . . . , wu

� 〉 ∈ W .
– Transmit: Given a message m and transmission state i ∈ {1, . . . , �}; it trans-

mits the encryption of the message M with ek by using a symmetric encryp-
tion scheme (E, D):

〈i, Eki
1
(Emb(1, m)), Eki

2
(Emb(2, m)), . . . , Eki

q
(Emb(q, m))〉

where Emb : {1, . . . , q}×M → M is a watermarking embedding algorithm for
which there exists a reading algorithm Read such that Read(Emb(j, m)) = j
for all m ∈ M and for j = 1, . . . , q.

– Receive: Given the key-material sku = 〈k1
wu

1
, k2

wu
2
, . . . , k�

wu
�
〉 for some u ∈ [n]

and a transmission of the form:

〈i, c1, c2, . . . , cq〉
it returns e = Dki

wu
i

(cwu
i
); observe that Read(e) = wu

i holds.

The Model
Tracing Pirate Rebroadcast. We will consider a sequence of content transmission,
specifically denote the number of messages in the sequence by � which amounts
to the length of the code generated by the KeyDist algorithm. Each message
has q different versions created by a q-ary robust watermarking system. The
content provider sends each different version of all messages and observes the
feedback coming from pirate rebroadcast. Figure 1 is the sequential traitor trac-
ing scheme against pirate rebroadcasting. The scheme employs a fingerprinting
code (CodeGen, Tracing). Here, the figure illustrates a pirate rebroadcasting of
the clear content, it should be noted that the rebroadcasting of content key can
also be considered in this same model.

Denoting the set of traitors detected on the i-th message by Ti, the feedbacks
observed in the (i + 1)-th message are consistent with the versions assigned to
the set of traitors T \ (

⋃i
k=0 Tk). In this model, after detecting a traitor, the

feedbacks due to that traitor are removed from the feedback sequence, i.e. we
denote this partial feedback sequence by p(i). A feedback sequence is possible if
it can be generated by a set of traitors despite the fact that some of its traitors
are detected in early phases. We define the feedback sequence as T-possible, if
that sequence is a possible outcome of the set of traitors in this model.

Definition 1. Denoting the set of traitors by T ⊆ [n], a pirate rebroadcast
p = 〈p1, . . . , p�〉 ∈ desc(CT) against a sequential traitor tracing based on a
(CodeGen, Tracing) fingerprinting code is called T-possible, if there exists a col-
lection ∪�

k=1Tk ⊆ T so that

pi ∈ {wj
i | j ∈ T \ (

i−1⋃
k=1

Tk)} Ti = Tracing(p(i),∪i−1
k=1Tk)
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Tracing Pirate Rebroadcast(A sequence of � messages)
1. (W, tk, ek, sk1, . . . , skn) ← KeyDist(n, ν, q)
2. Set p empty and suppose W = {w1, . . . , wn}.
3. for ctr = 1 to � do
4. Broadcast cctr = 〈ctr, c1, c2, . . . , cq〉 ← Transmit(ek, mctr)
5. Observe a pirate rebroadcast Emb(a, m) for some a ∈ {1, . . . , q}
6. Set pctr = a
7. Append pctr to the pirate rebroadcast p
8. Let T′ = Tracing(p, T)
9. Set T = T ∪ T′

10. for j = 1 to ctr do
11. Set pj = ⊥ if there is a traitor-index t ∈ T′ for which pj = wt

j holds.

Fig. 1. Traitor tracing in pirate rebroadcasting

holds for 0 ≤ i ≤ �. Here, Ti refers to the set of traitors identified right after ob-
serving the i-th pirate rebroadcast. p(i) ∈ desc⊥(CT(i)) where T(i) = T\(

⋃i−1
k=0 Tk)

is the set of undetected traitors. p(i) is defined as follows:

p
(i)
k =

⎧⎪⎨⎪⎩
pi if k = i

⊥ k < i and p
(i−1)
k ∈ {wj

k | j ∈ Ti−1}
p
(i−1)
k otherwise

We define Tracing(p) = ∪�
k=1Tk as the set of traitors identified.

Finally, we say a sequential traitor tracing scheme based on a fingerprinting
code (CodeGen, Tracing) is w-traceability scheme if for any |T| ≤ w it holds that
Tracing(p) = T holds for all T-possible pirate rebroadcast p ∈ desc(CT).

Remarks on Traceability:

1. Revoking Early Detected Traitors: If a user-index j ∈ [n] is detected
as a traitor index after observing a feedback on the i-th message, then from
message i + 1, his reception of version wj

i′ , for i′ > i, will be blocked. This
is the same model that have been disposed by [2,10,3,4]. Furthermore, [11]
illustrates the feasibility of revoking a user while tracing.

2. Pirate Rebroadcasting Threshold: The above model requires the ex-
istence of feedback for each message. It is desirable to tolerate a stronger
adversary that omits rebroadcasting some messages. This is achievable by
employing a robust fingerprinting code (e.g. [12]). A fingerprinting code that
doesn’t support such robustness will either fail in being successful or re-
quires the adversary to rebroadcast with a high rebroadcasting threshold,
i.e. at least 1 − �−1

� + α probability for some nonnegligible α.
3. Traitor Coalition Size: In general a fingerprinting code is said to be suc-

cessful in identifying a traitor under a condition which bounds the coalition
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size. For instance, a traitor tracing scheme based on a w-TA fingerprinting
codes require the coalition size to be not bigger than w. It is desirable to
have a scheme that doesn’t depend on such a priori bound on coalition size.

4. Extendable Tracing: Once a fingerprinting code of length � is sampled
by a KeyDist algorithm, the tracing will terminate after � messages by out-
putting a subset of traitor coalition. To continue identifying other undetected
traitors, the tracing will restart with a new fingerprinting code. We say a
fingerprinting code supports extendable tracing if the next stage in tracing
can take advantage of the information available from previous tracing steps.

Our Results
In this work, we gave an improvement on the conversion of traceability codes
based on an error-correcting code into the sequential tracing schemes. More
specifically, [4] states that any c-TA error correcting code implies a sequential
c-tracing scheme that is capable of tracing back all traitors in a coalition of size
c. We show that it is possible to construct a sequential c

√
2-tracing scheme by

employing a c-TA code.
We, also, presented a traitor tracing scheme based on a fingerprinting code

without a priori bound on the traitor-coalition size. It is also possible to extend
this code without harming the traitor-identifications made so far. This construc-
tion is also immune to any adversarial action that drops/omits some rebroadcasts
and doesn’t require any threshold.

To the best of our knowledge, the only traitor tracing scheme without a priori
bound on coalition size is employed by AACS standard [13] and presented in
[10,14]. But their traitor detection scheme is very different from ours. While our
scheme follows the sequential one by one traitor detection paradigm as illustrated
in Figure 1, their scheme aims to detect the entire guilty coalition together.

2 Improving the Construction of Sequential Tracing
Schemes Out of Error Correcting Codes

[4] formally models the sequential traitor tracing against pirate rebroadcast. The
authors also state a general construction that is capable of converting a c-TA
code based on a linear error-correcting code into a sequential c-tracing scheme.
In this subsection, we will improve the analysis of this conversion which would
yield a stronger tracing scheme that is capable of tracing a factor of

√
2 more

than the former conversion.

Theorem 1. Let W ← CodeGenE(n, ν, q) be an (�, n, q)d-error correcting code
that satisfies

d ≥ (1 − 2
c(c + 1)

)� +
2

c + 1

The sequential traitor tracing scheme based on (CodeGenE , Tracingc) is c-
traceability scheme where Tracingc is defined as in Figure 2.
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Tracingc(Pirate Rebroadcast p, detected traitors T)
1. Let sj = |{i | pi = wj

i }|
2. Reorder the users so that si > si+1 for i ≥ 1 holds
3. set k = 1 and t = |T|
4. repeat
5. If sk < (c − t − k + 1) · (� − d) + 1
6. then break
7. k=k+1
8. until break
9. if k ≥ 2 then output T′ = {u1, . . . , uk−1} where ui has score si

Fig. 2. An improved Sequential Traitor detection algorithm

The proof of the theorem relies on the following observation: the i-th detected
user is an actual traitor with at most (c + 1− i)(�− d)+ 1 pirate rebroadcasting
for i = 1, . . . , c. This can be proven by induction; assuming that i-th detected
user is not a traitor, then there would be a traitor among the undetected c−i+1
traitors who has at least �− d + 1 overlaps which contradicts with the fact that
the hamming distance of the code is given as d.Talking with the notation given in
[4], it is possible to construct sequential c

√
2-traceability schemes by employing

c-TA codes. The proof of the corollary is straightforward. A c-TA code satisfies
the equation d ≥ (1 − 1

c2 )� + 1
c

Corollary 1. Given a c-TA error correcting code, the Tracing given in Figure 2
is capable of tracing up to c

√
2 − 1 traitors for the same error correcting code.

3 Extendable Fingerprinting Code without a Priori
Bound on Coalition Size

We will present, now, an extendable secret fingerprinting code without a priori
bound on coalition size. The CodeGenR(n, ν, q) algorithm creates a code C whose
codewords are sampled from the codeword-space Q� randomly, i.e. for all y ∈ Q
it holds that Pr[ci = y] = 1

q for any c ∈ C and i = 1, . . . , �. We will denote the
code constructed randomly by CR. The corresponding tracing algorithm is given
in Figure 3. After a feedback observed in the system, we score each user with
the number of overlaps between the pirate rebroadcast and its unique codeword.
The tracing algorithm checks the highest score: if it exceeds a threshold then the
user is accused as a traitor. This threshold depends on the length of the pirate
rebroadcast (the rebroadcast due to the undetected traitors), size of code and
the size of the marking alphabet. If the user with highest score is accused, then
the next user with highest score is checked if it exceeds the new threshold. This
procedure continues until a user in the order found to be below the updated
threshold. We discuss the correctness of the TracingR algorithm in Theorem 2.
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TracingR(Pirate Rebroadcast p, disabled set T)
1. Let l be the actual size(without ⊥) of the rebroadcast p

2. Let sj = |{i | pi = wj
i }|

3. Reorder the users so that si > si+1 for i ≥ 1 holds
4. set k = 1 and s0 = 0
5. repeat
6. set threshold = log q·ck

(l−∑k−1
i=0 ci)·e

n
ε

7. If sk < threshold
8. then break
9. k=k+1
10. until break
11. if k ≥ 2 then output {u1, . . . , uk−1} where ui has score si

Fig. 3. Traitor detection algorithm without a priori bound on the coalition size

Theorem 2. Consider a secret (�, N, q)-code CR that is constructed randomly,
sampled uniformly from the codeword space Q�. Its corresponding TracingR algo-
rithm is given in Figure 3. If the TracingR algorithm outputs a set of size t upon
detecting a pirate rebroadcast p, then the output set is a subset of traitors with
probability at least 1 − t · ε.
The proof of the theorem uses a Chernoff bound very similar to the computations
in [1] where the probability of a particular user having a score of threshold out
of l positions is computed. The analysis will show that if the score exceeds the
threshold given in Figure 3, then the accused user is among the traitor coalition
with high probability. Here, it should be noted that the tracing key tk is set as
the code CR, i.e. the code is secret code.

Observe that the tracing algorithm given in Figure 3 does not require any a
priori bound on the coalition size. Overall, the tracing algorithm will be able to
disable all traitors after sufficient number of feedbacks. Of course this number
depends on the coalition size, the below theorem relates the required number
of feedbacks to detect all traitors. Note that the relation doesn’t affect the de-
ployment the tracing algorithm, meaningly the algorithm succeeds without any
assumption on the coalition size. The relation does only states how successful
can a traitor coalition be in generating pirate rebroadcasts.

Theorem 3. Consider a secret (�, N, q)-code CR that is constructed randomly,
sampled uniformly from the codeword space Q�. Its corresponding TracingR al-
gorithm is given in Figure 3. There is no T-possible pirate rebroadcast p with
|T| = t and error rate less than tε for � ≥ t log q

e·t
n
ε .

The proof of the theorem can be observed as follows: At any time the i-th de-
tected user would have a score (number of overlaps with the pirate rebroadcast)
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of si = log qαi
e

n/ε exceeding the threshold where αi corresponds to ratio of the
score of that particular user to the partial pirate rebroadcast due to the unde-
tected traitors. Since, this user has the highest score among the other undetected
traitors, it satisfies that αi ≥ 1/t. Hence, it holds that si < log q

e·t
n/ε.

In general; the length of the pirate rebroadcast due to the traitor coalition T
would be bounded by the below formula:� ≤ ∑t

i=1 si ≤ t log q
e·t

n
ε

Properties of the Code. Not only, the code doesn’t depend on a priori bound
for the coalition size but also the tracing algorithm given in Figure 3 does not
depend on the length of the actual code. Moreover, each position of the code
can be considered as an independent distribution from other positions in the
code CR. This gives us an opportunity to extend the length of the fingerprinting
code without affecting the success of tracing algorithm, and even tracing would
continue smoothly. Moreover, the code supports a low pirate rebroadcasting
threshold.
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anonymous attack. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734,
pp. 563–577. Springer, Heidelberg (2007)

11. Kiayias, A., Pehlivanoglu, S.: Tracing and revoking pirate rebroadcasts. In: ACNS,
pp. 253–271 (2009)

12. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: ACM Con-
ference on Computer and Communications Security, pp. 501–510 (2008)

13. AACS Specifications (2006), http://www.aacsla.com/specifications/
14. Jin, H., Lotspiech, J., Megiddo, N.: Efficient coalition detection in traitor tracing.

In: SEC, pp. 365–380 (2008)

http://www.aacsla.com/specifications/


SISR – A New Model for Epidemic Spreading of
Electronic Threats

Boris Rozenberg1,2, Ehud Gudes1,2, and Yuval Elovici1,3

1 Deutche Telekom Laboratories at BGU
2 Department of Computer Science

3 Department of Information System Engineering,
Ben Gurion University, Beer Sheva 84105, Israel

Abstract. Epidemic spreading in complex networks has received much
attention in recent years. Previous research identified a propagation sce-
nario of electronic threats which has not been described by any of the
existing analytical models. In this scenario an infected node instead of
being removed contributes to the infection spreading upon the reinfection
attempt (for example, Sober, Sobig, and Mydoom Worms). In this paper
we formally define and describe analytically a new model, Susceptible-
Infected-Suspended-Reinfected (SISR), which complies with this scenario
of epidemic spreading in both homogeneous and complex networks. We
then evaluate the model by comparing it to the SIR model and by com-
paring its estimations with simulation results.

1 Introduction

Modeling worm spreading is a major element of research into worm detection.
It’s done by using various simulation tools or analytical models. The primary
strength of the analytical models is computational efficiency - they can be applied
on networks of millions of hosts. A practical use of such models was also shown
recently in [7], where authors describe a general multi-agent architecture which
is able to detect the existence of worms by computing their propagation gradient
and comparing it to the analytical model predictions, thus showing the usefulness
of such a model. In this paper we focus on the worm propagation over email social
networks. This kind of worm spreads via infected email messages [3]. The worm
may be in the form of an attachment or the email may contain a link to an
infected website. However, in both cases email is the vehicle. In the first case the
worm will be activated when the user clicks on the attachment. In the second case
the worm will be activated when the user clicks on the link leading to the infected
site. Once activated, the worm infects the victim machine (install a backdoor
for example), harvests email addresses from it and sends itself to all obtained
addresses (machine’s neighbors). In recent years a lot of new email worms have
been discovered. The list includes Storm worm, Stration worm, Nugache Worm,
Warezov worm and others [3]. This shows that the problem is still current and
a serious one. In [6], Zou et al presented two main strategies of email worm
propagation: reinfection strategy and nonreinfection strategy. Reinfection means
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that if some already infected user receives the worm instance again and open
it, the worm will send itself again to all user’s neighbors. Nonreinfection means
that the infected user sends the worm to his neighbors only once. Some email
worms belong to the reinfection type such as Sober, Sobig, Mydoom [3,6], while
others exhibit the nonreinfection behavior (Melissa, Netsky, Swen [3,6]). The
second strategy (nonreinfection) is described by the SIR analytical model, while
the first one is currently not described analytically by any model. In this paper
we present a new analytical model, Susceptible-Infected-Suspended-Reinfected
(SISR), that describes the reinfection strategy of worm propagation. The rest of
the paper is structured as follows: Section 2 reviews the SIR model of epidemic
propagation in homogeneous and complex networks, Section 3 presents our new
models, Section 4 describes the evaluation of the new models and Section 5
concludes the paper.

2 Background

2.1 The SIR Propagation Model

In the SIR epidemic propagation model [1], each individual can be in Suscep-
tible, Infected or Removed state. Susceptible individuals become infected with
probability if at least one of the neighbors is infected. Infected individuals be-
come Removed with probability one (other probabilities can be considered). This
model describes the spreading of those kinds of infections for which exists a per-
manent immunity or infection kills the infected individuals. In both cases, the
individual in the Removed state can not be infected again and cannot infect
others. This analytical model can be used to analyze the propagation of email
worms that employ the nonreinfection propagation strategy only.

The SIR model for homogeneous networks. For homogeneous networks,
the SIR model can be described by the following four equations [4]:

ρ(t) + S(t) + R(t) = 1 (1)

dρ(t)
dt

= −ρ(t) + λkρ(t)S(t) (2)

dS(t)
dt

= −ρ(t)− λkρ(t)S(t) (3)

dR(t)
dt

= ρ(t) (4)

where ρ(t), S(t) and R(t) are the densities of infected, susceptible, and removed
individuals at time t, respectively.
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The SIR model for complex networks. Moreno et al [4] have presented
the Susceptible-Infected-Removed (SIR) model that describes the dynamics of
epidemic spreading in the complex networks. The model is represented by the
following equations:

ρk(t) + Sk(t) + Rk(t) = 1 (5)

dρk(t)
dt

= −ρk(t) + λkSk(t)Θ(t) (6)

dSk(t)
dt

= −λkSk(t)Θ(t) (7)

dRk(t)
dt

= ρk(t) (8)

Θ(t) =
∑

k(k − 1)P (k)ρk(t)∑
k kP (k)

(9)

where ρk(t), Sk(t) and Rk(t) are the densities of infected, susceptible, and re-
moved nodes of degree k at time t, respectively, P (k) is the fraction of nodes
with degree k and λ is the probability that a susceptible node is infected by one
infected neighbor. The factor Θ(t) gives a probability that any given link leads
to an infected individual [5,2].

3 The SISR Propagation Model

In this section we describe a new model of epidemic propagation. In this model
(see Fig. 1), there are four possible states for each individual in the network:
Susceptible, Infected, Suspended and Reinfected (SISR). As in the SIR model,
susceptible individuals become infected with probability λ if at least one of
their neighbors is infected. Infected individuals try to infect their neighbors.
In contrast to the SIR model, infected individuals do not move to the Removed
state, but to the Suspended state with probability one (other probabilities can be
considered). Individuals in the Suspended state are infected and can contribute
to the propagation upon reinfection. Thus, upon reinfection attempt, individuals
in the Suspended state move to the Reinfected state with probability λ, try to
infect their neighbors and move back to the Suspended state with probability
one (other probabilities can be considered). Note that countermeasures are not
considered in this study (e. g., application of antivirus software, etc.). When we
say that some node is in the Suspended state, we mean that this node became
suspended due to the nature of the worm and not due to the countermeasures
application (from the propagation point of view, infected node passes to the
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Fig. 1. SISR propagation model

Suspended state immediately after the sending of infectious message to all its
neighbors).

The SISR model describes closely the reinfection propagation strategy of email
worms, which till now were modeled by the SIR model. Following subsections
give a detailed description of the SISR model for homogeneous and complex
networks.

3.1 SISR Model for Homogeneous Networks

For homogeneous networks, the SISR model can be described by the following
five equations:

ρ(t) + S(t) + S′(t) + R′(t) = 1 (10)

dρ(t)
dt

= −ρ(t) + λk(ρ(t) + R′(t))S(t) (11)

dS(t)
dt

= −λk(ρ(t) + R′(t))S(t) (12)

dS′(t)
dt

= ρ(t) (13)

dR′(t)
dt

= −R′(t) + λk(ρ(t) + R′(t))S′(t) (14)

where ρ(t), S(t), S′(t) and R′(t) are the densities of infected, susceptible, sus-
pended and reinfected individuals at time t, respectively. These equations can
be explained as follows: susceptible individuals become infected with prob-
ability proportional to the density of infectious and susceptible individuals.
The density of currently infectious nodes is given by the term (ρ(t) + R′(t)).
Infected individuals become suspended with probability one (other probabili-
ties can be considered). Equation (14) states that suspended individuals become
reinfected with probability proportional to the density of currently infectious
and suspended individuals.

3.2 SISR Model for Complex Networks

For complex networks, the SISR model is described by the following equations:

ρk(t) + Sk(t) + S′
k(t) + R′

k(t) = 1 (15)
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dρk(t)
dt

= −ρk(t) + λkSk(t)Θ(t) (16)

dSk(t)
dt

= −λkSk(t)Θ(t) (17)

dS′
k(t)
dt

= ρk(t) (18)

dR′
k(t)
dt

= −R′
k(t) + λkS′

k(t)Θ(t) (19)

Θ(t) =
∑

k(k − 1)P (k)(ρk(t) + R′
k(t))∑

k kP (k)
(20)

where ρk(t), Sk(t), S′
k(t) and R′

k(t) are the densities of infected, susceptible,
suspended and reinfected nodes of degree k at time t, respectively, P (k) is the
fraction of nodes with degree k and λ is the probability that a susceptible node
is infected by one infected neighbor. The probability that a new individual with
k neighbors will be infected is proportional to the infection rate λ, the density of
susceptible individuals of degree k (Sk(t)) and the degree k. As in the homoge-
neous network case, we add one more density R′

k(t) - is the density of reinfected
nodes that should be taken into account during the Θ(t) computation. In our
model Θ(t) is the probability that any given link points to currently infectious
node. This probability depends not only on the fraction of infected nodes of
degree k, but also on the fraction of reinfected nodes of degree k.

4 Evaluation

We evaluate the SISR model presented in this paper in two steps. First, we
compare the SISR model to the SIR model. Secondly, we compare results pro-
duced by the SISR model with results of simulations that simulate real worms
spreading on real networks.

4.1 SISR vs. SIR

We use the discrete-time method to calculate the numerical solutions of both
models for various < k > and λ values. Figure 2 and Figure 3 show the ob-
tained results. From Fig. 2 we can understand the impact of various λ values
on propagation dynamics. It is not surprising that for larger λ values, the infec-
tion spreads faster and infects larger fraction of the population in both models.
Figure 3 analyzes the impact of < k > (average degree) values. It shows that
in networks with higher connectivity, the infection spreads faster and infects a
larger fraction of the population in both models. It is clear from Fig. 2 and Fig.
3 that in the SISR model the number of infected nodes at any time t is greater
or equal to the number of infected nodes in the SIR model in the same time
for the same parameters values. This is consistent with behavior reported for
reinfection email worms (see [6]).
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Fig. 2. The impact of λ values on propagation dynamics

Fig. 3. The impact of < k > (average degree) values on propagation dynamics

4.2 SISR vs. Simulation

Now we’ll show that SISR model presented in this paper provides a reason-
able estimation of the real epidemic spreading process. In order to see this, we
compare the SIR and SISR analytical models with results of the simulations
that simulate reinfection and noreinfection propagation strategies of real worms
on real networks. We start from generating the power-law network. Using the
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Fig. 4. Comparison of simulation results to SIR and SISR analytical models

obtained network we compute the numerical solutions for the SIR and SISR
models. In parallel we have implemented a malware propagation simulation tool
and run it on the same network. Finally, we compare the results of the analytical
models with the simulation’s results. We run the simulation 100 times for each
one of the strategies separately (reinfection and noreinfection) and calculated
the average number of infected hosts as function of time. On the other hand we
average 100 executions of the analytical models, where degrees of the initially
infected hosts were chosen randomly. Figure 4 presents the obtained results for
a network with 100000 nodes, average degree 8 and λ=0.1. We can see that both
analytical models overestimate the simulation results, but provide the reason-
able approximations of the real processes. We have obtained similar dynamics
for various values of < k >, I0 and λ. We can see also that the SIR model can’t
be used to describe the reinfecting worm propagation, while the SISR model
describes it very closely.

5 Conclusions

In this paper we have presented SISR - a new model that describes analytically
the propagation of epidemics that use the reinfection strategy, the strategy where
an infected node instead of being removed, contributes to the infection spreading
upon the reinfection attempt (for example, Sober, Sobig, and Mydoom Worms).
We have studied the impact of various parameters on the propagation dynamics.
We compared the SISR model to the SIR model and the results match our
expectations: in the SISR model the number of infected nodes at any time t,
is greater or equal to the number of infected nodes in the SIR model, in the
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same time, for the same parameters values. This observation determines that,
similar to the SIR model, there is no epidemic threshold in the SISR model
too. Moreover, we compare results produced by the SISR model with results of
simulations that simulate real worms spreading on real networks. We show that
the model produces reasonable results relative to the simulation results.
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1 Université catholique de Louvain, Louvain-la-Neuve, Belgium
2 Telecom ParisTech, Paris, France

Abstract. The Mafia fraud consists in an adversary transparently re-
laying the physical layer signal during an authentication process between
a verifier and a remote legitimate prover. This attack is a major concern
for certain RFID systems, especially for payment related applications.

Previously proposed protocols that thwart the Mafia fraud treat relay-
ing and non-relaying types of attacks equally: whether or not signal re-
laying is performed, the same probability of false-acceptance is achieved.
Naturally, one would expect that non-relay type of attacks achieve a
lower probability of false-acceptance.

We propose a low complexity authentication protocol that achieves a
probability of false-acceptance essentially equal to the best possible false-
acceptance probability in the presence of Mafia frauds. This performance
is achieved without degrading the performance of the protocol in the non-
relay setting. As an additional feature, the verifier can make a rational
decision to accept or to reject a proof of identity even if the protocol gets
unexpectedly interrupted.

Keywords: Authentication, false-acceptance rate, proximity check,
mafia fraud, memory, relay attack, RFID.

1 Introduction

Radio Frequency Identification (RFID) allows to identify and authenticate ob-
jects or subjects wirelessly, using transponders — micro-circuits with an antenna
— queried by readers through a radio frequency channel. This technology is
one of the most promising of this decade and is already widely used in prac-
tice (e.g., access cards, public transportation passes, payment cards, passports).
This success is partly due to the steadily decrease in both size and cost of passive
transponders called tags. The characteristics of this technology — ubiquity, low-
resource, wireless — open a security breach that is seriously considered by the
US National Institute of Standards and Technology, which recently published
guidelines on how to securely develop RFID systems [1].
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In 1987 Desmedt et al. [2] introduced the Mafia fraud1 that defeated any
authentication protocol. In this attack, the adversary successfully passes the
authentication by relaying the messages between the verifier and a remote le-
gitimate prover. When it was introduced, the Mafia fraud appeared somewhat
unrealistic since the prover is supposed unaware of the manoeuvre.

Nowadays, the Mafia fraud is a major issue of concern for RFID systems. We
illustrate this in the following example. Consider an RFID-based ticket machine
in a theater. To buy a ticket, the customer needs to be close enough to the ma-
chine (RFID reader) such that his pass (RFID tag) is in the field of the machine.
The pass can be kept in the customer’s pocket during the transaction. A ticket
is delivered by the machine if the pass is able to prove its authenticity. Assume
there is a line of customers waiting for a ticket, including Alice the victim. Bob
and Charlie are the adversaries: Bob is far in the queue close to Alice, while Char-
lie faces the machine. When the machine initiates the transaction with Charlie’s
card, Charlie forwards the received signal to Bob who transmits it to Alice. The
victim’s tag automatically answers since a passive RFID tag — commonly used
for such applications — responds without requiring the agreement of its holder.
The answer is then transmitted back from Alice to the machine through Bob
and Charlie who act as relays. The whole communication is transparently relayed
and the attack eventually succeeds: Alice pays Charlie’s ticket. Note that Bob
must be close to the victim in order to query her tag. In such an application, the
communication distance is either a few centimeters (when the tag is ISO 14443-
compliant [3]) or a few decimeters (when the tag is ISO 15693-compliant [4]).
This is more than enough to enable an adversary to illegitimately query the tag
of a passerby. In 2005, Hancke [5] successfully performed a Mafia fraud against
an RFID system where the two colluders where 50 meters apart and connected
through a radio-channel.

In 2007, Halváč and Rosa [6] noticed that the standard ISO 14443 [3] for
proximity cards and widely deployed in secure applications, can easily be abused
by a Mafia fraud due to the untight timeouts in the communication. Indeed, ISO
14443 specifies a frame waiting time (FWT) such that the reader is allowed to
retransmit or give up the communication if the queried tag remains unresponsive
while the FWT is over. The FWT is equal to FWT = (256×16/fc)×2FWI, where
fc is the frequency carrier (13.56 MHz in almost all secure RFID applications),
and where FWI is the Frame Waiting time Integer, a value chosen between 0
and 14. By default FWI = 4, which means that FWT = 4.8 ms. However, when
the tag needs more time to process the information it receives, it can impose
the reader to increase the FWI up to 14, which corresponds to FWT = 4949
ms. (This feature is used for example by electronic passports that implement
active authentication [7]. Passports are not able to compute an RSA or ECC
signature on the fly within 4.8 ms and so require a larger FWT.) During a Mafia
fraud the adversary can request the reader to increase its timeout up to 4949 ms,
which gives her enough time to perform the attack over a long distance using
for instance Internet.

1 Sometimes referred to as ‘relay attack.’
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2 State of the Art and Contributions

In 1990 Brands and Chaum [8] proposed a protocol that thwarts the Mafia
fraud and which is based on the idea of a proximity check introduced in [9].
The protocol, depicted in Figure 1, consists of a fast phase followed by a slow
phase. During the fast phase, the verifier and the prover exchange random one-bit
messages and the verifier measures the round trip time (RTT) of the exchanges.
After n rounds, where n is a security parameter, the slow phase is engaged. The
verifier asks the prover to sign the received and sent bits, and, upon reception
of the signature, and given the measured RTT, the verifier decides whether or
not to accept the proof of identity. The probability that a Mafia fraud succeeds
is then (1/2)n.

Verifier Prover
(secret k) (secret k)

Start of fast phase
for i = 1 to n

Random Ci ∈ {0, 1} Random Ri ∈ {0, 1}
Start Clock

Ci−−−−−−−−→

Stop Clock
Ri←−−−−−−−−

Check Δti ≤ Δtmax

End of fast phase

Check signature
Signk(C1||R1||···||Cn||Rn)←−−−−−−−−−−−−−−−−−−−−−−−

Fig. 1. Brands and Chaum’s protocol

It is only in 2005, after Hancke put into practice a mafia fraud [5] that prox-
imity check protocols2 came back under the spotlights. The same year, Hancke
and Kuhn [10] published a new distance bounding protocol that is today a key
reference. Given in Figure 2, their protocol consists of a slow phase followed by a
fast phase. In the slow phase, the verifier and the prover first exchange random
nonces, then, based on the nonces and the secret key, they compute two secret
registers in the form of n-bit strings V and W . The fast phase consists of n
rounds. During the ith round, the verifier sends a random bit and the prover
answers the ith bit Vi of V if the challenge is 0, and the ith bit Wi of W if the
challenge is 1.

2 In the literature often referred to as ‘distance bounding protocols.’
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Verifier Prover
(secret k) (secret k)

Random Na
Na−−−−−−−−→
Nb←−−−−−−−− Random Nb

V ‖W := Hk(Na, Nb)
with ‖V ‖ = ‖W‖ = n

Start of fast phase
for i = 1 to n

Random Ci ∈ {0, 1}
Start Clock

Ci−−−−−−−−→
Ri =

{
Vi, if Ci = 0
Wi, if Ci = 1

Stop Clock
Ri←−−−−−−−−

Check correctness of
Ri’s and Δti ≤ Δtmax

End of fast phase

Fig. 2. Hancke and Kuhn’s protocol

As explained in [10], the false-acceptance rate (FAR) is (3/4)n instead of
(1/2)n, as in Brands and Chaum’s protocol, because an adversary can query the
prover between the slow phase and the fast phase in order to obtain one full
register. However, the protocol has interesting properties such as the absence
of a signature at the final stage which allows the verifier to make a ‘rational’
decision on whether to accept or to reject a proof of identity even in cases where
the protocol gets unexpectedly interrupted. In practice, one could imagine the
situation where the verifier accepts a proof of identity provided that a minimal
number of correct fast phase replies are given, so that to allow some flexibility
in the event of an interrupted authentication. In contrast, with the Brands and
Chaum protocol, if the protocol does not end properly, i.e., if the final signature
is not received by the verifier, it is difficult for the verifier to infer about the
validity of the proof of identity.

Since 2005, several protocols have been proposed. Either they are based on
the approach of Brands and Chaum (BC), require a final signature, and target
(1/2)n as FAR ( [11,12,8,13,14,15,16,17,18,19,20]), or, they follow the Hancke
and Kuhn (HK) approach, have no final signature, and target (3/4)n as FAR
([10,21]).3

3 A comparison of most of these protocols is given in [18].
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Note that for both families of protocols the security is solely based on the
number of fast phase rounds, which in practice cannot be made very large.4

Moreover, for both families a FAR of (1/2)n (or (3/4)n) can be achieved even
without carrying a mafia fraud. In other words, these protocols do not distinguish
between an attacker that relay signals from an attacker that does not relay
signals. As a consequence, because n can’t be made large, these protocols are
not suitable for applications where a high level of security is demanded, yet mafia
frauds are hard to perform.

Below we provide a new low complexity distance bounding protocol that, in
particular, combines the advantages of the BC and HK families. It does not
require a final signature, it achieves a FAR essentially equal to (1/2)n in the
presence of Mafia frauds, and achieves the same level of security with respect to
non-Mafia type of attacks as common challenge-response authentication proto-
cols (e.g., compliant with ISO 9798 [22]).

3 Protocol

3.1 Protocol Requirements and Assumptions

In the presence of a legitimate prover, the authentication protocol must guaran-
tee that the verifier always accepts his proof of identity. The protocol must also
prevent an adversary of being falsely identified, assuming she can participate
either passively or actively in protocol executions with either or both the prover
and the verifier. This means that the adversary can both eavesdrop protocol ex-
ecutions between the legitimate prover and the verifier (passive attack), and be
involved in protocol executions with the verifier and the legitimate prover sepa-
rately or simultaneously (active attack). We assume that neither the prover nor
the verifier colludes with the adversary, i.e., the only information the adversary
can obtain from the prover or the verifier is through protocol executions.

3.2 Protocol Description and Initialization

The protocol we describe in this section may, for certain RFID applications,
require too much memory. Nevertheless, to simplify the exposition, we present
and analyze this version of the protocol and later (Section 5) provide a twist
that allows to drastically reduce the memory requirement while not affecting
the security of the protocol.

The protocol consists of a ‘slow’ authentication phase followed by a ‘fast’
proximity check phase. Both phases have their own security parameters: m (cre-
dential size) for the authentication and n (number of rounds) for the proximity
check.

Initialization. Prior to the protocol execution, the legitimate prover and the
verifier agree on the security parameters m and n and a common secret key k.
4 To the best of our knowledge, distance bounding protocol haven’t been implemented

yet.
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Authentication. The verifier first sends a random nonce Na to the prover, in
the form of a bit string. The prover then generates a random nonce Nb and,
based on Na and Nb, computes a keyed-hash value Hk(Na, Nb) whose output
size is at least m + 2n+1 − 2 bits. The prover sends to the verifier both Nb and
[Hk(Na, Nb)]m1 , which denotes the first m bits of Hk(Na, Nb). (The length of the
bit strings Na and Nb is discussed in Section 4.)

Verifier Prover
(secret k) (secret k)

Random Na
Na−−−−−−−−−−−−−−→

Compute Hk(Na, Nb)
Nb,[Hk(Na,Nb)]m1←−−−−−−−−−−−−− Random Nb, Compute Hk(Na, Nb)

Start of fast phase
for i = 1 to n

Random Ci ∈ {0, 1}
Start Clock

Ci−−−−−−−−→
Ri := Node(C1 . . . Ci)

Stop Clock
Ri←−−−−−−−−

Check correctness of
Ri’s and Δti ≤ Δtmax

End of fast phase

Fig. 3. Tree-based RFID distance bounding protocol

Proximity check. Using the subsequent 2n+1 − 2 bits of the hash value
Hk(Na, Nb), denoted [Hk(Na, Nb)]m+2n+1−2

m+1 , the prover and the verifier label
a full binary tree of of depth n as follows (see Figure 4 for an example). The left
and the right edges are labeled 0 and 1, respectively, and each node (except the
root) is associated with the value of a particular bit in [Hk(Na, Nb)]m+2n+1−2

m+1 in
a one-to-one fashion.5

An n-round fast bit exchange between the verifier and the prover proceeds
using the tree: the edge and the node values represent the verifier’s challenges
and the prover’s replies, respectively. At each step i ∈ {1, 2, . . . , n} the verifier
generates a challenge in the form of a random bit Ci and sends it to the prover.
The prover replies Ri = Node(C1 . . . Ci), the value of the node in the tree whose
edge path from the root is C1, C2, . . . , Ci.

5 To do this one can sequentially assign the bit values of [Hk(Na, Nb)]m+2n+1−2
m+1 to all

the nodes of the tree by starting with the lowest level nodes, moving left to right,
and moving up in the tree after assigning all the nodes of the current level.
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In the example illustrated by Figure 4, the verifier always replies 0 in the
second round unless the first and the second challenges are equal to 1 in which
case the verifier replies 1, i.e., Node(00) = Node(01) = Node(10) = 0 and
Node(11) = 1.

Finally, for all i ∈ {1, 2, . . . , n}, the verifier measures the time interval Δti
between the instant Ci is sent until Ri is received.
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0 10 0
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Fig. 4. Decision tree with n = 3. The thick line path in the tree corresponds to the
verifier’s challenges 0, 1, 0 and the prover’s replies 1, 0, 0.

Final decision. The verifier accepts the prover’s identity only if the m authen-
tication bits are correct and if the n replies of the fast phase are correct while
meeting the time constraint of the form Δti ≤ Δtmax, i ∈ {1, 2, . . . , n}. A typical
threshold value for Δtmax is 2d/c, where d denotes the distance from the verifier
to the expected position of the prover and where c denotes the speed of light.

4 Security Analysis

Protocols belonging to the HK family do not distinguish authentication from
proximity check, which means that the security level of the proximity check is
as high as the authentication one, in other words the credential parameter m
is equal to the number of fast phase rounds n. While m = 64 is a realistic
assumption,6 n = 64 seems to be unpracticable due to the limited transaction
time and because a proximity check over many bits seems already a practical
challenge. In our protocol, authentication and proximity check are distinct. We
can keep m = 64 while choosing a smaller n. A conservative value for the nonces’
lengths is |Na| = |Nb| = m = 64 bits.

We analyze our protocol by considering two cases, depending on whether or
not the legitimate prover is reachable during the attack.

4.1 Attack in the Absence of a Legitimate Prover

The case where the legitimate prover is unreachable right during the attack
is similar to the classical cryptographic model. To succeed the adversary must
pass both the authentication and the proximity check, without knowing the
6 Note that attacks cannot be performed off-line.
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secret key. Since the hash function Hk is supposed to be cryptographically
secure, we can consider that [Hk(Na, Nb)]m1 provides no information about
[Hk(Na, Nb)]m+2n+1−2

m+1 , i.e., the authentication reveals nothing about the prox-
imity check and vice versa. The protocol thus achieves the same security level
as any challenge-response protocol whose credential size is m + n bits.

4.2 Attack in the Presence of a Legitimate Prover

When the legitimate prover is reachable during the attack, the adversary can
execute a Mafia fraud in order to successfully pass the authentication step. The
FAR is then computed as follows.

Due to the time constraint, the adversary cannot usefully relay information
between the verifier and the prover during the fast phase without being detected;
the adversary’s reply at time i must be independent of the verifier’s challenge
at time i, for any i ∈ {1, 2, . . . , n}. However, there is no time measure before
the fast phase, which allows the adversary to query the legitimate prover with
one sequence of challenges C̃n 
 C̃1 . . . C̃n, hoping these will correspond to the
challenges Cn 
 C1 . . . Cn provided by the verifier during the fast phase.

Since the probability of false acceptance is the same given any C̃n, without
loss of generality we assume that the adversary queries the prover with the all-
zero sequence, i.e., C̃n = 0n. The adversary is then successful only if R̃i = Ri

for all i ∈ {1, 2, . . . , n}, where R̃i denotes the adversary’s reply at time i.
Letting t be the first time i ≥ 1 when Ci = 1, we have that R̃i = Ri for

i ∈ {1, 2, . . . , t − 1}, and R̃i = Ri with probability 1/2 for i ∈ {t, t + 1, . . . , n},
because the adversary can still try her chance by sending random replies once
Ci = 1 is observed. Therefore, letting Rn = R1, R2, . . . , Rn, the probability of a
successful attack over one particular protocol execution can be computed as

Pr(R̃n = Rn) =
n∑

i=1

Pr(R̃n = Rn|t = i) Pr(t = i)

+ Pr(R̃n = Rn|Cn = 0n) Pr(Cn = 0n)

=
n∑

i=1

2−(n−i+1)2−i + 2−n

= 2−n(n/2 + 1) .

5 Multiple Trees: Balancing FAR and Memory
Requirement

The second phase of the protocol is memory consuming; for n fast phase rounds
we need to store

2n+1 − 2

bits. We now provide a means to drastically reduce this memory requirement by
means of multiple trees.
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Consider a fast phase based on α small trees of depth k, rather than based
on a single large tree of depth n = αk. The fast phase proceeds in the same
way than described in Section 3.2 except that now the verifier accepts a proof
of identity only if the k replies of each of the α trees are correct. Using multiple
trees requires to store

α(2k+1 − 2) (1)

bits for the fast phase and the FAR guaranteed by the proximity check equals
to (

2−k (k/2 + 1)
)α

. (2)

It is easily seen that the use of multiple trees in place of a single tree reduces
the storage requirements at the expense of the false-acceptance rate. In general,
among all pairs (α, k) that achieve a targeted probability of false-authentication
in the presence of active attacks, one may want to pick the pair for which α is
maximal so that to reduce the storage requirement. When α = 1 and k = n
(single tree case), the storage requirement is maximal and the probability of
false-acceptance is minimal. At the other extreme, when α = n and k = 1, the
fast phase of our protocol corresponds to the Hancke and Kuhn protocol [10].
The storage requirement is minimal, equal to 2n, and the probability of false-
acceptance is maximal, i.e., (3/4)n. Finally note that, in order for the FAR of
the proximity check to decay as (1/2)n instead of (3/4)n, it is necessary and
sufficient that k is a growing function of n.7 Letting, for instance, k = log2 n and
α = n/ log2 n, the storage requirement becomes

2n2

log2 n
(1 − 1/n)

which is already a huge improvement compared to the single tree case (2n+1−2)
for n ≥ 2.

The key in reducing the FAR from (3/4)n, given by the Hancke and Kuhn
protocol, to (1/2)n lies in the dependencies of the answers provided by the prover.
In the Hancke and Kuhn protocol, the reply at time i is only a function of the ith
challenge. When using trees, the ith reply potentially also depends on challenges
that are posterior to the ith challenge, making it less likely for an adversary to
succeed. Interestingly, the past dependency for each reply need only be ‘mild’:
to achieve 2−n it is sufficient to consider many trees each of small depth log2(n),
i.e., each reply depends at most on the last log2(n) challenges. As a consequence,
the storage requirement can be maintained low; the storage requirement grows
7 More precisely, when k is a growing function of n, the exponential rate at which the

FAR decreases with respect to n approaches one as n grows, i.e.,

− 1
n

log2(FAR)

tends to 1 as n tends to infinity.
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quadratically with n instead of exponentially as in the single tree case. The
bottom line is that the use of multiple trees allows to drastically reduce the
storage requirement without penalizing the false-acceptance rate.

As a numerical example, to achieve a FAR of 0.01% in the presence of Mafia
frauds, the Hancke and Kuhn protocol requires 32 rounds, the Brands and
Chaum 14 rounds, and ours 17 rounds (single tree). With these parameters,
our protocol allows to reduce the FAR down to 0.01% ·2−m (m is typically equal
to 64 or 128.) with respect to non-Mafia types of attacks, in contrast with the
Hancke and Kuhn and the Brands and Chaum protocols.

For our protocol, the use of a single tree of depth 17 necessitates 32 Kbytes of
memory, but a FAR of 0.01% in the presence of Mafia frauds can also be obtained
by using two trees each of depth 9 (yielding 18 fast phase rounds). This decreases
the needed memory down to 256 bytes (0.25 Kbytes). For comparison, a typical
chip for ePassports contains roughly 40Kbytes of EEPROM and 6Kbytes of
RAM.

6 Computation

Note that only one step of the protocol involves computation, the hash value. In
particular, the labeling of the nodes involves no computation, and selectors can
efficiently be implemented in wired logic to directly access these values.

Tags that include a microprocessor usually embed a hash function — this is
for example mandatory for tags compliant with DOC 9303 [7] which imposes
SHA-1. Note that some tags, e.g., Oberthur ID-One EPass 64 [23], implement
even the SHA-256 hash function.

Tags without microprocessor usually do not implement a standardized hash
function. Instead, a symmetric cipher is available, which can be either a stream
cipher or a block cipher. The cipher can then be the building block of a hash
function [24]. We note that in 2004, Feldhofer, Dominikus, and Wolkerstorfer [25]
proposed a lightweight implementation of AES in less than 4 000 logic gates, en-
abling its implementation with wired logic only. We are not aware of commercial
products using this implementation, though.

7 Concluding Remarks

The contribution of this paper consists in a low complexity tree-based RFID
distance bounding protocol that combines the advantages of the protocols be-
longing to the Brands and Chaum’s family with the advantages of the protocols
belonging to the Hancke and Kuhn’s family. In particular, it essentially achieves
the optimal false-acceptance probability in the presence of Mafia frauds and it
allows the verifier to make a rational decision even if the protocol does not end
properly. In contrast with previously proposed distance bounding protocols, the
security of the present protocol when the adversary can perform relay attacks
does not come at the expense of the security of the protocol when the adversary
cannot perform relay attacks. Our protocol achieves the same level of security
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with respect to non-Mafia type of attacks as common challenge-response authen-
tication protocols.

Our protocol is suited, in terms of memory and computation, to current RFID
tags designed for secure applications. It is so a solid candidate for environments
where on-the-fly authentication is needed while dealing with Mafia type of frauds,
e.g., in e-payment and public transportation.
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Abstract. In this work we utilize a physically unclonable function (PUF) to im-
prove resilience of authentication protocols to various types of compromise. As
an example application, we consider users who authenticate at an ATM using
their bank-issued PUF and a password. We present a scheme that is provably se-
cure and achieves strong security properties. In particular, we ensure that (i) the
user is unable to authenticate without her device; (ii) the device cannot be used
by someone else to successfully authenticate as the user; (iii) the device cannot
be duplicated (e.g., by a bank employee); (iv) an adversary with full access to
the bank’s personal and authentication records is unable to impersonate the user
even if he obtains access to the device before and/or after the setup; (v) the device
does not need to store any information. We also give an extension that endows the
solution with emergency capabilities: if a user is coerced into opening her secrets
and giving the coercer full access to the device, she gives the coercer alternative
secrets whose use notifies the bank of the coercion in such a way that the coercer
is unable to distinguish between emergency and normal operation of the protocol.

1 Introduction

Recent work has demonstrated the existence and practicality of physically unclonable
functions (PUFs), but many of their security implications remain to be explored. PUFs
have both advantages and limitations compared to more traditional security devices.
E.g., compared to a smartcard, a PUF has the advantage that it cannot be cracked and
its secrets revealed, or replicated by an insider who has the blueprint. But unlike a
smartcard, one can no longer assume the convenient existence of multiple copies that
all contain the same key, nor can one assume any storage capacity within a device other
than the PUF functionality.

The focus of this work is authentication, where a physically unclonable function
(PUF) is used to provide superior resilience against various forms of compromise. A
PUF is a function that is tied to a device and cannot be reproduced on another device,
even another device from the same manufacturing batch. That is, a PUF is computed
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using unique physical characteristics of the device, and any attempts to tamper with the
device change the behavior of the device and therefore destroy the PUF. This function
is often assumed to be evaluated on a challenge c which is sent to the device. Upon
receiving c, the response is computed as r = PUF(c) and is assumed to be unpredictable
to anyone without access to the device. Schemes exist for using in different contexts
(e.g., for protection of intellectual property and authentication), where the inability to
clone the function improves the properties of a solution.

Here we use PUFs for authentication in contexts such as bank ATMs, through the
use of a device with a built-in PUF. The ATM communicates with the bank to establish
authenticity of the user before any transaction. We are able to achieve strong security
properties which are not simultaneously achieved by previous protocols. In particular,
our protocol provably has the following properties (in the random oracle model):

– a user is unable to successfully authenticate without her device;
– a stolen device cannot be used to authenticate as the user;
– the device functionality cannot be duplicated (e.g., by an employee of the bank even

if that employee has access to the card);
– an adversary with full access to the bank’s data with user information and authen-

tication records is unable to impersonate the user even if she obtains access to the
device before and/or after the account is setup.

Furthermore, our design requirements are to avoid placing any sensitive information
on the device, to eliminate any possibility of data compromise (i.e., the PUF, which
measures a physical characteristic of the device, will be destroyed in the event of tam-
pering with the device, while the data stored on the device might not be erased). In fact,
our protocols do not require the device to store any information not related to the PUF
functionality, which introduces a challenge in the protocol design.

Our Contributions

1. We provide a protocol for one-factor authentication with PUFs (Section 4.1). It
provides only a weak form of security in that to authenticate the adversary needs to
have had physical access to the PUF at some point in time. One limitation of this
protocol (and any one-factor “what you have” authentication mechanism) is that in
order to impersonate a user, the adversary only needs physical access to the device.

2. We provide a stronger protocol for two-factor authentication that combines PUFs
with passwords (Section 4.2). The adversary must have had access to the PUF and
to the user’s password in order to impersonate the user, even if the adversary has
compromised the bank’s servers. A unique feature of this protocol is that the pass-
word is not stored in either the PUF or the bank, but is integrated into the PUF
challenge, and thus in order to perform a dictionary attack one must have physical
access to the PUF.

3. One limitation of the previous schemes is that an adversary can clone the PUF in
software by having physical access to the PUF. That is, the adversary can obtain the
PUFs response to a challenge, and then build a piece of software that impersonates
the user. To mitigate this software cloning attack, we introduce a protocol which
requires the authenticator to currently have physical access to the PUF in order to
authenticate (Section 4.3). This protocol requires a stronger assumption than those
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required by the previous schemes: We assume an integrated PUF (or computational
PUF) where the device performs some computation with the PUF.

4. We give an extension which additionally improves robustness of the protocol when
a user is coerced into giving her device and secret data (e.g., her password), which
permits an adversary to authenticate on behalf of the user. We provide a mechanism
for a user to give a false secret to the coercer that will lead to successful authenti-
cation, but will trigger an alarm at the bank. Solutions of this type are common in
physical security systems, but do not appear in cryptographic protocols1.

2 Related Work

Existing literature on PUF-based authentication is not extensive and can be divided
into three categories: (i) implementation-based publications that consider the feasibility
of reliably computing a PUF response to a challenge; (ii) PUF-based authentication
for IP (intellectual property) protection; and (iii) enhancing properties of lightweight
authentication solutions using PUF.

Publications from the first category include [2,3] and others and are complemen-
tary to our work. They also provide support for using public-key cryptography with
PUF-based authentication. Publications from the second category (e.g., [4,5,6]) are
also largely implementation-based, often implementing existing authentication proto-
cols for reconfigurable FPGA and are not suitable for our purposes. The last category
covers PUF-based protocols for RFID (Radio-frequency identification) systems [7,8,9]
and human protocols HB [10,11]. The RFID publications are implementation-based re-
alizing simple authentication constructions. Recent results [10,11] strengthen the HB
protocol by using PUFs and are not suitable in our context (i.e., do not achieve the
properties we seek).

Authentication protocols based on smart-cards can also be viewed as related to our
framework. However, the nature of PUF-based authentication places unique require-
ments: For a smartcard protocol to fit our model, the smartcard must implement a PUF
and have no other information stored, yet satisfy our security requirements – there are
no such previous smartcard protocols.

Multi-factor authentication protocols, which often use a password and a mobile de-
vice, have been explored in prior literature (see, e.g., [12,13,14,15] among others – some
have insufficient security analysis). Resilience to user impersonation in the event of
database compromise (the “insider threat”), however, is not considered and not achieved
in previous work. In our case both factors (i.e., the user password and the token) are in-
accessible to the server in their plain form, so that an insider with full access to the
server is unable to recover either of them.

Boyen [16] uses biometrics and fuzzy extractors (i.e., biometric-based key deriva-
tion) to provide zero-storage authentication that achieves insider security. Our solution
then can be viewed as an authentication mechanism with similar security properties, but
which is based on a different technique and type of device (instead of using a device
that captures biometrics) and additionally includes passwords as the second security

1 The only publication on panic passwords in computer systems we are aware of is [1] that treats
the general framework of panic passwords and is discussed later in this section.
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factor. Note that we desire the same level of security even when the PUF is misused
(by either a bank employee who temporarily gets access to the PUF or the user her-
self). This means that, to ensure that the device is present during each authentication
session, we would like to make the raw information output of a PUF inaccessible to the
user and use computational capabilities of a PUF. This problem is not a threat in case
of biometric-based authentication, when the user is interested in erasing her personal
biometric data output by the device and used in the protocol.

Recent work of Clark and Hengartner [1] defines the framework for panic passwords,
where any user has a regular password and another, panic, password which can be used
when the user is coerced into giving her password to the adversary. They define the
adversarial model in terms of the response the user receives from the authenticator
upon using a panic password, and goals/capabilities of the adversary. Our solution was
designed independently of this recent model, but in section 5 we briefly discuss how it
fits the Clark-Hengartner framework.

3 Security Model

3.1 Problem Description

There are three principal entities: server S (or another entity authenticating the user
on behalf of the server), user U, and device D. Before authentication can take place,
the user obtains a device with a PUF built into it and participates in the registration or
enrollment protocol with the server. Once the registration is complete, the user will be
able to authenticate with the help of the device. Thus, we specify two procedures:

Enroll: is a protocol between S and U, where the user U registers with the server with
the aid of D. If enrollment is successful, the server obtains and stores a token credU
that can be used in subsequent authentications.

Auth: is a protocol between S and U, where U uses D and S uses its stored credentials
credU to make its decision to either accept or reject the user.

3.2 Modeling PUFs

Prior literature does not contain a lot of cryptographic constructions where PUFs are
used in a provably secure scheme. We are aware of the following uses of such functions.
In what follows, we will generically refer to the entity trying to authenticate (i.e., user,
device, tag, etc.) as a client and to the entity verifying authentication as a server.

1. Straightforward authentication. This is the most common form found in the PUF
literature, where the server sends a challenge c and the client responds with r =
PUF(c). At the enrollment phase, the server stores n challenges c1, . . .,cn and their
corresponding responses r1, . . .,rn for each client. During authentication, the client
is challenged on one of the ci’s at random and that (ci,ri) is removed from the
database. If the server runs out of challenge-response pairs (CRPs), there are pro-
tocols for updating the server’s database with new CRPs [17].

2. PUF as a random oracle. Modeling a PUF as a random oracle (as in [8]) might be
unnecessary if the full features of the random oracle model are not used.
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3. PUF as a computable function. Hammouri and Sunar [10] define a delay-based
PUF that can be represented using a linear inequality. This means that the server
does not need to store CRPs, but instead can compute the expected responses. While
it might be possible to model the specific PUF used in the above paper, for general
functions it is commonly assumed that the function cannot be modeled and its be-
havior cannot be predicted by any entity without physical access to it.

4. PUF in previously published identification protocols. Some papers gave implemen-
tations where a PUF response is used as a part of known identification protocols.
E.g., Tuys and Batina [7] use PUFs in Schnorr’s identification protocol, where the
user’s secret key is set to be PUF’s response to a challenge. Similarly, Batina et
al. [9] use Okamoto identification protocol with PUF-derived secrets. We, however,
aim to design a PUF-based protocol specific to our security goals.

As in the previous PUF literature, we make the standard assumption that, without hav-
ing the physical device, the behavior of a PUF is impossible to predict. Let PUF be a
function PUF : {0,1}κ1 →{0,1}κ2 that on input of length κ1 produces a string of length
κ2. Before giving the definition, let us first define the following PUF response game:

Phase 1: Adversary A requests and gets the PUF response ri for any ci of its choice.

Challenge: A chooses a challenge c that it has not queried thus far.

Phase 2: A is allowed to query the PUF for challenges other than c.

Response: Eventually, A outputs its guess for r′ for PUF’s response to r = PUF(c).

A wins if r = r′. Let Advpu f
A (κ2) = Pr[r = r′] denote the probability of A winning.

Under different conditions and in different environments, PUF responses to the same
challenge can contain noise resulting in non-perfect match. We measure such noise in
terms of hamming distance between two binary strings x1 and x2 of equal length κ, i.e.,
dist(x1,x2) is the number of positions such that ith bit of x1 is different from the ith bit
of x2. In what follows, let Uκ denote the set of strings chosen uniformly at random from
{0,1}κ. Now we are ready to define a PUF:

Definition 1. A physically unclonable function PUFD : {0,1}κ1 → {0,1}κ2 bound to a
device D is a function with the following properties:

1. Efficient: PUFD is easy to evaluate;
2. Hard to characterize: for any probabilistic polynomial time (PPT) adversary A ,

Advpu f
A (κ2) is negligible in κ2;

3. Bounded noise: in a wide variety of environments, the distance between two re-
sponses from PUFD on the same challenge is at most t, e.g., Pr[dist(y,z) > t | x ←
Uκ1 ,y ← PUFD(x),z ← PUFD(x)]≤ ε1 for a negligibly small ε1;

4. Unique: the PUFD is unique for each D (even those from the same manufactur-
ing batch), e.g., for any other function PUFD′ , Pr[dist(y,z) ≤ t | x ← Uκ1 ,y ←
PUFD(x),z ← PUFD′(x)] ≤ ε2 for sufficiently small ε2.

We call such a function a (t,ε1,ε2) PUF (i.e., ε1 and ε2 are false rejection rate and
false acceptance rate, respectively). Some of our constructions furthermore assume that
a PUF is inseparatable from the device to which it is bound, i.e., our latter schemes
make the strong assumption that the device (circuit) can do computation based on PUF
responses. More specifically:
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Definition 2. An integrated PUF (I-PUF) has the following additional properties:

1. It is bound to the chip – any attempt to remove it changes its behavior.
2. Its communication with the chip cannot be accessed from outside the chip.
3. The output of the PUF cannot be accessed.

I-PUFs have been used in prior literature (see, e.g., [7]), and the best known examples
of them are silicon PUFs [17] and coating PUFs [18].

Because the output of a PUF is noisy, PUF-based authentication must either tolerate
a certain threshold of errors at the protocol level or implement a mechanism for correct-
ing the errors prior to using the response of the PUF. We choose the second option. Prior
literature [7,6] already contains examples of using functions such as fuzzy extractors to
remove the noise and extract responses that are close to uniform. Fuzzy extractors [19]
can be defined for different metric spaces, and throughout this work we will assume
we are dealing only with Hamming distance as the distance metric. The definition fur-
thermore assumes a sufficient amount of uncertainty of the noisy string from which a
random string is being extracted, defined in terms of min-entropy m (see [19] for more
precise definitions). The construction generates a public helper string P that permits
correction of errors and reconstruction of the extracted string and ensures that, even
after releasing P, the statistical distance between the extracted string and a uniformly
chosen string of the same length is less than a (negligibly small) threshold ε (likewise,
we refer the reader to [19] for precise definitions).

Definition 3 ([19]). An (m, �,t,ε) fuzzy extractor is given by procedures Gen and Rep:

Gen: is a probabilistic algorithm that on input W outputs a string R ∈ {0,1}� and a
helper string P, such that for any distribution of W with min-entropy m, if (R,P)←
Gen(W ), then the statistical difference between (R,P) and (U�,R) is at most ε.

Rep: is a deterministic algorithm that, given P and W ′ such that dist(W,W ′)≤ t, allows
to exactly reproduce R: if (R,P)← Gen(W ), then Rep(W ′,P) = R.

Our discussion does not necessitate the details of fuzzy extractors, as we refer to them
only at a high level. They make possible the construction of an exact I-PUF having
(t,ε1,ε2) PUF : {0,1}κ1 → {0,1}κ2 such that:

1. An I-PUF bound to device D is associated with a (m, �,t,ε3) fuzzy extractor
(Gen,Rep), where Gen, Rep, and PUFD are efficient procedures.

2. During the enrollment phase, given a challenge c, I-PUF computes (R,P) ←
Gen(r), where r ← PUFD(c) and outputs P.

3. In a wide variety of environments, given a pair (c,P) where c ← Uκ1 and P was
produced by Gen(PUFD(c)), the exact extracted string can be recovered: Pr[x �=
y | x ← Rep(PUFD(c),P),y ← Rep(PUFD(c),P)] ≤ ε1.

4. Any PPT adversary A cannot distinguish I-PUF’s output from a random value with
more than a negligible probability, i.e., Advpu f -ind

A (�)≤ ε3 as defined below.

The last property can be viewed as a decisional version of the PUF response game,
which we call PUF response indistinguishability game and it is defined as follows:

Enroll: A executes the enrollment phase on any values ci of its choice receiving the
corresponding Pi values from the PUF. Let CP be the set of these (ci,Pi) pairs.
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Phase 1: A requests and receives PUF response Ri for any (ci,Pi) ∈CP of its choice.

Challenge: A chooses a challenge c that it queried in Enroll phase but not in Phase 1.
A random bit b is chosen. If b = 0, A receives R = Rep(PUFD(c),P) where (c,P)∈CP,
otherwise it receives a string uniformly chosen from from {0,1}�.

Phase 2: A is allowed to query the PUF for challenges in CP other than (c,P).
Response: Eventually, A outputs a bit b′.

A wins if b = b′. Let Advpu f -ind
A (�) = Pr[b = b′] denote the probability of A winning

the game. We assume that Advpu f -ind
A (�)−1/2 is negligible 2.

In addition to the above properties, as before, we have that two I-PUFs will produce
the same output on a (c,P) pair with probability at most ε2. Finally, our protocols rest
on the difficulty of the discrete logarithm in certain groups. That is, we assume that any
PPT adversary A , when given group G of large order q, group generator g, and element
gx for some x ∈ Zq, has a negligible change in outputting x.

3.3 Security Requirements

We place strict security requirements on the authentication process to achieve a solu-
tion robust to various types of misuse. In particular, we target to achieve the following
properties beyond the traditional infeasibility to impersonate a user:

– Authentication by an adversary is not successful even with the possession of the
device. Here we assume a powerful adversary who has access to all stored infor-
mation at the server’s side, including all information stored by the server during the
enrollment phase such as recorded (c,P) pairs for the device and other user’s infor-
mation credU , as well as information belonging to other users. This strong notion of
security is necessary in realistic scenarios, when, for example, the device originally
resides with a bank, is consequently issued to a user, and a bank employee might
later temporarily get access to the device and attempt to impersonate the user.

– Authentication by an honest user without the device is not successful with more
than a negligible probability. This is important because, if this property holds, it
is equivalent to a strong form of unclonability, i.e., even if an adversary knows all
bank and user information, it cannot create a clone of the device in question. This
adds resilience to a “what you have” form of authentication, because it guarantees
that one must have the device during a successful login.

The use of I-PUFs ensures that the device cannot be duplicated or cloned, and tampering
with the PUF effectively makes it unusable. Thus, the above requirements guarantee that
both the original device and the user must be present at the time of authentication for
authentication to succeed (except with negligible probability).

Furthermore, to ensure that tampering with the device does not reveal any sensitive
information, our design stores no such information on the device. In fact we assume
that the device does not store any information at all, and can be used for authentication
with a number of servers. Thus, all necessary information is provided as input to the
device, which makes the design of the protocols particularly challenging in presence of
adversaries who can query the device’s response on various inputs.

2 We assume the PUF is built with a security parameter that allows tuning this probability.
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4 Schemes

4.1 Preliminary Scheme

In this section we introduce a scheme that does not satisfy the security criteria, but that is
a warm-up to the later schemes that do. In this and subsequent solutions we assume that
the server S sets up and announces a group Gq of prime order q, in which the discrete
logarithm problem is hard, and its generator g. That is, Gq could be a subgroup of the
multiplicative group Z∗

p for a prime p. We assume either that the PUF is constructed to
use Gq or the user submits the group to the PUF whenever it queries the PUF3

The authentication protocol given below uses a zero-knowledge proof of knowledge
(ZKPK) of discrete logarithm. In a nutshell, a ZKPK of a discrete logarithm y to the
base g allows the prover to convince the verifier that she knows x such that y = gx

without revealing any information about x. Because standard and well-known solutions
for several discrete logarithm based ZKPKs exist, we do not list their details in this
work and refer the reader to, e.g., [20].

Enroll :
1. Server S sends challenge c to user U.
2. U sends c to device D for Gen protocol.
3. D sends to U (r,P).
4. U sends (gr,P) to S who stores the information along with c.

Auth :
1. S sends challenge (c,P) to the user U.
2. U sends (c,P) to device D for Rep protocol.
3. D sends r to U.
4. U and S engage in a ZKPK of discrete logarithm gr to the base g.

Clearly, the above scheme does not satisfy either authentication goal. That is, if the
adversary has access to the device and knows the server’s challenge, then it can obtain
the response and can impersonate the user without the device.

4.2 Preliminary Scheme Revisited

The problem with the previous scheme is that having the PUF (at any point in time)
allows an adversary to impersonate the user. In this section we modify the previous
scheme by adding a user password (and thus the adversary must have the device and
guess the user’s password). The password is integrated into the Enroll and Auth protocols
so that the password is necessary to do authentication. Furthermore, the password is not
stored anywhere. This prevents an adversary from being able to login in to the protocol
even if it has the device. While this scheme still does not require that the user have
the device, it does prevent a malicious outsider from impersonating the user (assuming
that the user can choose a strong password). In what follows, H : {0,1}∗ → Zq is a
cryptographic hash function and || denotes concatenation of strings.

3 To prevent tampering with this value the PUF could take the hash of the description of this
group with the challenge to form a modified challenge which it then responds to. So as not to
clutter the exposition we have omitted this step from our scheme.
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Note that in this scheme the password is bound to the PUF-challenge in order to get
the PUF-response. Thus the password is not really stored anywhere, and thus in order
to perform a dictionary attack the adversary must have physical access to the PUF.

Enroll :
1. Server S sends challenge c to user U.
2. U sends H(c||pwd), where pwd is the password, to device D for Gen protocol.
3. Device D sends (r,P) to U..
4. U sends (gr,P) to server S who stores the information along with c.

Auth :
1. Server S sends challenge c and P to the user U.
2. User sends (H(c||pwd),P) to device D for Rep protocol.
3. D sends r to U.
4. User U and server S engage is ZKPK of discrete logarithm for gr to the base g.

At a high level, this scheme requires that the adversary enter the user’s password in
order to the actual challenge sent to the PUF, thus this prevents an adversary with the
PUF from being able to find the response r.

The proof of security of this approach has two parts. First, it is shown that if the
response is generated independently from the PUF then breaking the above authenti-
cation scheme implies that the discrete log problem can be solved. Thus this implies
(assuming discrete log problem is hard) that a computationally-bounded adversary has
a negligible success probability (in the security parameter for the size of the prime q) in
breaking the above scheme. The second part of the proof shows that if A can break the
scheme with non-negligible probability when a real PUF is used, then this could be used
to win the PUF response indistinguishability game with non-negligible probability. In
other words, to determine if a specific response came from the PUF, the adversary uses
A and if A succeeds then we assume that we are dealing with a real PUF (because if
we are not the success probability is negligible).

Lemma 1. If H is a random oracle and there exists an adversary, A , that successfully
authenticates with the above authentication protocol with probability 1/p(|q|) when
given a randomly generated challenge (that is independent from the PUF), then A con-
tains a knowledge extractor that can solve the discrete log problem with non-negligible
probability (in the length of q).

Proof. Assume that such an adversary A exists, and that an adversary B is given a dis-
crete log problem instance g,q,gr and is given access to a PUF. B sends the challenge
cs,gr,P for a randomly chosen cs and P to A . To simulate H, B creates a set of tuples
HSET and initializes it by choosing a random password pwd and adding (cs||pwd,hs)
to HSET for a randomly chosen hs. When A queries H on a value x, B does the follow-
ing: If there is a tuple (x,y) already in HSET , it responds with y; otherwise, it chooses
a random r′, adds (x,r′) to HSET , and responds with r′. When A queries PUF with
(cA ,PA), B does the following: If cA = hs and PA = P, B outputs FAIL. Otherwise B
queries its PUF with (cA ,PA) and receives rA. B then sends to A the value rA.

It is straightforward to show that if B does not output FAIL, then the above view is
the same as the view when engaging in the protocol. In the following we show that: (i)
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B outputs FAIL with negligible probability, and (ii) if B does not output FAIL and A
succeeds with non-negligible probability, then B can use A to obtain r.

B outputs FAIL only when A asks for the PUF response for a challenge (d,P) and
d = hs. There are two situations: (i) A queries H on c||pwd or (ii) A does not query H
on cs||pwd. The first case implies that A knows pwd (which we assume is a negligible
event), and the second case corresponds to A randomly guessing hs which is negligible.
Thus, B outputs FAIL with negligible probability.

Now if B does not output FAIL and A can create a ZKPK of the discrete log of
gr, then by the properties of zero-knowledge, there must a be knowledge extractor for
A that produces the secret r. B uses this knowledge extractor to solve the discrete log
problem. Notice that if A succeeds then so does B , and therefore assuming discrete log
problem is hard, an adversary A does not exist. 	
We now utilize the above lemma to show that an adversary cannot break the above
protocol if a real PUF is used (except with negligible probability). The lynchpin to
this argument is that if such an adversary exists, then this adversary could be used to
distinguish between a fake and real PUF, which violates the assumed security of the
PUF response indistinguishability game.

Theorem 1. Any polynomial-time adversary with access to the PUF (with security pa-
rameter �) and server information has a negligible probability of passing the authen-
tication protocol for a previously generated enrollment, assuming that H is a random
oracle, the discrete log problem is hard, and the passwords are chosen from a large
enough domain to make guessing the password succeed with negligible probability.

Proof. Assume that such an adversary A exists, we then use this as a black-box to
construct an adversary B for the PUF response indistinguishability game that succeeds
with non-negligible probability. B proceeds as follows: it chooses a random challenge
value cs and a random password pwd. It computes c′ = H(cs||pwd) and chooses c′ as
its challenge. B then receives a pair (r,P) where with probability 1/2 the value r is
PUFD(c) and is otherwise a randomly chosen value. B constructs server information
cs,gr,P and invokes the adversary A on these values while B provides oracle access
to the PUF and to the random oracle H in the exact same manner as in Lemma 1.
Eventually A will output a proof of knowledge. If this proof of knowledge is correct,
then B outputs 0; otherwise, B chooses a random guess for b′ and outputs this value.

We now analyze the probability Pr[b = b′]. Let F be the event the B outputs FAIL.
Since F was shown to be a negligible event in Lemma 1, we concentrate on Pr[b = b′|F ].
We condition it based on event b = 0 or b = 1, which gives us:

Pr[b = b′|F] =
1
2

Pr[b = b′|F ,b = 0]+
1
2

Pr[b = b′|F ,b = 1]

Let G be the event that A outputs a correct proof of knowledge. We condition both of
the above cases on G. In case of b = 1:

Pr[b = b′|F ,b = 1] = Pr[b = b′|F,b = 1,G]Pr[G|F,b = 1]+Pr[b = b′|F ,b = 1,G]Pr[G|F,b = 1].

Here, Pr[b = b′|F,b = 1,G] = 0, Pr[b = b′|F ,b = 1,G] = 1
2 , and Pr[G|F ,b = 1] is neg-

ligible (by Lemma 1). This gives us:
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Pr[b = b′|F ,b = 1] >
1
2
−neg2(�)

for some negligible function neg2. Next, let us consider b = 0, in which case we have:

Pr[b = b′|F ,b = 0] = Pr[b = b′|F,b = 0,G]Pr[G|F,b = 0]+Pr[b = b′|F ,b = 0,G]Pr[G|F,b = 0].

Here, Pr[b = b′|F ,b = 0,G]= 1, Pr[b = b′|F,b = 0,G] = 1
2 , and Pr[G|F ,b = 0] > 1

f (�) for
some polynomial f (this follows from our assumption that A breaks the authentication
with non-negligible probability). Putting all of this together, it is straightforward to
show that Pr[b = b′|F ,b = 0] > 1

2 + 1
h(�) for some polynomial h.

In summary, Pr[b = b′|F]− 1
2 is non-negligible, hence so is Pr[b = b′]− 1

2 . 	

4.3 Final Scheme

Here we present the final scheme, where any user is required to currently possess the
device in order to be able to successfully authenticate. The principal idea behind this
approach is that the device does not reveal the response r in any protocol. The device
produces only zero-knowledge proofs that it possesses the secret r. And since the proofs
are zero-knowledge an adversary cannot learn r by observing the device. Unlike the pre-
vious two protocols, this protocol assumes that the PUF can also perform computation.

Enroll :
1. Server S sends challenge c to user U along with description of the group Gq, de-

noted by 〈Gq〉 and which could consists of a pair (p,q), and its generator g.
2. User U sends H(c||pwd),〈Gq〉,g, where pwd is a user password, to device D for

a modified Gen protocol.
3. Device D calculates a challenge d = H(H(c||pwd),〈Gq〉,g) and runs Gen on this

value to obtain response r,P. D then sends to the user (gr,P).
4. User forwards (gr,P) to server S , which stores the information along with

c,g,〈Gq〉.
Auth :
1. Server S sends challenge c,〈Gq〉,g,P, and a nonce N to the user U.
2. U sends (H(c||pwd),〈Gq〉,g,P,N) to device D for Rep protocol.
3. Device D calculates a challenge d = H(H(c||pwd),g, p) and runs Rep on this value

to obtain response r. D chooses a random value v ∈ Zq and calculates t = gv. D
then calculates c′ = H(g,gr,t,N) and w = v− c′r mod q, and sends c′,w to the U.

4. User U sends these values to the server S . S calculates t ′ = gwgrc′ and accepts the
authentication if c′ = H(g,gr, t ′,N), and otherwise rejects the value.

What is implicit in this and previous schemes is the step where the user provides its
account number or some other identifying information that permits the server to locate
the user’s record with the corresponding helper data P and authentication verification
information. What form this account information takes is not essential in our solution,
and different mechanisms would be acceptable. For example, since we assume that the
device does not store information permanently, the account number can be computed at
the user side as a function of the user’s identity and the bank name.
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We first show security of a simpler (but very similar) system that uses an oracle.
In this system, the oracle is initialized by obtaining the group setup 〈Gq〉 and g, after
which it chooses a random value r and publishes gr. This operation is performed once,
and all consecutive interactions with the oracle will use the same value r. After the setup
stage, a user can query the oracle with a nonce N. On each query, the oracle chooses
a random value v ∈ Zq and calculates t = gv. It then computes c′ = H(g,gr,t,N) and
w = v− c′r mod q, and replies with c′,w to the querier. We denote this oracle by Oauth.

The difference between this system and the PUF-based system is that the value r is
randomly chosen (rather than produced by the PUF) and the system cannot be used for
authentications on different challenges c. Let an adversary be given black box access to
oracle Oauth and a challenge nonce N. The adversary is allowed to query the oracle on
all values except the challenge nonce. We now argue that, assuming that H is a random
oracle, the adversary cannot forge a proof for the nonce N to the challenger.

The core of the computation performed by the above oracle (and the device in our
Auth protocol) is basically a proof of knowledge of the exponent of gr to the base
g, where the proof uses a priori specified value of nonce N. The basic form of this
proof of knowledge was used in different authentication protocols, including the stan-
dard Schnorr identification protocol [21]. It is well known that in Schnorr’s protocol,
if an adversary can produce the proof with a non-negligible probability, then there is
a knowledge extractor that can produce r with non-negligible probability. That basic
argument is that t must be chosen before c′ and thus for a given value of t there must be
a non-negligible portion of c′ values for which an adversary can construct a proof. Fur-
thermore, if the adversary can construct two proofs for the same t value but different c′
values, then they can obtain r. We now argue that, if such a knowledge extractor exists,
then assuming the random oracle model, there is a polynomial time adversary that can
solve the discrete logarithm problem.

Lemma 2. Any polynomial-time user has at most negligible probability of success au-
thenticating in the above modified system with oracle Oauth.

Proof. Let A be a proof generator with oracle access to Oauth that succeeds in answering
the challenge for nonce N with non-negligible probability. Assume that algorithm B
with access to A is given a value gr and is asked to provide r. B provides A’s access
to random oracles H and Oauth and answers such queries as follows. Recall that in all
queries to Oauth the same g,gr are used.

1. B creates a list of values LOH that will store queries to Oauth and H. The list is
initially empty.

2. When A queries Oauth on a nonce value N, B does the following: it chooses a ran-
dom response w ∈ Zq and a random value c ∈ Zq. It sets t = gwgrc and then adds
the pair (t,N,c) to LOH ; but if there is already a tuple (t,N, ĉ) in LH , ĉ �= c, then B
outputs FAIL. It returns w,c to A.

3. When A queries H on (g,gr,t,N), B searches LOH for a value of the form (t,N,c)
for some c. If it exists, it responds with c. If not, B chooses a random value c, adds
(t,N,c) to LOH , and responds with c.

We first argue that B outputs FAIL with negligible probability. The only way it happens
is if, when answering a query to Oauth, the chosen value t is already in LOH . However, t
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will be a randomly chosen value in Gq and, since there are at most a polynomial number
of tuples in LOH , the probability of an overlap is negligible. Therefore, if A succeeds
with non-negligible probability, a knowledge extractor would exist that allows B to
obtain r. Thus, no such A exists, assuming the discrete logarithm problem is hard. 	
Now consider a challenger that provides an adversary with oracle access to a PUF.
The adversary queries a challenger with either Enroll or Auth queries. The challenger
answers all queries with the PUF. Eventually the adversary asks for a challenge and
is given c,〈Gq〉,g, and a nonce N. The adversary can then continue to ask Enroll and
Auth queries (but cannot ask for Auth on the specific nonce N and the specific chal-
lenge). The goal of the adversary is to be able to construct a response to the challenge
that would pass the authentication verification at the server. The adversary wins if the
authentication is successful.

Theorem 2. Any polynomial-time adversary without the proper I-PUF device is unable
to successfully authenticate with more than negligible probability in the Auth protocol.
Proof omitted due to page constraints.

5 Adding Emergency Capabilities

We would like to provide a user under duress with the possibility to lie about her secrets
in such a way that a “silent alarm” is triggered at the server. The coercer should be un-
able to distinguish between an authentication protocol with real password and one with
an emergency password; nor should it be detectable that the authentication protocol has
provisions for using different secrets. More precisely, we consider an adversary who can
record the user’s communication with the server during successful authentication proto-
cols, but does not have access to the communication between the user and the server at
the enrollment stage. The adversary then forces to the user to reveal all information the
user possesses in relation to authentication, including all secrets such as passwords, and
also obtains physical access to the user’s device. The adversary engages in an authenti-
cation protocol with the server on behalf of the user. We require that all information the
adversary observes with full access to the user-provided data and the device does not
allow it to distinguish its communication with the bank from the previously-recorded
communication of the user with more than negligible probability. This means that all
messages must follow exactly the same format and the distributions of data on different
executions are not distinguishable.

We next present a scheme that has this capability. Often the above problem of co-
ercion is addressed by letting the user choose two different passwords (or PINs), the
first for normal operation and second for emergencies (i.e., it also sets off an alarm).
This simple approach no longer works for PUFs because of the noisy nature of their
responses. That is, the server will need to send the appropriate helper data P prior to
knowing what password is being used; sending two helpers would be a tipoff to the co-
ercer. We solve this problem by splitting each password (real and false) in two parts: the
first part is identical in both passwords and it used by PUF to compute its challenge and
response. The second halves are different, but the PUF is not queried on their values.
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Enroll :
1. Server S sends challenge c to user U along with 〈Gq〉 and generator g of Gq.
2. User U sends c,〈Gq〉,g, pwd1, pwd2, pwd3, where pwdi’s are three user passwords,

to device D for a modified Gen protocol.
3. Device D calculates a challenge d = H(H(c||pwd1),〈Gq〉,g) and runs Gen on this

value to obtain response r,P. D then sends to the user (gH(r||pwd2),gH(r||pwd3),P).
4. User U forwards (gH(r||pwd2),gH(r||pwd3),P) to server S , which stores the informa-

tion along with c,g,〈Gq〉.
Auth :
1. Server S sends challenge c,〈Gq〉,g,P, and a nonce N to the user U.
2. U sends (c,〈Gq〉,g,P,N, pwd) to device D for Rep protocol, where pwd =

pwd1||pwd2 in a normal login and pwd = pwd1||pwd3 in an emergency login.
3. Device D splits pwd into two parts pwd′ and pwd′′. D then calculates its chal-

lenge d = H(H(c||pwd′),g, p) and runs Rep on this value to obtain response
r. D chooses a random value v ∈ Zq and calculates t = gv. D then calculates
c′ = H(g,gH(r,pwd′′),t,N) and w = v− c′H(r||pwd′′) mod q, and sends c′,w to the
U.

4. User U sends these values to the server S . S calculates t ′ = gwgH(r||pwd2)c′ and
accepts the authentication as normal if c′ = H(g,gH(r||pwd2),t,N). If this fails, then
S calculates t ′ = gwgH(r||pwd3)c′ and accepts the authentication as an emergency
login if c′ = H(g,gH(r||pwd3),t,N).

We now argue the coercer’s inability distinguish between normal and emergency ex-
ecutions. As stated earlier, the coercer can record U’s normal authentications prior
to coercion. The communication between U and S during Auth consists of values
(c,〈Gq〉,g,P,N,c′,w), where the first five are sent by the server as a challenge and the
last two are the user’s reply. Coercion gives the adversary the device D and user’s pass-
word pwd = pwd1||pwd3, that he then uses in the protocol. We now formally state (the
proof is omitted due to page constraints) that the adversary’s view of the protocol after
the coercion is indistinguishable from its view of previous invocations of the protocol
by the user.

Theorem 3. A polynomial-time coercer with access to private user data and I-PUF
has negligible probability of distinguishing between normal and emergency executions.

In the above solution, our goal was to provide an authentication mechanism where
the communication during the protocol upon use of emergency password cannot be
distinguished from normal communication, i.e., the observable response remains the
same regardless of what password is used. The actions taken by the server, however,
can be different depending on what password is used (e.g., in emergency, a silent alarm
can sound at the bank and the ATM can issue marked bills). The work of Clark and
Hengartner [1] ties the use of a panic password (or passwords) to the context in which
this functionality is used, as well as the goals and capabilities of the adversary. It is
assumed that the system design is open, in which case the adversary will be aware of
the emergency capabilities of the system. The adversary is also capable of forcing the
user to authenticate several times, possibly using different passwords. The adversary
thus can force the user to open all (regular and panic) passwords he has. In our case,
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the goals of the adversary can be to avoid detection (i.e., not trigger the alarm at the
bank) or escape with unmarked money (i.e., authenticate at least once with the regular
password). We refer the reader to [1] for more information on how such goals can be
achieved with one or more panic passwords. The goal of this section is to provide a
protocol to support emergency capabilities that can be combined with any policy the
system wants to employ in terms of how to use and respond to panic passwords.

One weakness of our protocol is that the adversary could force a user to reveal two
passwords, and then choose one of the passwords at random. Once the user reveals mul-
tiple passwords, the adversary would then either have a 50% chance of either catching
the user in a lie (if the user provided a bad password) or a 50% chance of using the
non-emergency password (if the user did not provide a bad password). We leave the
mitigation of this problem for future work.

6 Conclusions

In this work we describe authentication solutions based on a PUF device that provide
stronger security guarantees to the user than what previously could be achieved. In
particular, in our solution each user is issued a device that aids in authentication and
cannot be copied or cloned. We ensure that: (i) the device alone is not sufficient for
authenticating; (ii) the user must have the device in order to successfully authenticate;
(iii) anyone with complete access to the authentication data at the server side and the
device itself is still unable to impersonate the user (even if the access to the device is
possible prior to account setup). These guarantees hold in the random oracle model.

As another contribution of this work, we add protective mechanisms to the protocol
that allow institutions to quickly recognize attacks when a user is coerced into revealing
her secrets. We allow the user to have an alternative secret that triggers an alarm at the
corresponding institution, but allows for successful authentication in such a way that
the adversary is unable to distinguish between protocol executions that use the regular
and alternative secrets.

A future direction of research is to achieve similar results, but without the random
oracle model. More broadly, there is a need for a systematic investigation of the impli-
cations of PUFs for security functionalities other than authentication, such as fighting
piracy, policy enforcement, tamper-resistance, and anti-counterfeiting.
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Abstract. Microsoft has designed a user-centric identity metasystem
encompassing a suite of various protocols for identity management. Card-
Space is based on open standards, so that various applications can make
use of the identity metasystem, including, for example, Microsoft Internet
Explorer or Firefox (with some add-on). We therefore expect Microsoft’s
identity metasystem to become widely deployed on the Internet and a
popular target to attack. We examine the security of CardSpace against
today’s Internet threats and identify risks and attacks. The browser-
based CardSpace protocol does not prevent against replay of security
tokens. Users can be impersonated and are potential victims of iden-
tity theft. We demonstrate the practicability of the flaw by presenting a
proof of concept attack. Finally, we suggest several areas of improvement.

Keywords: CardSpace, identity management, analysis.

1 Introduction

Microsoft has introduced the CardSpace identity metasystem [1]. In essence,
CardSpace follows the line of identity management (for short, IM) protocols
(e.g. [2,3,4,5,6]). These protocols adapt the idea of Needham-Schroeder’s third
party model of authentication (for short, NS) to the Web, in which two players
wish to negotiate a shared secret and ask a trusted third party for assistance.
In the IM setting, the share is a security token containing the user’s identity
information (dubbed claims), such as email and shipping address. Whereas NS
protocols are self-contained, IM protocols are composite protocols: They are re-
stricted to standard Internet technologies and few browsing functionalities, such
as message parsing and cross-domain access control. These design constraints fit
into existing browser-server technologies. However, they also turned out to be a
security challenge for identity management.

Related Work. The literature of IM protocols is peppered with vulnerability
results. Kormann and Rubin [7] analyze CardSpace’s predecessor .NET Passport,
and disclose several risks and attacks. The authors demonstrate that the adver-
sary may steal the security token concealed in a ticket granting ticket cookie
by mounting DNS attacks. In their attack description, they assume that the

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 278–293, 2009.
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average user does not properly understand SSL and is probably not aware of
SSL certificates. Groß [8] analyzes SAML, an alternative identity management
protocol, and shows that the protocol is vulnerable to adaptive attacks. The ad-
versary intercepts the authentication token contained in the URL. Groß makes
use of the fact that browsers add the URL in the HTTP referrer tag when they
are redirected. Hence, a man-in-the-middle adversary signaling the browser to
redirect the request to a rogue server retrieves the authentication token from the
referrer tag. The previously described deficiencies in the SAML protocol have led
to a revised version of SAML. Groß and Pfitzmann analyze this version, again
finding the need for improvements [9]. Similar vulnerabilities have been found in
the analysis of the Liberty single sign on protocol [10]. Pfitzmann and Waidner
point out some weaknesses in presence of man-in-the-middle attacks.

Contributions. We analyze the security of CardSpace focusing our attention
on the browser-based protocols. These protocols have in common that the user
employs a commodity Web browser to participate in the protocol. This is the crux
with CardSpace. Attacks that contaminate the security of commodity browsers
carry over to CardSpace. We expose some security vulnerability in the way the
protocol is interfaced to distinguished browser functionalities and show that the
vulnerability is exploitable under reasonable assumptions. We describe an at-
tack where the security token is extracted from the protocol execution. This
is a crucial security problem. By replaying the token, the attacker may imper-
sonate the user and gain access to her services. In order to demonstrate not
only the feasibility, but also the attack’s practicability, we present a proof of
concept attack implementation. We discuss countermeasures in this work and
demonstrate that minor modifications to CardSpace achieve the desired protec-
tion against the identified risk. Our recommendations include (a) refinement of
the protocol by binding the CardSpace token to the underlying communication
channels, and (b) a strengthening of the browser security model by shaping a
cross-access policy to permit only authenticated players to retrieve the security
token. Both provisions are efficiently realizable and guarantee that no feasible
attacker replays the security token or injects malicious scripts into the hijacked
communication. We remark that our technique is independent of the underlying
protocol and therefore is valuable measure to protect any browser-based protocol
against SOP contamination and replay of credentials.

Organization. The remainder of this paper is organized as follows: In Section 2,
we briefly introduce and discuss the browser-based CardSpace protocol. In Sec-
tion 3, we describe risks and attacks of the protocol and present in Section 4
some countermeasures to fix the problem. In Section 5, we draw our conclusions.

2 Microsoft’s Identity Metasystem CardSpace

2.1 Roles and Interfaces

The CardSpace identity management protocol for browser-based protocols in-
volves the following participants:
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– The user is a subject who can have a digital identity and need to prove her
identity to a relying party in order to access some authorized services or
resources.

– The identity selector plays an important role in the whole CardSpace con-
cept. It is a user interface, which is used to manage a user’s InfoCards1 and
retrieve an associated security token from an identity provider. Technically,
the identity selector serves as browser plug-in and enhances the (crypto-
graphic) mechanisms of commodity browsers.

– Another user interface and active participant of the CardSpace protocol is
the client application. In this paper, it is a commodity Web browser that
interoperates with the identity selector. The browser mediates the messages
between the user, identity selector and the relying party.

– The identity provider provides a digital identity for a user and assures that
the user really is who she claims to be. An identity provider is commonly a
trusted third party who defines a user’s identity in the form of an InfoCard
and provides some security token services, which may issue the associated
security token on the fly.

– The relying party is a Web site or an application that in some way accepts
and relies on a digital identity from a user. A relying party provides some
resources or services, consumes an identity presented as claims and contained
in a security token to authenticate a user, and then makes an authorization
decision, such as allowing this user to access some of its resources or services.

Remark. The essential design difference between the Passport and related
browser-based identity management protocols is that CardSpace takes advan-
tages of an additional party, namely the identity selector. This selector consid-
erably improves the functionalities of commodity browsers in order to relieve
the user’s burden to make a wrong security discussion (see Section 3 for more
discussions). In essence, all the user has to do is to select an InfoCard. The
protocol complexity is shifted to the identity selector who performs the remain-
ing security tasks. Obviously, CardSpace’s design is in the spirit of the average
non-expert computer user. Nowadays, users are target to various attacks and it
is widely accepted that users are the weakest link in the identity system. Since
CardSpace can become an important player in the future Internet infrastruc-
ture it is important to provide a particularly robust solution against today’s
risks and threats, including attacks against the user. Apparently, CardSpace
strives to achieve this goal. Otherwise, there is no reason to move away from
the former 3-party model, which is realizable with arbitrary browser in arbitrary
location.

1 InfoCards are a concept introduced in CardSpace that is very similar to business
cards issued from identity providers. Roughly speaking, an InfoCard contains infor-
mation to locate an identity provider. An InfoCard does not contain any security
critical data so that compromise of InfoCards or careless behavior leads to a security
breach. The user pre-installs the InfoCard in a setup phase where she provides the
identity provider with her claims.



Risks of the CardSpace Protocol 281

2.2 How Does CardSpace Work?

We now take a closer look into the browser-based protocol details. See Fig. 1.
The protocol proceeds in four stages:

Retrieving RP’s Policy (Step 1). First of all, the user calls the relying
party’s login page in her browser. A relying party expresses its token require-
ment directly in the HTML text of the Web site. HTML extensions are used
to signal to the browser when to invoke the identity selector. Essentially, there
are two different syntaxes for calling into the identity selector: An HTML and
an XHTML object tag. The HTML syntax is used by an ActiveX object, and
the XHTML object called CardSpaceToken is used by a binary behavior ob-
ject. Because existing sites more commonly adopt the HTML tag, we have built
our attack firstly on this syntax. The other syntax will not be addressed any
more in this paper. (For more information about the XHTML syntax, we refer
to [11].) Further, the relying party can define its policy in this object. Most im-
portantly, the relying party specifies in its policy the claims it requires from the
user. Technically, the CardSpaceToken object is wrapped into a standard HTML
form. Forms are commonly used in Web sites to collect information from a user
for processing.

If the user decides to click on the login button on the relying party’s login
page, the browser retrieves the relying party’s policy, calls the identity selector
and forwards the relying party’s policy to the identity selector. The identity
selector displays first the identity of relying party’s Web site to help the user
make an informed decision. If the Web site is secured over HTTPS, the relying
party’s certificate is displayed to the user and the user is asked whether she
wants to accept it. If the user does not trust the site, she can directly abort the
protocol. Otherwise, the protocol continues and the identity selector displays all
the InfoCards that satisfy the relying party’s policy. The user is then asked to
select an InfoCard from this set. At the end of this phase, the identity selector
knows what claims the relying party is actually asking for and which InfoCards
can be used for this authentication.

Retrieving IP’s Policy (Step 2). After the user has selected an InfoCard, the
identity selector extracts the identity provider’s security token service (STS) in-
formation and retrieves the identity provider’s policy. An STS is the service from
which the actual security tokens are retrieved. Every identity provider runs one
or more STSs and issues security tokens for users on the fly. The transport of the
identity provider’s policy is secured with HTTPS to prevent policy tampering
attacks. At the end of this phase, the identity selector gets the identity provider’s
policy from its STS and knows the security requirement of the identity provider.

Retrieving the Security Token (Step 3). Depending on the policy of iden-
tity provider’s STS service, the identity selector prompts the user to enter her
authentication information as user credential. This authentication information
will later be wrapped into an authentication token and handed to the identity
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Fig. 1. Browser-based CardSpace Identity Management Protocol

provider within the request security token (RST) message. Four user credential
types are supported in the current CardSpace implementation: They are user-
name/password, KerberosV5 service ticket, X.509v3 certificate and self-issued
token.2 Apart from the user authentication information, the identity selector
also includes the following information in the RST message: An InfoCard refer-
ence, required claims which are requested from the relying party, the type of the
desired security token, and optionally a timestamp to ensure the freshness of the
message, the relying party’s identity and a flag indicating if a display token is
required. A display token contains the claims to be displayed to the user, before
sending them to the relying party (see below for more discussions). The RST
message is secured in the way that defined in the identity provider’s policy, i.e.
over HTTPS. Note that the identity selector will always be able to authenticate
the identity provider because it knows the identity selector’s public key being

2 Self-issued tokens are generated by the user herself. She acts as her own identity
provider.
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part of the InfoCard. This is an essential design decision to thwart impersonation
attacks in the light of naive users.

After the identity provider has successfully checked the user’s credential, it
responses with a request security token response (RSTR) message, which is also
secured with an identity provider preferred method. As its name suggests, this
message should include a security token in the desired format. According to the
user’s InfoCard reference, the STS service finds the user’s identity information in
its database and adds the required claims into the security token. If the relying
party’s identity is disclosed to the identity provider, the relying party’s URL
should also be included in the security token. Then the security token should be
signed by the identity provider with its private key and encrypted to the relying
party’s public key. Note that if the identity provider does not encrypt the security
token, the identity selector will automatically encrypt it to the relying party’s
public key.

The RSTR message optionally includes a timestamp to ensure the freshness
of the message and a display token, if the display token flag is set in the RST
message. Since the identity selector is not able to read the content of the security
token, a display token, which contains the security token’s content in a textual
format, is used to display to the user the content of the security token. The user
may check the content of the security token before she submits it to the relying
party. If the user is not satisfied with it, she may choose to abort the protocol.
The purpose of the display token is to give the user a feeling of transparency.
She shall be aware of the claims to be submitted to the relying party.

Submitting the Security Token (Step 4). The browser submits the token
to the relying party with the HTTPS/POST method. After the relying party
receives the security token, it decrypts the security token with its private key,
verifies the identity provider’s signature and checks the user’s identity claims.
If everything is correct, the relying party returns back the requested service or
resource. At the end of the protocol, the user is successfully authenticated to the
relying party and gains access to the relying party’s Web site.

3 Risks of the CardSpace Protocol

We identify a risk in the design of the browser-based CardSpace protocol. When-
ever the relying party receives a security token, the protocol does not ensure that
the user has been in fact involved in the protocol execution. The token is en-
crypted to the relying party’s public key and signed by the identity provider. Our
first observation is that there is neither a cryptographic binding to the user nor
to the underlying secure channel (where the user implicitly proved her identity).
The token does not contain the user’s identity; it contains the user’s identity
information in form of claims.

Our second observation is that this construction offers no protection against
token replay. Consequently, any party in possession of the security token—be it
the honest user or the adversary—may act as legitimate user and gain access to
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the relying party’s service, thus contradicting the security of mutual authentica-
tion3 between user and relying party. Note, however, that the adversary learns
nothing about the claims from the security token (because they are encrypted
to the relying party’s public key.)

Our third observation is that the browser mediates the security token. When
the identity selector forwards the token, it embeds the token value into the
CardSpaceToken object. Like any HTML object, this object becomes part of
the browser’s document object model (DOM4). Browsers offer a standardized
DOM API interface that permits scripting languages (e.g. JavaScript) to access
parts of the Web document. The same-origin policy (SOP), a security policy
universally supported in browsers, enforces that the access of scripts is limited
to objects originating from the same source. Access across different Web objects
is evaluated based on the object’s protocol name, domain name and port. (The
port number is implicitly defined by the protocol in use.)

The risk of the browser-based CardSpace protocol is that an attacker thwarting
the SOP check gets the privilege to access the CardSpace token. This is a general
problem of browsers and carries over to the identity management protocol. An
attacker subverting the SOP efficiently contaminates the security of CardSpace.
Exactly this dependency is exploited in our attack (as we will see below).

3.1 The SOP Problem

The SOP is a legacy security policy. It is widely believed that the SOP does
provide weak isolation of Web content [12]. Given the fact that today’s browsers
heavily decide on the basis of protocol and domain name whether to trust some
source, we revise the problems with enforcing the same-origin policy.

Problems with SOP’s Domain Name Check. The same-origin policy is
unexceptionally based on DNS host names. But actually the network access
is performed with the help of IP addresses. When the browser starts loading
network content, the DNS system first resolves the host name and after this the
request is sent with the help of the IP address, which is technically defining the
destination. The origin of the content will be still determined as DNS host name
and the SOP does only work properly in case there is no mismatch between DNS
host name and technical IP address. Unfortunately the today’s used DNS system
is vulnerable to a number of known attacks that can be classified as server-sided
and client-sided attacks.

Server-sided DNS spoofing attacks like DNS name chaining or DNS cache
poisoning5 stand for attacks that lead directly to a DNS domain name-IP address
mismatch. Another type of server-sided attacks that also circumvent the SOP are
3 Informally, a protocol is said to be secure in the sense of mutual authentication

(matching conversation), if (a) the relying party receives in the same protocol session
messages the user has sent, and (b) the user receives in the same protocol session
messages the relying party has sent.

4 http://www.w3c.org/dom
5 DNS cache poisoning is well-known for a long time, but has recently gained much

attention under the headline ”DNS debacle”. See also [13].

http://www.w3c.org/dom
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attacks like cross-site-scripting or cross-side-request-forgery [14,15,16], enabled
by improper input validation.

Client-sided attacks are recently discussed because they do not require at-
tacker’s control regarding the server side. They gained much attention under
the terms Drive-By pharming [17] and DNS rebinding attacks [18,19] and have
in common that browser-based languages are applied to alter home router DNS
configurations and connect to different IP addresses with the same host name
using multiple DNS A records or time-varying DNS responses, respectively. A
relaxed attack thereof is Wi-Fi spoofing [20], where the adversary offers free
Internet access points at public places. When the user connects to the wireless
network, the adversary can assign arbitrary DNS server to her.

These attacks reflect the today’s view that the adversary controls the network,
delays, alters and sends arbitrary network messages including unauthenticated
DNS resolution responses.

Problems with SOP’s Protocol Check. Secure socket layer (SSL) is a coun-
termeasure facing MITM attacks in the field of Internet communication: It tar-
gets confidentiality, integrity and sender authentication between server and client
at transport layer. Combined with HTTP the protocol is called HTTPS. Al-
though the security of the TLS protocols is proved [21], there are well-known
problems with trusting and verifying certificates: weak issuing policies and insuf-
ficient verification of certificate requesters by the CAs have shown that attackers
receive valid certificates for their rogue servers. Very recently, it has been shown
that chosen-prefix attacks are constructible with reasonably computational re-
sources that allow creation of rogue CA root certificates [22]. With a rogue root
certificate, the attacker may create arbitrarily many valid server certificates. This
discloses an inflation of CAs’ verification trustworthy—usual validation loses its
trustworthiness more and more.

Another problem is the interaction between browser and user and her lack
of awareness. If certificates are self-signed, out-dated, or do not match the host
name, browsers can warn the user. Users tend to ignore these warnings [23,24]
and may even declare that they do not want to see such a warning again. New
browser versions make it harder to ignore such warnings. Despite improved user
interfaces, it turned out that users still tend to ignore certificate warnings. This
assumption is justified by several usability studies [23,24,25,26] and reflected by
the increasing number of phishing attacks in practice.

A further unsolved problem appears in mashup web applications, where dif-
ferent SSL states cannot be related to different parts of the displayed web page.
At most one SSL information can be valuable if the user can relate it to the
whole page he can see in the browser window. For instance, an HTTPS-loaded
HTML file can load a (plain) HTTP-loaded gadget that is then treated as loaded
via HTTPS. This fact should be seen as a kind of side-channel attack vector
against SOP and care must be taken upon composing gadgets. Jackson and
Barth pointed out that an adversary may exploit this side-channel to inject
malicious content [27]. Still, the user cherishes the illusion that a private and
authenticated channel protects the communication.
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3.2 Replaying the Security Token

Our attack borrows ideas from Karlof et al. by deploying dynamic pharming [19].
We remark that any attack vector (or set thereof) subverting the SOP is useful
to mount the attack. The essence of dynamic pharming is to thwart the domain
name resolution, and lure the user to a rogue site, in which the relying party’s
site is loaded within an inline frame and utilize some script in order to access
the relying party’s frame. Therefore, the adversary needs to change the DNS
entry of his own site back to the relying party’s one so that the original login
page is referred into an inline frame of the malicious site. According to the SOP,
since the attacker’s site and the referenced relaying party’s site appear to have
the same “origin”, the attacker’s site has access to the legitimate site. With
malicious JavaScript codes in the malicious site, the adversary can hijack the
user’s login session and steal the user’s security token.

An attack illustration is depicted in Fig. 2. Our demonstrator has been
successfully tested on Windows XP SP2, running Internet Explorer Version
7.0.5730.13 and Windows Vista, running Internet Explorer 7.0.6000.16643. In
detail, our dynamic pharming attack proceeds as follows:

1. The adversary manipulates the user’s DNS server and adds a round robin
entry for the relying party’s domain to accomplish updating of the DNS
entry. Two IP addresses are associated to the domain. For instance, the
relying party’s IP address is 1.1.1.1, and the attacker’s IP address is 2.2.2.2.

2. When the user requests the URL, such as https://goodsite.com, the DNS
server returns first of all the adversary’s IP address (2.2.2.2). In order to
complete an SSL connection, the adversary must use a certificate for his
server. Either, he is lucky and receives a certificate from a certificate author-
ity, enforcing weak issuing policies, or he switches to self-signed certificates.
In our implementation, we opted for the latter. Then, the browser displays
a warning to the user. The certificate is invalid because a trusted certificate
authority did not sign it. As mentioned before, users ignore such security
warnings continuously [23,25,26]. Though IE7 uses a full page warning in-
stead of an unimpressive window alert offering standard options (i.e., ignore
and continue, or cancel connection), studies show that users will ignore a full
page warning as well [24]. Accordingly, we consider the attacker to overcome
the warnings.

3. The adversary’s malicious Web site is loaded into the user’s browser instead
of the legitimate site. The malicious site contains three Frames: Frame0 con-
tains codes to stop the adversary’s Web server. Frame1 contains the mali-
cious JavaScript codes for stealing the security token and displays a text
area which gathers the security token prior to its submission. The text area
shall simply mimic the fact that the adversary has intercepted the security
token. Frame2 hosts the legitimate login page of the relying party.

4. The adversary’s Web server is stopped by Frame0 after the malicious site is
loaded into the browser. One big challenge for adversaries is the browser’s
use of DNS pinning. With DNS pinning, a Web browser caches the result of a
DNS query for a fixed period of time, regardless of the DNS entry’s specified

https://goodsite.com
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Fig. 2. Dynamic Pharming Attack against CardSpace

lifetime. Considering this in our attack, once the user has loaded the mali-
cious site, the browser will keep using the adversary’s IP address regardless
of the update of entries in the DNS server. As a result, the legitimate Web
site cannot be loaded correctly anymore. Fortunately for the adversaries,
the browser will drop the current DNS pinning and refresh its DNS entry
for a given domain, if the Web server on this domain is not reachable any
more [18]. That means, after the adversary has delivered his malicious site
to the user, he can now stop his Web server to reject the user’s subsequent
requests. Then, the user’s browser first tries to load the content from the
adversary’s Web server because of the DNS pinning but fails of course, then
it drops the DNS pinning, refreshes the DNS entry, receives the server’s IP
address and loads the legitimate site. The attack continues as before.

5. Because of the DNS pinning, Frame2 first tries to request its content from the
malicious server. The request is rejected and the browser drops the current
DNS pinning.

6. Then the browser queries a new entry for the domain and this time the DNS
server returns the relying party’s original IP (1.1.1.1).

7. The legitimate login page is referenced into Frame2.
8. The malicious Web server is started again and waits for the next request.
9. After the user clicks on the Sign in button, the usual CardSpace authenti-

cation process begins as described in Section 2. The browser gets the relying
party’s policy, forwards it to the identity selector, the user selects an Info-
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Card and retrieves an associated security token from an identity provider.
At the end of this step, the identity selector returns the security token to the
browser. Note that the CardSpace object hosting the relying party’s policy
in the legitimate site also does an internal check to enforce the SOP. The
identity selector can only be displayed to users if the login page has the
same “origin” as the root page. But because this check is also limited on
the SOP, once the malicious site has passed the browser’s check, it can pass
CardSpace’s check too.

10. With the malicious codes in Frame1, the security token is first recorded by the
adversary. For example, the Frame1 can submit the token to the adversary’s
Web server. In our implementation, the security token is displayed in the
upper text area.

11. The adversary submits the security token to the relying party. We simulate
this adversarial behavior in our proof of concept by pasting the security token
from the text area into the clipboard. Next, one can choose an arbitrary other
browser, navigate to our demonstration site, paste the security token into
the text area, and press the ’login’ button without ever using CardSpace.

12. Finally, the relying party returns the requested access to the user and the
user successfully authenticates herself to the relying party. The adversary can
reuse the security token anytime within the token’s lifetime and authenticate
to the relying party on behalf of the user.

3.3 Discussions

Clearly, one may argue that DNS spoofing can be used to hijack any TCP/IP
connection and any protocol whose security depends on opening an SSL web
page will be broken when a careless user does not verify the server certificate.
However, under these two “phishing” assumptions identity theft proliferated to
the fastest growing Internet crime. Since CardSpace aims at protecting average
Internet users against identity theft, it is of prime importance to address this type
of attacker. Otherwise, the identity system fails short like standard password
authentication over SSL and does not improve the present situation. In the
light of this attacker, the average Internet user does not take advantages from
CardSpace.

Our attack model raises another challenging question. Is it possible for the
attacker to inject malicious scripting code that is more powerful such that the
adversary performs an even more sophisticated attack? For instance, is it possible
to embed script code that generates an entire online transaction on behalf of the
user? Then, it is needless to steal the token. The attacker could operate as man-
in-the-middle, wait until the user redeems the security token, and then do some
harm.

In the next section, we show that minor modifications to CardSpace achieve
the desired robustness against this stronger attacker. We propose two improve-
ments in this area. The first counteracts replay attacks by introducing a stronger
cryptographic binding of the security token to its underlying secure channel. We
show that breaking the security of our revised CardSpace protocol (in the sense
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of replaying the token) is as hard as breaking the security of the SSL handshake
protocol. Our second improvement addresses the browser security model and
prevents the attacker from embedding malicious scripts into the security context
of the relying party.

4 Countermeasures

4.1 Protection against Replay Attacks

A weakness of the CardSpace protocol is that it countenances reuse of tokens.
In possession of the security token, the attacker simply replays the token to gain
access to the user’s services. We wish to construct a protocol that foils the replay
and makes the token undeniable. By undeniable we mean that (a) the identity
provider can limit who can verify the validity of the security token and (b) user
and most importantly relying party determine whether a security token is sincere
in the sense that it truly origins from the user. The first goal is already realized
in CardSpace by encrypting the security token to the relying party’s public key.
The latter, however, is neither addressed.

For the achievement of token undeniability, we recommend the binding of
the security token with some high-entropy secret extracted from the channel
between the user and the relying party. This provision makes sure that the
relying party checks that the party requesting the login in the present session
is in fact the party that has asked for the issuing of the security token. The
secret is a cryptographic channel identifier (cid), determining the active protocol
session. The purpose of the identifier is to fingerprint the channel and make it
aware of the session [28], while validating the fingerprint is only feasible by
the session participants, i.e. browser and relying party. Ideally, both players
compute cid from a shared secret. Otherwise, an interactive protocol would be
necessary to synchronize the identifier. Technically, we deduce the identifier from
the SSL handshake. In a nutshell, the SSL handshake provides a comprehensive
framework of messages and cryptographic tools to negotiate a common secret
called the master secret k. The master secret is then used to derive cryptographic
keys for the instantiation of secure channels. A candidate approach would be to
reuse the master key and compute the channel identifier in the spirit of the SSL
keying material extraction specification [29]

cid ←− PRFk(“channel identifier”)

where PRF() denotes the pseudo-random function as specified in SSL and ‘ch-
annel identifier’ is a string delimiter. A closer comparison with the native
SSL specification [30] reveals that the pseudo-random function is additionally
parameterized with the concatenation of nonces transmitted by the players in
the initial handshake protocol rounds or a function thereof. We leave the nonces
from the definition to assure that the cid is identically computed in the abbre-
viated SSL handshake, where the parties reuse the master secret to infer new
session keys. The rationality behind our construction is that we wish to ensure
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a consistent channel identifier between the same instance of the full and ab-
breviated SSL handshake session. In some cases, an abbreviated handshake can
be initiated to transmit the security token. Such a construction also appeals to
single-sign on for multiple use of the security token. (The expiration date of the
token is restricted to the time until either party erases the master key.) Assuming
a secure pseudo-random function, it can be shown that cid is a fresh value and
indistinguishable from a random number. The only potential mismatch to occur
is that the adversary computes the master secret. However, it can be shown
by reduction to the security of the SSL handshake itself that this event occurs
with negligible probability in front of a probabilistic polynomial time-bounded
adversary. See [21] for a proof. (Recall, we simply utilize the master key as seed
for the pseudo-random function, but make no changes in the native handshake
protocol.)

4.2 Protection against SOP Contamination

The crux with browsers is the enforcement of the legacy same-origin policy and
the fact that the adversary gains access to the DOM, either bearing the security
token or embedding arbitrary malicious script into the secure channel. We rec-
ommend to augment browser’s same-origin policy with some authentication and
isolation mechanisms by providing stronger object separation. The main idea is
to prevent the attacker from accessing the relying party’s DOM (including the
token) via any scripting language. Nowadays, commodity Web browsers enforce
some kind of “authentication” and “isolation” through the cryptographic func-
tionalities provided by the SSL protocol. Web browsers offer the SSL protocol
to securely exchange messages between two principals and prohibit that any
feasible adversary eavesdropping the network alters messages. Evidently, SSL
operates on transport layer and messages are secured while in transit on the
network. Upon reception, the message plain text is forwarded to the application
layer, meaning the browser’s rendering engine. Unfortunately, objects are then
processed according to the mature SOP and the attacker goes wild.

Karlof et al. propose a stronger browser policy using cryptographic identi-
fiers to protect against dynamic pharming attacks [19]. Apart from checking
the common “origin”, the browser additionally validates the certificate chain
corresponding to the SSL connection. Those adversaries who do not possess a
valid certificate for the legitimate domain cannot apply their attacks anymore.
The deficiency with the proposal is that in some cases the stronger SOP fails
short. Examples discussed earlier include ”side-channel” or rogue CA certificate
attacks.

We recommend stronger isolation of HTML objects from scripting languages.
To this end, we introduce the Session-Correlated Cross-Communication Policy
(SCPO). The SCPO ensures that objects from the same SSL session have the
privilege to access each other. Therefore, the SOP check is augmented with the
channel identifier cid introduced in the previous section. Informally, the SCPO
policy enforces the following access rule:
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When the browser processes a DOM object for the very first time, it tags
the object with protocol name, domain name, port number, and channel
identifier. If and only if protocol name, domain name, port number, and
channel identifier match, then the browser permits access to this object.
Else, it ensures that no other object has access to this object.

An ultimate requirement for the safe deployment of SCOP is to ensure that the
channel identifier is not accessible by the DOM API. Then, the policy wraps
script code into a secure compartment for the document objects triggered over
different SSL sessions. It blinds the objects within the compartment. Conse-
quently, a malicious script from a concurrent session will never perceive this
object. Further, it is infeasible to address any object and descendant within this
compartment, write into the objects, identify any wrapped objects, or intercept
any events. Our proposal realizes a compartment ship for concealing security crit-
ical functionalities and data. The session-correlated cross-communication model
simply ensures that objects have a privileged environment, where the execution
of functionalities is prevented from any alternation. Applying the SCPO security
policy to CardSpace means that we isolate the CardSpace object. Any access to
the CardSpace element and its descendants is strictly prohibited by scripting
languages (loaded from other SSL sessions). Reconciling our attack from Section
3.2, stealing the security token fails because Frame1 containing the malicious
script and Frame2 including the relying party’s site do not have matching chan-
nel identifiers.

The advantage of SCPO over the stronger policy proposed by Karloff et al.
and the SOP is that a considerably stricter isolation mechanism is provided.
The decision to grant an object access is based on the SSL session. It is more
fine-grained. Another advantage is that a cryptographic channel identifier is used
although we do not assume the presence of a CA. The channel identifier is an
ephemeral secret. Thus, the SCPO is independent of the user’s behavior or any
PKI problem. That means, an attacker injecting malicious scripts from a con-
current session will be unable to gain access to the compartment—even if the
user does not properly verify the SSL certificate or the attacker has a rogue CA
certificate. Moreover, in some cases the SCOP protects against cross-site script-
ing and request forgery attacks. These are the cases, where the ”cross site” is
loaded from another SSL session. Clearly, the nitty-gritty idea of allowing scripts
to dynamically alter the DOM is limited. However, we do not see the necessity
for CardSpace to have that property. Recall, the only purpose of browsers is
to mediate the security token from the identity selector to the relying party.
Otherwise, the token’s privacy cannot be guaranteed.

5 Conclusion

We have described and analyzed the browser-based CardSpace identity manage-
ment protocol and identified some risks. We have built a proof-of-concept imple-
mentation of a dynamic pharming attack which observes a user’s authentication
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process, steals the user’s security token and impersonates the user to the legit-
imate relying party. Our proof-of-concept attack builds on identical adversarial
assumptions Kormann and Rubin made in their analysis of CardSpace’s prede-
cessor .NET Passport [7]. In fact, the potential difference between the passport
and CardSpace lies in the browser’s handling of security tokens. Passport em-
ploys cookies, whereas CardSpace utilizes a new HTML object. From a security
point of view, there are slight changes because browsers treat both mechanisms
in the same way, i.e. scripting functionalities may gain the privilege to access the
tokens. Despite the fact that CardSpace does an internal check to control the ac-
cess by enforcing the same-origin policy, attacks which defeat the browser’s SOP
can also defeat the CardSpace’s policy. No countermeasures have been made to
protect the security token from interception and replay.

Microsoft has introduced with CardSpace a beautiful identity management
system that considerably improves user authentication and protects against iden-
tity theft on the Internet. In order to make this identity metasystem robust
against more sophisticated attacks of identity theft, we have deduced several
countermeasures for the improvement of CardSpace design. First of all, the se-
curity token should be linked to the user’s SSL connection to the relying party.
This measure prevents adversaries from reusing the security token in another
session. Second of all, an advanced SOP check should be deployed. We discussed
a strengthening of the proposal to guard against SOP contamination, namely to
completely isolate the CardSpace object and prohibit that any scripting func-
tionality can access the relying party’s DOM objects including the security token.
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Abstract. We present the first fair e-cash system with a compact wal-
let that enables users to spend efficiently k coins while only sending to
the merchant O(λ log k) bits, where λ is a security parameter. The best
previously known schemes require to transmit data of size at least linear
in the number of spent coins. This result is achieved thanks to a new way
to use the Batch RSA technique and a tree-based representation of the
wallet. Moreover, we give a variant of our scheme with a less compact
wallet but where the computational complexity of the spend operation
does not depend on the number of spent coins, instead of being linear at
best in existing systems.

Keywords: Fair e-cash, privacy-preserving, batch RSA, blind signature.

1 Introduction

Electronic cash systems allow users to withdraw electronic coins from a bank,
and then to pay merchants using these coins preferably in an off-line manner,
i.e. with no need to communicate with the bank or a trusted party during the
payment. Finally, the merchant deposits the coins he has received to the bank.

An e-cash system should provide user anonymity against both the bank and
the merchant during a purchase in order to emulate the perceived anonymity
of regular cash. However, it seems that the necessity to fight against money
laundering encourages the design of fair e-cash systems where a trusted party
can, at any time when it’s needed, revoke the anonymity of users. We thus focus
on the design of fair e-cash systems. In order to reach the privacy target while
being reasonably practical, it is necessary to focus on the efficiency of the most
repeated protocol, namely the spending one between the user and the merchant.
It should also be possible to withdraw or spend several coins more efficiently
than repeating a single withdrawal or spending protocol. At last, we must pay
attention to the compactness of the data that are exchanged in all protocols.
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Related Works. The compact e-cash system [1] has recently aroused a new inter-
est in e-cash by proposing the first e-cash system permitting a user to efficiently
withdraw a wallet with 2L coins such that the space required to store these
coins, and the complexity of the withdrawal protocol, are proportional to L
rather than to 2L. Another possibility of efficient withdrawal is also given in [2].
These schemes fulfill all security properties usually required in the non-fair set-
ting but do not consider the efficiency of the spending phase. One solution to
improve it is to manage a wallet that contains coins with several monetary values
[3]. The main drawback of this solution is that the user must choose during the
withdrawal protocol how many coins he wants for each monetary value. In [4],
the initial compact e-cash scheme is modified to improve the spending phase;
however, the overall cost is still linear in the number of spent coins and, again,
the paper only consider non-fair e-cash. Consequently, there exists no privacy-
preserving fair e-cash system allowing the user to both (i) withdraw compact
wallets and (ii) spend several coins while the transmitted data size is less than
linear in the number of spent coins.

Our Contributions. This paper presents a fair e-cash system with a compact
wallet that allows users to spend efficiently k coins while sending to the mer-
chant only O(λ log k) bits, with λ a security parameter, while preserving the
privacy of the users. Our proposal makes use of two main cryptographic build-
ing blocks: blind signatures [5] and batch cryptography [6]. The concept of blind
signature is the essence of many e-cash systems [7,8,9]. However, many of these
suffer from a lack of efficiency since they usually use the cut-and-choose method
in order to identify double-spenders [7]. The Batch RSA method makes it pos-
sible to efficiently obtain multiple RSA signatures of multiple messages. Batch
cryptography has been used to build several e-cash systems, in order to get ad-
ditional properties [10,11], to decrease the amount of processing done by the
merchant [12], or to improve the efficiency of the withdrawal process at the cost
of the linkability of coins withdrawn together [13].

To the best of our knowledge, our proposal is the most efficient (fair) e-cash
system in terms of wallet storage size, computational complexity of spending
and spending transfer size, which is strongly unforgeable. Note that the level
of anonymity achieved by our scheme is strong but it is not perfect. Indeed it
is strong because it is impossible to link (i) a withdrawal protocol with a user
identity, (ii) a spending protocol to a withdrawal protocol, and (iii) two spending
protocols but only under specific constraints. The anonymity property achieved
by our scheme cannot be perfect since some information related to the coin
number (with respect to the wallet) leaks during the spending phase.

2 Security Model

2.1 Algorithms

A fair e-cash system involves four kinds of players: a user U , a bank B, a merchant
M and a judge J . Each user is able to withdraw a wallet with � coins. Such
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wallet consists of an identifier and a proof of validity. A fair e-cash scheme is
defined by the following algorithms, where λ is a security parameter.

– ParamGen(1λ) is a probabilistic algorithm that outputs the parameters of the
system params. In the sequel, all algorithms take as input 1λ and params.

– JKeyGen(), BKeyGen() and UKeyGen() are key generation algorithms for J ,
B and U , respectively. The key pairs are denoted by (skJ , pkJ ), (skB, pkB),
and (skU , pkU ). Note that UKeyGen() also provides the keys of merchants
that can be seen as users in e-cash systems.

– Register(J (skJ , pkU),U(skU , pkJ )) is an interactive protocol whose outcome
is a notification decision of J together with a certificate of validity of U ’s
public key which guarantee that U knows his secret key.

– Withdraw(U(pkB, skU , �),B(pkU , skB)) is an interactive protocol that allows
U to withdraw a wallet W of � coins. The output of U is a wallet W , i.e. an
identifier I and a proof of validity Π , or an error message ⊥. The output of
B is its view VWithdraw

B of the protocol.
– Spend(U(W, pkM, pkB, k),M(skM, pkB)) is an interactive protocol enabling
U to spend k coins. M outputs the serial numbers S0, · · · , Sk−1 and a proof
of validity π. U ’s output is an updated wallet W ′ or an error message ⊥.

– Deposit(M(skM, (S0, . . . , Sk−1), π, pkB),B(pkM, skB)) is an interactive pro-
tocol allowing M to deposit the coins, i.e. S0, . . . , Sk−1 and π. B adds the
coins to the list of spent coins or outputs an error message ⊥.

– Identify(S, π1, π2, skJ ) is an algorithm executed by J which outputs a proof
ΠG and either a registered public key pkU or ⊥.

– VerifyGuilt(S, pkU , ΠG, pkJ ) is an algorithm allowing to publicly verify the
proof ΠG that the Identify has been done correctly.

2.2 Security Properties

We informally describe the security statements of a fair e-cash scheme.

Unforgeability. From the bank point of view, what matters is that no coalition
of users can ever spend more coins than they have withdrawn:
– let A be an adversary that has access to the public key pkB of the system;
– A, playing a user, executes in a concurrent manner Withdraw and Deposit

protocols with the bank. A can legitimately withdraw f wallets; we de-
note by wf the number of coins withdrawn during these executions.

– the adversary A wins the game if, at any time, the honest bank accepts
more than wf coins (without detecting a double-spending).

We require that no PPT adversary succeeds in this game with non-negligible
probability.

Anonymity. From the user privacy point of view, the bank, even when cooper-
ating with malicious users and merchants, should not learn anything about
a user’s spending other than from the environment. We capture a weaker no-
tion of anonymity by assuming that the targeted users withdraw and spend
the same number of coins (see discussion in Section 5.2):
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– let A be an adversary that has access to the secret key skB of the bank;
– A executes Withdraw (as the bank) and Spend (as the merchant) proto-

cols any number of times. A can also corrupt players;
– at any time of the game, A chooses two honest users U0 and U1 such

that both U0 and U1 has withdrawn and spent the same number of
coins. Then, a bit b ∈ {0, 1} is chosen and a Spend protocol is played
between Ub and A. At the same time, we assume that Ub̄ also plays a
Spend protocol that is not observed by A. Next, A can again executes
Withdraw (as the bank) and Spend (as the merchant) protocols;

– the adversary A finally outputs a bit b′.
We require that for any PPT adversary, the probability that b′ = b differs
significantly from 1/2 is negligible.

Identification of double-spenders. From the bank’s point of view, no col-
lection of users should be able to double-spend a coin without revealing one
of their identities:
– let A be a an adversary that has access to pkB;
– A executes, as a user, Withdraw and Spend protocols as many time as it

wishes;
– A wins the game if, at any time, the bank outputs ⊥ while the merchant

executes the Deposit protocol and Identify outputs ⊥.
We require that no PPT adversary succeeds with non-negligible probability.

Exculpability. The bank, even cooperating with malicious users, cannot falsely
accuse honest users from having double-spent a coin, and only users who
double-spent a coin can be convicted:
– let A be an adversary that has access to both the secret key skB of the

bank and the one skJ of the judge;
– the adversary A can create as many users as he wants and corrupt some

of them. All along the game, A plays the bank side of the Withdraw and
Deposit protocols, A can play either the role of the user (as a corrupted
user) or the role of the merchant during Spend protocols;

– the adversary A wins the game if, at any time, the Identify algorithm
outputs the public key of an honest user together with a valid proof ΠG.

We require that no PPT adversary succeeds with non-negligible probability.

3 Useful Tools, Notations and Conventions

In the sequel, λ is the general security parameter. In a withdrawal protocol, the
user withdraws � ≤ K = 2L coins from the bank, and every coin is labeled with
a serial number Sj , 0 ≤ j < �. In a spending protocol, the number of remaining
coins in the wallet before spending and the number of coins to be spent is denoted
by K ′ and k, respectively.

3.1 Batch RSA Method

The Batch RSA method [6] makes it possible, for a given RSA modulus, to
efficiently obtain multiple RSA signatures whose public exponents are coprime
pairwise.
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Let n be an RSA modulus for which the factorization is only known by the
signer. Let e0, . . . , e�−1 be � exponents, coprime both pairwise and with φ(n),
with � ≤ K = 2L. As the efficiency of the Batch RSA depends on the size
of these exponents, a generic suitable choice is the � first odd prime numbers.
Let E =

∏�−1
i=0 ei. Given messages S0, S1, . . . , S�−1, it is possible to generate

the � roots S
1/e0
0 (mod n), . . . , S1/e�−1

�−1 (mod n) in O(log K log E + log n) mod-
ular multiplications and O(K) divisions. We sketch the steps of the Batch RSA
description and complexity proof described in [6]:

– (B1) compute the product M =
∏�−1

i=0 S
E/ei

i along a binary tree as shown
in Figure 1 for the case � = 5. Every complete binary tree with � leaves
is suitable. However, for efficiency purpose, we suppose the height of the
tree is O(log K) = O(L). Each node in the tree contains a value M[i1...i2] =∏i2

i=i1
S

E[i1...i2]/ei

i with E[i1...i2] =
∏i2

i=i1
ei. In order to compute this tree,

the number of operations is O(log K log E + log n) multiplications;
– (B2) compute the batch signature M1/E =

∏�−1
i=0 S

1/ei

i , as a usual RSA
signature with public exponent E;

– (B3) decompose M1/E in order to obtain the values S
1/ei

i . In this step, the
binary tree built at the first step is parsed down, and at each node of the tree
the value M

1/E[i1...i2]

[i1...i2] =
∏i2

i=i1
S

1/ei

i is computed and broken into two factors
(one for each son) by using the Chinese remainder theorem and the values
computed in (B1). The cost of this last step is O(K) modular divisions and
O(log E log K) operations.

M =
∏5

i=1 S
E
ei
i

S1 S2

e2 e1

Se2
1 Se1

2

Se2e3
1 Se1e3

2 Se1e2
3

e3

e4e5

e1e2

S3 S4

e5 e4

S5

Se5
4 Se4

5

e1e2e3

Fig. 1. Withdrawal binary tree for the computation of M

Use of Batch RSA in our proposal. The messages signed using Batch RSA
are the serial numbers of coins. For efficiency purpose, the Batch RSA exponents
ei are the K first prime numbers. Therefore, we have log E = V(eK−1), where V
is the Chebyshev function1. This yields log E ∼ K ln K.
1 We recall that the Chebyshev function is V(x) =

∑
p≤x prime log(p).
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During the withdrawal, the user has to perform steps (B1) and (B2) (see
Section 3.2) in order to receive an aggregated signature on all the serial numbers
that he has chosen. The aggregated value M1/E represents his wallet.

One novel aspect of our scheme is that it is never necessary to fully decompose
the aggregated signature into all the signatures of spent coins during the spend-
ing phase. Indeed, at each spending, the current aggregated signature is split into
two parts following a single node operation from step (B3), the first part being
the aggregated signature of the coins to be spent, and the second part being
the new wallet signature representing the remaining coins. Suppose that a user
still owns an aggregated signature M

1/E′

F =
∏

i∈F S
1/ei

i , with F ⊂ {0, . . . , �− 1}
and E′ =

∏
i∈F ei. This user wants to spend a subset F1 of the coins in F . Let

F2 = F \F1. In order to compute the aggregated signature M
1/E′

1
F1

=
∏

i∈F1
S

1/ei

i ,
the user creates two binary trees, corresponding to the subsets F1 and F2, re-
spectively, and connects them at the root of a new binary tree. Then, the user
computes the resulting tree as in step (B1) above in order to obtain the two
factors MF1 and MF2 . The cost is O(log #F log E′ + log n). Using the values
computed for the roots of each subset Fi, the user can now retrieve the aggre-
gated signature to be spent and the remainder as another aggregated signature.
The cost of this operation is 2 modular divisions and O(log E′) multiplications.
An example is shown in Figure 2.

M
1

E[1...4]

[1...4] =
∏4

i=1 S
e1e2e3e4

ei
i

S
1

e1
1

M
1

E[2...4]

[2...4] = S
1

e2
2 S

1
e3
3 S

1
e4
4

S1

S2

S3 S4

Se4
3 Se3

4

M[2...4] = Se3e4
2 Se4e2

3 Se3e2
4

Fig. 2. Binary tree built to spend coins 2, 3, 4 from a wallet with 4 remaining coins

This technique allows a user to carry a very small amount of data and to
transfer reduced signature data. Indeed, in this case, only the non-spent interval
and the remaining aggregated signature must be stored in the wallet, while a
single aggregated signature is sent to the merchant. There are several trade-offs
related to how we use the Batch RSA signatures. We detail them in Section 6.

3.2 RSA Blind Signature Scheme

A blind signature [5] is a protocol between a user and a signer where the user gets
a signature from the signer in a way that the signer does not know the content
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of the message he is signing. Furthermore, the signer cannot link afterward his
views of the protocol to the resulting signatures.

A common blind signature is the RSA blind signature scheme from Chaum
[5,14]. This three-move blind signature scheme is defined by a set of five algo-
rithms BS=(KeyGen, Blind, Sign, UnBlind, Verif), where Blind corresponds to the
computation of M̃ = re.H(M) (mod n) where r is a secret random value, M
is the message to be blindly signed and H is a one-way collision-resistant hash
function, while Unblind consists in computing σ = σ̃/r (mod n), where σ̃ is a
classical RSA signature on the message M̃ . Thus, it is obvious that σ is also a
classical RSA signature of the message M .

Use of the RSA blind signature scheme in our proposal. Our scheme re-
lies on blind RSA signatures using the Batch RSA technique, for which we choose
a modulus n, where log n is polynomial in λ. The messages signed using the RSA
blind signature are serial numbers of coins. During step (B2), the batch signature
is replaced by a blind signature process. Thus, for M =

∏�−1
i=0 H(Si)E/ei , instead

of simply computing the message M1/E =
∏�−1

i=0 H(Si)1/ei , the signer obtains
from the user M̃ = rEM (mod n) and computes σ̃ = M̃1/E = r

∏�−1
i=0 H(Si)1/ei

(mod n). The user finally computes, as for the traditional RSA blind signature
scheme, σ = σ̃/r (mod n), which corresponds to

∏�−1
i=0 H(Si)1/ei , as desired.

3.3 Signature of Knowledge

Zero-knowledge proofs of knowledge (ZKPK) are interactive protocols between
a verifier and a prover allowing a prover to assure the verifier his knowledge of a
secret, without any leakage of it. In the following, we use proofs of knowledge of
a discrete logarithm [15,16], of a representation, proof of equality of two known
representations in the same or in different groups [17]. In the following, we denote
by PK(α1, . . . , αq : R(α1, . . . , αq)) a proof of knowledge of the secrets α1, . . . , αq

verifying the relation R. Note that the combination of these proofs and the
underlying security have been studied in [18,19] and refined in [20].

These interactive proofs can also be used non interactively (a.k.a. signatures
of knowledge) by using the Fiat-Shamir heuristic [21].

3.4 Camenisch-Lysyanskaya Type Signature Schemes

Camenisch and Lysyanskaya have proposed in [22] various signature schemes
which include new features. These signatures, called CL signatures for short, are
based on Pedersen’s commitment scheme which allows a user to commit some
values without revealing them. CL signatures should satisfy the unforgeability
property and have the following protocols.

– KeyGen: a key generation algorithm which outputs a key pair (sk, pk).
– Sign: an efficient protocol between a user and a signer that permits the

user to obtain from the signer a signature Σ of some commitment C =
Commit(x1, . . . , xk) such that (x1, . . . , xk) are unknown from the signer. The
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latter uses the CLSign algorithm on input C and the user obtains a signature
Σ on the messages (x1, . . . , xk), such that Verif(Σ, (x1, . . . , xk)) = 1.

– ZKPK: an efficient ZKPK of a signature of some values that are moreover
(may be independently) committed.

– Verif: a procedure verifying the signature Σ on the messages (x1, . . . , xk).

One possible choice is to take the construction from [22], which is secure under
the flexible RSA assumption (a.k.a. strong RSA assumption), and where the
signature on values (x0, . . . , xk) is (A, e, s) such that Ae = a0a

x1
1 · · · axk

k bs, where
the ai’s and b are public.

4 Compact Spending

In this section, we first give a high level description of our proposal before de-
scribing the procedure and protocols of our scheme.

4.1 Overview of Our Scheme

In e-cash systems, a withdrawal protocol allows a user to get from the bank, a
wallet of coins that can be represented by a set of serial numbers and a signature
of the bank that will allow him to prove the validity of the coins. The spending
protocol of a fair e-cash system usually includes the generation of � valid serial
numbers S0, . . . , S�−1 (to allow the detection of double-spending by the bank
during the deposit protocol), a verifiable encryption of the spender public key,
and a proof of validity of the Si’s and of the encryption of the user public key
without revealing any information about his identity.

Serial numbers. As we have seen, the Batch RSA technique can be used to
obtain compact spendings by aggregating signatures. However, the transmission
of the serial numbers also has to get more compact in order to decrease the
overall spending complexity. In order to compact data related to serial numbers,
we use a tree with a derivation mechanism from the root to the leaves which
represent the serial numbers of the coins. In our scheme, the maximal number of
coins that can be withdrawn during a protocol is a fixed parameter of the system
K = 2L. Each wallet of monetary value � ≤ K = 2L withdrawn from the bank
is mapped to a binary tree of L + 1 levels2. The tree root is assigned a compact
serial number S0,0. For every level i, 0 ≤ i < L, the 2i nodes are assigned each
a compact serial number denoted by Si,j with 0 ≤ j < 2i. The values SL,j with
0 ≤ j < 2L related to the leaves of the tree are called the serial numbers of the
purse and denoted Sj .

The derivation is illustrated by Figure 3 and it works as follows: the descen-
dants from a node Si,j are given by a public function F(·, ·) that, on input a

2 The user may withdraw less than 2L coins, but still has to work with a tree of depth
L + 1, because the number of derivations to get the serial number of a coin must be
the same for all users in order to prevent linking.



302 S. Canard et al.

F(·, 0)

S0,0

S2,0

S3,0 = S0 S3,1 = S1

F(·, 1)F(·, 0)

S1,1

S2,1 S2,2

S3,2 = S2 S3,3 = S3 S3,4 = S4

F(·, 0)

F(·, 0)

F(·, 1)

S1,0

F(·, 1)

F(·, 0)

F(·, 0) F(·, 1)

Fig. 3. Serial number binary tree for � = 5 and K = 23

compact serial number Si,j and a bit b ∈ {0, 1} to indicate left or right, outputs
the (compact) serial number Si+1,2j+b of the left or right descendant of Si,j in
the tree. Thus, from the tree root S0,0, it is possible to compute all the serial
numbers Si,j , 0 ≤ i ≤ L, 0 ≤ j < 2i. The idea used to obtain compact spendings
with serial numbers is that it is possible to send the serial number of a node Si,j

instead of the serial numbers of all the leaves that come from him. Conversely,
once a node Si,j is revealed, none of its descendants or ascendants can be spent,
and no node can be spent more than once. This rule is necessary to protect
against over-spending. It must also be impossible to compute a serial number
without the knowledge of one of its ascendants. Finally, for security reasons,
function F must be collision-free.

Withdrawal. During the withdrawal protocol, the user chooses a number � ≤
K = 2L of coins to withdraw. For every j, 0 ≤ j ≤ � − 1, the serial number Sj

is the message related to the exponent ej (see Section 3.1). The user computes
the � serial numbers S0, . . . , S�−1 from a compact serial number S0,0 = s, where
s is a random value known only by the user but computed jointly by the bank
and the user, so as to prevent an attack where two users use the same compact
serial number. The user at last obtains from the bank both a blind Batch RSA
signature on the serial numbers S0, . . . , S�−1 with exponents e0, . . . , e�−1 and a
CL signature on s and her identity u.

Spending. When a user wants to spend k coins, she does not need to send k serial
numbers and k proofs of validity but only one batch signature (see Section 3.1)
and O(λ log(k)) nits corresponding to “compact serial numbers”, assuming that
the user spends the coins by increasing (or decreasing) exponents. As the size
of the remaining values transmitted during spending is at most O(λ log k) bits,
this is also the overall size of the data transmitted during the spending protocol.

Finally, the merchant can verify the correctness of the serial numbers (w.r.t.
the bank) using a ZKPK of the CL signature on the values s and u done by the
user, following a technique given in [9] which permits us not to prove that the
spent serial numbers are indeed generated from the value s signed by the bank.
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4.2 Setup Procedure

The ParamGen procedure first sets 2L = K as the maximum number of coins in
a wallet and e0, . . . , eK−1 as K distinct small prime numbers. For all i ∈ [1, K],
Ei =

∏i−1
j=0 ej . Next EncJ (·) is an encryption function of the judge’s IND-CPA

public key cryptosystem (e.g. the El Gamal encryption scheme), H(·) and F(·, ·)
are two one-way collision resistant (hash) functions, g is a generator of a cyclic
group G of prime or unknown order (the structure of the group depends on the
chosen CL signature scheme). Next, the bank B (resp. the judge J ) executes the
BKeyGen (resp. JKeyGen) procedure by executing the KeyGen algorithms of the
CL and blind signature schemes (resp. of the encryption scheme).

During the UKeyGen procedure, each user U is finally associated to a long-
term private key skU = u and a corresponding public key pkU = gu, where g is
a public parameter.

4.3 Withdrawal Protocol

Let U be a user who wants to withdraw � (with 0 < � ≤ K) coins to the bank
B. The protocol between U and B is described in Figure 4. Note that B can
compute the commitment C on u, s = s′ + s′′ and w using only C′ and s′′ and
without needing to know s′ and thus s. Next, the computation of E� and the
serial numbers S0, . . . , S�−1 is done using the tree structure we described above
with F as function and S0,0 = s as the tree root (see Sections 3.1 and 4.1 for
details). The user U now possesses a wallet determined by the set (s, u, w, Σ, σ).

M̃ = rE� M (mod n)

Σ = CLSign(C)

C = Commit(s = s′ + s′′, u, w)

σ̃ = M̃1/E� (mod n)

VWithdraw
B

= (C, pkU , U, s′′, Σ, E�, M̃, σ̃)

Verify U
C′, U, pkU

σ̃

s′′, Σ

M̃, E�

Verif(Σ, (s = s′ + s′′, u, w))
?
= 1

U B

C′ = Commit(s′, u, w)

Choose s′, w at random

U = PK(α, β, γ : pkU = gα ∧ C′ = Commit(β, α, γ))

σ = σ̃/r (mod n)

W = (s, u, w, Σ, σ)

Choose r at random

M = H(S0)E�/e0 · · ·H(S�−1)
E�/e�−1

Compute E� and S0, · · · , S�−1 using F and S0,0 = s

Choose s′′ at random

Fig. 4. Withdrawal Protocol
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4.4 The Spend Protocol

Assume that a user U owns a wallet (s, u, w, Σ, σ) and wants to spend k coins
to a merchant M. The spend protocol works as follows:

1. M sends some public information info concerning the transaction (typically
the time and date of the ongoing transaction);

2. U knows the smallest i such that Si, · · · , Si+k−1 are unspent serial numbers;
3. U does not need to compute the values of the serial numbers Si, · · · , Si+k−1.

Indeed, she only needs to compute the smallest number of master serial num-
bers necessary to allow the computation by the merchant of Si, · · · , Si+k−1.
In the worst case, we need 2�log k� values Si1,j1 , . . . , Sin,jn , 0 ≤ i1, . . . , in
and 0 ≤ j1 ≤ 2i1 − 1, . . . , 0 ≤ jn ≤ 2in − 1. U sends to the merchant
Si1,j1 , . . . , Sin,jn and the index value i;

4. using the batch RSA signature described in Section 3.1, U computes the
batch signature σ[i,i+k−1] on Si, · · · , Si+k−1 (further denoted σk);

5. U computes R = H(info||pkM||σk) which is used as a freshness indicator;
6. next U computes two values C1 = EncJ (pkU ) and C2 = EncJ (s);
7. U produces a signature of knowledge Π which proves that:

– C1 and C2 are well-formed, that is C1 is an encryption of pkU = gu and
C2 is an encryption of s under the judge’s public key encryption scheme,
without revealing pkU nor s;

– U knows a CL bank’s signature Σ on u, s and w without revealing u, s,
w nor σ.

She uses c = H(Si1,j1‖ . . . ‖Sin,jn‖σk‖R‖C1‖C2) as a challenge;
8. at the end, the user has sent (i, Si1,j1 , . . . , Sin,jn , σk, C1, C2, Π, R);
9. the merchant M computes Si, · · · , Si+k−1 from Si1,j1 , . . . , Sin,jn and checks

the validity of the coin by verifying the validity of σk and Π ;

4.5 Deposit Protocol

During this step, a merchant M sends to the bank B the values (i, Si, . . . ,
Si+k−1, σk, C1, C2, Π , R). The bank checks the validity of the spending by
verifying the batch signature σk on the values Si, . . . , Si+k−1 using the index i,
and the validity of the proof Π using R, C1 and C2. If the spending is valid, the
bank checks whether at least one of the serial numbers S ∈ {Si, . . . , Si+k−1} is
already in its database. If not, B adds them into the database. Otherwise, the
bank verifies the freshness of the spending using the value R. If it is fresh, the
bank asks the judge to execute the identification of double spender procedure.
Otherwise, the merchant is a cheater and the bank rejects the deposit.

4.6 Identification of Double Spender and Verification of Guilt

In this procedure, the bank sends to the judge two spendings (i, Si, . . . , Si+k−1,
σk, C1, C2, Π , R) and (i′, S′

i′ , . . . , S′
i′+k′−1, σ′

k′ , C′
1, C′

2, Π ′, R′) such that
there exists i0 and i′0 with i ≤ i0 ≤ i + k − 1 and i′ ≤ i′0 ≤ i′ + k′ − 1 with
Si0 = S′

i′0
= S. This latter verifies the validity of both spendings, decrypts C2

and C′
2 to retrieve s and s′, and next decrypts C1 and/or C′

1 if necessary.
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– If S cannot be computed from s (resp. s′), then the judge decrypts C1 (resp.
C′

1) and concludes that pkU (resp. pkU ′) is guilty.
– Else, with high probability s = s′ (since H and F are collision-free) and

pkU = pkU ′ (since it is unlikely that two different users obtain the same
wallet secret s in the withdrawal phase and since F is collision-free). Thus,
the judge concludes that pkU = pkU ′ is guilty. Note that if the case s = s′ and
pkU �= pkU ′ happens, that means that user U has proven the knowledge of a
bank’s signature on the values (s, u) and user U ′ has proven the knowledge
of a bank’s signature on the values (s, u′). In this case, the two spendings
are valid and the judge sends back a false alarm message since there is no
double-spending.

– At the end, the judge produces a proof ΠG that the public key of the guilty
user has been correctly decrypted. The proof consists of the values (s and
pkU ) related to the cheater and of a ZKPK that the secret key skJ embedded
in pkJ has correctly been used to decrypt s and pkU .

The verification of guilt consists in verifying the judge’s proof ΠG on pkU and s.

5 Security Analysis

In this section, we give the security arguments for our construction. We first
detailed the security assumptions we use and next give the security theorem;
security proofs are not included in the paper due to space restrictions.

5.1 Security Assumptions

One-More Unforgeability. In 2001, Bellare et al. [23] introduced the notion
of one-more one-way function, and showed how it leads to a proof of security
of Chaum’s RSA-based blind signature scheme [14] in the random oracle model.
We now introduce a variant of the one-more RSA problem in order to prove the
security of the Batch variant of Chaum’s blind signatures. The one-more flexible
(or strong) RSA-problem is defined by the following game for an algorithm A.

– the adversary A gets an RSA modulus n and a public exponent E made of
the product of � prime numbers E = e0 . . . e�−1;

– it is given access to an inversion oracle that given y ∈ Z∗
n returns x ∈ Z∗

n

such that xE = y mod N ;
– it is given access to a challenge oracle that returns � random challenges point

from Z∗
n;

– eventually, A wins the game if it succeeds in inverting q · �+1 points output
by the challenge oracle using less than q queries to the inversion oracle3.

The strong one-more RSA assumption states that no probabilistic polynomial-
time algorithm A may win the previous game with non-negligible probability.
3 Using q times the inversion oracle and the batch RSA technique given in Section 3.1,

the adversary can easily invert q · � points.
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Following, Bellare et al.’s technique from [23], it is readily seen that in the
random oracle model, the Batch-RSA blind signature scheme is one-more un-
forgeable under the strong one-more RSA assumption:

Lemma 1. If the one-more flexible RSA problem is hard, then the Batch-RSA
blind signature scheme is polynomially-secure against one-more forgery in the
random oracle model.

Proof. It is almost identical to the one of [23, Theorem 16]. ��
Strong Blindness Property. In the security proof of our e-cash system, we
need a Strong Blindness property for this Batch-RSA blind signature scheme.
More precisely, we have the following experiment:

– let A be a PPT Turing Machine having access to the signer’s key pair and
being able to participate to the blind process from the signer’s point of view,
obtain resulting message/signature (M, σ) and obtain chosen partial pairs
message/signature, that is all Si ∈ F and the signature

∏
i∈F H(Si)1/ei for

any F ⊂ {0, · · · , �−1} of the adversary’s choice (see Section 3.1 for details);
– at any time of the game, the adversary outputs two transcripts I0 and I1 of

a blind signature process (from the signer’s point of view) and a challenge
F̃ ⊂ {0, · · · , � − 1}. The challenger next chooses at random a bit b ∈ {0, 1}
and outputs the messages and the signature corresponding to the transcript
Ib and the set F̃ ;

– the adversary finally outputs a bit b′.

The Strong Blindness property says that the probability that b′ = b differs
significantly from 1/2 is negligible.

Lemma 2. The Batch-RSA Blind signature scheme unconditionally verifies the
Strong Blindness property.

Proof. Straightforward as the proof is similar to the security proof of the initial
RSA blind signature scheme, which is unconditionally blind. ��
Unforgeability of signature of knowledge. In our construction, we use
the Fiat-Shamir heuristic to make non-interactive traditional interactive zero-
knowledge proofs of knowledge. In [24], Pointcheval and Stern prove that this
transformation is secure in the random oracle model.

Camenisch-Lysyanskaya type signature schemes. We need the CL type
signature scheme to be unforgeable, saying that even if an adversary has oracle
access to the signing algorithm which provides signatures on messages of the
adversary’s choice, the adversary cannot create a valid signature on a message
not explicitly queried. If we choose the CL signature scheme in [22], we need to
assume that the flexible RSA problem is hard.

The One-more discrete logarithm assumption. The one-more discrete
logarithm problem [23] is the following one. Given l+1 values and having access
to a discrete logarithm oracle at most l times, find the discrete logarithm of all
these values.
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5.2 Security Statement

Theorem 1. Our e-cash system is a secure fair e-cash system:

– unforgeability under the one-more unforgeability of the Batch-RSA blind sig-
nature scheme and the non-malleability of the signature of knowledge, in the
random oracle model;

– anonymity under the strong blindness of the Batch-RSA blind signature
scheme and the indistinguishability of the encryption scheme, in the ran-
dom oracle model;

– identification of double-spenders under the unforgeability of the CL signature
scheme, in the random oracle model;

– exculpability under the one-more discrete logarithm assumption, in the ran-
dom oracle model.

Note that our construction does not provide a perfect anonymity property since
it is possible to know which leaves in the serial number binary tree are used
during the spending. For example, if two spendings are from the same part of
the tree, everyone can conclude that the spendings are from different wallets.

6 Efficiency Considerations

In order to simplify the complexity statements, we consider � = K, so that
the exponents used for a wallet are the first K = 2L prime numbers; we have
log E ∼ K ln K. The coins are spent following the decreasing order of exponents.
We denote by E′ the product of exponents corresponding to the number K ′ of
coins remaining in the wallet. As seen in Section 4, the data transfer size is
always at least O(λ log k).

Using Batch RSA as described in Section 3.1 as our default variant (V 0) for
the scheme yields the following efficiency trade-off: only the highest remaining
exponent and one aggregated signature have to be stored in the wallet, with
storage size O(log n). During the spending phase, a binary tree has to be re-
built, requiring O(log K ′ log E′) = O(K ′ log2 K ′ + log n) multiplications, and
the current signature has to be broken up in two pieces, which costs O(1) mod-
ular divisions plus O(log E′) = O(K ′ log K ′) modular multiplications. At last, a
single aggregated signature is sent to the merchant, together with the number
of coins and the biggest exponent, thus requiring transfer of O(log n) bits. As
this variant is targeted at reduced storage, it is relevant to store also the root
serial number only and compute the needed serial numbers at each spending,
thus minimizing the storage cost.

Instead of reducing the storage cost, we can also manage the Batch RSA tree
similarly to the tree of serial numbers. This yields variant (V 1): we store the
initial withdrawal binary tree so that, during the spending, the user sends the
aggregated signatures corresponding to the nodes of the tree closest to the root
and such that all the corresponding leaves are in the spending set. The whole
binary tree is stored, hence the initial storage size is O(K log n). During the
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Table 1. Efficiency trade-offs

Default variant (V0) Variant (V1)

Wallet storage size O(λ + log n) O(K(λ + log n))

Computational complexity O(K′ log2 K′ + log n)M O(1)

of spending +O(1)D + O(log k)F

Spending transfer size O(λ log k + log n) O((λ + log n) log k)

spending phase, the user needs to send at most 2�log2(k + 1)� aggregated signa-
tures corresponding to tree nodes to the merchant, hence a data transfer of size
O(log n log k). The computational cost for the user is the cost of retrieving the
aggregated signatures corresponding to the nodes spent and to their remaining
counterparts. At most, this requires O(log K) signature break-ups (in case sin-
gle coins must be retrieved), each of which costs O(1) modular divisions plus
at most (for nodes closest to the tree root) O(log E′) = O(K ′ log K ′) modular
multiplications. However, these values can be pre-computed off-line after the
withdrawal of the wallet, and stored in the tree, thus achieving a O(1) on-line
computational cost. This variant aims at reducing computations during spend-
ing, so it is relevant to store also the whole serial number tree in order to retrieve
the needed serial numbers at each spending in O(1).

The relative storage, spending computational complexity and data transfer
size of our schemes are summed up in Table 1; M and D are the respective costs of
exponentiation, multiplication and division modulo n, F is the cost of derivation
with function F , λ is a security parameter, K is the number of withdrawn coins,
k the number of spent coins and K ′ the number of remaining coins in the wallet
after spending. They take into account the complexities related to the serial
numbers mentioned in Section 4, which provides the overall picture as the proof
Π and the remaining data only have a constant complexity.
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1 Introduction

Let us consider a scenario, where a member of a cabinet wants to leak a very im-
portant and juicy information, regarding the president of the nation to the press.
He has to leak the secret in an anonymous way, else he will be black spotted in
the cabinet. The press will not accept the information unless it is authenticated
by one of the members of the cabinet. Here, if the information is so sensitive and
should not be leaked until the authorities in the press receives it, we should have
confidential transmission of information. Thus, we require anonymity to safeguard
the cabinet member who sends the information, authentication for the authorities
in the press to believe the information and confidentiality until the information
reaches the hands of the right person in the press. All the three properties are to-
gether achieved by a single primitive called “Ring Signcryption”. The first identity
based ring signcryption scheme was proposed by Huang et al. [3].

Related Work and Our Contribution. Huang et al.’s scheme [3] was in-
efficient because the sender has to compute n + 2 pairing for signcrypting a
message and three pairing operations for unsigncrypting a ring signcryption.
Subsequently, identity based ring signcryption schemes were reported in [4, 5,
1, 6,7,8] and these papers were attempts to design schemes more efficient than
Huang et al.’s [3] scheme.

Among these seven schemes, the security weakness of [1] was shown in [7] and
the weakness of [6] was shown in [2]. In this paper, we show that the schemes
in [4], [8], [7] and [5] are insecure. Specifically, we show that [7] and [5] does not
withstand adaptive chosen ciphertext attack, [4] and [8] are not secure against
chosen plain text attack. This leaves the scheme by Huang et al. [3] as the
only correct existing scheme. Then, we propose a new scheme and prove its
security formally in a stronger security model. Moreover, our scheme is much
more efficient than Huang et al.’s [3] scheme.

2 Preliminaries

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P , with prime order q, and G2
be a multiplicative cyclic group of the same order q. A bilinear pairing is a map
ê : G1 × G1 → G2 with the following properties.

– Bilinearity. For all P, Q, R ∈ G1,
• ê(P + Q, R) = ê(P, R)ê(Q, R)
• ê(P, Q + R) = ê(P, Q)ê(P, R)
• ê(aP, bQ) = ê(P, Q)ab

– Non-Degeneracy. There exist P, Q ∈ G1 such that ê(P, Q) �= IG2 , where
IG2 is the identity in G2.

– Computability. There exists an efficient algorithm to compute ê(P, Q) for
all P, Q ∈ G1.
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2.2 Computational Bilinear Diffie-Hellman Problem (CBDHP)

Definition 1. Given (P, aP, bP, cP ) ∈ G4
1 for unknown a, b, c ∈ Z∗

q , the CBDH
problem in G1 is to compute ê(P, P )abc ∈ G2.

The advantage of any probabilistic polynomial time algorithm A in solving the
CBDH problem in G1 is defined as

AdvCBDH
A = Pr

[A(P, aP, bP, cP ) = ê(P, P )abc|a, b, c ∈ Z∗
q

]
The CBDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCBDH

A is negligibly small.

2.3 Computation Diffie-Hellman Problem (CDHP)

Definition 2. Given (P, aP, bP ) ∈ G3
1 for unknown a, b ∈ Z∗

q, the CDH problem
in G1 is to compute abP .

The advantage of any probabilistic polynomial time algorithm A in solving the
CDH problem in G1 is defined as

AdvCDH
A = Pr

[A(P, aP, bP ) = abP | a, b ∈ Z∗
q

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negligibly small.

2.4 Notations Used in This Paper

To have a better understanding and to enhance the readability and clarity, we
use the following notations throughout the paper.

Ui - User with identity IDi.

U = {Ui}(i =1 to n) - Group of users in the ring (including the actual sender).
M - Message space.
m - Message.
l - Number of bits used to represent m.
Qi - Public key corresponding to IDi.
Di - Private key corresponding to IDi.
IDS - Identity of the sender.
IDR - Identity of the receiver.
QS - Public key of the sender.
QR - Public key of the receiver.
DS - Private key of the sender.
DR - Private key of the receiver.
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3 Formal Security Model for Identity Based Ring
Signcryption

3.1 Generic Scheme

A generic identity based ring signcryption scheme consists of the following four
algorithms.

– Setup(κ): Given a security parameter κ, the private key generator (PKG)
generates the systems public parameters params and the corresponding mas-
ter private key msk that is kept secret.

– Extract(IDi): Given a user identity IDi, the PKG computes the corre-
sponding private key Di and sends Di to IDi via a secure channel.

– Signcrypt(m,U , DS, IDR): This algorithm takes a message m ∈ M, a re-
ceiver with identity IDR, the senders private key DS and an ad-hoc group
of ring members U with identities {ID1, . . . , IDn} as input and outputs a
ring signcryption C. This algorithm is executed by a sender with identity
IDS ∈ U . IDR may or may not be in U .

– Unsigncrypt(C,U , DR): This algorithm takes the ring signcryption C, the
ring members(say U = {Ui}(i=1 to n)) and the private key DR of the receiver
IDR as input and produces the plaintext m, if C is a valid ring signcryption
of m from the ring U to IDR or “Invalid”, if C is an invalid ring signcryption.
This algorithm is executed by a receiver IDR.

3.2 Security Notion

The formal security definition of signcryption was given by Baek et al. in [9].
The security requirements for identity based ring signcryption were defined by
Huang et al. [3]. We extend the security model given in [3] by incorporating
security against insider attacks. The security model is defined as follows.

Definition 3. An identity based ring signcryption (IRSC) is indistinguishable
against adaptive chosen ciphertext attacks (IND-IRSC-CCA2) if there exists no
polynomially bounded adversary having non-negligible advantage in the following
game:

1. Setup Phase: The challenger C runs the Setup algorithm with a security
parameter κ and sends the system parameters params to the adversary A
and keeps the master private key msk secret.

2. First Phase: A performs polynomially bounded number of queries to the
oracles provided to A by C. The description of the queries in the first phase
are listed below:

– Key Extraction query: A produces an identity IDi corresponding to
Ui and receives the private key Di corresponding to IDi.

– Signcryption query: A produces a set of users U , a receiver identity
IDR and a plaintext m ∈R M to the challenger C. A also specifies the
sender US ∈ U whose identity is IDS. Then C signcrypts m from IDS to
IDR with DS and sends the result to A.
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– Unsigncryption query: A produces a set of users U , a receiver iden-
tity IDR, and a ring signcryption C. C generates the private key DR by
querying the Key Extraction oracle. C unsigncrypts C using DR and
returns m if C is a valid ring signcryption from U to IDR else outputs
“Invalid”.

A queries the various oracles adaptively, i.e. the current oracle requests may
depend on the response to the previous oracle queries.

3. Challenge: A chooses two plaintexts {m0, m1} ∈ M of equal length, a set
of n users U and a receiver identity IDR and sends them to C. A should not
have queried the private key corresponding to IDR in the first phase. C now
chooses a bit δ ∈R {0, 1} and computes the challenge ring signcryption C∗

of mδ, and sends C∗ to A.
4. Second Phase: A performs polynomially bounded number of requests just

like the first phase, with the restrictions that A cannot make Key Extraction
query on IDR and should not query for unsigncryption query on C∗. It should
be noted that IDR can be included as a ring member in U , but A cannot query
the private key of IDR.

5. Guess: Finally, A produces a bit δ′ and wins the game if δ′ = δ. The success
probability is defined by:

SuccIND−IRSC−CCA2
A (κ) =

1
2

+ ε

Here, ε is called the advantage for the adversary in the attack.

Note: The difference between the security model for confidentiality in [3] and
our model is, we allow the adversary to access the private key of the ring members
(selected by the adversary during the challenge phase) and restrict access to the
private key of the receiver of the challenge ring signcryption. But in [3], the
adversary is not allowed to access the private keys of the ring members and the
receiver (of the challenge ring signcryption).

Definition 4. An identity based ring signcryption scheme (IRSC) is said to be
existentially unforgeable against adaptive chosen messages attacks (EUF-IRSC-
CMA) if no polynomially bounded adversary has a non-negligible advantage in
the following game:

1. Setup Phase: The challenger runs the Setup algorithm with a security pa-
rameter κ and gives the system parameters to the adversary A.

2. Training Phase: A performs polynomially bounded number of queries as
described in First Phase of definition 3. The queries may be adaptive, i.e.
the current query may depend on the previous query responses.

3. Existential Forgery: Finally, A produces a new triple (U , IDR, C) (i.e. a
triple that was not produced by the signcryption oracle), where the private
keys of the users in the group U were not queried in the training phase.
A wins the game if the result of the Unsigncryption (U , IDR, C) is not
“Invalid”, in other words C is a valid signcrypt of some message m ∈ M.
It should be noted that IDR can also be member of the ring U in that case
the private key of IDR should not be queried by A.
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Note: The difference between the security model for unforgeability in [3] and
our model is, we do not allow the adversary to access the private key of the ring
members (selected by the adversary during the generation of the forgery) and
the adversary is given access to the private key of the receiver of the forged ring
signcryption. But in [3], the adversary is not allowed to access the private keys
of the ring members as well as the receiver (of the forged ring signcryption).

4 Attacks on Various Ring Signcryption Schemes

This section gives an overview of four identity based ring signcryption schemes
and the attacks corresponding to them. First we consider Yu et al.’s [4] anony-
mous signcryption scheme, followed by Fagen Li et al.’s [7] authenticatable
anonymous signcryption scheme, next we take up Lijun et al.’s [8] ring sign-
cryption scheme and conclude this section with the review and attack on Zhu et
al.’s [5] scheme.

4.1 Overview of Anonymous Signcryption (ASC) Scheme of
Yu et al.

Yu et al.’s ASC scheme [4] consists of four algorithms namely: Setup, KeyGen,
Signcryption and Unsigncryption, which we describe below.

1. Setup(κ, l): Here, κ and l are the security parameters.
(a) The PKG selects G1, G2 of same order q and a random generator P of

G1 .
(b) Selects the master private key s ∈R Z∗

q .
(c) The master public key is computed as Ppub = sP .
(d) Selects three strong public one-way hash functions: H1 : {0, 1}∗ → G∗

1,
H2 : G2 → {0, 1}l, H3 : {0, 1}∗ → Z∗

q .
(e) Selects an admissible pairing ê : G1 × G1 → G2.
(f) The public parameters of the scheme are given by params=(G1, G2, ê,

P , Ppub, H1, H2, H3,q).
2. KeyGen(IDi): Here, IDi is the identity of the user Ui. The PKG performs

the following.
(a) The user public key is computed as Qi = H1(IDi)
(b) The corresponding private key Di = sQi.
(c) The PKG sends Di to the user Ui via a secure channel.

3. Signcryption(U , m, IDR, IDS, DS): In order to signcrypt a message m, the
sender does the following:
(a) Chooses r ∈R Z∗

q and, computes R = rP , R′ = ê(Ppub, QR)r , t = H2(R′)
and c = m ⊕ t.

(b) For all i = 1 to n and i �= S, chooses Ui ∈R G1 and computes hi =
H3(m, t,U , Ui).

(c) For i = S chooses r′
S
∈R Z∗

q and, computes US = r′
S
QS − Σn

i=1,i=S
(Ui +

hiQi), hS = H3(m, t,U , US) and V = (hS + r′
S
)DS.
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Finally, the sender outputs the ring signcryption C = (U , c, R,h1, . . . , hn,U1,
. . . , Un, V ).

4. Unsigncrypt(C = (U, c, R, h1, . . ., hn,U1, . . ., Un, V ), DR): In order to
unsigncrypt a ring signcryption C, the receiver does the following:
(a) Computes t′ = H2(ê(R, DR)) and m′ = c⊕ t′.
(b) For i = 1 to n, checks whether h′

i
?= H3(m′, t′,U , Ui).

(c) Checks whether ê(Ppub, Σ
n
i=1(Ui + h′

iQi))
?= ê(P, V ).

If all the n checks in (b) and the check in (c) are true, then output m′ as
the message, else output “Invalid”.

Attack on ASC Scheme of Yu et al.: During the challenge phase of the
confidentiality game, the challenger C receives two messages m0 and m1 from
the adversary A. The challenger chooses δ ∈R {0, 1} and produces the challenge
ring signcryption C∗ using the message mδ and delivers C∗ to A. Upon receipt
of C∗ = (U , c∗, R∗,h∗

1, . . . , h
∗
n,U∗

1 , . . . , U∗
n, V ∗), A does the following to check

whether C∗ is a signcryption of m0 or m1. (Since A knows both messages m0
and m1, A can perform the following computations.)

– Computes t∗ = c∗⊕m0 and checks whether hi
?= H3(m0, t

∗,U , U∗
i ), for i = 1

to n. If all the n checks hold, then C∗ is the ring signcryption corresponding
to m0.

– If the above check does not hold, A computes t∗ = c∗ ⊕m1, checks whether
hi

?= H3(m1, t
∗,U , U∗

i ), for i = 1 to n. If all the n checks hold then C∗ is a
valid ring signcryption for message m1.

– At least one of the checks should hold true, else C∗ is an invalid ring sign-
cryption.

Thus, A distinguishes the ring signcryption with out solving any hard problem.
Here A does not interact with the challenger C after receiving the challenge ring
signcryption C∗. Thus, our attack is indeed against the CPA security of the ASC
scheme by Yu et al. reported in [4].

Remark: Informally, A is able to distinguish the ring signcryption because, the
key component required to evaluate the hash value hi is t′ and it is available
in c = mb ⊕ t′. A knows that mδ is either m0 or m1 because m0 and m1 were
chosen by A and submitted to C during the challenge phase by A. Hence, A can
find t′ without having access to the private key of the receiver and this led to
the break in confidentiality (CPA).

4.2 Overview of Authenticatable Anonymous Signcryption Scheme
(AASC) of Fagen Li et al.

The AASC scheme of Fagen Li et al. [7] consists of the five algorithms. A secure
symmetric key encryption scheme (E, D) is employed in this scheme where,
E and D are the secure symmetric key encryption and decryption algorithms
respectively.
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1. Setup(κ): Here, κ is the security parameter.
(a) The PKG selects G1, G2 of same order q and a random generator P of

G1 .
(b) Selects the master private key s ∈R Z∗

q .
(c) Computes the master public key Ppub = sP .
(d) Selects three strong public one-way hash functions H1 : {0, 1}∗ → G1,

H2 : G2 → {0, 1}l, H3 : {0, 1}∗ → Z∗
q .

(e) Selects an admissible pairing ê : G1 × G1 → G2 and a secure symmetric
key encryption system (E, D).

(f) The public parameters of the scheme are set to be params=(G1, G2, ê,
P , Ppub, H1, H2, H3, E, D).

2. Extract(IDi): Similar to the Extract(IDi) algorithm in 4.1.
3. Signcrypt(U , m, IDR, IDS, DS): In order to signcrypt a message m, the

sender does the following:
(a) Chooses r ∈R Z∗

q , and computes R = rP , k = H2(ê(Ppub, QR)r) and
c = Ek(m).

(b) For i = 1 to n, i �= S, chooses ai ∈R Z∗
q , computes Ui = aiP and

hi = H3(c,U , Ui).
(c) For i = S, chooses aS ∈R Z∗

q , computes US = aSQS−Σn
i=1i=S

(Ui +hiQi).
(d) Computes hS = H3(c,U , US) and σ = (hS + aS)DS.
Finally, the sender outputs the ring signcryption as C = (U , c, R,U1, . . . , Un,
σ).

4. Unsigncrypt(C = (U, c, R, U1, . . ., Un, σ), DR): To unsigncrypt C, the
receiver does the following.
(a) Computes k′ = H2(ê(R, DR)) and recover m′ = Dk′(c).
(b) For i = 1 to n, computes h′

i = H3(c,U , Ui).
(c) Accepts C and the message m′ if and only if ê(Ppub, Σ

n
i=1(Ui + h′

iQi))
?=

ê(P, σ), else output “Invalid”.
5. Authenticate(C): The actual sender IDS can prove that the message m

was indeed signcrypted by him by running this protocol.
(a) The sender chooses x ∈R Z∗

q , computes μ = ê(P, σ)x and sends μ to the
verifier.

(b) The verifier chooses y ∈R Z∗
q and sends it to the sender.

(c) The sender computes v = (x + y)(hS + aS) and returns v to the verifier.
(d) The verifier checks whether ê(Ppub, QS)v ?= μ.ê(P, σ)y and accepts if the

check holds.

Attack on AASC Scheme of Fagen Li et al.: The attack on AASC scheme
is quite tricky one and it shows that the model considered by the authors did
not address explicitly the scenario of the attack we propose. On receiving the
challenge ring signcryption C∗ = (U∗, c∗, R∗, U∗

1 , . . ., U∗
n, σ∗), in the challenge

phase of the confidentiality game, A can find the message used for generating
C∗. A knows the private keys of all the users except the receiver IDR and the
members of U∗ (here, U∗ is the group of ad-hoc members in the challenge ring
signcryption C∗). Now, A chooses U ′

E /∈ U∗ with identity string IDE for which
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A knows the private key DE . A performs the following steps to distinguish C∗

as, whether it is a signcryption of m0 or m1, during the second phase of oracle
queries by performing the following.

– A forms a new group with η users who are totally different from U∗. Let the
new group be U ′

= {U ′
1, . . . ,U

′
η}, where U ′

E ∈ U ′
and U ′ �= U∗.

– For i = 1 to η, i �= E, A chooses ai ∈R Z∗
q , computes U

′
i = aiP and

h
′
i = H3(c∗,U ′

, U
′
i ).

– For i = E, A chooses aE ∈R Z∗
q , computes U

′
E = aEQE − Ση

i=1,i=E(U
′
i +

h
′
iQi).

– A computes h
′
E = H3(c∗,U ′

, U
′
E) and σ

′
= (h

′
E + aE)DE .

– Now, C
′

= (U ′
, c∗, R∗, U

′
1, . . ., U

′
η, σ

′
) is also a valid ring signcryption

on the same message mδ, which was used by C to generate C∗ and C
′

is
entirely different from C∗, since U ′ �= U∗. Thus, A can legally query the
unsigncryption of C

′
during the second phase of the confidentiality game.

– A gets the unsigncryption to C
′
from C as the message mb and from this A

concludes correctly whether C∗ is the signcryption of m0 or m1.

Distinguishing the ring signcryption after the start of the second phase of inter-
action and a decryption query leads to a break in CCA2 security of the system.
Thus, we claim that the AASC scheme by Fagen Li et al. [7] is not adaptive
chosen ciphertext secure.

Remark: In this scheme, ring signcryption is achieved by using the Encrypt-
then-Sign paradigm, where the signature part is a ring signature algorithm. This
scheme lacks the binding between the encryption and signature; any adversary
can alter the signature component of any ring signcryption and with the same
receiver, i.e., the output of the encryption is alone used as input to for signature
generation. This facilitates the adversary to generate a new valid signature an
use it with the remaining components of the challenge ring signcryption, which
forms a totally different valid ring signcryption. Now, the adversary can make use
of the unsigncryption oracle to unsigncrypt the newly formed ring signcryption.
Note that since the encryption part is same as the challenge ring signcryption
and the signature part is varied, the newly formed ring signcryption yields the
same message as in the challenge ring signcryption and this query is legal with
respect to the security model..

4.3 Overview of Identity Based Ring Signcryption (IRSC) Scheme
of Lijun et al.

The IRSC scheme of Lijun et al. [8] consists of the following four algorithms.

1. Setup(κ): Here, κ is the security parameters.
(a) The PKG selects G1, G2 of same prime order - q and a random generator

P of G1 .
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(b) Selects the master private key s ∈R Z∗
q .

(c) The master public key is set to be Ppub = sP .
(d) Selects three cryptographic hash functions H1 : {0, 1}∗ → G1, H2 :

{0, 1}∗ → Z∗
q , H3 : {0, 1}∗ → Z∗

q .
(e) Selects an admissible pairing ê : G1 × G1 → G2.
(f) The public parameters of the scheme are set to be params=(G1, G2, ê,

P , Ppub, H1, H2, H3, q).
2. KeyGen (IDi): Similar to the Extract(IDi) algorithm in 4.1.
3. Signcrypt(U , m, IDR, IDS, DS): In order to signcrypt the message m the

sender does the following:
(a) Chooses r0 ∈R Z∗

q and computes R0 = r0P , W = r0Ppub.
(b) For i = 1 to n, i �= S, chooses ri ∈R Z∗

q , computes Ri = riP hi =
H2(m‖U‖Ri‖R0).

(c) For i = S, chooses rS ∈R Z∗
q , computes RS = rSP − Σn

i=1,i=S
(hiQi),

hS = H2(m‖U‖RS‖R0) and V = hSDS + Σn
i=1riPpub.

(d) Computes y = ê(W, QR), t = H3(y), c = m ⊕ t.
Finally the sender outputs the ciphertext as C = (U , c, V , R0, R1, . . . , Rn).

4. Unsigncrypt(C = (U , c, V , R0, R1, . . . , Rn), DR): In-order to unsigncrypt
C, the receiver does the following.
(a) Computes t′ = H3(ê(DR, R0)) and recovers m′ = c⊕ t′.
(b) For i = 1 to n, computes h′

i = H2(m‖U‖Ri‖R0).
(c) Checks whether ê(Ppub, Σ

n
i=1(Ri + h′

iQi))
?= ê(P, V ).

If all the n checks in (b) and the check in (c) are true, then output m′ as
the message, else output “Invalid”.

Attack on IRSC Scheme of Lijun et al.: During the challenge phase of the
confidentiality game, the challenger C receives two messages m0 and m1 from
the adversary A. The challenger chooses δ ∈R {0, 1} and generates the challenge
ring signcryption C∗ using the message mδ and delivers C∗ to A. Upon receipt
of C∗ = (U , c∗, V ∗, R∗

0, R∗
1, . . . , R∗

n), A does the following to distinguish C∗ as,
whether C∗ is the signcryption of m0 or m1. Since A knows both messages m0
and m1, A can perform the following computations.

– A can compute hi = H2(m0‖U‖R∗
i ‖R∗

0) for i = 1 to n. (since R∗
i , R∗

0 are
known from the ring signcryption C∗).

– Checks whether ê(Ppub, Σ
n
i=1(R

∗
i + hiQi))

?= ê(P, V ∗). If this check holds,
then C∗ is a valid ring signcryption of m0.

– If the above check does not hold, perform the previous two steps with m0
replaced by m1. If the ring signcryption was formed with one of the two
messages m0 or m1, any one of the above checks will hold, else the ring
signcryption C∗ is an invalid one.

Thus, A can distinguish the challenge signcryption without knowing the key of
the receiver in the challenge ring signcryption C∗.



320 S. Sharmila Deva Selvi, S. Sree Vivek, and C. Pandu Rangan

Remark: The intuition behind the attack is, in the ring signcryption proposed
by Lijun et al. [8] the ring signcryption can be verified if the message and the
corresponding ring signcryption is known. During the confidentiality game the
adversaryA knows the message, which is either m0 or m1, with these information
A concludes whether C∗ is a ring signcryption of m0 or m1.

4.4 Overview of IRSC Scheme of Zhu et al.

The IRSC scheme of Zhu et al. [5] consists of the following four algorithms.

1. Setup(κ, l): Here, κ and l are the security parameters.

(a) The PKG selects G1, G2 of same order q and a random generator P of
G1 .

(b) Selects the master private key s ∈R Z∗
q and computes the master public

key to be Ppub = sP .
(c) Selects four cryptographic hash functions H1 : {0, 1}∗ → G∗

1, H2 : G∗
1 →

{0, 1}l, H3 : {0, 1}l × G1 → {0, 1}l, H4 : {0, 1}∗ → Z∗
q .

(d) Selects an admissible pairing ê : G1 × G1 → G2.
(e) The public parameters of the scheme are set to be params=(G1, G2, ê,

P , Ppub, H1, H2, H3, H4, q).
2. KeyGen (IDi): Similar to the Extract(IDi) algorithm in 4.1.
3. Signcrypt(U , m, IDR, IDS, DS): In order to signcrypt the message m, the

sender does the following:

(a) Chooses r ∈R Z∗
q , m̂ ∈R M and, computes R0 = rP , R

′
= ê(rPpub, QR),

k = H2(R
′
), c1 = m̂ ⊕ k and c2 = m⊕H3(m̂||R0).

(b) For i = 1 to n, i �= S, chooses Ui ∈R G∗
1 and computes hi = H4(c2||Ui).

(c) For i = S, chooses r′ ∈R Z∗
q , computes US = r′QS −Σn

i=1,i=S
(Ui + hiQi),

hS = H4(c2||US) and V = (hS + r′)DS.
Finally, outputs the ring signcryption as C = (U , R0, c1, c2,U1,. . . , Un,V ).

4. Unsigncrypt(C = (U , R0, c1, c2,U1,. . . , Un,V ) , DR): To unsigncrypt a ring
signcryption C, the receiver does the following.
(a) For i = 1 to n, computes h′

i = H4(c2||Ui).

(b) Checks whether ê(Ppub, Σ
n
i=1(Ui +h′

iQi))
?= ê(P, V ), if so, computes k′ =

H2(ê(R0, DR)), and recovers m̂′ = c1 ⊕ k′ and m′ = c2 ⊕ H3(m̂′||R0).
Accept m′ as the valid message.

Note: The actual scheme in [10] had typos in setup, keygen as well as
signcryption algorithms. The definition of the hash function H3 was in-
consistent. Instead, of H2, it was written H1, instead of H1, it was writ-
ten H0 and instead of US = r′QS − Σn

i=1,i=S
(Ui + hiQi), it was written

US = r′QS − Σn
i=1,i=S

(Ui + hiQS). We have corrected all of them in our
review, in order to maintain the consistency of the scheme.
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Attack on IRSC Scheme of Zhu et al.: On receiving the challenge ring
signcryption C∗ = (U∗, R∗

0, c
∗
1, c

∗
2,U

∗
1 ,. . . , U∗

n,V ∗), in the challenge phase of the
confidentiality game, A can find the message used for generating C∗. A knows
the private keys of all the users except the receiver IDR and the members of
U∗ (here, U∗ is the group of ad-hoc members in the challenge ring signcryption
C∗). Now, A chooses U ′

E /∈ U∗ with identity string IDE for which A knows the
private key DE . A performs the following steps to distinguish C∗ as, whether
it is a signcryption of m0 or m1, during the second phase of oracle queries by
performing the following.

– A forms a new group U ′
with η members who are totally different from

the users in U∗ present in the challenge ring signcryption. Consider U ′
=

{U ′
1, . . . ,U

′
η} and U ′

E ∈ U ′
(The private key of U ′

E is known to A).
– Chooses a message m′ and computes c

′
2 = c∗2 ⊕m′.

– For all i = 1 to η and i �= E, chooses U
′
i ∈R G∗

1 and computes h
′
i =

H4(c
′
2||U ′

i).
– For i = E, chooses r

′ ∈R Z∗
q and computes U

′
E = r

′
QA −Ση

i=1(U
′
i + h

′
iQi).

– Computes h
′
E = H4(c

′
2||U

′
E) and V

′
= (r

′
+ h

′
E)DE

– Now, C
′
= (U ′

, R∗
0, c

∗
1, c

′
2,U

′
1,. . . , U

′
n,V

′
) is a valid ring signcryption on mes-

sage mb ⊕m′.

Now, during the second phase of training, A requests the unsigncryption of C′

to C. Note that it is legal for A to ask for unsigncryption of C′ because it is
derived from C∗ and not exactly the challenge ring signcryption C∗. C responds
with M = mb ⊕ m′ as the output for the query. A now obtains mb = M ⊕ m′

and thus identifies the message in the challenge ring signcryption C∗.

Remark: This attack is possible due to the same reason as described in the
remark for the attack stated in section 4.2.

5 New Ring Signcryption Scheme (New-IBRSC)

In this section, we present a new improved identity based ring signcryption
scheme (New-IBRSC), taking into account the attacks carried out in the previous
section. New-IBRSC consists of the following four algorithms:

1. Setup(κ): This algorithm is executed by the PKG to initialize the system
by taking a security parameter κ as input.
– Selects G1 an additive group and G2 a multiplicative group, both cyclic

with same prime order - q and a random generator P of the group G1.
– Selects s ∈R Z∗

q as the master private key and computes the master
public key Ppub = sP .

– Selects four cryptographic hash functions H1 : {0, 1}∗ → G1, H2 : G2 →
{0, 1}|M| × Z∗

q × G1, H3 : {0, 1}∗ → Z∗
q and H4 : {0, 1}|M| × Z∗

q → Z∗
q .

– Picks a bilinear pairing ê : G1×G1 → G2 with the appropriate properties
specified in section 2.
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– The public parameter of the scheme is params=(G1, G2, ê, P , Ppub, H1,
H2, H3, H4, q).

2. Keygen(IDi): This algorithm takes IDi, the identity of a user Ui as input.
The PKG who executes this algorithm computes the private key and public
key for the user with identity IDi as follows:
– The public key is computed as Qi = H1(IDi)
– The corresponding private key Di = sQi.
– PKG sends Di to user Ui via a secure channel.

3. Signcrypt(U , m, IDR, QR, IDS, DS): For signcrypting a message m to the
receiver UR with public key QR the sender with private key DS and public
key QS performs the following:
– Selects n potential senders and forms an ad-hoc group U , including its

own identity IDS.
– Chooses w ∈R Z∗

q , computes r=H4(m, w), U = rP and α= ê(Ppub, QR)r.
– For i = 1 to n, i �= S, chooses Ui ∈R G1 and computes hi = H3(m, Ui, α,
U , QR).

– For i = S, chooses rS ∈R Z∗
q and, computes US = rSQS − Σn

i=1,i=S
(Ui +

hiQi), hS = H3(m, US, α,U , QR) and V = (hS + rS)DS.
– Computes y = (m‖w‖V ) ⊕H2(α).

Finally, the sender outputs the ring signcryption C = (y,U ,U ,U1,. . . , Un).
4. Unsigncrypt(C = (y,U , U, U1, . . . , Un), DR): The receiver UR with identity

IDR does the following to unsigncrypt the ring signcryption C:
– Computes α′ = ê(U, DR), retrieves m′, w′ and V ′ as (m′‖w′‖V ′) =

y ⊕H2(α′), and checks whether U
?= H4(m′, w′)P .

– For i = 1 to n, computes h′
i = H3(m′, Ui, α

′,U , QR) and checks whether
ê(Ppub, Σ

n
i=1(Ui + h′

iQi))
?= ê(P, V ′).

If both the above checks hold, then the receiver UR accepts C as the valid
ring signcryption and the message m′ as the valid message.

Correctness: We show the correctness of the unsigncryption algorithm here:

LHS= ê(Ppub, Σ
n
i=1(Ui + h′

iQi))
= ê(sP, Σn

i=1(Ui + h′
iQi))

= ê(sP, Σn
i=1,i=S

(Ui + h′
iQi)).ê(sP, (US + h′

S
QS))

= ê(sP, Σn
i=1,i=S

(Ui + h′
iQi)).ê(sP, rSQS −Σn

i=1,i=S
(Ui + hiQi) + h′

S
QS)

= ê(sP, Σn
i=1,i=S

(Ui + h′
iQi) −Σn

i=1,i=S
(Ui + hiQi)).ê(sP, rSQS + h′

S
QS)

= ê(sP, rSQS + h′
S
QS)

= ê(P, V ′)=RHS

Note that the above correctness holds only if hi = h′
i for (i = 1 to n).

6 Security Results for New-IBRSC

The anonymity proof for the new identity based ring signcryption scheme (New-
IBRSC) follows from the underlying identity based ring signature [11]. The com-
position of encryption and ring signature scheme to form the ring signcryption
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scheme (New-IBRSC) does not induce a weakness in the anonymity property.
Encryption components used in the ring signature generation do not reveal any
information about the ring members. The binding between the encryption and
the ring signature is obtained with the help of the session key that is used for
encrypting the message. Even though, the session key is an input to the mes-
sage hash in the ring signature it does not contain any information that reveal
the identity of the sender and hence forth we concentrate only on the security
against adaptive chosen ciphertext attack (CCA2) and security against cho-
sen message attack (CMA). We formally prove the security of the new identity
based ring signcryption scheme (New-IBRSC), indistinguishable under chosen ci-
phertext attack (IND-IBRSC-CCA2) and existentially unforgeable under chosen
message and identity attack (EUF-IBRSC-CMA) in the random oracle model.
We consider the security model given in section 3 to prove the security of the
New-IBRSC.

6.1 Confidentiality Proof of New-IBRSC (IND-IBRSC-CCA2)

Theorem 1. If an IND-IBRSC-CCA2 adversary A exists against New-IBRSC
scheme, asking qHi (i = 1, 2, 3,4) hash queries to random oracles Hi (i = 1, 2,
3, 4), qe extract queries, qsc signcryption queries and qus unsigncryption queries,
then there exist an algorithm C that solves CBDHP.

Proof of this theorem is omitted due to page restriction and will be given in the
full version of this paper.

6.2 Unforgeability Proof of New-IBRSC (EUF-IBRSC-CMA)

Theorem 2. If an EUF-IBSC-CMA forgerA exists against New-IBRSC scheme,
asking qHi (i = 1, 2, 3, 4) hash queries to random oracles Hi (i = 1, 2, 3, 4), qe

extract secret key queries, qsc signcryption queries and qus unsigncryption queries,
then there exist an algorithm C that solves CDHP.

Proof of this theorem is omitted due to page restriction and will be given in the
full version of this paper.

7 Conclusion

As a concluding remark we summarize the work in this paper. Ring signcryption
is a primitive which enables a user to transmit authenticated messages anony-
mously and confidentially. To the best of our knowledge there were seven ring
signcryption schemes in the identity based setting. Already it was shown in [2]
that [6] was not CCA2 secure and in [7] it was shown by Fagen Li et al. that, [1]
was not CCA2 secure. So, five out of seven identity based ring signcryption
schemes were believed to be secure till date. We have shown that [4] and [8]
does not even provide security against chosen plaintext attack (CPA); [7] and [5]
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does not provide security against adaptive chosen ciphertext attack (CCA2), by
demonstrating attacks on confidentiality of these schemes. This leaves Huang
et al.’s [3] scheme as the only secure identity based ring signcryption scheme.
We have proposed a new identity based ring signcryption scheme for which we
proved the security against chosen ciphertext attack and existential unforge-
ability in the random oracle model. Also we have compared our scheme with
Huang et al.’s scheme below. In the comparison table, n represents the number
of members in the ring.

Table 1. Efficiency Comparison with [3]

Scheme Signcryption Unsigncryption
SPM BP EXP G2M PA SPM BP EXP G2M PA

New-IBRSC n + 2 1 1 − 2n − 2 n 3 - − 2n − 1
Scheme in [3] 2n + 2 n + 2 − 1 2n n 3 - n + 1 n

SPM - Scalar Point Multiplication, BP - Bilinear Pairing, EXP - Expo-
nentiation in G2, G2M - Multiplication of two G2 elements and PA - Point
Addition.

Table 2. Ciphertext Size Comparison with [3]

Scheme Ciphertext Size
New-IBRSC 2|M| + (n + 2)|G1|
Scheme in [3] 2|M| + (n + 1)|G1| + n|Z∗

q |

Thus, our new identity based ring signcryption scheme (New-IBRSC) is a
significant improvement over the scheme proposed by Huang et al. [3]
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Abstract. In this paper, we propose a simple redactable signature
scheme for super-sets whose message-signature size is O(|M |+ τ ), where
τ is a security parameter and M is a message to be signed. The scheme
proposed by Johnson et al. in CT-RSA 2003 has the similar performance
but this scheme was proven secure based on the RSA assumption in the
random oracle model. In this paper, we show that such a scheme can be
constructed based on the RSA assumption without the random oracles.

1 Introduction

In this paper, we consider a redactable signature scheme that comprises a third
party called a redactor in addition to the signer and the verifier. This signature
scheme attracts much attention since it allows the redactor to hide the partial
information of the original message without disabling the verifier from verifying
the integrity of the resultant message. More concretely, it allows the redactor
to replace arbitrary bit positions in the message with a special symbol, say
“#”, which means it has a hiding property as well as a certain weak unforgeable
property. These special properties are useful in many scenarios, e.g., publishing
medical data which should be done in an anonymized and yet authentic form.

Extensive studies have been carried out on this signature scheme (e.g., [1,2,3]).
The main drawback of the previously proposed schemes lies in their overhead.
In the “standard” signature schemes, the message-signature size is O(τ + |M |),
where τ and M are the sizes of the security parameter (signature) and the
message M , respectively. The overhead of the redactable signatures proposed in
[2,3] is high. For example, the overhead of the scheme proposed in [2] is O(τ ·|M |).
To the best of our knowledge, the best solution in terms of the size is [1], where
the message-signature size is O(τ + |M |). However, from the security point of
view, it was based on the hardness of the RSA problem in the random oracle
model.

In this paper, we propose a scheme whose security can be proven by assum-
ing the hardness of the RSA problem without the random oracle while keeping
the message-signature size O(τ + |M |). Our scheme is based on the redactable
signature proposed by Miyazaki, Hanaoka, and Imai [4]. In that paper, the au-
thors showed a very interesting scheme based on a pseudorandom generator.1

1 The security proof was done later by Yang et al. in [5].

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 326–337, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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However, the signature scheme only has restricted redaction ability. The scheme
only allows the redactor to hide one string from the original message. In this pa-
per, we remove such constraint by employing the technique used in the verifiable
random function [6].

Related Works: Many redactable (or sanitizable) signature schemes have been
proposed so far (e.g., [7,8,9,10]). In most of the schemes, the authors concen-
trate on the redactable signature schemes which have some additional useful
properties. In this paper, we have not provided such additional properties in our
scheme so as to keep it simple as possible.

Recently, in CT-RSA 2009, the authors proposed the redactable signature
for strings [11]. Their scheme was aimed at hiding the length of the redacted
sub-strings. Hence they constructed a redactable signature with some additional
properties. In fact, this scheme used the redactable signature scheme proposed in
[1,2] as a building block. More precisely, the authors regard [1,2] as a redactable
signature for super-sets and propose the signature scheme by using these as a
black-box. The scheme proposed by us can be considered as a redactable sig-
nature for super-sets; thus, by combining our scheme with that in [11], we can
obtain a redactable signature scheme for strings as well.

Organization: We provide the definitions and the notations used in this paper
in the next section. The proposed scheme is shown in Section 3. In the section, we
utilize the verifiable random function proposed in [6] to construct the redactable
signature scheme. In Section 4, we prove the security of the proposed scheme
and then conclude this paper in Section 5.

2 Preliminaries

2.1 Notations

We denote a security parameter by τ ∈ N. A function μ : N → [0, 1] is said to be
negligible, if for every c there exists τc > 0 such that for all τ > τc, μ(τ) < 1

τc . A
function μ : N → [0, 1] is said to be non-negligible if it is not a negligible function.
We denote “probabilistic polynomial-time” by ppt . All of the algorithms run
in ppt in the security parameter τ . We often do not write 1τ explicitly.

If S is a set then we denote the experiment of selecting x ∈ S according to
the uniform distribution by x

$← S. If A(x) is a randomized algorithm with some
input x, then we denote the experiment of A(x) producing y over the internal

coins by y
$← A(x). On the other hand, if A is a deterministic algorithm then we

denote it simply by y ← A(x). Further, we denote the assignment of b into a by
a ← b.

Let s1, s2, . . . , sn be strings of finite length. We denote the concatenation
of s1, s2, . . . , sn by 〈s1, s2, . . . , sn〉. In this paper, we denote the message to be
signed by M = 〈M1, M2, . . . , ML〉 with Mi ∈ {0, 1} for every 1 ≤ i ≤ L. We
denote [L] = {1, . . . , L} and if S ⊂ [L] then S is [L] \ S.
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2.2 RSA Assumption

Let P, Q be primes of the same length τ and let e be an integer such that
gcd(e,φ(N)) = 1, where φ is the Euler function and N = PQ. The RSA per-
mutation fe,N : Z∗

N → Z∗
N is then defined by fe,N : x �→ xe mod N . Given

randomly chosen e, P, Q, and y ∈ Z∗
N , it is believed that producing x such that

xe = y mod N is hard for all ppt algorithms. In this paper, we assume that e is a
prime of length |N |+1 = 2τ +1. We denote a set of Ns which is composed of the
products of two primes P, Q of length τ by MODτ . That is, |N | = 2τ for every
N ∈ MODτ . Further, we denote a set of primes of length τ by Primesτ . Then,
we can formally describe the assumption as follows: For every ppt algorithm B

Pr
[
N

$← MODτ , y
$← Z∗

N , e
$← Primes|N |+1, x

$← B(e, N, y) xe = y mod N

]
(1)

is negligible.

2.3 Definition of the Digital Signature Scheme

A “standard” digital signature scheme SS = (GenS , SigS , VerS) consists of three
algorithms. Given a security parameter τ , the key-generation algorithm GenS

outputs signing/verification keys (skS , vkS). Given a signing key skS and a mes-
sage M , the signing algorithm SigS outputs a signature σS . Given a verification
key vkS , a message M , and a signature σS , the verification algorithm VerS out-
puts a signature validity decision 1 or 0. Here, 1 and 0 mean acceptance and
rejection, respectively. We require the signature scheme to satisfy the existen-
tial unforgeability with respect to chosen-message attacks (EU-CMA), which is
defined as follows:

Definition 1 ([12]). Let SS = (GenS , SigS , VerS) be a digital signature scheme.
We say that SS satisfies EU-CMA if, for every ppt A,

Pr

[
(vkS , skS) $← GenS , VerS(vkS , M∗, σ∗

S) = 1

(M∗, σ∗
S) $← ASigS(skS ,·)(vkS) ∧M∗ �∈ Q

]

is negligible, where Q is the set of queries to the oracle SigS(skS , ·) produced
by A.

Any signature scheme that satisfies EU-CMA can be employed in our scheme.
Hence, we can employ the RSA based schemes such as [13,14,15].

2.4 Definitions of a Redactable Signature for Super Sets

In this section, we present the definition of the redactable signature for super
sets. The definition is based on [11].

Let Σ = {0, 1, #}. We define a partial order � on Σ such that # � 0, # � 1,
and a � a for each a ∈ Σ. This induces a partial order � on Σ∗ by pointwise
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comparison, namely, 〈w1 · · ·wn〉 � 〈x1 · · ·xn〉 holds if wi � xi for every i. In this
paper, whenever M � M ′, we assume |M | = |M ′|.

The redactable signature is composed of a quadruple of algorithms RS =
(GenR, SigR, RedR, VerR):

– The ppt algorithm GenR outputs (vkR, skR). We call skR and vkR a signing-
key and a verification-key, respectively.

– On input (skR, M), the ppt algorithm SigR outputs a signature σR.
– On input (vkR, σR, M, M ′), the ppt algorithm RedR outputs σ′

R, where we
always assume M ′ � M .

– On input (vkR, σ′
R, M ′), the ppt algorithm VerR outputs 1 or 0 meaning

acceptance and rejection, respectively.

Definition 2. A redactable signature scheme RS with respect to binary relation
� is a tuple of ppt algorithms (GenR, SigR, RedR, VerR) such that

– for any message M ,

σR
$← SigR(skR, M); VerR(vkR, σR, M) = 1

for every (vkR, skR) produced by GenR; and
– for any messages M and M ′ such that M ′ � M ,

σR
$← SigR(skR, M); σ′

R ← RedR(vkR, σR, M, M ′); VerR(vkR, σ′
R, M ′) = 1,

for every (vkR, skR) produced by GenR.

The above mentioned conditions are required for the correctness of the scheme.
For the security, this signature scheme must satisfy the following conditions.

– Unforgeability: Let Q be a set of messages and let span(Q) = {M ′ | ∃M ∈
Q such that M ′ � M}. Then, for every ppt adversary A

Pr

[
(vkR, skR) $← GenR VerR(vkR, σ′

R, M ′) = 1

(M ′, σ′
R) $← ASigR(skR,·)(vk) M ′ �∈ span(Q)

]

is negligible, where Q is a set of queries sent by A to the oracle SigR(skR, ·).
– Hiding: For every two-staged ppt adversary A = (A1, A2),∣∣∣∣∣∣∣Pr

⎡⎢⎣ (vkR, skR) $← GenR, b
$← {0, 1}

(M0, M1, M
′, st) $← A1(vkR), σR

$← SigR(skR, Mb) b = b′

σ′
R

$← RedR(vkR, σR, Mb, M
′), b′ $← A2(st, σ′

R)

⎤⎥⎦− 1
2

∣∣∣∣∣∣∣
is negligible, where M0, M1, M

′ satisfy M ′ � M0 and M ′ � M1.
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3 The Proposed Scheme

3.1 Prime Sequence Generator and Hard-Core Predicate

In the proposed scheme, we utilize a prime sequence generator

H : {1, . . . , L} → Primes|N |+1

which on input i outputs a prime pi. This was first proposed in [16] as a build-
ing block for the private information retrieval and later utilized in [6] for the
verifiable random function. The notable property of this generator is that if H
is randomly chosen from an appropriate function family, denoted by H, then
H(1), H(2), . . ., H(L) are distinct primes of length |N | + 1 with probability at
least 1− 2−Ω(τ). It is important to note that the random oracles are not used in
this generator. Instead, the 2k2-wise independent function is employed, where
k = 2τ . (Refer to [6] and [16] for detailed information and also see Appendix for
its construction.)

We denote pi := H(i) for every 1 ≤ i ≤ L and p̂ = p1p2 · · · pL. We also define
(p̂/pi) = p1 · · · pi−1pi+1 · · · pL mod φ(N), where N is the RSA modulus that will
be used in the proposed scheme.

We also use the Goldreich-Levin hard-core predicate [17] to redact (or hide)
the partial message. Let hcα : Z∗

N → {0, 1} be a hash function defined by
hcα(y) := α · y, where · is an inner product modulo 2 by viewing y ∈ ZN as
a bit string of length 2τ = |N |.

3.2 Construction

In our scheme, to sign a message M = 〈M1, . . . , ML〉, it is firstly exclusive-ORed
with a binary string 〈hcα(g(p̂/p1)), . . . , hcα(g(p̂/pL))〉 of length L, where g ∈ Z∗

N

is randomly chosen. Then the encrypted message

C = 〈M1, . . . , ML〉 ⊕ 〈hcα(g(p̂/p1)), . . . , hcα(g(p̂/pL))〉
and gp̂ mod N are concatenated and signed by the standard signature scheme
SS. Here, the message is encrypted because 〈hcα(g(p̂/p1)), . . . , hcα(g(p̂/pL))〉 is
(pseudo)random by the RSA assumption [6].

The detail of a proposed scheme is as follows:

Key Generation: First, we describe the algorithm GenR. Given τ , it works as
follows:

– N
$← MODτ , where N = PQ with P , Q primes

– (skS , vkS) $← GenS(1τ ) (Recall that this is a pair of keys for the standard
digital signature scheme)

– α
$← {0, 1}2τ (Note that |N | = 2τ .)

– H
$← H

– skR ← (skS , P, Q, α, H) and vkR ← (vkS , N, α, H).
– Output (vkR, skR)
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Sign: To sign a message M = 〈M1, . . . , ML〉 (with Mi ∈ {0, 1}), the signing
algorithm SigR(skR, M) works as follows:

– Parse skR as (skS , P, Q, α, H)

– g
$← Z∗

N

– For every 1 ≤ i ≤ L, compute

ki ← g(p̂/pi) mod N, k′
i ← hcα(ki) and Ci ← k′

i ⊕Mi.

– σS
$← SigS(skS , 〈C1, . . . , CL, gp̂ mod N〉)

– σR ← (σS , gp̂ mod N, g mod N, 〈M1, . . . , ML〉)
– Output σR

Redact: Given (vkR, σR, M, M ′) such that M ′ � M , the redaction algorithm
RedR(vkR, σR, M, M ′) works as follows:

– Parse σR as (σS , gp̂ mod N, g mod N, 〈M1, . . . , ML〉)
– Parse M ′ as (M ′

1, . . . , M
′
L)

– S ← {1 ≤ i ≤ L | M ′
i = #}

– p̂S ← ∏
i∈S pi

– For each i ∈ S,

ki ← g(p̂/pi) mod N, k′
i ← hcα(ki) and Ci ← k′

i ⊕Mi.

– For each 1 ≤ i ≤ L,

C′
i ←

{
Ci if i ∈ S

Mi otherwise

– σ′
R ← (σS , gp̂ mod N, gp̂S mod N, 〈C′

1, . . . , C
′
L〉)

– Output σ′
R

Verify: Given vkR, σ′
R, M ′, the verification algorithm VerR(vkR, σ′

R, M ′) works
as follows:

– Parse vkR as (vkS , N, α, H).
– Parse σ′

R as (σS , y1 mod N, y2 mod N, 〈C′
1, . . . , C

′
L〉)

– S ← {1 ≤ i ≤ L | M ′
i = #}

– Verify y1
?= (y2)

∏
i∈S pi mod N . If not then output 0 and terminate. Here

S = {1, . . . , L} \ S.
– For each i ∈ S,

ki ← y
∏

j∈{1,...,L}\(S∪{i}) pj

2 mod N, k′
i ← hcα(ki) and Ci ← k′

i ⊕M ′
i .

– For each i ∈ S, Ci ← C′
i (this partial message is already encrypted.)

– Output VerS(vkS , 〈C1, C2, . . . , CL, y1〉, σS).

It is clear that the size of the message-signature pair is O(τ+|M |). More precisely,
2τ + cτ + 2|M |, where cτ is assumed to be the size of the signature of SS for
some constant c.
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4 Security Evaluation

We now show that the proposed scheme satisfies the unforgeable and the hiding
properties.

Theorem 1 (Unforgeability). The proposed scheme satisfies the unforgeable
property if the underlying standard signature scheme SS = (GenS , SigS , VerS)
satisfies the EU-CMA property.

Proof. We prove that if there exists a forger A against RS with non-negligible
success probability, then we can use it to construct a forger B against SS. Recall
that B can access the oracle SigS(skS , ·). The algorithm B(vkS) proceeds as
follows:

– Generate primes P, Q of length τ and set N ← PQ

– Generate α
$← {0, 1}|N | and H

$← H
– Run A on input vkR ← (vkS , N, α, H)

– When A queries M , generate g
$← ZN , compute gp̂ mod N , and, for every

i ∈ {1, . . . , L}, compute

ki ← g(p̂/pi) mod N, k′
i ← hcα(ki) and Ci ← k′

i ⊕Mi.

Obtain the signature σS by accessing the oracle with the message

〈C1, . . . , CL, gp̂ mod N〉.

Return
σR ← (σS , gp̂ mod N, g mod N, 〈M1, . . . , ML〉)

to A
– When A outputs (σ′

R, M ′), parse σ′
R to obtain

(σS , y1 mod N, y2 mod N, C′)

– If 0 = VerR(vk, σ′
R, M ′) then terminate.

– S ← {1 ≤ i ≤ L | M ′
i = #}

– For every i, compute Ci as follows:
• Ci ← C′

i if i ∈ S, and

• Ci ← M ′
i ⊕ hcα(g

∏
j∈[L]\(S∪{i}) pj

2 mod N) otherwise.
– Output σS and a message 〈C1, . . . , CL, y1〉.

If A succeeds in forging, then VerS(vkS , 〈C1, . . . , CL, y1〉, σS) = 1. We can then
consider two cases:

– (Case 1): The message 〈C1, . . . , CL, y1〉 has not been queried by B to the
oracle; and

– (Case 2): The message 〈C1, . . . , CL, y1〉 has been queried by B to the oracle.
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Case 1 implies that B successfully forges a new message-signature pair. There-
fore, we concentrate on Case 2. In this case, the success of A in forging implies
that there exist two distinct messages that generate the same 〈C1, . . . , CL, y1〉
for some common g. However, this does not happen whenever pi �= pj for every
i �= j. Therefore, the probability of A succeeds must be bounded by 2−Ω(τ) which
comes from the property of the prime sequence generator.

Taking these in mind,

Pr[A forges] = Pr[Case 1 ∨Case 2] ≤ Pr[Case 1] ∨ Pr[Case 2]

≤ Pr[B forges] +
1

2Ω(τ) ,

which results in Pr[A forges] being negligible. It is clear that if A is ppt, then so
is B. This concludes the proof. ��

To prove the hiding property, we use the following lemma which has been im-
plicitly used in [6].

Lemma 1. For every ppt A = (A1, A2),∣∣∣∣∣∣∣Pr

⎡⎢⎣ H
$← H, N

$← MODτ , A2(st, gpsT ) = hcα(gp̂/psT ))

g
$← Z∗

N , α
$← {0, 1}2τ ∧1 ≤ sT ≤ L

(sT , st) $← A1(H, N, α, L, gp̂)

⎤⎥⎦− 1
2

∣∣∣∣∣∣∣ (2)

is negligible if the probability (1) is negligible for every ppt B and L is bounded
by some polynomial poly in the security parameter τ , i.e., L ≤ poly(τ).

Proof (Sketch). For every 1 ≤ sT ≤ L, there is no algorithm which outputs
gp̂/psT given gpsT , H, N, α, gp̂ with non-negligible probability. This is because
if there exists such an algorithm, then we can obtain g from gpsT and gp̂/psT

by the extended Euclid algorithm, and this contradicts to the RSA assumption.
From this fact, we can observe that gp̂/psT becomes pseudorandom by applying
the Goldreich-Levin hard-core predicate hcα[17]. ��

We also we use the following useful lemma.

Lemma 2 (Lemma B.13 in [18]). Let R, S, B be jointly distributed random
variables with values in {0, 1}. Assume that B and S are independent and that
B is uniformly distributed. Then

Pr[R = S] =
1
2

+ Pr[R = B | S = B] − Pr[R = B].

By using these lemmas, we prove the hiding property of our proposed scheme:

Theorem 2 (Hiding). If the RSA problem is hard for every ppt algorithm (in
the sense of (1)) then the proposed scheme satisfies the hiding property.
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Proof. We first consider the following. For any S ⊆ {1, . . . , L}, given

{g
∏

i∈S pi mod N | i ∈ S}, N, H, α

the sequence
{hcα(gp̂/pi) | i ∈ S}

is pseudorandom when g, H , and α are randomly chosen from an appropriate
domain. More precisely, we can describe this as follows:

Claim. Assume that the RSA problem is hard in the sense of Lemma 1. Then,
for every ppt algorithm A = (A1, A2),∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
N

$← MODτ , g
$← Z∗

N , α
$← {0, 1}2τ , H

$← H,

(S = {s1, . . . , sω}, st) $← A1(N, H, L, α, gp̂), b = b′

R0 ← (hcα(gp̂/ps1 ), . . . , hcα(gp̂/psω )), ∧S ⊆ [L]

R1
$← {0, 1}ω, b

$← {0, 1},
b′ $← A2(st, g

∏
i∈S pi , Rb)

⎤⎥⎥⎥⎥⎥⎥⎦− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣
(3)

is negligible.

Proof. We first assume that there is an adversary A that makes (3) non-negligible.
We then construct the adversary B = (B1, B2) that makes (2) non-negligible. We
prove this by using a hybrid-argument. The construction of B is as follows.

– Given (N, H, L, α, gp̂), feed (N, H, L, α, gp̂) into A to obtain S = {s1, . . . , sω}
and st.

– Randomly choose sT
$← {s1, . . . , sω} and output (sT , st) to obtain gpsT mod

N
– For every i ∈ {sT+1, . . . , sω}, compute ki ← hcα(g(p̂/pi))
– For every i ∈ {s1, . . . , sT−1}, compute ki

$← {0, 1}κ

– Set kT
$← {0, 1}

– Feed k1, . . . , kω and gps1 ···psω mod N to A. Then output kT if the output of
A equals 1, and output 1 − kT otherwise

We analyze the probability of A outputting 1. For every 0 ≤ i ≤ ω, let Ei be an
event such that Ei is true if and only if A outputs 1 when the input to A is

(k1, . . . , ki−1, ki, . . . , kω) = (k1, . . . , ki−1, hcα(g(p̂/pi)), . . . , hcα(g(p̂/pω))). (4)

That is, k1, . . . , ki−1 ∈ {0, 1} are randomly chosen values and the rest are real
values generated by g. We can then rewrite the assumption as

ε ≤ |Pr[E0]− Pr[Eω]| (5)

for some non-negligible function ε. By modifying (5), we obtain

ε ≤ |Pr[E0]− Pr[Eω]|
= |Pr[E0]− Pr[E1] + · · ·+ Pr[Ei]− Pr[Ei+1] + · · · + Pr[Eω−1]− Pr[Eω]|

=

∣∣∣∣∣
ω−1∑
i=0

Pr[Ei]− Pr[Ei+1]

∣∣∣∣∣ .
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By using Lemma 2,

Pr
[
B outputs hcα(gp̂/psT )

]
=

1
2

+ Pr
[
B outputs kT | hcα(gp̂/psT ) = kT

]
− Pr [B outputs kT ]

=
1
2

+
ω−1∑
i=0

Pr [T = i]
(

Pr
[
B outputs kT | hcα(gp̂/psT ) = kT , T = i

]
− Pr [B outputs kT | T = i]

)
=

1
2

+
1
ω

ω−1∑
i=0

(Pr[Ei] − Pr[Ei+1]).

Putting these together, we obtain∣∣∣∣Pr
[
B outputs hcα(gp̂/psT )

]
− 1

2

∣∣∣∣ ≥ ε

ω
.

This concludes the proof of the claim. ��

We now return back to the proof of the theorem. To prove this theorem, we
assume the existence of A = (A1, A2), which breaks the hiding property of the
proposed scheme. Then, we show the adversary B = (B1, B2) which makes (3)
non-negligible by using A. The construction of B is as follows.

– Given (N, H, L, α, gp̂), run GenS to obtain (vkS , skS) and set vkR ←
(vkS , N, α, H)

– Feed vkR into A1 and obtain M , M (0), M (1) and stA such that M �
M (0), M (1). Then obtain redacted positions S = {s1, . . . , sω}

– Output S = {s1, . . . , sω} to obtain gps1 ···psω mod N and r1, . . . , rω (with
state information)

– For every i ∈ S = [L] \ S, compute

ki ← g(p̂/pi) mod N, k′
i ← hcα(ki) and Ci ← k′

i ⊕Mi.

– Choose d ∈ {0, 1} at random and set Csi ← ri ⊕M
(d)
si for every 1 ≤ i ≤ ω

– Compute
gp̂ ← (gps1 ···psω )

∏
i∈S pi mod N,

and set gp̂S = gps1 ···psω mod N

– Obtain σS
$← SigS(sk, 〈C1, . . . , CL, gp̂ mod N〉)

– Set C′
i ← Mi for every i ∈ S and C′

si
← Csi for every 1 ≤ i ≤ ω

– Feed (stA, σS , gp̂ mod N, gp̂S mod N, 〈C′
1, . . . , C

′
L〉) into A2, and obtain d′

– If d′ = d then output b′ ← 1, and output b′ ← 0 otherwise
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If b = 0 then Csi ← ri ⊕M
(d)
si is completely random for every i ∈ S. Therefore,

Pr[d = d′ | b = 0] = 1/2 in this case. On the other hand, if b = 1, then B
perfectly computes the (redacted) signature of the proposed scheme. From the
assumption that |Pr[d = d′ | b = 1]− 1/2| is non-negligible,

|Pr[d = d′ | b = 1]− Pr[d = d′ | b = 0]| = |Pr[d = d′ | b = 1]− 1/2|

becomes non-negligible. This contradicts to the result of the claim. The remain-
ing part of the proof deals with showing that the running time of B is ppt.
However, it is easy to see that if A is ppt, B is also ppt. This concludes the
proof. ��

5 Concluding Remarks

In this paper, we showed the redactable signature schemewhose message-signature
size is O(τ + |M |). The construction of our scheme was inspired from the verifiable
random function of [6] and the redactable signature of [4]. Compared to the one
proposed in [1], the signature size in our scheme is bigger. However, we showed
that the random oracles are not needed in our proposal.

The main problem of our proposal is the inefficiency of the primes sequence
generator [6]. Hence, in our future research, we are intend to replace the prime
sequence generator with a division intractable hash function [19]. However, since
there are problems in instantiating such functions [20], we are interested in con-
structing a weaker version of the division intractable hash function and proving
the security by assuming the hardness of the strong RSA problem in the standard
model.

We are also interested in the generic construction of the redactable signature
schemes from the verifiable random functions.
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LNCS, vol. 3783, pp. 72–83. Springer, Heidelberg (2005)

8. Miyazaki, K., Hanaoka, G., Imai, H.: Digitally signed document sanitizing scheme
based on bilinear maps. In: ASIACCS, pp. 343–354 (2006)

9. Haber, S., Hatano, Y., Honda, Y., Horne, W., Miyazaki, K., Sander, T., Tezoku,
S., Yao, D.: Efficient signature schemes supporting redaction, pseudonymization,
and data deidentification. In: ASIACCS, pp. 353–362 (2008)

10. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
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A The Construction of a Prime Sequence Generator [16]

We introduce the prime sequence generator P (·, ·, ·) used in [6].
– Input: An log2 L bit string x, a polynomial Q of degree at most 2k2− 1 over

GF(2k), and an l-bit string coin.
– Output: a (k + 1)-bit integer px (a prime with overwhelming probability)
– Code:

• For j = 1, . . . , 2k2, let yj be the (k + 1)-bit string 〈1, Q(〈x, j〉)〉, where j
denotes the j’s string in {0, 1}k−log2 L under the lexicographic order.

• Use the primality testing algorithm with random coins coin to test each
yj for primality, and let px be the first prime in the sequence y1, . . . , y2k2 .
Output px. (If there is no prime then the output is y2k2 .)

In the proposed scheme, k = 2τ and the generator is defined by H(x) =

P (x, Q, coin). Also H
$← H means choosing Q and coin at random.
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Abstract. The concept of stateful encryption was introduced by Bellare
et al. in 2006. Compared with conventional public key encryption scheme,
stateful encryption can achieve much better encryption performance. In
this paper, we introduce a related primitive called stateful identity based
key encapsulation mechanism (SIBKEM). SIBKEM is a simpler primi-
tive, however, together with multi-time use IND-CCA secure symmetric
encryption, it implies secure stateful identity based encryption. We then
demonstrate there is a generic construction of SIBKEM from a wide class
of identity based non-interactive key exchange schemes.

1 Introduction

Public key encryption (PKE) is an important tool for securing digital communi-
cabilities [1,2]. PKE schemes are often much slower than symmetric encryption
(SE) schemes. In resource-constrained environments like mobile communication
and sensor networks, this disadvantage of PKE will be quite undesirable, since
system performance will drop greatly due to the high computational cost from
frequent discrete modular exponentiations.

To improve the performance of PKE, Bellare, Kohno and Shoup [3] intro-
duced the concept of stateful PKE (SPKE) in ACM-CCS’06. In such a scheme,
a sender maintains some state information. Without loss of generality, the state
information can be viewed as two parts: the secret part and the public part. Then
the encryption algorithm takes as input not only a message and the public key of
receiver, but also his current secret state to produce a ciphertext. As a result, the
sender’s computational cost for encryption is dramatically reduced. Decryption
performance remains unchanged from stateless scheme, and the receivers need
not even necessarily notice whether the sender is stateful if the public state is
included in the ciphertext.

Recently, Baek, Zhou and Bao [4] proposed a “generic” construction, and
demonstrated many efficient instantiations. We remark that the “generic”
construction of [4] requires additionally that underlying key encapsulation mech-
anism (KEM) [5] meets two non-standard properties: “partitioned” and “repro-
ducibility”. Thus their approach is not necessarily a real simplification for scheme
designing.

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 338–346, 2009.
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On the other hand, an identity based encryption (IBE) scheme is a special
public key encryption scheme, where public keys can be arbitrary strings, advo-
cated by Shamir [6] to simplify public key certificate management. The model of
Stateful IBE (SIBE) was first formalized by Phong, Matsuoka and Ogata [7], as
the stateful counterpart of IBE. Yang, Zhang and Matsuura proposed variants of
SPKE and SIBE schemes [8], trading assumptions/generality with computation
costs. Currently there is not any generic construction of SIBE.

Our Contributions. The main contribution of this paper could be considered
as the explanation of the essence of such SIBE schemes. This research was mo-
tivated to remove the symmetric encryption part from the security model and
proof of stateful schemes. We hope that this work could help to understand the
original idea of [3]. To achieve this goal, we introduce a simpler primitive called
stateful identity based KEM (SIBKEM), which can be used to achieve SIBE, to-
gether with multi-time use IND-CCA secure symmetric encryption. We formally
state a composition theorem for such an approach.

Our secondary contribution is a construction of SIBKEM based from a well-
studied cryptographic primitive, so-called identity based non-interactive key ex-
change (IBNIKE). As its name suggests, an IBNIKE scheme is a non-interactive
key exchange scheme that two players set up their shared key. Our construc-
tion is totally black-box: given a class of IBNIKE scheme, we can construct
an SIBKEM scheme without essential modifications of the algorithms nor re-
sorting to random oracles. Recently, Paterson and Srinivasan [9,10] proposed a
transforma from IBNIKE to a CPA secure IBE. Their work could be adapted to
produce a stateless IBKEM, then the standard composition result by Bentahar
et al. [11] would then allow the construction of IND-CCA secure IBE.

2 Preliminaries

In this section, we review the security models of identity based non-interactive
key exchange, stateful identity based encryption, and symmetric encryption.

2.1 Conventions

Notations. Let y ← A(x1, ..., xn) denote the experiment of assigning the result
of A to y. If S is a finite set then let x ← S denote the operation of picking an
element at random and uniformly from S. If α is neither an algorithm nor a set
then let x ← α denote a simple assignment statement.

Negligible Function. We say a function ε : N → R is negligible if for every
constant c ≥ 0 there exits an integer kc such that ε(k) < k−c for all k > kc.

2.2 Identity Based Non-interactive Key Exchange

IBNIKE is not a new concept, since it is only a natural extension of its PKI coun-
terpart. The first IBNIKE was proposed by Sakai, Ohgishi and Kasahara [12].
We first review the model of IBNIKE, and then define the security notion.
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Algorithms. An identity based non-interactive key exchange scheme is speci-
fied by three algorithms. IBNIKE = {Setup, Ext, Shr}, where

Setup: The randomized setup algorithm takes as input security parameter 1λ

where λ ∈ N. It outputs the system parameters sp and the master key mk.
It also specifies the shared key space SHK by sp. (SHK may be included in
sp.) We write (sp, mk) ← Setup(1λ).

Ext: The (possibly randomized) extract algorithm takes as input sp, mk and
an identity id ∈ {0, 1}n. It outputs a secret key skid corresponding to id. We
write skid ← Ext(sp, mk, id).

Shr: The deterministic sharing algorithm takes as inputs sp, a private key skidA

and a user’s identities idB, where idA �= idB. It outputs the shared key
KA,B ∈ SHK between A and B. This algorithm has symmetry. We write
KA,B ← Shr(sp, skidA

, idB) = Shr(sp, skidB
, idA).

Security Notion. We establish the IND (i.e., indistinguishability against adap-
tive chosen identity attack and adaptively reveal attack) game for IBNIKE be-
tween an adversary A and a challenger C.

Setup: C takes the security parameter λ and runs Setup alogrithm. It passes
the resulting system parameter sp to A and keeps the master key mk.

Phase 1: A issues two types of oracle queries q1, · · · , qi where a query is one
of

" extraction queries on an identity id. C responds with a correspond-
ing secrete key skid.
" reveal queries on a pair of identities (id1, id2), C responds with the
key K1,2 shared between these two identities.

These queries may be asked adaptively, that is, each query qi may depends
on the replies to q1, · · · , qi−1.

Challenge: Once A decides phase 1 is over, he outputs two target identities
idA, idB, with restriction that pair (idA, idB) has not appeared in previous
reveal queries, and neither idA nor idB has appeared in previous extraction
queries. Then C flips a coin b ∈ {0, 1}. If b = 0, C returns A a random value
from key space SHK; otherwise C returns the real key KA,B.

Phase 2: A issues more queries qi+1, · · · , qj where a query is one of
" Extraction queries on an identity id �∈ {idA, idB}. C responds as in
phase 1.
" Reveal queries on a pair of identities (id1, id2) �= (idA, idB),C re-
sponds as in phase 1.

Guess: Finally, A outputs a bit b′ ∈ {0, 1}.

We refer such an adversary A as an IND adversary. A’s advantage in this IND
security game is defined to be Adv(A) = |Pr[b′ = b] − 1/2|. We say that an
IBNIKE scheme is secure in the sense of IND if the advantage is negligible for
any probabilistic polynomial-time (ppt) algorithm A.
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2.3 Stateful Identity Based Encryption

Due to the space limitation, algorithms and security notion of SIBE are omitted.
For further particulars, please refer to [7,8].

2.4 Symmetric Encryption

Here, we briefly review the model and the security requirements of symmetric
encryption (SE).

An SE scheme consists of three algorithms, SE = (K, E, D). The randomized
key generation algorithm K takes as input the security parameter λ and outputs
a session key dk. We write dk ← K(λ). The (possibly randomized) encryption
algorithm E takes as input a session key dk and a plaintext m and computes
a ciphertext C. We write C ← E(dk, m). The decryption algorithm D takes as
input a session key dk and a ciphertext C and outputs a plaintext m (or “⊥”
for invalid). We write m/⊥ ← D(dk, C). The standard consistency constraint is
that ∀dk : m ← D(dk, E(dk, m)).

In this paper, we only consider symmetric encryption which guarantees in-
distinguishability against chosen ciphertext attack. Due to the space limitation,
the description of IND-CCA security notion of SE is omitted. Interested reader
are referred to [13]. In this paper, we require SE to be multiple time secure,
and such SE schemes can be generically built from standard block ciphers and
message authentication codes (MAC) [13].

3 Stateful Identity Based Key Encapsulation Mechanism

In this section, we introduce the model and the security notions of SIBKEM.
Roughly speaking, SIBKEM is the “stateful version” of conventional identity
based key encapsulation mechanism (IBKEM). In particular, in SIBKEM, the
sender maintains state information. For a specified identity, the session key en-
capsulated by the sender remains the same unless the state is updated. Since it
is deterministic, SIBKEM is weaker than IBKEM, i.e., the adversary can issue
neither encapsulation query nor decapsulation query on the target identity.

3.1 Algorithms

An SIBKEM scheme is specified by five algorithms. SIBKEM =
{Setup, Ext, NwSt, Enc, Dec}.
Setup: The randomized setup algorithm takes as input security parameter 1λ

where λ ∈ N. It outputs the system parameters sp and the master key mk.
It also specifies the key space SHK by sp. (SHK may be included in sp.)
We write (sp, mk) ← Setup(1λ).

Ext: The (possibly randomized) key extraction algorithms takes as input sp,
mk and a user’s identity id. It outputs a secret key skid corresponding to id.
We write skid ← Ext(sp, mk, id).
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NwSt: The randomized new state algorithm takes as input sp. It outputs a new
state st of a sender. We write st ← NwSt(sp).

Enc: The deterministic encapsulation algorithm takes as input sp, id and st,
where id is the receiver’s identity. It outputs the corresponding ciphertext c
of a session key dk. We write (c, dk) ← Enc(sp, st, id).

Dec: The deterministic decapsulation algorithm takes as sp, skid and a cipher-
text c. It outputs the session key dk. We write dk ← Dec(sp, skid, c).

3.2 IND-ID-CCA Security

We establish the IND-ID-CCA (indistinguishability against adaptive chosen iden-
tity attack and adaptive chosen ciphertext attack) game for SIBKEM between
an adversary A and a challenger C. The game is described as follows.

Setup: C takes the security parameter λ and runs Setup of SIBE. It passes the
the resulting system parameters sp to A and keeps the masker key mk to
himself. The state st is decided a-priori by C .

Phase 1: A issues three types of queries q1, · · · , qi where a query is one of
" extraction queries on an identity id. C responds with a correspond-
ing secret private key skid of id.
" encapsulation queries on an identity id. C responds with ciphertext
c and a decryption key dk under id and the current state st.
" decapsulation queries on an identity and a ciphertext (id, c). C re-
sponds with the corresponding decryption key dk of c.

These queries may be asked adaptively, that is, each query qi may depends
on the replies to q1, · · · , qi−1.

Challenge: Once A decides that phase 1 is over, he outputs an id∗ on which he
wishes to be challenged. The only restriction is that id∗ must not appear in
any query in phase 1. Then C computes a valid key-ciphertext pair (c∗, dk∗

1)
and flips a coin b ∈ {0, 1}. If b = 0, then C chooses a random key dk∗

0 from
the key space and returns (c∗, dk∗

0) to A; otherwise C returns (c∗, dk∗
1).

Phase 2: A issues more queries qi+1, · · · , qj where a query is one of
" extraction queries on an identity id �= id∗. C responds as in phase
1.
" encapsulation queries on an identity id �= id∗. C responds as in
phase 1.
" decapsulation queries on an identity and a ciphertext (id, c) �=
(id∗, c∗). C responds as in phase 1. Note that since the decapsula-
tion algorithm is deterministic on fixed id and st, the restriction is
actually id �= id∗.

Guess: Finally, A outputs a bit b′ ∈ {0, 1}.
A’s advantage in this IND-ID-CCA game is defined to be Adv(A) = |Pr[b =
b′]− 1/2|. We say that an SIBKEM scheme is secure in the sense of IND-ID-CCA
if the advantage is negligible for any ppt algorithm A.
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3.3 The Composition Theorem

By combining an IND-ID-CCA secure SIBKEM = {SIBKEM.Setup, SIBKEM.Ext,
SIBKEM.NwSt, SIBKEM.Enc, SIBKEM.Dec} and a multi-time use IND-CCA se-
cure SE = {SE.K, SE.E, SE.D}, we can obtain an IND-ID-CCA secure SIBE =
{Setup, Ext, NwSt, Enc, Dec}. We omit composition details since it is straight-
forward. At a high level, the SIBE sender uses SE.E to encrypt a message by
using the key dk encapsulated by SIBKEM.Enc, and the SIBE receiver runs SE.D
to decrypt with dk recovered by SIBKEM.Dec.

Theorem 1. Suppose SIBKEM is IND-ID-CCA secure, and SE is IND-CCA
secure. Then the hybrid encryption scheme SIBE is IND-ID-CCA secure.

Due to the space limitation, the detailed proof is omitted.

4 A Generic Construction

In this section, we propose a generic construction of stateful identity based key
encapsulation mechanism. Our building block is identity based non-interactive
key exchange (with mild requirements). As previous work, similar requirements
to convert an IBNIKE scheme to an IND-ID-CPA secure IBE scheme were dis-
cussed [9,10]. By applying our generic construction to various IBNIKE schemes,
we can obtain SIBKEM schemes which provide various functionalities.

4.1 Preparation

As described in Section 2, an IBNIKE scheme is specified by three basic algo-
rithms, Setup, Ext, and Shr. To show the generic construction, in addition to
these three basic algorithms, we require three additional algorithms which can
be derived from the basic algorithms.

Sample: The randomized sample algorithm takes input as sp and output a
temporary key pair (pk, sk) ∈ {PK}× {SK}, where sk is the corresponding
secret key to the public key pk. And the identifier of pk cannot be revealed.
One can imagine that pk is the image of a virtual identifier id, and id must
not be in collision with other realistic identities in the identity space.

Shr’: If a party B has neither an identity nor an secret key, and B wants to
exchange a key to a target party A with identity idA, then Shr’ takes as input
(sp, skB, idA), where skB is B’s temporary secret key generated in Sample.
It outputs a key KA,B. Shr’ is a deterministic algorithms.

Shr”: If a party A with identity idA and secret key skidA wants to exchange a
key with a party B who does not have an identity but a temporary public
key pkB , then Shr” takes as input (sp, skidA , pkB), where pkB is generated
in Sample. It outputs a key KA,B. Shr” is a deterministic algorithms.

We require the consistency of Shr’ and Shr” algorithms, i.e., if skidA is se-
cret key of idA, and skB is secret key of pkB, then Shr’(sp, skB, idA) =
Shr”(sp, skidA , pkB), where (pkB, skB) ← Sample(sp) and skidA ←
Ext(sp, mk, idA).
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At a first glance, these algorithms seem to require special properties to IB-
NIKE schemes, but to the best of our knowledge, it is easy to construct such
algorithms for almost all currently known IBNIKE schemes.

4.2 From IBNIKE to SIBKEM

Let IBNIKE = {Setup, Ext, Shr, Sample, Shr’, Shr”} be an IBNIKE scheme.
By employing IBNIKE as buiding block, we show a generic construction
of an SIBKEM scheme SIBKEM = {K.Setup, K.Ext, K.NwSt,K.Enc,K.Dec} as
follows:

K.Setup: It takes as input 1λ, and runs Setup of IBNIKE to obtain sp, mk,
where sp contains a description of the shared key space SHK. The output
is (sp, mk).

K.Ext: It takes as input (sp, mk, id), and runs Ext of IBNIKE on (sp, mk, id)
to obtain skid of an identity. The output is skid.

K.NwSt: It takes as input sp, and runs Sample of IBNIKE to obtain a tempo-
rary key pair (p̂k, ŝk). It sets st ← (p̂k, ŝk) and outputs st.

K.Enc: It takes as input (sp, id, st), parses st as (p̂k, ŝk), and then runs Shr’

of IBNIKE on input (sp, ŝk, id) to obtain a key K. It sets the ciphertext
c ← p̂k, dk ← K, and outputs (c, dk).

K.Dec: It takes as input sp, skid, c, and runs Shr” on input (sp, skid, c) to obtain
the key K. It sets dk ← K, and outputs dk. According to the consistency of
Shr’ and Shr”, dk is the valid key outputed by K.Enc.

4.3 Security Analysis

Here, we analyze the security of our generic construction. For convenience, we
use the simulation-based proof technique. As described below, our proof has
perfect simulation.

Theorem 2. Suppose IBNIKE is IND secure. Then SIBKEM is IND-ID-CCA
secure.

Main idea of the proof. Our strategy is as follows. Towards contradiction, we
prove that if a scheme SIBKEM we constructed is not secure in the IND-ID-
CCA sense, then the underlying scheme IBNIKE is not secure in the IND. So
we first assume there exists an IND-ID-CCA adversary A who can successfully
break IND-ID-CCA with an advantage which is not negligible, then we show that
we can construct an IND adversary B who can successfully break IND with an
advantage which is not negligible.

Due to the space limitation, the detailed proof is omitted.

5 Conclusions

In this paper, we firstly proposed a cryptographic primitive called stateful iden-
tity based key encapsulation mechanism (SIBKEM). We defined the security



Generic Construction of Stateful Identity Based Encryption 345

notion, and showed that by combining secure SIBKEM and secure symmetric
encryption, we can obtain secure stateful identity based encryption.

Secondly, we showed how to generically construct such SIBKEM scheme from
a well-studied cryptographic primitive named identity based non-interactive key
exchange (IBNIKE). Although our discussion was only in identity based settings,
but we note that part of our results could be applied to conventional public key
settings.
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Abstract. As a new public key primitive, attribute-based encryption
(ABE) is envisioned to be a promising tool for implementing fine-grained
access control. To further address the concern of user access privacy,
privacy-aware ABE schemes are being developed to achieve hidden access
policy recently. For the purpose of secure access control, there is, how-
ever, still one critical functionality missing in the existing ABE schemes,
which is user accountability. Currently, no ABE scheme can completely
prevent the problem of illegal key sharing among users. In this paper, we
tackle this problem by firstly proposing the notion of accountable, anony-
mous, and ciphertext-policy ABE (CP-A3BE, in short) and then giving
out a concrete construction. We start by improving the state-of-the-art of
anonymous CP-ABE to obtain shorter public parameters and ciphertext
length. In the proposed CP-A3BE construction, user accountability can
be achieved in black-box model by embedding additional user-specific
information into the attribute private key issued to that user, while still
maintaining hidden access policy. The proposed constructions are prov-
ably secure.

Keywords: Access control, Anonymity, Attribute-based, Ciphertext-
policy, Accountability.

1 Introduction

Today’s computing and electronic technology innovations have unprecedentedly
enabled ubiquitous information generation, processing, and distribution in both
volume and speed. Vast amounts of information resources are made available
and readily accessible to individuals and organizations through various com-
puter systems and the Internet. This trend, however, also poses new challenges
in designing suitable secure access control mechanisms. Generally, among the
various requirements, today’s access control schemes should at least meet the
following ones: 1) fine-grained access policy, 2) protection of user privacy, and
3) assurance of user accountability.
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Recently, the notion of ABE, which was proposed by Sahai and Waters [1],
has attracted much attention in the research community to design flexible and
scalable access control systems. For the first time, ABE enables public key based
one-to-many encryption. Therefore, it is envisioned as a highly promising pub-
lic key primitive for realizing scalable and fine-grained access control systems,
where differential yet flexible access rights can be assigned to individual users.
To address complex and general access policy, two kinds of ABE have been pro-
posed : key-policy ABE (KP-ABE) and ciphertext-policy ABE (CP-ABE). In
KP-ABE, access policy is assigned in attribute private key, whereas, in CP-ABE,
the access policy is specified in the ciphertext.

Besides fine-grained access policy, there is an increasing need to protect user
privacy in today’s access control systems. To address this problem, anonymous
ABE was introduced in [2,3] and further improved by [4]. Anonymous ABE has
a wide range of applications. For example, in some military circumstances, the
access policy itself could be sensitive information. Therefore, to share resources
with users possessing certain attribute-policy, anonymous ABE scheme can be
applied to encrypt the resources while keeping the access policy specified in the
ciphertext hidden.

Although the anonymous ABE can provide secure anonymous access control,
before its widely deployment, another important security aspect, user account-
ability, has to be formally addressed. In particular, the problem of key abuse, i.e.,
illegal key sharing among users, should be prevented. This problem is extremely
important as in an ABE-based access control system, the attribute private keys
directly imply users’ privileges to the protected resources. The dishonest users
may share their attribute private keys with other users, who do not have these
privileges. They can just directly give away part of their original or transformed
keys such that nobody can tell who has distributed these keys. Consequently, it
renders the system useless. To the best of our knowledge, the issue of user ac-
countability in access control system based on ABE is quite new in the literature
and has not been solved yet. Such key abuse problems exist in all current access
control schemes constructed from ABE as the attribute private keys assigned to
users are never designed to be linked to any user specific information except the
commonly shared user attributes. This is the reason why attribute private key
can be abused by users without being detected.

To construct privacy-aware fine-grained ABE with user accountability, in this
paper, the notion of accountable and anonymous CP-ABE (CP-A3BE) is pro-
posed. This is achieved by binding user identity in the attribute private key.
CP-A3BE can be applied to prevent the key sharing among users based on the
following observation. If the user shares his attribute private key, the user’s iden-
tity will be detected from the pirate device embedded with the shared private
key. In normal encryption of CP-A3BE, the message is encrypted with respect to
some ciphertext-policy, in which the identity part is for all users. Any users can
decrypt the ciphertext as long as their attribute private keys satisfy this policy. In
tracing encryption, a message is encrypted to users with some ciphertext-policy,
in which the identity part is for the suspicious users. In this algorithm, only the
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suspicious users with attribute private keys that satisfy this ciphertext-policy
can decrypt the ciphertext. Due to the anonymity of CP-A3BE, the tracing en-
cryption algorithm and normal encryption algorithm are indistinguishable from
the viewpoint of any user. Specifically, given a pirate device and the detected
attributes embedded, the attribute center, who is in charge of the attribute pri-
vate key issuing, can find the suspicious identity list of users possessing these
attributes. To pinpoint the identity of the user sharing the attribute private key
in the pirate device, the attribute center applies the tracing algorithm to en-
crypt a message with respect to the attributes and identities in the suspicious
list. Computing in this way, the identity could be found if the ciphertext for
some specific identity can be decrypted by this pirate device.

1.1 Related Work

Since the introduction of ABE in implementing fine-grained access control sys-
tems, a lot of works have been proposed to design flexible ABE schemes. There
are two methods to realize the fine-grained access control based on ABE: KP-
ABE and CP-ABE. They were both mentioned in [5] by Goyal et al. In KP-ABE,
each attribute private key is associated with an access structure that specifies
which type of ciphertexts the key is able to decrypt, and ciphertext is labeled
with sets of attributes. In a CP-ABE system, a user’s key is associated with a
set of attributes and an encrypted ciphertext will specify an access policy over
attributes. CP-ABE is different from KP-ABE in the sense that, in CP-ABE,
it is the encryptor who assigns certain access policy for the ciphertext. When a
message is being encrypted, it will be associated with an access structure over a
predefined set of attributes. In CP-ABE, user will only be able to decrypt a given
ciphertext if its attributes pass through the corresponding access structure spec-
ified in the ciphertext. The first KP-ABE construction [5] realized the monotonic
access structures for key policies. To enable more flexible access policy, Ostro-
vsky et al. [6] presented the first KP-ABE system that supports the expression
of non-monotone formulas in key policies. However, KP-ABE is less flexible than
CP-ABE because the policy is determined once the user’s attribute private key
is issued. Later, Bethencourt et al. [7] proposed the first CP-ABE construction.
However, the construction [7] is only proved secure under the generic group
model. To overcome this weakness, Cheung and Newport [8] presented another
construction that is proved to be secure under the standard model. The con-
struction supports the types of access structures that are represented by AND
of different attributes. Later, in [9], the authors gave another construction for
more advanced access structures based on number theoretic assumption. To fur-
ther achieve receiver-anonymity, Boneh and Waters [10] proposed a predicate
encryption scheme based on the primitive called Hidden Vector Encryption. The
scheme in [10] can also realize the anonymous CP-ABE by using the opposite
semantics of subset predicates. Katz, Sahai, and Waters [11] proposed a novel
predicate encryption scheme supporting inner product predicates. Their scheme
is very general and can achieve both KP-ABE and hidden CP-ABE schemes.
However, the constructions of [10,11] are very inefficient compared to [4]. Re-
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cently, several attempts [12,13,14] have been made to address the accountability
problem in ABE-based access control. In [14], they considered how to defend the
key-abuse problem in KP-ABE schemes while only achieving privacy for part
of the attributes. In [13], another trusted party was introduced in the protocol
and each decryption operation should get assistance from the trusted party. As
a result, the third party has to handle a huge amount of load, which greatly
limits their application in the real world. The work [12] does not rely on the
existence of trusted party. Instead, they used the technique of identity-based
wildcard encryption [15] to achieve the accountability for the user. However, a
strong assumption of well-formedness decryption key is required in the pirate
device. Therefore, the result in [12] is still not practical enough. In our work,
these two drawbacks: the introduction of trusted party and strong assumption
of white-box, can be avoided. In addition to the accountability, the user privacy,
is also considered in our constructions, which cannot be realized in [12,13].

ORGANIZATION. Some preliminaries are given in Section 2, including the syn-
tax and basic mathematic tools used in the paper. In Section 3, we propose two
improved constructions of privacy-aware CP-ABE. In Section 4, the CP-A3BE
construction is proposed to realize the fine-grained access control system with
user privacy and accountability. This paper ends with concluding remarks.

2 Preliminaries

2.1 Syntax

System Model. Before introducing CP-A3BE, we first give the system model
for anonymous CP-ABE. In the anonymous CP-ABE architecture, there are
two entities: attribute center (AC) and user. AC is in charge of the issue of
attribute private key to users requesting them. The user, who wants to access
data, should get the attribute private key from AC in advance. The encryptor can
specify the ciphertext-policy such that only users whose attribute private keys
satisfy the policy are able to decrypt the ciphertext. In addition, the ciphertext-
policy is kept hidden. The users with an attribute private key are able to check
whether his attributes satisfy the ciphertext-policy or not. In our system model,
a binary relation R is defined as part of public parameter according to the
concrete requirements of anonymous CP-ABE. We denote it by R(L, W ) = 1 if
the attribute list L satisfies ciphertext-policy W .

Definition 1. AnanonymousCP-ABEsystemconsists of four algorithms,namely,
Setup, KeyGen, Encryption, and Decryption, which are defined as follows:

Setup(1λ). The setup algorithm, on input security parameter 1λ, outputs a mas-
ter secret key sk and public key pk.
KeyGen(L, sk). The key generation algorithm, on input attribute list L and mas-
ter key sk, outputs skL as the attribute private key for L.
Enc(M , W , pk). The encryption algorithm, on input a message M together with
ciphertext-policy W , outputs C, as the encryption on M with respect to W .
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Dec(C, skL). The decryption algorithm, on input the ciphertext C and the at-
tribute private key skL, outputs M if R(L, W ) = 1. Otherwise, it returns ⊥.

Adversary Model. The goal of adversary in anonymous CP-ABE system can
be either one of the following 1) Extracting information of plaintext from the
ciphertext. Here, the adversary is allowed to control some users and access their
attribute private keys that do not match the ciphertext-policy; 2) Distinguishing
underlying access-policy in the ciphertext.

The two goals of adversary can be integrated in the indistinguishability against
ciphertext-policy and chosen ciphertext attacks (CP-IND-CCA). In this work, a
weaker notion, called indistinguishability against selective ciphertext-policy and
chosen message attack (sCP-IND-CPA) [7,8,5], will be used. The definition is the
same with CP-IND-CCA, except in sCP-IND-CPA, the adversary has to submit its
challenge attributes before the setup phase. Furthermore, the decryption oracle
is not available to the adversary. The formal definition is given based on the
following sCP-IND-CPA game involving an adversary A:

Game sCP-IND-CPA

Initial . The adversary commits to the challenge ciphertext policies W ∗
0 , W ∗

1
before setup algorithm.

Setup. Choose a sufficiently large security parameter 1λ, and run Setup to get
a master secret key sk and public key pk. Retain sk and give pk to A;

Phase 1 . A can perform a polynomially bounded number of queries to key gen-
eration oracle on attributes L, the only restriction on L is that, R(L, W ∗

0 ) =
R(L, W ∗

1 ) = 0 or R(L, W ∗
0 ) = R(L, W ∗

1 ) = 1;
Challenge. A outputs two messages M0, M1 on which it wishes to be challenged

with respect to W ∗
0 and W ∗

1 . It requires that M0 = M1 if any attribute
private key on L satisfying R(L, W ∗

0 ) = R(L, W ∗
1 ) = 1 has been queried. The

challenger randomly chooses a bit b ∈ {0, 1}, computes C = Enc(Mb, W
∗
b , pk)

and sends C to A;
Phase 2 . A continues to issue queries to the key generation oracle, with the

same restriction as before;
Guess . Finally, A outputs a guess bit b′.

A wins the game if b = b′. The advantage of A in Game sCP-IND-CPA is defined
as the probability that A wins the game minus 1/2. This model can be considered
to be analogous to the selective-ID model [16] utilized in IBE protocols. In their
security model, the adversary should commit to the challenge identity ID before
Setup phase.

Definition 2. An anonymous CP-ABE satisfies sCP-IND-CPA if no polynomial
time adversary can break the above game.

In CP-A3BE, as explained, we consider how to achieve user accountability in
addition to fine-grained access-policy and user privacy. The system model for
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CP-A3BE is the same with anonymous CP-ABE, except here the algorithm for
tracing is added.

Trace. This algorithm is applied to trace an attribute private key in black-box
to its original holder. It takes as input a pirate device, and outputs identity
associated with this attribute private key in the pirate device.

Because the CP-A3BE is still one kind of anonymous CP-ABE, the adversary
model and security requirement of sCP-IND-CPA are defined in the same way
as anonymous CP-ABE. The only difference lies in the ciphertext-policy where
it is defined by two parts W = W ′ ∨ W : The first part is the same as in the
anonymous CP-ABE while the second part is for the identity. That is, W could be
∗ or specific ID. Accordingly, the challenge ciphertext would be W ∗

0 = W ∗
0,1‖W ∗

0,2
and W ∗

1 = W ∗
1,1‖W ∗

1,2. This kind of security implies that if a user has an attribute
private key on attributes L for identity ID, it cannot decrypt the ciphertext
encrypted for the ciphertext-policy W if R(L‖ID, W ) = 0. Additionally, to trace
the identity who shares the attribute private key, the tracing algorithm should
be indistinguishable with the normal encryption algorithm to avoid detection by
the pirate device.

2.2 Basic Mathematic Tools

We give a brief review on the property of pairings and some candidates of hard
problem from pairings. Let G1, G2 be cyclic groups of prime order p, writing the
group action multiplicatively. Let g be a generator of G1, and ê : G1 ×G1 → G2
be a map with the following properties. Bilinearity: ê(ga

1 , gb
2) = ê(g1, g2)ab for

all g1, g2 ∈ G1, and a, b ∈R Zp; Non-degeneracy: There exist g1, g2 ∈ G1 such
that ê(g1, g2) �= 1. In other words, the map does not send all pairs in G1 × G1
to the identity in G2; Computability: There is an efficient algorithm to compute
ê(g1, g2) for all g1, g2 ∈ G1.

3 Improved Privacy-Aware CP-ABE Constructions

3.1 Anonymous CP-ABE with Short Public Parameters

First, we give a construction of anonymous CP-ABE with short public parame-
ters. In this work, the ciphertext-policy has the same fine-grained access struc-
ture (ciphertext-policy) with CP-ABE scheme [8]. Details of the access structure
in [8] are described below. Assume that the total number of attributes in the
system is n and the universal attributes set is U = {w1, w2, · · · , wn}. To encrypt
a message, it specifies the ciphertext-policy W = [W1, W2, · · · , Wn]. The notion
of wildcard ∗ in the ciphtertext policies means the value of “don’t care”. For
example, let the ciphertext-policy W = [1, 0, 1, ∗] when n = 4. This ciphertext-
policy means that the recipient who wants to decrypt must have the value 1 for
W1 and W3, the value 0 for W2, and any possible values for W4. Therefore, if the
receiver has an attribute private key for [1, 0, 1, 0], it can decrypt the ciphertext
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because the first three values for W1, W2 and W3 are equivalent to the corre-
sponding values in ciphertext-policy. Moreover, the fourth value 0 in the private
key satisfies the ciphertext-policy because W4 = ∗. If an attribute private key
is associated with the attribute list [1, 1, 1, 0], this attribute private key will not
match the ciphertext-policy since W2 �= 0. To be more generalized, given an at-
tribute list L = [L1, L2, · · · , Ln] and a ciphertext-policy W = [W1, W2, · · · , Wn],
we say that L matches W if for all i ∈ [1, n], Li ∈ Wi, i.e., Li = Wi or Wi = ∗. In
[8], each attribute can take two values 1 and 0. In our construction, we generalize
the access structures such that each attribute can take two or more values. More
formally, let Si = {vi,1, vi,2, · · · , vi,ni} be a set of possible values for attribute wi

where ni is the number of the possible values for wi. Then the attribute list L for
a user is L = [L1, L2, · · · , Ln] where Li ∈ Si for 1 ≤ i ≤ n, and the generalized
ciphertext policy W is W = [W1, W2, · · · , Wn]. The attribute list L satisfies the
ciphertext-policy W (that is, R(L, W ) = 1) if Li = Wi or Wi = ∗ for 1 ≤ i ≤ n.

Main Idea. We use H(i‖vi,ki) to denote the ki-th value vi,ki for the i-th at-
tribute. Instead, in [4], they used different public keys to denote the universal
attributes, which makes the size of public parameters to be O(N), where N
is the total number of all attribute values defined in the system. To keep the
receiver-anonymity in ciphertext, we cannot just replace the public key pki,ki

with H(i‖vi,ki) directly. The ciphertext of the vi,ki is computed by splitting the
random value used in encryption into two parts H(1‖i‖vi,ki)) and H(0‖i‖vi,ki),
together with two different generators g1 and g2. The reason for choosing differ-
ent generators is to prevent the public verifiability of the ciphertext’s validity,
which achieves hidden policy. User can only check whether his own attribute
private key matches the ciphertext-policy. Furthermore, the user cannot check if
the ciphertext is valid or not with respect to other attribute list he does not have,
which keeps the ciphertext-policy hidden. The four algorithms of our scheme are
defined as follows.

Setup. Let G1, G2 be cyclic groups of prime order p, and ê : G1 × G1 → G2 be
a pairing defined in Section 2. Let g1, g2 be random elements from G0. Define
a hash function H : {0, 1}∗ → G0. Assume there are n attributes in universe.
That is to say, let the universal attributes set be U = {ω1, ω2, · · · , ωn}. And,
each attribute has multiple values, where Si is the multi-value set for ωi and
| Si |= ni. This algorithm also chooses a random number α ∈ Zp and computes
T = ê(g1, g2)α. The system public parameter is para = (g1, g2, T, H). The system
master secret key msk is α, which is only known to AC.

KeyGen. To generate an attribute private key for user with attribute list L =
[L1, L2, · · · , Ln]=[v1,k1 , v2,k2 , · · · , vn,kn ], AC picks up random s1, s2, · · · , sn−1 ∈
Z∗

p and computes sn = α −∑n−1
i=1 si mod p. It also chooses n random numbers

{ri}1≤i≤n ∈ Z∗
p and computes the attribute private key with respect to L as

skL ={(di0, di1, d
′
i0, d

′
i1)}={(gsi

2 H(1‖i‖vi,ki)ri , gri
1 , gsi

1 H(0‖i‖vi,ki)r′
i , g

r′
i

2 )}1≤i≤n.
The validity of skL = {(di0, di1, d

′
i0, d

′
i1)}1≤i≤n can be verified through the fol-

lowing equation:
∏n

i=1
ê(di0,g1)ê(d′

i0,g2)
ê(di1,H(1‖i‖vi,ki

))ê(d′
i1,H(0‖i‖vi,ki

)) = T.
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Enc. To encrypt a message M ∈ G2 under ciphertext-policy W = [W1, W2,
· · · , Wn], pick up a random value z ∈ Zp and compute C0 = MT z. For each
1 ≤ i ≤ n and 1 ≤ ti ≤ ni,

† if vi,ti ∈ Wi, choose zi,ti ∈ Z∗
p and compute (Ci,ti,0, Ci,ti,1, C

′
i,ti,0, C

′
i,ti,1)

= ((H(1‖i‖vi,ti))zi,ti , g
zi,ti
1 , (H(0‖i‖vi,ti))z−zi,ti , g

z−zi,ti
2 );

‡ if vi,ti �∈ Wi, choose randomly zi,ti , z′i,ti
∈ Z∗

p and compute

(Ci,ti,0, Ci,ti,1, C
′
i,ti,0, C

′
i,ti,1)=((H(1‖i‖vi,ti))

zi,ti , g
zi,ti
1 ,(H(0‖i‖vi,ti))

z′
i,ti , g

z′
i,ti

2 ).

Finally, output the ciphertext as C = (C0, {(Ci,ti,0, Ci,ti,1, C′
i,ti,0, C′

i,ti,1) } for
1 ≤ ti ≤ ni and 1 ≤ i ≤ n.

Dec. Assume a user has an attribute private key skL = {(di0, di1, d
′
i0, d

′
i1)}1≤i≤n

on attribute list L = [v1,k1 , v2,k2 , · · · , vn,kn ]. To decrypt the ciphertext C
= (C0,{{(Ci,ti,0,Ci,ti,1, C′

i,ti,0, C′
i,ti,1)}1≤ti≤ni}1≤i≤n) without the information

of ciphertext-policy W , the user first computes C′ =
∏n

i=1
ê(Ci,ki,1,di0)ê(C′

i,ki,1,d′
i0)

ê(Ci,ki,0,di1)ê(C′
i,ki,0,d′

i1)

and then decrypts the ciphertext as M = C0/C′.

To check whether the decryption is correct or not, redundancy can be added
in the plaintext such that the user knows if his attribute private key matches
the ciphertext-policy. There are many ways to add redundancy, such as append-
ing 0λ to the message for security parameter λ. After decryption, the user can
verify the correctness of decryption by checking whether the first λ is 0λ.

3.1.1 Security Result
Before giving security result for the anonymous CP-ABE, we show definitions of
the following problems and assumptions based on the bilinear groups.

DBDH Problem. The Decision Bilinear Diffie-Hellman (DBDH) problem is that,
given g, gx, gy, gz ∈ G1 for unknown random x, y, z ∈ Z∗

p, T ∈ G2, to decide if
T = ê(g, g)xyz.

We say that a polynomial-time adversary A has advantage ε in solving the
DBDH problem in groups (G1, G2) if | Pr[A(g, gx, gy, gz, ê(g, g)xyz) = 1] −
Pr[A(g, gx, gy, gz, ê(g, g)r) = 1] | ≥ 2ε, where the probability is taken over the
randomly chosen x, y, z, r and the random bits consumed by A. (t, ε)-DBDH as-
sumption holds in (G1, G2) if no t-time algorithm has the probability at least ε
in solving the DBDH problem for non-negligible ε.

D-Linear Problem. Let z1, z2, z3, z4, z ∈ Zp be chosen at random and g ∈ G1
be a generator. The D-Linear problem is that given g, gz1, gz2 , gz1z3 , gz2z4 , T , to
decide if T = gz3+z4 .

We say that a polynomial-time adversary A has advantage ε in solving the
D-Linear Problem in groups (G1, G2) if | Pr[A(g, gz1 , gz2, gz1z3 , gz2z4 , T ]−Pr[g,
gz1 , gz2, gz1z3 , gz2z4 , gz3+z4 ] | ≥ 2ε, where the probability is taken over the ran-
domly chosen z1, z2, z3, z4 and the random bits consumed by A. (t, ε)-D-Linear
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assumption holds in (G1, G2) if no t-time algorithm has the probability at least
ε in solving the D-Linear problem for non-negligible ε. The D-Linear assumption
was first proposed in [17] and one of its variants will be used in the proof. We
have the following security result for the above construction:

Theorem 1. The Anonymous CP-ABE construction is secure in sCP-IND-CPA
model, under the DBDH and D-Linear assumption.

Proof. Due to space limitations, the detailed proof is provided in the full version
[18].

To achieve IND-sCP-CCA security in the standard model, we can use the tech-
nique of simulation-sound NIZK proofs [19]. The most efficient transformation
from IND-sCP-CPA to IND-sCP-CCA is to use the Fujisaki-Okamoto technique
[20], which adds only a little computation overhead on the original scheme. So,
the resulted IND-sCP-CCA anonymous CP-ABE construction is very efficient.

3.2 Anonymous CP-ABE with Shorter Ciphertext

To further reduce the ciphertext size of the above scheme, we propose another
construction by expressing the attribute values as bit pattern. The ciphertext-
policy Wi can be only one value or ∗. This technique, together with the above
construction, will be applied to design the CP-A3BE scheme in the next Section.

Main Idea. The value set Si for each attribute ωi is expressed using bit pattern.
Suppose the length of | Si | is ρi. Instead of computing the ciphertext for each
value in Si, we encrypt the message with respect to 0 or 1 for each bit by using
the anonymous CP-ABE technique above. It is indistinguishable that some bit
is encrypted for 0, 1, or ∗, from the viewpoint of users. Without loss of general-
ity, the values in set Si can be mapped to {1, 2, · · · , | Si |} with some injective
function. As a result, the ciphertext size can be reduced from O(| Si |) to O(log
| Si |). Here, for each i, the ciphertext policy Wi can be some vi,ki in Si or ∗.
To encrypt a message, it specifies the ciphertext-policy W = [W1, W2, · · · , Wn]
with AND gate as above.

Setup.Assume there are n attributes in universe denoted by U={ω1, ω2, · · · , ωn}.
Each attribute has multiple values. Let Si be the multi-value set for ωi and | Si |=
ni. Assume the length of | Si | is ρi. The system public parameter is the same as
the above scheme para = (g1, g2, T, H). The system master secret key msk is α.

KeyGen. To generate an attribute private key for user with attribute list L =
[L1, L2, · · · , Ln]=[v1,k1 , v2,k2 , · · · , vn,kn ], AC picks up random s1, s2, · · · , sn−1 ∈
Z∗

p and computes sn = α − ∑n−1
i=1 si mod p. For each 1 ≤ i ≤ n, the following

steps are taken:
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1. AC picks up si,1, si,2, · · · , si,ρi ∈ Z∗
p such that si =

∑ρi

k=1 si,k mod p;
2. For each 1 ≤ ti ≤ ρi, AC chooses random numbers (ri,ti , r

′
i,ti

) from Z∗
p.

Assume vi,ki = (Ii,1, Ii,2, · · · , Ii,ρi)∈ {0, 1}ρi. AC computes the attribute
private key for vi,ki as

Di = {(di,ti,0, di,ti,1, d
′
i,ti,0, d

′
i,ti,1)}1≤ti≤ρi

= (g
si,ti

2 H(1‖i‖ti‖Ii,ti)
ri,ti , g

ri,ti

1 , g
si,ti

1 H(0‖i‖ti‖Ii,ti)
r′

i,ti , g
r′

i,ti
2 )1≤ti≤ρi .

The validity of skL = {Di}1≤i≤n can be also verified in a similar way as the
construction in Section 3.1.

Enc. To encrypt a message M ∈ G2 under ciphertext-policy W = [W1, W2,
· · · , Wn], pick up a random value z ∈ Zp and compute C0 = MT z. For each
1 ≤ i ≤ n,

1. If Wi = v′i,k′
i
(= (I ′i,1, I ′i,2, · · · , I ′i,ρi

)), choose {(zi,ti , z
′
i,ti

,z̄i,ti)}1≤ti≤ρi ∈ Zp.
For 1 ≤ ti ≤ ρi, if I ′i,ti

= 1, compute (Ci,ti,0, Ci,ti,1, C
′
i,ti,0, C

′
i,ti,1) =

(H(1‖i‖ti‖1)zi,ti , g
zi,ti

1 , H(0‖i‖ti‖1)z−zi,ti , g
z−zi,ti

2 ) and (Ĉi,ti,0, Ĉi,ti,1,

Ĉ′
i,ti,0, Ĉ′

i,ti,1)= (H(1‖i‖ti‖0)z′
i,ti , g

z′
i,ti

1 , H(0‖i‖ti‖0)z̄i,ti , g
z̄i,ti
2 ); oth-

erwise, compute (Ci,ti,0, Ci,ti,1, C′
i,ti,0,C

′
i,ti,1)= (H(1‖i‖ti‖1)z′

i,ti , g
z′

i,ti
1 ,

H(0‖i‖ti‖1)z̄i,ti , g
z̄i,ti
2 ), (Ĉi,ti,0, Ĉi,ti,1, Ĉ′

i,ti,0, Ĉ′
i,ti,1)= (H(1‖i‖ti‖0)zi,ti ,

g
zi,ti
1 , H(0‖i‖ti‖0)z−zi,ti , g

z−zi,ti
2 ).

2. If Wi=∗, choose {(zi,ti , z
′
i,ti

)}1≤ti≤ρi from Zp. For 1 ≤ ti ≤ ρi,
compute {(Ci,ti,0,Ci,ti,1, C′

i,ti,0, C′
i,ti,1)} = {H(1‖i‖ti‖1)zi,ti , g

zi,ti

1 ,

H(0‖i‖ti‖1)z−zi,ti , g
z−zi,ti

2 }, (Ĉi,ti,0, Ĉi,ti,1, Ĉ
′
i,ti,0, Ĉ

′
i,ti,1)=(H(1‖i‖ti‖0)z′

i,ti ,

g
z′

i,ti
1 , H(0‖i‖ti‖0)z

′′
i,ti , g

z
′′
i,ti

2 ), where z
′
i,ti

+ z
′′
i,ti

= z.

The ciphertext is C = (C0, {(Ci,ti,0,Ci,ti,1, C′
i,ti,0, C′

i,ti,1), (Ĉi,ti,0,Ĉi,ti,1, Ĉ′
i,ti,0,

Ĉ′
i,ti,1 )} for 1 ≤ ti ≤ ρi and 1 ≤ i ≤ n.

Dec. Assume a user has an attribute private key skL = {Di}1≤i≤n for attribute
list L = [v1,t1 , v2,t2 , · · · , vn,tn ]. To decrypt the ciphertext C =(C0, {(Ci,ti,0,Ci,ti,1,
C′

i,ti,0, C′
i,ti,1), (Ĉi,ti,0,Ĉi,ti,1, Ĉ′

i,ti,0, Ĉ′
i,ti,1)}1≤ti≤ρi}1≤i≤n) without knowing

ciphertext-policy W , the user first computes

C′ =
n∏

i=1

(
ρi∏

ti=1

ê(C̃i,ti,1, di,ti,0)ê(C̃′
i,ti,1, d

′
i,ti,0)

ê(C̃i,ti,0, di,ti,1)ê(C̃′
i,ti,0, d

′
i,ti,1)

).

– If Ii,ti = 1, (C̃i,ti,b, C̃
′
i,ti,b

)=(Ci,ti,b, C
′
i,ti,b

) for b ∈ {0, 1};
– If Ii,ti = 0, (C̃i,ti,b, C̃

′
i,ti,b

)=(Ĉi,ti,b, Ĉ
′
i,ti,b

) for b ∈ {0, 1}.
Finally, the user decrypts the ciphertext as M = C0/C′.
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The method given in Section 3.1 can be used here to check the correctness of
decryption. We have the following security result for the construction:

Theorem 2. The Anonymous CP-ABE construction is secure in sCP-IND-CPA
model, under the DBDH and D-Linear assumption.

Proof. The construction is similar to the construction in Section 3.1. The differ-
ence here is that the message is encrypted with respect to each bit, other than
each value of the attribute. Therefore, the proof is easy to be derived from the
proof for Theorem 1.

4 CP-A3BE: Privacy-Aware Attribute-Based Encryption
with User Accountability

In this Section, we propose a CP-A3BE construction, that is, the anonymous
CP-ABE with user accountability, which is based on the anonymous CP-ABE
scheme in Section 3.1. In fact, to construct CP-A3BE, the technique can be also
easily applied to the anonymous CP-ABE scheme [4].

Main Idea. In this scheme, user is issued an attribute private key for L‖ID,
where L is an attribute list and ID is the user’s identity. In a normal encryp-
tion algorithm, a message is encrypted under ciphertext-policy W = W ′‖∗ such
that any user with L‖ID satisfying R(L‖ID, W ) = 1 is able to decrypt, re-
gardless of the user’s identity ID. This holds because the second part in the
ciphertext-policy is “don’t care” (This technique is used here to keep the one-
to-many property in ABE, even though different identities have been inserted
in the attribute private keys). In tracing algorithm, a message is encrypted with
W ′‖ID∗ to test whether the identity in the pirate device is ID∗. Due to the
anonymity in CP-A3BE, the ciphertext is indistinguishable from other cipher-
text under ciphertext-policy W = W ′‖∗. In this case, only user with private key
on L‖ID satisfying R(L‖ID, W ′‖ID∗) = 1 can decrypt the ciphertext. As a
result, the identity ID∗ can be determined in the pirate device. There are five
algorithms of our CP-A3BE scheme, which are defined as follows:

Setup. Let G1, G2 be cyclic groups of prime order p, and ê : G1 × G1 → G2 be
a pairing defined in Section 2. Let g1, g2 be random elements from G0. Define a
hash function H : {0, 1}∗ → G0. Assume there are n attributes in universe. That
is to say, let the universal attributes set be U = {ω1, ω2, · · · , ωn}. Each attribute
has multiple values, where Si is the multi-value set for ωi and | Si |= ni. This
algorithm also chooses a random number α ∈ Zp and computes T = ê(g1, g2)α.
The system public parameter is para = (g1, g2, T, H). The system master secret
key msk is α, which is only known to AC.

KeyGen. To generate an attribute private key for user with ID=(I1, I2, · · · , Iρ)
∈ {0, 1}ρ for attribute list L = [L1, L2, · · · , Ln] = [v1,k1 , v2,k2 , · · · , vn,kn ], AC
picks up random s1, s2, · · · , sn ∈ Z∗

p and computes sn+1 = α −∑n
i=1 si mod p.

AC also chooses n + 1 numbers {ri}1≤k≤n ∈ Z∗
p and ρ numbers {sn+1,k}1≤k≤ρ
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such that sn+1 =
∑ρ

k=1 sn+1,k. Finally, it computes the attribute private key on
L as

skL = {{(di0, di1, d
′
i0, d

′
i1)}1≤i≤n, {(dn+1,k,0, dn+1,k,1, d

′
n+1,k,0, d

′
n+1,k,1)}1≤k≤ρ}

={(gsi
2 H(1‖i‖vi,ki)

ri , gri
1 , gsi

1 H(0‖i‖vi,ki)
r′

i , g
r′

i
2 )},{(gsn+1,k

2 H(1‖n+1‖k‖Ik)rn+1,k ,

g
rn+1,k

1 , g
sn+1,k

1 H(0‖n + 1‖k‖Ik)r′
n+1,k , g

r′
n+1,k

2 )}, 1 ≤ i ≤ n ∧ 1 ≤ k ≤ ρ.

Enc. To encrypt a message M ∈ G2 under ciphertext-policy W = [W1, W2, · · · ,
Wn] ∨ Wn+1 where Wn+1 = ∗, this algorithm picks up a random value z ∈ Zp

and computes C0 = MT z.

1. For each 1 ≤ i ≤ n,
† if vi,ti ∈ Wi, choose zi,ti ∈ Z∗

p and compute (Ci,ti,0, Ci,ti,1, C
′
i,ti,0, C

′
i,ti,1)

= (H(1‖i‖vi,ti)
zi,ti , g

zi,ti
1 , H(0‖i‖vi,ti)

z−zi,ti , g
z−zi,ti
2 );

‡ if vi,ti �∈ Wi, choose randomly zi,ti , z
′
i,ti

∈ Z∗
p and compute (Ci,ti,0, Ci,ti,1,

C′
i,ti,0, C

′
i,ti,1)=(H(1‖i‖vi,ti)zi,ti , g

zi,ti
1 , H(0‖i‖vi,ti)

z′
i,ti , g

z′
i,ti

2 ).
2. For i = n + 1, this algorithm selects zn+1,k, z′n+1,k from Z∗

p. Then, for each
1 ≤ k ≤ ρ, it computes

(Cn+1,k,0, Cn+1,k,1, C
′
n+1,k,0, C

′
n+1,k,1) = (H(1‖n + 1‖k‖1)zn+1,k, g

zn+1,k

1 ,

H(0‖n + 1‖k‖1)z−zn+1,k, g
z−zn+1,k

2 )

(Ĉn+1,k,0, Ĉn+1,k,1, Ĉ
′
n+1,k,0, Ĉ

′
n+1,k,1) = (H(1‖n + 1‖k‖0)z′

n+1,k, g
z′

n+1,k

1 ,

H(0‖n + 1‖k‖0)z−z′
n+1,k, g

z−z′
n+1,k

2 )

Finally, the ciphertext is computed as C = (C0, {(Ci,ti,0, Ci,ti,1, C
′
i,ti,0, C

′
i,ti,1)}

for 1 ≤ ti ≤ ni and 1 ≤ i ≤ n, {(Cn+1,k,0, Cn+1,k,1, C
′
n+1,k,0,C

′
n+1,k,1), (Ĉn+1,k,0,

Ĉn+1,k,1,Ĉ′
n+1,k,0, Ĉ

′
n+1,k,1)}1≤k≤ρ).

Dec. Assume a user has an attribute private key

skL = {{(di0, di1, d
′
i0, d

′
i1)}1≤i≤n, {(dn+1,k,0, dn+1,k,1, d

′
n+1,k,0, d

′
n+1,k,1)}1≤k≤ρ}

for L = [v1,k1 , v2,k2 , · · · , vn,kn ]. To decrypt the ciphertext C without knowing
ciphertext-policy W , he computes

C′=
n∏

i=1

ê(Ci,ki,1, di0)ê(C′
i,ki,1, d

′
i0)

ê(Ci,ki,0, di1)ê(C′
i,ki,0, d

′
i1)

ρ∏
k=1

ê(C̃n+1,k,1, dn+1,k,0)ê(C̃′
n+1,k,1, d

′
n+1,k,0)

ê(C̃n+1,k,0, dn+1,k,1)ê(C̃′
n+1,k,0, d

′
n+1,k,1)

.

1. If Ik = 1, (C̃n+1,k,b, C̃
′
n+1,k,b)=(Cn+1,k,b, C

′
n+1,k,b) for b ∈ {0, 1};

2. If Ik = 0, (C̃n+1,k,b, C̃
′
n+1,k,b)=(Ĉn+1,k,b, Ĉ

′
n+1,k,b) for b ∈ {0, 1}.

Finally, decrypt and output the ciphertext as M = C0/C′.
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Trace. Suppose a given pirate device can decrypt the ciphertext under ciphertext-
policy W . AC extracts part of the attribute list (Li1 , Li2 , · · · , Lik

) out of W . The
values in other positions except {i1, i2, · · · , ik} in W are ∗. AC checks the issu-
ing record of attribute private key and determines the suspicious users set S, who
have the attributes (Li1 , Li2 , · · · , Lik

). There are two ways to pinpoint the exact
identity from S: If the size of set S is not huge, then, AC just encrypts some mes-
sage with respect to ciphertext-policy W for each ID ∈ S until the identity is
found. To make the trace algorithm and encryption algorithm indistinguishable,
the technique used in Section 3.2 is applied here.

AC picks up a random value z ∈ Zp and computes C0 = MT z to encrypt a
message M ∈ G2 under ciphertext-policy W = [W1, W2, · · · , Wn]∨Wn+1 where
Wn+1 = ID,

1. For each 1 ≤ i ≤ n,

† if vi,ti ∈ Wi, AC picks zi,ti ∈ Z∗
p and computes

(Ci,ti,0, Ci,ti,1, C
′
i,ti,0, C

′
i,ti,1)=(H(1‖i‖vi,ti)

zi,ti , g
zi,ti
1 , H(0‖i‖vi,ti)

z−zi,ti , g
z−zi,ti
2 );

‡ if vi,ti �∈ Wi, AC chooses zi,ti , z
′
i,ti

∈ Z∗
p and computes

(Ci,ti,0, Ci,ti,1, C
′
i,ti,0, C

′
i,ti,1) = (H(1‖i‖vi,ti)

zi,ti , g
zi,ti
1 , H(0‖i‖vi,ti)

z′
i,ti , g

z′
i,ti

2 ).

2. For i = n + 1, assume ID=(I1, I2, · · · , Iρ)). AC chooses {(zn+1,k, z′n+1,k,
z̄n+1,k)} for 1 ≤ k ≤ ρ,

† if Ik = 1, AC computes

(Cn+1,k,0, Cn+1,k,1, C
′
n+1,k,0, C

′
n+1,k,1) = (H(1‖n + 1‖k‖1)zn+1,k, g

zn+1,k

1 ,

H(0‖n + 1‖k‖1)z−zn+1,k, g
z−zn+1,k

2 )

(Ĉn+1,k,0, Ĉn+1,k,1, Ĉ
′
n+1,k,0, Ĉ

′
n+1,k,1) = (H(1‖n + 1‖k‖0)z′

n+1,k, g
z′

n+1,k

1 ,

H(0‖n + 1‖k‖0)z̄n+1,k, g
z̄n+1,k

2 )

‡ if Ik = 0, AC computes

(Cn+1,k,0, Cn+1,k,1, C
′
n+1,k,0, C

′
n+1,k,1) = (H(1‖n + 1‖k‖1)z′

n+1,k, g
z′

n+1,k

1 ,

H(0‖n + 1‖k‖1)z̄n+1,k, g
z̄n+1,k

2 )

(Ĉn+1,k,0, Ĉn+1,k,1, Ĉ
′
n+1,k,0, Ĉ

′
n+1,k,1) = (H(1‖n + 1‖k‖0)zn+1,k, g

zn+1,k

1 ,

H(0‖n + 1‖k‖0)z−zn+1,k, g
z−zn+1,k

2 )
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It can be easily seen that the user is able to decrypt the ciphertext only when
his identity is ID and he has the attribute list L=(Li1 , Li2 , · · · , Lik

).
If |S| is too huge, the tracing algorithm works in the following way: First,

AC tries an attribute value Lj from the position j where Wj = ∗. Then, it
encrypts a message as the normal encryption algorithm with respect to W ′

such that all positions are set to be ∗, except the positions of {i1, i2, · · · , ik, j}
are set to be L′ = L ∪ Lj. The ciphertext is sent to the pirate device. If the
ciphertext can be decrypted correctly, AC knows one of the users with L′ shares
his attribute private key. The suspicious user set is of course not greater than
|S|. AC continues the above procedure until the suspicious set |S| is not too
huge. Finally, the technique for small |S| can be applied and the identity in
the pirate device can be pinpointed. To verify the correctness of the decryption,
we also use the method described in Section 3.1 by adding redundancy in the
plaintext. Actually, based on the tracing algorithm, the scheme is secure against
collusion attack, in which users with different attributes can collude to generate
a pirate device. The tracing algorithm still works and at least one of the illegal
users will be detected from the pirate device. Our definition and construction
of tracing requires that the adversary produces a perfect pirate decoder device,
namely a decoder that correctly decrypts all well-formed ciphertexts [21]. In
reality, the pirate has a decoder that may work only a fraction of the time.
When interact with such a decoder, just repeat the tracing algorithm for each
suspicious identity such that the error-rate is lower than some predefined number.
The tracing algorithm is indistinguishable from the normal encryption algorithm
because of the anonymous CP-ABE. We have following security result for the
construction of CP-A3BE:

Theorem 3. The CP-A3BE construction is secure in sCP-IND-CPA model, un-
der the DBDH and D-Linear assumptions.

Proof. This construction is based on the construction in Section 3.1, with the
technique of anonymous CP-ABE in Section 4.1. Therefore, the proof is easy to
be derived from the proof for Theorem 1 and Theorem 2, and is omitted here.

5 Conclusion

Three requirements are desired in many secure access control systems, that is,
1) Fine-grained access policy, 2) User privacy, and 3) User accountability. ABE
schemes are promising in providing fine-grained access policy, but no existing
ABE schemes can achieve user accountability to prevent illegal key sharing while
still maintaining user privacy. In this paper, we solved this problem by proposing
the notion of accountable and anonymous CP-ABE (CP-A3BE). We started by
giving two improvements of privacy-aware CP-ABE. In the first improvement
of anonymous CP-ABE, the size of public parameter is only O(1), instead of
O(N) required in [4], where N denotes the number of attributes in universe. In
the second improvement, the size of public parameter and ciphertext is O(1) and
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O(log(N)), respectively, while in [4], they are both O(N). Based on the improve-
ments, we presented a CP-A3BE construction. The user accountability can be
achieved in black-box model by embedding additional user-specific information
into the attribute private key, while still maintaining hidden access policy. The
construction of CP-A3BE is provably secure.
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Abstract. Applications typically rely on the operating system to en-
force access control policies such as MAC, DAC, or other policies. How-
ever, in the face of a compromised operating system, such protection
mechanisms may be ineffective. Since security-sensitive applications are
most motivated to maintain access control to their secret or sensitive in-
formation, and have no control over the operating system, it is desirable
to provide mechanisms to enable applications to protect information with
application-specific policies, in spite of a compromised operating system.
In this paper, we enable application-level access control and information
sharing with direct hardware support and protection, bypassing the de-
pendency on the operating system. We analyze an originator-controlled
information sharing policy (ORCON), where the content creator speci-
fies who has access to the file created and maintains this control after
the file has been distributed. We show that this policy can be enforced
by the software-hardware mechanisms provided by the Secret Protection
(SP) architecture, where a Trusted Software Module (TSM) is directly
protected by SP’s hardware features. We develop a proof-of-concept text
editor application which contains such a TSM. This TSM can imple-
ment many different policies, not just the originator-controlled policy
that we have defined. We also propose a general methodology for trust-
partitioning an application into security-critical and non-critical parts.

1 Introduction

Access control in a computer system mediates and controls accesses to resources.
It is an essential part of the security of a computer system, preventing illegitimate
access to sensitive or protected information. Various access control policies exist,
e.g. mandatory access control (MAC), discretionary access control (DAC), role-
based access control (RBAC), etc. One access control policy that has been hard
to achieve is ORCON [1,2], or originator-controlled access. This is neither a
MAC nor a DAC policy. It is not specified by a central authority (like DAC),
but its subsequent re-distribution by legitimate recipients must be controlled
(like MAC). While DAC allows individuals to specify the access policy for their
files, it cannot control how a legitimate user re-distributes those files. In this
paper, we propose a hardware-software mechanism for achieving flexible access
control and information sharing policies, including ORCON-like policies.

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 363–378, 2009.
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Access control mechanisms are usually implemented by the operating system
(OS), which also enforces the access control policies. However, if the OS is com-
promised, then the access control policy enforcement can also be compromised.
Applications need some way to protect secret or sensitive information, in spite
of a compromised OS, over which they typically have no control. Hence, we ex-
amine how an application can be provided a flexible mechanism to achieve an
application-level access control or information sharing policy, without depending
on the OS.

In addition to conventional access control mechanisms, cryptographic mecha-
nisms have also been used to control access to protected information. For example,
Digital Rights Management (DRM) systems[3,4,5] use cryptographic mechanisms
for copy protection of digital media. Here, anyone can get access to the encrypted
material, but only legitimate recipients may gain access to the plaintext material –
at least, that is the goal of DRM systems. Strong cryptography can be used to pro-
tect the contents of sensitive files by encrypting them into an unintelligible mass,
while decrypting them only when needed or authorized. However, two critical is-
sues arise: how the keys are managed and how the decrypted plaintext is managed.
Commercial DRM systems such as Advanced Access Content System (AACS) [3]
are broken not because they use weak cryptography (as in the case of Content
Scramble System (CSS) [4]), but because of the unsafe storage of the keys used
by the application software [5]. Hardware protection mechanisms such as TPM [6]
are designed to protect cryptographic keys by sealing them in the TPM hardware,
and the keys are only retrieved when the system is running in a verified condition.
TPM offers greater protection to the keys and includes the measurements of the
integrity of the operating system in the trust chain to make sure that it has not
been compromised. However, TPM’s protection model does not consider how the
keys are used and where they are stored after they are unsealed, therefore the ac-
cess control of the decrypted sensitive information is still left to the application
and the decrypted symmetric keys from the TPM chip can still be obtained by
examining the memory contents[7,8]. Hence, it all boils down to the management
of the keys and the decrypted plaintext.

The access control to keys is often delegated to the operating system, since
it governs all accesses to resources. However, modern operating systems are
large and complex, and hence more prone to software vulnerabilities. Further,
in the monolithic kernel model of common operating systems such as Linux
and Windows, all kernel modules have equal privilege, so that one compromised
kernel module can access the memory of another kernel module, which may
be security-critical. An attacker can gain control of the operating system by
targeting one of the many device drivers, bypass the access control and retrieve
the application’s secret or sensitive information.

In this paper, we propose the following solution: A small, verifiable application
module that enforces its own policy with direct hardware protection that cannot be
bypassed or manipulated by the operating system. Implementing access control or
information sharing policies in the application-space removes the dependency on
the operating system and adds the flexibility of incorporating different policies.
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Our solution architecture builds on top of the Secret Protection (SP) architecture
[9,10], which requires a small addition to the processor hardware to protect a
Trusted Software Module (TSM). We provide protection of the application by
modifying it slightly to incorporate a TSM directly protected by the hardware
to prevent any undesired information leakage. We implement an ORCON-like
access control policy for protected documents that is designed to be enforced in
a distributed manner.

The contributions of the paper are as follows:

– Proof-of-concept implementation of a distributed access control policy that
is difficult to enforce, e.g. ORCON.

– Developing a methodology for trust-partitioning of an application.
– Demonstrating the versatility of the SP architecture for implementing dif-

ferent access control or information sharing policies.

Section 2 gives the detailed definition of our target access control policy. Sec-
tion 3 describes the threat and trust models considered in this paper. Section 4
describes our solution architecture. Section 5 explains the methodology we de-
veloped to partition an application into a trusted and an untrusted part. Section
6 gives the security analysis of our solution. Section 7 describes related work in
this area and Section 8 concludes the paper.

2 Problem Statement

Information sharing has different requirements in different contexts. For exam-
ple, confidentiality is of top concern in a military system, whereas integrity is
essential in commercial systems. We consider an information sharing policy that
could be tailored to work in both environments, to meet the needs of both con-
fidentiality and integrity. Consider the case where a secret document is to be
distributed to selected recipients of different clearance levels, while the content
of the original document cannot be modified. Further, the re-distribution of the
content has to be approved by the content creator. This policy, previously known
as Originator-Controlled policy (ORCON) [1,2], was proposed to address such a
scenario. Since the control point of the policy is neither entirely centralized nor
entirely distributed, it cannot be directly solved by applying Mandatory Access
Control (MAC) or Discretionary Access Control (DAC).

In such an information sharing policy, the key players include the content
creator, the recipients and the trust group (Figure 1). The recipients can be
further categorized as authorized recipients, who are within the trust group and
are allowed access to the content of the document by the content creator, and
unauthorized recipients who are outside the trust group. Not all members of
the trust group are authorized recipients of a given document. We formalize the
problem statements of the information sharing policy as follows.

– Problem 1: Dissemination to authorized recipients
The content creator wants to restrict access to the content to authorized
recipients only. In other words, recipients who have not gained explicit ap-
proval from the content creator will not have access to the content.
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Recipient

Content
creator

Trust Group

Recipient

Recipient

Recipient

Recipient

Fig. 1. Players in the information sharing
policy. Gray circles represent unautho-
rized recipients, while white circles rep-
resent authorized recipients.

HW SP

OS

App Editor TSM

Fig. 2. Using SP architecture for flexi-
ble access-control enforcement. Grey parts
are the untrusted system, white parts are
trusted.

– Problem 2: Prevent illegitimate re-dissemination
After the authorized recipients have gained access to the content, it should
not be possible to redistribute or copy the original content to any unautho-
rized recipients. An unauthorized recipient must ask the content creator for
explicit access rights in order to access the protected content.

– Problem 3: Allow legitimate appending to the content
In the case where the content creator allows for appending extra information
to the original content, an authorized recipient must be able to append to
the original content, while preserving the authorized recipients of the original
policy dictated by the content creator, i.e. the protected content may grow
but the list of authorized recipients should remain unchanged.

To solve the above problems, we identify the requirements that must be met:
– The policy dictated by the content creator has to be tied to the corresponding

protected content.
– The policy has to be enforced regardless of the presence of the content cre-

ator, i.e. the enforcement is distributed among the recipients.
– Updating (appending) the content should allow changes only in the content,

not the policy. Therefore the policy should be physically separated from the
content but logically tied to it.

Our solution architecture, as described in the following sections, adheres to these
requirements and hence guarantees that the policy is never violated.

3 Threat and Trust Models

We assume that every recipient uses some type of computing device to access the
content in the protected document, where each device has a Central Processing
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Unit (CPU) that is trusted. Further, the content of the protected document is
accessed by a piece of editor software that can read, display or modify the content
in the document. For simplicity, we consider the protected content as digital text
documents in this paper, although our proposed solution and methodology apply
to any digital multimedia contents, e.g. digital photos, video or music.

The goal of an adversary is to gain access to the information in the protected
content without explicit approval from the content creator. The adversary may
have obtained the file of the protected document and have physical access to the
computing device, and he can write his own software to run on the computing
device to try to gain as much information as possible. Since the adversary has
physical access, memory bus tapping or access to raw bits on disk are considered
valid attacks. However, we do not consider any analog attacks, e.g. shoulder
surfing or social engineering, since these attacks are out-of-band exploits that
are not within the control of a computer system.

We divide the editor program into a trusted and an untrusted part, where the
trusted part is guaranteed to perform the desired functions and any tampering
with the trusted part will be detected, by means of our hardware protection
mechanisms. However, the adversary can modify the untrusted part or the op-
erating system to perform any malicious activities.

On the recipients’ computing devices, we assume that a trusted path exists
between the user input and the trusted CPU, and between the CPU and the
display output. Hence, the device user can be assured that the input comes
directly from him and that what is displayed is indeed that which is processed
by the CPU. Various techniques exist [11,12,13] to support a trusted input path
and a trusted display.

4 Architecture

Our solution consists of a combination of CPU hardware and application soft-
ware, which builds upon the Secret Protection (SP) [9,10] architecture to provide
direct hardware protection of the application. In essence, we partition the editor
application into a trusted and an untrusted part and provide protection of the
trusted part directly by the hardware, as shown in Figure 2.

4.1 SP Architecture

SP Architecture was first proposed [10] to protect the user’s secret or sensitive
information (user mode) and later modified [9] to protect a remote authority’s
and third parties’ secret or sensitive information (authority mode). Our solu-
tion builds upon the authority mode SP [9]. We highlight the key architectural
features of SP below.

The architecture consists of the Trusted Software Module (TSM) in the user-
level application and the SP hardware in the microprocessor chip. There are two
hardware trust anchors in the microprocessor chip: Device Root Key (DRK) and
Storage Root Hash (SRH). The DRK is unique for each chip; it never leaves the
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chip and can not be read or written by any software. The only software that
can use the DRK is the TSM, via a special instruction that can derive a new
key from the DRK given nonces and/or constants. The SRH securely stores the
root hash of a secure user-defined storage structure (on disk or on-line storage)
accesssible only to the TSM. The SRH is accessible only to the TSM. Other
software cannot read or write the SRH, including the operating system.

Hardware Code Integrity Checking (CIC) ensures the integrity of the TSM
code while executing. Each instruction cache line embeds a MAC (a keyed hash),
with the DRK as the key. The hash is verified before the instruction cache line
is brought on-chip. Hardware Concealed Execution Mode (CEM) protects the
TSM’s data while it is executing, to guarantee confidentiality and integrity of any
temporary data that the TSM uses, whether this is in on-chip registers or caches,
or evicted to off-chip memory. During interrupt handling, hardware protects the
contents of general registers and the interrupt return address from a potentially
corrupted OS. All data cache lines containing protected data are encrypted and
hashed when evicted from the microprocessor chip. A hardware encryption and
hashing engine accelerates the automatic encryption (or decryption) and hash
generation (or verification), reducing cryptographic overhead to the infrequent
cache-miss handling of the last level of on-chip caches.

4.2 Distributed Access Control Architecture

The access control required by our information sharing policy is enforced by
the new trusted part of the editor application, i.e. the TSM in the user-space.
To guarantee the confidentiality and integrity of the protected document while
it is opened by the editor, and to simplify the access control mechanism, we
dedicate a special TSM buffer for use only by the TSM to store and manipulate
any temporary data it uses. All the data in the TSM buffer are tagged as secure
data in the processor’s on-chip caches. When secure data cache lines are evicted
from on-chip caches out to the main memory, the SP hardware mechanism will
ensure that they are encrypted and hashed, by a key that is derived from the
DRK. The TSM buffer does not interfere with the internal buffer structures of
the editor program, so that the editor functions that do not involve the TSM
are not modified at all. The TSM buffer is used by the TSM to hold temporary
decrypted lines of the protected content. In other words, the protected content
remains encrypted inside all internal buffers of temporary files used by the editor,
only decrypted by the TSM in the TSM buffer when the TSM is active.

As mentioned in Section 2, the policy and the content should be physically
separated but logically tied. We store the policy dictated by the content creator
in the secure storage maintained by the SP hardware, and we tie together the
policy and the content by a cryptographic hash that is also stored and protected
in the secure storage. The root of trust of the secure storage (SRH) is protected
on-chip and accessible only by the TSM, and only the TSM can legitimately
access or modify the stored policies in the secure storage. Any illegitimate mod-
ifications to the stored policies will be caught by the TSM when checking the
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Fig. 3. (a): Partitioning the editor application and the system into untrusted (grey) and
trusted (white) parts. The TSM gets its own buffer to work with temporary data, and
it can access both the secure storage where the policies are stored and normal storage
where the protected (encrypted) content is stored. (b): A license for the document.
This contains a policy dictated by the content creator (PK A represents the public key
of Alice).

integrity of the secure storage. Figure 3(a) shows the interaction between the
editor application (trusted and untrusted parts), the temporary buffers (SP-
protected and unprotected), and the persistent storage (secure and unsecured).
Physically separating the data and the policy reduces the amount of information
that needs to be directly protected in the secure storage of SP, since a file can
be very large.

The sensitive content is protected by encrypting the document with a key
that is stored in the secure storage, along with the policy dictated by the con-
tent creator. Since the document is encrypted, it can be safely stored in any
public storage without additional access control protection. The key to decrypt
it is bound by the policy and the policy is enforced by the TSM. The TSM
always controls the access to the decryption keys according to the corresponding
policies. To ensure compliance with the requirements described in Section 2, in
addition to the policy and the key, we store other pertinent information of the
protected document in a data structure called a license, (see Figure 3(b)), which
is stored in SP-protected secure storage. A license contains the access control
policy, metadata, the key to decrypt the document, the originator’s signature on
the policy, and a hash over the encrypted document and all items in the license.

Before the user is allowed access to the content in the document, the TSM
first checks the integrity (Hash) of the encrypted document and the license, to
make sure they have not been tampered with. Then the TSM checks if the policy
allows the particular recipient access to the content of the document. After all
checks are successfully passed, the TSM decrypts the content of the document
and stores it in the temporary TSM buffer and, through the trusted display link,
displays the contents to the authenticated recipient.
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4.3 TSM Architecture

Figure 4 shows a general structure of the TSM consisting of several modules
(libraries) that perform different functionalities required by the TSM. The TSM
is not limited to a specific application and a specific access control policy.

Since in our threat model we assume a trusted I/O path exists, a trusted
I/O module serves as the gateway for the TSM to receive user input, to display
output or to connect with other TSMs. A crypto module that implements sym-
metric key encryption/decryption, asymmetric key encryption/decryption and
cryptographic hash functions, and a random number generation (RNG) are in-
cluded in the TSM, so that the TSM does not need to depend on the operating
system for these functions. The core of the TSM is the policy enforcement mod-
ule that interacts with the TSM buffer and interprets the policy stored in the
secure storage to mediate the I/O of the TSM. The policy enforcement module
acts as the TSM resource manager that can be tailored to implement various
access control policies. A user authentication module, along with a set of PKI
interfaces is included in the TSM to take care of the user authentication required
to guarantee that the owner of the public/private key pair specified in the policy
is correctly authenticated. User authentication is described in Section 4.5.

Policy
enforcement

module

PKI APIsTrusted I/O
module

non-TSM

TSM

keyboard
display
network

Crypto
module

RNG
module

TSM
buffer

User
authentication

module

PGP TPM

secure storage

storage

Fig. 4. TSM architecture. The trusted (white) parts of the system are the TSM and
the SP-protected secure memory and secure storage.

4.4 Operation

We walk through an example to show how the TSM and the SP hardware protect
and enforce the access control of the protected document.
1. The content creator creates the document containing sensitive data using

any application he/she chooses.
2. The content creator dictates the policy he/she would like to enforce, e.g. who

has what access to the content.
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3. The content creator runs the editor application which contains the TSM, to
turn the document into a protected document. A series of steps occur.
(a) The TSM first randomly generates a new symmetric key.
(b) The TSM encrypts the contents using the generated key and erases the

plaintext.
(c) The TSM calculates the hash of the policy and asks the content creator

to sign the hash.
(d) The TSM calculates the hash of the encrypted document, policy, meta-

data, key and the signature, and stores them in a newly created license
in the secure storage.

4. The content creator can now distribute the encrypted document to all recip-
ients he/she desires.

5. The TSM on the content creator side encrypts the license using the group
encryption scheme [14] for the recipients (group encryption scheme and the
trust group are described in Section 4.6).

6. The TSMs of the recipients’ devices decrypt the license with their group
decryption keys and securely store the license in the secure storage.

7. The TSM on the recipient side authenticates the recipient and checks the
policy before granting access to the contents of the protected document.

4.5 User Authentication

User authentication is a difficult problem for the TSM, since we cannot rely
on the operating system for existing user authentication mechanisms. To sim-
plify the design of the TSM and not burden it with complex user authenti-
cation functions, we propose a public/private key authentication solution. We
build a generic API interface that can interact with and make use of different
public/private key applications, e.g. OpenPGP or GnuPG, that manage users’
private keys. Below, we outline the protocol used by the TSM to authenticate a
user utilizing other PKI applications.

When invoked by the user to read a policy-protected document, the TSM
prompts the user for identity, for example, Alice. The TSM reads the corre-
sponding policy in the secure storage to locate Alice’s public key, PK_A. The
TSM calls the RNG module to generate a new random number and uses PK_A
to encrypt the random number as a challenge. The TSM sends the random chal-
lenge to the PKI application through the PKI interface and asks it to decrypt
the random challenge.

The PKI application authenticates the user via its normal mechanisms, e.g.
passphrase or TPM [6]. The PKI application returns the decrypted challenge to
the TSM. The TSM checks for the validity of the random challenge to determine
if the user has been successfully authenticated.

Ideally, the whole PKI application should be included in the TSM, since it
is a security-critical function. If we consider the operating system as untrusted,
the PKI application could also be compromised. However, our architecture still
ensures that the keys that are used to decrypt the document, and the plaintext
of the document, are never released outside the TSM.
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4.6 Group Encryption and Trust Groups

We use group encryption [14] for distributing the protected license to the autho-
rized recipients. Group encryption is the dual of the well-known group signature
scheme [15,16,17]. In a group signature scheme, a member of a group can anony-
mously sign a message on behalf of the group, without revealing his/her identity.
In a group encryption scheme, the sender can encrypt a piece of data and later
convince a verifier that it can be decrypted by the members of a group without
revealing the identity of the recipient. The authority in both cases is the only
entity that can reveal the identity of the signer in the group signature scheme
or the recipient of the group encryption scheme. One group in a group encryp-
tion scheme has one group encryption key and multiple group decryption keys
associated with it. The group encryption key is public and is used to encrypt
messages, while the group decryption keys are private.

In SP architecture [9], a trusted authority installs all TSMs and knows the
DRKs of all the SP devices. This is also the authority in the group encryption
scheme. In our architecture, the authority that initializes and installs the TSMs
creates a group that includes all SP devices, and assigns each SP hardware a
unique group decryption key, while publishing the group encryption key for that
group, such that in the secure storage of each SP device a pair of group en-
cryption and decryption keys is stored and tied to the particular SP hardware.
Therefore the content creator can be assured that the license can only be de-
crypted by SP-enabled devices in the same group. For simplicity, we assume that
all SP-enabled devices are in the same group, although different groups of SP-
enabled devices can be established depending on application requirements. Note
that the authority that governs the SP-enabled devices and the trust groups
need not be the same as the certificate authority in the PKI systems for user
authentication.

In practice we may desire to have multiple trust groups, where each group may
contain an arbitrary number of SP devices. Since each originator may need to
distribute the protected document to a different set of authorized recipients, it
is desirable, although not necessary, to have separate groups for each originator.
This scheme can be easily incorporated in our solution since we can store multiple
group encryption-decryption key-pairs in the secure storage of each SP device,
and the TSM is responsible for distinguishing between different trust groups
and making sure that there is no information flow between trust groups, unless
it is explicitly allowed by the originator. Therefore, a recipient can belong to
multiple trust groups without the need to use multiple devices. However, since
there is only one authority that knows the DRKs of all devices and hence the
only authority that can properly insert group encryption-decryption key-pairs
into the devices, we cannot allow multiple authorities in a trust group without
extending the SP architecture [9].

5 Trust-Partitioning an Application

We developed a methodology for partitioning an existing application into a trusted
and an untrusted part. We chose vi [18] as our proof-of-concept application
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to implement the application-level information sharing policy, since it is one of
the most common text editors in the Unix operating system. Our methodology
can also be applied to other applications.

To partition an application, we need to identify the entry and exit points into
and out of the TSM. We first categorize the commands available in vi. Figure 5
shows the flow chart used to categorize the various commands of vi into 5 generic
groups.

Table 1 shows the commands in each group. In particular, we are interested
in the commands that are relevant to our information sharing policy, e.g. dis-
playing the content of a file or appending new content to the original file, etc.
The commands in bold (i.e., ex and quit) are modified vi commands and the
commands in italic are new commands. These commands are the entry and exit
points of the TSM and are the only commands that can legitimately manipulate

Commands Read input
file?

Group I:
Read
input

YES

Manipulate
buffer?NO

YES

Commit
output file?NO

Group III:
Commit
output

YES

End session?NO

Group IV:
End

session

YES

Group V:
OthersNO

Make new commands
for reading protected
documents.
Modify original command
to call TSM first.

Group II:
Manipulate

buffer

Display or
append?

YES

NO

Make new commands
for displaying or
appending to TSM
buffer.
Keep original
commands
as is.

Make new command for
committing protected documents.
Keep original commands as is.

Modify original
command to call
TSM first.

Keep original
commands as is.

Fig. 5. Categorization of functions within an application for TSM protection

Table 1. The groups of vi commands after categorization

Group I Group II Group III Group IV Group V
Read input Manipulate buffer Commit output End session Others

ex print write quit abbreviate
tsm ex read tsm write args

tsm print cd
tsm read delete

...
tsm create
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Table 2. New and modified vi commands

tsm ex filename Open a protected document.

tsm print line number Display the contents of a protected document.

tsm read filename Append the contents of filename to current pro-
tected document.

tsm write Automatically re-encrypt the protected document
(with any appended data) and update the length
and the hash stored in the license.
EK(document || appended data)

tsm create filename Turn a document into a protected document.

quit & ex Erase the plaintext in TSM buffer.

the TSM buffer. They start by bringing the processor into SP CEM mode and
finish by exiting CEM mode, hence each of these commands is protected by the
SP hardware to ensure they perform the desired functions. All other commands
of vi remain unchanged. There are a total of 70 commands in the original vi,
with 2 modified, 5 new ones added and the remaining 68 unmodified. The new
and modified commands are described in Table 2.

The above partitioning steps, although applied to vi specifically, can also be
applied to other applications, with the goal of identifying the entry and exit
points of the TSM. We propose the following general methodology for trust-
partitioning an application:

1. Identify the security-critical information that needs to be protected.
2. Identify the liveness of the information, i.e. transient data or persistent data.
3. Identify the input and output paths leading to and leaving from the protected

information.
4. Relocate the information to the TSM buffer (transient data) or the secure

storage (persistant data).
5. Rebuild or modify the input and output paths using the new TSM function-

alities.

6 Security Analysis

We analyze the security of our proposed solution according to three main security
concerns: confidentiality, integrity and availability.

6.1 Confidentiality

In the information sharing policy, the content creator is most concerned with
the confidentiality of the sensitive content in the protected document – only the
authorized recipients can have access to the decrypted content.

We first consider the case where the adversary is outside the trust group,
e.g., the adversary does not have a legitimate SP-enabled device. The adversary
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can try to attack the system by intercepting the communication (1) when the
content creator is sending the encrypted document over to the recipients, or
(2) when the content creator’s device is sending the license to the recipients’
devices. The adversary does not gain any information in the first case since the
document sent over the communication is encrypted, and we assume the use of
strong cryptography. Similarly, the communication channel intercepted in the
second attack is also encrypted, using the group encryption key, which is known
only by an SP device in the same group.

The attacker can also steal one of the recipients’ devices and try to imper-
sonate the authorized recipient. In this attack, in order for the adversary to
successfully authenticate himself as the authorized recipient, he must know, or
have access to, the private key of the authorized recipient.

We now consider the case where the adversary has a legitimate SP-enabled
device and belongs to the correct trust group, but is not on the list of autho-
rized recipients. The adversary now is also able to perform the previous three
attacks. Further, the adversary can impersonate an authorized recipient and try
to communicate with the content creator directly to ask for a legitimate license.
However, the most that the adversary can do is to have both the encrypted
document and the legitimate license stored in his/her device; the adversary still
needs to have the private key of an authorized recipient to authenticate himself.

In the extreme case where the adversary is in the authorized recipient list –
an insider attack – the adversary can access the contents of the document but
has no way of digitally copying the contents to another file, since the plaintext
document is only present in the TSM buffer during CEM mode and there is
no command that allows direct memory copy of the plaintext from the TSM
buffer to unprotected memory. The adversary can take pictures of the displayed
content or memorize the content and later re-create it in another file. However,
these attacks are not within the control of the computer system and hence, not
in our threat model, as stated in Section 3.

Our solutions did not require the application used by the originator to create
a new document to be trusted. Although the information could be stolen at
this point, this is out-of-scope for this paper, since we are concerned not with
the leaking of information when it is being created, but the leaking after it is
recognized as important and being distributed.

6.2 Integrity and Availability

The integrity of the protected document and the corresponding policy is enforced
by the Hash that ties together all the pertinent information of a policy-protected
document. The Hash is stored in the secure storage, which is itself encrypted and
integrity protected by the TSM using the keys accessible only by the TSM. The
root of trust of the integrity of the secure storage is stored on the processor chip
(SRH). Therefore, there is an integrity trust-chain from the protected content and
license to the SRH, that does not depend on the potentially compromised OS.

SP architecture does not directly address denial-of-service attacks, therefore
if the adversary modifies or completely deletes the document, or the license in
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the secure storage, any access to the protected information is lost. Although it
is easy to achieve such denial-of-service attacks, they are not considered detri-
mental since no security-critical information is leaked by these attacks. In fact,
these attacks show the fail-safe nature of the access control implementation.
Nevertheless, SP architecture does provide intrinsic support for availability, in
terms of the resiliency of the TSM to unrelated attacks. Since the trust chain
consists only of the SP hardware and the TSM, attacks on the untrusted part
of the application and the OS do not prevent the TSM from enforcing its access
control functions.

7 Related Work

Several commercial solutions have been proposed to address the issue of informa-
tion sharing, both in the context of digital media and digital documents. DRM
solutions [3,4,5] focus on the copy-protection of the digital media, with a threat
model that assumes that the whole box of the computing device is trusted, thus
leading to the compromise of the encryption keys as described in Section 1. Cryp-
tolope [19], known as cryptographic envelopes, also decouples the distribution
of information and its license (called superdistribution) - similar to our solution.
Cryptolope enables a commercial platform for the content creator and the pub-
lisher to license their content to the customers, by controlling the distribution
of the decryption keys. However, Cryptolope assumes the same threat model
as other DRM solutions – the device or the software on the device is trusted.
Therefore, if an attacker can compromise the operating system or tap the mem-
ory bus, the attacker can have access to the decryption keys. Adobe Acrobat [20]
has the ability to set permissions to protect sensitive files in the application level,
including viewing, printing, changing, copying or commenting. But the password
protection employed by Acrobat can be more easily defeated and is vulnerable
to a malicious operating system as well. SISA [21] is a recent alliance of several
industry companies, aiming to provide a secure end-to-end architecture for infor-
mation sharing in a distributed environment. It involves several levels of access
control, e.g. physical access control, network access control, storage access con-
trol, etc. Although the architecture provides extensive defense-in-depth, it still
assumes the computing box as trusted. Also, the complexity of the architecture
may make it more suitable only for large organizations.

Another area of related work is in hardware protection of application software.
XOM [22] is another secure processor architecture that protects applications in
an untrusted operating system environment. The protected applications running
on XOM are kept in different compartments, each with its own compartment key.
Like SP architecture, XOM has the ability to protect registers and encrypt mem-
ory traffic. Therefore, our application-level solution can also be mapped on the
XOM processor by executing the TSM in a separate compartment. However,
XOM is much more complicated than SP. TPM [6] is an industry solution to
support trusted computing. Essentially TPM can be used to provide password
protection, disk encryption and, most importantly, a trusted boot-chain. When
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employing TPM protection, applications can safely seal a piece of sensitive in-
formation inside the TPM chip. In other words, TPM can essentially bind a
set of files to a particular host. However, since the TPM itself is not designed
to provide protection of the decrypted plaintext once it leaves the TPM chip,
a malicious operating system or hardware attacker can intercept the decrypted
traffic in memory, although he/she cannot obtain the decryption keys in the
TPM chip. Flicker [23] employs the newly introduced late launch instructions
(both AMD and Intel) together with TPM to achieve a trusted execution en-
vironment for the protected part of an application. Like our proposal, it tries
to minimize the trusted code base. However, unlike our proposal, Flicker does
not consider hardware attacks. Also, our solution can achieve the same level of
security without an external TPM chip. Overshadow [24] presented a framework
for protecting applications without trusting the operating system. They do not
require special hardware (like TPM, XOM or SP) but implement the protection
mechanisms in the virtual machine monitor (VMM). They also do not consider
hardware attacks and the TCB is larger since it has to include the entire VMM.

8 Conclusion

The SP security architecture provides a simple yet flexible software-hardware
mechanism for protecting a Trusted Software Module (TSM) directly by SP
hardware. This enables applications to express and enforce different security
policies, without depending on the operating system over which they have no
control. In this paper, we demonstrated the implementation of an originator-
controlled (ORCON) distributed information sharing policy for documents. Such
an access control policy is difficult to achieve with only MAC or DAC mech-
anisms. We achieve this in the user-space vi application, without relying on
the operating system which can be compromised. The SP protection is rooted
in the CPU hardware, defending against both software and hardware attacks.
Our modified vi application is a proof-of-concept of the effectiveness of the SP
hardware-software architecture. We also developed a general methodology for
trust-partitioning an application, which is useful not only for our information
sharing policy, but more generally for separating out the security-critical parts
of applications.
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Abstract. The need to delegate, which allows the temporary grant or
transfer of access rights, arise in many applications. Although a lot of
research appears in extending Role-Based Access Control (RBAC) to
support delegation, not much appears on providing a formal basis for
choosing delegatees. We provide an approach that allows one to assess
the trustworthiness of potential delegatees in the context of the task
that is to be delegated. It is also important to ensure that the choice
of the delegatee does not cause any security policy violation. Towards
this end, we show how to formally analyze the application using existing
SAT solvers to get assurance that our choice of delegatee does not cause
a security breach. Once the process of choosing delegatee can be formal-
ized, it will be possible to automate delegation and use it for real-time
applications.

1 Introduction

Role-Based Access Control (RBAC) is the de facto access control model for
commercial organizations primarily because it is policy neutral and simplifies
access control management. Since its conception, RBAC has evolved in various
ways to meet the demands of various applications. One such extension is with
regards to incorporating the notion of delegation. Delegation allows a user or
a role to grant or transfer privileges to other users or roles. This makes it pos-
sible for organizations to continue functioning when some user is temporarily
unavailable.

Although a lot of research appears in the area of delegation [1,2,3,4,5,6], not
much appears in formalizing the basis on which a delegator selects a delega-
tee. The choice of a delegatee should be determined by two factors. First, the
trustworthiness of an entity must be taken into account while considering it as
a delegatee. This requires that the privileges should not be delegated to another
user who the delegator does not consider trustworthy. This factor becomes even
more critical in the presence of delegation chains. Second, choosing a delega-
tee should not introduce any security policy violation. For example, choosing a
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specific delegatee may cause a violation in separation of duty constraints. We
address these two factors.

The first factor requires evaluation of trustworthiness of candidates. Trust is a
relationship between a truster and a trustee and it is dependent on a given task.
The truster’s trust for a trustee, with respect to a given task, depends on several
factors, namely, properties, experiences, and recommendations. Properties are
verifiable characteristics of the trustee. Experiences correspond to the past work
experience of the trustee. Recommendations are the information that the truster
obtains from reputable sources about the trustee. We show how to quantify these
factors and assess the trustworthiness of an entity before designating him as the
delegatee. We also show how trustworthiness of an entity can be used to decide
and reason about delegation chains.

Sometimes a truster may not have enough information about a trustee with
respect to a given task that will allow him to trust the trustee. However, informa-
tion about related tasks may be available. We formalize the relationships among
the various tasks using the concept of task graphs. Task graphs are directed
acyclic graphs where the nodes correspond to the different tasks in an organiza-
tion and the edges correspond to generalization/specialization and composition
relationships. The labels on the edges give the degree of similarity between the
different tasks. With the help of the task graphs, trust information of related
tasks can be used to extrapolate the trust value for the given task.

Once a potential delegatee has been selected based on trustworthiness, we
must ensure that this selection does not cause a security breach. We advocate
the use of Alloy [7] for checking security policy violation. Alloy is a modeling
language capable of expressing complex structural constraints and behavior. Al-
loy is supported by an automated constraint solver called Alloy Analyzer that
searches instances of the model to check for satisfaction of system properties.
The model is automatically translated into a Boolean expression, which is an-
alyzed by SAT solvers embedded within the Alloy Analyzer. A user-specified
scope on the model elements bounds the domain, making it possible to create
finite Boolean formulas that can be evaluated by the SAT-solver. When a prop-
erty does not hold, a counter example is produced that demonstrates how it
has been violated. It has been successfully used in the modeling and analysis of
real-world systems [8,9].

The paper is organized as follows. Section 2 describes some of the important
work related to delegation and trust modeling. Section 3 presents our trust model
and how to assess trustworthiness of entities with respect to a given task in a
quantitative manner. Section 4 shows how trustworthiness of entities can be
used to decide on the levels of delegation. Section 5 discusses how to compute
trustworthiness of entities with respect to a given task when we do not have any
information about the entity with respect to the given task. Section 6 illustrates
how trust computation is performed for potential delegatees. Section 7 provides
an approach using Alloy that evaluates the potential delegatees who satisfy the
security policies. Section 8 concludes the paper with some pointers to future
directions.
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2 Related Work

One of the early works on delegation is by Barka and Sandhu [1] who proposed
Permission-Based Delegation Model (PBDM) supporting permission and role
delegations and revocations. The PBDM was refined subsequently by Zhang et al.
[6] into three versions, namely, PBDM0, PBDM1, and PBDM2. RDM2000 [4] is
an extension of PBDM0 which provides rules for delegation in the role hierarchy
and identifies the prerequisites that must be satisfied by delegatees. Joshi et al.
[2,3] focus on the relationship between delegation and role hierarchies in the
context of Generalized Temporal Role-Based Access Control (GTRBAC) model.
Crampton et al. [10] focussed on the workflow satisfiability problem (WSP) in
the context of delegation. Workflow satisfiability in the context of delegation
has also been addressed by Wang and Li [11]. The authors prove that WSP in
the context of their R2BAC model is an NP-complete problem. In a subsequent
work [5], Wang and Li formalize the notion of secure delegation.

One of the most important work in trust modeling is by Jøsang [12,13] where
he claimed that trust is a relationship between two entities on a specific state-
ment and is represented using degrees of belief b, disbelief d and uncertainty u.
A statement describes a particular type of trust. Within a specific statement,
Jøsang called the triple {b, d, u} as an opinion ω = 〈b, d, u〉 representing the con-
fidence to trust that declaration. Recommendation also plays a part in increasing
the decision confidence. Jøsang utilized subjective logic to define recommenda-
tion and consensus formulae in order to take into account multiple subjective
views on the same statement. Recommendation is when entity A asks another
entity B for recommendation about how B trusts statement S, while consensus
is the cumulative result caused by A and B in trusting S. Jøsang also formalized
the notion of trust chains when recommenders indirectly provide input for a
particular statement. In subsequent works[14], Jøsang added a new component
base rate a, where a ∈ [0, 1]. The base rate gives the default trust value in the
absence of information about a given entity. In another work [15], they show
how to specify trust networks consisting of multiple paths between the trusted
parties and provide a practical method for analyzing and deriving measures of
trust in such environments.

Although a lot of research has been done in the context of access controls for
open systems [16,17,18,19,20,21,22,23], we describe only the ones that are closely
related to this work. Chakraborty et al. [17] proposed a Trust Based Access
Control (TrustBAC) model where the assignment of users to roles depended on
their trust values which can range from -1 to 1. The authors propose three factors,
namely, knowledge WK , experience WE , and recommendation WR, that impact
a user’s trustworthiness and show how to evaluate them. The trust value also
takes into account history information in trustworthiness computation. Ray et
al. [22] propose a trust model where the notion of trust contexts were formalized.
The relationships among different contexts were represented using context graph.
Specialization and composition are two kinds of relationships in context graph,
where the labels on the graph indicate the degree of similarity between the
contexts.
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A lot of work also appears in the use of Alloy for analyzing security policies.
Zao et al. [24] show how to model RBAC and Bell-Lapadula using Alloy. Schaad
et al. [25] model user-role assignment, role-permission assignment, role hierarchy,
and separation of duty features of RBAC extension using Alloy, and also describe
how to detect conflicts.

3 Trust Modeling and Computation

Delegator refers to the role or user whose privileges are being transferred or
granted to another role or user and the recipient of the privileges is termed
delegatee. We show how the delegator can compute the trustworthiness of various
entities in the context of the task that he is about to delegate.

Trust is a relationship between a truster and trustee with respect to a given
context. The context in the case of delegation is the task for which delegation is
needed. Trust relationship for a given context depends on three factors: proper-
ties, experiences and recommendations. Properties are verifiable characteristics
of the trustee. For instance, it may be the role and credentials possessed by
the trustee. Experiences are the past interactions that the truster had with the
trustee. Recommendations are provided by third-parties whom the truster trusts
about the capabilities of the trustee. In the following, we describe how the trust
relationship is quantified.

3.1 Quantifying Properties

Properties depend on the attributes of the entity and also the role associated
with it.

Measuring Necessary Attributes A
Every task in an organization requires some attributes of the user. For example,
the task of performing surgery requires the user to be a certified surgeon. A task
may require one or more attributes. The information about user attributes is
contained in the credentials belonging to the user. Credentials are unforgeable
and verifiable. Measuring necessary attributes requires evaluating what percent-
age of the necessary attributes are possessed by the user.

Let the set of attributes needed for task Ti be denoted by TAi where TAi =
{ai1, ai2, . . . , ain}. Let wai1, wai2, . . ., wain be the weights of attributes ai1,
ai2, . . ., ain respectively. The weights of the attributes indicate their relative
importance with respect to task Ti and Σn

r=1wair = 1. Each user profile contains
the credentials possessed by the user. Let the set of all attributes possessed
by the user Uj be given by UAj , where UAj = {aj1, aj2, . . . , ajm}. Let p =
|TAi ∩ UAj |. The attribute value for user j with respect to task Ti, denoted
by Aij , is calculated as follows: Aij = Σp

k=1wak where wak (1 ≤ k ≤ p) is the
weight associated with attribute ak and ak ∈ TAi ∩ UAj .

Measuring Role Attribute R
The roles in the organization are arranged in the form of a hierarchy. The hi-
erarchy can be represented as a labeled directed acyclic graph where the nodes
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represent the roles and the edges denote the hierarchical relationship. Note that,
edges are drawn only for direct senior and junior relationship; transitive edges
are not explicitly added. The edges in the hierarchy are labeled with a number
in the range (0,1] which indicates the closeness relationship between the roles.
A number close to 0 indicates that the two roles are very distant, whereas a
number close to 1 denotes that the roles are very close. We assume that the as-
signment of the numbers is done by the system administrator who has knowledge
about the relationships between roles. If there is a path between role i and role
j, the closeness relationship, denoted by dist(ri, rj), is calculated by taking the
product of all the edges constituting this path. Note that, if there are multiple
paths connecting role i and role j, both the paths should give the same value.
Otherwise, the role graph is said to be inconsistent. The formal definition of the
role graph appears below.

[Weighted Role Hierarchy Graph]: Weighted role hierarchy graph, denoted
by WRH = (V, A), is a weighted directed acyclic graph where V is a set of
nodes corresponding to the roles, and A is a set of arcs corresponding to the
hierarchical relationship; (vi, vj) ∈ A indicates that role vj is directly senior to
the role vi. The weight of the edge (vi, vj), denoted by w(vi, vj), is a number in
the range (0,1] that gives a measure of the closeness of the two roles.

Each task Ti is associated with a set of roles TRi who are authorized to
execute this task. The roles associated with a task include roles who have the
direct permission to execute those tasks, as well as those authorized by virtue
of role hierarchy. Each user Uj also has a set of roles URj assigned to him. We
choose the role belonging to the user that is closest to some role associated with
the task. The distance between these two roles gives the role attribute Rij of
user Uj with respect to task Ti.

Computing the Properties Value
Some organizations may give greater importance to the role factor, whereas
others may consider attribute factor to be more useful. Let wa and wr be the
weights assigned to attributes and roles respectively, where wa, wr ∈ [0, 1] and
wa +wr = 1. The exact values of wa and wr will be decided by the organization’s
policies. We use these weights to compute the property value Pij of user Uj with
respect to task Ti: Pij = wa ∗ Aij + wr ∗ Rij

3.2 Quantifying Experience

Experience constitutes an important factor in delegation. A delegator is more
likely going to choose a candidate as a delegatee if the delegatee has prior expe-
rience of doing the task. Two factors contribute towards experience. One factor
is when the task was performed, and the second factor is how well the task was
performed. Note that, information about these factors is stored in the users’
profile, UP . Events that have occurred in the recent past have more influence
than that occurred in the distant past. To accommodate this, we give the most
recent slot has the highest weight and the most distant slot has the lowest one.
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Algorithm 1. Measuring Experience
Input: No. of slots n, User Profile UPj

Output: Pij

Procedure:
performance = 0
for all k : 1 ≤ k ≤ n do

weight slotk = k
end for
total weight = n(n + 1)/2
for all k : 1 ≤ k ≤ n do

wk = (2 ∗ k)/(n(n + 1))
end for
for all k : 1 ≤ k ≤ n do

experience = experience + wk ∗ pk

end for
RETURN experience

For each time slot tk, we get the value for performance pi. Recall that, per-
formance on the task measures how well the task has been performed. The
performance on the task can be graded on a scale of [0,1]. A value closer to
0 indicates poor performance, while that closer to 1 indicates excellent perfor-
mance. Not performing the task in a slot, gives a performance value equal to 0.
Algorithm 1 shows how to assign weights to the various time slots and evaluate
the experience. Sometimes the past experience may not exactly match the the
task, but is related to it. We show how to extrapolate the trust value in such
cases in Section 5.

3.3 Quantifying Recommendation

A truster may obtain recommendation from one or more recommenders about
the trustee with respect to its ability to perform the given task. In order to quan-
tify the recommendation obtained from each recommender, we need to evaluate
two factors. First, we need to obtain the trust value that the truster has with
respect to the recommender providing recommendation about the trustee with
respect to the given task. If the recommender is sufficiently trusted, then we
need to get from him the recommendation value for the trustee. Algorithm 2
shows how to compute the recommendation component.

3.4 Computing Trustworthiness

Trust, with respect to a given task Ti for user Uj , denoted by Tij , depends on
three factors, namely, properties Pij , experiences Eij , and recommendations,Rij .
The exact weight assigned to each factor will be decided by the organization. Let
wp, we, and wr be the weights assigned to the three factors respectively where
wp, we, wr ∈ [0, 1] and wp + we + wr = 1. Tij is given by, Tij = wp ∗ Pij + we ∗
Eij + wr ∗ Rij . Note that Tij will evaluate to some value in the range [0,1]. The
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Algorithm 2. Measuring Recommendation
Input: Sequence of recommendations for user Uj =< r1j , r2j , . . . , rmj >, sequence of
trust values for recommenders = < t1, t2, . . . , tm >
Output: Rij

Procedure:
reco = 0; total = 0
for all k : 1 ≤ k ≤ m do

reco = reco + tk ∗ rkj

end for
for all k : 1 ≤ k ≤ m do

total = total + tk

end for
reco = reco/total
RETURN reco

delegator can choose a threshold value for trust H. If H ≤ Tij , then user Uj can
be a potential delegatee.

4 Using Trust Values in Delegation Chains

The privilege that a user receives can be further delegated resulting in what is
known as a delegation chain. In some cases, we may want to limit the level of
delegation. This level of delegation can be decided by the trustworthiness of the
users involved in the delegation chain. Thus, delegation chain is dependent on
the concept of trust chains. Trust chains are formalized using the concept of
trust graphs defined below.

[Trust Graph]: Let TG =< N, E > be the directed acyclic graph that repre-
sents trust relationship for a given context. The set of nodes N correspond to
the entities in the system, and the set of edges E represent the trust relationship
between the nodes. The edge (ni, nj) represents the trust relationship that node
ni has for node nj with respect to the given task. The weight of the edge, de-
noted by w(ni, nj), where 0 < w(ni, nj) ≤ 1, represents the trust value that node
ni has with respect to node nj . Note that, the absence of a trust relationship
between nodes nr and ns is indicated by the missing edge (nr, ns).

Given a trust graph, we define two types of operators to compute transitive
trust. One is the sequential operator, and the other is the parallel operator. Se-
quential and parallel operators and their desirable properties have been proposed
by Agudo et al. [26].

[Sequential Operator]: Sequential operator, denoted by
⊗

, is a binary op-
erator that takes as input two trust values and returns a trust value that is
the product of the two input values. Formally,

⊗
: [0, 1] × [0, 1] → [0, 1]. The

sequential operator is used for computing the transitive trust value in a single
path in the trust graph. Algorithm 3 gives the description of how transitive trust
is computed. For instance, to compute the transitive trust that D has about F
with respect to the given context is the product of 0.2 and 0.6 which equals 0.12.
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Fig. 1. Example of a Trust Graph

Algorithm 3. Computing Transitive Trust in a Single Path
Input: Trust Path (n1, n2, . . . , nk)
Output: Transitive trust between nodes n1 and nk

Procedure:
trans trust = 0
for all i : 1 ≤ i ≤ (k − 2) do

trans trust = trans trust ∗ w(ni, ni+1)
⊗

w(ni+1, ni+2)
end for
RETURN trans trust

The sequential operator is not adequate for calculating transitive trust when
multiple paths are involved. For example, in Figure 1, computing transitive trust
that A has about E using the path (A, B, D, E) gives a different value than that
obtained using the path (A, C, D, E). The value is 0.07 for the path (A, B, D, E)
and it is 0.036 for the path (A, C, D, E). Such differences are reconciled using the
parallel operator. The parallel operator becomes useful when there are multiple
paths from one node to another.

[Parallel Operator]: Parallel operator, denoted by
⊕

, is a binary operator that
takes as input two trust values and returns a trust value that is the minimum
of the two input values. Formally,

⊕
: [0, 1]× [0, 1] → [0, 1]. Algorithm 4 shows

how to compute transitive trust when the source and destination are connected
by parallel paths. The transitive trust that A has for D, computed using this
algorithm, equals 0.18.

The delegator can specify an acceptable level of trust to support delegation
chains. Delegation is disallowed if the transitive trust value computed from the
chain of delegation is below this minimum threshold.

5 Extrapolating Trust Values

Sometimes the delegator may not have enough information to assess the trust-
worthiness of a user with respect to some given task. Although the user is not
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Algorithm 4. Computing Transitive Trust in the Presence of Multiple Paths
Input: Trust Paths (n1, n21 , . . . , n(k−1)1 , nk), (n1, n22 , . . . , n(k−1)2 , nk), . . . ,
(n1, n2j , . . . , n(k−1)j

, nk)
Output: Transitive trust between nodes n1 and nk

Procedure:
min = 1;
for all l : 1 ≤ l ≤ j do

trans trustl = 0
end for
for all l : 1 ≤ l ≤ j do

for all i : 1 ≤ i ≤ (k − 2) do
trans trustl = trans trustl + w(ni, ni+1)

⊗
w(ni+1, ni+2)

end for
end for
for all l : 1 ≤ l ≤ j do

if trans trustl < min then
min = trans trustl

end if
end for
RETURN min

associated with a given task, it is possible that he has done some related tasks.
To handle such scenarios, we define the different relationships that can exist
among the tasks in an organization.

Specialization Relation
Different tasks may be related by the generalization/specialization relationship
which is anti-symmetric and transitive. We use the notation Ti ⊂ Tj to indicate
that task Ti (Tj) is a generalization (specialization) of task Tj (Ti). For instance,
Surgery Treatment ⊂ Heart Bypass Surgery Treatment and Heart Treatment ⊂
Heart Bypass Surgery Treatment. However, the degree of specialization is differ-
ent in the two cases. The degree of specialization captures this difference. The
degree of specialization is denoted as a fraction whose value is determined using
domain knowledge.

Composition Relation
Sometimes tasks can be linked together using the composition relation. A task
can either be elementary or composite. An elementary task is one which cannot
be subdivided into other tasks, whereas a composite task is one that is composed
from other tasks. The individual tasks that form a composite one are referred to
as the component tasks. A component task can either be composite or elementary.
We use the notation Ti % Tj to indicate that the task Ti is a component of task
Tj . For instance, we may have the component tasks operation and medication
that are part of the composite task Catheter-assisted Procedures. This is denoted
as operation % Catheter-assisted Procedures.

Sometimes a composite task Ti may be composed from the individual tasks
Tj , Tk and Tm. All these tasks may not contribute equally to form Ti. The degree
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of composition captures this idea. A degree of composition is associated with
each composition relation. Since two tasks related by composition will not be
exactly identical, the degree of composition is denoted as a fraction. The sum of
all these fractions equals one if Ti is composed of Tj , Tk, and Tm only. If Ti is
composed of Tj , Tk, and Tm and also other component contexts, then the sum
of fractions associated with Tj , Tk, and Tm must be equal to or less than one.
The exact value of the fraction representing the degree of composition will be
determined by domain knowledge.

The generalization/specialization and composition relations are formally spec-
ified using the notion of task graphs defined below.

[Task Graph]: A task graph T G = 〈N , Ec ∪ Es〉 is a weighted directed acyclic
graph satisfying the following conditions.

– N is a set of nodes where each node ni is associated with a task Ti.
– The set of edges in the graph can be partitioned into two sets Ec and Es. For

each edge (ni,nj) ∈ Ec, the task Ti corresponding to node ni is a component
of the task Tj corresponding to node nj. The weight of the edge (ni, nj),
denoted by w(ni, nj), indicates the percentage of component task that makes
up the composite one. For each edge (ni,nj) ∈ Es, the task Ti corresponding
to node ni is a specialization of task Tj corresponding to node nj . The
weight of the edge (ni, nj), denoted by w(ni, nj), indicates the degree of
specialization.

5.1 Computing the Degree of Specialization and Composition

Consider two tasks Ti and Tj where Ti ⊂ Tj , that is, Tj is a specialization of
Ti. The degree of specialization is computed as follows. Let ni, nj be the nodes
corresponding to tasks Ti and Tj in the weighted graph. Let the path from ni to
nj consisting of specialization edges be denoted as (ni, ni+1, ni+2, . . . , nj−1, nj).
The degree of specialization = Πj−1

p=i w(np, np+1). This corresponds to our notion
that the similarity decreases as the length of the path from the generalized node
to the specialized node increases. Note that, in real world there may be multiple
paths from Ti to Tj . In such cases, it is important that the degree of specialization
yield the same values when any of these paths are used for computation.

Consider two tasks Ti and Tj such that Tj is a component of Ti. Degree
of composition captures what portion of Ti is made up of Tj . The degree of
composition is computed as follows. Let ni, nj be the nodes corresponding
to contexts Ti and Tj in the task graph. Let there be m paths consisting of
composition edges from ni to nj . Let the qth path (1 ≤ q ≤ m) from ni to
nj be denoted as (ni, niq+1, niq+2, . . . , njq−1, nj). The degree of composition
= Σm

q=1(w(ni, niq+1) × w(njq−1, nj) ×Π
jq−2
p=iq+1w(np, np+1)).

6 Trust Computation for Example Application

Consider a small healthcare organization that has six roles, namely, senior doc-
tor, junior doctor, cardiologist, surgeon, physician’s assistant and patient. senior
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doctor is senior to junior doctor, and junior doctor is senior to cardiologist and
physician’s assistant. Allen and Miller are assigned to senior doctor, Bell and
Nelson are assigned to junior doctor, Cox is assigned to cardiologist, and Davis
is assigned to physician’s assistant. Allen is also assigned to surgeon and Evans is
assigned to patient. Allen is the assigned surgeon for performing Coronary Artery
Disease Angioplasty (CAD type A) surgery on patient Evans. Since Allen has to
leave town for family emergency, he must delegate the surgeon role to another
doctor. He cannot delegate the surgeon role to his two trusted colleagues, Miller
and Nelson, because they will be on vacation. The hospital policy requires that
a person assigned to a doctor role or senior can be delegated the role of surgeon.
This rules out Davis. Thus, he computes trust values for the only two viable
candidates, Bell and Cox.

Quantifying Properties: To perform the CAD type A surgery, the hospital re-
quires the following attributes from the candidates. First, the candidate should
be a doctor (a1 = doctor) and he should be able to perform a CAD type A
surgery (a2 = SurgeryA). So, TA = {doctor, SurgeryA}. The hospital policy
ranks the ability to perform a CAD type A surgery higher than the doctor posi-
tion, so the policy administrator assigned wSurgeryA = 0.7 and wdoctor = 0.3. The
hospital administrator assigned the value of closeness equal to 0.6 between roles
Senior Doctor and Junior Doctor (dist(Senior Doctor, Junior Doctor)=0.6),
and that between roles Junior Doctor and Cardiologist equals 0.3 (dist(Junior
Doctor, Cardiologist)=0.3). Hence, by using the computation method explained
in Section 5, we get the value of closeness between role Senior Doctor and Car-
diologist equals to 0.6∗0.3 = 0.18 (dist(Senior Doctor, Cardiologist)=0.18). The
hospital policy ranks the importance of necessary attributes and role attributes
equally, hence wa = wr = 0.5.

Now, we quantify the properties of both candidates. Bell is a doctor who canper-
form the CAD type A surgery (UABell = {doctor, SurgeryA}), and Cox is a cardi-
ologist who can perform a bypass surgery (UACox = {cardiologist, SurgeryB}).
So, ABell = wSurgeryA + wdoctor = 0.7 + 0.3 = 1 and ACox = wdoctor = 0.3. Since
Bell is a junior doctor, RBell = dist (Senior Doctor, Junior Doctor)=0.6. Since
Cox is a cardiologist, RCox = dist (Senior Doctor, Cardiologist)=0.18.

Using this information, we calculate the properties value of the candidates:

PBell = wa ∗ ABell + wr ∗ RBell = 0.5 ∗ 1 + 0.5 ∗ 0.6 = 0.8, and
PCox = wa ∗ ACox + wr ∗ RCox = 0.5 ∗ 0.3 + 0.5 ∗ 0.18 = 0.24.

Quantifying Experience: Here the experience is quantify based on the number
of heart operations the candidates have done in the past five years and the
unit of the slot of the time period is equal to one year. The weight for each
time slot where slot1 represents the time period closest to the present time is
defined by policy as follow: wslot1 = 1, wslot2 = 0.8, wslot3 = 0.6, wslot4 = 0.4,
and wslot5 = 0.2. Bell has performed surgery once 300 days ago (slot1) with
performance 0.7 (pBellslot1

= 0.7) and Cox has performed surgery once 700 days
ago (slot2 ) with performance 0.8 (pCoxslot2

= 0.8). Thus, the experience value
of both candidates can be calculated as follow:
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EBell =
∑5

i=1 wsloti ∗ pBellsloti
= 1 ∗ 0.7 + 0 + 0 + 0 + 0 = 0.7, and

ECox =
∑5

i=1 wsloti ∗ pCoxsloti
= 0 + 0.8 ∗ 0.8 + 0 + 0 + 0 = 0.64.

Quantifying Recommendation: Here, we have two recommenders–Miller and
Nelson. According to hospital policy, the recommendation coming from senior
doctor is more trustworthy than the one coming from junior doctor. So, the ad-
ministrator set the trust value that hospital has about Miller (tMiller) to 0.8 and
the trust value that hospital has about Nelson (tNelson) to 0.2. Miller recommen-
dation for Bell (rMillerBell) and Cox (rMillerCox) are 0.4 and 0.6, respectively.
Nelson recommendation for Bell (rNelsonBell) and Cox (rNelsonCox) are 0.9 and
0.2, respectively. The computation results yield the recommendation for Bell and
Cox as follow:

RBell =
tMiller ∗ rMillerBell + tNelson ∗ rNelsonBell

tMiller + tNelson
=

0.8 ∗ 0.4 + 0.2 ∗ 0.9
0.8 + 0.2

= 0.5,

and
RCox =

tMiller ∗ rMillerCox + tNelson ∗ rNelsonCox

tMiller + tNelson
=

0.8 ∗ 0.6 + 0.2 ∗ 0.2
0.8 + 0.2

= 0.52.

Computing Trustworthiness: Allen prefers the delegatee with more experi-
ence. So, he set the weights for properties (wp), experience (we), and recommen-
dation (wr) to 0.2, 0.6, and 0.2, respectively. The trustworthiness of Bell and
Cox can be computed as follow:
TBell = wp ∗PBell +we ∗EBell +wr ∗RBell = 0.2∗0.8+0.6∗0.7+0.2∗0.5 = 0.68,
and
TCox = wp∗PCox+we∗ECox+wr∗RCox = 0.2∗0.24+0.6∗0.64+0.2∗0.52 = 0.54

Bell is selected to be the delegatee after comparing the trustworthiness values
between both candidates.

7 Model Analysis

Once we have determined the most trustworthy candidate, we need to formally
ensure that the choice of this delegatee does not cause a security breach. We
do the formal analysis using the Alloy Analyzer. An Alloy model consists of
signature declarations, fields, facts and predicates. Each signature consists of a set
of atoms which are the basic entities in Alloy. Atoms are indivisible (they cannot
be divided into smaller parts), immutable (their properties do not change) and
uninterpreted (they do not have any inherent properties). Each field belongs to
a signature and represents a relation between two or more signatures. A relation
denotes a set of tuples of atoms. Facts are statements that define constraints on
the elements of the model. Predicates are parameterized constraints that can be
invoked from within facts or other predicates.

The basic types in the access control model, such as, User, and Role are
represented as signatures. For instance, the declarations shown below define a
set named User, and a set named Role that represents the set of all users, and
roles in the system. Note that we use the abstract signature to represent these
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sets, and the different of users, and roles are modeled as the subsignatures of
each signature. The analyzer will then recognize that users, and roles consist of
only these different types, and nothing else.

abstract sig User{}
one sig Allen, Bell, Cox, Davis, Evans,

Miller, Nelson extends User{}

abstract sig Role{}
one sig SeniorDoctor, JuniorDoctor, Assistant,

Cardiologist, Surgeon, Patient extends Role{}

The different relationships between the RBAC components are also expressed
as signatures. Signature UserRoleAssign which represents the roles assigned to
user has a field called URAsmember that maps to a cartesian product of User an
d Role. Signature UserRoleAcquire which represents the roles user can acquire
through the assignment and role hierarchy has a field called URAcqmember that
maps to a cartesian product of User and Role. We use the signature RoleHier-
archy to represent role hierarchy relationship.

one sig UserRoleAssign{URAsmember: User -> Role}
one sig UserRoleAcquire{URAcqmember: User -> Role}
one sig RoleHierarchy{RHmember : Role -> Role}

The various invariants in the RBAC model are represented as facts in Alloy. For
instance, the fact URAcq states that user can acquire all roles assign ed to him
together with all of his junior roles. This is specified in Alloy as shown below.
Other invariants are modeled in a similar manner.

fact URAcq{
UserRoleAcquire.URAcqmember =
UserRoleAssign.URAsmember +
(UserRoleAssign.URAsmember).^(RoleHierarchy.RHmember)}

The policy constraints are modeled as predicates. First, consider the cardinality
constraint. The following constraint says that role r can be assigned to only one
user.

pred Cardinality(r: Role, uracq: User->Role){
(#((uracq).r) >= 1) &&
(#((uracq).r) <= 1)}

Next, consider the prerequisite constraint that says that if a user u can acquire
role r1, then he can also acquire role r2. The other forms are modeled in a
separate manner.

pred Prerequisite(u:User, r1, r2: Role,
uracq: User->Role){

(u->r2 in uracq) => (u->r1 in uracq)}
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The separation of duty constraint says that if a user u can acquire role r1, then
he cannot acquire the conflicting role r2.

pred SoD(u:User, r1, r2: Role, uracq: User->Role){
(u->r1 in uracq) => not (u->r2 in uracq)}

The different types of delegation are also modeled as predicates. The grant and
transfer operation can be modeled as follows:

pred Grant[u: User, r: Role,
uracq, uracq’: User->Role]{
uracq’ = uracq + (u->r)}

pred Transfer[u1, u2: User, r: Role,
uracq, uracq’: User->Role]{
uracq’ = uracq + (u2->r) - (u1->r)}

Finally, we need to verify whether the selected delegatee could cause any security
policy violation. We create an assertion that specifies the properties we want
to check. After we create the assertion, we will let ALLOY analyzer validate
the assertion by using check command. If our assertion is wrong in the specified
scope, ALLOY analyzer will show the counterexample. For example, suppose
we want to check whether separation of duty constraint is violated when Allen
delegates his role to Bell. The assertion below will check whether the separation
of duty constraint is violated after the transfer operation. The separation of duty
constraint says that user cannot be assigned both Assistant and Surgeon roles.
The counterexample illustrates that even though user Bell is not assigned to
Assistant role, he can still acquire it from the effect of role hierarchy.

assert TestConflict3{
all u1, u2: User, r: Role, uracq, uracq’: User->Role|

((u1 = Allen) && (u2 = Bell) && (r=Surgeon) &&
(uracq = UserRoleAcquire.URAcqmember) &&
(u1->r in UserRoleAcquire.URAcqmember) &&
(u2->Assistant not in UserRoleAssign.URAsmember) &&
Transfer[u1, u2, r, uracq, uracq’]) =>

SoD[u2, r, Assistant, uracq’]}
check TestConflict3

The result shown that, although Bell is the most trustworthy candidate, we
cannot choose him as Allen’s delegatee. Next, we verify the situation where Cox,
another candidate with the lower trustworthiness, is chosen as the delegatee. The
assertion below will check whether the separation of duty constraint is violated
after the transfer operation.

assert TestConflict4{
all u1, u2: User, r: Role, uracq, uracq’: User->Role|

((u1 = Allen) && (u2 = Cox) && (r=Surgeon) &&
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(uracq = UserRoleAcquire.URAcqmember) &&
(u1->r in UserRoleAcquire.URAcqmember) &&
(u2->Assistant not in UserRoleAssign.URAsmember) &&
Transfer[u1, u2, r, uracq, uracq’]) =>

SoD[u2, r, Assistant, uracq’]}
check TestConflict4

Here, the analyzer cannot find the counterexample, which means the separation
of duty constraint defined in the model is not violated. This indicates that Cox
is a more suitable delegatee for Allen.

8 Conclusion and Future Work

Delegation gives temporary privilege to one or more users, that allows critical
tasks to be completed. We provide a formal approach for choosing delegatees. The
approach evaluates the trustworthiness of candidates, and then ensures that the
chosen candidate does not cause a security breach. We also illustrate how trust-
worthiness can be used to decide on the length of the delegation chain. A lot of
work remains to be done. The first work is with regards to implementing the model
such that trust computation can be done in an efficient manner. The second is with
respect to validating the model in the context of real-world applications. The re-
sults of this validation can be further used to refine the model.
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Abstract. Ensuring secure interoperation in multidomain environments
based on role based access control (RBAC) has drawn considerable re-
search works in the past. However, RBAC primarily consider static au-
thorization decisions based on subjects’ permissions on target objects,
and there is no further enforcement during the access. Recently pro-
posed usage control (UCON) can address these requirements of access
policy representation for temporal and time-consuming problems. In this
paper, we propose a framework to facilitate the establishment of secure
interoperability in multidomain environments employing Usage Control
(UCON) policies. In particular, we propose an attribute mapping tech-
nique to establish secure context in multidomain environments. A key
challenge in the establishment of secure interoperability is to guarantee
security of individual domains in presence of interoperation. We study
how conflicts arise and show that it is efficient to resolve the security
violations of cyclic inheritance and separation of duty.
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1 Introduction

Ensuring secure interoperation in multidomain environments based on role based
access control (RBAC) has drawn considerable research works in the past [1].
Although RBAC [2] has become widely accepted as the principal type of access
control model in theory and in practice, it primarily considers static authoriza-
tion decisions based on subjects’ permissions on target objects, and there is no
further enforcement during the access. In recent information systems, the inter-
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or lack the flexibility to specify these requirements. Recently proposed usage
control (UCON) [3, 4] offers a promising approach for the next generation of
access control, it can address these requirements of access policy representation
for temporal and time-consuming problems.

The above observations motivate us to consider new secure Interoperation pol-
icy. In this paper, we employ attribute mapping techniques to propose an interop-
eration policy framework in multidomain environments based on UCON model.
In this policy framework, parts of foreign subject attributes will be mapped to
local attributes, once these associations are set up, all required foreign attributes
are dynamically mapped to local attributes, and the authorization can be made
based on these local attributes. A key challenge in the establishment of secure
interoperability is to guaran-tee security of individual domains in presence of
interoperation. This paper focuses on two types of security violations of cyclic
inheritance and separation of duty (SoD). We study how these security violations
arise and show that it is efficient to resolve them.

The rest of this paper is organized as follows. Section 2 proposes the attribute
mapping technique for secure interoperation framework. Section 3 studies how
security violations arise and show that it is efficient to resolve these security
violations. Some related work in interoperation are reviewed in Section 4. Finally,
Section 5 concludes this paper.

2 Attribute Mapping Technique for Interoperation Policy

Zhang et al. [5] present an example motivating the new features of UCON. As the
access control of this motivating example is not a simple action, the authoriza-
tion decisions are not only based on subjects’ permissions on target objects, but
also need further enforcement during the access. In this way, traditional access
control models lack the flexibility to specify policies in these scenarios, UCON
is the preferred policy. However, this example does not fit in with multidomain
environments. In multidomain environments, many types of user attributes’ se-
mantics cannot be interpreted across multiple domains, the first and foremost
problem is to interpret these attributes across multiple domains. We now identify
a complete taxonomy of attributes.

Attributes can be classified into different categories based on different items.
Firstly, we classify attributes based on available scope as follows.

Localdomain attributes: This type of attributes is defined in a domain whose
semantics can be interpreted only within local domain, but has no meaning or
visibility in other domains.

Multidomain attributes: Comparing with localdomain attributes, multido-
main attributes’ semantics can be interpreted across multiple domains.

Secondly, we classify attributes based on liveness as follows.

Temporary attributes: Temporary attributes are created at the time a usage
is started and deleted at the end of a single usage.
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Persistent attributes: Persistent attributes live longer for multiple usage
decisions.

Thirdly, we classify attributes based on whether the attributes can be updated
during the usage process as follows.

Mutable attributes: Mutable attributes can be modified by the system auto-
matically and do not require any administrative actions for update.

Immutable attributes: Immutable attributes cannot be changed by the sub-
ject’s activity. Only administrative actions can change it.

The secure interaction between two or more administrative domains motivates
the need for attributes translations that foreign attributes can be interpreted and
understandable to local entities. In multidomain interaction scenario, only parts
of attributes need to be translated. Firstly, multidomain attributes’ semantics
can be interpreted across multiple domains. Secondly, temporary attributes are
alive only for a single usage. Therefore, we only need to establish a flexible
policy for dynamic LPM (localdomain persistent mutable) and LPI (localdomain
persistent immutable) attributes mapping to make interoperation in two domains
employing UCON policies, and then the communications between two domains
are mainly created by attribute mapping technique. The characterize definition
about attribute mapping is as follows.

Definition 1. Attribute Mapping: The attribute mapping is formalized as a 5-
tuple: < a1, D1, a2, D2, m >, a1 is an attribute in domain D1, and a2 is an
attribute in domain D2 respectively. In general, D1 is the foreign domain, and
D2 is the local domain. The fifth parameter m is the mapping modes �→LPM
or �→LPI, which denotes the association of the two attributes a1 and a2. �→LPM
denotes that LPM attributes from the foreign domain D1 will be translated to
local domain D2. �→LPI implies that LPI attributes from the foreign domain D1
will be mapped to local domain D2.

For the �→LPM mappings, let Γ be a set which includes the LPM attributes
mapped from foreign domain to local domain, let Γ ′ be a set which includes
the LPM attributes from local domain associated with Γ , �→LPM : Γ → Γ ′ is a
function from Γ to Γ ′, then �→LPM obviously is a monotone increasing function.
And for the �→LPI mappings, let Γ be a set which includes the LPI attributes
from two interoperate domains, and �→LPI be a binary relation on Γ . Obviously,
�→LPI associates the LPI attributes, and these associations form a combined
hierarchy that is partially ordered on Γ .

3 Security Issues for Attribute Mappings

A key challenge in the establishment of secure interoperability is to guarantee
security of individual domains in presence of interoperation. There are many
types of security violations leaded by establishing an interoperation policy among
heterogeneous systems. These violations may arise because different domains
may adopt different models, semantics, schema format, data labeling schemes,



398 J. Lu et al.

and constraints for representing their access control policies [6, 7, 8]. This section
focuses on two types of security violations: cyclic inheritance, and SoD. We study
how these security violations arise and show that it is efficient to resolve them.

3.1 Violations of Cyclic Inheritance

Violations of cyclic inheritance mainly occur in interoperation of systems em-
ploying multilevel security policies, such as lattice-based access control (LBAC)
and role-based access control (RBAC) [8, 9]. The cross-domain hierarchy rela-
tionship may introduce a cycle in the interoperation lattice enabling a subject
lower in the access control hierarchy to assume the permissions of a subject
higher in the hierarchy.

Definition 2. A cyclic inheritance violation is expressed as

∃(ai, aj) ∈ A ×A, (bk, bl) ∈ B ×B ((aj �→LPI bk) ∧ (bl �→LPI ai)) ⇒ (aj , ai)

where A = a1, . . . , am, B = b1, . . . , bn, i, j, k, l, m and n are integers, such that
1 ≤ i �= j ≤ m, 1 ≤ k �= l ≤ n. Each ai is an attribute in attribute set A, and
bk is an attribute in attribute set B. A and B are two different domains. The
notation (ai, aj) is a two-tuples, which means that the attribute ai is the ancestor
of aj.

Cyclic inheritance usually arises from the circulation in the I−hierarchy. There
are four cases of cyclic inheritance: ai is a direct or indirect ancestor of aj , and
bk is a direct or indirect ancestor of bl. It is noted that ai is an ancestor of
itself. Combine with the above cases also can generate other sub cases. A cyclic
inheritance causes an attribute to inherit its senior attribute, as get all senior
attributes and all junior attributes of a given attribute is tractable.

Theorem 1. The checking problem for violations of cyclic inheritance is in P.

Proof. One algorithm for detecting problem for cyclic inheritance violations is
as follows. For each attribute a in a domain A, one first computes all senior
attributes and junior attributes of a, includes the I − hierarchies and LPI at-
tribute mappings. Then compares these two sets of attributes, if the intersection
is not empty, there exists at least one cyclic inheritance violations, otherwise
not. This algorithm has a time complexity of O(Na(Na + Nm)., where Na is
the number of LPI attributes with I − hierarchy, Nm is the number of LPI
attribute mappings. 	

3.2 Violations of Separation of Duty

SoD is widely considered to be a fundamental principle in computer security [10].
Violations of SoD constraints may occur in an interoperation policy because of
the interplay of various policy constraints across domains. When a sensitive task
is comprised of m permissions, an SSoD policy requires the cooperation of at least
n (for some 2 ≤≤ m) different users to complete the task. In other words, there
shouldn’t exist a set of fewer than n users that together have all the m permissions
to complete the sensitive task. We now formally define the SSoD violation.
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Definition 3. An SSoD violation is expressed as

∀{u1, . . . , un−1} ⊆ U

(
n−1⋃
i=1

AuthP (ui) ⊇ {p1, . . . , pm}
)

where m and n are integers, such that 1 ≤ n ≤ m, {p1, . . . , pm} is the set of all
possible permissions. AuthP : U → 2P is a function, where U is the user set,
and 2P is the power set of permissions.

In the literature on RBAC, statically mutually exclusive roles (SMER) con-
straints are used to enforce SSoD policies [2]. In RBAC model, permissions are
assigned to roles. But the role is only a special type of subject attribute in UCON
model, and there are many types of subject attributes in UCON model as shown
in section 2.2, which play a very important role on the authorization based deci-
sion, that makes SMER constraints not suit to UCON policy. Consequently, we
formally define two types of statically mutually exclusive attributes (SMEA) in
UCON.

Definition 4. An SD-SMEA (single-dimensional statically mutually exclusive
attributes) constraint is expressed as

∀u ∈ U (|ATT (u)∩ AS| < n)

where AS = a1, . . . , am be the set of all mutually exclusive attributes where each
ai is an attribute, m and n are integers, such that 2 ≤ n ≤ m, each ai is an
attribute, ATT : U → 2A is a function, where U is the user set, and 2A is the
power set of attributes. SD-SMEA constraint means that no user is a member of
n or more attributes in AS.

The SD-SMEA is a general form, SMER is an instance of SD-SMEA where
the ATT (u) is a role set that assigned to a user: ATT (u) = {r ∈ R[(u, r1) ∈
UA ∧ (r1, r) ∈ RH ]}

For example, as shown in Fig.1, AS = {Junior−Member, Rookie}, n = 2 in
(AS, n), from the example,

ATT (u1) = {Administrator, T eacher, Student, Junior−Member, Rookie},
ATT (u2) = {Teacher, Junior−Member},ATT (u3) = {Student, Rookie},
|ATT (u1) ∩AS| = 2 = n, |ATT (u2) ∩ AS| = 1 < n, |ATT (u3) ∩AS| = 1

Therefore, this example violates the SD-SMEA constraint as |ATT (u1) ∩
AS| = 2 = n violates Definition 4.

Definition 5. A MD-SMEA (multi-dimensional statically mutually exclusive
attributes) constraint is expressed as

∀u ∈ U{∀asi ∈ AS (|ATT (u) ∩ asi| < ni)}
where AS = {as1, . . . , asm} be the set of mutually exclusive attributes sets where
each asi = {asi1, asi2, asi3 . . .}, each element in asi is an attribute, the corre-
sponding ni is integer in the integer array N = {n1, . . . , nm}, m is an integer,
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such that 1 < ni ≤ |ASi|, Each ai is an attribute, (AS, N) is a two-tuples,
it means that no user is a member of ni or more attributes in asi for every
1 ≤ i ≤ m. ATT is the same meaning with Definition 4. MD-SMEA also in-
cludes mutable attributes. Let ATT (u) is the value of mutable attributes, asi is
an interval, and ni = 1(ni can be any integer which larger than zero).

Assume that no user can be assigned to both Junior−Member and Rookie, and
his virtual-money exceeds $1000. Then we can generate a MD-SMEA constraint
to enforce this SoD policy:

as1 = {Junior −Member, Rookie}, as2 = (1000, +∞), n1 = 2, n2 = 1.

We assume user u1, u2 and u3 be assigned corresponding roles as shown in Fig.1.
And the virtual-money of u1 is $500, the virtual-money of u2 is $900, the virtual-
money of u3 is $1200. We now use the definition of MD-SMEA to verify whether
the above example enforces MD-SMEA policy.

For u1 : ATT (u1) = {{Administrator, T eacher, Student, Junior−Member,
Rookie}, {virtual−money = $1200}}, |ATT (u1)∩ as1| = |{Junior−Member,
Rookie}| = 2 = n1,|ATT (u1) ∩ as2| = 0 < n2 = 1; For u2 : ATT (u2) =
{{Teacher, Junior−Member}, {virtual−money = $1200}}, |ATT (u2)∩as1| =
|{Junior − Member}| = 1 < n1 = 2,|ATT (u2) ∩ as2| = 0 < n2 = 1; For
u3 : ATT (u3) = {{Student, Rookie}, {virtual−money = $1200}}, |ATT (u3) ∩
as1| = |{Rookie}| = 1 < n1 = 2, |ATT (u3) ∩ as2| = |1200| = 1200 > n2 = 1.
From the above analysis, the user u1 and u3 violate MD-SMEA constraints
because they don’t satisfy all of the restriction of the MD-SMEA constraints. It
is significant that MD-SMEA constraint can’t be regarded as the combination
of many SD-SMEA constraints since they are different conceptions. When we
make the form definition of SD-SMEA and MD-SMEA, the verification problem
is urgent: “do the satisfaction checking problems for SD-SMEA and MD-SMEA
constraints can be done?” Both SD-SMEA and MD-SMEA constraints restrict
the attribute memberships of a single user in order to enforce SSoD policies.
Therefore, checking whether an UCON state satisfies a set of SD-SMEA and
MD-SMEA constraints is efficient.

Fig. 1. An example of SD-SMEA constraint
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Theorem 2. The satisfaction checking problem for SD-SMEA constraints is in P.

Proof. One algorithm for solving SD-SMEA constraints is as follows. For each
user in U , one first computes the set UA of all attributes in which the user is a
member of, and then counts how many attributes in this set also appear in the
set of attributes in the SMEA constraint, and finally compares this number with
n. This algorithm has a time complexity of O(Nu×Na×M), where Nu is the
number of users in U , Na is the number of attributes, and M is the number of
SD-SMEA constraints. 	

Theorem 3. The satisfaction checking problem for MD-SMEA constraints is in
P.

Proof. The proof is essentially the same as that for Theorem 2: The satisfaction
checking problem for a MD-SMEA constraint can be regarded as N SD-SMEA
constraints, where N is the number of mutually exclusive attributes sets. 	

4 Related Work

Ensuring secure interoperation in multidomain environments has drawn consid-
erable research work in the past. Kapadia et al. [1] proposed a secure interoper-
ability using dynamic role translation to implement access control across domains
in the form of role mappings among individual domains. In [11], M. Shehab et
al. proposed a distributed secure interoperability protocol that ensures secure
interoperation of the multiple collaborating domains without compromising the
security of collaborating domains. Shafiq et al. [12] extended the IRBAC model
by proposing a secure interoperation framework in which all roles in the inter-
acting domains are matched and policies are integrated to form a global RBAC
policy.

The first and foremost challenge in establishing secure interoperation is the
composition of a consistent and conflict-free interoperation policy. Several re-
search efforts have been devoted to the resolution of the conflicts among role
mappings. E. C. Lupu et al. [13] focused on the problems of conflict detection
and resolution for policy conflicts, including authorization policies and obligation
policies. Cyclic inheritance and separation of duties may appear in an interoper-
ation policy [8]. The resolution of interoperation inconsistencies related to SoD
constraint has not been adequately investigated and the existing approaches rely
on manual intervention of policy administrators to resolve SoD conflicts [13]. In
this paper, we give new definition of the violation of cyclic inheritance and SoD,
and show that there exist efficient algorithms to resolve these violations.

However, RBAC primarily consider static authorization decisions based on
subjects’ permissions on target objects, and there is no further enforcement dur-
ing the access. Recently proposed usage control [3] models extend traditional ac-
cess control models for next generation access control by integrating obligations,
conditions as well as authorizations, and by including continuity and mutability
properties, which make UCON have strong expressive power and policy speci-
fication flexibility. Role mappings are the basic approach for the interoperation
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among multiple individual domains. The attribute mapping technique can be
regarded as the extended of role mapping technique.

5 Conclusion

This paper presents an attribute mapping technique which can establish a secure
interoperation in multidomain environments based on usage control policies. In
order to ensure the security of individual domains in presence of interoperation,
we study how conflicts arise and show that it is efficient to resolve the security
violations of cyclic inheritance and SoD.
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Abstract. Separation-of-Duty (SoD) policy is a fundamental security
principle for prevention of fraud and errors in computer security. The
research of static SoD (SSoD) policy in recently presented usage control
(UCON) model has not been explored. Consequently, this paper attempts
to address two important issues: the specification and enforcement of
SSoD in UCON. We give a set-based specification scheme, which is sim-
pler and more general than existing approaches. As for the enforcement,
we study the problem of determining whether an SSoD policy is enforce-
able, and show that directly enforcing an SSoD policy is a coNP-complete
problem. In indirect enforcement, we generate the least restrictive static
mutually exclusive attribute (SMEA) constraints to enforce SSoD poli-
cies, by using the attribute level SSoD requirement as an intermediate
step. The results are fundamental to understanding the effectiveness of
using constraints to enforce SSoD policies in UCON.

Keywords: Separation-of-Duty, usage control, constraint.

1 Introduction

Separation-of-duty (SoD) is widely considered to be a fundamental security prin-
ciple for prevention of fraud and errors in computer security, and widely applied
in business, industry, and government [1,2]. Although SoD has been studied ex-
tensively in the information security, and it has been recognized that ”one of
RBAC’s great advantages is that SoD rules can be implemented in a natural
and efficient way” [3], as a related and fundamental problem, research of SoD
policy in recently presented usage control (UCON) [4] model has not been ex-
plored. UCON has been considered as the next generation access control model
with distinguishing properties of decision continuity and attribute mutability
[4,5]. Consequently, this paper focuses on static SoD (SSoD) policies in UCONA
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which is a sub-model of UCON only considering authorizations. Since an autho-
rization decision is determined by subject’s and object’s attributes, and these
attribute values can be updated as side-effects of the authorization, the study
of SSoD policies in authorization models is more pressing than that in obliga-
tion and condition models. In this paper, we provide a set-based specification
scheme for SSoD policies. Furthermore, we study a number of problems related
to generating SMEA constraints for enforcing SSoD policies in UCONA systems.
We study the problem of determining whether an SSoD policy is enforceable,
and generate SMEA constraints to indirect enforce SSoD policies, by using at-
tribute level SSoD requirements (ASSoD) as an intermediate step from SSoD
policies to SMEA constraints. The research of the SSoD policy in UCONA is
important for emerging applications as usage control scenarios, and it can also
increase UCON’s strengths in that it enables the use of constraints to support
SSoD policies.

The rest of this paper is organized as follows. Section 2 describes related
works. Section 3 gives the specification of SSoD policies. Section 4 studies the
problem of determining whether an SSoD policy is enforceable. Section 5 uses
SMEA constraints to indirect enforce SSoD policies. Section 6 concludes this
paper.

2 Related Work

The concept of SoD can be traced back to 1975 when by Saltzer and Schroeder [6]
took it as one of the design principles for protecting information, under the name
“separation-of-privilege”. The research community has taken an active interest
in incorporating SoD controls into computer systems since the late 1980s, Clark
and Wilson [1] applied SoD principle to data objects to ensure integrity and to
control frauds along with well-formed transactions as two major mechanisms for
controlling fraud and error. Later on, SoD has been studied by various researchers
as a principle to avoid frauds. One of the best known requirements for SoD is
embodied in the Chinese Wall model [7], in which access to documents that could
result in a commercial conflict of interest is strictly controlled.

In this paper, the specification scheme of the SSoD policy we propose has
its basis in our set-based approach to conflict of interest, and it is considerably
simpler syntactically than other schemes because the SSoD policy is expressed in
terms of restrictions on permissions other than attributes, such as roles, and we
make no attempt to define the conditions that must be met for the constraint
to be satisfied. As for the enforcement, Sandhu presented transaction control
expressions, a history based mechanism for dynamically enforcing SoD policies
[8,9]. Simon and Zurko combined the Object SoD and Operational SoD and
introduced a notion of history based SoD [10]. Crampton [11] employed black-
list to enforce historical constraints, it does not need to keep a historical record.
However, since these approaches for SoD only consider constraint sets with a few
elements, they will have unacceptable overheads to support large range of con-
straints. UCONA includes RBAC which increases the difficulty of enforcement
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SSoD policies in UCONA. Motivated by the SMER constraints [12],we enforce
SSoD policies in UCONA by using SMEA constraints. For a more detailed de-
scription of UCON, the reader can refer to [4,5].

3 The Specification of SSoD Policies

We now give a formal basis for representing SSoD policies in UCONA models
based on the following requirements. (1) An SSoD policy must be a high-level
requirement. Clark et al. identified SoD as a high-level mechanism that is “at the
heart of fraud and error control” [13]. It states a high-level requirement about
the task without the need to refer to individual steps in the task. (2) An SSoD
policy must be described in terms of restrictions on permissions. In the ANSI
RBAC standard [14], the distinction between SSoD policies as objectives and
static mutually exclusive role (SMER) constraints as a mechanism is not clear.
One problem is that the SMER constraints may be specified without a clear
specification of what objectives they intend to meet; consequently, it is unclear
whether the higher-level objectives are met by the constraints or not. Another
problem is that even though when SMER constraints are specified there exist a
clear understanding of what SSoD policies are desired, when the assignment of
permissions to roles changes, the SMER constraints may no longer be adequate
for enforcing the desired SSoD policies [12]. (3) An SSoD policy must capture
restrictions on user set involved in the task. In practice, the number of users
in any organization is bounded. It needs to consider the SSoD policies with an
upper bound on the number of users in an access control state.

Definition 1. An SSoD policy ensures that at least k users from a user set are
required to perform a task that requires all these permissions. Formally,

– P and U denote the set of permissions, the set of users;
– UP ⊆ U × P , a user-permission assignment relation;
– auth Pε[u] = {allowed(u, p) ⇒ preA(ATT (u), p)};
– ∀(P, U, k) ∈ SSoD, ∀U ′ ⊆ U : |U ′| < k ⇒ ⋃

u∈U ′ auth pε(u) � P .

where P = {p1, . . . , pm}, U = {u1, . . . , un}, m, n, and k are integers, such that
2 ≤ k ≤ min(m, n), min returns the smaller value of the two. ATT (u) denotes
the user’s attributes, preA is the pre-authorizations in UCON, and allowed(u, p)
indicates that user u is assigned permission p. ε is a UCONA state which con-
stituted by the set of assignments for all objects’ attributes. We write an SSoD
policy as ssod < P, U, k >. We say that a UCONA state ε is safe with respect
to an SSoD policy e, if in state ε no k − 1 users from U together have all the
permissions in P , and we write it as safee(ε). An UCONA state ε is safe with
respect to a set E of SSoD policies, which we denote by safeE(ε), if and only if
ε is safe with respect to every policy in the set E.

4 Enforceability of SSoD Policies

In a UCONA system, not all SSoD policies are enforceable. For example, given an
SSoD policy e = {ssod < {p1, p2}, {Alice, Bob, Carl}, 2 >}, which ensures that
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at least two users together from {Alice, Bob, Carl} are allowed to have {p1, p2}.
Assume that allowed(u, p1) ⇒ ATT (u) = {engineer, student, 50}, where en-
gineer is a role, student denotes the identity of user, and 50 is a trust value.
It means that a user who must cover all these attributes can be allowed to
have p1. Where allowed(u, p2) ⇒ ATT (u) = {programmer, student, 75} has
the similar meaning. Suppose that ATT (Alice) = {supervisor, student, 100},
where supervisor is a senior role to both engineer and programmer. Obviously,
safee(ε) is false, because Alice can be a member of both p1 and p2. In order to ad-
dress this, forbid Alice from having the attribute set {supervisor, student, 100}.
This is undesirable, if an attribute can not be assigned to a user, then the at-
tribute value should not be included in the domain of the user attribute.

Definition 2. (I, M) is a attribute set, where I is the set of immutable at-
tributes, and M is the set of mutable attributes. We say (I1, M1) ≤ (I2, M2) if
and only if for each attribute a ∈ I1, there exists an attribute a′ ∈ I2 such that
a ≤ a′; and for each attribute b ∈ M1 there exists an attribute b′ ∈ M2 such that
b ≤ b′.

Obviously, ≤ associates the user attribute sets, and these associations form a
combined hierarchy that is partially ordered. If (I, M) satisfies exactly the re-
quirement of allowed(u, p), we say (I, M) is the threshold attribute set of p.

Definition 3. Given an SSoD policy ssod < P, U, k >, let (Ipi , Mpi) is the thresh-
old attribute set of each pi in P , and (It, Mt) is an attribute set. If ∀(Ipi , Mpi)
(Ipi ≤ It ⇒ Mpi ≤ Mt), we say (It, Mt) is an ancestor attribute set. Assum-
ing that (Ii, Mi) is an ancestor attribute set, there does not exist another ancestor
attribute set (Ij , Mj) that (Ij , Mj) ≤ (Ii, Mi), we say (Ii, Mi) is an least ancestor
attribute set.

Theorem 1. An SSoD policy e = ssod < P, U, k > is not enforceable if and
only if the number of ancestor attribute sets for e is less than k.

Proof. For the “if” part, we assume that if the condition in the theorem exists.
Then one can construct a UCONA state in which there are k− 1 users and each
of the users is assigned one of the k− 1 ancestor attribute set (I, M) for e. Thus
these k− 1 users together cover all m permissions, and result in an unsafe state.
For the “only if” part, we show that if the condition in the theorem does not
exist, then the SSoD configuration is enforceable. Consider that the number of
ancestor attribute sets is k. we can declare every pair of (I, M) to be mutually
exclusive, which forbids any user to cover any two of them, this makes safee(ε)
true. 	

5 Enforcing SSoD Policies by SMEA Constraints

We now show that directly enforcing SSoD policies is intractable (coNP-
complete).
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Theorem 2. The verification problem of safee(ε) is coNP-complete.

Proof. In ANSI RBAC model [14], a role is a collection of users and a collection of
permissions, and the permission is a collection of object-right pairs. The UCONA
model can support RBAC in its authorization process, in UCONA, user-role
assignment can be viewed as subject attributes and permission-role assignment
as attributes of object and rights [5]. And let U in an SSoD policy e = ssod <
P, U, k > be the user set of all possible users in an RBAC state ε0, then the
verification problem of safee(ε) is equivalent to the one in [12] for the theorem
that checks whether an RBAC state is safe or not with respect to an SSoD
policies, which is NP-complete. 	

In RBAC, constraints such as mutually exclusive roles (SMER) are introduced
to enforce SSoD policies [12]. We present a generalized form of the SMEA in this
paper, which is directly motivated by SMER constraint.

Definition 4. A statically mutually exclusive attribute (SMEA) constraint is
expressed as

smea < {(I1, M1), . . . , (Im, Mm)}, {u1, . . . , un}, k >

where each (Ii, Mi) is an attribute set and m and n are integers such that 2 ≤
k ≤ min(m, n).

Definition 5. A UCONA state ε is safe with respect to a SMEA constraint
when

∀ui ∈ {u1, . . . , un}(|(ATTε(ui) ∩ {(I1, M1), . . . , (Im, Mm)})| < k)

which means that no user from {u1, . . . , un} is a member of k or more attribute
sets in {(I1, M1), . . . , (Im, Mm)}, and we write it as safec(ε). A UCONA state
ε is safe with respect to a set C of SMEA constraints if it is safe with respect to
every constraint in C, and we write it as safeC(ε).

As each SMEA constraint restricts the attribute set memberships of a single
user, it is efficient to check whether an UCONA state satisfies a set of SMEA
constraints, and thus provides a justification for using SMEA constraints to
enforce SSoD policies.

5.1 Translating SSoD Policies to ASSoD Requirements

SMEA constraints are expressed in term of restrictions on attribute member-
ships, but SSoD policies are expressed in terms of restrictions on permissions. In
order to generate SMER constraints for enforcing SSoD policies, the first step
is to translate restrictions on attribute sets other than on permissions for SSoD
policies. For each permission pi in {p1, . . . , pm}, there exists a (Ipi , Mpi) which
is the threshold attribute set of pi. In this way, we can define the attribute level
SSoD requirement, and translate an SSoD policy to ASSoD requirements.
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Definition 6. An attribute level Static Separation-of-Duty (ASSoD) require-
ment is expressed as

assod < {(I1, M1), . . . , (Im, Mm)}, {u1, . . . , un}, k >

where each (Ii, Mi) is an attribute set, m and n are integers such that 2 ≤ n ≤ m.

Definition 7. A UCONA state ε is safe with respect to ASSoD requirement
when

∀{u′
1 . . . u

′
k−1} ⊆ {u1, . . . , un}(

⋃k−1
i=1 )ATTε(u

′
i) � {(I1, M1), . . . , (Im, Mm)}

It means that there should not exist a set of fewer than k users from {u1, . . . , un}
that together have memberships in all the m attribute sets in the requirement. A
UCONA state ε is safe with respect to a set A of ASSoD requirements if it is
safe with respect to every requirement in A, and we write it as safeA(ε).

Let A denote the set of ASSoD requiremets derived from < E, ε >, if < E, ε >
is not enforceable, then it can not be translated to any ASSoD requirements,
let A = ∅. Else if < E, ε > is enforceable, then for each e ∈ E, and for each
permission pi in {p1, . . . , pm}, there exist many attribute sets corresponding
to it. Assume that each permission in {p1, . . . , pm} relates to the number of
attribute sets is {k1, . . . , km}, then the total number of elements in < A, ε > is
k1 × k2 × . . .× km. Theorem 3 shows that for the ASSoD configuration < A, ε >
derived from an enforceable SSoD configuration < E, ε > captures the same
security requirement.

Theorem 3. Given an SSoD configuration < E, ε >, and the ASSoD configu-
ration < R, ε > derived from < E, ε >, then safeA(ε) ⇔ safeE(ε).

Proof. Firstly, we show that if safeR(ε) is false, then safeE(epsilon)
is also false. If safeR(ε) is false, then there exist r = assod <
{(I1, M1), . . . , (Im, Mm)}, U, n > and k−1 users that together cover all attribute
sets in {(I1, M1), . . . , (Im, Mm)}. Given the way in which ASSoD < R, ε > is
derived from < E, ε >, there exists an SSoD policy in E such that the at-
tribute set in R together have all the permissions in it, therefore safeE(ε) is also
false. Secondly, we show that if safeE(ε) is false, then safeA(ε) is also false. If
safeE(ε) is false, then there exist e = ssod < {p1, . . . , pm}, {u1, . . . , un}, k >
and k − 1 users together cover all permissions in {p1, . . . , pm}. For each per-
mission pi in the permission set, there exists an attribute set (Ii, Mi) covering
pi, if it contains some sub attribute set, then we divide it, then there exists
r =< {(I1, M1), . . . , (Im, Mm)}, U, n > derived from e. Given the way in which
ASSoD < R, preA > is derived from < E, ε >, then r ∈ R, therefore safeA(ε)
is also false. 	
Theorem 4. Given a UCONA state ε, and a set A of ASSoD requirements,
determine if safeA(ε) is coNP-complete.

Proof. The proof is similar to the one in Theorem 2: let each attribute set in AS-
SoD requirement map to a permission. Then the ASSoD requirement is mapped
to an SSoD policy. 	
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5.2 Generating SMEA Constraints to Enforce ASSoD Requirements

Definition 8. Let C be a set of SMEA constraints, and R be a set of ASSoD
requirement, C enforces R if and only if safeC(ε) ⇒ safeR(ε).

Theorem 5. The ASSoD requirement a = assod < {(I1, M1), . . . , (Im, Mm)},
{u1, . . . , un}, k > can be enforced by the following SMEA constraint

c =
⋃i,j∈[1,m]

i=j {c = smea < {(Ii, Mi), (Ij , Mj)}, {u1, . . . , un}, 2 >}
Proof. The ASSoD requirement means that k users are required to cover all
m attribute sets. The constraint set C means that every two attribute sets in
{(I1, M1), . . . , (Im, Mm)} are mutually exclusive, then m users are needed to
cover the m attribute sets, as 2 ≤ n ≤ m, Thus safe{C}(ε) is true. 	
Although the above SMEA constraints (k = 2) can enforce any ASSoD require-
ment, this may result in constraints that are more restrictive than necessary.
Ideally, we want to generate SMEA constraints that can enforce the ASSoD re-
quirement, and avoid generating constraints that are overly restrictive. For this,
we prefer to use the less restrictive constraint set.

Definition 9. Let C1 and C2 be two sets of SMEA constraints, C1 is more
restrictive than C2 if safeC1(ε) ⇒ safeC2(ε) ∧ safeC2(ε) � safeC1(ε), and we
write it as C1 +ε C2.

We now give an algorithm to generate the relatively less SMEA constraints
to enforce ASSoD requirement. Given an ASSoD requirement a, the first step
is to compute the most restrictive SMEA constraint set C by enumerating all
possible SMEA constraints (where m=k=2) ; the second step is to remove any
constraint in C that the remainders can also enforce a; the third step is to
weaken the more restrictive constraint in the set. This algorithm can be used by
the step 1 and 2, which we only try to remove the constraints in C is efficient,
the output C will be a relative less restrictive SMEA constraints to enforce a.
Although by systematically enumerating all the cases in step 3 will generate the
least restrictive SMEA constraints, the runtime will be expensive. We generally
prefer to use step 1 and 2, and return the output C.

6 Conclusion

This paper presents two main contributions to the research of SoD policy in
UCONA: the specification and enforcement of SSoD in UCON. The specification
is set-based and we show that it has simpler syntax than existing approaches. For
the enforcement aspect, we have studied a number of problems related to gener-
ating SMEA constraints for enforcing SSoD policies in UCONA system. We show
that directly enforcing SSoD policies in UCONA system is intractable (coNP-
complete), study the problem how to verify whether a given SSoD configuration
is enforceable, translate the SSoD policy to ASSoD requirement which be used as
an intermediate step, and generate the least restrictive SMEA constraints from
a set of ASSoD requirements. The results are fundamental to understanding the
effectiveness of using constraints to enforce SSoD policies in UCON.
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Abstract. A nonce is a cryptographic input value which must never
repeat within a given context. Nonces are important for the security of
many cryptographic building blocks, such as stream ciphers, block cipher
modes of operation, and message authentication codes. Nonetheless, the
correct generation of nonces is rarely discussed in the cryptographic lit-
erature.

In this paper, we collect a number of nonce generators and describe
their cryptographic properties. In particular, we derive upper bounds on
the nonce collision probabilities of nonces that involve a random compo-
nent, and lower bounds on the resulting nonce lengths.

We also discuss an important practical vulnerability of nonce-based
systems, namely the nonce reset problem. While ensuring that nonces
never repeat is trivial in theory, practical systems can suffer from acci-
dental or even malicious resets which can wipe out the nonce generators
current state. After describing this problem, we compare the resistance
of the nonce generators described to nonce resets by again giving formal
bounds on collision probabilities and nonce lengths.

The main purpose of this paper is to provide a help for system design-
ers who have to choose a suitable nonce generator for their application.
Thus, we conclude by giving recommendations indicating the most suit-
able nonce generators for certain applications.

Keywords: Cryptography, Security Engineering, Nonce, Nonce Reset,
Nonce Generator.

1 Introduction

Nonces are cryptographic inputs with the property that each value only occurs
once within a given context1. Many modern cryptographic algorithms require
a key and a nonce as input, and as long as the key is unchanged, the nonce
must not repeat. Examples for cryptographic solutions that require nonces are
stream ciphers, certain block cipher modes of operation, some message authen-
tication codes (in particular Wegman-Carter based codes [2]), and certain entity
authentication solutions.
1 The term “nonce” is sometimes understood by cryptographers to be an abbreviation

for “number used once”. Even though this etymologically incorrect [1], it is a useful
mnemonic for cryptographic purposes.
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One possibility of generating nonces is the use of a random number gener-
ator (RNG). However, in order to avoid collisions, the nonce length has to be
large, which may be problematic particularly in light-weight cryptographic sys-
tems with limited memory or bandwidth. In addition, a cryptographically strong
RNG is not always available. Thus, a popular solution is to use a deterministic,
stateful generator that keeps track of the nonces already used. The most obvious
candidate for such a generator is a simple counter. As long as the generator does
not “wrap around” (i.e. reaches a value that is longer than the nonce length, forc-
ing it to start from 0 again), such a generator is good enough for most practical
purposes.

However, this is only the case as long as the generator actually maintains its
inner state. While this seems trivial in theory, it can not be taken for granted in
practice. An unexpected power-down can mean the loss of all information that
was not stored in non-volatile memory, and for many applications, constantly
storing the nonce to Flash memory or a hard disk is not an option. For such
systems, solutions are required that guarantee the nonce property also after a
system reset.

Prior Art: Even though nonces play a prominent role in cryptography, hardly
any literature exists on the issue. An overview of some known nonce techniques
can be found in a discussion threat in the CFRG mailing list from early 2007 [3].
The use of nonces in security proofs was modeled by Rowaway [4]. In addition, a
number of practical cryptosystems have been broken due to errors in the nonce
handling [5,6,7,8].

Contribution: While the nonce generators described in this paper have been
used in practice, our main contribution is the derivation of concrete bounds for
collision probability and the nonce length. To the best of our knowledge, this is
the first time that a full formal treatment of popular nonce generator techniques
is given. We also give the first scientific discussion of the nonce reset problem
and analysis of the techniques used to address it. Using the results of this paper,
system designers can compare the suitability of the different nonce generators
for their target application and make choices based on mathematical bounds.

Paper Structure: In Section 2, we review a number of nonce generators, most
of which are well-known in the literature. We derive formal upper bounds on
the nonce collison probabilities and lower bounds on the nonce lengths. Then
we proceed to describe the nonce reset problem in Section 3. Here we also in-
troduce a number of solutions to the problem, again giving formal bounds on
collision probability and nonce length. Finally, in Section 4, we compare the
nonce generators proposed and conclude the paper.

Notation: Throughout this paper, we will use the following variables. The maxi-
mum number of nonces produced by a generator is denoted by θ. The maximum
number of nonce resets is denoted by r − 1, i.e. r is the maximum number of
(re-)initialisations. The collision probability is denoted by pc, and the maximum
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allowable collision probability is denoted by pmax. Finally, the nonce length is
denoted by l. If a nonce consists of a counter and a random part, then the lengths
of these parts are denoted by l1 and l2, respectively.

In the algorithmic descriptions of Section 3, a ← b denotes the assignment
of value b to variable a, while a = b denotes the logical comparison between a
and b.

2 Standard Nonce Generators

Before discussing the nonce reset problem, we briefly review three basic types of
nonce generators (NGs) and give bounds for the corresponding collision proba-
bilities and nonce lengths.

Choosing the Right Nonce Length: It is important upon designing a nonce-based
system to pick the right nonce length l. An upper bound for l often results
from application limititations such as expensive bandwidth or storage. While it
may be possible to choose any desired nonce length on e.g. a desktop or laptop
computer, limitations may exist for resource-restricted devices. In light-weight
systems such as smart cards, sensor nodes, RFID chips etc., non-volatile memory
as well as transmission bandwidth is limited and expensive. Thus, a solution that
simply chooses a large nonce to elimiate all potential problems is not an option
in such a scenario – the nonce length has to be optimised as far as possible.

To this end, a lower bound for l is required. As it turns out, this lower bound
depends on the type of NG used, as well as the maximum number θ of nonces
required within one context. In Section 3, we will see that additional factors play
a role if we also want the NG to address the reset problem.

Deterministic vs. Probabilistic NGs: Nonce generators can be either determin-
istic or probabilistic.

– Deterministic NGs use some kind of inner state to keep track of the values
already used as nonces, ensuring that the same value never gets used again.
Such generators have two functions: Init() is executed upon setting up the
NG, while Next() outputs the next nonce value and updates the inner state.

– Probabilistic NGs use some kind of external randomness source to generate
nonces. While all of them have a Next() function, some of them are stateless
and do thus not require an Init() function. We denote them as “probabilis-
tic” NGs because the sequences produced by them can in theory contain
collisions. In practice, however, the collison probability pc can be kept ar-
bitrarily small by making the nonce length l large. Note that probabilistic
NGs require a good RNG to function properly. Implementing a good RNG,
however, is one of the hardest tasks in practical cryptography (see, e.g., [9]),
and if the RNG is faulty, the true collision probability may be much higher
than expected.
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Additional Constraints: In some protocols in the literature, the NG is expected
to have additional properties, such as unpredictability or pseudo-randomness.
However, in this paper, we follow the cryptographically more rigorous view pre-
sented by Rogaway [4], namely that the role of a NG should be limited to guar-
anteeing collision-freeness. If additional properties are required, they have to be
made explicit (“The protocol requires an pseudo-random nonce”) and should
be provided by the appropriate cryptographic primitives (e.g. a pseudo-random
function) in a separate step. Thus, no such additional constraints are considered
here.

2.1 Counter-Based Generator

The most widespread deterministic generator is a simple counter. The Init()
function consists of setting the counter cnt to 0 or to a random value, and the
Next() function outputs cnt and increases it by 1 (modulo 2l)2.

Note that this type of generator is well-known and well-understood; we only
repeat some known facts for completeness sake.

Nonce length: As long as the number θ of nonces drawn is at most 2l, the output
of a counter-based generator is guaranteed to be collision-free. This yields the
trivial condition on the nonce length that l ≥ log2(θ).

2.2 RNG-Based Generator

The most common probabilistic NG simply outputs an l-bit random number rnd
every time a nonce is requested. This NG does not maintain an inner state and
thus, does not need an Init() function. As with the counter-based generator,
the RNG-based generator is well-known and well-understood in the literature.
Note that if a pseudo-RNG is used instead (as is often the case in practice), it
should be a cryptographically secure one as formalised e.g. in [9]. If this security
advice is heeded, it should not be possible to distinguish between the pseudo-
RNG and a real RNG. Thus, in the following, the following facts for a real RNG
can be applied to a cryptographically sound pseudo-RNG just as well.

Nonce length: The birthday bound (see e.g. [12, Section 6.6]) states that if θ out
of 2l elements are drawn in a mutually independent way, the collision probability
pc is upper bounded by θ2−θ

2·2l .

2 Another wide-spread type of deterministic NG is the use of the system clock [10,11].
If there is at least one clock tick between two accesses to the Next() function, and
if the clock is never reset or wrapped around, then this can be seen as a special
case of a counter, where not every available nonce is actually used. However, there
are additional problems, such as synchronisation problems or the possibility that
someone (even inadvertedly) resets the system clock, thus creating a nonce re-use
that goes unnoticed by the application.
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This formula can be used to calculate the minimum length of a nonce. If pmax
denotes the highest acceptable collision probability, we have:

θ2 − θ

2 · 2l
≤ pmax ⇔ 2l ≥ θ2 − θ

2 · pmax

Example: If we need at most θ = 220 nonces and a collision probability of at
most pmax = 2−20, then we get 2l ≥ 259, meaning that the nonce has to have a
minimum length of 59 bit. Thus, compared to the counter solution, the nonce
has to be almost three times as long3.

2.3 Mixed Solution

Another possibility is to combine the two approaches above by concatenating an
l1-bit counter cnt and an l2-bit random number rnd into one nonce of length
l = l1 + l2. For every call to the Next() function, cnt will be increased by
one, and a new random number rnd will be generated. Obviously, this has the
disadvantages of the RNG-based solution, namely that an RNG is required and
that there is a risk for collisions. However, the collision probability and thus
the nonce length is reduced by the counter part, and the solution offers some
advantages in the case of nonce resets (see Section 3).

While the mixed solution is used in practice, we are not aware of a thorough
discussion in the cryptographic literature. Thus, we give a more detailed analysis
of its properties in the rest of this section.

Nonce length: As for the RNG-based generator, the nonce length depends on
the collision probability. Thus, we start by giving a general collision bound for
the mixed solution.

Lemma 1. Assume that the number 2l1 of possible counter values divides the
maximum number θ of required nonces. Then the collision probability for the
mixed solution is 0 if 0 ≤ θ ≤ 2l1 , and

pc ≤ θ2 − θ · 2l1

2 · 2l

otherwise.

Proof. Let us simplify notation by writing S = 2l, S1 = 2l1 , and S2 = 2l2 . Note
that for θ ≤ 2l1 , no collision can occur, since we are guaranteed to use a new
counter cnt each time. Beyond that point, a collision can occur if for two nonces
with the same counter cnt, the random part rnd also collides. If a total of θ
nonces is output by this NG, then for each value of cnt, we have θ

S1
calls to

3 In many cryptographic texts, the simplified rule 2l ≈ θ2 is used, meaning that nonces
are chosen to be exactly twice as long as in the counter case. This, however, ignores
the influence of the acceptable collision probability pmax.
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Fig. 1. Mixed Solution: Collision probabilities for l = 20 and l1 ∈ {6, 10, 11}

the RNG, generating an l2-bit random part. Thus, for each counter, the collision
probability p′c is bounded by the birthday bound as

p′c ≤
(

θ
S1

)2
−

(
θ

S1

)
2 · S2

=
θ2 − θS1

2 · S2
1 · S2

.

In total, a collision occurs if there is a collision for any of the S1 counters, i.e. the
total collision probability is bounded by

pc ≤ S1 · p′c = S1 ·
(

θ2 − θS1

2 · S2
1 · S2

)
=

θ2 − θS1

2 · S1 · S2
=

θ2 − θS1

2S
.

Resubstituting S1 and S, we obtain the desired bound. ��
Corollary 1. Assume that the number 2l1 of possible counter values divides
the maximum number θ of required nonces. If the maximum acceptable collision
probability is pmax, then the nonce length for the mixed solution has to be at least

l ≥ log2

(
θ2 − θ · 2l1

2 · pmax

)
.

A Cautionary Note: Note that the above estimate is only correct if S1 divides θ.
In situations where this is not the case and where θ is small compared to S1, the
bound on pc may be too low. Figure 1 illustrates this problem for three sample
setups, namely for l1 = 6, 10, 11 (from left to right) and a total nonce length
of l = 20. The correct value for pc is shown with a solid line, while the above
bound is shown with a dashed line4. As can be seen, the error gets larger with
4 Note that the “break” in the curve for l1 = 10 is not a plotting error, but a property

of the probability function, which is always convex with the exception of the points
where S1 divides θ.
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increasing l1. In fact, the error is bounded by S1
8S2

, i.e. it is rather insignificant
for small values of l1 but must not be ignored for large l1. This result is proven
in Appendix A.

A simple way of solving this problem when designing a system is to choose S1
and θ such that S1 divides θ. If S1 is small compared to θ, this should not be a
problem. If, on the other hand, S1 is close to θ, it is probably worth increasing
l1 by a few bits such that S1 ≥ θ, thus achieving a collision probability of 0.

3 The Nonce Reset Problem

In actual implementations, the inner state of a deterministic NG has to be stored
between two calls to the Next() function. Basically, there are two possibilities:

– Volatile memory (VM): This type of memory requires power to maintain
its state. Examples are various types of RAM, but also CPU registers. The
problem with using this kind of memory is that the NG state will be lost
when the system suffers a (planned or accidential) power-down.

– Non-volatile memory (NVM): This type of memory maintains its state
even if not powered. There are two types of solutions:
• Electronically addressed: This includes technologies like EEPROM

or Flash. They are rather expensive and slow compared to VM. As a
result, on most platforms, designers will try to use as little electronically
addressed NVM as possible.

• Mechanically addressed: This includes typical “secondary” storage
like magnetical or optical storage media (e.g. hard disks or DVDs). They
have the disadvantage of being very slow compared to VM.

Long-term cryptographic keys are typically stored in NVM, and while they are
in use, they are also loaded into VM. This way, they can be accessed fast and will
nonetheless survive a system crash. For NGs, however, this solution is not always
feasible. Electronically addressed NVM is often not available, and mechanically
addressed NVM would slow down the system performance considerably due to
the frequent changes of the NG state. Thus, practical solutions often store the
NG state in volatile memory only. If, however, the key survives a system crash
while the NG state does not, then some way of re-setting the NG is required.

It turns out that this reset function is often forgotten by NG designers. The
classical mistake is to re-use the old key, but to start a new instance of the NG
[5]. This means that the Init() function is called for the second time, which
leads to a nonce re-use for deterministic NGs.

If the solution is built such that the cryptographic key survives a system
crash, then the NG should have a Reset() function, which may or may not be
identical to the Init() function. If Reset() and Init() are different, then it is
important to always remember the following master rule for nonce initialisation
upon system start-up: If no key exists, run Init(). If a key exists, run Reset().

In the following, we will discuss a number of proposals for how to add a
Reset() function to a counter-based NG. In addition, note that the simple RNG-
based NG also solves the reset problem, albeit not in an optimal way.
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3.1 Randomised Reset

A wide-spread solution is to reset the counter to a random l-bit value. Note that
this solution requires an RNG, which has the disadvantages already discussed.

In addition, the solution is no longer deterministic and opens up for the pos-
sibility of nonce collisions. Note that since the Next() function computes the
new counter as i ← i + 1 mod 2l, counters will ”wrap“ if they get larger than
2l − 1. Thus, we can imagine the set of counters to be a cycle of length 2l. Each
sequence of counters between two resets marks a segment on this cycle, as illus-
trated in Figure 2. A collision between two sequences of counters occurs if those
segments overlap, also shown in Figure 2.
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Fig. 2. The cycle of counter values

Nonce length: A first intuition is that choosing the same nonce length as for
an RNG-based NG would be save. But in this case, our new solution would not
offer any advantages compared to an RNG-based NG. Thus, we are interested
in showing that the required nonce length can be made smaller, as follows.

Lemma 2. After r − 1 resets, the probability for at least one collision in a
randomised reset solution is at most r−1

2l

(
θ − r

2

)
.

Proof. We number the nonce sequences by 1, 2, . . . , r and denote their respective
lengths by s1, s2, . . . , sr. Before the first reset, there is only sequence 1, i.e. there
can not be any collisions unless s1 ≥ 2l.

Now consider the drawing of the starting point for sequence 2. Obviously, it
must not collide with any of the s1 points on sequence 1. In addition, it must not
coincide with any of the s2−1 points before sequence 1 either, since otherwise, the
sequences will overlap (see Figure 3). Thus, a collision occurs with a probability
of 1

2l (s1 + s2 − 1).
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x-s +1i x x+s -1j

Sequence 1(length s ):j

Sequence 2 (length s ):i

x+s -2ji+s

If sequence 1 starts with nonce x, then sequence 2 will overlap if its starting nonce
lies between x − si + 1 and x + sj − 1 (both inclusive).

Fig. 3. Overlapping sequences

For sequence 3, we already have to take the sequences 1 and 2 into account,
and so on. In general, the probability pi (i ≥ 2) for a new sequence to overlap
with an already existing one is upper bounded as follows:

pi ≤ 1
2l

·
i−1∑
j=1

(sj + si − 1).

The overall probability that at least one collision has occured after r sequences
(i.e., r − 1 resets) is then upper bounded by

pc ≤
r∑

i=2

pi ≤ 1
2l

·
r∑

i=2

i−1∑
j=1

(sj + si − 1)

=
1
2l

·
(

(r − 1)
r∑

i=1

si −
r−1∑
i=1

i

)

=
1
2l

·
(

(r − 1) · θ − r · (r − 1)
2

)
=

r − 1
2l

·
(
θ − r

2

)
��

Note that this can be considered as a generalisation of the bound for purely
random nonces. Purely random nonces correspond to random reset system with
one reset after each output nonce, meaning r = θ. In this case, the above collision
bound becomes θ−1

2l · (θ − θ
2

)
. This is the same as θ2−θ

2·2l , which is the bound we
already knew for purely random nonces.

Corollary 2. Assume that a counter-based NG with randomised reset suffers
at most r − 1 resets during the lifetime of one key. If the maximum acceptable
collision probability is pmax, then we need



420 E. Zenner

l ≥ log2

(
r − 1
pmax

·
(
θ − r

2

))
.

Example: Consider the case of a resource-restricted device5 with a built-in key
and a maximum lifetime of 5 years (227.23 seconds). After each power-down, the
device needs 30 seconds (24.91) to re-boot, which limits the number of possible
resets to r = 222.32. On the other hand, if the system is running, it can send
(due to bandwidth restrictions) at most 100 nonces (26.64) per second, i.e. up to
θ = 233.87 nonces in its lifetime. Thus, a naive application of the above corollary
yields a minimum nonce length of 56.19− log2(pmax) bit.

However, this approach overestimates the required nonce length. The reason
is that the system can not be busy re-booting all the time while at the same
time producing nonces all the time. In fact, the number r − 1 of calls to the
Reset() function and the number θ of calls to the Next() function depend on
each other. An analysis of the function f(r) = log2(

r
pmax

· (θ − r
2

)
) where θ is

written as a function of r shows that the function is constantly increasing in
the interval [1, θ]. Accordingly, the maximum is reached for r = θ. Since r has
a known upper bound, we have θ = r = 222.32, proving that a minimum nonce
length of 43.64− log2(pmax) bit is in fact sufficient.

3.2 Mixed Solution 1

The mixed solution described in Section 2.3 can also be used to solve the nonce
reset problem. Again, an RNG is required, which may induce new problems into
the solution.

Nonce Length: A general bound for the collision probability of this mixed solu-
tion can be given as follows.

Lemma 3. After r − 1 resets, the probability for at least one collision in the
mixed solution from section 2.3 is bounded by

pc ≤ θ · (θ + 2l1(r − 1))
2 · 2l

.

Proof. We write again S1 = 2l1 , S2 = 2l2 and S = 2l. We start our analysis
by observing that the worst case occurs if for each of (r − 1) resets, the same
value is assigned to the counter part (as is the case in a counter solution without
randomised reset). In this case, we have r sequences, each of which has a length of
θ
r nonces. Thus, for no value of cnt we can have more than θ

S1·r +1 assignments
to rnd between two resets, and the total number a of rnd values for each cnt is
bounded by

a ≤ r ·
(

θ

S1 · r + 1
)

≤ θ

S1
+ r.

5 The example is taken from a real-world solution for intelligent homes.
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For each value of cnt, this means that the collision probability is upper bounded
using the birthday bound by

p′c[j] ≤ a2
j − aj

2S2
.

Consequently, the total collision probability for all S1 values of cnt is bounded
by

pc ≤
S1∑

j=1

a2
j − aj

2S2
=

1
2S2

⎛⎝ S1∑
j=1

a2
j −

S1∑
j=1

aj

⎞⎠ .

The sum
∑S1

j=1 a2
j with a term sum of θ and terms in an interval [0, . . . , θ

S1
+ r]

can be shown to be upper bounded by θ ·
(

θ
S1

+ r
)
. In addition, it holds that∑S1

j=1 aj = θ. Thus, the bound can be computed to be

pc ≤ 1
2S2

(
θ ·

(
θ

S1
+ r

)
+ θ

)
=

θ · (θ + S1(r − 1))
2S

.

By resubstituting S1 and S, we obtain the desired result. ��
Note that this bound is a special case of the bound for the mixed solution without
nonce reset, since for r = 0, we obtain pc ≤ θ·(θ−2l1)

2·2l = θ2−θ2l1

2·2l , which is exactly
the bound for the mixed solution from Section 2.3.

Corollary 3. If the maximum acceptable collision probability is pmax, then the
minimum nonce length for the mixed solution from section 2.3 is

l ≥ log2

(
θ · (θ + 2l1(r − 1))

2 · pmax

)
.

3.3 Mixed Solution 2

An alternative is to modify the mixed solution described in Section 2.3 as follows:
For every call to the Next() function, only the cnt part is updated. On the other
hand, for every call to the Init() or Reset() function, the cnt part is set to
0, and the rnd part is set to a random value which is preserved until the next
reset.

Nonce Length: This solution can be made very resistant against nonce resets by
choosing the parameters as follows:

– If 2l1 ≥ θ, the construction is completely resistant against collisions as long
as no nonce resets occur.

– If 2l2 ≥ r2−r
2·pmax

, the probability for a collision in case of a reset will be less
than pmax.

Thus, the recommended nonce length for this solution is l ≥ log2

(
θ · r2−r

2·pmax

)
for r > 1. Note that if the maximum number r − 1 of expected resets is small
compared to the total number of nonces, this solution is superior to mixed solu-
tion 1.
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function Init() function Reset() function Next()

1. i ← 0 1. retrieve p from NVM 1. if i = p
2. p ← u 2. i ← p 2. p ← p + u
3. store p in NVM 3. p ← p + u 3. store p in NVM

4. store p in NVM 4. output i
5. i ← i + 1

Fig. 4. Counter-based NG using reset points

3.4 Reset Points

A completely different solution is to use reset points. This means that instead
of using random start values after a reset, deterministic values are used in such
a way that collision-freeness can be guaranteed. This is achieved by occasionally
storing a safe reset point to non-volatile memory6. If this is done only rarely, the
slow hardware access has little impact on the overall system performance.

To this end, we choose an interval size u which defines the distance between
two reset points. If no reset occurs after u calls to the Next() function, a new
reset point is stored. If, on the other hand, a reset occurs, the counter is set to
the last stored reset point. Figure 4 describes this solution.

Nonce length: Note that the last nonce value ever to be produced by the system
reaches its maximum if for each of the r− 1 calls to the function Reset(), a full
u nonce values go unused. This means that even the largest nonce will be less
than θ+(r−1)·u, and that the nonce length has to be at least log2(θ+(r−1)·u).

Note that this is a generalisation of the nonce length given for simple counter-
based NGs. If the system suffers no resets, then r−1 = 0, and the above formula
yields the well-known nonce length of log2(θ).

4 Comparison and Conclusions

4.1 Comparison

Table 1 compares the collision bounds for the solutions described above. All
probabilities are given under the assumption that the actual number of nonces
produced and actual number of nonce resets occuring do not exceed the antici-
pated values θ and r− 1, respectively. The table also indicates whether an RNG
is required. Remember that if this is the case, there is a probability (albeit low
when choosing the right parameters) of producing a nonce collision. For these
cases, the table indicates whether one collision significantly increases the risk of
getting a whole sequence of collisions.
6 This technique is mentioned in passing by Bernstein in [13], where he writes: “Store

a safe nonce value – a new nonce larger than any nonce used – on disk alongside the
key.”
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Table 1. Comparison of nonce generators

coll. prob. coll. prob. RNG colliding
without reset with reset required? sequences

Counter w. rand. reset pc = 0 pc ≤ r−1
2l

(
θ − r

2

)
yes yes

RNG-based nonce pc ≤ θ2−θ
2·2l pc ≤ θ2−θ

2·2l yes no

Mixed solution 1 pc ≤ θ2−θ·2l1

2·2l pc ≤ θ·(θ+2l1 (r−1))

2·2l yes no

Mixed solution 2 pc = 0 pc ≤ r2−r
2·2l yes yes

Couter w. reset points pc = 0 pc = 0 no n.a.

If no nonce resets are to be expected, the simple counter-based NG (not
contained in the table) is the optimal strategy, yielding a minimum nonce length
and a collision probability of zero.

If, however, nonce resets can happen, then the choice of the optimal NG and
its parameters depends on the application situation. However, it seems that
for many applications, the use of nonce reset points offers an optimal strategy.
If storing a reset point at regular intervals is an option, this solution gives a
guarantee for collision-freeness while having the shortest nonce length (log2(θ +
(r − 1) · u) bit) of all solutions discussed. In addition, it does not require a
random-number generator, thus removing an often vulnerable component from
the solution.

Where regular storing of reset points is not an option, the mixed solution
2 will often give good results. Note that for most systems, a nonce reset is a
rare event, and for small values of r, mixed solution 2 provides a low collision
probability and a low nonce length.

4.2 Conclusions

In this paper, we have collected and described a number of nonce generators
that are used in practice. For all of these generators, we have derived formal
bounds on the collision probabilities and nonce lengths. In addition, we have
described the nonce reset problem, given a theoretical analysis of suitable nonce
generators and discussed their resistance against nonce resets. To the best of
our knowledge, this is the first time that a full formal treatment of popular
nonce generator techniques is given. In particular, we hope to have given system
designers a toolbox for choosing the right nonce generator and parameters for
their target application.
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A Detailed Analysis of the Mixed Solution

In Section 2.3, the collision probability for the mixed solution was upper bounded
by θ2−θ·S1

2S . However, this bound only holds if S1 divides θ; otherwise, the bound
is too low. In the following, we derive a universal bound.

Theorem 1. The collision probability for the mixed solution in Section 2.3 is
upper bounded by θ2−θ·S1

2S + S1
8S2

.

Proof. Let us start by introducing the following notation. We write θ = q ·S1 +r,
where q and r are the unique quotient and remainder, resp., when dividing θ by
S1.

The exact collision probability for the mixed solution can be modelled as
follows. Imagine that there are S1 = 2l1 containers and S2 = 2l2 balls. With
each call i to the NG, one ball is drawn at random (with replacement) and
thrown into i-th container. This means that after θ iterations, all S1 containers
contain q balls, and r containers contain one additional ball. Thus, the total
exact collision probability can be described by the following formula:

pc = 1 −
(

q−1∏
i=1

(
1 − i

S2

))S1

·
(

1 − q

S2

)r

.

By using the approximation that 1 −∏
(1 − pi) ≤

∑
pi for 0 < pi ≤ 1, we can

upper bound this probability as follows:

pc ≤ S1 ·
q−1∑
i=1

i

S2
+ r ·

(
q

S2

)
= S1 · q · (q − 1)

2 · S2
+

rq

S2
.

Substituting S2 by S/S1, we obtain:

pc ≤ S2
1 ·

q · (q − 1)
2 · S +

rqS1

S
=

S2
1(q2 − q) + 2rqS1

2S
.

This bound is a correct bound in the sense that it is always larger than the
correct probability function. Now let us consider the estimate given in Section
2.3:

θ2 − θ · S1

2S
=

(q · S1 + r)2 − (q · S1 + r) · S1

2S

=
S2

1(q2 − q) + 2rqS1 + (r2 − S1r)
2S

.

As we can see, this bound differs from the above by the term r2−S1r
2S . Since

r ≤ S1 by definition of r, this term is always < 0 with the exception of r = 0, in
which case both functions are identical. Figure 5 illustrates this by showing the
correct probability (dotted), the simplified bound (solid), and the correct bound
(dashed).



426 E. Zenner

Fig. 5. Comparing correct and simplified bound for mixed solution (l = 20, l1 = 9)

Analysis of the error function r2−S1r
2S shows that it achieves its maximum for

r = S1
2 , yielding a maximum error of − S1

8S2
. By adding this maximum error to

the simplified bound, we obtain a bound that is always correct and prove the
theorem. ��
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Abstract. We present ShMAC (Shallow MAC), a fixed input length
message authentication code that performs most of the computation
prior to the availability of the message. Specifically, ShMAC’s message-
dependent computation is much faster and smaller in hardware than the
evaluation of a pseudorandom permutation (PRP), and can be imple-
mented by a small shallow circuit, while its precomputation consists of
one PRP evaluation.

A main building block for ShMAC is the notion of strong differential
uniformity (SDU), which we introduce, and which may be of independent
interest. We present an efficient SDU construction built from previously
considered differentially uniform functions.

Our motivating application is a system where a hardware-secured pro-
cessor uses memory controlled by an adversary. We present in technical
detail a novel, more efficient approach to encrypting and authenticating
memory and discuss the associated trade-offs, while paying special atten-
tion to minimizing hardware costs and the reduction of DRAM latency.

1 Introduction

With the publicized attacks on consumer computer products, such as the iPhone
[1] and Xbox, security of computing has become a topic of widespread commer-
cial interest. Broadly speaking, security of computing can be divided into two
main areas — hardware and software security. Software security is concerned
with integrity of the software and prevention of control or compromise by an
outside attacker. Hardware security, on the other hand, assumes that the adver-
sary has full physical access to the device and may use oscilloscopes and logic
analyzers to observe and compromise the computing system. This paper focuses
on ways to efficiently provide hardware security. For that purpose, we present a
new MAC technique, and discuss its application in securing memory.

Recent VLSI advances have provided strongly tamper-resistant hardware com-
puting platforms by integrating complete Systems on a Chip, through SoC tech-
nology. It is considered infeasible to all but government-scale attackers to perform
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meaningful analysis of the internals of production SoC. Ideally, we would store and
execute the entire computation on a SoC, eliminate external DRAM (Dynamic
Random Access Memory), and encrypt all off-chip communication. However, this
is not possible in most practical scenarios, due to prohibitive costs of such large
SoC. In this paper we consider the question of how to encrypt off-chip DRAM
transactions with minimal performance degradation and cost increase. Note, such
transactions occur much more frequently than network messages and have much
more stringent latency requirements. Since processor performance is so tightly de-
pendent on off-chip memory latency, speeding up the encryption/authentication
process is of primary importance.

For many on-chip bus protocols, e.g., [2,3], the address is available early in the
bus transaction between the processor and memory controller, while the larger-
size data follows later and is composed of multiple transfers of sub-units. Such
serialization of data transfers in on-chip buses is an engineering trade-off between
performance and the number of wires required for a wider bus. Therefore, an
encryption/authentication algorithm which can postpone data-dependent com-
putation, can start earlier in the memory transaction and potentially reduce the
performance impact of an encrypted memory system. This paper describes an
efficient way to encrypt off-chip memory transactions and provide data authen-
tication that takes advantage of the early arrival of the memory address.

Our Contributions. Our main contribution is a new fixed input length Mes-
sage Authentication Code (MAC) construction which allows the bulk of the MAC
computation to be performed before the message m is available. The computa-
tion dependent on m is the evaluation of (a new variant of) an ε-differentially
uniform (ε-DU) function [4,5] (cf. Section 2) and an XOR operation, which is
much simpler and faster than a typical MAC implementation via a block ci-
pher. In envisioned instantiations, MAC precomputation is a PRP (e.g., a full
10-round AES) evaluation, and the remaining computation (dependent on m) is
an evaluation of 2- or 4-round AES.

As a second contribution, we present a secure DRAM architecture, discussing
at length security/efficiency trade-offs and underlying design choices.

Related Work. As our work consists of two relatively independent (but com-
plementary) contributions – a cryptographic construction and a secure DRAM
design – we separate the discussions of related work accordingly below. First, we
discuss Wegman-Carter [6] and related constructions, followed by an overview
of previous work on secure DRAM.
On precomputation in Fixed Input Length MACs. Some details and applications
of the specific property of MAC precomputation have been discussed in the
literature (e.g., [7]), although, to our knowledge, not in the severely restricted
environments (with respect to both data-dependent computation and precompu-
tation time and chip surface area) that we consider. In this section we overview
previous work on message authentication, with emphasis on precomputation. We
discuss the relationships between the building blocks, clarify the terminology and
review some efficient constructions.



MAC Precomputation with Applications to Secure Memory 429

We are mainly interested in validating 256-bit data blocks. The direct ap-
proach is to simply encrypt (e.g., with a blockcipher, such as AES) the data
concatenated with the address, and possibly some redundancy. However, this
solution is unsatisfactory since it does not allow for precomputation, and, fur-
ther, requires both encryption and decryption hardware.

Before discussing previous work in more detail, we recall some definitions. Let
H : K×X → Y be a function family, indexed by the key k ∈ K. A Universal Hash
Function (UHF), or universal2, H guarantees that ∀x1 �= x2 ∈ X, Prk[Hk(x1) =
Hk(x2)] ≤ 1

|Y | . That is, no pair of preimages is mapped into the same value by
more than one |Y |-th of the functions. A stronger notion of Strongly Universal
(SU) H requires that ∀x1 �= x2 ∈ X, ∀y1, y2 ∈ Y, Prk[Hk(x1) = y1 ∧ Hk(x2) =
y2] = 1

|Y |2 . In other words, Hk maps all distinct x1, x2 independently and uni-
formly.

One of the most celebrated MAC schemes, and also one that naturally allows
precomputation, was proposed by Wegman and Carter [6]. Extending the au-
thors’ previous work on UHF families, in [6] they introduced the notion of SU
hash families, and showed that MACk,r(m) = Hk(m) ⊕ r is an unconditionally
secure MAC, where H is an SU function, r is a one-time pad, and k is a random
index into the family H .

Stinson [8] formalized the notion of ε-Almost SU (ASU), a more general class
of functions usable with the Wegman-Carter MAC construction. As the name
suggests, ASU functions simply allow less strict bounds on the probability guar-
anteed by SU. Stinson also showed how to combine a (faster) UHF with an
ASU function to obtain a faster ASU function. Brassard [9] pointed out that a
pseudorandom generator could be used in place of one-time pad. Krawczyk [10]
noticed that ε-Almost XOR Universal (AXU) function families, weaker than
ASU’s, are sufficient for Wegman-Carter MAC. (Recall that H is ε-AXU, if
∀x1 �= x2 ∈ X, ∀c ∈ Y, Prk[Hk(x1) ⊕ Hk(x2) = c] ≤ ε. Krawczyk called this
notion otp-secure, but AXU is the more frequently used term today.)

Following these fundamental results, a lot of work went into the design of
efficient universal, AU, ASU and AXU functions. Most of the research concen-
trated on software-efficient functions, i.e., those that take advantage of CPU’s
instruction sets which, in particular, include multiplication. Unfortunately, alge-
braic solutions are not acceptable in our setting, due to the latency and cost of
hardware implementation of multiplication.

In fact, acceptable solutions would only be those that reuse the circuitry of
the PRFG to generate the pad r and to evaluate H . Our solution does just that.
Alternatively, a MAC scheme with a similar performance can be extracted from
a large volume of previous work. Several papers contribute pieces of the total
solution, but, to our knowledge, none explicitly states it; further, several sources
use conflicting terminology.

Firstly, we point out that neither UHF nor AU functions are sufficient for
Wegman-Carter MAC security. This is because they do not guarantee that an
offset in the argument will not result in an unpredictable offset in the value of
Hk. For example, the identity function is a UHF, but clearly a Wegman-Carter
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MAC based on it is easily forged. We note, however, that UHF and AU are
often used in MACs for efficiency reasons, but only as part of the function H ; a
stronger ASU component is additionally required in H [8]. Further, some sources
(e.g., [11]) “blend” the notions of UHF and SU, in fact defining UHF as SU.

Therefore, although it was previously observed, in [5], for example, that it
is possible to obtain AU functions from four-round AES, such results are not
applicable for our uses of Wegman-Carter MAC. To our knowledge, the only
explicit AXU construction from an ε-DU function recently appeared in [12]. In
particular, it uses AXU derived from a 4-round AES in the Wegman-Carter
MAC. That MAC construction, however ([12], Algorithm 1), generates fresh
keys for H and the pad r for each MAC evaluation, which is an unacceptable
overhead for our setting. We observe, however, that in our setting, the keys of
H could be reused, which would bring the resource requirements down to those
in our proposed construction.

Related Work on Secure Memory. There is a vast amount of work on securing
memory. One direction uses smart cards or other separate adjunct chips such
as TPMs (Trusted Platform Module) [13]. These methods are usually limited;
for example, they do not protect intellectual property contained in the software
running on an (insecure) host, but only secure execution of small parts of it by
running it on the smart card/TPM. An interesting use of a smart card processor
was proposed in the XμP system [14]. XμP allows the ROM-less smart card to
execute signed code, using the terminal as a (cheap) storage. [14] describes ways
of securing the computation, including a public key and symmetric key-based
authentication of the executing code. At a high level, the symmetric-key case
resembles our setting; however, XμP is not as severely restricted, uses computa-
tionally expensive hash functions, and does not attempt MAC precomputation.

Another system is XOM [15], which provides architectural support for software
licensing and allows code to be authenticated and run even under untrusted
operating systems. XOM requires a significant modification of the processor’s
instruction cache, the addition of special instructions, and operating system
(OS) support. Our system is more general, is independent of the instruction set,
and supports any processor architecture.

Closer to our setting, securing memory in a SoC system was announced by
IBM [16] and considered academically (e.g., AEGIS [17,18], CryptoPage [19],
TEC-Tree [20]). These systems validate memory by maintaining a hash tree of
the entire DRAM, each transaction requiring 20-30 DRAM accesses and hash
evaluations. Caching part of the tree somewhat reduces the performance impact
[21] at the cost of on-chip resources. Solutions to the similar problem of “online
memory checking” (see [22,23] and references therein), where the checker (pro-
cessor) ensures (only) the integrity of adversarially controlled storage (RAM),
also incur a logarithmic overhead. Our MAC approach is an order of magnitude
faster (but with weaker replay protection). We believe such compromise is well
suited for many industrial applications.

Other systems such as the one presented in [24], PE-ICE [25] or TEC-Tree
[20], forgo Merkle trees but require significant on-chip storage for nonce or check-
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sum values updated on each memory write. While the amount of on-chip stor-
age can be as small as a byte for each encrypted off-chip storage block, this
method doesn’t scale to to support the desired gigabytes of off-chip DRAM.
Further, it can be shown that “natural” CRC-based integrity checking mecha-
nisms (e.g., [24]) have critical vulnerabilities [26].

Given these overheads, we choose to forgo replay attack protection, but in-
stead mitigate the threat by changing the encryption keys at reasonably frequent
intervals. In encryption and authentication, we focus on efficiency and minimal
additional on-chip resources. In our system, authenticating a memory access
takes slightly more than a PRP evaluation, and is effectively further reduced by
the precomputation of the MAC.

Organization of the Paper. In Section 2 we introduce the necessary no-
tation, definitions and building blocks that we will be using. Section 3 is the
cryptographic core of this work. We first discuss the intuition behind, and then
formally present our MAC construction — ShMAC, together with an evaluation
of its performance and instantiation considerations. In Section 4 we present the
system aspects of our secure memory architecture. In particular, we discuss the
assumptions, security objectives, and restrictions of our system, and its use of
ShMAC. Due to space limitations, proofs, as well as additional system design
considerations are presented in the full version of the paper [26].

2 Preliminaries

We denote the security parameter by k, keys by � ∈ {0, 1}k, a pseudorandom
permutation generator by PRPG, and a pseudorandom permutation by PRP.
The constructions in this work assume the existence of PRPGs.

2.1 Message Authentication Code (MAC)

A MAC is a tool for ensuring data integrity. It is most commonly used in authen-
ticating communication, and we use it in a similar setting. In our setting, the
data is stored in an untrusted location and MAC is used to ensure its integrity.

In a traditional MAC, the tag generation function is stateless and determin-
istic, and verification is done by applying the tagging function to compute the
correct tag of the given message, and comparing it with the candidate tag. We
need a slightly more general notion, which we call a nonce-based MAC, and which
allows the generation function to use nonces. More formally:

Definition 1. A nonce-based message authentication code is a stateless algo-
rithm MAC : {0, 1}k ×{0, 1}k ×{0, 1}∗ → TAG, which on input key � ∈ {0, 1}k,
nonce r ∈ {0, 1}k and message m ∈ {0, 1}∗, outputs a tag t ∈ TAG. (Here TAG
is the domain of tags, which depends on k.) We will sometimes write MAC �,r(m)
to mean MAC (�, r, m); we will also sometimes omit r and just write MAC �(m)
for simplicity.
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Now let � ∈R {0, 1}k, and A be a nonce-respecting polynomial-time adversary
with access to oracle O(r, m) = MAC �,r(m). A outputs a message m′ and its
alleged signature (i.e., a nonce-tag pair) τ ′ = (r′, t′), subject to the condition
that it never received t′ from O(r′, m′). We say that MAC is secure if for every
such A, Pr[MAC �,r′(m′) = t′] < 1/kc for every c and sufficiently large k.

In the above definition, by “nonce-respecting adversary” we mean an adversary
who never queries the MAC oracle with the same nonce twice. We give A the
freedom to choose his nonces at will with the single above restriction. Throughout
the paper, all our adversaries are nonce-respecting.

We remark that, although we define MAC in its commonly encountered gen-
eral form, in our application we will use the fixed-length variant of this defi-
nition, and specifically for messages of length k, i.e., m ∈ {0, 1}k rather than
m ∈ {0, 1}∗. Further, it will be convenient for us to use keys longer than k bits,
and thus we allow � ∈ {0, 1}ck, where c is a small constant (e.g., c = 2).

We note that Definition 1 imposes a strong unforgeability property [27], which
enforces that A cannot create new valid tags on the old (i.e., already tagged)
messages. In contrast, “regular” message authentication schemes often do not
consider a forgery a valid message-signature pair (m, τ ′) when the oracle was
queried on m and returned τ �= τ ′. In our application, however, strong unforge-
ability is essential. We note that, as a side effect, strong unforgeability allows us
to avoid the introduction and discussion of verification oracles in the definition
of MAC. (See [27] for further discussion on this topic.)

We remark that, in practice, MAC schemes are built directly from PRPGs.
Similarly to PRPGs, practical MAC schemes are not defined for all k, but rather,
for some fixed but sufficiently large k. Our MAC construction will follow the
latter paradigm, but we will perform the analysis in the asymptotic setting.

2.2 ε-Differential Uniformity and Properties of AES Rounds

A main building block for our MAC construction is Strongly Differentially Uni-
form (SDU) functions, introduced in Section 3.2. An SDU function family is a
stronger version of a Differentially Uniform (DU) family, which is widely used
in block cipher design and which we now present as background.

For our application we will use the sub-class of keyed ε-DU permutations, due
to their efficiency. Therefore, for simplicity, we do not discuss here ε-DU func-
tions in their full generality. However, we note that unkeyed permutations or
functions [4] could also be used in our constructions, and our analysis (appro-
priately modified for indices, etc.) equally applies.

Let G : {0, 1}k × {0, 1}k → {0, 1}k be a keyed permutation family. Let
Δx, Δy ∈ {0, 1}k be fixed and let X ∈ {0, 1}k be a uniformly distributed random
variable. Let G� ∈ G. (In the sequel, we may sometimes omit index � and write
G ∈ G, when � is clear from the context or where it does not play a role.) The
differential probability DP(Δx, Δy, �) is defined as

DP(Δx, Δy, �) = Pr
X

[G�(X)⊕G�(X ⊕Δx) = Δy]. (1)
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Here Δx and Δy are viewed as input/output differences. The expected differential
probability EDP(Δx, Δy) is the expectation of DP (Δx, Δy, �), over all keys �.
We are interested in the maximum EDP (MEDP ):

MEDP(G) = maxΔx,Δy∈{0,1}k\0EDP(Δx, Δy). (2)

Informally, a small MEDP value corresponds to good bit mixing by G — indeed,
small MEDP means that any change in the (randomly chosen) input of the cipher
results in an unpredictable output. However, small MEDP does not necessarily
imply “security under multiple queries,” since the MEDP experiment is defined
over all keys �.

Definition 2. We say that a permutation family G as defined above is ε-
Differentially Uniform (ε-DU), if MEDP(G) ≤ ε.

It is well known [28,29] that the MEDP of two-round AES (AES2) is at most
1.6 ·2−28, and the MEDP of four-round AES (AES4) is at most 1.8 ·2−110. Thus,
AES2 is a 1.6 ·2−28-DU permutation, and AES4 is a 1.8 ·2−110-DU permutation.

3 ShMAC: MAC with Precomputation

In this section we present Shallow MAC (ShMAC), a MAC scheme which takes
advantage of precomputation. The required precomputation essentially consists
of one PRP evaluation, while the message-dependent portion is a small shallow
circuit, which can be evaluated in a fraction of the time required for a PRP eval-
uation. (As a bonus, in our envisioned instantiation, precomputation can share
hardware gates with the rest of MAC computation. This is a critical advantage
in cases where chip area is restricted, as it is in FPGAs.)

Recall that we require a low-latency MAC scheme, simultaneously “cheap”
to implement in hardware, and faster than the evaluation of a PRP (e.g., AES)
or a hash function. This requirement precludes many standard MAC solutions,
such as AES-based, which require availability of the message at the beginning of
the computation. (To be concrete about the involved latencies, recall that AES
requires the sequential evaluation of at least 10 rounds1. Further, many (but
not all) Universal Hash Function (UHF)-based constructions require expensive
group arithmetic and additional hardware, and thus are unacceptable in this
setting. See Section 1 for more details.)

However, as also discussed in Section 1, in many systems the address of the
memory transaction arrives before the data, and thus the hardware MAC unit
is idle waiting for the data. We explore the possibility of using these idle cycles
to perform precomputation to speed up MAC generation.

1 For our application, fewer rounds (e.g., 8) would provide an adequate level of security,
because the keys are refreshed frequently, and A would only have on the order of
seconds or minutes to “crack” the MAC.
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3.1 The Intuition behind ShMAC

An ε-DU permutation family G (e.g., 2-round AES), an object with much weaker
security properties than a PRPG, can in principle be the core of a MAC, with
appropriate pre- and post-computation. Indeed, G ∈R G provides good bit mix-
ing, but only on random inputs. We satisfy this by using (nonce-based new and
secret) precomputed randomness to mask the data d prior to each application of
G. This masking of the inputs additionally prevents adversary A from collecting
any information on (the key of) G, even if A sees MAC evaluated on messages
of his choice (i.e., queries the MAC oracle adaptively).

Note that even though A has no knowledge of the random mask maskr derived
from nonce r, he can attempt a forgery using the same r (and thus the same
maskr). The output unpredictability guarantees of DU functions are too weak
to protect against this attack, since in our scenario A knows G(d⊕maskr)2. We
strengthen the notion of DU to preserve its guarantees even after one query to G
– see Definition 3 below. In terms of implementation, it turns out that masking
the output of G with fixed secret randomness (which can be viewed as part of
G’s key) is sufficient to satisfy the stronger requirements, and results in a secure
MAC.

3.2 ε-Strongly Differentially Uniform Functions

In this section we introduce the notion of Strong Differential Uniformity (SDU),
discuss its relationship with DU, and present an efficient construction. The new
notion is a natural building block in MAC constructions, including ours, and may
have applications in other areas. For simplicity, we give an asymptotic notion of
ε-Strongly Differentially Uniform (ε-SDU) permutations, by allowing ε to be a
function of the security parameter k.

Definition 3. Let G : {0, 1}k × {0, 1}k → {0, 1}k be a permutation family in-
dexed by security parameter k, and A be a computationally unbounded TM. Con-
sider the following experiment SDUA,G(k):

1. G ← G is selected at random by choosing the key. Further, a random R ∈
{0, 1}k is chosen.

2. A provides d, and receives G(d ⊕R). A outputs Δx, Δy ∈ {0, 1}k \ 0.
3. The output of the experiment is defined to be 1 if G(d⊕R)⊕Δy = G(d⊕

R ⊕Δx), and 0 otherwise.

We say that G is ε(k)-Strongly Differentially Uniform (ε-SDU for short), if for
all A, Pr[SDUA,G(k) = 1] ≤ ε(k), where the probability is taken over the random
choices used in the experiment.

It is easy to see how the ε-SDU notion is derived from ε-DU’s. Indeed, Definition 2
can be cast asymptotically and in game style, resulting in exactly Definition 3,

2 It is easy to see that if G is unkeyed, A can easily construct a forgery.



MAC Precomputation with Applications to Secure Memory 435

with the exception that in the corresponding experiment DUA,G(k), A is not
given G(d⊕R). Note that the notion of ε-SDU is strictly stronger than that of
ε-DU. Indeed, while unkeyed ε-DU functions exist [4], unkeyed ε-SDU functions
don’t. (This is because ∀Δx, an ε-SDU A can output a winning Δy since he can
invert the received G(d ⊕R).)

We now show how to construct an efficient ε-SDU permutation from any ε-DU
permutation, such as AES, at additional negligible cost.

Lemma 1. Let k be a security parameter, and G′ be a keyed (or unkeyed) ε-
DU permutation family. Let G = {G = G′ ⊕ �1|G′ ∈ G′, �1 ∈ {0, 1}k} be a
family additionally keyed by uniformly chosen �1 ∈R {0, 1}k. Then G is an ε-
SDU permutation family, for the same ε.

3.3 ShMAC Construction

Let d be a data block, and r ∈ {0, 1}k be a nonce; in practice r may be a counter
or chosen randomly for each MAC evaluation. Let G be a ε-SDU permutation
family (Definition 3), where ε = ε(k) is negligible in k. Let G be a random
member of G, selected by randomly choosing the key �. Let F : {0, 1}k →
{0, 1}k be chosen at random, and unknown to the adversary; in practice F is
implemented by a PRPG, such as AES. In Construction 1, we use a PRPG as a
source of indexed secret fresh randomness for each evaluation of MAC.

Construction 1 Let F, G, r, d be as above. Shallow MAC is the algorithm:

ShMAC�(r, d) = (r, G(d ⊕ F (r))) (3)

Theorem 1. Construction 1 is a nonce-based MAC as defined in Definition 1.

Note that ShMAC can be executed on multiple data blocks by simple concate-
nation of MACs of individual blocks. This observation is motivated by the fact
that efficient ε-SDU functions may not be readily available from the literature
for larger data blocks. For simplicity, we state the following lemma for the case
of two blocks; it can be naturally extended to any number of blocks.

Lemma 2. Let F, G, r be as above, and let d0 and d1 be data blocks. Then

MAC(d0, d1) = (r, G(d0 ⊕ F (r, 0)), G(d1 ⊕ F (r, 1))) (4)

is a nonce-based MAC, as defined in Definition 1.

3.4 ShMAC Instantiation Considerations

Theorem 1 is stated with respect to an ideal object — a randomly chosen func-
tion. In practice, this is implemented by means of a PRPG, and therefore Theo-
rem 1 becomes conditional on the existence of PRPGs. Of course, this transition
into the computational model improves the chances of A to forge the MAC,
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but it can be easily shown that this improvement is negligible. Note that ε-DU
functions (and thus ε-SDU functions) are known to exist, and their use does not
constitute an assumption.

As noted previously, “shortcut” 2- or 4-round versions of AES are ε-DU per-
mutations. Further, AddRoundKey, the final phase of each AES round, imple-
ments the transformation of Lemma 1. At the same time, in many hardware
implementations, the AES key schedule is precomputed, with round keys be-
ing randomly chosen. Such shortcut AES implementations satisfy the stronger
ε-SDU requirements and are sufficient for security of MAC. In our implementa-
tion, we follow this approach.

Depending on the application, the desired input length of MAC may vary.
In our encrypted memory system, for example, we operate on 256-bit blocks.
We wish to point out several observations that apply to such usage scenarios.
First, it is not necessary to use a “wider” (e.g., 256-bit) block cipher as the
PRPG F . Wider block ciphers are more expensive, since they aim to achieve
strong bit mixing on the full block. For example, 256-bit Rijndael requires 14
rounds, vs. the 10 rounds of its 128-bit AES sibling. In our application F is
only a source of randomness, and it is sufficient to execute AES twice with
corresponding adjustment of the nonce r to (r, 0) and (r, 1). Second, G must be
chosen properly as well. Similarly to AES, 256-bit Rijndael achieves good bit
mixing after only 4 rounds [30,31]. Alternatively, we could apply Lemma 2 and
execute 128-bit G (e.g., AES2 or AES4) on each of the two 128-bit halves of
masked data.

In our secure memory application, we choose the nonce r to be a concatenation
of the address of the memory location and a global RAM transaction counter
(the latter may have to be wrapped around for efficiency). This provides a sim-
ple and efficient way of generating nonces. Further, this method allows binding
the memory value to the memory location, preventing replay of valid data at
wrong locations3. Another advantage of this nonce choice is that the bulk of the
nonce, the memory address, need not be written to memory, as it is managed by
underlying subsystems. Further, this method ensures that the nonce is available
before the data arrives, thus allowing precomputation.

4 Applications: Secure DRAM

We now give an overview of a SoC-based secure system which makes use of
ShMAC. While we are mainly interested in integrity checking, for completeness
we also discuss a (weak) form of memory encryption. As noted in Section 1, all
system operations (with the exception of memory transactions) take place inside
the presumably secure and tamper-resistant chip. Therefore, securing the mem-
ory, which might be adversarially controlled, closes the main avenue of attack.
3 The binding between the data and the nonce is guaranteed by the strong definition

of MAC that we use. Indeed, it disallows a poly-time A to generate new nonce-tag
pairs even on previously signed data. Note that this does not prevent replay at the
same memory location. We discuss this trade-off in Section 4.
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We now discuss the hardware aspects of an encrypted memory implementation
using ShMAC for authentication, associated trade-offs and improvements; we
view this technical discussion as an additional contribution of this paper.

In our discussion, we omit some of the aspects of the system, such as secure-boot
procedures, the design of which is not related to MAC. We start by presenting the
Encryption/Authentication Unit (EAU), its on-chip location, connectivity and re-
lationship with other units.

4.1 Overview of Memory Encryption and Authentication

As shown in the conceptual block diagram, Figure 1(a), the EAU is interposed
between a conventional DRAM controller and the interface logic that allows
potential bus masters, such as CPUs and DMA engines, to access secured off-chip
memory. DRAM write transactions are encrypted on the way out to DRAM and
read transactions are decrypted coming back from DRAM to the SoC. During
the encryption process, a MAC is generated and stored with each encrypted
block of memory. During subsequent DRAM read operations, the stored MAC is
compared with a newly recomputed MAC to detect corrupted off-chip memory
contents.

Each MAC is associated with a fixed number of data bytes, called an en-
cryption block, which is the minimal unit of data. That is, the EAU supports
only block-size read or write DRAM transactions (and transparently handles
creation and verification of the associated MACs). The bus interface logic han-
dles transactions of all sizes. If a bus write transaction affects only a portion of
an encryption block, the EAU first needs to read, decrypt and verify the unavail-
able bits (if any) of the encryption block from off-chip DRAM. Then, it merges
the bits to create a full updated encryption block, before it is re-encrypted and
written to DRAM.
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Encryption block size and the number of bits in the MAC is a complex engi-
neering trade-off. Clearly, each bit of MAC stored in DRAM is unavailable for
user data and therefore represents overhead in an encrypting memory system.
Short MAC may not not offer sufficient protection against forgers. Since MACs
are stored in the same DRAM as the encryption blocks, there is also the physi-
cal and costs constraints of the DRAM data width. For most SoC systems, the
DRAM is usually 16 or 32-bits wide. Therefore, MACs with that granularity are
preferred.

Similarly, the size of the encryption block is determined by the range of data
sizes expected in typical SoC bus transactions. DMA transfers generate bus
transactions of size from single bytes to multi-word IP packets, but CPUs present
a characteristic bus transaction width that corresponds to their cache line size.
Choosing an encryption block size the same as the cache line will efficiently
support the most frequent bus transactions.

Our encrypted memory supports a physical 32-bit wide DRAM system. En-
cryption blocks are 256-bit wide and the associated MAC can be as short as 32
bits, while providing reasonable security. Each DRAM transaction is therefore
eight 32-bit words of data followed by one or two words of MAC. This way, the
memory overhead is as low as 12.5% and up to 8/9-ths of the DRAM contents
is available for user storage.

Stateless vs. stateful integrity checks. In our design, the EAU is stateless. This
is necessary due to severe on-chip resource restrictions. It is not hard to see that
encryption and authentication process as described above exposes the system to
replay attacks. For example, an adversary can replace the current contents of
memory with a value that was stored in that same location previously. Similarly,
an adversary can simply not update the DRAM as required by a write transac-
tion. It is easy to see that the system will decrypt and mistakenly accept such
data as valid.

Stateful operation is necessary to prevent such attacks. Keeping on-chip state
per each memory location, however, is prohibitively expensive. A natural so-
lution is to build a Merkle tree [32] of MACs for the entire memory space,
as proposed and deployed in, e.g., [33,17,18]. However, even with the possible
optimizations, maintaining such a tree of MAC values is a performance bottle-
neck (20-30 memory accesses and hash evaluations for each DRAM transaction)
and requires significant on-chip resources, which is unacceptable in many set-
tings, including ours. Instead of expensive tree-based integrity checking, we use a
much faster method to achieve a level of security sufficient for most commercial
applications.

To limit the exposure to replay attacks, we propose periodic refreshing of
encryption keys so as to invalidate sufficiently stale encrypted memory state. It
is easy to implement, e.g., by maintaining two memory regions, each encrypted
with its own key, and growing one region at the expense of the other. If the
keys are refreshed often enough, say, every two minutes, then the window of
vulnerability to replay attacks is fairly narrow.



MAC Precomputation with Applications to Secure Memory 439

This idle-time key refreshment is much more efficient than maintaining a
Merkle tree. We believe that frequent key expiration, and a single MAC per
encryption block affords practical levels of security with much less mechanism
and performance penalty, and thus is a better security/performance trade-off,
suitable for most industrial applications.

4.2 EAU Implementation Using ShMAC

The most direct method to encrypt and authenticate off-chip memory transac-
tions, would be to encrypt the concatenated address and data4. This would pro-
duce a 288-bit encrypted memory write value, as shown in Figure 2(a). However,
this method serializes the encryption process with memory write operations and,
more importantly, adds decryption delay to the already performance-limiting
DRAM read latency. Additionally, this scheme requires both encrypt logic and
decrypt logic, which is unacceptable for FPGA implementations.
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Fig. 2. Encryption/authentication methods for off-chip transactions

Motivated by low-latency and small footprint requirements, we prefer a differ-
ent encryption approach, shown on Figure 2(b), and separate MAC generation
from the data encryption process. Figure 1(b) illustrates a conceptual EAU de-
sign, described below5. A 256-bit pad is generated by Rijndael encryption of
the address6. The pad is then XORed with the Write data to produce the en-
crypted result. Since XOR is its own inverse, the same encryption function can
be used for both encryption as well as decryption. While encryption remains
serialized with the DRAM write operation, the pad calculation can start as soon
as the address is available early in the bus transaction. More importantly, for

4 Additional redundant data can be added under the encryption, if stronger integrity
checks are desired.

5 Reasonable security parameter sizes were included in Figure 1(b) for concreteness,
however, their values should be evaluated for specific instantiations.

6 We note that the 256-bit pad can be more efficiently generated by two parallel
128-bit AES encryptions in fewer rounds. We omit this, as well as other natural
optimizations, for the sake of clarity.
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performance-critical read operations, the pad calculation can occur in parallel
with DRAM read latency. Once encrypted DRAM data is available, a single
XOR operation is the only additional delay incurred by decryption. As a result,
decrypted data is returned to the processor with negligible delay7.

MAC generation proceeds as follows. The PRP F of Construction 1 is achieved
by running full Rijndael on the address concatenated with a nonce r. The nonce
value can be a global counter that increments with each memory write trans-
action. We stress that there is no need for expensive pseudorandom generation
of the nonce. Note that this first step of the MAC calculation can start as soon
as an address is available, simultaneously with the encryption process. The Ri-
jndael output is then XORed with the encrypted data and the same Rijndael
data path is reused to compute G of ε-SDU family G. In our implementation, G
is a four-round Rijndael evaluation8. The output of G is collapsed via an XOR
tree to a value m, which is concatenated with the original unmodified nonce r
to form the MAC written to DRAM — this is the ShMAC output.

In contrast with the decryption process, the MAC verification for memory read
operations must first wait for the DRAM latency in order to acquire the original
nonce r, which is stored off-chip. Once data and MAC arrive, F is computed
on the address appended with r (14 rounds of 256-bit Rijndael). This value is
then XORed with the encrypted read data and the same Rijndael data path is
reused to compute G, which consists of four rounds of Rijndael. The XOR tree
collapses the result to generate m, which is compared with m′, the value of the
just-read, off-chip MAC. If they match, the memory read operation is considered
uncorrupted.

Note that MAC verification can only start after the original MAC value is read
and much later than the actual decryption process, which means that data would
have already been returned to the processor before the MAC is verified. We can
afford this delay because in our application we consider MAC failure to be so
dire that the system effectively resets and discards any use of the corrupted data.
Thus, we do not need to implement any recovery mechanisms, such as rollbacks.

Trade-offs and design choices. Due to the unacceptable cost of tree-based in-
tegrity checking, it was our decision to use weaker but much more efficient au-
thentication, which allows replay attacks within a small window (e.g., one to
several minutes). We believe this is a reasonable compromise. Next, we argue
that our authentication approach effectively limits the forger to replay attacks.

Performance considerations require use of short MACs. We first argue that
even 16-bit security is sufficient in many practical security applications9. (Of

7 Admittedly, reusing the pad for the same DRAM location results in a weakness of
the encryption process. However, varying the pad, for example, based on a counter,
would preclude pad precomputation for read transactions, or require significant on-
chip storage.

8 As discussed in Section 3.4, we alternatively could use parallel execution of two
instances of 2- or 4-round AES.

9 Of course, by 16-bit security we mean that the probability of a polynomial-time
adversary forging a MAC is ( 1

2
)16, and not that it takes 216 operations to break it.
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course, this parameter would need to be evaluated for each concrete system
instantiation, using the following discussion as a guideline.) Indeed, on average,
it would take the adversary 215 attempts to forge just one memory block. Note
that in our system each unsuccessful attempt would be followed by a forced
reboot (a natural reaction to a break-in attempt), which might take around
a minute to complete. This means that forging a single block would take an
expected 20 days of continuous attacks; forging even two blocks (expected 230

attempts) is infeasible. Thus, attackers are likely to use other attack avenues,
such as exploiting the replay permissiveness.

Achieving 16-bit security requires the use of MACs of greater length, since
the ShMAC output includes a nonce. In our system, the ShMAC nonce consists
of the concatenation of the address and r. We first observe that nonces for
different memory locations would never collide; however, nonces may collide
within the same memory locations. If many collisions occur, the adversary may
eventually accumulate some useful information about G. We mitigate this threat
with periodically refreshing F and G (by changing their keys). As an additional
disadvantage to the adversary, he does not learn the full value of G’s, but only
a fraction of it. Thus, we believe that a choice of length for r in the 16–48 bits
range would be appropriate for most applications.

Refer to [26] for additional design considerations and trade-offs.
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Abstract. We present a new secret-prefix MAC (Message Authenti-
cation Code) based on hash functions. Just like the well-known HMAC
algorithm, the new MAC can utilize current hash functions without mod-
ifying their Merkle-Damg̊ard implementations. Indeed, the new MAC is
almost the same as HMAC except that the second call to the secret key,
which is made at the finalization stage, is omitted. In this way we not only
increase efficiency over HMAC but also reduce the cost of managing the
key, as the new MAC invokes a key only once at the initialization stage,
and the rest of the process depends solely on incoming data. We give a
rigorous security proof of the new MAC algorithm. Like HMAC, our new
MAC is proven to be a secure PRF (Pseudo-Random Function) based
on a reasonable assumption about the underlying compression function.
In theory our assumption is neither stronger nor weaker than the PRF-
type compression-function requirement for the PRF security of HMAC.
In practice our assumption looks somewhat similar to the PRF-type re-
quirement for the security of HMAC.

Keywords: Cascade construction, prefix-free PRF, hybrid argument,
multi-oracle family, affix.

1 Introduction

HMAC [1] is a commonly-used, widely-standardized [2,3] MAC (Message Au-
thentication Code) algorithm. The virtues of HMAC are twofold. First, HMAC
can make use of current hash functions without making any modifications. Recall
that most of the modern cryptographic hash functions are based on the Merkle-
Damg̊ard construction [4,5] with fixed-IV (Initial Value) usage, with 10∗-type
padding, and with 64-bit length encoding at the end. Such implementations of
hash functions are fully compatible with the HMAC algorithm. Second, HMAC
is provably secure. The newer proof [6] shows that HMAC is a secure PRF
(Pseudo-Random Function)—hence a secure MAC—based on a PRF-type as-
sumption about the underlying compression function. The assumption is “close
enough” to the standard keyed-via-IV PRF property, which is a well-established
requirement imposed on a compression function [1,7].

However, HMAC has a disadvantage of managing its secret key. That is,
HMAC makes a call to the secret key twice in the process. The first call is
to produce a secret IV at the initialization stage, and the second one is to enve-
lope the last chaining variable at the finalization stage. The second call causes a

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 443–458, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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considerable inconvenience, because the system must either keep the secret key
all the time during the operation or access its “secured” storage again at the
final stage of the process in order to obtain the secret key.

This problem was partially resolved by the MDP [8] scheme at the cost of
losing the original advantages that HMAC had. Specifically, the MDP scheme
provided a secret-prefix MAC algorithm, invoking a secret key only once at the
first stage of the process, but at the same time MDP produced both design and
security problems. The design problem lay in the iteration method. That is,
MDP introduced modifications to the Merkle-Damg̊ard construction, requiring
direct access to the underlying compression function—i.e., a direct call to the
compression function rather than a black-box call to the hash function. The other
problem lay in the compression-function assumption. Namely, the PRF security
proof of MDP had to make a related-key PRF assumption about the compression
function. Such an assumption seems indeed more demanding than the standard
PRF requirement from both the theoretical [9] and the practical [10,11] aspects.

Therefore, we would like to resolve the “second-key” problem in HMAC with-
out counterbalancing the original advantages of HMAC. More specifically, our
goal is to come up with a new MAC algorithm that acquires the following three
desirable characteristics:

1. Secret-Prefix. The new MAC should invoke its secret key only once. We
prefer especially a secret-prefix MAC for ease of key management.

2. Merkle-Damg̊ard. The new MAC should retain Merkle-Damg̊ard hash
functions. Most of the modern hash functions are of this type. In partic-
ular, the SHA-2 family of hash functions [12] employs the Merkle-Damg̊ard
construction, and this family of hash functions is expected to be widely used
at least until the year 2012 (i.e., the expected publication of SHA-3 [13]).

3. PRF Assumption. Like the case of HMAC, the security of the new MAC
should be based on a reasonable assumption about the underlying compres-
sion function. Specifically, we want our assumption to be as close to the
standard (non-related-key) PRF property as possible.

Our Results. The above goal is achieved by our new MAC algorithm, which we
call H2-MAC. The H2-MAC algorithm is very simple to define: Given a Merkle-
Damg̊ard hash function H : {0, 1}∗ → {0, 1}n and a secret key K ∈ {0, 1}n, the
tag T for a message M ∈ {0, 1}∗ is computed as

T = H
(
H(K‖pad‖M)

)
= H2(K‖pad‖M),

where pad ∈ {0, 1}m−n is a fixed constant and m the block size of the underlying
compression function. In this way H2-MAC transforms a Merkle-Damg̊ard hash
function into a secret-prefix MAC algorithm.

The H2-MAC algorithm has a beneficial side effect of improving efficiency
over HMAC. Namely, H2-MAC skips over the key derivation at the finalization
stage, which helps reduce the number of compression-function calls by 1. The
improvement is beneficial especially to short messages.
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Table 1. Comparison between the well-known HMAC algorithm and our new H2-
MAC. The quantity � represents the length, in blocks, of the input message M after
being padded, i.e., � = �(|M | + 65)/m�.

HMAC H2-MAC

# of compression-function calls � + 3 � + 2
# of secret-key calls twice (start and end) once (start only)

Compression-function assumptions PRF (keyed via IV) PRF (keyed via IV)
with key derivation with an affix

Our H2-MAC is provably secure. We prove that H2-MAC is a secure PRF
under the assumption that the compression function satisfies a property we call
PRF-AX (Pseudo-Random Function with an AffiX). PRF-AX makes only a
slight modification to the standard PRF property and remains nearly the same
as PRF. In theory, PRF-AX is neither stronger nor weaker than the assumption
made in the PRF security proof of HMAC [6]—we call the assumption in [6]
PRF-KD (Pseudo-Random Function with Key Derivation)—but we believe that
in practice PRF-AX is comparable to PRF-KD. See Table 1 for a summary of
our results.

Intuitive Reasoning behind Our New Construction. Coron et al. [14]
introduce the “HMAC” construction H2(0m‖M), which looks similar to our
H2-MAC. The “HMAC” construction is a mode of operation for keyless hash
functions and is proven to be indifferentiable from a random oracle. The indiffer-
entiability implies that the “HMAC” construction, when combined with a secret
prefix (which is then almost identical to our H2-MAC), can be used as a secure
MAC algorithm.1

The above plausible argument, however, is based on an informal assump-
tion that the underlying compression function is a random oracle. We need to
give a separate treatment in the standard model in order to ensure the PRF
security of the secret-prefix MAC algorithm based on some formal (e.g., PRF-
like) assumption about the compression function. This issue has been already
addressed by Bellare and Ristenpart in their multi-property-preserving EMD
construction [16].

In this paper we perform a formal analysis of the H2-MAC algorithm in the
standard model. We adopt the powerful techniques of multi-oracle families [7] in
order to study the PRF security of our construction.

Organization of the Paper. In Sect. 2 we briefly mention previous construc-
tions of similar MAC algorithms. Section 3 defines symbols and notions necessary
for presenting the paper. Section 4 gives a formal definition of our new H2-MAC
algorithm, followed by its security proof in Sect. 5. In Sect. 6 we open up a
general discussion on the design strategy employed by our H2-MAC algorithm.
Section 7 concludes the paper.
1 This idea of obtaining a secret-prefix MAC from an indifferentiable construction also

appears in the sponge construction [15].
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2 Related Work

The secret-prefix method applied to a plain Merkle-Damg̊ard hash function is
obviously insecure due to the “extension” attack [17,18]. The ENMAC algo-
rithm [19] increases efficiency over HMAC by providing a secret-prefix algorithm
for short messages, but ENMAC still requires the second key application for long
messages. The MDP scheme [8] operates as a secret-prefix MAC algorithm for
messages of any length, but MDP has the disadvantages that we have already
pointed out in Sect. 1.

There are other types (other than secret-prefix) of MACs that aim to improve
efficiency over HMAC, such as the Sandwich construction [20] and the BNMAC
algorithm [21]. These two schemes, however, pursue different aims and do not
avoid the second-key problem.

3 Preliminaries

Bit-String Operations. Given a finite bit string x ∈ {0, 1}∗, we write |x| for
the length in bits of the string x. Given two strings x, y ∈ {0, 1}∗, the notation
x‖y represents the concatenation of x and y, whereas x⊕ y the exclusive OR of
x and y. The symbol ‖ is often omitted; e.g., we simply write 10 in place of 1‖0.
The symbol 0n denotes the n-bit string 00 · · ·0 ∈ {0, 1}n. We use the wild card
∗ and write 0∗ to make the value n implicit. Given a non-negative integer n (less
than 264 − 1), we let 〈n〉64 denote the big-endian 64-bit binary representation of
the integer n, so that we have 〈n〉64 ∈ {0, 1}64. We use the abbreviation symbol
. . . and write 〈. . .〉64 to make the value n implicit.

Compression Functions. Throughout the paper we fix a compression function
F : {0, 1}n+m → {0, 1}n, where n and m are positive integers. We call m the
block size. We impose a requirement n+65 ≤ m, which is not a severe restriction
as it is satisfied by most of the modern cryptographic hash functions [12,13].
The time complexity is the sum of running time and code size. We fix a model
of computation and a method of encoding. We write TimeF (q) for the time
complexity necessary for computing the function F q-many times.

Merkle-Damg̊ard Hash Functions. We iterate the compression function F
to obtain a function F ∗ as follows:

Algorithm. F ∗
V (x[1] · · ·x[�])

Input: Chaining variable V ∈ {0, 1}n, blocks x[i] ∈ {0, 1}m for i = 1, . . . , �
v[0] ← V
For i = 1, . . . , � do

v[i] ← F (v[i − 1]‖x[i])
endfor

Output: Final value v[�] ∈ {0, 1}n
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This defines a new function F ∗
V : {0, 1}m∗ → {0, 1}n, where the domain {0, 1}m∗

is the set of bit strings whose length is a multiple of m. We follow the convention
F ∗

V (ε) = V on the null input ε.
Now let IV ∈ {0, 1}n be a fixed constant. Using the constant IV and 64-bit

length encoding 〈. . .〉64 we obtain a hash function H : {0, 1}∗ → {0, 1}n as
follows:2

H(M) := F ∗
IV(M‖10∗‖〈|M |〉64),

where the wild card ∗ is the minimum number of zeros necessary to make the
length of the resulting string a multiple of m bits.

Whenever we write
X‖10∗‖〈. . .〉64,

it is understood that the input “. . .”to the encoding function is the length |X |
of the string X . For example, we write X‖Y ‖Z‖10∗‖〈. . .〉64 as a shorthand for
X‖Y ‖Z‖10∗‖〈|X |+ |Y |+ |Z|〉64. Here, also recall that the length of the resulting
string X‖Y ‖Z‖10∗‖〈. . .〉64 is a multiple of m bits.

We use the following system of notation for dividing a message M ∈ {0, 1}∗
into blocks. We write

M [1] · · ·M [�] ← M

to mean that each block value is assigned to M [i], satisfying the following three
conditions:

1. M [1] · · ·M [�] = M ,
2. |M [i]| = m for i = 1, . . . , �− 1, and
3. 1 ≤ |M [�]| ≤ m.

Note that given a message M its block decomposition is uniquely determined.

HMAC. Using a Merkle-Damg̊ard hash function H : {0, 1}∗ → {0, 1}n con-
structed as above, the well-known HMAC algorithm is defined as follows:

Algorithm. HMACK(M)

Input: Key K ∈ {0, 1}n, message M ∈ {0, 1}∗
K̄ ← K‖0m−n

Y ← H
(
(K̄ ⊕ ipad)‖M)

T ← H
(
(K̄ ⊕ opad)‖Y )

Output: Tag T ∈ {0, 1}n

In the above definition ipad, opad ∈ {0, 1}m are two different constants (ipad is
a repetition of the byte 0x36, whereas opad a repetition of 0x5c). See also Fig. 1
for an illustration of the HMAC algorithm.

2 Strictly speaking, we note that inputs to H are restricted to 264 − 1 bits.
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Fig. 1. The well-known HMAC algorithm. The diagram describes only the case
|M [�]| ≤ m − 65. The shaded boxes correspond to key derivation.

The Notion of PRFs. We consider a distinguisher A, which is an oracle
machine that outputs either 1 or 0. We let AO denote the value returned by
A after interacting with the oracle O. The oracle O is either a “real” oracle
GK : {0, 1}∗ → {0, 1}n or an “ideal” oracle R : {0, 1}∗ → {0, 1}n. The real
oracle picks a key K uniformly at random from its key space {0, 1}n. We write
K

$←− {0, 1}n for such a sampling operation. The ideal oracle picks a function R
uniformly at random from the space of functions mapping {0, 1}∗ onto {0, 1}n.3

We then define the advantage function as

Advprf
G (A) := Pr

[AGK(·) = 1
]− Pr

[AR(·) = 1
]
,

where the probabilities are defined over the choice of K, the choice of R, and
the internal coins of A. We use the notation

Advprf
G (t, q, �) := max

A
Advprf

G (A),

where the maximum runs over all adversaries A whose time complexity is at
most t, each making at most q queries in total to its oracles, each query being
at most � blocks (Recall that the block size is m).

The Notion of Secure MACs. The required property for a secure MAC
is so-called existential unforgeability under chosen-message attacks. It is well-
known that this property is implied by the notion of a PRF (e.g., [6]). In the
current paper the notion of a secure MAC itself is not used, as we prove that
our construction is indeed secure as a PRF.

Multi-oracle Families (for PRFs). The techniques of multi-oracle families
were developed in [7] for analyzing the cascade construction. It is a general
principle which can be applied to any kind of indistinguishability, including the
notion of PRF just defined and that of PRF-AX to be defined in Sect. 5.1.

3 Formally speaking, we restrict the domain to {0, 1}264−1, so that the function R is
chosen from the corresponding restricted space.
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For PRF it works as follows. Suppose that we key our compression function
F as FK(·) = F (K‖·), obtaining FK : {0, 1}m → {0, 1}n with keys K

$←− {0, 1}n,
and that we have an ideal function R : {0, 1}m → {0, 1}n. We consider an
oracle F ⊗ · · · ⊗ F (q-fold) which picks independent q-many keys K1, . . . , Kq

$←−
{0, 1}n and upon a query (i, x) returns FKi(x). An ideal oracle R⊗· · ·⊗R picks
independent q-many functions R1, . . . , Rq from the function space and upon a
query (i, x) returns Ri(x). We define

Advprf
F⊗···⊗F (A) := Pr

[AF⊗···⊗F = 1
]− Pr

[AR⊗···⊗R = 1
]
.

The symbol Advprf
F⊗···⊗F (t, q) is similarly defined. Note that the quantity q de-

notes the total number of queries made across the different indices i.

Lemma 1. If F is a secure PRF, then so is F ⊗ · · · ⊗ F (q-fold). Specifically,
we have

Advprf
F⊗···⊗F (t, q) ≤ q · Advprf

F (t′, q),

where the time complexity t′ is about t + TimeF (q).

Proof. The proof is a very standard hybrid argument and can be found in [7]. ��

4 Specification of the H2-MAC Algorithm

Our H2-MAC algorithm is defined as follows:

Algorithm. H2MACK(M)

Input: Key K ∈ {0, 1}n, message M ∈ {0, 1}∗
Y ← H(K‖pad‖M)
T ← H(Y )

Output: Tag T ∈ {0, 1}n

See also Fig. 2 for an illustration of the H2-MAC algorithm. Note that in the
definition we introduce a fixed constant pad, which is exactly defined as

pad = 1‖0m−n−65‖〈n〉64 ∈ {0, 1}m−n,

so that Y ‖pad coincides with the standard Merkle-Damg̊ard strengthening, i.e.,
Y ‖pad = Y ‖10∗‖〈. . .〉64.

Our scheme takes a secret key K ∈ {0, 1}n. We assume that the key length is
always equal to n bits. This is for simplicity of our analysis. The case |K| �= n
can be treated in a similar way, requiring some modifications to the PRF-AX
assumption, but it would only add unnecessary complication. In practice the
H2-MAC algorithm works fine with a key length different from n.
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Fig. 2. Our H2-MAC algorithm. The diagram describes only the case |M [�]| ≤ m−65.
Note that we set pad = 10m−n−65‖〈n〉64, so that it is in accordance with the standard
Merkle-Damg̊ard padding rule. The shaded boxes correspond to affixes.

5 Security of the H2-MAC Algorithm

In this section we prove our main security result. Before going into the proof
details, we start with defining our PRF-AX assumption. After proving the main
theorem, we review the notion of PRF-AX by making a comparison with that
of PRF-KD for HMAC.

5.1 Our Assumption PRF-AX

The notion of PRF-AX is almost the same as that of PRF except that an
adversary is allowed to obtain a piece of additional information called affix.
Consider keying a compression function F : {0, 1}n+m → {0, 1}n via its IV as
FK(·) := F (K‖·), where as usual K

$←− {0, 1}n. In the standard PRF setting,
an adversary has access to the FK(·) oracle and tries to distinguish it from the
random oracle R(·). On the other hand, in our PRF-AX setting, an adversary
is given access not only to the FK(·) oracle but also to the affix oracle,4 which
upon request returns F (IV‖K‖pad). The adversary’s goal is to distinguish such
a pair of oracles from the pair of a random oracle R : {0, 1}m → {0, 1}n and
a random string r

$←− {0, 1}n (in place of the affix oracle), the string r being
independent from the choice of R. We define

Advprf-ax
F (A) := Pr

[AFK(·),F (IV‖K‖pad) = 1
]− Pr

[AR(·),r = 1
]
.

The symbol Advprf-ax
F (t, q) is defined in the same way as before.

We admit that PRF-AX is a requirement strictly stronger than the standard
PRF. For example,5 consider a block cipher EK : {0, 1}n → {0, 1}n with keys
K

$←− {0, 1}n. For the moment ignore the constant pad (or set it null). If E
is a secure block cipher, then EK(·) should be a good PRF, but it becomes
4 The term “affix oracle” might be somewhat misleading, as it returns a single fixed

value. The adversary is allowed to make only one “request” (i.e., a query without a
value) to the affix oracle.

5 This instructive example of a block cipher was given by one of the referees.
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completely insecure as soon as the affix oracle EIV(K) is given to the adversary
(The adversary can recover the secret key K using the public value IV). This
counterexample exploits the fact that EIV(·) is invertible. We believe that a well-
designed compression function should not have such characteristics.

5.2 PRF-AX Multi-oracle Families

As to PRF-AX, the notion of multi-oracle families is as follows. We key our
compression function F as FK(·) = F (K‖·), obtaining FK : {0, 1}m → {0, 1}n

with keys K
$←− {0, 1}n as usual. We consider an oracle F ⊗· · ·⊗F (q-fold) which

picks independent q-many keys K1, . . . , Kq
$←− {0, 1}n and upon a (PRF) query

(i, x) returns FKi(x). Upon an affix query i, the oracle returns F (IV‖Ki‖pad).
An ideal oracle R ⊗ · · · ⊗ R picks independent q-many functions R1, . . . , Rq

from the function space R : {0, 1}m → {0, 1}n and upon a query (i, x) returns
Ri(x). The oracle also picks q-many random values r1, . . . , rq from the space
{0, 1}n and upon an affix query i returns ri. The symbols Advprf-ax

F⊗···⊗F (A) and
Advprf-ax

F⊗···⊗F (t, q) are defined in the same way as before.

5.3 Main Security Result

We now state our main theorem:

Theorem 1. The H2-MAC algorithm is a secure PRF if the underlying com-
pression function F is a secure PRF-AX. Specifically, we have

Advprf
H2MAC(t, q, �) ≤ (�q + q + 1) · Advprf-ax

F (t′, q),

where the time complexity t′ is about t + TimeF (�q + q).

The proof of Theorem 1 is divided into three parts. The first part is to replace the
initial key derivation with a secret key itself. The last two parts are to implement
the techniques of multi-oracle families.

Part 1: From H2-MAC to H̃2. We introduce a slightly modified MAC
algorithm H̃2. The difference arises from the first stage: The derivation of a
secret chaining variable F (IV‖K‖pad) is simply replaced with the key K itself.

Algorithm. H̃2
K(M)

Input: Key K ∈ {0, 1}n, message M ∈ {0, 1}∗
x[1] · · ·x[�] ← K‖pad‖M‖10∗‖〈. . .〉64
Y ← F ∗

K(x[2] · · ·x[�])
T ← H(Y )

Output: Tag T ∈ {0, 1}n

In the following lemma we reduce the security of H2-MAC to that of H̃2 under
the assumption that F is a secure PRF-AX. The affix oracle plays an essential
role in the proof.
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Lemma 2. If the compression function F is a secure PRF-AX and the H̃2

algorithm is a secure PRF, then the H2-MAC algorithm is also a secure PRF.
Specifically, we have

Advprf
H2MAC(t, q, �) ≤ Advprf-ax

F (t′, 1) + Advprf
H̃2(t, q, �),

where the time complexity t′ is about t + TimeF (�q).

Proof. Let A be a distinguisher attacking the H2-MAC algorithm. Assume that
the time complexity of A is at most t, that A makes at most q queries, and
that the length of each query is at most � blocks. Construct an adversary B that
attacks F in the PRF-AX sense by utilizing A as a black-box, as follows:

Adversary B
Make a query to its affix oracle and receive V ∈ {0, 1}n

Run A and answer each query M as follows:
x[1] · · ·x[λ] ← 0m‖M‖10∗‖〈. . .〉64
Return H

(
F ∗

V (x[2] · · ·x[λ])
)

to A
Output whatever A outputs

Observe that BFK(·),F (IV‖K‖pad) is exactly the same as running AH2(K‖pad‖·). Sim-
ilarly, running BR(·),r coincides with running AH̃2

K(·) (Actually, B never makes a
query to its R : {0, 1}m → {0, 1}n oracle). Therefore, we have

Advprf-ax
F (t′, 1) ≥ Advprf-ax

F (B)

= Pr
[BFK(·),F (IV‖K‖pad) = 1

]− Pr
[BR(·),r = 1

]
= Pr

[AH2(K‖pad‖·) = 1
]− Pr

[AH̃2
K(·) = 1

]
= Pr

[AH2(K‖pad‖·) = 1
]− Pr

[AR(·) = 1]

− Pr
[AH̃2

K(·) = 1
]
+ Pr

[AR(·) = 1]

= Advprf
H2MAC(A) −Advprf

H̃2(A),

where t′ is about t + TimeF (�q) and R(·) : {0, 1}∗ → {0, 1}n is an ideal oracle.
This proves Lemma 2. ��

Part 2: From H̃2 to F ⊗ · · · ⊗ F . The next step is to reduce the security of
H̃2 to that of multi-oracle family. We prove the following lemma:

Lemma 3. The MAC algorithm H̃2 is a secure PRF if F ⊗ · · · ⊗ F is a secure
PRF-AX multi-oracle family. Specifically, we have

Advprf
H̃2(t, q, �) ≤ (� + 1) · Advprf-ax

F⊗···⊗F (t′, q),

where the product F ⊗ · · · ⊗ F is q-fold and the time complexity t′ is about
t + TimeF (�q).
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Proof. The proof is based on a hybrid argument. Our proof is conducted along
the lines of [7], except that in our case adversaries are no longer prefix-free. This
is another place where we need the affix oracle.

We introduce intermediate functions Gi for i = 0, 1, . . . , �+1. These functions
take a random function g : {0, 1}∗ → {0, 1}n as a “key.”

Algorithm. Gi(M)

Input: Function g : {0, 1}∗ → {0, 1}n, message M ∈ {0, 1}∗
x[1] · · ·x[λ] ← M‖10∗‖〈. . .〉64
If λ < i then

T ← g(x[1] · · ·x[λ])
endif
If λ = i then

Y ← g(x[1] · · ·x[λ])
T ← H(Y )

endif
If λ > i then

V ← g(x[1] · · ·x[i])
T ← H

(
F ∗

V (x[i + 1] · · ·x[λ])
)

endif
Output: Tag T ∈ {0, 1}n

In the above definition of Gi, the cases i = 0 and i = � + 1 should be regarded
as follows. If i = 0, then the last condition λ > i is always satisfied. The input
value x[1] · · ·x[i] = x[1] · · ·x[0] should be treated as the null string ε, at which
the function g returns a random value V = g(ε). On the other hand, if i = �+1,
then only the first condition λ < i is satisfied. This means that the function
G�+1 behaves like a random function.

Now let A be a distinguisher attacking H̃2, whose time complexity is at most t,
each making at most q queries, each query being at most � blocks. We define
probabilities Pi := Pr

[AGi(·) = 1
]

for i = 0, 1, . . . , � + 1. Note that the probabil-
ities are taken over the choice of g : {0, 1}∗ → {0, 1}n.6 Now we can rewrite the
advantage as

Advprf
H̃2(A) = Pr

[AH̃2
K(·) = 1

]− Pr
[AR(·) = 1

]
= P0 − P�+1

=
�∑

i=0

(Pi − Pi+1).

So it remains to bound each term Pi − Pi+1. For this, we construct adversaries
Bi for i = 0, 1, . . . , �. Each Bi is a distinguisher which attacks the multi-oracle

6 Formally, the domain of g should be restricted to {0, 1}264−1.
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family F ⊗ · · · ⊗ F by having black-box access to the adversary A, where A is
now considered as an adversary trying to distinguish between Gi and Gi+1.

Adversary Bi

Set a counter c ← 0
Run A and answer its α-th query Mα as follows:

xα[1] · · ·xα[�] ← Mα‖10∗‖〈. . .〉64
If � < i then T

$←− {0, 1}n; return T to A
else (i.e., � ≥ i)

If xα[1] · · ·xα[�] = xβ [1] · · ·xβ [�] for some previous β < α then sα ← sβ

else c ← c + 1; sα ← c endif
If � = i then make an affix query to its sα-th oracle and receive T
return T to A endif
If � = i + 1 then make a query x[�] to its sα-th oracle and receive Y
return H(Y ) to A endif
If � ≥ i + 2 then make a query x[i + 1] to its sα-th oracle and receive V
return H

(
F ∗

V (xα[i + 2] · · ·xα[�])
)

to A endif
endif

Output whatever A outputs

Observe that running BF⊗···⊗F
i is the same as running AGi(·). Similarly, running

BR⊗···⊗R
i coincides with running AGi+1(·). Therefore, we have

Pi − Pi+1 = Pr
[AGi(·) = 1

]− Pr
[AGi+1(·) = 1

]
= Pr

[BF⊗···⊗F
i = 1

]− Pr
[BR⊗···⊗R

i = 1
] ≤ Advprf-ax

F⊗···⊗F (Bi),

where each Bi makes at most q queries, and each Bi’s time complexity is at most
t′ ≈ t + TimeF (�q). Hence we get

Advprf
H̃2(A) ≤

�∑
i=0

Advprf-ax
F⊗···⊗F (Bi) ≤ (� + 1) · Advprf-ax

F⊗···⊗F (t′, q),

as desired. This proves Lemma 3. ��

Part 3: From F ⊗ · · · ⊗ F to F . The last step is an adaptation of Lemma 1
to the PRF-AX setting. It translates into the following:

Lemma 4. If F is a secure PRF-AX, then so is F⊗· · ·⊗F (q-fold). Specifically,
we have

Advprf-ax
F⊗···⊗F (t, q) ≤ q · Advprf-ax

F (t′, q),

where the time complexity t′ is about t + TimeF (q).

Proof. The proof is essentially the same as that of Lemma 1. ��
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Putting Them Together. Given Lemmas 2, 3 and 4, it is now easy to prove
Theorem 1. We successively compute as:

Advprf
H2MAC(t, q, �) ≤ Advprf-ax

F (t′, 1) + Advprf
H̃2(t, q, �)

≤ Advprf-ax
F (t′, 1) + (� + 1) ·Advprf-ax

F⊗···⊗F (t′, q)

≤ Advprf-ax
F (t′, 1) + (� + 1)q ·Advprf-ax

F (t′′, q)

≤ (�q + q + 1) ·Advprf-ax
F (t′′, q),

where t′ ≈ t+TimeF (�q) and t′′ ≈ t+TimeF (�q+q). This proves Theorem 1. ��

5.4 Tightness of the (Birthday) Bound

Note that the generic birthday attacks [22] are applicable to our H2-MAC algo-
rithm. Hence the bound obtained in Theorem 1 is essentially tight, as it ensures
security up to the birthday limit (i.e., the scheme remains secure for �q % 2n/2).
This bound is the same as the one for the cascade construction [7] and is essen-
tially comparable to the one for HMAC [6].

5.5 Comparison between PRF-AX and PRF-KD

We compare our PRF-AX assumption with the assumption made in the PRF
security proof of HMAC [6], PRF-KD. The PRF-KD property consists of two
conditions:

1. The function FK(·) := F (K‖·) is a secure PRF (against q-many queries),
and

2. The function F ′
K′(·) := F (IV‖K ′‖·) is a secure PRF against two constant

queries (related to the two constants ipad and opad), under a fixed related-
key attack (coming from the two constants).

Therefore, just like the PRF-AX property, PRF-KD is a slight strengthening of
the standard PRF property, allowing an adversary to have two pieces of addi-
tional information (i.e., key derivation). However, there exists a subtle difference
between the two properties. Namely, in the case of PRF-AX, the same key K is
used for both FK(·) oracle and the affix oracle, allowing an adversary to access
the two oracles concurrently. On the other hand, in the case of PRF-KD, the
above two conditions are independent requirements; the key K for the FK(·)
oracle has no relation to the key K ′ for key derivation. Neither the assumption
implies the other; our PRF-AX property is neither stronger nor weaker than
PRF-KD. See Appendix for examples of exhibiting separation between the two
notions.

6 Discussion on the Design Principle

In this section we discuss the feasibility of the design principle (i.e., the removal
of the second key) adopted by the H2-MAC algorithm. At first glance the absence
of the second key seems to make the construction less secure. There are both
the positive and the negative sides to this issue.
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Positive: Multi-property Preservation. The H2 construction preserves sev-
eral properties. It is easily seen that H2(·) is collision-resistant if H(·) is (and
hence if the underlying compression function F is [4,5]). Coron et al. [14] proved
that H2(0m‖·) is an indifferentiable construction. Furthermore, we have proven
that the construction is “almost” PRF-preserving. Therefore, the H2 construc-
tion is secure against these kinds of attacks under respective assumptions about
the compression function.

Negative: Security under Weakened Assumption. The security of HMAC
does not necessarily require its compression function be a secure PRF. The MAC
security (rather than the PRF security) of HMAC can be proven under weaker-
than-PRF assumptions about the compression function. For example, Bellare [6]
provides a security proof based on a “privacy-preserving MAC” property of the
compression function (together with some other weak assumptions). Also, Fis-
chlin [23] proves the MAC security of HMAC under a non-malleability condition
of the compression function (together with some other weak assumptions). Cur-
rently we do not have a proof to ensure the MAC security of the H2-MAC
algorithm based on a weaker-than-PRF property of the compression function.

It is worth pointing out that the second key serves a crucial role in Carter-
Wegman MACs based on universal hash functions [24]. The second key enables us
to use “weak” hashing for the inner part, by utilizing a “strong” outer finalization
with the second key.

Negative: Secret Storage vs. Secret Computation. The critical aspect
of the H2-MAC (in fact, any secret-prefix MAC) algorithm is that as soon as
one of the intermediate values is leaked, the adversary can easily compute any
extension of that message locally. Hence, the evaluation of these values must be
done securely.

This problem does not seem to exist in HMAC. In HMAC, such leakage of
the intermediate values would lead to existential forgery after off-line collision
search with one additional query, but such an attack is less powerful and more
costly. Thus, secure computation appears to be a price to pay for relaxing the
storage condition of the secret key.

It remains as interesting future work to investigate further the role of the
second key. Hopefully such a study gives a better insight about the gap in security
between the two types of constructions.

7 Conclusion

We have presented a new MAC algorithm called H2-MAC. The new algorithm
removes the second-key application from HMAC, improves efficiency over HMAC
and achieves similar PRF-based provable security. In this sense, we have shown
that, at least for PRF-based security, the second key is redundant. The role of
the second key for other types of security needs further investigation.
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A Separation between PRF-AX and PRF-KD

Assume we have a secure PRF-AX function F : {0, 1}n+m → {0, 1}n. We
shall construct a new function F ′ which is also secure in the sense of PRF-
AX but completely insecure in the sense of PRF-KD. For this, recall that
we have ipad = 0x36 · · · and opad = 0x5c · · · . Now write msb2(X) for the
second most significant bit of a given string X ∈ {0, 1}∗. Then observe that
msb2(ipad ⊕ opad) = 1. For X ∈ {0, 1}n and Y ∈ {0, 1}m define

F ′(X‖Y ) :=

{
F
(
X‖(Y ⊕ ipad ⊕ opad)

)
if X = IV and msb2(Y ) = 1

F (X‖Y ) otherwise.

It can be seen that F ′ is a secure PRF-AX function. However, F ′ is totally
insecure in the sense of PRF-KD, as the two values F ′(IV‖(K̄ ⊕ ipad)

)
and

F ′(IV‖(K̄ ⊕ opad)
)

are always the same.
Conversely, assume we have a secure PRF-KD function F : {0, 1}n+m →

{0, 1}n. We shall construct a new function F ′ which is secure in the sense of
PRF-KD but not in the sense of PRF-AX. For X ∈ {0, 1}n, Y ∈ {0, 1}n and
Z ∈ {0, 1}m−n define

F ′(X‖Y ‖Z) :=

{
F (Y ‖0m) if X = IV and Z = pad

F (X‖Y ‖Z) otherwise.

We see that F ′ remains secure in the sense of PRF-KD but becomes insecure in
the sense of PRF-AX, since the value returned by the affix oracle coincides with
the value returned by the F ′

K(·) oracle upon the query 0m.
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Abstract. While peer-to-peer (P2P) file-sharing is a powerful and cost-effective
content distribution model, most paid-for digital-content providers (CPs) use di-
rect download to deliver their content. CPs are hesitant to rely on a P2P distribu-
tion model because it introduces a number of security concerns including content
pollution by malicious peers, and lack of enforcement of authorized downloads.
Furthermore, because users communicate directly with one another, the users can
easily form illegal file-sharing clusters to exchange copyrighted content. Such ex-
change could hurt the content providers’ profits. We present a P2P system TP2P,
where we introduce a notion of trusted auditors (TAs). TAs are P2P peers that
police the system by covertly monitoring and taking measures against misbehav-
ing peers. This policing allows TP2P to enable a stronger security model making
P2P a viable alternative for the distribution of paid digital content. Through anal-
ysis and simulation, we show the effectiveness of even a small number of TAs
at policing the system. In a system with as many as 60% of misbehaving users,
even a small number of TAs can detect 99% of illegal cluster formation. We de-
velop a simple economic model to show that even with such a large presence
of malicious nodes, TP2P can improve CP’s profits (which could translate to user
savings) by 62% to 122%, even while assuming conservative estimates of content
and bandwidth costs. We implemented TP2P as a layer on top of BitTorrent and
demonstrated experimentally using PlanetLab that our system provides trusted
P2P file sharing with negligible performance overhead.

1 Introduction

While P2P presents a powerful and cost-effective file-sharing model due to its ability to
leverage the participating users’ uplink bandwidth, most paid-content providers (CPs)
typically rely on direct download methods to distribute their paid content. For example,
Apple iTunes [1], Amazon [2] and Sony distribute content either directly from their
website or via contracted content delivery networks (CDNs) such as Akamai [3]. The
cost of content delivery, which involves either building infrastructure or paying CDN
fees, is quite significant. While some CPs, such as Warner Bros. and AOL, have begun
to experiment with limited P2P deployment [4] based on proprietary technology most
CPs are reluctant to embrace the cheaper P2P content delivery model. Their worry
is that unlike direct download, P2P introduces a number of security concerns such as
unauthorized downloads of paid content and increased illegal content sharing that could
reduce CPs’ profits. In this paper, we introduce TP2P – an architecture that augments
P2P to address these security concerns. We hope that our extension can help promote a
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wider adoption of P2P by content providers and that the content delivery cost savings
could benefit end-users via lowered content prices.

In a P2P model where peers download content from one another rather than from
a centrally managed system, a number of security issues arise. These security threats
include content pollution (as malicious peers could be serving garbage data to one an-
other), unauthorized download of paid content (as it can not be enforced by a CP server
or a CDN), and increased illegal file-sharing of copyrighted content by the P2P peers.
Peers can protect against content pollution via standard hash-checking of the file chunks
that they receive. However, in a P2P system peers do not have an incentive to enforce
exclusively authorized downloads by other peers or to abstain from forming illegal file-
sharing clusters with their neighbors. One reason that some CPs are hesitant to rely on a
P2P model for content distribution is that it can easily deteriorate into a free file-sharing
community similar to Xbox-sky [5] and Red Skunk Tracker [6]). Since P2P users com-
municate with one another directly during file distribution, it is easy for them to form
clusters for an illegal file-sharing. To form a cluster, malicious users can use a simple
protocol to “signal” one another as an invitation to join a cluster. Members of a formed
cluster can exchange content that they have purchased or that they will purchase in the
future from the CP. Thus they reduce CP’s profits, as each member of the cluster only
pays for a fraction of content that they obtain.

In order to protect against the threat of illegal file-sharing cluster formation and unau-
thorized downloads, we present a new technique that we call “trusted auditing”. Trusted
auditors (or TAs) are a new class of peers that police the P2P system by covertly mon-
itoring other peers for any sign of misbehavior, such as admitting unauthorized users
or protocol “signaling” that may lead to illegal sharing cluster formation. The TAs help
detect and stop such cluster formation and thus protect the CPs profits. We model the
behavior of TAs and show analytically and with simulations that TAs can effectively
thwart the formation of illegal file-sharing clusters. By introducing this type of policing
by trusted auditors we can provide security guarantees that are similar to those of direct
download systems. We show via an economic model that since the cost of using the TAs
is small TP2P can yield significant profits for the CPs.

When TAs detect misbehavior by a peer, a variety of countermeasures may be taken.
For example, offending peers can be banned from the P2P system to a direct download
system where they cannot exfiltrate any peer information. We stress that we do not
address illegal content sharing over out-of-band channels. Sharing of files after they
have been downloaded can happen regardless of the file distribution mechanism used by
the CP: a user can download a movie via a CDN and then post it for free download on
PirateBay [7]. However, it is important to address the threat of additional illegal sharing
that may occur over the P2P delivery system used by the CP. Imagine the effects of
having millions of iTunes users connected to a P2P system. Many of the users have
demonstrated the willingness to purchase content. Regular users are reluctant to visit
illegal pirated content sites because of the potential legal consequences as these sites
are policed by RIAA, MPAA and third-party companies such as Media Defender [8].
At the same time, simple software can help iTunes users probe their P2P peers and
invite them to share media libraries. Users know that their iTunes peers already have
high quality purchased content and probably share similar interests since they have
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learned one another’s IPs by P2P sharing of the same content. With the use of TAs,
TP2P prevents such additional illegal file-sharing when CP switches to the P2P model.

The contributions of our work are as follows:

• We introduce automated trusted auditors as a controlled and inexpensive way to
monitor and detect certain types of misbehavior in a P2P system.
• We present an analytical model that shows how TAs effectively thwart malicious users
from forming illegal file-sharing clusters. Our analysis shows that even where TAs are
but a small fraction of all peers, they are sufficient at protecting the P2P system against
unauthorized file sharing.
• Using a simple economic model we further show that TP2P provides a more cost-
effective solution than direct download. This results in higher profits for a CP even in
the presence of a large percentage of malicious users.
• Finally, we implement TP2P security elements on top of BitTorrent to demonstrate
that our system can provide its functionality in an existing, widely-used P2P system
with only modest modifications.

2 Related Work

As broadband Internet access becomes more prevalent, digital content stores such as
Apple Itunes and Amazon have begun to distribute richer digital content over the In-
ternet, such as TV series episodes and full-length movies. Since each download re-
quires significant bandwidth, these stores typically contract Content Delivery Networks
(CDNs) to distribute their content. Commercial CDNs include Akamai [3], Limelight
[9] and VitalStream [10]. Since CDNs are centrally managed they can enforce appro-
priate security measures on behalf of a digital store, such as authorization of customers
and encryption of served content. However, the price paid to CDNs for their services is
quite high. Market research [11] suggests that digital media vendors spend 20% of their
revenue on infrastructure costs for serving content. While free academic alternative
CDNs such as Coral [12] and CoDeeN [13] exist, these systems are typically limited in
their deployment and the amount of bandwidth they are allowed to use.

An alternative powerful distribution model is Peer-to-Peer (P2P) systems such as
BitTorrent [14], Napster [15] and Kazaa [16]) among others. No extra contracted band-
width is required as users leverage one another’s upload links to “share” content. Bit-
Torrent is perhaps the most popular of these systems, and many analytical works [17,
18, 19, 20] have shown the high efficiency and scalability characteristics of BitTorrent.

Some companies have begun to adopt the P2P model with some security measures.
MoveDigital [21] implements a gateway in front of a P2P system to allow only au-
thorized users access. However, once inside, users can leverage the system for further
illegal sharing without limitations. For example, if a user can learn the IP addresses of
other users inside the system, she can start sharing content with those users directly for
free, bypassing the up-front payment. Moreover, users might choose to participate in
the P2P system and pay to download files to gain knowledge about other participants
that have similar interests. Then, they can easily form another, private P2P community,
a darknet [22], for free future exchange of similar content
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In contrast, TP2P is designed explicitly to guard against such free file sharing using
an open system architecture that is resistant to exploitation even in the presence of
malicious nodes. TAs used in TP2P are owned and managed by the content provider,
and are unlike reputation-based systems [23] where users simply rate each other such
that the resulting ratings may not be trustworthy.

An additional problem for efficient P2P distribution of content is “free-riding” by
users who do not upload to their neighbors [24]. This problem can be partially addressed
by BitTorrent’s tit-for-tat mechanism [25] which was found to be fairly robust [26].
Additional solutions that consider incentives in P2P systems have also been proposed
[27,28,29,30]. We believe, that our technique of using TAs could also be used to solve
this problem. We leave this idea as an item for future work and focus here on using
TAs to prevent illegal cluster formation.

3 Architecture

The TP2P architecture is designed as an additional layer for common P2P systems.
This layer consists of components that enforce stronger security and trust in the P2P
system: the authenticator service and trusted auditors. While TP2P layer can be applied
to virtually any common P2P system, we use BitTorrent as the underlying P2P system
as a proof of concept. We selected BitTorrent given its popularity, open implementation,
and its very efficient file-swarming mechanism where users share individual blocks of
a given file.

The goal of BitTorrent is to distribute a file as fast as possible to all connected peers.
BitTorrent splits the file (such as a digital movie) into a number of chunks. Participat-
ing peers exchange individual chunks of the file using a file swarming approach. The
swarming algorithm is fully distributed and nodes use it to decide from which peers
they are going to request their missing chunks. In addition, in each file-sharing instance
there are one or more Seeds present. Seeds are peers that have all the chunks of the given
file. The party that advertises the content typically initializes one or more Seeds with
the full content of the file. A file-sharing instance also contains a Tracker that tracks
all participating peers. A peer joins the system by contacting the Tracker. It receives
a set of usually up to 50 IP addresses of other participating Peers. The Peer then ex-
changes chunks of the file with the other Peers and periodically updates its progress to
the Tracker via announce messages.

3.1 System Overview and Usage

When the user decides to purchase content for the first time, she registers at the content
provider’s portal. She picks a username and a password and enters her payment infor-
mation (i.e., credit card number). She then downloads a software client that allows her
to browse for files, purchase content and perform P2P downloads. For each purchase
at the CP’s portal she obtains a verifiable token (signed credential) that authorizes her
to download the purchased content file. The authenticator also generates credentials for
her to be used for secure communication during the download session. (We occasionally
refer to the file-sharing instance as a download session.) We describe these parameters
in Section 3.2.
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Fig. 1. To purchase a file, the user logs in
on the portal, pays, obtains a signed cre-
dential and contacts the tracker for the pur-
chased file

Fig. 2. Users authenticate one another and
request file pieces. A fraction of trusted au-
ditors is mixed in among the file-sharing
peers.

The user is then directed to a tracker that manages a file-sharing instance for the pur-
chased file. The tracker validates that the user is authorized to perform the download by
verifying her credentials. The user’s interaction with the authenticator and the tracker is
depicted in Figures 1 and 2. As in BitTorrent, the tracker assigns a set of other clients or
peers to the new client. The client shares pieces of the purchased file with her assigned
peers using BitTorrent’s file-swarming approach. TP2P differs significantly from Bit-
Torrent in the assignment of the peers. The TP2P tracker ensures that a certain fraction
of the peers that it assigns are trusted auditors (TAs), as shown in Figure 2. TAs are spe-
cial peers who, in addition to participating in a download session, detect misbehaving
peers. The detected malicious peers are identified and “banished” from the system.

3.2 Authorization

We first describe the authenticator and other modules which enforce strong authoriza-
tion and authentication. When a user purchases the content at the CP’s portal, their
credit card is charged the cost of the content. At that point the authenticator running
on the CP’s portal generates authorization credentials for the user (that will authorize
her to participate in a download session for this content) and sends them to the user
over a secure connection (using SSL). CP also stores the purchase record in case the
user loses her credential due to reboot or another failure and needs to come back to the
authenticator.

Authorization Credentials. The authorization credentials given to the user include a
temporary public/private key pair and a signed credential (akin to a public-key certifi-
cate) signed by the authenticator, whose public key is implicitly trusted by all par-
ticipating users (i.e., it is distributed along with the software, or is otherwise well
known). More specifically, we use public-key-signed policy statements (similar in form
to public-key certificates [31]) issued by the content provider as the basis for authoriza-
tion in our system. These credentials are given to authorized users after a purchase is
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made, and can be used as proof to both the Tracker and the other participants in a P2P
download session. The credential includes a Session ID that identifies the user’s down-
load session, an expiration time, the user’s IP address and public key, and an Instance
ID (a unique identifier of the file-sharing instance managed by the Tracker).

Verification by Tracker. Following the previous step, the user establishes an encrypted
TCP connection to the Tracker using the Tracker’s public key and sends its signed cre-
dential. The Tracker validates the digital signature of the credential against the authen-
ticator’s public key, confirms that the user’s IP matches the one in the credential, and
that the credential has not expired and that the Instance ID refers to a valid download
instance.

If all the parameters are confirmed, the Tracker assigns and sends a list of other peers
to the new user, along with a new credential that lets the new user contact other nodes
of the same session.

Peer Verification. When establishing communication, nodes that implement the correct
protocol verify their peers using the tracker-issued credentials: the signature, IP address,
public/private key binding, expiration, and instance ID. After verification, they negotiate
a symmetric session key for their encrypted TCP connection using their public/private
keys.

Certificate Revocation. If a peer loses a credential, due to hardware down-time or lo-
cal network down-time, she will re-login to the authenticator with her username and
password and obtain new credentials. However, before the new credentials are issued
the authenticator revokes the old credentials. The authenticator contacts the tracker pre-
viously assigned to this user and invalidates the old session ID. In response the tracker
sends out new ACLs to the peers assigned to the peer with revoked session ID. The
credentials and ACL revocation prevent a user from having multiple simultaneous iden-
tities in the system, thereby avoiding a scenario where a malicious user may attempt to
steal and reuse the identity of an authorized user. Observe, that if the user machine is
assigned a new IP by a local DHCP server after a network down-time, the new IP will
be included with the new signed credentials.

3.3 Detecting Malicious Behavior with Trusted Auditors

The TAs imitate other peers through their participation in the P2P file exchange. In ad-
dition, they passively and actively detect malicious nodes that either allow download
of unauthorized content or signal one another to form illegal file-sharing clusters. After
malicious nodes are detected they are “banished” to an isolated direct-download sys-
tem for future downloads. There they can no longer exploit the P2P system to form
new content-sharing clusters. As a deterrent, the banished nodes may also be charged
a penalty of the bandwidth cost for their future downloads. Alternatively, they may be
warned with a temporary fine or threatened with legal action. The deterrent may vary
according to the policy chosen by the CP as we discuss in Section 4.3. Since TAs also
consume bandwidth and require a maintenance cost the relative number of the TAs must
remain small.
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Defining Malicious Behavior. The system maintains and updates a definition list of
malicious behavior (MDL) that can lead to unauthorized downloads and establishment
of covert channels. The TAs can easily monitor the behavior described in the MDL. TAs
can steer clear of false positives by following the full protocol that the malicious users
use to exchange illegal content and incriminate them with evidence of such transaction.
Initially the MDL includes unauthorized or unencrypted connections, connections to a
non-protocol port and connections to a proper port that is not formatted according to
TP2P protocol.

The CP employs two strategies in updating the MDL. One strategy involves actively
searching, studying and running the software that malicious users use. The second strat-
egy is learning the malicious probing format and pattern on the fly. This approach is
based on recent work done at UC Berkeley on the RolePlayer system [32]. RolePlayer
installed on a TA machine can quickly learn and replay various network communication
patterns.

In order to form an illegal cluster malicious users attempt to discover one another
by either establishing a covert channel or by accepting one. With high probability, the
malicious node will probe a TA or reply to a probe from a TA and thus be detected
and banished from the P2P system. Of course, here is also a small probability that a
malicious node will find other malicious users by such probing and form a file-sharing
cluster which diminishes with the size of the cluster. Thus, a more aggressive malicious
node who may attempt to probe more neighbors aiming in forming a bigger malicious
cluster, runs a higher risk of being detected by a TA and being banished to a direct
download system. We explore and model the optimal strategy for a malicious node and
the detection probability in detail in Section 4.

Behavior of Trusted Auditors. TAs act as hidden “sentinels” in the system to prevent
malicious probing, and therefore significantly limit the ability of illegal cluster forma-
tion. To stay hidden, TAs mimic different roles: regular or “neutral” nodes and malicious
nodes. In their “neutral” role, TAs mimic the behavior of P2P peers by implementing
the same discovery and download protocols, exhibit similar download speeds, arrival
and departure rates as the regular clients. In their “malicious” role, TAs mimic the be-
havior of malicious nodes by sending out probes to their neighbors at the same rate as
other malicious nodes.

3.4 Security Analysis

TP2P architecture was designed to ensure that a P2P content delivery system could ex-
hibit similar security properties to a direct download system. In particular, we consider
threats where users may attempt to exploit the P2P system by attempting illegal cluster
formation and unauthorized downloads. We further classify the former threat into an
insider and outsider attacks. In insider attacks a P2P participant may contact another
participant during a download session. For outsider attacks, a node records the IP of it’s
peers and tries contact them from another IP address either during or after the download
session. In the next session, we discuss how TP2P addresses those threats.

Insider Attacks. One class of attacks against TP2P can stem from malicious users who
purchase content and thus obtain the proper authorization to join a file-sharing instance.
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Such insider malicious users can then attempt to discover other malicious users among
the file-sharing peers and form a collaborative network for future unauthorized sharing.
For instance, if five malicious users with similar interests discover each another during
a file-sharing instance, then in the future only one out of five will need to purchase new
content and share it with the rest. TP2P offers protection against this abuse by including
TAs in the file-sharing network. The role of the TAs is to detect any malicious user
attempting to scavenge information for future sharing. There are two ways in which
TAs can detect malicious users: either because the malicious user contacts the TA and
attempts to share unauthorized content, or because she allowed a TA to contact her and
share content without proper authorization.

But how can we make sure that the identities of TAs are not exposed to the malicious
nodes rendering them ineffective? There are two ways in which a TA can be exposed
over time: either by learning the TA network locations (IP addresses) or by observing
their behavior in the P2P system (i.e., when they perform active probing or detect a
malicious node). To avoid simple detection of the TAs’ IP address pool based on their
location, we can rent IP address space from Internet Service Providers based on their
user population [33]. Moreover, for more sophisticated attacks that can learn even those
IPs over time, we can request the TAs’ IPs to be given via the same DHCP servers that
the ISPs use for their own users. This will make the tracing of the TAs IPs futile since
their IPs do not only change over time but are also shared with regular Internet users.

The second way to expose a TA is to learn to identify its behavior, in particular as it
pretends to be malicious and probes other nodes. However, this is only true if malicious
nodes already have the knowledge of what it is deemed a “normal” probing rate or they
don’t probe at all (thus exposing the TAs). In both cases, this requires some sort of
previous shared knowledge among malicious nodes about the malicious behavior that
they should exhibit. However even in the extreme case that malicious users have pre-
agreed on a way of probing, the TAs can mimic such behavior because they are also
receiving a fraction of the malicious probes. Thus, the TAs can adjust their behavior
based on the probes that they themselves receive (remember that TAs communicate
with one another their common knowledge about the received probing rates).

How can we protect the system from Denial of Service (DoS) attacks? Since TAs mimic
the malicious node probing behavior, the increased rate of probing may cause TAs to
amplify their probing and thus cause a DoS attack. To avoid this, we use randomized
traffic thresholds for the probing rates received from the attackers. TAs do not probe
beyond those rates. At the same time, malicious nodes that use DoS run the risk of
being easily detected by the TAs. Thus, a DoS to scan for other malicious nodes in
the P2P, even a short one, represent a prohibitive cost for the malicious user since the
probability of being detected and shut down is high.

Outside Probing. In this type of attack, an insider participates legitimately in a down-
load session and collects the list of Peer IPs. It attempts to contact these IPs in search of
other malicious nodes from an external IP either during or after the download session.
Observe that contacts from outsiders who learn these IPs from a third party also fall
under this type of attack. To address such outside scanning we use TAs who are not
part of the P2P network to mimic the behavior of the outside scanning. Note that for
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a malicious node inside the P2P network there is little incentive to answer an outside
probe. The reason for this is that outsiders are less likely to have content for trading. On
the other hand, nodes inside the P2P are far more likely to have content worth trading
since they have proven that they are actually willing to buy such content. All things be-
ing equal in terms of scanning, by replying to outside probes malicious insiders run the
same risk of detection with uncertain gains. In practice, there is no incentive for a ma-
licious insider to respond to outside probes. The TAs prevent a possible DoS behavior
by setting high random thresholds in the traffic they receive. Furthermore, as we show
in our analysis in Section 4, the mere knowledge that TAs are present in the network
causes rational malicious nodes to behave more cautiously and thus less dangerously
towards the CP. TAs help to set the bar of malicious exploitation high by detecting ma-
licious users who have purchased content and thus have gained authorized entry into
the system. Furthermore, TAs detect users that do not honor (enforce) the authorization
credentials generated by the authenticator.

Unauthorized Downloads. Similarly, TAs probe the peers to check whether they allow
unauthorized or unauthenticated downloads, by attempting to connect to them without
proper credentials. Peers that deviate from the protocol by not enforcing the security
checks are banned to the direct download system and may be selectively warned or
penalized as a deterrent.
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Fig. 3. CP profit per user download. Distinct combinations of D (profit before bandwidth) and B
(bandwidth cost) capture variations in possible royalties and bandwidth agreements.

4 Analysis

We have discussed two threats that may exist in the P2P framework for paid content
distribution: unauthorized downloads and illegal file-sharing cluster formation. In the
case of the first threat the user that allows an unauthorized download has nothing to
gain by deviating from the TP2P protocol. In the case of the second threat each user
that joins a cluster gets some content for free from the other cluster members. In this
section, we focus our analysis on the threat of cluster formation and effectiveness of
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TAs in thwarting such activity. We analyze the strategy of malicious nodes and show
that even a small number of the TAs can effectively curb the growth of clusters and
successfully protect the CP’s profits.

4.1 Economic Impact

We propose a simple economic model to quantify the impact that malicious nodes have
on the CP’s profit. We assume that the average price of digital content sold by the CP is
S dollars. The CP pays a large part of that price as royalties $R to the content owner (a
movie studio for example), and retains $D. (D = S − R). In a direct download system
the CP also pays $B for the bandwidth required to serve a file of average size to the
end user. Thus the CP’s profit per movie purchase is, on average, $(D − B). The market
research in [11] shows that digital movie and audio stores pay roughly 60− 70% of end
price (S ) in royalties and the cost of bandwidth amounts to about 20%. Using a store
similar to Apple Itunes as an example, one can purchase standard length (1GB) digital
movies for $10. We assume that D, the store’s profit before bandwidth cost is $3 to $4
and B, the cost of bandwidth is roughly $2 per download. We experiment with these
assumptions in this section, but our results hold for wider ranges of values.

Using a P2P download approach the CP saves on most of the bandwidth cost and
claims a full $D as profit. Unfortunately, in the presence of malicious users the CP
collects smaller amount of revenue, and thus smaller profit since the malicious nodes
form clusters to avoid full content payment. For example, if two malicious users man-
age to discover each other in the P2P system they will form a cluster of size 2. Then,
these users will take turns purchasing files and sharing them with each other for free
instead of buying them through the CP. For simplicity, we assume that malicious and
non-malicious (or neutral) users desire to accumulate files at the same rate (e.g. say
they download one movie per week), and that their interests are similar and thus they
only need to purchase files at a fraction of the rate of the neutral users. For instance,
in a cluster of two malicious nodes they each purchase movies at half the rate of the
neutral. In general, users who belong to a cluster of size K need to purchase content at
a 1

K fraction of the rate of the neutral users to get the same number of files in a given
time interval. This scenario is pessimistic, since we assume that we lose from all mali-
cious clusters whereas in practice, only some of the users in the cluster will want any
particular file.

A single download session consists of up to Ns nodes that are all assigned to one
another by a tracker. For a popular file, the system runs multiple download sessions
of up to Ns nodes each. We assume that a single session contains at most M malicious
nodes, T TAs and Q neutral nodes with Ns = Q+M+T . In a BitTorrent network a typical
value of Ns is around 50 − 60 nodes, thus in our system we will assume a maximum
bound of Ns = 100. Let Mi be the number of users in the system who are malicious and
who belong to clusters of size i. Then M =

∑
i=1

Mi. We define mi = Mi/(M + Q) and

m = M/(M + Q) to denote the ratio of malicious users to the total number of malicious
and neutral nodes. The amortized profit received by the CP for each file is:

Profit = D · (1 − m) + D ·
∑
i≥1

mi

i
. (1)
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The first term in Equation 1 is the CP profit from neutral users who pay a full price.
The second term is from malicious users who pay only a fraction 1

i of the price based on
their cluster size i (assuming multiple downloads). On the other hand, the profit of the
CP in a direct-download system per download is D−B. As a reminder, we do not attempt
to solve out-of-band sharing that can exist with both direct and P2P systems. Rather, we
are interested in curbing file-sharing from clusters formed by malicious exploitation of
the P2P distribution system itself.

Using Equation 1, we produce the CP profit plots varying D and B. Figure 3 depicts
CP profit curves for the P2P and the direct download systems for values of m ranging
from 0 to 80%. Each plot uses different values for D and B to allow for variations in
the cost of royalties and bandwidth. The x-axis shows the maximum size of a malicious
cluster, K. The y-axis shows the average profit claimed by the CP user download. Each
plot contains two horizontal lines: the top one representing a profit of a P2P system
assuming no malicious nodes and the bottom one representing profit of a direct down-
load system. The difference between the two plots is exactly B, the cost of bandwidth
per download. The non-linear curves plot Equation 1 and represent the profit of a P2P
system with various fractions m of malicious users. The plots show that as the fraction
of malicious nodes and the file-sharing clusters that they form grow the profits for the
P2P system dwindle. In fact, as the malicious nodes’ fraction approaches 80% and for
malicious clusters of > 20 nodes, the CP collects less than half the profits of a direct
download approach. Even for less aggressive collections of malicious users, we see that
most of the economic advantage of P2P rapidly diminishes.

4.2 Probing Game

We model the interaction between the malicious nodes and TAs as a probing game: ma-
licious nodes probe and reply to probes from other malicious nodes in order to form and
grow a malicious cluster. To detect malicious nodes, TAs also pretend to be malicious.
They actively send probes and reply to probes of malicious nodes. To avoid being de-
tected a malicious node must not probe all of its neighbors. Instead, she chooses a finite
strategy that we call a growth factor (GF) which reflects the minimum cluster size that
she aims to belong to at the end of the download session. The malicious node probes
and replies to probes until she discovers at least GF − 1 other malicious nodes which
may include a TA pretending to be malicious. For GF = 1 malicious nodes behave as a
neutral nodes. If GF > M the malicious nodes are certain to hit a TA and thus become
detected before they can grow into a cluster of size GF. Thus, 1 < GF ≤ M.

In general, we make the following assumptions: malicious nodes remain “active”
(i.e. they send and reply to probes) until they reach their growth factor of GF. Each
malicious node knows both M and T in a download session, and based on that picks the
most profitable value of GF. We suggest a good value for GF later in the section based
on a simulation of multiple games. In the end of the session if a cluster formed during
the session includes a TA (that pretended to be malicious) all the malicious nodes in
the cluster are assumed to be “detected” and they are warned and “banished” by the CP.
Such nodes still do not know which of the cluster nodes was trusted and thus cannot
assume that they can share with the nodes they already discovered. Both malicious
nodes and TAs send probes to randomly chosen neighbors at the same probing rate per
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node. TAs send probes at the same rate to be indistinguishable from malicious nodes.
Otherwise, collaborating malicious nodes could easily pick out TAs in the system.Upon
receiving probes, neutral nodes simply ignore them.
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Fig. 4. For a single game, probability that a malicious
node succeeds in forming a cluster of at least its growth
factor with 50% of malicious users

Figure 4 shows the probability
that a malicious node succeeds in
forming the desired cluster size.
Here the fraction of malicious
nodes in the download session m
is fixed at 50% and the number of
trusted T is varied over different
ratios of M/T . The x-axis shows
the strategy (i.e. growth factor)
chosen by the malicious nodes in
the game. The y-axis gives the
probability that a node succeeds
in achieving reaching its selected
growth factor. As an example, the
scenario of M/T = 1 (the number
of malicious nodes and TAs is the
same) and a target GF = 2, shows
that the probability of a node suc-
ceeding in forming a cluster of
size 2 is about 25%. Thus there is a 3/4 chance that a node gets detected in such a
game. An important observation about this plot is that all curves are decreasing mono-
tonically. That means that as the malicious nodes become more aggressive by picking
larger growth factors, they are also more likely to be detected. Interestingly, even for the
top curve (M/T = 10) and the least aggressive target of GF = 2, there is only a 77%
chance that such a node succeeds (i.e., there is a 23% chance that it becomes detected).
So, even in a favorable scenario, the probability that the node does not become detected
in k independent games is roughly only .77k.

4.3 Simulation and Results

We used MatLab to simulate the overall behavior of a BitTorrent-like P2P system with
neutral, malicious and trusted nodes. We varied the overall system size, ranging from
105 to 107 participants. Our results remain consistent for all sizes. The plots presented
in this paper are obtained using a population of 2 · 106 nodes. Our aim was to examine
the performance limits of our system under diverse operating conditions by varying
both the fraction of the malicious nodes M and their relative ratio to the TAs M/T .
In addition, we wanted to find which growth factor is more beneficial for the malicious
nodes across multiple downloads. We picked 30 downloads as the number we use for the
multiple plots, because at 30 downloads we have detected the overwhelming majority of
the formed clusters for all M/T ratios we consider. In addition, after 30 downloads, we
notice that new clusters are formed almost exclusively by the new malicious arrivals and
thus we consider the distribution to be stable. We assumed a renewal rate (departure and
arrival of new users between downloads ) of 5%. (Higher renewal rates result in even
less effective cluster formation for malicious nodes).
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Fig. 5. Cumulative probability of forming clusters for growth factor GF = 2 and GF = 3 for
multiple games. Notice that both plots look similar and that for M/T = 10, GF = 2 results in
slightly larger cluster sizes.

In Figure 5, we present results from multiple downloads and for growth factors GF =
2 and GF = 3. The depicted results indicate that there is very little difference in the
malicious cluster size distribution (CDF) when comparing GF = 2 and GF = 3 with the
first having slightly better results. Therefore, the malicious users should select GF = 2
as their growth factor if they want to optimize their probability of being in a larger
cluster over multiple downloads.

The main result of the system with TAs is a high detection rate of the malicious nodes.
In fact, in our simulation even starting with m = 60% of malicious nodes and M/T = 10
with GF = 2 after the multi-game simulation reaches steady state we observed that
more than 99% of the malicious nodes in the system have been “detected”. 80% of the
malicious nodes failed to form clusters of even a small size prior to detection.

With the conservative policy, the CP warns the detected malicious users but leaves
them in the P2P system. The CP threatens a fine or court action for illegal activity and
forces them to re-download a new software client. If the CP believes that almost all
such users will behave neutrally then it continues to make $D in profit from these users.
Equation 2 presents the amortized profit per download under this policy.

AP = D · (1 − m) + (D ·
∑
i≥1

mi

i
) − B · T

M + Q
(2)

This is an extension of equation 1 with the additional term: −B · T
M+Q that accounts for

the bandwidth used by the TAs normalized by the total number of malicious and neutral
users in the system. Figure 6 compares the profits of an unprotected system with that of
TP2P based on a multi-game simulation (with the parameters as describe above) when
it reaches steady state. TP2P shows much higher profits. For instance with m = 60%,
M/T = 10, D = 4 and B = 2 the profit is 122% higher for TP2P. Observe, that if instead
the CP decides to move the detected nodes to a direct download system and charge them
a penalty of their bandwidth cost the equation 2 also describes the resulting profit. In
this situation the CP still makes $D from each download.

With an aggressive policy the CP does not trust the detected users to behave neutrally
after a warning. The CP moves the detected users to a direct download system but does
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Fig. 6. Comparison of CP profits between a protected and an unprotected system for bandwidth
cost of 2. On the left we have a system without TAs and on the right a system with a ratio of TAs
to malicious users being 10. The protected system yields more profits that are comparable to a
P2P system without malicious peers.

not charge them a bandwidth penalty. These users are no longer a threat but the CP now
loses $B of bandwidth cost for their downloads. Equation 3 shows the profit based on
this policy where the CP loses $B on m1 fraction of nodes - the singleton malicious
nodes that are detected.

AP = D · (1 − m) + (D ·
∑
i≥2

mi

i
) + (D − B) · m1 − B · T

M + Q
(3)

Even with this assumption in the case of m = 60%, M/T = 10, D = 4 and B = 2 the
steady state profit is 62% greater even with very few TAs. For a very high initial value
of m = 90%, the profit curve under this policy overlaps with direct download. The CP
can improve the profit by moving detected nodes only temporarily until they can gain
higher reputation. We leave this item for future study.

5 Implementation and Performance

We implemented an TP2P prototype by adding modifications to the existing BitTorrent
client and Tracker (ver. 3.9.1) written in Python. Our modest modifications included
adding secure channel communication using RC4 encryption, assignment of trusted
auditors by the Tracker, and the distribution of credentials by the tracker to the peers.
We conducted our experiments using PlanetLab [34] to compare the download speed
of TP2P clients compared to BitTorrent clients on a set of geographically distributed
machines given the overhead of secure communication and credentials distribution and
verification in TP2P. Most machines used were equipped with 3GHz processors and ran
the Linux 2.6.12 kernel.

For our first test, we deployed 41 BitTorrent clients randomly distributed in the con-
tinental US. A node was designated as the Seed client and initialized it with a 512MB
movie file. To stress our system, we stored no parts of the file on the rest of the clients
before the test. We ran the Tracker process on a machine outside of PlanetLab, a blade
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server with 3.06GHz processors, running a Linux 2.6.11 kernel, and a 10Mbit/sec up-
load bandwidth link. We ran the test both with the unmodified BitTorrent code and with
TP2P. The BitTorrent download times were only 0.8% faster on average, showing that
TP2P adds negligible performance overhead.

For our second test, we performed a similar experiment as the first test but using a
more dynamic scenario where peers join the download system at staggered times. We
began with one Seed and 76 clients. The 76 clients joined the system at 2 minute in-
tervals. By the time the later peers start, more clients in the system already have partial
data sets. Therefore, newer clients have more sources to download the data from and
thus their download times are generally faster. For this test, TP2P clients on average
slightly outperformed BitTorrent by about 0.5%. This was due to the fact that the TP2P
nodes contact the Tracker more frequently and receive new connection assignments at
a faster rate at startup. As a result, initially they have slightly more choices for select-
ing faster sources. The CPU overhead on the TP2P clients was also minimal as RC4
encryption is a fast stream cipher. Average CPU utilization on the TP2P and BitTorrent
clients was almost identical at roughly 1.3% and 1.23% respectively.

6 Conclusions

We introduced the concept of TAs to a P2P setting: by policing the system, TAs are able
to enforce TP2P protocols and guarantee security properties that are similar to those of
a direct download system. We have analyzed TP2P by modeling it as a game between
malicious users who try to form free file sharing clusters and trusted auditors who curb
the growth of such clusters. We have combined this analysis with a simple economic
model to quantify the cost-effectiveness of our approach in the presence of malicious
users. Our analysis shows that even when 60% of the participants in a system are ma-
licious users, our system can detect 99% of malicious users and prevent them from
forming large clusters, thereby providing strong protection of the P2P system against
unauthorized file sharing. For most configurations, our analysis shows that TP2P yields
profits that are between 62% and 122% higher than a direct download system based
on conservative profit and bandwidth cost models. We demonstrate that TP2P can be
implemented on top of BitTorrent with modest modifications, and provides its content
protection and economic benefits with negligible performance overhead compared to
vanilla BitTorrent.
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Abstract. The complexity of modern network architectures and the epi-
demic diffusion of malware require collaborative approaches for defense.
We present a novel distributed system where each component collabo-
rates to the intrusion and malware detection and to the dissemination of
the local analyses. The proposed architecture is based on a decentralized,
peer-to-peer and sensor-agnostic design that addresses dependability and
load unbalance issues affecting existing systems based on centralized and
hierarchical schemes. Load balancing properties, ability to tolerate churn,
self-organization capabilities and scalability are demonstrated through a
prototype integrating different open source defensive software.

1 Introduction

Distributed and collaborative systems are emerging as the most valid solutions to
face modern threats coming from multiple sources. To identify network intrusions
and new malware as soon as possible, hierarchical architectures for intrusion
detection have been proposed, such as [1]. They are able to gather information
from a wide network space and allow early detection of emerging threats because
they are based on multiple sensors placed in different network segments and on a
hierarchical collaboration scheme. This approach allows administrators to deploy
timely countermeasures because all the network segments hosting at least one
sensor can be alerted about new threats as soon as they are detected in any part
of the collaborative system.

The problems affecting existing collaborative solutions based on hierarchical
or centralized architectures are well known: peer dependability issues, limited
scalability and load unbalance. We present a distributed collaborative architec-
ture that aims to address these main issues through a cooperative peer-to-peer
scheme based on a Distributed Hash Table (DHT).

The peer-to-peer architecture proposed in this paper aims to capture and
analyze real malware specimens and propose countermeasures instead of just
recognizing that a malware is spreading. Moreover, it disseminates network ac-
tivity reports on the basis of a behavioral analysis of the captured payload, thus
being able to provide a description of the malware behavior. The communication
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model is different from existing systems because it adopts a publish/subscribe
scheme as an option for the distribution of the result of the analysis, while each
alert is inserted into an ad-hoc message persistently stored in PAST [2]. This
solution guarantees privacy and availability of the information. Other propos-
als based on peer-to-peer defensive schemes (e.g., [3, 4]) differ from this paper
because their focus is on novel algorithms for anomaly detection that should
be facilitated by cooperation. On the other hand, our focus is on the software
architecture that is flexible enough to work with different algorithms.

Other peer-to-peer schemes (e.g., [5, 6, 7]) are used to disseminate informa-
tion about malicious IP addresses through some publish/subscribe model. Our
architecture uses a publish/subscribe scheme only for the communication of the
analysis results, while events are persistently stored and can be retrieved succes-
sively. Other proposals have some peculiarity that is not addressed in this paper.
For example, DOMINO [6] is an interesting architecture because its overlay net-
work combines peer-to-peer and hierarchical components and uses Chord [8] to
distribute alert information. The main goal of Worminator [9] is to guarantee a
high level of privacy of the shared information. It extracts relevant information
from alert streams and encodes it in Bloom Filters. This information forms the
basis of a distributed watchlist and includes IP addresses and ports. The watch-
list can be distributed through various mechanisms, ranging from a centralized
trusted third party to a decentralized peer-to-peer overlay network. However,
we should be aware that the main goal of these architectures is to compile an
updated blacklist of the IP addresses at the origin of some attacks. On the other
hand, this paper has a broader scope: our architecture manages IP addresses and
other important information, such as binary code of malware, signature of IDS
and malware behavior. Moreover, our architecture is sensor agnostic, and is able
to support heterogeneous algorithms and techniques for intrusion detection and
malware analysis. For these reasons, it differs from Indra [7] that is a distributed
intrusion detection architecture that relies on custom sensors.

This paper is organized as follows. Section 2 describes the design of the pro-
posed architecture. Section 3 highlights its main benefits with respect to hier-
archical and centralized architectures. Section 4 details the main features of the
prototype that is based on open source software. Section 5 reports the experimen-
tal results achieved through the prototype. Scalability, load balancing, robustness
and self-organization properties at a larger scale with thousands of collaborative
nodes are demonstrated through simulation. Section 6 outlines main conclusions
and future work.

2 Architecture Design

The main goal of this paper is to design a distributed architecture where each
component collaborates to the intrusion and malware detection and to the dis-
semination of the local analyses including:

– malware behavior,
– malware diffusion,
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– network-based attacks,
– diffusion of intrusions,
– identification of suspicious IP addresses,
– identification of the servers from which the malware is downloaded.

The novel architecture should address the main issues of hierarchical collabora-
tive schemes in order to guarantee high scalability, fault tolerance, dependability
and self-organization.

To accomplish these goals we propose a flat distributed architecture composed
by several cooperating nodes that communicate through a DHT overlay network.
An overview of this architecture is shown in Figure 1. Each node, called collab-
orative alert agregator, accomplishes the same high level functions: generation
of local security alerts, forwarding of relevant alerts to the other collaborative
nodes, analysis of received events and communications of the analysis results.
All the communications among the collaborative alert agregators are carried out
through a peer-to-peer overlay providing a fully connected mesh network. This
solution does not require centralized coordination nor supernodes.

Fig. 1. Node connections to the DHT

The design of a collaborative alert agregator is represented in Figure 2. It is
possible to identify three layers: the sensor layer, the local aggregation layer, and
the collaboration layer. Each layer is described in the following sections.

2.1 Sensor Layer

The sensor layer provides a node with intrusion detection alerts and malware
samples. It consists of one or multiple types of sensors. For example, the current
version relies on four classes of sensors.
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Fig. 2. Design of a collaborative alert aggregator

– Host IDS. Intrusion detection system monitoring activities on the same
host in which they are deployed.

– Network IDS. Sensors placed in strategic positions in order to capture all
network traffic and to analyze each packet looking for malicious content.
They can be implemented through custom hardware appliances or installed
on a general purpose computer. When illicit activities are detected, they
generate an alert containing information on malicious network packets (such
as a TCP/IP header and a signature identifier) and a description of the
attack.

– Honeypot. These tools are able to collect malware and to trace malicious
activities. They consist of server processes hosted on a vulnerable computer
connected to a network. As an honeypot does not provide any useful service,
any attempt of reaching it and logging into its services can be considered an
attack.

– Sensor manager. This class of sensors represents a component of a multi-
tier, hierarchical NIDS architecture. A sensor manager forwards information
to other managers belonging to upper tiers. It can also aggregate and fil-
ter data, thus reducing the number of forwarded alerts and decreasing the
network traffic and the computational load of the other components of the
hierarchical architecture.

It is not necessary to install the sensors on the same physical machine hosting
the local aggregation and the collaboration layers. Sensors can interface with
alert collectors installed on remote hosts.

2.2 Local Aggregation Layer

The local aggregation layer is responsible for collecting, filtering and aggregating
all the heterogeneous alerts received from the sensors of the lower layer. While it
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is possible for the alert collector to execute arbitrarily complex aggregation and
correlation algorithms, its fundamental task is to pre-process all the received
alerts that may be syntactically and semantically heterogeneous. All the alerts
are classified and stored in the local alert database that is used by the upper
layer as the only sensor-independent interface to store and retrieve heterogeneous
events.

2.3 Collaboration Layer

The collaboration layer is the only component connected to the collaboration
overlay network that is based on DHT. Being part of the overlay network, we
can assign a unique node identifier nodeID to each collaboration module. The
collaboration module has three main purposes.

– It is responsible for retrieving new events that have been stored in the local
alert database. These events are submitted to the DHT-based overlay net-
work through a key (messageId) that is computed over a significant field of
the event. As an example, the key used to submit a malware specimen can
be computed by applying a hash function to the malware, while a NIDS alert
can be submitted to the overlay network twice, using as keys the signature
ID and the IP address from which the illicit network packet originated. The
strategy used to determine which fields are involved in key computation can
be configured to fulfill specific analysis goals.

– It receives messages submitted by other collaboration modules that are con-
nected to the same overlay network. Each collaboration module is responsible
for a portion of the hash space (determined by the nodeID and by the im-
plementation details of the DHT algorithm), and receives all the messages
whose messageId fall within that hash space. This design choice allows each
collaboration module to receive all the messages that are relevant to one sce-
nario. As an example, this approach allows a single collaboration module to
receive all the events caused by the same source, thus achieving an effective
network-based and distributed alert aggregation and correlation scheme.

– Each collaboration module is responsible for the dissemination of the analysis
results to the other nodes connected to the overlay network. This guarantees
the timely disseminations of network activity reports to all the collaborative
nodes without any centralized bottleneck.

There are two ways to retrieve new alerts from the database: the collaboration
layer reads the collected data at regular interval (pull mode) or it is driven by
external calls (push mode). In the implementation presented in Section 4 we use
the pull mode.

2.4 Event Processing

The collaboration layer gets new events from the database and processes them
sequentially. For each event, it sends a number of messages depending on the
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type of event and analysis goals. In the current version of the architecture, each
event retrieved from the database may have up to four interesting fields: the
malware’s binary code, the IP address of the server from which the malware has
been downloaded, the IDS signature ID and the IP address of the attacker. For
each of these fields a message is created using the hash of its value as messageId.
This message is received by the node with the nodeID closer to the messageId.
Before the insertion of a new message, the collaboration module monitors the
pre-existence of its messageId within the DHT. If there is not that value, the
message is inserted, and the sender node signals the arrival of a new message to
the receiver node. Otherwise, if the messageId already exists, the sender node
contacts the receiver node and it informs it about the generation of a new event
with the same messageId.

The receiver node behaves differently depending on the message type. If the
message contains a new malware, the receiver node takes care of its behavioral
analysis by relying on a local or remote sandbox. In all the other instances, the
node executes some anomaly detection strategies that are based on the frequency
of received events. It is important to observe that in this paper we do not focus
on specific event analysis algorithms, but on the architecture which permits to
collaborate and to share information. In particular, the proposed architecture is
algorithm agnostic and flexible enough to adopt several different analysis strate-
gies. Finally, the event analysis results are disseminated to all the interested
collaborative alert aggregators following a publish/subscribe paradigm [10].

3 Peer-to-Peer vs. Hierarchical Architecture

3.1 Fault Tolerance

The completely distributed nature of the proposed architecture is inherently
fault tolerant, and lacks single points of failure that are typical of hierarchical
and centralized architectures, where alert aggregation, correlation and analysis
functions are aggregated in the root node of the architecture [1]. This node
represents a single point of failure and when it is unreachable the hierarchical
architecture is unable to complete any collaborative task. The effectiveness of
hierarchical architectures can be impaired even by failures of the nodes belonging
to intermediate layers of the tree. As an example, a failure of one of the tier-1
nodes causes the isolation of the complete sub-tree having the faulty node as its
root.

On the other hand, the proposed architecture leverages a completely dis-
tributed, network-driven aggregation and correlation technique. Each node is
responsible for aggregating and correlating only a small subset of alerts and
malware samples. If a node becomes unreachable, only the messages that would
have been handled by the faulty node are lost, while all the other nodes are not
influenced by the failure. Moreover, depending on the implementation of DHT
routing of the overlay network, the collaborative nodes can detect the failure of
a peer, and autonomously modify their local overlay routing tables accordingly.



Peer-to-Peer Architecture for Collaborative Intrusion and Malware Detection 481

Hence, the proposed architecture is able to autonomously reorganize itself and
restoring its efficiency with no human intervention.

Message replication schemes can also be used to reduce the (minimal and
transitory) message losses due to the failure of a collaborative node. In the cur-
rent version, it is possible to set a replication constant k denoting that, for each
message, k copies are created and maintained by the DTH overlay. One message
is sent to the node whose unique identifier nodeID is responsible for the mes-
sage key. The other k− 1 messages are sent to the k− 1 nearest neighbors, thus
guaranteeing full reliability for up to k − 1 failures, because the network would
maintain constant the number of replicas through periodic inspections (exper-
imental evaluation of message loss probability for higher number of concurrent
faults are presented in Section 5). By tuning the value of k, it is possible to
achieve the desired trade-off between overhead and fault tolerance.

3.2 Load Balancing

Hierarchical architectures, such as [1], concentrate malware analysis and alert
correlation tasks on the root node, so that they can avoid replicated analyses.
As a bad consequence, the computational load on the root is significantly higher
than the load of the intermediate nodes, to the extent that much more powerful
hardware is necessary to host the root services.

Another advantage of the proposed DHT-based distributed architecture is
represented by its intrinsic load balancing properties. Let us consider a scenario
in which a network participating to a collaborative hierarchical architecture is
targeted by an attacker, while the other participating networks are not. In a
similar situation, the load related to alert management and correlation is un-
evenly distributed because only the nodes related to the attacked network are
involved in alert management. Hence, an attacker could easily overload the path
connecting the attacked networks to the hierarchy root by attacking few selected
networks connected to the same higher-level node.

Uneven load distribution and overload risks are mitigated by the proposed
distributed alert aggregation and correlation scheme. As we avoid one centralized
aggregator, then there is no single path through which all the alerts generated
by a sensor (or a set of sensors in the same network) are transmitted. Alerts
gathered by one node in an attacked network are routed to multiple nodes,
based on the messageId characterizing each alert. Even if one network (leaf) is
heavily attacked, this scenario is well managed and the load is automatically
distributed among many nodes through different branches.

3.3 Scalability

Hierarchical architectures are based on a multi-tier management infrastructure
connecting the lowest layer alert managers (the leaves of the management tree)
to the root manager. Each manager node in the hierarchical architecture is able
to aggregate alerts generated by a finite number n of lower-layer sensors or man-
agers on the basis of computational complexity of alert management operations
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and on bandwidth constraints. Hence, a hierarchical architecture can be modeled
as an n-ary tree, whose number of intermediate elements grows logarithmically
with the number of the leaves.

On the other hand, in the proposed architecture, all the alert management
operations are distributed among the leaves and there is no need for a separate
management infrastructure. This is a huge advantage in terms of scalability
and management, because it is not necessary to reconfigure the architecture
hierarchy, possibly by adding new layers to the management tree, whenever the
number of leaves increases.

3.4 Number of Stored Copies

Another advantage of the peer-to-peer architecture is represented by the smaller
number of copies of individual alerts and malware specimens. In a hierarchical
architecture, a copy of each different alert and malware specimen is maintained
in each node of the management tree by which the alert has been received. Let
us consider a tree of managers having order n, l leaves and height h = logn(l).
If c represents the number of copies of each alert stored by the nodes belonging
to the hierarchical architecture, then we have:

h ≤ c ≤
h−1∑
i=0

ni

This means that the number of copies c is comprised between the number of
manager nodes in the path between the leaf generating the alert and the root
of the tree (h) and the total number of manager nodes when the same alert has
been issued by all the leaves in the tree (

∑h−1
i=0 ni ). As h grows proportionally

to the logarithm of the number of leaves, then the number of copies of each
alert (and malware specimen) that a hierarchical architecture needs to maintain
grows logarithmically with the number of leaves.

On the other hand, in the peer-to-peer architecture the number of copies of
each different alert is determined by the replication factor k, which is a config-
urable parameter independent of the number of nodes connected to the overlay.

A comparison between the number of stored copies is presented in Table 1.
The first row of this table represents the number of copies stored in the peer-
to-peer architecture having a replication factor k = 5. The number of copies
does not depend on any other parameter. The other rows contain the number of
copies stored in a hierarchical architecture characterized by a different number
of nodes and order. As an example, the second row shows that the number of
copies of the same alert in a hierarchical architecture with l = 1000 nodes and
order n = 10 is between 3 and 111, depending on how many leaves issue the
same alert.

4 Prototype

The viability of the proposed architecture has been demonstrated through a
prototype. In compliance with the architecture description in Section 2, each
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Table 1. Number of store copies stored in the peer-to-peer and hierarchical
architectures

Architecture Minimum Maximum
DHT overlay, k = 5 5 5

Hierarchical, l = 1000, n = 10 3 111
Hierarchical, l = 10000, n = 10 4 1111
Hierarchical, l = 100000, n = 10 5 11111
Hierarchical, l = 8000, n = 20 3 421

Hierarchical, l = 160000, n = 20 4 8421

collaborative alert aggregator consists of different software modules that can be
divided in three classes. The first two classes include typical network defense
items. The third class includes communication software. The entire prototype is
based on open source software.

The current implementation of the collaborative alert aggregator can rely
upon heterogeneous sensors, thus being able to detect a wide range of threats.
In particular, we used Snort [11] (standard de-facto for signature based network
intrusion detection) as a NIDS sensor, and Nepenthes [12] as a low-interaction
honeypot.

The alert collector is implemented through the Prelude software [13]. All the
communications between the Prelude manager and the sensors is based on the
Intrusion Detection Message Exchange Format (IDMEF) [14], which is an IETF
standard for the generation and management of messages related to security
incidents.

The alert collector is configured to store all the collected alerts and malware
samples in the local alert database, implemented with MySQL [15].

The collaboration layer is implemented in Java and guarantees a platform
independent application. The DHT-based overlay network relies on the FreePas-
try libraries, a Java implementation of Pastry network [16, 17, 18, 19,20]. These
libraries guarantee a useful emulation environment, and implementation of two
applications based on Pastry: PAST [2, 21], that is the persistent peer-to-peer
storage utility used to store information, and Scribe [10,22], used for multicast
communications.

The collaboration module can be configured by editing an XML [23] file. The
interface with the alert database is implemented through JDBC drivers [24], thus
guaranteeing a high interoperability with the most common DBMS.

Events retrieved from the database are classified according to their type, and
managed by different classes. The current version of the prototype implements
four classes managing four heterogeneous types of event: malware samples, IP
addresses related to the server from which the malware is downloaded, IP ad-
dresses related to hostile activity and signatureId of alerts generated by a NIDS
sensor. The collaboration module is modular and its functions can be easily
extended by adding new classes for the management of other types of event.

After a message has been received, the collaboration module is responsible for
its storage, its analysis (possibly leveraging external services, such as Norman
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sandbox [25] and CWSandbox [26]), and communication of the analysis results
to the other nodes. Each node can subscribe to specific areas of interests, thus
receiving only a subset of analysis results. In the current implementation, alert
storage is handled by PAST, while multicast dissemination of the analysis results
relies on Scribe. Finally, a custom application based on FreePastry provides a
one-to-one communication service.

PAST is a persistent storage utility distributed peer-to-peer network. It is
based on a Pastry layer for routing messages and for network management. We
adopt it because it is able to balance the storage space between all the nodes
and guarantees high fault tolerance. Each PAST node, identified by an ID of 128
bits (nodeID), acts both as a storage repository and as a client access. Any file
inserted into PAST uses a 160-bit key, namely fileId (messageId in our case).
When a new file is inserted into PAST, Pastry directs the file to the nodes whose
nodeID is numerically closer to the 128 most significant bits of messageId, each
of which stores a copy of the file. The number of involved nodes depends on the
replica factor chosen for availability and persistence requirements.

5 Validation and Performance Evaluation

Viability and performance of the proposed architecture have been demonstrated
through extensive experiments and simulations. Small scale experiments, through
the prototype comprising few tens of nodes, have been carried out by execut-
ing several instances of the collaboration module in few hosts and by binding
each instance on different port numbers. Tests for large number of nodes include
the network emulation environment provided by the FreePastry libraries. This
solution allows us to launch up to one thousand nodes on each Java Virtual
Machine.

Very large scale simulation involving up to ten thousand nodes are carried
out through an ad-hoc simulator. It considers the high-level behavior of the hi-
erarchical and DHT-based architectures and omits the low level details related
to the transmission of messages over the network and their storage within the
local alert database. Although simplified, the simulator uses the same routing
schemes of the prototype, and it has been validated by executing the same (re-
duced scale) experiments on the prototype and on the simulators and by verifying
the complete agreement of the results.

5.1 Dependability and Fault Tolerance

The completely distributed nature of the proposed architecture is inherently fault
tolerant, and lacks single points of failure. While the failure of few nodes does
not impair the architecture dependability, it is possible that an alert message
sent to a faulty node can be lost. To minimize the chances of loosing alerts,
the proposed architecture relies on the message replication scheme described in
Section 3. It is possible to configure a replication factor k, so that each message
is sent to the k collaborative alert aggregators whose nodeID is nearest to the
message key.
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The ability of the proposed architecture to sustain faults and node churn is
demonstrated through several simulations. In each run we simulate an overlay
network consisting of a variable number of collaborative nodes (from 1000 to
10000), and we randomly generate a set of messages. Once guaranteed that each
node is responsible for at least one message, we simulate the concurrent failure
of a percentage of collaborative alert aggregators, ranging from 1% to 10% of
the nodes. Then, we wait for PAST to run a scheduled update, thus restoring
k copies of each message not lost due to the concurrent node failures, and we
check whether all messages created at the beginning of the simulation are still
available. The results are presented in Tables 2 and 3.

In Table 2 we compare networks of different sizes (between 1000 and 5000)
where nodes use a replica factor k = 5 (5 copies of each message). The number
of faulty nodes is denoted as a percentage of the total number of nodes. For each
failure rate and for each network size, we run the simulation 100,000 times. The
message loss rate is expressed as a percentage of the 100,000 runs in which at least
one message has been lost. As an example, the cell in the fourth row and second
column in Table 2 denotes that a network of 1000 collaborative nodes with 40
concurrent failures (4% for the number of nodes) lost at least one message in
only 0.01% of the 100,000 tests.

Table 2. Message loss probability for k = 5 and for different numbers of nodes and
faults

Concurrent fault rate (%) 1000 nodes 2000 nodes 5000 nodes
1 0 0 0
2 0 0 0
3 0 0 0,01
4 0,01 0,02 0,04
5 0,02 0,04 0,12
6 0,06 0,12 0,24
7 0,11 0,22 0,6
8 0,19 0,42 1,04
9 0,35 0,76 1,8
10 0,58 1,16 2,99

In Table 3 we report the results about the influence of the replica factor k
on the probability of losing a message. In these simulations we use a network
size of 10,000 collaborative nodes, and we vary both the concurrent failure rate
(expressed as percentage of the number of nodes) and the replica factor (with
values of k ranging from 4 to 6). As in the previous set of experiments, for each
combination of fault rate and replica factor we run 100,000 simulations. The
packet loss probability is expressed as the percentage of simulations in which at
least one message has been lost.

These experiments demonstrate that by using appropriate values of the replica
factor k, it is possible to achieve negligible message loss probability even for
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Table 3. Message loss probability for a network of 10,000 nodes and for different k

Concurrent fault rate (%) k=4 k=5 k=6

1 0,009 0 0
2 0,16 0,003 0
3 0,735 0,019 0,001
4 2,117 0,075 0,002
5 5,022 0,219 0,015
6 9,732 0,542 0,037
7 16,64 1,186 0,081
8 25,859 2,172 0,159
9 36,682 3,774 0,315
10 48,685 5,904 0,529

large networks and (unrealistic) concurrent failures of hundreds of geographically
distributed and independent nodes.

5.2 Load Balancing and Scalability

In this section we compare the load of the proposed peer-to-peer architecture
against that of the lowest layer of alert manager in the hierarchical architecture
presented in [1].

Experiments are carried out by simulating a network of 5000 collaborative
nodes, and a hierarchical architecture with the same number of leaves. Each
intermediate manager node of the hierarchical network is connected to a random
number of elements in the lower level, uniformly chosen between 5 and 20. The
resulting tree has 4 layers and 420 low-level managers, directly connected to
the leaf sensors. Figures 3 and 4 compares the load distribution among the
5000 collaborative alert aggregators in the DHT-based overlay and the load
distribution among the 420 manager nodes of the hierarchical architecture.

Figure 3 represents the best-case scenario for the hierarchical architecture,
in which all the 500,000 messages (100 messages for each leaf, on average) are
uniformly distributed among the leaves. The uniform distribution among all the
leaves simulates an unrealistic scenario in which network attacks are uniformly
distributed among all the sensors that generate alerts at the same rate. The
two lines of Figure 3 represent the cumulative distribution function (CDF) of
the number of messages that each node in the collaborative architecture (line
P2P) and each low-level manager in the hierarchical architecture (line Hier-
archical) has to manage. The X axis represents the ratio between the num-
ber of messages handled by a node and the expected average value (that is,
500, 000/5000 = 100 messages per collaborative node in the collaborative archi-
tecture, and 500, 000/420 = 1190.48 messages per manager in the hierarchical
architecture). The vertical line represents the ideal load distribution, in which
all the nodes handle a number of messages that is equal to the expected average
(hence the ratio between the handled messages and the expected ratio is 1).
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Fig. 3. Load balancing with random inserts

As shown in Figure 3, characterized by a uniform distribution of alerts among
sensors, the load of the hierarchical architecture is better distributed than that
of the collaborative overlay. Indeed, all the nodes in the hierarchical architecture
handle a number of messages between 40% and 150% of the expected average.
However, even in the best-case scenario for the hierarchical architecture, the load
distribution of the two collaborative architectures is comparable. Indeed, the two
distributions behave similarly for about 70% of the nodes; 20% of the nodes in
the peer-to-peer architecture are more loaded than the most loaded nodes of the
hierarchical architecture, but the highest load is still manageable and limited to
3.2 times than the expected load.

In Figure 4 we report the results of a more realistic scenario, in which 500,000
messages are not generated uniformly by all the collaborative alert aggregators,
but they follow a Zipf distribution1 (known to be a realistic representation of
traffic distribution and load of nodes in the Internet). The two cumulative dis-
tributions in this figure show the benefits of the hash-based event distribution
algorithm implemented by the DHT-based overlay network. The node managing
an alert is determined by the alert content and not by the network generating
it, hence the load distribution of the proposed architecture in this scenario is
identical to that presented in Figure 3. On the other hand, the load distribution
in the hierarchical architectures is highly unbalanced. For example, the most
loaded manager handles a number of messages equal to 103 times the expected
average.

We consider now an attack scenario in which all the events are generated
by one sensor (or by several sensors connected to the same low-level manager).

1 The used formula is f(Pi) = c
i
, where i is the rank, Pi indicates the event which occu-

pies the i-th rank (the i-th most frequent), f(Pi) is the number of times (frequency)
that the Pi event occurs, c is a constant equivalent to Pi.
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Fig. 4. Load balancing with Zipf distribution based inserts

This is the worst case for a hierarchical architecture, because all the alerts must
be handled by the same manager node. The results are impressively poor: one
manager has to sustain a load 420 higher than that related to the expected
average. On the other hand, the proposed architecture preserves the same load
distribution of the other two scenarios. This shows the robustness of the peer-
to-peer architecture with respect to any attack scenario.

6 Conclusion

In this paper we propose an innovative architecture for collaborative and dis-
tributed intrusion detection, malware analysis and alert dissemination.

With respect to previous work in the same field, our architecture represents
a more flexible cooperation infrastructure that is able to manage heterogeneous
information, ranging from IP addresses to the complete binary code of malware
specimens and IDS alerts. Moreover, our architecture is not focused on a specific
analysis algorithm and can leverage heterogeneous analysis engines. Finally, a
publish/subscribe scheme is used for efficient and timely dissemination of rele-
vant analysis results to all the collaborative nodes.

Being based on a DHT overlay, the proposed architecture avoids single points
of failures, guarantees high scalability, load balancing and self organization capa-
bilities, that allows us to implement a system that may integrate several thousand
collaborative nodes. The viability of the proposed architecture is demonstrated
through a prototype based on open source software, while large scale results
referring to up to 10,000 nodes have been obtained through simulations.

We are now working on a hardened version of the distributed architecture
that uses digital certificates and secure communications among the peers. We
are also improving the detection algorithm in order to detect polymorphic and
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metamorphic malware where the cryptographic hashes of the binary code are
different for every sample thus preventing the identification of the same threat.
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Abstract. The frequency and severity of a number of recent intrusions
involving data theft and leakages has shown that online users’ trust,
voluntary or not, in the ability of third parties to protect their sensitive
data is often unfounded. Data may be exposed anywhere along a corpora-
tion’s web pipeline, from the outward-facing web servers to the back-end
databases. The problem is exacerbated in service-oriented architectures
(SOAs) where data may also be exposed as they transit between SOAs.
For example, credit card numbers may be leaked during transmission to
or handling by transaction-clearing intermediaries.

We present F3ildCrypt, a system that provides end-to-end protec-
tion of data across a web pipeline and between SOAs. Sensitive data are
protected from their origin (the user’s browser) to their legitimate final
destination. To that end, F3ildCrypt exploits browser scripting to enable
application- and merchant-aware handling of sensitive data. Such tech-
niques have traditionally been considered a security risk; to our knowl-
edge, this is one of the first uses of web scripting that enhances overall
security.Our approach scales well in the number of public key operations
required for web clients and does not reveal proprietary details of the log-
ical enterprise network. We evaluate F3ildCrypt and show an additional
cost of 40 to 150 ms when making sensitive transactions from the web
browser, and a processing rate of 100 to 140 protected fields/second on
the server. We believe such costs to be a reasonable tradeoff for increased
sensitive-data confidentiality.

1 Introduction

Recent intrusions resulting in data leakages [1,2] have shown that online users
simply cannot trust merchants to protect sensitive data. Security incidents and
theft of private data are frequent, often in spite of the best intentions of corporate
policy, faithful compliance to standards and best practices, and the quality of
security/IT personnel involved. Data may be exposed anywhere along a web-
driven pipeline, from the outward-facing web servers to the back-end databases,
so security personnel must protect a wide front. Furthermore, in service-oriented
architectures (SOAs), data may also be exposed as they transit between SOAs,
and, of course, the remote SOAs must also be configured and administered safely.

P. Samarati et al. (Eds.): ISC 2009, LNCS 5735, pp. 491–506, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



492 M. Burnside and A.D. Keromytis

Firewall
Web server/

business logic

Marketing
database

Purchasing
database

Credit card
processor

Web browser
Web browser

Web browser

Fig. 1. A simple e-commerce server pipeline

Data leakage can be very expensive to the parties involved. It was recently
reported that an attacker compromised the networks of clothing retailer TJ
Maxx and stole credit card information for 45.6 million customers, dating back
to December 2002 [1]. It is estimated that this breach will cost TJ Maxx ap-
proximately $197 million. Another attacker stole 4.2 million credit card numbers
from grocery store chain Hannaford [2] with an unknown cost to the company,
though a recent study [3] estimated an average cost of $197 per compromised
customer record.

For a corporation to safeguard sensitive user information, it must be protected
in an end-to-end fashion [4], in transit from the web browser to the back-end da-
tabases, and during storage at the database. Protecting the back-end databases
may come in the form of legal [5] or technical [6,7] protection. F3ildCrypt focuses
on the technical protection of data in transit. While a protocol like SSL provides
adequate protection for data on the wire, it provides no protection for transitions.
Even with SSL protection between a web browser and web server, and between
the web server and back-end database, sensitive data may still be revealed during
the transition across the web server.

Consider a simple e-commerce website for a widget store, as in Figure 1.
The website uses an Asynchronous Javascript and XML (Ajax)-based shopping
cart [8] and XML-formatted content, served from PHP-based business logic. All
customer communication with the website takes place over SSL. Customer data,
including name, address, and order history are processed by the business logic
and stored in a back-end MySQL database. As new orders for widgets arrive, the
business logic transmits order information to the website’s credit card processor.

An order consists of an XML document1 containing the customer’s name,
address, email address, a list of each type of widget to be purchased, and the
customer’s credit card details. Note that each field is useful to only a subset of
applications in the website pipeline. That is, multiple machines have access to
data for which they have no need – a violation of the principle of least privilege

1 The choice of XML is not integral to our scheme; we can just as easily use JSON
or any other data encoding/representation. XML was selected for convenience in
prototyping, and because of its wide use in SOA environments.
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[9]. For example, there is no reason to expose the credit card data to the web
server – in fact, it should only be revealed to the credit card processor – and there
is no reason to reveal the customer’s email address to the purchasing database.

To use this website safely, a customer must trust that both the widget store
and the credit card processor are taking appropriate steps to protect his credit
card information. Additionally, as far as the user is concerned, any protection
derived from the SSL session is lost in the pipeline downstream from the web
server, since the SSL tunnel ends at the web host. There is no guarantee to the
customer or to the corporation that the downstream machines are not currently
compromised and that they are suitably protected against future compromise
(since downstream machines may be located in SOAs operated by third-party
corporations).

The goal of F3ildCrypt is to guarantee that data are encrypted end-to-end, as
they traverse an SOA and its children SOAs. F3ildCrypt is based around three
components: an XML gateway, an in-line proxy re-encryption engine [10], and a
Javascript policy and Java applet cryptographic engine.

We use an Ajax-based approach where fields are encrypted at the customer’s
web browser. In the straightforward approach, this would require that the Ajax
application be bundled with certificates containing public keys for the inter-
nal web-pipeline components, so it can encrypt the information appropriately.
However, this approach may not be appealing to a corporate entity, since it re-
quires, for example, revealing the name and public key of the corporation’s credit
card processor. In general, it exposes the internal logic of the enterprise (includ-
ing external business relationships, processing intermediaries, and the internal
pipelines, which may change at any time) to the customer. A key contribution of
this work is to use proxy re-encryption at the gateway to map fields encrypted by
the user to the individual internal components or partner SOAs, without expos-
ing clear-text at the gateway, and without revealing those partner relationships
to the end-user.

Ajax-like techniques (and, more generally, web browser scripting) have long
been considered a security risk, for good reasons. To our knowledge, our approach
is one of few that enhances overall security through use of such techniques.
Although the use of public key cryptography inevitably increases the overall
latency and processing cost of any given web transaction, we experimentally
demonstrate that the costs in this case are reasonable. Furthermore, these costs
need only be incurred when sensitive information is being transmitted; in our
widget-store testbed, the costs are only incurred when the user makes a purchase.
The preceding portion of the session, while the user is browsing in the store, does
not incur any additional performance impact.

2 Related Work

Proxy re-encryption [11,10] allows a third-party to transform a ciphertext for
Alice into a ciphertext for Bob, without revealing the plaintext to the third
party.
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Consider Alice, with key pair (pkA, skA), and Bob with key pair (pkB, skB).
A re-encryption key from Alice to Bob rkA→B has the following property for all
plaintext P :

pkB(P ) = rkA→B(pkA(P )) (1)

If, for example, Alice wishes to temporarily re-direct her encrypted email to Bob,
but she does not wish to reveal her secret key, she can generate a re-encryption
key rkA→B and deliver that key to a proxy. (See [10] for the details on generating
this key; it is a function of Alice’s private key and Bob’s public key.) The proxy
can then re-encrypt messages destined for Alice so that Bob may read them.
The plaintext is never revealed to the proxy.

The authors in [10] demonstrate a unidirectional, single-hop scheme, while the
scheme proposed in [11] is bidirectional and multi-hop. Meaning, essentially, that
rkA→B = rkB→A, and a ciphertext can be re-encrypted from Alice to Bob to
Carol. The algorithm from [10] is partially implemented in the JHU-MIT Proxy
Re-cryptography Library (PRL) [12], which we use in our prototype.

XML is fast becoming a standard for document transfer on the web, and
there is a body of work on securing those documents. Element-level encryption
of XML fields was first proposed by Maruyama and Imamura [13]. There are
now several XML-based firewalls on the market including the Cisco ACE XML
Gateway [14] and the IBM XS40 Security Gateway [15]. These devices allow
field-level transforms, including cryptographic primitives, of XML content as it
traverses the firewall. Appliances like these provide high performance, but do
not provide end-to-end protection of the individual fields.

There have been a number of proposals for XML-based access control systems
[16,17,18]. One of the most popular is the eXtensible Access Control Markup
Language (XACML) [19]. It provides XML-based standards for defining policies,
requests, and corresponding responses. An XACML policy consists of a list of
subjects, actions and resources, followed by a list of rules for which subjects may
apply which actions to which resources.

W3bCrypt [20] first introduced the notion of end-to-end encryption of data
in a web pipeline. The W3bCrypt system consists of a Mozilla Firefox exten-
sion that enables application-level cryptographic protection of web content. Web
content is encrypted or signed in the browser before being delivered to the web
application. This provides field-level end-to-end protection for user data, but
does not protect the corporate network from information revealed by the key
distribution. That is, in order to use W3bCrypt across an entire web pipeline,
including multiple possible calls to external SOAs, the logical architecture of
the server network must be revealed to the client in the form of pairwise key
sharing. By providing this protection, F3ildCrypt may be viewed as a successor
to W3bCrypt.

Li et al. use automaton segmentation [21] to explore privacy notions in dis-
tributed information brokering systems. The authors model global access control
policies as a non-deterministic finite automata, and divide those automata into
segments for evaluating network components. The automaton segmentation sys-
tem considers privacy for users, data, and meta-data, but does not consider



F3ildCrypt: End-to-End Protection of Sensitive Information in Web Services 495

privacy notions with respect to the logical network layout and corporate inter-
actions between service providers.

Sun Microsystems has implemented the Java WSDP 1.5 XWS-Security Frame-
work [22] to assist programmers in securing web services. However, this scheme
does not extend to the client (browser). Singaravelu and Pu [23] demonstrate a
secure web services system based on the WS-Security framework. The key dis-
tribution mechanism used by this system requires pairwise shared keys between
endpoints, potentially revealing the internal logical architecture and SOA de-
pendencies. Chafle et al. [24] use data flow constraints to protect web services,
but this requires complete, centralized control of all SOAs involved.

3 Architecture

In this section, we describe our network and threat models, and our design
requirements. We then examine several design alternatives, before explaining
the overall F3ildCrypt architecture.

3.1 Network Model

We consider service-oriented architecture (SOA)-style networks where external
requests to the network have a single entry point and request-handling takes the
form of a tree. A single parent SOA may make requests on multiple child SOAs in
the course of processing a request.The SOAs may each operate under different
administrative domains, with varying legal and corporate policies toward the
privacy and protection of data traversing their networks. There may also be
political, corporate, or technical pressure to prevent disclosure of the logical
architecture of each SOA, and the identities of their children SOAs.

3.2 Threat Model

A corporation whose business model requires handling sensitive user information
(e.g., credit cards, Social Security numbers, etc.) has both financial and political
incentives to protect those data as they traverse its network. There are commonly
used mechanisms, like SSL, for protecting the data point-to-point, but this does
not protect against data leakage at compromised intermediate hosts.

Thus, our threat model encompasses large-scale networks of inter-operating
SOAs where multiple internal hosts or networks may be compromised. These
nodes may cooperate to extract and reveal data from transient information flows.
We focus particularly on those information flows containing sensitive data related
to, e.g., identity theft. Our approach does not protect against the compromise
of a node that legitimately has the need to view a specific piece of sensitive
information.

Additionally, the logical architecture of the corporate network, along with
any SOA peering agreements, is sensitive. Information of this nature should be
protected from disclosure.
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3.3 Requirements

Our goal is to provide XML-field granularity end-to-end protection of data trans-
mitted from a web browser to each field’s destination end-host within the web
pipeline of an e-commerce site. The web pipeline may encompass multiple re-
mote SOAs, and the end-to-end property must hold across SOA boundaries.
Additionally, the confidentiality of the logical internal architecture of each SOA
must be respected. That is, no architecture details should be disclosed to the
web clients or across parent or children SOA boundaries.

3.4 Design Alternatives

An XML firewall, like those marketed by IBM [15] or Cisco [14], or a similar
proxy, sited at an SOA’s network edge, can provide some protection. The proxy
or firewall encrypts individual fields of each document to the fields’ destination
host within the SOA. However, this is not an end-to-end solution and an end-
user has no way of verifying that an XML firewall or proxy is in place, let alone
operating correctly. The customer must simply trust the SOA beyond the narrow
confines of the commercial transaction.

Another approach is to generate a public key pair at each host in the web
pipeline, use a trusted third party (VeriSign, GeoTrust, etc.) to sign certificates
for each, and deliver the certificate set to each web browser or SOA client. In the
event that a document containing fields with sensitive data must be delivered to
the website, the web browser (or a browser-embedded crypto engine) can then
encrypt each field directly to its destination end host.

There are several serious flaws in this design. If the e-commerce site links
to external SOAs, the keys for each host in each external SOA must also be
delivered to the web client. Thus, this solution does not necessarily scale well in
the number of certificates. As more SOAs become involved, a cache of hundreds
or thousands of certificates would have to be provided to each new web client,
and the certificate caches for existing web clients would have to be updated
each time the internal architecture of the SOA or any of its dependent SOAs
changed. This solution also has the unfortunate consequence of revealing details
to the end user (and thus to competitors) about the logical architecture of the e-
commerce site and its SOA partners. By collecting and correlating the certificate
sets, an adversarial client may be able to identify individual hosts in an SOA.
Furthermore, this technique reveals the identities of the SOA partners. These
details may encompass trade secrets and other confidential information.

3.5 F3ildCrypt Architecture

Our proposed solution is based on the technique of proxy re-encryption. Each
SOA publicizes a certificate containing a public key, called the external key, pkE .
This key is used by the SOA’s clients, either web browsers or other SOAs. Before
sending a document containing sensitive data fields to an SOA, a client cryp-
tographically transforms each field containing sensitive data, using the external
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key. The client chooses which fields to transform based on an XACML client
policy delivered from the SOA.

Meanwhile, each host or application in the SOA has an associated public key
pair. This set of public keys is the internal key set pkI0 ...pkIn . These keys are
used for communication internal to the SOA.

The external key pkE is generated at a host called the external-key holder.
The public keys of the internal applications pkI0 ...pkIn are delivered to this
host and used, in concert with the external secret key skE to generate the re-
encryption keys rkE→I0 ...rkE→In , as in [10]. The fundamental property of proxy
re-encryption holds that, for any plaintext P and internal application j:

pkIj (P ) = rkE→Ij (pkE(P )) (2)

The re-encryption keys are installed at a host called the proxy re-encryption
engine. Fields from documents arriving at the SOA have been encrypted under
pkE and are handled by the proxy re-encryption engine. The latter re-encrypts
each field under re-encryption key rkE→Ij , where j is the individual host within
the web pipeline designated to process that field, based on a XACML server
policy. The plaintext is not revealed until it arrives at the intended destination
host.

This solution requires an SOA to deliver to its clients a certificate containing
only the single external key pkE , avoiding the problem of sending what could be
a set of hundreds or thousands of certificates. Furthermore, no logical infrastruc-
ture details are revealed to the client. With the exception of the external-key
holder, any subset of intermediate hosts between the client and end-host – includ-
ing the proxy re-encryption engine itself – can be compromised without leaking
any sensitive user data.

Compromise of the external-key holder, however, could be dangerous, requir-
ing that special care be taken to secure this machine. Luckily, the bandwidth
requirements on the external-key holder are extremely low. It is only used to
generate the re-encryption keys so, after initial setup, its use is only required
when adding new internal hosts. Thus, in the extreme, it is possible to keep the
external-key holder offline at all times, and distribute keys through it by hand.

4 Implementation

Our implementation of F3ildCrypt consists of a Javascript-based policy engine
and a Java-based cryptography engine delivered to each web browser. The web
server connects to the server using SSL. On the server side, we provide a Python-
based XML gateway with in-line proxy re-encryption engine for each SOA, and a
Python-based XML proxy at each internal application. These proxies store the
key pairs for their respective applications, and perform decryption and XML
unwrapping on behalf of the application.

The Java cryptography engine and in-line proxy re-encryption engine use the
proxy re-encryption algorithm described in [10]. This algorithm is based on bilin-
ear maps [25], and is partially implemented in the JHU-MIT Proxy Re-crypto-
graphy Library (PRL) [12]. For our implementation, we ported the PRL to both
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Java and Python. We note that the JHU-MIT PRL supports only single-hop re-
encryption, thus limiting the recursive depth of our implementation until such
time as an implementation of the multi-hop algorithm from [11] is available.

F3ildCrypt setup in an SOA begins by designating an offline host as the
external-key holder and generating the external key pair. The public key pkE

is signed by a trusted third party and the certificate is made available to the
public. This is the key with which all clients will encrypt sensitive data sent to
the SOA.

At each application inside the SOA we install an XML proxy which serves
as that application’s entry point into the F3ildCrypt network. This proxy stores
the internal key pair (pkIj , skIj ) associated with the application. Any documents
with encrypted fields arriving at the application are intercepted and decrypted
by the XML proxy before delivery to the application proper.

Each internal public key is delivered in offline fashion (hand-delivered via USB
key, for example) to the external-key holder, where the re-encryption keys are
generated. The re-encryption key for proxy j is rkE→j and it is a function of the
external secret key skE and pkIj . The re-encryption keys are then hand-delivered
to the proxy re-encryption engine.

The proxy re-encryption engine operates as a client to the XML gateway. The
XML gateway stores a set of XSLT stylesheets. Each stylesheet describes the
transformation to be applied to a given field type in a document. The XSLT
implementation is extended with the proxy re-encryption function, so applying
the cryptographic transformations becomes an application of a stylesheet, as in
W3bCrypt [20]. The specific stylesheets are chosen based on a system adminis-
trator-defined XACML policy.

The XML gateway uses the XSLT transforms to re-encrypt designated fields,
targeting them to the appropriate internal hosts. It processes incoming doc-
uments containing fields encrypted under pkE . These fields are re-encrypted
under the various re-encryption keys rkE→I0 ...rkE→In , in accordance with the
XACML policy, before forwarding the document on to the web pipeline.

When a client connects to the SOA over SSL, the SOA responds with the con-
tents of an Ajax web application, implementing, for example, a shopping cart
application. Packaged along with the application is the Javascript-based policy
engine and an applet containing the Java cryptography engine. At the browser,
the package then downloads from the SOA an XACML policy document to be
applied to uploaded documents, and a certificate store containing the signed cer-
tificate for the SOA’s external key. When, in the course of user interaction with
the application, an XML document must be uploaded, the Javascript engine
applies the XACML client policy. This policy describes which fields of the doc-
ument should be encrypted. The cryptography engine encrypts the designated
fields with the external key, and then the document is uploaded to the SOA.

Now consider the case of a parent SOA, with external key pkEp making re-
quests on a child SOA with external key pkEc . The child SOA implements the
F3ildCrypt architecture, with internal key pairs for its own internal applications.
As in the parent case, and given the appropriate proxy re-encryption algorithm,
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XML documents arriving at the child SOA’s XML gateway are re-encrypted by
the proxy re-encryption engine.

To make use of the child SOA, the system administrator at the parent uses the
publicly known pkEc and its secret key skEp to generate a re-encryption key rkp→c.
Fields within a document sent to the parent SOA, but destined for the child SOA,
are re-encrypted under rkp→c at the parent XML gateway. When the fields arrive
at the child XML gateway, they may be re-encrypted again, to the end-hosts within
the child SOA.

4.1 Example

In this section we will describe a sample application of the F3ildCrypt archi-
tecture. It is based on the network for a small e-commerce site selling widgets,
called Widgets4Cheap. The site consists of a firewall, web server with business
logic, and back-end databases for marketing and purchases, as was shown in
Figure 1. Widgets4Cheap also makes use of an external credit card processor.

The website presents to the user a web page with a simple catalog and shop-
ping cart application, where the user may browse widgets and select items to
purchase. When the customer makes an order, the order is delivered to the web
server in the form of an XML document. An order consists of the customer’s
name, physical address, email address, a list and count of each model of widget
to be purchased, and the customer’s credit card information.

Customer data, including name, billing address, and order history are stored in
the purchasing database. The customer’s email address is stored in the marketing
database. As orders arrive, the business logic transmits order information and
credit card details to the website’s credit card processor.

Revealing the internal architecture of the Widgets network is undesirable, as
it may reveal business or trade secrets (this is exacerbated in more sophisticated
networks). Additionally, even with an SSL connection between the client and the
web server, the compromise of any internal host in the Widgets4Cheap pipeline
could be catastrophic to the company and its customers, since every internal
host, particularly the firewall and web server, has access to all the customer
information in transit.

To protect this network, we define a high-level security policy. The cus-
tomer’s billing address, and order details may only be revealed to the purchas-
ing database, while the email address may only be revealed to the marketing
database. The credit card information and total payment is revealed only to the
credit card processor.

Before implementing this policy, we deploy the F3ildCrypt infrastructure, as
shown in Figure 2. Co-located with each internal application is an XML proxy
which stores the key pair for that application. This XML proxy serves to decrypt
the incoming XML documents, and unwrap the XML as necessary. On a separate
offline machine (the external-key holder) the system administrator generates the
external key pair which will be presented to remote users. A certificate for this
key is signed by a third-party certificate authority. In the case of this example
implementation, this was an in-house certificate authority.
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Fig. 2. Diagram of the network for Widgets4Cheap with F3ildCrypt installed

<rule ruleid="creditcard_transform" effect="permit">
...

<attributevalue datatype"string">
order/creditcard

</attributevalue>
...

</rule>
<obligation obligationid="reencrypt_on_transit" fulfillon="permit">

<attributeassignment attributeid="reencrypt" datatype="string">
ccn_reencrypt.xsl

</attributeassignment>
</obligation>

Fig. 3. A rule from the XACML server policy file. When the gateway receives an XML
document, the rule attempts to match the XPath order/creditcard. When this rule
fires, the obligation indicates that the XSLT transform ccn reencrypt.xsl should be
applied.

The external-key holder is then used to generate re-encryption keys for each
internal application and the credit-card processor, and these are delivered to the
XML gateway, thereby allowing the gateway to re-encrypt traffic to the internal
applications and credit-card processor SOA.

At the XML gateway we place a set of XACML policy files that describe the
transformations to be applied to documents in transit, an example rule of which
is shown in Figure 3. The XML gateway also contains a set of XSLT documents
for implementing those transforms, an example of which is shown in Figure 4.

Meanwhile, the Javascript policy engine and Java crypto engine applet are in-
corporated into the Ajax application viewed by customers, along with a XACML
client policy file and a certificate store containing the Widgets4Cheap external
key. After browsing the catalog and selecting his items, the customer makes
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<xsl:template match="creditcard">
<xsl:copy-of

select="encrypt:reencrypt(., reencrypt_key[7]’)"/>
</xsl:template>

Fig. 4. An XSLT snippet for re-encrypting the credit card information. Demonstrates
usage of the XSLT extension function reencrypt(). It applies proxy re-encryption to
the matched XML field using the re-encryption key reencrypt key[7].

<order> <items>
<date>1 January 2008</date> <item>
<name>H. Simpson</name> <quantity>1</quantity>
<address> <detail>Big red widget</detail>

<street>742 Evergreen Ter.</street> <cost>69.96</cost>
<city>Springfield</city> </item>
<state>USA</state> <item>
<zip>12345</zip> <quantity>1</quantity>

</address> <detail>Blue suede widget</detail>
<email>homer@springfield.com</email> <cost>109.95</cost>
<creditcard> </item>

<payment>179.90</payment> </items>
<issuer>American Express</issuer> </order>
<number>1234-5678-1234-5678</number>
<expiration month="10" year="2010"/>

</creditcard>

Fig. 5. A purchase order for two pairs of widgets from Widgets4Cheap

<rule ruleid="creditcard_rule" effect="permit">
...

<attributevalue datatype"string">
order/creditcard

</attributevalue>
...

</rule>

<obligation obligationid="encrypt_on_send" fulfillon="permit">
<attributeassignment attributeid="encrypt" datatype="string">

encrypt(key[n])
</attributeassignment>

</obligation>

Fig. 6. The XACML client rule, abridged for clarity and space. This rule and obligation
describes the action to be taken on the credit card section of the XML document:
encrypting it with a key obtained from the certificate store.

his purchase as in Figure 5. Before transmitting this document, the applica-
tion applies the XACML client policy. The XACML client policy file describes
which fields in the order document should be encrypted. A snippet from the
Widgets4Cheap client policy is shown in Figure 6. When the policy is evalu-
ated, the cryptography engine encrypts the necessary fields, resulting in a new,
field-encrypted order document.

When the now-transformed document arrives at the Widgets4Cheap website,
it is processed by the XML gateway/proxy re-encryption engine, which applies
the server XACML policy to determine which XSLT transforms to apply. The
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XSLT transforms apply the proxy re-encryption to the document, re-targeting
the field encryptions that were originally applied by the client. The business logic
then processes the order, delivering the various XML fields to their intended
targets. The individual XML fields are intercepted by the XML proxies at each
application and decrypted before being passed on to the application proper. The
re-encrypted credit card information is passed to the credit-card processor, who
may recursively apply this system, distributing the received information through
its network.

5 Evaluation

We evaluated the performance of F3ildCrypt by measuring its impact on the
web browser clients, on the XML gateway, and on the XML proxies at each host.
We performed micro-benchmarks at the individual hosts, as well as throughput
measurements on the servers.

Our experimental setup consisted of the network described in Figure 2. Each
server application ran on a Dell PowerEdge 2650 Server, with a 2.0GHz Intel
Xeon processor, 1GB RAM, and 36GB Ultra320 SCSI hard drive. All machines
ran OpenBSD 4.2. and were linked via Gigabit Ethernet. The applications in-
cluded OpenBSD PF on the firewall, Apache 1.3.29/PHP 4.4.1 on the business
logic server, and MySQL 5.0.45 on the database servers.

The client ran on a MacBook Pro, with a 2.4 GHz Intel Core 2 Duo, 2 GB
RAM, and 150GB 5400 RPM Fujitsu hard drive. The machine used OS X 10.5.2
with Darwin kernel version 9.2.2. The web browsing platform installed on this
computer was Mozilla Firefox 2.0.0.13.

The extra work incurred on the web browsing client consists of applying the
XACML policy followed by application of the appropriate cryptographic trans-
formations. We used a Java port of the JHU-MIT Proxy Re-cryptography Li-
brary [12], running as an applet in the browser, which implements the proxy
re-encryption scheme described in [10]. The Java cryptographic engine applet
and Javascript policy engine together are approximately 25KB. We measured
the performance of the client by encrypting multiple 128-byte fields, as shown
in Figure 7a. After processing, most XML documents increase in size between
10% and 30%.

The most common sizes for identity-related sensitive data (e.g., credit card
numbers, birth dates, etc.) are less than 1K, so the cost incurred at the browser
in these cases will range from 40 to 150 ms. Of course, this cost is only incurred
when sensitive data requiring encryption is actually transmitted.

The additional work incurred at the XML gateway consists of parsing the
incoming XML documents and applying proxy re-encryption; Figure 7b shows
the combined cost. We isolated the re-encryption cost per field in Figure 8a. An
XML proxy decrypts the encrypted fields from incoming documents; we isolated
the decryption cost at the XML proxy in Figure 8b.

These results show that fields from XML documents can be processed at a rate
of 100 to 140 fields/second, and the majority of the processing time is dedicated
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to the re-encryption process. This time can be significantly improved through
software optimization; the JHU-MIT PRL is not optimized for execution time.
The re-encryption cost can be further substantially reduced through the addition
of a hardware cryptographic accelerator [26].

6 Discussion

The F3ildCrypt system is designed to assist an online entity in protecting its
users’ sensitive information. The user must not longer collectively trust the web
application, the back-end databases, and the system administrators with each
sensitive item he provides. Now, for that same item, he only has to trust its
intended destination.

F3ildCrypt is designed to assist the system administrators in making the end-
user’s trust well-founded. However, to provide further assurance to the user, this
approach may be combined with a P3P-like policy [27] working in concert with
a browser-based cryptography engine like W3bCrypt [20]. Additional protection
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may come from obtaining a signature on the Ajax application itself from a trusted
third party. This trusted third party (e.g., the Better Business Bureau) would
certify that the Ajax is encrypting or protecting data to the correct recipients.
Regardless of the means, the user, or a trusted third party, must verify the
contents of the Ajax application and the associated policy.

For a motivated adversary attacking a F3ildCrypt-enabled system, note that
the external-key holder possesses the secret key corresponding to the external
public key. Whoever possesses of the secret key is capable of decrypting all
messages to that SOA, making the external-key holder a desirable target for
attackers. However, it is infrequently used and has low bandwidth requirements.
This machine can operate entirely offline, with the occasional generation of a
re-encryption key taking place via diskette or USB key.

We also note that, within the network of the F3ildCrypt-equipped SOA, like
in a traditional network, an adversary who has compromised an intermediate
machine may swap or replay fields, or otherwise modify documents as they pass
through that machine’s possession. F3ildCrypt does not prevent such attacks,
though they can be alleviated via timestamps and signatures on the individual
fields.

There is an attack on web browsing transactions that comes from transaction
generators. Transaction generators wait for users to log on to their accounts,
and then issue transactions on their behalf. Jackson et al. [28] propose as a
solution a form of confirmation page. This confirmation page can be integrated
with F3ildCrypt and the user-certification process described above to provide
additional protection to the user.

7 Conclusion

The F3ildCrypt system provides end-to-end protection to users and SOAs by
encrypting XML fields at the client web browser. The SOA protects its internal
architecture by using proxy re-encryption to re-target the XML fields at the
SOA edge. The processing cost at the web browser ranges from .5 to 1 second
when making sensitive transactions, and a processing rate of 100 to 140 XML
fields/second on the server, of which the latter could be easily improved through
software optimization and hardware acceleration.

Future work on F3ildCrypt includes integration of the proxy re-encryption
engine with the web browser itself, and extensions to the browser to assure the
user that the correct transformations have been applied.
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Sree Vivek, S. 310
Stamminger, Andreas 202
Stavrou, Angelos 186, 459
Stein, Cliff 459
Steiner, Michael 278
Sural, Shamik 107

Tamura, Jin 326
Tang, Qiang 151
Tchamkerten, Aslan 250

Toahchoodee, Manachai 379
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